1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.747 2008/07/28 19:34:54 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** Include the configuration header output by 'configure' if we're using the 21 ** autoconf-based build 22 */ 23 #ifdef _HAVE_SQLITE_CONFIG_H 24 #include "config.h" 25 #endif 26 27 #include "sqliteLimit.h" 28 29 /* Disable nuisance warnings on Borland compilers */ 30 #if defined(__BORLANDC__) 31 #pragma warn -rch /* unreachable code */ 32 #pragma warn -ccc /* Condition is always true or false */ 33 #pragma warn -aus /* Assigned value is never used */ 34 #pragma warn -csu /* Comparing signed and unsigned */ 35 #pragma warn -spa /* Suspicous pointer arithmetic */ 36 #endif 37 38 /* Needed for various definitions... */ 39 #define _GNU_SOURCE 40 41 /* 42 ** Include standard header files as necessary 43 */ 44 #ifdef HAVE_STDINT_H 45 #include <stdint.h> 46 #endif 47 #ifdef HAVE_INTTYPES_H 48 #include <inttypes.h> 49 #endif 50 51 /* 52 ** A macro used to aid in coverage testing. When doing coverage 53 ** testing, the condition inside the argument must be evaluated 54 ** both true and false in order to get full branch coverage. 55 ** This macro can be inserted to ensure adequate test coverage 56 ** in places where simple condition/decision coverage is inadequate. 57 */ 58 #ifdef SQLITE_COVERAGE_TEST 59 void sqlite3Coverage(int); 60 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 61 #else 62 # define testcase(X) 63 #endif 64 65 /* 66 ** The ALWAYS and NEVER macros surround boolean expressions which 67 ** are intended to always be true or false, respectively. Such 68 ** expressions could be omitted from the code completely. But they 69 ** are included in a few cases in order to enhance the resilience 70 ** of SQLite to unexpected behavior - to make the code "self-healing" 71 ** or "ductile" rather than being "brittle" and crashing at the first 72 ** hint of unplanned behavior. 73 ** 74 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 75 ** be true and false so that the unreachable code then specify will 76 ** not be counted as untested code. 77 */ 78 #ifdef SQLITE_COVERAGE_TEST 79 # define ALWAYS(X) (1) 80 # define NEVER(X) (0) 81 #else 82 # define ALWAYS(X) (X) 83 # define NEVER(X) (X) 84 #endif 85 86 /* 87 ** The macro unlikely() is a hint that surrounds a boolean 88 ** expression that is usually false. Macro likely() surrounds 89 ** a boolean expression that is usually true. GCC is able to 90 ** use these hints to generate better code, sometimes. 91 */ 92 #if defined(__GNUC__) && 0 93 # define likely(X) __builtin_expect((X),1) 94 # define unlikely(X) __builtin_expect((X),0) 95 #else 96 # define likely(X) !!(X) 97 # define unlikely(X) !!(X) 98 #endif 99 100 /* 101 * This macro is used to "hide" some ugliness in casting an int 102 * value to a ptr value under the MSVC 64-bit compiler. Casting 103 * non 64-bit values to ptr types results in a "hard" error with 104 * the MSVC 64-bit compiler which this attempts to avoid. 105 * 106 * A simple compiler pragma or casting sequence could not be found 107 * to correct this in all situations, so this macro was introduced. 108 * 109 * It could be argued that the intptr_t type could be used in this 110 * case, but that type is not available on all compilers, or 111 * requires the #include of specific headers which differs between 112 * platforms. 113 */ 114 #define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 115 #define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 116 117 /* 118 ** These #defines should enable >2GB file support on Posix if the 119 ** underlying operating system supports it. If the OS lacks 120 ** large file support, or if the OS is windows, these should be no-ops. 121 ** 122 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 123 ** system #includes. Hence, this block of code must be the very first 124 ** code in all source files. 125 ** 126 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 127 ** on the compiler command line. This is necessary if you are compiling 128 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 129 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 130 ** without this option, LFS is enable. But LFS does not exist in the kernel 131 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 132 ** portability you should omit LFS. 133 ** 134 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 135 */ 136 #ifndef SQLITE_DISABLE_LFS 137 # define _LARGE_FILE 1 138 # ifndef _FILE_OFFSET_BITS 139 # define _FILE_OFFSET_BITS 64 140 # endif 141 # define _LARGEFILE_SOURCE 1 142 #endif 143 144 145 /* 146 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 147 ** Older versions of SQLite used an optional THREADSAFE macro. 148 ** We support that for legacy 149 */ 150 #if !defined(SQLITE_THREADSAFE) 151 #if defined(THREADSAFE) 152 # define SQLITE_THREADSAFE THREADSAFE 153 #else 154 # define SQLITE_THREADSAFE 1 155 #endif 156 #endif 157 158 /* 159 ** Exactly one of the following macros must be defined in order to 160 ** specify which memory allocation subsystem to use. 161 ** 162 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 163 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 164 ** SQLITE_MEMORY_SIZE // internal allocator #1 165 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator 166 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator 167 ** 168 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 169 ** the default. 170 */ 171 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 172 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 173 defined(SQLITE_POW2_MEMORY_SIZE)>1 174 # error "At most one of the following compile-time configuration options\ 175 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ 176 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" 177 #endif 178 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 179 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 180 defined(SQLITE_POW2_MEMORY_SIZE)==0 181 # define SQLITE_SYSTEM_MALLOC 1 182 #endif 183 184 /* 185 ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the 186 ** sizes of memory allocations below this value where possible. 187 */ 188 #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT) 189 # define SQLITE_MALLOC_SOFT_LIMIT 1024 190 #endif 191 192 /* 193 ** We need to define _XOPEN_SOURCE as follows in order to enable 194 ** recursive mutexes on most unix systems. But Mac OS X is different. 195 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 196 ** so it is omitted there. See ticket #2673. 197 ** 198 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 199 ** implemented on some systems. So we avoid defining it at all 200 ** if it is already defined or if it is unneeded because we are 201 ** not doing a threadsafe build. Ticket #2681. 202 ** 203 ** See also ticket #2741. 204 */ 205 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 206 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 207 #endif 208 209 #if defined(SQLITE_TCL) || defined(TCLSH) 210 # include <tcl.h> 211 #endif 212 213 /* 214 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 215 ** Setting NDEBUG makes the code smaller and run faster. So the following 216 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 217 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 218 ** feature. 219 */ 220 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 221 # define NDEBUG 1 222 #endif 223 224 #include "sqlite3.h" 225 #include "hash.h" 226 #include "parse.h" 227 #include <stdio.h> 228 #include <stdlib.h> 229 #include <string.h> 230 #include <assert.h> 231 #include <stddef.h> 232 233 /* 234 ** If compiling for a processor that lacks floating point support, 235 ** substitute integer for floating-point 236 */ 237 #ifdef SQLITE_OMIT_FLOATING_POINT 238 # define double sqlite_int64 239 # define LONGDOUBLE_TYPE sqlite_int64 240 # ifndef SQLITE_BIG_DBL 241 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 242 # endif 243 # define SQLITE_OMIT_DATETIME_FUNCS 1 244 # define SQLITE_OMIT_TRACE 1 245 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 246 #endif 247 #ifndef SQLITE_BIG_DBL 248 # define SQLITE_BIG_DBL (1e99) 249 #endif 250 251 /* 252 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 253 ** afterward. Having this macro allows us to cause the C compiler 254 ** to omit code used by TEMP tables without messy #ifndef statements. 255 */ 256 #ifdef SQLITE_OMIT_TEMPDB 257 #define OMIT_TEMPDB 1 258 #else 259 #define OMIT_TEMPDB 0 260 #endif 261 262 /* 263 ** If the following macro is set to 1, then NULL values are considered 264 ** distinct when determining whether or not two entries are the same 265 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 266 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 267 ** is the way things are suppose to work. 268 ** 269 ** If the following macro is set to 0, the NULLs are indistinct for 270 ** a UNIQUE index. In this mode, you can only have a single NULL entry 271 ** for a column declared UNIQUE. This is the way Informix and SQL Server 272 ** work. 273 */ 274 #define NULL_DISTINCT_FOR_UNIQUE 1 275 276 /* 277 ** The "file format" number is an integer that is incremented whenever 278 ** the VDBE-level file format changes. The following macros define the 279 ** the default file format for new databases and the maximum file format 280 ** that the library can read. 281 */ 282 #define SQLITE_MAX_FILE_FORMAT 4 283 #ifndef SQLITE_DEFAULT_FILE_FORMAT 284 # define SQLITE_DEFAULT_FILE_FORMAT 1 285 #endif 286 287 /* 288 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 289 ** on the command-line 290 */ 291 #ifndef SQLITE_TEMP_STORE 292 # define SQLITE_TEMP_STORE 1 293 #endif 294 295 /* 296 ** GCC does not define the offsetof() macro so we'll have to do it 297 ** ourselves. 298 */ 299 #ifndef offsetof 300 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 301 #endif 302 303 /* 304 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 305 ** not, there are still machines out there that use EBCDIC.) 306 */ 307 #if 'A' == '\301' 308 # define SQLITE_EBCDIC 1 309 #else 310 # define SQLITE_ASCII 1 311 #endif 312 313 /* 314 ** Integers of known sizes. These typedefs might change for architectures 315 ** where the sizes very. Preprocessor macros are available so that the 316 ** types can be conveniently redefined at compile-type. Like this: 317 ** 318 ** cc '-DUINTPTR_TYPE=long long int' ... 319 */ 320 #ifndef UINT32_TYPE 321 # ifdef HAVE_UINT32_T 322 # define UINT32_TYPE uint32_t 323 # else 324 # define UINT32_TYPE unsigned int 325 # endif 326 #endif 327 #ifndef UINT16_TYPE 328 # ifdef HAVE_UINT16_T 329 # define UINT16_TYPE uint16_t 330 # else 331 # define UINT16_TYPE unsigned short int 332 # endif 333 #endif 334 #ifndef INT16_TYPE 335 # ifdef HAVE_INT16_T 336 # define INT16_TYPE int16_t 337 # else 338 # define INT16_TYPE short int 339 # endif 340 #endif 341 #ifndef UINT8_TYPE 342 # ifdef HAVE_UINT8_T 343 # define UINT8_TYPE uint8_t 344 # else 345 # define UINT8_TYPE unsigned char 346 # endif 347 #endif 348 #ifndef INT8_TYPE 349 # ifdef HAVE_INT8_T 350 # define INT8_TYPE int8_t 351 # else 352 # define INT8_TYPE signed char 353 # endif 354 #endif 355 #ifndef LONGDOUBLE_TYPE 356 # define LONGDOUBLE_TYPE long double 357 #endif 358 typedef sqlite_int64 i64; /* 8-byte signed integer */ 359 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 360 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 361 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 362 typedef INT16_TYPE i16; /* 2-byte signed integer */ 363 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 364 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 365 366 /* 367 ** Macros to determine whether the machine is big or little endian, 368 ** evaluated at runtime. 369 */ 370 #ifdef SQLITE_AMALGAMATION 371 const int sqlite3one; 372 #else 373 extern const int sqlite3one; 374 #endif 375 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 376 # define SQLITE_BIGENDIAN 0 377 # define SQLITE_LITTLEENDIAN 1 378 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 379 #else 380 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 381 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 382 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 383 #endif 384 385 /* 386 ** Constants for the largest and smallest possible 64-bit signed integers. 387 ** These macros are designed to work correctly on both 32-bit and 64-bit 388 ** compilers. 389 */ 390 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 391 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 392 393 /* 394 ** An instance of the following structure is used to store the busy-handler 395 ** callback for a given sqlite handle. 396 ** 397 ** The sqlite.busyHandler member of the sqlite struct contains the busy 398 ** callback for the database handle. Each pager opened via the sqlite 399 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 400 ** callback is currently invoked only from within pager.c. 401 */ 402 typedef struct BusyHandler BusyHandler; 403 struct BusyHandler { 404 int (*xFunc)(void *,int); /* The busy callback */ 405 void *pArg; /* First arg to busy callback */ 406 int nBusy; /* Incremented with each busy call */ 407 }; 408 409 /* 410 ** Name of the master database table. The master database table 411 ** is a special table that holds the names and attributes of all 412 ** user tables and indices. 413 */ 414 #define MASTER_NAME "sqlite_master" 415 #define TEMP_MASTER_NAME "sqlite_temp_master" 416 417 /* 418 ** The root-page of the master database table. 419 */ 420 #define MASTER_ROOT 1 421 422 /* 423 ** The name of the schema table. 424 */ 425 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 426 427 /* 428 ** A convenience macro that returns the number of elements in 429 ** an array. 430 */ 431 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 432 433 /* 434 ** The following value as a destructor means to use sqlite3DbFree(). 435 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 436 */ 437 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 438 439 /* 440 ** Forward references to structures 441 */ 442 typedef struct AggInfo AggInfo; 443 typedef struct AuthContext AuthContext; 444 typedef struct Bitvec Bitvec; 445 typedef struct CollSeq CollSeq; 446 typedef struct Column Column; 447 typedef struct Db Db; 448 typedef struct Schema Schema; 449 typedef struct Expr Expr; 450 typedef struct ExprList ExprList; 451 typedef struct FKey FKey; 452 typedef struct FuncDef FuncDef; 453 typedef struct IdList IdList; 454 typedef struct Index Index; 455 typedef struct KeyClass KeyClass; 456 typedef struct KeyInfo KeyInfo; 457 typedef struct Lookaside Lookaside; 458 typedef struct LookasideSlot LookasideSlot; 459 typedef struct Module Module; 460 typedef struct NameContext NameContext; 461 typedef struct Parse Parse; 462 typedef struct Select Select; 463 typedef struct SrcList SrcList; 464 typedef struct StrAccum StrAccum; 465 typedef struct Table Table; 466 typedef struct TableLock TableLock; 467 typedef struct Token Token; 468 typedef struct TriggerStack TriggerStack; 469 typedef struct TriggerStep TriggerStep; 470 typedef struct Trigger Trigger; 471 typedef struct WhereInfo WhereInfo; 472 typedef struct WhereLevel WhereLevel; 473 474 /* 475 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 476 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 477 ** pointer types (i.e. FuncDef) defined above. 478 */ 479 #include "btree.h" 480 #include "vdbe.h" 481 #include "pager.h" 482 483 #include "os.h" 484 #include "mutex.h" 485 486 487 /* 488 ** Each database file to be accessed by the system is an instance 489 ** of the following structure. There are normally two of these structures 490 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 491 ** aDb[1] is the database file used to hold temporary tables. Additional 492 ** databases may be attached. 493 */ 494 struct Db { 495 char *zName; /* Name of this database */ 496 Btree *pBt; /* The B*Tree structure for this database file */ 497 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 498 u8 safety_level; /* How aggressive at synching data to disk */ 499 void *pAux; /* Auxiliary data. Usually NULL */ 500 void (*xFreeAux)(void*); /* Routine to free pAux */ 501 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 502 }; 503 504 /* 505 ** An instance of the following structure stores a database schema. 506 ** 507 ** If there are no virtual tables configured in this schema, the 508 ** Schema.db variable is set to NULL. After the first virtual table 509 ** has been added, it is set to point to the database connection 510 ** used to create the connection. Once a virtual table has been 511 ** added to the Schema structure and the Schema.db variable populated, 512 ** only that database connection may use the Schema to prepare 513 ** statements. 514 */ 515 struct Schema { 516 int schema_cookie; /* Database schema version number for this file */ 517 Hash tblHash; /* All tables indexed by name */ 518 Hash idxHash; /* All (named) indices indexed by name */ 519 Hash trigHash; /* All triggers indexed by name */ 520 Hash aFKey; /* Foreign keys indexed by to-table */ 521 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 522 u8 file_format; /* Schema format version for this file */ 523 u8 enc; /* Text encoding used by this database */ 524 u16 flags; /* Flags associated with this schema */ 525 int cache_size; /* Number of pages to use in the cache */ 526 #ifndef SQLITE_OMIT_VIRTUALTABLE 527 sqlite3 *db; /* "Owner" connection. See comment above */ 528 #endif 529 }; 530 531 /* 532 ** These macros can be used to test, set, or clear bits in the 533 ** Db.flags field. 534 */ 535 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 536 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 537 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 538 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 539 540 /* 541 ** Allowed values for the DB.flags field. 542 ** 543 ** The DB_SchemaLoaded flag is set after the database schema has been 544 ** read into internal hash tables. 545 ** 546 ** DB_UnresetViews means that one or more views have column names that 547 ** have been filled out. If the schema changes, these column names might 548 ** changes and so the view will need to be reset. 549 */ 550 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 551 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 552 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 553 554 /* 555 ** The number of different kinds of things that can be limited 556 ** using the sqlite3_limit() interface. 557 */ 558 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) 559 560 /* 561 ** Lookaside malloc is a set of fixed-size buffers that can be used 562 ** to satisify small transient memory allocation requests for objects 563 ** associated with a particular database connection. The use of 564 ** lookaside malloc provides a significant performance enhancement 565 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 566 ** SQL statements. 567 ** 568 ** The Lookaside structure holds configuration information about the 569 ** lookaside malloc subsystem. Each available memory allocation in 570 ** the lookaside subsystem is stored on a linked list of LookasideSlot 571 ** objects. 572 */ 573 struct Lookaside { 574 u16 sz; /* Size of each buffer in bytes */ 575 u8 bEnabled; /* True if use lookaside. False to ignore it */ 576 int nOut; /* Number of buffers currently checked out */ 577 int mxOut; /* Highwater mark for nOut */ 578 LookasideSlot *pFree; /* List if available buffers */ 579 void *pStart; /* First byte of available memory space */ 580 void *pEnd; /* First byte past end of available space */ 581 }; 582 struct LookasideSlot { 583 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 584 }; 585 586 /* 587 ** Each database is an instance of the following structure. 588 ** 589 ** The sqlite.lastRowid records the last insert rowid generated by an 590 ** insert statement. Inserts on views do not affect its value. Each 591 ** trigger has its own context, so that lastRowid can be updated inside 592 ** triggers as usual. The previous value will be restored once the trigger 593 ** exits. Upon entering a before or instead of trigger, lastRowid is no 594 ** longer (since after version 2.8.12) reset to -1. 595 ** 596 ** The sqlite.nChange does not count changes within triggers and keeps no 597 ** context. It is reset at start of sqlite3_exec. 598 ** The sqlite.lsChange represents the number of changes made by the last 599 ** insert, update, or delete statement. It remains constant throughout the 600 ** length of a statement and is then updated by OP_SetCounts. It keeps a 601 ** context stack just like lastRowid so that the count of changes 602 ** within a trigger is not seen outside the trigger. Changes to views do not 603 ** affect the value of lsChange. 604 ** The sqlite.csChange keeps track of the number of current changes (since 605 ** the last statement) and is used to update sqlite_lsChange. 606 ** 607 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 608 ** store the most recent error code and, if applicable, string. The 609 ** internal function sqlite3Error() is used to set these variables 610 ** consistently. 611 */ 612 struct sqlite3 { 613 sqlite3_vfs *pVfs; /* OS Interface */ 614 int nDb; /* Number of backends currently in use */ 615 Db *aDb; /* All backends */ 616 int flags; /* Miscellanous flags. See below */ 617 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 618 int errCode; /* Most recent error code (SQLITE_*) */ 619 int errMask; /* & result codes with this before returning */ 620 u8 autoCommit; /* The auto-commit flag. */ 621 u8 temp_store; /* 1: file 2: memory 0: default */ 622 u8 mallocFailed; /* True if we have seen a malloc failure */ 623 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 624 u8 dfltJournalMode; /* Default journal mode for attached dbs */ 625 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 626 int nextPagesize; /* Pagesize after VACUUM if >0 */ 627 int nTable; /* Number of tables in the database */ 628 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 629 i64 lastRowid; /* ROWID of most recent insert (see above) */ 630 i64 priorNewRowid; /* Last randomly generated ROWID */ 631 int magic; /* Magic number for detect library misuse */ 632 int nChange; /* Value returned by sqlite3_changes() */ 633 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 634 sqlite3_mutex *mutex; /* Connection mutex */ 635 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 636 struct sqlite3InitInfo { /* Information used during initialization */ 637 int iDb; /* When back is being initialized */ 638 int newTnum; /* Rootpage of table being initialized */ 639 u8 busy; /* TRUE if currently initializing */ 640 } init; 641 int nExtension; /* Number of loaded extensions */ 642 void **aExtension; /* Array of shared libraray handles */ 643 struct Vdbe *pVdbe; /* List of active virtual machines */ 644 int activeVdbeCnt; /* Number of vdbes currently executing */ 645 void (*xTrace)(void*,const char*); /* Trace function */ 646 void *pTraceArg; /* Argument to the trace function */ 647 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 648 void *pProfileArg; /* Argument to profile function */ 649 void *pCommitArg; /* Argument to xCommitCallback() */ 650 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 651 void *pRollbackArg; /* Argument to xRollbackCallback() */ 652 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 653 void *pUpdateArg; 654 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 655 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 656 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 657 void *pCollNeededArg; 658 sqlite3_value *pErr; /* Most recent error message */ 659 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 660 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 661 union { 662 int isInterrupted; /* True if sqlite3_interrupt has been called */ 663 double notUsed1; /* Spacer */ 664 } u1; 665 Lookaside lookaside; /* Lookaside malloc configuration */ 666 #ifndef SQLITE_OMIT_AUTHORIZATION 667 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 668 /* Access authorization function */ 669 void *pAuthArg; /* 1st argument to the access auth function */ 670 #endif 671 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 672 int (*xProgress)(void *); /* The progress callback */ 673 void *pProgressArg; /* Argument to the progress callback */ 674 int nProgressOps; /* Number of opcodes for progress callback */ 675 #endif 676 #ifndef SQLITE_OMIT_VIRTUALTABLE 677 Hash aModule; /* populated by sqlite3_create_module() */ 678 Table *pVTab; /* vtab with active Connect/Create method */ 679 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 680 int nVTrans; /* Allocated size of aVTrans */ 681 #endif 682 Hash aFunc; /* All functions that can be in SQL exprs */ 683 Hash aCollSeq; /* All collating sequences */ 684 BusyHandler busyHandler; /* Busy callback */ 685 int busyTimeout; /* Busy handler timeout, in msec */ 686 Db aDbStatic[2]; /* Static space for the 2 default backends */ 687 #ifdef SQLITE_SSE 688 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 689 #endif 690 }; 691 692 /* 693 ** A macro to discover the encoding of a database. 694 */ 695 #define ENC(db) ((db)->aDb[0].pSchema->enc) 696 697 /* 698 ** Possible values for the sqlite.flags and or Db.flags fields. 699 ** 700 ** On sqlite.flags, the SQLITE_InTrans value means that we have 701 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 702 ** transaction is active on that particular database file. 703 */ 704 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 705 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 706 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 707 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 708 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 709 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 710 /* DELETE, or UPDATE and return */ 711 /* the count using a callback. */ 712 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 713 /* result set is empty */ 714 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 715 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 716 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 717 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 718 ** accessing read-only databases */ 719 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 720 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 721 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 722 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 723 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 724 725 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 726 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ 727 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ 728 729 /* 730 ** Possible values for the sqlite.magic field. 731 ** The numbers are obtained at random and have no special meaning, other 732 ** than being distinct from one another. 733 */ 734 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 735 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 736 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 737 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 738 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 739 740 /* 741 ** Each SQL function is defined by an instance of the following 742 ** structure. A pointer to this structure is stored in the sqlite.aFunc 743 ** hash table. When multiple functions have the same name, the hash table 744 ** points to a linked list of these structures. 745 */ 746 struct FuncDef { 747 i16 nArg; /* Number of arguments. -1 means unlimited */ 748 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 749 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 750 u8 flags; /* Some combination of SQLITE_FUNC_* */ 751 void *pUserData; /* User data parameter */ 752 FuncDef *pNext; /* Next function with same name */ 753 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 754 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 755 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 756 char zName[1]; /* SQL name of the function. MUST BE LAST */ 757 }; 758 759 /* 760 ** Each SQLite module (virtual table definition) is defined by an 761 ** instance of the following structure, stored in the sqlite3.aModule 762 ** hash table. 763 */ 764 struct Module { 765 const sqlite3_module *pModule; /* Callback pointers */ 766 const char *zName; /* Name passed to create_module() */ 767 void *pAux; /* pAux passed to create_module() */ 768 void (*xDestroy)(void *); /* Module destructor function */ 769 }; 770 771 /* 772 ** Possible values for FuncDef.flags 773 */ 774 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 775 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 776 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 777 778 /* 779 ** information about each column of an SQL table is held in an instance 780 ** of this structure. 781 */ 782 struct Column { 783 char *zName; /* Name of this column */ 784 Expr *pDflt; /* Default value of this column */ 785 char *zType; /* Data type for this column */ 786 char *zColl; /* Collating sequence. If NULL, use the default */ 787 u8 notNull; /* True if there is a NOT NULL constraint */ 788 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 789 char affinity; /* One of the SQLITE_AFF_... values */ 790 #ifndef SQLITE_OMIT_VIRTUALTABLE 791 u8 isHidden; /* True if this column is 'hidden' */ 792 #endif 793 }; 794 795 /* 796 ** A "Collating Sequence" is defined by an instance of the following 797 ** structure. Conceptually, a collating sequence consists of a name and 798 ** a comparison routine that defines the order of that sequence. 799 ** 800 ** There may two seperate implementations of the collation function, one 801 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 802 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 803 ** native byte order. When a collation sequence is invoked, SQLite selects 804 ** the version that will require the least expensive encoding 805 ** translations, if any. 806 ** 807 ** The CollSeq.pUser member variable is an extra parameter that passed in 808 ** as the first argument to the UTF-8 comparison function, xCmp. 809 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 810 ** xCmp16. 811 ** 812 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 813 ** collating sequence is undefined. Indices built on an undefined 814 ** collating sequence may not be read or written. 815 */ 816 struct CollSeq { 817 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 818 u8 enc; /* Text encoding handled by xCmp() */ 819 u8 type; /* One of the SQLITE_COLL_... values below */ 820 void *pUser; /* First argument to xCmp() */ 821 int (*xCmp)(void*,int, const void*, int, const void*); 822 void (*xDel)(void*); /* Destructor for pUser */ 823 }; 824 825 /* 826 ** Allowed values of CollSeq flags: 827 */ 828 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 829 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 830 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 831 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 832 833 /* 834 ** A sort order can be either ASC or DESC. 835 */ 836 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 837 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 838 839 /* 840 ** Column affinity types. 841 ** 842 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 843 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 844 ** the speed a little by number the values consecutively. 845 ** 846 ** But rather than start with 0 or 1, we begin with 'a'. That way, 847 ** when multiple affinity types are concatenated into a string and 848 ** used as the P4 operand, they will be more readable. 849 ** 850 ** Note also that the numeric types are grouped together so that testing 851 ** for a numeric type is a single comparison. 852 */ 853 #define SQLITE_AFF_TEXT 'a' 854 #define SQLITE_AFF_NONE 'b' 855 #define SQLITE_AFF_NUMERIC 'c' 856 #define SQLITE_AFF_INTEGER 'd' 857 #define SQLITE_AFF_REAL 'e' 858 859 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 860 861 /* 862 ** The SQLITE_AFF_MASK values masks off the significant bits of an 863 ** affinity value. 864 */ 865 #define SQLITE_AFF_MASK 0x67 866 867 /* 868 ** Additional bit values that can be ORed with an affinity without 869 ** changing the affinity. 870 */ 871 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 872 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 873 874 /* 875 ** Each SQL table is represented in memory by an instance of the 876 ** following structure. 877 ** 878 ** Table.zName is the name of the table. The case of the original 879 ** CREATE TABLE statement is stored, but case is not significant for 880 ** comparisons. 881 ** 882 ** Table.nCol is the number of columns in this table. Table.aCol is a 883 ** pointer to an array of Column structures, one for each column. 884 ** 885 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 886 ** the column that is that key. Otherwise Table.iPKey is negative. Note 887 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 888 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 889 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 890 ** is generated for each row of the table. Table.hasPrimKey is true if 891 ** the table has any PRIMARY KEY, INTEGER or otherwise. 892 ** 893 ** Table.tnum is the page number for the root BTree page of the table in the 894 ** database file. If Table.iDb is the index of the database table backend 895 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 896 ** holds temporary tables and indices. If Table.isEphem 897 ** is true, then the table is stored in a file that is automatically deleted 898 ** when the VDBE cursor to the table is closed. In this case Table.tnum 899 ** refers VDBE cursor number that holds the table open, not to the root 900 ** page number. Transient tables are used to hold the results of a 901 ** sub-query that appears instead of a real table name in the FROM clause 902 ** of a SELECT statement. 903 */ 904 struct Table { 905 sqlite3 *db; /* Associated database connection. Might be NULL. */ 906 char *zName; /* Name of the table */ 907 int nCol; /* Number of columns in this table */ 908 Column *aCol; /* Information about each column */ 909 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 910 Index *pIndex; /* List of SQL indexes on this table. */ 911 int tnum; /* Root BTree node for this table (see note above) */ 912 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 913 int nRef; /* Number of pointers to this Table */ 914 Trigger *pTrigger; /* List of SQL triggers on this table */ 915 FKey *pFKey; /* Linked list of all foreign keys in this table */ 916 char *zColAff; /* String defining the affinity of each column */ 917 #ifndef SQLITE_OMIT_CHECK 918 Expr *pCheck; /* The AND of all CHECK constraints */ 919 #endif 920 #ifndef SQLITE_OMIT_ALTERTABLE 921 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 922 #endif 923 u8 readOnly; /* True if this table should not be written by the user */ 924 u8 isEphem; /* True if created using OP_OpenEphermeral */ 925 u8 hasPrimKey; /* True if there exists a primary key */ 926 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 927 u8 autoInc; /* True if the integer primary key is autoincrement */ 928 #ifndef SQLITE_OMIT_VIRTUALTABLE 929 u8 isVirtual; /* True if this is a virtual table */ 930 u8 isCommit; /* True once the CREATE TABLE has been committed */ 931 Module *pMod; /* Pointer to the implementation of the module */ 932 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 933 int nModuleArg; /* Number of arguments to the module */ 934 char **azModuleArg; /* Text of all module args. [0] is module name */ 935 #endif 936 Schema *pSchema; /* Schema that contains this table */ 937 }; 938 939 /* 940 ** Test to see whether or not a table is a virtual table. This is 941 ** done as a macro so that it will be optimized out when virtual 942 ** table support is omitted from the build. 943 */ 944 #ifndef SQLITE_OMIT_VIRTUALTABLE 945 # define IsVirtual(X) ((X)->isVirtual) 946 # define IsHiddenColumn(X) ((X)->isHidden) 947 #else 948 # define IsVirtual(X) 0 949 # define IsHiddenColumn(X) 0 950 #endif 951 952 /* 953 ** Each foreign key constraint is an instance of the following structure. 954 ** 955 ** A foreign key is associated with two tables. The "from" table is 956 ** the table that contains the REFERENCES clause that creates the foreign 957 ** key. The "to" table is the table that is named in the REFERENCES clause. 958 ** Consider this example: 959 ** 960 ** CREATE TABLE ex1( 961 ** a INTEGER PRIMARY KEY, 962 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 963 ** ); 964 ** 965 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 966 ** 967 ** Each REFERENCES clause generates an instance of the following structure 968 ** which is attached to the from-table. The to-table need not exist when 969 ** the from-table is created. The existance of the to-table is not checked 970 ** until an attempt is made to insert data into the from-table. 971 ** 972 ** The sqlite.aFKey hash table stores pointers to this structure 973 ** given the name of a to-table. For each to-table, all foreign keys 974 ** associated with that table are on a linked list using the FKey.pNextTo 975 ** field. 976 */ 977 struct FKey { 978 Table *pFrom; /* The table that constains the REFERENCES clause */ 979 FKey *pNextFrom; /* Next foreign key in pFrom */ 980 char *zTo; /* Name of table that the key points to */ 981 FKey *pNextTo; /* Next foreign key that points to zTo */ 982 int nCol; /* Number of columns in this key */ 983 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 984 int iFrom; /* Index of column in pFrom */ 985 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 986 } *aCol; /* One entry for each of nCol column s */ 987 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 988 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 989 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 990 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 991 }; 992 993 /* 994 ** SQLite supports many different ways to resolve a constraint 995 ** error. ROLLBACK processing means that a constraint violation 996 ** causes the operation in process to fail and for the current transaction 997 ** to be rolled back. ABORT processing means the operation in process 998 ** fails and any prior changes from that one operation are backed out, 999 ** but the transaction is not rolled back. FAIL processing means that 1000 ** the operation in progress stops and returns an error code. But prior 1001 ** changes due to the same operation are not backed out and no rollback 1002 ** occurs. IGNORE means that the particular row that caused the constraint 1003 ** error is not inserted or updated. Processing continues and no error 1004 ** is returned. REPLACE means that preexisting database rows that caused 1005 ** a UNIQUE constraint violation are removed so that the new insert or 1006 ** update can proceed. Processing continues and no error is reported. 1007 ** 1008 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1009 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1010 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1011 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1012 ** referenced table row is propagated into the row that holds the 1013 ** foreign key. 1014 ** 1015 ** The following symbolic values are used to record which type 1016 ** of action to take. 1017 */ 1018 #define OE_None 0 /* There is no constraint to check */ 1019 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1020 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1021 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1022 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1023 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1024 1025 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1026 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1027 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1028 #define OE_Cascade 9 /* Cascade the changes */ 1029 1030 #define OE_Default 99 /* Do whatever the default action is */ 1031 1032 1033 /* 1034 ** An instance of the following structure is passed as the first 1035 ** argument to sqlite3VdbeKeyCompare and is used to control the 1036 ** comparison of the two index keys. 1037 ** 1038 ** If the KeyInfo.incrKey value is true and the comparison would 1039 ** otherwise be equal, then return a result as if the second key 1040 ** were larger. 1041 */ 1042 struct KeyInfo { 1043 sqlite3 *db; /* The database connection */ 1044 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 1045 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 1046 u8 prefixIsEqual; /* Treat a prefix as equal */ 1047 int nField; /* Number of entries in aColl[] */ 1048 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 1049 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1050 }; 1051 1052 /* 1053 ** Each SQL index is represented in memory by an 1054 ** instance of the following structure. 1055 ** 1056 ** The columns of the table that are to be indexed are described 1057 ** by the aiColumn[] field of this structure. For example, suppose 1058 ** we have the following table and index: 1059 ** 1060 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1061 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1062 ** 1063 ** In the Table structure describing Ex1, nCol==3 because there are 1064 ** three columns in the table. In the Index structure describing 1065 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1066 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1067 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1068 ** The second column to be indexed (c1) has an index of 0 in 1069 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1070 ** 1071 ** The Index.onError field determines whether or not the indexed columns 1072 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1073 ** it means this is not a unique index. Otherwise it is a unique index 1074 ** and the value of Index.onError indicate the which conflict resolution 1075 ** algorithm to employ whenever an attempt is made to insert a non-unique 1076 ** element. 1077 */ 1078 struct Index { 1079 char *zName; /* Name of this index */ 1080 int nColumn; /* Number of columns in the table used by this index */ 1081 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1082 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1083 Table *pTable; /* The SQL table being indexed */ 1084 int tnum; /* Page containing root of this index in database file */ 1085 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1086 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1087 char *zColAff; /* String defining the affinity of each column */ 1088 Index *pNext; /* The next index associated with the same table */ 1089 Schema *pSchema; /* Schema containing this index */ 1090 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1091 char **azColl; /* Array of collation sequence names for index */ 1092 }; 1093 1094 /* 1095 ** Each token coming out of the lexer is an instance of 1096 ** this structure. Tokens are also used as part of an expression. 1097 ** 1098 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1099 ** may contain random values. Do not make any assuptions about Token.dyn 1100 ** and Token.n when Token.z==0. 1101 */ 1102 struct Token { 1103 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 1104 unsigned dyn : 1; /* True for malloced memory, false for static */ 1105 unsigned n : 31; /* Number of characters in this token */ 1106 }; 1107 1108 /* 1109 ** An instance of this structure contains information needed to generate 1110 ** code for a SELECT that contains aggregate functions. 1111 ** 1112 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1113 ** pointer to this structure. The Expr.iColumn field is the index in 1114 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1115 ** code for that node. 1116 ** 1117 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1118 ** original Select structure that describes the SELECT statement. These 1119 ** fields do not need to be freed when deallocating the AggInfo structure. 1120 */ 1121 struct AggInfo { 1122 u8 directMode; /* Direct rendering mode means take data directly 1123 ** from source tables rather than from accumulators */ 1124 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1125 ** than the source table */ 1126 int sortingIdx; /* Cursor number of the sorting index */ 1127 ExprList *pGroupBy; /* The group by clause */ 1128 int nSortingColumn; /* Number of columns in the sorting index */ 1129 struct AggInfo_col { /* For each column used in source tables */ 1130 Table *pTab; /* Source table */ 1131 int iTable; /* Cursor number of the source table */ 1132 int iColumn; /* Column number within the source table */ 1133 int iSorterColumn; /* Column number in the sorting index */ 1134 int iMem; /* Memory location that acts as accumulator */ 1135 Expr *pExpr; /* The original expression */ 1136 } *aCol; 1137 int nColumn; /* Number of used entries in aCol[] */ 1138 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1139 int nAccumulator; /* Number of columns that show through to the output. 1140 ** Additional columns are used only as parameters to 1141 ** aggregate functions */ 1142 struct AggInfo_func { /* For each aggregate function */ 1143 Expr *pExpr; /* Expression encoding the function */ 1144 FuncDef *pFunc; /* The aggregate function implementation */ 1145 int iMem; /* Memory location that acts as accumulator */ 1146 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 1147 } *aFunc; 1148 int nFunc; /* Number of entries in aFunc[] */ 1149 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1150 }; 1151 1152 /* 1153 ** Each node of an expression in the parse tree is an instance 1154 ** of this structure. 1155 ** 1156 ** Expr.op is the opcode. The integer parser token codes are reused 1157 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1158 ** code representing the ">=" operator. This same integer code is reused 1159 ** to represent the greater-than-or-equal-to operator in the expression 1160 ** tree. 1161 ** 1162 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 1163 ** of argument if the expression is a function. 1164 ** 1165 ** Expr.token is the operator token for this node. For some expressions 1166 ** that have subexpressions, Expr.token can be the complete text that gave 1167 ** rise to the Expr. In the latter case, the token is marked as being 1168 ** a compound token. 1169 ** 1170 ** An expression of the form ID or ID.ID refers to a column in a table. 1171 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1172 ** the integer cursor number of a VDBE cursor pointing to that table and 1173 ** Expr.iColumn is the column number for the specific column. If the 1174 ** expression is used as a result in an aggregate SELECT, then the 1175 ** value is also stored in the Expr.iAgg column in the aggregate so that 1176 ** it can be accessed after all aggregates are computed. 1177 ** 1178 ** If the expression is a function, the Expr.iTable is an integer code 1179 ** representing which function. If the expression is an unbound variable 1180 ** marker (a question mark character '?' in the original SQL) then the 1181 ** Expr.iTable holds the index number for that variable. 1182 ** 1183 ** If the expression is a subquery then Expr.iColumn holds an integer 1184 ** register number containing the result of the subquery. If the 1185 ** subquery gives a constant result, then iTable is -1. If the subquery 1186 ** gives a different answer at different times during statement processing 1187 ** then iTable is the address of a subroutine that computes the subquery. 1188 ** 1189 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 1190 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 1191 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 1192 ** operand. 1193 ** 1194 ** If the Expr is of type OP_Column, and the table it is selecting from 1195 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1196 ** corresponding table definition. 1197 */ 1198 struct Expr { 1199 u8 op; /* Operation performed by this node */ 1200 char affinity; /* The affinity of the column or 0 if not a column */ 1201 u16 flags; /* Various flags. See below */ 1202 CollSeq *pColl; /* The collation type of the column or 0 */ 1203 Expr *pLeft, *pRight; /* Left and right subnodes */ 1204 ExprList *pList; /* A list of expressions used as function arguments 1205 ** or in "<expr> IN (<expr-list)" */ 1206 Token token; /* An operand token */ 1207 Token span; /* Complete text of the expression */ 1208 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1209 ** iColumn-th field of the iTable-th table. */ 1210 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1211 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1212 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1213 Select *pSelect; /* When the expression is a sub-select. Also the 1214 ** right side of "<expr> IN (<select>)" */ 1215 Table *pTab; /* Table for OP_Column expressions. */ 1216 #if SQLITE_MAX_EXPR_DEPTH>0 1217 int nHeight; /* Height of the tree headed by this node */ 1218 #endif 1219 }; 1220 1221 /* 1222 ** The following are the meanings of bits in the Expr.flags field. 1223 */ 1224 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1225 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1226 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1227 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1228 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1229 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1230 #define EP_Dequoted 0x0040 /* True if the string has been dequoted */ 1231 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1232 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1233 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */ 1234 #define EP_FixedDest 0x0400 /* Result needed in a specific register */ 1235 #define EP_IntValue 0x0800 /* Integer value contained in iTable */ 1236 /* 1237 ** These macros can be used to test, set, or clear bits in the 1238 ** Expr.flags field. 1239 */ 1240 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1241 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1242 #define ExprSetProperty(E,P) (E)->flags|=(P) 1243 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1244 1245 /* 1246 ** A list of expressions. Each expression may optionally have a 1247 ** name. An expr/name combination can be used in several ways, such 1248 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1249 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1250 ** also be used as the argument to a function, in which case the a.zName 1251 ** field is not used. 1252 */ 1253 struct ExprList { 1254 int nExpr; /* Number of expressions on the list */ 1255 int nAlloc; /* Number of entries allocated below */ 1256 int iECursor; /* VDBE Cursor associated with this ExprList */ 1257 struct ExprList_item { 1258 Expr *pExpr; /* The list of expressions */ 1259 char *zName; /* Token associated with this expression */ 1260 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1261 u8 isAgg; /* True if this is an aggregate like count(*) */ 1262 u8 done; /* A flag to indicate when processing is finished */ 1263 } *a; /* One entry for each expression */ 1264 }; 1265 1266 /* 1267 ** An instance of this structure can hold a simple list of identifiers, 1268 ** such as the list "a,b,c" in the following statements: 1269 ** 1270 ** INSERT INTO t(a,b,c) VALUES ...; 1271 ** CREATE INDEX idx ON t(a,b,c); 1272 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1273 ** 1274 ** The IdList.a.idx field is used when the IdList represents the list of 1275 ** column names after a table name in an INSERT statement. In the statement 1276 ** 1277 ** INSERT INTO t(a,b,c) ... 1278 ** 1279 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1280 */ 1281 struct IdList { 1282 struct IdList_item { 1283 char *zName; /* Name of the identifier */ 1284 int idx; /* Index in some Table.aCol[] of a column named zName */ 1285 } *a; 1286 int nId; /* Number of identifiers on the list */ 1287 int nAlloc; /* Number of entries allocated for a[] below */ 1288 }; 1289 1290 /* 1291 ** The bitmask datatype defined below is used for various optimizations. 1292 ** 1293 ** Changing this from a 64-bit to a 32-bit type limits the number of 1294 ** tables in a join to 32 instead of 64. But it also reduces the size 1295 ** of the library by 738 bytes on ix86. 1296 */ 1297 typedef u64 Bitmask; 1298 1299 /* 1300 ** The following structure describes the FROM clause of a SELECT statement. 1301 ** Each table or subquery in the FROM clause is a separate element of 1302 ** the SrcList.a[] array. 1303 ** 1304 ** With the addition of multiple database support, the following structure 1305 ** can also be used to describe a particular table such as the table that 1306 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1307 ** such a table must be a simple name: ID. But in SQLite, the table can 1308 ** now be identified by a database name, a dot, then the table name: ID.ID. 1309 ** 1310 ** The jointype starts out showing the join type between the current table 1311 ** and the next table on the list. The parser builds the list this way. 1312 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1313 ** jointype expresses the join between the table and the previous table. 1314 */ 1315 struct SrcList { 1316 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1317 i16 nAlloc; /* Number of entries allocated in a[] below */ 1318 struct SrcList_item { 1319 char *zDatabase; /* Name of database holding this table */ 1320 char *zName; /* Name of the table */ 1321 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1322 Table *pTab; /* An SQL table corresponding to zName */ 1323 Select *pSelect; /* A SELECT statement used in place of a table name */ 1324 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1325 u8 jointype; /* Type of join between this able and the previous */ 1326 int iCursor; /* The VDBE cursor number used to access this table */ 1327 Expr *pOn; /* The ON clause of a join */ 1328 IdList *pUsing; /* The USING clause of a join */ 1329 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1330 } a[1]; /* One entry for each identifier on the list */ 1331 }; 1332 1333 /* 1334 ** Permitted values of the SrcList.a.jointype field 1335 */ 1336 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1337 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1338 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1339 #define JT_LEFT 0x0008 /* Left outer join */ 1340 #define JT_RIGHT 0x0010 /* Right outer join */ 1341 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1342 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1343 1344 /* 1345 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1346 ** structure contains a single instance of this structure. This structure 1347 ** is intended to be private the the where.c module and should not be 1348 ** access or modified by other modules. 1349 ** 1350 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1351 ** index on a virtual table. The pIdxInfo pointer contains indexing 1352 ** information for the i-th table in the FROM clause before reordering. 1353 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1354 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1355 ** FROM clause ordering. This is a little confusing so I will repeat 1356 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1357 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1358 ** index information for the i-th loop of the join. pBestInfo is always 1359 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1360 ** sufficient to free all of the pIdxInfo pointers. 1361 ** 1362 */ 1363 struct WhereLevel { 1364 int iFrom; /* Which entry in the FROM clause */ 1365 int flags; /* Flags associated with this level */ 1366 int iMem; /* First memory cell used by this level */ 1367 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1368 Index *pIdx; /* Index used. NULL if no index */ 1369 int iTabCur; /* The VDBE cursor used to access the table */ 1370 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1371 int brk; /* Jump here to break out of the loop */ 1372 int nxt; /* Jump here to start the next IN combination */ 1373 int cont; /* Jump here to continue with the next loop cycle */ 1374 int top; /* First instruction of interior of the loop */ 1375 int op, p1, p2; /* Opcode used to terminate the loop */ 1376 int nEq; /* Number of == or IN constraints on this loop */ 1377 int nIn; /* Number of IN operators constraining this loop */ 1378 struct InLoop { 1379 int iCur; /* The VDBE cursor used by this IN operator */ 1380 int topAddr; /* Top of the IN loop */ 1381 } *aInLoop; /* Information about each nested IN operator */ 1382 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1383 1384 /* The following field is really not part of the current level. But 1385 ** we need a place to cache index information for each table in the 1386 ** FROM clause and the WhereLevel structure is a convenient place. 1387 */ 1388 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1389 }; 1390 1391 /* 1392 ** Flags appropriate for the wflags parameter of sqlite3WhereBegin(). 1393 */ 1394 #define WHERE_ORDERBY_NORMAL 0 /* No-op */ 1395 #define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */ 1396 #define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */ 1397 #define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */ 1398 1399 /* 1400 ** The WHERE clause processing routine has two halves. The 1401 ** first part does the start of the WHERE loop and the second 1402 ** half does the tail of the WHERE loop. An instance of 1403 ** this structure is returned by the first half and passed 1404 ** into the second half to give some continuity. 1405 */ 1406 struct WhereInfo { 1407 Parse *pParse; /* Parsing and code generating context */ 1408 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1409 SrcList *pTabList; /* List of tables in the join */ 1410 int iTop; /* The very beginning of the WHERE loop */ 1411 int iContinue; /* Jump here to continue with next record */ 1412 int iBreak; /* Jump here to break out of the loop */ 1413 int nLevel; /* Number of nested loop */ 1414 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1415 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1416 }; 1417 1418 /* 1419 ** A NameContext defines a context in which to resolve table and column 1420 ** names. The context consists of a list of tables (the pSrcList) field and 1421 ** a list of named expression (pEList). The named expression list may 1422 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1423 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1424 ** pEList corresponds to the result set of a SELECT and is NULL for 1425 ** other statements. 1426 ** 1427 ** NameContexts can be nested. When resolving names, the inner-most 1428 ** context is searched first. If no match is found, the next outer 1429 ** context is checked. If there is still no match, the next context 1430 ** is checked. This process continues until either a match is found 1431 ** or all contexts are check. When a match is found, the nRef member of 1432 ** the context containing the match is incremented. 1433 ** 1434 ** Each subquery gets a new NameContext. The pNext field points to the 1435 ** NameContext in the parent query. Thus the process of scanning the 1436 ** NameContext list corresponds to searching through successively outer 1437 ** subqueries looking for a match. 1438 */ 1439 struct NameContext { 1440 Parse *pParse; /* The parser */ 1441 SrcList *pSrcList; /* One or more tables used to resolve names */ 1442 ExprList *pEList; /* Optional list of named expressions */ 1443 int nRef; /* Number of names resolved by this context */ 1444 int nErr; /* Number of errors encountered while resolving names */ 1445 u8 allowAgg; /* Aggregate functions allowed here */ 1446 u8 hasAgg; /* True if aggregates are seen */ 1447 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1448 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1449 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1450 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1451 }; 1452 1453 /* 1454 ** An instance of the following structure contains all information 1455 ** needed to generate code for a single SELECT statement. 1456 ** 1457 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1458 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1459 ** limit and nOffset to the value of the offset (or 0 if there is not 1460 ** offset). But later on, nLimit and nOffset become the memory locations 1461 ** in the VDBE that record the limit and offset counters. 1462 ** 1463 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1464 ** These addresses must be stored so that we can go back and fill in 1465 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1466 ** the number of columns in P2 can be computed at the same time 1467 ** as the OP_OpenEphm instruction is coded because not 1468 ** enough information about the compound query is known at that point. 1469 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1470 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1471 ** sequences for the ORDER BY clause. 1472 */ 1473 struct Select { 1474 ExprList *pEList; /* The fields of the result */ 1475 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1476 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1477 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1478 u8 isAgg; /* True if this is an aggregate query */ 1479 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1480 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1481 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1482 SrcList *pSrc; /* The FROM clause */ 1483 Expr *pWhere; /* The WHERE clause */ 1484 ExprList *pGroupBy; /* The GROUP BY clause */ 1485 Expr *pHaving; /* The HAVING clause */ 1486 ExprList *pOrderBy; /* The ORDER BY clause */ 1487 Select *pPrior; /* Prior select in a compound select statement */ 1488 Select *pNext; /* Next select to the left in a compound */ 1489 Select *pRightmost; /* Right-most select in a compound select statement */ 1490 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1491 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1492 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1493 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1494 }; 1495 1496 /* 1497 ** The results of a select can be distributed in several ways. 1498 */ 1499 #define SRT_Union 1 /* Store result as keys in an index */ 1500 #define SRT_Except 2 /* Remove result from a UNION index */ 1501 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 1502 #define SRT_Discard 4 /* Do not save the results anywhere */ 1503 1504 /* The ORDER BY clause is ignored for all of the above */ 1505 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 1506 1507 #define SRT_Callback 5 /* Invoke a callback with each row of result */ 1508 #define SRT_Mem 6 /* Store result in a memory cell */ 1509 #define SRT_Set 7 /* Store results as keys in an index */ 1510 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 1511 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 1512 #define SRT_Coroutine 10 /* Generate a single row of result */ 1513 1514 /* 1515 ** A structure used to customize the behaviour of sqlite3Select(). See 1516 ** comments above sqlite3Select() for details. 1517 */ 1518 typedef struct SelectDest SelectDest; 1519 struct SelectDest { 1520 u8 eDest; /* How to dispose of the results */ 1521 u8 affinity; /* Affinity used when eDest==SRT_Set */ 1522 int iParm; /* A parameter used by the eDest disposal method */ 1523 int iMem; /* Base register where results are written */ 1524 int nMem; /* Number of registers allocated */ 1525 }; 1526 1527 /* 1528 ** An SQL parser context. A copy of this structure is passed through 1529 ** the parser and down into all the parser action routine in order to 1530 ** carry around information that is global to the entire parse. 1531 ** 1532 ** The structure is divided into two parts. When the parser and code 1533 ** generate call themselves recursively, the first part of the structure 1534 ** is constant but the second part is reset at the beginning and end of 1535 ** each recursion. 1536 ** 1537 ** The nTableLock and aTableLock variables are only used if the shared-cache 1538 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1539 ** used to store the set of table-locks required by the statement being 1540 ** compiled. Function sqlite3TableLock() is used to add entries to the 1541 ** list. 1542 */ 1543 struct Parse { 1544 sqlite3 *db; /* The main database structure */ 1545 int rc; /* Return code from execution */ 1546 char *zErrMsg; /* An error message */ 1547 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1548 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1549 u8 nameClash; /* A permanent table name clashes with temp table name */ 1550 u8 checkSchema; /* Causes schema cookie check after an error */ 1551 u8 nested; /* Number of nested calls to the parser/code generator */ 1552 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1553 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 1554 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 1555 int aTempReg[8]; /* Holding area for temporary registers */ 1556 int nRangeReg; /* Size of the temporary register block */ 1557 int iRangeReg; /* First register in temporary register block */ 1558 int nErr; /* Number of errors seen */ 1559 int nTab; /* Number of previously allocated VDBE cursors */ 1560 int nMem; /* Number of memory cells used so far */ 1561 int nSet; /* Number of sets used so far */ 1562 int ckBase; /* Base register of data during check constraints */ 1563 int disableColCache; /* True to disable adding to column cache */ 1564 int nColCache; /* Number of entries in the column cache */ 1565 int iColCache; /* Next entry of the cache to replace */ 1566 struct yColCache { 1567 int iTable; /* Table cursor number */ 1568 int iColumn; /* Table column number */ 1569 char affChange; /* True if this register has had an affinity change */ 1570 int iReg; /* Register holding value of this column */ 1571 } aColCache[10]; /* One for each valid column cache entry */ 1572 u32 writeMask; /* Start a write transaction on these databases */ 1573 u32 cookieMask; /* Bitmask of schema verified databases */ 1574 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1575 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1576 #ifndef SQLITE_OMIT_SHARED_CACHE 1577 int nTableLock; /* Number of locks in aTableLock */ 1578 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1579 #endif 1580 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 1581 int regRoot; /* Register holding root page number for new objects */ 1582 1583 /* Above is constant between recursions. Below is reset before and after 1584 ** each recursion */ 1585 1586 int nVar; /* Number of '?' variables seen in the SQL so far */ 1587 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1588 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1589 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1590 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1591 Token sErrToken; /* The token at which the error occurred */ 1592 Token sNameToken; /* Token with unqualified schema object name */ 1593 Token sLastToken; /* The last token parsed */ 1594 const char *zSql; /* All SQL text */ 1595 const char *zTail; /* All SQL text past the last semicolon parsed */ 1596 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1597 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1598 TriggerStack *trigStack; /* Trigger actions being coded */ 1599 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1600 #ifndef SQLITE_OMIT_VIRTUALTABLE 1601 Token sArg; /* Complete text of a module argument */ 1602 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1603 int nVtabLock; /* Number of virtual tables to lock */ 1604 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 1605 #endif 1606 int nHeight; /* Expression tree height of current sub-select */ 1607 }; 1608 1609 #ifdef SQLITE_OMIT_VIRTUALTABLE 1610 #define IN_DECLARE_VTAB 0 1611 #else 1612 #define IN_DECLARE_VTAB (pParse->declareVtab) 1613 #endif 1614 1615 /* 1616 ** An instance of the following structure can be declared on a stack and used 1617 ** to save the Parse.zAuthContext value so that it can be restored later. 1618 */ 1619 struct AuthContext { 1620 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1621 Parse *pParse; /* The Parse structure */ 1622 }; 1623 1624 /* 1625 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1626 */ 1627 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1628 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1629 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1630 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1631 1632 /* 1633 * Each trigger present in the database schema is stored as an instance of 1634 * struct Trigger. 1635 * 1636 * Pointers to instances of struct Trigger are stored in two ways. 1637 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1638 * database). This allows Trigger structures to be retrieved by name. 1639 * 2. All triggers associated with a single table form a linked list, using the 1640 * pNext member of struct Trigger. A pointer to the first element of the 1641 * linked list is stored as the "pTrigger" member of the associated 1642 * struct Table. 1643 * 1644 * The "step_list" member points to the first element of a linked list 1645 * containing the SQL statements specified as the trigger program. 1646 */ 1647 struct Trigger { 1648 char *name; /* The name of the trigger */ 1649 char *table; /* The table or view to which the trigger applies */ 1650 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1651 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1652 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1653 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1654 the <column-list> is stored here */ 1655 Token nameToken; /* Token containing zName. Use during parsing only */ 1656 Schema *pSchema; /* Schema containing the trigger */ 1657 Schema *pTabSchema; /* Schema containing the table */ 1658 TriggerStep *step_list; /* Link list of trigger program steps */ 1659 Trigger *pNext; /* Next trigger associated with the table */ 1660 }; 1661 1662 /* 1663 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1664 ** determine which. 1665 ** 1666 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1667 ** In that cases, the constants below can be ORed together. 1668 */ 1669 #define TRIGGER_BEFORE 1 1670 #define TRIGGER_AFTER 2 1671 1672 /* 1673 * An instance of struct TriggerStep is used to store a single SQL statement 1674 * that is a part of a trigger-program. 1675 * 1676 * Instances of struct TriggerStep are stored in a singly linked list (linked 1677 * using the "pNext" member) referenced by the "step_list" member of the 1678 * associated struct Trigger instance. The first element of the linked list is 1679 * the first step of the trigger-program. 1680 * 1681 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1682 * "SELECT" statement. The meanings of the other members is determined by the 1683 * value of "op" as follows: 1684 * 1685 * (op == TK_INSERT) 1686 * orconf -> stores the ON CONFLICT algorithm 1687 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1688 * this stores a pointer to the SELECT statement. Otherwise NULL. 1689 * target -> A token holding the name of the table to insert into. 1690 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1691 * this stores values to be inserted. Otherwise NULL. 1692 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1693 * statement, then this stores the column-names to be 1694 * inserted into. 1695 * 1696 * (op == TK_DELETE) 1697 * target -> A token holding the name of the table to delete from. 1698 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1699 * Otherwise NULL. 1700 * 1701 * (op == TK_UPDATE) 1702 * target -> A token holding the name of the table to update rows of. 1703 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1704 * Otherwise NULL. 1705 * pExprList -> A list of the columns to update and the expressions to update 1706 * them to. See sqlite3Update() documentation of "pChanges" 1707 * argument. 1708 * 1709 */ 1710 struct TriggerStep { 1711 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1712 int orconf; /* OE_Rollback etc. */ 1713 Trigger *pTrig; /* The trigger that this step is a part of */ 1714 1715 Select *pSelect; /* Valid for SELECT and sometimes 1716 INSERT steps (when pExprList == 0) */ 1717 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1718 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1719 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1720 INSERT steps (when pSelect == 0) */ 1721 IdList *pIdList; /* Valid for INSERT statements only */ 1722 TriggerStep *pNext; /* Next in the link-list */ 1723 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1724 }; 1725 1726 /* 1727 * An instance of struct TriggerStack stores information required during code 1728 * generation of a single trigger program. While the trigger program is being 1729 * coded, its associated TriggerStack instance is pointed to by the 1730 * "pTriggerStack" member of the Parse structure. 1731 * 1732 * The pTab member points to the table that triggers are being coded on. The 1733 * newIdx member contains the index of the vdbe cursor that points at the temp 1734 * table that stores the new.* references. If new.* references are not valid 1735 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1736 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1737 * 1738 * The ON CONFLICT policy to be used for the trigger program steps is stored 1739 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1740 * specified for individual triggers steps is used. 1741 * 1742 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1743 * constructed. When coding nested triggers (triggers fired by other triggers) 1744 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1745 * pointer. Once the nested trigger has been coded, the pNext value is restored 1746 * to the pTriggerStack member of the Parse stucture and coding of the parent 1747 * trigger continues. 1748 * 1749 * Before a nested trigger is coded, the linked list pointed to by the 1750 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1751 * recursively. If this condition is detected, the nested trigger is not coded. 1752 */ 1753 struct TriggerStack { 1754 Table *pTab; /* Table that triggers are currently being coded on */ 1755 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1756 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1757 u32 newColMask; 1758 u32 oldColMask; 1759 int orconf; /* Current orconf policy */ 1760 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1761 Trigger *pTrigger; /* The trigger currently being coded */ 1762 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1763 }; 1764 1765 /* 1766 ** The following structure contains information used by the sqliteFix... 1767 ** routines as they walk the parse tree to make database references 1768 ** explicit. 1769 */ 1770 typedef struct DbFixer DbFixer; 1771 struct DbFixer { 1772 Parse *pParse; /* The parsing context. Error messages written here */ 1773 const char *zDb; /* Make sure all objects are contained in this database */ 1774 const char *zType; /* Type of the container - used for error messages */ 1775 const Token *pName; /* Name of the container - used for error messages */ 1776 }; 1777 1778 /* 1779 ** An objected used to accumulate the text of a string where we 1780 ** do not necessarily know how big the string will be in the end. 1781 */ 1782 struct StrAccum { 1783 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 1784 char *zBase; /* A base allocation. Not from malloc. */ 1785 char *zText; /* The string collected so far */ 1786 int nChar; /* Length of the string so far */ 1787 int nAlloc; /* Amount of space allocated in zText */ 1788 int mxAlloc; /* Maximum allowed string length */ 1789 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 1790 u8 useMalloc; /* True if zText is enlargable using realloc */ 1791 u8 tooBig; /* Becomes true if string size exceeds limits */ 1792 }; 1793 1794 /* 1795 ** A pointer to this structure is used to communicate information 1796 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1797 */ 1798 typedef struct { 1799 sqlite3 *db; /* The database being initialized */ 1800 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1801 char **pzErrMsg; /* Error message stored here */ 1802 int rc; /* Result code stored here */ 1803 } InitData; 1804 1805 /* 1806 ** Structure containing global configuration data for the SQLite library. 1807 ** 1808 ** This structure also contains some state information. 1809 */ 1810 struct Sqlite3Config { 1811 int bMemstat; /* True to enable memory status */ 1812 int bCoreMutex; /* True to enable core mutexing */ 1813 int bFullMutex; /* True to enable full mutexing */ 1814 int mxStrlen; /* Maximum string length */ 1815 int szLookaside; /* Default lookaside buffer size */ 1816 int nLookaside; /* Default lookaside buffer count */ 1817 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 1818 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 1819 void *pHeap; /* Heap storage space */ 1820 int nHeap; /* Size of pHeap[] */ 1821 int mnReq, mxReq; /* Min and max heap requests sizes */ 1822 void *pScratch; /* Scratch memory */ 1823 int szScratch; /* Size of each scratch buffer */ 1824 int nScratch; /* Number of scratch buffers */ 1825 void *pPage; /* Page cache memory */ 1826 int szPage; /* Size of each page in pPage[] */ 1827 int nPage; /* Number of pages in pPage[] */ 1828 int isInit; /* True after initialization has finished */ 1829 int isMallocInit; /* True after malloc is initialized */ 1830 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 1831 int nSmall; /* alloc size threshold used by mem6.c */ 1832 int mxParserStack; /* maximum depth of the parser stack */ 1833 }; 1834 1835 /* 1836 ** Assuming zIn points to the first byte of a UTF-8 character, 1837 ** advance zIn to point to the first byte of the next UTF-8 character. 1838 */ 1839 #define SQLITE_SKIP_UTF8(zIn) { \ 1840 if( (*(zIn++))>=0xc0 ){ \ 1841 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 1842 } \ 1843 } 1844 1845 /* 1846 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1847 ** builds) or a function call (for debugging). If it is a function call, 1848 ** it allows the operator to set a breakpoint at the spot where database 1849 ** corruption is first detected. 1850 */ 1851 #ifdef SQLITE_DEBUG 1852 int sqlite3Corrupt(void); 1853 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1854 #else 1855 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1856 #endif 1857 1858 /* 1859 ** Internal function prototypes 1860 */ 1861 int sqlite3StrICmp(const char *, const char *); 1862 int sqlite3StrNICmp(const char *, const char *, int); 1863 int sqlite3IsNumber(const char*, int*, u8); 1864 int sqlite3Strlen(sqlite3*, const char*); 1865 1866 int sqlite3MallocInit(void); 1867 void sqlite3MallocEnd(void); 1868 void *sqlite3Malloc(int); 1869 void *sqlite3MallocZero(int); 1870 void *sqlite3DbMallocZero(sqlite3*, int); 1871 void *sqlite3DbMallocRaw(sqlite3*, int); 1872 char *sqlite3DbStrDup(sqlite3*,const char*); 1873 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 1874 void *sqlite3Realloc(void*, int); 1875 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 1876 void *sqlite3DbRealloc(sqlite3 *, void *, int); 1877 void sqlite3DbFree(sqlite3*, void*); 1878 int sqlite3MallocSize(void*); 1879 int sqlite3DbMallocSize(sqlite3*, void*); 1880 void *sqlite3ScratchMalloc(int); 1881 void sqlite3ScratchFree(void*); 1882 void *sqlite3PageMalloc(int); 1883 void sqlite3PageFree(void*); 1884 void sqlite3MemSetDefault(void); 1885 const sqlite3_mem_methods *sqlite3MemGetDefault(void); 1886 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 1887 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 1888 const sqlite3_mem_methods *sqlite3MemGetMemsys6(void); 1889 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 1890 1891 #ifndef SQLITE_MUTEX_NOOP 1892 sqlite3_mutex_methods *sqlite3DefaultMutex(void); 1893 sqlite3_mutex *sqlite3MutexAlloc(int); 1894 int sqlite3MutexInit(void); 1895 int sqlite3MutexEnd(void); 1896 #endif 1897 1898 void sqlite3StatusReset(void); 1899 int sqlite3StatusValue(int); 1900 void sqlite3StatusAdd(int, int); 1901 void sqlite3StatusSet(int, int); 1902 1903 int sqlite3IsNaN(double); 1904 1905 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 1906 char *sqlite3MPrintf(sqlite3*,const char*, ...); 1907 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 1908 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 1909 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 1910 void sqlite3DebugPrintf(const char*, ...); 1911 #endif 1912 #if defined(SQLITE_TEST) 1913 void *sqlite3TestTextToPtr(const char*); 1914 #endif 1915 void sqlite3SetString(char **, sqlite3*, const char*, ...); 1916 void sqlite3ErrorMsg(Parse*, const char*, ...); 1917 void sqlite3ErrorClear(Parse*); 1918 void sqlite3Dequote(char*); 1919 void sqlite3DequoteExpr(sqlite3*, Expr*); 1920 int sqlite3KeywordCode(const unsigned char*, int); 1921 int sqlite3RunParser(Parse*, const char*, char **); 1922 void sqlite3FinishCoding(Parse*); 1923 int sqlite3GetTempReg(Parse*); 1924 void sqlite3ReleaseTempReg(Parse*,int); 1925 int sqlite3GetTempRange(Parse*,int); 1926 void sqlite3ReleaseTempRange(Parse*,int,int); 1927 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); 1928 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 1929 Expr *sqlite3RegisterExpr(Parse*,Token*); 1930 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 1931 void sqlite3ExprSpan(Expr*,Token*,Token*); 1932 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 1933 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1934 void sqlite3ExprDelete(sqlite3*, Expr*); 1935 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); 1936 void sqlite3ExprListDelete(sqlite3*, ExprList*); 1937 int sqlite3Init(sqlite3*, char**); 1938 int sqlite3InitCallback(void*, int, char**, char**); 1939 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1940 void sqlite3ResetInternalSchema(sqlite3*, int); 1941 void sqlite3BeginParse(Parse*,int); 1942 void sqlite3CommitInternalChanges(sqlite3*); 1943 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1944 void sqlite3OpenMasterTable(Parse *, int); 1945 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1946 void sqlite3AddColumn(Parse*,Token*); 1947 void sqlite3AddNotNull(Parse*, int); 1948 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1949 void sqlite3AddCheckConstraint(Parse*, Expr*); 1950 void sqlite3AddColumnType(Parse*,Token*); 1951 void sqlite3AddDefaultValue(Parse*,Expr*); 1952 void sqlite3AddCollateType(Parse*, Token*); 1953 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1954 1955 Bitvec *sqlite3BitvecCreate(u32); 1956 int sqlite3BitvecTest(Bitvec*, u32); 1957 int sqlite3BitvecSet(Bitvec*, u32); 1958 void sqlite3BitvecClear(Bitvec*, u32); 1959 void sqlite3BitvecDestroy(Bitvec*); 1960 int sqlite3BitvecBuiltinTest(int,int*); 1961 1962 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1963 1964 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1965 int sqlite3ViewGetColumnNames(Parse*,Table*); 1966 #else 1967 # define sqlite3ViewGetColumnNames(A,B) 0 1968 #endif 1969 1970 void sqlite3DropTable(Parse*, SrcList*, int, int); 1971 void sqlite3DeleteTable(Table*); 1972 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1973 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 1974 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 1975 int sqlite3IdListIndex(IdList*,const char*); 1976 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 1977 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, 1978 Select*, Expr*, IdList*); 1979 void sqlite3SrcListShiftJoinType(SrcList*); 1980 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1981 void sqlite3IdListDelete(sqlite3*, IdList*); 1982 void sqlite3SrcListDelete(sqlite3*, SrcList*); 1983 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1984 Token*, int, int); 1985 void sqlite3DropIndex(Parse*, SrcList*, int); 1986 int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*); 1987 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 1988 Expr*,ExprList*,int,Expr*,Expr*); 1989 void sqlite3SelectDelete(sqlite3*, Select*); 1990 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1991 int sqlite3IsReadOnly(Parse*, Table*, int); 1992 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1993 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1994 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1995 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8); 1996 void sqlite3WhereEnd(WhereInfo*); 1997 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int); 1998 void sqlite3ExprCodeMove(Parse*, int, int, int); 1999 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2000 void sqlite3ExprClearColumnCache(Parse*, int); 2001 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2002 int sqlite3ExprWritableRegister(Parse*,int,int); 2003 void sqlite3ExprHardCopy(Parse*,int,int); 2004 int sqlite3ExprCode(Parse*, Expr*, int); 2005 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2006 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2007 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2008 void sqlite3ExprCodeConstants(Parse*, Expr*); 2009 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2010 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2011 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2012 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2013 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2014 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2015 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2016 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2017 void sqlite3Vacuum(Parse*); 2018 int sqlite3RunVacuum(char**, sqlite3*); 2019 char *sqlite3NameFromToken(sqlite3*, Token*); 2020 int sqlite3ExprCompare(Expr*, Expr*); 2021 int sqlite3ExprResolveNames(NameContext *, Expr *); 2022 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2023 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2024 Vdbe *sqlite3GetVdbe(Parse*); 2025 Expr *sqlite3CreateIdExpr(Parse *, const char*); 2026 void sqlite3PrngSaveState(void); 2027 void sqlite3PrngRestoreState(void); 2028 void sqlite3PrngResetState(void); 2029 void sqlite3RollbackAll(sqlite3*); 2030 void sqlite3CodeVerifySchema(Parse*, int); 2031 void sqlite3BeginTransaction(Parse*, int); 2032 void sqlite3CommitTransaction(Parse*); 2033 void sqlite3RollbackTransaction(Parse*); 2034 int sqlite3ExprIsConstant(Expr*); 2035 int sqlite3ExprIsConstantNotJoin(Expr*); 2036 int sqlite3ExprIsConstantOrFunction(Expr*); 2037 int sqlite3ExprIsInteger(Expr*, int*); 2038 int sqlite3IsRowid(const char*); 2039 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int); 2040 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2041 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2042 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2043 int*,int,int,int,int); 2044 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int); 2045 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2046 void sqlite3BeginWriteOperation(Parse*, int, int); 2047 Expr *sqlite3ExprDup(sqlite3*,Expr*); 2048 void sqlite3TokenCopy(sqlite3*,Token*, Token*); 2049 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); 2050 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); 2051 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2052 Select *sqlite3SelectDup(sqlite3*,Select*); 2053 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2054 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2055 void sqlite3RegisterDateTimeFunctions(sqlite3*); 2056 #ifdef SQLITE_DEBUG 2057 int sqlite3SafetyOn(sqlite3*); 2058 int sqlite3SafetyOff(sqlite3*); 2059 #else 2060 # define sqlite3SafetyOn(A) 0 2061 # define sqlite3SafetyOff(A) 0 2062 #endif 2063 int sqlite3SafetyCheckOk(sqlite3*); 2064 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2065 void sqlite3ChangeCookie(Parse*, int); 2066 void sqlite3MaterializeView(Parse*, Select*, Expr*, int); 2067 2068 #ifndef SQLITE_OMIT_TRIGGER 2069 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2070 Expr*,int, int); 2071 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2072 void sqlite3DropTrigger(Parse*, SrcList*, int); 2073 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2074 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 2075 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 2076 int, int, u32*, u32*); 2077 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2078 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2079 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2080 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2081 ExprList*,Select*,int); 2082 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); 2083 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2084 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2085 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2086 #else 2087 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 2088 # define sqlite3DeleteTrigger(A,B) 2089 # define sqlite3DropTriggerPtr(A,B) 2090 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2091 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0 2092 #endif 2093 2094 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2095 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2096 void sqlite3DeferForeignKey(Parse*, int); 2097 #ifndef SQLITE_OMIT_AUTHORIZATION 2098 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2099 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2100 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2101 void sqlite3AuthContextPop(AuthContext*); 2102 #else 2103 # define sqlite3AuthRead(a,b,c,d) 2104 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2105 # define sqlite3AuthContextPush(a,b,c) 2106 # define sqlite3AuthContextPop(a) ((void)(a)) 2107 #endif 2108 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2109 void sqlite3Detach(Parse*, Expr*); 2110 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 2111 int omitJournal, int nCache, int flags, Btree **ppBtree); 2112 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2113 int sqlite3FixSrcList(DbFixer*, SrcList*); 2114 int sqlite3FixSelect(DbFixer*, Select*); 2115 int sqlite3FixExpr(DbFixer*, Expr*); 2116 int sqlite3FixExprList(DbFixer*, ExprList*); 2117 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2118 int sqlite3AtoF(const char *z, double*); 2119 char *sqlite3_snprintf(int,char*,const char*,...); 2120 int sqlite3GetInt32(const char *, int*); 2121 int sqlite3FitsIn64Bits(const char *, int); 2122 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2123 int sqlite3Utf8CharLen(const char *pData, int nByte); 2124 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 2125 2126 /* 2127 ** Routines to read and write variable-length integers. These used to 2128 ** be defined locally, but now we use the varint routines in the util.c 2129 ** file. Code should use the MACRO forms below, as the Varint32 versions 2130 ** are coded to assume the single byte case is already handled (which 2131 ** the MACRO form does). 2132 */ 2133 int sqlite3PutVarint(unsigned char*, u64); 2134 int sqlite3PutVarint32(unsigned char*, u32); 2135 int sqlite3GetVarint(const unsigned char *, u64 *); 2136 int sqlite3GetVarint32(const unsigned char *, u32 *); 2137 int sqlite3VarintLen(u64 v); 2138 2139 /* 2140 ** The header of a record consists of a sequence variable-length integers. 2141 ** These integers are almost always small and are encoded as a single byte. 2142 ** The following macros take advantage this fact to provide a fast encode 2143 ** and decode of the integers in a record header. It is faster for the common 2144 ** case where the integer is a single byte. It is a little slower when the 2145 ** integer is two or more bytes. But overall it is faster. 2146 ** 2147 ** The following expressions are equivalent: 2148 ** 2149 ** x = sqlite3GetVarint32( A, &B ); 2150 ** x = sqlite3PutVarint32( A, B ); 2151 ** 2152 ** x = getVarint32( A, B ); 2153 ** x = putVarint32( A, B ); 2154 ** 2155 */ 2156 #define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B))) 2157 #define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2158 #define getVarint sqlite3GetVarint 2159 #define putVarint sqlite3PutVarint 2160 2161 2162 void sqlite3IndexAffinityStr(Vdbe *, Index *); 2163 void sqlite3TableAffinityStr(Vdbe *, Table *); 2164 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2165 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2166 char sqlite3ExprAffinity(Expr *pExpr); 2167 int sqlite3Atoi64(const char*, i64*); 2168 void sqlite3Error(sqlite3*, int, const char*,...); 2169 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2170 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2171 const char *sqlite3ErrStr(int); 2172 int sqlite3ReadSchema(Parse *pParse); 2173 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 2174 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 2175 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2176 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 2177 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2178 int sqlite3CheckObjectName(Parse *, const char *); 2179 void sqlite3VdbeSetChanges(sqlite3 *, int); 2180 2181 const void *sqlite3ValueText(sqlite3_value*, u8); 2182 int sqlite3ValueBytes(sqlite3_value*, u8); 2183 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2184 void(*)(void*)); 2185 void sqlite3ValueFree(sqlite3_value*); 2186 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2187 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 2188 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2189 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2190 #ifndef SQLITE_AMALGAMATION 2191 extern const unsigned char sqlite3UpperToLower[]; 2192 extern struct Sqlite3Config sqlite3Config; 2193 #endif 2194 void sqlite3RootPageMoved(Db*, int, int); 2195 void sqlite3Reindex(Parse*, Token*, Token*); 2196 void sqlite3AlterFunctions(sqlite3*); 2197 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2198 int sqlite3GetToken(const unsigned char *, int *); 2199 void sqlite3NestedParse(Parse*, const char*, ...); 2200 void sqlite3ExpirePreparedStatements(sqlite3*); 2201 void sqlite3CodeSubselect(Parse *, Expr *, int); 2202 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 2203 void sqlite3ColumnDefault(Vdbe *, Table *, int); 2204 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2205 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2206 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 2207 char sqlite3AffinityType(const Token*); 2208 void sqlite3Analyze(Parse*, Token*, Token*); 2209 int sqlite3InvokeBusyHandler(BusyHandler*); 2210 int sqlite3FindDb(sqlite3*, Token*); 2211 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2212 void sqlite3DefaultRowEst(Index*); 2213 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2214 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2215 void sqlite3AttachFunctions(sqlite3 *); 2216 void sqlite3MinimumFileFormat(Parse*, int, int); 2217 void sqlite3SchemaFree(void *); 2218 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2219 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2220 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2221 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2222 void (*)(sqlite3_context*,int,sqlite3_value **), 2223 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 2224 int sqlite3ApiExit(sqlite3 *db, int); 2225 int sqlite3OpenTempDatabase(Parse *); 2226 2227 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2228 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2229 char *sqlite3StrAccumFinish(StrAccum*); 2230 void sqlite3StrAccumReset(StrAccum*); 2231 void sqlite3SelectDestInit(SelectDest*,int,int); 2232 2233 /* 2234 ** The interface to the LEMON-generated parser 2235 */ 2236 void *sqlite3ParserAlloc(void*(*)(size_t)); 2237 void sqlite3ParserFree(void*, void(*)(void*)); 2238 void sqlite3Parser(void*, int, Token, Parse*); 2239 #ifdef YYTRACKMAXSTACKDEPTH 2240 int sqlite3ParserStackPeak(void*); 2241 #endif 2242 2243 int sqlite3AutoLoadExtensions(sqlite3*); 2244 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2245 void sqlite3CloseExtensions(sqlite3*); 2246 #else 2247 # define sqlite3CloseExtensions(X) 2248 #endif 2249 2250 #ifndef SQLITE_OMIT_SHARED_CACHE 2251 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2252 #else 2253 #define sqlite3TableLock(v,w,x,y,z) 2254 #endif 2255 2256 #ifdef SQLITE_TEST 2257 int sqlite3Utf8To8(unsigned char*); 2258 #endif 2259 2260 #ifdef SQLITE_OMIT_VIRTUALTABLE 2261 # define sqlite3VtabClear(X) 2262 # define sqlite3VtabSync(X,Y) (Y) 2263 # define sqlite3VtabRollback(X) 2264 # define sqlite3VtabCommit(X) 2265 # define sqlite3VtabTransferError(A,B,C) 2266 #else 2267 void sqlite3VtabClear(Table*); 2268 int sqlite3VtabSync(sqlite3 *db, int rc); 2269 int sqlite3VtabRollback(sqlite3 *db); 2270 int sqlite3VtabCommit(sqlite3 *db); 2271 void sqlite3VtabTransferError(sqlite3 *db, int, sqlite3_vtab*); 2272 #endif 2273 void sqlite3VtabMakeWritable(Parse*,Table*); 2274 void sqlite3VtabLock(sqlite3_vtab*); 2275 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 2276 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 2277 void sqlite3VtabFinishParse(Parse*, Token*); 2278 void sqlite3VtabArgInit(Parse*); 2279 void sqlite3VtabArgExtend(Parse*, Token*); 2280 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 2281 int sqlite3VtabCallConnect(Parse*, Table*); 2282 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 2283 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 2284 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 2285 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 2286 int sqlite3Reprepare(Vdbe*); 2287 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 2288 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 2289 2290 2291 /* 2292 ** Available fault injectors. Should be numbered beginning with 0. 2293 */ 2294 #define SQLITE_FAULTINJECTOR_MALLOC 0 2295 #define SQLITE_FAULTINJECTOR_COUNT 1 2296 2297 /* 2298 ** The interface to the code in fault.c used for identifying "benign" 2299 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 2300 ** is not defined. 2301 */ 2302 #ifndef SQLITE_OMIT_BUILTIN_TEST 2303 void sqlite3BeginBenignMalloc(void); 2304 void sqlite3EndBenignMalloc(void); 2305 #else 2306 #define sqlite3BeginBenignMalloc() 2307 #define sqlite3EndBenignMalloc() 2308 #endif 2309 2310 #define IN_INDEX_ROWID 1 2311 #define IN_INDEX_EPH 2 2312 #define IN_INDEX_INDEX 3 2313 int sqlite3FindInIndex(Parse *, Expr *, int*); 2314 2315 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 2316 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 2317 int sqlite3JournalSize(sqlite3_vfs *); 2318 int sqlite3JournalCreate(sqlite3_file *); 2319 #else 2320 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 2321 #endif 2322 2323 #if SQLITE_MAX_EXPR_DEPTH>0 2324 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 2325 int sqlite3SelectExprHeight(Select *); 2326 #else 2327 #define sqlite3ExprSetHeight(x,y) 2328 #define sqlite3SelectExprHeight(x) 0 2329 #endif 2330 2331 u32 sqlite3Get4byte(const u8*); 2332 void sqlite3Put4byte(u8*, u32); 2333 2334 #ifdef SQLITE_SSE 2335 #include "sseInt.h" 2336 #endif 2337 2338 #ifdef SQLITE_DEBUG 2339 void sqlite3ParserTrace(FILE*, char *); 2340 #endif 2341 2342 /* 2343 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 2344 ** sqlite3IoTrace is a pointer to a printf-like routine used to 2345 ** print I/O tracing messages. 2346 */ 2347 #ifdef SQLITE_ENABLE_IOTRACE 2348 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 2349 void sqlite3VdbeIOTraceSql(Vdbe*); 2350 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 2351 #else 2352 # define IOTRACE(A) 2353 # define sqlite3VdbeIOTraceSql(X) 2354 #endif 2355 2356 #endif 2357