1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.421 2005/09/19 21:05:49 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 21 ** Setting NDEBUG makes the code smaller and run faster. So the following 22 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 23 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 24 ** feature. 25 */ 26 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 27 # define NDEBUG 1 28 #endif 29 30 /* 31 ** These #defines should enable >2GB file support on Posix if the 32 ** underlying operating system supports it. If the OS lacks 33 ** large file support, or if the OS is windows, these should be no-ops. 34 ** 35 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 36 ** on the compiler command line. This is necessary if you are compiling 37 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 38 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 39 ** without this option, LFS is enable. But LFS does not exist in the kernel 40 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 41 ** portability you should omit LFS. 42 ** 43 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 44 */ 45 #ifndef SQLITE_DISABLE_LFS 46 # define _LARGE_FILE 1 47 # ifndef _FILE_OFFSET_BITS 48 # define _FILE_OFFSET_BITS 64 49 # endif 50 # define _LARGEFILE_SOURCE 1 51 #endif 52 53 #include "sqlite3.h" 54 #include "hash.h" 55 #include "parse.h" 56 #include <stdio.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <assert.h> 60 #include <stddef.h> 61 62 /* 63 ** The maximum number of in-memory pages to use for the main database 64 ** table and for temporary tables. Internally, the MAX_PAGES and 65 ** TEMP_PAGES macros are used. To override the default values at 66 ** compilation time, the SQLITE_DEFAULT_CACHE_SIZE and 67 ** SQLITE_DEFAULT_TEMP_CACHE_SIZE macros should be set. 68 */ 69 #ifdef SQLITE_DEFAULT_CACHE_SIZE 70 # define MAX_PAGES SQLITE_DEFAULT_CACHE_SIZE 71 #else 72 # define MAX_PAGES 2000 73 #endif 74 #ifdef SQLITE_DEFAULT_TEMP_CACHE_SIZE 75 # define TEMP_PAGES SQLITE_DEFAULT_TEMP_CACHE_SIZE 76 #else 77 # define TEMP_PAGES 500 78 #endif 79 80 /* 81 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 82 ** afterward. Having this macro allows us to cause the C compiler 83 ** to omit code used by TEMP tables without messy #ifndef statements. 84 */ 85 #ifdef SQLITE_OMIT_TEMPDB 86 #define OMIT_TEMPDB 1 87 #else 88 #define OMIT_TEMPDB 0 89 #endif 90 91 /* 92 ** If the following macro is set to 1, then NULL values are considered 93 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT 94 ** compound queries. No other SQL database engine (among those tested) 95 ** works this way except for OCELOT. But the SQL92 spec implies that 96 ** this is how things should work. 97 ** 98 ** If the following macro is set to 0, then NULLs are indistinct for 99 ** SELECT DISTINCT and for UNION. 100 */ 101 #define NULL_ALWAYS_DISTINCT 0 102 103 /* 104 ** If the following macro is set to 1, then NULL values are considered 105 ** distinct when determining whether or not two entries are the same 106 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 107 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 108 ** is the way things are suppose to work. 109 ** 110 ** If the following macro is set to 0, the NULLs are indistinct for 111 ** a UNIQUE index. In this mode, you can only have a single NULL entry 112 ** for a column declared UNIQUE. This is the way Informix and SQL Server 113 ** work. 114 */ 115 #define NULL_DISTINCT_FOR_UNIQUE 1 116 117 /* 118 ** The maximum number of attached databases. This must be at least 2 119 ** in order to support the main database file (0) and the file used to 120 ** hold temporary tables (1). And it must be less than 32 because 121 ** we use a bitmask of databases with a u32 in places (for example 122 ** the Parse.cookieMask field). 123 */ 124 #define MAX_ATTACHED 10 125 126 /* 127 ** The maximum value of a ?nnn wildcard that the parser will accept. 128 */ 129 #define SQLITE_MAX_VARIABLE_NUMBER 999 130 131 /* 132 ** When building SQLite for embedded systems where memory is scarce, 133 ** you can define one or more of the following macros to omit extra 134 ** features of the library and thus keep the size of the library to 135 ** a minimum. 136 */ 137 /* #define SQLITE_OMIT_AUTHORIZATION 1 */ 138 /* #define SQLITE_OMIT_MEMORYDB 1 */ 139 /* #define SQLITE_OMIT_VACUUM 1 */ 140 /* #define SQLITE_OMIT_DATETIME_FUNCS 1 */ 141 /* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */ 142 /* #define SQLITE_OMIT_AUTOVACUUM */ 143 /* #define SQLITE_OMIT_ALTERTABLE */ 144 145 /* 146 ** Provide a default value for TEMP_STORE in case it is not specified 147 ** on the command-line 148 */ 149 #ifndef TEMP_STORE 150 # define TEMP_STORE 1 151 #endif 152 153 /* 154 ** GCC does not define the offsetof() macro so we'll have to do it 155 ** ourselves. 156 */ 157 #ifndef offsetof 158 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 159 #endif 160 161 /* 162 ** Integers of known sizes. These typedefs might change for architectures 163 ** where the sizes very. Preprocessor macros are available so that the 164 ** types can be conveniently redefined at compile-type. Like this: 165 ** 166 ** cc '-DUINTPTR_TYPE=long long int' ... 167 */ 168 #ifndef UINT64_TYPE 169 # if defined(_MSC_VER) || defined(__BORLANDC__) 170 # define UINT64_TYPE unsigned __int64 171 # else 172 # define UINT64_TYPE unsigned long long int 173 # endif 174 #endif 175 #ifndef UINT32_TYPE 176 # define UINT32_TYPE unsigned int 177 #endif 178 #ifndef UINT16_TYPE 179 # define UINT16_TYPE unsigned short int 180 #endif 181 #ifndef INT16_TYPE 182 # define INT16_TYPE short int 183 #endif 184 #ifndef UINT8_TYPE 185 # define UINT8_TYPE unsigned char 186 #endif 187 #ifndef INT8_TYPE 188 # define INT8_TYPE signed char 189 #endif 190 #ifndef LONGDOUBLE_TYPE 191 # define LONGDOUBLE_TYPE long double 192 #endif 193 typedef sqlite_int64 i64; /* 8-byte signed integer */ 194 typedef UINT64_TYPE u64; /* 8-byte unsigned integer */ 195 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 196 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 197 typedef INT16_TYPE i16; /* 2-byte signed integer */ 198 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 199 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 200 201 /* 202 ** Macros to determine whether the machine is big or little endian, 203 ** evaluated at runtime. 204 */ 205 extern const int sqlite3one; 206 #define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 207 #define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 208 209 /* 210 ** An instance of the following structure is used to store the busy-handler 211 ** callback for a given sqlite handle. 212 ** 213 ** The sqlite.busyHandler member of the sqlite struct contains the busy 214 ** callback for the database handle. Each pager opened via the sqlite 215 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 216 ** callback is currently invoked only from within pager.c. 217 */ 218 typedef struct BusyHandler BusyHandler; 219 struct BusyHandler { 220 int (*xFunc)(void *,int); /* The busy callback */ 221 void *pArg; /* First arg to busy callback */ 222 int nBusy; /* Incremented with each busy call */ 223 }; 224 225 /* 226 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 227 ** "BusyHandler typedefs. 228 */ 229 #include "vdbe.h" 230 #include "btree.h" 231 232 /* 233 ** This macro casts a pointer to an integer. Useful for doing 234 ** pointer arithmetic. 235 */ 236 #define Addr(X) ((uptr)X) 237 238 /* 239 ** If memory allocation problems are found, recompile with 240 ** 241 ** -DSQLITE_DEBUG=1 242 ** 243 ** to enable some sanity checking on malloc() and free(). To 244 ** check for memory leaks, recompile with 245 ** 246 ** -DSQLITE_DEBUG=2 247 ** 248 ** and a line of text will be written to standard error for 249 ** each malloc() and free(). This output can be analyzed 250 ** by an AWK script to determine if there are any leaks. 251 */ 252 #ifdef SQLITE_MEMDEBUG 253 # define sqliteMalloc(X) sqlite3Malloc_(X,1,__FILE__,__LINE__) 254 # define sqliteMallocRaw(X) sqlite3Malloc_(X,0,__FILE__,__LINE__) 255 # define sqliteFree(X) sqlite3Free_(X,__FILE__,__LINE__) 256 # define sqliteRealloc(X,Y) sqlite3Realloc_(X,Y,__FILE__,__LINE__) 257 # define sqliteStrDup(X) sqlite3StrDup_(X,__FILE__,__LINE__) 258 # define sqliteStrNDup(X,Y) sqlite3StrNDup_(X,Y,__FILE__,__LINE__) 259 #else 260 # define sqliteFree sqlite3FreeX 261 # define sqliteMalloc sqlite3Malloc 262 # define sqliteMallocRaw sqlite3MallocRaw 263 # define sqliteRealloc sqlite3Realloc 264 # define sqliteStrDup sqlite3StrDup 265 # define sqliteStrNDup sqlite3StrNDup 266 #endif 267 268 /* 269 ** This variable gets set if malloc() ever fails. After it gets set, 270 ** the SQLite library shuts down permanently. 271 */ 272 extern int sqlite3_malloc_failed; 273 274 /* 275 ** The following global variables are used for testing and debugging 276 ** only. They only work if SQLITE_DEBUG is defined. 277 */ 278 #ifdef SQLITE_MEMDEBUG 279 extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ 280 extern int sqlite3_nFree; /* Number of sqliteFree() calls */ 281 extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 282 extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */ 283 #endif 284 285 /* 286 ** Name of the master database table. The master database table 287 ** is a special table that holds the names and attributes of all 288 ** user tables and indices. 289 */ 290 #define MASTER_NAME "sqlite_master" 291 #define TEMP_MASTER_NAME "sqlite_temp_master" 292 293 /* 294 ** The root-page of the master database table. 295 */ 296 #define MASTER_ROOT 1 297 298 /* 299 ** The name of the schema table. 300 */ 301 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 302 303 /* 304 ** A convenience macro that returns the number of elements in 305 ** an array. 306 */ 307 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 308 309 /* 310 ** Forward references to structures 311 */ 312 typedef struct AggInfo AggInfo; 313 typedef struct AuthContext AuthContext; 314 typedef struct CollSeq CollSeq; 315 typedef struct Column Column; 316 typedef struct Db Db; 317 typedef struct Expr Expr; 318 typedef struct ExprList ExprList; 319 typedef struct FKey FKey; 320 typedef struct FuncDef FuncDef; 321 typedef struct IdList IdList; 322 typedef struct Index Index; 323 typedef struct KeyClass KeyClass; 324 typedef struct KeyInfo KeyInfo; 325 typedef struct NameContext NameContext; 326 typedef struct Parse Parse; 327 typedef struct Select Select; 328 typedef struct SrcList SrcList; 329 typedef struct Table Table; 330 typedef struct Token Token; 331 typedef struct TriggerStack TriggerStack; 332 typedef struct TriggerStep TriggerStep; 333 typedef struct Trigger Trigger; 334 typedef struct WhereInfo WhereInfo; 335 typedef struct WhereLevel WhereLevel; 336 337 /* 338 ** Each database file to be accessed by the system is an instance 339 ** of the following structure. There are normally two of these structures 340 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 341 ** aDb[1] is the database file used to hold temporary tables. Additional 342 ** databases may be attached. 343 */ 344 struct Db { 345 char *zName; /* Name of this database */ 346 Btree *pBt; /* The B*Tree structure for this database file */ 347 int schema_cookie; /* Database schema version number for this file */ 348 Hash tblHash; /* All tables indexed by name */ 349 Hash idxHash; /* All (named) indices indexed by name */ 350 Hash trigHash; /* All triggers indexed by name */ 351 Hash aFKey; /* Foreign keys indexed by to-table */ 352 u16 flags; /* Flags associated with this database */ 353 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 354 u8 safety_level; /* How aggressive at synching data to disk */ 355 int cache_size; /* Number of pages to use in the cache */ 356 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 357 void *pAux; /* Auxiliary data. Usually NULL */ 358 void (*xFreeAux)(void*); /* Routine to free pAux */ 359 }; 360 361 /* 362 ** These macros can be used to test, set, or clear bits in the 363 ** Db.flags field. 364 */ 365 #define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) 366 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) 367 #define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) 368 #define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) 369 370 /* 371 ** Allowed values for the DB.flags field. 372 ** 373 ** The DB_SchemaLoaded flag is set after the database schema has been 374 ** read into internal hash tables. 375 ** 376 ** DB_UnresetViews means that one or more views have column names that 377 ** have been filled out. If the schema changes, these column names might 378 ** changes and so the view will need to be reset. 379 */ 380 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 381 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 382 383 #define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 384 385 /* 386 ** Each database is an instance of the following structure. 387 ** 388 ** The sqlite.lastRowid records the last insert rowid generated by an 389 ** insert statement. Inserts on views do not affect its value. Each 390 ** trigger has its own context, so that lastRowid can be updated inside 391 ** triggers as usual. The previous value will be restored once the trigger 392 ** exits. Upon entering a before or instead of trigger, lastRowid is no 393 ** longer (since after version 2.8.12) reset to -1. 394 ** 395 ** The sqlite.nChange does not count changes within triggers and keeps no 396 ** context. It is reset at start of sqlite3_exec. 397 ** The sqlite.lsChange represents the number of changes made by the last 398 ** insert, update, or delete statement. It remains constant throughout the 399 ** length of a statement and is then updated by OP_SetCounts. It keeps a 400 ** context stack just like lastRowid so that the count of changes 401 ** within a trigger is not seen outside the trigger. Changes to views do not 402 ** affect the value of lsChange. 403 ** The sqlite.csChange keeps track of the number of current changes (since 404 ** the last statement) and is used to update sqlite_lsChange. 405 ** 406 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 407 ** store the most recent error code and, if applicable, string. The 408 ** internal function sqlite3Error() is used to set these variables 409 ** consistently. 410 */ 411 struct sqlite3 { 412 int nDb; /* Number of backends currently in use */ 413 Db *aDb; /* All backends */ 414 int flags; /* Miscellanous flags. See below */ 415 int errCode; /* Most recent error code (SQLITE_*) */ 416 u8 enc; /* Text encoding for this database. */ 417 u8 autoCommit; /* The auto-commit flag. */ 418 u8 file_format; /* What file format version is this database? */ 419 u8 temp_store; /* 1: file 2: memory 0: default */ 420 int nTable; /* Number of tables in the database */ 421 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 422 i64 lastRowid; /* ROWID of most recent insert (see above) */ 423 i64 priorNewRowid; /* Last randomly generated ROWID */ 424 int magic; /* Magic number for detect library misuse */ 425 int nChange; /* Value returned by sqlite3_changes() */ 426 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 427 struct sqlite3InitInfo { /* Information used during initialization */ 428 int iDb; /* When back is being initialized */ 429 int newTnum; /* Rootpage of table being initialized */ 430 u8 busy; /* TRUE if currently initializing */ 431 } init; 432 struct Vdbe *pVdbe; /* List of active virtual machines */ 433 int activeVdbeCnt; /* Number of vdbes currently executing */ 434 void (*xTrace)(void*,const char*); /* Trace function */ 435 void *pTraceArg; /* Argument to the trace function */ 436 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 437 void *pProfileArg; /* Argument to profile function */ 438 void *pCommitArg; /* Argument to xCommitCallback() */ 439 int (*xCommitCallback)(void*);/* Invoked at every commit. */ 440 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 441 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 442 void *pCollNeededArg; 443 sqlite3_value *pValue; /* Value used for transient conversions */ 444 sqlite3_value *pErr; /* Most recent error message */ 445 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 446 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 447 #ifndef SQLITE_OMIT_AUTHORIZATION 448 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 449 /* Access authorization function */ 450 void *pAuthArg; /* 1st argument to the access auth function */ 451 #endif 452 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 453 int (*xProgress)(void *); /* The progress callback */ 454 void *pProgressArg; /* Argument to the progress callback */ 455 int nProgressOps; /* Number of opcodes for progress callback */ 456 #endif 457 #ifndef SQLITE_OMIT_GLOBALRECOVER 458 sqlite3 *pNext; /* Linked list of open db handles. */ 459 #endif 460 Hash aFunc; /* All functions that can be in SQL exprs */ 461 Hash aCollSeq; /* All collating sequences */ 462 BusyHandler busyHandler; /* Busy callback */ 463 int busyTimeout; /* Busy handler timeout, in msec */ 464 Db aDbStatic[2]; /* Static space for the 2 default backends */ 465 #ifdef SQLITE_SSE 466 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 467 #endif 468 }; 469 470 /* 471 ** Possible values for the sqlite.flags and or Db.flags fields. 472 ** 473 ** On sqlite.flags, the SQLITE_InTrans value means that we have 474 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 475 ** transaction is active on that particular database file. 476 */ 477 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 478 #define SQLITE_Initialized 0x00000002 /* True after initialization */ 479 #define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ 480 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 481 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 482 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 483 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 484 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 485 /* DELETE, or UPDATE and return */ 486 /* the count using a callback. */ 487 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 488 /* result set is empty */ 489 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 490 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 491 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 492 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 493 ** accessing read-only databases */ 494 495 /* 496 ** Possible values for the sqlite.magic field. 497 ** The numbers are obtained at random and have no special meaning, other 498 ** than being distinct from one another. 499 */ 500 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 501 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 502 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 503 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 504 505 /* 506 ** Each SQL function is defined by an instance of the following 507 ** structure. A pointer to this structure is stored in the sqlite.aFunc 508 ** hash table. When multiple functions have the same name, the hash table 509 ** points to a linked list of these structures. 510 */ 511 struct FuncDef { 512 i16 nArg; /* Number of arguments. -1 means unlimited */ 513 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 514 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 515 u8 flags; /* Some combination of SQLITE_FUNC_* */ 516 void *pUserData; /* User data parameter */ 517 FuncDef *pNext; /* Next function with same name */ 518 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 519 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 520 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 521 char zName[1]; /* SQL name of the function. MUST BE LAST */ 522 }; 523 524 /* 525 ** Possible values for FuncDef.flags 526 */ 527 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 528 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 529 530 /* 531 ** information about each column of an SQL table is held in an instance 532 ** of this structure. 533 */ 534 struct Column { 535 char *zName; /* Name of this column */ 536 Expr *pDflt; /* Default value of this column */ 537 char *zType; /* Data type for this column */ 538 CollSeq *pColl; /* Collating sequence. If NULL, use the default */ 539 u8 notNull; /* True if there is a NOT NULL constraint */ 540 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 541 char affinity; /* One of the SQLITE_AFF_... values */ 542 }; 543 544 /* 545 ** A "Collating Sequence" is defined by an instance of the following 546 ** structure. Conceptually, a collating sequence consists of a name and 547 ** a comparison routine that defines the order of that sequence. 548 ** 549 ** There may two seperate implementations of the collation function, one 550 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 551 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 552 ** native byte order. When a collation sequence is invoked, SQLite selects 553 ** the version that will require the least expensive encoding 554 ** transalations, if any. 555 ** 556 ** The CollSeq.pUser member variable is an extra parameter that passed in 557 ** as the first argument to the UTF-8 comparison function, xCmp. 558 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 559 ** xCmp16. 560 ** 561 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 562 ** collating sequence is undefined. Indices built on an undefined 563 ** collating sequence may not be read or written. 564 */ 565 struct CollSeq { 566 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 567 u8 enc; /* Text encoding handled by xCmp() */ 568 u8 type; /* One of the SQLITE_COLL_... values below */ 569 void *pUser; /* First argument to xCmp() */ 570 int (*xCmp)(void*,int, const void*, int, const void*); 571 }; 572 573 /* 574 ** Allowed values of CollSeq flags: 575 */ 576 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 577 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 578 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 579 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 580 581 /* 582 ** A sort order can be either ASC or DESC. 583 */ 584 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 585 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 586 587 /* 588 ** Column affinity types. 589 */ 590 #define SQLITE_AFF_INTEGER 'i' 591 #define SQLITE_AFF_NUMERIC 'n' 592 #define SQLITE_AFF_TEXT 't' 593 #define SQLITE_AFF_NONE 'o' 594 595 596 /* 597 ** Each SQL table is represented in memory by an instance of the 598 ** following structure. 599 ** 600 ** Table.zName is the name of the table. The case of the original 601 ** CREATE TABLE statement is stored, but case is not significant for 602 ** comparisons. 603 ** 604 ** Table.nCol is the number of columns in this table. Table.aCol is a 605 ** pointer to an array of Column structures, one for each column. 606 ** 607 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 608 ** the column that is that key. Otherwise Table.iPKey is negative. Note 609 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 610 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 611 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 612 ** is generated for each row of the table. Table.hasPrimKey is true if 613 ** the table has any PRIMARY KEY, INTEGER or otherwise. 614 ** 615 ** Table.tnum is the page number for the root BTree page of the table in the 616 ** database file. If Table.iDb is the index of the database table backend 617 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 618 ** holds temporary tables and indices. If Table.isTransient 619 ** is true, then the table is stored in a file that is automatically deleted 620 ** when the VDBE cursor to the table is closed. In this case Table.tnum 621 ** refers VDBE cursor number that holds the table open, not to the root 622 ** page number. Transient tables are used to hold the results of a 623 ** sub-query that appears instead of a real table name in the FROM clause 624 ** of a SELECT statement. 625 */ 626 struct Table { 627 char *zName; /* Name of the table */ 628 int nCol; /* Number of columns in this table */ 629 Column *aCol; /* Information about each column */ 630 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 631 Index *pIndex; /* List of SQL indexes on this table. */ 632 int tnum; /* Root BTree node for this table (see note above) */ 633 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 634 u8 readOnly; /* True if this table should not be written by the user */ 635 u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ 636 u8 isTransient; /* True if automatically deleted when VDBE finishes */ 637 u8 hasPrimKey; /* True if there exists a primary key */ 638 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 639 u8 autoInc; /* True if the integer primary key is autoincrement */ 640 int nRef; /* Number of pointers to this Table */ 641 Trigger *pTrigger; /* List of SQL triggers on this table */ 642 FKey *pFKey; /* Linked list of all foreign keys in this table */ 643 char *zColAff; /* String defining the affinity of each column */ 644 #ifndef SQLITE_OMIT_ALTERTABLE 645 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 646 #endif 647 }; 648 649 /* 650 ** Each foreign key constraint is an instance of the following structure. 651 ** 652 ** A foreign key is associated with two tables. The "from" table is 653 ** the table that contains the REFERENCES clause that creates the foreign 654 ** key. The "to" table is the table that is named in the REFERENCES clause. 655 ** Consider this example: 656 ** 657 ** CREATE TABLE ex1( 658 ** a INTEGER PRIMARY KEY, 659 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 660 ** ); 661 ** 662 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 663 ** 664 ** Each REFERENCES clause generates an instance of the following structure 665 ** which is attached to the from-table. The to-table need not exist when 666 ** the from-table is created. The existance of the to-table is not checked 667 ** until an attempt is made to insert data into the from-table. 668 ** 669 ** The sqlite.aFKey hash table stores pointers to this structure 670 ** given the name of a to-table. For each to-table, all foreign keys 671 ** associated with that table are on a linked list using the FKey.pNextTo 672 ** field. 673 */ 674 struct FKey { 675 Table *pFrom; /* The table that constains the REFERENCES clause */ 676 FKey *pNextFrom; /* Next foreign key in pFrom */ 677 char *zTo; /* Name of table that the key points to */ 678 FKey *pNextTo; /* Next foreign key that points to zTo */ 679 int nCol; /* Number of columns in this key */ 680 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 681 int iFrom; /* Index of column in pFrom */ 682 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 683 } *aCol; /* One entry for each of nCol column s */ 684 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 685 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 686 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 687 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 688 }; 689 690 /* 691 ** SQLite supports many different ways to resolve a contraint 692 ** error. ROLLBACK processing means that a constraint violation 693 ** causes the operation in process to fail and for the current transaction 694 ** to be rolled back. ABORT processing means the operation in process 695 ** fails and any prior changes from that one operation are backed out, 696 ** but the transaction is not rolled back. FAIL processing means that 697 ** the operation in progress stops and returns an error code. But prior 698 ** changes due to the same operation are not backed out and no rollback 699 ** occurs. IGNORE means that the particular row that caused the constraint 700 ** error is not inserted or updated. Processing continues and no error 701 ** is returned. REPLACE means that preexisting database rows that caused 702 ** a UNIQUE constraint violation are removed so that the new insert or 703 ** update can proceed. Processing continues and no error is reported. 704 ** 705 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 706 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 707 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 708 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 709 ** referenced table row is propagated into the row that holds the 710 ** foreign key. 711 ** 712 ** The following symbolic values are used to record which type 713 ** of action to take. 714 */ 715 #define OE_None 0 /* There is no constraint to check */ 716 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 717 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 718 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 719 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 720 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 721 722 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 723 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 724 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 725 #define OE_Cascade 9 /* Cascade the changes */ 726 727 #define OE_Default 99 /* Do whatever the default action is */ 728 729 730 /* 731 ** An instance of the following structure is passed as the first 732 ** argument to sqlite3VdbeKeyCompare and is used to control the 733 ** comparison of the two index keys. 734 ** 735 ** If the KeyInfo.incrKey value is true and the comparison would 736 ** otherwise be equal, then return a result as if the second key 737 ** were larger. 738 */ 739 struct KeyInfo { 740 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 741 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 742 int nField; /* Number of entries in aColl[] */ 743 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 744 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 745 }; 746 747 /* 748 ** Each SQL index is represented in memory by an 749 ** instance of the following structure. 750 ** 751 ** The columns of the table that are to be indexed are described 752 ** by the aiColumn[] field of this structure. For example, suppose 753 ** we have the following table and index: 754 ** 755 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 756 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 757 ** 758 ** In the Table structure describing Ex1, nCol==3 because there are 759 ** three columns in the table. In the Index structure describing 760 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 761 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 762 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 763 ** The second column to be indexed (c1) has an index of 0 in 764 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 765 ** 766 ** The Index.onError field determines whether or not the indexed columns 767 ** must be unique and what to do if they are not. When Index.onError=OE_None, 768 ** it means this is not a unique index. Otherwise it is a unique index 769 ** and the value of Index.onError indicate the which conflict resolution 770 ** algorithm to employ whenever an attempt is made to insert a non-unique 771 ** element. 772 */ 773 struct Index { 774 char *zName; /* Name of this index */ 775 int nColumn; /* Number of columns in the table used by this index */ 776 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 777 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 778 Table *pTable; /* The SQL table being indexed */ 779 int tnum; /* Page containing root of this index in database file */ 780 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 781 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 782 u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ 783 char *zColAff; /* String defining the affinity of each column */ 784 Index *pNext; /* The next index associated with the same table */ 785 KeyInfo keyInfo; /* Info on how to order keys. MUST BE LAST */ 786 }; 787 788 /* 789 ** Each token coming out of the lexer is an instance of 790 ** this structure. Tokens are also used as part of an expression. 791 ** 792 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 793 ** may contain random values. Do not make any assuptions about Token.dyn 794 ** and Token.n when Token.z==0. 795 */ 796 struct Token { 797 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 798 unsigned dyn : 1; /* True for malloced memory, false for static */ 799 unsigned n : 31; /* Number of characters in this token */ 800 }; 801 802 /* 803 ** An instance of this structure contains information needed to generate 804 ** code for a SELECT that contains aggregate functions. 805 ** 806 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 807 ** pointer to this structure. The Expr.iColumn field is the index in 808 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 809 ** code for that node. 810 ** 811 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 812 ** original Select structure that describes the SELECT statement. These 813 ** fields do not need to be freed when deallocating the AggInfo structure. 814 */ 815 struct AggInfo { 816 u8 directMode; /* Direct rendering mode means take data directly 817 ** from source tables rather than from accumulators */ 818 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 819 ** than the source table */ 820 int sortingIdx; /* Cursor number of the sorting index */ 821 ExprList *pGroupBy; /* The group by clause */ 822 int nSortingColumn; /* Number of columns in the sorting index */ 823 struct AggInfo_col { /* For each column used in source tables */ 824 int iTable; /* Cursor number of the source table */ 825 int iColumn; /* Column number within the source table */ 826 int iSorterColumn; /* Column number in the sorting index */ 827 int iMem; /* Memory location that acts as accumulator */ 828 Expr *pExpr; /* The original expression */ 829 } *aCol; 830 int nColumn; /* Number of used entries in aCol[] */ 831 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 832 int nAccumulator; /* Number of columns that show through to the output. 833 ** Additional columns are used only as parameters to 834 ** aggregate functions */ 835 struct AggInfo_func { /* For each aggregate function */ 836 Expr *pExpr; /* Expression encoding the function */ 837 FuncDef *pFunc; /* The aggregate function implementation */ 838 int iMem; /* Memory location that acts as accumulator */ 839 int iDistinct; /* Virtual table used to enforce DISTINCT */ 840 } *aFunc; 841 int nFunc; /* Number of entries in aFunc[] */ 842 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 843 }; 844 845 /* 846 ** Each node of an expression in the parse tree is an instance 847 ** of this structure. 848 ** 849 ** Expr.op is the opcode. The integer parser token codes are reused 850 ** as opcodes here. For example, the parser defines TK_GE to be an integer 851 ** code representing the ">=" operator. This same integer code is reused 852 ** to represent the greater-than-or-equal-to operator in the expression 853 ** tree. 854 ** 855 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 856 ** of argument if the expression is a function. 857 ** 858 ** Expr.token is the operator token for this node. For some expressions 859 ** that have subexpressions, Expr.token can be the complete text that gave 860 ** rise to the Expr. In the latter case, the token is marked as being 861 ** a compound token. 862 ** 863 ** An expression of the form ID or ID.ID refers to a column in a table. 864 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 865 ** the integer cursor number of a VDBE cursor pointing to that table and 866 ** Expr.iColumn is the column number for the specific column. If the 867 ** expression is used as a result in an aggregate SELECT, then the 868 ** value is also stored in the Expr.iAgg column in the aggregate so that 869 ** it can be accessed after all aggregates are computed. 870 ** 871 ** If the expression is a function, the Expr.iTable is an integer code 872 ** representing which function. If the expression is an unbound variable 873 ** marker (a question mark character '?' in the original SQL) then the 874 ** Expr.iTable holds the index number for that variable. 875 ** 876 ** If the expression is a subquery then Expr.iColumn holds an integer 877 ** register number containing the result of the subquery. If the 878 ** subquery gives a constant result, then iTable is -1. If the subquery 879 ** gives a different answer at different times during statement processing 880 ** then iTable is the address of a subroutine that computes the subquery. 881 ** 882 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 883 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 884 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 885 ** operand. 886 ** 887 ** If the Expr is of type OP_Column, and the table it is selecting from 888 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 889 ** corresponding table definition. 890 */ 891 struct Expr { 892 u8 op; /* Operation performed by this node */ 893 char affinity; /* The affinity of the column or 0 if not a column */ 894 u8 iDb; /* Database referenced by this expression */ 895 u8 flags; /* Various flags. See below */ 896 CollSeq *pColl; /* The collation type of the column or 0 */ 897 Expr *pLeft, *pRight; /* Left and right subnodes */ 898 ExprList *pList; /* A list of expressions used as function arguments 899 ** or in "<expr> IN (<expr-list)" */ 900 Token token; /* An operand token */ 901 Token span; /* Complete text of the expression */ 902 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 903 ** iColumn-th field of the iTable-th table. */ 904 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 905 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 906 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 907 Select *pSelect; /* When the expression is a sub-select. Also the 908 ** right side of "<expr> IN (<select>)" */ 909 Table *pTab; /* Table for OP_Column expressions. */ 910 }; 911 912 /* 913 ** The following are the meanings of bits in the Expr.flags field. 914 */ 915 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 916 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 917 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 918 #define EP_Error 0x08 /* Expression contains one or more errors */ 919 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 920 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 921 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 922 923 /* 924 ** These macros can be used to test, set, or clear bits in the 925 ** Expr.flags field. 926 */ 927 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 928 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 929 #define ExprSetProperty(E,P) (E)->flags|=(P) 930 #define ExprClearProperty(E,P) (E)->flags&=~(P) 931 932 /* 933 ** A list of expressions. Each expression may optionally have a 934 ** name. An expr/name combination can be used in several ways, such 935 ** as the list of "expr AS ID" fields following a "SELECT" or in the 936 ** list of "ID = expr" items in an UPDATE. A list of expressions can 937 ** also be used as the argument to a function, in which case the a.zName 938 ** field is not used. 939 */ 940 struct ExprList { 941 int nExpr; /* Number of expressions on the list */ 942 int nAlloc; /* Number of entries allocated below */ 943 int iECursor; /* VDBE Cursor associated with this ExprList */ 944 struct ExprList_item { 945 Expr *pExpr; /* The list of expressions */ 946 char *zName; /* Token associated with this expression */ 947 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 948 u8 isAgg; /* True if this is an aggregate like count(*) */ 949 u8 done; /* A flag to indicate when processing is finished */ 950 } *a; /* One entry for each expression */ 951 }; 952 953 /* 954 ** An instance of this structure can hold a simple list of identifiers, 955 ** such as the list "a,b,c" in the following statements: 956 ** 957 ** INSERT INTO t(a,b,c) VALUES ...; 958 ** CREATE INDEX idx ON t(a,b,c); 959 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 960 ** 961 ** The IdList.a.idx field is used when the IdList represents the list of 962 ** column names after a table name in an INSERT statement. In the statement 963 ** 964 ** INSERT INTO t(a,b,c) ... 965 ** 966 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 967 */ 968 struct IdList { 969 struct IdList_item { 970 char *zName; /* Name of the identifier */ 971 int idx; /* Index in some Table.aCol[] of a column named zName */ 972 } *a; 973 int nId; /* Number of identifiers on the list */ 974 int nAlloc; /* Number of entries allocated for a[] below */ 975 }; 976 977 /* 978 ** The bitmask datatype defined below is used for various optimizations. 979 */ 980 typedef unsigned int Bitmask; 981 982 /* 983 ** The following structure describes the FROM clause of a SELECT statement. 984 ** Each table or subquery in the FROM clause is a separate element of 985 ** the SrcList.a[] array. 986 ** 987 ** With the addition of multiple database support, the following structure 988 ** can also be used to describe a particular table such as the table that 989 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 990 ** such a table must be a simple name: ID. But in SQLite, the table can 991 ** now be identified by a database name, a dot, then the table name: ID.ID. 992 */ 993 struct SrcList { 994 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 995 i16 nAlloc; /* Number of entries allocated in a[] below */ 996 struct SrcList_item { 997 char *zDatabase; /* Name of database holding this table */ 998 char *zName; /* Name of the table */ 999 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1000 Table *pTab; /* An SQL table corresponding to zName */ 1001 Select *pSelect; /* A SELECT statement used in place of a table name */ 1002 u8 jointype; /* Type of join between this table and the next */ 1003 i16 iCursor; /* The VDBE cursor number used to access this table */ 1004 Expr *pOn; /* The ON clause of a join */ 1005 IdList *pUsing; /* The USING clause of a join */ 1006 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1007 } a[1]; /* One entry for each identifier on the list */ 1008 }; 1009 1010 /* 1011 ** Permitted values of the SrcList.a.jointype field 1012 */ 1013 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1014 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1015 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1016 #define JT_LEFT 0x0008 /* Left outer join */ 1017 #define JT_RIGHT 0x0010 /* Right outer join */ 1018 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1019 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1020 1021 /* 1022 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1023 ** structure contains a single instance of this structure. This structure 1024 ** is intended to be private the the where.c module and should not be 1025 ** access or modified by other modules. 1026 */ 1027 struct WhereLevel { 1028 int iFrom; /* Which entry in the FROM clause */ 1029 int flags; /* Flags associated with this level */ 1030 int iMem; /* First memory cell used by this level */ 1031 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1032 Index *pIdx; /* Index used. NULL if no index */ 1033 int iTabCur; /* The VDBE cursor used to access the table */ 1034 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1035 int brk; /* Jump here to break out of the loop */ 1036 int cont; /* Jump here to continue with the next loop cycle */ 1037 int top; /* First instruction of interior of the loop */ 1038 int op, p1, p2; /* Opcode used to terminate the loop */ 1039 int nEq; /* Number of == or IN constraints on this loop */ 1040 int nIn; /* Number of IN operators constraining this loop */ 1041 int *aInLoop; /* Loop terminators for IN operators */ 1042 }; 1043 1044 /* 1045 ** The WHERE clause processing routine has two halves. The 1046 ** first part does the start of the WHERE loop and the second 1047 ** half does the tail of the WHERE loop. An instance of 1048 ** this structure is returned by the first half and passed 1049 ** into the second half to give some continuity. 1050 */ 1051 struct WhereInfo { 1052 Parse *pParse; 1053 SrcList *pTabList; /* List of tables in the join */ 1054 int iTop; /* The very beginning of the WHERE loop */ 1055 int iContinue; /* Jump here to continue with next record */ 1056 int iBreak; /* Jump here to break out of the loop */ 1057 int nLevel; /* Number of nested loop */ 1058 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1059 }; 1060 1061 /* 1062 ** A NameContext defines a context in which to resolve table and column 1063 ** names. The context consists of a list of tables (the pSrcList) field and 1064 ** a list of named expression (pEList). The named expression list may 1065 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1066 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1067 ** pEList corresponds to the result set of a SELECT and is NULL for 1068 ** other statements. 1069 ** 1070 ** NameContexts can be nested. When resolving names, the inner-most 1071 ** context is searched first. If no match is found, the next outer 1072 ** context is checked. If there is still no match, the next context 1073 ** is checked. This process continues until either a match is found 1074 ** or all contexts are check. When a match is found, the nRef member of 1075 ** the context containing the match is incremented. 1076 ** 1077 ** Each subquery gets a new NameContext. The pNext field points to the 1078 ** NameContext in the parent query. Thus the process of scanning the 1079 ** NameContext list corresponds to searching through successively outer 1080 ** subqueries looking for a match. 1081 */ 1082 struct NameContext { 1083 Parse *pParse; /* The parser */ 1084 SrcList *pSrcList; /* One or more tables used to resolve names */ 1085 ExprList *pEList; /* Optional list of named expressions */ 1086 int nRef; /* Number of names resolved by this context */ 1087 int nErr; /* Number of errors encountered while resolving names */ 1088 u8 allowAgg; /* Aggregate functions allowed here */ 1089 u8 hasAgg; /* True if aggregates are seen */ 1090 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1091 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1092 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1093 }; 1094 1095 /* 1096 ** An instance of the following structure contains all information 1097 ** needed to generate code for a single SELECT statement. 1098 ** 1099 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1100 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1101 ** limit and nOffset to the value of the offset (or 0 if there is not 1102 ** offset). But later on, nLimit and nOffset become the memory locations 1103 ** in the VDBE that record the limit and offset counters. 1104 ** 1105 ** addrOpenVirt[] entries contain the address of OP_OpenVirtual opcodes. 1106 ** These addresses must be stored so that we can go back and fill in 1107 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1108 ** the number of columns in P2 can be computed at the same time 1109 ** as the OP_OpenVirtual instruction is coded because not 1110 ** enough information about the compound query is known at that point. 1111 ** The KeyInfo for addrOpenVirt[0] and [1] contains collating sequences 1112 ** for the result set. The KeyInfo for addrOpenVirt[2] contains collating 1113 ** sequences for the ORDER BY clause. 1114 */ 1115 struct Select { 1116 ExprList *pEList; /* The fields of the result */ 1117 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1118 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1119 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1120 u8 isAgg; /* True if this is an aggregate query */ 1121 u8 usesVirt; /* True if uses an OpenVirtual opcode */ 1122 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1123 SrcList *pSrc; /* The FROM clause */ 1124 Expr *pWhere; /* The WHERE clause */ 1125 ExprList *pGroupBy; /* The GROUP BY clause */ 1126 Expr *pHaving; /* The HAVING clause */ 1127 ExprList *pOrderBy; /* The ORDER BY clause */ 1128 Select *pPrior; /* Prior select in a compound select statement */ 1129 Select *pRightmost; /* Right-most select in a compound select statement */ 1130 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1131 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1132 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1133 int addrOpenVirt[3]; /* OP_OpenVirtual opcodes related to this select */ 1134 }; 1135 1136 /* 1137 ** The results of a select can be distributed in several ways. 1138 */ 1139 #define SRT_Union 1 /* Store result as keys in an index */ 1140 #define SRT_Except 2 /* Remove result from a UNION index */ 1141 #define SRT_Discard 3 /* Do not save the results anywhere */ 1142 1143 /* The ORDER BY clause is ignored for all of the above */ 1144 #define IgnorableOrderby(X) (X<=SRT_Discard) 1145 1146 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1147 #define SRT_Mem 5 /* Store result in a memory cell */ 1148 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1149 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1150 #define SRT_VirtualTab 8 /* Create virtual table and store like SRT_Table */ 1151 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1152 #define SRT_Exists 10 /* Put 0 or 1 in a memory cell */ 1153 1154 /* 1155 ** An SQL parser context. A copy of this structure is passed through 1156 ** the parser and down into all the parser action routine in order to 1157 ** carry around information that is global to the entire parse. 1158 ** 1159 ** The structure is divided into two parts. When the parser and code 1160 ** generate call themselves recursively, the first part of the structure 1161 ** is constant but the second part is reset at the beginning and end of 1162 ** each recursion. 1163 */ 1164 struct Parse { 1165 sqlite3 *db; /* The main database structure */ 1166 int rc; /* Return code from execution */ 1167 char *zErrMsg; /* An error message */ 1168 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1169 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1170 u8 nameClash; /* A permanent table name clashes with temp table name */ 1171 u8 checkSchema; /* Causes schema cookie check after an error */ 1172 u8 nested; /* Number of nested calls to the parser/code generator */ 1173 int nErr; /* Number of errors seen */ 1174 int nTab; /* Number of previously allocated VDBE cursors */ 1175 int nMem; /* Number of memory cells used so far */ 1176 int nSet; /* Number of sets used so far */ 1177 u32 writeMask; /* Start a write transaction on these databases */ 1178 u32 cookieMask; /* Bitmask of schema verified databases */ 1179 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1180 int cookieValue[MAX_ATTACHED+2]; /* Values of cookies to verify */ 1181 1182 /* Above is constant between recursions. Below is reset before and after 1183 ** each recursion */ 1184 1185 int nVar; /* Number of '?' variables seen in the SQL so far */ 1186 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1187 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1188 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1189 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1190 Token sErrToken; /* The token at which the error occurred */ 1191 Token sNameToken; /* Token with unqualified schema object name */ 1192 Token sLastToken; /* The last token parsed */ 1193 const char *zSql; /* All SQL text */ 1194 const char *zTail; /* All SQL text past the last semicolon parsed */ 1195 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1196 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1197 TriggerStack *trigStack; /* Trigger actions being coded */ 1198 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1199 }; 1200 1201 /* 1202 ** An instance of the following structure can be declared on a stack and used 1203 ** to save the Parse.zAuthContext value so that it can be restored later. 1204 */ 1205 struct AuthContext { 1206 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1207 Parse *pParse; /* The Parse structure */ 1208 }; 1209 1210 /* 1211 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1212 */ 1213 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1214 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1215 1216 /* 1217 * Each trigger present in the database schema is stored as an instance of 1218 * struct Trigger. 1219 * 1220 * Pointers to instances of struct Trigger are stored in two ways. 1221 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1222 * database). This allows Trigger structures to be retrieved by name. 1223 * 2. All triggers associated with a single table form a linked list, using the 1224 * pNext member of struct Trigger. A pointer to the first element of the 1225 * linked list is stored as the "pTrigger" member of the associated 1226 * struct Table. 1227 * 1228 * The "step_list" member points to the first element of a linked list 1229 * containing the SQL statements specified as the trigger program. 1230 */ 1231 struct Trigger { 1232 char *name; /* The name of the trigger */ 1233 char *table; /* The table or view to which the trigger applies */ 1234 u8 iDb; /* Database containing this trigger */ 1235 u8 iTabDb; /* Database containing Trigger.table */ 1236 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1237 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1238 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1239 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1240 the <column-list> is stored here */ 1241 int foreach; /* One of TK_ROW or TK_STATEMENT */ 1242 Token nameToken; /* Token containing zName. Use during parsing only */ 1243 1244 TriggerStep *step_list; /* Link list of trigger program steps */ 1245 Trigger *pNext; /* Next trigger associated with the table */ 1246 }; 1247 1248 /* 1249 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1250 ** determine which. 1251 ** 1252 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1253 ** In that cases, the constants below can be ORed together. 1254 */ 1255 #define TRIGGER_BEFORE 1 1256 #define TRIGGER_AFTER 2 1257 1258 /* 1259 * An instance of struct TriggerStep is used to store a single SQL statement 1260 * that is a part of a trigger-program. 1261 * 1262 * Instances of struct TriggerStep are stored in a singly linked list (linked 1263 * using the "pNext" member) referenced by the "step_list" member of the 1264 * associated struct Trigger instance. The first element of the linked list is 1265 * the first step of the trigger-program. 1266 * 1267 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1268 * "SELECT" statement. The meanings of the other members is determined by the 1269 * value of "op" as follows: 1270 * 1271 * (op == TK_INSERT) 1272 * orconf -> stores the ON CONFLICT algorithm 1273 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1274 * this stores a pointer to the SELECT statement. Otherwise NULL. 1275 * target -> A token holding the name of the table to insert into. 1276 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1277 * this stores values to be inserted. Otherwise NULL. 1278 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1279 * statement, then this stores the column-names to be 1280 * inserted into. 1281 * 1282 * (op == TK_DELETE) 1283 * target -> A token holding the name of the table to delete from. 1284 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1285 * Otherwise NULL. 1286 * 1287 * (op == TK_UPDATE) 1288 * target -> A token holding the name of the table to update rows of. 1289 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1290 * Otherwise NULL. 1291 * pExprList -> A list of the columns to update and the expressions to update 1292 * them to. See sqlite3Update() documentation of "pChanges" 1293 * argument. 1294 * 1295 */ 1296 struct TriggerStep { 1297 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1298 int orconf; /* OE_Rollback etc. */ 1299 Trigger *pTrig; /* The trigger that this step is a part of */ 1300 1301 Select *pSelect; /* Valid for SELECT and sometimes 1302 INSERT steps (when pExprList == 0) */ 1303 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1304 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1305 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1306 INSERT steps (when pSelect == 0) */ 1307 IdList *pIdList; /* Valid for INSERT statements only */ 1308 1309 TriggerStep * pNext; /* Next in the link-list */ 1310 }; 1311 1312 /* 1313 * An instance of struct TriggerStack stores information required during code 1314 * generation of a single trigger program. While the trigger program is being 1315 * coded, its associated TriggerStack instance is pointed to by the 1316 * "pTriggerStack" member of the Parse structure. 1317 * 1318 * The pTab member points to the table that triggers are being coded on. The 1319 * newIdx member contains the index of the vdbe cursor that points at the temp 1320 * table that stores the new.* references. If new.* references are not valid 1321 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1322 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1323 * 1324 * The ON CONFLICT policy to be used for the trigger program steps is stored 1325 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1326 * specified for individual triggers steps is used. 1327 * 1328 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1329 * constructed. When coding nested triggers (triggers fired by other triggers) 1330 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1331 * pointer. Once the nested trigger has been coded, the pNext value is restored 1332 * to the pTriggerStack member of the Parse stucture and coding of the parent 1333 * trigger continues. 1334 * 1335 * Before a nested trigger is coded, the linked list pointed to by the 1336 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1337 * recursively. If this condition is detected, the nested trigger is not coded. 1338 */ 1339 struct TriggerStack { 1340 Table *pTab; /* Table that triggers are currently being coded on */ 1341 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1342 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1343 int orconf; /* Current orconf policy */ 1344 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1345 Trigger *pTrigger; /* The trigger currently being coded */ 1346 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1347 }; 1348 1349 /* 1350 ** The following structure contains information used by the sqliteFix... 1351 ** routines as they walk the parse tree to make database references 1352 ** explicit. 1353 */ 1354 typedef struct DbFixer DbFixer; 1355 struct DbFixer { 1356 Parse *pParse; /* The parsing context. Error messages written here */ 1357 const char *zDb; /* Make sure all objects are contained in this database */ 1358 const char *zType; /* Type of the container - used for error messages */ 1359 const Token *pName; /* Name of the container - used for error messages */ 1360 }; 1361 1362 /* 1363 ** A pointer to this structure is used to communicate information 1364 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1365 */ 1366 typedef struct { 1367 sqlite3 *db; /* The database being initialized */ 1368 char **pzErrMsg; /* Error message stored here */ 1369 } InitData; 1370 1371 /* 1372 * This global flag is set for performance testing of triggers. When it is set 1373 * SQLite will perform the overhead of building new and old trigger references 1374 * even when no triggers exist 1375 */ 1376 extern int sqlite3_always_code_trigger_setup; 1377 1378 /* 1379 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1380 ** builds) or a function call (for debugging). If it is a function call, 1381 ** it allows the operator to set a breakpoint at the spot where database 1382 ** corruption is first detected. 1383 */ 1384 #ifdef SQLITE_DEBUG 1385 extern int sqlite3Corrupt(void); 1386 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1387 #else 1388 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1389 #endif 1390 1391 /* 1392 ** Internal function prototypes 1393 */ 1394 int sqlite3StrICmp(const char *, const char *); 1395 int sqlite3StrNICmp(const char *, const char *, int); 1396 int sqlite3HashNoCase(const char *, int); 1397 int sqlite3IsNumber(const char*, int*, u8); 1398 int sqlite3Compare(const char *, const char *); 1399 int sqlite3SortCompare(const char *, const char *); 1400 void sqlite3RealToSortable(double r, char *); 1401 #ifdef SQLITE_MEMDEBUG 1402 void *sqlite3Malloc_(int,int,char*,int); 1403 void sqlite3Free_(void*,char*,int); 1404 void *sqlite3Realloc_(void*,int,char*,int); 1405 char *sqlite3StrDup_(const char*,char*,int); 1406 char *sqlite3StrNDup_(const char*, int,char*,int); 1407 void sqlite3CheckMemory(void*,int); 1408 #else 1409 void *sqlite3Malloc(int); 1410 void *sqlite3MallocRaw(int); 1411 void sqlite3Free(void*); 1412 void *sqlite3Realloc(void*,int); 1413 char *sqlite3StrDup(const char*); 1414 char *sqlite3StrNDup(const char*, int); 1415 # define sqlite3CheckMemory(a,b) 1416 # define sqlite3MallocX sqlite3Malloc 1417 #endif 1418 void sqlite3ReallocOrFree(void**,int); 1419 void sqlite3FreeX(void*); 1420 void *sqlite3MallocX(int); 1421 char *sqlite3MPrintf(const char*, ...); 1422 char *sqlite3VMPrintf(const char*, va_list); 1423 void sqlite3DebugPrintf(const char*, ...); 1424 void *sqlite3TextToPtr(const char*); 1425 void sqlite3SetString(char **, ...); 1426 void sqlite3ErrorMsg(Parse*, const char*, ...); 1427 void sqlite3Dequote(char*); 1428 void sqlite3DequoteExpr(Expr*); 1429 int sqlite3KeywordCode(const char*, int); 1430 int sqlite3RunParser(Parse*, const char*, char **); 1431 void sqlite3FinishCoding(Parse*); 1432 Expr *sqlite3Expr(int, Expr*, Expr*, const Token*); 1433 Expr *sqlite3RegisterExpr(Parse*,Token*); 1434 Expr *sqlite3ExprAnd(Expr*, Expr*); 1435 void sqlite3ExprSpan(Expr*,Token*,Token*); 1436 Expr *sqlite3ExprFunction(ExprList*, Token*); 1437 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1438 void sqlite3ExprDelete(Expr*); 1439 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*); 1440 void sqlite3ExprListDelete(ExprList*); 1441 int sqlite3Init(sqlite3*, char**); 1442 int sqlite3InitCallback(void*, int, char**, char**); 1443 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1444 void sqlite3ResetInternalSchema(sqlite3*, int); 1445 void sqlite3BeginParse(Parse*,int); 1446 void sqlite3RollbackInternalChanges(sqlite3*); 1447 void sqlite3CommitInternalChanges(sqlite3*); 1448 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1449 void sqlite3OpenMasterTable(Vdbe *v, int); 1450 void sqlite3StartTable(Parse*,Token*,Token*,Token*,int,int); 1451 void sqlite3AddColumn(Parse*,Token*); 1452 void sqlite3AddNotNull(Parse*, int); 1453 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int); 1454 void sqlite3AddColumnType(Parse*,Token*); 1455 void sqlite3AddDefaultValue(Parse*,Expr*); 1456 void sqlite3AddCollateType(Parse*, const char*, int); 1457 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1458 1459 #ifndef SQLITE_OMIT_VIEW 1460 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int); 1461 int sqlite3ViewGetColumnNames(Parse*,Table*); 1462 #else 1463 # define sqlite3ViewGetColumnNames(A,B) 0 1464 #endif 1465 1466 void sqlite3DropTable(Parse*, SrcList*, int); 1467 void sqlite3DeleteTable(sqlite3*, Table*); 1468 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1469 int sqlite3ArrayAllocate(void**,int,int); 1470 IdList *sqlite3IdListAppend(IdList*, Token*); 1471 int sqlite3IdListIndex(IdList*,const char*); 1472 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); 1473 void sqlite3SrcListAddAlias(SrcList*, Token*); 1474 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1475 void sqlite3IdListDelete(IdList*); 1476 void sqlite3SrcListDelete(SrcList*); 1477 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1478 Token*); 1479 void sqlite3DropIndex(Parse*, SrcList*); 1480 void sqlite3AddKeyType(Vdbe*, ExprList*); 1481 void sqlite3AddIdxKeyType(Vdbe*, Index*); 1482 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1483 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1484 int,Expr*,Expr*); 1485 void sqlite3SelectDelete(Select*); 1486 void sqlite3SelectUnbind(Select*); 1487 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1488 int sqlite3IsReadOnly(Parse*, Table*, int); 1489 void sqlite3OpenTableForReading(Vdbe*, int iCur, Table*); 1490 void sqlite3OpenTable(Vdbe*, int iCur, Table*, int); 1491 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1492 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1493 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1494 void sqlite3WhereEnd(WhereInfo*); 1495 void sqlite3ExprCode(Parse*, Expr*); 1496 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1497 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1498 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1499 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1500 void sqlite3NextedParse(Parse*, const char*, ...); 1501 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1502 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1503 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1504 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1505 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1506 void sqlite3Vacuum(Parse*, Token*); 1507 int sqlite3RunVacuum(char**, sqlite3*); 1508 char *sqlite3NameFromToken(Token*); 1509 int sqlite3ExprCheck(Parse*, Expr*, int, int*); 1510 int sqlite3ExprCompare(Expr*, Expr*); 1511 int sqliteFuncId(Token*); 1512 int sqlite3ExprResolveNames(NameContext *, Expr *); 1513 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1514 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1515 Vdbe *sqlite3GetVdbe(Parse*); 1516 void sqlite3Randomness(int, void*); 1517 void sqlite3RollbackAll(sqlite3*); 1518 void sqlite3CodeVerifySchema(Parse*, int); 1519 void sqlite3BeginTransaction(Parse*, int); 1520 void sqlite3CommitTransaction(Parse*); 1521 void sqlite3RollbackTransaction(Parse*); 1522 int sqlite3ExprIsConstant(Expr*); 1523 int sqlite3ExprIsConstantOrFunction(Expr*); 1524 int sqlite3ExprIsInteger(Expr*, int*); 1525 int sqlite3IsRowid(const char*); 1526 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1527 void sqlite3GenerateRowIndexDelete(sqlite3*, Vdbe*, Table*, int, char*); 1528 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1529 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1530 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int); 1531 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1532 void sqlite3BeginWriteOperation(Parse*, int, int); 1533 Expr *sqlite3ExprDup(Expr*); 1534 void sqlite3TokenCopy(Token*, Token*); 1535 ExprList *sqlite3ExprListDup(ExprList*); 1536 SrcList *sqlite3SrcListDup(SrcList*); 1537 IdList *sqlite3IdListDup(IdList*); 1538 Select *sqlite3SelectDup(Select*); 1539 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1540 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1541 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1542 int sqlite3SafetyOn(sqlite3*); 1543 int sqlite3SafetyOff(sqlite3*); 1544 int sqlite3SafetyCheck(sqlite3*); 1545 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1546 1547 #ifndef SQLITE_OMIT_TRIGGER 1548 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1549 int,Expr*,int); 1550 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1551 void sqlite3DropTrigger(Parse*, SrcList*); 1552 void sqlite3DropTriggerPtr(Parse*, Trigger*, int); 1553 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1554 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1555 int, int); 1556 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1557 void sqlite3DeleteTriggerStep(TriggerStep*); 1558 TriggerStep *sqlite3TriggerSelectStep(Select*); 1559 TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int); 1560 TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); 1561 TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); 1562 void sqlite3DeleteTrigger(Trigger*); 1563 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1564 #else 1565 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1566 # define sqlite3DeleteTrigger(A) 1567 # define sqlite3DropTriggerPtr(A,B,C) 1568 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1569 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1570 #endif 1571 1572 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1573 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1574 void sqlite3DeferForeignKey(Parse*, int); 1575 #ifndef SQLITE_OMIT_AUTHORIZATION 1576 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1577 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1578 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1579 void sqlite3AuthContextPop(AuthContext*); 1580 #else 1581 # define sqlite3AuthRead(a,b,c) 1582 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1583 # define sqlite3AuthContextPush(a,b,c) 1584 # define sqlite3AuthContextPop(a) ((void)(a)) 1585 #endif 1586 void sqlite3Attach(Parse*, Token*, Token*, int, Token*); 1587 void sqlite3Detach(Parse*, Token*); 1588 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1589 int omitJournal, int nCache, Btree **ppBtree); 1590 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1591 int sqlite3FixSrcList(DbFixer*, SrcList*); 1592 int sqlite3FixSelect(DbFixer*, Select*); 1593 int sqlite3FixExpr(DbFixer*, Expr*); 1594 int sqlite3FixExprList(DbFixer*, ExprList*); 1595 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1596 int sqlite3AtoF(const char *z, double*); 1597 char *sqlite3_snprintf(int,char*,const char*,...); 1598 int sqlite3GetInt32(const char *, int*); 1599 int sqlite3FitsIn64Bits(const char *); 1600 int sqlite3utf16ByteLen(const void *pData, int nChar); 1601 int sqlite3utf8CharLen(const char *pData, int nByte); 1602 int sqlite3ReadUtf8(const unsigned char *); 1603 int sqlite3PutVarint(unsigned char *, u64); 1604 int sqlite3GetVarint(const unsigned char *, u64 *); 1605 int sqlite3GetVarint32(const unsigned char *, u32 *); 1606 int sqlite3VarintLen(u64 v); 1607 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1608 void sqlite3TableAffinityStr(Vdbe *, Table *); 1609 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1610 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1611 char sqlite3ExprAffinity(Expr *pExpr); 1612 int sqlite3atoi64(const char*, i64*); 1613 void sqlite3Error(sqlite3*, int, const char*,...); 1614 void *sqlite3HexToBlob(const char *z); 1615 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1616 const char *sqlite3ErrStr(int); 1617 int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold); 1618 int sqlite3ReadSchema(Parse *pParse); 1619 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1620 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1621 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1622 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1623 int sqlite3CheckIndexCollSeq(Parse *, Index *); 1624 int sqlite3CheckObjectName(Parse *, const char *); 1625 void sqlite3VdbeSetChanges(sqlite3 *, int); 1626 void sqlite3utf16Substr(sqlite3_context *,int,sqlite3_value **); 1627 1628 const void *sqlite3ValueText(sqlite3_value*, u8); 1629 int sqlite3ValueBytes(sqlite3_value*, u8); 1630 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); 1631 void sqlite3ValueFree(sqlite3_value*); 1632 sqlite3_value *sqlite3ValueNew(void); 1633 sqlite3_value *sqlite3GetTransientValue(sqlite3*db); 1634 int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **); 1635 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1636 extern const unsigned char sqlite3UpperToLower[]; 1637 void sqlite3RootPageMoved(Db*, int, int); 1638 void sqlite3Reindex(Parse*, Token*, Token*); 1639 void sqlite3AlterFunctions(sqlite3*); 1640 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1641 int sqlite3GetToken(const unsigned char *, int *); 1642 void sqlite3NestedParse(Parse*, const char*, ...); 1643 void sqlite3ExpirePreparedStatements(sqlite3*); 1644 void sqlite3CodeSubselect(Parse *, Expr *); 1645 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1646 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1647 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1648 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1649 const char *sqlite3TestErrorName(int); 1650 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1651 char sqlite3AffinityType(const Token*); 1652 void sqlite3Analyze(Parse*, Token*, Token*); 1653 int sqlite3InvokeBusyHandler(BusyHandler*); 1654 int sqlite3FindDb(sqlite3*, Token*); 1655 void sqlite3AnalysisLoad(sqlite3*,int iDB); 1656 void sqlite3DefaultRowEst(Index*); 1657 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1658 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1659 1660 #ifdef SQLITE_SSE 1661 #include "sseInt.h" 1662 #endif 1663 1664 #endif 1665