1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.550 2007/04/06 11:26:00 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 #if defined(SQLITE_TCL) || defined(TCLSH) 20 # include <tcl.h> 21 #endif 22 23 /* 24 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 25 ** Setting NDEBUG makes the code smaller and run faster. So the following 26 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 27 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 28 ** feature. 29 */ 30 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 31 # define NDEBUG 1 32 #endif 33 34 /* 35 ** These #defines should enable >2GB file support on Posix if the 36 ** underlying operating system supports it. If the OS lacks 37 ** large file support, or if the OS is windows, these should be no-ops. 38 ** 39 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 40 ** on the compiler command line. This is necessary if you are compiling 41 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 42 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 43 ** without this option, LFS is enable. But LFS does not exist in the kernel 44 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 45 ** portability you should omit LFS. 46 ** 47 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 48 */ 49 #ifndef SQLITE_DISABLE_LFS 50 # define _LARGE_FILE 1 51 # ifndef _FILE_OFFSET_BITS 52 # define _FILE_OFFSET_BITS 64 53 # endif 54 # define _LARGEFILE_SOURCE 1 55 #endif 56 57 #include "sqlite3.h" 58 #include "hash.h" 59 #include "parse.h" 60 #include <stdio.h> 61 #include <stdlib.h> 62 #include <string.h> 63 #include <assert.h> 64 #include <stddef.h> 65 66 /* 67 ** If compiling for a processor that lacks floating point support, 68 ** substitute integer for floating-point 69 */ 70 #ifdef SQLITE_OMIT_FLOATING_POINT 71 # define double sqlite_int64 72 # define LONGDOUBLE_TYPE sqlite_int64 73 # ifndef SQLITE_BIG_DBL 74 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 75 # endif 76 # define SQLITE_OMIT_DATETIME_FUNCS 1 77 # define SQLITE_OMIT_TRACE 1 78 #endif 79 #ifndef SQLITE_BIG_DBL 80 # define SQLITE_BIG_DBL (1e99) 81 #endif 82 83 /* 84 ** The maximum number of in-memory pages to use for the main database 85 ** table and for temporary tables. Internally, the MAX_PAGES and 86 ** TEMP_PAGES macros are used. To override the default values at 87 ** compilation time, the SQLITE_DEFAULT_CACHE_SIZE and 88 ** SQLITE_DEFAULT_TEMP_CACHE_SIZE macros should be set. 89 */ 90 #ifdef SQLITE_DEFAULT_CACHE_SIZE 91 # define MAX_PAGES SQLITE_DEFAULT_CACHE_SIZE 92 #else 93 # define MAX_PAGES 2000 94 #endif 95 #ifdef SQLITE_DEFAULT_TEMP_CACHE_SIZE 96 # define TEMP_PAGES SQLITE_DEFAULT_TEMP_CACHE_SIZE 97 #else 98 # define TEMP_PAGES 500 99 #endif 100 101 /* 102 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 103 ** afterward. Having this macro allows us to cause the C compiler 104 ** to omit code used by TEMP tables without messy #ifndef statements. 105 */ 106 #ifdef SQLITE_OMIT_TEMPDB 107 #define OMIT_TEMPDB 1 108 #else 109 #define OMIT_TEMPDB 0 110 #endif 111 112 /* 113 ** If the following macro is set to 1, then NULL values are considered 114 ** distinct when determining whether or not two entries are the same 115 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 116 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 117 ** is the way things are suppose to work. 118 ** 119 ** If the following macro is set to 0, the NULLs are indistinct for 120 ** a UNIQUE index. In this mode, you can only have a single NULL entry 121 ** for a column declared UNIQUE. This is the way Informix and SQL Server 122 ** work. 123 */ 124 #define NULL_DISTINCT_FOR_UNIQUE 1 125 126 /* 127 ** The maximum number of attached databases. This must be at least 2 128 ** in order to support the main database file (0) and the file used to 129 ** hold temporary tables (1). And it must be less than 32 because 130 ** we use a bitmask of databases with a u32 in places (for example 131 ** the Parse.cookieMask field). 132 */ 133 #define MAX_ATTACHED 10 134 135 /* 136 ** The maximum value of a ?nnn wildcard that the parser will accept. 137 */ 138 #define SQLITE_MAX_VARIABLE_NUMBER 999 139 140 /* 141 ** The "file format" number is an integer that is incremented whenever 142 ** the VDBE-level file format changes. The following macros define the 143 ** the default file format for new databases and the maximum file format 144 ** that the library can read. 145 */ 146 #define SQLITE_MAX_FILE_FORMAT 4 147 #ifndef SQLITE_DEFAULT_FILE_FORMAT 148 # define SQLITE_DEFAULT_FILE_FORMAT 1 149 #endif 150 151 /* 152 ** Provide a default value for TEMP_STORE in case it is not specified 153 ** on the command-line 154 */ 155 #ifndef TEMP_STORE 156 # define TEMP_STORE 1 157 #endif 158 159 /* 160 ** GCC does not define the offsetof() macro so we'll have to do it 161 ** ourselves. 162 */ 163 #ifndef offsetof 164 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 165 #endif 166 167 /* 168 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 169 ** not, there are still machines out there that use EBCDIC.) 170 */ 171 #if 'A' == '\301' 172 # define SQLITE_EBCDIC 1 173 #else 174 # define SQLITE_ASCII 1 175 #endif 176 177 /* 178 ** Integers of known sizes. These typedefs might change for architectures 179 ** where the sizes very. Preprocessor macros are available so that the 180 ** types can be conveniently redefined at compile-type. Like this: 181 ** 182 ** cc '-DUINTPTR_TYPE=long long int' ... 183 */ 184 #ifndef UINT32_TYPE 185 # define UINT32_TYPE unsigned int 186 #endif 187 #ifndef UINT16_TYPE 188 # define UINT16_TYPE unsigned short int 189 #endif 190 #ifndef INT16_TYPE 191 # define INT16_TYPE short int 192 #endif 193 #ifndef UINT8_TYPE 194 # define UINT8_TYPE unsigned char 195 #endif 196 #ifndef INT8_TYPE 197 # define INT8_TYPE signed char 198 #endif 199 #ifndef LONGDOUBLE_TYPE 200 # define LONGDOUBLE_TYPE long double 201 #endif 202 typedef sqlite_int64 i64; /* 8-byte signed integer */ 203 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 204 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 205 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 206 typedef INT16_TYPE i16; /* 2-byte signed integer */ 207 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 208 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 209 210 /* 211 ** Macros to determine whether the machine is big or little endian, 212 ** evaluated at runtime. 213 */ 214 extern const int sqlite3one; 215 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 216 # define SQLITE_BIGENDIAN 0 217 # define SQLITE_LITTLEENDIAN 1 218 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 219 #else 220 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 221 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 222 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 223 #endif 224 225 /* 226 ** An instance of the following structure is used to store the busy-handler 227 ** callback for a given sqlite handle. 228 ** 229 ** The sqlite.busyHandler member of the sqlite struct contains the busy 230 ** callback for the database handle. Each pager opened via the sqlite 231 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 232 ** callback is currently invoked only from within pager.c. 233 */ 234 typedef struct BusyHandler BusyHandler; 235 struct BusyHandler { 236 int (*xFunc)(void *,int); /* The busy callback */ 237 void *pArg; /* First arg to busy callback */ 238 int nBusy; /* Incremented with each busy call */ 239 }; 240 241 /* 242 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 243 ** "BusyHandler typedefs. 244 */ 245 #include "vdbe.h" 246 #include "btree.h" 247 #include "pager.h" 248 249 #ifdef SQLITE_MEMDEBUG 250 /* 251 ** The following global variables are used for testing and debugging 252 ** only. They only work if SQLITE_MEMDEBUG is defined. 253 */ 254 extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ 255 extern int sqlite3_nFree; /* Number of sqliteFree() calls */ 256 extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 257 extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */ 258 259 extern void *sqlite3_pFirst; /* Pointer to linked list of allocations */ 260 extern int sqlite3_nMaxAlloc; /* High water mark of ThreadData.nAlloc */ 261 extern int sqlite3_mallocDisallowed; /* assert() in sqlite3Malloc() if set */ 262 extern int sqlite3_isFail; /* True if all malloc calls should fail */ 263 extern const char *sqlite3_zFile; /* Filename to associate debug info with */ 264 extern int sqlite3_iLine; /* Line number for debug info */ 265 266 #define ENTER_MALLOC (sqlite3_zFile = __FILE__, sqlite3_iLine = __LINE__) 267 #define sqliteMalloc(x) (ENTER_MALLOC, sqlite3Malloc(x,1)) 268 #define sqliteMallocRaw(x) (ENTER_MALLOC, sqlite3MallocRaw(x,1)) 269 #define sqliteRealloc(x,y) (ENTER_MALLOC, sqlite3Realloc(x,y)) 270 #define sqliteStrDup(x) (ENTER_MALLOC, sqlite3StrDup(x)) 271 #define sqliteStrNDup(x,y) (ENTER_MALLOC, sqlite3StrNDup(x,y)) 272 #define sqliteReallocOrFree(x,y) (ENTER_MALLOC, sqlite3ReallocOrFree(x,y)) 273 274 #else 275 276 #define ENTER_MALLOC 0 277 #define sqliteMalloc(x) sqlite3Malloc(x,1) 278 #define sqliteMallocRaw(x) sqlite3MallocRaw(x,1) 279 #define sqliteRealloc(x,y) sqlite3Realloc(x,y) 280 #define sqliteStrDup(x) sqlite3StrDup(x) 281 #define sqliteStrNDup(x,y) sqlite3StrNDup(x,y) 282 #define sqliteReallocOrFree(x,y) sqlite3ReallocOrFree(x,y) 283 284 #endif 285 286 #define sqliteFree(x) sqlite3FreeX(x) 287 #define sqliteAllocSize(x) sqlite3AllocSize(x) 288 289 290 /* 291 ** An instance of this structure might be allocated to store information 292 ** specific to a single thread. 293 */ 294 struct ThreadData { 295 int dummy; /* So that this structure is never empty */ 296 297 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 298 int nSoftHeapLimit; /* Suggested max mem allocation. No limit if <0 */ 299 int nAlloc; /* Number of bytes currently allocated */ 300 Pager *pPager; /* Linked list of all pagers in this thread */ 301 #endif 302 303 #ifndef SQLITE_OMIT_SHARED_CACHE 304 u8 useSharedData; /* True if shared pagers and schemas are enabled */ 305 BtShared *pBtree; /* Linked list of all currently open BTrees */ 306 #endif 307 }; 308 309 /* 310 ** Name of the master database table. The master database table 311 ** is a special table that holds the names and attributes of all 312 ** user tables and indices. 313 */ 314 #define MASTER_NAME "sqlite_master" 315 #define TEMP_MASTER_NAME "sqlite_temp_master" 316 317 /* 318 ** The root-page of the master database table. 319 */ 320 #define MASTER_ROOT 1 321 322 /* 323 ** The name of the schema table. 324 */ 325 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 326 327 /* 328 ** A convenience macro that returns the number of elements in 329 ** an array. 330 */ 331 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 332 333 /* 334 ** Forward references to structures 335 */ 336 typedef struct AggInfo AggInfo; 337 typedef struct AuthContext AuthContext; 338 typedef struct CollSeq CollSeq; 339 typedef struct Column Column; 340 typedef struct Db Db; 341 typedef struct Schema Schema; 342 typedef struct Expr Expr; 343 typedef struct ExprList ExprList; 344 typedef struct FKey FKey; 345 typedef struct FuncDef FuncDef; 346 typedef struct IdList IdList; 347 typedef struct Index Index; 348 typedef struct KeyClass KeyClass; 349 typedef struct KeyInfo KeyInfo; 350 typedef struct Module Module; 351 typedef struct NameContext NameContext; 352 typedef struct Parse Parse; 353 typedef struct Select Select; 354 typedef struct SrcList SrcList; 355 typedef struct ThreadData ThreadData; 356 typedef struct Table Table; 357 typedef struct TableLock TableLock; 358 typedef struct Token Token; 359 typedef struct TriggerStack TriggerStack; 360 typedef struct TriggerStep TriggerStep; 361 typedef struct Trigger Trigger; 362 typedef struct WhereInfo WhereInfo; 363 typedef struct WhereLevel WhereLevel; 364 365 /* 366 ** Each database file to be accessed by the system is an instance 367 ** of the following structure. There are normally two of these structures 368 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 369 ** aDb[1] is the database file used to hold temporary tables. Additional 370 ** databases may be attached. 371 */ 372 struct Db { 373 char *zName; /* Name of this database */ 374 Btree *pBt; /* The B*Tree structure for this database file */ 375 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 376 u8 safety_level; /* How aggressive at synching data to disk */ 377 void *pAux; /* Auxiliary data. Usually NULL */ 378 void (*xFreeAux)(void*); /* Routine to free pAux */ 379 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 380 }; 381 382 /* 383 ** An instance of the following structure stores a database schema. 384 */ 385 struct Schema { 386 int schema_cookie; /* Database schema version number for this file */ 387 Hash tblHash; /* All tables indexed by name */ 388 Hash idxHash; /* All (named) indices indexed by name */ 389 Hash trigHash; /* All triggers indexed by name */ 390 Hash aFKey; /* Foreign keys indexed by to-table */ 391 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 392 u8 file_format; /* Schema format version for this file */ 393 u8 enc; /* Text encoding used by this database */ 394 u16 flags; /* Flags associated with this schema */ 395 int cache_size; /* Number of pages to use in the cache */ 396 }; 397 398 /* 399 ** These macros can be used to test, set, or clear bits in the 400 ** Db.flags field. 401 */ 402 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 403 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 404 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 405 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 406 407 /* 408 ** Allowed values for the DB.flags field. 409 ** 410 ** The DB_SchemaLoaded flag is set after the database schema has been 411 ** read into internal hash tables. 412 ** 413 ** DB_UnresetViews means that one or more views have column names that 414 ** have been filled out. If the schema changes, these column names might 415 ** changes and so the view will need to be reset. 416 */ 417 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 418 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 419 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 420 421 422 /* 423 ** Each database is an instance of the following structure. 424 ** 425 ** The sqlite.lastRowid records the last insert rowid generated by an 426 ** insert statement. Inserts on views do not affect its value. Each 427 ** trigger has its own context, so that lastRowid can be updated inside 428 ** triggers as usual. The previous value will be restored once the trigger 429 ** exits. Upon entering a before or instead of trigger, lastRowid is no 430 ** longer (since after version 2.8.12) reset to -1. 431 ** 432 ** The sqlite.nChange does not count changes within triggers and keeps no 433 ** context. It is reset at start of sqlite3_exec. 434 ** The sqlite.lsChange represents the number of changes made by the last 435 ** insert, update, or delete statement. It remains constant throughout the 436 ** length of a statement and is then updated by OP_SetCounts. It keeps a 437 ** context stack just like lastRowid so that the count of changes 438 ** within a trigger is not seen outside the trigger. Changes to views do not 439 ** affect the value of lsChange. 440 ** The sqlite.csChange keeps track of the number of current changes (since 441 ** the last statement) and is used to update sqlite_lsChange. 442 ** 443 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 444 ** store the most recent error code and, if applicable, string. The 445 ** internal function sqlite3Error() is used to set these variables 446 ** consistently. 447 */ 448 struct sqlite3 { 449 int nDb; /* Number of backends currently in use */ 450 Db *aDb; /* All backends */ 451 int flags; /* Miscellanous flags. See below */ 452 int errCode; /* Most recent error code (SQLITE_*) */ 453 int errMask; /* & result codes with this before returning */ 454 u8 autoCommit; /* The auto-commit flag. */ 455 u8 temp_store; /* 1: file 2: memory 0: default */ 456 int nTable; /* Number of tables in the database */ 457 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 458 i64 lastRowid; /* ROWID of most recent insert (see above) */ 459 i64 priorNewRowid; /* Last randomly generated ROWID */ 460 int magic; /* Magic number for detect library misuse */ 461 int nChange; /* Value returned by sqlite3_changes() */ 462 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 463 struct sqlite3InitInfo { /* Information used during initialization */ 464 int iDb; /* When back is being initialized */ 465 int newTnum; /* Rootpage of table being initialized */ 466 u8 busy; /* TRUE if currently initializing */ 467 } init; 468 int nExtension; /* Number of loaded extensions */ 469 void **aExtension; /* Array of shared libraray handles */ 470 struct Vdbe *pVdbe; /* List of active virtual machines */ 471 int activeVdbeCnt; /* Number of vdbes currently executing */ 472 void (*xTrace)(void*,const char*); /* Trace function */ 473 void *pTraceArg; /* Argument to the trace function */ 474 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 475 void *pProfileArg; /* Argument to profile function */ 476 void *pCommitArg; /* Argument to xCommitCallback() */ 477 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 478 void *pRollbackArg; /* Argument to xRollbackCallback() */ 479 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 480 void *pUpdateArg; 481 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 482 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 483 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 484 void *pCollNeededArg; 485 sqlite3_value *pErr; /* Most recent error message */ 486 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 487 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 488 union { 489 int isInterrupted; /* True if sqlite3_interrupt has been called */ 490 double notUsed1; /* Spacer */ 491 } u1; 492 #ifndef SQLITE_OMIT_AUTHORIZATION 493 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 494 /* Access authorization function */ 495 void *pAuthArg; /* 1st argument to the access auth function */ 496 #endif 497 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 498 int (*xProgress)(void *); /* The progress callback */ 499 void *pProgressArg; /* Argument to the progress callback */ 500 int nProgressOps; /* Number of opcodes for progress callback */ 501 #endif 502 #ifndef SQLITE_OMIT_VIRTUALTABLE 503 Hash aModule; /* populated by sqlite3_create_module() */ 504 Table *pVTab; /* vtab with active Connect/Create method */ 505 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 506 int nVTrans; /* Allocated size of aVTrans */ 507 #endif 508 Hash aFunc; /* All functions that can be in SQL exprs */ 509 Hash aCollSeq; /* All collating sequences */ 510 BusyHandler busyHandler; /* Busy callback */ 511 int busyTimeout; /* Busy handler timeout, in msec */ 512 Db aDbStatic[2]; /* Static space for the 2 default backends */ 513 #ifdef SQLITE_SSE 514 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 515 #endif 516 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 517 }; 518 519 /* 520 ** A macro to discover the encoding of a database. 521 */ 522 #define ENC(db) ((db)->aDb[0].pSchema->enc) 523 524 /* 525 ** Possible values for the sqlite.flags and or Db.flags fields. 526 ** 527 ** On sqlite.flags, the SQLITE_InTrans value means that we have 528 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 529 ** transaction is active on that particular database file. 530 */ 531 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 532 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 533 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 534 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 535 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 536 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 537 /* DELETE, or UPDATE and return */ 538 /* the count using a callback. */ 539 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 540 /* result set is empty */ 541 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 542 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 543 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 544 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 545 ** accessing read-only databases */ 546 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 547 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 548 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 549 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 550 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 551 552 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 553 554 /* 555 ** Possible values for the sqlite.magic field. 556 ** The numbers are obtained at random and have no special meaning, other 557 ** than being distinct from one another. 558 */ 559 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 560 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 561 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 562 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 563 564 /* 565 ** Each SQL function is defined by an instance of the following 566 ** structure. A pointer to this structure is stored in the sqlite.aFunc 567 ** hash table. When multiple functions have the same name, the hash table 568 ** points to a linked list of these structures. 569 */ 570 struct FuncDef { 571 i16 nArg; /* Number of arguments. -1 means unlimited */ 572 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 573 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 574 u8 flags; /* Some combination of SQLITE_FUNC_* */ 575 void *pUserData; /* User data parameter */ 576 FuncDef *pNext; /* Next function with same name */ 577 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 578 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 579 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 580 char zName[1]; /* SQL name of the function. MUST BE LAST */ 581 }; 582 583 /* 584 ** Each SQLite module (virtual table definition) is defined by an 585 ** instance of the following structure, stored in the sqlite3.aModule 586 ** hash table. 587 */ 588 struct Module { 589 const sqlite3_module *pModule; /* Callback pointers */ 590 const char *zName; /* Name passed to create_module() */ 591 void *pAux; /* pAux passed to create_module() */ 592 }; 593 594 /* 595 ** Possible values for FuncDef.flags 596 */ 597 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 598 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 599 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 600 601 /* 602 ** information about each column of an SQL table is held in an instance 603 ** of this structure. 604 */ 605 struct Column { 606 char *zName; /* Name of this column */ 607 Expr *pDflt; /* Default value of this column */ 608 char *zType; /* Data type for this column */ 609 char *zColl; /* Collating sequence. If NULL, use the default */ 610 u8 notNull; /* True if there is a NOT NULL constraint */ 611 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 612 char affinity; /* One of the SQLITE_AFF_... values */ 613 }; 614 615 /* 616 ** A "Collating Sequence" is defined by an instance of the following 617 ** structure. Conceptually, a collating sequence consists of a name and 618 ** a comparison routine that defines the order of that sequence. 619 ** 620 ** There may two seperate implementations of the collation function, one 621 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 622 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 623 ** native byte order. When a collation sequence is invoked, SQLite selects 624 ** the version that will require the least expensive encoding 625 ** translations, if any. 626 ** 627 ** The CollSeq.pUser member variable is an extra parameter that passed in 628 ** as the first argument to the UTF-8 comparison function, xCmp. 629 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 630 ** xCmp16. 631 ** 632 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 633 ** collating sequence is undefined. Indices built on an undefined 634 ** collating sequence may not be read or written. 635 */ 636 struct CollSeq { 637 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 638 u8 enc; /* Text encoding handled by xCmp() */ 639 u8 type; /* One of the SQLITE_COLL_... values below */ 640 void *pUser; /* First argument to xCmp() */ 641 int (*xCmp)(void*,int, const void*, int, const void*); 642 }; 643 644 /* 645 ** Allowed values of CollSeq flags: 646 */ 647 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 648 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 649 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 650 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 651 652 /* 653 ** A sort order can be either ASC or DESC. 654 */ 655 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 656 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 657 658 /* 659 ** Column affinity types. 660 ** 661 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 662 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 663 ** the speed a little by number the values consecutively. 664 ** 665 ** But rather than start with 0 or 1, we begin with 'a'. That way, 666 ** when multiple affinity types are concatenated into a string and 667 ** used as the P3 operand, they will be more readable. 668 ** 669 ** Note also that the numeric types are grouped together so that testing 670 ** for a numeric type is a single comparison. 671 */ 672 #define SQLITE_AFF_TEXT 'a' 673 #define SQLITE_AFF_NONE 'b' 674 #define SQLITE_AFF_NUMERIC 'c' 675 #define SQLITE_AFF_INTEGER 'd' 676 #define SQLITE_AFF_REAL 'e' 677 678 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 679 680 /* 681 ** Each SQL table is represented in memory by an instance of the 682 ** following structure. 683 ** 684 ** Table.zName is the name of the table. The case of the original 685 ** CREATE TABLE statement is stored, but case is not significant for 686 ** comparisons. 687 ** 688 ** Table.nCol is the number of columns in this table. Table.aCol is a 689 ** pointer to an array of Column structures, one for each column. 690 ** 691 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 692 ** the column that is that key. Otherwise Table.iPKey is negative. Note 693 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 694 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 695 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 696 ** is generated for each row of the table. Table.hasPrimKey is true if 697 ** the table has any PRIMARY KEY, INTEGER or otherwise. 698 ** 699 ** Table.tnum is the page number for the root BTree page of the table in the 700 ** database file. If Table.iDb is the index of the database table backend 701 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 702 ** holds temporary tables and indices. If Table.isEphem 703 ** is true, then the table is stored in a file that is automatically deleted 704 ** when the VDBE cursor to the table is closed. In this case Table.tnum 705 ** refers VDBE cursor number that holds the table open, not to the root 706 ** page number. Transient tables are used to hold the results of a 707 ** sub-query that appears instead of a real table name in the FROM clause 708 ** of a SELECT statement. 709 */ 710 struct Table { 711 char *zName; /* Name of the table */ 712 int nCol; /* Number of columns in this table */ 713 Column *aCol; /* Information about each column */ 714 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 715 Index *pIndex; /* List of SQL indexes on this table. */ 716 int tnum; /* Root BTree node for this table (see note above) */ 717 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 718 int nRef; /* Number of pointers to this Table */ 719 Trigger *pTrigger; /* List of SQL triggers on this table */ 720 FKey *pFKey; /* Linked list of all foreign keys in this table */ 721 char *zColAff; /* String defining the affinity of each column */ 722 #ifndef SQLITE_OMIT_CHECK 723 Expr *pCheck; /* The AND of all CHECK constraints */ 724 #endif 725 #ifndef SQLITE_OMIT_ALTERTABLE 726 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 727 #endif 728 u8 readOnly; /* True if this table should not be written by the user */ 729 u8 isEphem; /* True if created using OP_OpenEphermeral */ 730 u8 hasPrimKey; /* True if there exists a primary key */ 731 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 732 u8 autoInc; /* True if the integer primary key is autoincrement */ 733 #ifndef SQLITE_OMIT_VIRTUALTABLE 734 u8 isVirtual; /* True if this is a virtual table */ 735 u8 isCommit; /* True once the CREATE TABLE has been committed */ 736 Module *pMod; /* Pointer to the implementation of the module */ 737 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 738 int nModuleArg; /* Number of arguments to the module */ 739 char **azModuleArg; /* Text of all module args. [0] is module name */ 740 #endif 741 Schema *pSchema; 742 }; 743 744 /* 745 ** Test to see whether or not a table is a virtual table. This is 746 ** done as a macro so that it will be optimized out when virtual 747 ** table support is omitted from the build. 748 */ 749 #ifndef SQLITE_OMIT_VIRTUALTABLE 750 # define IsVirtual(X) ((X)->isVirtual) 751 #else 752 # define IsVirtual(X) 0 753 #endif 754 755 /* 756 ** Each foreign key constraint is an instance of the following structure. 757 ** 758 ** A foreign key is associated with two tables. The "from" table is 759 ** the table that contains the REFERENCES clause that creates the foreign 760 ** key. The "to" table is the table that is named in the REFERENCES clause. 761 ** Consider this example: 762 ** 763 ** CREATE TABLE ex1( 764 ** a INTEGER PRIMARY KEY, 765 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 766 ** ); 767 ** 768 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 769 ** 770 ** Each REFERENCES clause generates an instance of the following structure 771 ** which is attached to the from-table. The to-table need not exist when 772 ** the from-table is created. The existance of the to-table is not checked 773 ** until an attempt is made to insert data into the from-table. 774 ** 775 ** The sqlite.aFKey hash table stores pointers to this structure 776 ** given the name of a to-table. For each to-table, all foreign keys 777 ** associated with that table are on a linked list using the FKey.pNextTo 778 ** field. 779 */ 780 struct FKey { 781 Table *pFrom; /* The table that constains the REFERENCES clause */ 782 FKey *pNextFrom; /* Next foreign key in pFrom */ 783 char *zTo; /* Name of table that the key points to */ 784 FKey *pNextTo; /* Next foreign key that points to zTo */ 785 int nCol; /* Number of columns in this key */ 786 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 787 int iFrom; /* Index of column in pFrom */ 788 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 789 } *aCol; /* One entry for each of nCol column s */ 790 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 791 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 792 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 793 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 794 }; 795 796 /* 797 ** SQLite supports many different ways to resolve a contraint 798 ** error. ROLLBACK processing means that a constraint violation 799 ** causes the operation in process to fail and for the current transaction 800 ** to be rolled back. ABORT processing means the operation in process 801 ** fails and any prior changes from that one operation are backed out, 802 ** but the transaction is not rolled back. FAIL processing means that 803 ** the operation in progress stops and returns an error code. But prior 804 ** changes due to the same operation are not backed out and no rollback 805 ** occurs. IGNORE means that the particular row that caused the constraint 806 ** error is not inserted or updated. Processing continues and no error 807 ** is returned. REPLACE means that preexisting database rows that caused 808 ** a UNIQUE constraint violation are removed so that the new insert or 809 ** update can proceed. Processing continues and no error is reported. 810 ** 811 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 812 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 813 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 814 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 815 ** referenced table row is propagated into the row that holds the 816 ** foreign key. 817 ** 818 ** The following symbolic values are used to record which type 819 ** of action to take. 820 */ 821 #define OE_None 0 /* There is no constraint to check */ 822 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 823 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 824 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 825 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 826 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 827 828 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 829 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 830 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 831 #define OE_Cascade 9 /* Cascade the changes */ 832 833 #define OE_Default 99 /* Do whatever the default action is */ 834 835 836 /* 837 ** An instance of the following structure is passed as the first 838 ** argument to sqlite3VdbeKeyCompare and is used to control the 839 ** comparison of the two index keys. 840 ** 841 ** If the KeyInfo.incrKey value is true and the comparison would 842 ** otherwise be equal, then return a result as if the second key 843 ** were larger. 844 */ 845 struct KeyInfo { 846 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 847 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 848 int nField; /* Number of entries in aColl[] */ 849 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 850 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 851 }; 852 853 /* 854 ** Each SQL index is represented in memory by an 855 ** instance of the following structure. 856 ** 857 ** The columns of the table that are to be indexed are described 858 ** by the aiColumn[] field of this structure. For example, suppose 859 ** we have the following table and index: 860 ** 861 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 862 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 863 ** 864 ** In the Table structure describing Ex1, nCol==3 because there are 865 ** three columns in the table. In the Index structure describing 866 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 867 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 868 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 869 ** The second column to be indexed (c1) has an index of 0 in 870 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 871 ** 872 ** The Index.onError field determines whether or not the indexed columns 873 ** must be unique and what to do if they are not. When Index.onError=OE_None, 874 ** it means this is not a unique index. Otherwise it is a unique index 875 ** and the value of Index.onError indicate the which conflict resolution 876 ** algorithm to employ whenever an attempt is made to insert a non-unique 877 ** element. 878 */ 879 struct Index { 880 char *zName; /* Name of this index */ 881 int nColumn; /* Number of columns in the table used by this index */ 882 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 883 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 884 Table *pTable; /* The SQL table being indexed */ 885 int tnum; /* Page containing root of this index in database file */ 886 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 887 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 888 char *zColAff; /* String defining the affinity of each column */ 889 Index *pNext; /* The next index associated with the same table */ 890 Schema *pSchema; /* Schema containing this index */ 891 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 892 char **azColl; /* Array of collation sequence names for index */ 893 }; 894 895 /* 896 ** Each token coming out of the lexer is an instance of 897 ** this structure. Tokens are also used as part of an expression. 898 ** 899 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 900 ** may contain random values. Do not make any assuptions about Token.dyn 901 ** and Token.n when Token.z==0. 902 */ 903 struct Token { 904 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 905 unsigned dyn : 1; /* True for malloced memory, false for static */ 906 unsigned n : 31; /* Number of characters in this token */ 907 }; 908 909 /* 910 ** An instance of this structure contains information needed to generate 911 ** code for a SELECT that contains aggregate functions. 912 ** 913 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 914 ** pointer to this structure. The Expr.iColumn field is the index in 915 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 916 ** code for that node. 917 ** 918 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 919 ** original Select structure that describes the SELECT statement. These 920 ** fields do not need to be freed when deallocating the AggInfo structure. 921 */ 922 struct AggInfo { 923 u8 directMode; /* Direct rendering mode means take data directly 924 ** from source tables rather than from accumulators */ 925 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 926 ** than the source table */ 927 int sortingIdx; /* Cursor number of the sorting index */ 928 ExprList *pGroupBy; /* The group by clause */ 929 int nSortingColumn; /* Number of columns in the sorting index */ 930 struct AggInfo_col { /* For each column used in source tables */ 931 Table *pTab; /* Source table */ 932 int iTable; /* Cursor number of the source table */ 933 int iColumn; /* Column number within the source table */ 934 int iSorterColumn; /* Column number in the sorting index */ 935 int iMem; /* Memory location that acts as accumulator */ 936 Expr *pExpr; /* The original expression */ 937 } *aCol; 938 int nColumn; /* Number of used entries in aCol[] */ 939 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 940 int nAccumulator; /* Number of columns that show through to the output. 941 ** Additional columns are used only as parameters to 942 ** aggregate functions */ 943 struct AggInfo_func { /* For each aggregate function */ 944 Expr *pExpr; /* Expression encoding the function */ 945 FuncDef *pFunc; /* The aggregate function implementation */ 946 int iMem; /* Memory location that acts as accumulator */ 947 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 948 } *aFunc; 949 int nFunc; /* Number of entries in aFunc[] */ 950 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 951 }; 952 953 /* 954 ** Each node of an expression in the parse tree is an instance 955 ** of this structure. 956 ** 957 ** Expr.op is the opcode. The integer parser token codes are reused 958 ** as opcodes here. For example, the parser defines TK_GE to be an integer 959 ** code representing the ">=" operator. This same integer code is reused 960 ** to represent the greater-than-or-equal-to operator in the expression 961 ** tree. 962 ** 963 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 964 ** of argument if the expression is a function. 965 ** 966 ** Expr.token is the operator token for this node. For some expressions 967 ** that have subexpressions, Expr.token can be the complete text that gave 968 ** rise to the Expr. In the latter case, the token is marked as being 969 ** a compound token. 970 ** 971 ** An expression of the form ID or ID.ID refers to a column in a table. 972 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 973 ** the integer cursor number of a VDBE cursor pointing to that table and 974 ** Expr.iColumn is the column number for the specific column. If the 975 ** expression is used as a result in an aggregate SELECT, then the 976 ** value is also stored in the Expr.iAgg column in the aggregate so that 977 ** it can be accessed after all aggregates are computed. 978 ** 979 ** If the expression is a function, the Expr.iTable is an integer code 980 ** representing which function. If the expression is an unbound variable 981 ** marker (a question mark character '?' in the original SQL) then the 982 ** Expr.iTable holds the index number for that variable. 983 ** 984 ** If the expression is a subquery then Expr.iColumn holds an integer 985 ** register number containing the result of the subquery. If the 986 ** subquery gives a constant result, then iTable is -1. If the subquery 987 ** gives a different answer at different times during statement processing 988 ** then iTable is the address of a subroutine that computes the subquery. 989 ** 990 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 991 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 992 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 993 ** operand. 994 ** 995 ** If the Expr is of type OP_Column, and the table it is selecting from 996 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 997 ** corresponding table definition. 998 */ 999 struct Expr { 1000 u8 op; /* Operation performed by this node */ 1001 char affinity; /* The affinity of the column or 0 if not a column */ 1002 u16 flags; /* Various flags. See below */ 1003 CollSeq *pColl; /* The collation type of the column or 0 */ 1004 Expr *pLeft, *pRight; /* Left and right subnodes */ 1005 ExprList *pList; /* A list of expressions used as function arguments 1006 ** or in "<expr> IN (<expr-list)" */ 1007 Token token; /* An operand token */ 1008 Token span; /* Complete text of the expression */ 1009 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1010 ** iColumn-th field of the iTable-th table. */ 1011 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1012 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1013 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1014 Select *pSelect; /* When the expression is a sub-select. Also the 1015 ** right side of "<expr> IN (<select>)" */ 1016 Table *pTab; /* Table for OP_Column expressions. */ 1017 Schema *pSchema; 1018 }; 1019 1020 /* 1021 ** The following are the meanings of bits in the Expr.flags field. 1022 */ 1023 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 1024 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 1025 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 1026 #define EP_Error 0x08 /* Expression contains one or more errors */ 1027 #define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */ 1028 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 1029 #define EP_Dequoted 0x40 /* True if the string has been dequoted */ 1030 #define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */ 1031 #define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */ 1032 1033 /* 1034 ** These macros can be used to test, set, or clear bits in the 1035 ** Expr.flags field. 1036 */ 1037 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1038 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1039 #define ExprSetProperty(E,P) (E)->flags|=(P) 1040 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1041 1042 /* 1043 ** A list of expressions. Each expression may optionally have a 1044 ** name. An expr/name combination can be used in several ways, such 1045 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1046 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1047 ** also be used as the argument to a function, in which case the a.zName 1048 ** field is not used. 1049 */ 1050 struct ExprList { 1051 int nExpr; /* Number of expressions on the list */ 1052 int nAlloc; /* Number of entries allocated below */ 1053 int iECursor; /* VDBE Cursor associated with this ExprList */ 1054 struct ExprList_item { 1055 Expr *pExpr; /* The list of expressions */ 1056 char *zName; /* Token associated with this expression */ 1057 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1058 u8 isAgg; /* True if this is an aggregate like count(*) */ 1059 u8 done; /* A flag to indicate when processing is finished */ 1060 } *a; /* One entry for each expression */ 1061 }; 1062 1063 /* 1064 ** An instance of this structure can hold a simple list of identifiers, 1065 ** such as the list "a,b,c" in the following statements: 1066 ** 1067 ** INSERT INTO t(a,b,c) VALUES ...; 1068 ** CREATE INDEX idx ON t(a,b,c); 1069 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1070 ** 1071 ** The IdList.a.idx field is used when the IdList represents the list of 1072 ** column names after a table name in an INSERT statement. In the statement 1073 ** 1074 ** INSERT INTO t(a,b,c) ... 1075 ** 1076 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1077 */ 1078 struct IdList { 1079 struct IdList_item { 1080 char *zName; /* Name of the identifier */ 1081 int idx; /* Index in some Table.aCol[] of a column named zName */ 1082 } *a; 1083 int nId; /* Number of identifiers on the list */ 1084 int nAlloc; /* Number of entries allocated for a[] below */ 1085 }; 1086 1087 /* 1088 ** The bitmask datatype defined below is used for various optimizations. 1089 ** 1090 ** Changing this from a 64-bit to a 32-bit type limits the number of 1091 ** tables in a join to 32 instead of 64. But it also reduces the size 1092 ** of the library by 738 bytes on ix86. 1093 */ 1094 typedef u64 Bitmask; 1095 1096 /* 1097 ** The following structure describes the FROM clause of a SELECT statement. 1098 ** Each table or subquery in the FROM clause is a separate element of 1099 ** the SrcList.a[] array. 1100 ** 1101 ** With the addition of multiple database support, the following structure 1102 ** can also be used to describe a particular table such as the table that 1103 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1104 ** such a table must be a simple name: ID. But in SQLite, the table can 1105 ** now be identified by a database name, a dot, then the table name: ID.ID. 1106 ** 1107 ** The jointype starts out showing the join type between the current table 1108 ** and the next table on the list. The parser builds the list this way. 1109 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1110 ** jointype expresses the join between the table and the previous table. 1111 */ 1112 struct SrcList { 1113 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1114 i16 nAlloc; /* Number of entries allocated in a[] below */ 1115 struct SrcList_item { 1116 char *zDatabase; /* Name of database holding this table */ 1117 char *zName; /* Name of the table */ 1118 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1119 Table *pTab; /* An SQL table corresponding to zName */ 1120 Select *pSelect; /* A SELECT statement used in place of a table name */ 1121 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1122 u8 jointype; /* Type of join between this able and the previous */ 1123 int iCursor; /* The VDBE cursor number used to access this table */ 1124 Expr *pOn; /* The ON clause of a join */ 1125 IdList *pUsing; /* The USING clause of a join */ 1126 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1127 } a[1]; /* One entry for each identifier on the list */ 1128 }; 1129 1130 /* 1131 ** Permitted values of the SrcList.a.jointype field 1132 */ 1133 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1134 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1135 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1136 #define JT_LEFT 0x0008 /* Left outer join */ 1137 #define JT_RIGHT 0x0010 /* Right outer join */ 1138 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1139 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1140 1141 /* 1142 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1143 ** structure contains a single instance of this structure. This structure 1144 ** is intended to be private the the where.c module and should not be 1145 ** access or modified by other modules. 1146 ** 1147 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1148 ** index on a virtual table. The pIdxInfo pointer contains indexing 1149 ** information for the i-th table in the FROM clause before reordering. 1150 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1151 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1152 ** FROM clause ordering. This is a little confusing so I will repeat 1153 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1154 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1155 ** index information for the i-th loop of the join. pBestInfo is always 1156 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1157 ** sufficient to free all of the pIdxInfo pointers. 1158 ** 1159 */ 1160 struct WhereLevel { 1161 int iFrom; /* Which entry in the FROM clause */ 1162 int flags; /* Flags associated with this level */ 1163 int iMem; /* First memory cell used by this level */ 1164 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1165 Index *pIdx; /* Index used. NULL if no index */ 1166 int iTabCur; /* The VDBE cursor used to access the table */ 1167 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1168 int brk; /* Jump here to break out of the loop */ 1169 int nxt; /* Jump here to start the next IN combination */ 1170 int cont; /* Jump here to continue with the next loop cycle */ 1171 int top; /* First instruction of interior of the loop */ 1172 int op, p1, p2; /* Opcode used to terminate the loop */ 1173 int nEq; /* Number of == or IN constraints on this loop */ 1174 int nIn; /* Number of IN operators constraining this loop */ 1175 struct InLoop { 1176 int iCur; /* The VDBE cursor used by this IN operator */ 1177 int topAddr; /* Top of the IN loop */ 1178 } *aInLoop; /* Information about each nested IN operator */ 1179 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1180 1181 /* The following field is really not part of the current level. But 1182 ** we need a place to cache index information for each table in the 1183 ** FROM clause and the WhereLevel structure is a convenient place. 1184 */ 1185 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1186 }; 1187 1188 /* 1189 ** The WHERE clause processing routine has two halves. The 1190 ** first part does the start of the WHERE loop and the second 1191 ** half does the tail of the WHERE loop. An instance of 1192 ** this structure is returned by the first half and passed 1193 ** into the second half to give some continuity. 1194 */ 1195 struct WhereInfo { 1196 Parse *pParse; 1197 SrcList *pTabList; /* List of tables in the join */ 1198 int iTop; /* The very beginning of the WHERE loop */ 1199 int iContinue; /* Jump here to continue with next record */ 1200 int iBreak; /* Jump here to break out of the loop */ 1201 int nLevel; /* Number of nested loop */ 1202 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1203 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1204 }; 1205 1206 /* 1207 ** A NameContext defines a context in which to resolve table and column 1208 ** names. The context consists of a list of tables (the pSrcList) field and 1209 ** a list of named expression (pEList). The named expression list may 1210 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1211 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1212 ** pEList corresponds to the result set of a SELECT and is NULL for 1213 ** other statements. 1214 ** 1215 ** NameContexts can be nested. When resolving names, the inner-most 1216 ** context is searched first. If no match is found, the next outer 1217 ** context is checked. If there is still no match, the next context 1218 ** is checked. This process continues until either a match is found 1219 ** or all contexts are check. When a match is found, the nRef member of 1220 ** the context containing the match is incremented. 1221 ** 1222 ** Each subquery gets a new NameContext. The pNext field points to the 1223 ** NameContext in the parent query. Thus the process of scanning the 1224 ** NameContext list corresponds to searching through successively outer 1225 ** subqueries looking for a match. 1226 */ 1227 struct NameContext { 1228 Parse *pParse; /* The parser */ 1229 SrcList *pSrcList; /* One or more tables used to resolve names */ 1230 ExprList *pEList; /* Optional list of named expressions */ 1231 int nRef; /* Number of names resolved by this context */ 1232 int nErr; /* Number of errors encountered while resolving names */ 1233 u8 allowAgg; /* Aggregate functions allowed here */ 1234 u8 hasAgg; /* True if aggregates are seen */ 1235 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1236 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1237 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1238 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1239 }; 1240 1241 /* 1242 ** An instance of the following structure contains all information 1243 ** needed to generate code for a single SELECT statement. 1244 ** 1245 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1246 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1247 ** limit and nOffset to the value of the offset (or 0 if there is not 1248 ** offset). But later on, nLimit and nOffset become the memory locations 1249 ** in the VDBE that record the limit and offset counters. 1250 ** 1251 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1252 ** These addresses must be stored so that we can go back and fill in 1253 ** the P3_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1254 ** the number of columns in P2 can be computed at the same time 1255 ** as the OP_OpenEphm instruction is coded because not 1256 ** enough information about the compound query is known at that point. 1257 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1258 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1259 ** sequences for the ORDER BY clause. 1260 */ 1261 struct Select { 1262 ExprList *pEList; /* The fields of the result */ 1263 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1264 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1265 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1266 u8 isAgg; /* True if this is an aggregate query */ 1267 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1268 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1269 SrcList *pSrc; /* The FROM clause */ 1270 Expr *pWhere; /* The WHERE clause */ 1271 ExprList *pGroupBy; /* The GROUP BY clause */ 1272 Expr *pHaving; /* The HAVING clause */ 1273 ExprList *pOrderBy; /* The ORDER BY clause */ 1274 Select *pPrior; /* Prior select in a compound select statement */ 1275 Select *pRightmost; /* Right-most select in a compound select statement */ 1276 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1277 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1278 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1279 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1280 }; 1281 1282 /* 1283 ** The results of a select can be distributed in several ways. 1284 */ 1285 #define SRT_Union 1 /* Store result as keys in an index */ 1286 #define SRT_Except 2 /* Remove result from a UNION index */ 1287 #define SRT_Discard 3 /* Do not save the results anywhere */ 1288 1289 /* The ORDER BY clause is ignored for all of the above */ 1290 #define IgnorableOrderby(X) (X<=SRT_Discard) 1291 1292 #define SRT_Callback 4 /* Invoke a callback with each row of result */ 1293 #define SRT_Mem 5 /* Store result in a memory cell */ 1294 #define SRT_Set 6 /* Store non-null results as keys in an index */ 1295 #define SRT_Table 7 /* Store result as data with an automatic rowid */ 1296 #define SRT_EphemTab 8 /* Create transient tab and store like SRT_Table */ 1297 #define SRT_Subroutine 9 /* Call a subroutine to handle results */ 1298 #define SRT_Exists 10 /* Store 1 if the result is not empty */ 1299 1300 /* 1301 ** An SQL parser context. A copy of this structure is passed through 1302 ** the parser and down into all the parser action routine in order to 1303 ** carry around information that is global to the entire parse. 1304 ** 1305 ** The structure is divided into two parts. When the parser and code 1306 ** generate call themselves recursively, the first part of the structure 1307 ** is constant but the second part is reset at the beginning and end of 1308 ** each recursion. 1309 ** 1310 ** The nTableLock and aTableLock variables are only used if the shared-cache 1311 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1312 ** used to store the set of table-locks required by the statement being 1313 ** compiled. Function sqlite3TableLock() is used to add entries to the 1314 ** list. 1315 */ 1316 struct Parse { 1317 sqlite3 *db; /* The main database structure */ 1318 int rc; /* Return code from execution */ 1319 char *zErrMsg; /* An error message */ 1320 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1321 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1322 u8 nameClash; /* A permanent table name clashes with temp table name */ 1323 u8 checkSchema; /* Causes schema cookie check after an error */ 1324 u8 nested; /* Number of nested calls to the parser/code generator */ 1325 u8 parseError; /* True if a parsing error has been seen */ 1326 int nErr; /* Number of errors seen */ 1327 int nTab; /* Number of previously allocated VDBE cursors */ 1328 int nMem; /* Number of memory cells used so far */ 1329 int nSet; /* Number of sets used so far */ 1330 int ckOffset; /* Stack offset to data used by CHECK constraints */ 1331 u32 writeMask; /* Start a write transaction on these databases */ 1332 u32 cookieMask; /* Bitmask of schema verified databases */ 1333 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1334 int cookieValue[MAX_ATTACHED+2]; /* Values of cookies to verify */ 1335 #ifndef SQLITE_OMIT_SHARED_CACHE 1336 int nTableLock; /* Number of locks in aTableLock */ 1337 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1338 #endif 1339 1340 /* Above is constant between recursions. Below is reset before and after 1341 ** each recursion */ 1342 1343 int nVar; /* Number of '?' variables seen in the SQL so far */ 1344 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1345 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1346 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1347 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1348 Token sErrToken; /* The token at which the error occurred */ 1349 Token sNameToken; /* Token with unqualified schema object name */ 1350 Token sLastToken; /* The last token parsed */ 1351 const char *zSql; /* All SQL text */ 1352 const char *zTail; /* All SQL text past the last semicolon parsed */ 1353 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1354 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1355 TriggerStack *trigStack; /* Trigger actions being coded */ 1356 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1357 #ifndef SQLITE_OMIT_VIRTUALTABLE 1358 Token sArg; /* Complete text of a module argument */ 1359 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1360 Table *pVirtualLock; /* Require virtual table lock on this table */ 1361 #endif 1362 }; 1363 1364 #ifdef SQLITE_OMIT_VIRTUALTABLE 1365 #define IN_DECLARE_VTAB 0 1366 #else 1367 #define IN_DECLARE_VTAB (pParse->declareVtab) 1368 #endif 1369 1370 /* 1371 ** An instance of the following structure can be declared on a stack and used 1372 ** to save the Parse.zAuthContext value so that it can be restored later. 1373 */ 1374 struct AuthContext { 1375 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1376 Parse *pParse; /* The Parse structure */ 1377 }; 1378 1379 /* 1380 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1381 */ 1382 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1383 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1384 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1385 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1386 1387 /* 1388 * Each trigger present in the database schema is stored as an instance of 1389 * struct Trigger. 1390 * 1391 * Pointers to instances of struct Trigger are stored in two ways. 1392 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1393 * database). This allows Trigger structures to be retrieved by name. 1394 * 2. All triggers associated with a single table form a linked list, using the 1395 * pNext member of struct Trigger. A pointer to the first element of the 1396 * linked list is stored as the "pTrigger" member of the associated 1397 * struct Table. 1398 * 1399 * The "step_list" member points to the first element of a linked list 1400 * containing the SQL statements specified as the trigger program. 1401 */ 1402 struct Trigger { 1403 char *name; /* The name of the trigger */ 1404 char *table; /* The table or view to which the trigger applies */ 1405 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1406 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1407 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1408 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1409 the <column-list> is stored here */ 1410 Token nameToken; /* Token containing zName. Use during parsing only */ 1411 Schema *pSchema; /* Schema containing the trigger */ 1412 Schema *pTabSchema; /* Schema containing the table */ 1413 TriggerStep *step_list; /* Link list of trigger program steps */ 1414 Trigger *pNext; /* Next trigger associated with the table */ 1415 }; 1416 1417 /* 1418 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1419 ** determine which. 1420 ** 1421 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1422 ** In that cases, the constants below can be ORed together. 1423 */ 1424 #define TRIGGER_BEFORE 1 1425 #define TRIGGER_AFTER 2 1426 1427 /* 1428 * An instance of struct TriggerStep is used to store a single SQL statement 1429 * that is a part of a trigger-program. 1430 * 1431 * Instances of struct TriggerStep are stored in a singly linked list (linked 1432 * using the "pNext" member) referenced by the "step_list" member of the 1433 * associated struct Trigger instance. The first element of the linked list is 1434 * the first step of the trigger-program. 1435 * 1436 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1437 * "SELECT" statement. The meanings of the other members is determined by the 1438 * value of "op" as follows: 1439 * 1440 * (op == TK_INSERT) 1441 * orconf -> stores the ON CONFLICT algorithm 1442 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1443 * this stores a pointer to the SELECT statement. Otherwise NULL. 1444 * target -> A token holding the name of the table to insert into. 1445 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1446 * this stores values to be inserted. Otherwise NULL. 1447 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1448 * statement, then this stores the column-names to be 1449 * inserted into. 1450 * 1451 * (op == TK_DELETE) 1452 * target -> A token holding the name of the table to delete from. 1453 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1454 * Otherwise NULL. 1455 * 1456 * (op == TK_UPDATE) 1457 * target -> A token holding the name of the table to update rows of. 1458 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1459 * Otherwise NULL. 1460 * pExprList -> A list of the columns to update and the expressions to update 1461 * them to. See sqlite3Update() documentation of "pChanges" 1462 * argument. 1463 * 1464 */ 1465 struct TriggerStep { 1466 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1467 int orconf; /* OE_Rollback etc. */ 1468 Trigger *pTrig; /* The trigger that this step is a part of */ 1469 1470 Select *pSelect; /* Valid for SELECT and sometimes 1471 INSERT steps (when pExprList == 0) */ 1472 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1473 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1474 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1475 INSERT steps (when pSelect == 0) */ 1476 IdList *pIdList; /* Valid for INSERT statements only */ 1477 TriggerStep *pNext; /* Next in the link-list */ 1478 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1479 }; 1480 1481 /* 1482 * An instance of struct TriggerStack stores information required during code 1483 * generation of a single trigger program. While the trigger program is being 1484 * coded, its associated TriggerStack instance is pointed to by the 1485 * "pTriggerStack" member of the Parse structure. 1486 * 1487 * The pTab member points to the table that triggers are being coded on. The 1488 * newIdx member contains the index of the vdbe cursor that points at the temp 1489 * table that stores the new.* references. If new.* references are not valid 1490 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1491 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1492 * 1493 * The ON CONFLICT policy to be used for the trigger program steps is stored 1494 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1495 * specified for individual triggers steps is used. 1496 * 1497 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1498 * constructed. When coding nested triggers (triggers fired by other triggers) 1499 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1500 * pointer. Once the nested trigger has been coded, the pNext value is restored 1501 * to the pTriggerStack member of the Parse stucture and coding of the parent 1502 * trigger continues. 1503 * 1504 * Before a nested trigger is coded, the linked list pointed to by the 1505 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1506 * recursively. If this condition is detected, the nested trigger is not coded. 1507 */ 1508 struct TriggerStack { 1509 Table *pTab; /* Table that triggers are currently being coded on */ 1510 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1511 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1512 int orconf; /* Current orconf policy */ 1513 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1514 Trigger *pTrigger; /* The trigger currently being coded */ 1515 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1516 }; 1517 1518 /* 1519 ** The following structure contains information used by the sqliteFix... 1520 ** routines as they walk the parse tree to make database references 1521 ** explicit. 1522 */ 1523 typedef struct DbFixer DbFixer; 1524 struct DbFixer { 1525 Parse *pParse; /* The parsing context. Error messages written here */ 1526 const char *zDb; /* Make sure all objects are contained in this database */ 1527 const char *zType; /* Type of the container - used for error messages */ 1528 const Token *pName; /* Name of the container - used for error messages */ 1529 }; 1530 1531 /* 1532 ** A pointer to this structure is used to communicate information 1533 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1534 */ 1535 typedef struct { 1536 sqlite3 *db; /* The database being initialized */ 1537 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1538 char **pzErrMsg; /* Error message stored here */ 1539 int rc; /* Result code stored here */ 1540 } InitData; 1541 1542 /* 1543 * This global flag is set for performance testing of triggers. When it is set 1544 * SQLite will perform the overhead of building new and old trigger references 1545 * even when no triggers exist 1546 */ 1547 extern int sqlite3_always_code_trigger_setup; 1548 1549 /* 1550 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1551 ** builds) or a function call (for debugging). If it is a function call, 1552 ** it allows the operator to set a breakpoint at the spot where database 1553 ** corruption is first detected. 1554 */ 1555 #ifdef SQLITE_DEBUG 1556 extern int sqlite3Corrupt(void); 1557 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1558 #else 1559 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1560 #endif 1561 1562 /* 1563 ** Internal function prototypes 1564 */ 1565 int sqlite3StrICmp(const char *, const char *); 1566 int sqlite3StrNICmp(const char *, const char *, int); 1567 int sqlite3HashNoCase(const char *, int); 1568 int sqlite3IsNumber(const char*, int*, u8); 1569 int sqlite3Compare(const char *, const char *); 1570 int sqlite3SortCompare(const char *, const char *); 1571 void sqlite3RealToSortable(double r, char *); 1572 1573 void *sqlite3Malloc(int,int); 1574 void *sqlite3MallocRaw(int,int); 1575 void sqlite3Free(void*); 1576 void *sqlite3Realloc(void*,int); 1577 char *sqlite3StrDup(const char*); 1578 char *sqlite3StrNDup(const char*, int); 1579 # define sqlite3CheckMemory(a,b) 1580 void *sqlite3ReallocOrFree(void*,int); 1581 void sqlite3FreeX(void*); 1582 void *sqlite3MallocX(int); 1583 int sqlite3AllocSize(void *); 1584 1585 char *sqlite3MPrintf(const char*, ...); 1586 char *sqlite3VMPrintf(const char*, va_list); 1587 void sqlite3DebugPrintf(const char*, ...); 1588 void *sqlite3TextToPtr(const char*); 1589 void sqlite3SetString(char **, ...); 1590 void sqlite3ErrorMsg(Parse*, const char*, ...); 1591 void sqlite3ErrorClear(Parse*); 1592 void sqlite3Dequote(char*); 1593 void sqlite3DequoteExpr(Expr*); 1594 int sqlite3KeywordCode(const unsigned char*, int); 1595 int sqlite3RunParser(Parse*, const char*, char **); 1596 void sqlite3FinishCoding(Parse*); 1597 Expr *sqlite3Expr(int, Expr*, Expr*, const Token*); 1598 Expr *sqlite3ExprOrFree(int, Expr*, Expr*, const Token*); 1599 Expr *sqlite3RegisterExpr(Parse*,Token*); 1600 Expr *sqlite3ExprAnd(Expr*, Expr*); 1601 void sqlite3ExprSpan(Expr*,Token*,Token*); 1602 Expr *sqlite3ExprFunction(ExprList*, Token*); 1603 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1604 void sqlite3ExprDelete(Expr*); 1605 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*); 1606 void sqlite3ExprListDelete(ExprList*); 1607 int sqlite3Init(sqlite3*, char**); 1608 int sqlite3InitCallback(void*, int, char**, char**); 1609 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1610 void sqlite3ResetInternalSchema(sqlite3*, int); 1611 void sqlite3BeginParse(Parse*,int); 1612 void sqlite3CommitInternalChanges(sqlite3*); 1613 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1614 void sqlite3OpenMasterTable(Parse *, int); 1615 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1616 void sqlite3AddColumn(Parse*,Token*); 1617 void sqlite3AddNotNull(Parse*, int); 1618 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1619 void sqlite3AddCheckConstraint(Parse*, Expr*); 1620 void sqlite3AddColumnType(Parse*,Token*); 1621 void sqlite3AddDefaultValue(Parse*,Expr*); 1622 void sqlite3AddCollateType(Parse*, const char*, int); 1623 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1624 1625 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1626 1627 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1628 int sqlite3ViewGetColumnNames(Parse*,Table*); 1629 #else 1630 # define sqlite3ViewGetColumnNames(A,B) 0 1631 #endif 1632 1633 void sqlite3DropTable(Parse*, SrcList*, int, int); 1634 void sqlite3DeleteTable(sqlite3*, Table*); 1635 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1636 void *sqlite3ArrayAllocate(void*,int,int,int*,int*,int*); 1637 IdList *sqlite3IdListAppend(IdList*, Token*); 1638 int sqlite3IdListIndex(IdList*,const char*); 1639 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); 1640 SrcList *sqlite3SrcListAppendFromTerm(SrcList*, Token*, Token*, Token*, 1641 Select*, Expr*, IdList*); 1642 void sqlite3SrcListShiftJoinType(SrcList*); 1643 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1644 void sqlite3IdListDelete(IdList*); 1645 void sqlite3SrcListDelete(SrcList*); 1646 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1647 Token*, int, int); 1648 void sqlite3DropIndex(Parse*, SrcList*, int); 1649 void sqlite3AddKeyType(Vdbe*, ExprList*); 1650 void sqlite3AddIdxKeyType(Vdbe*, Index*); 1651 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1652 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1653 int,Expr*,Expr*); 1654 void sqlite3SelectDelete(Select*); 1655 void sqlite3SelectUnbind(Select*); 1656 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1657 int sqlite3IsReadOnly(Parse*, Table*, int); 1658 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1659 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1660 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1661 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1662 void sqlite3WhereEnd(WhereInfo*); 1663 void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int); 1664 void sqlite3ExprCode(Parse*, Expr*); 1665 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1666 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1667 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1668 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1669 void sqlite3NextedParse(Parse*, const char*, ...); 1670 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1671 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1672 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1673 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1674 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1675 void sqlite3Vacuum(Parse*); 1676 int sqlite3RunVacuum(char**, sqlite3*); 1677 char *sqlite3NameFromToken(Token*); 1678 int sqlite3ExprCheck(Parse*, Expr*, int, int*); 1679 int sqlite3ExprCompare(Expr*, Expr*); 1680 int sqliteFuncId(Token*); 1681 int sqlite3ExprResolveNames(NameContext *, Expr *); 1682 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1683 int sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1684 Vdbe *sqlite3GetVdbe(Parse*); 1685 Expr *sqlite3CreateIdExpr(const char*); 1686 void sqlite3Randomness(int, void*); 1687 void sqlite3RollbackAll(sqlite3*); 1688 void sqlite3CodeVerifySchema(Parse*, int); 1689 void sqlite3BeginTransaction(Parse*, int); 1690 void sqlite3CommitTransaction(Parse*); 1691 void sqlite3RollbackTransaction(Parse*); 1692 int sqlite3ExprIsConstant(Expr*); 1693 int sqlite3ExprIsConstantOrFunction(Expr*); 1694 int sqlite3ExprIsInteger(Expr*, int*); 1695 int sqlite3IsRowid(const char*); 1696 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1697 void sqlite3GenerateRowIndexDelete(Vdbe*, Table*, int, char*); 1698 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1699 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1700 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int, int); 1701 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1702 void sqlite3BeginWriteOperation(Parse*, int, int); 1703 Expr *sqlite3ExprDup(Expr*); 1704 void sqlite3TokenCopy(Token*, Token*); 1705 ExprList *sqlite3ExprListDup(ExprList*); 1706 SrcList *sqlite3SrcListDup(SrcList*); 1707 IdList *sqlite3IdListDup(IdList*); 1708 Select *sqlite3SelectDup(Select*); 1709 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1710 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1711 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1712 int sqlite3SafetyOn(sqlite3*); 1713 int sqlite3SafetyOff(sqlite3*); 1714 int sqlite3SafetyCheck(sqlite3*); 1715 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1716 1717 #ifndef SQLITE_OMIT_TRIGGER 1718 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1719 Expr*,int, int); 1720 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1721 void sqlite3DropTrigger(Parse*, SrcList*, int); 1722 void sqlite3DropTriggerPtr(Parse*, Trigger*); 1723 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1724 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1725 int, int); 1726 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1727 void sqlite3DeleteTriggerStep(TriggerStep*); 1728 TriggerStep *sqlite3TriggerSelectStep(Select*); 1729 TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int); 1730 TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); 1731 TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); 1732 void sqlite3DeleteTrigger(Trigger*); 1733 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1734 #else 1735 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1736 # define sqlite3DeleteTrigger(A) 1737 # define sqlite3DropTriggerPtr(A,B) 1738 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1739 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1740 #endif 1741 1742 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1743 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1744 void sqlite3DeferForeignKey(Parse*, int); 1745 #ifndef SQLITE_OMIT_AUTHORIZATION 1746 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1747 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1748 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1749 void sqlite3AuthContextPop(AuthContext*); 1750 #else 1751 # define sqlite3AuthRead(a,b,c) 1752 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1753 # define sqlite3AuthContextPush(a,b,c) 1754 # define sqlite3AuthContextPop(a) ((void)(a)) 1755 #endif 1756 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 1757 void sqlite3Detach(Parse*, Expr*); 1758 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1759 int omitJournal, int nCache, Btree **ppBtree); 1760 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1761 int sqlite3FixSrcList(DbFixer*, SrcList*); 1762 int sqlite3FixSelect(DbFixer*, Select*); 1763 int sqlite3FixExpr(DbFixer*, Expr*); 1764 int sqlite3FixExprList(DbFixer*, ExprList*); 1765 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1766 int sqlite3AtoF(const char *z, double*); 1767 char *sqlite3_snprintf(int,char*,const char*,...); 1768 int sqlite3GetInt32(const char *, int*); 1769 int sqlite3FitsIn64Bits(const char *); 1770 int sqlite3utf16ByteLen(const void *pData, int nChar); 1771 int sqlite3utf8CharLen(const char *pData, int nByte); 1772 int sqlite3ReadUtf8(const unsigned char *); 1773 int sqlite3PutVarint(unsigned char *, u64); 1774 int sqlite3GetVarint(const unsigned char *, u64 *); 1775 int sqlite3GetVarint32(const unsigned char *, u32 *); 1776 int sqlite3VarintLen(u64 v); 1777 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1778 void sqlite3TableAffinityStr(Vdbe *, Table *); 1779 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1780 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1781 char sqlite3ExprAffinity(Expr *pExpr); 1782 int sqlite3atoi64(const char*, i64*); 1783 void sqlite3Error(sqlite3*, int, const char*,...); 1784 void *sqlite3HexToBlob(const char *z); 1785 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1786 const char *sqlite3ErrStr(int); 1787 int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold); 1788 int sqlite3ReadSchema(Parse *pParse); 1789 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1790 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1791 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1792 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 1793 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1794 int sqlite3CheckIndexCollSeq(Parse *, Index *); 1795 int sqlite3CheckObjectName(Parse *, const char *); 1796 void sqlite3VdbeSetChanges(sqlite3 *, int); 1797 void sqlite3utf16Substr(sqlite3_context *,int,sqlite3_value **); 1798 1799 const void *sqlite3ValueText(sqlite3_value*, u8); 1800 int sqlite3ValueBytes(sqlite3_value*, u8); 1801 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); 1802 void sqlite3ValueFree(sqlite3_value*); 1803 sqlite3_value *sqlite3ValueNew(void); 1804 char *sqlite3utf16to8(const void*, int); 1805 int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **); 1806 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1807 extern const unsigned char sqlite3UpperToLower[]; 1808 void sqlite3RootPageMoved(Db*, int, int); 1809 void sqlite3Reindex(Parse*, Token*, Token*); 1810 void sqlite3AlterFunctions(sqlite3*); 1811 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1812 int sqlite3GetToken(const unsigned char *, int *); 1813 void sqlite3NestedParse(Parse*, const char*, ...); 1814 void sqlite3ExpirePreparedStatements(sqlite3*); 1815 void sqlite3CodeSubselect(Parse *, Expr *); 1816 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1817 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1818 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1819 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1820 const char *sqlite3TestErrorName(int); 1821 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1822 char sqlite3AffinityType(const Token*); 1823 void sqlite3Analyze(Parse*, Token*, Token*); 1824 int sqlite3InvokeBusyHandler(BusyHandler*); 1825 int sqlite3FindDb(sqlite3*, Token*); 1826 void sqlite3AnalysisLoad(sqlite3*,int iDB); 1827 void sqlite3DefaultRowEst(Index*); 1828 void sqlite3RegisterLikeFunctions(sqlite3*, int); 1829 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 1830 ThreadData *sqlite3ThreadData(void); 1831 const ThreadData *sqlite3ThreadDataReadOnly(void); 1832 void sqlite3ReleaseThreadData(void); 1833 void sqlite3AttachFunctions(sqlite3 *); 1834 void sqlite3MinimumFileFormat(Parse*, int, int); 1835 void sqlite3SchemaFree(void *); 1836 Schema *sqlite3SchemaGet(Btree *); 1837 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 1838 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 1839 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 1840 void (*)(sqlite3_context*,int,sqlite3_value **), 1841 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 1842 int sqlite3ApiExit(sqlite3 *db, int); 1843 int sqlite3MallocFailed(void); 1844 void sqlite3FailedMalloc(void); 1845 void sqlite3AbortOtherActiveVdbes(sqlite3 *, Vdbe *); 1846 int sqlite3OpenTempDatabase(Parse *); 1847 1848 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1849 void sqlite3CloseExtensions(sqlite3*); 1850 int sqlite3AutoLoadExtensions(sqlite3*); 1851 #else 1852 # define sqlite3CloseExtensions(X) 1853 # define sqlite3AutoLoadExtensions(X) SQLITE_OK 1854 #endif 1855 1856 #ifndef SQLITE_OMIT_SHARED_CACHE 1857 void sqlite3TableLock(Parse *, int, int, u8, const char *); 1858 #else 1859 #define sqlite3TableLock(v,w,x,y,z) 1860 #endif 1861 1862 #ifdef SQLITE_MEMDEBUG 1863 void sqlite3MallocDisallow(void); 1864 void sqlite3MallocAllow(void); 1865 int sqlite3TestMallocFail(void); 1866 #else 1867 #define sqlite3TestMallocFail() 0 1868 #define sqlite3MallocDisallow() 1869 #define sqlite3MallocAllow() 1870 #endif 1871 1872 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1873 void *sqlite3ThreadSafeMalloc(int); 1874 void sqlite3ThreadSafeFree(void *); 1875 #else 1876 #define sqlite3ThreadSafeMalloc sqlite3MallocX 1877 #define sqlite3ThreadSafeFree sqlite3FreeX 1878 #endif 1879 1880 #ifdef SQLITE_OMIT_VIRTUALTABLE 1881 # define sqlite3VtabClear(X) 1882 # define sqlite3VtabSync(X,Y) (Y) 1883 # define sqlite3VtabRollback(X) 1884 # define sqlite3VtabCommit(X) 1885 #else 1886 void sqlite3VtabClear(Table*); 1887 int sqlite3VtabSync(sqlite3 *db, int rc); 1888 int sqlite3VtabRollback(sqlite3 *db); 1889 int sqlite3VtabCommit(sqlite3 *db); 1890 #endif 1891 void sqlite3VtabLock(sqlite3_vtab*); 1892 void sqlite3VtabUnlock(sqlite3_vtab*); 1893 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 1894 void sqlite3VtabFinishParse(Parse*, Token*); 1895 void sqlite3VtabArgInit(Parse*); 1896 void sqlite3VtabArgExtend(Parse*, Token*); 1897 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 1898 int sqlite3VtabCallConnect(Parse*, Table*); 1899 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 1900 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 1901 FuncDef *sqlite3VtabOverloadFunction(FuncDef*, int nArg, Expr*); 1902 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 1903 int sqlite3Reprepare(Vdbe*); 1904 1905 #ifdef SQLITE_SSE 1906 #include "sseInt.h" 1907 #endif 1908 1909 /* 1910 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 1911 ** sqlite3_io_trace is a pointer to a printf-like routine used to 1912 ** print I/O tracing messages. 1913 */ 1914 #ifdef SQLITE_ENABLE_IOTRACE 1915 # define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; } 1916 void sqlite3VdbeIOTraceSql(Vdbe*); 1917 #else 1918 # define IOTRACE(A) 1919 # define sqlite3VdbeIOTraceSql(X) 1920 #endif 1921 extern void (*sqlite3_io_trace)(const char*,...); 1922 1923 #endif 1924