1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The following macros are used to cast pointers to integers and 81 ** integers to pointers. The way you do this varies from one compiler 82 ** to the next, so we have developed the following set of #if statements 83 ** to generate appropriate macros for a wide range of compilers. 84 ** 85 ** The correct "ANSI" way to do this is to use the intptr_t type. 86 ** Unfortunately, that typedef is not available on all compilers, or 87 ** if it is available, it requires an #include of specific headers 88 ** that vary from one machine to the next. 89 ** 90 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 91 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 92 ** So we have to define the macros in different ways depending on the 93 ** compiler. 94 */ 95 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 96 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 97 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 98 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 99 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 100 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 101 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 104 #else /* Generates a warning - but it always works */ 105 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 106 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 107 #endif 108 109 /* 110 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 111 ** 0 means mutexes are permanently disable and the library is never 112 ** threadsafe. 1 means the library is serialized which is the highest 113 ** level of threadsafety. 2 means the libary is multithreaded - multiple 114 ** threads can use SQLite as long as no two threads try to use the same 115 ** database connection at the same time. 116 ** 117 ** Older versions of SQLite used an optional THREADSAFE macro. 118 ** We support that for legacy. 119 */ 120 #if !defined(SQLITE_THREADSAFE) 121 #if defined(THREADSAFE) 122 # define SQLITE_THREADSAFE THREADSAFE 123 #else 124 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 125 #endif 126 #endif 127 128 /* 129 ** Powersafe overwrite is on by default. But can be turned off using 130 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 131 */ 132 #ifndef SQLITE_POWERSAFE_OVERWRITE 133 # define SQLITE_POWERSAFE_OVERWRITE 1 134 #endif 135 136 /* 137 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 138 ** It determines whether or not the features related to 139 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 140 ** be overridden at runtime using the sqlite3_config() API. 141 */ 142 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 143 # define SQLITE_DEFAULT_MEMSTATUS 1 144 #endif 145 146 /* 147 ** Exactly one of the following macros must be defined in order to 148 ** specify which memory allocation subsystem to use. 149 ** 150 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 151 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 152 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 153 ** 154 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 155 ** assert() macro is enabled, each call into the Win32 native heap subsystem 156 ** will cause HeapValidate to be called. If heap validation should fail, an 157 ** assertion will be triggered. 158 ** 159 ** (Historical note: There used to be several other options, but we've 160 ** pared it down to just these three.) 161 ** 162 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 163 ** the default. 164 */ 165 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)>1 166 # error "At most one of the following compile-time configuration options\ 167 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG" 168 #endif 169 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)==0 170 # define SQLITE_SYSTEM_MALLOC 1 171 #endif 172 173 /* 174 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 175 ** sizes of memory allocations below this value where possible. 176 */ 177 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 178 # define SQLITE_MALLOC_SOFT_LIMIT 1024 179 #endif 180 181 /* 182 ** We need to define _XOPEN_SOURCE as follows in order to enable 183 ** recursive mutexes on most Unix systems. But Mac OS X is different. 184 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 185 ** so it is omitted there. See ticket #2673. 186 ** 187 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 188 ** implemented on some systems. So we avoid defining it at all 189 ** if it is already defined or if it is unneeded because we are 190 ** not doing a threadsafe build. Ticket #2681. 191 ** 192 ** See also ticket #2741. 193 */ 194 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 195 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 196 #endif 197 198 /* 199 ** The TCL headers are only needed when compiling the TCL bindings. 200 */ 201 #if defined(SQLITE_TCL) || defined(TCLSH) 202 # include <tcl.h> 203 #endif 204 205 /* 206 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 207 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 208 ** make it true by defining or undefining NDEBUG. 209 ** 210 ** Setting NDEBUG makes the code smaller and run faster by disabling the 211 ** number assert() statements in the code. So we want the default action 212 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 213 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 214 ** feature. 215 */ 216 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 217 # define NDEBUG 1 218 #endif 219 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 220 # undef NDEBUG 221 #endif 222 223 /* 224 ** The testcase() macro is used to aid in coverage testing. When 225 ** doing coverage testing, the condition inside the argument to 226 ** testcase() must be evaluated both true and false in order to 227 ** get full branch coverage. The testcase() macro is inserted 228 ** to help ensure adequate test coverage in places where simple 229 ** condition/decision coverage is inadequate. For example, testcase() 230 ** can be used to make sure boundary values are tested. For 231 ** bitmask tests, testcase() can be used to make sure each bit 232 ** is significant and used at least once. On switch statements 233 ** where multiple cases go to the same block of code, testcase() 234 ** can insure that all cases are evaluated. 235 ** 236 */ 237 #ifdef SQLITE_COVERAGE_TEST 238 void sqlite3Coverage(int); 239 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 240 #else 241 # define testcase(X) 242 #endif 243 244 /* 245 ** The TESTONLY macro is used to enclose variable declarations or 246 ** other bits of code that are needed to support the arguments 247 ** within testcase() and assert() macros. 248 */ 249 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 250 # define TESTONLY(X) X 251 #else 252 # define TESTONLY(X) 253 #endif 254 255 /* 256 ** Sometimes we need a small amount of code such as a variable initialization 257 ** to setup for a later assert() statement. We do not want this code to 258 ** appear when assert() is disabled. The following macro is therefore 259 ** used to contain that setup code. The "VVA" acronym stands for 260 ** "Verification, Validation, and Accreditation". In other words, the 261 ** code within VVA_ONLY() will only run during verification processes. 262 */ 263 #ifndef NDEBUG 264 # define VVA_ONLY(X) X 265 #else 266 # define VVA_ONLY(X) 267 #endif 268 269 /* 270 ** The ALWAYS and NEVER macros surround boolean expressions which 271 ** are intended to always be true or false, respectively. Such 272 ** expressions could be omitted from the code completely. But they 273 ** are included in a few cases in order to enhance the resilience 274 ** of SQLite to unexpected behavior - to make the code "self-healing" 275 ** or "ductile" rather than being "brittle" and crashing at the first 276 ** hint of unplanned behavior. 277 ** 278 ** In other words, ALWAYS and NEVER are added for defensive code. 279 ** 280 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 281 ** be true and false so that the unreachable code then specify will 282 ** not be counted as untested code. 283 */ 284 #if defined(SQLITE_COVERAGE_TEST) 285 # define ALWAYS(X) (1) 286 # define NEVER(X) (0) 287 #elif !defined(NDEBUG) 288 # define ALWAYS(X) ((X)?1:(assert(0),0)) 289 # define NEVER(X) ((X)?(assert(0),1):0) 290 #else 291 # define ALWAYS(X) (X) 292 # define NEVER(X) (X) 293 #endif 294 295 /* 296 ** Return true (non-zero) if the input is a integer that is too large 297 ** to fit in 32-bits. This macro is used inside of various testcase() 298 ** macros to verify that we have tested SQLite for large-file support. 299 */ 300 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 301 302 /* 303 ** The macro unlikely() is a hint that surrounds a boolean 304 ** expression that is usually false. Macro likely() surrounds 305 ** a boolean expression that is usually true. GCC is able to 306 ** use these hints to generate better code, sometimes. 307 */ 308 #if defined(__GNUC__) && 0 309 # define likely(X) __builtin_expect((X),1) 310 # define unlikely(X) __builtin_expect((X),0) 311 #else 312 # define likely(X) !!(X) 313 # define unlikely(X) !!(X) 314 #endif 315 316 #include "sqlite3.h" 317 #include "hash.h" 318 #include "parse.h" 319 #include <stdio.h> 320 #include <stdlib.h> 321 #include <string.h> 322 #include <assert.h> 323 #include <stddef.h> 324 325 /* 326 ** If compiling for a processor that lacks floating point support, 327 ** substitute integer for floating-point 328 */ 329 #ifdef SQLITE_OMIT_FLOATING_POINT 330 # define double sqlite_int64 331 # define float sqlite_int64 332 # define LONGDOUBLE_TYPE sqlite_int64 333 # ifndef SQLITE_BIG_DBL 334 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 335 # endif 336 # define SQLITE_OMIT_DATETIME_FUNCS 1 337 # define SQLITE_OMIT_TRACE 1 338 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 339 # undef SQLITE_HAVE_ISNAN 340 #endif 341 #ifndef SQLITE_BIG_DBL 342 # define SQLITE_BIG_DBL (1e99) 343 #endif 344 345 /* 346 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 347 ** afterward. Having this macro allows us to cause the C compiler 348 ** to omit code used by TEMP tables without messy #ifndef statements. 349 */ 350 #ifdef SQLITE_OMIT_TEMPDB 351 #define OMIT_TEMPDB 1 352 #else 353 #define OMIT_TEMPDB 0 354 #endif 355 356 /* 357 ** The "file format" number is an integer that is incremented whenever 358 ** the VDBE-level file format changes. The following macros define the 359 ** the default file format for new databases and the maximum file format 360 ** that the library can read. 361 */ 362 #define SQLITE_MAX_FILE_FORMAT 4 363 #ifndef SQLITE_DEFAULT_FILE_FORMAT 364 # define SQLITE_DEFAULT_FILE_FORMAT 4 365 #endif 366 367 /* 368 ** Determine whether triggers are recursive by default. This can be 369 ** changed at run-time using a pragma. 370 */ 371 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 372 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 373 #endif 374 375 /* 376 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 377 ** on the command-line 378 */ 379 #ifndef SQLITE_TEMP_STORE 380 # define SQLITE_TEMP_STORE 1 381 #endif 382 383 /* 384 ** GCC does not define the offsetof() macro so we'll have to do it 385 ** ourselves. 386 */ 387 #ifndef offsetof 388 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 389 #endif 390 391 /* 392 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 393 ** not, there are still machines out there that use EBCDIC.) 394 */ 395 #if 'A' == '\301' 396 # define SQLITE_EBCDIC 1 397 #else 398 # define SQLITE_ASCII 1 399 #endif 400 401 /* 402 ** Integers of known sizes. These typedefs might change for architectures 403 ** where the sizes very. Preprocessor macros are available so that the 404 ** types can be conveniently redefined at compile-type. Like this: 405 ** 406 ** cc '-DUINTPTR_TYPE=long long int' ... 407 */ 408 #ifndef UINT32_TYPE 409 # ifdef HAVE_UINT32_T 410 # define UINT32_TYPE uint32_t 411 # else 412 # define UINT32_TYPE unsigned int 413 # endif 414 #endif 415 #ifndef UINT16_TYPE 416 # ifdef HAVE_UINT16_T 417 # define UINT16_TYPE uint16_t 418 # else 419 # define UINT16_TYPE unsigned short int 420 # endif 421 #endif 422 #ifndef INT16_TYPE 423 # ifdef HAVE_INT16_T 424 # define INT16_TYPE int16_t 425 # else 426 # define INT16_TYPE short int 427 # endif 428 #endif 429 #ifndef UINT8_TYPE 430 # ifdef HAVE_UINT8_T 431 # define UINT8_TYPE uint8_t 432 # else 433 # define UINT8_TYPE unsigned char 434 # endif 435 #endif 436 #ifndef INT8_TYPE 437 # ifdef HAVE_INT8_T 438 # define INT8_TYPE int8_t 439 # else 440 # define INT8_TYPE signed char 441 # endif 442 #endif 443 #ifndef LONGDOUBLE_TYPE 444 # define LONGDOUBLE_TYPE long double 445 #endif 446 typedef sqlite_int64 i64; /* 8-byte signed integer */ 447 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 448 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 449 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 450 typedef INT16_TYPE i16; /* 2-byte signed integer */ 451 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 452 typedef INT8_TYPE i8; /* 1-byte signed integer */ 453 454 /* 455 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 456 ** that can be stored in a u32 without loss of data. The value 457 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 458 ** have to specify the value in the less intuitive manner shown: 459 */ 460 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 461 462 /* 463 ** The datatype used to store estimates of the number of rows in a 464 ** table or index. This is an unsigned integer type. For 99.9% of 465 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 466 ** can be used at compile-time if desired. 467 */ 468 #ifdef SQLITE_64BIT_STATS 469 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 470 #else 471 typedef u32 tRowcnt; /* 32-bit is the default */ 472 #endif 473 474 /* 475 ** Macros to determine whether the machine is big or little endian, 476 ** evaluated at runtime. 477 */ 478 #ifdef SQLITE_AMALGAMATION 479 const int sqlite3one = 1; 480 #else 481 extern const int sqlite3one; 482 #endif 483 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 484 || defined(__x86_64) || defined(__x86_64__) 485 # define SQLITE_BIGENDIAN 0 486 # define SQLITE_LITTLEENDIAN 1 487 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 488 #else 489 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 490 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 491 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 492 #endif 493 494 /* 495 ** Constants for the largest and smallest possible 64-bit signed integers. 496 ** These macros are designed to work correctly on both 32-bit and 64-bit 497 ** compilers. 498 */ 499 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 500 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 501 502 /* 503 ** Round up a number to the next larger multiple of 8. This is used 504 ** to force 8-byte alignment on 64-bit architectures. 505 */ 506 #define ROUND8(x) (((x)+7)&~7) 507 508 /* 509 ** Round down to the nearest multiple of 8 510 */ 511 #define ROUNDDOWN8(x) ((x)&~7) 512 513 /* 514 ** Assert that the pointer X is aligned to an 8-byte boundary. This 515 ** macro is used only within assert() to verify that the code gets 516 ** all alignment restrictions correct. 517 ** 518 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 519 ** underlying malloc() implemention might return us 4-byte aligned 520 ** pointers. In that case, only verify 4-byte alignment. 521 */ 522 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 523 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 524 #else 525 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 526 #endif 527 528 529 /* 530 ** An instance of the following structure is used to store the busy-handler 531 ** callback for a given sqlite handle. 532 ** 533 ** The sqlite.busyHandler member of the sqlite struct contains the busy 534 ** callback for the database handle. Each pager opened via the sqlite 535 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 536 ** callback is currently invoked only from within pager.c. 537 */ 538 typedef struct BusyHandler BusyHandler; 539 struct BusyHandler { 540 int (*xFunc)(void *,int); /* The busy callback */ 541 void *pArg; /* First arg to busy callback */ 542 int nBusy; /* Incremented with each busy call */ 543 }; 544 545 /* 546 ** Name of the master database table. The master database table 547 ** is a special table that holds the names and attributes of all 548 ** user tables and indices. 549 */ 550 #define MASTER_NAME "sqlite_master" 551 #define TEMP_MASTER_NAME "sqlite_temp_master" 552 553 /* 554 ** The root-page of the master database table. 555 */ 556 #define MASTER_ROOT 1 557 558 /* 559 ** The name of the schema table. 560 */ 561 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 562 563 /* 564 ** A convenience macro that returns the number of elements in 565 ** an array. 566 */ 567 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 568 569 /* 570 ** The following value as a destructor means to use sqlite3DbFree(). 571 ** The sqlite3DbFree() routine requires two parameters instead of the 572 ** one parameter that destructors normally want. So we have to introduce 573 ** this magic value that the code knows to handle differently. Any 574 ** pointer will work here as long as it is distinct from SQLITE_STATIC 575 ** and SQLITE_TRANSIENT. 576 */ 577 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 578 579 /* 580 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 581 ** not support Writable Static Data (WSD) such as global and static variables. 582 ** All variables must either be on the stack or dynamically allocated from 583 ** the heap. When WSD is unsupported, the variable declarations scattered 584 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 585 ** macro is used for this purpose. And instead of referencing the variable 586 ** directly, we use its constant as a key to lookup the run-time allocated 587 ** buffer that holds real variable. The constant is also the initializer 588 ** for the run-time allocated buffer. 589 ** 590 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 591 ** macros become no-ops and have zero performance impact. 592 */ 593 #ifdef SQLITE_OMIT_WSD 594 #define SQLITE_WSD const 595 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 596 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 597 int sqlite3_wsd_init(int N, int J); 598 void *sqlite3_wsd_find(void *K, int L); 599 #else 600 #define SQLITE_WSD 601 #define GLOBAL(t,v) v 602 #define sqlite3GlobalConfig sqlite3Config 603 #endif 604 605 /* 606 ** The following macros are used to suppress compiler warnings and to 607 ** make it clear to human readers when a function parameter is deliberately 608 ** left unused within the body of a function. This usually happens when 609 ** a function is called via a function pointer. For example the 610 ** implementation of an SQL aggregate step callback may not use the 611 ** parameter indicating the number of arguments passed to the aggregate, 612 ** if it knows that this is enforced elsewhere. 613 ** 614 ** When a function parameter is not used at all within the body of a function, 615 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 616 ** However, these macros may also be used to suppress warnings related to 617 ** parameters that may or may not be used depending on compilation options. 618 ** For example those parameters only used in assert() statements. In these 619 ** cases the parameters are named as per the usual conventions. 620 */ 621 #define UNUSED_PARAMETER(x) (void)(x) 622 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 623 624 /* 625 ** Forward references to structures 626 */ 627 typedef struct AggInfo AggInfo; 628 typedef struct AuthContext AuthContext; 629 typedef struct AutoincInfo AutoincInfo; 630 typedef struct Bitvec Bitvec; 631 typedef struct CollSeq CollSeq; 632 typedef struct Column Column; 633 typedef struct Db Db; 634 typedef struct Schema Schema; 635 typedef struct Expr Expr; 636 typedef struct ExprList ExprList; 637 typedef struct ExprSpan ExprSpan; 638 typedef struct FKey FKey; 639 typedef struct FuncDestructor FuncDestructor; 640 typedef struct FuncDef FuncDef; 641 typedef struct FuncDefHash FuncDefHash; 642 typedef struct IdList IdList; 643 typedef struct Index Index; 644 typedef struct IndexSample IndexSample; 645 typedef struct KeyClass KeyClass; 646 typedef struct KeyInfo KeyInfo; 647 typedef struct Lookaside Lookaside; 648 typedef struct LookasideSlot LookasideSlot; 649 typedef struct Module Module; 650 typedef struct NameContext NameContext; 651 typedef struct Parse Parse; 652 typedef struct RowSet RowSet; 653 typedef struct Savepoint Savepoint; 654 typedef struct Select Select; 655 typedef struct SrcList SrcList; 656 typedef struct StrAccum StrAccum; 657 typedef struct Table Table; 658 typedef struct TableLock TableLock; 659 typedef struct Token Token; 660 typedef struct Trigger Trigger; 661 typedef struct TriggerPrg TriggerPrg; 662 typedef struct TriggerStep TriggerStep; 663 typedef struct UnpackedRecord UnpackedRecord; 664 typedef struct VTable VTable; 665 typedef struct VtabCtx VtabCtx; 666 typedef struct Walker Walker; 667 typedef struct WherePlan WherePlan; 668 typedef struct WhereInfo WhereInfo; 669 typedef struct WhereLevel WhereLevel; 670 671 /* 672 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 673 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 674 ** pointer types (i.e. FuncDef) defined above. 675 */ 676 #include "btree.h" 677 #include "vdbe.h" 678 #include "pager.h" 679 #include "pcache.h" 680 681 #include "os.h" 682 #include "mutex.h" 683 684 685 /* 686 ** Each database file to be accessed by the system is an instance 687 ** of the following structure. There are normally two of these structures 688 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 689 ** aDb[1] is the database file used to hold temporary tables. Additional 690 ** databases may be attached. 691 */ 692 struct Db { 693 char *zName; /* Name of this database */ 694 Btree *pBt; /* The B*Tree structure for this database file */ 695 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 696 u8 safety_level; /* How aggressive at syncing data to disk */ 697 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 698 }; 699 700 /* 701 ** An instance of the following structure stores a database schema. 702 ** 703 ** Most Schema objects are associated with a Btree. The exception is 704 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 705 ** In shared cache mode, a single Schema object can be shared by multiple 706 ** Btrees that refer to the same underlying BtShared object. 707 ** 708 ** Schema objects are automatically deallocated when the last Btree that 709 ** references them is destroyed. The TEMP Schema is manually freed by 710 ** sqlite3_close(). 711 * 712 ** A thread must be holding a mutex on the corresponding Btree in order 713 ** to access Schema content. This implies that the thread must also be 714 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 715 ** For a TEMP Schema, only the connection mutex is required. 716 */ 717 struct Schema { 718 int schema_cookie; /* Database schema version number for this file */ 719 int iGeneration; /* Generation counter. Incremented with each change */ 720 Hash tblHash; /* All tables indexed by name */ 721 Hash idxHash; /* All (named) indices indexed by name */ 722 Hash trigHash; /* All triggers indexed by name */ 723 Hash fkeyHash; /* All foreign keys by referenced table name */ 724 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 725 u8 file_format; /* Schema format version for this file */ 726 u8 enc; /* Text encoding used by this database */ 727 u16 flags; /* Flags associated with this schema */ 728 int cache_size; /* Number of pages to use in the cache */ 729 }; 730 731 /* 732 ** These macros can be used to test, set, or clear bits in the 733 ** Db.pSchema->flags field. 734 */ 735 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 736 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 737 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 738 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 739 740 /* 741 ** Allowed values for the DB.pSchema->flags field. 742 ** 743 ** The DB_SchemaLoaded flag is set after the database schema has been 744 ** read into internal hash tables. 745 ** 746 ** DB_UnresetViews means that one or more views have column names that 747 ** have been filled out. If the schema changes, these column names might 748 ** changes and so the view will need to be reset. 749 */ 750 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 751 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 752 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 753 754 /* 755 ** The number of different kinds of things that can be limited 756 ** using the sqlite3_limit() interface. 757 */ 758 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 759 760 /* 761 ** Lookaside malloc is a set of fixed-size buffers that can be used 762 ** to satisfy small transient memory allocation requests for objects 763 ** associated with a particular database connection. The use of 764 ** lookaside malloc provides a significant performance enhancement 765 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 766 ** SQL statements. 767 ** 768 ** The Lookaside structure holds configuration information about the 769 ** lookaside malloc subsystem. Each available memory allocation in 770 ** the lookaside subsystem is stored on a linked list of LookasideSlot 771 ** objects. 772 ** 773 ** Lookaside allocations are only allowed for objects that are associated 774 ** with a particular database connection. Hence, schema information cannot 775 ** be stored in lookaside because in shared cache mode the schema information 776 ** is shared by multiple database connections. Therefore, while parsing 777 ** schema information, the Lookaside.bEnabled flag is cleared so that 778 ** lookaside allocations are not used to construct the schema objects. 779 */ 780 struct Lookaside { 781 u16 sz; /* Size of each buffer in bytes */ 782 u8 bEnabled; /* False to disable new lookaside allocations */ 783 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 784 int nOut; /* Number of buffers currently checked out */ 785 int mxOut; /* Highwater mark for nOut */ 786 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 787 LookasideSlot *pFree; /* List of available buffers */ 788 void *pStart; /* First byte of available memory space */ 789 void *pEnd; /* First byte past end of available space */ 790 }; 791 struct LookasideSlot { 792 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 793 }; 794 795 /* 796 ** A hash table for function definitions. 797 ** 798 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 799 ** Collisions are on the FuncDef.pHash chain. 800 */ 801 struct FuncDefHash { 802 FuncDef *a[23]; /* Hash table for functions */ 803 }; 804 805 /* 806 ** Each database connection is an instance of the following structure. 807 */ 808 struct sqlite3 { 809 sqlite3_vfs *pVfs; /* OS Interface */ 810 struct Vdbe *pVdbe; /* List of active virtual machines */ 811 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 812 sqlite3_mutex *mutex; /* Connection mutex */ 813 Db *aDb; /* All backends */ 814 int nDb; /* Number of backends currently in use */ 815 int flags; /* Miscellaneous flags. See below */ 816 i64 lastRowid; /* ROWID of most recent insert (see above) */ 817 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 818 int errCode; /* Most recent error code (SQLITE_*) */ 819 int errMask; /* & result codes with this before returning */ 820 u8 autoCommit; /* The auto-commit flag. */ 821 u8 temp_store; /* 1: file 2: memory 0: default */ 822 u8 mallocFailed; /* True if we have seen a malloc failure */ 823 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 824 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 825 u8 suppressErr; /* Do not issue error messages if true */ 826 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 827 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 828 int nextPagesize; /* Pagesize after VACUUM if >0 */ 829 u32 magic; /* Magic number for detect library misuse */ 830 int nChange; /* Value returned by sqlite3_changes() */ 831 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 832 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 833 struct sqlite3InitInfo { /* Information used during initialization */ 834 int newTnum; /* Rootpage of table being initialized */ 835 u8 iDb; /* Which db file is being initialized */ 836 u8 busy; /* TRUE if currently initializing */ 837 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 838 } init; 839 int activeVdbeCnt; /* Number of VDBEs currently executing */ 840 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 841 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 842 int nExtension; /* Number of loaded extensions */ 843 void **aExtension; /* Array of shared library handles */ 844 void (*xTrace)(void*,const char*); /* Trace function */ 845 void *pTraceArg; /* Argument to the trace function */ 846 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 847 void *pProfileArg; /* Argument to profile function */ 848 void *pCommitArg; /* Argument to xCommitCallback() */ 849 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 850 void *pRollbackArg; /* Argument to xRollbackCallback() */ 851 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 852 void *pUpdateArg; 853 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 854 #ifndef SQLITE_OMIT_WAL 855 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 856 void *pWalArg; 857 #endif 858 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 859 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 860 void *pCollNeededArg; 861 sqlite3_value *pErr; /* Most recent error message */ 862 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 863 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 864 union { 865 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 866 double notUsed1; /* Spacer */ 867 } u1; 868 Lookaside lookaside; /* Lookaside malloc configuration */ 869 #ifndef SQLITE_OMIT_AUTHORIZATION 870 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 871 /* Access authorization function */ 872 void *pAuthArg; /* 1st argument to the access auth function */ 873 #endif 874 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 875 int (*xProgress)(void *); /* The progress callback */ 876 void *pProgressArg; /* Argument to the progress callback */ 877 int nProgressOps; /* Number of opcodes for progress callback */ 878 #endif 879 #ifndef SQLITE_OMIT_VIRTUALTABLE 880 int nVTrans; /* Allocated size of aVTrans */ 881 Hash aModule; /* populated by sqlite3_create_module() */ 882 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 883 VTable **aVTrans; /* Virtual tables with open transactions */ 884 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 885 #endif 886 FuncDefHash aFunc; /* Hash table of connection functions */ 887 Hash aCollSeq; /* All collating sequences */ 888 BusyHandler busyHandler; /* Busy callback */ 889 Db aDbStatic[2]; /* Static space for the 2 default backends */ 890 Savepoint *pSavepoint; /* List of active savepoints */ 891 int busyTimeout; /* Busy handler timeout, in msec */ 892 int nSavepoint; /* Number of non-transaction savepoints */ 893 int nStatement; /* Number of nested statement-transactions */ 894 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 895 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 896 897 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 898 /* The following variables are all protected by the STATIC_MASTER 899 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 900 ** 901 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 902 ** unlock so that it can proceed. 903 ** 904 ** When X.pBlockingConnection==Y, that means that something that X tried 905 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 906 ** held by Y. 907 */ 908 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 909 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 910 void *pUnlockArg; /* Argument to xUnlockNotify */ 911 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 912 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 913 #endif 914 }; 915 916 /* 917 ** A macro to discover the encoding of a database. 918 */ 919 #define ENC(db) ((db)->aDb[0].pSchema->enc) 920 921 /* 922 ** Possible values for the sqlite3.flags. 923 */ 924 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 925 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 926 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 927 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 928 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 929 /* DELETE, or UPDATE and return */ 930 /* the count using a callback. */ 931 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 932 /* result set is empty */ 933 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 934 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 935 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 936 /* 0x00020000 Unused */ 937 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 938 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 939 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 940 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 941 #define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */ 942 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 943 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 944 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 945 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 946 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 947 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 948 #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ 949 #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */ 950 951 /* 952 ** Bits of the sqlite3.flags field that are used by the 953 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 954 ** These must be the low-order bits of the flags field. 955 */ 956 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 957 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 958 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 959 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 960 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 961 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 962 #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ 963 #define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */ 964 #define SQLITE_DistinctOpt 0x80 /* DISTINCT using indexes */ 965 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 966 967 /* 968 ** Possible values for the sqlite.magic field. 969 ** The numbers are obtained at random and have no special meaning, other 970 ** than being distinct from one another. 971 */ 972 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 973 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 974 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 975 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 976 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 977 978 /* 979 ** Each SQL function is defined by an instance of the following 980 ** structure. A pointer to this structure is stored in the sqlite.aFunc 981 ** hash table. When multiple functions have the same name, the hash table 982 ** points to a linked list of these structures. 983 */ 984 struct FuncDef { 985 i16 nArg; /* Number of arguments. -1 means unlimited */ 986 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 987 u8 flags; /* Some combination of SQLITE_FUNC_* */ 988 void *pUserData; /* User data parameter */ 989 FuncDef *pNext; /* Next function with same name */ 990 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 991 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 992 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 993 char *zName; /* SQL name of the function. */ 994 FuncDef *pHash; /* Next with a different name but the same hash */ 995 FuncDestructor *pDestructor; /* Reference counted destructor function */ 996 }; 997 998 /* 999 ** This structure encapsulates a user-function destructor callback (as 1000 ** configured using create_function_v2()) and a reference counter. When 1001 ** create_function_v2() is called to create a function with a destructor, 1002 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1003 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1004 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1005 ** member of each of the new FuncDef objects is set to point to the allocated 1006 ** FuncDestructor. 1007 ** 1008 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1009 ** count on this object is decremented. When it reaches 0, the destructor 1010 ** is invoked and the FuncDestructor structure freed. 1011 */ 1012 struct FuncDestructor { 1013 int nRef; 1014 void (*xDestroy)(void *); 1015 void *pUserData; 1016 }; 1017 1018 /* 1019 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1020 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1021 ** are assert() statements in the code to verify this. 1022 */ 1023 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1024 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1025 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1026 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1027 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ 1028 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ 1029 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ 1030 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ 1031 1032 /* 1033 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1034 ** used to create the initializers for the FuncDef structures. 1035 ** 1036 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1037 ** Used to create a scalar function definition of a function zName 1038 ** implemented by C function xFunc that accepts nArg arguments. The 1039 ** value passed as iArg is cast to a (void*) and made available 1040 ** as the user-data (sqlite3_user_data()) for the function. If 1041 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1042 ** 1043 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1044 ** Used to create an aggregate function definition implemented by 1045 ** the C functions xStep and xFinal. The first four parameters 1046 ** are interpreted in the same way as the first 4 parameters to 1047 ** FUNCTION(). 1048 ** 1049 ** LIKEFUNC(zName, nArg, pArg, flags) 1050 ** Used to create a scalar function definition of a function zName 1051 ** that accepts nArg arguments and is implemented by a call to C 1052 ** function likeFunc. Argument pArg is cast to a (void *) and made 1053 ** available as the function user-data (sqlite3_user_data()). The 1054 ** FuncDef.flags variable is set to the value passed as the flags 1055 ** parameter. 1056 */ 1057 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1058 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ 1059 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1060 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1061 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1062 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1063 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1064 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1065 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1066 #define LIKEFUNC(zName, nArg, arg, flags) \ 1067 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1068 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1069 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1070 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1071 1072 /* 1073 ** All current savepoints are stored in a linked list starting at 1074 ** sqlite3.pSavepoint. The first element in the list is the most recently 1075 ** opened savepoint. Savepoints are added to the list by the vdbe 1076 ** OP_Savepoint instruction. 1077 */ 1078 struct Savepoint { 1079 char *zName; /* Savepoint name (nul-terminated) */ 1080 i64 nDeferredCons; /* Number of deferred fk violations */ 1081 Savepoint *pNext; /* Parent savepoint (if any) */ 1082 }; 1083 1084 /* 1085 ** The following are used as the second parameter to sqlite3Savepoint(), 1086 ** and as the P1 argument to the OP_Savepoint instruction. 1087 */ 1088 #define SAVEPOINT_BEGIN 0 1089 #define SAVEPOINT_RELEASE 1 1090 #define SAVEPOINT_ROLLBACK 2 1091 1092 1093 /* 1094 ** Each SQLite module (virtual table definition) is defined by an 1095 ** instance of the following structure, stored in the sqlite3.aModule 1096 ** hash table. 1097 */ 1098 struct Module { 1099 const sqlite3_module *pModule; /* Callback pointers */ 1100 const char *zName; /* Name passed to create_module() */ 1101 void *pAux; /* pAux passed to create_module() */ 1102 void (*xDestroy)(void *); /* Module destructor function */ 1103 }; 1104 1105 /* 1106 ** information about each column of an SQL table is held in an instance 1107 ** of this structure. 1108 */ 1109 struct Column { 1110 char *zName; /* Name of this column */ 1111 Expr *pDflt; /* Default value of this column */ 1112 char *zDflt; /* Original text of the default value */ 1113 char *zType; /* Data type for this column */ 1114 char *zColl; /* Collating sequence. If NULL, use the default */ 1115 u8 notNull; /* True if there is a NOT NULL constraint */ 1116 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1117 char affinity; /* One of the SQLITE_AFF_... values */ 1118 #ifndef SQLITE_OMIT_VIRTUALTABLE 1119 u8 isHidden; /* True if this column is 'hidden' */ 1120 #endif 1121 }; 1122 1123 /* 1124 ** A "Collating Sequence" is defined by an instance of the following 1125 ** structure. Conceptually, a collating sequence consists of a name and 1126 ** a comparison routine that defines the order of that sequence. 1127 ** 1128 ** There may two separate implementations of the collation function, one 1129 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1130 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1131 ** native byte order. When a collation sequence is invoked, SQLite selects 1132 ** the version that will require the least expensive encoding 1133 ** translations, if any. 1134 ** 1135 ** The CollSeq.pUser member variable is an extra parameter that passed in 1136 ** as the first argument to the UTF-8 comparison function, xCmp. 1137 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1138 ** xCmp16. 1139 ** 1140 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1141 ** collating sequence is undefined. Indices built on an undefined 1142 ** collating sequence may not be read or written. 1143 */ 1144 struct CollSeq { 1145 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1146 u8 enc; /* Text encoding handled by xCmp() */ 1147 void *pUser; /* First argument to xCmp() */ 1148 int (*xCmp)(void*,int, const void*, int, const void*); 1149 void (*xDel)(void*); /* Destructor for pUser */ 1150 }; 1151 1152 /* 1153 ** A sort order can be either ASC or DESC. 1154 */ 1155 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1156 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1157 1158 /* 1159 ** Column affinity types. 1160 ** 1161 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1162 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1163 ** the speed a little by numbering the values consecutively. 1164 ** 1165 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1166 ** when multiple affinity types are concatenated into a string and 1167 ** used as the P4 operand, they will be more readable. 1168 ** 1169 ** Note also that the numeric types are grouped together so that testing 1170 ** for a numeric type is a single comparison. 1171 */ 1172 #define SQLITE_AFF_TEXT 'a' 1173 #define SQLITE_AFF_NONE 'b' 1174 #define SQLITE_AFF_NUMERIC 'c' 1175 #define SQLITE_AFF_INTEGER 'd' 1176 #define SQLITE_AFF_REAL 'e' 1177 1178 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1179 1180 /* 1181 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1182 ** affinity value. 1183 */ 1184 #define SQLITE_AFF_MASK 0x67 1185 1186 /* 1187 ** Additional bit values that can be ORed with an affinity without 1188 ** changing the affinity. 1189 */ 1190 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1191 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1192 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1193 1194 /* 1195 ** An object of this type is created for each virtual table present in 1196 ** the database schema. 1197 ** 1198 ** If the database schema is shared, then there is one instance of this 1199 ** structure for each database connection (sqlite3*) that uses the shared 1200 ** schema. This is because each database connection requires its own unique 1201 ** instance of the sqlite3_vtab* handle used to access the virtual table 1202 ** implementation. sqlite3_vtab* handles can not be shared between 1203 ** database connections, even when the rest of the in-memory database 1204 ** schema is shared, as the implementation often stores the database 1205 ** connection handle passed to it via the xConnect() or xCreate() method 1206 ** during initialization internally. This database connection handle may 1207 ** then be used by the virtual table implementation to access real tables 1208 ** within the database. So that they appear as part of the callers 1209 ** transaction, these accesses need to be made via the same database 1210 ** connection as that used to execute SQL operations on the virtual table. 1211 ** 1212 ** All VTable objects that correspond to a single table in a shared 1213 ** database schema are initially stored in a linked-list pointed to by 1214 ** the Table.pVTable member variable of the corresponding Table object. 1215 ** When an sqlite3_prepare() operation is required to access the virtual 1216 ** table, it searches the list for the VTable that corresponds to the 1217 ** database connection doing the preparing so as to use the correct 1218 ** sqlite3_vtab* handle in the compiled query. 1219 ** 1220 ** When an in-memory Table object is deleted (for example when the 1221 ** schema is being reloaded for some reason), the VTable objects are not 1222 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1223 ** immediately. Instead, they are moved from the Table.pVTable list to 1224 ** another linked list headed by the sqlite3.pDisconnect member of the 1225 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1226 ** next time a statement is prepared using said sqlite3*. This is done 1227 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1228 ** Refer to comments above function sqlite3VtabUnlockList() for an 1229 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1230 ** list without holding the corresponding sqlite3.mutex mutex. 1231 ** 1232 ** The memory for objects of this type is always allocated by 1233 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1234 ** the first argument. 1235 */ 1236 struct VTable { 1237 sqlite3 *db; /* Database connection associated with this table */ 1238 Module *pMod; /* Pointer to module implementation */ 1239 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1240 int nRef; /* Number of pointers to this structure */ 1241 u8 bConstraint; /* True if constraints are supported */ 1242 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1243 VTable *pNext; /* Next in linked list (see above) */ 1244 }; 1245 1246 /* 1247 ** Each SQL table is represented in memory by an instance of the 1248 ** following structure. 1249 ** 1250 ** Table.zName is the name of the table. The case of the original 1251 ** CREATE TABLE statement is stored, but case is not significant for 1252 ** comparisons. 1253 ** 1254 ** Table.nCol is the number of columns in this table. Table.aCol is a 1255 ** pointer to an array of Column structures, one for each column. 1256 ** 1257 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1258 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1259 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1260 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1261 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1262 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1263 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1264 ** 1265 ** Table.tnum is the page number for the root BTree page of the table in the 1266 ** database file. If Table.iDb is the index of the database table backend 1267 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1268 ** holds temporary tables and indices. If TF_Ephemeral is set 1269 ** then the table is stored in a file that is automatically deleted 1270 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1271 ** refers VDBE cursor number that holds the table open, not to the root 1272 ** page number. Transient tables are used to hold the results of a 1273 ** sub-query that appears instead of a real table name in the FROM clause 1274 ** of a SELECT statement. 1275 */ 1276 struct Table { 1277 char *zName; /* Name of the table or view */ 1278 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1279 int nCol; /* Number of columns in this table */ 1280 Column *aCol; /* Information about each column */ 1281 Index *pIndex; /* List of SQL indexes on this table. */ 1282 int tnum; /* Root BTree node for this table (see note above) */ 1283 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1284 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1285 u16 nRef; /* Number of pointers to this Table */ 1286 u8 tabFlags; /* Mask of TF_* values */ 1287 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1288 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1289 char *zColAff; /* String defining the affinity of each column */ 1290 #ifndef SQLITE_OMIT_CHECK 1291 ExprList *pCheck; /* All CHECK constraints */ 1292 #endif 1293 #ifndef SQLITE_OMIT_ALTERTABLE 1294 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1295 #endif 1296 #ifndef SQLITE_OMIT_VIRTUALTABLE 1297 VTable *pVTable; /* List of VTable objects. */ 1298 int nModuleArg; /* Number of arguments to the module */ 1299 char **azModuleArg; /* Text of all module args. [0] is module name */ 1300 #endif 1301 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1302 Schema *pSchema; /* Schema that contains this table */ 1303 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1304 }; 1305 1306 /* 1307 ** Allowed values for Tabe.tabFlags. 1308 */ 1309 #define TF_Readonly 0x01 /* Read-only system table */ 1310 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1311 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1312 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1313 #define TF_Virtual 0x10 /* Is a virtual table */ 1314 1315 1316 /* 1317 ** Test to see whether or not a table is a virtual table. This is 1318 ** done as a macro so that it will be optimized out when virtual 1319 ** table support is omitted from the build. 1320 */ 1321 #ifndef SQLITE_OMIT_VIRTUALTABLE 1322 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1323 # define IsHiddenColumn(X) ((X)->isHidden) 1324 #else 1325 # define IsVirtual(X) 0 1326 # define IsHiddenColumn(X) 0 1327 #endif 1328 1329 /* 1330 ** Each foreign key constraint is an instance of the following structure. 1331 ** 1332 ** A foreign key is associated with two tables. The "from" table is 1333 ** the table that contains the REFERENCES clause that creates the foreign 1334 ** key. The "to" table is the table that is named in the REFERENCES clause. 1335 ** Consider this example: 1336 ** 1337 ** CREATE TABLE ex1( 1338 ** a INTEGER PRIMARY KEY, 1339 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1340 ** ); 1341 ** 1342 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1343 ** 1344 ** Each REFERENCES clause generates an instance of the following structure 1345 ** which is attached to the from-table. The to-table need not exist when 1346 ** the from-table is created. The existence of the to-table is not checked. 1347 */ 1348 struct FKey { 1349 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1350 FKey *pNextFrom; /* Next foreign key in pFrom */ 1351 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1352 FKey *pNextTo; /* Next foreign key on table named zTo */ 1353 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1354 int nCol; /* Number of columns in this key */ 1355 /* EV: R-30323-21917 */ 1356 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1357 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1358 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1359 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1360 int iFrom; /* Index of column in pFrom */ 1361 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1362 } aCol[1]; /* One entry for each of nCol column s */ 1363 }; 1364 1365 /* 1366 ** SQLite supports many different ways to resolve a constraint 1367 ** error. ROLLBACK processing means that a constraint violation 1368 ** causes the operation in process to fail and for the current transaction 1369 ** to be rolled back. ABORT processing means the operation in process 1370 ** fails and any prior changes from that one operation are backed out, 1371 ** but the transaction is not rolled back. FAIL processing means that 1372 ** the operation in progress stops and returns an error code. But prior 1373 ** changes due to the same operation are not backed out and no rollback 1374 ** occurs. IGNORE means that the particular row that caused the constraint 1375 ** error is not inserted or updated. Processing continues and no error 1376 ** is returned. REPLACE means that preexisting database rows that caused 1377 ** a UNIQUE constraint violation are removed so that the new insert or 1378 ** update can proceed. Processing continues and no error is reported. 1379 ** 1380 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1381 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1382 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1383 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1384 ** referenced table row is propagated into the row that holds the 1385 ** foreign key. 1386 ** 1387 ** The following symbolic values are used to record which type 1388 ** of action to take. 1389 */ 1390 #define OE_None 0 /* There is no constraint to check */ 1391 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1392 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1393 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1394 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1395 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1396 1397 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1398 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1399 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1400 #define OE_Cascade 9 /* Cascade the changes */ 1401 1402 #define OE_Default 99 /* Do whatever the default action is */ 1403 1404 1405 /* 1406 ** An instance of the following structure is passed as the first 1407 ** argument to sqlite3VdbeKeyCompare and is used to control the 1408 ** comparison of the two index keys. 1409 */ 1410 struct KeyInfo { 1411 sqlite3 *db; /* The database connection */ 1412 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1413 u16 nField; /* Number of entries in aColl[] */ 1414 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1415 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1416 }; 1417 1418 /* 1419 ** An instance of the following structure holds information about a 1420 ** single index record that has already been parsed out into individual 1421 ** values. 1422 ** 1423 ** A record is an object that contains one or more fields of data. 1424 ** Records are used to store the content of a table row and to store 1425 ** the key of an index. A blob encoding of a record is created by 1426 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1427 ** OP_Column opcode. 1428 ** 1429 ** This structure holds a record that has already been disassembled 1430 ** into its constituent fields. 1431 */ 1432 struct UnpackedRecord { 1433 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1434 u16 nField; /* Number of entries in apMem[] */ 1435 u8 flags; /* Boolean settings. UNPACKED_... below */ 1436 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1437 Mem *aMem; /* Values */ 1438 }; 1439 1440 /* 1441 ** Allowed values of UnpackedRecord.flags 1442 */ 1443 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1444 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1445 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1446 1447 /* 1448 ** Each SQL index is represented in memory by an 1449 ** instance of the following structure. 1450 ** 1451 ** The columns of the table that are to be indexed are described 1452 ** by the aiColumn[] field of this structure. For example, suppose 1453 ** we have the following table and index: 1454 ** 1455 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1456 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1457 ** 1458 ** In the Table structure describing Ex1, nCol==3 because there are 1459 ** three columns in the table. In the Index structure describing 1460 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1461 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1462 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1463 ** The second column to be indexed (c1) has an index of 0 in 1464 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1465 ** 1466 ** The Index.onError field determines whether or not the indexed columns 1467 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1468 ** it means this is not a unique index. Otherwise it is a unique index 1469 ** and the value of Index.onError indicate the which conflict resolution 1470 ** algorithm to employ whenever an attempt is made to insert a non-unique 1471 ** element. 1472 */ 1473 struct Index { 1474 char *zName; /* Name of this index */ 1475 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1476 tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1477 Table *pTable; /* The SQL table being indexed */ 1478 char *zColAff; /* String defining the affinity of each column */ 1479 Index *pNext; /* The next index associated with the same table */ 1480 Schema *pSchema; /* Schema containing this index */ 1481 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1482 char **azColl; /* Array of collation sequence names for index */ 1483 int nColumn; /* Number of columns in the table used by this index */ 1484 int tnum; /* Page containing root of this index in database file */ 1485 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1486 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1487 u8 bUnordered; /* Use this index for == or IN queries only */ 1488 #ifdef SQLITE_ENABLE_STAT3 1489 int nSample; /* Number of elements in aSample[] */ 1490 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1491 IndexSample *aSample; /* Samples of the left-most key */ 1492 #endif 1493 }; 1494 1495 /* 1496 ** Each sample stored in the sqlite_stat3 table is represented in memory 1497 ** using a structure of this type. See documentation at the top of the 1498 ** analyze.c source file for additional information. 1499 */ 1500 struct IndexSample { 1501 union { 1502 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1503 double r; /* Value if eType is SQLITE_FLOAT */ 1504 i64 i; /* Value if eType is SQLITE_INTEGER */ 1505 } u; 1506 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1507 int nByte; /* Size in byte of text or blob. */ 1508 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1509 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1510 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1511 }; 1512 1513 /* 1514 ** Each token coming out of the lexer is an instance of 1515 ** this structure. Tokens are also used as part of an expression. 1516 ** 1517 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1518 ** may contain random values. Do not make any assumptions about Token.dyn 1519 ** and Token.n when Token.z==0. 1520 */ 1521 struct Token { 1522 const char *z; /* Text of the token. Not NULL-terminated! */ 1523 unsigned int n; /* Number of characters in this token */ 1524 }; 1525 1526 /* 1527 ** An instance of this structure contains information needed to generate 1528 ** code for a SELECT that contains aggregate functions. 1529 ** 1530 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1531 ** pointer to this structure. The Expr.iColumn field is the index in 1532 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1533 ** code for that node. 1534 ** 1535 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1536 ** original Select structure that describes the SELECT statement. These 1537 ** fields do not need to be freed when deallocating the AggInfo structure. 1538 */ 1539 struct AggInfo { 1540 u8 directMode; /* Direct rendering mode means take data directly 1541 ** from source tables rather than from accumulators */ 1542 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1543 ** than the source table */ 1544 int sortingIdx; /* Cursor number of the sorting index */ 1545 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1546 int nSortingColumn; /* Number of columns in the sorting index */ 1547 ExprList *pGroupBy; /* The group by clause */ 1548 struct AggInfo_col { /* For each column used in source tables */ 1549 Table *pTab; /* Source table */ 1550 int iTable; /* Cursor number of the source table */ 1551 int iColumn; /* Column number within the source table */ 1552 int iSorterColumn; /* Column number in the sorting index */ 1553 int iMem; /* Memory location that acts as accumulator */ 1554 Expr *pExpr; /* The original expression */ 1555 } *aCol; 1556 int nColumn; /* Number of used entries in aCol[] */ 1557 int nAccumulator; /* Number of columns that show through to the output. 1558 ** Additional columns are used only as parameters to 1559 ** aggregate functions */ 1560 struct AggInfo_func { /* For each aggregate function */ 1561 Expr *pExpr; /* Expression encoding the function */ 1562 FuncDef *pFunc; /* The aggregate function implementation */ 1563 int iMem; /* Memory location that acts as accumulator */ 1564 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1565 } *aFunc; 1566 int nFunc; /* Number of entries in aFunc[] */ 1567 }; 1568 1569 /* 1570 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1571 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1572 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1573 ** it uses less memory in the Expr object, which is a big memory user 1574 ** in systems with lots of prepared statements. And few applications 1575 ** need more than about 10 or 20 variables. But some extreme users want 1576 ** to have prepared statements with over 32767 variables, and for them 1577 ** the option is available (at compile-time). 1578 */ 1579 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1580 typedef i16 ynVar; 1581 #else 1582 typedef int ynVar; 1583 #endif 1584 1585 /* 1586 ** Each node of an expression in the parse tree is an instance 1587 ** of this structure. 1588 ** 1589 ** Expr.op is the opcode. The integer parser token codes are reused 1590 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1591 ** code representing the ">=" operator. This same integer code is reused 1592 ** to represent the greater-than-or-equal-to operator in the expression 1593 ** tree. 1594 ** 1595 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1596 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1597 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1598 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1599 ** then Expr.token contains the name of the function. 1600 ** 1601 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1602 ** binary operator. Either or both may be NULL. 1603 ** 1604 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1605 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1606 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1607 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1608 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1609 ** valid. 1610 ** 1611 ** An expression of the form ID or ID.ID refers to a column in a table. 1612 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1613 ** the integer cursor number of a VDBE cursor pointing to that table and 1614 ** Expr.iColumn is the column number for the specific column. If the 1615 ** expression is used as a result in an aggregate SELECT, then the 1616 ** value is also stored in the Expr.iAgg column in the aggregate so that 1617 ** it can be accessed after all aggregates are computed. 1618 ** 1619 ** If the expression is an unbound variable marker (a question mark 1620 ** character '?' in the original SQL) then the Expr.iTable holds the index 1621 ** number for that variable. 1622 ** 1623 ** If the expression is a subquery then Expr.iColumn holds an integer 1624 ** register number containing the result of the subquery. If the 1625 ** subquery gives a constant result, then iTable is -1. If the subquery 1626 ** gives a different answer at different times during statement processing 1627 ** then iTable is the address of a subroutine that computes the subquery. 1628 ** 1629 ** If the Expr is of type OP_Column, and the table it is selecting from 1630 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1631 ** corresponding table definition. 1632 ** 1633 ** ALLOCATION NOTES: 1634 ** 1635 ** Expr objects can use a lot of memory space in database schema. To 1636 ** help reduce memory requirements, sometimes an Expr object will be 1637 ** truncated. And to reduce the number of memory allocations, sometimes 1638 ** two or more Expr objects will be stored in a single memory allocation, 1639 ** together with Expr.zToken strings. 1640 ** 1641 ** If the EP_Reduced and EP_TokenOnly flags are set when 1642 ** an Expr object is truncated. When EP_Reduced is set, then all 1643 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1644 ** are contained within the same memory allocation. Note, however, that 1645 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1646 ** allocated, regardless of whether or not EP_Reduced is set. 1647 */ 1648 struct Expr { 1649 u8 op; /* Operation performed by this node */ 1650 char affinity; /* The affinity of the column or 0 if not a column */ 1651 u16 flags; /* Various flags. EP_* See below */ 1652 union { 1653 char *zToken; /* Token value. Zero terminated and dequoted */ 1654 int iValue; /* Non-negative integer value if EP_IntValue */ 1655 } u; 1656 1657 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1658 ** space is allocated for the fields below this point. An attempt to 1659 ** access them will result in a segfault or malfunction. 1660 *********************************************************************/ 1661 1662 Expr *pLeft; /* Left subnode */ 1663 Expr *pRight; /* Right subnode */ 1664 union { 1665 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1666 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1667 } x; 1668 CollSeq *pColl; /* The collation type of the column or 0 */ 1669 1670 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1671 ** space is allocated for the fields below this point. An attempt to 1672 ** access them will result in a segfault or malfunction. 1673 *********************************************************************/ 1674 1675 int iTable; /* TK_COLUMN: cursor number of table holding column 1676 ** TK_REGISTER: register number 1677 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1678 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1679 ** TK_VARIABLE: variable number (always >= 1). */ 1680 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1681 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1682 u8 flags2; /* Second set of flags. EP2_... */ 1683 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1684 /* If TK_COLUMN, the value of p5 for OP_Column */ 1685 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1686 Table *pTab; /* Table for TK_COLUMN expressions. */ 1687 #if SQLITE_MAX_EXPR_DEPTH>0 1688 int nHeight; /* Height of the tree headed by this node */ 1689 #endif 1690 }; 1691 1692 /* 1693 ** The following are the meanings of bits in the Expr.flags field. 1694 */ 1695 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1696 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1697 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1698 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1699 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1700 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1701 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1702 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1703 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1704 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1705 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1706 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1707 #define EP_Hint 0x1000 /* Not used */ 1708 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1709 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1710 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1711 1712 /* 1713 ** The following are the meanings of bits in the Expr.flags2 field. 1714 */ 1715 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1716 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1717 1718 /* 1719 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1720 ** flag on an expression structure. This flag is used for VV&A only. The 1721 ** routine is implemented as a macro that only works when in debugging mode, 1722 ** so as not to burden production code. 1723 */ 1724 #ifdef SQLITE_DEBUG 1725 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1726 #else 1727 # define ExprSetIrreducible(X) 1728 #endif 1729 1730 /* 1731 ** These macros can be used to test, set, or clear bits in the 1732 ** Expr.flags field. 1733 */ 1734 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1735 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1736 #define ExprSetProperty(E,P) (E)->flags|=(P) 1737 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1738 1739 /* 1740 ** Macros to determine the number of bytes required by a normal Expr 1741 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1742 ** and an Expr struct with the EP_TokenOnly flag set. 1743 */ 1744 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1745 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1746 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1747 1748 /* 1749 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1750 ** above sqlite3ExprDup() for details. 1751 */ 1752 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1753 1754 /* 1755 ** A list of expressions. Each expression may optionally have a 1756 ** name. An expr/name combination can be used in several ways, such 1757 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1758 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1759 ** also be used as the argument to a function, in which case the a.zName 1760 ** field is not used. 1761 */ 1762 struct ExprList { 1763 int nExpr; /* Number of expressions on the list */ 1764 int iECursor; /* VDBE Cursor associated with this ExprList */ 1765 struct ExprList_item { /* For each expression in the list */ 1766 Expr *pExpr; /* The list of expressions */ 1767 char *zName; /* Token associated with this expression */ 1768 char *zSpan; /* Original text of the expression */ 1769 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1770 u8 done; /* A flag to indicate when processing is finished */ 1771 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1772 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1773 } *a; /* Alloc a power of two greater or equal to nExpr */ 1774 }; 1775 1776 /* 1777 ** An instance of this structure is used by the parser to record both 1778 ** the parse tree for an expression and the span of input text for an 1779 ** expression. 1780 */ 1781 struct ExprSpan { 1782 Expr *pExpr; /* The expression parse tree */ 1783 const char *zStart; /* First character of input text */ 1784 const char *zEnd; /* One character past the end of input text */ 1785 }; 1786 1787 /* 1788 ** An instance of this structure can hold a simple list of identifiers, 1789 ** such as the list "a,b,c" in the following statements: 1790 ** 1791 ** INSERT INTO t(a,b,c) VALUES ...; 1792 ** CREATE INDEX idx ON t(a,b,c); 1793 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1794 ** 1795 ** The IdList.a.idx field is used when the IdList represents the list of 1796 ** column names after a table name in an INSERT statement. In the statement 1797 ** 1798 ** INSERT INTO t(a,b,c) ... 1799 ** 1800 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1801 */ 1802 struct IdList { 1803 struct IdList_item { 1804 char *zName; /* Name of the identifier */ 1805 int idx; /* Index in some Table.aCol[] of a column named zName */ 1806 } *a; 1807 int nId; /* Number of identifiers on the list */ 1808 }; 1809 1810 /* 1811 ** The bitmask datatype defined below is used for various optimizations. 1812 ** 1813 ** Changing this from a 64-bit to a 32-bit type limits the number of 1814 ** tables in a join to 32 instead of 64. But it also reduces the size 1815 ** of the library by 738 bytes on ix86. 1816 */ 1817 typedef u64 Bitmask; 1818 1819 /* 1820 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1821 */ 1822 #define BMS ((int)(sizeof(Bitmask)*8)) 1823 1824 /* 1825 ** The following structure describes the FROM clause of a SELECT statement. 1826 ** Each table or subquery in the FROM clause is a separate element of 1827 ** the SrcList.a[] array. 1828 ** 1829 ** With the addition of multiple database support, the following structure 1830 ** can also be used to describe a particular table such as the table that 1831 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1832 ** such a table must be a simple name: ID. But in SQLite, the table can 1833 ** now be identified by a database name, a dot, then the table name: ID.ID. 1834 ** 1835 ** The jointype starts out showing the join type between the current table 1836 ** and the next table on the list. The parser builds the list this way. 1837 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1838 ** jointype expresses the join between the table and the previous table. 1839 ** 1840 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1841 ** contains more than 63 columns and the 64-th or later column is used. 1842 */ 1843 struct SrcList { 1844 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1845 i16 nAlloc; /* Number of entries allocated in a[] below */ 1846 struct SrcList_item { 1847 char *zDatabase; /* Name of database holding this table */ 1848 char *zName; /* Name of the table */ 1849 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1850 Table *pTab; /* An SQL table corresponding to zName */ 1851 Select *pSelect; /* A SELECT statement used in place of a table name */ 1852 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1853 int regReturn; /* Register holding return address of addrFillSub */ 1854 u8 jointype; /* Type of join between this able and the previous */ 1855 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1856 u8 isCorrelated; /* True if sub-query is correlated */ 1857 #ifndef SQLITE_OMIT_EXPLAIN 1858 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1859 #endif 1860 int iCursor; /* The VDBE cursor number used to access this table */ 1861 Expr *pOn; /* The ON clause of a join */ 1862 IdList *pUsing; /* The USING clause of a join */ 1863 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1864 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1865 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1866 } a[1]; /* One entry for each identifier on the list */ 1867 }; 1868 1869 /* 1870 ** Permitted values of the SrcList.a.jointype field 1871 */ 1872 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1873 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1874 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1875 #define JT_LEFT 0x0008 /* Left outer join */ 1876 #define JT_RIGHT 0x0010 /* Right outer join */ 1877 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1878 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1879 1880 1881 /* 1882 ** A WherePlan object holds information that describes a lookup 1883 ** strategy. 1884 ** 1885 ** This object is intended to be opaque outside of the where.c module. 1886 ** It is included here only so that that compiler will know how big it 1887 ** is. None of the fields in this object should be used outside of 1888 ** the where.c module. 1889 ** 1890 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1891 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1892 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1893 ** case that more than one of these conditions is true. 1894 */ 1895 struct WherePlan { 1896 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1897 u32 nEq; /* Number of == constraints */ 1898 double nRow; /* Estimated number of rows (for EQP) */ 1899 union { 1900 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1901 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1902 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1903 } u; 1904 }; 1905 1906 /* 1907 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1908 ** structure contains a single instance of this structure. This structure 1909 ** is intended to be private the the where.c module and should not be 1910 ** access or modified by other modules. 1911 ** 1912 ** The pIdxInfo field is used to help pick the best index on a 1913 ** virtual table. The pIdxInfo pointer contains indexing 1914 ** information for the i-th table in the FROM clause before reordering. 1915 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1916 ** All other information in the i-th WhereLevel object for the i-th table 1917 ** after FROM clause ordering. 1918 */ 1919 struct WhereLevel { 1920 WherePlan plan; /* query plan for this element of the FROM clause */ 1921 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1922 int iTabCur; /* The VDBE cursor used to access the table */ 1923 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1924 int addrBrk; /* Jump here to break out of the loop */ 1925 int addrNxt; /* Jump here to start the next IN combination */ 1926 int addrCont; /* Jump here to continue with the next loop cycle */ 1927 int addrFirst; /* First instruction of interior of the loop */ 1928 u8 iFrom; /* Which entry in the FROM clause */ 1929 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1930 int p1, p2; /* Operands of the opcode used to ends the loop */ 1931 union { /* Information that depends on plan.wsFlags */ 1932 struct { 1933 int nIn; /* Number of entries in aInLoop[] */ 1934 struct InLoop { 1935 int iCur; /* The VDBE cursor used by this IN operator */ 1936 int addrInTop; /* Top of the IN loop */ 1937 } *aInLoop; /* Information about each nested IN operator */ 1938 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1939 } u; 1940 1941 /* The following field is really not part of the current level. But 1942 ** we need a place to cache virtual table index information for each 1943 ** virtual table in the FROM clause and the WhereLevel structure is 1944 ** a convenient place since there is one WhereLevel for each FROM clause 1945 ** element. 1946 */ 1947 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1948 }; 1949 1950 /* 1951 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1952 ** and the WhereInfo.wctrlFlags member. 1953 */ 1954 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1955 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1956 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1957 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1958 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1959 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 1960 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 1961 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 1962 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 1963 1964 /* 1965 ** The WHERE clause processing routine has two halves. The 1966 ** first part does the start of the WHERE loop and the second 1967 ** half does the tail of the WHERE loop. An instance of 1968 ** this structure is returned by the first half and passed 1969 ** into the second half to give some continuity. 1970 */ 1971 struct WhereInfo { 1972 Parse *pParse; /* Parsing and code generating context */ 1973 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1974 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1975 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1976 u8 eDistinct; 1977 SrcList *pTabList; /* List of tables in the join */ 1978 int iTop; /* The very beginning of the WHERE loop */ 1979 int iContinue; /* Jump here to continue with next record */ 1980 int iBreak; /* Jump here to break out of the loop */ 1981 int nLevel; /* Number of nested loop */ 1982 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1983 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 1984 double nRowOut; /* Estimated number of output rows */ 1985 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1986 }; 1987 1988 #define WHERE_DISTINCT_UNIQUE 1 1989 #define WHERE_DISTINCT_ORDERED 2 1990 1991 /* 1992 ** A NameContext defines a context in which to resolve table and column 1993 ** names. The context consists of a list of tables (the pSrcList) field and 1994 ** a list of named expression (pEList). The named expression list may 1995 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1996 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1997 ** pEList corresponds to the result set of a SELECT and is NULL for 1998 ** other statements. 1999 ** 2000 ** NameContexts can be nested. When resolving names, the inner-most 2001 ** context is searched first. If no match is found, the next outer 2002 ** context is checked. If there is still no match, the next context 2003 ** is checked. This process continues until either a match is found 2004 ** or all contexts are check. When a match is found, the nRef member of 2005 ** the context containing the match is incremented. 2006 ** 2007 ** Each subquery gets a new NameContext. The pNext field points to the 2008 ** NameContext in the parent query. Thus the process of scanning the 2009 ** NameContext list corresponds to searching through successively outer 2010 ** subqueries looking for a match. 2011 */ 2012 struct NameContext { 2013 Parse *pParse; /* The parser */ 2014 SrcList *pSrcList; /* One or more tables used to resolve names */ 2015 ExprList *pEList; /* Optional list of named expressions */ 2016 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2017 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2018 int nRef; /* Number of names resolved by this context */ 2019 int nErr; /* Number of errors encountered while resolving names */ 2020 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2021 }; 2022 2023 /* 2024 ** Allowed values for the NameContext, ncFlags field. 2025 */ 2026 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2027 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2028 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2029 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2030 2031 /* 2032 ** An instance of the following structure contains all information 2033 ** needed to generate code for a single SELECT statement. 2034 ** 2035 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2036 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2037 ** limit and nOffset to the value of the offset (or 0 if there is not 2038 ** offset). But later on, nLimit and nOffset become the memory locations 2039 ** in the VDBE that record the limit and offset counters. 2040 ** 2041 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2042 ** These addresses must be stored so that we can go back and fill in 2043 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2044 ** the number of columns in P2 can be computed at the same time 2045 ** as the OP_OpenEphm instruction is coded because not 2046 ** enough information about the compound query is known at that point. 2047 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2048 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 2049 ** sequences for the ORDER BY clause. 2050 */ 2051 struct Select { 2052 ExprList *pEList; /* The fields of the result */ 2053 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2054 char affinity; /* MakeRecord with this affinity for SRT_Set */ 2055 u16 selFlags; /* Various SF_* values */ 2056 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2057 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2058 double nSelectRow; /* Estimated number of result rows */ 2059 SrcList *pSrc; /* The FROM clause */ 2060 Expr *pWhere; /* The WHERE clause */ 2061 ExprList *pGroupBy; /* The GROUP BY clause */ 2062 Expr *pHaving; /* The HAVING clause */ 2063 ExprList *pOrderBy; /* The ORDER BY clause */ 2064 Select *pPrior; /* Prior select in a compound select statement */ 2065 Select *pNext; /* Next select to the left in a compound */ 2066 Select *pRightmost; /* Right-most select in a compound select statement */ 2067 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2068 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2069 }; 2070 2071 /* 2072 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2073 ** "Select Flag". 2074 */ 2075 #define SF_Distinct 0x01 /* Output should be DISTINCT */ 2076 #define SF_Resolved 0x02 /* Identifiers have been resolved */ 2077 #define SF_Aggregate 0x04 /* Contains aggregate functions */ 2078 #define SF_UsesEphemeral 0x08 /* Uses the OpenEphemeral opcode */ 2079 #define SF_Expanded 0x10 /* sqlite3SelectExpand() called on this */ 2080 #define SF_HasTypeInfo 0x20 /* FROM subqueries have Table metadata */ 2081 #define SF_UseSorter 0x40 /* Sort using a sorter */ 2082 #define SF_Values 0x80 /* Synthesized from VALUES clause */ 2083 2084 2085 /* 2086 ** The results of a select can be distributed in several ways. The 2087 ** "SRT" prefix means "SELECT Result Type". 2088 */ 2089 #define SRT_Union 1 /* Store result as keys in an index */ 2090 #define SRT_Except 2 /* Remove result from a UNION index */ 2091 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2092 #define SRT_Discard 4 /* Do not save the results anywhere */ 2093 2094 /* The ORDER BY clause is ignored for all of the above */ 2095 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2096 2097 #define SRT_Output 5 /* Output each row of result */ 2098 #define SRT_Mem 6 /* Store result in a memory cell */ 2099 #define SRT_Set 7 /* Store results as keys in an index */ 2100 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2101 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2102 #define SRT_Coroutine 10 /* Generate a single row of result */ 2103 2104 /* 2105 ** A structure used to customize the behavior of sqlite3Select(). See 2106 ** comments above sqlite3Select() for details. 2107 */ 2108 typedef struct SelectDest SelectDest; 2109 struct SelectDest { 2110 u8 eDest; /* How to dispose of the results */ 2111 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2112 int iParm; /* A parameter used by the eDest disposal method */ 2113 int iMem; /* Base register where results are written */ 2114 int nMem; /* Number of registers allocated */ 2115 }; 2116 2117 /* 2118 ** During code generation of statements that do inserts into AUTOINCREMENT 2119 ** tables, the following information is attached to the Table.u.autoInc.p 2120 ** pointer of each autoincrement table to record some side information that 2121 ** the code generator needs. We have to keep per-table autoincrement 2122 ** information in case inserts are down within triggers. Triggers do not 2123 ** normally coordinate their activities, but we do need to coordinate the 2124 ** loading and saving of autoincrement information. 2125 */ 2126 struct AutoincInfo { 2127 AutoincInfo *pNext; /* Next info block in a list of them all */ 2128 Table *pTab; /* Table this info block refers to */ 2129 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2130 int regCtr; /* Memory register holding the rowid counter */ 2131 }; 2132 2133 /* 2134 ** Size of the column cache 2135 */ 2136 #ifndef SQLITE_N_COLCACHE 2137 # define SQLITE_N_COLCACHE 10 2138 #endif 2139 2140 /* 2141 ** At least one instance of the following structure is created for each 2142 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2143 ** statement. All such objects are stored in the linked list headed at 2144 ** Parse.pTriggerPrg and deleted once statement compilation has been 2145 ** completed. 2146 ** 2147 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2148 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2149 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2150 ** The Parse.pTriggerPrg list never contains two entries with the same 2151 ** values for both pTrigger and orconf. 2152 ** 2153 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2154 ** accessed (or set to 0 for triggers fired as a result of INSERT 2155 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2156 ** a mask of new.* columns used by the program. 2157 */ 2158 struct TriggerPrg { 2159 Trigger *pTrigger; /* Trigger this program was coded from */ 2160 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2161 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2162 int orconf; /* Default ON CONFLICT policy */ 2163 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2164 }; 2165 2166 /* 2167 ** The yDbMask datatype for the bitmask of all attached databases. 2168 */ 2169 #if SQLITE_MAX_ATTACHED>30 2170 typedef sqlite3_uint64 yDbMask; 2171 #else 2172 typedef unsigned int yDbMask; 2173 #endif 2174 2175 /* 2176 ** An SQL parser context. A copy of this structure is passed through 2177 ** the parser and down into all the parser action routine in order to 2178 ** carry around information that is global to the entire parse. 2179 ** 2180 ** The structure is divided into two parts. When the parser and code 2181 ** generate call themselves recursively, the first part of the structure 2182 ** is constant but the second part is reset at the beginning and end of 2183 ** each recursion. 2184 ** 2185 ** The nTableLock and aTableLock variables are only used if the shared-cache 2186 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2187 ** used to store the set of table-locks required by the statement being 2188 ** compiled. Function sqlite3TableLock() is used to add entries to the 2189 ** list. 2190 */ 2191 struct Parse { 2192 sqlite3 *db; /* The main database structure */ 2193 char *zErrMsg; /* An error message */ 2194 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2195 int rc; /* Return code from execution */ 2196 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2197 u8 checkSchema; /* Causes schema cookie check after an error */ 2198 u8 nested; /* Number of nested calls to the parser/code generator */ 2199 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2200 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2201 u8 nColCache; /* Number of entries in aColCache[] */ 2202 u8 iColCache; /* Next entry in aColCache[] to replace */ 2203 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2204 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2205 int aTempReg[8]; /* Holding area for temporary registers */ 2206 int nRangeReg; /* Size of the temporary register block */ 2207 int iRangeReg; /* First register in temporary register block */ 2208 int nErr; /* Number of errors seen */ 2209 int nTab; /* Number of previously allocated VDBE cursors */ 2210 int nMem; /* Number of memory cells used so far */ 2211 int nSet; /* Number of sets used so far */ 2212 int nOnce; /* Number of OP_Once instructions so far */ 2213 int ckBase; /* Base register of data during check constraints */ 2214 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2215 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2216 struct yColCache { 2217 int iTable; /* Table cursor number */ 2218 int iColumn; /* Table column number */ 2219 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2220 int iLevel; /* Nesting level */ 2221 int iReg; /* Reg with value of this column. 0 means none. */ 2222 int lru; /* Least recently used entry has the smallest value */ 2223 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2224 yDbMask writeMask; /* Start a write transaction on these databases */ 2225 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2226 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2227 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2228 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2229 int regRoot; /* Register holding root page number for new objects */ 2230 int nMaxArg; /* Max args passed to user function by sub-program */ 2231 Token constraintName;/* Name of the constraint currently being parsed */ 2232 #ifndef SQLITE_OMIT_SHARED_CACHE 2233 int nTableLock; /* Number of locks in aTableLock */ 2234 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2235 #endif 2236 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2237 2238 /* Information used while coding trigger programs. */ 2239 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2240 Table *pTriggerTab; /* Table triggers are being coded for */ 2241 double nQueryLoop; /* Estimated number of iterations of a query */ 2242 u32 oldmask; /* Mask of old.* columns referenced */ 2243 u32 newmask; /* Mask of new.* columns referenced */ 2244 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2245 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2246 u8 disableTriggers; /* True to disable triggers */ 2247 2248 /* Above is constant between recursions. Below is reset before and after 2249 ** each recursion */ 2250 2251 int nVar; /* Number of '?' variables seen in the SQL so far */ 2252 int nzVar; /* Number of available slots in azVar[] */ 2253 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2254 #ifndef SQLITE_OMIT_VIRTUALTABLE 2255 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2256 int nVtabLock; /* Number of virtual tables to lock */ 2257 #endif 2258 int nAlias; /* Number of aliased result set columns */ 2259 int nHeight; /* Expression tree height of current sub-select */ 2260 #ifndef SQLITE_OMIT_EXPLAIN 2261 int iSelectId; /* ID of current select for EXPLAIN output */ 2262 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2263 #endif 2264 char **azVar; /* Pointers to names of parameters */ 2265 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2266 int *aAlias; /* Register used to hold aliased result */ 2267 const char *zTail; /* All SQL text past the last semicolon parsed */ 2268 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2269 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2270 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2271 Token sNameToken; /* Token with unqualified schema object name */ 2272 Token sLastToken; /* The last token parsed */ 2273 #ifndef SQLITE_OMIT_VIRTUALTABLE 2274 Token sArg; /* Complete text of a module argument */ 2275 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2276 #endif 2277 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2278 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2279 }; 2280 2281 /* 2282 ** Return true if currently inside an sqlite3_declare_vtab() call. 2283 */ 2284 #ifdef SQLITE_OMIT_VIRTUALTABLE 2285 #define IN_DECLARE_VTAB 0 2286 #else 2287 #define IN_DECLARE_VTAB (pParse->declareVtab) 2288 #endif 2289 2290 /* 2291 ** An instance of the following structure can be declared on a stack and used 2292 ** to save the Parse.zAuthContext value so that it can be restored later. 2293 */ 2294 struct AuthContext { 2295 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2296 Parse *pParse; /* The Parse structure */ 2297 }; 2298 2299 /* 2300 ** Bitfield flags for P5 value in various opcodes. 2301 */ 2302 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2303 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2304 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2305 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2306 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2307 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2308 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2309 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2310 2311 /* 2312 * Each trigger present in the database schema is stored as an instance of 2313 * struct Trigger. 2314 * 2315 * Pointers to instances of struct Trigger are stored in two ways. 2316 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2317 * database). This allows Trigger structures to be retrieved by name. 2318 * 2. All triggers associated with a single table form a linked list, using the 2319 * pNext member of struct Trigger. A pointer to the first element of the 2320 * linked list is stored as the "pTrigger" member of the associated 2321 * struct Table. 2322 * 2323 * The "step_list" member points to the first element of a linked list 2324 * containing the SQL statements specified as the trigger program. 2325 */ 2326 struct Trigger { 2327 char *zName; /* The name of the trigger */ 2328 char *table; /* The table or view to which the trigger applies */ 2329 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2330 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2331 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2332 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2333 the <column-list> is stored here */ 2334 Schema *pSchema; /* Schema containing the trigger */ 2335 Schema *pTabSchema; /* Schema containing the table */ 2336 TriggerStep *step_list; /* Link list of trigger program steps */ 2337 Trigger *pNext; /* Next trigger associated with the table */ 2338 }; 2339 2340 /* 2341 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2342 ** determine which. 2343 ** 2344 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2345 ** In that cases, the constants below can be ORed together. 2346 */ 2347 #define TRIGGER_BEFORE 1 2348 #define TRIGGER_AFTER 2 2349 2350 /* 2351 * An instance of struct TriggerStep is used to store a single SQL statement 2352 * that is a part of a trigger-program. 2353 * 2354 * Instances of struct TriggerStep are stored in a singly linked list (linked 2355 * using the "pNext" member) referenced by the "step_list" member of the 2356 * associated struct Trigger instance. The first element of the linked list is 2357 * the first step of the trigger-program. 2358 * 2359 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2360 * "SELECT" statement. The meanings of the other members is determined by the 2361 * value of "op" as follows: 2362 * 2363 * (op == TK_INSERT) 2364 * orconf -> stores the ON CONFLICT algorithm 2365 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2366 * this stores a pointer to the SELECT statement. Otherwise NULL. 2367 * target -> A token holding the quoted name of the table to insert into. 2368 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2369 * this stores values to be inserted. Otherwise NULL. 2370 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2371 * statement, then this stores the column-names to be 2372 * inserted into. 2373 * 2374 * (op == TK_DELETE) 2375 * target -> A token holding the quoted name of the table to delete from. 2376 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2377 * Otherwise NULL. 2378 * 2379 * (op == TK_UPDATE) 2380 * target -> A token holding the quoted name of the table to update rows of. 2381 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2382 * Otherwise NULL. 2383 * pExprList -> A list of the columns to update and the expressions to update 2384 * them to. See sqlite3Update() documentation of "pChanges" 2385 * argument. 2386 * 2387 */ 2388 struct TriggerStep { 2389 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2390 u8 orconf; /* OE_Rollback etc. */ 2391 Trigger *pTrig; /* The trigger that this step is a part of */ 2392 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2393 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2394 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2395 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2396 IdList *pIdList; /* Column names for INSERT */ 2397 TriggerStep *pNext; /* Next in the link-list */ 2398 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2399 }; 2400 2401 /* 2402 ** The following structure contains information used by the sqliteFix... 2403 ** routines as they walk the parse tree to make database references 2404 ** explicit. 2405 */ 2406 typedef struct DbFixer DbFixer; 2407 struct DbFixer { 2408 Parse *pParse; /* The parsing context. Error messages written here */ 2409 const char *zDb; /* Make sure all objects are contained in this database */ 2410 const char *zType; /* Type of the container - used for error messages */ 2411 const Token *pName; /* Name of the container - used for error messages */ 2412 }; 2413 2414 /* 2415 ** An objected used to accumulate the text of a string where we 2416 ** do not necessarily know how big the string will be in the end. 2417 */ 2418 struct StrAccum { 2419 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2420 char *zBase; /* A base allocation. Not from malloc. */ 2421 char *zText; /* The string collected so far */ 2422 int nChar; /* Length of the string so far */ 2423 int nAlloc; /* Amount of space allocated in zText */ 2424 int mxAlloc; /* Maximum allowed string length */ 2425 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2426 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2427 u8 tooBig; /* Becomes true if string size exceeds limits */ 2428 }; 2429 2430 /* 2431 ** A pointer to this structure is used to communicate information 2432 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2433 */ 2434 typedef struct { 2435 sqlite3 *db; /* The database being initialized */ 2436 char **pzErrMsg; /* Error message stored here */ 2437 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2438 int rc; /* Result code stored here */ 2439 } InitData; 2440 2441 /* 2442 ** Structure containing global configuration data for the SQLite library. 2443 ** 2444 ** This structure also contains some state information. 2445 */ 2446 struct Sqlite3Config { 2447 int bMemstat; /* True to enable memory status */ 2448 int bCoreMutex; /* True to enable core mutexing */ 2449 int bFullMutex; /* True to enable full mutexing */ 2450 int bOpenUri; /* True to interpret filenames as URIs */ 2451 int mxStrlen; /* Maximum string length */ 2452 int szLookaside; /* Default lookaside buffer size */ 2453 int nLookaside; /* Default lookaside buffer count */ 2454 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2455 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2456 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2457 void *pHeap; /* Heap storage space */ 2458 int nHeap; /* Size of pHeap[] */ 2459 int mnReq, mxReq; /* Min and max heap requests sizes */ 2460 void *pScratch; /* Scratch memory */ 2461 int szScratch; /* Size of each scratch buffer */ 2462 int nScratch; /* Number of scratch buffers */ 2463 void *pPage; /* Page cache memory */ 2464 int szPage; /* Size of each page in pPage[] */ 2465 int nPage; /* Number of pages in pPage[] */ 2466 int mxParserStack; /* maximum depth of the parser stack */ 2467 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2468 /* The above might be initialized to non-zero. The following need to always 2469 ** initially be zero, however. */ 2470 int isInit; /* True after initialization has finished */ 2471 int inProgress; /* True while initialization in progress */ 2472 int isMutexInit; /* True after mutexes are initialized */ 2473 int isMallocInit; /* True after malloc is initialized */ 2474 int isPCacheInit; /* True after malloc is initialized */ 2475 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2476 int nRefInitMutex; /* Number of users of pInitMutex */ 2477 void (*xLog)(void*,int,const char*); /* Function for logging */ 2478 void *pLogArg; /* First argument to xLog() */ 2479 int bLocaltimeFault; /* True to fail localtime() calls */ 2480 }; 2481 2482 /* 2483 ** Context pointer passed down through the tree-walk. 2484 */ 2485 struct Walker { 2486 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2487 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2488 Parse *pParse; /* Parser context. */ 2489 union { /* Extra data for callback */ 2490 NameContext *pNC; /* Naming context */ 2491 int i; /* Integer value */ 2492 SrcList *pSrcList; /* FROM clause */ 2493 } u; 2494 }; 2495 2496 /* Forward declarations */ 2497 int sqlite3WalkExpr(Walker*, Expr*); 2498 int sqlite3WalkExprList(Walker*, ExprList*); 2499 int sqlite3WalkSelect(Walker*, Select*); 2500 int sqlite3WalkSelectExpr(Walker*, Select*); 2501 int sqlite3WalkSelectFrom(Walker*, Select*); 2502 2503 /* 2504 ** Return code from the parse-tree walking primitives and their 2505 ** callbacks. 2506 */ 2507 #define WRC_Continue 0 /* Continue down into children */ 2508 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2509 #define WRC_Abort 2 /* Abandon the tree walk */ 2510 2511 /* 2512 ** Assuming zIn points to the first byte of a UTF-8 character, 2513 ** advance zIn to point to the first byte of the next UTF-8 character. 2514 */ 2515 #define SQLITE_SKIP_UTF8(zIn) { \ 2516 if( (*(zIn++))>=0xc0 ){ \ 2517 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2518 } \ 2519 } 2520 2521 /* 2522 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2523 ** the same name but without the _BKPT suffix. These macros invoke 2524 ** routines that report the line-number on which the error originated 2525 ** using sqlite3_log(). The routines also provide a convenient place 2526 ** to set a debugger breakpoint. 2527 */ 2528 int sqlite3CorruptError(int); 2529 int sqlite3MisuseError(int); 2530 int sqlite3CantopenError(int); 2531 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2532 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2533 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2534 2535 2536 /* 2537 ** FTS4 is really an extension for FTS3. It is enabled using the 2538 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2539 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2540 */ 2541 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2542 # define SQLITE_ENABLE_FTS3 2543 #endif 2544 2545 /* 2546 ** The ctype.h header is needed for non-ASCII systems. It is also 2547 ** needed by FTS3 when FTS3 is included in the amalgamation. 2548 */ 2549 #if !defined(SQLITE_ASCII) || \ 2550 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2551 # include <ctype.h> 2552 #endif 2553 2554 /* 2555 ** The following macros mimic the standard library functions toupper(), 2556 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2557 ** sqlite versions only work for ASCII characters, regardless of locale. 2558 */ 2559 #ifdef SQLITE_ASCII 2560 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2561 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2562 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2563 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2564 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2565 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2566 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2567 #else 2568 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2569 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2570 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2571 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2572 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2573 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2574 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2575 #endif 2576 2577 /* 2578 ** Internal function prototypes 2579 */ 2580 #define sqlite3StrICmp sqlite3_stricmp 2581 int sqlite3Strlen30(const char*); 2582 #define sqlite3StrNICmp sqlite3_strnicmp 2583 2584 int sqlite3MallocInit(void); 2585 void sqlite3MallocEnd(void); 2586 void *sqlite3Malloc(int); 2587 void *sqlite3MallocZero(int); 2588 void *sqlite3DbMallocZero(sqlite3*, int); 2589 void *sqlite3DbMallocRaw(sqlite3*, int); 2590 char *sqlite3DbStrDup(sqlite3*,const char*); 2591 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2592 void *sqlite3Realloc(void*, int); 2593 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2594 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2595 void sqlite3DbFree(sqlite3*, void*); 2596 int sqlite3MallocSize(void*); 2597 int sqlite3DbMallocSize(sqlite3*, void*); 2598 void *sqlite3ScratchMalloc(int); 2599 void sqlite3ScratchFree(void*); 2600 void *sqlite3PageMalloc(int); 2601 void sqlite3PageFree(void*); 2602 void sqlite3MemSetDefault(void); 2603 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2604 int sqlite3HeapNearlyFull(void); 2605 2606 /* 2607 ** On systems with ample stack space and that support alloca(), make 2608 ** use of alloca() to obtain space for large automatic objects. By default, 2609 ** obtain space from malloc(). 2610 ** 2611 ** The alloca() routine never returns NULL. This will cause code paths 2612 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2613 */ 2614 #ifdef SQLITE_USE_ALLOCA 2615 # define sqlite3StackAllocRaw(D,N) alloca(N) 2616 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2617 # define sqlite3StackFree(D,P) 2618 #else 2619 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2620 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2621 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2622 #endif 2623 2624 #ifdef SQLITE_ENABLE_MEMSYS3 2625 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2626 #endif 2627 #ifdef SQLITE_ENABLE_MEMSYS5 2628 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2629 #endif 2630 2631 2632 #ifndef SQLITE_MUTEX_OMIT 2633 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2634 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2635 sqlite3_mutex *sqlite3MutexAlloc(int); 2636 int sqlite3MutexInit(void); 2637 int sqlite3MutexEnd(void); 2638 #endif 2639 2640 int sqlite3StatusValue(int); 2641 void sqlite3StatusAdd(int, int); 2642 void sqlite3StatusSet(int, int); 2643 2644 #ifndef SQLITE_OMIT_FLOATING_POINT 2645 int sqlite3IsNaN(double); 2646 #else 2647 # define sqlite3IsNaN(X) 0 2648 #endif 2649 2650 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2651 #ifndef SQLITE_OMIT_TRACE 2652 void sqlite3XPrintf(StrAccum*, const char*, ...); 2653 #endif 2654 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2655 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2656 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2657 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2658 void sqlite3DebugPrintf(const char*, ...); 2659 #endif 2660 #if defined(SQLITE_TEST) 2661 void *sqlite3TestTextToPtr(const char*); 2662 #endif 2663 2664 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2665 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2666 void sqlite3ExplainBegin(Vdbe*); 2667 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2668 void sqlite3ExplainNL(Vdbe*); 2669 void sqlite3ExplainPush(Vdbe*); 2670 void sqlite3ExplainPop(Vdbe*); 2671 void sqlite3ExplainFinish(Vdbe*); 2672 void sqlite3ExplainSelect(Vdbe*, Select*); 2673 void sqlite3ExplainExpr(Vdbe*, Expr*); 2674 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2675 const char *sqlite3VdbeExplanation(Vdbe*); 2676 #else 2677 # define sqlite3ExplainBegin(X) 2678 # define sqlite3ExplainSelect(A,B) 2679 # define sqlite3ExplainExpr(A,B) 2680 # define sqlite3ExplainExprList(A,B) 2681 # define sqlite3ExplainFinish(X) 2682 # define sqlite3VdbeExplanation(X) 0 2683 #endif 2684 2685 2686 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2687 void sqlite3ErrorMsg(Parse*, const char*, ...); 2688 int sqlite3Dequote(char*); 2689 int sqlite3KeywordCode(const unsigned char*, int); 2690 int sqlite3RunParser(Parse*, const char*, char **); 2691 void sqlite3FinishCoding(Parse*); 2692 int sqlite3GetTempReg(Parse*); 2693 void sqlite3ReleaseTempReg(Parse*,int); 2694 int sqlite3GetTempRange(Parse*,int); 2695 void sqlite3ReleaseTempRange(Parse*,int,int); 2696 void sqlite3ClearTempRegCache(Parse*); 2697 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2698 Expr *sqlite3Expr(sqlite3*,int,const char*); 2699 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2700 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2701 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2702 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2703 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2704 void sqlite3ExprDelete(sqlite3*, Expr*); 2705 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2706 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2707 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2708 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2709 int sqlite3Init(sqlite3*, char**); 2710 int sqlite3InitCallback(void*, int, char**, char**); 2711 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2712 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2713 void sqlite3ResetOneSchema(sqlite3*,int); 2714 void sqlite3CollapseDatabaseArray(sqlite3*); 2715 void sqlite3BeginParse(Parse*,int); 2716 void sqlite3CommitInternalChanges(sqlite3*); 2717 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2718 void sqlite3OpenMasterTable(Parse *, int); 2719 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2720 void sqlite3AddColumn(Parse*,Token*); 2721 void sqlite3AddNotNull(Parse*, int); 2722 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2723 void sqlite3AddCheckConstraint(Parse*, Expr*); 2724 void sqlite3AddColumnType(Parse*,Token*); 2725 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2726 void sqlite3AddCollateType(Parse*, Token*); 2727 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2728 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2729 sqlite3_vfs**,char**,char **); 2730 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2731 int sqlite3CodeOnce(Parse *); 2732 2733 Bitvec *sqlite3BitvecCreate(u32); 2734 int sqlite3BitvecTest(Bitvec*, u32); 2735 int sqlite3BitvecSet(Bitvec*, u32); 2736 void sqlite3BitvecClear(Bitvec*, u32, void*); 2737 void sqlite3BitvecDestroy(Bitvec*); 2738 u32 sqlite3BitvecSize(Bitvec*); 2739 int sqlite3BitvecBuiltinTest(int,int*); 2740 2741 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2742 void sqlite3RowSetClear(RowSet*); 2743 void sqlite3RowSetInsert(RowSet*, i64); 2744 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2745 int sqlite3RowSetNext(RowSet*, i64*); 2746 2747 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2748 2749 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2750 int sqlite3ViewGetColumnNames(Parse*,Table*); 2751 #else 2752 # define sqlite3ViewGetColumnNames(A,B) 0 2753 #endif 2754 2755 void sqlite3DropTable(Parse*, SrcList*, int, int); 2756 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2757 void sqlite3DeleteTable(sqlite3*, Table*); 2758 #ifndef SQLITE_OMIT_AUTOINCREMENT 2759 void sqlite3AutoincrementBegin(Parse *pParse); 2760 void sqlite3AutoincrementEnd(Parse *pParse); 2761 #else 2762 # define sqlite3AutoincrementBegin(X) 2763 # define sqlite3AutoincrementEnd(X) 2764 #endif 2765 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2766 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2767 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2768 int sqlite3IdListIndex(IdList*,const char*); 2769 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2770 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2771 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2772 Token*, Select*, Expr*, IdList*); 2773 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2774 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2775 void sqlite3SrcListShiftJoinType(SrcList*); 2776 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2777 void sqlite3IdListDelete(sqlite3*, IdList*); 2778 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2779 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2780 Token*, int, int); 2781 void sqlite3DropIndex(Parse*, SrcList*, int); 2782 int sqlite3Select(Parse*, Select*, SelectDest*); 2783 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2784 Expr*,ExprList*,int,Expr*,Expr*); 2785 void sqlite3SelectDelete(sqlite3*, Select*); 2786 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2787 int sqlite3IsReadOnly(Parse*, Table*, int); 2788 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2789 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2790 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2791 #endif 2792 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2793 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2794 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**,ExprList*,u16); 2795 void sqlite3WhereEnd(WhereInfo*); 2796 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 2797 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2798 void sqlite3ExprCodeMove(Parse*, int, int, int); 2799 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2800 void sqlite3ExprCacheStore(Parse*, int, int, int); 2801 void sqlite3ExprCachePush(Parse*); 2802 void sqlite3ExprCachePop(Parse*, int); 2803 void sqlite3ExprCacheRemove(Parse*, int, int); 2804 void sqlite3ExprCacheClear(Parse*); 2805 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2806 int sqlite3ExprCode(Parse*, Expr*, int); 2807 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2808 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2809 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2810 void sqlite3ExprCodeConstants(Parse*, Expr*); 2811 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2812 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2813 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2814 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2815 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2816 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2817 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2818 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2819 void sqlite3Vacuum(Parse*); 2820 int sqlite3RunVacuum(char**, sqlite3*); 2821 char *sqlite3NameFromToken(sqlite3*, Token*); 2822 int sqlite3ExprCompare(Expr*, Expr*); 2823 int sqlite3ExprListCompare(ExprList*, ExprList*); 2824 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2825 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2826 Vdbe *sqlite3GetVdbe(Parse*); 2827 void sqlite3PrngSaveState(void); 2828 void sqlite3PrngRestoreState(void); 2829 void sqlite3PrngResetState(void); 2830 void sqlite3RollbackAll(sqlite3*,int); 2831 void sqlite3CodeVerifySchema(Parse*, int); 2832 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2833 void sqlite3BeginTransaction(Parse*, int); 2834 void sqlite3CommitTransaction(Parse*); 2835 void sqlite3RollbackTransaction(Parse*); 2836 void sqlite3Savepoint(Parse*, int, Token*); 2837 void sqlite3CloseSavepoints(sqlite3 *); 2838 int sqlite3ExprIsConstant(Expr*); 2839 int sqlite3ExprIsConstantNotJoin(Expr*); 2840 int sqlite3ExprIsConstantOrFunction(Expr*); 2841 int sqlite3ExprIsInteger(Expr*, int*); 2842 int sqlite3ExprCanBeNull(const Expr*); 2843 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2844 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2845 int sqlite3IsRowid(const char*); 2846 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2847 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2848 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2849 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2850 int*,int,int,int,int,int*); 2851 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2852 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2853 void sqlite3BeginWriteOperation(Parse*, int, int); 2854 void sqlite3MultiWrite(Parse*); 2855 void sqlite3MayAbort(Parse*); 2856 void sqlite3HaltConstraint(Parse*, int, char*, int); 2857 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2858 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2859 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2860 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2861 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2862 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2863 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 2864 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2865 void sqlite3RegisterDateTimeFunctions(void); 2866 void sqlite3RegisterGlobalFunctions(void); 2867 int sqlite3SafetyCheckOk(sqlite3*); 2868 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2869 void sqlite3ChangeCookie(Parse*, int); 2870 2871 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2872 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2873 #endif 2874 2875 #ifndef SQLITE_OMIT_TRIGGER 2876 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2877 Expr*,int, int); 2878 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2879 void sqlite3DropTrigger(Parse*, SrcList*, int); 2880 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2881 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2882 Trigger *sqlite3TriggerList(Parse *, Table *); 2883 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2884 int, int, int); 2885 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2886 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2887 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2888 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2889 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2890 ExprList*,Select*,u8); 2891 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2892 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2893 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2894 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2895 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2896 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2897 #else 2898 # define sqlite3TriggersExist(B,C,D,E,F) 0 2899 # define sqlite3DeleteTrigger(A,B) 2900 # define sqlite3DropTriggerPtr(A,B) 2901 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2902 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2903 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2904 # define sqlite3TriggerList(X, Y) 0 2905 # define sqlite3ParseToplevel(p) p 2906 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2907 #endif 2908 2909 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2910 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2911 void sqlite3DeferForeignKey(Parse*, int); 2912 #ifndef SQLITE_OMIT_AUTHORIZATION 2913 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2914 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2915 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2916 void sqlite3AuthContextPop(AuthContext*); 2917 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2918 #else 2919 # define sqlite3AuthRead(a,b,c,d) 2920 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2921 # define sqlite3AuthContextPush(a,b,c) 2922 # define sqlite3AuthContextPop(a) ((void)(a)) 2923 #endif 2924 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2925 void sqlite3Detach(Parse*, Expr*); 2926 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2927 int sqlite3FixSrcList(DbFixer*, SrcList*); 2928 int sqlite3FixSelect(DbFixer*, Select*); 2929 int sqlite3FixExpr(DbFixer*, Expr*); 2930 int sqlite3FixExprList(DbFixer*, ExprList*); 2931 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2932 int sqlite3AtoF(const char *z, double*, int, u8); 2933 int sqlite3GetInt32(const char *, int*); 2934 int sqlite3Atoi(const char*); 2935 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2936 int sqlite3Utf8CharLen(const char *pData, int nByte); 2937 u32 sqlite3Utf8Read(const u8*, const u8**); 2938 2939 /* 2940 ** Routines to read and write variable-length integers. These used to 2941 ** be defined locally, but now we use the varint routines in the util.c 2942 ** file. Code should use the MACRO forms below, as the Varint32 versions 2943 ** are coded to assume the single byte case is already handled (which 2944 ** the MACRO form does). 2945 */ 2946 int sqlite3PutVarint(unsigned char*, u64); 2947 int sqlite3PutVarint32(unsigned char*, u32); 2948 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2949 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2950 int sqlite3VarintLen(u64 v); 2951 2952 /* 2953 ** The header of a record consists of a sequence variable-length integers. 2954 ** These integers are almost always small and are encoded as a single byte. 2955 ** The following macros take advantage this fact to provide a fast encode 2956 ** and decode of the integers in a record header. It is faster for the common 2957 ** case where the integer is a single byte. It is a little slower when the 2958 ** integer is two or more bytes. But overall it is faster. 2959 ** 2960 ** The following expressions are equivalent: 2961 ** 2962 ** x = sqlite3GetVarint32( A, &B ); 2963 ** x = sqlite3PutVarint32( A, B ); 2964 ** 2965 ** x = getVarint32( A, B ); 2966 ** x = putVarint32( A, B ); 2967 ** 2968 */ 2969 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2970 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2971 #define getVarint sqlite3GetVarint 2972 #define putVarint sqlite3PutVarint 2973 2974 2975 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2976 void sqlite3TableAffinityStr(Vdbe *, Table *); 2977 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2978 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2979 char sqlite3ExprAffinity(Expr *pExpr); 2980 int sqlite3Atoi64(const char*, i64*, int, u8); 2981 void sqlite3Error(sqlite3*, int, const char*,...); 2982 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2983 u8 sqlite3HexToInt(int h); 2984 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2985 const char *sqlite3ErrStr(int); 2986 int sqlite3ReadSchema(Parse *pParse); 2987 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2988 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2989 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2990 Expr *sqlite3ExprSetColl(Expr*, CollSeq*); 2991 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); 2992 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2993 int sqlite3CheckObjectName(Parse *, const char *); 2994 void sqlite3VdbeSetChanges(sqlite3 *, int); 2995 int sqlite3AddInt64(i64*,i64); 2996 int sqlite3SubInt64(i64*,i64); 2997 int sqlite3MulInt64(i64*,i64); 2998 int sqlite3AbsInt32(int); 2999 #ifdef SQLITE_ENABLE_8_3_NAMES 3000 void sqlite3FileSuffix3(const char*, char*); 3001 #else 3002 # define sqlite3FileSuffix3(X,Y) 3003 #endif 3004 u8 sqlite3GetBoolean(const char *z,int); 3005 3006 const void *sqlite3ValueText(sqlite3_value*, u8); 3007 int sqlite3ValueBytes(sqlite3_value*, u8); 3008 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3009 void(*)(void*)); 3010 void sqlite3ValueFree(sqlite3_value*); 3011 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3012 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3013 #ifdef SQLITE_ENABLE_STAT3 3014 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3015 #endif 3016 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3017 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3018 #ifndef SQLITE_AMALGAMATION 3019 extern const unsigned char sqlite3OpcodeProperty[]; 3020 extern const unsigned char sqlite3UpperToLower[]; 3021 extern const unsigned char sqlite3CtypeMap[]; 3022 extern const Token sqlite3IntTokens[]; 3023 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3024 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3025 #ifndef SQLITE_OMIT_WSD 3026 extern int sqlite3PendingByte; 3027 #endif 3028 #endif 3029 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3030 void sqlite3Reindex(Parse*, Token*, Token*); 3031 void sqlite3AlterFunctions(void); 3032 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3033 int sqlite3GetToken(const unsigned char *, int *); 3034 void sqlite3NestedParse(Parse*, const char*, ...); 3035 void sqlite3ExpirePreparedStatements(sqlite3*); 3036 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3037 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3038 int sqlite3ResolveExprNames(NameContext*, Expr*); 3039 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3040 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3041 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3042 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3043 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3044 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 3045 char sqlite3AffinityType(const char*); 3046 void sqlite3Analyze(Parse*, Token*, Token*); 3047 int sqlite3InvokeBusyHandler(BusyHandler*); 3048 int sqlite3FindDb(sqlite3*, Token*); 3049 int sqlite3FindDbName(sqlite3 *, const char *); 3050 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3051 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3052 void sqlite3DefaultRowEst(Index*); 3053 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3054 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3055 void sqlite3MinimumFileFormat(Parse*, int, int); 3056 void sqlite3SchemaClear(void *); 3057 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3058 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3059 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3060 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3061 void (*)(sqlite3_context*,int,sqlite3_value **), 3062 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3063 FuncDestructor *pDestructor 3064 ); 3065 int sqlite3ApiExit(sqlite3 *db, int); 3066 int sqlite3OpenTempDatabase(Parse *); 3067 3068 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3069 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3070 void sqlite3AppendSpace(StrAccum*,int); 3071 char *sqlite3StrAccumFinish(StrAccum*); 3072 void sqlite3StrAccumReset(StrAccum*); 3073 void sqlite3SelectDestInit(SelectDest*,int,int); 3074 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3075 3076 void sqlite3BackupRestart(sqlite3_backup *); 3077 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3078 3079 /* 3080 ** The interface to the LEMON-generated parser 3081 */ 3082 void *sqlite3ParserAlloc(void*(*)(size_t)); 3083 void sqlite3ParserFree(void*, void(*)(void*)); 3084 void sqlite3Parser(void*, int, Token, Parse*); 3085 #ifdef YYTRACKMAXSTACKDEPTH 3086 int sqlite3ParserStackPeak(void*); 3087 #endif 3088 3089 void sqlite3AutoLoadExtensions(sqlite3*); 3090 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3091 void sqlite3CloseExtensions(sqlite3*); 3092 #else 3093 # define sqlite3CloseExtensions(X) 3094 #endif 3095 3096 #ifndef SQLITE_OMIT_SHARED_CACHE 3097 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3098 #else 3099 #define sqlite3TableLock(v,w,x,y,z) 3100 #endif 3101 3102 #ifdef SQLITE_TEST 3103 int sqlite3Utf8To8(unsigned char*); 3104 #endif 3105 3106 #ifdef SQLITE_OMIT_VIRTUALTABLE 3107 # define sqlite3VtabClear(Y) 3108 # define sqlite3VtabSync(X,Y) SQLITE_OK 3109 # define sqlite3VtabRollback(X) 3110 # define sqlite3VtabCommit(X) 3111 # define sqlite3VtabInSync(db) 0 3112 # define sqlite3VtabLock(X) 3113 # define sqlite3VtabUnlock(X) 3114 # define sqlite3VtabUnlockList(X) 3115 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3116 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3117 #else 3118 void sqlite3VtabClear(sqlite3 *db, Table*); 3119 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3120 int sqlite3VtabSync(sqlite3 *db, char **); 3121 int sqlite3VtabRollback(sqlite3 *db); 3122 int sqlite3VtabCommit(sqlite3 *db); 3123 void sqlite3VtabLock(VTable *); 3124 void sqlite3VtabUnlock(VTable *); 3125 void sqlite3VtabUnlockList(sqlite3*); 3126 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3127 VTable *sqlite3GetVTable(sqlite3*, Table*); 3128 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3129 #endif 3130 void sqlite3VtabMakeWritable(Parse*,Table*); 3131 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3132 void sqlite3VtabFinishParse(Parse*, Token*); 3133 void sqlite3VtabArgInit(Parse*); 3134 void sqlite3VtabArgExtend(Parse*, Token*); 3135 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3136 int sqlite3VtabCallConnect(Parse*, Table*); 3137 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3138 int sqlite3VtabBegin(sqlite3 *, VTable *); 3139 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3140 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3141 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3142 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3143 int sqlite3Reprepare(Vdbe*); 3144 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3145 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3146 int sqlite3TempInMemory(const sqlite3*); 3147 const char *sqlite3JournalModename(int); 3148 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3149 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3150 3151 /* Declarations for functions in fkey.c. All of these are replaced by 3152 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3153 ** key functionality is available. If OMIT_TRIGGER is defined but 3154 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3155 ** this case foreign keys are parsed, but no other functionality is 3156 ** provided (enforcement of FK constraints requires the triggers sub-system). 3157 */ 3158 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3159 void sqlite3FkCheck(Parse*, Table*, int, int); 3160 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3161 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3162 int sqlite3FkRequired(Parse*, Table*, int*, int); 3163 u32 sqlite3FkOldmask(Parse*, Table*); 3164 FKey *sqlite3FkReferences(Table *); 3165 #else 3166 #define sqlite3FkActions(a,b,c,d) 3167 #define sqlite3FkCheck(a,b,c,d) 3168 #define sqlite3FkDropTable(a,b,c) 3169 #define sqlite3FkOldmask(a,b) 0 3170 #define sqlite3FkRequired(a,b,c,d) 0 3171 #endif 3172 #ifndef SQLITE_OMIT_FOREIGN_KEY 3173 void sqlite3FkDelete(sqlite3 *, Table*); 3174 #else 3175 #define sqlite3FkDelete(a,b) 3176 #endif 3177 3178 3179 /* 3180 ** Available fault injectors. Should be numbered beginning with 0. 3181 */ 3182 #define SQLITE_FAULTINJECTOR_MALLOC 0 3183 #define SQLITE_FAULTINJECTOR_COUNT 1 3184 3185 /* 3186 ** The interface to the code in fault.c used for identifying "benign" 3187 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3188 ** is not defined. 3189 */ 3190 #ifndef SQLITE_OMIT_BUILTIN_TEST 3191 void sqlite3BeginBenignMalloc(void); 3192 void sqlite3EndBenignMalloc(void); 3193 #else 3194 #define sqlite3BeginBenignMalloc() 3195 #define sqlite3EndBenignMalloc() 3196 #endif 3197 3198 #define IN_INDEX_ROWID 1 3199 #define IN_INDEX_EPH 2 3200 #define IN_INDEX_INDEX 3 3201 int sqlite3FindInIndex(Parse *, Expr *, int*); 3202 3203 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3204 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3205 int sqlite3JournalSize(sqlite3_vfs *); 3206 int sqlite3JournalCreate(sqlite3_file *); 3207 #else 3208 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3209 #endif 3210 3211 void sqlite3MemJournalOpen(sqlite3_file *); 3212 int sqlite3MemJournalSize(void); 3213 int sqlite3IsMemJournal(sqlite3_file *); 3214 3215 #if SQLITE_MAX_EXPR_DEPTH>0 3216 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3217 int sqlite3SelectExprHeight(Select *); 3218 int sqlite3ExprCheckHeight(Parse*, int); 3219 #else 3220 #define sqlite3ExprSetHeight(x,y) 3221 #define sqlite3SelectExprHeight(x) 0 3222 #define sqlite3ExprCheckHeight(x,y) 3223 #endif 3224 3225 u32 sqlite3Get4byte(const u8*); 3226 void sqlite3Put4byte(u8*, u32); 3227 3228 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3229 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3230 void sqlite3ConnectionUnlocked(sqlite3 *db); 3231 void sqlite3ConnectionClosed(sqlite3 *db); 3232 #else 3233 #define sqlite3ConnectionBlocked(x,y) 3234 #define sqlite3ConnectionUnlocked(x) 3235 #define sqlite3ConnectionClosed(x) 3236 #endif 3237 3238 #ifdef SQLITE_DEBUG 3239 void sqlite3ParserTrace(FILE*, char *); 3240 #endif 3241 3242 /* 3243 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3244 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3245 ** print I/O tracing messages. 3246 */ 3247 #ifdef SQLITE_ENABLE_IOTRACE 3248 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3249 void sqlite3VdbeIOTraceSql(Vdbe*); 3250 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3251 #else 3252 # define IOTRACE(A) 3253 # define sqlite3VdbeIOTraceSql(X) 3254 #endif 3255 3256 /* 3257 ** These routines are available for the mem2.c debugging memory allocator 3258 ** only. They are used to verify that different "types" of memory 3259 ** allocations are properly tracked by the system. 3260 ** 3261 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3262 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3263 ** a single bit set. 3264 ** 3265 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3266 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3267 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3268 ** 3269 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3270 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3271 ** 3272 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3273 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3274 ** it might have been allocated by lookaside, except the allocation was 3275 ** too large or lookaside was already full. It is important to verify 3276 ** that allocations that might have been satisfied by lookaside are not 3277 ** passed back to non-lookaside free() routines. Asserts such as the 3278 ** example above are placed on the non-lookaside free() routines to verify 3279 ** this constraint. 3280 ** 3281 ** All of this is no-op for a production build. It only comes into 3282 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3283 */ 3284 #ifdef SQLITE_MEMDEBUG 3285 void sqlite3MemdebugSetType(void*,u8); 3286 int sqlite3MemdebugHasType(void*,u8); 3287 int sqlite3MemdebugNoType(void*,u8); 3288 #else 3289 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3290 # define sqlite3MemdebugHasType(X,Y) 1 3291 # define sqlite3MemdebugNoType(X,Y) 1 3292 #endif 3293 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3294 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3295 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3296 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3297 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3298 3299 #endif /* _SQLITEINT_H_ */ 3300