1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.541 2007/03/02 06:24:19 danielk1977 Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** Extra interface definitions for those who need them 21 */ 22 #ifdef SQLITE_EXTRA 23 # include "sqliteExtra.h" 24 #endif 25 26 /* 27 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 28 ** Setting NDEBUG makes the code smaller and run faster. So the following 29 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 30 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 31 ** feature. 32 */ 33 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 34 # define NDEBUG 1 35 #endif 36 37 /* 38 ** These #defines should enable >2GB file support on Posix if the 39 ** underlying operating system supports it. If the OS lacks 40 ** large file support, or if the OS is windows, these should be no-ops. 41 ** 42 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 43 ** on the compiler command line. This is necessary if you are compiling 44 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 45 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 46 ** without this option, LFS is enable. But LFS does not exist in the kernel 47 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 48 ** portability you should omit LFS. 49 ** 50 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 51 */ 52 #ifndef SQLITE_DISABLE_LFS 53 # define _LARGE_FILE 1 54 # ifndef _FILE_OFFSET_BITS 55 # define _FILE_OFFSET_BITS 64 56 # endif 57 # define _LARGEFILE_SOURCE 1 58 #endif 59 60 #include "sqlite3.h" 61 #include "hash.h" 62 #include "parse.h" 63 #include <stdio.h> 64 #include <stdlib.h> 65 #include <string.h> 66 #include <assert.h> 67 #include <stddef.h> 68 69 /* 70 ** If compiling for a processor that lacks floating point support, 71 ** substitute integer for floating-point 72 */ 73 #ifdef SQLITE_OMIT_FLOATING_POINT 74 # define double sqlite_int64 75 # define LONGDOUBLE_TYPE sqlite_int64 76 # ifndef SQLITE_BIG_DBL 77 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 78 # endif 79 # define SQLITE_OMIT_DATETIME_FUNCS 1 80 # define SQLITE_OMIT_TRACE 1 81 #endif 82 #ifndef SQLITE_BIG_DBL 83 # define SQLITE_BIG_DBL (1e99) 84 #endif 85 86 /* 87 ** The maximum number of in-memory pages to use for the main database 88 ** table and for temporary tables. Internally, the MAX_PAGES and 89 ** TEMP_PAGES macros are used. To override the default values at 90 ** compilation time, the SQLITE_DEFAULT_CACHE_SIZE and 91 ** SQLITE_DEFAULT_TEMP_CACHE_SIZE macros should be set. 92 */ 93 #ifdef SQLITE_DEFAULT_CACHE_SIZE 94 # define MAX_PAGES SQLITE_DEFAULT_CACHE_SIZE 95 #else 96 # define MAX_PAGES 2000 97 #endif 98 #ifdef SQLITE_DEFAULT_TEMP_CACHE_SIZE 99 # define TEMP_PAGES SQLITE_DEFAULT_TEMP_CACHE_SIZE 100 #else 101 # define TEMP_PAGES 500 102 #endif 103 104 /* 105 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 106 ** afterward. Having this macro allows us to cause the C compiler 107 ** to omit code used by TEMP tables without messy #ifndef statements. 108 */ 109 #ifdef SQLITE_OMIT_TEMPDB 110 #define OMIT_TEMPDB 1 111 #else 112 #define OMIT_TEMPDB 0 113 #endif 114 115 /* 116 ** If the following macro is set to 1, then NULL values are considered 117 ** distinct when determining whether or not two entries are the same 118 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 119 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 120 ** is the way things are suppose to work. 121 ** 122 ** If the following macro is set to 0, the NULLs are indistinct for 123 ** a UNIQUE index. In this mode, you can only have a single NULL entry 124 ** for a column declared UNIQUE. This is the way Informix and SQL Server 125 ** work. 126 */ 127 #define NULL_DISTINCT_FOR_UNIQUE 1 128 129 /* 130 ** The maximum number of attached databases. This must be at least 2 131 ** in order to support the main database file (0) and the file used to 132 ** hold temporary tables (1). And it must be less than 32 because 133 ** we use a bitmask of databases with a u32 in places (for example 134 ** the Parse.cookieMask field). 135 */ 136 #define MAX_ATTACHED 10 137 138 /* 139 ** The maximum value of a ?nnn wildcard that the parser will accept. 140 */ 141 #define SQLITE_MAX_VARIABLE_NUMBER 999 142 143 /* 144 ** The "file format" number is an integer that is incremented whenever 145 ** the VDBE-level file format changes. The following macros define the 146 ** the default file format for new databases and the maximum file format 147 ** that the library can read. 148 */ 149 #define SQLITE_MAX_FILE_FORMAT 4 150 #ifndef SQLITE_DEFAULT_FILE_FORMAT 151 # define SQLITE_DEFAULT_FILE_FORMAT 1 152 #endif 153 154 /* 155 ** Provide a default value for TEMP_STORE in case it is not specified 156 ** on the command-line 157 */ 158 #ifndef TEMP_STORE 159 # define TEMP_STORE 1 160 #endif 161 162 /* 163 ** GCC does not define the offsetof() macro so we'll have to do it 164 ** ourselves. 165 */ 166 #ifndef offsetof 167 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 168 #endif 169 170 /* 171 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 172 ** not, there are still machines out there that use EBCDIC.) 173 */ 174 #if 'A' == '\301' 175 # define SQLITE_EBCDIC 1 176 #else 177 # define SQLITE_ASCII 1 178 #endif 179 180 /* 181 ** Integers of known sizes. These typedefs might change for architectures 182 ** where the sizes very. Preprocessor macros are available so that the 183 ** types can be conveniently redefined at compile-type. Like this: 184 ** 185 ** cc '-DUINTPTR_TYPE=long long int' ... 186 */ 187 #ifndef UINT32_TYPE 188 # define UINT32_TYPE unsigned int 189 #endif 190 #ifndef UINT16_TYPE 191 # define UINT16_TYPE unsigned short int 192 #endif 193 #ifndef INT16_TYPE 194 # define INT16_TYPE short int 195 #endif 196 #ifndef UINT8_TYPE 197 # define UINT8_TYPE unsigned char 198 #endif 199 #ifndef INT8_TYPE 200 # define INT8_TYPE signed char 201 #endif 202 #ifndef LONGDOUBLE_TYPE 203 # define LONGDOUBLE_TYPE long double 204 #endif 205 typedef sqlite_int64 i64; /* 8-byte signed integer */ 206 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 207 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 208 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 209 typedef INT16_TYPE i16; /* 2-byte signed integer */ 210 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 211 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 212 213 /* 214 ** Macros to determine whether the machine is big or little endian, 215 ** evaluated at runtime. 216 */ 217 extern const int sqlite3one; 218 #define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 219 #define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 220 221 /* 222 ** An instance of the following structure is used to store the busy-handler 223 ** callback for a given sqlite handle. 224 ** 225 ** The sqlite.busyHandler member of the sqlite struct contains the busy 226 ** callback for the database handle. Each pager opened via the sqlite 227 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 228 ** callback is currently invoked only from within pager.c. 229 */ 230 typedef struct BusyHandler BusyHandler; 231 struct BusyHandler { 232 int (*xFunc)(void *,int); /* The busy callback */ 233 void *pArg; /* First arg to busy callback */ 234 int nBusy; /* Incremented with each busy call */ 235 }; 236 237 /* 238 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 239 ** "BusyHandler typedefs. 240 */ 241 #include "vdbe.h" 242 #include "btree.h" 243 #include "pager.h" 244 245 #ifdef SQLITE_MEMDEBUG 246 /* 247 ** The following global variables are used for testing and debugging 248 ** only. They only work if SQLITE_MEMDEBUG is defined. 249 */ 250 extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ 251 extern int sqlite3_nFree; /* Number of sqliteFree() calls */ 252 extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 253 extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */ 254 255 extern void *sqlite3_pFirst; /* Pointer to linked list of allocations */ 256 extern int sqlite3_nMaxAlloc; /* High water mark of ThreadData.nAlloc */ 257 extern int sqlite3_mallocDisallowed; /* assert() in sqlite3Malloc() if set */ 258 extern int sqlite3_isFail; /* True if all malloc calls should fail */ 259 extern const char *sqlite3_zFile; /* Filename to associate debug info with */ 260 extern int sqlite3_iLine; /* Line number for debug info */ 261 262 #define ENTER_MALLOC (sqlite3_zFile = __FILE__, sqlite3_iLine = __LINE__) 263 #define sqliteMalloc(x) (ENTER_MALLOC, sqlite3Malloc(x,1)) 264 #define sqliteMallocRaw(x) (ENTER_MALLOC, sqlite3MallocRaw(x,1)) 265 #define sqliteRealloc(x,y) (ENTER_MALLOC, sqlite3Realloc(x,y)) 266 #define sqliteStrDup(x) (ENTER_MALLOC, sqlite3StrDup(x)) 267 #define sqliteStrNDup(x,y) (ENTER_MALLOC, sqlite3StrNDup(x,y)) 268 #define sqliteReallocOrFree(x,y) (ENTER_MALLOC, sqlite3ReallocOrFree(x,y)) 269 270 #else 271 272 #define ENTER_MALLOC 0 273 #define sqliteMalloc(x) sqlite3Malloc(x,1) 274 #define sqliteMallocRaw(x) sqlite3MallocRaw(x,1) 275 #define sqliteRealloc(x,y) sqlite3Realloc(x,y) 276 #define sqliteStrDup(x) sqlite3StrDup(x) 277 #define sqliteStrNDup(x,y) sqlite3StrNDup(x,y) 278 #define sqliteReallocOrFree(x,y) sqlite3ReallocOrFree(x,y) 279 280 #endif 281 282 #define sqliteFree(x) sqlite3FreeX(x) 283 #define sqliteAllocSize(x) sqlite3AllocSize(x) 284 285 286 /* 287 ** An instance of this structure might be allocated to store information 288 ** specific to a single thread. 289 */ 290 struct ThreadData { 291 int dummy; /* So that this structure is never empty */ 292 293 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 294 int nSoftHeapLimit; /* Suggested max mem allocation. No limit if <0 */ 295 int nAlloc; /* Number of bytes currently allocated */ 296 Pager *pPager; /* Linked list of all pagers in this thread */ 297 #endif 298 299 #ifndef SQLITE_OMIT_SHARED_CACHE 300 u8 useSharedData; /* True if shared pagers and schemas are enabled */ 301 BtShared *pBtree; /* Linked list of all currently open BTrees */ 302 #endif 303 }; 304 305 /* 306 ** Name of the master database table. The master database table 307 ** is a special table that holds the names and attributes of all 308 ** user tables and indices. 309 */ 310 #define MASTER_NAME "sqlite_master" 311 #define TEMP_MASTER_NAME "sqlite_temp_master" 312 313 /* 314 ** The root-page of the master database table. 315 */ 316 #define MASTER_ROOT 1 317 318 /* 319 ** The name of the schema table. 320 */ 321 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 322 323 /* 324 ** A convenience macro that returns the number of elements in 325 ** an array. 326 */ 327 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 328 329 /* 330 ** Forward references to structures 331 */ 332 typedef struct AggInfo AggInfo; 333 typedef struct AuthContext AuthContext; 334 typedef struct CollSeq CollSeq; 335 typedef struct Column Column; 336 typedef struct Db Db; 337 typedef struct Schema Schema; 338 typedef struct Expr Expr; 339 typedef struct ExprList ExprList; 340 typedef struct FKey FKey; 341 typedef struct FuncDef FuncDef; 342 typedef struct IdList IdList; 343 typedef struct Index Index; 344 typedef struct KeyClass KeyClass; 345 typedef struct KeyInfo KeyInfo; 346 typedef struct Module Module; 347 typedef struct NameContext NameContext; 348 typedef struct Parse Parse; 349 typedef struct Select Select; 350 typedef struct SrcList SrcList; 351 typedef struct ThreadData ThreadData; 352 typedef struct Table Table; 353 typedef struct TableLock TableLock; 354 typedef struct Token Token; 355 typedef struct TriggerStack TriggerStack; 356 typedef struct TriggerStep TriggerStep; 357 typedef struct Trigger Trigger; 358 typedef struct WhereInfo WhereInfo; 359 typedef struct WhereLevel WhereLevel; 360 361 /* 362 ** Each database file to be accessed by the system is an instance 363 ** of the following structure. There are normally two of these structures 364 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 365 ** aDb[1] is the database file used to hold temporary tables. Additional 366 ** databases may be attached. 367 */ 368 struct Db { 369 char *zName; /* Name of this database */ 370 Btree *pBt; /* The B*Tree structure for this database file */ 371 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 372 u8 safety_level; /* How aggressive at synching data to disk */ 373 void *pAux; /* Auxiliary data. Usually NULL */ 374 void (*xFreeAux)(void*); /* Routine to free pAux */ 375 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 376 }; 377 378 /* 379 ** An instance of the following structure stores a database schema. 380 */ 381 struct Schema { 382 int schema_cookie; /* Database schema version number for this file */ 383 Hash tblHash; /* All tables indexed by name */ 384 Hash idxHash; /* All (named) indices indexed by name */ 385 Hash trigHash; /* All triggers indexed by name */ 386 Hash aFKey; /* Foreign keys indexed by to-table */ 387 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 388 u8 file_format; /* Schema format version for this file */ 389 u8 enc; /* Text encoding used by this database */ 390 u16 flags; /* Flags associated with this schema */ 391 int cache_size; /* Number of pages to use in the cache */ 392 }; 393 394 /* 395 ** These macros can be used to test, set, or clear bits in the 396 ** Db.flags field. 397 */ 398 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 399 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 400 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 401 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 402 403 /* 404 ** Allowed values for the DB.flags field. 405 ** 406 ** The DB_SchemaLoaded flag is set after the database schema has been 407 ** read into internal hash tables. 408 ** 409 ** DB_UnresetViews means that one or more views have column names that 410 ** have been filled out. If the schema changes, these column names might 411 ** changes and so the view will need to be reset. 412 */ 413 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 414 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 415 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 416 417 #define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 418 419 /* 420 ** Each database is an instance of the following structure. 421 ** 422 ** The sqlite.lastRowid records the last insert rowid generated by an 423 ** insert statement. Inserts on views do not affect its value. Each 424 ** trigger has its own context, so that lastRowid can be updated inside 425 ** triggers as usual. The previous value will be restored once the trigger 426 ** exits. Upon entering a before or instead of trigger, lastRowid is no 427 ** longer (since after version 2.8.12) reset to -1. 428 ** 429 ** The sqlite.nChange does not count changes within triggers and keeps no 430 ** context. It is reset at start of sqlite3_exec. 431 ** The sqlite.lsChange represents the number of changes made by the last 432 ** insert, update, or delete statement. It remains constant throughout the 433 ** length of a statement and is then updated by OP_SetCounts. It keeps a 434 ** context stack just like lastRowid so that the count of changes 435 ** within a trigger is not seen outside the trigger. Changes to views do not 436 ** affect the value of lsChange. 437 ** The sqlite.csChange keeps track of the number of current changes (since 438 ** the last statement) and is used to update sqlite_lsChange. 439 ** 440 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 441 ** store the most recent error code and, if applicable, string. The 442 ** internal function sqlite3Error() is used to set these variables 443 ** consistently. 444 */ 445 struct sqlite3 { 446 int nDb; /* Number of backends currently in use */ 447 Db *aDb; /* All backends */ 448 int flags; /* Miscellanous flags. See below */ 449 int errCode; /* Most recent error code (SQLITE_*) */ 450 int errMask; /* & result codes with this before returning */ 451 u8 autoCommit; /* The auto-commit flag. */ 452 u8 temp_store; /* 1: file 2: memory 0: default */ 453 int nTable; /* Number of tables in the database */ 454 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 455 i64 lastRowid; /* ROWID of most recent insert (see above) */ 456 i64 priorNewRowid; /* Last randomly generated ROWID */ 457 int magic; /* Magic number for detect library misuse */ 458 int nChange; /* Value returned by sqlite3_changes() */ 459 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 460 struct sqlite3InitInfo { /* Information used during initialization */ 461 int iDb; /* When back is being initialized */ 462 int newTnum; /* Rootpage of table being initialized */ 463 u8 busy; /* TRUE if currently initializing */ 464 } init; 465 int nExtension; /* Number of loaded extensions */ 466 void **aExtension; /* Array of shared libraray handles */ 467 struct Vdbe *pVdbe; /* List of active virtual machines */ 468 int activeVdbeCnt; /* Number of vdbes currently executing */ 469 void (*xTrace)(void*,const char*); /* Trace function */ 470 void *pTraceArg; /* Argument to the trace function */ 471 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 472 void *pProfileArg; /* Argument to profile function */ 473 void *pCommitArg; /* Argument to xCommitCallback() */ 474 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 475 void *pRollbackArg; /* Argument to xRollbackCallback() */ 476 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 477 void *pUpdateArg; 478 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 479 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 480 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 481 void *pCollNeededArg; 482 sqlite3_value *pErr; /* Most recent error message */ 483 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 484 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 485 union { 486 int isInterrupted; /* True if sqlite3_interrupt has been called */ 487 double notUsed1; /* Spacer */ 488 } u1; 489 #ifndef SQLITE_OMIT_AUTHORIZATION 490 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 491 /* Access authorization function */ 492 void *pAuthArg; /* 1st argument to the access auth function */ 493 #endif 494 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 495 int (*xProgress)(void *); /* The progress callback */ 496 void *pProgressArg; /* Argument to the progress callback */ 497 int nProgressOps; /* Number of opcodes for progress callback */ 498 #endif 499 #ifndef SQLITE_OMIT_VIRTUALTABLE 500 Hash aModule; /* populated by sqlite3_create_module() */ 501 Table *pVTab; /* vtab with active Connect/Create method */ 502 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 503 int nVTrans; /* Allocated size of aVTrans */ 504 #endif 505 Hash aFunc; /* All functions that can be in SQL exprs */ 506 Hash aCollSeq; /* All collating sequences */ 507 BusyHandler busyHandler; /* Busy callback */ 508 int busyTimeout; /* Busy handler timeout, in msec */ 509 Db aDbStatic[2]; /* Static space for the 2 default backends */ 510 #ifdef SQLITE_SSE 511 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 512 #endif 513 }; 514 515 /* 516 ** A macro to discover the encoding of a database. 517 */ 518 #define ENC(db) ((db)->aDb[0].pSchema->enc) 519 520 /* 521 ** Possible values for the sqlite.flags and or Db.flags fields. 522 ** 523 ** On sqlite.flags, the SQLITE_InTrans value means that we have 524 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 525 ** transaction is active on that particular database file. 526 */ 527 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 528 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 529 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 530 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 531 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 532 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 533 /* DELETE, or UPDATE and return */ 534 /* the count using a callback. */ 535 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 536 /* result set is empty */ 537 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 538 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 539 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 540 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 541 ** accessing read-only databases */ 542 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 543 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 544 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 545 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 546 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 547 548 /* 549 ** Possible values for the sqlite.magic field. 550 ** The numbers are obtained at random and have no special meaning, other 551 ** than being distinct from one another. 552 */ 553 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 554 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 555 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 556 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 557 558 /* 559 ** Each SQL function is defined by an instance of the following 560 ** structure. A pointer to this structure is stored in the sqlite.aFunc 561 ** hash table. When multiple functions have the same name, the hash table 562 ** points to a linked list of these structures. 563 */ 564 struct FuncDef { 565 i16 nArg; /* Number of arguments. -1 means unlimited */ 566 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 567 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 568 u8 flags; /* Some combination of SQLITE_FUNC_* */ 569 void *pUserData; /* User data parameter */ 570 FuncDef *pNext; /* Next function with same name */ 571 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 572 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 573 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 574 char zName[1]; /* SQL name of the function. MUST BE LAST */ 575 }; 576 577 /* 578 ** Each SQLite module (virtual table definition) is defined by an 579 ** instance of the following structure, stored in the sqlite3.aModule 580 ** hash table. 581 */ 582 struct Module { 583 const sqlite3_module *pModule; /* Callback pointers */ 584 const char *zName; /* Name passed to create_module() */ 585 void *pAux; /* pAux passed to create_module() */ 586 }; 587 588 /* 589 ** Possible values for FuncDef.flags 590 */ 591 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 592 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 593 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 594 595 /* 596 ** information about each column of an SQL table is held in an instance 597 ** of this structure. 598 */ 599 struct Column { 600 char *zName; /* Name of this column */ 601 Expr *pDflt; /* Default value of this column */ 602 char *zType; /* Data type for this column */ 603 char *zColl; /* Collating sequence. If NULL, use the default */ 604 u8 notNull; /* True if there is a NOT NULL constraint */ 605 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 606 char affinity; /* One of the SQLITE_AFF_... values */ 607 }; 608 609 /* 610 ** A "Collating Sequence" is defined by an instance of the following 611 ** structure. Conceptually, a collating sequence consists of a name and 612 ** a comparison routine that defines the order of that sequence. 613 ** 614 ** There may two seperate implementations of the collation function, one 615 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 616 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 617 ** native byte order. When a collation sequence is invoked, SQLite selects 618 ** the version that will require the least expensive encoding 619 ** translations, if any. 620 ** 621 ** The CollSeq.pUser member variable is an extra parameter that passed in 622 ** as the first argument to the UTF-8 comparison function, xCmp. 623 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 624 ** xCmp16. 625 ** 626 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 627 ** collating sequence is undefined. Indices built on an undefined 628 ** collating sequence may not be read or written. 629 */ 630 struct CollSeq { 631 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 632 u8 enc; /* Text encoding handled by xCmp() */ 633 u8 type; /* One of the SQLITE_COLL_... values below */ 634 void *pUser; /* First argument to xCmp() */ 635 int (*xCmp)(void*,int, const void*, int, const void*); 636 }; 637 638 /* 639 ** Allowed values of CollSeq flags: 640 */ 641 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 642 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 643 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 644 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 645 646 /* 647 ** A sort order can be either ASC or DESC. 648 */ 649 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 650 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 651 652 /* 653 ** Column affinity types. 654 ** 655 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 656 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 657 ** the speed a little by number the values consecutively. 658 ** 659 ** But rather than start with 0 or 1, we begin with 'a'. That way, 660 ** when multiple affinity types are concatenated into a string and 661 ** used as the P3 operand, they will be more readable. 662 ** 663 ** Note also that the numeric types are grouped together so that testing 664 ** for a numeric type is a single comparison. 665 */ 666 #define SQLITE_AFF_TEXT 'a' 667 #define SQLITE_AFF_NONE 'b' 668 #define SQLITE_AFF_NUMERIC 'c' 669 #define SQLITE_AFF_INTEGER 'd' 670 #define SQLITE_AFF_REAL 'e' 671 672 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 673 674 /* 675 ** Each SQL table is represented in memory by an instance of the 676 ** following structure. 677 ** 678 ** Table.zName is the name of the table. The case of the original 679 ** CREATE TABLE statement is stored, but case is not significant for 680 ** comparisons. 681 ** 682 ** Table.nCol is the number of columns in this table. Table.aCol is a 683 ** pointer to an array of Column structures, one for each column. 684 ** 685 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 686 ** the column that is that key. Otherwise Table.iPKey is negative. Note 687 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 688 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 689 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 690 ** is generated for each row of the table. Table.hasPrimKey is true if 691 ** the table has any PRIMARY KEY, INTEGER or otherwise. 692 ** 693 ** Table.tnum is the page number for the root BTree page of the table in the 694 ** database file. If Table.iDb is the index of the database table backend 695 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 696 ** holds temporary tables and indices. If Table.isEphem 697 ** is true, then the table is stored in a file that is automatically deleted 698 ** when the VDBE cursor to the table is closed. In this case Table.tnum 699 ** refers VDBE cursor number that holds the table open, not to the root 700 ** page number. Transient tables are used to hold the results of a 701 ** sub-query that appears instead of a real table name in the FROM clause 702 ** of a SELECT statement. 703 */ 704 struct Table { 705 char *zName; /* Name of the table */ 706 int nCol; /* Number of columns in this table */ 707 Column *aCol; /* Information about each column */ 708 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 709 Index *pIndex; /* List of SQL indexes on this table. */ 710 int tnum; /* Root BTree node for this table (see note above) */ 711 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 712 int nRef; /* Number of pointers to this Table */ 713 Trigger *pTrigger; /* List of SQL triggers on this table */ 714 FKey *pFKey; /* Linked list of all foreign keys in this table */ 715 char *zColAff; /* String defining the affinity of each column */ 716 #ifndef SQLITE_OMIT_CHECK 717 Expr *pCheck; /* The AND of all CHECK constraints */ 718 #endif 719 #ifndef SQLITE_OMIT_ALTERTABLE 720 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 721 #endif 722 u8 readOnly; /* True if this table should not be written by the user */ 723 u8 isEphem; /* True if created using OP_OpenEphermeral */ 724 u8 hasPrimKey; /* True if there exists a primary key */ 725 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 726 u8 autoInc; /* True if the integer primary key is autoincrement */ 727 #ifndef SQLITE_OMIT_VIRTUALTABLE 728 u8 isVirtual; /* True if this is a virtual table */ 729 u8 isCommit; /* True once the CREATE TABLE has been committed */ 730 Module *pMod; /* Pointer to the implementation of the module */ 731 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 732 int nModuleArg; /* Number of arguments to the module */ 733 char **azModuleArg; /* Text of all module args. [0] is module name */ 734 #endif 735 Schema *pSchema; 736 }; 737 738 /* 739 ** Test to see whether or not a table is a virtual table. This is 740 ** done as a macro so that it will be optimized out when virtual 741 ** table support is omitted from the build. 742 */ 743 #ifndef SQLITE_OMIT_VIRTUALTABLE 744 # define IsVirtual(X) ((X)->isVirtual) 745 #else 746 # define IsVirtual(X) 0 747 #endif 748 749 /* 750 ** Each foreign key constraint is an instance of the following structure. 751 ** 752 ** A foreign key is associated with two tables. The "from" table is 753 ** the table that contains the REFERENCES clause that creates the foreign 754 ** key. The "to" table is the table that is named in the REFERENCES clause. 755 ** Consider this example: 756 ** 757 ** CREATE TABLE ex1( 758 ** a INTEGER PRIMARY KEY, 759 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 760 ** ); 761 ** 762 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 763 ** 764 ** Each REFERENCES clause generates an instance of the following structure 765 ** which is attached to the from-table. The to-table need not exist when 766 ** the from-table is created. The existance of the to-table is not checked 767 ** until an attempt is made to insert data into the from-table. 768 ** 769 ** The sqlite.aFKey hash table stores pointers to this structure 770 ** given the name of a to-table. For each to-table, all foreign keys 771 ** associated with that table are on a linked list using the FKey.pNextTo 772 ** field. 773 */ 774 struct FKey { 775 Table *pFrom; /* The table that constains the REFERENCES clause */ 776 FKey *pNextFrom; /* Next foreign key in pFrom */ 777 char *zTo; /* Name of table that the key points to */ 778 FKey *pNextTo; /* Next foreign key that points to zTo */ 779 int nCol; /* Number of columns in this key */ 780 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 781 int iFrom; /* Index of column in pFrom */ 782 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 783 } *aCol; /* One entry for each of nCol column s */ 784 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 785 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 786 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 787 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 788 }; 789 790 /* 791 ** SQLite supports many different ways to resolve a contraint 792 ** error. ROLLBACK processing means that a constraint violation 793 ** causes the operation in process to fail and for the current transaction 794 ** to be rolled back. ABORT processing means the operation in process 795 ** fails and any prior changes from that one operation are backed out, 796 ** but the transaction is not rolled back. FAIL processing means that 797 ** the operation in progress stops and returns an error code. But prior 798 ** changes due to the same operation are not backed out and no rollback 799 ** occurs. IGNORE means that the particular row that caused the constraint 800 ** error is not inserted or updated. Processing continues and no error 801 ** is returned. REPLACE means that preexisting database rows that caused 802 ** a UNIQUE constraint violation are removed so that the new insert or 803 ** update can proceed. Processing continues and no error is reported. 804 ** 805 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 806 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 807 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 808 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 809 ** referenced table row is propagated into the row that holds the 810 ** foreign key. 811 ** 812 ** The following symbolic values are used to record which type 813 ** of action to take. 814 */ 815 #define OE_None 0 /* There is no constraint to check */ 816 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 817 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 818 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 819 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 820 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 821 822 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 823 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 824 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 825 #define OE_Cascade 9 /* Cascade the changes */ 826 827 #define OE_Default 99 /* Do whatever the default action is */ 828 829 830 /* 831 ** An instance of the following structure is passed as the first 832 ** argument to sqlite3VdbeKeyCompare and is used to control the 833 ** comparison of the two index keys. 834 ** 835 ** If the KeyInfo.incrKey value is true and the comparison would 836 ** otherwise be equal, then return a result as if the second key 837 ** were larger. 838 */ 839 struct KeyInfo { 840 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 841 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 842 int nField; /* Number of entries in aColl[] */ 843 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 844 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 845 }; 846 847 /* 848 ** Each SQL index is represented in memory by an 849 ** instance of the following structure. 850 ** 851 ** The columns of the table that are to be indexed are described 852 ** by the aiColumn[] field of this structure. For example, suppose 853 ** we have the following table and index: 854 ** 855 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 856 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 857 ** 858 ** In the Table structure describing Ex1, nCol==3 because there are 859 ** three columns in the table. In the Index structure describing 860 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 861 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 862 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 863 ** The second column to be indexed (c1) has an index of 0 in 864 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 865 ** 866 ** The Index.onError field determines whether or not the indexed columns 867 ** must be unique and what to do if they are not. When Index.onError=OE_None, 868 ** it means this is not a unique index. Otherwise it is a unique index 869 ** and the value of Index.onError indicate the which conflict resolution 870 ** algorithm to employ whenever an attempt is made to insert a non-unique 871 ** element. 872 */ 873 struct Index { 874 char *zName; /* Name of this index */ 875 int nColumn; /* Number of columns in the table used by this index */ 876 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 877 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 878 Table *pTable; /* The SQL table being indexed */ 879 int tnum; /* Page containing root of this index in database file */ 880 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 881 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 882 char *zColAff; /* String defining the affinity of each column */ 883 Index *pNext; /* The next index associated with the same table */ 884 Schema *pSchema; /* Schema containing this index */ 885 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 886 char **azColl; /* Array of collation sequence names for index */ 887 }; 888 889 /* 890 ** Each token coming out of the lexer is an instance of 891 ** this structure. Tokens are also used as part of an expression. 892 ** 893 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 894 ** may contain random values. Do not make any assuptions about Token.dyn 895 ** and Token.n when Token.z==0. 896 */ 897 struct Token { 898 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 899 unsigned dyn : 1; /* True for malloced memory, false for static */ 900 unsigned n : 31; /* Number of characters in this token */ 901 }; 902 903 /* 904 ** An instance of this structure contains information needed to generate 905 ** code for a SELECT that contains aggregate functions. 906 ** 907 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 908 ** pointer to this structure. The Expr.iColumn field is the index in 909 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 910 ** code for that node. 911 ** 912 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 913 ** original Select structure that describes the SELECT statement. These 914 ** fields do not need to be freed when deallocating the AggInfo structure. 915 */ 916 struct AggInfo { 917 u8 directMode; /* Direct rendering mode means take data directly 918 ** from source tables rather than from accumulators */ 919 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 920 ** than the source table */ 921 int sortingIdx; /* Cursor number of the sorting index */ 922 ExprList *pGroupBy; /* The group by clause */ 923 int nSortingColumn; /* Number of columns in the sorting index */ 924 struct AggInfo_col { /* For each column used in source tables */ 925 Table *pTab; /* Source table */ 926 int iTable; /* Cursor number of the source table */ 927 int iColumn; /* Column number within the source table */ 928 int iSorterColumn; /* Column number in the sorting index */ 929 int iMem; /* Memory location that acts as accumulator */ 930 Expr *pExpr; /* The original expression */ 931 } *aCol; 932 int nColumn; /* Number of used entries in aCol[] */ 933 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 934 int nAccumulator; /* Number of columns that show through to the output. 935 ** Additional columns are used only as parameters to 936 ** aggregate functions */ 937 struct AggInfo_func { /* For each aggregate function */ 938 Expr *pExpr; /* Expression encoding the function */ 939 FuncDef *pFunc; /* The aggregate function implementation */ 940 int iMem; /* Memory location that acts as accumulator */ 941 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 942 } *aFunc; 943 int nFunc; /* Number of entries in aFunc[] */ 944 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 945 }; 946 947 /* 948 ** Each node of an expression in the parse tree is an instance 949 ** of this structure. 950 ** 951 ** Expr.op is the opcode. The integer parser token codes are reused 952 ** as opcodes here. For example, the parser defines TK_GE to be an integer 953 ** code representing the ">=" operator. This same integer code is reused 954 ** to represent the greater-than-or-equal-to operator in the expression 955 ** tree. 956 ** 957 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 958 ** of argument if the expression is a function. 959 ** 960 ** Expr.token is the operator token for this node. For some expressions 961 ** that have subexpressions, Expr.token can be the complete text that gave 962 ** rise to the Expr. In the latter case, the token is marked as being 963 ** a compound token. 964 ** 965 ** An expression of the form ID or ID.ID refers to a column in a table. 966 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 967 ** the integer cursor number of a VDBE cursor pointing to that table and 968 ** Expr.iColumn is the column number for the specific column. If the 969 ** expression is used as a result in an aggregate SELECT, then the 970 ** value is also stored in the Expr.iAgg column in the aggregate so that 971 ** it can be accessed after all aggregates are computed. 972 ** 973 ** If the expression is a function, the Expr.iTable is an integer code 974 ** representing which function. If the expression is an unbound variable 975 ** marker (a question mark character '?' in the original SQL) then the 976 ** Expr.iTable holds the index number for that variable. 977 ** 978 ** If the expression is a subquery then Expr.iColumn holds an integer 979 ** register number containing the result of the subquery. If the 980 ** subquery gives a constant result, then iTable is -1. If the subquery 981 ** gives a different answer at different times during statement processing 982 ** then iTable is the address of a subroutine that computes the subquery. 983 ** 984 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 985 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 986 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 987 ** operand. 988 ** 989 ** If the Expr is of type OP_Column, and the table it is selecting from 990 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 991 ** corresponding table definition. 992 */ 993 struct Expr { 994 u8 op; /* Operation performed by this node */ 995 char affinity; /* The affinity of the column or 0 if not a column */ 996 u16 flags; /* Various flags. See below */ 997 CollSeq *pColl; /* The collation type of the column or 0 */ 998 Expr *pLeft, *pRight; /* Left and right subnodes */ 999 ExprList *pList; /* A list of expressions used as function arguments 1000 ** or in "<expr> IN (<expr-list)" */ 1001 Token token; /* An operand token */ 1002 Token span; /* Complete text of the expression */ 1003 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1004 ** iColumn-th field of the iTable-th table. */ 1005 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1006 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1007 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1008 Select *pSelect; /* When the expression is a sub-select. Also the 1009 ** right side of "<expr> IN (<select>)" */ 1010 Table *pTab; /* Table for OP_Column expressions. */ 1011 Schema *pSchema; 1012 }; 1013 1014 /* 1015 ** The following are the meanings of bits in the Expr.flags field. 1016 */ 1017 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 1018 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 1019 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 1020 #define EP_Error 0x08 /* Expression contains one or more errors */ 1021 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 1022 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 1023 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 1024 #define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */ 1025 #define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */ 1026 1027 /* 1028 ** These macros can be used to test, set, or clear bits in the 1029 ** Expr.flags field. 1030 */ 1031 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1032 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1033 #define ExprSetProperty(E,P) (E)->flags|=(P) 1034 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1035 1036 /* 1037 ** A list of expressions. Each expression may optionally have a 1038 ** name. An expr/name combination can be used in several ways, such 1039 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1040 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1041 ** also be used as the argument to a function, in which case the a.zName 1042 ** field is not used. 1043 */ 1044 struct ExprList { 1045 int nExpr; /* Number of expressions on the list */ 1046 int nAlloc; /* Number of entries allocated below */ 1047 int iECursor; /* VDBE Cursor associated with this ExprList */ 1048 struct ExprList_item { 1049 Expr *pExpr; /* The list of expressions */ 1050 char *zName; /* Token associated with this expression */ 1051 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1052 u8 isAgg; /* True if this is an aggregate like count(*) */ 1053 u8 done; /* A flag to indicate when processing is finished */ 1054 } *a; /* One entry for each expression */ 1055 }; 1056 1057 /* 1058 ** An instance of this structure can hold a simple list of identifiers, 1059 ** such as the list "a,b,c" in the following statements: 1060 ** 1061 ** INSERT INTO t(a,b,c) VALUES ...; 1062 ** CREATE INDEX idx ON t(a,b,c); 1063 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1064 ** 1065 ** The IdList.a.idx field is used when the IdList represents the list of 1066 ** column names after a table name in an INSERT statement. In the statement 1067 ** 1068 ** INSERT INTO t(a,b,c) ... 1069 ** 1070 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1071 */ 1072 struct IdList { 1073 struct IdList_item { 1074 char *zName; /* Name of the identifier */ 1075 int idx; /* Index in some Table.aCol[] of a column named zName */ 1076 } *a; 1077 int nId; /* Number of identifiers on the list */ 1078 int nAlloc; /* Number of entries allocated for a[] below */ 1079 }; 1080 1081 /* 1082 ** The bitmask datatype defined below is used for various optimizations. 1083 ** 1084 ** Changing this from a 64-bit to a 32-bit type limits the number of 1085 ** tables in a join to 32 instead of 64. But it also reduces the size 1086 ** of the library by 738 bytes on ix86. 1087 */ 1088 typedef u64 Bitmask; 1089 1090 /* 1091 ** The following structure describes the FROM clause of a SELECT statement. 1092 ** Each table or subquery in the FROM clause is a separate element of 1093 ** the SrcList.a[] array. 1094 ** 1095 ** With the addition of multiple database support, the following structure 1096 ** can also be used to describe a particular table such as the table that 1097 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1098 ** such a table must be a simple name: ID. But in SQLite, the table can 1099 ** now be identified by a database name, a dot, then the table name: ID.ID. 1100 ** 1101 ** The jointype starts out showing the join type between the current table 1102 ** and the next table on the list. The parser builds the list this way. 1103 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1104 ** jointype expresses the join between the table and the previous table. 1105 */ 1106 struct SrcList { 1107 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1108 i16 nAlloc; /* Number of entries allocated in a[] below */ 1109 struct SrcList_item { 1110 char *zDatabase; /* Name of database holding this table */ 1111 char *zName; /* Name of the table */ 1112 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1113 Table *pTab; /* An SQL table corresponding to zName */ 1114 Select *pSelect; /* A SELECT statement used in place of a table name */ 1115 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1116 u8 jointype; /* Type of join between this able and the previous */ 1117 int iCursor; /* The VDBE cursor number used to access this table */ 1118 Expr *pOn; /* The ON clause of a join */ 1119 IdList *pUsing; /* The USING clause of a join */ 1120 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1121 } a[1]; /* One entry for each identifier on the list */ 1122 }; 1123 1124 /* 1125 ** Permitted values of the SrcList.a.jointype field 1126 */ 1127 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1128 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1129 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1130 #define JT_LEFT 0x0008 /* Left outer join */ 1131 #define JT_RIGHT 0x0010 /* Right outer join */ 1132 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1133 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1134 1135 /* 1136 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1137 ** structure contains a single instance of this structure. This structure 1138 ** is intended to be private the the where.c module and should not be 1139 ** access or modified by other modules. 1140 ** 1141 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1142 ** index on a virtual table. The pIdxInfo pointer contains indexing 1143 ** information for the i-th table in the FROM clause before reordering. 1144 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1145 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1146 ** FROM clause ordering. This is a little confusing so I will repeat 1147 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1148 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1149 ** index information for the i-th loop of the join. pBestInfo is always 1150 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1151 ** sufficient to free all of the pIdxInfo pointers. 1152 ** 1153 */ 1154 struct WhereLevel { 1155 int iFrom; /* Which entry in the FROM clause */ 1156 int flags; /* Flags associated with this level */ 1157 int iMem; /* First memory cell used by this level */ 1158 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1159 Index *pIdx; /* Index used. NULL if no index */ 1160 int iTabCur; /* The VDBE cursor used to access the table */ 1161 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1162 int brk; /* Jump here to break out of the loop */ 1163 int cont; /* Jump here to continue with the next loop cycle */ 1164 int top; /* First instruction of interior of the loop */ 1165 int op, p1, p2; /* Opcode used to terminate the loop */ 1166 int nEq; /* Number of == or IN constraints on this loop */ 1167 int nIn; /* Number of IN operators constraining this loop */ 1168 int *aInLoop; /* Loop terminators for IN operators */ 1169 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1170 1171 /* The following field is really not part of the current level. But 1172 ** we need a place to cache index information for each table in the 1173 ** FROM clause and the WhereLevel structure is a convenient place. 1174 */ 1175 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1176 }; 1177 1178 /* 1179 ** The WHERE clause processing routine has two halves. The 1180 ** first part does the start of the WHERE loop and the second 1181 ** half does the tail of the WHERE loop. An instance of 1182 ** this structure is returned by the first half and passed 1183 ** into the second half to give some continuity. 1184 */ 1185 struct WhereInfo { 1186 Parse *pParse; 1187 SrcList *pTabList; /* List of tables in the join */ 1188 int iTop; /* The very beginning of the WHERE loop */ 1189 int iContinue; /* Jump here to continue with next record */ 1190 int iBreak; /* Jump here to break out of the loop */ 1191 int nLevel; /* Number of nested loop */ 1192 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1193 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1194 }; 1195 1196 /* 1197 ** A NameContext defines a context in which to resolve table and column 1198 ** names. The context consists of a list of tables (the pSrcList) field and 1199 ** a list of named expression (pEList). The named expression list may 1200 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1201 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1202 ** pEList corresponds to the result set of a SELECT and is NULL for 1203 ** other statements. 1204 ** 1205 ** NameContexts can be nested. When resolving names, the inner-most 1206 ** context is searched first. If no match is found, the next outer 1207 ** context is checked. If there is still no match, the next context 1208 ** is checked. This process continues until either a match is found 1209 ** or all contexts are check. When a match is found, the nRef member of 1210 ** the context containing the match is incremented. 1211 ** 1212 ** Each subquery gets a new NameContext. The pNext field points to the 1213 ** NameContext in the parent query. Thus the process of scanning the 1214 ** NameContext list corresponds to searching through successively outer 1215 ** subqueries looking for a match. 1216 */ 1217 struct NameContext { 1218 Parse *pParse; /* The parser */ 1219 SrcList *pSrcList; /* One or more tables used to resolve names */ 1220 ExprList *pEList; /* Optional list of named expressions */ 1221 int nRef; /* Number of names resolved by this context */ 1222 int nErr; /* Number of errors encountered while resolving names */ 1223 u8 allowAgg; /* Aggregate functions allowed here */ 1224 u8 hasAgg; /* True if aggregates are seen */ 1225 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1226 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1227 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1228 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1229 }; 1230 1231 /* 1232 ** An instance of the following structure contains all information 1233 ** needed to generate code for a single SELECT statement. 1234 ** 1235 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1236 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1237 ** limit and nOffset to the value of the offset (or 0 if there is not 1238 ** offset). But later on, nLimit and nOffset become the memory locations 1239 ** in the VDBE that record the limit and offset counters. 1240 ** 1241 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1242 ** These addresses must be stored so that we can go back and fill in 1243 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1244 ** the number of columns in P2 can be computed at the same time 1245 ** as the OP_OpenEphm instruction is coded because not 1246 ** enough information about the compound query is known at that point. 1247 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1248 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1249 ** sequences for the ORDER BY clause. 1250 */ 1251 struct Select { 1252 ExprList *pEList; /* The fields of the result */ 1253 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1254 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1255 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1256 u8 isAgg; /* True if this is an aggregate query */ 1257 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1258 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1259 SrcList *pSrc; /* The FROM clause */ 1260 Expr *pWhere; /* The WHERE clause */ 1261 ExprList *pGroupBy; /* The GROUP BY clause */ 1262 Expr *pHaving; /* The HAVING clause */ 1263 ExprList *pOrderBy; /* The ORDER BY clause */ 1264 Select *pPrior; /* Prior select in a compound select statement */ 1265 Select *pRightmost; /* Right-most select in a compound select statement */ 1266 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1267 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1268 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1269 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1270 }; 1271 1272 /* 1273 ** The results of a select can be distributed in several ways. 1274 */ 1275 #define SRT_Union 1 /* Store result as keys in an index */ 1276 #define SRT_Except 2 /* Remove result from a UNION index */ 1277 #define SRT_Discard 3 /* Do not save the results anywhere */ 1278 1279 /* The ORDER BY clause is ignored for all of the above */ 1280 #define IgnorableOrderby(X) (X<=SRT_Discard) 1281 1282 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1283 #define SRT_Mem 5 /* Store result in a memory cell */ 1284 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1285 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1286 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 1287 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1288 #define SRT_Exists 10 /* Store 1 if the result is not empty */ 1289 1290 /* 1291 ** An SQL parser context. A copy of this structure is passed through 1292 ** the parser and down into all the parser action routine in order to 1293 ** carry around information that is global to the entire parse. 1294 ** 1295 ** The structure is divided into two parts. When the parser and code 1296 ** generate call themselves recursively, the first part of the structure 1297 ** is constant but the second part is reset at the beginning and end of 1298 ** each recursion. 1299 ** 1300 ** The nTableLock and aTableLock variables are only used if the shared-cache 1301 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1302 ** used to store the set of table-locks required by the statement being 1303 ** compiled. Function sqlite3TableLock() is used to add entries to the 1304 ** list. 1305 */ 1306 struct Parse { 1307 sqlite3 *db; /* The main database structure */ 1308 int rc; /* Return code from execution */ 1309 char *zErrMsg; /* An error message */ 1310 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1311 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1312 u8 nameClash; /* A permanent table name clashes with temp table name */ 1313 u8 checkSchema; /* Causes schema cookie check after an error */ 1314 u8 nested; /* Number of nested calls to the parser/code generator */ 1315 u8 parseError; /* True if a parsing error has been seen */ 1316 int nErr; /* Number of errors seen */ 1317 int nTab; /* Number of previously allocated VDBE cursors */ 1318 int nMem; /* Number of memory cells used so far */ 1319 int nSet; /* Number of sets used so far */ 1320 int ckOffset; /* Stack offset to data used by CHECK constraints */ 1321 u32 writeMask; /* Start a write transaction on these databases */ 1322 u32 cookieMask; /* Bitmask of schema verified databases */ 1323 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1324 int cookieValue[MAX_ATTACHED+2]; /* Values of cookies to verify */ 1325 #ifndef SQLITE_OMIT_SHARED_CACHE 1326 int nTableLock; /* Number of locks in aTableLock */ 1327 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1328 #endif 1329 1330 /* Above is constant between recursions. Below is reset before and after 1331 ** each recursion */ 1332 1333 int nVar; /* Number of '?' variables seen in the SQL so far */ 1334 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1335 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1336 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1337 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1338 Token sErrToken; /* The token at which the error occurred */ 1339 Token sNameToken; /* Token with unqualified schema object name */ 1340 Token sLastToken; /* The last token parsed */ 1341 const char *zSql; /* All SQL text */ 1342 const char *zTail; /* All SQL text past the last semicolon parsed */ 1343 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1344 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1345 TriggerStack *trigStack; /* Trigger actions being coded */ 1346 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1347 #ifndef SQLITE_OMIT_VIRTUALTABLE 1348 Token sArg; /* Complete text of a module argument */ 1349 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1350 Table *pVirtualLock; /* Require virtual table lock on this table */ 1351 #endif 1352 }; 1353 1354 #ifdef SQLITE_OMIT_VIRTUALTABLE 1355 #define IN_DECLARE_VTAB 0 1356 #else 1357 #define IN_DECLARE_VTAB (pParse->declareVtab) 1358 #endif 1359 1360 /* 1361 ** An instance of the following structure can be declared on a stack and used 1362 ** to save the Parse.zAuthContext value so that it can be restored later. 1363 */ 1364 struct AuthContext { 1365 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1366 Parse *pParse; /* The Parse structure */ 1367 }; 1368 1369 /* 1370 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1371 */ 1372 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1373 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1374 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1375 1376 /* 1377 * Each trigger present in the database schema is stored as an instance of 1378 * struct Trigger. 1379 * 1380 * Pointers to instances of struct Trigger are stored in two ways. 1381 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1382 * database). This allows Trigger structures to be retrieved by name. 1383 * 2. All triggers associated with a single table form a linked list, using the 1384 * pNext member of struct Trigger. A pointer to the first element of the 1385 * linked list is stored as the "pTrigger" member of the associated 1386 * struct Table. 1387 * 1388 * The "step_list" member points to the first element of a linked list 1389 * containing the SQL statements specified as the trigger program. 1390 */ 1391 struct Trigger { 1392 char *name; /* The name of the trigger */ 1393 char *table; /* The table or view to which the trigger applies */ 1394 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1395 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1396 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1397 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1398 the <column-list> is stored here */ 1399 int foreach; /* One of TK_ROW or TK_STATEMENT */ 1400 Token nameToken; /* Token containing zName. Use during parsing only */ 1401 Schema *pSchema; /* Schema containing the trigger */ 1402 Schema *pTabSchema; /* Schema containing the table */ 1403 TriggerStep *step_list; /* Link list of trigger program steps */ 1404 Trigger *pNext; /* Next trigger associated with the table */ 1405 }; 1406 1407 /* 1408 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1409 ** determine which. 1410 ** 1411 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1412 ** In that cases, the constants below can be ORed together. 1413 */ 1414 #define TRIGGER_BEFORE 1 1415 #define TRIGGER_AFTER 2 1416 1417 /* 1418 * An instance of struct TriggerStep is used to store a single SQL statement 1419 * that is a part of a trigger-program. 1420 * 1421 * Instances of struct TriggerStep are stored in a singly linked list (linked 1422 * using the "pNext" member) referenced by the "step_list" member of the 1423 * associated struct Trigger instance. The first element of the linked list is 1424 * the first step of the trigger-program. 1425 * 1426 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1427 * "SELECT" statement. The meanings of the other members is determined by the 1428 * value of "op" as follows: 1429 * 1430 * (op == TK_INSERT) 1431 * orconf -> stores the ON CONFLICT algorithm 1432 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1433 * this stores a pointer to the SELECT statement. Otherwise NULL. 1434 * target -> A token holding the name of the table to insert into. 1435 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1436 * this stores values to be inserted. Otherwise NULL. 1437 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1438 * statement, then this stores the column-names to be 1439 * inserted into. 1440 * 1441 * (op == TK_DELETE) 1442 * target -> A token holding the name of the table to delete from. 1443 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1444 * Otherwise NULL. 1445 * 1446 * (op == TK_UPDATE) 1447 * target -> A token holding the name of the table to update rows of. 1448 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1449 * Otherwise NULL. 1450 * pExprList -> A list of the columns to update and the expressions to update 1451 * them to. See sqlite3Update() documentation of "pChanges" 1452 * argument. 1453 * 1454 */ 1455 struct TriggerStep { 1456 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1457 int orconf; /* OE_Rollback etc. */ 1458 Trigger *pTrig; /* The trigger that this step is a part of */ 1459 1460 Select *pSelect; /* Valid for SELECT and sometimes 1461 INSERT steps (when pExprList == 0) */ 1462 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1463 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1464 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1465 INSERT steps (when pSelect == 0) */ 1466 IdList *pIdList; /* Valid for INSERT statements only */ 1467 TriggerStep *pNext; /* Next in the link-list */ 1468 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1469 }; 1470 1471 /* 1472 * An instance of struct TriggerStack stores information required during code 1473 * generation of a single trigger program. While the trigger program is being 1474 * coded, its associated TriggerStack instance is pointed to by the 1475 * "pTriggerStack" member of the Parse structure. 1476 * 1477 * The pTab member points to the table that triggers are being coded on. The 1478 * newIdx member contains the index of the vdbe cursor that points at the temp 1479 * table that stores the new.* references. If new.* references are not valid 1480 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1481 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1482 * 1483 * The ON CONFLICT policy to be used for the trigger program steps is stored 1484 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1485 * specified for individual triggers steps is used. 1486 * 1487 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1488 * constructed. When coding nested triggers (triggers fired by other triggers) 1489 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1490 * pointer. Once the nested trigger has been coded, the pNext value is restored 1491 * to the pTriggerStack member of the Parse stucture and coding of the parent 1492 * trigger continues. 1493 * 1494 * Before a nested trigger is coded, the linked list pointed to by the 1495 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1496 * recursively. If this condition is detected, the nested trigger is not coded. 1497 */ 1498 struct TriggerStack { 1499 Table *pTab; /* Table that triggers are currently being coded on */ 1500 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1501 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1502 int orconf; /* Current orconf policy */ 1503 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1504 Trigger *pTrigger; /* The trigger currently being coded */ 1505 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1506 }; 1507 1508 /* 1509 ** The following structure contains information used by the sqliteFix... 1510 ** routines as they walk the parse tree to make database references 1511 ** explicit. 1512 */ 1513 typedef struct DbFixer DbFixer; 1514 struct DbFixer { 1515 Parse *pParse; /* The parsing context. Error messages written here */ 1516 const char *zDb; /* Make sure all objects are contained in this database */ 1517 const char *zType; /* Type of the container - used for error messages */ 1518 const Token *pName; /* Name of the container - used for error messages */ 1519 }; 1520 1521 /* 1522 ** A pointer to this structure is used to communicate information 1523 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1524 */ 1525 typedef struct { 1526 sqlite3 *db; /* The database being initialized */ 1527 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1528 char **pzErrMsg; /* Error message stored here */ 1529 int rc; /* Result code stored here */ 1530 } InitData; 1531 1532 /* 1533 * This global flag is set for performance testing of triggers. When it is set 1534 * SQLite will perform the overhead of building new and old trigger references 1535 * even when no triggers exist 1536 */ 1537 extern int sqlite3_always_code_trigger_setup; 1538 1539 /* 1540 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1541 ** builds) or a function call (for debugging). If it is a function call, 1542 ** it allows the operator to set a breakpoint at the spot where database 1543 ** corruption is first detected. 1544 */ 1545 #ifdef SQLITE_DEBUG 1546 extern int sqlite3Corrupt(void); 1547 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1548 #else 1549 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1550 #endif 1551 1552 /* 1553 ** Internal function prototypes 1554 */ 1555 int sqlite3StrICmp(const char *, const char *); 1556 int sqlite3StrNICmp(const char *, const char *, int); 1557 int sqlite3HashNoCase(const char *, int); 1558 int sqlite3IsNumber(const char*, int*, u8); 1559 int sqlite3Compare(const char *, const char *); 1560 int sqlite3SortCompare(const char *, const char *); 1561 void sqlite3RealToSortable(double r, char *); 1562 1563 void *sqlite3Malloc(int,int); 1564 void *sqlite3MallocRaw(int,int); 1565 void sqlite3Free(void*); 1566 void *sqlite3Realloc(void*,int); 1567 char *sqlite3StrDup(const char*); 1568 char *sqlite3StrNDup(const char*, int); 1569 # define sqlite3CheckMemory(a,b) 1570 void sqlite3ReallocOrFree(void**,int); 1571 void sqlite3FreeX(void*); 1572 void *sqlite3MallocX(int); 1573 int sqlite3AllocSize(void *); 1574 1575 char *sqlite3MPrintf(const char*, ...); 1576 char *sqlite3VMPrintf(const char*, va_list); 1577 void sqlite3DebugPrintf(const char*, ...); 1578 void *sqlite3TextToPtr(const char*); 1579 void sqlite3SetString(char **, ...); 1580 void sqlite3ErrorMsg(Parse*, const char*, ...); 1581 void sqlite3ErrorClear(Parse*); 1582 void sqlite3Dequote(char*); 1583 void sqlite3DequoteExpr(Expr*); 1584 int sqlite3KeywordCode(const unsigned char*, int); 1585 int sqlite3RunParser(Parse*, const char*, char **); 1586 void sqlite3FinishCoding(Parse*); 1587 Expr *sqlite3Expr(int, Expr*, Expr*, const Token*); 1588 Expr *sqlite3ExprOrFree(int, Expr*, Expr*, const Token*); 1589 Expr *sqlite3RegisterExpr(Parse*,Token*); 1590 Expr *sqlite3ExprAnd(Expr*, Expr*); 1591 void sqlite3ExprSpan(Expr*,Token*,Token*); 1592 Expr *sqlite3ExprFunction(ExprList*, Token*); 1593 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1594 void sqlite3ExprDelete(Expr*); 1595 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*); 1596 void sqlite3ExprListDelete(ExprList*); 1597 int sqlite3Init(sqlite3*, char**); 1598 int sqlite3InitCallback(void*, int, char**, char**); 1599 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1600 void sqlite3ResetInternalSchema(sqlite3*, int); 1601 void sqlite3BeginParse(Parse*,int); 1602 void sqlite3RollbackInternalChanges(sqlite3*); 1603 void sqlite3CommitInternalChanges(sqlite3*); 1604 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1605 void sqlite3OpenMasterTable(Parse *, int); 1606 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1607 void sqlite3AddColumn(Parse*,Token*); 1608 void sqlite3AddNotNull(Parse*, int); 1609 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1610 void sqlite3AddCheckConstraint(Parse*, Expr*); 1611 void sqlite3AddColumnType(Parse*,Token*); 1612 void sqlite3AddDefaultValue(Parse*,Expr*); 1613 void sqlite3AddCollateType(Parse*, const char*, int); 1614 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1615 1616 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1617 1618 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1619 int sqlite3ViewGetColumnNames(Parse*,Table*); 1620 #else 1621 # define sqlite3ViewGetColumnNames(A,B) 0 1622 #endif 1623 1624 void sqlite3DropTable(Parse*, SrcList*, int, int); 1625 void sqlite3DeleteTable(sqlite3*, Table*); 1626 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1627 int sqlite3ArrayAllocate(void**,int,int); 1628 IdList *sqlite3IdListAppend(IdList*, Token*); 1629 int sqlite3IdListIndex(IdList*,const char*); 1630 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); 1631 SrcList *sqlite3SrcListAppendFromTerm(SrcList*, Token*, Token*, Token*, 1632 Select*, Expr*, IdList*); 1633 void sqlite3SrcListShiftJoinType(SrcList*); 1634 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1635 void sqlite3IdListDelete(IdList*); 1636 void sqlite3SrcListDelete(SrcList*); 1637 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1638 Token*, int, int); 1639 void sqlite3DropIndex(Parse*, SrcList*, int); 1640 void sqlite3AddKeyType(Vdbe*, ExprList*); 1641 void sqlite3AddIdxKeyType(Vdbe*, Index*); 1642 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1643 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1644 int,Expr*,Expr*); 1645 void sqlite3SelectDelete(Select*); 1646 void sqlite3SelectUnbind(Select*); 1647 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1648 int sqlite3IsReadOnly(Parse*, Table*, int); 1649 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1650 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1651 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1652 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1653 void sqlite3WhereEnd(WhereInfo*); 1654 void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int); 1655 void sqlite3ExprCode(Parse*, Expr*); 1656 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1657 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1658 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1659 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1660 void sqlite3NextedParse(Parse*, const char*, ...); 1661 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1662 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1663 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1664 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1665 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1666 void sqlite3Vacuum(Parse*); 1667 int sqlite3RunVacuum(char**, sqlite3*); 1668 char *sqlite3NameFromToken(Token*); 1669 int sqlite3ExprCheck(Parse*, Expr*, int, int*); 1670 int sqlite3ExprCompare(Expr*, Expr*); 1671 int sqliteFuncId(Token*); 1672 int sqlite3ExprResolveNames(NameContext *, Expr *); 1673 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1674 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1675 Vdbe *sqlite3GetVdbe(Parse*); 1676 Expr *sqlite3CreateIdExpr(const char*); 1677 void sqlite3Randomness(int, void*); 1678 void sqlite3RollbackAll(sqlite3*); 1679 void sqlite3CodeVerifySchema(Parse*, int); 1680 void sqlite3BeginTransaction(Parse*, int); 1681 void sqlite3CommitTransaction(Parse*); 1682 void sqlite3RollbackTransaction(Parse*); 1683 int sqlite3ExprIsConstant(Expr*); 1684 int sqlite3ExprIsConstantOrFunction(Expr*); 1685 int sqlite3ExprIsInteger(Expr*, int*); 1686 int sqlite3IsRowid(const char*); 1687 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1688 void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*); 1689 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1690 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1691 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int); 1692 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1693 void sqlite3BeginWriteOperation(Parse*, int, int); 1694 Expr *sqlite3ExprDup(Expr*); 1695 void sqlite3TokenCopy(Token*, Token*); 1696 ExprList *sqlite3ExprListDup(ExprList*); 1697 SrcList *sqlite3SrcListDup(SrcList*); 1698 IdList *sqlite3IdListDup(IdList*); 1699 Select *sqlite3SelectDup(Select*); 1700 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1701 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1702 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1703 int sqlite3SafetyOn(sqlite3*); 1704 int sqlite3SafetyOff(sqlite3*); 1705 int sqlite3SafetyCheck(sqlite3*); 1706 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1707 1708 #ifndef SQLITE_OMIT_TRIGGER 1709 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1710 int,Expr*,int, int); 1711 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1712 void sqlite3DropTrigger(Parse*, SrcList*, int); 1713 void sqlite3DropTriggerPtr(Parse*, Trigger*); 1714 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1715 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1716 int, int); 1717 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1718 void sqlite3DeleteTriggerStep(TriggerStep*); 1719 TriggerStep *sqlite3TriggerSelectStep(Select*); 1720 TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int); 1721 TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); 1722 TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); 1723 void sqlite3DeleteTrigger(Trigger*); 1724 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1725 #else 1726 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1727 # define sqlite3DeleteTrigger(A) 1728 # define sqlite3DropTriggerPtr(A,B) 1729 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1730 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1731 #endif 1732 1733 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1734 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1735 void sqlite3DeferForeignKey(Parse*, int); 1736 #ifndef SQLITE_OMIT_AUTHORIZATION 1737 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1738 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1739 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1740 void sqlite3AuthContextPop(AuthContext*); 1741 #else 1742 # define sqlite3AuthRead(a,b,c) 1743 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1744 # define sqlite3AuthContextPush(a,b,c) 1745 # define sqlite3AuthContextPop(a) ((void)(a)) 1746 #endif 1747 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 1748 void sqlite3Detach(Parse*, Expr*); 1749 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1750 int omitJournal, int nCache, Btree **ppBtree); 1751 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1752 int sqlite3FixSrcList(DbFixer*, SrcList*); 1753 int sqlite3FixSelect(DbFixer*, Select*); 1754 int sqlite3FixExpr(DbFixer*, Expr*); 1755 int sqlite3FixExprList(DbFixer*, ExprList*); 1756 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1757 int sqlite3AtoF(const char *z, double*); 1758 char *sqlite3_snprintf(int,char*,const char*,...); 1759 int sqlite3GetInt32(const char *, int*); 1760 int sqlite3FitsIn64Bits(const char *); 1761 int sqlite3utf16ByteLen(const void *pData, int nChar); 1762 int sqlite3utf8CharLen(const char *pData, int nByte); 1763 int sqlite3ReadUtf8(const unsigned char *); 1764 int sqlite3PutVarint(unsigned char *, u64); 1765 int sqlite3GetVarint(const unsigned char *, u64 *); 1766 int sqlite3GetVarint32(const unsigned char *, u32 *); 1767 int sqlite3VarintLen(u64 v); 1768 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1769 void sqlite3TableAffinityStr(Vdbe *, Table *); 1770 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1771 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1772 char sqlite3ExprAffinity(Expr *pExpr); 1773 int sqlite3atoi64(const char*, i64*); 1774 void sqlite3Error(sqlite3*, int, const char*,...); 1775 void *sqlite3HexToBlob(const char *z); 1776 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1777 const char *sqlite3ErrStr(int); 1778 int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold); 1779 int sqlite3ReadSchema(Parse *pParse); 1780 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1781 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1782 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1783 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 1784 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1785 int sqlite3CheckIndexCollSeq(Parse *, Index *); 1786 int sqlite3CheckObjectName(Parse *, const char *); 1787 void sqlite3VdbeSetChanges(sqlite3 *, int); 1788 void sqlite3utf16Substr(sqlite3_context *,int,sqlite3_value **); 1789 1790 const void *sqlite3ValueText(sqlite3_value*, u8); 1791 int sqlite3ValueBytes(sqlite3_value*, u8); 1792 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); 1793 void sqlite3ValueFree(sqlite3_value*); 1794 sqlite3_value *sqlite3ValueNew(void); 1795 char *sqlite3utf16to8(const void*, int); 1796 int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **); 1797 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1798 extern const unsigned char sqlite3UpperToLower[]; 1799 void sqlite3RootPageMoved(Db*, int, int); 1800 void sqlite3Reindex(Parse*, Token*, Token*); 1801 void sqlite3AlterFunctions(sqlite3*); 1802 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1803 int sqlite3GetToken(const unsigned char *, int *); 1804 void sqlite3NestedParse(Parse*, const char*, ...); 1805 void sqlite3ExpirePreparedStatements(sqlite3*); 1806 void sqlite3CodeSubselect(Parse *, Expr *); 1807 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1808 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1809 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1810 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1811 const char *sqlite3TestErrorName(int); 1812 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1813 char sqlite3AffinityType(const Token*); 1814 void sqlite3Analyze(Parse*, Token*, Token*); 1815 int sqlite3InvokeBusyHandler(BusyHandler*); 1816 int sqlite3FindDb(sqlite3*, Token*); 1817 void sqlite3AnalysisLoad(sqlite3*,int iDB); 1818 void sqlite3DefaultRowEst(Index*); 1819 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1820 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1821 ThreadData *sqlite3ThreadData(void); 1822 const ThreadData *sqlite3ThreadDataReadOnly(void); 1823 void sqlite3ReleaseThreadData(void); 1824 void sqlite3AttachFunctions(sqlite3 *); 1825 void sqlite3MinimumFileFormat(Parse*, int, int); 1826 void sqlite3SchemaFree(void *); 1827 Schema *sqlite3SchemaGet(Btree *); 1828 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 1829 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 1830 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 1831 void (*)(sqlite3_context*,int,sqlite3_value **), 1832 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 1833 int sqlite3ApiExit(sqlite3 *db, int); 1834 int sqlite3MallocFailed(void); 1835 void sqlite3FailedMalloc(void); 1836 void sqlite3AbortOtherActiveVdbes(sqlite3 *, Vdbe *); 1837 int sqlite3OpenTempDatabase(Parse *); 1838 1839 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1840 void sqlite3CloseExtensions(sqlite3*); 1841 int sqlite3AutoLoadExtensions(sqlite3*); 1842 #else 1843 # define sqlite3CloseExtensions(X) 1844 # define sqlite3AutoLoadExtensions(X) SQLITE_OK 1845 #endif 1846 1847 #ifndef SQLITE_OMIT_SHARED_CACHE 1848 void sqlite3TableLock(Parse *, int, int, u8, const char *); 1849 #else 1850 #define sqlite3TableLock(v,w,x,y,z) 1851 #endif 1852 1853 #ifdef SQLITE_MEMDEBUG 1854 void sqlite3MallocDisallow(void); 1855 void sqlite3MallocAllow(void); 1856 int sqlite3TestMallocFail(void); 1857 #else 1858 #define sqlite3TestMallocFail() 0 1859 #define sqlite3MallocDisallow() 1860 #define sqlite3MallocAllow() 1861 #endif 1862 1863 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1864 void *sqlite3ThreadSafeMalloc(int); 1865 void sqlite3ThreadSafeFree(void *); 1866 #else 1867 #define sqlite3ThreadSafeMalloc sqlite3MallocX 1868 #define sqlite3ThreadSafeFree sqlite3FreeX 1869 #endif 1870 1871 #ifdef SQLITE_OMIT_VIRTUALTABLE 1872 # define sqlite3VtabClear(X) 1873 # define sqlite3VtabSync(X,Y) (Y) 1874 # define sqlite3VtabRollback(X) 1875 # define sqlite3VtabCommit(X) 1876 #else 1877 void sqlite3VtabClear(Table*); 1878 int sqlite3VtabSync(sqlite3 *db, int rc); 1879 int sqlite3VtabRollback(sqlite3 *db); 1880 int sqlite3VtabCommit(sqlite3 *db); 1881 #endif 1882 void sqlite3VtabLock(sqlite3_vtab*); 1883 void sqlite3VtabUnlock(sqlite3_vtab*); 1884 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 1885 void sqlite3VtabFinishParse(Parse*, Token*); 1886 void sqlite3VtabArgInit(Parse*); 1887 void sqlite3VtabArgExtend(Parse*, Token*); 1888 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 1889 int sqlite3VtabCallConnect(Parse*, Table*); 1890 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 1891 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 1892 FuncDef *sqlite3VtabOverloadFunction(FuncDef*, int nArg, Expr*); 1893 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 1894 int sqlite3Reprepare(Vdbe*); 1895 1896 #ifdef SQLITE_SSE 1897 #include "sseInt.h" 1898 #endif 1899 1900 /* 1901 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 1902 ** sqlite3_io_trace is a pointer to a printf-like routine used to 1903 ** print I/O tracing messages. 1904 */ 1905 #ifdef SQLITE_ENABLE_IOTRACE 1906 # define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; } 1907 void sqlite3VdbeIOTraceSql(Vdbe*); 1908 #else 1909 # define IOTRACE(A) 1910 # define sqlite3VdbeIOTraceSql(X) 1911 #endif 1912 extern void (*sqlite3_io_trace)(const char*,...); 1913 1914 #endif 1915