1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The number of samples of an index that SQLite takes in order to 81 ** construct a histogram of the table content when running ANALYZE 82 ** and with SQLITE_ENABLE_STAT2 83 */ 84 #define SQLITE_INDEX_SAMPLES 10 85 86 /* 87 ** The following macros are used to cast pointers to integers and 88 ** integers to pointers. The way you do this varies from one compiler 89 ** to the next, so we have developed the following set of #if statements 90 ** to generate appropriate macros for a wide range of compilers. 91 ** 92 ** The correct "ANSI" way to do this is to use the intptr_t type. 93 ** Unfortunately, that typedef is not available on all compilers, or 94 ** if it is available, it requires an #include of specific headers 95 ** that vary from one machine to the next. 96 ** 97 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 98 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 99 ** So we have to define the macros in different ways depending on the 100 ** compiler. 101 */ 102 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 104 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 105 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 107 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 108 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 111 #else /* Generates a warning - but it always works */ 112 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 113 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 114 #endif 115 116 /* 117 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 118 ** 0 means mutexes are permanently disable and the library is never 119 ** threadsafe. 1 means the library is serialized which is the highest 120 ** level of threadsafety. 2 means the libary is multithreaded - multiple 121 ** threads can use SQLite as long as no two threads try to use the same 122 ** database connection at the same time. 123 ** 124 ** Older versions of SQLite used an optional THREADSAFE macro. 125 ** We support that for legacy. 126 */ 127 #if !defined(SQLITE_THREADSAFE) 128 #if defined(THREADSAFE) 129 # define SQLITE_THREADSAFE THREADSAFE 130 #else 131 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 132 #endif 133 #endif 134 135 /* 136 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 137 ** It determines whether or not the features related to 138 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 139 ** be overridden at runtime using the sqlite3_config() API. 140 */ 141 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 142 # define SQLITE_DEFAULT_MEMSTATUS 1 143 #endif 144 145 /* 146 ** Exactly one of the following macros must be defined in order to 147 ** specify which memory allocation subsystem to use. 148 ** 149 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 150 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 151 ** 152 ** (Historical note: There used to be several other options, but we've 153 ** pared it down to just these two.) 154 ** 155 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 156 ** the default. 157 */ 158 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1 159 # error "At most one of the following compile-time configuration options\ 160 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG" 161 #endif 162 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0 163 # define SQLITE_SYSTEM_MALLOC 1 164 #endif 165 166 /* 167 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 168 ** sizes of memory allocations below this value where possible. 169 */ 170 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 171 # define SQLITE_MALLOC_SOFT_LIMIT 1024 172 #endif 173 174 /* 175 ** We need to define _XOPEN_SOURCE as follows in order to enable 176 ** recursive mutexes on most Unix systems. But Mac OS X is different. 177 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 178 ** so it is omitted there. See ticket #2673. 179 ** 180 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 181 ** implemented on some systems. So we avoid defining it at all 182 ** if it is already defined or if it is unneeded because we are 183 ** not doing a threadsafe build. Ticket #2681. 184 ** 185 ** See also ticket #2741. 186 */ 187 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 188 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 189 #endif 190 191 /* 192 ** The TCL headers are only needed when compiling the TCL bindings. 193 */ 194 #if defined(SQLITE_TCL) || defined(TCLSH) 195 # include <tcl.h> 196 #endif 197 198 /* 199 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 200 ** Setting NDEBUG makes the code smaller and run faster. So the following 201 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 202 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 203 ** feature. 204 */ 205 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 206 # define NDEBUG 1 207 #endif 208 209 /* 210 ** The testcase() macro is used to aid in coverage testing. When 211 ** doing coverage testing, the condition inside the argument to 212 ** testcase() must be evaluated both true and false in order to 213 ** get full branch coverage. The testcase() macro is inserted 214 ** to help ensure adequate test coverage in places where simple 215 ** condition/decision coverage is inadequate. For example, testcase() 216 ** can be used to make sure boundary values are tested. For 217 ** bitmask tests, testcase() can be used to make sure each bit 218 ** is significant and used at least once. On switch statements 219 ** where multiple cases go to the same block of code, testcase() 220 ** can insure that all cases are evaluated. 221 ** 222 */ 223 #ifdef SQLITE_COVERAGE_TEST 224 void sqlite3Coverage(int); 225 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 226 #else 227 # define testcase(X) 228 #endif 229 230 /* 231 ** The TESTONLY macro is used to enclose variable declarations or 232 ** other bits of code that are needed to support the arguments 233 ** within testcase() and assert() macros. 234 */ 235 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 236 # define TESTONLY(X) X 237 #else 238 # define TESTONLY(X) 239 #endif 240 241 /* 242 ** Sometimes we need a small amount of code such as a variable initialization 243 ** to setup for a later assert() statement. We do not want this code to 244 ** appear when assert() is disabled. The following macro is therefore 245 ** used to contain that setup code. The "VVA" acronym stands for 246 ** "Verification, Validation, and Accreditation". In other words, the 247 ** code within VVA_ONLY() will only run during verification processes. 248 */ 249 #ifndef NDEBUG 250 # define VVA_ONLY(X) X 251 #else 252 # define VVA_ONLY(X) 253 #endif 254 255 /* 256 ** The ALWAYS and NEVER macros surround boolean expressions which 257 ** are intended to always be true or false, respectively. Such 258 ** expressions could be omitted from the code completely. But they 259 ** are included in a few cases in order to enhance the resilience 260 ** of SQLite to unexpected behavior - to make the code "self-healing" 261 ** or "ductile" rather than being "brittle" and crashing at the first 262 ** hint of unplanned behavior. 263 ** 264 ** In other words, ALWAYS and NEVER are added for defensive code. 265 ** 266 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 267 ** be true and false so that the unreachable code then specify will 268 ** not be counted as untested code. 269 */ 270 #if defined(SQLITE_COVERAGE_TEST) 271 # define ALWAYS(X) (1) 272 # define NEVER(X) (0) 273 #elif !defined(NDEBUG) 274 # define ALWAYS(X) ((X)?1:(assert(0),0)) 275 # define NEVER(X) ((X)?(assert(0),1):0) 276 #else 277 # define ALWAYS(X) (X) 278 # define NEVER(X) (X) 279 #endif 280 281 /* 282 ** Return true (non-zero) if the input is a integer that is too large 283 ** to fit in 32-bits. This macro is used inside of various testcase() 284 ** macros to verify that we have tested SQLite for large-file support. 285 */ 286 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 287 288 /* 289 ** The macro unlikely() is a hint that surrounds a boolean 290 ** expression that is usually false. Macro likely() surrounds 291 ** a boolean expression that is usually true. GCC is able to 292 ** use these hints to generate better code, sometimes. 293 */ 294 #if defined(__GNUC__) && 0 295 # define likely(X) __builtin_expect((X),1) 296 # define unlikely(X) __builtin_expect((X),0) 297 #else 298 # define likely(X) !!(X) 299 # define unlikely(X) !!(X) 300 #endif 301 302 #include "sqlite3.h" 303 #include "hash.h" 304 #include "parse.h" 305 #include <stdio.h> 306 #include <stdlib.h> 307 #include <string.h> 308 #include <assert.h> 309 #include <stddef.h> 310 311 /* 312 ** If compiling for a processor that lacks floating point support, 313 ** substitute integer for floating-point 314 */ 315 #ifdef SQLITE_OMIT_FLOATING_POINT 316 # define double sqlite_int64 317 # define float sqlite_int64 318 # define LONGDOUBLE_TYPE sqlite_int64 319 # ifndef SQLITE_BIG_DBL 320 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 321 # endif 322 # define SQLITE_OMIT_DATETIME_FUNCS 1 323 # define SQLITE_OMIT_TRACE 1 324 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 325 # undef SQLITE_HAVE_ISNAN 326 #endif 327 #ifndef SQLITE_BIG_DBL 328 # define SQLITE_BIG_DBL (1e99) 329 #endif 330 331 /* 332 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 333 ** afterward. Having this macro allows us to cause the C compiler 334 ** to omit code used by TEMP tables without messy #ifndef statements. 335 */ 336 #ifdef SQLITE_OMIT_TEMPDB 337 #define OMIT_TEMPDB 1 338 #else 339 #define OMIT_TEMPDB 0 340 #endif 341 342 /* 343 ** The "file format" number is an integer that is incremented whenever 344 ** the VDBE-level file format changes. The following macros define the 345 ** the default file format for new databases and the maximum file format 346 ** that the library can read. 347 */ 348 #define SQLITE_MAX_FILE_FORMAT 4 349 #ifndef SQLITE_DEFAULT_FILE_FORMAT 350 # define SQLITE_DEFAULT_FILE_FORMAT 1 351 #endif 352 353 /* 354 ** Determine whether triggers are recursive by default. This can be 355 ** changed at run-time using a pragma. 356 */ 357 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 358 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 359 #endif 360 361 /* 362 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 363 ** on the command-line 364 */ 365 #ifndef SQLITE_TEMP_STORE 366 # define SQLITE_TEMP_STORE 1 367 #endif 368 369 /* 370 ** GCC does not define the offsetof() macro so we'll have to do it 371 ** ourselves. 372 */ 373 #ifndef offsetof 374 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 375 #endif 376 377 /* 378 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 379 ** not, there are still machines out there that use EBCDIC.) 380 */ 381 #if 'A' == '\301' 382 # define SQLITE_EBCDIC 1 383 #else 384 # define SQLITE_ASCII 1 385 #endif 386 387 /* 388 ** Integers of known sizes. These typedefs might change for architectures 389 ** where the sizes very. Preprocessor macros are available so that the 390 ** types can be conveniently redefined at compile-type. Like this: 391 ** 392 ** cc '-DUINTPTR_TYPE=long long int' ... 393 */ 394 #ifndef UINT32_TYPE 395 # ifdef HAVE_UINT32_T 396 # define UINT32_TYPE uint32_t 397 # else 398 # define UINT32_TYPE unsigned int 399 # endif 400 #endif 401 #ifndef UINT16_TYPE 402 # ifdef HAVE_UINT16_T 403 # define UINT16_TYPE uint16_t 404 # else 405 # define UINT16_TYPE unsigned short int 406 # endif 407 #endif 408 #ifndef INT16_TYPE 409 # ifdef HAVE_INT16_T 410 # define INT16_TYPE int16_t 411 # else 412 # define INT16_TYPE short int 413 # endif 414 #endif 415 #ifndef UINT8_TYPE 416 # ifdef HAVE_UINT8_T 417 # define UINT8_TYPE uint8_t 418 # else 419 # define UINT8_TYPE unsigned char 420 # endif 421 #endif 422 #ifndef INT8_TYPE 423 # ifdef HAVE_INT8_T 424 # define INT8_TYPE int8_t 425 # else 426 # define INT8_TYPE signed char 427 # endif 428 #endif 429 #ifndef LONGDOUBLE_TYPE 430 # define LONGDOUBLE_TYPE long double 431 #endif 432 typedef sqlite_int64 i64; /* 8-byte signed integer */ 433 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 434 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 435 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 436 typedef INT16_TYPE i16; /* 2-byte signed integer */ 437 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 438 typedef INT8_TYPE i8; /* 1-byte signed integer */ 439 440 /* 441 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 442 ** that can be stored in a u32 without loss of data. The value 443 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 444 ** have to specify the value in the less intuitive manner shown: 445 */ 446 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 447 448 /* 449 ** Macros to determine whether the machine is big or little endian, 450 ** evaluated at runtime. 451 */ 452 #ifdef SQLITE_AMALGAMATION 453 const int sqlite3one = 1; 454 #else 455 extern const int sqlite3one; 456 #endif 457 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 458 || defined(__x86_64) || defined(__x86_64__) 459 # define SQLITE_BIGENDIAN 0 460 # define SQLITE_LITTLEENDIAN 1 461 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 462 #else 463 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 464 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 465 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 466 #endif 467 468 /* 469 ** Constants for the largest and smallest possible 64-bit signed integers. 470 ** These macros are designed to work correctly on both 32-bit and 64-bit 471 ** compilers. 472 */ 473 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 474 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 475 476 /* 477 ** Round up a number to the next larger multiple of 8. This is used 478 ** to force 8-byte alignment on 64-bit architectures. 479 */ 480 #define ROUND8(x) (((x)+7)&~7) 481 482 /* 483 ** Round down to the nearest multiple of 8 484 */ 485 #define ROUNDDOWN8(x) ((x)&~7) 486 487 /* 488 ** Assert that the pointer X is aligned to an 8-byte boundary. This 489 ** macro is used only within assert() to verify that the code gets 490 ** all alignment restrictions correct. 491 ** 492 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 493 ** underlying malloc() implemention might return us 4-byte aligned 494 ** pointers. In that case, only verify 4-byte alignment. 495 */ 496 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 497 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 498 #else 499 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 500 #endif 501 502 503 /* 504 ** An instance of the following structure is used to store the busy-handler 505 ** callback for a given sqlite handle. 506 ** 507 ** The sqlite.busyHandler member of the sqlite struct contains the busy 508 ** callback for the database handle. Each pager opened via the sqlite 509 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 510 ** callback is currently invoked only from within pager.c. 511 */ 512 typedef struct BusyHandler BusyHandler; 513 struct BusyHandler { 514 int (*xFunc)(void *,int); /* The busy callback */ 515 void *pArg; /* First arg to busy callback */ 516 int nBusy; /* Incremented with each busy call */ 517 }; 518 519 /* 520 ** Name of the master database table. The master database table 521 ** is a special table that holds the names and attributes of all 522 ** user tables and indices. 523 */ 524 #define MASTER_NAME "sqlite_master" 525 #define TEMP_MASTER_NAME "sqlite_temp_master" 526 527 /* 528 ** The root-page of the master database table. 529 */ 530 #define MASTER_ROOT 1 531 532 /* 533 ** The name of the schema table. 534 */ 535 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 536 537 /* 538 ** A convenience macro that returns the number of elements in 539 ** an array. 540 */ 541 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 542 543 /* 544 ** The following value as a destructor means to use sqlite3DbFree(). 545 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 546 */ 547 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 548 549 /* 550 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 551 ** not support Writable Static Data (WSD) such as global and static variables. 552 ** All variables must either be on the stack or dynamically allocated from 553 ** the heap. When WSD is unsupported, the variable declarations scattered 554 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 555 ** macro is used for this purpose. And instead of referencing the variable 556 ** directly, we use its constant as a key to lookup the run-time allocated 557 ** buffer that holds real variable. The constant is also the initializer 558 ** for the run-time allocated buffer. 559 ** 560 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 561 ** macros become no-ops and have zero performance impact. 562 */ 563 #ifdef SQLITE_OMIT_WSD 564 #define SQLITE_WSD const 565 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 566 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 567 int sqlite3_wsd_init(int N, int J); 568 void *sqlite3_wsd_find(void *K, int L); 569 #else 570 #define SQLITE_WSD 571 #define GLOBAL(t,v) v 572 #define sqlite3GlobalConfig sqlite3Config 573 #endif 574 575 /* 576 ** The following macros are used to suppress compiler warnings and to 577 ** make it clear to human readers when a function parameter is deliberately 578 ** left unused within the body of a function. This usually happens when 579 ** a function is called via a function pointer. For example the 580 ** implementation of an SQL aggregate step callback may not use the 581 ** parameter indicating the number of arguments passed to the aggregate, 582 ** if it knows that this is enforced elsewhere. 583 ** 584 ** When a function parameter is not used at all within the body of a function, 585 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 586 ** However, these macros may also be used to suppress warnings related to 587 ** parameters that may or may not be used depending on compilation options. 588 ** For example those parameters only used in assert() statements. In these 589 ** cases the parameters are named as per the usual conventions. 590 */ 591 #define UNUSED_PARAMETER(x) (void)(x) 592 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 593 594 /* 595 ** Forward references to structures 596 */ 597 typedef struct AggInfo AggInfo; 598 typedef struct AuthContext AuthContext; 599 typedef struct AutoincInfo AutoincInfo; 600 typedef struct Bitvec Bitvec; 601 typedef struct CollSeq CollSeq; 602 typedef struct Column Column; 603 typedef struct Db Db; 604 typedef struct Schema Schema; 605 typedef struct Expr Expr; 606 typedef struct ExprList ExprList; 607 typedef struct ExprSpan ExprSpan; 608 typedef struct FKey FKey; 609 typedef struct FuncDestructor FuncDestructor; 610 typedef struct FuncDef FuncDef; 611 typedef struct FuncDefHash FuncDefHash; 612 typedef struct IdList IdList; 613 typedef struct Index Index; 614 typedef struct IndexSample IndexSample; 615 typedef struct KeyClass KeyClass; 616 typedef struct KeyInfo KeyInfo; 617 typedef struct Lookaside Lookaside; 618 typedef struct LookasideSlot LookasideSlot; 619 typedef struct Module Module; 620 typedef struct NameContext NameContext; 621 typedef struct Parse Parse; 622 typedef struct RowSet RowSet; 623 typedef struct Savepoint Savepoint; 624 typedef struct Select Select; 625 typedef struct SrcList SrcList; 626 typedef struct StrAccum StrAccum; 627 typedef struct Table Table; 628 typedef struct TableLock TableLock; 629 typedef struct Token Token; 630 typedef struct Trigger Trigger; 631 typedef struct TriggerPrg TriggerPrg; 632 typedef struct TriggerStep TriggerStep; 633 typedef struct UnpackedRecord UnpackedRecord; 634 typedef struct VTable VTable; 635 typedef struct Walker Walker; 636 typedef struct WherePlan WherePlan; 637 typedef struct WhereInfo WhereInfo; 638 typedef struct WhereLevel WhereLevel; 639 640 /* 641 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 642 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 643 ** pointer types (i.e. FuncDef) defined above. 644 */ 645 #include "btree.h" 646 #include "vdbe.h" 647 #include "pager.h" 648 #include "pcache.h" 649 650 #include "os.h" 651 #include "mutex.h" 652 653 654 /* 655 ** Each database file to be accessed by the system is an instance 656 ** of the following structure. There are normally two of these structures 657 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 658 ** aDb[1] is the database file used to hold temporary tables. Additional 659 ** databases may be attached. 660 */ 661 struct Db { 662 char *zName; /* Name of this database */ 663 Btree *pBt; /* The B*Tree structure for this database file */ 664 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 665 u8 safety_level; /* How aggressive at syncing data to disk */ 666 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 667 }; 668 669 /* 670 ** An instance of the following structure stores a database schema. 671 */ 672 struct Schema { 673 int schema_cookie; /* Database schema version number for this file */ 674 Hash tblHash; /* All tables indexed by name */ 675 Hash idxHash; /* All (named) indices indexed by name */ 676 Hash trigHash; /* All triggers indexed by name */ 677 Hash fkeyHash; /* All foreign keys by referenced table name */ 678 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 679 u8 file_format; /* Schema format version for this file */ 680 u8 enc; /* Text encoding used by this database */ 681 u16 flags; /* Flags associated with this schema */ 682 int cache_size; /* Number of pages to use in the cache */ 683 }; 684 685 /* 686 ** These macros can be used to test, set, or clear bits in the 687 ** Db.pSchema->flags field. 688 */ 689 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 690 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 691 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 692 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 693 694 /* 695 ** Allowed values for the DB.pSchema->flags field. 696 ** 697 ** The DB_SchemaLoaded flag is set after the database schema has been 698 ** read into internal hash tables. 699 ** 700 ** DB_UnresetViews means that one or more views have column names that 701 ** have been filled out. If the schema changes, these column names might 702 ** changes and so the view will need to be reset. 703 */ 704 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 705 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 706 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 707 708 /* 709 ** The number of different kinds of things that can be limited 710 ** using the sqlite3_limit() interface. 711 */ 712 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 713 714 /* 715 ** Lookaside malloc is a set of fixed-size buffers that can be used 716 ** to satisfy small transient memory allocation requests for objects 717 ** associated with a particular database connection. The use of 718 ** lookaside malloc provides a significant performance enhancement 719 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 720 ** SQL statements. 721 ** 722 ** The Lookaside structure holds configuration information about the 723 ** lookaside malloc subsystem. Each available memory allocation in 724 ** the lookaside subsystem is stored on a linked list of LookasideSlot 725 ** objects. 726 ** 727 ** Lookaside allocations are only allowed for objects that are associated 728 ** with a particular database connection. Hence, schema information cannot 729 ** be stored in lookaside because in shared cache mode the schema information 730 ** is shared by multiple database connections. Therefore, while parsing 731 ** schema information, the Lookaside.bEnabled flag is cleared so that 732 ** lookaside allocations are not used to construct the schema objects. 733 */ 734 struct Lookaside { 735 u16 sz; /* Size of each buffer in bytes */ 736 u8 bEnabled; /* False to disable new lookaside allocations */ 737 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 738 int nOut; /* Number of buffers currently checked out */ 739 int mxOut; /* Highwater mark for nOut */ 740 LookasideSlot *pFree; /* List of available buffers */ 741 void *pStart; /* First byte of available memory space */ 742 void *pEnd; /* First byte past end of available space */ 743 }; 744 struct LookasideSlot { 745 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 746 }; 747 748 /* 749 ** A hash table for function definitions. 750 ** 751 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 752 ** Collisions are on the FuncDef.pHash chain. 753 */ 754 struct FuncDefHash { 755 FuncDef *a[23]; /* Hash table for functions */ 756 }; 757 758 /* 759 ** Each database connection is an instance of the following structure. 760 ** 761 ** The sqlite.lastRowid records the last insert rowid generated by an 762 ** insert statement. Inserts on views do not affect its value. Each 763 ** trigger has its own context, so that lastRowid can be updated inside 764 ** triggers as usual. The previous value will be restored once the trigger 765 ** exits. Upon entering a before or instead of trigger, lastRowid is no 766 ** longer (since after version 2.8.12) reset to -1. 767 ** 768 ** The sqlite.nChange does not count changes within triggers and keeps no 769 ** context. It is reset at start of sqlite3_exec. 770 ** The sqlite.lsChange represents the number of changes made by the last 771 ** insert, update, or delete statement. It remains constant throughout the 772 ** length of a statement and is then updated by OP_SetCounts. It keeps a 773 ** context stack just like lastRowid so that the count of changes 774 ** within a trigger is not seen outside the trigger. Changes to views do not 775 ** affect the value of lsChange. 776 ** The sqlite.csChange keeps track of the number of current changes (since 777 ** the last statement) and is used to update sqlite_lsChange. 778 ** 779 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 780 ** store the most recent error code and, if applicable, string. The 781 ** internal function sqlite3Error() is used to set these variables 782 ** consistently. 783 */ 784 struct sqlite3 { 785 sqlite3_vfs *pVfs; /* OS Interface */ 786 int nDb; /* Number of backends currently in use */ 787 Db *aDb; /* All backends */ 788 int flags; /* Miscellaneous flags. See below */ 789 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 790 int errCode; /* Most recent error code (SQLITE_*) */ 791 int errMask; /* & result codes with this before returning */ 792 u8 autoCommit; /* The auto-commit flag. */ 793 u8 temp_store; /* 1: file 2: memory 0: default */ 794 u8 mallocFailed; /* True if we have seen a malloc failure */ 795 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 796 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 797 u8 suppressErr; /* Do not issue error messages if true */ 798 int nextPagesize; /* Pagesize after VACUUM if >0 */ 799 int nTable; /* Number of tables in the database */ 800 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 801 i64 lastRowid; /* ROWID of most recent insert (see above) */ 802 u32 magic; /* Magic number for detect library misuse */ 803 int nChange; /* Value returned by sqlite3_changes() */ 804 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 805 sqlite3_mutex *mutex; /* Connection mutex */ 806 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 807 struct sqlite3InitInfo { /* Information used during initialization */ 808 int iDb; /* When back is being initialized */ 809 int newTnum; /* Rootpage of table being initialized */ 810 u8 busy; /* TRUE if currently initializing */ 811 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 812 } init; 813 int nExtension; /* Number of loaded extensions */ 814 void **aExtension; /* Array of shared library handles */ 815 struct Vdbe *pVdbe; /* List of active virtual machines */ 816 int activeVdbeCnt; /* Number of VDBEs currently executing */ 817 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 818 void (*xTrace)(void*,const char*); /* Trace function */ 819 void *pTraceArg; /* Argument to the trace function */ 820 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 821 void *pProfileArg; /* Argument to profile function */ 822 void *pCommitArg; /* Argument to xCommitCallback() */ 823 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 824 void *pRollbackArg; /* Argument to xRollbackCallback() */ 825 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 826 void *pUpdateArg; 827 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 828 #ifndef SQLITE_OMIT_WAL 829 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 830 void *pWalArg; 831 #endif 832 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 833 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 834 void *pCollNeededArg; 835 sqlite3_value *pErr; /* Most recent error message */ 836 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 837 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 838 union { 839 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 840 double notUsed1; /* Spacer */ 841 } u1; 842 Lookaside lookaside; /* Lookaside malloc configuration */ 843 #ifndef SQLITE_OMIT_AUTHORIZATION 844 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 845 /* Access authorization function */ 846 void *pAuthArg; /* 1st argument to the access auth function */ 847 #endif 848 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 849 int (*xProgress)(void *); /* The progress callback */ 850 void *pProgressArg; /* Argument to the progress callback */ 851 int nProgressOps; /* Number of opcodes for progress callback */ 852 #endif 853 #ifndef SQLITE_OMIT_VIRTUALTABLE 854 Hash aModule; /* populated by sqlite3_create_module() */ 855 Table *pVTab; /* vtab with active Connect/Create method */ 856 VTable **aVTrans; /* Virtual tables with open transactions */ 857 int nVTrans; /* Allocated size of aVTrans */ 858 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 859 #endif 860 FuncDefHash aFunc; /* Hash table of connection functions */ 861 Hash aCollSeq; /* All collating sequences */ 862 BusyHandler busyHandler; /* Busy callback */ 863 int busyTimeout; /* Busy handler timeout, in msec */ 864 Db aDbStatic[2]; /* Static space for the 2 default backends */ 865 Savepoint *pSavepoint; /* List of active savepoints */ 866 int nSavepoint; /* Number of non-transaction savepoints */ 867 int nStatement; /* Number of nested statement-transactions */ 868 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 869 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 870 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 871 872 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 873 /* The following variables are all protected by the STATIC_MASTER 874 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 875 ** 876 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 877 ** unlock so that it can proceed. 878 ** 879 ** When X.pBlockingConnection==Y, that means that something that X tried 880 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 881 ** held by Y. 882 */ 883 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 884 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 885 void *pUnlockArg; /* Argument to xUnlockNotify */ 886 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 887 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 888 #endif 889 }; 890 891 /* 892 ** A macro to discover the encoding of a database. 893 */ 894 #define ENC(db) ((db)->aDb[0].pSchema->enc) 895 896 /* 897 ** Possible values for the sqlite3.flags. 898 */ 899 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 900 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 901 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 902 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 903 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 904 /* DELETE, or UPDATE and return */ 905 /* the count using a callback. */ 906 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 907 /* result set is empty */ 908 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 909 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 910 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 911 #define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when 912 ** accessing read-only databases */ 913 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 914 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 915 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 916 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 917 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 918 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 919 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 920 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 921 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 922 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 923 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 924 925 /* 926 ** Bits of the sqlite3.flags field that are used by the 927 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 928 ** These must be the low-order bits of the flags field. 929 */ 930 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 931 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 932 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 933 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 934 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 935 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 936 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 937 938 /* 939 ** Possible values for the sqlite.magic field. 940 ** The numbers are obtained at random and have no special meaning, other 941 ** than being distinct from one another. 942 */ 943 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 944 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 945 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 946 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 947 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 948 949 /* 950 ** Each SQL function is defined by an instance of the following 951 ** structure. A pointer to this structure is stored in the sqlite.aFunc 952 ** hash table. When multiple functions have the same name, the hash table 953 ** points to a linked list of these structures. 954 */ 955 struct FuncDef { 956 i16 nArg; /* Number of arguments. -1 means unlimited */ 957 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 958 u8 flags; /* Some combination of SQLITE_FUNC_* */ 959 void *pUserData; /* User data parameter */ 960 FuncDef *pNext; /* Next function with same name */ 961 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 962 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 963 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 964 char *zName; /* SQL name of the function. */ 965 FuncDef *pHash; /* Next with a different name but the same hash */ 966 FuncDestructor *pDestructor; /* Reference counted destructor function */ 967 }; 968 969 /* 970 ** This structure encapsulates a user-function destructor callback (as 971 ** configured using create_function_v2()) and a reference counter. When 972 ** create_function_v2() is called to create a function with a destructor, 973 ** a single object of this type is allocated. FuncDestructor.nRef is set to 974 ** the number of FuncDef objects created (either 1 or 3, depending on whether 975 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 976 ** member of each of the new FuncDef objects is set to point to the allocated 977 ** FuncDestructor. 978 ** 979 ** Thereafter, when one of the FuncDef objects is deleted, the reference 980 ** count on this object is decremented. When it reaches 0, the destructor 981 ** is invoked and the FuncDestructor structure freed. 982 */ 983 struct FuncDestructor { 984 int nRef; 985 void (*xDestroy)(void *); 986 void *pUserData; 987 }; 988 989 /* 990 ** Possible values for FuncDef.flags 991 */ 992 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 993 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 994 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 995 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 996 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ 997 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 998 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ 999 1000 /* 1001 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1002 ** used to create the initializers for the FuncDef structures. 1003 ** 1004 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1005 ** Used to create a scalar function definition of a function zName 1006 ** implemented by C function xFunc that accepts nArg arguments. The 1007 ** value passed as iArg is cast to a (void*) and made available 1008 ** as the user-data (sqlite3_user_data()) for the function. If 1009 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1010 ** 1011 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1012 ** Used to create an aggregate function definition implemented by 1013 ** the C functions xStep and xFinal. The first four parameters 1014 ** are interpreted in the same way as the first 4 parameters to 1015 ** FUNCTION(). 1016 ** 1017 ** LIKEFUNC(zName, nArg, pArg, flags) 1018 ** Used to create a scalar function definition of a function zName 1019 ** that accepts nArg arguments and is implemented by a call to C 1020 ** function likeFunc. Argument pArg is cast to a (void *) and made 1021 ** available as the function user-data (sqlite3_user_data()). The 1022 ** FuncDef.flags variable is set to the value passed as the flags 1023 ** parameter. 1024 */ 1025 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1026 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1027 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1028 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1029 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1030 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1031 #define LIKEFUNC(zName, nArg, arg, flags) \ 1032 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1033 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1034 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1035 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1036 1037 /* 1038 ** All current savepoints are stored in a linked list starting at 1039 ** sqlite3.pSavepoint. The first element in the list is the most recently 1040 ** opened savepoint. Savepoints are added to the list by the vdbe 1041 ** OP_Savepoint instruction. 1042 */ 1043 struct Savepoint { 1044 char *zName; /* Savepoint name (nul-terminated) */ 1045 i64 nDeferredCons; /* Number of deferred fk violations */ 1046 Savepoint *pNext; /* Parent savepoint (if any) */ 1047 }; 1048 1049 /* 1050 ** The following are used as the second parameter to sqlite3Savepoint(), 1051 ** and as the P1 argument to the OP_Savepoint instruction. 1052 */ 1053 #define SAVEPOINT_BEGIN 0 1054 #define SAVEPOINT_RELEASE 1 1055 #define SAVEPOINT_ROLLBACK 2 1056 1057 1058 /* 1059 ** Each SQLite module (virtual table definition) is defined by an 1060 ** instance of the following structure, stored in the sqlite3.aModule 1061 ** hash table. 1062 */ 1063 struct Module { 1064 const sqlite3_module *pModule; /* Callback pointers */ 1065 const char *zName; /* Name passed to create_module() */ 1066 void *pAux; /* pAux passed to create_module() */ 1067 void (*xDestroy)(void *); /* Module destructor function */ 1068 }; 1069 1070 /* 1071 ** information about each column of an SQL table is held in an instance 1072 ** of this structure. 1073 */ 1074 struct Column { 1075 char *zName; /* Name of this column */ 1076 Expr *pDflt; /* Default value of this column */ 1077 char *zDflt; /* Original text of the default value */ 1078 char *zType; /* Data type for this column */ 1079 char *zColl; /* Collating sequence. If NULL, use the default */ 1080 u8 notNull; /* True if there is a NOT NULL constraint */ 1081 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1082 char affinity; /* One of the SQLITE_AFF_... values */ 1083 #ifndef SQLITE_OMIT_VIRTUALTABLE 1084 u8 isHidden; /* True if this column is 'hidden' */ 1085 #endif 1086 }; 1087 1088 /* 1089 ** A "Collating Sequence" is defined by an instance of the following 1090 ** structure. Conceptually, a collating sequence consists of a name and 1091 ** a comparison routine that defines the order of that sequence. 1092 ** 1093 ** There may two separate implementations of the collation function, one 1094 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1095 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1096 ** native byte order. When a collation sequence is invoked, SQLite selects 1097 ** the version that will require the least expensive encoding 1098 ** translations, if any. 1099 ** 1100 ** The CollSeq.pUser member variable is an extra parameter that passed in 1101 ** as the first argument to the UTF-8 comparison function, xCmp. 1102 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1103 ** xCmp16. 1104 ** 1105 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1106 ** collating sequence is undefined. Indices built on an undefined 1107 ** collating sequence may not be read or written. 1108 */ 1109 struct CollSeq { 1110 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1111 u8 enc; /* Text encoding handled by xCmp() */ 1112 u8 type; /* One of the SQLITE_COLL_... values below */ 1113 void *pUser; /* First argument to xCmp() */ 1114 int (*xCmp)(void*,int, const void*, int, const void*); 1115 void (*xDel)(void*); /* Destructor for pUser */ 1116 }; 1117 1118 /* 1119 ** Allowed values of CollSeq.type: 1120 */ 1121 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 1122 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 1123 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 1124 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 1125 1126 /* 1127 ** A sort order can be either ASC or DESC. 1128 */ 1129 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1130 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1131 1132 /* 1133 ** Column affinity types. 1134 ** 1135 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1136 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1137 ** the speed a little by numbering the values consecutively. 1138 ** 1139 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1140 ** when multiple affinity types are concatenated into a string and 1141 ** used as the P4 operand, they will be more readable. 1142 ** 1143 ** Note also that the numeric types are grouped together so that testing 1144 ** for a numeric type is a single comparison. 1145 */ 1146 #define SQLITE_AFF_TEXT 'a' 1147 #define SQLITE_AFF_NONE 'b' 1148 #define SQLITE_AFF_NUMERIC 'c' 1149 #define SQLITE_AFF_INTEGER 'd' 1150 #define SQLITE_AFF_REAL 'e' 1151 1152 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1153 1154 /* 1155 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1156 ** affinity value. 1157 */ 1158 #define SQLITE_AFF_MASK 0x67 1159 1160 /* 1161 ** Additional bit values that can be ORed with an affinity without 1162 ** changing the affinity. 1163 */ 1164 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1165 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1166 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1167 1168 /* 1169 ** An object of this type is created for each virtual table present in 1170 ** the database schema. 1171 ** 1172 ** If the database schema is shared, then there is one instance of this 1173 ** structure for each database connection (sqlite3*) that uses the shared 1174 ** schema. This is because each database connection requires its own unique 1175 ** instance of the sqlite3_vtab* handle used to access the virtual table 1176 ** implementation. sqlite3_vtab* handles can not be shared between 1177 ** database connections, even when the rest of the in-memory database 1178 ** schema is shared, as the implementation often stores the database 1179 ** connection handle passed to it via the xConnect() or xCreate() method 1180 ** during initialization internally. This database connection handle may 1181 ** then used by the virtual table implementation to access real tables 1182 ** within the database. So that they appear as part of the callers 1183 ** transaction, these accesses need to be made via the same database 1184 ** connection as that used to execute SQL operations on the virtual table. 1185 ** 1186 ** All VTable objects that correspond to a single table in a shared 1187 ** database schema are initially stored in a linked-list pointed to by 1188 ** the Table.pVTable member variable of the corresponding Table object. 1189 ** When an sqlite3_prepare() operation is required to access the virtual 1190 ** table, it searches the list for the VTable that corresponds to the 1191 ** database connection doing the preparing so as to use the correct 1192 ** sqlite3_vtab* handle in the compiled query. 1193 ** 1194 ** When an in-memory Table object is deleted (for example when the 1195 ** schema is being reloaded for some reason), the VTable objects are not 1196 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1197 ** immediately. Instead, they are moved from the Table.pVTable list to 1198 ** another linked list headed by the sqlite3.pDisconnect member of the 1199 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1200 ** next time a statement is prepared using said sqlite3*. This is done 1201 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1202 ** Refer to comments above function sqlite3VtabUnlockList() for an 1203 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1204 ** list without holding the corresponding sqlite3.mutex mutex. 1205 ** 1206 ** The memory for objects of this type is always allocated by 1207 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1208 ** the first argument. 1209 */ 1210 struct VTable { 1211 sqlite3 *db; /* Database connection associated with this table */ 1212 Module *pMod; /* Pointer to module implementation */ 1213 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1214 int nRef; /* Number of pointers to this structure */ 1215 VTable *pNext; /* Next in linked list (see above) */ 1216 }; 1217 1218 /* 1219 ** Each SQL table is represented in memory by an instance of the 1220 ** following structure. 1221 ** 1222 ** Table.zName is the name of the table. The case of the original 1223 ** CREATE TABLE statement is stored, but case is not significant for 1224 ** comparisons. 1225 ** 1226 ** Table.nCol is the number of columns in this table. Table.aCol is a 1227 ** pointer to an array of Column structures, one for each column. 1228 ** 1229 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1230 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1231 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1232 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1233 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1234 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1235 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1236 ** 1237 ** Table.tnum is the page number for the root BTree page of the table in the 1238 ** database file. If Table.iDb is the index of the database table backend 1239 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1240 ** holds temporary tables and indices. If TF_Ephemeral is set 1241 ** then the table is stored in a file that is automatically deleted 1242 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1243 ** refers VDBE cursor number that holds the table open, not to the root 1244 ** page number. Transient tables are used to hold the results of a 1245 ** sub-query that appears instead of a real table name in the FROM clause 1246 ** of a SELECT statement. 1247 */ 1248 struct Table { 1249 char *zName; /* Name of the table or view */ 1250 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1251 int nCol; /* Number of columns in this table */ 1252 Column *aCol; /* Information about each column */ 1253 Index *pIndex; /* List of SQL indexes on this table. */ 1254 int tnum; /* Root BTree node for this table (see note above) */ 1255 unsigned nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1256 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1257 u16 nRef; /* Number of pointers to this Table */ 1258 u8 tabFlags; /* Mask of TF_* values */ 1259 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1260 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1261 char *zColAff; /* String defining the affinity of each column */ 1262 #ifndef SQLITE_OMIT_CHECK 1263 Expr *pCheck; /* The AND of all CHECK constraints */ 1264 #endif 1265 #ifndef SQLITE_OMIT_ALTERTABLE 1266 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1267 #endif 1268 #ifndef SQLITE_OMIT_VIRTUALTABLE 1269 VTable *pVTable; /* List of VTable objects. */ 1270 int nModuleArg; /* Number of arguments to the module */ 1271 char **azModuleArg; /* Text of all module args. [0] is module name */ 1272 #endif 1273 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1274 Schema *pSchema; /* Schema that contains this table */ 1275 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1276 }; 1277 1278 /* 1279 ** Allowed values for Tabe.tabFlags. 1280 */ 1281 #define TF_Readonly 0x01 /* Read-only system table */ 1282 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1283 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1284 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1285 #define TF_Virtual 0x10 /* Is a virtual table */ 1286 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1287 1288 1289 1290 /* 1291 ** Test to see whether or not a table is a virtual table. This is 1292 ** done as a macro so that it will be optimized out when virtual 1293 ** table support is omitted from the build. 1294 */ 1295 #ifndef SQLITE_OMIT_VIRTUALTABLE 1296 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1297 # define IsHiddenColumn(X) ((X)->isHidden) 1298 #else 1299 # define IsVirtual(X) 0 1300 # define IsHiddenColumn(X) 0 1301 #endif 1302 1303 /* 1304 ** Each foreign key constraint is an instance of the following structure. 1305 ** 1306 ** A foreign key is associated with two tables. The "from" table is 1307 ** the table that contains the REFERENCES clause that creates the foreign 1308 ** key. The "to" table is the table that is named in the REFERENCES clause. 1309 ** Consider this example: 1310 ** 1311 ** CREATE TABLE ex1( 1312 ** a INTEGER PRIMARY KEY, 1313 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1314 ** ); 1315 ** 1316 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1317 ** 1318 ** Each REFERENCES clause generates an instance of the following structure 1319 ** which is attached to the from-table. The to-table need not exist when 1320 ** the from-table is created. The existence of the to-table is not checked. 1321 */ 1322 struct FKey { 1323 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1324 FKey *pNextFrom; /* Next foreign key in pFrom */ 1325 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1326 FKey *pNextTo; /* Next foreign key on table named zTo */ 1327 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1328 int nCol; /* Number of columns in this key */ 1329 /* EV: R-30323-21917 */ 1330 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1331 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1332 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1333 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1334 int iFrom; /* Index of column in pFrom */ 1335 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1336 } aCol[1]; /* One entry for each of nCol column s */ 1337 }; 1338 1339 /* 1340 ** SQLite supports many different ways to resolve a constraint 1341 ** error. ROLLBACK processing means that a constraint violation 1342 ** causes the operation in process to fail and for the current transaction 1343 ** to be rolled back. ABORT processing means the operation in process 1344 ** fails and any prior changes from that one operation are backed out, 1345 ** but the transaction is not rolled back. FAIL processing means that 1346 ** the operation in progress stops and returns an error code. But prior 1347 ** changes due to the same operation are not backed out and no rollback 1348 ** occurs. IGNORE means that the particular row that caused the constraint 1349 ** error is not inserted or updated. Processing continues and no error 1350 ** is returned. REPLACE means that preexisting database rows that caused 1351 ** a UNIQUE constraint violation are removed so that the new insert or 1352 ** update can proceed. Processing continues and no error is reported. 1353 ** 1354 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1355 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1356 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1357 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1358 ** referenced table row is propagated into the row that holds the 1359 ** foreign key. 1360 ** 1361 ** The following symbolic values are used to record which type 1362 ** of action to take. 1363 */ 1364 #define OE_None 0 /* There is no constraint to check */ 1365 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1366 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1367 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1368 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1369 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1370 1371 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1372 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1373 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1374 #define OE_Cascade 9 /* Cascade the changes */ 1375 1376 #define OE_Default 99 /* Do whatever the default action is */ 1377 1378 1379 /* 1380 ** An instance of the following structure is passed as the first 1381 ** argument to sqlite3VdbeKeyCompare and is used to control the 1382 ** comparison of the two index keys. 1383 */ 1384 struct KeyInfo { 1385 sqlite3 *db; /* The database connection */ 1386 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1387 u16 nField; /* Number of entries in aColl[] */ 1388 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1389 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1390 }; 1391 1392 /* 1393 ** An instance of the following structure holds information about a 1394 ** single index record that has already been parsed out into individual 1395 ** values. 1396 ** 1397 ** A record is an object that contains one or more fields of data. 1398 ** Records are used to store the content of a table row and to store 1399 ** the key of an index. A blob encoding of a record is created by 1400 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1401 ** OP_Column opcode. 1402 ** 1403 ** This structure holds a record that has already been disassembled 1404 ** into its constituent fields. 1405 */ 1406 struct UnpackedRecord { 1407 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1408 u16 nField; /* Number of entries in apMem[] */ 1409 u16 flags; /* Boolean settings. UNPACKED_... below */ 1410 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1411 Mem *aMem; /* Values */ 1412 }; 1413 1414 /* 1415 ** Allowed values of UnpackedRecord.flags 1416 */ 1417 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 1418 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 1419 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 1420 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 1421 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 1422 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ 1423 1424 /* 1425 ** Each SQL index is represented in memory by an 1426 ** instance of the following structure. 1427 ** 1428 ** The columns of the table that are to be indexed are described 1429 ** by the aiColumn[] field of this structure. For example, suppose 1430 ** we have the following table and index: 1431 ** 1432 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1433 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1434 ** 1435 ** In the Table structure describing Ex1, nCol==3 because there are 1436 ** three columns in the table. In the Index structure describing 1437 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1438 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1439 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1440 ** The second column to be indexed (c1) has an index of 0 in 1441 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1442 ** 1443 ** The Index.onError field determines whether or not the indexed columns 1444 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1445 ** it means this is not a unique index. Otherwise it is a unique index 1446 ** and the value of Index.onError indicate the which conflict resolution 1447 ** algorithm to employ whenever an attempt is made to insert a non-unique 1448 ** element. 1449 */ 1450 struct Index { 1451 char *zName; /* Name of this index */ 1452 int nColumn; /* Number of columns in the table used by this index */ 1453 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1454 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1455 Table *pTable; /* The SQL table being indexed */ 1456 int tnum; /* Page containing root of this index in database file */ 1457 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1458 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1459 char *zColAff; /* String defining the affinity of each column */ 1460 Index *pNext; /* The next index associated with the same table */ 1461 Schema *pSchema; /* Schema containing this index */ 1462 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1463 char **azColl; /* Array of collation sequence names for index */ 1464 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ 1465 }; 1466 1467 /* 1468 ** Each sample stored in the sqlite_stat2 table is represented in memory 1469 ** using a structure of this type. 1470 */ 1471 struct IndexSample { 1472 union { 1473 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1474 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ 1475 } u; 1476 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1477 u8 nByte; /* Size in byte of text or blob. */ 1478 }; 1479 1480 /* 1481 ** Each token coming out of the lexer is an instance of 1482 ** this structure. Tokens are also used as part of an expression. 1483 ** 1484 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1485 ** may contain random values. Do not make any assumptions about Token.dyn 1486 ** and Token.n when Token.z==0. 1487 */ 1488 struct Token { 1489 const char *z; /* Text of the token. Not NULL-terminated! */ 1490 unsigned int n; /* Number of characters in this token */ 1491 }; 1492 1493 /* 1494 ** An instance of this structure contains information needed to generate 1495 ** code for a SELECT that contains aggregate functions. 1496 ** 1497 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1498 ** pointer to this structure. The Expr.iColumn field is the index in 1499 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1500 ** code for that node. 1501 ** 1502 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1503 ** original Select structure that describes the SELECT statement. These 1504 ** fields do not need to be freed when deallocating the AggInfo structure. 1505 */ 1506 struct AggInfo { 1507 u8 directMode; /* Direct rendering mode means take data directly 1508 ** from source tables rather than from accumulators */ 1509 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1510 ** than the source table */ 1511 int sortingIdx; /* Cursor number of the sorting index */ 1512 ExprList *pGroupBy; /* The group by clause */ 1513 int nSortingColumn; /* Number of columns in the sorting index */ 1514 struct AggInfo_col { /* For each column used in source tables */ 1515 Table *pTab; /* Source table */ 1516 int iTable; /* Cursor number of the source table */ 1517 int iColumn; /* Column number within the source table */ 1518 int iSorterColumn; /* Column number in the sorting index */ 1519 int iMem; /* Memory location that acts as accumulator */ 1520 Expr *pExpr; /* The original expression */ 1521 } *aCol; 1522 int nColumn; /* Number of used entries in aCol[] */ 1523 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1524 int nAccumulator; /* Number of columns that show through to the output. 1525 ** Additional columns are used only as parameters to 1526 ** aggregate functions */ 1527 struct AggInfo_func { /* For each aggregate function */ 1528 Expr *pExpr; /* Expression encoding the function */ 1529 FuncDef *pFunc; /* The aggregate function implementation */ 1530 int iMem; /* Memory location that acts as accumulator */ 1531 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1532 } *aFunc; 1533 int nFunc; /* Number of entries in aFunc[] */ 1534 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1535 }; 1536 1537 /* 1538 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1539 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1540 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1541 ** it uses less memory in the Expr object, which is a big memory user 1542 ** in systems with lots of prepared statements. And few applications 1543 ** need more than about 10 or 20 variables. But some extreme users want 1544 ** to have prepared statements with over 32767 variables, and for them 1545 ** the option is available (at compile-time). 1546 */ 1547 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1548 typedef i16 ynVar; 1549 #else 1550 typedef int ynVar; 1551 #endif 1552 1553 /* 1554 ** Each node of an expression in the parse tree is an instance 1555 ** of this structure. 1556 ** 1557 ** Expr.op is the opcode. The integer parser token codes are reused 1558 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1559 ** code representing the ">=" operator. This same integer code is reused 1560 ** to represent the greater-than-or-equal-to operator in the expression 1561 ** tree. 1562 ** 1563 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1564 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1565 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1566 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1567 ** then Expr.token contains the name of the function. 1568 ** 1569 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1570 ** binary operator. Either or both may be NULL. 1571 ** 1572 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1573 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1574 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1575 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1576 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1577 ** valid. 1578 ** 1579 ** An expression of the form ID or ID.ID refers to a column in a table. 1580 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1581 ** the integer cursor number of a VDBE cursor pointing to that table and 1582 ** Expr.iColumn is the column number for the specific column. If the 1583 ** expression is used as a result in an aggregate SELECT, then the 1584 ** value is also stored in the Expr.iAgg column in the aggregate so that 1585 ** it can be accessed after all aggregates are computed. 1586 ** 1587 ** If the expression is an unbound variable marker (a question mark 1588 ** character '?' in the original SQL) then the Expr.iTable holds the index 1589 ** number for that variable. 1590 ** 1591 ** If the expression is a subquery then Expr.iColumn holds an integer 1592 ** register number containing the result of the subquery. If the 1593 ** subquery gives a constant result, then iTable is -1. If the subquery 1594 ** gives a different answer at different times during statement processing 1595 ** then iTable is the address of a subroutine that computes the subquery. 1596 ** 1597 ** If the Expr is of type OP_Column, and the table it is selecting from 1598 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1599 ** corresponding table definition. 1600 ** 1601 ** ALLOCATION NOTES: 1602 ** 1603 ** Expr objects can use a lot of memory space in database schema. To 1604 ** help reduce memory requirements, sometimes an Expr object will be 1605 ** truncated. And to reduce the number of memory allocations, sometimes 1606 ** two or more Expr objects will be stored in a single memory allocation, 1607 ** together with Expr.zToken strings. 1608 ** 1609 ** If the EP_Reduced and EP_TokenOnly flags are set when 1610 ** an Expr object is truncated. When EP_Reduced is set, then all 1611 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1612 ** are contained within the same memory allocation. Note, however, that 1613 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1614 ** allocated, regardless of whether or not EP_Reduced is set. 1615 */ 1616 struct Expr { 1617 u8 op; /* Operation performed by this node */ 1618 char affinity; /* The affinity of the column or 0 if not a column */ 1619 u16 flags; /* Various flags. EP_* See below */ 1620 union { 1621 char *zToken; /* Token value. Zero terminated and dequoted */ 1622 int iValue; /* Integer value if EP_IntValue */ 1623 } u; 1624 1625 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1626 ** space is allocated for the fields below this point. An attempt to 1627 ** access them will result in a segfault or malfunction. 1628 *********************************************************************/ 1629 1630 Expr *pLeft; /* Left subnode */ 1631 Expr *pRight; /* Right subnode */ 1632 union { 1633 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1634 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1635 } x; 1636 CollSeq *pColl; /* The collation type of the column or 0 */ 1637 1638 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1639 ** space is allocated for the fields below this point. An attempt to 1640 ** access them will result in a segfault or malfunction. 1641 *********************************************************************/ 1642 1643 int iTable; /* TK_COLUMN: cursor number of table holding column 1644 ** TK_REGISTER: register number 1645 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1646 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1647 ** TK_VARIABLE: variable number (always >= 1). */ 1648 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1649 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1650 u8 flags2; /* Second set of flags. EP2_... */ 1651 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1652 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1653 Table *pTab; /* Table for TK_COLUMN expressions. */ 1654 #if SQLITE_MAX_EXPR_DEPTH>0 1655 int nHeight; /* Height of the tree headed by this node */ 1656 #endif 1657 }; 1658 1659 /* 1660 ** The following are the meanings of bits in the Expr.flags field. 1661 */ 1662 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1663 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1664 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1665 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1666 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1667 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1668 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1669 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1670 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1671 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1672 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1673 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1674 1675 #define EP_Reduced 0x1000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1676 #define EP_TokenOnly 0x2000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1677 #define EP_Static 0x4000 /* Held in memory not obtained from malloc() */ 1678 1679 /* 1680 ** The following are the meanings of bits in the Expr.flags2 field. 1681 */ 1682 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1683 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1684 1685 /* 1686 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1687 ** flag on an expression structure. This flag is used for VV&A only. The 1688 ** routine is implemented as a macro that only works when in debugging mode, 1689 ** so as not to burden production code. 1690 */ 1691 #ifdef SQLITE_DEBUG 1692 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1693 #else 1694 # define ExprSetIrreducible(X) 1695 #endif 1696 1697 /* 1698 ** These macros can be used to test, set, or clear bits in the 1699 ** Expr.flags field. 1700 */ 1701 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1702 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1703 #define ExprSetProperty(E,P) (E)->flags|=(P) 1704 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1705 1706 /* 1707 ** Macros to determine the number of bytes required by a normal Expr 1708 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1709 ** and an Expr struct with the EP_TokenOnly flag set. 1710 */ 1711 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1712 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1713 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1714 1715 /* 1716 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1717 ** above sqlite3ExprDup() for details. 1718 */ 1719 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1720 1721 /* 1722 ** A list of expressions. Each expression may optionally have a 1723 ** name. An expr/name combination can be used in several ways, such 1724 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1725 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1726 ** also be used as the argument to a function, in which case the a.zName 1727 ** field is not used. 1728 */ 1729 struct ExprList { 1730 int nExpr; /* Number of expressions on the list */ 1731 int nAlloc; /* Number of entries allocated below */ 1732 int iECursor; /* VDBE Cursor associated with this ExprList */ 1733 struct ExprList_item { 1734 Expr *pExpr; /* The list of expressions */ 1735 char *zName; /* Token associated with this expression */ 1736 char *zSpan; /* Original text of the expression */ 1737 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1738 u8 done; /* A flag to indicate when processing is finished */ 1739 u16 iCol; /* For ORDER BY, column number in result set */ 1740 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1741 } *a; /* One entry for each expression */ 1742 }; 1743 1744 /* 1745 ** An instance of this structure is used by the parser to record both 1746 ** the parse tree for an expression and the span of input text for an 1747 ** expression. 1748 */ 1749 struct ExprSpan { 1750 Expr *pExpr; /* The expression parse tree */ 1751 const char *zStart; /* First character of input text */ 1752 const char *zEnd; /* One character past the end of input text */ 1753 }; 1754 1755 /* 1756 ** An instance of this structure can hold a simple list of identifiers, 1757 ** such as the list "a,b,c" in the following statements: 1758 ** 1759 ** INSERT INTO t(a,b,c) VALUES ...; 1760 ** CREATE INDEX idx ON t(a,b,c); 1761 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1762 ** 1763 ** The IdList.a.idx field is used when the IdList represents the list of 1764 ** column names after a table name in an INSERT statement. In the statement 1765 ** 1766 ** INSERT INTO t(a,b,c) ... 1767 ** 1768 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1769 */ 1770 struct IdList { 1771 struct IdList_item { 1772 char *zName; /* Name of the identifier */ 1773 int idx; /* Index in some Table.aCol[] of a column named zName */ 1774 } *a; 1775 int nId; /* Number of identifiers on the list */ 1776 int nAlloc; /* Number of entries allocated for a[] below */ 1777 }; 1778 1779 /* 1780 ** The bitmask datatype defined below is used for various optimizations. 1781 ** 1782 ** Changing this from a 64-bit to a 32-bit type limits the number of 1783 ** tables in a join to 32 instead of 64. But it also reduces the size 1784 ** of the library by 738 bytes on ix86. 1785 */ 1786 typedef u64 Bitmask; 1787 1788 /* 1789 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1790 */ 1791 #define BMS ((int)(sizeof(Bitmask)*8)) 1792 1793 /* 1794 ** The following structure describes the FROM clause of a SELECT statement. 1795 ** Each table or subquery in the FROM clause is a separate element of 1796 ** the SrcList.a[] array. 1797 ** 1798 ** With the addition of multiple database support, the following structure 1799 ** can also be used to describe a particular table such as the table that 1800 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1801 ** such a table must be a simple name: ID. But in SQLite, the table can 1802 ** now be identified by a database name, a dot, then the table name: ID.ID. 1803 ** 1804 ** The jointype starts out showing the join type between the current table 1805 ** and the next table on the list. The parser builds the list this way. 1806 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1807 ** jointype expresses the join between the table and the previous table. 1808 ** 1809 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1810 ** contains more than 63 columns and the 64-th or later column is used. 1811 */ 1812 struct SrcList { 1813 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1814 i16 nAlloc; /* Number of entries allocated in a[] below */ 1815 struct SrcList_item { 1816 char *zDatabase; /* Name of database holding this table */ 1817 char *zName; /* Name of the table */ 1818 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1819 Table *pTab; /* An SQL table corresponding to zName */ 1820 Select *pSelect; /* A SELECT statement used in place of a table name */ 1821 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1822 u8 jointype; /* Type of join between this able and the previous */ 1823 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1824 int iCursor; /* The VDBE cursor number used to access this table */ 1825 Expr *pOn; /* The ON clause of a join */ 1826 IdList *pUsing; /* The USING clause of a join */ 1827 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1828 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1829 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1830 } a[1]; /* One entry for each identifier on the list */ 1831 }; 1832 1833 /* 1834 ** Permitted values of the SrcList.a.jointype field 1835 */ 1836 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1837 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1838 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1839 #define JT_LEFT 0x0008 /* Left outer join */ 1840 #define JT_RIGHT 0x0010 /* Right outer join */ 1841 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1842 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1843 1844 1845 /* 1846 ** A WherePlan object holds information that describes a lookup 1847 ** strategy. 1848 ** 1849 ** This object is intended to be opaque outside of the where.c module. 1850 ** It is included here only so that that compiler will know how big it 1851 ** is. None of the fields in this object should be used outside of 1852 ** the where.c module. 1853 ** 1854 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1855 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1856 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1857 ** case that more than one of these conditions is true. 1858 */ 1859 struct WherePlan { 1860 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1861 u32 nEq; /* Number of == constraints */ 1862 union { 1863 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1864 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1865 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1866 } u; 1867 }; 1868 1869 /* 1870 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1871 ** structure contains a single instance of this structure. This structure 1872 ** is intended to be private the the where.c module and should not be 1873 ** access or modified by other modules. 1874 ** 1875 ** The pIdxInfo field is used to help pick the best index on a 1876 ** virtual table. The pIdxInfo pointer contains indexing 1877 ** information for the i-th table in the FROM clause before reordering. 1878 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1879 ** All other information in the i-th WhereLevel object for the i-th table 1880 ** after FROM clause ordering. 1881 */ 1882 struct WhereLevel { 1883 WherePlan plan; /* query plan for this element of the FROM clause */ 1884 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1885 int iTabCur; /* The VDBE cursor used to access the table */ 1886 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1887 int addrBrk; /* Jump here to break out of the loop */ 1888 int addrNxt; /* Jump here to start the next IN combination */ 1889 int addrCont; /* Jump here to continue with the next loop cycle */ 1890 int addrFirst; /* First instruction of interior of the loop */ 1891 u8 iFrom; /* Which entry in the FROM clause */ 1892 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1893 int p1, p2; /* Operands of the opcode used to ends the loop */ 1894 union { /* Information that depends on plan.wsFlags */ 1895 struct { 1896 int nIn; /* Number of entries in aInLoop[] */ 1897 struct InLoop { 1898 int iCur; /* The VDBE cursor used by this IN operator */ 1899 int addrInTop; /* Top of the IN loop */ 1900 } *aInLoop; /* Information about each nested IN operator */ 1901 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1902 } u; 1903 1904 /* The following field is really not part of the current level. But 1905 ** we need a place to cache virtual table index information for each 1906 ** virtual table in the FROM clause and the WhereLevel structure is 1907 ** a convenient place since there is one WhereLevel for each FROM clause 1908 ** element. 1909 */ 1910 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1911 }; 1912 1913 /* 1914 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1915 ** and the WhereInfo.wctrlFlags member. 1916 */ 1917 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1918 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1919 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1920 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1921 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1922 #define WHERE_OMIT_OPEN 0x0010 /* Table cursors are already open */ 1923 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */ 1924 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */ 1925 #define WHERE_ONETABLE_ONLY 0x0080 /* Only code the 1st table in pTabList */ 1926 1927 /* 1928 ** The WHERE clause processing routine has two halves. The 1929 ** first part does the start of the WHERE loop and the second 1930 ** half does the tail of the WHERE loop. An instance of 1931 ** this structure is returned by the first half and passed 1932 ** into the second half to give some continuity. 1933 */ 1934 struct WhereInfo { 1935 Parse *pParse; /* Parsing and code generating context */ 1936 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1937 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1938 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1939 SrcList *pTabList; /* List of tables in the join */ 1940 int iTop; /* The very beginning of the WHERE loop */ 1941 int iContinue; /* Jump here to continue with next record */ 1942 int iBreak; /* Jump here to break out of the loop */ 1943 int nLevel; /* Number of nested loop */ 1944 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1945 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 1946 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1947 }; 1948 1949 /* 1950 ** A NameContext defines a context in which to resolve table and column 1951 ** names. The context consists of a list of tables (the pSrcList) field and 1952 ** a list of named expression (pEList). The named expression list may 1953 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1954 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1955 ** pEList corresponds to the result set of a SELECT and is NULL for 1956 ** other statements. 1957 ** 1958 ** NameContexts can be nested. When resolving names, the inner-most 1959 ** context is searched first. If no match is found, the next outer 1960 ** context is checked. If there is still no match, the next context 1961 ** is checked. This process continues until either a match is found 1962 ** or all contexts are check. When a match is found, the nRef member of 1963 ** the context containing the match is incremented. 1964 ** 1965 ** Each subquery gets a new NameContext. The pNext field points to the 1966 ** NameContext in the parent query. Thus the process of scanning the 1967 ** NameContext list corresponds to searching through successively outer 1968 ** subqueries looking for a match. 1969 */ 1970 struct NameContext { 1971 Parse *pParse; /* The parser */ 1972 SrcList *pSrcList; /* One or more tables used to resolve names */ 1973 ExprList *pEList; /* Optional list of named expressions */ 1974 int nRef; /* Number of names resolved by this context */ 1975 int nErr; /* Number of errors encountered while resolving names */ 1976 u8 allowAgg; /* Aggregate functions allowed here */ 1977 u8 hasAgg; /* True if aggregates are seen */ 1978 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1979 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1980 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1981 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1982 }; 1983 1984 /* 1985 ** An instance of the following structure contains all information 1986 ** needed to generate code for a single SELECT statement. 1987 ** 1988 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1989 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1990 ** limit and nOffset to the value of the offset (or 0 if there is not 1991 ** offset). But later on, nLimit and nOffset become the memory locations 1992 ** in the VDBE that record the limit and offset counters. 1993 ** 1994 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1995 ** These addresses must be stored so that we can go back and fill in 1996 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1997 ** the number of columns in P2 can be computed at the same time 1998 ** as the OP_OpenEphm instruction is coded because not 1999 ** enough information about the compound query is known at that point. 2000 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2001 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 2002 ** sequences for the ORDER BY clause. 2003 */ 2004 struct Select { 2005 ExprList *pEList; /* The fields of the result */ 2006 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2007 char affinity; /* MakeRecord with this affinity for SRT_Set */ 2008 u16 selFlags; /* Various SF_* values */ 2009 SrcList *pSrc; /* The FROM clause */ 2010 Expr *pWhere; /* The WHERE clause */ 2011 ExprList *pGroupBy; /* The GROUP BY clause */ 2012 Expr *pHaving; /* The HAVING clause */ 2013 ExprList *pOrderBy; /* The ORDER BY clause */ 2014 Select *pPrior; /* Prior select in a compound select statement */ 2015 Select *pNext; /* Next select to the left in a compound */ 2016 Select *pRightmost; /* Right-most select in a compound select statement */ 2017 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2018 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2019 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2020 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2021 }; 2022 2023 /* 2024 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2025 ** "Select Flag". 2026 */ 2027 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2028 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2029 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2030 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2031 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2032 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2033 2034 2035 /* 2036 ** The results of a select can be distributed in several ways. The 2037 ** "SRT" prefix means "SELECT Result Type". 2038 */ 2039 #define SRT_Union 1 /* Store result as keys in an index */ 2040 #define SRT_Except 2 /* Remove result from a UNION index */ 2041 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2042 #define SRT_Discard 4 /* Do not save the results anywhere */ 2043 2044 /* The ORDER BY clause is ignored for all of the above */ 2045 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2046 2047 #define SRT_Output 5 /* Output each row of result */ 2048 #define SRT_Mem 6 /* Store result in a memory cell */ 2049 #define SRT_Set 7 /* Store results as keys in an index */ 2050 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2051 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2052 #define SRT_Coroutine 10 /* Generate a single row of result */ 2053 2054 /* 2055 ** A structure used to customize the behavior of sqlite3Select(). See 2056 ** comments above sqlite3Select() for details. 2057 */ 2058 typedef struct SelectDest SelectDest; 2059 struct SelectDest { 2060 u8 eDest; /* How to dispose of the results */ 2061 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2062 int iParm; /* A parameter used by the eDest disposal method */ 2063 int iMem; /* Base register where results are written */ 2064 int nMem; /* Number of registers allocated */ 2065 }; 2066 2067 /* 2068 ** During code generation of statements that do inserts into AUTOINCREMENT 2069 ** tables, the following information is attached to the Table.u.autoInc.p 2070 ** pointer of each autoincrement table to record some side information that 2071 ** the code generator needs. We have to keep per-table autoincrement 2072 ** information in case inserts are down within triggers. Triggers do not 2073 ** normally coordinate their activities, but we do need to coordinate the 2074 ** loading and saving of autoincrement information. 2075 */ 2076 struct AutoincInfo { 2077 AutoincInfo *pNext; /* Next info block in a list of them all */ 2078 Table *pTab; /* Table this info block refers to */ 2079 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2080 int regCtr; /* Memory register holding the rowid counter */ 2081 }; 2082 2083 /* 2084 ** Size of the column cache 2085 */ 2086 #ifndef SQLITE_N_COLCACHE 2087 # define SQLITE_N_COLCACHE 10 2088 #endif 2089 2090 /* 2091 ** At least one instance of the following structure is created for each 2092 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2093 ** statement. All such objects are stored in the linked list headed at 2094 ** Parse.pTriggerPrg and deleted once statement compilation has been 2095 ** completed. 2096 ** 2097 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2098 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2099 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2100 ** The Parse.pTriggerPrg list never contains two entries with the same 2101 ** values for both pTrigger and orconf. 2102 ** 2103 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2104 ** accessed (or set to 0 for triggers fired as a result of INSERT 2105 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2106 ** a mask of new.* columns used by the program. 2107 */ 2108 struct TriggerPrg { 2109 Trigger *pTrigger; /* Trigger this program was coded from */ 2110 int orconf; /* Default ON CONFLICT policy */ 2111 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2112 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2113 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2114 }; 2115 2116 /* 2117 ** An SQL parser context. A copy of this structure is passed through 2118 ** the parser and down into all the parser action routine in order to 2119 ** carry around information that is global to the entire parse. 2120 ** 2121 ** The structure is divided into two parts. When the parser and code 2122 ** generate call themselves recursively, the first part of the structure 2123 ** is constant but the second part is reset at the beginning and end of 2124 ** each recursion. 2125 ** 2126 ** The nTableLock and aTableLock variables are only used if the shared-cache 2127 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2128 ** used to store the set of table-locks required by the statement being 2129 ** compiled. Function sqlite3TableLock() is used to add entries to the 2130 ** list. 2131 */ 2132 struct Parse { 2133 sqlite3 *db; /* The main database structure */ 2134 int rc; /* Return code from execution */ 2135 char *zErrMsg; /* An error message */ 2136 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2137 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2138 u8 nameClash; /* A permanent table name clashes with temp table name */ 2139 u8 checkSchema; /* Causes schema cookie check after an error */ 2140 u8 nested; /* Number of nested calls to the parser/code generator */ 2141 u8 parseError; /* True after a parsing error. Ticket #1794 */ 2142 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2143 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2144 int aTempReg[8]; /* Holding area for temporary registers */ 2145 int nRangeReg; /* Size of the temporary register block */ 2146 int iRangeReg; /* First register in temporary register block */ 2147 int nErr; /* Number of errors seen */ 2148 int nTab; /* Number of previously allocated VDBE cursors */ 2149 int nMem; /* Number of memory cells used so far */ 2150 int nSet; /* Number of sets used so far */ 2151 int ckBase; /* Base register of data during check constraints */ 2152 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2153 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2154 u8 nColCache; /* Number of entries in the column cache */ 2155 u8 iColCache; /* Next entry of the cache to replace */ 2156 struct yColCache { 2157 int iTable; /* Table cursor number */ 2158 int iColumn; /* Table column number */ 2159 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2160 int iLevel; /* Nesting level */ 2161 int iReg; /* Reg with value of this column. 0 means none. */ 2162 int lru; /* Least recently used entry has the smallest value */ 2163 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2164 u32 writeMask; /* Start a write transaction on these databases */ 2165 u32 cookieMask; /* Bitmask of schema verified databases */ 2166 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ 2167 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2168 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2169 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2170 #ifndef SQLITE_OMIT_SHARED_CACHE 2171 int nTableLock; /* Number of locks in aTableLock */ 2172 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2173 #endif 2174 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2175 int regRoot; /* Register holding root page number for new objects */ 2176 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2177 int nMaxArg; /* Max args passed to user function by sub-program */ 2178 2179 /* Information used while coding trigger programs. */ 2180 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2181 Table *pTriggerTab; /* Table triggers are being coded for */ 2182 u32 oldmask; /* Mask of old.* columns referenced */ 2183 u32 newmask; /* Mask of new.* columns referenced */ 2184 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2185 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2186 u8 disableTriggers; /* True to disable triggers */ 2187 double nQueryLoop; /* Estimated number of iterations of a query */ 2188 2189 /* Above is constant between recursions. Below is reset before and after 2190 ** each recursion */ 2191 2192 int nVar; /* Number of '?' variables seen in the SQL so far */ 2193 int nVarExpr; /* Number of used slots in apVarExpr[] */ 2194 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 2195 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 2196 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2197 int nAlias; /* Number of aliased result set columns */ 2198 int nAliasAlloc; /* Number of allocated slots for aAlias[] */ 2199 int *aAlias; /* Register used to hold aliased result */ 2200 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2201 Token sNameToken; /* Token with unqualified schema object name */ 2202 Token sLastToken; /* The last token parsed */ 2203 const char *zTail; /* All SQL text past the last semicolon parsed */ 2204 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2205 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2206 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2207 #ifndef SQLITE_OMIT_VIRTUALTABLE 2208 Token sArg; /* Complete text of a module argument */ 2209 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2210 int nVtabLock; /* Number of virtual tables to lock */ 2211 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2212 #endif 2213 int nHeight; /* Expression tree height of current sub-select */ 2214 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2215 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2216 }; 2217 2218 #ifdef SQLITE_OMIT_VIRTUALTABLE 2219 #define IN_DECLARE_VTAB 0 2220 #else 2221 #define IN_DECLARE_VTAB (pParse->declareVtab) 2222 #endif 2223 2224 /* 2225 ** An instance of the following structure can be declared on a stack and used 2226 ** to save the Parse.zAuthContext value so that it can be restored later. 2227 */ 2228 struct AuthContext { 2229 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2230 Parse *pParse; /* The Parse structure */ 2231 }; 2232 2233 /* 2234 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2235 */ 2236 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2237 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2238 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2239 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2240 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2241 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2242 2243 /* 2244 * Each trigger present in the database schema is stored as an instance of 2245 * struct Trigger. 2246 * 2247 * Pointers to instances of struct Trigger are stored in two ways. 2248 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2249 * database). This allows Trigger structures to be retrieved by name. 2250 * 2. All triggers associated with a single table form a linked list, using the 2251 * pNext member of struct Trigger. A pointer to the first element of the 2252 * linked list is stored as the "pTrigger" member of the associated 2253 * struct Table. 2254 * 2255 * The "step_list" member points to the first element of a linked list 2256 * containing the SQL statements specified as the trigger program. 2257 */ 2258 struct Trigger { 2259 char *zName; /* The name of the trigger */ 2260 char *table; /* The table or view to which the trigger applies */ 2261 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2262 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2263 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2264 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2265 the <column-list> is stored here */ 2266 Schema *pSchema; /* Schema containing the trigger */ 2267 Schema *pTabSchema; /* Schema containing the table */ 2268 TriggerStep *step_list; /* Link list of trigger program steps */ 2269 Trigger *pNext; /* Next trigger associated with the table */ 2270 }; 2271 2272 /* 2273 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2274 ** determine which. 2275 ** 2276 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2277 ** In that cases, the constants below can be ORed together. 2278 */ 2279 #define TRIGGER_BEFORE 1 2280 #define TRIGGER_AFTER 2 2281 2282 /* 2283 * An instance of struct TriggerStep is used to store a single SQL statement 2284 * that is a part of a trigger-program. 2285 * 2286 * Instances of struct TriggerStep are stored in a singly linked list (linked 2287 * using the "pNext" member) referenced by the "step_list" member of the 2288 * associated struct Trigger instance. The first element of the linked list is 2289 * the first step of the trigger-program. 2290 * 2291 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2292 * "SELECT" statement. The meanings of the other members is determined by the 2293 * value of "op" as follows: 2294 * 2295 * (op == TK_INSERT) 2296 * orconf -> stores the ON CONFLICT algorithm 2297 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2298 * this stores a pointer to the SELECT statement. Otherwise NULL. 2299 * target -> A token holding the quoted name of the table to insert into. 2300 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2301 * this stores values to be inserted. Otherwise NULL. 2302 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2303 * statement, then this stores the column-names to be 2304 * inserted into. 2305 * 2306 * (op == TK_DELETE) 2307 * target -> A token holding the quoted name of the table to delete from. 2308 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2309 * Otherwise NULL. 2310 * 2311 * (op == TK_UPDATE) 2312 * target -> A token holding the quoted name of the table to update rows of. 2313 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2314 * Otherwise NULL. 2315 * pExprList -> A list of the columns to update and the expressions to update 2316 * them to. See sqlite3Update() documentation of "pChanges" 2317 * argument. 2318 * 2319 */ 2320 struct TriggerStep { 2321 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2322 u8 orconf; /* OE_Rollback etc. */ 2323 Trigger *pTrig; /* The trigger that this step is a part of */ 2324 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2325 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2326 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2327 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2328 IdList *pIdList; /* Column names for INSERT */ 2329 TriggerStep *pNext; /* Next in the link-list */ 2330 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2331 }; 2332 2333 /* 2334 ** The following structure contains information used by the sqliteFix... 2335 ** routines as they walk the parse tree to make database references 2336 ** explicit. 2337 */ 2338 typedef struct DbFixer DbFixer; 2339 struct DbFixer { 2340 Parse *pParse; /* The parsing context. Error messages written here */ 2341 const char *zDb; /* Make sure all objects are contained in this database */ 2342 const char *zType; /* Type of the container - used for error messages */ 2343 const Token *pName; /* Name of the container - used for error messages */ 2344 }; 2345 2346 /* 2347 ** An objected used to accumulate the text of a string where we 2348 ** do not necessarily know how big the string will be in the end. 2349 */ 2350 struct StrAccum { 2351 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2352 char *zBase; /* A base allocation. Not from malloc. */ 2353 char *zText; /* The string collected so far */ 2354 int nChar; /* Length of the string so far */ 2355 int nAlloc; /* Amount of space allocated in zText */ 2356 int mxAlloc; /* Maximum allowed string length */ 2357 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2358 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2359 u8 tooBig; /* Becomes true if string size exceeds limits */ 2360 }; 2361 2362 /* 2363 ** A pointer to this structure is used to communicate information 2364 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2365 */ 2366 typedef struct { 2367 sqlite3 *db; /* The database being initialized */ 2368 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2369 char **pzErrMsg; /* Error message stored here */ 2370 int rc; /* Result code stored here */ 2371 } InitData; 2372 2373 /* 2374 ** Structure containing global configuration data for the SQLite library. 2375 ** 2376 ** This structure also contains some state information. 2377 */ 2378 struct Sqlite3Config { 2379 int bMemstat; /* True to enable memory status */ 2380 int bCoreMutex; /* True to enable core mutexing */ 2381 int bFullMutex; /* True to enable full mutexing */ 2382 int mxStrlen; /* Maximum string length */ 2383 int szLookaside; /* Default lookaside buffer size */ 2384 int nLookaside; /* Default lookaside buffer count */ 2385 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2386 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2387 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */ 2388 void *pHeap; /* Heap storage space */ 2389 int nHeap; /* Size of pHeap[] */ 2390 int mnReq, mxReq; /* Min and max heap requests sizes */ 2391 void *pScratch; /* Scratch memory */ 2392 int szScratch; /* Size of each scratch buffer */ 2393 int nScratch; /* Number of scratch buffers */ 2394 void *pPage; /* Page cache memory */ 2395 int szPage; /* Size of each page in pPage[] */ 2396 int nPage; /* Number of pages in pPage[] */ 2397 int mxParserStack; /* maximum depth of the parser stack */ 2398 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2399 /* The above might be initialized to non-zero. The following need to always 2400 ** initially be zero, however. */ 2401 int isInit; /* True after initialization has finished */ 2402 int inProgress; /* True while initialization in progress */ 2403 int isMutexInit; /* True after mutexes are initialized */ 2404 int isMallocInit; /* True after malloc is initialized */ 2405 int isPCacheInit; /* True after malloc is initialized */ 2406 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2407 int nRefInitMutex; /* Number of users of pInitMutex */ 2408 void (*xLog)(void*,int,const char*); /* Function for logging */ 2409 void *pLogArg; /* First argument to xLog() */ 2410 }; 2411 2412 /* 2413 ** Context pointer passed down through the tree-walk. 2414 */ 2415 struct Walker { 2416 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2417 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2418 Parse *pParse; /* Parser context. */ 2419 union { /* Extra data for callback */ 2420 NameContext *pNC; /* Naming context */ 2421 int i; /* Integer value */ 2422 } u; 2423 }; 2424 2425 /* Forward declarations */ 2426 int sqlite3WalkExpr(Walker*, Expr*); 2427 int sqlite3WalkExprList(Walker*, ExprList*); 2428 int sqlite3WalkSelect(Walker*, Select*); 2429 int sqlite3WalkSelectExpr(Walker*, Select*); 2430 int sqlite3WalkSelectFrom(Walker*, Select*); 2431 2432 /* 2433 ** Return code from the parse-tree walking primitives and their 2434 ** callbacks. 2435 */ 2436 #define WRC_Continue 0 /* Continue down into children */ 2437 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2438 #define WRC_Abort 2 /* Abandon the tree walk */ 2439 2440 /* 2441 ** Assuming zIn points to the first byte of a UTF-8 character, 2442 ** advance zIn to point to the first byte of the next UTF-8 character. 2443 */ 2444 #define SQLITE_SKIP_UTF8(zIn) { \ 2445 if( (*(zIn++))>=0xc0 ){ \ 2446 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2447 } \ 2448 } 2449 2450 /* 2451 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2452 ** the same name but without the _BKPT suffix. These macros invoke 2453 ** routines that report the line-number on which the error originated 2454 ** using sqlite3_log(). The routines also provide a convenient place 2455 ** to set a debugger breakpoint. 2456 */ 2457 int sqlite3CorruptError(int); 2458 int sqlite3MisuseError(int); 2459 int sqlite3CantopenError(int); 2460 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2461 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2462 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2463 2464 2465 /* 2466 ** FTS4 is really an extension for FTS3. It is enabled using the 2467 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2468 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2469 */ 2470 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2471 # define SQLITE_ENABLE_FTS3 2472 #endif 2473 2474 /* 2475 ** The ctype.h header is needed for non-ASCII systems. It is also 2476 ** needed by FTS3 when FTS3 is included in the amalgamation. 2477 */ 2478 #if !defined(SQLITE_ASCII) || \ 2479 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2480 # include <ctype.h> 2481 #endif 2482 2483 /* 2484 ** The following macros mimic the standard library functions toupper(), 2485 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2486 ** sqlite versions only work for ASCII characters, regardless of locale. 2487 */ 2488 #ifdef SQLITE_ASCII 2489 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2490 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2491 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2492 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2493 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2494 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2495 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2496 #else 2497 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2498 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2499 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2500 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2501 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2502 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2503 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2504 #endif 2505 2506 /* 2507 ** Internal function prototypes 2508 */ 2509 int sqlite3StrICmp(const char *, const char *); 2510 int sqlite3Strlen30(const char*); 2511 #define sqlite3StrNICmp sqlite3_strnicmp 2512 2513 int sqlite3MallocInit(void); 2514 void sqlite3MallocEnd(void); 2515 void *sqlite3Malloc(int); 2516 void *sqlite3MallocZero(int); 2517 void *sqlite3DbMallocZero(sqlite3*, int); 2518 void *sqlite3DbMallocRaw(sqlite3*, int); 2519 char *sqlite3DbStrDup(sqlite3*,const char*); 2520 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2521 void *sqlite3Realloc(void*, int); 2522 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2523 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2524 void sqlite3DbFree(sqlite3*, void*); 2525 int sqlite3MallocSize(void*); 2526 int sqlite3DbMallocSize(sqlite3*, void*); 2527 void *sqlite3ScratchMalloc(int); 2528 void sqlite3ScratchFree(void*); 2529 void *sqlite3PageMalloc(int); 2530 void sqlite3PageFree(void*); 2531 void sqlite3MemSetDefault(void); 2532 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2533 int sqlite3HeapNearlyFull(void); 2534 2535 /* 2536 ** On systems with ample stack space and that support alloca(), make 2537 ** use of alloca() to obtain space for large automatic objects. By default, 2538 ** obtain space from malloc(). 2539 ** 2540 ** The alloca() routine never returns NULL. This will cause code paths 2541 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2542 */ 2543 #ifdef SQLITE_USE_ALLOCA 2544 # define sqlite3StackAllocRaw(D,N) alloca(N) 2545 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2546 # define sqlite3StackFree(D,P) 2547 #else 2548 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2549 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2550 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2551 #endif 2552 2553 #ifdef SQLITE_ENABLE_MEMSYS3 2554 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2555 #endif 2556 #ifdef SQLITE_ENABLE_MEMSYS5 2557 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2558 #endif 2559 2560 2561 #ifndef SQLITE_MUTEX_OMIT 2562 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2563 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2564 sqlite3_mutex *sqlite3MutexAlloc(int); 2565 int sqlite3MutexInit(void); 2566 int sqlite3MutexEnd(void); 2567 #endif 2568 2569 int sqlite3StatusValue(int); 2570 void sqlite3StatusAdd(int, int); 2571 void sqlite3StatusSet(int, int); 2572 2573 #ifndef SQLITE_OMIT_FLOATING_POINT 2574 int sqlite3IsNaN(double); 2575 #else 2576 # define sqlite3IsNaN(X) 0 2577 #endif 2578 2579 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2580 #ifndef SQLITE_OMIT_TRACE 2581 void sqlite3XPrintf(StrAccum*, const char*, ...); 2582 #endif 2583 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2584 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2585 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2586 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2587 void sqlite3DebugPrintf(const char*, ...); 2588 #endif 2589 #if defined(SQLITE_TEST) 2590 void *sqlite3TestTextToPtr(const char*); 2591 #endif 2592 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2593 void sqlite3ErrorMsg(Parse*, const char*, ...); 2594 int sqlite3Dequote(char*); 2595 int sqlite3KeywordCode(const unsigned char*, int); 2596 int sqlite3RunParser(Parse*, const char*, char **); 2597 void sqlite3FinishCoding(Parse*); 2598 int sqlite3GetTempReg(Parse*); 2599 void sqlite3ReleaseTempReg(Parse*,int); 2600 int sqlite3GetTempRange(Parse*,int); 2601 void sqlite3ReleaseTempRange(Parse*,int,int); 2602 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2603 Expr *sqlite3Expr(sqlite3*,int,const char*); 2604 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2605 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2606 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2607 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2608 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2609 void sqlite3ExprDelete(sqlite3*, Expr*); 2610 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2611 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2612 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2613 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2614 int sqlite3Init(sqlite3*, char**); 2615 int sqlite3InitCallback(void*, int, char**, char**); 2616 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2617 void sqlite3ResetInternalSchema(sqlite3*, int); 2618 void sqlite3BeginParse(Parse*,int); 2619 void sqlite3CommitInternalChanges(sqlite3*); 2620 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2621 void sqlite3OpenMasterTable(Parse *, int); 2622 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2623 void sqlite3AddColumn(Parse*,Token*); 2624 void sqlite3AddNotNull(Parse*, int); 2625 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2626 void sqlite3AddCheckConstraint(Parse*, Expr*); 2627 void sqlite3AddColumnType(Parse*,Token*); 2628 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2629 void sqlite3AddCollateType(Parse*, Token*); 2630 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2631 2632 Bitvec *sqlite3BitvecCreate(u32); 2633 int sqlite3BitvecTest(Bitvec*, u32); 2634 int sqlite3BitvecSet(Bitvec*, u32); 2635 void sqlite3BitvecClear(Bitvec*, u32, void*); 2636 void sqlite3BitvecDestroy(Bitvec*); 2637 u32 sqlite3BitvecSize(Bitvec*); 2638 int sqlite3BitvecBuiltinTest(int,int*); 2639 2640 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2641 void sqlite3RowSetClear(RowSet*); 2642 void sqlite3RowSetInsert(RowSet*, i64); 2643 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2644 int sqlite3RowSetNext(RowSet*, i64*); 2645 2646 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2647 2648 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2649 int sqlite3ViewGetColumnNames(Parse*,Table*); 2650 #else 2651 # define sqlite3ViewGetColumnNames(A,B) 0 2652 #endif 2653 2654 void sqlite3DropTable(Parse*, SrcList*, int, int); 2655 void sqlite3DeleteTable(sqlite3*, Table*); 2656 #ifndef SQLITE_OMIT_AUTOINCREMENT 2657 void sqlite3AutoincrementBegin(Parse *pParse); 2658 void sqlite3AutoincrementEnd(Parse *pParse); 2659 #else 2660 # define sqlite3AutoincrementBegin(X) 2661 # define sqlite3AutoincrementEnd(X) 2662 #endif 2663 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2664 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2665 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2666 int sqlite3IdListIndex(IdList*,const char*); 2667 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2668 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2669 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2670 Token*, Select*, Expr*, IdList*); 2671 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2672 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2673 void sqlite3SrcListShiftJoinType(SrcList*); 2674 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2675 void sqlite3IdListDelete(sqlite3*, IdList*); 2676 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2677 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2678 Token*, int, int); 2679 void sqlite3DropIndex(Parse*, SrcList*, int); 2680 int sqlite3Select(Parse*, Select*, SelectDest*); 2681 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2682 Expr*,ExprList*,int,Expr*,Expr*); 2683 void sqlite3SelectDelete(sqlite3*, Select*); 2684 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2685 int sqlite3IsReadOnly(Parse*, Table*, int); 2686 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2687 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2688 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2689 #endif 2690 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2691 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2692 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); 2693 void sqlite3WhereEnd(WhereInfo*); 2694 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); 2695 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2696 void sqlite3ExprCodeMove(Parse*, int, int, int); 2697 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2698 void sqlite3ExprCacheStore(Parse*, int, int, int); 2699 void sqlite3ExprCachePush(Parse*); 2700 void sqlite3ExprCachePop(Parse*, int); 2701 void sqlite3ExprCacheRemove(Parse*, int, int); 2702 void sqlite3ExprCacheClear(Parse*); 2703 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2704 int sqlite3ExprCode(Parse*, Expr*, int); 2705 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2706 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2707 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2708 void sqlite3ExprCodeConstants(Parse*, Expr*); 2709 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2710 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2711 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2712 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2713 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2714 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2715 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2716 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2717 void sqlite3Vacuum(Parse*); 2718 int sqlite3RunVacuum(char**, sqlite3*); 2719 char *sqlite3NameFromToken(sqlite3*, Token*); 2720 int sqlite3ExprCompare(Expr*, Expr*); 2721 int sqlite3ExprListCompare(ExprList*, ExprList*); 2722 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2723 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2724 Vdbe *sqlite3GetVdbe(Parse*); 2725 void sqlite3PrngSaveState(void); 2726 void sqlite3PrngRestoreState(void); 2727 void sqlite3PrngResetState(void); 2728 void sqlite3RollbackAll(sqlite3*); 2729 void sqlite3CodeVerifySchema(Parse*, int); 2730 void sqlite3BeginTransaction(Parse*, int); 2731 void sqlite3CommitTransaction(Parse*); 2732 void sqlite3RollbackTransaction(Parse*); 2733 void sqlite3Savepoint(Parse*, int, Token*); 2734 void sqlite3CloseSavepoints(sqlite3 *); 2735 int sqlite3ExprIsConstant(Expr*); 2736 int sqlite3ExprIsConstantNotJoin(Expr*); 2737 int sqlite3ExprIsConstantOrFunction(Expr*); 2738 int sqlite3ExprIsInteger(Expr*, int*); 2739 int sqlite3ExprCanBeNull(const Expr*); 2740 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2741 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2742 int sqlite3IsRowid(const char*); 2743 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2744 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2745 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2746 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2747 int*,int,int,int,int,int*); 2748 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2749 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2750 void sqlite3BeginWriteOperation(Parse*, int, int); 2751 void sqlite3MultiWrite(Parse*); 2752 void sqlite3MayAbort(Parse*); 2753 void sqlite3HaltConstraint(Parse*, int, char*, int); 2754 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2755 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2756 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2757 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2758 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2759 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2760 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2761 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2762 void sqlite3RegisterDateTimeFunctions(void); 2763 void sqlite3RegisterGlobalFunctions(void); 2764 int sqlite3SafetyCheckOk(sqlite3*); 2765 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2766 void sqlite3ChangeCookie(Parse*, int); 2767 2768 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2769 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2770 #endif 2771 2772 #ifndef SQLITE_OMIT_TRIGGER 2773 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2774 Expr*,int, int); 2775 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2776 void sqlite3DropTrigger(Parse*, SrcList*, int); 2777 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2778 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2779 Trigger *sqlite3TriggerList(Parse *, Table *); 2780 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2781 int, int, int); 2782 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2783 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2784 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2785 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2786 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2787 ExprList*,Select*,u8); 2788 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2789 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2790 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2791 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2792 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2793 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2794 #else 2795 # define sqlite3TriggersExist(B,C,D,E,F) 0 2796 # define sqlite3DeleteTrigger(A,B) 2797 # define sqlite3DropTriggerPtr(A,B) 2798 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2799 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2800 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2801 # define sqlite3TriggerList(X, Y) 0 2802 # define sqlite3ParseToplevel(p) p 2803 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2804 #endif 2805 2806 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2807 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2808 void sqlite3DeferForeignKey(Parse*, int); 2809 #ifndef SQLITE_OMIT_AUTHORIZATION 2810 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2811 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2812 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2813 void sqlite3AuthContextPop(AuthContext*); 2814 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2815 #else 2816 # define sqlite3AuthRead(a,b,c,d) 2817 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2818 # define sqlite3AuthContextPush(a,b,c) 2819 # define sqlite3AuthContextPop(a) ((void)(a)) 2820 #endif 2821 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2822 void sqlite3Detach(Parse*, Expr*); 2823 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2824 int sqlite3FixSrcList(DbFixer*, SrcList*); 2825 int sqlite3FixSelect(DbFixer*, Select*); 2826 int sqlite3FixExpr(DbFixer*, Expr*); 2827 int sqlite3FixExprList(DbFixer*, ExprList*); 2828 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2829 int sqlite3AtoF(const char *z, double*, int, u8); 2830 int sqlite3GetInt32(const char *, int*); 2831 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2832 int sqlite3Utf8CharLen(const char *pData, int nByte); 2833 int sqlite3Utf8Read(const u8*, const u8**); 2834 2835 /* 2836 ** Routines to read and write variable-length integers. These used to 2837 ** be defined locally, but now we use the varint routines in the util.c 2838 ** file. Code should use the MACRO forms below, as the Varint32 versions 2839 ** are coded to assume the single byte case is already handled (which 2840 ** the MACRO form does). 2841 */ 2842 int sqlite3PutVarint(unsigned char*, u64); 2843 int sqlite3PutVarint32(unsigned char*, u32); 2844 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2845 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2846 int sqlite3VarintLen(u64 v); 2847 2848 /* 2849 ** The header of a record consists of a sequence variable-length integers. 2850 ** These integers are almost always small and are encoded as a single byte. 2851 ** The following macros take advantage this fact to provide a fast encode 2852 ** and decode of the integers in a record header. It is faster for the common 2853 ** case where the integer is a single byte. It is a little slower when the 2854 ** integer is two or more bytes. But overall it is faster. 2855 ** 2856 ** The following expressions are equivalent: 2857 ** 2858 ** x = sqlite3GetVarint32( A, &B ); 2859 ** x = sqlite3PutVarint32( A, B ); 2860 ** 2861 ** x = getVarint32( A, B ); 2862 ** x = putVarint32( A, B ); 2863 ** 2864 */ 2865 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2866 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2867 #define getVarint sqlite3GetVarint 2868 #define putVarint sqlite3PutVarint 2869 2870 2871 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2872 void sqlite3TableAffinityStr(Vdbe *, Table *); 2873 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2874 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2875 char sqlite3ExprAffinity(Expr *pExpr); 2876 int sqlite3Atoi64(const char*, i64*, int, u8); 2877 void sqlite3Error(sqlite3*, int, const char*,...); 2878 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2879 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2880 const char *sqlite3ErrStr(int); 2881 int sqlite3ReadSchema(Parse *pParse); 2882 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2883 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2884 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2885 Expr *sqlite3ExprSetColl(Expr*, CollSeq*); 2886 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); 2887 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2888 int sqlite3CheckObjectName(Parse *, const char *); 2889 void sqlite3VdbeSetChanges(sqlite3 *, int); 2890 2891 const void *sqlite3ValueText(sqlite3_value*, u8); 2892 int sqlite3ValueBytes(sqlite3_value*, u8); 2893 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2894 void(*)(void*)); 2895 void sqlite3ValueFree(sqlite3_value*); 2896 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2897 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 2898 #ifdef SQLITE_ENABLE_STAT2 2899 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 2900 #endif 2901 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2902 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2903 #ifndef SQLITE_AMALGAMATION 2904 extern const unsigned char sqlite3OpcodeProperty[]; 2905 extern const unsigned char sqlite3UpperToLower[]; 2906 extern const unsigned char sqlite3CtypeMap[]; 2907 extern const Token sqlite3IntTokens[]; 2908 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2909 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2910 #ifndef SQLITE_OMIT_WSD 2911 extern int sqlite3PendingByte; 2912 #endif 2913 #endif 2914 void sqlite3RootPageMoved(Db*, int, int); 2915 void sqlite3Reindex(Parse*, Token*, Token*); 2916 void sqlite3AlterFunctions(void); 2917 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2918 int sqlite3GetToken(const unsigned char *, int *); 2919 void sqlite3NestedParse(Parse*, const char*, ...); 2920 void sqlite3ExpirePreparedStatements(sqlite3*); 2921 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 2922 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 2923 int sqlite3ResolveExprNames(NameContext*, Expr*); 2924 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 2925 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 2926 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 2927 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2928 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2929 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 2930 char sqlite3AffinityType(const char*); 2931 void sqlite3Analyze(Parse*, Token*, Token*); 2932 int sqlite3InvokeBusyHandler(BusyHandler*); 2933 int sqlite3FindDb(sqlite3*, Token*); 2934 int sqlite3FindDbName(sqlite3 *, const char *); 2935 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2936 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 2937 void sqlite3DefaultRowEst(Index*); 2938 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2939 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2940 void sqlite3MinimumFileFormat(Parse*, int, int); 2941 void sqlite3SchemaFree(void *); 2942 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2943 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2944 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2945 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2946 void (*)(sqlite3_context*,int,sqlite3_value **), 2947 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 2948 FuncDestructor *pDestructor 2949 ); 2950 int sqlite3ApiExit(sqlite3 *db, int); 2951 int sqlite3OpenTempDatabase(Parse *); 2952 2953 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2954 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2955 char *sqlite3StrAccumFinish(StrAccum*); 2956 void sqlite3StrAccumReset(StrAccum*); 2957 void sqlite3SelectDestInit(SelectDest*,int,int); 2958 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 2959 2960 void sqlite3BackupRestart(sqlite3_backup *); 2961 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 2962 2963 /* 2964 ** The interface to the LEMON-generated parser 2965 */ 2966 void *sqlite3ParserAlloc(void*(*)(size_t)); 2967 void sqlite3ParserFree(void*, void(*)(void*)); 2968 void sqlite3Parser(void*, int, Token, Parse*); 2969 #ifdef YYTRACKMAXSTACKDEPTH 2970 int sqlite3ParserStackPeak(void*); 2971 #endif 2972 2973 void sqlite3AutoLoadExtensions(sqlite3*); 2974 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2975 void sqlite3CloseExtensions(sqlite3*); 2976 #else 2977 # define sqlite3CloseExtensions(X) 2978 #endif 2979 2980 #ifndef SQLITE_OMIT_SHARED_CACHE 2981 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2982 #else 2983 #define sqlite3TableLock(v,w,x,y,z) 2984 #endif 2985 2986 #ifdef SQLITE_TEST 2987 int sqlite3Utf8To8(unsigned char*); 2988 #endif 2989 2990 #ifdef SQLITE_OMIT_VIRTUALTABLE 2991 # define sqlite3VtabClear(Y) 2992 # define sqlite3VtabSync(X,Y) SQLITE_OK 2993 # define sqlite3VtabRollback(X) 2994 # define sqlite3VtabCommit(X) 2995 # define sqlite3VtabInSync(db) 0 2996 # define sqlite3VtabLock(X) 2997 # define sqlite3VtabUnlock(X) 2998 # define sqlite3VtabUnlockList(X) 2999 #else 3000 void sqlite3VtabClear(sqlite3 *db, Table*); 3001 int sqlite3VtabSync(sqlite3 *db, char **); 3002 int sqlite3VtabRollback(sqlite3 *db); 3003 int sqlite3VtabCommit(sqlite3 *db); 3004 void sqlite3VtabLock(VTable *); 3005 void sqlite3VtabUnlock(VTable *); 3006 void sqlite3VtabUnlockList(sqlite3*); 3007 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3008 #endif 3009 void sqlite3VtabMakeWritable(Parse*,Table*); 3010 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 3011 void sqlite3VtabFinishParse(Parse*, Token*); 3012 void sqlite3VtabArgInit(Parse*); 3013 void sqlite3VtabArgExtend(Parse*, Token*); 3014 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3015 int sqlite3VtabCallConnect(Parse*, Table*); 3016 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3017 int sqlite3VtabBegin(sqlite3 *, VTable *); 3018 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3019 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3020 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3021 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3022 int sqlite3Reprepare(Vdbe*); 3023 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3024 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3025 int sqlite3TempInMemory(const sqlite3*); 3026 VTable *sqlite3GetVTable(sqlite3*, Table*); 3027 const char *sqlite3JournalModename(int); 3028 int sqlite3Checkpoint(sqlite3*, int); 3029 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3030 3031 /* Declarations for functions in fkey.c. All of these are replaced by 3032 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3033 ** key functionality is available. If OMIT_TRIGGER is defined but 3034 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3035 ** this case foreign keys are parsed, but no other functionality is 3036 ** provided (enforcement of FK constraints requires the triggers sub-system). 3037 */ 3038 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3039 void sqlite3FkCheck(Parse*, Table*, int, int); 3040 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3041 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3042 int sqlite3FkRequired(Parse*, Table*, int*, int); 3043 u32 sqlite3FkOldmask(Parse*, Table*); 3044 FKey *sqlite3FkReferences(Table *); 3045 #else 3046 #define sqlite3FkActions(a,b,c,d) 3047 #define sqlite3FkCheck(a,b,c,d) 3048 #define sqlite3FkDropTable(a,b,c) 3049 #define sqlite3FkOldmask(a,b) 0 3050 #define sqlite3FkRequired(a,b,c,d) 0 3051 #endif 3052 #ifndef SQLITE_OMIT_FOREIGN_KEY 3053 void sqlite3FkDelete(sqlite3 *, Table*); 3054 #else 3055 #define sqlite3FkDelete(a,b) 3056 #endif 3057 3058 3059 /* 3060 ** Available fault injectors. Should be numbered beginning with 0. 3061 */ 3062 #define SQLITE_FAULTINJECTOR_MALLOC 0 3063 #define SQLITE_FAULTINJECTOR_COUNT 1 3064 3065 /* 3066 ** The interface to the code in fault.c used for identifying "benign" 3067 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3068 ** is not defined. 3069 */ 3070 #ifndef SQLITE_OMIT_BUILTIN_TEST 3071 void sqlite3BeginBenignMalloc(void); 3072 void sqlite3EndBenignMalloc(void); 3073 #else 3074 #define sqlite3BeginBenignMalloc() 3075 #define sqlite3EndBenignMalloc() 3076 #endif 3077 3078 #define IN_INDEX_ROWID 1 3079 #define IN_INDEX_EPH 2 3080 #define IN_INDEX_INDEX 3 3081 int sqlite3FindInIndex(Parse *, Expr *, int*); 3082 3083 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3084 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3085 int sqlite3JournalSize(sqlite3_vfs *); 3086 int sqlite3JournalCreate(sqlite3_file *); 3087 #else 3088 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3089 #endif 3090 3091 void sqlite3MemJournalOpen(sqlite3_file *); 3092 int sqlite3MemJournalSize(void); 3093 int sqlite3IsMemJournal(sqlite3_file *); 3094 3095 #if SQLITE_MAX_EXPR_DEPTH>0 3096 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3097 int sqlite3SelectExprHeight(Select *); 3098 int sqlite3ExprCheckHeight(Parse*, int); 3099 #else 3100 #define sqlite3ExprSetHeight(x,y) 3101 #define sqlite3SelectExprHeight(x) 0 3102 #define sqlite3ExprCheckHeight(x,y) 3103 #endif 3104 3105 u32 sqlite3Get4byte(const u8*); 3106 void sqlite3Put4byte(u8*, u32); 3107 3108 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3109 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3110 void sqlite3ConnectionUnlocked(sqlite3 *db); 3111 void sqlite3ConnectionClosed(sqlite3 *db); 3112 #else 3113 #define sqlite3ConnectionBlocked(x,y) 3114 #define sqlite3ConnectionUnlocked(x) 3115 #define sqlite3ConnectionClosed(x) 3116 #endif 3117 3118 #ifdef SQLITE_DEBUG 3119 void sqlite3ParserTrace(FILE*, char *); 3120 #endif 3121 3122 /* 3123 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3124 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3125 ** print I/O tracing messages. 3126 */ 3127 #ifdef SQLITE_ENABLE_IOTRACE 3128 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3129 void sqlite3VdbeIOTraceSql(Vdbe*); 3130 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3131 #else 3132 # define IOTRACE(A) 3133 # define sqlite3VdbeIOTraceSql(X) 3134 #endif 3135 3136 /* 3137 ** These routines are available for the mem2.c debugging memory allocator 3138 ** only. They are used to verify that different "types" of memory 3139 ** allocations are properly tracked by the system. 3140 ** 3141 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3142 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3143 ** a single bit set. 3144 ** 3145 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3146 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3147 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3148 ** 3149 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3150 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3151 ** 3152 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3153 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3154 ** it might have been allocated by lookaside, except the allocation was 3155 ** too large or lookaside was already full. It is important to verify 3156 ** that allocations that might have been satisfied by lookaside are not 3157 ** passed back to non-lookaside free() routines. Asserts such as the 3158 ** example above are placed on the non-lookaside free() routines to verify 3159 ** this constraint. 3160 ** 3161 ** All of this is no-op for a production build. It only comes into 3162 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3163 */ 3164 #ifdef SQLITE_MEMDEBUG 3165 void sqlite3MemdebugSetType(void*,u8); 3166 int sqlite3MemdebugHasType(void*,u8); 3167 int sqlite3MemdebugNoType(void*,u8); 3168 #else 3169 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3170 # define sqlite3MemdebugHasType(X,Y) 1 3171 # define sqlite3MemdebugNoType(X,Y) 1 3172 #endif 3173 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3174 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3175 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3176 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3177 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3178 3179 #endif /* _SQLITEINT_H_ */ 3180