1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef SQLITEINT_H 16 #define SQLITEINT_H 17 18 /* Special Comments: 19 ** 20 ** Some comments have special meaning to the tools that measure test 21 ** coverage: 22 ** 23 ** NO_TEST - The branches on this line are not 24 ** measured by branch coverage. This is 25 ** used on lines of code that actually 26 ** implement parts of coverage testing. 27 ** 28 ** OPTIMIZATION-IF-TRUE - This branch is allowed to alway be false 29 ** and the correct answer is still obtained, 30 ** though perhaps more slowly. 31 ** 32 ** OPTIMIZATION-IF-FALSE - This branch is allowed to alway be true 33 ** and the correct answer is still obtained, 34 ** though perhaps more slowly. 35 ** 36 ** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread 37 ** that would be harmless and undetectable 38 ** if it did occur. 39 ** 40 ** In all cases, the special comment must be enclosed in the usual 41 ** slash-asterisk...asterisk-slash comment marks, with no spaces between the 42 ** asterisks and the comment text. 43 */ 44 45 /* 46 ** Make sure the Tcl calling convention macro is defined. This macro is 47 ** only used by test code and Tcl integration code. 48 */ 49 #ifndef SQLITE_TCLAPI 50 # define SQLITE_TCLAPI 51 #endif 52 53 /* 54 ** Make sure that rand_s() is available on Windows systems with MSVC 2005 55 ** or higher. 56 */ 57 #if defined(_MSC_VER) && _MSC_VER>=1400 58 # define _CRT_RAND_S 59 #endif 60 61 /* 62 ** Include the header file used to customize the compiler options for MSVC. 63 ** This should be done first so that it can successfully prevent spurious 64 ** compiler warnings due to subsequent content in this file and other files 65 ** that are included by this file. 66 */ 67 #include "msvc.h" 68 69 /* 70 ** Special setup for VxWorks 71 */ 72 #include "vxworks.h" 73 74 /* 75 ** These #defines should enable >2GB file support on POSIX if the 76 ** underlying operating system supports it. If the OS lacks 77 ** large file support, or if the OS is windows, these should be no-ops. 78 ** 79 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 80 ** system #includes. Hence, this block of code must be the very first 81 ** code in all source files. 82 ** 83 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 84 ** on the compiler command line. This is necessary if you are compiling 85 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 86 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 87 ** without this option, LFS is enable. But LFS does not exist in the kernel 88 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 89 ** portability you should omit LFS. 90 ** 91 ** The previous paragraph was written in 2005. (This paragraph is written 92 ** on 2008-11-28.) These days, all Linux kernels support large files, so 93 ** you should probably leave LFS enabled. But some embedded platforms might 94 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 95 ** 96 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 97 */ 98 #ifndef SQLITE_DISABLE_LFS 99 # define _LARGE_FILE 1 100 # ifndef _FILE_OFFSET_BITS 101 # define _FILE_OFFSET_BITS 64 102 # endif 103 # define _LARGEFILE_SOURCE 1 104 #endif 105 106 /* The GCC_VERSION and MSVC_VERSION macros are used to 107 ** conditionally include optimizations for each of these compilers. A 108 ** value of 0 means that compiler is not being used. The 109 ** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific 110 ** optimizations, and hence set all compiler macros to 0 111 ** 112 ** There was once also a CLANG_VERSION macro. However, we learn that the 113 ** version numbers in clang are for "marketing" only and are inconsistent 114 ** and unreliable. Fortunately, all versions of clang also recognize the 115 ** gcc version numbers and have reasonable settings for gcc version numbers, 116 ** so the GCC_VERSION macro will be set to a correct non-zero value even 117 ** when compiling with clang. 118 */ 119 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) 120 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 121 #else 122 # define GCC_VERSION 0 123 #endif 124 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) 125 # define MSVC_VERSION _MSC_VER 126 #else 127 # define MSVC_VERSION 0 128 #endif 129 130 /* Needed for various definitions... */ 131 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 132 # define _GNU_SOURCE 133 #endif 134 135 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 136 # define _BSD_SOURCE 137 #endif 138 139 /* 140 ** For MinGW, check to see if we can include the header file containing its 141 ** version information, among other things. Normally, this internal MinGW 142 ** header file would [only] be included automatically by other MinGW header 143 ** files; however, the contained version information is now required by this 144 ** header file to work around binary compatibility issues (see below) and 145 ** this is the only known way to reliably obtain it. This entire #if block 146 ** would be completely unnecessary if there was any other way of detecting 147 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 148 ** some MinGW-specific macros). When compiling for MinGW, either the 149 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 150 ** defined; otherwise, detection of conditions specific to MinGW will be 151 ** disabled. 152 */ 153 #if defined(_HAVE_MINGW_H) 154 # include "mingw.h" 155 #elif defined(_HAVE__MINGW_H) 156 # include "_mingw.h" 157 #endif 158 159 /* 160 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 161 ** define is required to maintain binary compatibility with the MSVC runtime 162 ** library in use (e.g. for Windows XP). 163 */ 164 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 165 defined(_WIN32) && !defined(_WIN64) && \ 166 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 167 defined(__MSVCRT__) 168 # define _USE_32BIT_TIME_T 169 #endif 170 171 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 172 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 173 ** MinGW. 174 */ 175 #include "sqlite3.h" 176 177 /* 178 ** Include the configuration header output by 'configure' if we're using the 179 ** autoconf-based build 180 */ 181 #ifdef _HAVE_SQLITE_CONFIG_H 182 #include "config.h" 183 #endif 184 185 #include "sqliteLimit.h" 186 187 /* Disable nuisance warnings on Borland compilers */ 188 #if defined(__BORLANDC__) 189 #pragma warn -rch /* unreachable code */ 190 #pragma warn -ccc /* Condition is always true or false */ 191 #pragma warn -aus /* Assigned value is never used */ 192 #pragma warn -csu /* Comparing signed and unsigned */ 193 #pragma warn -spa /* Suspicious pointer arithmetic */ 194 #endif 195 196 /* 197 ** Include standard header files as necessary 198 */ 199 #ifdef HAVE_STDINT_H 200 #include <stdint.h> 201 #endif 202 #ifdef HAVE_INTTYPES_H 203 #include <inttypes.h> 204 #endif 205 206 /* 207 ** The following macros are used to cast pointers to integers and 208 ** integers to pointers. The way you do this varies from one compiler 209 ** to the next, so we have developed the following set of #if statements 210 ** to generate appropriate macros for a wide range of compilers. 211 ** 212 ** The correct "ANSI" way to do this is to use the intptr_t type. 213 ** Unfortunately, that typedef is not available on all compilers, or 214 ** if it is available, it requires an #include of specific headers 215 ** that vary from one machine to the next. 216 ** 217 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 218 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 219 ** So we have to define the macros in different ways depending on the 220 ** compiler. 221 */ 222 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 223 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 224 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 225 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 226 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 227 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 228 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 229 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 230 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 231 #else /* Generates a warning - but it always works */ 232 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 233 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 234 #endif 235 236 /* 237 ** A macro to hint to the compiler that a function should not be 238 ** inlined. 239 */ 240 #if defined(__GNUC__) 241 # define SQLITE_NOINLINE __attribute__((noinline)) 242 #elif defined(_MSC_VER) && _MSC_VER>=1310 243 # define SQLITE_NOINLINE __declspec(noinline) 244 #else 245 # define SQLITE_NOINLINE 246 #endif 247 248 /* 249 ** Make sure that the compiler intrinsics we desire are enabled when 250 ** compiling with an appropriate version of MSVC unless prevented by 251 ** the SQLITE_DISABLE_INTRINSIC define. 252 */ 253 #if !defined(SQLITE_DISABLE_INTRINSIC) 254 # if defined(_MSC_VER) && _MSC_VER>=1400 255 # if !defined(_WIN32_WCE) 256 # include <intrin.h> 257 # pragma intrinsic(_byteswap_ushort) 258 # pragma intrinsic(_byteswap_ulong) 259 # pragma intrinsic(_byteswap_uint64) 260 # pragma intrinsic(_ReadWriteBarrier) 261 # else 262 # include <cmnintrin.h> 263 # endif 264 # endif 265 #endif 266 267 /* 268 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 269 ** 0 means mutexes are permanently disable and the library is never 270 ** threadsafe. 1 means the library is serialized which is the highest 271 ** level of threadsafety. 2 means the library is multithreaded - multiple 272 ** threads can use SQLite as long as no two threads try to use the same 273 ** database connection at the same time. 274 ** 275 ** Older versions of SQLite used an optional THREADSAFE macro. 276 ** We support that for legacy. 277 */ 278 #if !defined(SQLITE_THREADSAFE) 279 # if defined(THREADSAFE) 280 # define SQLITE_THREADSAFE THREADSAFE 281 # else 282 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 283 # endif 284 #endif 285 286 /* 287 ** Powersafe overwrite is on by default. But can be turned off using 288 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 289 */ 290 #ifndef SQLITE_POWERSAFE_OVERWRITE 291 # define SQLITE_POWERSAFE_OVERWRITE 1 292 #endif 293 294 /* 295 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 296 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 297 ** which case memory allocation statistics are disabled by default. 298 */ 299 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 300 # define SQLITE_DEFAULT_MEMSTATUS 1 301 #endif 302 303 /* 304 ** Exactly one of the following macros must be defined in order to 305 ** specify which memory allocation subsystem to use. 306 ** 307 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 308 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 309 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 310 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 311 ** 312 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 313 ** assert() macro is enabled, each call into the Win32 native heap subsystem 314 ** will cause HeapValidate to be called. If heap validation should fail, an 315 ** assertion will be triggered. 316 ** 317 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 318 ** the default. 319 */ 320 #if defined(SQLITE_SYSTEM_MALLOC) \ 321 + defined(SQLITE_WIN32_MALLOC) \ 322 + defined(SQLITE_ZERO_MALLOC) \ 323 + defined(SQLITE_MEMDEBUG)>1 324 # error "Two or more of the following compile-time configuration options\ 325 are defined but at most one is allowed:\ 326 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 327 SQLITE_ZERO_MALLOC" 328 #endif 329 #if defined(SQLITE_SYSTEM_MALLOC) \ 330 + defined(SQLITE_WIN32_MALLOC) \ 331 + defined(SQLITE_ZERO_MALLOC) \ 332 + defined(SQLITE_MEMDEBUG)==0 333 # define SQLITE_SYSTEM_MALLOC 1 334 #endif 335 336 /* 337 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 338 ** sizes of memory allocations below this value where possible. 339 */ 340 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 341 # define SQLITE_MALLOC_SOFT_LIMIT 1024 342 #endif 343 344 /* 345 ** We need to define _XOPEN_SOURCE as follows in order to enable 346 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 347 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 348 ** it. 349 */ 350 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 351 # define _XOPEN_SOURCE 600 352 #endif 353 354 /* 355 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 356 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 357 ** make it true by defining or undefining NDEBUG. 358 ** 359 ** Setting NDEBUG makes the code smaller and faster by disabling the 360 ** assert() statements in the code. So we want the default action 361 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 362 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 363 ** feature. 364 */ 365 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 366 # define NDEBUG 1 367 #endif 368 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 369 # undef NDEBUG 370 #endif 371 372 /* 373 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 374 */ 375 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 376 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 377 #endif 378 379 /* 380 ** The testcase() macro is used to aid in coverage testing. When 381 ** doing coverage testing, the condition inside the argument to 382 ** testcase() must be evaluated both true and false in order to 383 ** get full branch coverage. The testcase() macro is inserted 384 ** to help ensure adequate test coverage in places where simple 385 ** condition/decision coverage is inadequate. For example, testcase() 386 ** can be used to make sure boundary values are tested. For 387 ** bitmask tests, testcase() can be used to make sure each bit 388 ** is significant and used at least once. On switch statements 389 ** where multiple cases go to the same block of code, testcase() 390 ** can insure that all cases are evaluated. 391 ** 392 */ 393 #ifdef SQLITE_COVERAGE_TEST 394 void sqlite3Coverage(int); 395 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 396 #else 397 # define testcase(X) 398 #endif 399 400 /* 401 ** The TESTONLY macro is used to enclose variable declarations or 402 ** other bits of code that are needed to support the arguments 403 ** within testcase() and assert() macros. 404 */ 405 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 406 # define TESTONLY(X) X 407 #else 408 # define TESTONLY(X) 409 #endif 410 411 /* 412 ** Sometimes we need a small amount of code such as a variable initialization 413 ** to setup for a later assert() statement. We do not want this code to 414 ** appear when assert() is disabled. The following macro is therefore 415 ** used to contain that setup code. The "VVA" acronym stands for 416 ** "Verification, Validation, and Accreditation". In other words, the 417 ** code within VVA_ONLY() will only run during verification processes. 418 */ 419 #ifndef NDEBUG 420 # define VVA_ONLY(X) X 421 #else 422 # define VVA_ONLY(X) 423 #endif 424 425 /* 426 ** The ALWAYS and NEVER macros surround boolean expressions which 427 ** are intended to always be true or false, respectively. Such 428 ** expressions could be omitted from the code completely. But they 429 ** are included in a few cases in order to enhance the resilience 430 ** of SQLite to unexpected behavior - to make the code "self-healing" 431 ** or "ductile" rather than being "brittle" and crashing at the first 432 ** hint of unplanned behavior. 433 ** 434 ** In other words, ALWAYS and NEVER are added for defensive code. 435 ** 436 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 437 ** be true and false so that the unreachable code they specify will 438 ** not be counted as untested code. 439 */ 440 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) 441 # define ALWAYS(X) (1) 442 # define NEVER(X) (0) 443 #elif !defined(NDEBUG) 444 # define ALWAYS(X) ((X)?1:(assert(0),0)) 445 # define NEVER(X) ((X)?(assert(0),1):0) 446 #else 447 # define ALWAYS(X) (X) 448 # define NEVER(X) (X) 449 #endif 450 451 /* 452 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is 453 ** defined. We need to defend against those failures when testing with 454 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches 455 ** during a normal build. The following macro can be used to disable tests 456 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. 457 */ 458 #if defined(SQLITE_TEST_REALLOC_STRESS) 459 # define ONLY_IF_REALLOC_STRESS(X) (X) 460 #elif !defined(NDEBUG) 461 # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) 462 #else 463 # define ONLY_IF_REALLOC_STRESS(X) (0) 464 #endif 465 466 /* 467 ** Declarations used for tracing the operating system interfaces. 468 */ 469 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 470 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 471 extern int sqlite3OSTrace; 472 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 473 # define SQLITE_HAVE_OS_TRACE 474 #else 475 # define OSTRACE(X) 476 # undef SQLITE_HAVE_OS_TRACE 477 #endif 478 479 /* 480 ** Is the sqlite3ErrName() function needed in the build? Currently, 481 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 482 ** OSTRACE is enabled), and by several "test*.c" files (which are 483 ** compiled using SQLITE_TEST). 484 */ 485 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 486 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 487 # define SQLITE_NEED_ERR_NAME 488 #else 489 # undef SQLITE_NEED_ERR_NAME 490 #endif 491 492 /* 493 ** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN 494 */ 495 #ifdef SQLITE_OMIT_EXPLAIN 496 # undef SQLITE_ENABLE_EXPLAIN_COMMENTS 497 #endif 498 499 /* 500 ** Return true (non-zero) if the input is an integer that is too large 501 ** to fit in 32-bits. This macro is used inside of various testcase() 502 ** macros to verify that we have tested SQLite for large-file support. 503 */ 504 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 505 506 /* 507 ** The macro unlikely() is a hint that surrounds a boolean 508 ** expression that is usually false. Macro likely() surrounds 509 ** a boolean expression that is usually true. These hints could, 510 ** in theory, be used by the compiler to generate better code, but 511 ** currently they are just comments for human readers. 512 */ 513 #define likely(X) (X) 514 #define unlikely(X) (X) 515 516 #include "hash.h" 517 #include "parse.h" 518 #include <stdio.h> 519 #include <stdlib.h> 520 #include <string.h> 521 #include <assert.h> 522 #include <stddef.h> 523 524 /* 525 ** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY. 526 ** This allows better measurements of where memcpy() is used when running 527 ** cachegrind. But this macro version of memcpy() is very slow so it 528 ** should not be used in production. This is a performance measurement 529 ** hack only. 530 */ 531 #ifdef SQLITE_INLINE_MEMCPY 532 # define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\ 533 int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);} 534 #endif 535 536 /* 537 ** If compiling for a processor that lacks floating point support, 538 ** substitute integer for floating-point 539 */ 540 #ifdef SQLITE_OMIT_FLOATING_POINT 541 # define double sqlite_int64 542 # define float sqlite_int64 543 # define LONGDOUBLE_TYPE sqlite_int64 544 # ifndef SQLITE_BIG_DBL 545 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 546 # endif 547 # define SQLITE_OMIT_DATETIME_FUNCS 1 548 # define SQLITE_OMIT_TRACE 1 549 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 550 # undef SQLITE_HAVE_ISNAN 551 #endif 552 #ifndef SQLITE_BIG_DBL 553 # define SQLITE_BIG_DBL (1e99) 554 #endif 555 556 /* 557 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 558 ** afterward. Having this macro allows us to cause the C compiler 559 ** to omit code used by TEMP tables without messy #ifndef statements. 560 */ 561 #ifdef SQLITE_OMIT_TEMPDB 562 #define OMIT_TEMPDB 1 563 #else 564 #define OMIT_TEMPDB 0 565 #endif 566 567 /* 568 ** The "file format" number is an integer that is incremented whenever 569 ** the VDBE-level file format changes. The following macros define the 570 ** the default file format for new databases and the maximum file format 571 ** that the library can read. 572 */ 573 #define SQLITE_MAX_FILE_FORMAT 4 574 #ifndef SQLITE_DEFAULT_FILE_FORMAT 575 # define SQLITE_DEFAULT_FILE_FORMAT 4 576 #endif 577 578 /* 579 ** Determine whether triggers are recursive by default. This can be 580 ** changed at run-time using a pragma. 581 */ 582 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 583 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 584 #endif 585 586 /* 587 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 588 ** on the command-line 589 */ 590 #ifndef SQLITE_TEMP_STORE 591 # define SQLITE_TEMP_STORE 1 592 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 593 #endif 594 595 /* 596 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 597 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 598 ** to zero. 599 */ 600 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 601 # undef SQLITE_MAX_WORKER_THREADS 602 # define SQLITE_MAX_WORKER_THREADS 0 603 #endif 604 #ifndef SQLITE_MAX_WORKER_THREADS 605 # define SQLITE_MAX_WORKER_THREADS 8 606 #endif 607 #ifndef SQLITE_DEFAULT_WORKER_THREADS 608 # define SQLITE_DEFAULT_WORKER_THREADS 0 609 #endif 610 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 611 # undef SQLITE_MAX_WORKER_THREADS 612 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 613 #endif 614 615 /* 616 ** The default initial allocation for the pagecache when using separate 617 ** pagecaches for each database connection. A positive number is the 618 ** number of pages. A negative number N translations means that a buffer 619 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 620 ** 621 ** The default value of "20" was choosen to minimize the run-time of the 622 ** speedtest1 test program with options: --shrink-memory --reprepare 623 */ 624 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 625 # define SQLITE_DEFAULT_PCACHE_INITSZ 20 626 #endif 627 628 /* 629 ** GCC does not define the offsetof() macro so we'll have to do it 630 ** ourselves. 631 */ 632 #ifndef offsetof 633 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 634 #endif 635 636 /* 637 ** Macros to compute minimum and maximum of two numbers. 638 */ 639 #ifndef MIN 640 # define MIN(A,B) ((A)<(B)?(A):(B)) 641 #endif 642 #ifndef MAX 643 # define MAX(A,B) ((A)>(B)?(A):(B)) 644 #endif 645 646 /* 647 ** Swap two objects of type TYPE. 648 */ 649 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 650 651 /* 652 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 653 ** not, there are still machines out there that use EBCDIC.) 654 */ 655 #if 'A' == '\301' 656 # define SQLITE_EBCDIC 1 657 #else 658 # define SQLITE_ASCII 1 659 #endif 660 661 /* 662 ** Integers of known sizes. These typedefs might change for architectures 663 ** where the sizes very. Preprocessor macros are available so that the 664 ** types can be conveniently redefined at compile-type. Like this: 665 ** 666 ** cc '-DUINTPTR_TYPE=long long int' ... 667 */ 668 #ifndef UINT32_TYPE 669 # ifdef HAVE_UINT32_T 670 # define UINT32_TYPE uint32_t 671 # else 672 # define UINT32_TYPE unsigned int 673 # endif 674 #endif 675 #ifndef UINT16_TYPE 676 # ifdef HAVE_UINT16_T 677 # define UINT16_TYPE uint16_t 678 # else 679 # define UINT16_TYPE unsigned short int 680 # endif 681 #endif 682 #ifndef INT16_TYPE 683 # ifdef HAVE_INT16_T 684 # define INT16_TYPE int16_t 685 # else 686 # define INT16_TYPE short int 687 # endif 688 #endif 689 #ifndef UINT8_TYPE 690 # ifdef HAVE_UINT8_T 691 # define UINT8_TYPE uint8_t 692 # else 693 # define UINT8_TYPE unsigned char 694 # endif 695 #endif 696 #ifndef INT8_TYPE 697 # ifdef HAVE_INT8_T 698 # define INT8_TYPE int8_t 699 # else 700 # define INT8_TYPE signed char 701 # endif 702 #endif 703 #ifndef LONGDOUBLE_TYPE 704 # define LONGDOUBLE_TYPE long double 705 #endif 706 typedef sqlite_int64 i64; /* 8-byte signed integer */ 707 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 708 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 709 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 710 typedef INT16_TYPE i16; /* 2-byte signed integer */ 711 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 712 typedef INT8_TYPE i8; /* 1-byte signed integer */ 713 714 /* 715 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 716 ** that can be stored in a u32 without loss of data. The value 717 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 718 ** have to specify the value in the less intuitive manner shown: 719 */ 720 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 721 722 /* 723 ** The datatype used to store estimates of the number of rows in a 724 ** table or index. This is an unsigned integer type. For 99.9% of 725 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 726 ** can be used at compile-time if desired. 727 */ 728 #ifdef SQLITE_64BIT_STATS 729 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 730 #else 731 typedef u32 tRowcnt; /* 32-bit is the default */ 732 #endif 733 734 /* 735 ** Estimated quantities used for query planning are stored as 16-bit 736 ** logarithms. For quantity X, the value stored is 10*log2(X). This 737 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 738 ** But the allowed values are "grainy". Not every value is representable. 739 ** For example, quantities 16 and 17 are both represented by a LogEst 740 ** of 40. However, since LogEst quantities are suppose to be estimates, 741 ** not exact values, this imprecision is not a problem. 742 ** 743 ** "LogEst" is short for "Logarithmic Estimate". 744 ** 745 ** Examples: 746 ** 1 -> 0 20 -> 43 10000 -> 132 747 ** 2 -> 10 25 -> 46 25000 -> 146 748 ** 3 -> 16 100 -> 66 1000000 -> 199 749 ** 4 -> 20 1000 -> 99 1048576 -> 200 750 ** 10 -> 33 1024 -> 100 4294967296 -> 320 751 ** 752 ** The LogEst can be negative to indicate fractional values. 753 ** Examples: 754 ** 755 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 756 */ 757 typedef INT16_TYPE LogEst; 758 759 /* 760 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 761 */ 762 #ifndef SQLITE_PTRSIZE 763 # if defined(__SIZEOF_POINTER__) 764 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 765 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 766 defined(_M_ARM) || defined(__arm__) || defined(__x86) 767 # define SQLITE_PTRSIZE 4 768 # else 769 # define SQLITE_PTRSIZE 8 770 # endif 771 #endif 772 773 /* The uptr type is an unsigned integer large enough to hold a pointer 774 */ 775 #if defined(HAVE_STDINT_H) 776 typedef uintptr_t uptr; 777 #elif SQLITE_PTRSIZE==4 778 typedef u32 uptr; 779 #else 780 typedef u64 uptr; 781 #endif 782 783 /* 784 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to 785 ** something between S (inclusive) and E (exclusive). 786 ** 787 ** In other words, S is a buffer and E is a pointer to the first byte after 788 ** the end of buffer S. This macro returns true if P points to something 789 ** contained within the buffer S. 790 */ 791 #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E))) 792 793 794 /* 795 ** Macros to determine whether the machine is big or little endian, 796 ** and whether or not that determination is run-time or compile-time. 797 ** 798 ** For best performance, an attempt is made to guess at the byte-order 799 ** using C-preprocessor macros. If that is unsuccessful, or if 800 ** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined 801 ** at run-time. 802 */ 803 #ifndef SQLITE_BYTEORDER 804 # if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 805 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 806 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 807 defined(__arm__) 808 # define SQLITE_BYTEORDER 1234 809 # elif defined(sparc) || defined(__ppc__) 810 # define SQLITE_BYTEORDER 4321 811 # else 812 # define SQLITE_BYTEORDER 0 813 # endif 814 #endif 815 #if SQLITE_BYTEORDER==4321 816 # define SQLITE_BIGENDIAN 1 817 # define SQLITE_LITTLEENDIAN 0 818 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 819 #elif SQLITE_BYTEORDER==1234 820 # define SQLITE_BIGENDIAN 0 821 # define SQLITE_LITTLEENDIAN 1 822 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 823 #else 824 # ifdef SQLITE_AMALGAMATION 825 const int sqlite3one = 1; 826 # else 827 extern const int sqlite3one; 828 # endif 829 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 830 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 831 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 832 #endif 833 834 /* 835 ** Constants for the largest and smallest possible 64-bit signed integers. 836 ** These macros are designed to work correctly on both 32-bit and 64-bit 837 ** compilers. 838 */ 839 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 840 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 841 842 /* 843 ** Round up a number to the next larger multiple of 8. This is used 844 ** to force 8-byte alignment on 64-bit architectures. 845 */ 846 #define ROUND8(x) (((x)+7)&~7) 847 848 /* 849 ** Round down to the nearest multiple of 8 850 */ 851 #define ROUNDDOWN8(x) ((x)&~7) 852 853 /* 854 ** Assert that the pointer X is aligned to an 8-byte boundary. This 855 ** macro is used only within assert() to verify that the code gets 856 ** all alignment restrictions correct. 857 ** 858 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 859 ** underlying malloc() implementation might return us 4-byte aligned 860 ** pointers. In that case, only verify 4-byte alignment. 861 */ 862 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 863 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 864 #else 865 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 866 #endif 867 868 /* 869 ** Disable MMAP on platforms where it is known to not work 870 */ 871 #if defined(__OpenBSD__) || defined(__QNXNTO__) 872 # undef SQLITE_MAX_MMAP_SIZE 873 # define SQLITE_MAX_MMAP_SIZE 0 874 #endif 875 876 /* 877 ** Default maximum size of memory used by memory-mapped I/O in the VFS 878 */ 879 #ifdef __APPLE__ 880 # include <TargetConditionals.h> 881 #endif 882 #ifndef SQLITE_MAX_MMAP_SIZE 883 # if defined(__linux__) \ 884 || defined(_WIN32) \ 885 || (defined(__APPLE__) && defined(__MACH__)) \ 886 || defined(__sun) \ 887 || defined(__FreeBSD__) \ 888 || defined(__DragonFly__) 889 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 890 # else 891 # define SQLITE_MAX_MMAP_SIZE 0 892 # endif 893 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 894 #endif 895 896 /* 897 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 898 ** default MMAP_SIZE is specified at compile-time, make sure that it does 899 ** not exceed the maximum mmap size. 900 */ 901 #ifndef SQLITE_DEFAULT_MMAP_SIZE 902 # define SQLITE_DEFAULT_MMAP_SIZE 0 903 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 904 #endif 905 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 906 # undef SQLITE_DEFAULT_MMAP_SIZE 907 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 908 #endif 909 910 /* 911 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 912 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 913 ** define SQLITE_ENABLE_STAT3_OR_STAT4 914 */ 915 #ifdef SQLITE_ENABLE_STAT4 916 # undef SQLITE_ENABLE_STAT3 917 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 918 #elif SQLITE_ENABLE_STAT3 919 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 920 #elif SQLITE_ENABLE_STAT3_OR_STAT4 921 # undef SQLITE_ENABLE_STAT3_OR_STAT4 922 #endif 923 924 /* 925 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 926 ** the Select query generator tracing logic is turned on. 927 */ 928 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 929 # define SELECTTRACE_ENABLED 1 930 #else 931 # define SELECTTRACE_ENABLED 0 932 #endif 933 934 /* 935 ** An instance of the following structure is used to store the busy-handler 936 ** callback for a given sqlite handle. 937 ** 938 ** The sqlite.busyHandler member of the sqlite struct contains the busy 939 ** callback for the database handle. Each pager opened via the sqlite 940 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 941 ** callback is currently invoked only from within pager.c. 942 */ 943 typedef struct BusyHandler BusyHandler; 944 struct BusyHandler { 945 int (*xFunc)(void *,int); /* The busy callback */ 946 void *pArg; /* First arg to busy callback */ 947 int nBusy; /* Incremented with each busy call */ 948 }; 949 950 /* 951 ** Name of the master database table. The master database table 952 ** is a special table that holds the names and attributes of all 953 ** user tables and indices. 954 */ 955 #define MASTER_NAME "sqlite_master" 956 #define TEMP_MASTER_NAME "sqlite_temp_master" 957 958 /* 959 ** The root-page of the master database table. 960 */ 961 #define MASTER_ROOT 1 962 963 /* 964 ** The name of the schema table. 965 */ 966 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 967 968 /* 969 ** A convenience macro that returns the number of elements in 970 ** an array. 971 */ 972 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 973 974 /* 975 ** Determine if the argument is a power of two 976 */ 977 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 978 979 /* 980 ** The following value as a destructor means to use sqlite3DbFree(). 981 ** The sqlite3DbFree() routine requires two parameters instead of the 982 ** one parameter that destructors normally want. So we have to introduce 983 ** this magic value that the code knows to handle differently. Any 984 ** pointer will work here as long as it is distinct from SQLITE_STATIC 985 ** and SQLITE_TRANSIENT. 986 */ 987 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 988 989 /* 990 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 991 ** not support Writable Static Data (WSD) such as global and static variables. 992 ** All variables must either be on the stack or dynamically allocated from 993 ** the heap. When WSD is unsupported, the variable declarations scattered 994 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 995 ** macro is used for this purpose. And instead of referencing the variable 996 ** directly, we use its constant as a key to lookup the run-time allocated 997 ** buffer that holds real variable. The constant is also the initializer 998 ** for the run-time allocated buffer. 999 ** 1000 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 1001 ** macros become no-ops and have zero performance impact. 1002 */ 1003 #ifdef SQLITE_OMIT_WSD 1004 #define SQLITE_WSD const 1005 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 1006 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 1007 int sqlite3_wsd_init(int N, int J); 1008 void *sqlite3_wsd_find(void *K, int L); 1009 #else 1010 #define SQLITE_WSD 1011 #define GLOBAL(t,v) v 1012 #define sqlite3GlobalConfig sqlite3Config 1013 #endif 1014 1015 /* 1016 ** The following macros are used to suppress compiler warnings and to 1017 ** make it clear to human readers when a function parameter is deliberately 1018 ** left unused within the body of a function. This usually happens when 1019 ** a function is called via a function pointer. For example the 1020 ** implementation of an SQL aggregate step callback may not use the 1021 ** parameter indicating the number of arguments passed to the aggregate, 1022 ** if it knows that this is enforced elsewhere. 1023 ** 1024 ** When a function parameter is not used at all within the body of a function, 1025 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 1026 ** However, these macros may also be used to suppress warnings related to 1027 ** parameters that may or may not be used depending on compilation options. 1028 ** For example those parameters only used in assert() statements. In these 1029 ** cases the parameters are named as per the usual conventions. 1030 */ 1031 #define UNUSED_PARAMETER(x) (void)(x) 1032 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 1033 1034 /* 1035 ** Forward references to structures 1036 */ 1037 typedef struct AggInfo AggInfo; 1038 typedef struct AuthContext AuthContext; 1039 typedef struct AutoincInfo AutoincInfo; 1040 typedef struct Bitvec Bitvec; 1041 typedef struct CollSeq CollSeq; 1042 typedef struct Column Column; 1043 typedef struct Db Db; 1044 typedef struct Schema Schema; 1045 typedef struct Expr Expr; 1046 typedef struct ExprList ExprList; 1047 typedef struct ExprSpan ExprSpan; 1048 typedef struct FKey FKey; 1049 typedef struct FuncDestructor FuncDestructor; 1050 typedef struct FuncDef FuncDef; 1051 typedef struct FuncDefHash FuncDefHash; 1052 typedef struct IdList IdList; 1053 typedef struct Index Index; 1054 typedef struct IndexSample IndexSample; 1055 typedef struct KeyClass KeyClass; 1056 typedef struct KeyInfo KeyInfo; 1057 typedef struct Lookaside Lookaside; 1058 typedef struct LookasideSlot LookasideSlot; 1059 typedef struct Module Module; 1060 typedef struct NameContext NameContext; 1061 typedef struct Parse Parse; 1062 typedef struct PreUpdate PreUpdate; 1063 typedef struct PrintfArguments PrintfArguments; 1064 typedef struct RowSet RowSet; 1065 typedef struct Savepoint Savepoint; 1066 typedef struct Select Select; 1067 typedef struct SQLiteThread SQLiteThread; 1068 typedef struct SelectDest SelectDest; 1069 typedef struct SrcList SrcList; 1070 typedef struct StrAccum StrAccum; 1071 typedef struct Table Table; 1072 typedef struct TableLock TableLock; 1073 typedef struct Token Token; 1074 typedef struct TreeView TreeView; 1075 typedef struct Trigger Trigger; 1076 typedef struct TriggerPrg TriggerPrg; 1077 typedef struct TriggerStep TriggerStep; 1078 typedef struct UnpackedRecord UnpackedRecord; 1079 typedef struct VTable VTable; 1080 typedef struct VtabCtx VtabCtx; 1081 typedef struct Walker Walker; 1082 typedef struct WhereInfo WhereInfo; 1083 typedef struct With With; 1084 1085 /* A VList object records a mapping between parameters/variables/wildcards 1086 ** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer 1087 ** variable number associated with that parameter. See the format description 1088 ** on the sqlite3VListAdd() routine for more information. A VList is really 1089 ** just an array of integers. 1090 */ 1091 typedef int VList; 1092 1093 /* 1094 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 1095 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 1096 ** pointer types (i.e. FuncDef) defined above. 1097 */ 1098 #include "btree.h" 1099 #include "vdbe.h" 1100 #include "pager.h" 1101 #include "pcache.h" 1102 #include "os.h" 1103 #include "mutex.h" 1104 1105 /* The SQLITE_EXTRA_DURABLE compile-time option used to set the default 1106 ** synchronous setting to EXTRA. It is no longer supported. 1107 */ 1108 #ifdef SQLITE_EXTRA_DURABLE 1109 # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE 1110 # define SQLITE_DEFAULT_SYNCHRONOUS 3 1111 #endif 1112 1113 /* 1114 ** Default synchronous levels. 1115 ** 1116 ** Note that (for historcal reasons) the PAGER_SYNCHRONOUS_* macros differ 1117 ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1. 1118 ** 1119 ** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS 1120 ** OFF 1 0 1121 ** NORMAL 2 1 1122 ** FULL 3 2 1123 ** EXTRA 4 3 1124 ** 1125 ** The "PRAGMA synchronous" statement also uses the zero-based numbers. 1126 ** In other words, the zero-based numbers are used for all external interfaces 1127 ** and the one-based values are used internally. 1128 */ 1129 #ifndef SQLITE_DEFAULT_SYNCHRONOUS 1130 # define SQLITE_DEFAULT_SYNCHRONOUS (PAGER_SYNCHRONOUS_FULL-1) 1131 #endif 1132 #ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS 1133 # define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS 1134 #endif 1135 1136 /* 1137 ** Each database file to be accessed by the system is an instance 1138 ** of the following structure. There are normally two of these structures 1139 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 1140 ** aDb[1] is the database file used to hold temporary tables. Additional 1141 ** databases may be attached. 1142 */ 1143 struct Db { 1144 char *zDbSName; /* Name of this database. (schema name, not filename) */ 1145 Btree *pBt; /* The B*Tree structure for this database file */ 1146 u8 safety_level; /* How aggressive at syncing data to disk */ 1147 u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */ 1148 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 1149 }; 1150 1151 /* 1152 ** An instance of the following structure stores a database schema. 1153 ** 1154 ** Most Schema objects are associated with a Btree. The exception is 1155 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 1156 ** In shared cache mode, a single Schema object can be shared by multiple 1157 ** Btrees that refer to the same underlying BtShared object. 1158 ** 1159 ** Schema objects are automatically deallocated when the last Btree that 1160 ** references them is destroyed. The TEMP Schema is manually freed by 1161 ** sqlite3_close(). 1162 * 1163 ** A thread must be holding a mutex on the corresponding Btree in order 1164 ** to access Schema content. This implies that the thread must also be 1165 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1166 ** For a TEMP Schema, only the connection mutex is required. 1167 */ 1168 struct Schema { 1169 int schema_cookie; /* Database schema version number for this file */ 1170 int iGeneration; /* Generation counter. Incremented with each change */ 1171 Hash tblHash; /* All tables indexed by name */ 1172 Hash idxHash; /* All (named) indices indexed by name */ 1173 Hash trigHash; /* All triggers indexed by name */ 1174 Hash fkeyHash; /* All foreign keys by referenced table name */ 1175 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1176 u8 file_format; /* Schema format version for this file */ 1177 u8 enc; /* Text encoding used by this database */ 1178 u16 schemaFlags; /* Flags associated with this schema */ 1179 int cache_size; /* Number of pages to use in the cache */ 1180 }; 1181 1182 /* 1183 ** These macros can be used to test, set, or clear bits in the 1184 ** Db.pSchema->flags field. 1185 */ 1186 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1187 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1188 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1189 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1190 1191 /* 1192 ** Allowed values for the DB.pSchema->flags field. 1193 ** 1194 ** The DB_SchemaLoaded flag is set after the database schema has been 1195 ** read into internal hash tables. 1196 ** 1197 ** DB_UnresetViews means that one or more views have column names that 1198 ** have been filled out. If the schema changes, these column names might 1199 ** changes and so the view will need to be reset. 1200 */ 1201 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1202 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1203 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1204 1205 /* 1206 ** The number of different kinds of things that can be limited 1207 ** using the sqlite3_limit() interface. 1208 */ 1209 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1210 1211 /* 1212 ** Lookaside malloc is a set of fixed-size buffers that can be used 1213 ** to satisfy small transient memory allocation requests for objects 1214 ** associated with a particular database connection. The use of 1215 ** lookaside malloc provides a significant performance enhancement 1216 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1217 ** SQL statements. 1218 ** 1219 ** The Lookaside structure holds configuration information about the 1220 ** lookaside malloc subsystem. Each available memory allocation in 1221 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1222 ** objects. 1223 ** 1224 ** Lookaside allocations are only allowed for objects that are associated 1225 ** with a particular database connection. Hence, schema information cannot 1226 ** be stored in lookaside because in shared cache mode the schema information 1227 ** is shared by multiple database connections. Therefore, while parsing 1228 ** schema information, the Lookaside.bEnabled flag is cleared so that 1229 ** lookaside allocations are not used to construct the schema objects. 1230 */ 1231 struct Lookaside { 1232 u32 bDisable; /* Only operate the lookaside when zero */ 1233 u16 sz; /* Size of each buffer in bytes */ 1234 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1235 int nOut; /* Number of buffers currently checked out */ 1236 int mxOut; /* Highwater mark for nOut */ 1237 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1238 LookasideSlot *pFree; /* List of available buffers */ 1239 void *pStart; /* First byte of available memory space */ 1240 void *pEnd; /* First byte past end of available space */ 1241 }; 1242 struct LookasideSlot { 1243 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1244 }; 1245 1246 /* 1247 ** A hash table for built-in function definitions. (Application-defined 1248 ** functions use a regular table table from hash.h.) 1249 ** 1250 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1251 ** Collisions are on the FuncDef.u.pHash chain. 1252 */ 1253 #define SQLITE_FUNC_HASH_SZ 23 1254 struct FuncDefHash { 1255 FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ 1256 }; 1257 1258 #ifdef SQLITE_USER_AUTHENTICATION 1259 /* 1260 ** Information held in the "sqlite3" database connection object and used 1261 ** to manage user authentication. 1262 */ 1263 typedef struct sqlite3_userauth sqlite3_userauth; 1264 struct sqlite3_userauth { 1265 u8 authLevel; /* Current authentication level */ 1266 int nAuthPW; /* Size of the zAuthPW in bytes */ 1267 char *zAuthPW; /* Password used to authenticate */ 1268 char *zAuthUser; /* User name used to authenticate */ 1269 }; 1270 1271 /* Allowed values for sqlite3_userauth.authLevel */ 1272 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1273 #define UAUTH_Fail 1 /* User authentication failed */ 1274 #define UAUTH_User 2 /* Authenticated as a normal user */ 1275 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1276 1277 /* Functions used only by user authorization logic */ 1278 int sqlite3UserAuthTable(const char*); 1279 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1280 void sqlite3UserAuthInit(sqlite3*); 1281 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1282 1283 #endif /* SQLITE_USER_AUTHENTICATION */ 1284 1285 /* 1286 ** typedef for the authorization callback function. 1287 */ 1288 #ifdef SQLITE_USER_AUTHENTICATION 1289 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1290 const char*, const char*); 1291 #else 1292 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1293 const char*); 1294 #endif 1295 1296 #ifndef SQLITE_OMIT_DEPRECATED 1297 /* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing 1298 ** in the style of sqlite3_trace() 1299 */ 1300 #define SQLITE_TRACE_LEGACY 0x80 1301 #else 1302 #define SQLITE_TRACE_LEGACY 0 1303 #endif /* SQLITE_OMIT_DEPRECATED */ 1304 1305 1306 /* 1307 ** Each database connection is an instance of the following structure. 1308 */ 1309 struct sqlite3 { 1310 sqlite3_vfs *pVfs; /* OS Interface */ 1311 struct Vdbe *pVdbe; /* List of active virtual machines */ 1312 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1313 sqlite3_mutex *mutex; /* Connection mutex */ 1314 Db *aDb; /* All backends */ 1315 int nDb; /* Number of backends currently in use */ 1316 int flags; /* Miscellaneous flags. See below */ 1317 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1318 i64 szMmap; /* Default mmap_size setting */ 1319 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1320 int errCode; /* Most recent error code (SQLITE_*) */ 1321 int errMask; /* & result codes with this before returning */ 1322 int iSysErrno; /* Errno value from last system error */ 1323 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1324 u8 enc; /* Text encoding */ 1325 u8 autoCommit; /* The auto-commit flag. */ 1326 u8 temp_store; /* 1: file 2: memory 0: default */ 1327 u8 mallocFailed; /* True if we have seen a malloc failure */ 1328 u8 bBenignMalloc; /* Do not require OOMs if true */ 1329 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1330 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1331 u8 suppressErr; /* Do not issue error messages if true */ 1332 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1333 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1334 u8 mTrace; /* zero or more SQLITE_TRACE flags */ 1335 u8 skipBtreeMutex; /* True if no shared-cache backends */ 1336 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1337 u32 magic; /* Magic number for detect library misuse */ 1338 int nChange; /* Value returned by sqlite3_changes() */ 1339 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1340 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1341 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1342 struct sqlite3InitInfo { /* Information used during initialization */ 1343 int newTnum; /* Rootpage of table being initialized */ 1344 u8 iDb; /* Which db file is being initialized */ 1345 u8 busy; /* TRUE if currently initializing */ 1346 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1347 u8 imposterTable; /* Building an imposter table */ 1348 } init; 1349 int nVdbeActive; /* Number of VDBEs currently running */ 1350 int nVdbeRead; /* Number of active VDBEs that read or write */ 1351 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1352 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1353 int nVDestroy; /* Number of active OP_VDestroy operations */ 1354 int nExtension; /* Number of loaded extensions */ 1355 void **aExtension; /* Array of shared library handles */ 1356 int (*xTrace)(u32,void*,void*,void*); /* Trace function */ 1357 void *pTraceArg; /* Argument to the trace function */ 1358 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1359 void *pProfileArg; /* Argument to profile function */ 1360 void *pCommitArg; /* Argument to xCommitCallback() */ 1361 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1362 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1363 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1364 void *pUpdateArg; 1365 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1366 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1367 void *pPreUpdateArg; /* First argument to xPreUpdateCallback */ 1368 void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */ 1369 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64 1370 ); 1371 PreUpdate *pPreUpdate; /* Context for active pre-update callback */ 1372 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1373 #ifndef SQLITE_OMIT_WAL 1374 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1375 void *pWalArg; 1376 #endif 1377 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1378 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1379 void *pCollNeededArg; 1380 sqlite3_value *pErr; /* Most recent error message */ 1381 union { 1382 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1383 double notUsed1; /* Spacer */ 1384 } u1; 1385 Lookaside lookaside; /* Lookaside malloc configuration */ 1386 #ifndef SQLITE_OMIT_AUTHORIZATION 1387 sqlite3_xauth xAuth; /* Access authorization function */ 1388 void *pAuthArg; /* 1st argument to the access auth function */ 1389 #endif 1390 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1391 int (*xProgress)(void *); /* The progress callback */ 1392 void *pProgressArg; /* Argument to the progress callback */ 1393 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1394 #endif 1395 #ifndef SQLITE_OMIT_VIRTUALTABLE 1396 int nVTrans; /* Allocated size of aVTrans */ 1397 Hash aModule; /* populated by sqlite3_create_module() */ 1398 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1399 VTable **aVTrans; /* Virtual tables with open transactions */ 1400 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1401 #endif 1402 Hash aFunc; /* Hash table of connection functions */ 1403 Hash aCollSeq; /* All collating sequences */ 1404 BusyHandler busyHandler; /* Busy callback */ 1405 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1406 Savepoint *pSavepoint; /* List of active savepoints */ 1407 int busyTimeout; /* Busy handler timeout, in msec */ 1408 int nSavepoint; /* Number of non-transaction savepoints */ 1409 int nStatement; /* Number of nested statement-transactions */ 1410 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1411 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1412 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1413 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1414 /* The following variables are all protected by the STATIC_MASTER 1415 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1416 ** 1417 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1418 ** unlock so that it can proceed. 1419 ** 1420 ** When X.pBlockingConnection==Y, that means that something that X tried 1421 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1422 ** held by Y. 1423 */ 1424 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1425 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1426 void *pUnlockArg; /* Argument to xUnlockNotify */ 1427 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1428 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1429 #endif 1430 #ifdef SQLITE_USER_AUTHENTICATION 1431 sqlite3_userauth auth; /* User authentication information */ 1432 #endif 1433 }; 1434 1435 /* 1436 ** A macro to discover the encoding of a database. 1437 */ 1438 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1439 #define ENC(db) ((db)->enc) 1440 1441 /* 1442 ** Possible values for the sqlite3.flags. 1443 ** 1444 ** Value constraints (enforced via assert()): 1445 ** SQLITE_FullFSync == PAGER_FULLFSYNC 1446 ** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC 1447 ** SQLITE_CacheSpill == PAGER_CACHE_SPILL 1448 */ 1449 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1450 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1451 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 1452 #define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */ 1453 #define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */ 1454 #define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */ 1455 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1456 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1457 /* DELETE, or UPDATE and return */ 1458 /* the count using a callback. */ 1459 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1460 /* result set is empty */ 1461 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1462 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1463 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1464 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1465 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1466 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1467 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1468 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1469 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1470 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1471 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1472 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1473 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1474 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1475 #define SQLITE_LoadExtFunc 0x00800000 /* Enable load_extension() SQL func */ 1476 #define SQLITE_EnableTrigger 0x01000000 /* True to enable triggers */ 1477 #define SQLITE_DeferFKs 0x02000000 /* Defer all FK constraints */ 1478 #define SQLITE_QueryOnly 0x04000000 /* Disable database changes */ 1479 #define SQLITE_VdbeEQP 0x08000000 /* Debug EXPLAIN QUERY PLAN */ 1480 #define SQLITE_Vacuum 0x10000000 /* Currently in a VACUUM */ 1481 #define SQLITE_CellSizeCk 0x20000000 /* Check btree cell sizes on load */ 1482 #define SQLITE_Fts3Tokenizer 0x40000000 /* Enable fts3_tokenizer(2) */ 1483 #define SQLITE_NoCkptOnClose 0x80000000 /* No checkpoint on close()/DETACH */ 1484 1485 1486 /* 1487 ** Bits of the sqlite3.dbOptFlags field that are used by the 1488 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1489 ** selectively disable various optimizations. 1490 */ 1491 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1492 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1493 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1494 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1495 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1496 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1497 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1498 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1499 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1500 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1501 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1502 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1503 #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ 1504 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1505 1506 /* 1507 ** Macros for testing whether or not optimizations are enabled or disabled. 1508 */ 1509 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1510 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1511 1512 /* 1513 ** Return true if it OK to factor constant expressions into the initialization 1514 ** code. The argument is a Parse object for the code generator. 1515 */ 1516 #define ConstFactorOk(P) ((P)->okConstFactor) 1517 1518 /* 1519 ** Possible values for the sqlite.magic field. 1520 ** The numbers are obtained at random and have no special meaning, other 1521 ** than being distinct from one another. 1522 */ 1523 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1524 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1525 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1526 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1527 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1528 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1529 1530 /* 1531 ** Each SQL function is defined by an instance of the following 1532 ** structure. For global built-in functions (ex: substr(), max(), count()) 1533 ** a pointer to this structure is held in the sqlite3BuiltinFunctions object. 1534 ** For per-connection application-defined functions, a pointer to this 1535 ** structure is held in the db->aHash hash table. 1536 ** 1537 ** The u.pHash field is used by the global built-ins. The u.pDestructor 1538 ** field is used by per-connection app-def functions. 1539 */ 1540 struct FuncDef { 1541 i8 nArg; /* Number of arguments. -1 means unlimited */ 1542 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1543 void *pUserData; /* User data parameter */ 1544 FuncDef *pNext; /* Next function with same name */ 1545 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ 1546 void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ 1547 const char *zName; /* SQL name of the function. */ 1548 union { 1549 FuncDef *pHash; /* Next with a different name but the same hash */ 1550 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1551 } u; 1552 }; 1553 1554 /* 1555 ** This structure encapsulates a user-function destructor callback (as 1556 ** configured using create_function_v2()) and a reference counter. When 1557 ** create_function_v2() is called to create a function with a destructor, 1558 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1559 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1560 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1561 ** member of each of the new FuncDef objects is set to point to the allocated 1562 ** FuncDestructor. 1563 ** 1564 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1565 ** count on this object is decremented. When it reaches 0, the destructor 1566 ** is invoked and the FuncDestructor structure freed. 1567 */ 1568 struct FuncDestructor { 1569 int nRef; 1570 void (*xDestroy)(void *); 1571 void *pUserData; 1572 }; 1573 1574 /* 1575 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1576 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And 1577 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There 1578 ** are assert() statements in the code to verify this. 1579 ** 1580 ** Value constraints (enforced via assert()): 1581 ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg 1582 ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG 1583 ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG 1584 ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API 1585 ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API 1586 */ 1587 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1588 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 1589 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 1590 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 1591 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 1592 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 1593 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 1594 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 1595 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 1596 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 1597 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 1598 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1599 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 1600 ** single query - might change over time */ 1601 #define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */ 1602 1603 /* 1604 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1605 ** used to create the initializers for the FuncDef structures. 1606 ** 1607 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1608 ** Used to create a scalar function definition of a function zName 1609 ** implemented by C function xFunc that accepts nArg arguments. The 1610 ** value passed as iArg is cast to a (void*) and made available 1611 ** as the user-data (sqlite3_user_data()) for the function. If 1612 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1613 ** 1614 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1615 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1616 ** 1617 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 1618 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 1619 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 1620 ** and functions like sqlite_version() that can change, but not during 1621 ** a single query. 1622 ** 1623 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1624 ** Used to create an aggregate function definition implemented by 1625 ** the C functions xStep and xFinal. The first four parameters 1626 ** are interpreted in the same way as the first 4 parameters to 1627 ** FUNCTION(). 1628 ** 1629 ** LIKEFUNC(zName, nArg, pArg, flags) 1630 ** Used to create a scalar function definition of a function zName 1631 ** that accepts nArg arguments and is implemented by a call to C 1632 ** function likeFunc. Argument pArg is cast to a (void *) and made 1633 ** available as the function user-data (sqlite3_user_data()). The 1634 ** FuncDef.flags variable is set to the value passed as the flags 1635 ** parameter. 1636 */ 1637 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1638 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1639 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1640 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1641 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1642 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1643 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1644 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1645 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1646 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1647 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1648 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1649 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1650 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1651 pArg, 0, xFunc, 0, #zName, } 1652 #define LIKEFUNC(zName, nArg, arg, flags) \ 1653 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1654 (void *)arg, 0, likeFunc, 0, #zName, {0} } 1655 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1656 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1657 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1658 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1659 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1660 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1661 1662 /* 1663 ** All current savepoints are stored in a linked list starting at 1664 ** sqlite3.pSavepoint. The first element in the list is the most recently 1665 ** opened savepoint. Savepoints are added to the list by the vdbe 1666 ** OP_Savepoint instruction. 1667 */ 1668 struct Savepoint { 1669 char *zName; /* Savepoint name (nul-terminated) */ 1670 i64 nDeferredCons; /* Number of deferred fk violations */ 1671 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1672 Savepoint *pNext; /* Parent savepoint (if any) */ 1673 }; 1674 1675 /* 1676 ** The following are used as the second parameter to sqlite3Savepoint(), 1677 ** and as the P1 argument to the OP_Savepoint instruction. 1678 */ 1679 #define SAVEPOINT_BEGIN 0 1680 #define SAVEPOINT_RELEASE 1 1681 #define SAVEPOINT_ROLLBACK 2 1682 1683 1684 /* 1685 ** Each SQLite module (virtual table definition) is defined by an 1686 ** instance of the following structure, stored in the sqlite3.aModule 1687 ** hash table. 1688 */ 1689 struct Module { 1690 const sqlite3_module *pModule; /* Callback pointers */ 1691 const char *zName; /* Name passed to create_module() */ 1692 void *pAux; /* pAux passed to create_module() */ 1693 void (*xDestroy)(void *); /* Module destructor function */ 1694 Table *pEpoTab; /* Eponymous table for this module */ 1695 }; 1696 1697 /* 1698 ** information about each column of an SQL table is held in an instance 1699 ** of this structure. 1700 */ 1701 struct Column { 1702 char *zName; /* Name of this column, \000, then the type */ 1703 Expr *pDflt; /* Default value of this column */ 1704 char *zColl; /* Collating sequence. If NULL, use the default */ 1705 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1706 char affinity; /* One of the SQLITE_AFF_... values */ 1707 u8 szEst; /* Estimated size of value in this column. sizeof(INT)==1 */ 1708 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1709 }; 1710 1711 /* Allowed values for Column.colFlags: 1712 */ 1713 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1714 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1715 #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ 1716 1717 /* 1718 ** A "Collating Sequence" is defined by an instance of the following 1719 ** structure. Conceptually, a collating sequence consists of a name and 1720 ** a comparison routine that defines the order of that sequence. 1721 ** 1722 ** If CollSeq.xCmp is NULL, it means that the 1723 ** collating sequence is undefined. Indices built on an undefined 1724 ** collating sequence may not be read or written. 1725 */ 1726 struct CollSeq { 1727 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1728 u8 enc; /* Text encoding handled by xCmp() */ 1729 void *pUser; /* First argument to xCmp() */ 1730 int (*xCmp)(void*,int, const void*, int, const void*); 1731 void (*xDel)(void*); /* Destructor for pUser */ 1732 }; 1733 1734 /* 1735 ** A sort order can be either ASC or DESC. 1736 */ 1737 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1738 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1739 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 1740 1741 /* 1742 ** Column affinity types. 1743 ** 1744 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1745 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1746 ** the speed a little by numbering the values consecutively. 1747 ** 1748 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1749 ** when multiple affinity types are concatenated into a string and 1750 ** used as the P4 operand, they will be more readable. 1751 ** 1752 ** Note also that the numeric types are grouped together so that testing 1753 ** for a numeric type is a single comparison. And the BLOB type is first. 1754 */ 1755 #define SQLITE_AFF_BLOB 'A' 1756 #define SQLITE_AFF_TEXT 'B' 1757 #define SQLITE_AFF_NUMERIC 'C' 1758 #define SQLITE_AFF_INTEGER 'D' 1759 #define SQLITE_AFF_REAL 'E' 1760 1761 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1762 1763 /* 1764 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1765 ** affinity value. 1766 */ 1767 #define SQLITE_AFF_MASK 0x47 1768 1769 /* 1770 ** Additional bit values that can be ORed with an affinity without 1771 ** changing the affinity. 1772 ** 1773 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1774 ** It causes an assert() to fire if either operand to a comparison 1775 ** operator is NULL. It is added to certain comparison operators to 1776 ** prove that the operands are always NOT NULL. 1777 */ 1778 #define SQLITE_KEEPNULL 0x08 /* Used by vector == or <> */ 1779 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1780 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1781 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1782 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1783 1784 /* 1785 ** An object of this type is created for each virtual table present in 1786 ** the database schema. 1787 ** 1788 ** If the database schema is shared, then there is one instance of this 1789 ** structure for each database connection (sqlite3*) that uses the shared 1790 ** schema. This is because each database connection requires its own unique 1791 ** instance of the sqlite3_vtab* handle used to access the virtual table 1792 ** implementation. sqlite3_vtab* handles can not be shared between 1793 ** database connections, even when the rest of the in-memory database 1794 ** schema is shared, as the implementation often stores the database 1795 ** connection handle passed to it via the xConnect() or xCreate() method 1796 ** during initialization internally. This database connection handle may 1797 ** then be used by the virtual table implementation to access real tables 1798 ** within the database. So that they appear as part of the callers 1799 ** transaction, these accesses need to be made via the same database 1800 ** connection as that used to execute SQL operations on the virtual table. 1801 ** 1802 ** All VTable objects that correspond to a single table in a shared 1803 ** database schema are initially stored in a linked-list pointed to by 1804 ** the Table.pVTable member variable of the corresponding Table object. 1805 ** When an sqlite3_prepare() operation is required to access the virtual 1806 ** table, it searches the list for the VTable that corresponds to the 1807 ** database connection doing the preparing so as to use the correct 1808 ** sqlite3_vtab* handle in the compiled query. 1809 ** 1810 ** When an in-memory Table object is deleted (for example when the 1811 ** schema is being reloaded for some reason), the VTable objects are not 1812 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1813 ** immediately. Instead, they are moved from the Table.pVTable list to 1814 ** another linked list headed by the sqlite3.pDisconnect member of the 1815 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1816 ** next time a statement is prepared using said sqlite3*. This is done 1817 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1818 ** Refer to comments above function sqlite3VtabUnlockList() for an 1819 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1820 ** list without holding the corresponding sqlite3.mutex mutex. 1821 ** 1822 ** The memory for objects of this type is always allocated by 1823 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1824 ** the first argument. 1825 */ 1826 struct VTable { 1827 sqlite3 *db; /* Database connection associated with this table */ 1828 Module *pMod; /* Pointer to module implementation */ 1829 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1830 int nRef; /* Number of pointers to this structure */ 1831 u8 bConstraint; /* True if constraints are supported */ 1832 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1833 VTable *pNext; /* Next in linked list (see above) */ 1834 }; 1835 1836 /* 1837 ** The schema for each SQL table and view is represented in memory 1838 ** by an instance of the following structure. 1839 */ 1840 struct Table { 1841 char *zName; /* Name of the table or view */ 1842 Column *aCol; /* Information about each column */ 1843 Index *pIndex; /* List of SQL indexes on this table. */ 1844 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1845 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1846 char *zColAff; /* String defining the affinity of each column */ 1847 ExprList *pCheck; /* All CHECK constraints */ 1848 /* ... also used as column name list in a VIEW */ 1849 int tnum; /* Root BTree page for this table */ 1850 u32 nTabRef; /* Number of pointers to this Table */ 1851 u32 tabFlags; /* Mask of TF_* values */ 1852 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1853 i16 nCol; /* Number of columns in this table */ 1854 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1855 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1856 #ifdef SQLITE_ENABLE_COSTMULT 1857 LogEst costMult; /* Cost multiplier for using this table */ 1858 #endif 1859 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1860 #ifndef SQLITE_OMIT_ALTERTABLE 1861 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1862 #endif 1863 #ifndef SQLITE_OMIT_VIRTUALTABLE 1864 int nModuleArg; /* Number of arguments to the module */ 1865 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 1866 VTable *pVTable; /* List of VTable objects. */ 1867 #endif 1868 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1869 Schema *pSchema; /* Schema that contains this table */ 1870 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1871 }; 1872 1873 /* 1874 ** Allowed values for Table.tabFlags. 1875 ** 1876 ** TF_OOOHidden applies to tables or view that have hidden columns that are 1877 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1878 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1879 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1880 ** special handling during INSERT processing. 1881 */ 1882 #define TF_Readonly 0x0001 /* Read-only system table */ 1883 #define TF_Ephemeral 0x0002 /* An ephemeral table */ 1884 #define TF_HasPrimaryKey 0x0004 /* Table has a primary key */ 1885 #define TF_Autoincrement 0x0008 /* Integer primary key is autoincrement */ 1886 /* available for reuse: 0x0010 */ 1887 #define TF_WithoutRowid 0x0020 /* No rowid. PRIMARY KEY is the key */ 1888 #define TF_NoVisibleRowid 0x0040 /* No user-visible "rowid" column */ 1889 #define TF_OOOHidden 0x0080 /* Out-of-Order hidden columns */ 1890 #define TF_HasNotNull 0x0100 /* Contains NOT NULL constraints */ 1891 1892 1893 /* 1894 ** Test to see whether or not a table is a virtual table. This is 1895 ** done as a macro so that it will be optimized out when virtual 1896 ** table support is omitted from the build. 1897 */ 1898 #ifndef SQLITE_OMIT_VIRTUALTABLE 1899 # define IsVirtual(X) ((X)->nModuleArg) 1900 #else 1901 # define IsVirtual(X) 0 1902 #endif 1903 1904 /* 1905 ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() 1906 ** only works for non-virtual tables (ordinary tables and views) and is 1907 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The 1908 ** IsHiddenColumn() macro is general purpose. 1909 */ 1910 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) 1911 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1912 # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1913 #elif !defined(SQLITE_OMIT_VIRTUALTABLE) 1914 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1915 # define IsOrdinaryHiddenColumn(X) 0 1916 #else 1917 # define IsHiddenColumn(X) 0 1918 # define IsOrdinaryHiddenColumn(X) 0 1919 #endif 1920 1921 1922 /* Does the table have a rowid */ 1923 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1924 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1925 1926 /* 1927 ** Each foreign key constraint is an instance of the following structure. 1928 ** 1929 ** A foreign key is associated with two tables. The "from" table is 1930 ** the table that contains the REFERENCES clause that creates the foreign 1931 ** key. The "to" table is the table that is named in the REFERENCES clause. 1932 ** Consider this example: 1933 ** 1934 ** CREATE TABLE ex1( 1935 ** a INTEGER PRIMARY KEY, 1936 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1937 ** ); 1938 ** 1939 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1940 ** Equivalent names: 1941 ** 1942 ** from-table == child-table 1943 ** to-table == parent-table 1944 ** 1945 ** Each REFERENCES clause generates an instance of the following structure 1946 ** which is attached to the from-table. The to-table need not exist when 1947 ** the from-table is created. The existence of the to-table is not checked. 1948 ** 1949 ** The list of all parents for child Table X is held at X.pFKey. 1950 ** 1951 ** A list of all children for a table named Z (which might not even exist) 1952 ** is held in Schema.fkeyHash with a hash key of Z. 1953 */ 1954 struct FKey { 1955 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1956 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1957 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1958 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1959 FKey *pPrevTo; /* Previous with the same zTo */ 1960 int nCol; /* Number of columns in this key */ 1961 /* EV: R-30323-21917 */ 1962 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1963 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1964 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1965 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1966 int iFrom; /* Index of column in pFrom */ 1967 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1968 } aCol[1]; /* One entry for each of nCol columns */ 1969 }; 1970 1971 /* 1972 ** SQLite supports many different ways to resolve a constraint 1973 ** error. ROLLBACK processing means that a constraint violation 1974 ** causes the operation in process to fail and for the current transaction 1975 ** to be rolled back. ABORT processing means the operation in process 1976 ** fails and any prior changes from that one operation are backed out, 1977 ** but the transaction is not rolled back. FAIL processing means that 1978 ** the operation in progress stops and returns an error code. But prior 1979 ** changes due to the same operation are not backed out and no rollback 1980 ** occurs. IGNORE means that the particular row that caused the constraint 1981 ** error is not inserted or updated. Processing continues and no error 1982 ** is returned. REPLACE means that preexisting database rows that caused 1983 ** a UNIQUE constraint violation are removed so that the new insert or 1984 ** update can proceed. Processing continues and no error is reported. 1985 ** 1986 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1987 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1988 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1989 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1990 ** referenced table row is propagated into the row that holds the 1991 ** foreign key. 1992 ** 1993 ** The following symbolic values are used to record which type 1994 ** of action to take. 1995 */ 1996 #define OE_None 0 /* There is no constraint to check */ 1997 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1998 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1999 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 2000 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 2001 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 2002 2003 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 2004 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 2005 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 2006 #define OE_Cascade 9 /* Cascade the changes */ 2007 2008 #define OE_Default 10 /* Do whatever the default action is */ 2009 2010 2011 /* 2012 ** An instance of the following structure is passed as the first 2013 ** argument to sqlite3VdbeKeyCompare and is used to control the 2014 ** comparison of the two index keys. 2015 ** 2016 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 2017 ** are nField slots for the columns of an index then one extra slot 2018 ** for the rowid at the end. 2019 */ 2020 struct KeyInfo { 2021 u32 nRef; /* Number of references to this KeyInfo object */ 2022 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 2023 u16 nField; /* Number of key columns in the index */ 2024 u16 nXField; /* Number of columns beyond the key columns */ 2025 sqlite3 *db; /* The database connection */ 2026 u8 *aSortOrder; /* Sort order for each column. */ 2027 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 2028 }; 2029 2030 /* 2031 ** This object holds a record which has been parsed out into individual 2032 ** fields, for the purposes of doing a comparison. 2033 ** 2034 ** A record is an object that contains one or more fields of data. 2035 ** Records are used to store the content of a table row and to store 2036 ** the key of an index. A blob encoding of a record is created by 2037 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 2038 ** OP_Column opcode. 2039 ** 2040 ** An instance of this object serves as a "key" for doing a search on 2041 ** an index b+tree. The goal of the search is to find the entry that 2042 ** is closed to the key described by this object. This object might hold 2043 ** just a prefix of the key. The number of fields is given by 2044 ** pKeyInfo->nField. 2045 ** 2046 ** The r1 and r2 fields are the values to return if this key is less than 2047 ** or greater than a key in the btree, respectively. These are normally 2048 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree 2049 ** is in DESC order. 2050 ** 2051 ** The key comparison functions actually return default_rc when they find 2052 ** an equals comparison. default_rc can be -1, 0, or +1. If there are 2053 ** multiple entries in the b-tree with the same key (when only looking 2054 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 2055 ** cause the search to find the last match, or +1 to cause the search to 2056 ** find the first match. 2057 ** 2058 ** The key comparison functions will set eqSeen to true if they ever 2059 ** get and equal results when comparing this structure to a b-tree record. 2060 ** When default_rc!=0, the search might end up on the record immediately 2061 ** before the first match or immediately after the last match. The 2062 ** eqSeen field will indicate whether or not an exact match exists in the 2063 ** b-tree. 2064 */ 2065 struct UnpackedRecord { 2066 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 2067 Mem *aMem; /* Values */ 2068 u16 nField; /* Number of entries in apMem[] */ 2069 i8 default_rc; /* Comparison result if keys are equal */ 2070 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 2071 i8 r1; /* Value to return if (lhs > rhs) */ 2072 i8 r2; /* Value to return if (rhs < lhs) */ 2073 u8 eqSeen; /* True if an equality comparison has been seen */ 2074 }; 2075 2076 2077 /* 2078 ** Each SQL index is represented in memory by an 2079 ** instance of the following structure. 2080 ** 2081 ** The columns of the table that are to be indexed are described 2082 ** by the aiColumn[] field of this structure. For example, suppose 2083 ** we have the following table and index: 2084 ** 2085 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 2086 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 2087 ** 2088 ** In the Table structure describing Ex1, nCol==3 because there are 2089 ** three columns in the table. In the Index structure describing 2090 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 2091 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 2092 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 2093 ** The second column to be indexed (c1) has an index of 0 in 2094 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 2095 ** 2096 ** The Index.onError field determines whether or not the indexed columns 2097 ** must be unique and what to do if they are not. When Index.onError=OE_None, 2098 ** it means this is not a unique index. Otherwise it is a unique index 2099 ** and the value of Index.onError indicate the which conflict resolution 2100 ** algorithm to employ whenever an attempt is made to insert a non-unique 2101 ** element. 2102 ** 2103 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 2104 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 2105 ** table as part of parsing an existing database schema), transient instances 2106 ** of this structure may be created. In this case the Index.tnum variable is 2107 ** used to store the address of a VDBE instruction, not a database page 2108 ** number (it cannot - the database page is not allocated until the VDBE 2109 ** program is executed). See convertToWithoutRowidTable() for details. 2110 */ 2111 struct Index { 2112 char *zName; /* Name of this index */ 2113 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 2114 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 2115 Table *pTable; /* The SQL table being indexed */ 2116 char *zColAff; /* String defining the affinity of each column */ 2117 Index *pNext; /* The next index associated with the same table */ 2118 Schema *pSchema; /* Schema containing this index */ 2119 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 2120 const char **azColl; /* Array of collation sequence names for index */ 2121 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 2122 ExprList *aColExpr; /* Column expressions */ 2123 int tnum; /* DB Page containing root of this index */ 2124 LogEst szIdxRow; /* Estimated average row size in bytes */ 2125 u16 nKeyCol; /* Number of columns forming the key */ 2126 u16 nColumn; /* Number of columns stored in the index */ 2127 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2128 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 2129 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 2130 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 2131 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 2132 unsigned isCovering:1; /* True if this is a covering index */ 2133 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 2134 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2135 int nSample; /* Number of elements in aSample[] */ 2136 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 2137 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 2138 IndexSample *aSample; /* Samples of the left-most key */ 2139 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 2140 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 2141 #endif 2142 }; 2143 2144 /* 2145 ** Allowed values for Index.idxType 2146 */ 2147 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 2148 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 2149 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 2150 2151 /* Return true if index X is a PRIMARY KEY index */ 2152 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2153 2154 /* Return true if index X is a UNIQUE index */ 2155 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 2156 2157 /* The Index.aiColumn[] values are normally positive integer. But 2158 ** there are some negative values that have special meaning: 2159 */ 2160 #define XN_ROWID (-1) /* Indexed column is the rowid */ 2161 #define XN_EXPR (-2) /* Indexed column is an expression */ 2162 2163 /* 2164 ** Each sample stored in the sqlite_stat3 table is represented in memory 2165 ** using a structure of this type. See documentation at the top of the 2166 ** analyze.c source file for additional information. 2167 */ 2168 struct IndexSample { 2169 void *p; /* Pointer to sampled record */ 2170 int n; /* Size of record in bytes */ 2171 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 2172 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 2173 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 2174 }; 2175 2176 /* 2177 ** Each token coming out of the lexer is an instance of 2178 ** this structure. Tokens are also used as part of an expression. 2179 ** 2180 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 2181 ** may contain random values. Do not make any assumptions about Token.dyn 2182 ** and Token.n when Token.z==0. 2183 */ 2184 struct Token { 2185 const char *z; /* Text of the token. Not NULL-terminated! */ 2186 unsigned int n; /* Number of characters in this token */ 2187 }; 2188 2189 /* 2190 ** An instance of this structure contains information needed to generate 2191 ** code for a SELECT that contains aggregate functions. 2192 ** 2193 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 2194 ** pointer to this structure. The Expr.iColumn field is the index in 2195 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 2196 ** code for that node. 2197 ** 2198 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 2199 ** original Select structure that describes the SELECT statement. These 2200 ** fields do not need to be freed when deallocating the AggInfo structure. 2201 */ 2202 struct AggInfo { 2203 u8 directMode; /* Direct rendering mode means take data directly 2204 ** from source tables rather than from accumulators */ 2205 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 2206 ** than the source table */ 2207 int sortingIdx; /* Cursor number of the sorting index */ 2208 int sortingIdxPTab; /* Cursor number of pseudo-table */ 2209 int nSortingColumn; /* Number of columns in the sorting index */ 2210 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 2211 ExprList *pGroupBy; /* The group by clause */ 2212 struct AggInfo_col { /* For each column used in source tables */ 2213 Table *pTab; /* Source table */ 2214 int iTable; /* Cursor number of the source table */ 2215 int iColumn; /* Column number within the source table */ 2216 int iSorterColumn; /* Column number in the sorting index */ 2217 int iMem; /* Memory location that acts as accumulator */ 2218 Expr *pExpr; /* The original expression */ 2219 } *aCol; 2220 int nColumn; /* Number of used entries in aCol[] */ 2221 int nAccumulator; /* Number of columns that show through to the output. 2222 ** Additional columns are used only as parameters to 2223 ** aggregate functions */ 2224 struct AggInfo_func { /* For each aggregate function */ 2225 Expr *pExpr; /* Expression encoding the function */ 2226 FuncDef *pFunc; /* The aggregate function implementation */ 2227 int iMem; /* Memory location that acts as accumulator */ 2228 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 2229 } *aFunc; 2230 int nFunc; /* Number of entries in aFunc[] */ 2231 }; 2232 2233 /* 2234 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 2235 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 2236 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 2237 ** it uses less memory in the Expr object, which is a big memory user 2238 ** in systems with lots of prepared statements. And few applications 2239 ** need more than about 10 or 20 variables. But some extreme users want 2240 ** to have prepared statements with over 32767 variables, and for them 2241 ** the option is available (at compile-time). 2242 */ 2243 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 2244 typedef i16 ynVar; 2245 #else 2246 typedef int ynVar; 2247 #endif 2248 2249 /* 2250 ** Each node of an expression in the parse tree is an instance 2251 ** of this structure. 2252 ** 2253 ** Expr.op is the opcode. The integer parser token codes are reused 2254 ** as opcodes here. For example, the parser defines TK_GE to be an integer 2255 ** code representing the ">=" operator. This same integer code is reused 2256 ** to represent the greater-than-or-equal-to operator in the expression 2257 ** tree. 2258 ** 2259 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2260 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2261 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2262 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2263 ** then Expr.token contains the name of the function. 2264 ** 2265 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2266 ** binary operator. Either or both may be NULL. 2267 ** 2268 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2269 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2270 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2271 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2272 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2273 ** valid. 2274 ** 2275 ** An expression of the form ID or ID.ID refers to a column in a table. 2276 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2277 ** the integer cursor number of a VDBE cursor pointing to that table and 2278 ** Expr.iColumn is the column number for the specific column. If the 2279 ** expression is used as a result in an aggregate SELECT, then the 2280 ** value is also stored in the Expr.iAgg column in the aggregate so that 2281 ** it can be accessed after all aggregates are computed. 2282 ** 2283 ** If the expression is an unbound variable marker (a question mark 2284 ** character '?' in the original SQL) then the Expr.iTable holds the index 2285 ** number for that variable. 2286 ** 2287 ** If the expression is a subquery then Expr.iColumn holds an integer 2288 ** register number containing the result of the subquery. If the 2289 ** subquery gives a constant result, then iTable is -1. If the subquery 2290 ** gives a different answer at different times during statement processing 2291 ** then iTable is the address of a subroutine that computes the subquery. 2292 ** 2293 ** If the Expr is of type OP_Column, and the table it is selecting from 2294 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2295 ** corresponding table definition. 2296 ** 2297 ** ALLOCATION NOTES: 2298 ** 2299 ** Expr objects can use a lot of memory space in database schema. To 2300 ** help reduce memory requirements, sometimes an Expr object will be 2301 ** truncated. And to reduce the number of memory allocations, sometimes 2302 ** two or more Expr objects will be stored in a single memory allocation, 2303 ** together with Expr.zToken strings. 2304 ** 2305 ** If the EP_Reduced and EP_TokenOnly flags are set when 2306 ** an Expr object is truncated. When EP_Reduced is set, then all 2307 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2308 ** are contained within the same memory allocation. Note, however, that 2309 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2310 ** allocated, regardless of whether or not EP_Reduced is set. 2311 */ 2312 struct Expr { 2313 u8 op; /* Operation performed by this node */ 2314 char affinity; /* The affinity of the column or 0 if not a column */ 2315 u32 flags; /* Various flags. EP_* See below */ 2316 union { 2317 char *zToken; /* Token value. Zero terminated and dequoted */ 2318 int iValue; /* Non-negative integer value if EP_IntValue */ 2319 } u; 2320 2321 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2322 ** space is allocated for the fields below this point. An attempt to 2323 ** access them will result in a segfault or malfunction. 2324 *********************************************************************/ 2325 2326 Expr *pLeft; /* Left subnode */ 2327 Expr *pRight; /* Right subnode */ 2328 union { 2329 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2330 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2331 } x; 2332 2333 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2334 ** space is allocated for the fields below this point. An attempt to 2335 ** access them will result in a segfault or malfunction. 2336 *********************************************************************/ 2337 2338 #if SQLITE_MAX_EXPR_DEPTH>0 2339 int nHeight; /* Height of the tree headed by this node */ 2340 #endif 2341 int iTable; /* TK_COLUMN: cursor number of table holding column 2342 ** TK_REGISTER: register number 2343 ** TK_TRIGGER: 1 -> new, 0 -> old 2344 ** EP_Unlikely: 134217728 times likelihood 2345 ** TK_SELECT: 1st register of result vector */ 2346 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2347 ** TK_VARIABLE: variable number (always >= 1). 2348 ** TK_SELECT_COLUMN: column of the result vector */ 2349 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2350 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2351 u8 op2; /* TK_REGISTER: original value of Expr.op 2352 ** TK_COLUMN: the value of p5 for OP_Column 2353 ** TK_AGG_FUNCTION: nesting depth */ 2354 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2355 Table *pTab; /* Table for TK_COLUMN expressions. */ 2356 }; 2357 2358 /* 2359 ** The following are the meanings of bits in the Expr.flags field. 2360 */ 2361 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2362 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2363 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2364 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2365 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2366 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2367 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2368 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2369 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2370 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2371 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2372 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2373 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2374 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2375 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2376 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2377 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2378 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2379 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2380 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 2381 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2382 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2383 #define EP_Alias 0x400000 /* Is an alias for a result set column */ 2384 #define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */ 2385 2386 /* 2387 ** Combinations of two or more EP_* flags 2388 */ 2389 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2390 2391 /* 2392 ** These macros can be used to test, set, or clear bits in the 2393 ** Expr.flags field. 2394 */ 2395 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2396 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2397 #define ExprSetProperty(E,P) (E)->flags|=(P) 2398 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2399 2400 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2401 ** and Accreditation only. It works like ExprSetProperty() during VVA 2402 ** processes but is a no-op for delivery. 2403 */ 2404 #ifdef SQLITE_DEBUG 2405 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2406 #else 2407 # define ExprSetVVAProperty(E,P) 2408 #endif 2409 2410 /* 2411 ** Macros to determine the number of bytes required by a normal Expr 2412 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2413 ** and an Expr struct with the EP_TokenOnly flag set. 2414 */ 2415 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2416 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2417 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2418 2419 /* 2420 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2421 ** above sqlite3ExprDup() for details. 2422 */ 2423 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2424 2425 /* 2426 ** A list of expressions. Each expression may optionally have a 2427 ** name. An expr/name combination can be used in several ways, such 2428 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2429 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2430 ** also be used as the argument to a function, in which case the a.zName 2431 ** field is not used. 2432 ** 2433 ** By default the Expr.zSpan field holds a human-readable description of 2434 ** the expression that is used in the generation of error messages and 2435 ** column labels. In this case, Expr.zSpan is typically the text of a 2436 ** column expression as it exists in a SELECT statement. However, if 2437 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2438 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2439 ** form is used for name resolution with nested FROM clauses. 2440 */ 2441 struct ExprList { 2442 int nExpr; /* Number of expressions on the list */ 2443 struct ExprList_item { /* For each expression in the list */ 2444 Expr *pExpr; /* The parse tree for this expression */ 2445 char *zName; /* Token associated with this expression */ 2446 char *zSpan; /* Original text of the expression */ 2447 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2448 unsigned done :1; /* A flag to indicate when processing is finished */ 2449 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2450 unsigned reusable :1; /* Constant expression is reusable */ 2451 union { 2452 struct { 2453 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2454 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2455 } x; 2456 int iConstExprReg; /* Register in which Expr value is cached */ 2457 } u; 2458 } *a; /* Alloc a power of two greater or equal to nExpr */ 2459 }; 2460 2461 /* 2462 ** An instance of this structure is used by the parser to record both 2463 ** the parse tree for an expression and the span of input text for an 2464 ** expression. 2465 */ 2466 struct ExprSpan { 2467 Expr *pExpr; /* The expression parse tree */ 2468 const char *zStart; /* First character of input text */ 2469 const char *zEnd; /* One character past the end of input text */ 2470 }; 2471 2472 /* 2473 ** An instance of this structure can hold a simple list of identifiers, 2474 ** such as the list "a,b,c" in the following statements: 2475 ** 2476 ** INSERT INTO t(a,b,c) VALUES ...; 2477 ** CREATE INDEX idx ON t(a,b,c); 2478 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2479 ** 2480 ** The IdList.a.idx field is used when the IdList represents the list of 2481 ** column names after a table name in an INSERT statement. In the statement 2482 ** 2483 ** INSERT INTO t(a,b,c) ... 2484 ** 2485 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2486 */ 2487 struct IdList { 2488 struct IdList_item { 2489 char *zName; /* Name of the identifier */ 2490 int idx; /* Index in some Table.aCol[] of a column named zName */ 2491 } *a; 2492 int nId; /* Number of identifiers on the list */ 2493 }; 2494 2495 /* 2496 ** The bitmask datatype defined below is used for various optimizations. 2497 ** 2498 ** Changing this from a 64-bit to a 32-bit type limits the number of 2499 ** tables in a join to 32 instead of 64. But it also reduces the size 2500 ** of the library by 738 bytes on ix86. 2501 */ 2502 #ifdef SQLITE_BITMASK_TYPE 2503 typedef SQLITE_BITMASK_TYPE Bitmask; 2504 #else 2505 typedef u64 Bitmask; 2506 #endif 2507 2508 /* 2509 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2510 */ 2511 #define BMS ((int)(sizeof(Bitmask)*8)) 2512 2513 /* 2514 ** A bit in a Bitmask 2515 */ 2516 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2517 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2518 #define ALLBITS ((Bitmask)-1) 2519 2520 /* 2521 ** The following structure describes the FROM clause of a SELECT statement. 2522 ** Each table or subquery in the FROM clause is a separate element of 2523 ** the SrcList.a[] array. 2524 ** 2525 ** With the addition of multiple database support, the following structure 2526 ** can also be used to describe a particular table such as the table that 2527 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2528 ** such a table must be a simple name: ID. But in SQLite, the table can 2529 ** now be identified by a database name, a dot, then the table name: ID.ID. 2530 ** 2531 ** The jointype starts out showing the join type between the current table 2532 ** and the next table on the list. The parser builds the list this way. 2533 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2534 ** jointype expresses the join between the table and the previous table. 2535 ** 2536 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2537 ** contains more than 63 columns and the 64-th or later column is used. 2538 */ 2539 struct SrcList { 2540 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2541 u32 nAlloc; /* Number of entries allocated in a[] below */ 2542 struct SrcList_item { 2543 Schema *pSchema; /* Schema to which this item is fixed */ 2544 char *zDatabase; /* Name of database holding this table */ 2545 char *zName; /* Name of the table */ 2546 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2547 Table *pTab; /* An SQL table corresponding to zName */ 2548 Select *pSelect; /* A SELECT statement used in place of a table name */ 2549 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2550 int regReturn; /* Register holding return address of addrFillSub */ 2551 int regResult; /* Registers holding results of a co-routine */ 2552 struct { 2553 u8 jointype; /* Type of join between this table and the previous */ 2554 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2555 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 2556 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 2557 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2558 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2559 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2560 } fg; 2561 #ifndef SQLITE_OMIT_EXPLAIN 2562 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2563 #endif 2564 int iCursor; /* The VDBE cursor number used to access this table */ 2565 Expr *pOn; /* The ON clause of a join */ 2566 IdList *pUsing; /* The USING clause of a join */ 2567 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2568 union { 2569 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2570 ExprList *pFuncArg; /* Arguments to table-valued-function */ 2571 } u1; 2572 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 2573 } a[1]; /* One entry for each identifier on the list */ 2574 }; 2575 2576 /* 2577 ** Permitted values of the SrcList.a.jointype field 2578 */ 2579 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2580 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2581 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2582 #define JT_LEFT 0x0008 /* Left outer join */ 2583 #define JT_RIGHT 0x0010 /* Right outer join */ 2584 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2585 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2586 2587 2588 /* 2589 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2590 ** and the WhereInfo.wctrlFlags member. 2591 ** 2592 ** Value constraints (enforced via assert()): 2593 ** WHERE_USE_LIMIT == SF_FixedLimit 2594 */ 2595 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2596 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2597 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2598 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2599 #define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */ 2600 #define WHERE_DUPLICATES_OK 0x0010 /* Ok to return a row more than once */ 2601 #define WHERE_OR_SUBCLAUSE 0x0020 /* Processing a sub-WHERE as part of 2602 ** the OR optimization */ 2603 #define WHERE_GROUPBY 0x0040 /* pOrderBy is really a GROUP BY */ 2604 #define WHERE_DISTINCTBY 0x0080 /* pOrderby is really a DISTINCT clause */ 2605 #define WHERE_WANT_DISTINCT 0x0100 /* All output needs to be distinct */ 2606 #define WHERE_SORTBYGROUP 0x0200 /* Support sqlite3WhereIsSorted() */ 2607 #define WHERE_SEEK_TABLE 0x0400 /* Do not defer seeks on main table */ 2608 #define WHERE_ORDERBY_LIMIT 0x0800 /* ORDERBY+LIMIT on the inner loop */ 2609 #define WHERE_SEEK_UNIQ_TABLE 0x1000 /* Do not defer seeks if unique */ 2610 /* 0x2000 not currently used */ 2611 #define WHERE_USE_LIMIT 0x4000 /* Use the LIMIT in cost estimates */ 2612 /* 0x8000 not currently used */ 2613 2614 /* Allowed return values from sqlite3WhereIsDistinct() 2615 */ 2616 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2617 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2618 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2619 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2620 2621 /* 2622 ** A NameContext defines a context in which to resolve table and column 2623 ** names. The context consists of a list of tables (the pSrcList) field and 2624 ** a list of named expression (pEList). The named expression list may 2625 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2626 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2627 ** pEList corresponds to the result set of a SELECT and is NULL for 2628 ** other statements. 2629 ** 2630 ** NameContexts can be nested. When resolving names, the inner-most 2631 ** context is searched first. If no match is found, the next outer 2632 ** context is checked. If there is still no match, the next context 2633 ** is checked. This process continues until either a match is found 2634 ** or all contexts are check. When a match is found, the nRef member of 2635 ** the context containing the match is incremented. 2636 ** 2637 ** Each subquery gets a new NameContext. The pNext field points to the 2638 ** NameContext in the parent query. Thus the process of scanning the 2639 ** NameContext list corresponds to searching through successively outer 2640 ** subqueries looking for a match. 2641 */ 2642 struct NameContext { 2643 Parse *pParse; /* The parser */ 2644 SrcList *pSrcList; /* One or more tables used to resolve names */ 2645 ExprList *pEList; /* Optional list of result-set columns */ 2646 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2647 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2648 int nRef; /* Number of names resolved by this context */ 2649 int nErr; /* Number of errors encountered while resolving names */ 2650 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2651 }; 2652 2653 /* 2654 ** Allowed values for the NameContext, ncFlags field. 2655 ** 2656 ** Value constraints (all checked via assert()): 2657 ** NC_HasAgg == SF_HasAgg 2658 ** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX 2659 ** 2660 */ 2661 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2662 #define NC_PartIdx 0x0002 /* True if resolving a partial index WHERE */ 2663 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2664 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2665 #define NC_HasAgg 0x0010 /* One or more aggregate functions seen */ 2666 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 2667 #define NC_VarSelect 0x0040 /* A correlated subquery has been seen */ 2668 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2669 2670 /* 2671 ** An instance of the following structure contains all information 2672 ** needed to generate code for a single SELECT statement. 2673 ** 2674 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2675 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2676 ** limit and nOffset to the value of the offset (or 0 if there is not 2677 ** offset). But later on, nLimit and nOffset become the memory locations 2678 ** in the VDBE that record the limit and offset counters. 2679 ** 2680 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2681 ** These addresses must be stored so that we can go back and fill in 2682 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2683 ** the number of columns in P2 can be computed at the same time 2684 ** as the OP_OpenEphm instruction is coded because not 2685 ** enough information about the compound query is known at that point. 2686 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2687 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2688 ** sequences for the ORDER BY clause. 2689 */ 2690 struct Select { 2691 ExprList *pEList; /* The fields of the result */ 2692 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2693 LogEst nSelectRow; /* Estimated number of result rows */ 2694 u32 selFlags; /* Various SF_* values */ 2695 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2696 #if SELECTTRACE_ENABLED 2697 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2698 #endif 2699 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2700 SrcList *pSrc; /* The FROM clause */ 2701 Expr *pWhere; /* The WHERE clause */ 2702 ExprList *pGroupBy; /* The GROUP BY clause */ 2703 Expr *pHaving; /* The HAVING clause */ 2704 ExprList *pOrderBy; /* The ORDER BY clause */ 2705 Select *pPrior; /* Prior select in a compound select statement */ 2706 Select *pNext; /* Next select to the left in a compound */ 2707 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2708 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2709 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2710 }; 2711 2712 /* 2713 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2714 ** "Select Flag". 2715 ** 2716 ** Value constraints (all checked via assert()) 2717 ** SF_HasAgg == NC_HasAgg 2718 ** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX 2719 ** SF_FixedLimit == WHERE_USE_LIMIT 2720 */ 2721 #define SF_Distinct 0x00001 /* Output should be DISTINCT */ 2722 #define SF_All 0x00002 /* Includes the ALL keyword */ 2723 #define SF_Resolved 0x00004 /* Identifiers have been resolved */ 2724 #define SF_Aggregate 0x00008 /* Contains agg functions or a GROUP BY */ 2725 #define SF_HasAgg 0x00010 /* Contains aggregate functions */ 2726 #define SF_UsesEphemeral 0x00020 /* Uses the OpenEphemeral opcode */ 2727 #define SF_Expanded 0x00040 /* sqlite3SelectExpand() called on this */ 2728 #define SF_HasTypeInfo 0x00080 /* FROM subqueries have Table metadata */ 2729 #define SF_Compound 0x00100 /* Part of a compound query */ 2730 #define SF_Values 0x00200 /* Synthesized from VALUES clause */ 2731 #define SF_MultiValue 0x00400 /* Single VALUES term with multiple rows */ 2732 #define SF_NestedFrom 0x00800 /* Part of a parenthesized FROM clause */ 2733 #define SF_MinMaxAgg 0x01000 /* Aggregate containing min() or max() */ 2734 #define SF_Recursive 0x02000 /* The recursive part of a recursive CTE */ 2735 #define SF_FixedLimit 0x04000 /* nSelectRow set by a constant LIMIT */ 2736 #define SF_MaybeConvert 0x08000 /* Need convertCompoundSelectToSubquery() */ 2737 #define SF_Converted 0x10000 /* By convertCompoundSelectToSubquery() */ 2738 #define SF_IncludeHidden 0x20000 /* Include hidden columns in output */ 2739 2740 2741 /* 2742 ** The results of a SELECT can be distributed in several ways, as defined 2743 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2744 ** Type". 2745 ** 2746 ** SRT_Union Store results as a key in a temporary index 2747 ** identified by pDest->iSDParm. 2748 ** 2749 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2750 ** 2751 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2752 ** set is not empty. 2753 ** 2754 ** SRT_Discard Throw the results away. This is used by SELECT 2755 ** statements within triggers whose only purpose is 2756 ** the side-effects of functions. 2757 ** 2758 ** All of the above are free to ignore their ORDER BY clause. Those that 2759 ** follow must honor the ORDER BY clause. 2760 ** 2761 ** SRT_Output Generate a row of output (using the OP_ResultRow 2762 ** opcode) for each row in the result set. 2763 ** 2764 ** SRT_Mem Only valid if the result is a single column. 2765 ** Store the first column of the first result row 2766 ** in register pDest->iSDParm then abandon the rest 2767 ** of the query. This destination implies "LIMIT 1". 2768 ** 2769 ** SRT_Set The result must be a single column. Store each 2770 ** row of result as the key in table pDest->iSDParm. 2771 ** Apply the affinity pDest->affSdst before storing 2772 ** results. Used to implement "IN (SELECT ...)". 2773 ** 2774 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2775 ** the result there. The cursor is left open after 2776 ** returning. This is like SRT_Table except that 2777 ** this destination uses OP_OpenEphemeral to create 2778 ** the table first. 2779 ** 2780 ** SRT_Coroutine Generate a co-routine that returns a new row of 2781 ** results each time it is invoked. The entry point 2782 ** of the co-routine is stored in register pDest->iSDParm 2783 ** and the result row is stored in pDest->nDest registers 2784 ** starting with pDest->iSdst. 2785 ** 2786 ** SRT_Table Store results in temporary table pDest->iSDParm. 2787 ** SRT_Fifo This is like SRT_EphemTab except that the table 2788 ** is assumed to already be open. SRT_Fifo has 2789 ** the additional property of being able to ignore 2790 ** the ORDER BY clause. 2791 ** 2792 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2793 ** But also use temporary table pDest->iSDParm+1 as 2794 ** a record of all prior results and ignore any duplicate 2795 ** rows. Name means: "Distinct Fifo". 2796 ** 2797 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2798 ** an index). Append a sequence number so that all entries 2799 ** are distinct. 2800 ** 2801 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2802 ** the same record has never been stored before. The 2803 ** index at pDest->iSDParm+1 hold all prior stores. 2804 */ 2805 #define SRT_Union 1 /* Store result as keys in an index */ 2806 #define SRT_Except 2 /* Remove result from a UNION index */ 2807 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2808 #define SRT_Discard 4 /* Do not save the results anywhere */ 2809 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2810 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2811 #define SRT_Queue 7 /* Store result in an queue */ 2812 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2813 2814 /* The ORDER BY clause is ignored for all of the above */ 2815 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2816 2817 #define SRT_Output 9 /* Output each row of result */ 2818 #define SRT_Mem 10 /* Store result in a memory cell */ 2819 #define SRT_Set 11 /* Store results as keys in an index */ 2820 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2821 #define SRT_Coroutine 13 /* Generate a single row of result */ 2822 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2823 2824 /* 2825 ** An instance of this object describes where to put of the results of 2826 ** a SELECT statement. 2827 */ 2828 struct SelectDest { 2829 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2830 char *zAffSdst; /* Affinity used when eDest==SRT_Set */ 2831 int iSDParm; /* A parameter used by the eDest disposal method */ 2832 int iSdst; /* Base register where results are written */ 2833 int nSdst; /* Number of registers allocated */ 2834 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2835 }; 2836 2837 /* 2838 ** During code generation of statements that do inserts into AUTOINCREMENT 2839 ** tables, the following information is attached to the Table.u.autoInc.p 2840 ** pointer of each autoincrement table to record some side information that 2841 ** the code generator needs. We have to keep per-table autoincrement 2842 ** information in case inserts are done within triggers. Triggers do not 2843 ** normally coordinate their activities, but we do need to coordinate the 2844 ** loading and saving of autoincrement information. 2845 */ 2846 struct AutoincInfo { 2847 AutoincInfo *pNext; /* Next info block in a list of them all */ 2848 Table *pTab; /* Table this info block refers to */ 2849 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2850 int regCtr; /* Memory register holding the rowid counter */ 2851 }; 2852 2853 /* 2854 ** Size of the column cache 2855 */ 2856 #ifndef SQLITE_N_COLCACHE 2857 # define SQLITE_N_COLCACHE 10 2858 #endif 2859 2860 /* 2861 ** At least one instance of the following structure is created for each 2862 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2863 ** statement. All such objects are stored in the linked list headed at 2864 ** Parse.pTriggerPrg and deleted once statement compilation has been 2865 ** completed. 2866 ** 2867 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2868 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2869 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2870 ** The Parse.pTriggerPrg list never contains two entries with the same 2871 ** values for both pTrigger and orconf. 2872 ** 2873 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2874 ** accessed (or set to 0 for triggers fired as a result of INSERT 2875 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2876 ** a mask of new.* columns used by the program. 2877 */ 2878 struct TriggerPrg { 2879 Trigger *pTrigger; /* Trigger this program was coded from */ 2880 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2881 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2882 int orconf; /* Default ON CONFLICT policy */ 2883 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2884 }; 2885 2886 /* 2887 ** The yDbMask datatype for the bitmask of all attached databases. 2888 */ 2889 #if SQLITE_MAX_ATTACHED>30 2890 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2891 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2892 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2893 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2894 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2895 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2896 #else 2897 typedef unsigned int yDbMask; 2898 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2899 # define DbMaskZero(M) (M)=0 2900 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2901 # define DbMaskAllZero(M) (M)==0 2902 # define DbMaskNonZero(M) (M)!=0 2903 #endif 2904 2905 /* 2906 ** An SQL parser context. A copy of this structure is passed through 2907 ** the parser and down into all the parser action routine in order to 2908 ** carry around information that is global to the entire parse. 2909 ** 2910 ** The structure is divided into two parts. When the parser and code 2911 ** generate call themselves recursively, the first part of the structure 2912 ** is constant but the second part is reset at the beginning and end of 2913 ** each recursion. 2914 ** 2915 ** The nTableLock and aTableLock variables are only used if the shared-cache 2916 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2917 ** used to store the set of table-locks required by the statement being 2918 ** compiled. Function sqlite3TableLock() is used to add entries to the 2919 ** list. 2920 */ 2921 struct Parse { 2922 sqlite3 *db; /* The main database structure */ 2923 char *zErrMsg; /* An error message */ 2924 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2925 int rc; /* Return code from execution */ 2926 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2927 u8 checkSchema; /* Causes schema cookie check after an error */ 2928 u8 nested; /* Number of nested calls to the parser/code generator */ 2929 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2930 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2931 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2932 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2933 u8 okConstFactor; /* OK to factor out constants */ 2934 u8 disableLookaside; /* Number of times lookaside has been disabled */ 2935 u8 nColCache; /* Number of entries in aColCache[] */ 2936 int nRangeReg; /* Size of the temporary register block */ 2937 int iRangeReg; /* First register in temporary register block */ 2938 int nErr; /* Number of errors seen */ 2939 int nTab; /* Number of previously allocated VDBE cursors */ 2940 int nMem; /* Number of memory cells used so far */ 2941 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2942 int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ 2943 int ckBase; /* Base register of data during check constraints */ 2944 int iSelfTab; /* Table of an index whose exprs are being coded */ 2945 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2946 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2947 int nLabel; /* Number of labels used */ 2948 int *aLabel; /* Space to hold the labels */ 2949 ExprList *pConstExpr;/* Constant expressions */ 2950 Token constraintName;/* Name of the constraint currently being parsed */ 2951 yDbMask writeMask; /* Start a write transaction on these databases */ 2952 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2953 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2954 int regRoot; /* Register holding root page number for new objects */ 2955 int nMaxArg; /* Max args passed to user function by sub-program */ 2956 #if SELECTTRACE_ENABLED 2957 int nSelect; /* Number of SELECT statements seen */ 2958 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2959 #endif 2960 #ifndef SQLITE_OMIT_SHARED_CACHE 2961 int nTableLock; /* Number of locks in aTableLock */ 2962 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2963 #endif 2964 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2965 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2966 Table *pTriggerTab; /* Table triggers are being coded for */ 2967 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2968 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2969 u32 oldmask; /* Mask of old.* columns referenced */ 2970 u32 newmask; /* Mask of new.* columns referenced */ 2971 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2972 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2973 u8 disableTriggers; /* True to disable triggers */ 2974 2975 /************************************************************************** 2976 ** Fields above must be initialized to zero. The fields that follow, 2977 ** down to the beginning of the recursive section, do not need to be 2978 ** initialized as they will be set before being used. The boundary is 2979 ** determined by offsetof(Parse,aColCache). 2980 **************************************************************************/ 2981 2982 struct yColCache { 2983 int iTable; /* Table cursor number */ 2984 i16 iColumn; /* Table column number */ 2985 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2986 int iLevel; /* Nesting level */ 2987 int iReg; /* Reg with value of this column. 0 means none. */ 2988 int lru; /* Least recently used entry has the smallest value */ 2989 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2990 int aTempReg[8]; /* Holding area for temporary registers */ 2991 Token sNameToken; /* Token with unqualified schema object name */ 2992 2993 /************************************************************************ 2994 ** Above is constant between recursions. Below is reset before and after 2995 ** each recursion. The boundary between these two regions is determined 2996 ** using offsetof(Parse,sLastToken) so the sLastToken field must be the 2997 ** first field in the recursive region. 2998 ************************************************************************/ 2999 3000 Token sLastToken; /* The last token parsed */ 3001 ynVar nVar; /* Number of '?' variables seen in the SQL so far */ 3002 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 3003 u8 explain; /* True if the EXPLAIN flag is found on the query */ 3004 #ifndef SQLITE_OMIT_VIRTUALTABLE 3005 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 3006 int nVtabLock; /* Number of virtual tables to lock */ 3007 #endif 3008 int nHeight; /* Expression tree height of current sub-select */ 3009 #ifndef SQLITE_OMIT_EXPLAIN 3010 int iSelectId; /* ID of current select for EXPLAIN output */ 3011 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 3012 #endif 3013 VList *pVList; /* Mapping between variable names and numbers */ 3014 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 3015 const char *zTail; /* All SQL text past the last semicolon parsed */ 3016 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 3017 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 3018 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 3019 #ifndef SQLITE_OMIT_VIRTUALTABLE 3020 Token sArg; /* Complete text of a module argument */ 3021 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 3022 #endif 3023 Table *pZombieTab; /* List of Table objects to delete after code gen */ 3024 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 3025 With *pWith; /* Current WITH clause, or NULL */ 3026 With *pWithToFree; /* Free this WITH object at the end of the parse */ 3027 }; 3028 3029 /* 3030 ** Sizes and pointers of various parts of the Parse object. 3031 */ 3032 #define PARSE_HDR_SZ offsetof(Parse,aColCache) /* Recursive part w/o aColCache*/ 3033 #define PARSE_RECURSE_SZ offsetof(Parse,sLastToken) /* Recursive part */ 3034 #define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */ 3035 #define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ) /* Pointer to tail */ 3036 3037 /* 3038 ** Return true if currently inside an sqlite3_declare_vtab() call. 3039 */ 3040 #ifdef SQLITE_OMIT_VIRTUALTABLE 3041 #define IN_DECLARE_VTAB 0 3042 #else 3043 #define IN_DECLARE_VTAB (pParse->declareVtab) 3044 #endif 3045 3046 /* 3047 ** An instance of the following structure can be declared on a stack and used 3048 ** to save the Parse.zAuthContext value so that it can be restored later. 3049 */ 3050 struct AuthContext { 3051 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 3052 Parse *pParse; /* The Parse structure */ 3053 }; 3054 3055 /* 3056 ** Bitfield flags for P5 value in various opcodes. 3057 ** 3058 ** Value constraints (enforced via assert()): 3059 ** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH 3060 ** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF 3061 ** OPFLAG_BULKCSR == BTREE_BULKLOAD 3062 ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ 3063 ** OPFLAG_FORDELETE == BTREE_FORDELETE 3064 ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION 3065 ** OPFLAG_AUXDELETE == BTREE_AUXDELETE 3066 */ 3067 #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ 3068 /* Also used in P2 (not P5) of OP_Delete */ 3069 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 3070 #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ 3071 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 3072 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 3073 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 3074 #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ 3075 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 3076 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 3077 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 3078 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 3079 #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ 3080 #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ 3081 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 3082 #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */ 3083 #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ 3084 3085 /* 3086 * Each trigger present in the database schema is stored as an instance of 3087 * struct Trigger. 3088 * 3089 * Pointers to instances of struct Trigger are stored in two ways. 3090 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 3091 * database). This allows Trigger structures to be retrieved by name. 3092 * 2. All triggers associated with a single table form a linked list, using the 3093 * pNext member of struct Trigger. A pointer to the first element of the 3094 * linked list is stored as the "pTrigger" member of the associated 3095 * struct Table. 3096 * 3097 * The "step_list" member points to the first element of a linked list 3098 * containing the SQL statements specified as the trigger program. 3099 */ 3100 struct Trigger { 3101 char *zName; /* The name of the trigger */ 3102 char *table; /* The table or view to which the trigger applies */ 3103 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 3104 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 3105 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 3106 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 3107 the <column-list> is stored here */ 3108 Schema *pSchema; /* Schema containing the trigger */ 3109 Schema *pTabSchema; /* Schema containing the table */ 3110 TriggerStep *step_list; /* Link list of trigger program steps */ 3111 Trigger *pNext; /* Next trigger associated with the table */ 3112 }; 3113 3114 /* 3115 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 3116 ** determine which. 3117 ** 3118 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 3119 ** In that cases, the constants below can be ORed together. 3120 */ 3121 #define TRIGGER_BEFORE 1 3122 #define TRIGGER_AFTER 2 3123 3124 /* 3125 * An instance of struct TriggerStep is used to store a single SQL statement 3126 * that is a part of a trigger-program. 3127 * 3128 * Instances of struct TriggerStep are stored in a singly linked list (linked 3129 * using the "pNext" member) referenced by the "step_list" member of the 3130 * associated struct Trigger instance. The first element of the linked list is 3131 * the first step of the trigger-program. 3132 * 3133 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 3134 * "SELECT" statement. The meanings of the other members is determined by the 3135 * value of "op" as follows: 3136 * 3137 * (op == TK_INSERT) 3138 * orconf -> stores the ON CONFLICT algorithm 3139 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 3140 * this stores a pointer to the SELECT statement. Otherwise NULL. 3141 * zTarget -> Dequoted name of the table to insert into. 3142 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 3143 * this stores values to be inserted. Otherwise NULL. 3144 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 3145 * statement, then this stores the column-names to be 3146 * inserted into. 3147 * 3148 * (op == TK_DELETE) 3149 * zTarget -> Dequoted name of the table to delete from. 3150 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 3151 * Otherwise NULL. 3152 * 3153 * (op == TK_UPDATE) 3154 * zTarget -> Dequoted name of the table to update. 3155 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 3156 * Otherwise NULL. 3157 * pExprList -> A list of the columns to update and the expressions to update 3158 * them to. See sqlite3Update() documentation of "pChanges" 3159 * argument. 3160 * 3161 */ 3162 struct TriggerStep { 3163 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 3164 u8 orconf; /* OE_Rollback etc. */ 3165 Trigger *pTrig; /* The trigger that this step is a part of */ 3166 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 3167 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 3168 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 3169 ExprList *pExprList; /* SET clause for UPDATE. */ 3170 IdList *pIdList; /* Column names for INSERT */ 3171 TriggerStep *pNext; /* Next in the link-list */ 3172 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 3173 }; 3174 3175 /* 3176 ** The following structure contains information used by the sqliteFix... 3177 ** routines as they walk the parse tree to make database references 3178 ** explicit. 3179 */ 3180 typedef struct DbFixer DbFixer; 3181 struct DbFixer { 3182 Parse *pParse; /* The parsing context. Error messages written here */ 3183 Schema *pSchema; /* Fix items to this schema */ 3184 int bVarOnly; /* Check for variable references only */ 3185 const char *zDb; /* Make sure all objects are contained in this database */ 3186 const char *zType; /* Type of the container - used for error messages */ 3187 const Token *pName; /* Name of the container - used for error messages */ 3188 }; 3189 3190 /* 3191 ** An objected used to accumulate the text of a string where we 3192 ** do not necessarily know how big the string will be in the end. 3193 */ 3194 struct StrAccum { 3195 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 3196 char *zBase; /* A base allocation. Not from malloc. */ 3197 char *zText; /* The string collected so far */ 3198 u32 nChar; /* Length of the string so far */ 3199 u32 nAlloc; /* Amount of space allocated in zText */ 3200 u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 3201 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 3202 u8 printfFlags; /* SQLITE_PRINTF flags below */ 3203 }; 3204 #define STRACCUM_NOMEM 1 3205 #define STRACCUM_TOOBIG 2 3206 #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ 3207 #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ 3208 #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ 3209 3210 #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) 3211 3212 3213 /* 3214 ** A pointer to this structure is used to communicate information 3215 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 3216 */ 3217 typedef struct { 3218 sqlite3 *db; /* The database being initialized */ 3219 char **pzErrMsg; /* Error message stored here */ 3220 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 3221 int rc; /* Result code stored here */ 3222 } InitData; 3223 3224 /* 3225 ** Structure containing global configuration data for the SQLite library. 3226 ** 3227 ** This structure also contains some state information. 3228 */ 3229 struct Sqlite3Config { 3230 int bMemstat; /* True to enable memory status */ 3231 int bCoreMutex; /* True to enable core mutexing */ 3232 int bFullMutex; /* True to enable full mutexing */ 3233 int bOpenUri; /* True to interpret filenames as URIs */ 3234 int bUseCis; /* Use covering indices for full-scans */ 3235 int mxStrlen; /* Maximum string length */ 3236 int neverCorrupt; /* Database is always well-formed */ 3237 int szLookaside; /* Default lookaside buffer size */ 3238 int nLookaside; /* Default lookaside buffer count */ 3239 int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ 3240 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 3241 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 3242 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 3243 void *pHeap; /* Heap storage space */ 3244 int nHeap; /* Size of pHeap[] */ 3245 int mnReq, mxReq; /* Min and max heap requests sizes */ 3246 sqlite3_int64 szMmap; /* mmap() space per open file */ 3247 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 3248 void *pScratch; /* Scratch memory */ 3249 int szScratch; /* Size of each scratch buffer */ 3250 int nScratch; /* Number of scratch buffers */ 3251 void *pPage; /* Page cache memory */ 3252 int szPage; /* Size of each page in pPage[] */ 3253 int nPage; /* Number of pages in pPage[] */ 3254 int mxParserStack; /* maximum depth of the parser stack */ 3255 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 3256 u32 szPma; /* Maximum Sorter PMA size */ 3257 /* The above might be initialized to non-zero. The following need to always 3258 ** initially be zero, however. */ 3259 int isInit; /* True after initialization has finished */ 3260 int inProgress; /* True while initialization in progress */ 3261 int isMutexInit; /* True after mutexes are initialized */ 3262 int isMallocInit; /* True after malloc is initialized */ 3263 int isPCacheInit; /* True after malloc is initialized */ 3264 int nRefInitMutex; /* Number of users of pInitMutex */ 3265 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 3266 void (*xLog)(void*,int,const char*); /* Function for logging */ 3267 void *pLogArg; /* First argument to xLog() */ 3268 #ifdef SQLITE_ENABLE_SQLLOG 3269 void(*xSqllog)(void*,sqlite3*,const char*, int); 3270 void *pSqllogArg; 3271 #endif 3272 #ifdef SQLITE_VDBE_COVERAGE 3273 /* The following callback (if not NULL) is invoked on every VDBE branch 3274 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 3275 */ 3276 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 3277 void *pVdbeBranchArg; /* 1st argument */ 3278 #endif 3279 #ifndef SQLITE_UNTESTABLE 3280 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 3281 #endif 3282 int bLocaltimeFault; /* True to fail localtime() calls */ 3283 int iOnceResetThreshold; /* When to reset OP_Once counters */ 3284 }; 3285 3286 /* 3287 ** This macro is used inside of assert() statements to indicate that 3288 ** the assert is only valid on a well-formed database. Instead of: 3289 ** 3290 ** assert( X ); 3291 ** 3292 ** One writes: 3293 ** 3294 ** assert( X || CORRUPT_DB ); 3295 ** 3296 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 3297 ** that the database is definitely corrupt, only that it might be corrupt. 3298 ** For most test cases, CORRUPT_DB is set to false using a special 3299 ** sqlite3_test_control(). This enables assert() statements to prove 3300 ** things that are always true for well-formed databases. 3301 */ 3302 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 3303 3304 /* 3305 ** Context pointer passed down through the tree-walk. 3306 */ 3307 struct Walker { 3308 Parse *pParse; /* Parser context. */ 3309 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 3310 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 3311 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 3312 int walkerDepth; /* Number of subqueries */ 3313 u8 eCode; /* A small processing code */ 3314 union { /* Extra data for callback */ 3315 NameContext *pNC; /* Naming context */ 3316 int n; /* A counter */ 3317 int iCur; /* A cursor number */ 3318 SrcList *pSrcList; /* FROM clause */ 3319 struct SrcCount *pSrcCount; /* Counting column references */ 3320 struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ 3321 int *aiCol; /* array of column indexes */ 3322 struct IdxCover *pIdxCover; /* Check for index coverage */ 3323 } u; 3324 }; 3325 3326 /* Forward declarations */ 3327 int sqlite3WalkExpr(Walker*, Expr*); 3328 int sqlite3WalkExprList(Walker*, ExprList*); 3329 int sqlite3WalkSelect(Walker*, Select*); 3330 int sqlite3WalkSelectExpr(Walker*, Select*); 3331 int sqlite3WalkSelectFrom(Walker*, Select*); 3332 int sqlite3ExprWalkNoop(Walker*, Expr*); 3333 3334 /* 3335 ** Return code from the parse-tree walking primitives and their 3336 ** callbacks. 3337 */ 3338 #define WRC_Continue 0 /* Continue down into children */ 3339 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3340 #define WRC_Abort 2 /* Abandon the tree walk */ 3341 3342 /* 3343 ** An instance of this structure represents a set of one or more CTEs 3344 ** (common table expressions) created by a single WITH clause. 3345 */ 3346 struct With { 3347 int nCte; /* Number of CTEs in the WITH clause */ 3348 With *pOuter; /* Containing WITH clause, or NULL */ 3349 struct Cte { /* For each CTE in the WITH clause.... */ 3350 char *zName; /* Name of this CTE */ 3351 ExprList *pCols; /* List of explicit column names, or NULL */ 3352 Select *pSelect; /* The definition of this CTE */ 3353 const char *zCteErr; /* Error message for circular references */ 3354 } a[1]; 3355 }; 3356 3357 #ifdef SQLITE_DEBUG 3358 /* 3359 ** An instance of the TreeView object is used for printing the content of 3360 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3361 */ 3362 struct TreeView { 3363 int iLevel; /* Which level of the tree we are on */ 3364 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3365 }; 3366 #endif /* SQLITE_DEBUG */ 3367 3368 /* 3369 ** Assuming zIn points to the first byte of a UTF-8 character, 3370 ** advance zIn to point to the first byte of the next UTF-8 character. 3371 */ 3372 #define SQLITE_SKIP_UTF8(zIn) { \ 3373 if( (*(zIn++))>=0xc0 ){ \ 3374 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3375 } \ 3376 } 3377 3378 /* 3379 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3380 ** the same name but without the _BKPT suffix. These macros invoke 3381 ** routines that report the line-number on which the error originated 3382 ** using sqlite3_log(). The routines also provide a convenient place 3383 ** to set a debugger breakpoint. 3384 */ 3385 int sqlite3CorruptError(int); 3386 int sqlite3MisuseError(int); 3387 int sqlite3CantopenError(int); 3388 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3389 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3390 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3391 #ifdef SQLITE_DEBUG 3392 int sqlite3NomemError(int); 3393 int sqlite3IoerrnomemError(int); 3394 # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__) 3395 # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__) 3396 #else 3397 # define SQLITE_NOMEM_BKPT SQLITE_NOMEM 3398 # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM 3399 #endif 3400 3401 /* 3402 ** FTS3 and FTS4 both require virtual table support 3403 */ 3404 #if defined(SQLITE_OMIT_VIRTUALTABLE) 3405 # undef SQLITE_ENABLE_FTS3 3406 # undef SQLITE_ENABLE_FTS4 3407 #endif 3408 3409 /* 3410 ** FTS4 is really an extension for FTS3. It is enabled using the 3411 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3412 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3413 */ 3414 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3415 # define SQLITE_ENABLE_FTS3 1 3416 #endif 3417 3418 /* 3419 ** The ctype.h header is needed for non-ASCII systems. It is also 3420 ** needed by FTS3 when FTS3 is included in the amalgamation. 3421 */ 3422 #if !defined(SQLITE_ASCII) || \ 3423 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3424 # include <ctype.h> 3425 #endif 3426 3427 /* 3428 ** The following macros mimic the standard library functions toupper(), 3429 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3430 ** sqlite versions only work for ASCII characters, regardless of locale. 3431 */ 3432 #ifdef SQLITE_ASCII 3433 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3434 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3435 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3436 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3437 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3438 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3439 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3440 # define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80) 3441 #else 3442 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3443 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3444 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3445 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3446 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3447 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3448 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3449 # define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`') 3450 #endif 3451 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3452 int sqlite3IsIdChar(u8); 3453 #endif 3454 3455 /* 3456 ** Internal function prototypes 3457 */ 3458 int sqlite3StrICmp(const char*,const char*); 3459 int sqlite3Strlen30(const char*); 3460 char *sqlite3ColumnType(Column*,char*); 3461 #define sqlite3StrNICmp sqlite3_strnicmp 3462 3463 int sqlite3MallocInit(void); 3464 void sqlite3MallocEnd(void); 3465 void *sqlite3Malloc(u64); 3466 void *sqlite3MallocZero(u64); 3467 void *sqlite3DbMallocZero(sqlite3*, u64); 3468 void *sqlite3DbMallocRaw(sqlite3*, u64); 3469 void *sqlite3DbMallocRawNN(sqlite3*, u64); 3470 char *sqlite3DbStrDup(sqlite3*,const char*); 3471 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3472 void *sqlite3Realloc(void*, u64); 3473 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3474 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3475 void sqlite3DbFree(sqlite3*, void*); 3476 int sqlite3MallocSize(void*); 3477 int sqlite3DbMallocSize(sqlite3*, void*); 3478 void *sqlite3ScratchMalloc(int); 3479 void sqlite3ScratchFree(void*); 3480 void *sqlite3PageMalloc(int); 3481 void sqlite3PageFree(void*); 3482 void sqlite3MemSetDefault(void); 3483 #ifndef SQLITE_UNTESTABLE 3484 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3485 #endif 3486 int sqlite3HeapNearlyFull(void); 3487 3488 /* 3489 ** On systems with ample stack space and that support alloca(), make 3490 ** use of alloca() to obtain space for large automatic objects. By default, 3491 ** obtain space from malloc(). 3492 ** 3493 ** The alloca() routine never returns NULL. This will cause code paths 3494 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3495 */ 3496 #ifdef SQLITE_USE_ALLOCA 3497 # define sqlite3StackAllocRaw(D,N) alloca(N) 3498 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3499 # define sqlite3StackFree(D,P) 3500 #else 3501 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3502 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3503 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3504 #endif 3505 3506 /* Do not allow both MEMSYS5 and MEMSYS3 to be defined together. If they 3507 ** are, disable MEMSYS3 3508 */ 3509 #ifdef SQLITE_ENABLE_MEMSYS5 3510 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3511 #undef SQLITE_ENABLE_MEMSYS3 3512 #endif 3513 #ifdef SQLITE_ENABLE_MEMSYS3 3514 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3515 #endif 3516 3517 3518 #ifndef SQLITE_MUTEX_OMIT 3519 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3520 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3521 sqlite3_mutex *sqlite3MutexAlloc(int); 3522 int sqlite3MutexInit(void); 3523 int sqlite3MutexEnd(void); 3524 #endif 3525 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) 3526 void sqlite3MemoryBarrier(void); 3527 #else 3528 # define sqlite3MemoryBarrier() 3529 #endif 3530 3531 sqlite3_int64 sqlite3StatusValue(int); 3532 void sqlite3StatusUp(int, int); 3533 void sqlite3StatusDown(int, int); 3534 void sqlite3StatusHighwater(int, int); 3535 3536 /* Access to mutexes used by sqlite3_status() */ 3537 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3538 sqlite3_mutex *sqlite3MallocMutex(void); 3539 3540 #ifndef SQLITE_OMIT_FLOATING_POINT 3541 int sqlite3IsNaN(double); 3542 #else 3543 # define sqlite3IsNaN(X) 0 3544 #endif 3545 3546 /* 3547 ** An instance of the following structure holds information about SQL 3548 ** functions arguments that are the parameters to the printf() function. 3549 */ 3550 struct PrintfArguments { 3551 int nArg; /* Total number of arguments */ 3552 int nUsed; /* Number of arguments used so far */ 3553 sqlite3_value **apArg; /* The argument values */ 3554 }; 3555 3556 void sqlite3VXPrintf(StrAccum*, const char*, va_list); 3557 void sqlite3XPrintf(StrAccum*, const char*, ...); 3558 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3559 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3560 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3561 void sqlite3DebugPrintf(const char*, ...); 3562 #endif 3563 #if defined(SQLITE_TEST) 3564 void *sqlite3TestTextToPtr(const char*); 3565 #endif 3566 3567 #if defined(SQLITE_DEBUG) 3568 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3569 void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*); 3570 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3571 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3572 void sqlite3TreeViewWith(TreeView*, const With*, u8); 3573 #endif 3574 3575 3576 void sqlite3SetString(char **, sqlite3*, const char*); 3577 void sqlite3ErrorMsg(Parse*, const char*, ...); 3578 void sqlite3Dequote(char*); 3579 void sqlite3TokenInit(Token*,char*); 3580 int sqlite3KeywordCode(const unsigned char*, int); 3581 int sqlite3RunParser(Parse*, const char*, char **); 3582 void sqlite3FinishCoding(Parse*); 3583 int sqlite3GetTempReg(Parse*); 3584 void sqlite3ReleaseTempReg(Parse*,int); 3585 int sqlite3GetTempRange(Parse*,int); 3586 void sqlite3ReleaseTempRange(Parse*,int,int); 3587 void sqlite3ClearTempRegCache(Parse*); 3588 #ifdef SQLITE_DEBUG 3589 int sqlite3NoTempsInRange(Parse*,int,int); 3590 #endif 3591 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3592 Expr *sqlite3Expr(sqlite3*,int,const char*); 3593 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3594 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*); 3595 void sqlite3PExprAddSelect(Parse*, Expr*, Select*); 3596 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3597 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3598 void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32); 3599 void sqlite3ExprDelete(sqlite3*, Expr*); 3600 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3601 ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*); 3602 void sqlite3ExprListSetSortOrder(ExprList*,int); 3603 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3604 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3605 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3606 u32 sqlite3ExprListFlags(const ExprList*); 3607 int sqlite3Init(sqlite3*, char**); 3608 int sqlite3InitCallback(void*, int, char**, char**); 3609 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3610 #ifndef SQLITE_OMIT_VIRTUALTABLE 3611 Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName); 3612 #endif 3613 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3614 void sqlite3ResetOneSchema(sqlite3*,int); 3615 void sqlite3CollapseDatabaseArray(sqlite3*); 3616 void sqlite3CommitInternalChanges(sqlite3*); 3617 void sqlite3DeleteColumnNames(sqlite3*,Table*); 3618 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 3619 void sqlite3SelectAddColumnTypeAndCollation(Parse*,Table*,Select*); 3620 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3621 void sqlite3OpenMasterTable(Parse *, int); 3622 Index *sqlite3PrimaryKeyIndex(Table*); 3623 i16 sqlite3ColumnOfIndex(Index*, i16); 3624 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3625 #if SQLITE_ENABLE_HIDDEN_COLUMNS 3626 void sqlite3ColumnPropertiesFromName(Table*, Column*); 3627 #else 3628 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ 3629 #endif 3630 void sqlite3AddColumn(Parse*,Token*,Token*); 3631 void sqlite3AddNotNull(Parse*, int); 3632 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3633 void sqlite3AddCheckConstraint(Parse*, Expr*); 3634 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3635 void sqlite3AddCollateType(Parse*, Token*); 3636 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3637 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3638 sqlite3_vfs**,char**,char **); 3639 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3640 3641 #ifdef SQLITE_UNTESTABLE 3642 # define sqlite3FaultSim(X) SQLITE_OK 3643 #else 3644 int sqlite3FaultSim(int); 3645 #endif 3646 3647 Bitvec *sqlite3BitvecCreate(u32); 3648 int sqlite3BitvecTest(Bitvec*, u32); 3649 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3650 int sqlite3BitvecSet(Bitvec*, u32); 3651 void sqlite3BitvecClear(Bitvec*, u32, void*); 3652 void sqlite3BitvecDestroy(Bitvec*); 3653 u32 sqlite3BitvecSize(Bitvec*); 3654 #ifndef SQLITE_UNTESTABLE 3655 int sqlite3BitvecBuiltinTest(int,int*); 3656 #endif 3657 3658 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3659 void sqlite3RowSetClear(RowSet*); 3660 void sqlite3RowSetInsert(RowSet*, i64); 3661 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3662 int sqlite3RowSetNext(RowSet*, i64*); 3663 3664 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 3665 3666 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3667 int sqlite3ViewGetColumnNames(Parse*,Table*); 3668 #else 3669 # define sqlite3ViewGetColumnNames(A,B) 0 3670 #endif 3671 3672 #if SQLITE_MAX_ATTACHED>30 3673 int sqlite3DbMaskAllZero(yDbMask); 3674 #endif 3675 void sqlite3DropTable(Parse*, SrcList*, int, int); 3676 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3677 void sqlite3DeleteTable(sqlite3*, Table*); 3678 #ifndef SQLITE_OMIT_AUTOINCREMENT 3679 void sqlite3AutoincrementBegin(Parse *pParse); 3680 void sqlite3AutoincrementEnd(Parse *pParse); 3681 #else 3682 # define sqlite3AutoincrementBegin(X) 3683 # define sqlite3AutoincrementEnd(X) 3684 #endif 3685 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3686 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3687 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3688 int sqlite3IdListIndex(IdList*,const char*); 3689 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3690 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3691 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3692 Token*, Select*, Expr*, IdList*); 3693 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3694 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 3695 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3696 void sqlite3SrcListShiftJoinType(SrcList*); 3697 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3698 void sqlite3IdListDelete(sqlite3*, IdList*); 3699 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3700 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3701 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3702 Expr*, int, int, u8); 3703 void sqlite3DropIndex(Parse*, SrcList*, int); 3704 int sqlite3Select(Parse*, Select*, SelectDest*); 3705 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3706 Expr*,ExprList*,u32,Expr*,Expr*); 3707 void sqlite3SelectDelete(sqlite3*, Select*); 3708 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3709 int sqlite3IsReadOnly(Parse*, Table*, int); 3710 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3711 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3712 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3713 #endif 3714 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3715 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3716 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3717 void sqlite3WhereEnd(WhereInfo*); 3718 LogEst sqlite3WhereOutputRowCount(WhereInfo*); 3719 int sqlite3WhereIsDistinct(WhereInfo*); 3720 int sqlite3WhereIsOrdered(WhereInfo*); 3721 int sqlite3WhereOrderedInnerLoop(WhereInfo*); 3722 int sqlite3WhereIsSorted(WhereInfo*); 3723 int sqlite3WhereContinueLabel(WhereInfo*); 3724 int sqlite3WhereBreakLabel(WhereInfo*); 3725 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3726 #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ 3727 #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ 3728 #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ 3729 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 3730 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3731 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int); 3732 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3733 void sqlite3ExprCodeMove(Parse*, int, int, int); 3734 void sqlite3ExprCacheStore(Parse*, int, int, int); 3735 void sqlite3ExprCachePush(Parse*); 3736 void sqlite3ExprCachePop(Parse*); 3737 void sqlite3ExprCacheRemove(Parse*, int, int); 3738 void sqlite3ExprCacheClear(Parse*); 3739 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3740 void sqlite3ExprCode(Parse*, Expr*, int); 3741 void sqlite3ExprCodeCopy(Parse*, Expr*, int); 3742 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3743 int sqlite3ExprCodeAtInit(Parse*, Expr*, int); 3744 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3745 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3746 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3747 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 3748 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3749 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3750 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 3751 #define SQLITE_ECEL_OMITREF 0x08 /* Omit if ExprList.u.x.iOrderByCol */ 3752 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3753 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3754 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3755 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3756 #define LOCATE_VIEW 0x01 3757 #define LOCATE_NOERR 0x02 3758 Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*); 3759 Table *sqlite3LocateTableItem(Parse*,u32 flags,struct SrcList_item *); 3760 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3761 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3762 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3763 void sqlite3Vacuum(Parse*,Token*); 3764 int sqlite3RunVacuum(char**, sqlite3*, int); 3765 char *sqlite3NameFromToken(sqlite3*, Token*); 3766 int sqlite3ExprCompare(Expr*, Expr*, int); 3767 int sqlite3ExprCompareSkip(Expr*, Expr*, int); 3768 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3769 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3770 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3771 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3772 int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); 3773 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3774 Vdbe *sqlite3GetVdbe(Parse*); 3775 #ifndef SQLITE_UNTESTABLE 3776 void sqlite3PrngSaveState(void); 3777 void sqlite3PrngRestoreState(void); 3778 #endif 3779 void sqlite3RollbackAll(sqlite3*,int); 3780 void sqlite3CodeVerifySchema(Parse*, int); 3781 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3782 void sqlite3BeginTransaction(Parse*, int); 3783 void sqlite3CommitTransaction(Parse*); 3784 void sqlite3RollbackTransaction(Parse*); 3785 void sqlite3Savepoint(Parse*, int, Token*); 3786 void sqlite3CloseSavepoints(sqlite3 *); 3787 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3788 int sqlite3ExprIsConstant(Expr*); 3789 int sqlite3ExprIsConstantNotJoin(Expr*); 3790 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3791 int sqlite3ExprIsTableConstant(Expr*,int); 3792 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3793 int sqlite3ExprContainsSubquery(Expr*); 3794 #endif 3795 int sqlite3ExprIsInteger(Expr*, int*); 3796 int sqlite3ExprCanBeNull(const Expr*); 3797 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3798 int sqlite3IsRowid(const char*); 3799 void sqlite3GenerateRowDelete( 3800 Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); 3801 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); 3802 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3803 void sqlite3ResolvePartIdxLabel(Parse*,int); 3804 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3805 u8,u8,int,int*,int*); 3806 #ifdef SQLITE_ENABLE_NULL_TRIM 3807 void sqlite3SetMakeRecordP5(Vdbe*,Table*); 3808 #else 3809 # define sqlite3SetMakeRecordP5(A,B) 3810 #endif 3811 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3812 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); 3813 void sqlite3BeginWriteOperation(Parse*, int, int); 3814 void sqlite3MultiWrite(Parse*); 3815 void sqlite3MayAbort(Parse*); 3816 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3817 void sqlite3UniqueConstraint(Parse*, int, Index*); 3818 void sqlite3RowidConstraint(Parse*, int, Table*); 3819 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3820 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3821 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3822 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3823 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3824 #if SELECTTRACE_ENABLED 3825 void sqlite3SelectSetName(Select*,const char*); 3826 #else 3827 # define sqlite3SelectSetName(A,B) 3828 #endif 3829 void sqlite3InsertBuiltinFuncs(FuncDef*,int); 3830 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); 3831 void sqlite3RegisterBuiltinFunctions(void); 3832 void sqlite3RegisterDateTimeFunctions(void); 3833 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); 3834 int sqlite3SafetyCheckOk(sqlite3*); 3835 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3836 void sqlite3ChangeCookie(Parse*, int); 3837 3838 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3839 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3840 #endif 3841 3842 #ifndef SQLITE_OMIT_TRIGGER 3843 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3844 Expr*,int, int); 3845 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3846 void sqlite3DropTrigger(Parse*, SrcList*, int); 3847 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3848 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3849 Trigger *sqlite3TriggerList(Parse *, Table *); 3850 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3851 int, int, int); 3852 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3853 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3854 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3855 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3856 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3857 Select*,u8); 3858 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3859 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3860 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3861 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3862 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3863 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3864 # define sqlite3IsToplevel(p) ((p)->pToplevel==0) 3865 #else 3866 # define sqlite3TriggersExist(B,C,D,E,F) 0 3867 # define sqlite3DeleteTrigger(A,B) 3868 # define sqlite3DropTriggerPtr(A,B) 3869 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3870 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3871 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3872 # define sqlite3TriggerList(X, Y) 0 3873 # define sqlite3ParseToplevel(p) p 3874 # define sqlite3IsToplevel(p) 1 3875 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3876 #endif 3877 3878 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3879 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3880 void sqlite3DeferForeignKey(Parse*, int); 3881 #ifndef SQLITE_OMIT_AUTHORIZATION 3882 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3883 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3884 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3885 void sqlite3AuthContextPop(AuthContext*); 3886 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3887 #else 3888 # define sqlite3AuthRead(a,b,c,d) 3889 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3890 # define sqlite3AuthContextPush(a,b,c) 3891 # define sqlite3AuthContextPop(a) ((void)(a)) 3892 #endif 3893 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3894 void sqlite3Detach(Parse*, Expr*); 3895 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3896 int sqlite3FixSrcList(DbFixer*, SrcList*); 3897 int sqlite3FixSelect(DbFixer*, Select*); 3898 int sqlite3FixExpr(DbFixer*, Expr*); 3899 int sqlite3FixExprList(DbFixer*, ExprList*); 3900 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3901 int sqlite3AtoF(const char *z, double*, int, u8); 3902 int sqlite3GetInt32(const char *, int*); 3903 int sqlite3Atoi(const char*); 3904 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3905 int sqlite3Utf8CharLen(const char *pData, int nByte); 3906 u32 sqlite3Utf8Read(const u8**); 3907 LogEst sqlite3LogEst(u64); 3908 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3909 #ifndef SQLITE_OMIT_VIRTUALTABLE 3910 LogEst sqlite3LogEstFromDouble(double); 3911 #endif 3912 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 3913 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 3914 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 3915 u64 sqlite3LogEstToInt(LogEst); 3916 #endif 3917 VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int); 3918 const char *sqlite3VListNumToName(VList*,int); 3919 int sqlite3VListNameToNum(VList*,const char*,int); 3920 3921 /* 3922 ** Routines to read and write variable-length integers. These used to 3923 ** be defined locally, but now we use the varint routines in the util.c 3924 ** file. 3925 */ 3926 int sqlite3PutVarint(unsigned char*, u64); 3927 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3928 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3929 int sqlite3VarintLen(u64 v); 3930 3931 /* 3932 ** The common case is for a varint to be a single byte. They following 3933 ** macros handle the common case without a procedure call, but then call 3934 ** the procedure for larger varints. 3935 */ 3936 #define getVarint32(A,B) \ 3937 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3938 #define putVarint32(A,B) \ 3939 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3940 sqlite3PutVarint((A),(B))) 3941 #define getVarint sqlite3GetVarint 3942 #define putVarint sqlite3PutVarint 3943 3944 3945 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 3946 void sqlite3TableAffinity(Vdbe*, Table*, int); 3947 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3948 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3949 char sqlite3TableColumnAffinity(Table*,int); 3950 char sqlite3ExprAffinity(Expr *pExpr); 3951 int sqlite3Atoi64(const char*, i64*, int, u8); 3952 int sqlite3DecOrHexToI64(const char*, i64*); 3953 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3954 void sqlite3Error(sqlite3*,int); 3955 void sqlite3SystemError(sqlite3*,int); 3956 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3957 u8 sqlite3HexToInt(int h); 3958 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3959 3960 #if defined(SQLITE_NEED_ERR_NAME) 3961 const char *sqlite3ErrName(int); 3962 #endif 3963 3964 const char *sqlite3ErrStr(int); 3965 int sqlite3ReadSchema(Parse *pParse); 3966 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3967 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3968 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3969 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3970 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3971 Expr *sqlite3ExprSkipCollate(Expr*); 3972 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3973 int sqlite3CheckObjectName(Parse *, const char *); 3974 void sqlite3VdbeSetChanges(sqlite3 *, int); 3975 int sqlite3AddInt64(i64*,i64); 3976 int sqlite3SubInt64(i64*,i64); 3977 int sqlite3MulInt64(i64*,i64); 3978 int sqlite3AbsInt32(int); 3979 #ifdef SQLITE_ENABLE_8_3_NAMES 3980 void sqlite3FileSuffix3(const char*, char*); 3981 #else 3982 # define sqlite3FileSuffix3(X,Y) 3983 #endif 3984 u8 sqlite3GetBoolean(const char *z,u8); 3985 3986 const void *sqlite3ValueText(sqlite3_value*, u8); 3987 int sqlite3ValueBytes(sqlite3_value*, u8); 3988 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3989 void(*)(void*)); 3990 void sqlite3ValueSetNull(sqlite3_value*); 3991 void sqlite3ValueFree(sqlite3_value*); 3992 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3993 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3994 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3995 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3996 #ifndef SQLITE_AMALGAMATION 3997 extern const unsigned char sqlite3OpcodeProperty[]; 3998 extern const char sqlite3StrBINARY[]; 3999 extern const unsigned char sqlite3UpperToLower[]; 4000 extern const unsigned char sqlite3CtypeMap[]; 4001 extern const Token sqlite3IntTokens[]; 4002 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 4003 extern FuncDefHash sqlite3BuiltinFunctions; 4004 #ifndef SQLITE_OMIT_WSD 4005 extern int sqlite3PendingByte; 4006 #endif 4007 #endif 4008 void sqlite3RootPageMoved(sqlite3*, int, int, int); 4009 void sqlite3Reindex(Parse*, Token*, Token*); 4010 void sqlite3AlterFunctions(void); 4011 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 4012 int sqlite3GetToken(const unsigned char *, int *); 4013 void sqlite3NestedParse(Parse*, const char*, ...); 4014 void sqlite3ExpirePreparedStatements(sqlite3*); 4015 int sqlite3CodeSubselect(Parse*, Expr *, int, int); 4016 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 4017 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 4018 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 4019 int sqlite3ResolveExprNames(NameContext*, Expr*); 4020 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 4021 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 4022 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 4023 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 4024 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 4025 void sqlite3AlterFinishAddColumn(Parse *, Token *); 4026 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 4027 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 4028 char sqlite3AffinityType(const char*, u8*); 4029 void sqlite3Analyze(Parse*, Token*, Token*); 4030 int sqlite3InvokeBusyHandler(BusyHandler*); 4031 int sqlite3FindDb(sqlite3*, Token*); 4032 int sqlite3FindDbName(sqlite3 *, const char *); 4033 int sqlite3AnalysisLoad(sqlite3*,int iDB); 4034 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 4035 void sqlite3DefaultRowEst(Index*); 4036 void sqlite3RegisterLikeFunctions(sqlite3*, int); 4037 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 4038 void sqlite3SchemaClear(void *); 4039 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 4040 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 4041 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 4042 void sqlite3KeyInfoUnref(KeyInfo*); 4043 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 4044 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 4045 #ifdef SQLITE_DEBUG 4046 int sqlite3KeyInfoIsWriteable(KeyInfo*); 4047 #endif 4048 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 4049 void (*)(sqlite3_context*,int,sqlite3_value **), 4050 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 4051 FuncDestructor *pDestructor 4052 ); 4053 void sqlite3OomFault(sqlite3*); 4054 void sqlite3OomClear(sqlite3*); 4055 int sqlite3ApiExit(sqlite3 *db, int); 4056 int sqlite3OpenTempDatabase(Parse *); 4057 4058 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 4059 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 4060 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 4061 void sqlite3AppendChar(StrAccum*,int,char); 4062 char *sqlite3StrAccumFinish(StrAccum*); 4063 void sqlite3StrAccumReset(StrAccum*); 4064 void sqlite3SelectDestInit(SelectDest*,int,int); 4065 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 4066 4067 void sqlite3BackupRestart(sqlite3_backup *); 4068 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 4069 4070 #ifndef SQLITE_OMIT_SUBQUERY 4071 int sqlite3ExprCheckIN(Parse*, Expr*); 4072 #else 4073 # define sqlite3ExprCheckIN(x,y) SQLITE_OK 4074 #endif 4075 4076 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4077 void sqlite3AnalyzeFunctions(void); 4078 int sqlite3Stat4ProbeSetValue( 4079 Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*); 4080 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 4081 void sqlite3Stat4ProbeFree(UnpackedRecord*); 4082 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 4083 char sqlite3IndexColumnAffinity(sqlite3*, Index*, int); 4084 #endif 4085 4086 /* 4087 ** The interface to the LEMON-generated parser 4088 */ 4089 #ifndef SQLITE_AMALGAMATION 4090 void *sqlite3ParserAlloc(void*(*)(u64)); 4091 void sqlite3ParserFree(void*, void(*)(void*)); 4092 #endif 4093 void sqlite3Parser(void*, int, Token, Parse*); 4094 #ifdef YYTRACKMAXSTACKDEPTH 4095 int sqlite3ParserStackPeak(void*); 4096 #endif 4097 4098 void sqlite3AutoLoadExtensions(sqlite3*); 4099 #ifndef SQLITE_OMIT_LOAD_EXTENSION 4100 void sqlite3CloseExtensions(sqlite3*); 4101 #else 4102 # define sqlite3CloseExtensions(X) 4103 #endif 4104 4105 #ifndef SQLITE_OMIT_SHARED_CACHE 4106 void sqlite3TableLock(Parse *, int, int, u8, const char *); 4107 #else 4108 #define sqlite3TableLock(v,w,x,y,z) 4109 #endif 4110 4111 #ifdef SQLITE_TEST 4112 int sqlite3Utf8To8(unsigned char*); 4113 #endif 4114 4115 #ifdef SQLITE_OMIT_VIRTUALTABLE 4116 # define sqlite3VtabClear(Y) 4117 # define sqlite3VtabSync(X,Y) SQLITE_OK 4118 # define sqlite3VtabRollback(X) 4119 # define sqlite3VtabCommit(X) 4120 # define sqlite3VtabInSync(db) 0 4121 # define sqlite3VtabLock(X) 4122 # define sqlite3VtabUnlock(X) 4123 # define sqlite3VtabUnlockList(X) 4124 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 4125 # define sqlite3GetVTable(X,Y) ((VTable*)0) 4126 #else 4127 void sqlite3VtabClear(sqlite3 *db, Table*); 4128 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 4129 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 4130 int sqlite3VtabRollback(sqlite3 *db); 4131 int sqlite3VtabCommit(sqlite3 *db); 4132 void sqlite3VtabLock(VTable *); 4133 void sqlite3VtabUnlock(VTable *); 4134 void sqlite3VtabUnlockList(sqlite3*); 4135 int sqlite3VtabSavepoint(sqlite3 *, int, int); 4136 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 4137 VTable *sqlite3GetVTable(sqlite3*, Table*); 4138 Module *sqlite3VtabCreateModule( 4139 sqlite3*, 4140 const char*, 4141 const sqlite3_module*, 4142 void*, 4143 void(*)(void*) 4144 ); 4145 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 4146 #endif 4147 int sqlite3VtabEponymousTableInit(Parse*,Module*); 4148 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 4149 void sqlite3VtabMakeWritable(Parse*,Table*); 4150 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 4151 void sqlite3VtabFinishParse(Parse*, Token*); 4152 void sqlite3VtabArgInit(Parse*); 4153 void sqlite3VtabArgExtend(Parse*, Token*); 4154 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 4155 int sqlite3VtabCallConnect(Parse*, Table*); 4156 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 4157 int sqlite3VtabBegin(sqlite3 *, VTable *); 4158 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 4159 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 4160 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 4161 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 4162 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 4163 void sqlite3ParserReset(Parse*); 4164 int sqlite3Reprepare(Vdbe*); 4165 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 4166 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 4167 int sqlite3TempInMemory(const sqlite3*); 4168 const char *sqlite3JournalModename(int); 4169 #ifndef SQLITE_OMIT_WAL 4170 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 4171 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 4172 #endif 4173 #ifndef SQLITE_OMIT_CTE 4174 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 4175 void sqlite3WithDelete(sqlite3*,With*); 4176 void sqlite3WithPush(Parse*, With*, u8); 4177 #else 4178 #define sqlite3WithPush(x,y,z) 4179 #define sqlite3WithDelete(x,y) 4180 #endif 4181 4182 /* Declarations for functions in fkey.c. All of these are replaced by 4183 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 4184 ** key functionality is available. If OMIT_TRIGGER is defined but 4185 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 4186 ** this case foreign keys are parsed, but no other functionality is 4187 ** provided (enforcement of FK constraints requires the triggers sub-system). 4188 */ 4189 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 4190 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 4191 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 4192 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 4193 int sqlite3FkRequired(Parse*, Table*, int*, int); 4194 u32 sqlite3FkOldmask(Parse*, Table*); 4195 FKey *sqlite3FkReferences(Table *); 4196 #else 4197 #define sqlite3FkActions(a,b,c,d,e,f) 4198 #define sqlite3FkCheck(a,b,c,d,e,f) 4199 #define sqlite3FkDropTable(a,b,c) 4200 #define sqlite3FkOldmask(a,b) 0 4201 #define sqlite3FkRequired(a,b,c,d) 0 4202 #define sqlite3FkReferences(a) 0 4203 #endif 4204 #ifndef SQLITE_OMIT_FOREIGN_KEY 4205 void sqlite3FkDelete(sqlite3 *, Table*); 4206 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 4207 #else 4208 #define sqlite3FkDelete(a,b) 4209 #define sqlite3FkLocateIndex(a,b,c,d,e) 4210 #endif 4211 4212 4213 /* 4214 ** Available fault injectors. Should be numbered beginning with 0. 4215 */ 4216 #define SQLITE_FAULTINJECTOR_MALLOC 0 4217 #define SQLITE_FAULTINJECTOR_COUNT 1 4218 4219 /* 4220 ** The interface to the code in fault.c used for identifying "benign" 4221 ** malloc failures. This is only present if SQLITE_UNTESTABLE 4222 ** is not defined. 4223 */ 4224 #ifndef SQLITE_UNTESTABLE 4225 void sqlite3BeginBenignMalloc(void); 4226 void sqlite3EndBenignMalloc(void); 4227 #else 4228 #define sqlite3BeginBenignMalloc() 4229 #define sqlite3EndBenignMalloc() 4230 #endif 4231 4232 /* 4233 ** Allowed return values from sqlite3FindInIndex() 4234 */ 4235 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 4236 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 4237 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 4238 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 4239 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 4240 /* 4241 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 4242 */ 4243 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 4244 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 4245 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 4246 int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*); 4247 4248 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 4249 int sqlite3JournalSize(sqlite3_vfs *); 4250 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4251 int sqlite3JournalCreate(sqlite3_file *); 4252 #endif 4253 4254 int sqlite3JournalIsInMemory(sqlite3_file *p); 4255 void sqlite3MemJournalOpen(sqlite3_file *); 4256 4257 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 4258 #if SQLITE_MAX_EXPR_DEPTH>0 4259 int sqlite3SelectExprHeight(Select *); 4260 int sqlite3ExprCheckHeight(Parse*, int); 4261 #else 4262 #define sqlite3SelectExprHeight(x) 0 4263 #define sqlite3ExprCheckHeight(x,y) 4264 #endif 4265 4266 u32 sqlite3Get4byte(const u8*); 4267 void sqlite3Put4byte(u8*, u32); 4268 4269 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 4270 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 4271 void sqlite3ConnectionUnlocked(sqlite3 *db); 4272 void sqlite3ConnectionClosed(sqlite3 *db); 4273 #else 4274 #define sqlite3ConnectionBlocked(x,y) 4275 #define sqlite3ConnectionUnlocked(x) 4276 #define sqlite3ConnectionClosed(x) 4277 #endif 4278 4279 #ifdef SQLITE_DEBUG 4280 void sqlite3ParserTrace(FILE*, char *); 4281 #endif 4282 4283 /* 4284 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 4285 ** sqlite3IoTrace is a pointer to a printf-like routine used to 4286 ** print I/O tracing messages. 4287 */ 4288 #ifdef SQLITE_ENABLE_IOTRACE 4289 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 4290 void sqlite3VdbeIOTraceSql(Vdbe*); 4291 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 4292 #else 4293 # define IOTRACE(A) 4294 # define sqlite3VdbeIOTraceSql(X) 4295 #endif 4296 4297 /* 4298 ** These routines are available for the mem2.c debugging memory allocator 4299 ** only. They are used to verify that different "types" of memory 4300 ** allocations are properly tracked by the system. 4301 ** 4302 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 4303 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 4304 ** a single bit set. 4305 ** 4306 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 4307 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4308 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 4309 ** 4310 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 4311 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4312 ** 4313 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 4314 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 4315 ** it might have been allocated by lookaside, except the allocation was 4316 ** too large or lookaside was already full. It is important to verify 4317 ** that allocations that might have been satisfied by lookaside are not 4318 ** passed back to non-lookaside free() routines. Asserts such as the 4319 ** example above are placed on the non-lookaside free() routines to verify 4320 ** this constraint. 4321 ** 4322 ** All of this is no-op for a production build. It only comes into 4323 ** play when the SQLITE_MEMDEBUG compile-time option is used. 4324 */ 4325 #ifdef SQLITE_MEMDEBUG 4326 void sqlite3MemdebugSetType(void*,u8); 4327 int sqlite3MemdebugHasType(void*,u8); 4328 int sqlite3MemdebugNoType(void*,u8); 4329 #else 4330 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 4331 # define sqlite3MemdebugHasType(X,Y) 1 4332 # define sqlite3MemdebugNoType(X,Y) 1 4333 #endif 4334 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 4335 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 4336 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 4337 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 4338 4339 /* 4340 ** Threading interface 4341 */ 4342 #if SQLITE_MAX_WORKER_THREADS>0 4343 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 4344 int sqlite3ThreadJoin(SQLiteThread*, void**); 4345 #endif 4346 4347 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 4348 int sqlite3DbstatRegister(sqlite3*); 4349 #endif 4350 4351 int sqlite3ExprVectorSize(Expr *pExpr); 4352 int sqlite3ExprIsVector(Expr *pExpr); 4353 Expr *sqlite3VectorFieldSubexpr(Expr*, int); 4354 Expr *sqlite3ExprForVectorField(Parse*,Expr*,int); 4355 void sqlite3VectorErrorMsg(Parse*, Expr*); 4356 4357 #endif /* SQLITEINT_H */ 4358