xref: /sqlite-3.40.0/src/sqliteInt.h (revision 74217cc0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 ** @(#) $Id: sqliteInt.h,v 1.421 2005/09/19 21:05:49 drh Exp $
15 */
16 #ifndef _SQLITEINT_H_
17 #define _SQLITEINT_H_
18 
19 /*
20 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
21 ** Setting NDEBUG makes the code smaller and run faster.  So the following
22 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
23 ** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
24 ** feature.
25 */
26 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
27 # define NDEBUG 1
28 #endif
29 
30 /*
31 ** These #defines should enable >2GB file support on Posix if the
32 ** underlying operating system supports it.  If the OS lacks
33 ** large file support, or if the OS is windows, these should be no-ops.
34 **
35 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
36 ** on the compiler command line.  This is necessary if you are compiling
37 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
38 ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
39 ** without this option, LFS is enable.  But LFS does not exist in the kernel
40 ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
41 ** portability you should omit LFS.
42 **
43 ** Similar is true for MacOS.  LFS is only supported on MacOS 9 and later.
44 */
45 #ifndef SQLITE_DISABLE_LFS
46 # define _LARGE_FILE       1
47 # ifndef _FILE_OFFSET_BITS
48 #   define _FILE_OFFSET_BITS 64
49 # endif
50 # define _LARGEFILE_SOURCE 1
51 #endif
52 
53 #include "sqlite3.h"
54 #include "hash.h"
55 #include "parse.h"
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <assert.h>
60 #include <stddef.h>
61 
62 /*
63 ** The maximum number of in-memory pages to use for the main database
64 ** table and for temporary tables. Internally, the MAX_PAGES and
65 ** TEMP_PAGES macros are used. To override the default values at
66 ** compilation time, the SQLITE_DEFAULT_CACHE_SIZE and
67 ** SQLITE_DEFAULT_TEMP_CACHE_SIZE macros should be set.
68 */
69 #ifdef SQLITE_DEFAULT_CACHE_SIZE
70 # define MAX_PAGES SQLITE_DEFAULT_CACHE_SIZE
71 #else
72 # define MAX_PAGES   2000
73 #endif
74 #ifdef SQLITE_DEFAULT_TEMP_CACHE_SIZE
75 # define TEMP_PAGES SQLITE_DEFAULT_TEMP_CACHE_SIZE
76 #else
77 # define TEMP_PAGES   500
78 #endif
79 
80 /*
81 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
82 ** afterward. Having this macro allows us to cause the C compiler
83 ** to omit code used by TEMP tables without messy #ifndef statements.
84 */
85 #ifdef SQLITE_OMIT_TEMPDB
86 #define OMIT_TEMPDB 1
87 #else
88 #define OMIT_TEMPDB 0
89 #endif
90 
91 /*
92 ** If the following macro is set to 1, then NULL values are considered
93 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT
94 ** compound queries.  No other SQL database engine (among those tested)
95 ** works this way except for OCELOT.  But the SQL92 spec implies that
96 ** this is how things should work.
97 **
98 ** If the following macro is set to 0, then NULLs are indistinct for
99 ** SELECT DISTINCT and for UNION.
100 */
101 #define NULL_ALWAYS_DISTINCT 0
102 
103 /*
104 ** If the following macro is set to 1, then NULL values are considered
105 ** distinct when determining whether or not two entries are the same
106 ** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
107 ** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
108 ** is the way things are suppose to work.
109 **
110 ** If the following macro is set to 0, the NULLs are indistinct for
111 ** a UNIQUE index.  In this mode, you can only have a single NULL entry
112 ** for a column declared UNIQUE.  This is the way Informix and SQL Server
113 ** work.
114 */
115 #define NULL_DISTINCT_FOR_UNIQUE 1
116 
117 /*
118 ** The maximum number of attached databases.  This must be at least 2
119 ** in order to support the main database file (0) and the file used to
120 ** hold temporary tables (1).  And it must be less than 32 because
121 ** we use a bitmask of databases with a u32 in places (for example
122 ** the Parse.cookieMask field).
123 */
124 #define MAX_ATTACHED 10
125 
126 /*
127 ** The maximum value of a ?nnn wildcard that the parser will accept.
128 */
129 #define SQLITE_MAX_VARIABLE_NUMBER 999
130 
131 /*
132 ** When building SQLite for embedded systems where memory is scarce,
133 ** you can define one or more of the following macros to omit extra
134 ** features of the library and thus keep the size of the library to
135 ** a minimum.
136 */
137 /* #define SQLITE_OMIT_AUTHORIZATION  1 */
138 /* #define SQLITE_OMIT_MEMORYDB     1 */
139 /* #define SQLITE_OMIT_VACUUM         1 */
140 /* #define SQLITE_OMIT_DATETIME_FUNCS 1 */
141 /* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */
142 /* #define SQLITE_OMIT_AUTOVACUUM */
143 /* #define SQLITE_OMIT_ALTERTABLE */
144 
145 /*
146 ** Provide a default value for TEMP_STORE in case it is not specified
147 ** on the command-line
148 */
149 #ifndef TEMP_STORE
150 # define TEMP_STORE 1
151 #endif
152 
153 /*
154 ** GCC does not define the offsetof() macro so we'll have to do it
155 ** ourselves.
156 */
157 #ifndef offsetof
158 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
159 #endif
160 
161 /*
162 ** Integers of known sizes.  These typedefs might change for architectures
163 ** where the sizes very.  Preprocessor macros are available so that the
164 ** types can be conveniently redefined at compile-type.  Like this:
165 **
166 **         cc '-DUINTPTR_TYPE=long long int' ...
167 */
168 #ifndef UINT64_TYPE
169 # if defined(_MSC_VER) || defined(__BORLANDC__)
170 #   define UINT64_TYPE unsigned __int64
171 # else
172 #   define UINT64_TYPE unsigned long long int
173 # endif
174 #endif
175 #ifndef UINT32_TYPE
176 # define UINT32_TYPE unsigned int
177 #endif
178 #ifndef UINT16_TYPE
179 # define UINT16_TYPE unsigned short int
180 #endif
181 #ifndef INT16_TYPE
182 # define INT16_TYPE short int
183 #endif
184 #ifndef UINT8_TYPE
185 # define UINT8_TYPE unsigned char
186 #endif
187 #ifndef INT8_TYPE
188 # define INT8_TYPE signed char
189 #endif
190 #ifndef LONGDOUBLE_TYPE
191 # define LONGDOUBLE_TYPE long double
192 #endif
193 typedef sqlite_int64 i64;          /* 8-byte signed integer */
194 typedef UINT64_TYPE u64;           /* 8-byte unsigned integer */
195 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
196 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
197 typedef INT16_TYPE i16;            /* 2-byte signed integer */
198 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
199 typedef UINT8_TYPE i8;             /* 1-byte signed integer */
200 
201 /*
202 ** Macros to determine whether the machine is big or little endian,
203 ** evaluated at runtime.
204 */
205 extern const int sqlite3one;
206 #define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
207 #define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
208 
209 /*
210 ** An instance of the following structure is used to store the busy-handler
211 ** callback for a given sqlite handle.
212 **
213 ** The sqlite.busyHandler member of the sqlite struct contains the busy
214 ** callback for the database handle. Each pager opened via the sqlite
215 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
216 ** callback is currently invoked only from within pager.c.
217 */
218 typedef struct BusyHandler BusyHandler;
219 struct BusyHandler {
220   int (*xFunc)(void *,int);  /* The busy callback */
221   void *pArg;                /* First arg to busy callback */
222   int nBusy;                 /* Incremented with each busy call */
223 };
224 
225 /*
226 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
227 ** "BusyHandler typedefs.
228 */
229 #include "vdbe.h"
230 #include "btree.h"
231 
232 /*
233 ** This macro casts a pointer to an integer.  Useful for doing
234 ** pointer arithmetic.
235 */
236 #define Addr(X)  ((uptr)X)
237 
238 /*
239 ** If memory allocation problems are found, recompile with
240 **
241 **      -DSQLITE_DEBUG=1
242 **
243 ** to enable some sanity checking on malloc() and free().  To
244 ** check for memory leaks, recompile with
245 **
246 **      -DSQLITE_DEBUG=2
247 **
248 ** and a line of text will be written to standard error for
249 ** each malloc() and free().  This output can be analyzed
250 ** by an AWK script to determine if there are any leaks.
251 */
252 #ifdef SQLITE_MEMDEBUG
253 # define sqliteMalloc(X)    sqlite3Malloc_(X,1,__FILE__,__LINE__)
254 # define sqliteMallocRaw(X) sqlite3Malloc_(X,0,__FILE__,__LINE__)
255 # define sqliteFree(X)      sqlite3Free_(X,__FILE__,__LINE__)
256 # define sqliteRealloc(X,Y) sqlite3Realloc_(X,Y,__FILE__,__LINE__)
257 # define sqliteStrDup(X)    sqlite3StrDup_(X,__FILE__,__LINE__)
258 # define sqliteStrNDup(X,Y) sqlite3StrNDup_(X,Y,__FILE__,__LINE__)
259 #else
260 # define sqliteFree          sqlite3FreeX
261 # define sqliteMalloc        sqlite3Malloc
262 # define sqliteMallocRaw     sqlite3MallocRaw
263 # define sqliteRealloc       sqlite3Realloc
264 # define sqliteStrDup        sqlite3StrDup
265 # define sqliteStrNDup       sqlite3StrNDup
266 #endif
267 
268 /*
269 ** This variable gets set if malloc() ever fails.  After it gets set,
270 ** the SQLite library shuts down permanently.
271 */
272 extern int sqlite3_malloc_failed;
273 
274 /*
275 ** The following global variables are used for testing and debugging
276 ** only.  They only work if SQLITE_DEBUG is defined.
277 */
278 #ifdef SQLITE_MEMDEBUG
279 extern int sqlite3_nMalloc;      /* Number of sqliteMalloc() calls */
280 extern int sqlite3_nFree;        /* Number of sqliteFree() calls */
281 extern int sqlite3_iMallocFail;  /* Fail sqliteMalloc() after this many calls */
282 extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */
283 #endif
284 
285 /*
286 ** Name of the master database table.  The master database table
287 ** is a special table that holds the names and attributes of all
288 ** user tables and indices.
289 */
290 #define MASTER_NAME       "sqlite_master"
291 #define TEMP_MASTER_NAME  "sqlite_temp_master"
292 
293 /*
294 ** The root-page of the master database table.
295 */
296 #define MASTER_ROOT       1
297 
298 /*
299 ** The name of the schema table.
300 */
301 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
302 
303 /*
304 ** A convenience macro that returns the number of elements in
305 ** an array.
306 */
307 #define ArraySize(X)    (sizeof(X)/sizeof(X[0]))
308 
309 /*
310 ** Forward references to structures
311 */
312 typedef struct AggInfo AggInfo;
313 typedef struct AuthContext AuthContext;
314 typedef struct CollSeq CollSeq;
315 typedef struct Column Column;
316 typedef struct Db Db;
317 typedef struct Expr Expr;
318 typedef struct ExprList ExprList;
319 typedef struct FKey FKey;
320 typedef struct FuncDef FuncDef;
321 typedef struct IdList IdList;
322 typedef struct Index Index;
323 typedef struct KeyClass KeyClass;
324 typedef struct KeyInfo KeyInfo;
325 typedef struct NameContext NameContext;
326 typedef struct Parse Parse;
327 typedef struct Select Select;
328 typedef struct SrcList SrcList;
329 typedef struct Table Table;
330 typedef struct Token Token;
331 typedef struct TriggerStack TriggerStack;
332 typedef struct TriggerStep TriggerStep;
333 typedef struct Trigger Trigger;
334 typedef struct WhereInfo WhereInfo;
335 typedef struct WhereLevel WhereLevel;
336 
337 /*
338 ** Each database file to be accessed by the system is an instance
339 ** of the following structure.  There are normally two of these structures
340 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
341 ** aDb[1] is the database file used to hold temporary tables.  Additional
342 ** databases may be attached.
343 */
344 struct Db {
345   char *zName;         /* Name of this database */
346   Btree *pBt;          /* The B*Tree structure for this database file */
347   int schema_cookie;   /* Database schema version number for this file */
348   Hash tblHash;        /* All tables indexed by name */
349   Hash idxHash;        /* All (named) indices indexed by name */
350   Hash trigHash;       /* All triggers indexed by name */
351   Hash aFKey;          /* Foreign keys indexed by to-table */
352   u16 flags;           /* Flags associated with this database */
353   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
354   u8 safety_level;     /* How aggressive at synching data to disk */
355   int cache_size;      /* Number of pages to use in the cache */
356   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
357   void *pAux;               /* Auxiliary data.  Usually NULL */
358   void (*xFreeAux)(void*);  /* Routine to free pAux */
359 };
360 
361 /*
362 ** These macros can be used to test, set, or clear bits in the
363 ** Db.flags field.
364 */
365 #define DbHasProperty(D,I,P)     (((D)->aDb[I].flags&(P))==(P))
366 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].flags&(P))!=0)
367 #define DbSetProperty(D,I,P)     (D)->aDb[I].flags|=(P)
368 #define DbClearProperty(D,I,P)   (D)->aDb[I].flags&=~(P)
369 
370 /*
371 ** Allowed values for the DB.flags field.
372 **
373 ** The DB_SchemaLoaded flag is set after the database schema has been
374 ** read into internal hash tables.
375 **
376 ** DB_UnresetViews means that one or more views have column names that
377 ** have been filled out.  If the schema changes, these column names might
378 ** changes and so the view will need to be reset.
379 */
380 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
381 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
382 
383 #define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
384 
385 /*
386 ** Each database is an instance of the following structure.
387 **
388 ** The sqlite.lastRowid records the last insert rowid generated by an
389 ** insert statement.  Inserts on views do not affect its value.  Each
390 ** trigger has its own context, so that lastRowid can be updated inside
391 ** triggers as usual.  The previous value will be restored once the trigger
392 ** exits.  Upon entering a before or instead of trigger, lastRowid is no
393 ** longer (since after version 2.8.12) reset to -1.
394 **
395 ** The sqlite.nChange does not count changes within triggers and keeps no
396 ** context.  It is reset at start of sqlite3_exec.
397 ** The sqlite.lsChange represents the number of changes made by the last
398 ** insert, update, or delete statement.  It remains constant throughout the
399 ** length of a statement and is then updated by OP_SetCounts.  It keeps a
400 ** context stack just like lastRowid so that the count of changes
401 ** within a trigger is not seen outside the trigger.  Changes to views do not
402 ** affect the value of lsChange.
403 ** The sqlite.csChange keeps track of the number of current changes (since
404 ** the last statement) and is used to update sqlite_lsChange.
405 **
406 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
407 ** store the most recent error code and, if applicable, string. The
408 ** internal function sqlite3Error() is used to set these variables
409 ** consistently.
410 */
411 struct sqlite3 {
412   int nDb;                      /* Number of backends currently in use */
413   Db *aDb;                      /* All backends */
414   int flags;                    /* Miscellanous flags. See below */
415   int errCode;                  /* Most recent error code (SQLITE_*) */
416   u8 enc;                       /* Text encoding for this database. */
417   u8 autoCommit;                /* The auto-commit flag. */
418   u8 file_format;               /* What file format version is this database? */
419   u8 temp_store;                /* 1: file 2: memory 0: default */
420   int nTable;                   /* Number of tables in the database */
421   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
422   i64 lastRowid;                /* ROWID of most recent insert (see above) */
423   i64 priorNewRowid;            /* Last randomly generated ROWID */
424   int magic;                    /* Magic number for detect library misuse */
425   int nChange;                  /* Value returned by sqlite3_changes() */
426   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
427   struct sqlite3InitInfo {      /* Information used during initialization */
428     int iDb;                    /* When back is being initialized */
429     int newTnum;                /* Rootpage of table being initialized */
430     u8 busy;                    /* TRUE if currently initializing */
431   } init;
432   struct Vdbe *pVdbe;           /* List of active virtual machines */
433   int activeVdbeCnt;            /* Number of vdbes currently executing */
434   void (*xTrace)(void*,const char*);        /* Trace function */
435   void *pTraceArg;                          /* Argument to the trace function */
436   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
437   void *pProfileArg;                        /* Argument to profile function */
438   void *pCommitArg;             /* Argument to xCommitCallback() */
439   int (*xCommitCallback)(void*);/* Invoked at every commit. */
440   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
441   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
442   void *pCollNeededArg;
443   sqlite3_value *pValue;        /* Value used for transient conversions */
444   sqlite3_value *pErr;          /* Most recent error message */
445   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
446   char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
447 #ifndef SQLITE_OMIT_AUTHORIZATION
448   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
449                                 /* Access authorization function */
450   void *pAuthArg;               /* 1st argument to the access auth function */
451 #endif
452 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
453   int (*xProgress)(void *);     /* The progress callback */
454   void *pProgressArg;           /* Argument to the progress callback */
455   int nProgressOps;             /* Number of opcodes for progress callback */
456 #endif
457 #ifndef SQLITE_OMIT_GLOBALRECOVER
458   sqlite3 *pNext;               /* Linked list of open db handles. */
459 #endif
460   Hash aFunc;                   /* All functions that can be in SQL exprs */
461   Hash aCollSeq;                /* All collating sequences */
462   BusyHandler busyHandler;      /* Busy callback */
463   int busyTimeout;             /* Busy handler timeout, in msec */
464   Db aDbStatic[2];              /* Static space for the 2 default backends */
465 #ifdef SQLITE_SSE
466   sqlite3_stmt *pFetch;         /* Used by SSE to fetch stored statements */
467 #endif
468 };
469 
470 /*
471 ** Possible values for the sqlite.flags and or Db.flags fields.
472 **
473 ** On sqlite.flags, the SQLITE_InTrans value means that we have
474 ** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
475 ** transaction is active on that particular database file.
476 */
477 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
478 #define SQLITE_Initialized    0x00000002  /* True after initialization */
479 #define SQLITE_Interrupt      0x00000004  /* Cancel current operation */
480 #define SQLITE_InTrans        0x00000008  /* True if in a transaction */
481 #define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
482 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
483 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
484 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
485                                           /*   DELETE, or UPDATE and return */
486                                           /*   the count using a callback. */
487 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
488                                           /*   result set is empty */
489 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
490 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
491 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
492 #define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when
493                                           ** accessing read-only databases */
494 
495 /*
496 ** Possible values for the sqlite.magic field.
497 ** The numbers are obtained at random and have no special meaning, other
498 ** than being distinct from one another.
499 */
500 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
501 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
502 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
503 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
504 
505 /*
506 ** Each SQL function is defined by an instance of the following
507 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
508 ** hash table.  When multiple functions have the same name, the hash table
509 ** points to a linked list of these structures.
510 */
511 struct FuncDef {
512   i16 nArg;            /* Number of arguments.  -1 means unlimited */
513   u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
514   u8 needCollSeq;      /* True if sqlite3GetFuncCollSeq() might be called */
515   u8 flags;            /* Some combination of SQLITE_FUNC_* */
516   void *pUserData;     /* User data parameter */
517   FuncDef *pNext;      /* Next function with same name */
518   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
519   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
520   void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
521   char zName[1];       /* SQL name of the function.  MUST BE LAST */
522 };
523 
524 /*
525 ** Possible values for FuncDef.flags
526 */
527 #define SQLITE_FUNC_LIKE   0x01  /* Candidate for the LIKE optimization */
528 #define SQLITE_FUNC_CASE   0x02  /* Case-sensitive LIKE-type function */
529 
530 /*
531 ** information about each column of an SQL table is held in an instance
532 ** of this structure.
533 */
534 struct Column {
535   char *zName;     /* Name of this column */
536   Expr *pDflt;     /* Default value of this column */
537   char *zType;     /* Data type for this column */
538   CollSeq *pColl;  /* Collating sequence.  If NULL, use the default */
539   u8 notNull;      /* True if there is a NOT NULL constraint */
540   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
541   char affinity;   /* One of the SQLITE_AFF_... values */
542 };
543 
544 /*
545 ** A "Collating Sequence" is defined by an instance of the following
546 ** structure. Conceptually, a collating sequence consists of a name and
547 ** a comparison routine that defines the order of that sequence.
548 **
549 ** There may two seperate implementations of the collation function, one
550 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
551 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
552 ** native byte order. When a collation sequence is invoked, SQLite selects
553 ** the version that will require the least expensive encoding
554 ** transalations, if any.
555 **
556 ** The CollSeq.pUser member variable is an extra parameter that passed in
557 ** as the first argument to the UTF-8 comparison function, xCmp.
558 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
559 ** xCmp16.
560 **
561 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
562 ** collating sequence is undefined.  Indices built on an undefined
563 ** collating sequence may not be read or written.
564 */
565 struct CollSeq {
566   char *zName;         /* Name of the collating sequence, UTF-8 encoded */
567   u8 enc;              /* Text encoding handled by xCmp() */
568   u8 type;             /* One of the SQLITE_COLL_... values below */
569   void *pUser;         /* First argument to xCmp() */
570   int (*xCmp)(void*,int, const void*, int, const void*);
571 };
572 
573 /*
574 ** Allowed values of CollSeq flags:
575 */
576 #define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
577 #define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
578 #define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
579 #define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
580 
581 /*
582 ** A sort order can be either ASC or DESC.
583 */
584 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
585 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
586 
587 /*
588 ** Column affinity types.
589 */
590 #define SQLITE_AFF_INTEGER  'i'
591 #define SQLITE_AFF_NUMERIC  'n'
592 #define SQLITE_AFF_TEXT     't'
593 #define SQLITE_AFF_NONE     'o'
594 
595 
596 /*
597 ** Each SQL table is represented in memory by an instance of the
598 ** following structure.
599 **
600 ** Table.zName is the name of the table.  The case of the original
601 ** CREATE TABLE statement is stored, but case is not significant for
602 ** comparisons.
603 **
604 ** Table.nCol is the number of columns in this table.  Table.aCol is a
605 ** pointer to an array of Column structures, one for each column.
606 **
607 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
608 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
609 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
610 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
611 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
612 ** is generated for each row of the table.  Table.hasPrimKey is true if
613 ** the table has any PRIMARY KEY, INTEGER or otherwise.
614 **
615 ** Table.tnum is the page number for the root BTree page of the table in the
616 ** database file.  If Table.iDb is the index of the database table backend
617 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
618 ** holds temporary tables and indices.  If Table.isTransient
619 ** is true, then the table is stored in a file that is automatically deleted
620 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
621 ** refers VDBE cursor number that holds the table open, not to the root
622 ** page number.  Transient tables are used to hold the results of a
623 ** sub-query that appears instead of a real table name in the FROM clause
624 ** of a SELECT statement.
625 */
626 struct Table {
627   char *zName;     /* Name of the table */
628   int nCol;        /* Number of columns in this table */
629   Column *aCol;    /* Information about each column */
630   int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
631   Index *pIndex;   /* List of SQL indexes on this table. */
632   int tnum;        /* Root BTree node for this table (see note above) */
633   Select *pSelect; /* NULL for tables.  Points to definition if a view. */
634   u8 readOnly;     /* True if this table should not be written by the user */
635   u8 iDb;          /* Index into sqlite.aDb[] of the backend for this table */
636   u8 isTransient;  /* True if automatically deleted when VDBE finishes */
637   u8 hasPrimKey;   /* True if there exists a primary key */
638   u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
639   u8 autoInc;      /* True if the integer primary key is autoincrement */
640   int nRef;          /* Number of pointers to this Table */
641   Trigger *pTrigger; /* List of SQL triggers on this table */
642   FKey *pFKey;       /* Linked list of all foreign keys in this table */
643   char *zColAff;     /* String defining the affinity of each column */
644 #ifndef SQLITE_OMIT_ALTERTABLE
645   int addColOffset;  /* Offset in CREATE TABLE statement to add a new column */
646 #endif
647 };
648 
649 /*
650 ** Each foreign key constraint is an instance of the following structure.
651 **
652 ** A foreign key is associated with two tables.  The "from" table is
653 ** the table that contains the REFERENCES clause that creates the foreign
654 ** key.  The "to" table is the table that is named in the REFERENCES clause.
655 ** Consider this example:
656 **
657 **     CREATE TABLE ex1(
658 **       a INTEGER PRIMARY KEY,
659 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
660 **     );
661 **
662 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
663 **
664 ** Each REFERENCES clause generates an instance of the following structure
665 ** which is attached to the from-table.  The to-table need not exist when
666 ** the from-table is created.  The existance of the to-table is not checked
667 ** until an attempt is made to insert data into the from-table.
668 **
669 ** The sqlite.aFKey hash table stores pointers to this structure
670 ** given the name of a to-table.  For each to-table, all foreign keys
671 ** associated with that table are on a linked list using the FKey.pNextTo
672 ** field.
673 */
674 struct FKey {
675   Table *pFrom;     /* The table that constains the REFERENCES clause */
676   FKey *pNextFrom;  /* Next foreign key in pFrom */
677   char *zTo;        /* Name of table that the key points to */
678   FKey *pNextTo;    /* Next foreign key that points to zTo */
679   int nCol;         /* Number of columns in this key */
680   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
681     int iFrom;         /* Index of column in pFrom */
682     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
683   } *aCol;          /* One entry for each of nCol column s */
684   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
685   u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
686   u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
687   u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
688 };
689 
690 /*
691 ** SQLite supports many different ways to resolve a contraint
692 ** error.  ROLLBACK processing means that a constraint violation
693 ** causes the operation in process to fail and for the current transaction
694 ** to be rolled back.  ABORT processing means the operation in process
695 ** fails and any prior changes from that one operation are backed out,
696 ** but the transaction is not rolled back.  FAIL processing means that
697 ** the operation in progress stops and returns an error code.  But prior
698 ** changes due to the same operation are not backed out and no rollback
699 ** occurs.  IGNORE means that the particular row that caused the constraint
700 ** error is not inserted or updated.  Processing continues and no error
701 ** is returned.  REPLACE means that preexisting database rows that caused
702 ** a UNIQUE constraint violation are removed so that the new insert or
703 ** update can proceed.  Processing continues and no error is reported.
704 **
705 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
706 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
707 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
708 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
709 ** referenced table row is propagated into the row that holds the
710 ** foreign key.
711 **
712 ** The following symbolic values are used to record which type
713 ** of action to take.
714 */
715 #define OE_None     0   /* There is no constraint to check */
716 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
717 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
718 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
719 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
720 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
721 
722 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
723 #define OE_SetNull  7   /* Set the foreign key value to NULL */
724 #define OE_SetDflt  8   /* Set the foreign key value to its default */
725 #define OE_Cascade  9   /* Cascade the changes */
726 
727 #define OE_Default  99  /* Do whatever the default action is */
728 
729 
730 /*
731 ** An instance of the following structure is passed as the first
732 ** argument to sqlite3VdbeKeyCompare and is used to control the
733 ** comparison of the two index keys.
734 **
735 ** If the KeyInfo.incrKey value is true and the comparison would
736 ** otherwise be equal, then return a result as if the second key
737 ** were larger.
738 */
739 struct KeyInfo {
740   u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
741   u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
742   int nField;         /* Number of entries in aColl[] */
743   u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
744   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
745 };
746 
747 /*
748 ** Each SQL index is represented in memory by an
749 ** instance of the following structure.
750 **
751 ** The columns of the table that are to be indexed are described
752 ** by the aiColumn[] field of this structure.  For example, suppose
753 ** we have the following table and index:
754 **
755 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
756 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
757 **
758 ** In the Table structure describing Ex1, nCol==3 because there are
759 ** three columns in the table.  In the Index structure describing
760 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
761 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
762 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
763 ** The second column to be indexed (c1) has an index of 0 in
764 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
765 **
766 ** The Index.onError field determines whether or not the indexed columns
767 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
768 ** it means this is not a unique index.  Otherwise it is a unique index
769 ** and the value of Index.onError indicate the which conflict resolution
770 ** algorithm to employ whenever an attempt is made to insert a non-unique
771 ** element.
772 */
773 struct Index {
774   char *zName;     /* Name of this index */
775   int nColumn;     /* Number of columns in the table used by this index */
776   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
777   unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
778   Table *pTable;   /* The SQL table being indexed */
779   int tnum;        /* Page containing root of this index in database file */
780   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
781   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
782   u8 iDb;          /* Index in sqlite.aDb[] of where this index is stored */
783   char *zColAff;   /* String defining the affinity of each column */
784   Index *pNext;    /* The next index associated with the same table */
785   KeyInfo keyInfo; /* Info on how to order keys.  MUST BE LAST */
786 };
787 
788 /*
789 ** Each token coming out of the lexer is an instance of
790 ** this structure.  Tokens are also used as part of an expression.
791 **
792 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
793 ** may contain random values.  Do not make any assuptions about Token.dyn
794 ** and Token.n when Token.z==0.
795 */
796 struct Token {
797   const unsigned char *z; /* Text of the token.  Not NULL-terminated! */
798   unsigned dyn  : 1;      /* True for malloced memory, false for static */
799   unsigned n    : 31;     /* Number of characters in this token */
800 };
801 
802 /*
803 ** An instance of this structure contains information needed to generate
804 ** code for a SELECT that contains aggregate functions.
805 **
806 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
807 ** pointer to this structure.  The Expr.iColumn field is the index in
808 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
809 ** code for that node.
810 **
811 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
812 ** original Select structure that describes the SELECT statement.  These
813 ** fields do not need to be freed when deallocating the AggInfo structure.
814 */
815 struct AggInfo {
816   u8 directMode;          /* Direct rendering mode means take data directly
817                           ** from source tables rather than from accumulators */
818   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
819                           ** than the source table */
820   int sortingIdx;         /* Cursor number of the sorting index */
821   ExprList *pGroupBy;     /* The group by clause */
822   int nSortingColumn;     /* Number of columns in the sorting index */
823   struct AggInfo_col {    /* For each column used in source tables */
824     int iTable;              /* Cursor number of the source table */
825     int iColumn;             /* Column number within the source table */
826     int iSorterColumn;       /* Column number in the sorting index */
827     int iMem;                /* Memory location that acts as accumulator */
828     Expr *pExpr;             /* The original expression */
829   } *aCol;
830   int nColumn;            /* Number of used entries in aCol[] */
831   int nColumnAlloc;       /* Number of slots allocated for aCol[] */
832   int nAccumulator;       /* Number of columns that show through to the output.
833                           ** Additional columns are used only as parameters to
834                           ** aggregate functions */
835   struct AggInfo_func {   /* For each aggregate function */
836     Expr *pExpr;             /* Expression encoding the function */
837     FuncDef *pFunc;          /* The aggregate function implementation */
838     int iMem;                /* Memory location that acts as accumulator */
839     int iDistinct;           /* Virtual table used to enforce DISTINCT */
840   } *aFunc;
841   int nFunc;              /* Number of entries in aFunc[] */
842   int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
843 };
844 
845 /*
846 ** Each node of an expression in the parse tree is an instance
847 ** of this structure.
848 **
849 ** Expr.op is the opcode.  The integer parser token codes are reused
850 ** as opcodes here.  For example, the parser defines TK_GE to be an integer
851 ** code representing the ">=" operator.  This same integer code is reused
852 ** to represent the greater-than-or-equal-to operator in the expression
853 ** tree.
854 **
855 ** Expr.pRight and Expr.pLeft are subexpressions.  Expr.pList is a list
856 ** of argument if the expression is a function.
857 **
858 ** Expr.token is the operator token for this node.  For some expressions
859 ** that have subexpressions, Expr.token can be the complete text that gave
860 ** rise to the Expr.  In the latter case, the token is marked as being
861 ** a compound token.
862 **
863 ** An expression of the form ID or ID.ID refers to a column in a table.
864 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
865 ** the integer cursor number of a VDBE cursor pointing to that table and
866 ** Expr.iColumn is the column number for the specific column.  If the
867 ** expression is used as a result in an aggregate SELECT, then the
868 ** value is also stored in the Expr.iAgg column in the aggregate so that
869 ** it can be accessed after all aggregates are computed.
870 **
871 ** If the expression is a function, the Expr.iTable is an integer code
872 ** representing which function.  If the expression is an unbound variable
873 ** marker (a question mark character '?' in the original SQL) then the
874 ** Expr.iTable holds the index number for that variable.
875 **
876 ** If the expression is a subquery then Expr.iColumn holds an integer
877 ** register number containing the result of the subquery.  If the
878 ** subquery gives a constant result, then iTable is -1.  If the subquery
879 ** gives a different answer at different times during statement processing
880 ** then iTable is the address of a subroutine that computes the subquery.
881 **
882 ** The Expr.pSelect field points to a SELECT statement.  The SELECT might
883 ** be the right operand of an IN operator.  Or, if a scalar SELECT appears
884 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
885 ** operand.
886 **
887 ** If the Expr is of type OP_Column, and the table it is selecting from
888 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
889 ** corresponding table definition.
890 */
891 struct Expr {
892   u8 op;                 /* Operation performed by this node */
893   char affinity;         /* The affinity of the column or 0 if not a column */
894   u8 iDb;                /* Database referenced by this expression */
895   u8 flags;              /* Various flags.  See below */
896   CollSeq *pColl;        /* The collation type of the column or 0 */
897   Expr *pLeft, *pRight;  /* Left and right subnodes */
898   ExprList *pList;       /* A list of expressions used as function arguments
899                          ** or in "<expr> IN (<expr-list)" */
900   Token token;           /* An operand token */
901   Token span;            /* Complete text of the expression */
902   int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
903                          ** iColumn-th field of the iTable-th table. */
904   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
905   int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
906   int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
907   Select *pSelect;       /* When the expression is a sub-select.  Also the
908                          ** right side of "<expr> IN (<select>)" */
909   Table *pTab;           /* Table for OP_Column expressions. */
910 };
911 
912 /*
913 ** The following are the meanings of bits in the Expr.flags field.
914 */
915 #define EP_FromJoin     0x01  /* Originated in ON or USING clause of a join */
916 #define EP_Agg          0x02  /* Contains one or more aggregate functions */
917 #define EP_Resolved     0x04  /* IDs have been resolved to COLUMNs */
918 #define EP_Error        0x08  /* Expression contains one or more errors */
919 #define EP_Distinct     0x10  /* Aggregate function with DISTINCT keyword */
920 #define EP_VarSelect    0x20  /* pSelect is correlated, not constant */
921 #define EP_Dequoted     0x40  /* True if the string has been dequoted */
922 
923 /*
924 ** These macros can be used to test, set, or clear bits in the
925 ** Expr.flags field.
926 */
927 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
928 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
929 #define ExprSetProperty(E,P)     (E)->flags|=(P)
930 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
931 
932 /*
933 ** A list of expressions.  Each expression may optionally have a
934 ** name.  An expr/name combination can be used in several ways, such
935 ** as the list of "expr AS ID" fields following a "SELECT" or in the
936 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
937 ** also be used as the argument to a function, in which case the a.zName
938 ** field is not used.
939 */
940 struct ExprList {
941   int nExpr;             /* Number of expressions on the list */
942   int nAlloc;            /* Number of entries allocated below */
943   int iECursor;          /* VDBE Cursor associated with this ExprList */
944   struct ExprList_item {
945     Expr *pExpr;           /* The list of expressions */
946     char *zName;           /* Token associated with this expression */
947     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
948     u8 isAgg;              /* True if this is an aggregate like count(*) */
949     u8 done;               /* A flag to indicate when processing is finished */
950   } *a;                  /* One entry for each expression */
951 };
952 
953 /*
954 ** An instance of this structure can hold a simple list of identifiers,
955 ** such as the list "a,b,c" in the following statements:
956 **
957 **      INSERT INTO t(a,b,c) VALUES ...;
958 **      CREATE INDEX idx ON t(a,b,c);
959 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
960 **
961 ** The IdList.a.idx field is used when the IdList represents the list of
962 ** column names after a table name in an INSERT statement.  In the statement
963 **
964 **     INSERT INTO t(a,b,c) ...
965 **
966 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
967 */
968 struct IdList {
969   struct IdList_item {
970     char *zName;      /* Name of the identifier */
971     int idx;          /* Index in some Table.aCol[] of a column named zName */
972   } *a;
973   int nId;         /* Number of identifiers on the list */
974   int nAlloc;      /* Number of entries allocated for a[] below */
975 };
976 
977 /*
978 ** The bitmask datatype defined below is used for various optimizations.
979 */
980 typedef unsigned int Bitmask;
981 
982 /*
983 ** The following structure describes the FROM clause of a SELECT statement.
984 ** Each table or subquery in the FROM clause is a separate element of
985 ** the SrcList.a[] array.
986 **
987 ** With the addition of multiple database support, the following structure
988 ** can also be used to describe a particular table such as the table that
989 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
990 ** such a table must be a simple name: ID.  But in SQLite, the table can
991 ** now be identified by a database name, a dot, then the table name: ID.ID.
992 */
993 struct SrcList {
994   i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
995   i16 nAlloc;      /* Number of entries allocated in a[] below */
996   struct SrcList_item {
997     char *zDatabase;  /* Name of database holding this table */
998     char *zName;      /* Name of the table */
999     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
1000     Table *pTab;      /* An SQL table corresponding to zName */
1001     Select *pSelect;  /* A SELECT statement used in place of a table name */
1002     u8 jointype;      /* Type of join between this table and the next */
1003     i16 iCursor;      /* The VDBE cursor number used to access this table */
1004     Expr *pOn;        /* The ON clause of a join */
1005     IdList *pUsing;   /* The USING clause of a join */
1006     Bitmask colUsed;  /* Bit N (1<<N) set if column N or pTab is used */
1007   } a[1];             /* One entry for each identifier on the list */
1008 };
1009 
1010 /*
1011 ** Permitted values of the SrcList.a.jointype field
1012 */
1013 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
1014 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
1015 #define JT_NATURAL   0x0004    /* True for a "natural" join */
1016 #define JT_LEFT      0x0008    /* Left outer join */
1017 #define JT_RIGHT     0x0010    /* Right outer join */
1018 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
1019 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
1020 
1021 /*
1022 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1023 ** structure contains a single instance of this structure.  This structure
1024 ** is intended to be private the the where.c module and should not be
1025 ** access or modified by other modules.
1026 */
1027 struct WhereLevel {
1028   int iFrom;            /* Which entry in the FROM clause */
1029   int flags;            /* Flags associated with this level */
1030   int iMem;             /* First memory cell used by this level */
1031   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
1032   Index *pIdx;          /* Index used.  NULL if no index */
1033   int iTabCur;          /* The VDBE cursor used to access the table */
1034   int iIdxCur;          /* The VDBE cursor used to acesss pIdx */
1035   int brk;              /* Jump here to break out of the loop */
1036   int cont;             /* Jump here to continue with the next loop cycle */
1037   int top;              /* First instruction of interior of the loop */
1038   int op, p1, p2;       /* Opcode used to terminate the loop */
1039   int nEq;              /* Number of == or IN constraints on this loop */
1040   int nIn;              /* Number of IN operators constraining this loop */
1041   int *aInLoop;         /* Loop terminators for IN operators */
1042 };
1043 
1044 /*
1045 ** The WHERE clause processing routine has two halves.  The
1046 ** first part does the start of the WHERE loop and the second
1047 ** half does the tail of the WHERE loop.  An instance of
1048 ** this structure is returned by the first half and passed
1049 ** into the second half to give some continuity.
1050 */
1051 struct WhereInfo {
1052   Parse *pParse;
1053   SrcList *pTabList;   /* List of tables in the join */
1054   int iTop;            /* The very beginning of the WHERE loop */
1055   int iContinue;       /* Jump here to continue with next record */
1056   int iBreak;          /* Jump here to break out of the loop */
1057   int nLevel;          /* Number of nested loop */
1058   WhereLevel a[1];     /* Information about each nest loop in the WHERE */
1059 };
1060 
1061 /*
1062 ** A NameContext defines a context in which to resolve table and column
1063 ** names.  The context consists of a list of tables (the pSrcList) field and
1064 ** a list of named expression (pEList).  The named expression list may
1065 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
1066 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
1067 ** pEList corresponds to the result set of a SELECT and is NULL for
1068 ** other statements.
1069 **
1070 ** NameContexts can be nested.  When resolving names, the inner-most
1071 ** context is searched first.  If no match is found, the next outer
1072 ** context is checked.  If there is still no match, the next context
1073 ** is checked.  This process continues until either a match is found
1074 ** or all contexts are check.  When a match is found, the nRef member of
1075 ** the context containing the match is incremented.
1076 **
1077 ** Each subquery gets a new NameContext.  The pNext field points to the
1078 ** NameContext in the parent query.  Thus the process of scanning the
1079 ** NameContext list corresponds to searching through successively outer
1080 ** subqueries looking for a match.
1081 */
1082 struct NameContext {
1083   Parse *pParse;       /* The parser */
1084   SrcList *pSrcList;   /* One or more tables used to resolve names */
1085   ExprList *pEList;    /* Optional list of named expressions */
1086   int nRef;            /* Number of names resolved by this context */
1087   int nErr;            /* Number of errors encountered while resolving names */
1088   u8 allowAgg;         /* Aggregate functions allowed here */
1089   u8 hasAgg;           /* True if aggregates are seen */
1090   int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
1091   AggInfo *pAggInfo;   /* Information about aggregates at this level */
1092   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
1093 };
1094 
1095 /*
1096 ** An instance of the following structure contains all information
1097 ** needed to generate code for a single SELECT statement.
1098 **
1099 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
1100 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
1101 ** limit and nOffset to the value of the offset (or 0 if there is not
1102 ** offset).  But later on, nLimit and nOffset become the memory locations
1103 ** in the VDBE that record the limit and offset counters.
1104 **
1105 ** addrOpenVirt[] entries contain the address of OP_OpenVirtual opcodes.
1106 ** These addresses must be stored so that we can go back and fill in
1107 ** the P3_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
1108 ** the number of columns in P2 can be computed at the same time
1109 ** as the OP_OpenVirtual instruction is coded because not
1110 ** enough information about the compound query is known at that point.
1111 ** The KeyInfo for addrOpenVirt[0] and [1] contains collating sequences
1112 ** for the result set.  The KeyInfo for addrOpenVirt[2] contains collating
1113 ** sequences for the ORDER BY clause.
1114 */
1115 struct Select {
1116   ExprList *pEList;      /* The fields of the result */
1117   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
1118   u8 isDistinct;         /* True if the DISTINCT keyword is present */
1119   u8 isResolved;         /* True once sqlite3SelectResolve() has run. */
1120   u8 isAgg;              /* True if this is an aggregate query */
1121   u8 usesVirt;           /* True if uses an OpenVirtual opcode */
1122   u8 disallowOrderBy;    /* Do not allow an ORDER BY to be attached if TRUE */
1123   SrcList *pSrc;         /* The FROM clause */
1124   Expr *pWhere;          /* The WHERE clause */
1125   ExprList *pGroupBy;    /* The GROUP BY clause */
1126   Expr *pHaving;         /* The HAVING clause */
1127   ExprList *pOrderBy;    /* The ORDER BY clause */
1128   Select *pPrior;        /* Prior select in a compound select statement */
1129   Select *pRightmost;    /* Right-most select in a compound select statement */
1130   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
1131   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
1132   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
1133   int addrOpenVirt[3];   /* OP_OpenVirtual opcodes related to this select */
1134 };
1135 
1136 /*
1137 ** The results of a select can be distributed in several ways.
1138 */
1139 #define SRT_Union        1  /* Store result as keys in an index */
1140 #define SRT_Except       2  /* Remove result from a UNION index */
1141 #define SRT_Discard      3  /* Do not save the results anywhere */
1142 
1143 /* The ORDER BY clause is ignored for all of the above */
1144 #define IgnorableOrderby(X) (X<=SRT_Discard)
1145 
1146 #define SRT_Callback     4  /* Invoke a callback with each row of result */
1147 #define SRT_Mem          5  /* Store result in a memory cell */
1148 #define SRT_Set          6  /* Store non-null results as keys in an index */
1149 #define SRT_Table        7  /* Store result as data with an automatic rowid */
1150 #define SRT_VirtualTab   8  /* Create virtual table and store like SRT_Table */
1151 #define SRT_Subroutine   9  /* Call a subroutine to handle results */
1152 #define SRT_Exists      10  /* Put 0 or 1 in a memory cell */
1153 
1154 /*
1155 ** An SQL parser context.  A copy of this structure is passed through
1156 ** the parser and down into all the parser action routine in order to
1157 ** carry around information that is global to the entire parse.
1158 **
1159 ** The structure is divided into two parts.  When the parser and code
1160 ** generate call themselves recursively, the first part of the structure
1161 ** is constant but the second part is reset at the beginning and end of
1162 ** each recursion.
1163 */
1164 struct Parse {
1165   sqlite3 *db;         /* The main database structure */
1166   int rc;              /* Return code from execution */
1167   char *zErrMsg;       /* An error message */
1168   Vdbe *pVdbe;         /* An engine for executing database bytecode */
1169   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
1170   u8 nameClash;        /* A permanent table name clashes with temp table name */
1171   u8 checkSchema;      /* Causes schema cookie check after an error */
1172   u8 nested;           /* Number of nested calls to the parser/code generator */
1173   int nErr;            /* Number of errors seen */
1174   int nTab;            /* Number of previously allocated VDBE cursors */
1175   int nMem;            /* Number of memory cells used so far */
1176   int nSet;            /* Number of sets used so far */
1177   u32 writeMask;       /* Start a write transaction on these databases */
1178   u32 cookieMask;      /* Bitmask of schema verified databases */
1179   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
1180   int cookieValue[MAX_ATTACHED+2];  /* Values of cookies to verify */
1181 
1182   /* Above is constant between recursions.  Below is reset before and after
1183   ** each recursion */
1184 
1185   int nVar;            /* Number of '?' variables seen in the SQL so far */
1186   int nVarExpr;        /* Number of used slots in apVarExpr[] */
1187   int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
1188   Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
1189   u8 explain;          /* True if the EXPLAIN flag is found on the query */
1190   Token sErrToken;     /* The token at which the error occurred */
1191   Token sNameToken;    /* Token with unqualified schema object name */
1192   Token sLastToken;    /* The last token parsed */
1193   const char *zSql;    /* All SQL text */
1194   const char *zTail;   /* All SQL text past the last semicolon parsed */
1195   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
1196   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
1197   TriggerStack *trigStack;  /* Trigger actions being coded */
1198   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
1199 };
1200 
1201 /*
1202 ** An instance of the following structure can be declared on a stack and used
1203 ** to save the Parse.zAuthContext value so that it can be restored later.
1204 */
1205 struct AuthContext {
1206   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
1207   Parse *pParse;              /* The Parse structure */
1208 };
1209 
1210 /*
1211 ** Bitfield flags for P2 value in OP_Insert and OP_Delete
1212 */
1213 #define OPFLAG_NCHANGE   1    /* Set to update db->nChange */
1214 #define OPFLAG_LASTROWID 2    /* Set to update db->lastRowid */
1215 
1216 /*
1217  * Each trigger present in the database schema is stored as an instance of
1218  * struct Trigger.
1219  *
1220  * Pointers to instances of struct Trigger are stored in two ways.
1221  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
1222  *    database). This allows Trigger structures to be retrieved by name.
1223  * 2. All triggers associated with a single table form a linked list, using the
1224  *    pNext member of struct Trigger. A pointer to the first element of the
1225  *    linked list is stored as the "pTrigger" member of the associated
1226  *    struct Table.
1227  *
1228  * The "step_list" member points to the first element of a linked list
1229  * containing the SQL statements specified as the trigger program.
1230  */
1231 struct Trigger {
1232   char *name;             /* The name of the trigger                        */
1233   char *table;            /* The table or view to which the trigger applies */
1234   u8 iDb;                 /* Database containing this trigger               */
1235   u8 iTabDb;              /* Database containing Trigger.table              */
1236   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
1237   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
1238   Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
1239   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
1240                              the <column-list> is stored here */
1241   int foreach;            /* One of TK_ROW or TK_STATEMENT */
1242   Token nameToken;        /* Token containing zName. Use during parsing only */
1243 
1244   TriggerStep *step_list; /* Link list of trigger program steps             */
1245   Trigger *pNext;         /* Next trigger associated with the table */
1246 };
1247 
1248 /*
1249 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
1250 ** determine which.
1251 **
1252 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
1253 ** In that cases, the constants below can be ORed together.
1254 */
1255 #define TRIGGER_BEFORE  1
1256 #define TRIGGER_AFTER   2
1257 
1258 /*
1259  * An instance of struct TriggerStep is used to store a single SQL statement
1260  * that is a part of a trigger-program.
1261  *
1262  * Instances of struct TriggerStep are stored in a singly linked list (linked
1263  * using the "pNext" member) referenced by the "step_list" member of the
1264  * associated struct Trigger instance. The first element of the linked list is
1265  * the first step of the trigger-program.
1266  *
1267  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
1268  * "SELECT" statement. The meanings of the other members is determined by the
1269  * value of "op" as follows:
1270  *
1271  * (op == TK_INSERT)
1272  * orconf    -> stores the ON CONFLICT algorithm
1273  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
1274  *              this stores a pointer to the SELECT statement. Otherwise NULL.
1275  * target    -> A token holding the name of the table to insert into.
1276  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
1277  *              this stores values to be inserted. Otherwise NULL.
1278  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
1279  *              statement, then this stores the column-names to be
1280  *              inserted into.
1281  *
1282  * (op == TK_DELETE)
1283  * target    -> A token holding the name of the table to delete from.
1284  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
1285  *              Otherwise NULL.
1286  *
1287  * (op == TK_UPDATE)
1288  * target    -> A token holding the name of the table to update rows of.
1289  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
1290  *              Otherwise NULL.
1291  * pExprList -> A list of the columns to update and the expressions to update
1292  *              them to. See sqlite3Update() documentation of "pChanges"
1293  *              argument.
1294  *
1295  */
1296 struct TriggerStep {
1297   int op;              /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
1298   int orconf;          /* OE_Rollback etc. */
1299   Trigger *pTrig;      /* The trigger that this step is a part of */
1300 
1301   Select *pSelect;     /* Valid for SELECT and sometimes
1302 			  INSERT steps (when pExprList == 0) */
1303   Token target;        /* Valid for DELETE, UPDATE, INSERT steps */
1304   Expr *pWhere;        /* Valid for DELETE, UPDATE steps */
1305   ExprList *pExprList; /* Valid for UPDATE statements and sometimes
1306 			   INSERT steps (when pSelect == 0)         */
1307   IdList *pIdList;     /* Valid for INSERT statements only */
1308 
1309   TriggerStep * pNext; /* Next in the link-list */
1310 };
1311 
1312 /*
1313  * An instance of struct TriggerStack stores information required during code
1314  * generation of a single trigger program. While the trigger program is being
1315  * coded, its associated TriggerStack instance is pointed to by the
1316  * "pTriggerStack" member of the Parse structure.
1317  *
1318  * The pTab member points to the table that triggers are being coded on. The
1319  * newIdx member contains the index of the vdbe cursor that points at the temp
1320  * table that stores the new.* references. If new.* references are not valid
1321  * for the trigger being coded (for example an ON DELETE trigger), then newIdx
1322  * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
1323  *
1324  * The ON CONFLICT policy to be used for the trigger program steps is stored
1325  * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
1326  * specified for individual triggers steps is used.
1327  *
1328  * struct TriggerStack has a "pNext" member, to allow linked lists to be
1329  * constructed. When coding nested triggers (triggers fired by other triggers)
1330  * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
1331  * pointer. Once the nested trigger has been coded, the pNext value is restored
1332  * to the pTriggerStack member of the Parse stucture and coding of the parent
1333  * trigger continues.
1334  *
1335  * Before a nested trigger is coded, the linked list pointed to by the
1336  * pTriggerStack is scanned to ensure that the trigger is not about to be coded
1337  * recursively. If this condition is detected, the nested trigger is not coded.
1338  */
1339 struct TriggerStack {
1340   Table *pTab;         /* Table that triggers are currently being coded on */
1341   int newIdx;          /* Index of vdbe cursor to "new" temp table */
1342   int oldIdx;          /* Index of vdbe cursor to "old" temp table */
1343   int orconf;          /* Current orconf policy */
1344   int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
1345   Trigger *pTrigger;   /* The trigger currently being coded */
1346   TriggerStack *pNext; /* Next trigger down on the trigger stack */
1347 };
1348 
1349 /*
1350 ** The following structure contains information used by the sqliteFix...
1351 ** routines as they walk the parse tree to make database references
1352 ** explicit.
1353 */
1354 typedef struct DbFixer DbFixer;
1355 struct DbFixer {
1356   Parse *pParse;      /* The parsing context.  Error messages written here */
1357   const char *zDb;    /* Make sure all objects are contained in this database */
1358   const char *zType;  /* Type of the container - used for error messages */
1359   const Token *pName; /* Name of the container - used for error messages */
1360 };
1361 
1362 /*
1363 ** A pointer to this structure is used to communicate information
1364 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
1365 */
1366 typedef struct {
1367   sqlite3 *db;        /* The database being initialized */
1368   char **pzErrMsg;    /* Error message stored here */
1369 } InitData;
1370 
1371 /*
1372  * This global flag is set for performance testing of triggers. When it is set
1373  * SQLite will perform the overhead of building new and old trigger references
1374  * even when no triggers exist
1375  */
1376 extern int sqlite3_always_code_trigger_setup;
1377 
1378 /*
1379 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
1380 ** builds) or a function call (for debugging).  If it is a function call,
1381 ** it allows the operator to set a breakpoint at the spot where database
1382 ** corruption is first detected.
1383 */
1384 #ifdef SQLITE_DEBUG
1385   extern int sqlite3Corrupt(void);
1386 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
1387 #else
1388 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
1389 #endif
1390 
1391 /*
1392 ** Internal function prototypes
1393 */
1394 int sqlite3StrICmp(const char *, const char *);
1395 int sqlite3StrNICmp(const char *, const char *, int);
1396 int sqlite3HashNoCase(const char *, int);
1397 int sqlite3IsNumber(const char*, int*, u8);
1398 int sqlite3Compare(const char *, const char *);
1399 int sqlite3SortCompare(const char *, const char *);
1400 void sqlite3RealToSortable(double r, char *);
1401 #ifdef SQLITE_MEMDEBUG
1402   void *sqlite3Malloc_(int,int,char*,int);
1403   void sqlite3Free_(void*,char*,int);
1404   void *sqlite3Realloc_(void*,int,char*,int);
1405   char *sqlite3StrDup_(const char*,char*,int);
1406   char *sqlite3StrNDup_(const char*, int,char*,int);
1407   void sqlite3CheckMemory(void*,int);
1408 #else
1409   void *sqlite3Malloc(int);
1410   void *sqlite3MallocRaw(int);
1411   void sqlite3Free(void*);
1412   void *sqlite3Realloc(void*,int);
1413   char *sqlite3StrDup(const char*);
1414   char *sqlite3StrNDup(const char*, int);
1415 # define sqlite3CheckMemory(a,b)
1416 # define sqlite3MallocX sqlite3Malloc
1417 #endif
1418 void sqlite3ReallocOrFree(void**,int);
1419 void sqlite3FreeX(void*);
1420 void *sqlite3MallocX(int);
1421 char *sqlite3MPrintf(const char*, ...);
1422 char *sqlite3VMPrintf(const char*, va_list);
1423 void sqlite3DebugPrintf(const char*, ...);
1424 void *sqlite3TextToPtr(const char*);
1425 void sqlite3SetString(char **, ...);
1426 void sqlite3ErrorMsg(Parse*, const char*, ...);
1427 void sqlite3Dequote(char*);
1428 void sqlite3DequoteExpr(Expr*);
1429 int sqlite3KeywordCode(const char*, int);
1430 int sqlite3RunParser(Parse*, const char*, char **);
1431 void sqlite3FinishCoding(Parse*);
1432 Expr *sqlite3Expr(int, Expr*, Expr*, const Token*);
1433 Expr *sqlite3RegisterExpr(Parse*,Token*);
1434 Expr *sqlite3ExprAnd(Expr*, Expr*);
1435 void sqlite3ExprSpan(Expr*,Token*,Token*);
1436 Expr *sqlite3ExprFunction(ExprList*, Token*);
1437 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
1438 void sqlite3ExprDelete(Expr*);
1439 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*);
1440 void sqlite3ExprListDelete(ExprList*);
1441 int sqlite3Init(sqlite3*, char**);
1442 int sqlite3InitCallback(void*, int, char**, char**);
1443 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
1444 void sqlite3ResetInternalSchema(sqlite3*, int);
1445 void sqlite3BeginParse(Parse*,int);
1446 void sqlite3RollbackInternalChanges(sqlite3*);
1447 void sqlite3CommitInternalChanges(sqlite3*);
1448 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
1449 void sqlite3OpenMasterTable(Vdbe *v, int);
1450 void sqlite3StartTable(Parse*,Token*,Token*,Token*,int,int);
1451 void sqlite3AddColumn(Parse*,Token*);
1452 void sqlite3AddNotNull(Parse*, int);
1453 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int);
1454 void sqlite3AddColumnType(Parse*,Token*);
1455 void sqlite3AddDefaultValue(Parse*,Expr*);
1456 void sqlite3AddCollateType(Parse*, const char*, int);
1457 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
1458 
1459 #ifndef SQLITE_OMIT_VIEW
1460   void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int);
1461   int sqlite3ViewGetColumnNames(Parse*,Table*);
1462 #else
1463 # define sqlite3ViewGetColumnNames(A,B) 0
1464 #endif
1465 
1466 void sqlite3DropTable(Parse*, SrcList*, int);
1467 void sqlite3DeleteTable(sqlite3*, Table*);
1468 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
1469 int sqlite3ArrayAllocate(void**,int,int);
1470 IdList *sqlite3IdListAppend(IdList*, Token*);
1471 int sqlite3IdListIndex(IdList*,const char*);
1472 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*);
1473 void sqlite3SrcListAddAlias(SrcList*, Token*);
1474 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
1475 void sqlite3IdListDelete(IdList*);
1476 void sqlite3SrcListDelete(SrcList*);
1477 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
1478                         Token*);
1479 void sqlite3DropIndex(Parse*, SrcList*);
1480 void sqlite3AddKeyType(Vdbe*, ExprList*);
1481 void sqlite3AddIdxKeyType(Vdbe*, Index*);
1482 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff);
1483 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
1484                         int,Expr*,Expr*);
1485 void sqlite3SelectDelete(Select*);
1486 void sqlite3SelectUnbind(Select*);
1487 Table *sqlite3SrcListLookup(Parse*, SrcList*);
1488 int sqlite3IsReadOnly(Parse*, Table*, int);
1489 void sqlite3OpenTableForReading(Vdbe*, int iCur, Table*);
1490 void sqlite3OpenTable(Vdbe*, int iCur, Table*, int);
1491 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
1492 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
1493 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**);
1494 void sqlite3WhereEnd(WhereInfo*);
1495 void sqlite3ExprCode(Parse*, Expr*);
1496 void sqlite3ExprCodeAndCache(Parse*, Expr*);
1497 int sqlite3ExprCodeExprList(Parse*, ExprList*);
1498 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
1499 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
1500 void sqlite3NextedParse(Parse*, const char*, ...);
1501 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
1502 Table *sqlite3LocateTable(Parse*,const char*, const char*);
1503 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
1504 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
1505 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
1506 void sqlite3Vacuum(Parse*, Token*);
1507 int sqlite3RunVacuum(char**, sqlite3*);
1508 char *sqlite3NameFromToken(Token*);
1509 int sqlite3ExprCheck(Parse*, Expr*, int, int*);
1510 int sqlite3ExprCompare(Expr*, Expr*);
1511 int sqliteFuncId(Token*);
1512 int sqlite3ExprResolveNames(NameContext *, Expr *);
1513 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
1514 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
1515 Vdbe *sqlite3GetVdbe(Parse*);
1516 void sqlite3Randomness(int, void*);
1517 void sqlite3RollbackAll(sqlite3*);
1518 void sqlite3CodeVerifySchema(Parse*, int);
1519 void sqlite3BeginTransaction(Parse*, int);
1520 void sqlite3CommitTransaction(Parse*);
1521 void sqlite3RollbackTransaction(Parse*);
1522 int sqlite3ExprIsConstant(Expr*);
1523 int sqlite3ExprIsConstantOrFunction(Expr*);
1524 int sqlite3ExprIsInteger(Expr*, int*);
1525 int sqlite3IsRowid(const char*);
1526 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int);
1527 void sqlite3GenerateRowIndexDelete(sqlite3*, Vdbe*, Table*, int, char*);
1528 void sqlite3GenerateIndexKey(Vdbe*, Index*, int);
1529 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
1530 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int);
1531 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
1532 void sqlite3BeginWriteOperation(Parse*, int, int);
1533 Expr *sqlite3ExprDup(Expr*);
1534 void sqlite3TokenCopy(Token*, Token*);
1535 ExprList *sqlite3ExprListDup(ExprList*);
1536 SrcList *sqlite3SrcListDup(SrcList*);
1537 IdList *sqlite3IdListDup(IdList*);
1538 Select *sqlite3SelectDup(Select*);
1539 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
1540 void sqlite3RegisterBuiltinFunctions(sqlite3*);
1541 void sqlite3RegisterDateTimeFunctions(sqlite3*);
1542 int sqlite3SafetyOn(sqlite3*);
1543 int sqlite3SafetyOff(sqlite3*);
1544 int sqlite3SafetyCheck(sqlite3*);
1545 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int);
1546 
1547 #ifndef SQLITE_OMIT_TRIGGER
1548   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
1549                            int,Expr*,int);
1550   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
1551   void sqlite3DropTrigger(Parse*, SrcList*);
1552   void sqlite3DropTriggerPtr(Parse*, Trigger*, int);
1553   int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
1554   int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
1555                            int, int);
1556   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
1557   void sqlite3DeleteTriggerStep(TriggerStep*);
1558   TriggerStep *sqlite3TriggerSelectStep(Select*);
1559   TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int);
1560   TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int);
1561   TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*);
1562   void sqlite3DeleteTrigger(Trigger*);
1563   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
1564 #else
1565 # define sqlite3TriggersExist(A,B,C,D,E,F) 0
1566 # define sqlite3DeleteTrigger(A)
1567 # define sqlite3DropTriggerPtr(A,B,C)
1568 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
1569 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0
1570 #endif
1571 
1572 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
1573 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
1574 void sqlite3DeferForeignKey(Parse*, int);
1575 #ifndef SQLITE_OMIT_AUTHORIZATION
1576   void sqlite3AuthRead(Parse*,Expr*,SrcList*);
1577   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
1578   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
1579   void sqlite3AuthContextPop(AuthContext*);
1580 #else
1581 # define sqlite3AuthRead(a,b,c)
1582 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
1583 # define sqlite3AuthContextPush(a,b,c)
1584 # define sqlite3AuthContextPop(a)  ((void)(a))
1585 #endif
1586 void sqlite3Attach(Parse*, Token*, Token*, int, Token*);
1587 void sqlite3Detach(Parse*, Token*);
1588 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
1589                        int omitJournal, int nCache, Btree **ppBtree);
1590 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
1591 int sqlite3FixSrcList(DbFixer*, SrcList*);
1592 int sqlite3FixSelect(DbFixer*, Select*);
1593 int sqlite3FixExpr(DbFixer*, Expr*);
1594 int sqlite3FixExprList(DbFixer*, ExprList*);
1595 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
1596 int sqlite3AtoF(const char *z, double*);
1597 char *sqlite3_snprintf(int,char*,const char*,...);
1598 int sqlite3GetInt32(const char *, int*);
1599 int sqlite3FitsIn64Bits(const char *);
1600 int sqlite3utf16ByteLen(const void *pData, int nChar);
1601 int sqlite3utf8CharLen(const char *pData, int nByte);
1602 int sqlite3ReadUtf8(const unsigned char *);
1603 int sqlite3PutVarint(unsigned char *, u64);
1604 int sqlite3GetVarint(const unsigned char *, u64 *);
1605 int sqlite3GetVarint32(const unsigned char *, u32 *);
1606 int sqlite3VarintLen(u64 v);
1607 void sqlite3IndexAffinityStr(Vdbe *, Index *);
1608 void sqlite3TableAffinityStr(Vdbe *, Table *);
1609 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
1610 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
1611 char sqlite3ExprAffinity(Expr *pExpr);
1612 int sqlite3atoi64(const char*, i64*);
1613 void sqlite3Error(sqlite3*, int, const char*,...);
1614 void *sqlite3HexToBlob(const char *z);
1615 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
1616 const char *sqlite3ErrStr(int);
1617 int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold);
1618 int sqlite3ReadSchema(Parse *pParse);
1619 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
1620 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
1621 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
1622 int sqlite3CheckCollSeq(Parse *, CollSeq *);
1623 int sqlite3CheckIndexCollSeq(Parse *, Index *);
1624 int sqlite3CheckObjectName(Parse *, const char *);
1625 void sqlite3VdbeSetChanges(sqlite3 *, int);
1626 void sqlite3utf16Substr(sqlite3_context *,int,sqlite3_value **);
1627 
1628 const void *sqlite3ValueText(sqlite3_value*, u8);
1629 int sqlite3ValueBytes(sqlite3_value*, u8);
1630 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*));
1631 void sqlite3ValueFree(sqlite3_value*);
1632 sqlite3_value *sqlite3ValueNew(void);
1633 sqlite3_value *sqlite3GetTransientValue(sqlite3*db);
1634 int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **);
1635 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
1636 extern const unsigned char sqlite3UpperToLower[];
1637 void sqlite3RootPageMoved(Db*, int, int);
1638 void sqlite3Reindex(Parse*, Token*, Token*);
1639 void sqlite3AlterFunctions(sqlite3*);
1640 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
1641 int sqlite3GetToken(const unsigned char *, int *);
1642 void sqlite3NestedParse(Parse*, const char*, ...);
1643 void sqlite3ExpirePreparedStatements(sqlite3*);
1644 void sqlite3CodeSubselect(Parse *, Expr *);
1645 int sqlite3SelectResolve(Parse *, Select *, NameContext *);
1646 void sqlite3ColumnDefault(Vdbe *, Table *, int);
1647 void sqlite3AlterFinishAddColumn(Parse *, Token *);
1648 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
1649 const char *sqlite3TestErrorName(int);
1650 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
1651 char sqlite3AffinityType(const Token*);
1652 void sqlite3Analyze(Parse*, Token*, Token*);
1653 int sqlite3InvokeBusyHandler(BusyHandler*);
1654 int sqlite3FindDb(sqlite3*, Token*);
1655 void sqlite3AnalysisLoad(sqlite3*,int iDB);
1656 void sqlite3DefaultRowEst(Index*);
1657 void sqlite3RegisterLikeFunctions(sqlite3*, int);
1658 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
1659 
1660 #ifdef SQLITE_SSE
1661 #include "sseInt.h"
1662 #endif
1663 
1664 #endif
1665