xref: /sqlite-3.40.0/src/sqliteInt.h (revision 7aa3ebee)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** Make sure that rand_s() is available on Windows systems with MSVC 2005
20 ** or higher.
21 */
22 #if defined(_MSC_VER) && _MSC_VER>=1400
23 #  define _CRT_RAND_S
24 #endif
25 
26 /*
27 ** Include the header file used to customize the compiler options for MSVC.
28 ** This should be done first so that it can successfully prevent spurious
29 ** compiler warnings due to subsequent content in this file and other files
30 ** that are included by this file.
31 */
32 #include "msvc.h"
33 
34 /*
35 ** Special setup for VxWorks
36 */
37 #include "vxworks.h"
38 
39 /*
40 ** These #defines should enable >2GB file support on POSIX if the
41 ** underlying operating system supports it.  If the OS lacks
42 ** large file support, or if the OS is windows, these should be no-ops.
43 **
44 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
45 ** system #includes.  Hence, this block of code must be the very first
46 ** code in all source files.
47 **
48 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
49 ** on the compiler command line.  This is necessary if you are compiling
50 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
51 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
52 ** without this option, LFS is enable.  But LFS does not exist in the kernel
53 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
54 ** portability you should omit LFS.
55 **
56 ** The previous paragraph was written in 2005.  (This paragraph is written
57 ** on 2008-11-28.) These days, all Linux kernels support large files, so
58 ** you should probably leave LFS enabled.  But some embedded platforms might
59 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
60 **
61 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
62 */
63 #ifndef SQLITE_DISABLE_LFS
64 # define _LARGE_FILE       1
65 # ifndef _FILE_OFFSET_BITS
66 #   define _FILE_OFFSET_BITS 64
67 # endif
68 # define _LARGEFILE_SOURCE 1
69 #endif
70 
71 /* What version of GCC is being used.  0 means GCC is not being used */
72 #ifdef __GNUC__
73 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
74 #else
75 # define GCC_VERSION 0
76 #endif
77 
78 /* Needed for various definitions... */
79 #if defined(__GNUC__) && !defined(_GNU_SOURCE)
80 # define _GNU_SOURCE
81 #endif
82 
83 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
84 # define _BSD_SOURCE
85 #endif
86 
87 /*
88 ** For MinGW, check to see if we can include the header file containing its
89 ** version information, among other things.  Normally, this internal MinGW
90 ** header file would [only] be included automatically by other MinGW header
91 ** files; however, the contained version information is now required by this
92 ** header file to work around binary compatibility issues (see below) and
93 ** this is the only known way to reliably obtain it.  This entire #if block
94 ** would be completely unnecessary if there was any other way of detecting
95 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
96 ** some MinGW-specific macros).  When compiling for MinGW, either the
97 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
98 ** defined; otherwise, detection of conditions specific to MinGW will be
99 ** disabled.
100 */
101 #if defined(_HAVE_MINGW_H)
102 # include "mingw.h"
103 #elif defined(_HAVE__MINGW_H)
104 # include "_mingw.h"
105 #endif
106 
107 /*
108 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
109 ** define is required to maintain binary compatibility with the MSVC runtime
110 ** library in use (e.g. for Windows XP).
111 */
112 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
113     defined(_WIN32) && !defined(_WIN64) && \
114     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
115     defined(__MSVCRT__)
116 # define _USE_32BIT_TIME_T
117 #endif
118 
119 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
120 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
121 ** MinGW.
122 */
123 #include "sqlite3.h"
124 
125 /*
126 ** Include the configuration header output by 'configure' if we're using the
127 ** autoconf-based build
128 */
129 #ifdef _HAVE_SQLITE_CONFIG_H
130 #include "config.h"
131 #endif
132 
133 #include "sqliteLimit.h"
134 
135 /* Disable nuisance warnings on Borland compilers */
136 #if defined(__BORLANDC__)
137 #pragma warn -rch /* unreachable code */
138 #pragma warn -ccc /* Condition is always true or false */
139 #pragma warn -aus /* Assigned value is never used */
140 #pragma warn -csu /* Comparing signed and unsigned */
141 #pragma warn -spa /* Suspicious pointer arithmetic */
142 #endif
143 
144 /*
145 ** Include standard header files as necessary
146 */
147 #ifdef HAVE_STDINT_H
148 #include <stdint.h>
149 #endif
150 #ifdef HAVE_INTTYPES_H
151 #include <inttypes.h>
152 #endif
153 
154 /*
155 ** The following macros are used to cast pointers to integers and
156 ** integers to pointers.  The way you do this varies from one compiler
157 ** to the next, so we have developed the following set of #if statements
158 ** to generate appropriate macros for a wide range of compilers.
159 **
160 ** The correct "ANSI" way to do this is to use the intptr_t type.
161 ** Unfortunately, that typedef is not available on all compilers, or
162 ** if it is available, it requires an #include of specific headers
163 ** that vary from one machine to the next.
164 **
165 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
166 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
167 ** So we have to define the macros in different ways depending on the
168 ** compiler.
169 */
170 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
171 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
172 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
173 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
174 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
175 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
176 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
177 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
178 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
179 #else                          /* Generates a warning - but it always works */
180 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
181 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
182 #endif
183 
184 /*
185 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to
186 ** something between S (inclusive) and E (exclusive).
187 **
188 ** In other words, S is a buffer and E is a pointer to the first byte after
189 ** the end of buffer S.  This macro returns true if P points to something
190 ** contained within the buffer S.
191 */
192 #if defined(HAVE_STDINT_H)
193 # define SQLITE_WITHIN(P,S,E) \
194     ((uintptr_t)(P)>=(uintptr_t)(S) && (uintptr_t)(P)<(uintptr_t)(E))
195 #else
196 # define SQLITE_WITHIN(P,S,E) ((P)>=(S) && (P)<(E))
197 #endif
198 
199 /*
200 ** A macro to hint to the compiler that a function should not be
201 ** inlined.
202 */
203 #if defined(__GNUC__)
204 #  define SQLITE_NOINLINE  __attribute__((noinline))
205 #elif defined(_MSC_VER) && _MSC_VER>=1310
206 #  define SQLITE_NOINLINE  __declspec(noinline)
207 #else
208 #  define SQLITE_NOINLINE
209 #endif
210 
211 /*
212 ** Make sure that the compiler intrinsics we desire are enabled when
213 ** compiling with an appropriate version of MSVC unless prevented by
214 ** the SQLITE_DISABLE_INTRINSIC define.
215 */
216 #if !defined(SQLITE_DISABLE_INTRINSIC)
217 #  if defined(_MSC_VER) && _MSC_VER>=1300
218 #    if !defined(_WIN32_WCE)
219 #      include <intrin.h>
220 #      pragma intrinsic(_byteswap_ushort)
221 #      pragma intrinsic(_byteswap_ulong)
222 #      pragma intrinsic(_ReadWriteBarrier)
223 #    else
224 #      include <cmnintrin.h>
225 #    endif
226 #  endif
227 #endif
228 
229 /*
230 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
231 ** 0 means mutexes are permanently disable and the library is never
232 ** threadsafe.  1 means the library is serialized which is the highest
233 ** level of threadsafety.  2 means the library is multithreaded - multiple
234 ** threads can use SQLite as long as no two threads try to use the same
235 ** database connection at the same time.
236 **
237 ** Older versions of SQLite used an optional THREADSAFE macro.
238 ** We support that for legacy.
239 */
240 #if !defined(SQLITE_THREADSAFE)
241 # if defined(THREADSAFE)
242 #   define SQLITE_THREADSAFE THREADSAFE
243 # else
244 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
245 # endif
246 #endif
247 
248 /*
249 ** Powersafe overwrite is on by default.  But can be turned off using
250 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
251 */
252 #ifndef SQLITE_POWERSAFE_OVERWRITE
253 # define SQLITE_POWERSAFE_OVERWRITE 1
254 #endif
255 
256 /*
257 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
258 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
259 ** which case memory allocation statistics are disabled by default.
260 */
261 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
262 # define SQLITE_DEFAULT_MEMSTATUS 1
263 #endif
264 
265 /*
266 ** Exactly one of the following macros must be defined in order to
267 ** specify which memory allocation subsystem to use.
268 **
269 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
270 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
271 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
272 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
273 **
274 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
275 ** assert() macro is enabled, each call into the Win32 native heap subsystem
276 ** will cause HeapValidate to be called.  If heap validation should fail, an
277 ** assertion will be triggered.
278 **
279 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
280 ** the default.
281 */
282 #if defined(SQLITE_SYSTEM_MALLOC) \
283   + defined(SQLITE_WIN32_MALLOC) \
284   + defined(SQLITE_ZERO_MALLOC) \
285   + defined(SQLITE_MEMDEBUG)>1
286 # error "Two or more of the following compile-time configuration options\
287  are defined but at most one is allowed:\
288  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
289  SQLITE_ZERO_MALLOC"
290 #endif
291 #if defined(SQLITE_SYSTEM_MALLOC) \
292   + defined(SQLITE_WIN32_MALLOC) \
293   + defined(SQLITE_ZERO_MALLOC) \
294   + defined(SQLITE_MEMDEBUG)==0
295 # define SQLITE_SYSTEM_MALLOC 1
296 #endif
297 
298 /*
299 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
300 ** sizes of memory allocations below this value where possible.
301 */
302 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
303 # define SQLITE_MALLOC_SOFT_LIMIT 1024
304 #endif
305 
306 /*
307 ** We need to define _XOPEN_SOURCE as follows in order to enable
308 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
309 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
310 ** it.
311 */
312 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
313 #  define _XOPEN_SOURCE 600
314 #endif
315 
316 /*
317 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
318 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
319 ** make it true by defining or undefining NDEBUG.
320 **
321 ** Setting NDEBUG makes the code smaller and faster by disabling the
322 ** assert() statements in the code.  So we want the default action
323 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
324 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
325 ** feature.
326 */
327 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
328 # define NDEBUG 1
329 #endif
330 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
331 # undef NDEBUG
332 #endif
333 
334 /*
335 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
336 */
337 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
338 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
339 #endif
340 
341 /*
342 ** The testcase() macro is used to aid in coverage testing.  When
343 ** doing coverage testing, the condition inside the argument to
344 ** testcase() must be evaluated both true and false in order to
345 ** get full branch coverage.  The testcase() macro is inserted
346 ** to help ensure adequate test coverage in places where simple
347 ** condition/decision coverage is inadequate.  For example, testcase()
348 ** can be used to make sure boundary values are tested.  For
349 ** bitmask tests, testcase() can be used to make sure each bit
350 ** is significant and used at least once.  On switch statements
351 ** where multiple cases go to the same block of code, testcase()
352 ** can insure that all cases are evaluated.
353 **
354 */
355 #ifdef SQLITE_COVERAGE_TEST
356   void sqlite3Coverage(int);
357 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
358 #else
359 # define testcase(X)
360 #endif
361 
362 /*
363 ** The TESTONLY macro is used to enclose variable declarations or
364 ** other bits of code that are needed to support the arguments
365 ** within testcase() and assert() macros.
366 */
367 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
368 # define TESTONLY(X)  X
369 #else
370 # define TESTONLY(X)
371 #endif
372 
373 /*
374 ** Sometimes we need a small amount of code such as a variable initialization
375 ** to setup for a later assert() statement.  We do not want this code to
376 ** appear when assert() is disabled.  The following macro is therefore
377 ** used to contain that setup code.  The "VVA" acronym stands for
378 ** "Verification, Validation, and Accreditation".  In other words, the
379 ** code within VVA_ONLY() will only run during verification processes.
380 */
381 #ifndef NDEBUG
382 # define VVA_ONLY(X)  X
383 #else
384 # define VVA_ONLY(X)
385 #endif
386 
387 /*
388 ** The ALWAYS and NEVER macros surround boolean expressions which
389 ** are intended to always be true or false, respectively.  Such
390 ** expressions could be omitted from the code completely.  But they
391 ** are included in a few cases in order to enhance the resilience
392 ** of SQLite to unexpected behavior - to make the code "self-healing"
393 ** or "ductile" rather than being "brittle" and crashing at the first
394 ** hint of unplanned behavior.
395 **
396 ** In other words, ALWAYS and NEVER are added for defensive code.
397 **
398 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
399 ** be true and false so that the unreachable code they specify will
400 ** not be counted as untested code.
401 */
402 #if defined(SQLITE_COVERAGE_TEST)
403 # define ALWAYS(X)      (1)
404 # define NEVER(X)       (0)
405 #elif !defined(NDEBUG)
406 # define ALWAYS(X)      ((X)?1:(assert(0),0))
407 # define NEVER(X)       ((X)?(assert(0),1):0)
408 #else
409 # define ALWAYS(X)      (X)
410 # define NEVER(X)       (X)
411 #endif
412 
413 /*
414 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is
415 ** defined.  We need to defend against those failures when testing with
416 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches
417 ** during a normal build.  The following macro can be used to disable tests
418 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set.
419 */
420 #if defined(SQLITE_TEST_REALLOC_STRESS)
421 # define ONLY_IF_REALLOC_STRESS(X)  (X)
422 #elif !defined(NDEBUG)
423 # define ONLY_IF_REALLOC_STRESS(X)  ((X)?(assert(0),1):0)
424 #else
425 # define ONLY_IF_REALLOC_STRESS(X)  (0)
426 #endif
427 
428 /*
429 ** Declarations used for tracing the operating system interfaces.
430 */
431 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
432     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
433   extern int sqlite3OSTrace;
434 # define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
435 # define SQLITE_HAVE_OS_TRACE
436 #else
437 # define OSTRACE(X)
438 # undef  SQLITE_HAVE_OS_TRACE
439 #endif
440 
441 /*
442 ** Is the sqlite3ErrName() function needed in the build?  Currently,
443 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when
444 ** OSTRACE is enabled), and by several "test*.c" files (which are
445 ** compiled using SQLITE_TEST).
446 */
447 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \
448     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
449 # define SQLITE_NEED_ERR_NAME
450 #else
451 # undef  SQLITE_NEED_ERR_NAME
452 #endif
453 
454 /*
455 ** Return true (non-zero) if the input is an integer that is too large
456 ** to fit in 32-bits.  This macro is used inside of various testcase()
457 ** macros to verify that we have tested SQLite for large-file support.
458 */
459 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
460 
461 /*
462 ** The macro unlikely() is a hint that surrounds a boolean
463 ** expression that is usually false.  Macro likely() surrounds
464 ** a boolean expression that is usually true.  These hints could,
465 ** in theory, be used by the compiler to generate better code, but
466 ** currently they are just comments for human readers.
467 */
468 #define likely(X)    (X)
469 #define unlikely(X)  (X)
470 
471 #include "hash.h"
472 #include "parse.h"
473 #include <stdio.h>
474 #include <stdlib.h>
475 #include <string.h>
476 #include <assert.h>
477 #include <stddef.h>
478 
479 /*
480 ** If compiling for a processor that lacks floating point support,
481 ** substitute integer for floating-point
482 */
483 #ifdef SQLITE_OMIT_FLOATING_POINT
484 # define double sqlite_int64
485 # define float sqlite_int64
486 # define LONGDOUBLE_TYPE sqlite_int64
487 # ifndef SQLITE_BIG_DBL
488 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
489 # endif
490 # define SQLITE_OMIT_DATETIME_FUNCS 1
491 # define SQLITE_OMIT_TRACE 1
492 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
493 # undef SQLITE_HAVE_ISNAN
494 #endif
495 #ifndef SQLITE_BIG_DBL
496 # define SQLITE_BIG_DBL (1e99)
497 #endif
498 
499 /*
500 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
501 ** afterward. Having this macro allows us to cause the C compiler
502 ** to omit code used by TEMP tables without messy #ifndef statements.
503 */
504 #ifdef SQLITE_OMIT_TEMPDB
505 #define OMIT_TEMPDB 1
506 #else
507 #define OMIT_TEMPDB 0
508 #endif
509 
510 /*
511 ** The "file format" number is an integer that is incremented whenever
512 ** the VDBE-level file format changes.  The following macros define the
513 ** the default file format for new databases and the maximum file format
514 ** that the library can read.
515 */
516 #define SQLITE_MAX_FILE_FORMAT 4
517 #ifndef SQLITE_DEFAULT_FILE_FORMAT
518 # define SQLITE_DEFAULT_FILE_FORMAT 4
519 #endif
520 
521 /*
522 ** Determine whether triggers are recursive by default.  This can be
523 ** changed at run-time using a pragma.
524 */
525 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
526 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
527 #endif
528 
529 /*
530 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
531 ** on the command-line
532 */
533 #ifndef SQLITE_TEMP_STORE
534 # define SQLITE_TEMP_STORE 1
535 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
536 #endif
537 
538 /*
539 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
540 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
541 ** to zero.
542 */
543 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
544 # undef SQLITE_MAX_WORKER_THREADS
545 # define SQLITE_MAX_WORKER_THREADS 0
546 #endif
547 #ifndef SQLITE_MAX_WORKER_THREADS
548 # define SQLITE_MAX_WORKER_THREADS 8
549 #endif
550 #ifndef SQLITE_DEFAULT_WORKER_THREADS
551 # define SQLITE_DEFAULT_WORKER_THREADS 0
552 #endif
553 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
554 # undef SQLITE_MAX_WORKER_THREADS
555 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
556 #endif
557 
558 /*
559 ** The default initial allocation for the pagecache when using separate
560 ** pagecaches for each database connection.  A positive number is the
561 ** number of pages.  A negative number N translations means that a buffer
562 ** of -1024*N bytes is allocated and used for as many pages as it will hold.
563 */
564 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ
565 # define SQLITE_DEFAULT_PCACHE_INITSZ 100
566 #endif
567 
568 /*
569 ** GCC does not define the offsetof() macro so we'll have to do it
570 ** ourselves.
571 */
572 #ifndef offsetof
573 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
574 #endif
575 
576 /*
577 ** Macros to compute minimum and maximum of two numbers.
578 */
579 #define MIN(A,B) ((A)<(B)?(A):(B))
580 #define MAX(A,B) ((A)>(B)?(A):(B))
581 
582 /*
583 ** Swap two objects of type TYPE.
584 */
585 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
586 
587 /*
588 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
589 ** not, there are still machines out there that use EBCDIC.)
590 */
591 #if 'A' == '\301'
592 # define SQLITE_EBCDIC 1
593 #else
594 # define SQLITE_ASCII 1
595 #endif
596 
597 /*
598 ** Integers of known sizes.  These typedefs might change for architectures
599 ** where the sizes very.  Preprocessor macros are available so that the
600 ** types can be conveniently redefined at compile-type.  Like this:
601 **
602 **         cc '-DUINTPTR_TYPE=long long int' ...
603 */
604 #ifndef UINT32_TYPE
605 # ifdef HAVE_UINT32_T
606 #  define UINT32_TYPE uint32_t
607 # else
608 #  define UINT32_TYPE unsigned int
609 # endif
610 #endif
611 #ifndef UINT16_TYPE
612 # ifdef HAVE_UINT16_T
613 #  define UINT16_TYPE uint16_t
614 # else
615 #  define UINT16_TYPE unsigned short int
616 # endif
617 #endif
618 #ifndef INT16_TYPE
619 # ifdef HAVE_INT16_T
620 #  define INT16_TYPE int16_t
621 # else
622 #  define INT16_TYPE short int
623 # endif
624 #endif
625 #ifndef UINT8_TYPE
626 # ifdef HAVE_UINT8_T
627 #  define UINT8_TYPE uint8_t
628 # else
629 #  define UINT8_TYPE unsigned char
630 # endif
631 #endif
632 #ifndef INT8_TYPE
633 # ifdef HAVE_INT8_T
634 #  define INT8_TYPE int8_t
635 # else
636 #  define INT8_TYPE signed char
637 # endif
638 #endif
639 #ifndef LONGDOUBLE_TYPE
640 # define LONGDOUBLE_TYPE long double
641 #endif
642 typedef sqlite_int64 i64;          /* 8-byte signed integer */
643 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
644 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
645 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
646 typedef INT16_TYPE i16;            /* 2-byte signed integer */
647 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
648 typedef INT8_TYPE i8;              /* 1-byte signed integer */
649 
650 /*
651 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
652 ** that can be stored in a u32 without loss of data.  The value
653 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
654 ** have to specify the value in the less intuitive manner shown:
655 */
656 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
657 
658 /*
659 ** The datatype used to store estimates of the number of rows in a
660 ** table or index.  This is an unsigned integer type.  For 99.9% of
661 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
662 ** can be used at compile-time if desired.
663 */
664 #ifdef SQLITE_64BIT_STATS
665  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
666 #else
667  typedef u32 tRowcnt;    /* 32-bit is the default */
668 #endif
669 
670 /*
671 ** Estimated quantities used for query planning are stored as 16-bit
672 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
673 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
674 ** But the allowed values are "grainy".  Not every value is representable.
675 ** For example, quantities 16 and 17 are both represented by a LogEst
676 ** of 40.  However, since LogEst quantities are suppose to be estimates,
677 ** not exact values, this imprecision is not a problem.
678 **
679 ** "LogEst" is short for "Logarithmic Estimate".
680 **
681 ** Examples:
682 **      1 -> 0              20 -> 43          10000 -> 132
683 **      2 -> 10             25 -> 46          25000 -> 146
684 **      3 -> 16            100 -> 66        1000000 -> 199
685 **      4 -> 20           1000 -> 99        1048576 -> 200
686 **     10 -> 33           1024 -> 100    4294967296 -> 320
687 **
688 ** The LogEst can be negative to indicate fractional values.
689 ** Examples:
690 **
691 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
692 */
693 typedef INT16_TYPE LogEst;
694 
695 /*
696 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
697 */
698 #ifndef SQLITE_PTRSIZE
699 # if defined(__SIZEOF_POINTER__)
700 #   define SQLITE_PTRSIZE __SIZEOF_POINTER__
701 # elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
702        defined(_M_ARM)   || defined(__arm__)    || defined(__x86)
703 #   define SQLITE_PTRSIZE 4
704 # else
705 #   define SQLITE_PTRSIZE 8
706 # endif
707 #endif
708 
709 /*
710 ** Macros to determine whether the machine is big or little endian,
711 ** and whether or not that determination is run-time or compile-time.
712 **
713 ** For best performance, an attempt is made to guess at the byte-order
714 ** using C-preprocessor macros.  If that is unsuccessful, or if
715 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
716 ** at run-time.
717 */
718 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
719      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
720      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
721      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
722 # define SQLITE_BYTEORDER    1234
723 # define SQLITE_BIGENDIAN    0
724 # define SQLITE_LITTLEENDIAN 1
725 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
726 #endif
727 #if (defined(sparc)    || defined(__ppc__))  \
728     && !defined(SQLITE_RUNTIME_BYTEORDER)
729 # define SQLITE_BYTEORDER    4321
730 # define SQLITE_BIGENDIAN    1
731 # define SQLITE_LITTLEENDIAN 0
732 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
733 #endif
734 #if !defined(SQLITE_BYTEORDER)
735 # ifdef SQLITE_AMALGAMATION
736   const int sqlite3one = 1;
737 # else
738   extern const int sqlite3one;
739 # endif
740 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
741 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
742 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
743 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
744 #endif
745 
746 /*
747 ** Constants for the largest and smallest possible 64-bit signed integers.
748 ** These macros are designed to work correctly on both 32-bit and 64-bit
749 ** compilers.
750 */
751 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
752 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
753 
754 /*
755 ** Round up a number to the next larger multiple of 8.  This is used
756 ** to force 8-byte alignment on 64-bit architectures.
757 */
758 #define ROUND8(x)     (((x)+7)&~7)
759 
760 /*
761 ** Round down to the nearest multiple of 8
762 */
763 #define ROUNDDOWN8(x) ((x)&~7)
764 
765 /*
766 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
767 ** macro is used only within assert() to verify that the code gets
768 ** all alignment restrictions correct.
769 **
770 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
771 ** underlying malloc() implementation might return us 4-byte aligned
772 ** pointers.  In that case, only verify 4-byte alignment.
773 */
774 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
775 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
776 #else
777 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
778 #endif
779 
780 /*
781 ** Disable MMAP on platforms where it is known to not work
782 */
783 #if defined(__OpenBSD__) || defined(__QNXNTO__)
784 # undef SQLITE_MAX_MMAP_SIZE
785 # define SQLITE_MAX_MMAP_SIZE 0
786 #endif
787 
788 /*
789 ** Default maximum size of memory used by memory-mapped I/O in the VFS
790 */
791 #ifdef __APPLE__
792 # include <TargetConditionals.h>
793 #endif
794 #ifndef SQLITE_MAX_MMAP_SIZE
795 # if defined(__linux__) \
796   || defined(_WIN32) \
797   || (defined(__APPLE__) && defined(__MACH__)) \
798   || defined(__sun) \
799   || defined(__FreeBSD__) \
800   || defined(__DragonFly__)
801 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
802 # else
803 #   define SQLITE_MAX_MMAP_SIZE 0
804 # endif
805 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
806 #endif
807 
808 /*
809 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
810 ** default MMAP_SIZE is specified at compile-time, make sure that it does
811 ** not exceed the maximum mmap size.
812 */
813 #ifndef SQLITE_DEFAULT_MMAP_SIZE
814 # define SQLITE_DEFAULT_MMAP_SIZE 0
815 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
816 #endif
817 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
818 # undef SQLITE_DEFAULT_MMAP_SIZE
819 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
820 #endif
821 
822 /*
823 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
824 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
825 ** define SQLITE_ENABLE_STAT3_OR_STAT4
826 */
827 #ifdef SQLITE_ENABLE_STAT4
828 # undef SQLITE_ENABLE_STAT3
829 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
830 #elif SQLITE_ENABLE_STAT3
831 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
832 #elif SQLITE_ENABLE_STAT3_OR_STAT4
833 # undef SQLITE_ENABLE_STAT3_OR_STAT4
834 #endif
835 
836 /*
837 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
838 ** the Select query generator tracing logic is turned on.
839 */
840 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
841 # define SELECTTRACE_ENABLED 1
842 #else
843 # define SELECTTRACE_ENABLED 0
844 #endif
845 
846 /*
847 ** An instance of the following structure is used to store the busy-handler
848 ** callback for a given sqlite handle.
849 **
850 ** The sqlite.busyHandler member of the sqlite struct contains the busy
851 ** callback for the database handle. Each pager opened via the sqlite
852 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
853 ** callback is currently invoked only from within pager.c.
854 */
855 typedef struct BusyHandler BusyHandler;
856 struct BusyHandler {
857   int (*xFunc)(void *,int);  /* The busy callback */
858   void *pArg;                /* First arg to busy callback */
859   int nBusy;                 /* Incremented with each busy call */
860 };
861 
862 /*
863 ** Name of the master database table.  The master database table
864 ** is a special table that holds the names and attributes of all
865 ** user tables and indices.
866 */
867 #define MASTER_NAME       "sqlite_master"
868 #define TEMP_MASTER_NAME  "sqlite_temp_master"
869 
870 /*
871 ** The root-page of the master database table.
872 */
873 #define MASTER_ROOT       1
874 
875 /*
876 ** The name of the schema table.
877 */
878 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
879 
880 /*
881 ** A convenience macro that returns the number of elements in
882 ** an array.
883 */
884 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
885 
886 /*
887 ** Determine if the argument is a power of two
888 */
889 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
890 
891 /*
892 ** The following value as a destructor means to use sqlite3DbFree().
893 ** The sqlite3DbFree() routine requires two parameters instead of the
894 ** one parameter that destructors normally want.  So we have to introduce
895 ** this magic value that the code knows to handle differently.  Any
896 ** pointer will work here as long as it is distinct from SQLITE_STATIC
897 ** and SQLITE_TRANSIENT.
898 */
899 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
900 
901 /*
902 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
903 ** not support Writable Static Data (WSD) such as global and static variables.
904 ** All variables must either be on the stack or dynamically allocated from
905 ** the heap.  When WSD is unsupported, the variable declarations scattered
906 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
907 ** macro is used for this purpose.  And instead of referencing the variable
908 ** directly, we use its constant as a key to lookup the run-time allocated
909 ** buffer that holds real variable.  The constant is also the initializer
910 ** for the run-time allocated buffer.
911 **
912 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
913 ** macros become no-ops and have zero performance impact.
914 */
915 #ifdef SQLITE_OMIT_WSD
916   #define SQLITE_WSD const
917   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
918   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
919   int sqlite3_wsd_init(int N, int J);
920   void *sqlite3_wsd_find(void *K, int L);
921 #else
922   #define SQLITE_WSD
923   #define GLOBAL(t,v) v
924   #define sqlite3GlobalConfig sqlite3Config
925 #endif
926 
927 /*
928 ** The following macros are used to suppress compiler warnings and to
929 ** make it clear to human readers when a function parameter is deliberately
930 ** left unused within the body of a function. This usually happens when
931 ** a function is called via a function pointer. For example the
932 ** implementation of an SQL aggregate step callback may not use the
933 ** parameter indicating the number of arguments passed to the aggregate,
934 ** if it knows that this is enforced elsewhere.
935 **
936 ** When a function parameter is not used at all within the body of a function,
937 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
938 ** However, these macros may also be used to suppress warnings related to
939 ** parameters that may or may not be used depending on compilation options.
940 ** For example those parameters only used in assert() statements. In these
941 ** cases the parameters are named as per the usual conventions.
942 */
943 #define UNUSED_PARAMETER(x) (void)(x)
944 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
945 
946 /*
947 ** Forward references to structures
948 */
949 typedef struct AggInfo AggInfo;
950 typedef struct AuthContext AuthContext;
951 typedef struct AutoincInfo AutoincInfo;
952 typedef struct Bitvec Bitvec;
953 typedef struct CollSeq CollSeq;
954 typedef struct Column Column;
955 typedef struct Db Db;
956 typedef struct Schema Schema;
957 typedef struct Expr Expr;
958 typedef struct ExprList ExprList;
959 typedef struct ExprSpan ExprSpan;
960 typedef struct FKey FKey;
961 typedef struct FuncDestructor FuncDestructor;
962 typedef struct FuncDef FuncDef;
963 typedef struct FuncDefHash FuncDefHash;
964 typedef struct IdList IdList;
965 typedef struct Index Index;
966 typedef struct IndexSample IndexSample;
967 typedef struct KeyClass KeyClass;
968 typedef struct KeyInfo KeyInfo;
969 typedef struct Lookaside Lookaside;
970 typedef struct LookasideSlot LookasideSlot;
971 typedef struct Module Module;
972 typedef struct NameContext NameContext;
973 typedef struct Parse Parse;
974 typedef struct PrintfArguments PrintfArguments;
975 typedef struct RowSet RowSet;
976 typedef struct Savepoint Savepoint;
977 typedef struct Select Select;
978 typedef struct SQLiteThread SQLiteThread;
979 typedef struct SelectDest SelectDest;
980 typedef struct SrcList SrcList;
981 typedef struct StrAccum StrAccum;
982 typedef struct Table Table;
983 typedef struct TableLock TableLock;
984 typedef struct Token Token;
985 typedef struct TreeView TreeView;
986 typedef struct Trigger Trigger;
987 typedef struct TriggerPrg TriggerPrg;
988 typedef struct TriggerStep TriggerStep;
989 typedef struct UnpackedRecord UnpackedRecord;
990 typedef struct VTable VTable;
991 typedef struct VtabCtx VtabCtx;
992 typedef struct Walker Walker;
993 typedef struct WhereInfo WhereInfo;
994 typedef struct With With;
995 
996 /*
997 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
998 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
999 ** pointer types (i.e. FuncDef) defined above.
1000 */
1001 #include "btree.h"
1002 #include "vdbe.h"
1003 #include "pager.h"
1004 #include "pcache.h"
1005 
1006 #include "os.h"
1007 #include "mutex.h"
1008 
1009 
1010 /*
1011 ** Each database file to be accessed by the system is an instance
1012 ** of the following structure.  There are normally two of these structures
1013 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
1014 ** aDb[1] is the database file used to hold temporary tables.  Additional
1015 ** databases may be attached.
1016 */
1017 struct Db {
1018   char *zName;         /* Name of this database */
1019   Btree *pBt;          /* The B*Tree structure for this database file */
1020   u8 safety_level;     /* How aggressive at syncing data to disk */
1021   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
1022 };
1023 
1024 /*
1025 ** An instance of the following structure stores a database schema.
1026 **
1027 ** Most Schema objects are associated with a Btree.  The exception is
1028 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
1029 ** In shared cache mode, a single Schema object can be shared by multiple
1030 ** Btrees that refer to the same underlying BtShared object.
1031 **
1032 ** Schema objects are automatically deallocated when the last Btree that
1033 ** references them is destroyed.   The TEMP Schema is manually freed by
1034 ** sqlite3_close().
1035 *
1036 ** A thread must be holding a mutex on the corresponding Btree in order
1037 ** to access Schema content.  This implies that the thread must also be
1038 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
1039 ** For a TEMP Schema, only the connection mutex is required.
1040 */
1041 struct Schema {
1042   int schema_cookie;   /* Database schema version number for this file */
1043   int iGeneration;     /* Generation counter.  Incremented with each change */
1044   Hash tblHash;        /* All tables indexed by name */
1045   Hash idxHash;        /* All (named) indices indexed by name */
1046   Hash trigHash;       /* All triggers indexed by name */
1047   Hash fkeyHash;       /* All foreign keys by referenced table name */
1048   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
1049   u8 file_format;      /* Schema format version for this file */
1050   u8 enc;              /* Text encoding used by this database */
1051   u16 schemaFlags;     /* Flags associated with this schema */
1052   int cache_size;      /* Number of pages to use in the cache */
1053 };
1054 
1055 /*
1056 ** These macros can be used to test, set, or clear bits in the
1057 ** Db.pSchema->flags field.
1058 */
1059 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
1060 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
1061 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
1062 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
1063 
1064 /*
1065 ** Allowed values for the DB.pSchema->flags field.
1066 **
1067 ** The DB_SchemaLoaded flag is set after the database schema has been
1068 ** read into internal hash tables.
1069 **
1070 ** DB_UnresetViews means that one or more views have column names that
1071 ** have been filled out.  If the schema changes, these column names might
1072 ** changes and so the view will need to be reset.
1073 */
1074 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
1075 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
1076 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
1077 
1078 /*
1079 ** The number of different kinds of things that can be limited
1080 ** using the sqlite3_limit() interface.
1081 */
1082 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
1083 
1084 /*
1085 ** Lookaside malloc is a set of fixed-size buffers that can be used
1086 ** to satisfy small transient memory allocation requests for objects
1087 ** associated with a particular database connection.  The use of
1088 ** lookaside malloc provides a significant performance enhancement
1089 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
1090 ** SQL statements.
1091 **
1092 ** The Lookaside structure holds configuration information about the
1093 ** lookaside malloc subsystem.  Each available memory allocation in
1094 ** the lookaside subsystem is stored on a linked list of LookasideSlot
1095 ** objects.
1096 **
1097 ** Lookaside allocations are only allowed for objects that are associated
1098 ** with a particular database connection.  Hence, schema information cannot
1099 ** be stored in lookaside because in shared cache mode the schema information
1100 ** is shared by multiple database connections.  Therefore, while parsing
1101 ** schema information, the Lookaside.bEnabled flag is cleared so that
1102 ** lookaside allocations are not used to construct the schema objects.
1103 */
1104 struct Lookaside {
1105   u32 bDisable;           /* Only operate the lookaside when zero */
1106   u16 sz;                 /* Size of each buffer in bytes */
1107   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
1108   int nOut;               /* Number of buffers currently checked out */
1109   int mxOut;              /* Highwater mark for nOut */
1110   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
1111   LookasideSlot *pFree;   /* List of available buffers */
1112   void *pStart;           /* First byte of available memory space */
1113   void *pEnd;             /* First byte past end of available space */
1114 };
1115 struct LookasideSlot {
1116   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
1117 };
1118 
1119 /*
1120 ** A hash table for built-in function definitions.  (Application-defined
1121 ** functions use a regular table table from hash.h.)
1122 **
1123 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
1124 ** Collisions are on the FuncDef.u.pHash chain.
1125 */
1126 #define SQLITE_FUNC_HASH_SZ 23
1127 struct FuncDefHash {
1128   FuncDef *a[SQLITE_FUNC_HASH_SZ];       /* Hash table for functions */
1129 };
1130 
1131 #ifdef SQLITE_USER_AUTHENTICATION
1132 /*
1133 ** Information held in the "sqlite3" database connection object and used
1134 ** to manage user authentication.
1135 */
1136 typedef struct sqlite3_userauth sqlite3_userauth;
1137 struct sqlite3_userauth {
1138   u8 authLevel;                 /* Current authentication level */
1139   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1140   char *zAuthPW;                /* Password used to authenticate */
1141   char *zAuthUser;              /* User name used to authenticate */
1142 };
1143 
1144 /* Allowed values for sqlite3_userauth.authLevel */
1145 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1146 #define UAUTH_Fail        1     /* User authentication failed */
1147 #define UAUTH_User        2     /* Authenticated as a normal user */
1148 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1149 
1150 /* Functions used only by user authorization logic */
1151 int sqlite3UserAuthTable(const char*);
1152 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1153 void sqlite3UserAuthInit(sqlite3*);
1154 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
1155 
1156 #endif /* SQLITE_USER_AUTHENTICATION */
1157 
1158 /*
1159 ** typedef for the authorization callback function.
1160 */
1161 #ifdef SQLITE_USER_AUTHENTICATION
1162   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1163                                const char*, const char*);
1164 #else
1165   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1166                                const char*);
1167 #endif
1168 
1169 
1170 /*
1171 ** Each database connection is an instance of the following structure.
1172 */
1173 struct sqlite3 {
1174   sqlite3_vfs *pVfs;            /* OS Interface */
1175   struct Vdbe *pVdbe;           /* List of active virtual machines */
1176   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1177   sqlite3_mutex *mutex;         /* Connection mutex */
1178   Db *aDb;                      /* All backends */
1179   int nDb;                      /* Number of backends currently in use */
1180   int flags;                    /* Miscellaneous flags. See below */
1181   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1182   i64 szMmap;                   /* Default mmap_size setting */
1183   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1184   int errCode;                  /* Most recent error code (SQLITE_*) */
1185   int errMask;                  /* & result codes with this before returning */
1186   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1187   u8 enc;                       /* Text encoding */
1188   u8 autoCommit;                /* The auto-commit flag. */
1189   u8 temp_store;                /* 1: file 2: memory 0: default */
1190   u8 mallocFailed;              /* True if we have seen a malloc failure */
1191   u8 bBenignMalloc;             /* Do not require OOMs if true */
1192   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1193   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1194   u8 suppressErr;               /* Do not issue error messages if true */
1195   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1196   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1197   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1198   u32 magic;                    /* Magic number for detect library misuse */
1199   int nChange;                  /* Value returned by sqlite3_changes() */
1200   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1201   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1202   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1203   struct sqlite3InitInfo {      /* Information used during initialization */
1204     int newTnum;                /* Rootpage of table being initialized */
1205     u8 iDb;                     /* Which db file is being initialized */
1206     u8 busy;                    /* TRUE if currently initializing */
1207     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1208     u8 imposterTable;           /* Building an imposter table */
1209   } init;
1210   int nVdbeActive;              /* Number of VDBEs currently running */
1211   int nVdbeRead;                /* Number of active VDBEs that read or write */
1212   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1213   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1214   int nVDestroy;                /* Number of active OP_VDestroy operations */
1215   int nExtension;               /* Number of loaded extensions */
1216   void **aExtension;            /* Array of shared library handles */
1217   void (*xTrace)(void*,const char*);        /* Trace function */
1218   void *pTraceArg;                          /* Argument to the trace function */
1219   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1220   void *pProfileArg;                        /* Argument to profile function */
1221   void *pCommitArg;                 /* Argument to xCommitCallback() */
1222   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1223   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1224   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1225   void *pUpdateArg;
1226   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1227 #ifndef SQLITE_OMIT_WAL
1228   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1229   void *pWalArg;
1230 #endif
1231   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1232   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1233   void *pCollNeededArg;
1234   sqlite3_value *pErr;          /* Most recent error message */
1235   union {
1236     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1237     double notUsed1;            /* Spacer */
1238   } u1;
1239   Lookaside lookaside;          /* Lookaside malloc configuration */
1240 #ifndef SQLITE_OMIT_AUTHORIZATION
1241   sqlite3_xauth xAuth;          /* Access authorization function */
1242   void *pAuthArg;               /* 1st argument to the access auth function */
1243 #endif
1244 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1245   int (*xProgress)(void *);     /* The progress callback */
1246   void *pProgressArg;           /* Argument to the progress callback */
1247   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1248 #endif
1249 #ifndef SQLITE_OMIT_VIRTUALTABLE
1250   int nVTrans;                  /* Allocated size of aVTrans */
1251   Hash aModule;                 /* populated by sqlite3_create_module() */
1252   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1253   VTable **aVTrans;             /* Virtual tables with open transactions */
1254   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1255 #endif
1256   Hash aFunc;                   /* Hash table of connection functions */
1257   Hash aCollSeq;                /* All collating sequences */
1258   BusyHandler busyHandler;      /* Busy callback */
1259   Db aDbStatic[2];              /* Static space for the 2 default backends */
1260   Savepoint *pSavepoint;        /* List of active savepoints */
1261   int busyTimeout;              /* Busy handler timeout, in msec */
1262   int nSavepoint;               /* Number of non-transaction savepoints */
1263   int nStatement;               /* Number of nested statement-transactions  */
1264   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1265   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1266   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1267 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1268   /* The following variables are all protected by the STATIC_MASTER
1269   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1270   **
1271   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1272   ** unlock so that it can proceed.
1273   **
1274   ** When X.pBlockingConnection==Y, that means that something that X tried
1275   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1276   ** held by Y.
1277   */
1278   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1279   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1280   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1281   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1282   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1283 #endif
1284 #ifdef SQLITE_USER_AUTHENTICATION
1285   sqlite3_userauth auth;        /* User authentication information */
1286 #endif
1287 };
1288 
1289 /*
1290 ** A macro to discover the encoding of a database.
1291 */
1292 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
1293 #define ENC(db)        ((db)->enc)
1294 
1295 /*
1296 ** Possible values for the sqlite3.flags.
1297 */
1298 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
1299 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
1300 #define SQLITE_FullColNames   0x00000004  /* Show full column names on SELECT */
1301 #define SQLITE_FullFSync      0x00000008  /* Use full fsync on the backend */
1302 #define SQLITE_CkptFullFSync  0x00000010  /* Use full fsync for checkpoint */
1303 #define SQLITE_CacheSpill     0x00000020  /* OK to spill pager cache */
1304 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1305 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1306                                           /*   DELETE, or UPDATE and return */
1307                                           /*   the count using a callback. */
1308 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1309                                           /*   result set is empty */
1310 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
1311 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
1312 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
1313 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
1314 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
1315 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
1316 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
1317 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
1318 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
1319 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
1320 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
1321 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
1322 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
1323 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
1324 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
1325 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
1326 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
1327 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
1328 #define SQLITE_Vacuum         0x08000000  /* Currently in a VACUUM */
1329 #define SQLITE_CellSizeCk     0x10000000  /* Check btree cell sizes on load */
1330 
1331 
1332 /*
1333 ** Bits of the sqlite3.dbOptFlags field that are used by the
1334 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1335 ** selectively disable various optimizations.
1336 */
1337 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1338 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1339 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1340 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1341 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1342 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1343 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1344 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1345 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1346 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1347 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1348 #define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
1349 #define SQLITE_CursorHints    0x2000   /* Add OP_CursorHint opcodes */
1350 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1351 
1352 /*
1353 ** Macros for testing whether or not optimizations are enabled or disabled.
1354 */
1355 #ifndef SQLITE_OMIT_BUILTIN_TEST
1356 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1357 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1358 #else
1359 #define OptimizationDisabled(db, mask)  0
1360 #define OptimizationEnabled(db, mask)   1
1361 #endif
1362 
1363 /*
1364 ** Return true if it OK to factor constant expressions into the initialization
1365 ** code. The argument is a Parse object for the code generator.
1366 */
1367 #define ConstFactorOk(P) ((P)->okConstFactor)
1368 
1369 /*
1370 ** Possible values for the sqlite.magic field.
1371 ** The numbers are obtained at random and have no special meaning, other
1372 ** than being distinct from one another.
1373 */
1374 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1375 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1376 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1377 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1378 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1379 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1380 
1381 /*
1382 ** Each SQL function is defined by an instance of the following
1383 ** structure.  For global built-in functions (ex: substr(), max(), count())
1384 ** a pointer to this structure is held in the sqlite3BuiltinFunctions object.
1385 ** For per-connection application-defined functions, a pointer to this
1386 ** structure is held in the db->aHash hash table.
1387 **
1388 ** The u.pHash field is used by the global built-ins.  The u.pDestructor
1389 ** field is used by per-connection app-def functions.
1390 */
1391 struct FuncDef {
1392   i8 nArg;             /* Number of arguments.  -1 means unlimited */
1393   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1394   void *pUserData;     /* User data parameter */
1395   FuncDef *pNext;      /* Next function with same name */
1396   void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */
1397   void (*xFinalize)(sqlite3_context*);                  /* Agg finalizer */
1398   const char *zName;   /* SQL name of the function. */
1399   union {
1400     FuncDef *pHash;      /* Next with a different name but the same hash */
1401     FuncDestructor *pDestructor;   /* Reference counted destructor function */
1402   } u;
1403 };
1404 
1405 /*
1406 ** This structure encapsulates a user-function destructor callback (as
1407 ** configured using create_function_v2()) and a reference counter. When
1408 ** create_function_v2() is called to create a function with a destructor,
1409 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1410 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1411 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1412 ** member of each of the new FuncDef objects is set to point to the allocated
1413 ** FuncDestructor.
1414 **
1415 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1416 ** count on this object is decremented. When it reaches 0, the destructor
1417 ** is invoked and the FuncDestructor structure freed.
1418 */
1419 struct FuncDestructor {
1420   int nRef;
1421   void (*xDestroy)(void *);
1422   void *pUserData;
1423 };
1424 
1425 /*
1426 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1427 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  And
1428 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC.  There
1429 ** are assert() statements in the code to verify this.
1430 */
1431 #define SQLITE_FUNC_ENCMASK  0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1432 #define SQLITE_FUNC_LIKE     0x0004 /* Candidate for the LIKE optimization */
1433 #define SQLITE_FUNC_CASE     0x0008 /* Case-sensitive LIKE-type function */
1434 #define SQLITE_FUNC_EPHEM    0x0010 /* Ephemeral.  Delete with VDBE */
1435 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/
1436 #define SQLITE_FUNC_LENGTH   0x0040 /* Built-in length() function */
1437 #define SQLITE_FUNC_TYPEOF   0x0080 /* Built-in typeof() function */
1438 #define SQLITE_FUNC_COUNT    0x0100 /* Built-in count(*) aggregate */
1439 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */
1440 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
1441 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
1442 #define SQLITE_FUNC_MINMAX   0x1000 /* True for min() and max() aggregates */
1443 #define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
1444                                     ** single query - might change over time */
1445 
1446 /*
1447 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1448 ** used to create the initializers for the FuncDef structures.
1449 **
1450 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1451 **     Used to create a scalar function definition of a function zName
1452 **     implemented by C function xFunc that accepts nArg arguments. The
1453 **     value passed as iArg is cast to a (void*) and made available
1454 **     as the user-data (sqlite3_user_data()) for the function. If
1455 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1456 **
1457 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1458 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1459 **
1460 **   DFUNCTION(zName, nArg, iArg, bNC, xFunc)
1461 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and
1462 **     adds the SQLITE_FUNC_SLOCHNG flag.  Used for date & time functions
1463 **     and functions like sqlite_version() that can change, but not during
1464 **     a single query.
1465 **
1466 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1467 **     Used to create an aggregate function definition implemented by
1468 **     the C functions xStep and xFinal. The first four parameters
1469 **     are interpreted in the same way as the first 4 parameters to
1470 **     FUNCTION().
1471 **
1472 **   LIKEFUNC(zName, nArg, pArg, flags)
1473 **     Used to create a scalar function definition of a function zName
1474 **     that accepts nArg arguments and is implemented by a call to C
1475 **     function likeFunc. Argument pArg is cast to a (void *) and made
1476 **     available as the function user-data (sqlite3_user_data()). The
1477 **     FuncDef.flags variable is set to the value passed as the flags
1478 **     parameter.
1479 */
1480 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1481   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1482    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} }
1483 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1484   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1485    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} }
1486 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1487   {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1488    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} }
1489 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1490   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1491    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} }
1492 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1493   {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1494    pArg, 0, xFunc, 0, #zName, }
1495 #define LIKEFUNC(zName, nArg, arg, flags) \
1496   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1497    (void *)arg, 0, likeFunc, 0, #zName, {0} }
1498 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1499   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1500    SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}}
1501 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
1502   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1503    SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}}
1504 
1505 /*
1506 ** All current savepoints are stored in a linked list starting at
1507 ** sqlite3.pSavepoint. The first element in the list is the most recently
1508 ** opened savepoint. Savepoints are added to the list by the vdbe
1509 ** OP_Savepoint instruction.
1510 */
1511 struct Savepoint {
1512   char *zName;                        /* Savepoint name (nul-terminated) */
1513   i64 nDeferredCons;                  /* Number of deferred fk violations */
1514   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1515   Savepoint *pNext;                   /* Parent savepoint (if any) */
1516 };
1517 
1518 /*
1519 ** The following are used as the second parameter to sqlite3Savepoint(),
1520 ** and as the P1 argument to the OP_Savepoint instruction.
1521 */
1522 #define SAVEPOINT_BEGIN      0
1523 #define SAVEPOINT_RELEASE    1
1524 #define SAVEPOINT_ROLLBACK   2
1525 
1526 
1527 /*
1528 ** Each SQLite module (virtual table definition) is defined by an
1529 ** instance of the following structure, stored in the sqlite3.aModule
1530 ** hash table.
1531 */
1532 struct Module {
1533   const sqlite3_module *pModule;       /* Callback pointers */
1534   const char *zName;                   /* Name passed to create_module() */
1535   void *pAux;                          /* pAux passed to create_module() */
1536   void (*xDestroy)(void *);            /* Module destructor function */
1537   Table *pEpoTab;                      /* Eponymous table for this module */
1538 };
1539 
1540 /*
1541 ** information about each column of an SQL table is held in an instance
1542 ** of this structure.
1543 */
1544 struct Column {
1545   char *zName;     /* Name of this column */
1546   Expr *pDflt;     /* Default value of this column */
1547   char *zDflt;     /* Original text of the default value */
1548   char *zType;     /* Data type for this column */
1549   char *zColl;     /* Collating sequence.  If NULL, use the default */
1550   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1551   char affinity;   /* One of the SQLITE_AFF_... values */
1552   u8 szEst;        /* Estimated size of value in this column. sizeof(INT)==1 */
1553   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1554 };
1555 
1556 /* Allowed values for Column.colFlags:
1557 */
1558 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1559 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1560 
1561 /*
1562 ** A "Collating Sequence" is defined by an instance of the following
1563 ** structure. Conceptually, a collating sequence consists of a name and
1564 ** a comparison routine that defines the order of that sequence.
1565 **
1566 ** If CollSeq.xCmp is NULL, it means that the
1567 ** collating sequence is undefined.  Indices built on an undefined
1568 ** collating sequence may not be read or written.
1569 */
1570 struct CollSeq {
1571   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1572   u8 enc;               /* Text encoding handled by xCmp() */
1573   void *pUser;          /* First argument to xCmp() */
1574   int (*xCmp)(void*,int, const void*, int, const void*);
1575   void (*xDel)(void*);  /* Destructor for pUser */
1576 };
1577 
1578 /*
1579 ** A sort order can be either ASC or DESC.
1580 */
1581 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1582 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1583 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */
1584 
1585 /*
1586 ** Column affinity types.
1587 **
1588 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1589 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1590 ** the speed a little by numbering the values consecutively.
1591 **
1592 ** But rather than start with 0 or 1, we begin with 'A'.  That way,
1593 ** when multiple affinity types are concatenated into a string and
1594 ** used as the P4 operand, they will be more readable.
1595 **
1596 ** Note also that the numeric types are grouped together so that testing
1597 ** for a numeric type is a single comparison.  And the BLOB type is first.
1598 */
1599 #define SQLITE_AFF_BLOB     'A'
1600 #define SQLITE_AFF_TEXT     'B'
1601 #define SQLITE_AFF_NUMERIC  'C'
1602 #define SQLITE_AFF_INTEGER  'D'
1603 #define SQLITE_AFF_REAL     'E'
1604 
1605 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1606 
1607 /*
1608 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1609 ** affinity value.
1610 */
1611 #define SQLITE_AFF_MASK     0x47
1612 
1613 /*
1614 ** Additional bit values that can be ORed with an affinity without
1615 ** changing the affinity.
1616 **
1617 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1618 ** It causes an assert() to fire if either operand to a comparison
1619 ** operator is NULL.  It is added to certain comparison operators to
1620 ** prove that the operands are always NOT NULL.
1621 */
1622 #define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
1623 #define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
1624 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1625 #define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */
1626 
1627 /*
1628 ** An object of this type is created for each virtual table present in
1629 ** the database schema.
1630 **
1631 ** If the database schema is shared, then there is one instance of this
1632 ** structure for each database connection (sqlite3*) that uses the shared
1633 ** schema. This is because each database connection requires its own unique
1634 ** instance of the sqlite3_vtab* handle used to access the virtual table
1635 ** implementation. sqlite3_vtab* handles can not be shared between
1636 ** database connections, even when the rest of the in-memory database
1637 ** schema is shared, as the implementation often stores the database
1638 ** connection handle passed to it via the xConnect() or xCreate() method
1639 ** during initialization internally. This database connection handle may
1640 ** then be used by the virtual table implementation to access real tables
1641 ** within the database. So that they appear as part of the callers
1642 ** transaction, these accesses need to be made via the same database
1643 ** connection as that used to execute SQL operations on the virtual table.
1644 **
1645 ** All VTable objects that correspond to a single table in a shared
1646 ** database schema are initially stored in a linked-list pointed to by
1647 ** the Table.pVTable member variable of the corresponding Table object.
1648 ** When an sqlite3_prepare() operation is required to access the virtual
1649 ** table, it searches the list for the VTable that corresponds to the
1650 ** database connection doing the preparing so as to use the correct
1651 ** sqlite3_vtab* handle in the compiled query.
1652 **
1653 ** When an in-memory Table object is deleted (for example when the
1654 ** schema is being reloaded for some reason), the VTable objects are not
1655 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1656 ** immediately. Instead, they are moved from the Table.pVTable list to
1657 ** another linked list headed by the sqlite3.pDisconnect member of the
1658 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1659 ** next time a statement is prepared using said sqlite3*. This is done
1660 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1661 ** Refer to comments above function sqlite3VtabUnlockList() for an
1662 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1663 ** list without holding the corresponding sqlite3.mutex mutex.
1664 **
1665 ** The memory for objects of this type is always allocated by
1666 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1667 ** the first argument.
1668 */
1669 struct VTable {
1670   sqlite3 *db;              /* Database connection associated with this table */
1671   Module *pMod;             /* Pointer to module implementation */
1672   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1673   int nRef;                 /* Number of pointers to this structure */
1674   u8 bConstraint;           /* True if constraints are supported */
1675   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1676   VTable *pNext;            /* Next in linked list (see above) */
1677 };
1678 
1679 /*
1680 ** The schema for each SQL table and view is represented in memory
1681 ** by an instance of the following structure.
1682 */
1683 struct Table {
1684   char *zName;         /* Name of the table or view */
1685   Column *aCol;        /* Information about each column */
1686   Index *pIndex;       /* List of SQL indexes on this table. */
1687   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1688   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1689   char *zColAff;       /* String defining the affinity of each column */
1690   ExprList *pCheck;    /* All CHECK constraints */
1691                        /*   ... also used as column name list in a VIEW */
1692   int tnum;            /* Root BTree page for this table */
1693   i16 iPKey;           /* If not negative, use aCol[iPKey] as the rowid */
1694   i16 nCol;            /* Number of columns in this table */
1695   u16 nRef;            /* Number of pointers to this Table */
1696   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1697   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1698 #ifdef SQLITE_ENABLE_COSTMULT
1699   LogEst costMult;     /* Cost multiplier for using this table */
1700 #endif
1701   u8 tabFlags;         /* Mask of TF_* values */
1702   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1703 #ifndef SQLITE_OMIT_ALTERTABLE
1704   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1705 #endif
1706 #ifndef SQLITE_OMIT_VIRTUALTABLE
1707   int nModuleArg;      /* Number of arguments to the module */
1708   char **azModuleArg;  /* 0: module 1: schema 2: vtab name 3...: args */
1709   VTable *pVTable;     /* List of VTable objects. */
1710 #endif
1711   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1712   Schema *pSchema;     /* Schema that contains this table */
1713   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1714 };
1715 
1716 /*
1717 ** Allowed values for Table.tabFlags.
1718 **
1719 ** TF_OOOHidden applies to tables or view that have hidden columns that are
1720 ** followed by non-hidden columns.  Example:  "CREATE VIRTUAL TABLE x USING
1721 ** vtab1(a HIDDEN, b);".  Since "b" is a non-hidden column but "a" is hidden,
1722 ** the TF_OOOHidden attribute would apply in this case.  Such tables require
1723 ** special handling during INSERT processing.
1724 */
1725 #define TF_Readonly        0x01    /* Read-only system table */
1726 #define TF_Ephemeral       0x02    /* An ephemeral table */
1727 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1728 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1729 #define TF_Virtual         0x10    /* Is a virtual table */
1730 #define TF_WithoutRowid    0x20    /* No rowid.  PRIMARY KEY is the key */
1731 #define TF_NoVisibleRowid  0x40    /* No user-visible "rowid" column */
1732 #define TF_OOOHidden       0x80    /* Out-of-Order hidden columns */
1733 
1734 
1735 /*
1736 ** Test to see whether or not a table is a virtual table.  This is
1737 ** done as a macro so that it will be optimized out when virtual
1738 ** table support is omitted from the build.
1739 */
1740 #ifndef SQLITE_OMIT_VIRTUALTABLE
1741 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1742 #else
1743 #  define IsVirtual(X)      0
1744 #endif
1745 
1746 /*
1747 ** Macros to determine if a column is hidden.  IsOrdinaryHiddenColumn()
1748 ** only works for non-virtual tables (ordinary tables and views) and is
1749 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined.  The
1750 ** IsHiddenColumn() macro is general purpose.
1751 */
1752 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS)
1753 #  define IsHiddenColumn(X)         (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1754 #  define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1755 #elif !defined(SQLITE_OMIT_VIRTUALTABLE)
1756 #  define IsHiddenColumn(X)         (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1757 #  define IsOrdinaryHiddenColumn(X) 0
1758 #else
1759 #  define IsHiddenColumn(X)         0
1760 #  define IsOrdinaryHiddenColumn(X) 0
1761 #endif
1762 
1763 
1764 /* Does the table have a rowid */
1765 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1766 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)
1767 
1768 /*
1769 ** Each foreign key constraint is an instance of the following structure.
1770 **
1771 ** A foreign key is associated with two tables.  The "from" table is
1772 ** the table that contains the REFERENCES clause that creates the foreign
1773 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1774 ** Consider this example:
1775 **
1776 **     CREATE TABLE ex1(
1777 **       a INTEGER PRIMARY KEY,
1778 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1779 **     );
1780 **
1781 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1782 ** Equivalent names:
1783 **
1784 **     from-table == child-table
1785 **       to-table == parent-table
1786 **
1787 ** Each REFERENCES clause generates an instance of the following structure
1788 ** which is attached to the from-table.  The to-table need not exist when
1789 ** the from-table is created.  The existence of the to-table is not checked.
1790 **
1791 ** The list of all parents for child Table X is held at X.pFKey.
1792 **
1793 ** A list of all children for a table named Z (which might not even exist)
1794 ** is held in Schema.fkeyHash with a hash key of Z.
1795 */
1796 struct FKey {
1797   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1798   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1799   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1800   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1801   FKey *pPrevTo;    /* Previous with the same zTo */
1802   int nCol;         /* Number of columns in this key */
1803   /* EV: R-30323-21917 */
1804   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1805   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1806   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1807   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1808     int iFrom;            /* Index of column in pFrom */
1809     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
1810   } aCol[1];            /* One entry for each of nCol columns */
1811 };
1812 
1813 /*
1814 ** SQLite supports many different ways to resolve a constraint
1815 ** error.  ROLLBACK processing means that a constraint violation
1816 ** causes the operation in process to fail and for the current transaction
1817 ** to be rolled back.  ABORT processing means the operation in process
1818 ** fails and any prior changes from that one operation are backed out,
1819 ** but the transaction is not rolled back.  FAIL processing means that
1820 ** the operation in progress stops and returns an error code.  But prior
1821 ** changes due to the same operation are not backed out and no rollback
1822 ** occurs.  IGNORE means that the particular row that caused the constraint
1823 ** error is not inserted or updated.  Processing continues and no error
1824 ** is returned.  REPLACE means that preexisting database rows that caused
1825 ** a UNIQUE constraint violation are removed so that the new insert or
1826 ** update can proceed.  Processing continues and no error is reported.
1827 **
1828 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1829 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1830 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1831 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1832 ** referenced table row is propagated into the row that holds the
1833 ** foreign key.
1834 **
1835 ** The following symbolic values are used to record which type
1836 ** of action to take.
1837 */
1838 #define OE_None     0   /* There is no constraint to check */
1839 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1840 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1841 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1842 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1843 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1844 
1845 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1846 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1847 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1848 #define OE_Cascade  9   /* Cascade the changes */
1849 
1850 #define OE_Default  10  /* Do whatever the default action is */
1851 
1852 
1853 /*
1854 ** An instance of the following structure is passed as the first
1855 ** argument to sqlite3VdbeKeyCompare and is used to control the
1856 ** comparison of the two index keys.
1857 **
1858 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
1859 ** are nField slots for the columns of an index then one extra slot
1860 ** for the rowid at the end.
1861 */
1862 struct KeyInfo {
1863   u32 nRef;           /* Number of references to this KeyInfo object */
1864   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1865   u16 nField;         /* Number of key columns in the index */
1866   u16 nXField;        /* Number of columns beyond the key columns */
1867   sqlite3 *db;        /* The database connection */
1868   u8 *aSortOrder;     /* Sort order for each column. */
1869   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1870 };
1871 
1872 /*
1873 ** This object holds a record which has been parsed out into individual
1874 ** fields, for the purposes of doing a comparison.
1875 **
1876 ** A record is an object that contains one or more fields of data.
1877 ** Records are used to store the content of a table row and to store
1878 ** the key of an index.  A blob encoding of a record is created by
1879 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1880 ** OP_Column opcode.
1881 **
1882 ** An instance of this object serves as a "key" for doing a search on
1883 ** an index b+tree. The goal of the search is to find the entry that
1884 ** is closed to the key described by this object.  This object might hold
1885 ** just a prefix of the key.  The number of fields is given by
1886 ** pKeyInfo->nField.
1887 **
1888 ** The r1 and r2 fields are the values to return if this key is less than
1889 ** or greater than a key in the btree, respectively.  These are normally
1890 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree
1891 ** is in DESC order.
1892 **
1893 ** The key comparison functions actually return default_rc when they find
1894 ** an equals comparison.  default_rc can be -1, 0, or +1.  If there are
1895 ** multiple entries in the b-tree with the same key (when only looking
1896 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to
1897 ** cause the search to find the last match, or +1 to cause the search to
1898 ** find the first match.
1899 **
1900 ** The key comparison functions will set eqSeen to true if they ever
1901 ** get and equal results when comparing this structure to a b-tree record.
1902 ** When default_rc!=0, the search might end up on the record immediately
1903 ** before the first match or immediately after the last match.  The
1904 ** eqSeen field will indicate whether or not an exact match exists in the
1905 ** b-tree.
1906 */
1907 struct UnpackedRecord {
1908   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1909   Mem *aMem;          /* Values */
1910   u16 nField;         /* Number of entries in apMem[] */
1911   i8 default_rc;      /* Comparison result if keys are equal */
1912   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
1913   i8 r1;              /* Value to return if (lhs > rhs) */
1914   i8 r2;              /* Value to return if (rhs < lhs) */
1915   u8 eqSeen;          /* True if an equality comparison has been seen */
1916 };
1917 
1918 
1919 /*
1920 ** Each SQL index is represented in memory by an
1921 ** instance of the following structure.
1922 **
1923 ** The columns of the table that are to be indexed are described
1924 ** by the aiColumn[] field of this structure.  For example, suppose
1925 ** we have the following table and index:
1926 **
1927 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1928 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1929 **
1930 ** In the Table structure describing Ex1, nCol==3 because there are
1931 ** three columns in the table.  In the Index structure describing
1932 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1933 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1934 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1935 ** The second column to be indexed (c1) has an index of 0 in
1936 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1937 **
1938 ** The Index.onError field determines whether or not the indexed columns
1939 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1940 ** it means this is not a unique index.  Otherwise it is a unique index
1941 ** and the value of Index.onError indicate the which conflict resolution
1942 ** algorithm to employ whenever an attempt is made to insert a non-unique
1943 ** element.
1944 **
1945 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to
1946 ** generate VDBE code (as opposed to parsing one read from an sqlite_master
1947 ** table as part of parsing an existing database schema), transient instances
1948 ** of this structure may be created. In this case the Index.tnum variable is
1949 ** used to store the address of a VDBE instruction, not a database page
1950 ** number (it cannot - the database page is not allocated until the VDBE
1951 ** program is executed). See convertToWithoutRowidTable() for details.
1952 */
1953 struct Index {
1954   char *zName;             /* Name of this index */
1955   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
1956   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
1957   Table *pTable;           /* The SQL table being indexed */
1958   char *zColAff;           /* String defining the affinity of each column */
1959   Index *pNext;            /* The next index associated with the same table */
1960   Schema *pSchema;         /* Schema containing this index */
1961   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
1962   const char **azColl;     /* Array of collation sequence names for index */
1963   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
1964   ExprList *aColExpr;      /* Column expressions */
1965   int tnum;                /* DB Page containing root of this index */
1966   LogEst szIdxRow;         /* Estimated average row size in bytes */
1967   u16 nKeyCol;             /* Number of columns forming the key */
1968   u16 nColumn;             /* Number of columns stored in the index */
1969   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1970   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
1971   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
1972   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
1973   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
1974   unsigned isCovering:1;   /* True if this is a covering index */
1975   unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
1976 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1977   int nSample;             /* Number of elements in aSample[] */
1978   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
1979   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
1980   IndexSample *aSample;    /* Samples of the left-most key */
1981   tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
1982   tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
1983 #endif
1984 };
1985 
1986 /*
1987 ** Allowed values for Index.idxType
1988 */
1989 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
1990 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
1991 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
1992 
1993 /* Return true if index X is a PRIMARY KEY index */
1994 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
1995 
1996 /* Return true if index X is a UNIQUE index */
1997 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
1998 
1999 /* The Index.aiColumn[] values are normally positive integer.  But
2000 ** there are some negative values that have special meaning:
2001 */
2002 #define XN_ROWID     (-1)     /* Indexed column is the rowid */
2003 #define XN_EXPR      (-2)     /* Indexed column is an expression */
2004 
2005 /*
2006 ** Each sample stored in the sqlite_stat3 table is represented in memory
2007 ** using a structure of this type.  See documentation at the top of the
2008 ** analyze.c source file for additional information.
2009 */
2010 struct IndexSample {
2011   void *p;          /* Pointer to sampled record */
2012   int n;            /* Size of record in bytes */
2013   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
2014   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
2015   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
2016 };
2017 
2018 /*
2019 ** Each token coming out of the lexer is an instance of
2020 ** this structure.  Tokens are also used as part of an expression.
2021 **
2022 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
2023 ** may contain random values.  Do not make any assumptions about Token.dyn
2024 ** and Token.n when Token.z==0.
2025 */
2026 struct Token {
2027   const char *z;     /* Text of the token.  Not NULL-terminated! */
2028   unsigned int n;    /* Number of characters in this token */
2029 };
2030 
2031 /*
2032 ** An instance of this structure contains information needed to generate
2033 ** code for a SELECT that contains aggregate functions.
2034 **
2035 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
2036 ** pointer to this structure.  The Expr.iColumn field is the index in
2037 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
2038 ** code for that node.
2039 **
2040 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
2041 ** original Select structure that describes the SELECT statement.  These
2042 ** fields do not need to be freed when deallocating the AggInfo structure.
2043 */
2044 struct AggInfo {
2045   u8 directMode;          /* Direct rendering mode means take data directly
2046                           ** from source tables rather than from accumulators */
2047   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
2048                           ** than the source table */
2049   int sortingIdx;         /* Cursor number of the sorting index */
2050   int sortingIdxPTab;     /* Cursor number of pseudo-table */
2051   int nSortingColumn;     /* Number of columns in the sorting index */
2052   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
2053   ExprList *pGroupBy;     /* The group by clause */
2054   struct AggInfo_col {    /* For each column used in source tables */
2055     Table *pTab;             /* Source table */
2056     int iTable;              /* Cursor number of the source table */
2057     int iColumn;             /* Column number within the source table */
2058     int iSorterColumn;       /* Column number in the sorting index */
2059     int iMem;                /* Memory location that acts as accumulator */
2060     Expr *pExpr;             /* The original expression */
2061   } *aCol;
2062   int nColumn;            /* Number of used entries in aCol[] */
2063   int nAccumulator;       /* Number of columns that show through to the output.
2064                           ** Additional columns are used only as parameters to
2065                           ** aggregate functions */
2066   struct AggInfo_func {   /* For each aggregate function */
2067     Expr *pExpr;             /* Expression encoding the function */
2068     FuncDef *pFunc;          /* The aggregate function implementation */
2069     int iMem;                /* Memory location that acts as accumulator */
2070     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
2071   } *aFunc;
2072   int nFunc;              /* Number of entries in aFunc[] */
2073 };
2074 
2075 /*
2076 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
2077 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
2078 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
2079 ** it uses less memory in the Expr object, which is a big memory user
2080 ** in systems with lots of prepared statements.  And few applications
2081 ** need more than about 10 or 20 variables.  But some extreme users want
2082 ** to have prepared statements with over 32767 variables, and for them
2083 ** the option is available (at compile-time).
2084 */
2085 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
2086 typedef i16 ynVar;
2087 #else
2088 typedef int ynVar;
2089 #endif
2090 
2091 /*
2092 ** Each node of an expression in the parse tree is an instance
2093 ** of this structure.
2094 **
2095 ** Expr.op is the opcode. The integer parser token codes are reused
2096 ** as opcodes here. For example, the parser defines TK_GE to be an integer
2097 ** code representing the ">=" operator. This same integer code is reused
2098 ** to represent the greater-than-or-equal-to operator in the expression
2099 ** tree.
2100 **
2101 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
2102 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
2103 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
2104 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
2105 ** then Expr.token contains the name of the function.
2106 **
2107 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
2108 ** binary operator. Either or both may be NULL.
2109 **
2110 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
2111 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
2112 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
2113 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
2114 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
2115 ** valid.
2116 **
2117 ** An expression of the form ID or ID.ID refers to a column in a table.
2118 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
2119 ** the integer cursor number of a VDBE cursor pointing to that table and
2120 ** Expr.iColumn is the column number for the specific column.  If the
2121 ** expression is used as a result in an aggregate SELECT, then the
2122 ** value is also stored in the Expr.iAgg column in the aggregate so that
2123 ** it can be accessed after all aggregates are computed.
2124 **
2125 ** If the expression is an unbound variable marker (a question mark
2126 ** character '?' in the original SQL) then the Expr.iTable holds the index
2127 ** number for that variable.
2128 **
2129 ** If the expression is a subquery then Expr.iColumn holds an integer
2130 ** register number containing the result of the subquery.  If the
2131 ** subquery gives a constant result, then iTable is -1.  If the subquery
2132 ** gives a different answer at different times during statement processing
2133 ** then iTable is the address of a subroutine that computes the subquery.
2134 **
2135 ** If the Expr is of type OP_Column, and the table it is selecting from
2136 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
2137 ** corresponding table definition.
2138 **
2139 ** ALLOCATION NOTES:
2140 **
2141 ** Expr objects can use a lot of memory space in database schema.  To
2142 ** help reduce memory requirements, sometimes an Expr object will be
2143 ** truncated.  And to reduce the number of memory allocations, sometimes
2144 ** two or more Expr objects will be stored in a single memory allocation,
2145 ** together with Expr.zToken strings.
2146 **
2147 ** If the EP_Reduced and EP_TokenOnly flags are set when
2148 ** an Expr object is truncated.  When EP_Reduced is set, then all
2149 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
2150 ** are contained within the same memory allocation.  Note, however, that
2151 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
2152 ** allocated, regardless of whether or not EP_Reduced is set.
2153 */
2154 struct Expr {
2155   u8 op;                 /* Operation performed by this node */
2156   char affinity;         /* The affinity of the column or 0 if not a column */
2157   u32 flags;             /* Various flags.  EP_* See below */
2158   union {
2159     char *zToken;          /* Token value. Zero terminated and dequoted */
2160     int iValue;            /* Non-negative integer value if EP_IntValue */
2161   } u;
2162 
2163   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
2164   ** space is allocated for the fields below this point. An attempt to
2165   ** access them will result in a segfault or malfunction.
2166   *********************************************************************/
2167 
2168   Expr *pLeft;           /* Left subnode */
2169   Expr *pRight;          /* Right subnode */
2170   union {
2171     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
2172     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
2173   } x;
2174 
2175   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
2176   ** space is allocated for the fields below this point. An attempt to
2177   ** access them will result in a segfault or malfunction.
2178   *********************************************************************/
2179 
2180 #if SQLITE_MAX_EXPR_DEPTH>0
2181   int nHeight;           /* Height of the tree headed by this node */
2182 #endif
2183   int iTable;            /* TK_COLUMN: cursor number of table holding column
2184                          ** TK_REGISTER: register number
2185                          ** TK_TRIGGER: 1 -> new, 0 -> old
2186                          ** EP_Unlikely:  134217728 times likelihood */
2187   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
2188                          ** TK_VARIABLE: variable number (always >= 1). */
2189   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
2190   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
2191   u8 op2;                /* TK_REGISTER: original value of Expr.op
2192                          ** TK_COLUMN: the value of p5 for OP_Column
2193                          ** TK_AGG_FUNCTION: nesting depth */
2194   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
2195   Table *pTab;           /* Table for TK_COLUMN expressions. */
2196 };
2197 
2198 /*
2199 ** The following are the meanings of bits in the Expr.flags field.
2200 */
2201 #define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
2202 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
2203 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
2204 #define EP_Error     0x000008 /* Expression contains one or more errors */
2205 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
2206 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
2207 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
2208 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
2209 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
2210 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
2211 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
2212 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
2213 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
2214 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
2215 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
2216 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2217 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2218 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2219 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2220 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
2221 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
2222 #define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
2223 #define EP_Alias     0x400000 /* Is an alias for a result set column */
2224 
2225 /*
2226 ** Combinations of two or more EP_* flags
2227 */
2228 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */
2229 
2230 /*
2231 ** These macros can be used to test, set, or clear bits in the
2232 ** Expr.flags field.
2233 */
2234 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2235 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2236 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2237 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2238 
2239 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2240 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2241 ** processes but is a no-op for delivery.
2242 */
2243 #ifdef SQLITE_DEBUG
2244 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2245 #else
2246 # define ExprSetVVAProperty(E,P)
2247 #endif
2248 
2249 /*
2250 ** Macros to determine the number of bytes required by a normal Expr
2251 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2252 ** and an Expr struct with the EP_TokenOnly flag set.
2253 */
2254 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2255 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2256 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2257 
2258 /*
2259 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2260 ** above sqlite3ExprDup() for details.
2261 */
2262 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2263 
2264 /*
2265 ** A list of expressions.  Each expression may optionally have a
2266 ** name.  An expr/name combination can be used in several ways, such
2267 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2268 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2269 ** also be used as the argument to a function, in which case the a.zName
2270 ** field is not used.
2271 **
2272 ** By default the Expr.zSpan field holds a human-readable description of
2273 ** the expression that is used in the generation of error messages and
2274 ** column labels.  In this case, Expr.zSpan is typically the text of a
2275 ** column expression as it exists in a SELECT statement.  However, if
2276 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2277 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2278 ** form is used for name resolution with nested FROM clauses.
2279 */
2280 struct ExprList {
2281   int nExpr;             /* Number of expressions on the list */
2282   struct ExprList_item { /* For each expression in the list */
2283     Expr *pExpr;            /* The list of expressions */
2284     char *zName;            /* Token associated with this expression */
2285     char *zSpan;            /* Original text of the expression */
2286     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2287     unsigned done :1;       /* A flag to indicate when processing is finished */
2288     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2289     unsigned reusable :1;   /* Constant expression is reusable */
2290     union {
2291       struct {
2292         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2293         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2294       } x;
2295       int iConstExprReg;      /* Register in which Expr value is cached */
2296     } u;
2297   } *a;                  /* Alloc a power of two greater or equal to nExpr */
2298 };
2299 
2300 /*
2301 ** An instance of this structure is used by the parser to record both
2302 ** the parse tree for an expression and the span of input text for an
2303 ** expression.
2304 */
2305 struct ExprSpan {
2306   Expr *pExpr;          /* The expression parse tree */
2307   const char *zStart;   /* First character of input text */
2308   const char *zEnd;     /* One character past the end of input text */
2309 };
2310 
2311 /*
2312 ** An instance of this structure can hold a simple list of identifiers,
2313 ** such as the list "a,b,c" in the following statements:
2314 **
2315 **      INSERT INTO t(a,b,c) VALUES ...;
2316 **      CREATE INDEX idx ON t(a,b,c);
2317 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2318 **
2319 ** The IdList.a.idx field is used when the IdList represents the list of
2320 ** column names after a table name in an INSERT statement.  In the statement
2321 **
2322 **     INSERT INTO t(a,b,c) ...
2323 **
2324 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2325 */
2326 struct IdList {
2327   struct IdList_item {
2328     char *zName;      /* Name of the identifier */
2329     int idx;          /* Index in some Table.aCol[] of a column named zName */
2330   } *a;
2331   int nId;         /* Number of identifiers on the list */
2332 };
2333 
2334 /*
2335 ** The bitmask datatype defined below is used for various optimizations.
2336 **
2337 ** Changing this from a 64-bit to a 32-bit type limits the number of
2338 ** tables in a join to 32 instead of 64.  But it also reduces the size
2339 ** of the library by 738 bytes on ix86.
2340 */
2341 #ifdef SQLITE_BITMASK_TYPE
2342   typedef SQLITE_BITMASK_TYPE Bitmask;
2343 #else
2344   typedef u64 Bitmask;
2345 #endif
2346 
2347 /*
2348 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2349 */
2350 #define BMS  ((int)(sizeof(Bitmask)*8))
2351 
2352 /*
2353 ** A bit in a Bitmask
2354 */
2355 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2356 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2357 
2358 /*
2359 ** The following structure describes the FROM clause of a SELECT statement.
2360 ** Each table or subquery in the FROM clause is a separate element of
2361 ** the SrcList.a[] array.
2362 **
2363 ** With the addition of multiple database support, the following structure
2364 ** can also be used to describe a particular table such as the table that
2365 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2366 ** such a table must be a simple name: ID.  But in SQLite, the table can
2367 ** now be identified by a database name, a dot, then the table name: ID.ID.
2368 **
2369 ** The jointype starts out showing the join type between the current table
2370 ** and the next table on the list.  The parser builds the list this way.
2371 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2372 ** jointype expresses the join between the table and the previous table.
2373 **
2374 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2375 ** contains more than 63 columns and the 64-th or later column is used.
2376 */
2377 struct SrcList {
2378   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2379   u32 nAlloc;      /* Number of entries allocated in a[] below */
2380   struct SrcList_item {
2381     Schema *pSchema;  /* Schema to which this item is fixed */
2382     char *zDatabase;  /* Name of database holding this table */
2383     char *zName;      /* Name of the table */
2384     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2385     Table *pTab;      /* An SQL table corresponding to zName */
2386     Select *pSelect;  /* A SELECT statement used in place of a table name */
2387     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2388     int regReturn;    /* Register holding return address of addrFillSub */
2389     int regResult;    /* Registers holding results of a co-routine */
2390     struct {
2391       u8 jointype;      /* Type of join between this able and the previous */
2392       unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2393       unsigned isIndexedBy :1;   /* True if there is an INDEXED BY clause */
2394       unsigned isTabFunc :1;     /* True if table-valued-function syntax */
2395       unsigned isCorrelated :1;  /* True if sub-query is correlated */
2396       unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2397       unsigned isRecursive :1;   /* True for recursive reference in WITH */
2398     } fg;
2399 #ifndef SQLITE_OMIT_EXPLAIN
2400     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2401 #endif
2402     int iCursor;      /* The VDBE cursor number used to access this table */
2403     Expr *pOn;        /* The ON clause of a join */
2404     IdList *pUsing;   /* The USING clause of a join */
2405     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2406     union {
2407       char *zIndexedBy;    /* Identifier from "INDEXED BY <zIndex>" clause */
2408       ExprList *pFuncArg;  /* Arguments to table-valued-function */
2409     } u1;
2410     Index *pIBIndex;  /* Index structure corresponding to u1.zIndexedBy */
2411   } a[1];             /* One entry for each identifier on the list */
2412 };
2413 
2414 /*
2415 ** Permitted values of the SrcList.a.jointype field
2416 */
2417 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2418 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2419 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2420 #define JT_LEFT      0x0008    /* Left outer join */
2421 #define JT_RIGHT     0x0010    /* Right outer join */
2422 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2423 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2424 
2425 
2426 /*
2427 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2428 ** and the WhereInfo.wctrlFlags member.
2429 */
2430 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2431 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2432 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2433 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2434 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
2435 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
2436 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
2437 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
2438 #define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
2439 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
2440 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
2441 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
2442 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
2443 #define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
2444 #define WHERE_ONEPASS_MULTIROW 0x2000 /* ONEPASS is ok with multiple rows */
2445 
2446 /* Allowed return values from sqlite3WhereIsDistinct()
2447 */
2448 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2449 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2450 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2451 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2452 
2453 /*
2454 ** A NameContext defines a context in which to resolve table and column
2455 ** names.  The context consists of a list of tables (the pSrcList) field and
2456 ** a list of named expression (pEList).  The named expression list may
2457 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2458 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2459 ** pEList corresponds to the result set of a SELECT and is NULL for
2460 ** other statements.
2461 **
2462 ** NameContexts can be nested.  When resolving names, the inner-most
2463 ** context is searched first.  If no match is found, the next outer
2464 ** context is checked.  If there is still no match, the next context
2465 ** is checked.  This process continues until either a match is found
2466 ** or all contexts are check.  When a match is found, the nRef member of
2467 ** the context containing the match is incremented.
2468 **
2469 ** Each subquery gets a new NameContext.  The pNext field points to the
2470 ** NameContext in the parent query.  Thus the process of scanning the
2471 ** NameContext list corresponds to searching through successively outer
2472 ** subqueries looking for a match.
2473 */
2474 struct NameContext {
2475   Parse *pParse;       /* The parser */
2476   SrcList *pSrcList;   /* One or more tables used to resolve names */
2477   ExprList *pEList;    /* Optional list of result-set columns */
2478   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2479   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2480   int nRef;            /* Number of names resolved by this context */
2481   int nErr;            /* Number of errors encountered while resolving names */
2482   u16 ncFlags;         /* Zero or more NC_* flags defined below */
2483 };
2484 
2485 /*
2486 ** Allowed values for the NameContext, ncFlags field.
2487 **
2488 ** Note:  NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
2489 ** SQLITE_FUNC_MINMAX.
2490 **
2491 */
2492 #define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
2493 #define NC_HasAgg    0x0002  /* One or more aggregate functions seen */
2494 #define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
2495 #define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
2496 #define NC_PartIdx   0x0010  /* True if resolving a partial index WHERE */
2497 #define NC_IdxExpr   0x0020  /* True if resolving columns of CREATE INDEX */
2498 #define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
2499 
2500 /*
2501 ** An instance of the following structure contains all information
2502 ** needed to generate code for a single SELECT statement.
2503 **
2504 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2505 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2506 ** limit and nOffset to the value of the offset (or 0 if there is not
2507 ** offset).  But later on, nLimit and nOffset become the memory locations
2508 ** in the VDBE that record the limit and offset counters.
2509 **
2510 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2511 ** These addresses must be stored so that we can go back and fill in
2512 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2513 ** the number of columns in P2 can be computed at the same time
2514 ** as the OP_OpenEphm instruction is coded because not
2515 ** enough information about the compound query is known at that point.
2516 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2517 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2518 ** sequences for the ORDER BY clause.
2519 */
2520 struct Select {
2521   ExprList *pEList;      /* The fields of the result */
2522   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2523   u16 selFlags;          /* Various SF_* values */
2524   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2525 #if SELECTTRACE_ENABLED
2526   char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
2527 #endif
2528   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2529   u64 nSelectRow;        /* Estimated number of result rows */
2530   SrcList *pSrc;         /* The FROM clause */
2531   Expr *pWhere;          /* The WHERE clause */
2532   ExprList *pGroupBy;    /* The GROUP BY clause */
2533   Expr *pHaving;         /* The HAVING clause */
2534   ExprList *pOrderBy;    /* The ORDER BY clause */
2535   Select *pPrior;        /* Prior select in a compound select statement */
2536   Select *pNext;         /* Next select to the left in a compound */
2537   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2538   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2539   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2540 };
2541 
2542 /*
2543 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2544 ** "Select Flag".
2545 */
2546 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2547 #define SF_All             0x0002  /* Includes the ALL keyword */
2548 #define SF_Resolved        0x0004  /* Identifiers have been resolved */
2549 #define SF_Aggregate       0x0008  /* Contains aggregate functions */
2550 #define SF_UsesEphemeral   0x0010  /* Uses the OpenEphemeral opcode */
2551 #define SF_Expanded        0x0020  /* sqlite3SelectExpand() called on this */
2552 #define SF_HasTypeInfo     0x0040  /* FROM subqueries have Table metadata */
2553 #define SF_Compound        0x0080  /* Part of a compound query */
2554 #define SF_Values          0x0100  /* Synthesized from VALUES clause */
2555 #define SF_MultiValue      0x0200  /* Single VALUES term with multiple rows */
2556 #define SF_NestedFrom      0x0400  /* Part of a parenthesized FROM clause */
2557 #define SF_MaybeConvert    0x0800  /* Need convertCompoundSelectToSubquery() */
2558 #define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
2559 #define SF_Recursive       0x2000  /* The recursive part of a recursive CTE */
2560 #define SF_Converted       0x4000  /* By convertCompoundSelectToSubquery() */
2561 #define SF_IncludeHidden   0x8000  /* Include hidden columns in output */
2562 
2563 
2564 /*
2565 ** The results of a SELECT can be distributed in several ways, as defined
2566 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2567 ** Type".
2568 **
2569 **     SRT_Union       Store results as a key in a temporary index
2570 **                     identified by pDest->iSDParm.
2571 **
2572 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2573 **
2574 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2575 **                     set is not empty.
2576 **
2577 **     SRT_Discard     Throw the results away.  This is used by SELECT
2578 **                     statements within triggers whose only purpose is
2579 **                     the side-effects of functions.
2580 **
2581 ** All of the above are free to ignore their ORDER BY clause. Those that
2582 ** follow must honor the ORDER BY clause.
2583 **
2584 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2585 **                     opcode) for each row in the result set.
2586 **
2587 **     SRT_Mem         Only valid if the result is a single column.
2588 **                     Store the first column of the first result row
2589 **                     in register pDest->iSDParm then abandon the rest
2590 **                     of the query.  This destination implies "LIMIT 1".
2591 **
2592 **     SRT_Set         The result must be a single column.  Store each
2593 **                     row of result as the key in table pDest->iSDParm.
2594 **                     Apply the affinity pDest->affSdst before storing
2595 **                     results.  Used to implement "IN (SELECT ...)".
2596 **
2597 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2598 **                     the result there. The cursor is left open after
2599 **                     returning.  This is like SRT_Table except that
2600 **                     this destination uses OP_OpenEphemeral to create
2601 **                     the table first.
2602 **
2603 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2604 **                     results each time it is invoked.  The entry point
2605 **                     of the co-routine is stored in register pDest->iSDParm
2606 **                     and the result row is stored in pDest->nDest registers
2607 **                     starting with pDest->iSdst.
2608 **
2609 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2610 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2611 **                     is assumed to already be open.  SRT_Fifo has
2612 **                     the additional property of being able to ignore
2613 **                     the ORDER BY clause.
2614 **
2615 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2616 **                     But also use temporary table pDest->iSDParm+1 as
2617 **                     a record of all prior results and ignore any duplicate
2618 **                     rows.  Name means:  "Distinct Fifo".
2619 **
2620 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2621 **                     an index).  Append a sequence number so that all entries
2622 **                     are distinct.
2623 **
2624 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2625 **                     the same record has never been stored before.  The
2626 **                     index at pDest->iSDParm+1 hold all prior stores.
2627 */
2628 #define SRT_Union        1  /* Store result as keys in an index */
2629 #define SRT_Except       2  /* Remove result from a UNION index */
2630 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2631 #define SRT_Discard      4  /* Do not save the results anywhere */
2632 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2633 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2634 #define SRT_Queue        7  /* Store result in an queue */
2635 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2636 
2637 /* The ORDER BY clause is ignored for all of the above */
2638 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2639 
2640 #define SRT_Output       9  /* Output each row of result */
2641 #define SRT_Mem         10  /* Store result in a memory cell */
2642 #define SRT_Set         11  /* Store results as keys in an index */
2643 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2644 #define SRT_Coroutine   13  /* Generate a single row of result */
2645 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2646 
2647 /*
2648 ** An instance of this object describes where to put of the results of
2649 ** a SELECT statement.
2650 */
2651 struct SelectDest {
2652   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2653   char affSdst;        /* Affinity used when eDest==SRT_Set */
2654   int iSDParm;         /* A parameter used by the eDest disposal method */
2655   int iSdst;           /* Base register where results are written */
2656   int nSdst;           /* Number of registers allocated */
2657   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2658 };
2659 
2660 /*
2661 ** During code generation of statements that do inserts into AUTOINCREMENT
2662 ** tables, the following information is attached to the Table.u.autoInc.p
2663 ** pointer of each autoincrement table to record some side information that
2664 ** the code generator needs.  We have to keep per-table autoincrement
2665 ** information in case inserts are done within triggers.  Triggers do not
2666 ** normally coordinate their activities, but we do need to coordinate the
2667 ** loading and saving of autoincrement information.
2668 */
2669 struct AutoincInfo {
2670   AutoincInfo *pNext;   /* Next info block in a list of them all */
2671   Table *pTab;          /* Table this info block refers to */
2672   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2673   int regCtr;           /* Memory register holding the rowid counter */
2674 };
2675 
2676 /*
2677 ** Size of the column cache
2678 */
2679 #ifndef SQLITE_N_COLCACHE
2680 # define SQLITE_N_COLCACHE 10
2681 #endif
2682 
2683 /*
2684 ** At least one instance of the following structure is created for each
2685 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2686 ** statement. All such objects are stored in the linked list headed at
2687 ** Parse.pTriggerPrg and deleted once statement compilation has been
2688 ** completed.
2689 **
2690 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2691 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2692 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2693 ** The Parse.pTriggerPrg list never contains two entries with the same
2694 ** values for both pTrigger and orconf.
2695 **
2696 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2697 ** accessed (or set to 0 for triggers fired as a result of INSERT
2698 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2699 ** a mask of new.* columns used by the program.
2700 */
2701 struct TriggerPrg {
2702   Trigger *pTrigger;      /* Trigger this program was coded from */
2703   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2704   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2705   int orconf;             /* Default ON CONFLICT policy */
2706   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2707 };
2708 
2709 /*
2710 ** The yDbMask datatype for the bitmask of all attached databases.
2711 */
2712 #if SQLITE_MAX_ATTACHED>30
2713   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2714 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2715 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2716 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2717 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2718 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2719 #else
2720   typedef unsigned int yDbMask;
2721 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2722 # define DbMaskZero(M)      (M)=0
2723 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2724 # define DbMaskAllZero(M)   (M)==0
2725 # define DbMaskNonZero(M)   (M)!=0
2726 #endif
2727 
2728 /*
2729 ** An SQL parser context.  A copy of this structure is passed through
2730 ** the parser and down into all the parser action routine in order to
2731 ** carry around information that is global to the entire parse.
2732 **
2733 ** The structure is divided into two parts.  When the parser and code
2734 ** generate call themselves recursively, the first part of the structure
2735 ** is constant but the second part is reset at the beginning and end of
2736 ** each recursion.
2737 **
2738 ** The nTableLock and aTableLock variables are only used if the shared-cache
2739 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2740 ** used to store the set of table-locks required by the statement being
2741 ** compiled. Function sqlite3TableLock() is used to add entries to the
2742 ** list.
2743 */
2744 struct Parse {
2745   sqlite3 *db;         /* The main database structure */
2746   char *zErrMsg;       /* An error message */
2747   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2748   int rc;              /* Return code from execution */
2749   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2750   u8 checkSchema;      /* Causes schema cookie check after an error */
2751   u8 nested;           /* Number of nested calls to the parser/code generator */
2752   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2753   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2754   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2755   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2756   u8 okConstFactor;    /* OK to factor out constants */
2757   u8 disableLookaside; /* Number of times lookaside has been disabled */
2758   int aTempReg[8];     /* Holding area for temporary registers */
2759   int nRangeReg;       /* Size of the temporary register block */
2760   int iRangeReg;       /* First register in temporary register block */
2761   int nErr;            /* Number of errors seen */
2762   int nTab;            /* Number of previously allocated VDBE cursors */
2763   int nMem;            /* Number of memory cells used so far */
2764   int nSet;            /* Number of sets used so far */
2765   int nOnce;           /* Number of OP_Once instructions so far */
2766   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2767   int szOpAlloc;       /* Bytes of memory space allocated for Vdbe.aOp[] */
2768   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
2769   int ckBase;          /* Base register of data during check constraints */
2770   int iSelfTab;        /* Table of an index whose exprs are being coded */
2771   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2772   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2773   int nLabel;          /* Number of labels used */
2774   int *aLabel;         /* Space to hold the labels */
2775   struct yColCache {
2776     int iTable;           /* Table cursor number */
2777     i16 iColumn;          /* Table column number */
2778     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2779     int iLevel;           /* Nesting level */
2780     int iReg;             /* Reg with value of this column. 0 means none. */
2781     int lru;              /* Least recently used entry has the smallest value */
2782   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2783   ExprList *pConstExpr;/* Constant expressions */
2784   Token constraintName;/* Name of the constraint currently being parsed */
2785   yDbMask writeMask;   /* Start a write transaction on these databases */
2786   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2787   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2788   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2789   int regRoot;         /* Register holding root page number for new objects */
2790   int nMaxArg;         /* Max args passed to user function by sub-program */
2791 #if SELECTTRACE_ENABLED
2792   int nSelect;         /* Number of SELECT statements seen */
2793   int nSelectIndent;   /* How far to indent SELECTTRACE() output */
2794 #endif
2795 #ifndef SQLITE_OMIT_SHARED_CACHE
2796   int nTableLock;        /* Number of locks in aTableLock */
2797   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2798 #endif
2799   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2800 
2801   /* Information used while coding trigger programs. */
2802   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2803   Table *pTriggerTab;  /* Table triggers are being coded for */
2804   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
2805   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
2806   u32 oldmask;         /* Mask of old.* columns referenced */
2807   u32 newmask;         /* Mask of new.* columns referenced */
2808   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2809   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2810   u8 disableTriggers;  /* True to disable triggers */
2811 
2812   /************************************************************************
2813   ** Above is constant between recursions.  Below is reset before and after
2814   ** each recursion.  The boundary between these two regions is determined
2815   ** using offsetof(Parse,nVar) so the nVar field must be the first field
2816   ** in the recursive region.
2817   ************************************************************************/
2818 
2819   ynVar nVar;               /* Number of '?' variables seen in the SQL so far */
2820   int nzVar;                /* Number of available slots in azVar[] */
2821   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
2822   u8 explain;               /* True if the EXPLAIN flag is found on the query */
2823 #ifndef SQLITE_OMIT_VIRTUALTABLE
2824   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
2825   int nVtabLock;            /* Number of virtual tables to lock */
2826 #endif
2827   int nAlias;               /* Number of aliased result set columns */
2828   int nHeight;              /* Expression tree height of current sub-select */
2829 #ifndef SQLITE_OMIT_EXPLAIN
2830   int iSelectId;            /* ID of current select for EXPLAIN output */
2831   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
2832 #endif
2833   char **azVar;             /* Pointers to names of parameters */
2834   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
2835   const char *zTail;        /* All SQL text past the last semicolon parsed */
2836   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
2837   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2838   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2839   Token sNameToken;         /* Token with unqualified schema object name */
2840   Token sLastToken;         /* The last token parsed */
2841 #ifndef SQLITE_OMIT_VIRTUALTABLE
2842   Token sArg;               /* Complete text of a module argument */
2843   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
2844 #endif
2845   Table *pZombieTab;        /* List of Table objects to delete after code gen */
2846   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
2847   With *pWith;              /* Current WITH clause, or NULL */
2848   With *pWithToFree;        /* Free this WITH object at the end of the parse */
2849 };
2850 
2851 /*
2852 ** Return true if currently inside an sqlite3_declare_vtab() call.
2853 */
2854 #ifdef SQLITE_OMIT_VIRTUALTABLE
2855   #define IN_DECLARE_VTAB 0
2856 #else
2857   #define IN_DECLARE_VTAB (pParse->declareVtab)
2858 #endif
2859 
2860 /*
2861 ** An instance of the following structure can be declared on a stack and used
2862 ** to save the Parse.zAuthContext value so that it can be restored later.
2863 */
2864 struct AuthContext {
2865   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2866   Parse *pParse;              /* The Parse structure */
2867 };
2868 
2869 /*
2870 ** Bitfield flags for P5 value in various opcodes.
2871 */
2872 #define OPFLAG_NCHANGE       0x01    /* OP_Insert: Set to update db->nChange */
2873                                      /* Also used in P2 (not P5) of OP_Delete */
2874 #define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
2875 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2876 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2877 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2878 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2879 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
2880 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
2881 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
2882 #define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
2883 #define OPFLAG_FORDELETE     0x08    /* OP_Open should use BTREE_FORDELETE */
2884 #define OPFLAG_P2ISREG       0x10    /* P2 to OP_Open** is a register number */
2885 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
2886 #define OPFLAG_SAVEPOSITION  0x02    /* OP_Delete: keep cursor position */
2887 #define OPFLAG_AUXDELETE     0x04    /* OP_Delete: index in a DELETE op */
2888 
2889 /*
2890  * Each trigger present in the database schema is stored as an instance of
2891  * struct Trigger.
2892  *
2893  * Pointers to instances of struct Trigger are stored in two ways.
2894  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2895  *    database). This allows Trigger structures to be retrieved by name.
2896  * 2. All triggers associated with a single table form a linked list, using the
2897  *    pNext member of struct Trigger. A pointer to the first element of the
2898  *    linked list is stored as the "pTrigger" member of the associated
2899  *    struct Table.
2900  *
2901  * The "step_list" member points to the first element of a linked list
2902  * containing the SQL statements specified as the trigger program.
2903  */
2904 struct Trigger {
2905   char *zName;            /* The name of the trigger                        */
2906   char *table;            /* The table or view to which the trigger applies */
2907   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2908   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2909   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2910   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2911                              the <column-list> is stored here */
2912   Schema *pSchema;        /* Schema containing the trigger */
2913   Schema *pTabSchema;     /* Schema containing the table */
2914   TriggerStep *step_list; /* Link list of trigger program steps             */
2915   Trigger *pNext;         /* Next trigger associated with the table */
2916 };
2917 
2918 /*
2919 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2920 ** determine which.
2921 **
2922 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2923 ** In that cases, the constants below can be ORed together.
2924 */
2925 #define TRIGGER_BEFORE  1
2926 #define TRIGGER_AFTER   2
2927 
2928 /*
2929  * An instance of struct TriggerStep is used to store a single SQL statement
2930  * that is a part of a trigger-program.
2931  *
2932  * Instances of struct TriggerStep are stored in a singly linked list (linked
2933  * using the "pNext" member) referenced by the "step_list" member of the
2934  * associated struct Trigger instance. The first element of the linked list is
2935  * the first step of the trigger-program.
2936  *
2937  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2938  * "SELECT" statement. The meanings of the other members is determined by the
2939  * value of "op" as follows:
2940  *
2941  * (op == TK_INSERT)
2942  * orconf    -> stores the ON CONFLICT algorithm
2943  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2944  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2945  * zTarget   -> Dequoted name of the table to insert into.
2946  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2947  *              this stores values to be inserted. Otherwise NULL.
2948  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2949  *              statement, then this stores the column-names to be
2950  *              inserted into.
2951  *
2952  * (op == TK_DELETE)
2953  * zTarget   -> Dequoted name of the table to delete from.
2954  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2955  *              Otherwise NULL.
2956  *
2957  * (op == TK_UPDATE)
2958  * zTarget   -> Dequoted name of the table to update.
2959  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2960  *              Otherwise NULL.
2961  * pExprList -> A list of the columns to update and the expressions to update
2962  *              them to. See sqlite3Update() documentation of "pChanges"
2963  *              argument.
2964  *
2965  */
2966 struct TriggerStep {
2967   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2968   u8 orconf;           /* OE_Rollback etc. */
2969   Trigger *pTrig;      /* The trigger that this step is a part of */
2970   Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
2971   char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
2972   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2973   ExprList *pExprList; /* SET clause for UPDATE. */
2974   IdList *pIdList;     /* Column names for INSERT */
2975   TriggerStep *pNext;  /* Next in the link-list */
2976   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2977 };
2978 
2979 /*
2980 ** The following structure contains information used by the sqliteFix...
2981 ** routines as they walk the parse tree to make database references
2982 ** explicit.
2983 */
2984 typedef struct DbFixer DbFixer;
2985 struct DbFixer {
2986   Parse *pParse;      /* The parsing context.  Error messages written here */
2987   Schema *pSchema;    /* Fix items to this schema */
2988   int bVarOnly;       /* Check for variable references only */
2989   const char *zDb;    /* Make sure all objects are contained in this database */
2990   const char *zType;  /* Type of the container - used for error messages */
2991   const Token *pName; /* Name of the container - used for error messages */
2992 };
2993 
2994 /*
2995 ** An objected used to accumulate the text of a string where we
2996 ** do not necessarily know how big the string will be in the end.
2997 */
2998 struct StrAccum {
2999   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
3000   char *zBase;         /* A base allocation.  Not from malloc. */
3001   char *zText;         /* The string collected so far */
3002   u32  nChar;          /* Length of the string so far */
3003   u32  nAlloc;         /* Amount of space allocated in zText */
3004   u32  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
3005   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
3006   u8   printfFlags;    /* SQLITE_PRINTF flags below */
3007 };
3008 #define STRACCUM_NOMEM   1
3009 #define STRACCUM_TOOBIG  2
3010 #define SQLITE_PRINTF_INTERNAL 0x01  /* Internal-use-only converters allowed */
3011 #define SQLITE_PRINTF_SQLFUNC  0x02  /* SQL function arguments to VXPrintf */
3012 #define SQLITE_PRINTF_MALLOCED 0x04  /* True if xText is allocated space */
3013 
3014 #define isMalloced(X)  (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)
3015 
3016 
3017 /*
3018 ** A pointer to this structure is used to communicate information
3019 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
3020 */
3021 typedef struct {
3022   sqlite3 *db;        /* The database being initialized */
3023   char **pzErrMsg;    /* Error message stored here */
3024   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
3025   int rc;             /* Result code stored here */
3026 } InitData;
3027 
3028 /*
3029 ** Structure containing global configuration data for the SQLite library.
3030 **
3031 ** This structure also contains some state information.
3032 */
3033 struct Sqlite3Config {
3034   int bMemstat;                     /* True to enable memory status */
3035   int bCoreMutex;                   /* True to enable core mutexing */
3036   int bFullMutex;                   /* True to enable full mutexing */
3037   int bOpenUri;                     /* True to interpret filenames as URIs */
3038   int bUseCis;                      /* Use covering indices for full-scans */
3039   int mxStrlen;                     /* Maximum string length */
3040   int neverCorrupt;                 /* Database is always well-formed */
3041   int szLookaside;                  /* Default lookaside buffer size */
3042   int nLookaside;                   /* Default lookaside buffer count */
3043   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
3044   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
3045   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
3046   void *pHeap;                      /* Heap storage space */
3047   int nHeap;                        /* Size of pHeap[] */
3048   int mnReq, mxReq;                 /* Min and max heap requests sizes */
3049   sqlite3_int64 szMmap;             /* mmap() space per open file */
3050   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
3051   void *pScratch;                   /* Scratch memory */
3052   int szScratch;                    /* Size of each scratch buffer */
3053   int nScratch;                     /* Number of scratch buffers */
3054   void *pPage;                      /* Page cache memory */
3055   int szPage;                       /* Size of each page in pPage[] */
3056   int nPage;                        /* Number of pages in pPage[] */
3057   int mxParserStack;                /* maximum depth of the parser stack */
3058   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
3059   u32 szPma;                        /* Maximum Sorter PMA size */
3060   /* The above might be initialized to non-zero.  The following need to always
3061   ** initially be zero, however. */
3062   int isInit;                       /* True after initialization has finished */
3063   int inProgress;                   /* True while initialization in progress */
3064   int isMutexInit;                  /* True after mutexes are initialized */
3065   int isMallocInit;                 /* True after malloc is initialized */
3066   int isPCacheInit;                 /* True after malloc is initialized */
3067   int nRefInitMutex;                /* Number of users of pInitMutex */
3068   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
3069   void (*xLog)(void*,int,const char*); /* Function for logging */
3070   void *pLogArg;                       /* First argument to xLog() */
3071 #ifdef SQLITE_ENABLE_SQLLOG
3072   void(*xSqllog)(void*,sqlite3*,const char*, int);
3073   void *pSqllogArg;
3074 #endif
3075 #ifdef SQLITE_VDBE_COVERAGE
3076   /* The following callback (if not NULL) is invoked on every VDBE branch
3077   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
3078   */
3079   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
3080   void *pVdbeBranchArg;                                     /* 1st argument */
3081 #endif
3082 #ifndef SQLITE_OMIT_BUILTIN_TEST
3083   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
3084 #endif
3085   int bLocaltimeFault;              /* True to fail localtime() calls */
3086 };
3087 
3088 /*
3089 ** This macro is used inside of assert() statements to indicate that
3090 ** the assert is only valid on a well-formed database.  Instead of:
3091 **
3092 **     assert( X );
3093 **
3094 ** One writes:
3095 **
3096 **     assert( X || CORRUPT_DB );
3097 **
3098 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
3099 ** that the database is definitely corrupt, only that it might be corrupt.
3100 ** For most test cases, CORRUPT_DB is set to false using a special
3101 ** sqlite3_test_control().  This enables assert() statements to prove
3102 ** things that are always true for well-formed databases.
3103 */
3104 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
3105 
3106 /*
3107 ** Context pointer passed down through the tree-walk.
3108 */
3109 struct Walker {
3110   Parse *pParse;                            /* Parser context.  */
3111   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
3112   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
3113   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
3114   int walkerDepth;                          /* Number of subqueries */
3115   u8 eCode;                                 /* A small processing code */
3116   union {                                   /* Extra data for callback */
3117     NameContext *pNC;                          /* Naming context */
3118     int n;                                     /* A counter */
3119     int iCur;                                  /* A cursor number */
3120     SrcList *pSrcList;                         /* FROM clause */
3121     struct SrcCount *pSrcCount;                /* Counting column references */
3122     struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */
3123     int *aiCol;                                /* array of column indexes */
3124   } u;
3125 };
3126 
3127 /* Forward declarations */
3128 int sqlite3WalkExpr(Walker*, Expr*);
3129 int sqlite3WalkExprList(Walker*, ExprList*);
3130 int sqlite3WalkSelect(Walker*, Select*);
3131 int sqlite3WalkSelectExpr(Walker*, Select*);
3132 int sqlite3WalkSelectFrom(Walker*, Select*);
3133 int sqlite3ExprWalkNoop(Walker*, Expr*);
3134 
3135 /*
3136 ** Return code from the parse-tree walking primitives and their
3137 ** callbacks.
3138 */
3139 #define WRC_Continue    0   /* Continue down into children */
3140 #define WRC_Prune       1   /* Omit children but continue walking siblings */
3141 #define WRC_Abort       2   /* Abandon the tree walk */
3142 
3143 /*
3144 ** An instance of this structure represents a set of one or more CTEs
3145 ** (common table expressions) created by a single WITH clause.
3146 */
3147 struct With {
3148   int nCte;                       /* Number of CTEs in the WITH clause */
3149   With *pOuter;                   /* Containing WITH clause, or NULL */
3150   struct Cte {                    /* For each CTE in the WITH clause.... */
3151     char *zName;                    /* Name of this CTE */
3152     ExprList *pCols;                /* List of explicit column names, or NULL */
3153     Select *pSelect;                /* The definition of this CTE */
3154     const char *zCteErr;            /* Error message for circular references */
3155   } a[1];
3156 };
3157 
3158 #ifdef SQLITE_DEBUG
3159 /*
3160 ** An instance of the TreeView object is used for printing the content of
3161 ** data structures on sqlite3DebugPrintf() using a tree-like view.
3162 */
3163 struct TreeView {
3164   int iLevel;             /* Which level of the tree we are on */
3165   u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
3166 };
3167 #endif /* SQLITE_DEBUG */
3168 
3169 /*
3170 ** Assuming zIn points to the first byte of a UTF-8 character,
3171 ** advance zIn to point to the first byte of the next UTF-8 character.
3172 */
3173 #define SQLITE_SKIP_UTF8(zIn) {                        \
3174   if( (*(zIn++))>=0xc0 ){                              \
3175     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
3176   }                                                    \
3177 }
3178 
3179 /*
3180 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
3181 ** the same name but without the _BKPT suffix.  These macros invoke
3182 ** routines that report the line-number on which the error originated
3183 ** using sqlite3_log().  The routines also provide a convenient place
3184 ** to set a debugger breakpoint.
3185 */
3186 int sqlite3CorruptError(int);
3187 int sqlite3MisuseError(int);
3188 int sqlite3CantopenError(int);
3189 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
3190 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
3191 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
3192 #ifdef SQLITE_DEBUG
3193   int sqlite3NomemError(int);
3194   int sqlite3IoerrnomemError(int);
3195 # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__)
3196 # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__)
3197 #else
3198 # define SQLITE_NOMEM_BKPT SQLITE_NOMEM
3199 # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM
3200 #endif
3201 
3202 /*
3203 ** FTS3 and FTS4 both require virtual table support
3204 */
3205 #if defined(SQLITE_OMIT_VIRTUALTABLE)
3206 # undef SQLITE_ENABLE_FTS3
3207 # undef SQLITE_ENABLE_FTS4
3208 #endif
3209 
3210 /*
3211 ** FTS4 is really an extension for FTS3.  It is enabled using the
3212 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
3213 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
3214 */
3215 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
3216 # define SQLITE_ENABLE_FTS3 1
3217 #endif
3218 
3219 /*
3220 ** The ctype.h header is needed for non-ASCII systems.  It is also
3221 ** needed by FTS3 when FTS3 is included in the amalgamation.
3222 */
3223 #if !defined(SQLITE_ASCII) || \
3224     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
3225 # include <ctype.h>
3226 #endif
3227 
3228 /*
3229 ** The following macros mimic the standard library functions toupper(),
3230 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
3231 ** sqlite versions only work for ASCII characters, regardless of locale.
3232 */
3233 #ifdef SQLITE_ASCII
3234 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
3235 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
3236 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
3237 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
3238 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
3239 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
3240 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
3241 #else
3242 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
3243 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
3244 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
3245 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
3246 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
3247 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
3248 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
3249 #endif
3250 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
3251 int sqlite3IsIdChar(u8);
3252 #endif
3253 
3254 /*
3255 ** Internal function prototypes
3256 */
3257 int sqlite3StrICmp(const char*,const char*);
3258 int sqlite3Strlen30(const char*);
3259 #define sqlite3StrNICmp sqlite3_strnicmp
3260 
3261 int sqlite3MallocInit(void);
3262 void sqlite3MallocEnd(void);
3263 void *sqlite3Malloc(u64);
3264 void *sqlite3MallocZero(u64);
3265 void *sqlite3DbMallocZero(sqlite3*, u64);
3266 void *sqlite3DbMallocRaw(sqlite3*, u64);
3267 void *sqlite3DbMallocRawNN(sqlite3*, u64);
3268 char *sqlite3DbStrDup(sqlite3*,const char*);
3269 char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
3270 void *sqlite3Realloc(void*, u64);
3271 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
3272 void *sqlite3DbRealloc(sqlite3 *, void *, u64);
3273 void sqlite3DbFree(sqlite3*, void*);
3274 int sqlite3MallocSize(void*);
3275 int sqlite3DbMallocSize(sqlite3*, void*);
3276 void *sqlite3ScratchMalloc(int);
3277 void sqlite3ScratchFree(void*);
3278 void *sqlite3PageMalloc(int);
3279 void sqlite3PageFree(void*);
3280 void sqlite3MemSetDefault(void);
3281 #ifndef SQLITE_OMIT_BUILTIN_TEST
3282 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
3283 #endif
3284 int sqlite3HeapNearlyFull(void);
3285 
3286 /*
3287 ** On systems with ample stack space and that support alloca(), make
3288 ** use of alloca() to obtain space for large automatic objects.  By default,
3289 ** obtain space from malloc().
3290 **
3291 ** The alloca() routine never returns NULL.  This will cause code paths
3292 ** that deal with sqlite3StackAlloc() failures to be unreachable.
3293 */
3294 #ifdef SQLITE_USE_ALLOCA
3295 # define sqlite3StackAllocRaw(D,N)   alloca(N)
3296 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
3297 # define sqlite3StackFree(D,P)
3298 #else
3299 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
3300 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
3301 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
3302 #endif
3303 
3304 #ifdef SQLITE_ENABLE_MEMSYS3
3305 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3306 #endif
3307 #ifdef SQLITE_ENABLE_MEMSYS5
3308 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3309 #endif
3310 
3311 
3312 #ifndef SQLITE_MUTEX_OMIT
3313   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3314   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3315   sqlite3_mutex *sqlite3MutexAlloc(int);
3316   int sqlite3MutexInit(void);
3317   int sqlite3MutexEnd(void);
3318 #endif
3319 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP)
3320   void sqlite3MemoryBarrier(void);
3321 #else
3322 # define sqlite3MemoryBarrier()
3323 #endif
3324 
3325 sqlite3_int64 sqlite3StatusValue(int);
3326 void sqlite3StatusUp(int, int);
3327 void sqlite3StatusDown(int, int);
3328 void sqlite3StatusHighwater(int, int);
3329 
3330 /* Access to mutexes used by sqlite3_status() */
3331 sqlite3_mutex *sqlite3Pcache1Mutex(void);
3332 sqlite3_mutex *sqlite3MallocMutex(void);
3333 
3334 #ifndef SQLITE_OMIT_FLOATING_POINT
3335   int sqlite3IsNaN(double);
3336 #else
3337 # define sqlite3IsNaN(X)  0
3338 #endif
3339 
3340 /*
3341 ** An instance of the following structure holds information about SQL
3342 ** functions arguments that are the parameters to the printf() function.
3343 */
3344 struct PrintfArguments {
3345   int nArg;                /* Total number of arguments */
3346   int nUsed;               /* Number of arguments used so far */
3347   sqlite3_value **apArg;   /* The argument values */
3348 };
3349 
3350 void sqlite3VXPrintf(StrAccum*, const char*, va_list);
3351 void sqlite3XPrintf(StrAccum*, const char*, ...);
3352 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3353 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3354 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3355   void sqlite3DebugPrintf(const char*, ...);
3356 #endif
3357 #if defined(SQLITE_TEST)
3358   void *sqlite3TestTextToPtr(const char*);
3359 #endif
3360 
3361 #if defined(SQLITE_DEBUG)
3362   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
3363   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
3364   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
3365   void sqlite3TreeViewWith(TreeView*, const With*, u8);
3366 #endif
3367 
3368 
3369 void sqlite3SetString(char **, sqlite3*, const char*);
3370 void sqlite3ErrorMsg(Parse*, const char*, ...);
3371 int sqlite3Dequote(char*);
3372 void sqlite3TokenInit(Token*,char*);
3373 int sqlite3KeywordCode(const unsigned char*, int);
3374 int sqlite3RunParser(Parse*, const char*, char **);
3375 void sqlite3FinishCoding(Parse*);
3376 int sqlite3GetTempReg(Parse*);
3377 void sqlite3ReleaseTempReg(Parse*,int);
3378 int sqlite3GetTempRange(Parse*,int);
3379 void sqlite3ReleaseTempRange(Parse*,int,int);
3380 void sqlite3ClearTempRegCache(Parse*);
3381 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3382 Expr *sqlite3Expr(sqlite3*,int,const char*);
3383 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3384 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
3385 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3386 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3387 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
3388 void sqlite3ExprDelete(sqlite3*, Expr*);
3389 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3390 void sqlite3ExprListSetSortOrder(ExprList*,int);
3391 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3392 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3393 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3394 u32 sqlite3ExprListFlags(const ExprList*);
3395 int sqlite3Init(sqlite3*, char**);
3396 int sqlite3InitCallback(void*, int, char**, char**);
3397 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3398 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3399 void sqlite3ResetOneSchema(sqlite3*,int);
3400 void sqlite3CollapseDatabaseArray(sqlite3*);
3401 void sqlite3CommitInternalChanges(sqlite3*);
3402 void sqlite3DeleteColumnNames(sqlite3*,Table*);
3403 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
3404 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3405 void sqlite3OpenMasterTable(Parse *, int);
3406 Index *sqlite3PrimaryKeyIndex(Table*);
3407 i16 sqlite3ColumnOfIndex(Index*, i16);
3408 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3409 #if SQLITE_ENABLE_HIDDEN_COLUMNS
3410   void sqlite3ColumnPropertiesFromName(Table*, Column*);
3411 #else
3412 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */
3413 #endif
3414 void sqlite3AddColumn(Parse*,Token*);
3415 void sqlite3AddNotNull(Parse*, int);
3416 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3417 void sqlite3AddCheckConstraint(Parse*, Expr*);
3418 void sqlite3AddColumnType(Parse*,Token*);
3419 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3420 void sqlite3AddCollateType(Parse*, Token*);
3421 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3422 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3423                     sqlite3_vfs**,char**,char **);
3424 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3425 int sqlite3CodeOnce(Parse *);
3426 
3427 #ifdef SQLITE_OMIT_BUILTIN_TEST
3428 # define sqlite3FaultSim(X) SQLITE_OK
3429 #else
3430   int sqlite3FaultSim(int);
3431 #endif
3432 
3433 Bitvec *sqlite3BitvecCreate(u32);
3434 int sqlite3BitvecTest(Bitvec*, u32);
3435 int sqlite3BitvecTestNotNull(Bitvec*, u32);
3436 int sqlite3BitvecSet(Bitvec*, u32);
3437 void sqlite3BitvecClear(Bitvec*, u32, void*);
3438 void sqlite3BitvecDestroy(Bitvec*);
3439 u32 sqlite3BitvecSize(Bitvec*);
3440 #ifndef SQLITE_OMIT_BUILTIN_TEST
3441 int sqlite3BitvecBuiltinTest(int,int*);
3442 #endif
3443 
3444 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3445 void sqlite3RowSetClear(RowSet*);
3446 void sqlite3RowSetInsert(RowSet*, i64);
3447 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3448 int sqlite3RowSetNext(RowSet*, i64*);
3449 
3450 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int);
3451 
3452 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3453   int sqlite3ViewGetColumnNames(Parse*,Table*);
3454 #else
3455 # define sqlite3ViewGetColumnNames(A,B) 0
3456 #endif
3457 
3458 #if SQLITE_MAX_ATTACHED>30
3459   int sqlite3DbMaskAllZero(yDbMask);
3460 #endif
3461 void sqlite3DropTable(Parse*, SrcList*, int, int);
3462 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3463 void sqlite3DeleteTable(sqlite3*, Table*);
3464 #ifndef SQLITE_OMIT_AUTOINCREMENT
3465   void sqlite3AutoincrementBegin(Parse *pParse);
3466   void sqlite3AutoincrementEnd(Parse *pParse);
3467 #else
3468 # define sqlite3AutoincrementBegin(X)
3469 # define sqlite3AutoincrementEnd(X)
3470 #endif
3471 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3472 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3473 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3474 int sqlite3IdListIndex(IdList*,const char*);
3475 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3476 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3477 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3478                                       Token*, Select*, Expr*, IdList*);
3479 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3480 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*);
3481 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3482 void sqlite3SrcListShiftJoinType(SrcList*);
3483 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3484 void sqlite3IdListDelete(sqlite3*, IdList*);
3485 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3486 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3487 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3488                           Expr*, int, int);
3489 void sqlite3DropIndex(Parse*, SrcList*, int);
3490 int sqlite3Select(Parse*, Select*, SelectDest*);
3491 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3492                          Expr*,ExprList*,u16,Expr*,Expr*);
3493 void sqlite3SelectDelete(sqlite3*, Select*);
3494 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3495 int sqlite3IsReadOnly(Parse*, Table*, int);
3496 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3497 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3498 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3499 #endif
3500 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3501 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3502 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3503 void sqlite3WhereEnd(WhereInfo*);
3504 u64 sqlite3WhereOutputRowCount(WhereInfo*);
3505 int sqlite3WhereIsDistinct(WhereInfo*);
3506 int sqlite3WhereIsOrdered(WhereInfo*);
3507 int sqlite3WhereIsSorted(WhereInfo*);
3508 int sqlite3WhereContinueLabel(WhereInfo*);
3509 int sqlite3WhereBreakLabel(WhereInfo*);
3510 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3511 #define ONEPASS_OFF      0        /* Use of ONEPASS not allowed */
3512 #define ONEPASS_SINGLE   1        /* ONEPASS valid for a single row update */
3513 #define ONEPASS_MULTI    2        /* ONEPASS is valid for multiple rows */
3514 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
3515 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3516 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int);
3517 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3518 void sqlite3ExprCodeMove(Parse*, int, int, int);
3519 void sqlite3ExprCacheStore(Parse*, int, int, int);
3520 void sqlite3ExprCachePush(Parse*);
3521 void sqlite3ExprCachePop(Parse*);
3522 void sqlite3ExprCacheRemove(Parse*, int, int);
3523 void sqlite3ExprCacheClear(Parse*);
3524 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3525 void sqlite3ExprCode(Parse*, Expr*, int);
3526 void sqlite3ExprCodeCopy(Parse*, Expr*, int);
3527 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3528 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
3529 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3530 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3531 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3532 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
3533 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3534 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3535 #define SQLITE_ECEL_REF      0x04  /* Use ExprList.u.x.iOrderByCol */
3536 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3537 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3538 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int);
3539 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3540 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
3541 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
3542 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3543 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3544 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3545 void sqlite3Vacuum(Parse*);
3546 int sqlite3RunVacuum(char**, sqlite3*);
3547 char *sqlite3NameFromToken(sqlite3*, Token*);
3548 int sqlite3ExprCompare(Expr*, Expr*, int);
3549 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3550 int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
3551 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3552 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3553 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3554 Vdbe *sqlite3GetVdbe(Parse*);
3555 #ifndef SQLITE_OMIT_BUILTIN_TEST
3556 void sqlite3PrngSaveState(void);
3557 void sqlite3PrngRestoreState(void);
3558 #endif
3559 void sqlite3RollbackAll(sqlite3*,int);
3560 void sqlite3CodeVerifySchema(Parse*, int);
3561 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3562 void sqlite3BeginTransaction(Parse*, int);
3563 void sqlite3CommitTransaction(Parse*);
3564 void sqlite3RollbackTransaction(Parse*);
3565 void sqlite3Savepoint(Parse*, int, Token*);
3566 void sqlite3CloseSavepoints(sqlite3 *);
3567 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3568 int sqlite3ExprIsConstant(Expr*);
3569 int sqlite3ExprIsConstantNotJoin(Expr*);
3570 int sqlite3ExprIsConstantOrFunction(Expr*, u8);
3571 int sqlite3ExprIsTableConstant(Expr*,int);
3572 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3573 int sqlite3ExprContainsSubquery(Expr*);
3574 #endif
3575 int sqlite3ExprIsInteger(Expr*, int*);
3576 int sqlite3ExprCanBeNull(const Expr*);
3577 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3578 int sqlite3IsRowid(const char*);
3579 void sqlite3GenerateRowDelete(
3580     Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
3581 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
3582 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3583 void sqlite3ResolvePartIdxLabel(Parse*,int);
3584 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3585                                      u8,u8,int,int*,int*);
3586 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3587 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
3588 void sqlite3BeginWriteOperation(Parse*, int, int);
3589 void sqlite3MultiWrite(Parse*);
3590 void sqlite3MayAbort(Parse*);
3591 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3592 void sqlite3UniqueConstraint(Parse*, int, Index*);
3593 void sqlite3RowidConstraint(Parse*, int, Table*);
3594 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3595 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3596 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3597 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3598 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3599 #if SELECTTRACE_ENABLED
3600 void sqlite3SelectSetName(Select*,const char*);
3601 #else
3602 # define sqlite3SelectSetName(A,B)
3603 #endif
3604 void sqlite3InsertBuiltinFuncs(FuncDef*,int);
3605 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8);
3606 void sqlite3RegisterBuiltinFunctions(void);
3607 void sqlite3RegisterDateTimeFunctions(void);
3608 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*);
3609 int sqlite3SafetyCheckOk(sqlite3*);
3610 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3611 void sqlite3ChangeCookie(Parse*, int);
3612 
3613 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3614 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3615 #endif
3616 
3617 #ifndef SQLITE_OMIT_TRIGGER
3618   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3619                            Expr*,int, int);
3620   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3621   void sqlite3DropTrigger(Parse*, SrcList*, int);
3622   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3623   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3624   Trigger *sqlite3TriggerList(Parse *, Table *);
3625   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3626                             int, int, int);
3627   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3628   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3629   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3630   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3631   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3632                                         Select*,u8);
3633   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3634   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3635   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3636   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3637   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3638 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3639 # define sqlite3IsToplevel(p) ((p)->pToplevel==0)
3640 #else
3641 # define sqlite3TriggersExist(B,C,D,E,F) 0
3642 # define sqlite3DeleteTrigger(A,B)
3643 # define sqlite3DropTriggerPtr(A,B)
3644 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3645 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3646 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3647 # define sqlite3TriggerList(X, Y) 0
3648 # define sqlite3ParseToplevel(p) p
3649 # define sqlite3IsToplevel(p) 1
3650 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3651 #endif
3652 
3653 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3654 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3655 void sqlite3DeferForeignKey(Parse*, int);
3656 #ifndef SQLITE_OMIT_AUTHORIZATION
3657   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3658   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3659   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3660   void sqlite3AuthContextPop(AuthContext*);
3661   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3662 #else
3663 # define sqlite3AuthRead(a,b,c,d)
3664 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3665 # define sqlite3AuthContextPush(a,b,c)
3666 # define sqlite3AuthContextPop(a)  ((void)(a))
3667 #endif
3668 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3669 void sqlite3Detach(Parse*, Expr*);
3670 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3671 int sqlite3FixSrcList(DbFixer*, SrcList*);
3672 int sqlite3FixSelect(DbFixer*, Select*);
3673 int sqlite3FixExpr(DbFixer*, Expr*);
3674 int sqlite3FixExprList(DbFixer*, ExprList*);
3675 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3676 int sqlite3AtoF(const char *z, double*, int, u8);
3677 int sqlite3GetInt32(const char *, int*);
3678 int sqlite3Atoi(const char*);
3679 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3680 int sqlite3Utf8CharLen(const char *pData, int nByte);
3681 u32 sqlite3Utf8Read(const u8**);
3682 LogEst sqlite3LogEst(u64);
3683 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3684 #ifndef SQLITE_OMIT_VIRTUALTABLE
3685 LogEst sqlite3LogEstFromDouble(double);
3686 #endif
3687 u64 sqlite3LogEstToInt(LogEst);
3688 
3689 /*
3690 ** Routines to read and write variable-length integers.  These used to
3691 ** be defined locally, but now we use the varint routines in the util.c
3692 ** file.
3693 */
3694 int sqlite3PutVarint(unsigned char*, u64);
3695 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3696 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3697 int sqlite3VarintLen(u64 v);
3698 
3699 /*
3700 ** The common case is for a varint to be a single byte.  They following
3701 ** macros handle the common case without a procedure call, but then call
3702 ** the procedure for larger varints.
3703 */
3704 #define getVarint32(A,B)  \
3705   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3706 #define putVarint32(A,B)  \
3707   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3708   sqlite3PutVarint((A),(B)))
3709 #define getVarint    sqlite3GetVarint
3710 #define putVarint    sqlite3PutVarint
3711 
3712 
3713 const char *sqlite3IndexAffinityStr(sqlite3*, Index*);
3714 void sqlite3TableAffinity(Vdbe*, Table*, int);
3715 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3716 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3717 char sqlite3ExprAffinity(Expr *pExpr);
3718 int sqlite3Atoi64(const char*, i64*, int, u8);
3719 int sqlite3DecOrHexToI64(const char*, i64*);
3720 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
3721 void sqlite3Error(sqlite3*,int);
3722 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3723 u8 sqlite3HexToInt(int h);
3724 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
3725 
3726 #if defined(SQLITE_NEED_ERR_NAME)
3727 const char *sqlite3ErrName(int);
3728 #endif
3729 
3730 const char *sqlite3ErrStr(int);
3731 int sqlite3ReadSchema(Parse *pParse);
3732 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
3733 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
3734 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
3735 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
3736 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
3737 Expr *sqlite3ExprSkipCollate(Expr*);
3738 int sqlite3CheckCollSeq(Parse *, CollSeq *);
3739 int sqlite3CheckObjectName(Parse *, const char *);
3740 void sqlite3VdbeSetChanges(sqlite3 *, int);
3741 int sqlite3AddInt64(i64*,i64);
3742 int sqlite3SubInt64(i64*,i64);
3743 int sqlite3MulInt64(i64*,i64);
3744 int sqlite3AbsInt32(int);
3745 #ifdef SQLITE_ENABLE_8_3_NAMES
3746 void sqlite3FileSuffix3(const char*, char*);
3747 #else
3748 # define sqlite3FileSuffix3(X,Y)
3749 #endif
3750 u8 sqlite3GetBoolean(const char *z,u8);
3751 
3752 const void *sqlite3ValueText(sqlite3_value*, u8);
3753 int sqlite3ValueBytes(sqlite3_value*, u8);
3754 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3755                         void(*)(void*));
3756 void sqlite3ValueSetNull(sqlite3_value*);
3757 void sqlite3ValueFree(sqlite3_value*);
3758 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3759 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3760 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3761 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3762 #ifndef SQLITE_AMALGAMATION
3763 extern const unsigned char sqlite3OpcodeProperty[];
3764 extern const char sqlite3StrBINARY[];
3765 extern const unsigned char sqlite3UpperToLower[];
3766 extern const unsigned char sqlite3CtypeMap[];
3767 extern const Token sqlite3IntTokens[];
3768 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3769 extern FuncDefHash sqlite3BuiltinFunctions;
3770 #ifndef SQLITE_OMIT_WSD
3771 extern int sqlite3PendingByte;
3772 #endif
3773 #endif
3774 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3775 void sqlite3Reindex(Parse*, Token*, Token*);
3776 void sqlite3AlterFunctions(void);
3777 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3778 int sqlite3GetToken(const unsigned char *, int *);
3779 void sqlite3NestedParse(Parse*, const char*, ...);
3780 void sqlite3ExpirePreparedStatements(sqlite3*);
3781 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3782 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3783 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
3784 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
3785 int sqlite3ResolveExprNames(NameContext*, Expr*);
3786 int sqlite3ResolveExprListNames(NameContext*, ExprList*);
3787 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3788 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3789 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3790 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3791 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3792 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3793 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3794 char sqlite3AffinityType(const char*, u8*);
3795 void sqlite3Analyze(Parse*, Token*, Token*);
3796 int sqlite3InvokeBusyHandler(BusyHandler*);
3797 int sqlite3FindDb(sqlite3*, Token*);
3798 int sqlite3FindDbName(sqlite3 *, const char *);
3799 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3800 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3801 void sqlite3DefaultRowEst(Index*);
3802 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3803 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3804 void sqlite3SchemaClear(void *);
3805 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3806 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3807 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
3808 void sqlite3KeyInfoUnref(KeyInfo*);
3809 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
3810 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
3811 #ifdef SQLITE_DEBUG
3812 int sqlite3KeyInfoIsWriteable(KeyInfo*);
3813 #endif
3814 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3815   void (*)(sqlite3_context*,int,sqlite3_value **),
3816   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3817   FuncDestructor *pDestructor
3818 );
3819 void sqlite3OomFault(sqlite3*);
3820 void sqlite3OomClear(sqlite3*);
3821 int sqlite3ApiExit(sqlite3 *db, int);
3822 int sqlite3OpenTempDatabase(Parse *);
3823 
3824 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
3825 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3826 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
3827 void sqlite3AppendChar(StrAccum*,int,char);
3828 char *sqlite3StrAccumFinish(StrAccum*);
3829 void sqlite3StrAccumReset(StrAccum*);
3830 void sqlite3SelectDestInit(SelectDest*,int,int);
3831 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3832 
3833 void sqlite3BackupRestart(sqlite3_backup *);
3834 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3835 
3836 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3837 void sqlite3AnalyzeFunctions(void);
3838 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
3839 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
3840 void sqlite3Stat4ProbeFree(UnpackedRecord*);
3841 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
3842 #endif
3843 
3844 /*
3845 ** The interface to the LEMON-generated parser
3846 */
3847 void *sqlite3ParserAlloc(void*(*)(u64));
3848 void sqlite3ParserFree(void*, void(*)(void*));
3849 void sqlite3Parser(void*, int, Token, Parse*);
3850 #ifdef YYTRACKMAXSTACKDEPTH
3851   int sqlite3ParserStackPeak(void*);
3852 #endif
3853 
3854 void sqlite3AutoLoadExtensions(sqlite3*);
3855 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3856   void sqlite3CloseExtensions(sqlite3*);
3857 #else
3858 # define sqlite3CloseExtensions(X)
3859 #endif
3860 
3861 #ifndef SQLITE_OMIT_SHARED_CACHE
3862   void sqlite3TableLock(Parse *, int, int, u8, const char *);
3863 #else
3864   #define sqlite3TableLock(v,w,x,y,z)
3865 #endif
3866 
3867 #ifdef SQLITE_TEST
3868   int sqlite3Utf8To8(unsigned char*);
3869 #endif
3870 
3871 #ifdef SQLITE_OMIT_VIRTUALTABLE
3872 #  define sqlite3VtabClear(Y)
3873 #  define sqlite3VtabSync(X,Y) SQLITE_OK
3874 #  define sqlite3VtabRollback(X)
3875 #  define sqlite3VtabCommit(X)
3876 #  define sqlite3VtabInSync(db) 0
3877 #  define sqlite3VtabLock(X)
3878 #  define sqlite3VtabUnlock(X)
3879 #  define sqlite3VtabUnlockList(X)
3880 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3881 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
3882 #else
3883    void sqlite3VtabClear(sqlite3 *db, Table*);
3884    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
3885    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
3886    int sqlite3VtabRollback(sqlite3 *db);
3887    int sqlite3VtabCommit(sqlite3 *db);
3888    void sqlite3VtabLock(VTable *);
3889    void sqlite3VtabUnlock(VTable *);
3890    void sqlite3VtabUnlockList(sqlite3*);
3891    int sqlite3VtabSavepoint(sqlite3 *, int, int);
3892    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
3893    VTable *sqlite3GetVTable(sqlite3*, Table*);
3894 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3895 #endif
3896 int sqlite3VtabEponymousTableInit(Parse*,Module*);
3897 void sqlite3VtabEponymousTableClear(sqlite3*,Module*);
3898 void sqlite3VtabMakeWritable(Parse*,Table*);
3899 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3900 void sqlite3VtabFinishParse(Parse*, Token*);
3901 void sqlite3VtabArgInit(Parse*);
3902 void sqlite3VtabArgExtend(Parse*, Token*);
3903 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3904 int sqlite3VtabCallConnect(Parse*, Table*);
3905 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3906 int sqlite3VtabBegin(sqlite3 *, VTable *);
3907 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3908 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3909 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
3910 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3911 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3912 void sqlite3ParserReset(Parse*);
3913 int sqlite3Reprepare(Vdbe*);
3914 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3915 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3916 int sqlite3TempInMemory(const sqlite3*);
3917 const char *sqlite3JournalModename(int);
3918 #ifndef SQLITE_OMIT_WAL
3919   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3920   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3921 #endif
3922 #ifndef SQLITE_OMIT_CTE
3923   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
3924   void sqlite3WithDelete(sqlite3*,With*);
3925   void sqlite3WithPush(Parse*, With*, u8);
3926 #else
3927 #define sqlite3WithPush(x,y,z)
3928 #define sqlite3WithDelete(x,y)
3929 #endif
3930 
3931 /* Declarations for functions in fkey.c. All of these are replaced by
3932 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3933 ** key functionality is available. If OMIT_TRIGGER is defined but
3934 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3935 ** this case foreign keys are parsed, but no other functionality is
3936 ** provided (enforcement of FK constraints requires the triggers sub-system).
3937 */
3938 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3939   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
3940   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3941   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
3942   int sqlite3FkRequired(Parse*, Table*, int*, int);
3943   u32 sqlite3FkOldmask(Parse*, Table*);
3944   FKey *sqlite3FkReferences(Table *);
3945 #else
3946   #define sqlite3FkActions(a,b,c,d,e,f)
3947   #define sqlite3FkCheck(a,b,c,d,e,f)
3948   #define sqlite3FkDropTable(a,b,c)
3949   #define sqlite3FkOldmask(a,b)         0
3950   #define sqlite3FkRequired(a,b,c,d)    0
3951 #endif
3952 #ifndef SQLITE_OMIT_FOREIGN_KEY
3953   void sqlite3FkDelete(sqlite3 *, Table*);
3954   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
3955 #else
3956   #define sqlite3FkDelete(a,b)
3957   #define sqlite3FkLocateIndex(a,b,c,d,e)
3958 #endif
3959 
3960 
3961 /*
3962 ** Available fault injectors.  Should be numbered beginning with 0.
3963 */
3964 #define SQLITE_FAULTINJECTOR_MALLOC     0
3965 #define SQLITE_FAULTINJECTOR_COUNT      1
3966 
3967 /*
3968 ** The interface to the code in fault.c used for identifying "benign"
3969 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3970 ** is not defined.
3971 */
3972 #ifndef SQLITE_OMIT_BUILTIN_TEST
3973   void sqlite3BeginBenignMalloc(void);
3974   void sqlite3EndBenignMalloc(void);
3975 #else
3976   #define sqlite3BeginBenignMalloc()
3977   #define sqlite3EndBenignMalloc()
3978 #endif
3979 
3980 /*
3981 ** Allowed return values from sqlite3FindInIndex()
3982 */
3983 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
3984 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
3985 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
3986 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
3987 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
3988 /*
3989 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
3990 */
3991 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
3992 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
3993 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
3994 int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
3995 
3996 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3997   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3998   int sqlite3JournalSize(sqlite3_vfs *);
3999   int sqlite3JournalCreate(sqlite3_file *);
4000   int sqlite3JournalExists(sqlite3_file *p);
4001 #else
4002   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
4003   #define sqlite3JournalExists(p) 1
4004 #endif
4005 
4006 void sqlite3MemJournalOpen(sqlite3_file *);
4007 int sqlite3MemJournalSize(void);
4008 int sqlite3IsMemJournal(sqlite3_file *);
4009 
4010 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
4011 #if SQLITE_MAX_EXPR_DEPTH>0
4012   int sqlite3SelectExprHeight(Select *);
4013   int sqlite3ExprCheckHeight(Parse*, int);
4014 #else
4015   #define sqlite3SelectExprHeight(x) 0
4016   #define sqlite3ExprCheckHeight(x,y)
4017 #endif
4018 
4019 u32 sqlite3Get4byte(const u8*);
4020 void sqlite3Put4byte(u8*, u32);
4021 
4022 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
4023   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
4024   void sqlite3ConnectionUnlocked(sqlite3 *db);
4025   void sqlite3ConnectionClosed(sqlite3 *db);
4026 #else
4027   #define sqlite3ConnectionBlocked(x,y)
4028   #define sqlite3ConnectionUnlocked(x)
4029   #define sqlite3ConnectionClosed(x)
4030 #endif
4031 
4032 #ifdef SQLITE_DEBUG
4033   void sqlite3ParserTrace(FILE*, char *);
4034 #endif
4035 
4036 /*
4037 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
4038 ** sqlite3IoTrace is a pointer to a printf-like routine used to
4039 ** print I/O tracing messages.
4040 */
4041 #ifdef SQLITE_ENABLE_IOTRACE
4042 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
4043   void sqlite3VdbeIOTraceSql(Vdbe*);
4044 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
4045 #else
4046 # define IOTRACE(A)
4047 # define sqlite3VdbeIOTraceSql(X)
4048 #endif
4049 
4050 /*
4051 ** These routines are available for the mem2.c debugging memory allocator
4052 ** only.  They are used to verify that different "types" of memory
4053 ** allocations are properly tracked by the system.
4054 **
4055 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
4056 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
4057 ** a single bit set.
4058 **
4059 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
4060 ** argument match the type set by the previous sqlite3MemdebugSetType().
4061 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
4062 **
4063 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
4064 ** argument match the type set by the previous sqlite3MemdebugSetType().
4065 **
4066 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
4067 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
4068 ** it might have been allocated by lookaside, except the allocation was
4069 ** too large or lookaside was already full.  It is important to verify
4070 ** that allocations that might have been satisfied by lookaside are not
4071 ** passed back to non-lookaside free() routines.  Asserts such as the
4072 ** example above are placed on the non-lookaside free() routines to verify
4073 ** this constraint.
4074 **
4075 ** All of this is no-op for a production build.  It only comes into
4076 ** play when the SQLITE_MEMDEBUG compile-time option is used.
4077 */
4078 #ifdef SQLITE_MEMDEBUG
4079   void sqlite3MemdebugSetType(void*,u8);
4080   int sqlite3MemdebugHasType(void*,u8);
4081   int sqlite3MemdebugNoType(void*,u8);
4082 #else
4083 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
4084 # define sqlite3MemdebugHasType(X,Y)  1
4085 # define sqlite3MemdebugNoType(X,Y)   1
4086 #endif
4087 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
4088 #define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
4089 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
4090 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
4091 
4092 /*
4093 ** Threading interface
4094 */
4095 #if SQLITE_MAX_WORKER_THREADS>0
4096 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
4097 int sqlite3ThreadJoin(SQLiteThread*, void**);
4098 #endif
4099 
4100 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
4101 int sqlite3DbstatRegister(sqlite3*);
4102 #endif
4103 
4104 #endif /* _SQLITEINT_H_ */
4105