1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** The previous paragraph was written in 2005. (This paragraph is written 36 ** on 2008-11-28.) These days, all Linux kernels support large files, so 37 ** you should probably leave LFS enabled. But some embedded platforms might 38 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 39 ** 40 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 41 */ 42 #ifndef SQLITE_DISABLE_LFS 43 # define _LARGE_FILE 1 44 # ifndef _FILE_OFFSET_BITS 45 # define _FILE_OFFSET_BITS 64 46 # endif 47 # define _LARGEFILE_SOURCE 1 48 #endif 49 50 /* 51 ** For MinGW, check to see if we can include the header file containing its 52 ** version information, among other things. Normally, this internal MinGW 53 ** header file would [only] be included automatically by other MinGW header 54 ** files; however, the contained version information is now required by this 55 ** header file to work around binary compatibility issues (see below) and 56 ** this is the only known way to reliably obtain it. This entire #if block 57 ** would be completely unnecessary if there was any other way of detecting 58 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 59 ** some MinGW-specific macros). When compiling for MinGW, either the 60 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 61 ** defined; otherwise, detection of conditions specific to MinGW will be 62 ** disabled. 63 */ 64 #if defined(_HAVE_MINGW_H) 65 # include "mingw.h" 66 #elif defined(_HAVE__MINGW_H) 67 # include "_mingw.h" 68 #endif 69 70 /* 71 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 72 ** define is required to maintain binary compatibility with the MSVC runtime 73 ** library in use (e.g. for Windows XP). 74 */ 75 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 76 defined(_WIN32) && !defined(_WIN64) && \ 77 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 78 defined(__MSVCRT__) 79 # define _USE_32BIT_TIME_T 80 #endif 81 82 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 83 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 84 ** MinGW. 85 */ 86 #include "sqlite3.h" 87 88 /* 89 ** Include the configuration header output by 'configure' if we're using the 90 ** autoconf-based build 91 */ 92 #ifdef _HAVE_SQLITE_CONFIG_H 93 #include "config.h" 94 #endif 95 96 #include "sqliteLimit.h" 97 98 /* Disable nuisance warnings on Borland compilers */ 99 #if defined(__BORLANDC__) 100 #pragma warn -rch /* unreachable code */ 101 #pragma warn -ccc /* Condition is always true or false */ 102 #pragma warn -aus /* Assigned value is never used */ 103 #pragma warn -csu /* Comparing signed and unsigned */ 104 #pragma warn -spa /* Suspicious pointer arithmetic */ 105 #endif 106 107 /* Needed for various definitions... */ 108 #ifndef _GNU_SOURCE 109 # define _GNU_SOURCE 110 #endif 111 112 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 113 # define _BSD_SOURCE 114 #endif 115 116 /* 117 ** Include standard header files as necessary 118 */ 119 #ifdef HAVE_STDINT_H 120 #include <stdint.h> 121 #endif 122 #ifdef HAVE_INTTYPES_H 123 #include <inttypes.h> 124 #endif 125 126 /* 127 ** The following macros are used to cast pointers to integers and 128 ** integers to pointers. The way you do this varies from one compiler 129 ** to the next, so we have developed the following set of #if statements 130 ** to generate appropriate macros for a wide range of compilers. 131 ** 132 ** The correct "ANSI" way to do this is to use the intptr_t type. 133 ** Unfortunately, that typedef is not available on all compilers, or 134 ** if it is available, it requires an #include of specific headers 135 ** that vary from one machine to the next. 136 ** 137 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 138 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 139 ** So we have to define the macros in different ways depending on the 140 ** compiler. 141 */ 142 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 143 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 144 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 145 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 146 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 147 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 148 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 149 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 150 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 151 #else /* Generates a warning - but it always works */ 152 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 153 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 154 #endif 155 156 /* 157 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 158 ** 0 means mutexes are permanently disable and the library is never 159 ** threadsafe. 1 means the library is serialized which is the highest 160 ** level of threadsafety. 2 means the library is multithreaded - multiple 161 ** threads can use SQLite as long as no two threads try to use the same 162 ** database connection at the same time. 163 ** 164 ** Older versions of SQLite used an optional THREADSAFE macro. 165 ** We support that for legacy. 166 */ 167 #if !defined(SQLITE_THREADSAFE) 168 # if defined(THREADSAFE) 169 # define SQLITE_THREADSAFE THREADSAFE 170 # else 171 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 172 # endif 173 #endif 174 175 /* 176 ** Powersafe overwrite is on by default. But can be turned off using 177 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 178 */ 179 #ifndef SQLITE_POWERSAFE_OVERWRITE 180 # define SQLITE_POWERSAFE_OVERWRITE 1 181 #endif 182 183 /* 184 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 185 ** It determines whether or not the features related to 186 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 187 ** be overridden at runtime using the sqlite3_config() API. 188 */ 189 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 190 # define SQLITE_DEFAULT_MEMSTATUS 1 191 #endif 192 193 /* 194 ** Exactly one of the following macros must be defined in order to 195 ** specify which memory allocation subsystem to use. 196 ** 197 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 198 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 199 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 200 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 201 ** 202 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 203 ** assert() macro is enabled, each call into the Win32 native heap subsystem 204 ** will cause HeapValidate to be called. If heap validation should fail, an 205 ** assertion will be triggered. 206 ** 207 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 208 ** the default. 209 */ 210 #if defined(SQLITE_SYSTEM_MALLOC) \ 211 + defined(SQLITE_WIN32_MALLOC) \ 212 + defined(SQLITE_ZERO_MALLOC) \ 213 + defined(SQLITE_MEMDEBUG)>1 214 # error "Two or more of the following compile-time configuration options\ 215 are defined but at most one is allowed:\ 216 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 217 SQLITE_ZERO_MALLOC" 218 #endif 219 #if defined(SQLITE_SYSTEM_MALLOC) \ 220 + defined(SQLITE_WIN32_MALLOC) \ 221 + defined(SQLITE_ZERO_MALLOC) \ 222 + defined(SQLITE_MEMDEBUG)==0 223 # define SQLITE_SYSTEM_MALLOC 1 224 #endif 225 226 /* 227 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 228 ** sizes of memory allocations below this value where possible. 229 */ 230 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 231 # define SQLITE_MALLOC_SOFT_LIMIT 1024 232 #endif 233 234 /* 235 ** We need to define _XOPEN_SOURCE as follows in order to enable 236 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 237 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 238 ** it. 239 */ 240 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 241 # define _XOPEN_SOURCE 600 242 #endif 243 244 /* 245 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 246 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 247 ** make it true by defining or undefining NDEBUG. 248 ** 249 ** Setting NDEBUG makes the code smaller and faster by disabling the 250 ** assert() statements in the code. So we want the default action 251 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 252 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 253 ** feature. 254 */ 255 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 256 # define NDEBUG 1 257 #endif 258 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 259 # undef NDEBUG 260 #endif 261 262 /* 263 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 264 */ 265 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 266 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 267 #endif 268 269 /* 270 ** The testcase() macro is used to aid in coverage testing. When 271 ** doing coverage testing, the condition inside the argument to 272 ** testcase() must be evaluated both true and false in order to 273 ** get full branch coverage. The testcase() macro is inserted 274 ** to help ensure adequate test coverage in places where simple 275 ** condition/decision coverage is inadequate. For example, testcase() 276 ** can be used to make sure boundary values are tested. For 277 ** bitmask tests, testcase() can be used to make sure each bit 278 ** is significant and used at least once. On switch statements 279 ** where multiple cases go to the same block of code, testcase() 280 ** can insure that all cases are evaluated. 281 ** 282 */ 283 #ifdef SQLITE_COVERAGE_TEST 284 void sqlite3Coverage(int); 285 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 286 #else 287 # define testcase(X) 288 #endif 289 290 /* 291 ** The TESTONLY macro is used to enclose variable declarations or 292 ** other bits of code that are needed to support the arguments 293 ** within testcase() and assert() macros. 294 */ 295 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 296 # define TESTONLY(X) X 297 #else 298 # define TESTONLY(X) 299 #endif 300 301 /* 302 ** Sometimes we need a small amount of code such as a variable initialization 303 ** to setup for a later assert() statement. We do not want this code to 304 ** appear when assert() is disabled. The following macro is therefore 305 ** used to contain that setup code. The "VVA" acronym stands for 306 ** "Verification, Validation, and Accreditation". In other words, the 307 ** code within VVA_ONLY() will only run during verification processes. 308 */ 309 #ifndef NDEBUG 310 # define VVA_ONLY(X) X 311 #else 312 # define VVA_ONLY(X) 313 #endif 314 315 /* 316 ** The ALWAYS and NEVER macros surround boolean expressions which 317 ** are intended to always be true or false, respectively. Such 318 ** expressions could be omitted from the code completely. But they 319 ** are included in a few cases in order to enhance the resilience 320 ** of SQLite to unexpected behavior - to make the code "self-healing" 321 ** or "ductile" rather than being "brittle" and crashing at the first 322 ** hint of unplanned behavior. 323 ** 324 ** In other words, ALWAYS and NEVER are added for defensive code. 325 ** 326 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 327 ** be true and false so that the unreachable code they specify will 328 ** not be counted as untested code. 329 */ 330 #if defined(SQLITE_COVERAGE_TEST) 331 # define ALWAYS(X) (1) 332 # define NEVER(X) (0) 333 #elif !defined(NDEBUG) 334 # define ALWAYS(X) ((X)?1:(assert(0),0)) 335 # define NEVER(X) ((X)?(assert(0),1):0) 336 #else 337 # define ALWAYS(X) (X) 338 # define NEVER(X) (X) 339 #endif 340 341 /* 342 ** Return true (non-zero) if the input is a integer that is too large 343 ** to fit in 32-bits. This macro is used inside of various testcase() 344 ** macros to verify that we have tested SQLite for large-file support. 345 */ 346 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 347 348 /* 349 ** The macro unlikely() is a hint that surrounds a boolean 350 ** expression that is usually false. Macro likely() surrounds 351 ** a boolean expression that is usually true. These hints could, 352 ** in theory, be used by the compiler to generate better code, but 353 ** currently they are just comments for human readers. 354 */ 355 #define likely(X) (X) 356 #define unlikely(X) (X) 357 358 #include "hash.h" 359 #include "parse.h" 360 #include <stdio.h> 361 #include <stdlib.h> 362 #include <string.h> 363 #include <assert.h> 364 #include <stddef.h> 365 366 /* 367 ** If compiling for a processor that lacks floating point support, 368 ** substitute integer for floating-point 369 */ 370 #ifdef SQLITE_OMIT_FLOATING_POINT 371 # define double sqlite_int64 372 # define float sqlite_int64 373 # define LONGDOUBLE_TYPE sqlite_int64 374 # ifndef SQLITE_BIG_DBL 375 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 376 # endif 377 # define SQLITE_OMIT_DATETIME_FUNCS 1 378 # define SQLITE_OMIT_TRACE 1 379 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 380 # undef SQLITE_HAVE_ISNAN 381 #endif 382 #ifndef SQLITE_BIG_DBL 383 # define SQLITE_BIG_DBL (1e99) 384 #endif 385 386 /* 387 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 388 ** afterward. Having this macro allows us to cause the C compiler 389 ** to omit code used by TEMP tables without messy #ifndef statements. 390 */ 391 #ifdef SQLITE_OMIT_TEMPDB 392 #define OMIT_TEMPDB 1 393 #else 394 #define OMIT_TEMPDB 0 395 #endif 396 397 /* 398 ** The "file format" number is an integer that is incremented whenever 399 ** the VDBE-level file format changes. The following macros define the 400 ** the default file format for new databases and the maximum file format 401 ** that the library can read. 402 */ 403 #define SQLITE_MAX_FILE_FORMAT 4 404 #ifndef SQLITE_DEFAULT_FILE_FORMAT 405 # define SQLITE_DEFAULT_FILE_FORMAT 4 406 #endif 407 408 /* 409 ** Determine whether triggers are recursive by default. This can be 410 ** changed at run-time using a pragma. 411 */ 412 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 413 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 414 #endif 415 416 /* 417 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 418 ** on the command-line 419 */ 420 #ifndef SQLITE_TEMP_STORE 421 # define SQLITE_TEMP_STORE 1 422 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 423 #endif 424 425 /* 426 ** GCC does not define the offsetof() macro so we'll have to do it 427 ** ourselves. 428 */ 429 #ifndef offsetof 430 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 431 #endif 432 433 /* 434 ** Macros to compute minimum and maximum of two numbers. 435 */ 436 #define MIN(A,B) ((A)<(B)?(A):(B)) 437 #define MAX(A,B) ((A)>(B)?(A):(B)) 438 439 /* 440 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 441 ** not, there are still machines out there that use EBCDIC.) 442 */ 443 #if 'A' == '\301' 444 # define SQLITE_EBCDIC 1 445 #else 446 # define SQLITE_ASCII 1 447 #endif 448 449 /* 450 ** Integers of known sizes. These typedefs might change for architectures 451 ** where the sizes very. Preprocessor macros are available so that the 452 ** types can be conveniently redefined at compile-type. Like this: 453 ** 454 ** cc '-DUINTPTR_TYPE=long long int' ... 455 */ 456 #ifndef UINT32_TYPE 457 # ifdef HAVE_UINT32_T 458 # define UINT32_TYPE uint32_t 459 # else 460 # define UINT32_TYPE unsigned int 461 # endif 462 #endif 463 #ifndef UINT16_TYPE 464 # ifdef HAVE_UINT16_T 465 # define UINT16_TYPE uint16_t 466 # else 467 # define UINT16_TYPE unsigned short int 468 # endif 469 #endif 470 #ifndef INT16_TYPE 471 # ifdef HAVE_INT16_T 472 # define INT16_TYPE int16_t 473 # else 474 # define INT16_TYPE short int 475 # endif 476 #endif 477 #ifndef UINT8_TYPE 478 # ifdef HAVE_UINT8_T 479 # define UINT8_TYPE uint8_t 480 # else 481 # define UINT8_TYPE unsigned char 482 # endif 483 #endif 484 #ifndef INT8_TYPE 485 # ifdef HAVE_INT8_T 486 # define INT8_TYPE int8_t 487 # else 488 # define INT8_TYPE signed char 489 # endif 490 #endif 491 #ifndef LONGDOUBLE_TYPE 492 # define LONGDOUBLE_TYPE long double 493 #endif 494 typedef sqlite_int64 i64; /* 8-byte signed integer */ 495 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 496 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 497 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 498 typedef INT16_TYPE i16; /* 2-byte signed integer */ 499 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 500 typedef INT8_TYPE i8; /* 1-byte signed integer */ 501 502 /* 503 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 504 ** that can be stored in a u32 without loss of data. The value 505 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 506 ** have to specify the value in the less intuitive manner shown: 507 */ 508 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 509 510 /* 511 ** The datatype used to store estimates of the number of rows in a 512 ** table or index. This is an unsigned integer type. For 99.9% of 513 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 514 ** can be used at compile-time if desired. 515 */ 516 #ifdef SQLITE_64BIT_STATS 517 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 518 #else 519 typedef u32 tRowcnt; /* 32-bit is the default */ 520 #endif 521 522 /* 523 ** Estimated quantities used for query planning are stored as 16-bit 524 ** logarithms. For quantity X, the value stored is 10*log2(X). This 525 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 526 ** But the allowed values are "grainy". Not every value is representable. 527 ** For example, quantities 16 and 17 are both represented by a LogEst 528 ** of 40. However, since LogEst quantaties are suppose to be estimates, 529 ** not exact values, this imprecision is not a problem. 530 ** 531 ** "LogEst" is short for "Logarithmic Estimate". 532 ** 533 ** Examples: 534 ** 1 -> 0 20 -> 43 10000 -> 132 535 ** 2 -> 10 25 -> 46 25000 -> 146 536 ** 3 -> 16 100 -> 66 1000000 -> 199 537 ** 4 -> 20 1000 -> 99 1048576 -> 200 538 ** 10 -> 33 1024 -> 100 4294967296 -> 320 539 ** 540 ** The LogEst can be negative to indicate fractional values. 541 ** Examples: 542 ** 543 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 544 */ 545 typedef INT16_TYPE LogEst; 546 547 /* 548 ** Macros to determine whether the machine is big or little endian, 549 ** and whether or not that determination is run-time or compile-time. 550 ** 551 ** For best performance, an attempt is made to guess at the byte-order 552 ** using C-preprocessor macros. If that is unsuccessful, or if 553 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 554 ** at run-time. 555 */ 556 #ifdef SQLITE_AMALGAMATION 557 const int sqlite3one = 1; 558 #else 559 extern const int sqlite3one; 560 #endif 561 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 562 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 563 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 564 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 565 # define SQLITE_BYTEORDER 1234 566 # define SQLITE_BIGENDIAN 0 567 # define SQLITE_LITTLEENDIAN 1 568 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 569 #endif 570 #if (defined(sparc) || defined(__ppc__)) \ 571 && !defined(SQLITE_RUNTIME_BYTEORDER) 572 # define SQLITE_BYTEORDER 4321 573 # define SQLITE_BIGENDIAN 1 574 # define SQLITE_LITTLEENDIAN 0 575 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 576 #endif 577 #if !defined(SQLITE_BYTEORDER) 578 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 579 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 580 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 581 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 582 #endif 583 584 /* 585 ** Constants for the largest and smallest possible 64-bit signed integers. 586 ** These macros are designed to work correctly on both 32-bit and 64-bit 587 ** compilers. 588 */ 589 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 590 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 591 592 /* 593 ** Round up a number to the next larger multiple of 8. This is used 594 ** to force 8-byte alignment on 64-bit architectures. 595 */ 596 #define ROUND8(x) (((x)+7)&~7) 597 598 /* 599 ** Round down to the nearest multiple of 8 600 */ 601 #define ROUNDDOWN8(x) ((x)&~7) 602 603 /* 604 ** Assert that the pointer X is aligned to an 8-byte boundary. This 605 ** macro is used only within assert() to verify that the code gets 606 ** all alignment restrictions correct. 607 ** 608 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 609 ** underlying malloc() implemention might return us 4-byte aligned 610 ** pointers. In that case, only verify 4-byte alignment. 611 */ 612 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 613 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 614 #else 615 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 616 #endif 617 618 /* 619 ** Disable MMAP on platforms where it is known to not work 620 */ 621 #if defined(__OpenBSD__) || defined(__QNXNTO__) 622 # undef SQLITE_MAX_MMAP_SIZE 623 # define SQLITE_MAX_MMAP_SIZE 0 624 #endif 625 626 /* 627 ** Default maximum size of memory used by memory-mapped I/O in the VFS 628 */ 629 #ifdef __APPLE__ 630 # include <TargetConditionals.h> 631 # if TARGET_OS_IPHONE 632 # undef SQLITE_MAX_MMAP_SIZE 633 # define SQLITE_MAX_MMAP_SIZE 0 634 # endif 635 #endif 636 #ifndef SQLITE_MAX_MMAP_SIZE 637 # if defined(__linux__) \ 638 || defined(_WIN32) \ 639 || (defined(__APPLE__) && defined(__MACH__)) \ 640 || defined(__sun) 641 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 642 # else 643 # define SQLITE_MAX_MMAP_SIZE 0 644 # endif 645 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 646 #endif 647 648 /* 649 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 650 ** default MMAP_SIZE is specified at compile-time, make sure that it does 651 ** not exceed the maximum mmap size. 652 */ 653 #ifndef SQLITE_DEFAULT_MMAP_SIZE 654 # define SQLITE_DEFAULT_MMAP_SIZE 0 655 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 656 #endif 657 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 658 # undef SQLITE_DEFAULT_MMAP_SIZE 659 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 660 #endif 661 662 /* 663 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 664 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 665 ** define SQLITE_ENABLE_STAT3_OR_STAT4 666 */ 667 #ifdef SQLITE_ENABLE_STAT4 668 # undef SQLITE_ENABLE_STAT3 669 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 670 #elif SQLITE_ENABLE_STAT3 671 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 672 #elif SQLITE_ENABLE_STAT3_OR_STAT4 673 # undef SQLITE_ENABLE_STAT3_OR_STAT4 674 #endif 675 676 /* 677 ** An instance of the following structure is used to store the busy-handler 678 ** callback for a given sqlite handle. 679 ** 680 ** The sqlite.busyHandler member of the sqlite struct contains the busy 681 ** callback for the database handle. Each pager opened via the sqlite 682 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 683 ** callback is currently invoked only from within pager.c. 684 */ 685 typedef struct BusyHandler BusyHandler; 686 struct BusyHandler { 687 int (*xFunc)(void *,int); /* The busy callback */ 688 void *pArg; /* First arg to busy callback */ 689 int nBusy; /* Incremented with each busy call */ 690 }; 691 692 /* 693 ** Name of the master database table. The master database table 694 ** is a special table that holds the names and attributes of all 695 ** user tables and indices. 696 */ 697 #define MASTER_NAME "sqlite_master" 698 #define TEMP_MASTER_NAME "sqlite_temp_master" 699 700 /* 701 ** The root-page of the master database table. 702 */ 703 #define MASTER_ROOT 1 704 705 /* 706 ** The name of the schema table. 707 */ 708 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 709 710 /* 711 ** A convenience macro that returns the number of elements in 712 ** an array. 713 */ 714 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 715 716 /* 717 ** Determine if the argument is a power of two 718 */ 719 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 720 721 /* 722 ** The following value as a destructor means to use sqlite3DbFree(). 723 ** The sqlite3DbFree() routine requires two parameters instead of the 724 ** one parameter that destructors normally want. So we have to introduce 725 ** this magic value that the code knows to handle differently. Any 726 ** pointer will work here as long as it is distinct from SQLITE_STATIC 727 ** and SQLITE_TRANSIENT. 728 */ 729 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 730 731 /* 732 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 733 ** not support Writable Static Data (WSD) such as global and static variables. 734 ** All variables must either be on the stack or dynamically allocated from 735 ** the heap. When WSD is unsupported, the variable declarations scattered 736 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 737 ** macro is used for this purpose. And instead of referencing the variable 738 ** directly, we use its constant as a key to lookup the run-time allocated 739 ** buffer that holds real variable. The constant is also the initializer 740 ** for the run-time allocated buffer. 741 ** 742 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 743 ** macros become no-ops and have zero performance impact. 744 */ 745 #ifdef SQLITE_OMIT_WSD 746 #define SQLITE_WSD const 747 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 748 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 749 int sqlite3_wsd_init(int N, int J); 750 void *sqlite3_wsd_find(void *K, int L); 751 #else 752 #define SQLITE_WSD 753 #define GLOBAL(t,v) v 754 #define sqlite3GlobalConfig sqlite3Config 755 #endif 756 757 /* 758 ** The following macros are used to suppress compiler warnings and to 759 ** make it clear to human readers when a function parameter is deliberately 760 ** left unused within the body of a function. This usually happens when 761 ** a function is called via a function pointer. For example the 762 ** implementation of an SQL aggregate step callback may not use the 763 ** parameter indicating the number of arguments passed to the aggregate, 764 ** if it knows that this is enforced elsewhere. 765 ** 766 ** When a function parameter is not used at all within the body of a function, 767 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 768 ** However, these macros may also be used to suppress warnings related to 769 ** parameters that may or may not be used depending on compilation options. 770 ** For example those parameters only used in assert() statements. In these 771 ** cases the parameters are named as per the usual conventions. 772 */ 773 #define UNUSED_PARAMETER(x) (void)(x) 774 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 775 776 /* 777 ** Forward references to structures 778 */ 779 typedef struct AggInfo AggInfo; 780 typedef struct AuthContext AuthContext; 781 typedef struct AutoincInfo AutoincInfo; 782 typedef struct Bitvec Bitvec; 783 typedef struct CollSeq CollSeq; 784 typedef struct Column Column; 785 typedef struct Db Db; 786 typedef struct Schema Schema; 787 typedef struct Expr Expr; 788 typedef struct ExprList ExprList; 789 typedef struct ExprSpan ExprSpan; 790 typedef struct FKey FKey; 791 typedef struct FuncDestructor FuncDestructor; 792 typedef struct FuncDef FuncDef; 793 typedef struct FuncDefHash FuncDefHash; 794 typedef struct IdList IdList; 795 typedef struct Index Index; 796 typedef struct IndexSample IndexSample; 797 typedef struct KeyClass KeyClass; 798 typedef struct KeyInfo KeyInfo; 799 typedef struct Lookaside Lookaside; 800 typedef struct LookasideSlot LookasideSlot; 801 typedef struct Module Module; 802 typedef struct NameContext NameContext; 803 typedef struct Parse Parse; 804 typedef struct PrintfArguments PrintfArguments; 805 typedef struct RowSet RowSet; 806 typedef struct Savepoint Savepoint; 807 typedef struct Select Select; 808 typedef struct SelectDest SelectDest; 809 typedef struct SrcList SrcList; 810 typedef struct StrAccum StrAccum; 811 typedef struct Table Table; 812 typedef struct TableLock TableLock; 813 typedef struct Token Token; 814 typedef struct Trigger Trigger; 815 typedef struct TriggerPrg TriggerPrg; 816 typedef struct TriggerStep TriggerStep; 817 typedef struct UnpackedRecord UnpackedRecord; 818 typedef struct VTable VTable; 819 typedef struct VtabCtx VtabCtx; 820 typedef struct Walker Walker; 821 typedef struct WhereInfo WhereInfo; 822 typedef struct With With; 823 824 /* 825 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 826 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 827 ** pointer types (i.e. FuncDef) defined above. 828 */ 829 #include "btree.h" 830 #include "vdbe.h" 831 #include "pager.h" 832 #include "pcache.h" 833 834 #include "os.h" 835 #include "mutex.h" 836 837 838 /* 839 ** Each database file to be accessed by the system is an instance 840 ** of the following structure. There are normally two of these structures 841 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 842 ** aDb[1] is the database file used to hold temporary tables. Additional 843 ** databases may be attached. 844 */ 845 struct Db { 846 char *zName; /* Name of this database */ 847 Btree *pBt; /* The B*Tree structure for this database file */ 848 u8 safety_level; /* How aggressive at syncing data to disk */ 849 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 850 }; 851 852 /* 853 ** An instance of the following structure stores a database schema. 854 ** 855 ** Most Schema objects are associated with a Btree. The exception is 856 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 857 ** In shared cache mode, a single Schema object can be shared by multiple 858 ** Btrees that refer to the same underlying BtShared object. 859 ** 860 ** Schema objects are automatically deallocated when the last Btree that 861 ** references them is destroyed. The TEMP Schema is manually freed by 862 ** sqlite3_close(). 863 * 864 ** A thread must be holding a mutex on the corresponding Btree in order 865 ** to access Schema content. This implies that the thread must also be 866 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 867 ** For a TEMP Schema, only the connection mutex is required. 868 */ 869 struct Schema { 870 int schema_cookie; /* Database schema version number for this file */ 871 int iGeneration; /* Generation counter. Incremented with each change */ 872 Hash tblHash; /* All tables indexed by name */ 873 Hash idxHash; /* All (named) indices indexed by name */ 874 Hash trigHash; /* All triggers indexed by name */ 875 Hash fkeyHash; /* All foreign keys by referenced table name */ 876 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 877 u8 file_format; /* Schema format version for this file */ 878 u8 enc; /* Text encoding used by this database */ 879 u16 flags; /* Flags associated with this schema */ 880 int cache_size; /* Number of pages to use in the cache */ 881 }; 882 883 /* 884 ** These macros can be used to test, set, or clear bits in the 885 ** Db.pSchema->flags field. 886 */ 887 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 888 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 889 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 890 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 891 892 /* 893 ** Allowed values for the DB.pSchema->flags field. 894 ** 895 ** The DB_SchemaLoaded flag is set after the database schema has been 896 ** read into internal hash tables. 897 ** 898 ** DB_UnresetViews means that one or more views have column names that 899 ** have been filled out. If the schema changes, these column names might 900 ** changes and so the view will need to be reset. 901 */ 902 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 903 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 904 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 905 906 /* 907 ** The number of different kinds of things that can be limited 908 ** using the sqlite3_limit() interface. 909 */ 910 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 911 912 /* 913 ** Lookaside malloc is a set of fixed-size buffers that can be used 914 ** to satisfy small transient memory allocation requests for objects 915 ** associated with a particular database connection. The use of 916 ** lookaside malloc provides a significant performance enhancement 917 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 918 ** SQL statements. 919 ** 920 ** The Lookaside structure holds configuration information about the 921 ** lookaside malloc subsystem. Each available memory allocation in 922 ** the lookaside subsystem is stored on a linked list of LookasideSlot 923 ** objects. 924 ** 925 ** Lookaside allocations are only allowed for objects that are associated 926 ** with a particular database connection. Hence, schema information cannot 927 ** be stored in lookaside because in shared cache mode the schema information 928 ** is shared by multiple database connections. Therefore, while parsing 929 ** schema information, the Lookaside.bEnabled flag is cleared so that 930 ** lookaside allocations are not used to construct the schema objects. 931 */ 932 struct Lookaside { 933 u16 sz; /* Size of each buffer in bytes */ 934 u8 bEnabled; /* False to disable new lookaside allocations */ 935 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 936 int nOut; /* Number of buffers currently checked out */ 937 int mxOut; /* Highwater mark for nOut */ 938 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 939 LookasideSlot *pFree; /* List of available buffers */ 940 void *pStart; /* First byte of available memory space */ 941 void *pEnd; /* First byte past end of available space */ 942 }; 943 struct LookasideSlot { 944 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 945 }; 946 947 /* 948 ** A hash table for function definitions. 949 ** 950 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 951 ** Collisions are on the FuncDef.pHash chain. 952 */ 953 struct FuncDefHash { 954 FuncDef *a[23]; /* Hash table for functions */ 955 }; 956 957 /* 958 ** Each database connection is an instance of the following structure. 959 */ 960 struct sqlite3 { 961 sqlite3_vfs *pVfs; /* OS Interface */ 962 struct Vdbe *pVdbe; /* List of active virtual machines */ 963 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 964 sqlite3_mutex *mutex; /* Connection mutex */ 965 Db *aDb; /* All backends */ 966 int nDb; /* Number of backends currently in use */ 967 int flags; /* Miscellaneous flags. See below */ 968 i64 lastRowid; /* ROWID of most recent insert (see above) */ 969 i64 szMmap; /* Default mmap_size setting */ 970 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 971 int errCode; /* Most recent error code (SQLITE_*) */ 972 int errMask; /* & result codes with this before returning */ 973 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 974 u8 autoCommit; /* The auto-commit flag. */ 975 u8 temp_store; /* 1: file 2: memory 0: default */ 976 u8 mallocFailed; /* True if we have seen a malloc failure */ 977 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 978 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 979 u8 suppressErr; /* Do not issue error messages if true */ 980 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 981 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 982 int nextPagesize; /* Pagesize after VACUUM if >0 */ 983 u32 magic; /* Magic number for detect library misuse */ 984 int nChange; /* Value returned by sqlite3_changes() */ 985 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 986 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 987 struct sqlite3InitInfo { /* Information used during initialization */ 988 int newTnum; /* Rootpage of table being initialized */ 989 u8 iDb; /* Which db file is being initialized */ 990 u8 busy; /* TRUE if currently initializing */ 991 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 992 } init; 993 int nVdbeActive; /* Number of VDBEs currently running */ 994 int nVdbeRead; /* Number of active VDBEs that read or write */ 995 int nVdbeWrite; /* Number of active VDBEs that read and write */ 996 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 997 int nExtension; /* Number of loaded extensions */ 998 void **aExtension; /* Array of shared library handles */ 999 void (*xTrace)(void*,const char*); /* Trace function */ 1000 void *pTraceArg; /* Argument to the trace function */ 1001 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1002 void *pProfileArg; /* Argument to profile function */ 1003 void *pCommitArg; /* Argument to xCommitCallback() */ 1004 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1005 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1006 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1007 void *pUpdateArg; 1008 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1009 #ifndef SQLITE_OMIT_WAL 1010 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1011 void *pWalArg; 1012 #endif 1013 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1014 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1015 void *pCollNeededArg; 1016 sqlite3_value *pErr; /* Most recent error message */ 1017 union { 1018 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1019 double notUsed1; /* Spacer */ 1020 } u1; 1021 Lookaside lookaside; /* Lookaside malloc configuration */ 1022 #ifndef SQLITE_OMIT_AUTHORIZATION 1023 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1024 /* Access authorization function */ 1025 void *pAuthArg; /* 1st argument to the access auth function */ 1026 #endif 1027 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1028 int (*xProgress)(void *); /* The progress callback */ 1029 void *pProgressArg; /* Argument to the progress callback */ 1030 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1031 #endif 1032 #ifndef SQLITE_OMIT_VIRTUALTABLE 1033 int nVTrans; /* Allocated size of aVTrans */ 1034 Hash aModule; /* populated by sqlite3_create_module() */ 1035 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1036 VTable **aVTrans; /* Virtual tables with open transactions */ 1037 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1038 #endif 1039 FuncDefHash aFunc; /* Hash table of connection functions */ 1040 Hash aCollSeq; /* All collating sequences */ 1041 BusyHandler busyHandler; /* Busy callback */ 1042 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1043 Savepoint *pSavepoint; /* List of active savepoints */ 1044 int busyTimeout; /* Busy handler timeout, in msec */ 1045 int nSavepoint; /* Number of non-transaction savepoints */ 1046 int nStatement; /* Number of nested statement-transactions */ 1047 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1048 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1049 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1050 1051 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1052 /* The following variables are all protected by the STATIC_MASTER 1053 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1054 ** 1055 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1056 ** unlock so that it can proceed. 1057 ** 1058 ** When X.pBlockingConnection==Y, that means that something that X tried 1059 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1060 ** held by Y. 1061 */ 1062 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1063 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1064 void *pUnlockArg; /* Argument to xUnlockNotify */ 1065 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1066 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1067 #endif 1068 }; 1069 1070 /* 1071 ** A macro to discover the encoding of a database. 1072 */ 1073 #define ENC(db) ((db)->aDb[0].pSchema->enc) 1074 1075 /* 1076 ** Possible values for the sqlite3.flags. 1077 */ 1078 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1079 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1080 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1081 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1082 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1083 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1084 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1085 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1086 /* DELETE, or UPDATE and return */ 1087 /* the count using a callback. */ 1088 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1089 /* result set is empty */ 1090 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1091 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1092 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1093 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1094 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1095 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1096 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1097 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1098 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1099 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1100 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1101 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1102 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1103 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1104 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1105 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1106 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1107 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1108 1109 1110 /* 1111 ** Bits of the sqlite3.dbOptFlags field that are used by the 1112 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1113 ** selectively disable various optimizations. 1114 */ 1115 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1116 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1117 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1118 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1119 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1120 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1121 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1122 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1123 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1124 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1125 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1126 #define SQLITE_Stat3 0x0800 /* Use the SQLITE_STAT3 table */ 1127 #define SQLITE_AdjustOutEst 0x1000 /* Adjust output estimates using WHERE */ 1128 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1129 1130 /* 1131 ** Macros for testing whether or not optimizations are enabled or disabled. 1132 */ 1133 #ifndef SQLITE_OMIT_BUILTIN_TEST 1134 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1135 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1136 #else 1137 #define OptimizationDisabled(db, mask) 0 1138 #define OptimizationEnabled(db, mask) 1 1139 #endif 1140 1141 /* 1142 ** Return true if it OK to factor constant expressions into the initialization 1143 ** code. The argument is a Parse object for the code generator. 1144 */ 1145 #define ConstFactorOk(P) ((P)->okConstFactor) 1146 1147 /* 1148 ** Possible values for the sqlite.magic field. 1149 ** The numbers are obtained at random and have no special meaning, other 1150 ** than being distinct from one another. 1151 */ 1152 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1153 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1154 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1155 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1156 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1157 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1158 1159 /* 1160 ** Each SQL function is defined by an instance of the following 1161 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1162 ** hash table. When multiple functions have the same name, the hash table 1163 ** points to a linked list of these structures. 1164 */ 1165 struct FuncDef { 1166 i16 nArg; /* Number of arguments. -1 means unlimited */ 1167 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1168 void *pUserData; /* User data parameter */ 1169 FuncDef *pNext; /* Next function with same name */ 1170 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1171 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1172 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1173 char *zName; /* SQL name of the function. */ 1174 FuncDef *pHash; /* Next with a different name but the same hash */ 1175 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1176 }; 1177 1178 /* 1179 ** This structure encapsulates a user-function destructor callback (as 1180 ** configured using create_function_v2()) and a reference counter. When 1181 ** create_function_v2() is called to create a function with a destructor, 1182 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1183 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1184 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1185 ** member of each of the new FuncDef objects is set to point to the allocated 1186 ** FuncDestructor. 1187 ** 1188 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1189 ** count on this object is decremented. When it reaches 0, the destructor 1190 ** is invoked and the FuncDestructor structure freed. 1191 */ 1192 struct FuncDestructor { 1193 int nRef; 1194 void (*xDestroy)(void *); 1195 void *pUserData; 1196 }; 1197 1198 /* 1199 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1200 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1201 ** are assert() statements in the code to verify this. 1202 */ 1203 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1204 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1205 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1206 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1207 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1208 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1209 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1210 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1211 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1212 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1213 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1214 1215 /* 1216 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1217 ** used to create the initializers for the FuncDef structures. 1218 ** 1219 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1220 ** Used to create a scalar function definition of a function zName 1221 ** implemented by C function xFunc that accepts nArg arguments. The 1222 ** value passed as iArg is cast to a (void*) and made available 1223 ** as the user-data (sqlite3_user_data()) for the function. If 1224 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1225 ** 1226 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1227 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1228 ** 1229 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1230 ** Used to create an aggregate function definition implemented by 1231 ** the C functions xStep and xFinal. The first four parameters 1232 ** are interpreted in the same way as the first 4 parameters to 1233 ** FUNCTION(). 1234 ** 1235 ** LIKEFUNC(zName, nArg, pArg, flags) 1236 ** Used to create a scalar function definition of a function zName 1237 ** that accepts nArg arguments and is implemented by a call to C 1238 ** function likeFunc. Argument pArg is cast to a (void *) and made 1239 ** available as the function user-data (sqlite3_user_data()). The 1240 ** FuncDef.flags variable is set to the value passed as the flags 1241 ** parameter. 1242 */ 1243 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1244 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1245 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1246 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1247 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1248 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1249 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1250 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1251 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1252 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1253 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1254 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1255 #define LIKEFUNC(zName, nArg, arg, flags) \ 1256 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1257 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1258 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1259 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1260 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1261 1262 /* 1263 ** All current savepoints are stored in a linked list starting at 1264 ** sqlite3.pSavepoint. The first element in the list is the most recently 1265 ** opened savepoint. Savepoints are added to the list by the vdbe 1266 ** OP_Savepoint instruction. 1267 */ 1268 struct Savepoint { 1269 char *zName; /* Savepoint name (nul-terminated) */ 1270 i64 nDeferredCons; /* Number of deferred fk violations */ 1271 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1272 Savepoint *pNext; /* Parent savepoint (if any) */ 1273 }; 1274 1275 /* 1276 ** The following are used as the second parameter to sqlite3Savepoint(), 1277 ** and as the P1 argument to the OP_Savepoint instruction. 1278 */ 1279 #define SAVEPOINT_BEGIN 0 1280 #define SAVEPOINT_RELEASE 1 1281 #define SAVEPOINT_ROLLBACK 2 1282 1283 1284 /* 1285 ** Each SQLite module (virtual table definition) is defined by an 1286 ** instance of the following structure, stored in the sqlite3.aModule 1287 ** hash table. 1288 */ 1289 struct Module { 1290 const sqlite3_module *pModule; /* Callback pointers */ 1291 const char *zName; /* Name passed to create_module() */ 1292 void *pAux; /* pAux passed to create_module() */ 1293 void (*xDestroy)(void *); /* Module destructor function */ 1294 }; 1295 1296 /* 1297 ** information about each column of an SQL table is held in an instance 1298 ** of this structure. 1299 */ 1300 struct Column { 1301 char *zName; /* Name of this column */ 1302 Expr *pDflt; /* Default value of this column */ 1303 char *zDflt; /* Original text of the default value */ 1304 char *zType; /* Data type for this column */ 1305 char *zColl; /* Collating sequence. If NULL, use the default */ 1306 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1307 char affinity; /* One of the SQLITE_AFF_... values */ 1308 u8 szEst; /* Estimated size of this column. INT==1 */ 1309 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1310 }; 1311 1312 /* Allowed values for Column.colFlags: 1313 */ 1314 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1315 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1316 1317 /* 1318 ** A "Collating Sequence" is defined by an instance of the following 1319 ** structure. Conceptually, a collating sequence consists of a name and 1320 ** a comparison routine that defines the order of that sequence. 1321 ** 1322 ** If CollSeq.xCmp is NULL, it means that the 1323 ** collating sequence is undefined. Indices built on an undefined 1324 ** collating sequence may not be read or written. 1325 */ 1326 struct CollSeq { 1327 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1328 u8 enc; /* Text encoding handled by xCmp() */ 1329 void *pUser; /* First argument to xCmp() */ 1330 int (*xCmp)(void*,int, const void*, int, const void*); 1331 void (*xDel)(void*); /* Destructor for pUser */ 1332 }; 1333 1334 /* 1335 ** A sort order can be either ASC or DESC. 1336 */ 1337 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1338 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1339 1340 /* 1341 ** Column affinity types. 1342 ** 1343 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1344 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1345 ** the speed a little by numbering the values consecutively. 1346 ** 1347 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1348 ** when multiple affinity types are concatenated into a string and 1349 ** used as the P4 operand, they will be more readable. 1350 ** 1351 ** Note also that the numeric types are grouped together so that testing 1352 ** for a numeric type is a single comparison. 1353 */ 1354 #define SQLITE_AFF_TEXT 'a' 1355 #define SQLITE_AFF_NONE 'b' 1356 #define SQLITE_AFF_NUMERIC 'c' 1357 #define SQLITE_AFF_INTEGER 'd' 1358 #define SQLITE_AFF_REAL 'e' 1359 1360 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1361 1362 /* 1363 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1364 ** affinity value. 1365 */ 1366 #define SQLITE_AFF_MASK 0x67 1367 1368 /* 1369 ** Additional bit values that can be ORed with an affinity without 1370 ** changing the affinity. 1371 ** 1372 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1373 ** It causes an assert() to fire if either operand to a comparison 1374 ** operator is NULL. It is added to certain comparison operators to 1375 ** prove that the operands are always NOT NULL. 1376 */ 1377 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1378 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1379 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1380 #define SQLITE_NOTNULL 0x88 /* Assert that operands are never NULL */ 1381 1382 /* 1383 ** An object of this type is created for each virtual table present in 1384 ** the database schema. 1385 ** 1386 ** If the database schema is shared, then there is one instance of this 1387 ** structure for each database connection (sqlite3*) that uses the shared 1388 ** schema. This is because each database connection requires its own unique 1389 ** instance of the sqlite3_vtab* handle used to access the virtual table 1390 ** implementation. sqlite3_vtab* handles can not be shared between 1391 ** database connections, even when the rest of the in-memory database 1392 ** schema is shared, as the implementation often stores the database 1393 ** connection handle passed to it via the xConnect() or xCreate() method 1394 ** during initialization internally. This database connection handle may 1395 ** then be used by the virtual table implementation to access real tables 1396 ** within the database. So that they appear as part of the callers 1397 ** transaction, these accesses need to be made via the same database 1398 ** connection as that used to execute SQL operations on the virtual table. 1399 ** 1400 ** All VTable objects that correspond to a single table in a shared 1401 ** database schema are initially stored in a linked-list pointed to by 1402 ** the Table.pVTable member variable of the corresponding Table object. 1403 ** When an sqlite3_prepare() operation is required to access the virtual 1404 ** table, it searches the list for the VTable that corresponds to the 1405 ** database connection doing the preparing so as to use the correct 1406 ** sqlite3_vtab* handle in the compiled query. 1407 ** 1408 ** When an in-memory Table object is deleted (for example when the 1409 ** schema is being reloaded for some reason), the VTable objects are not 1410 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1411 ** immediately. Instead, they are moved from the Table.pVTable list to 1412 ** another linked list headed by the sqlite3.pDisconnect member of the 1413 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1414 ** next time a statement is prepared using said sqlite3*. This is done 1415 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1416 ** Refer to comments above function sqlite3VtabUnlockList() for an 1417 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1418 ** list without holding the corresponding sqlite3.mutex mutex. 1419 ** 1420 ** The memory for objects of this type is always allocated by 1421 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1422 ** the first argument. 1423 */ 1424 struct VTable { 1425 sqlite3 *db; /* Database connection associated with this table */ 1426 Module *pMod; /* Pointer to module implementation */ 1427 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1428 int nRef; /* Number of pointers to this structure */ 1429 u8 bConstraint; /* True if constraints are supported */ 1430 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1431 VTable *pNext; /* Next in linked list (see above) */ 1432 }; 1433 1434 /* 1435 ** Each SQL table is represented in memory by an instance of the 1436 ** following structure. 1437 ** 1438 ** Table.zName is the name of the table. The case of the original 1439 ** CREATE TABLE statement is stored, but case is not significant for 1440 ** comparisons. 1441 ** 1442 ** Table.nCol is the number of columns in this table. Table.aCol is a 1443 ** pointer to an array of Column structures, one for each column. 1444 ** 1445 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1446 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1447 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1448 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1449 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1450 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1451 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1452 ** 1453 ** Table.tnum is the page number for the root BTree page of the table in the 1454 ** database file. If Table.iDb is the index of the database table backend 1455 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1456 ** holds temporary tables and indices. If TF_Ephemeral is set 1457 ** then the table is stored in a file that is automatically deleted 1458 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1459 ** refers VDBE cursor number that holds the table open, not to the root 1460 ** page number. Transient tables are used to hold the results of a 1461 ** sub-query that appears instead of a real table name in the FROM clause 1462 ** of a SELECT statement. 1463 */ 1464 struct Table { 1465 char *zName; /* Name of the table or view */ 1466 Column *aCol; /* Information about each column */ 1467 Index *pIndex; /* List of SQL indexes on this table. */ 1468 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1469 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1470 char *zColAff; /* String defining the affinity of each column */ 1471 #ifndef SQLITE_OMIT_CHECK 1472 ExprList *pCheck; /* All CHECK constraints */ 1473 #endif 1474 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1475 int tnum; /* Root BTree node for this table (see note above) */ 1476 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1477 i16 nCol; /* Number of columns in this table */ 1478 u16 nRef; /* Number of pointers to this Table */ 1479 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1480 u8 tabFlags; /* Mask of TF_* values */ 1481 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1482 #ifndef SQLITE_OMIT_ALTERTABLE 1483 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1484 #endif 1485 #ifndef SQLITE_OMIT_VIRTUALTABLE 1486 int nModuleArg; /* Number of arguments to the module */ 1487 char **azModuleArg; /* Text of all module args. [0] is module name */ 1488 VTable *pVTable; /* List of VTable objects. */ 1489 #endif 1490 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1491 Schema *pSchema; /* Schema that contains this table */ 1492 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1493 }; 1494 1495 /* 1496 ** Allowed values for Table.tabFlags. 1497 */ 1498 #define TF_Readonly 0x01 /* Read-only system table */ 1499 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1500 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1501 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1502 #define TF_Virtual 0x10 /* Is a virtual table */ 1503 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1504 1505 1506 /* 1507 ** Test to see whether or not a table is a virtual table. This is 1508 ** done as a macro so that it will be optimized out when virtual 1509 ** table support is omitted from the build. 1510 */ 1511 #ifndef SQLITE_OMIT_VIRTUALTABLE 1512 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1513 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1514 #else 1515 # define IsVirtual(X) 0 1516 # define IsHiddenColumn(X) 0 1517 #endif 1518 1519 /* Does the table have a rowid */ 1520 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1521 1522 /* 1523 ** Each foreign key constraint is an instance of the following structure. 1524 ** 1525 ** A foreign key is associated with two tables. The "from" table is 1526 ** the table that contains the REFERENCES clause that creates the foreign 1527 ** key. The "to" table is the table that is named in the REFERENCES clause. 1528 ** Consider this example: 1529 ** 1530 ** CREATE TABLE ex1( 1531 ** a INTEGER PRIMARY KEY, 1532 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1533 ** ); 1534 ** 1535 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1536 ** Equivalent names: 1537 ** 1538 ** from-table == child-table 1539 ** to-table == parent-table 1540 ** 1541 ** Each REFERENCES clause generates an instance of the following structure 1542 ** which is attached to the from-table. The to-table need not exist when 1543 ** the from-table is created. The existence of the to-table is not checked. 1544 ** 1545 ** The list of all parents for child Table X is held at X.pFKey. 1546 ** 1547 ** A list of all children for a table named Z (which might not even exist) 1548 ** is held in Schema.fkeyHash with a hash key of Z. 1549 */ 1550 struct FKey { 1551 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1552 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1553 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1554 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1555 FKey *pPrevTo; /* Previous with the same zTo */ 1556 int nCol; /* Number of columns in this key */ 1557 /* EV: R-30323-21917 */ 1558 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1559 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1560 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1561 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1562 int iFrom; /* Index of column in pFrom */ 1563 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1564 } aCol[1]; /* One entry for each of nCol columns */ 1565 }; 1566 1567 /* 1568 ** SQLite supports many different ways to resolve a constraint 1569 ** error. ROLLBACK processing means that a constraint violation 1570 ** causes the operation in process to fail and for the current transaction 1571 ** to be rolled back. ABORT processing means the operation in process 1572 ** fails and any prior changes from that one operation are backed out, 1573 ** but the transaction is not rolled back. FAIL processing means that 1574 ** the operation in progress stops and returns an error code. But prior 1575 ** changes due to the same operation are not backed out and no rollback 1576 ** occurs. IGNORE means that the particular row that caused the constraint 1577 ** error is not inserted or updated. Processing continues and no error 1578 ** is returned. REPLACE means that preexisting database rows that caused 1579 ** a UNIQUE constraint violation are removed so that the new insert or 1580 ** update can proceed. Processing continues and no error is reported. 1581 ** 1582 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1583 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1584 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1585 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1586 ** referenced table row is propagated into the row that holds the 1587 ** foreign key. 1588 ** 1589 ** The following symbolic values are used to record which type 1590 ** of action to take. 1591 */ 1592 #define OE_None 0 /* There is no constraint to check */ 1593 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1594 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1595 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1596 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1597 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1598 1599 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1600 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1601 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1602 #define OE_Cascade 9 /* Cascade the changes */ 1603 1604 #define OE_Default 10 /* Do whatever the default action is */ 1605 1606 1607 /* 1608 ** An instance of the following structure is passed as the first 1609 ** argument to sqlite3VdbeKeyCompare and is used to control the 1610 ** comparison of the two index keys. 1611 ** 1612 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1613 ** are nField slots for the columns of an index then one extra slot 1614 ** for the rowid at the end. 1615 */ 1616 struct KeyInfo { 1617 u32 nRef; /* Number of references to this KeyInfo object */ 1618 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1619 u16 nField; /* Number of key columns in the index */ 1620 u16 nXField; /* Number of columns beyond the key columns */ 1621 sqlite3 *db; /* The database connection */ 1622 u8 *aSortOrder; /* Sort order for each column. */ 1623 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1624 }; 1625 1626 /* 1627 ** An instance of the following structure holds information about a 1628 ** single index record that has already been parsed out into individual 1629 ** values. 1630 ** 1631 ** A record is an object that contains one or more fields of data. 1632 ** Records are used to store the content of a table row and to store 1633 ** the key of an index. A blob encoding of a record is created by 1634 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1635 ** OP_Column opcode. 1636 ** 1637 ** This structure holds a record that has already been disassembled 1638 ** into its constituent fields. 1639 ** 1640 ** The r1 and r2 member variables are only used by the optimized comparison 1641 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1642 */ 1643 struct UnpackedRecord { 1644 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1645 u16 nField; /* Number of entries in apMem[] */ 1646 i8 default_rc; /* Comparison result if keys are equal */ 1647 u8 isCorrupt; /* Corruption detected by xRecordCompare() */ 1648 Mem *aMem; /* Values */ 1649 int r1; /* Value to return if (lhs > rhs) */ 1650 int r2; /* Value to return if (rhs < lhs) */ 1651 }; 1652 1653 1654 /* 1655 ** Each SQL index is represented in memory by an 1656 ** instance of the following structure. 1657 ** 1658 ** The columns of the table that are to be indexed are described 1659 ** by the aiColumn[] field of this structure. For example, suppose 1660 ** we have the following table and index: 1661 ** 1662 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1663 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1664 ** 1665 ** In the Table structure describing Ex1, nCol==3 because there are 1666 ** three columns in the table. In the Index structure describing 1667 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1668 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1669 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1670 ** The second column to be indexed (c1) has an index of 0 in 1671 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1672 ** 1673 ** The Index.onError field determines whether or not the indexed columns 1674 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1675 ** it means this is not a unique index. Otherwise it is a unique index 1676 ** and the value of Index.onError indicate the which conflict resolution 1677 ** algorithm to employ whenever an attempt is made to insert a non-unique 1678 ** element. 1679 */ 1680 struct Index { 1681 char *zName; /* Name of this index */ 1682 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1683 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1684 Table *pTable; /* The SQL table being indexed */ 1685 char *zColAff; /* String defining the affinity of each column */ 1686 Index *pNext; /* The next index associated with the same table */ 1687 Schema *pSchema; /* Schema containing this index */ 1688 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1689 char **azColl; /* Array of collation sequence names for index */ 1690 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1691 KeyInfo *pKeyInfo; /* A KeyInfo object suitable for this index */ 1692 int tnum; /* DB Page containing root of this index */ 1693 LogEst szIdxRow; /* Estimated average row size in bytes */ 1694 u16 nKeyCol; /* Number of columns forming the key */ 1695 u16 nColumn; /* Number of columns stored in the index */ 1696 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1697 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1698 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1699 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1700 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1701 unsigned isCovering:1; /* True if this is a covering index */ 1702 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1703 int nSample; /* Number of elements in aSample[] */ 1704 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1705 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1706 IndexSample *aSample; /* Samples of the left-most key */ 1707 #endif 1708 }; 1709 1710 /* 1711 ** Allowed values for Index.idxType 1712 */ 1713 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1714 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1715 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1716 1717 /* Return true if index X is a PRIMARY KEY index */ 1718 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1719 1720 /* 1721 ** Each sample stored in the sqlite_stat3 table is represented in memory 1722 ** using a structure of this type. See documentation at the top of the 1723 ** analyze.c source file for additional information. 1724 */ 1725 struct IndexSample { 1726 void *p; /* Pointer to sampled record */ 1727 int n; /* Size of record in bytes */ 1728 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1729 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1730 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1731 }; 1732 1733 /* 1734 ** Each token coming out of the lexer is an instance of 1735 ** this structure. Tokens are also used as part of an expression. 1736 ** 1737 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1738 ** may contain random values. Do not make any assumptions about Token.dyn 1739 ** and Token.n when Token.z==0. 1740 */ 1741 struct Token { 1742 const char *z; /* Text of the token. Not NULL-terminated! */ 1743 unsigned int n; /* Number of characters in this token */ 1744 }; 1745 1746 /* 1747 ** An instance of this structure contains information needed to generate 1748 ** code for a SELECT that contains aggregate functions. 1749 ** 1750 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1751 ** pointer to this structure. The Expr.iColumn field is the index in 1752 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1753 ** code for that node. 1754 ** 1755 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1756 ** original Select structure that describes the SELECT statement. These 1757 ** fields do not need to be freed when deallocating the AggInfo structure. 1758 */ 1759 struct AggInfo { 1760 u8 directMode; /* Direct rendering mode means take data directly 1761 ** from source tables rather than from accumulators */ 1762 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1763 ** than the source table */ 1764 int sortingIdx; /* Cursor number of the sorting index */ 1765 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1766 int nSortingColumn; /* Number of columns in the sorting index */ 1767 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1768 ExprList *pGroupBy; /* The group by clause */ 1769 struct AggInfo_col { /* For each column used in source tables */ 1770 Table *pTab; /* Source table */ 1771 int iTable; /* Cursor number of the source table */ 1772 int iColumn; /* Column number within the source table */ 1773 int iSorterColumn; /* Column number in the sorting index */ 1774 int iMem; /* Memory location that acts as accumulator */ 1775 Expr *pExpr; /* The original expression */ 1776 } *aCol; 1777 int nColumn; /* Number of used entries in aCol[] */ 1778 int nAccumulator; /* Number of columns that show through to the output. 1779 ** Additional columns are used only as parameters to 1780 ** aggregate functions */ 1781 struct AggInfo_func { /* For each aggregate function */ 1782 Expr *pExpr; /* Expression encoding the function */ 1783 FuncDef *pFunc; /* The aggregate function implementation */ 1784 int iMem; /* Memory location that acts as accumulator */ 1785 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1786 } *aFunc; 1787 int nFunc; /* Number of entries in aFunc[] */ 1788 }; 1789 1790 /* 1791 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1792 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1793 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1794 ** it uses less memory in the Expr object, which is a big memory user 1795 ** in systems with lots of prepared statements. And few applications 1796 ** need more than about 10 or 20 variables. But some extreme users want 1797 ** to have prepared statements with over 32767 variables, and for them 1798 ** the option is available (at compile-time). 1799 */ 1800 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1801 typedef i16 ynVar; 1802 #else 1803 typedef int ynVar; 1804 #endif 1805 1806 /* 1807 ** Each node of an expression in the parse tree is an instance 1808 ** of this structure. 1809 ** 1810 ** Expr.op is the opcode. The integer parser token codes are reused 1811 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1812 ** code representing the ">=" operator. This same integer code is reused 1813 ** to represent the greater-than-or-equal-to operator in the expression 1814 ** tree. 1815 ** 1816 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1817 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1818 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1819 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1820 ** then Expr.token contains the name of the function. 1821 ** 1822 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1823 ** binary operator. Either or both may be NULL. 1824 ** 1825 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1826 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1827 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1828 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1829 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1830 ** valid. 1831 ** 1832 ** An expression of the form ID or ID.ID refers to a column in a table. 1833 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1834 ** the integer cursor number of a VDBE cursor pointing to that table and 1835 ** Expr.iColumn is the column number for the specific column. If the 1836 ** expression is used as a result in an aggregate SELECT, then the 1837 ** value is also stored in the Expr.iAgg column in the aggregate so that 1838 ** it can be accessed after all aggregates are computed. 1839 ** 1840 ** If the expression is an unbound variable marker (a question mark 1841 ** character '?' in the original SQL) then the Expr.iTable holds the index 1842 ** number for that variable. 1843 ** 1844 ** If the expression is a subquery then Expr.iColumn holds an integer 1845 ** register number containing the result of the subquery. If the 1846 ** subquery gives a constant result, then iTable is -1. If the subquery 1847 ** gives a different answer at different times during statement processing 1848 ** then iTable is the address of a subroutine that computes the subquery. 1849 ** 1850 ** If the Expr is of type OP_Column, and the table it is selecting from 1851 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1852 ** corresponding table definition. 1853 ** 1854 ** ALLOCATION NOTES: 1855 ** 1856 ** Expr objects can use a lot of memory space in database schema. To 1857 ** help reduce memory requirements, sometimes an Expr object will be 1858 ** truncated. And to reduce the number of memory allocations, sometimes 1859 ** two or more Expr objects will be stored in a single memory allocation, 1860 ** together with Expr.zToken strings. 1861 ** 1862 ** If the EP_Reduced and EP_TokenOnly flags are set when 1863 ** an Expr object is truncated. When EP_Reduced is set, then all 1864 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1865 ** are contained within the same memory allocation. Note, however, that 1866 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1867 ** allocated, regardless of whether or not EP_Reduced is set. 1868 */ 1869 struct Expr { 1870 u8 op; /* Operation performed by this node */ 1871 char affinity; /* The affinity of the column or 0 if not a column */ 1872 u32 flags; /* Various flags. EP_* See below */ 1873 union { 1874 char *zToken; /* Token value. Zero terminated and dequoted */ 1875 int iValue; /* Non-negative integer value if EP_IntValue */ 1876 } u; 1877 1878 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1879 ** space is allocated for the fields below this point. An attempt to 1880 ** access them will result in a segfault or malfunction. 1881 *********************************************************************/ 1882 1883 Expr *pLeft; /* Left subnode */ 1884 Expr *pRight; /* Right subnode */ 1885 union { 1886 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 1887 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 1888 } x; 1889 1890 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1891 ** space is allocated for the fields below this point. An attempt to 1892 ** access them will result in a segfault or malfunction. 1893 *********************************************************************/ 1894 1895 #if SQLITE_MAX_EXPR_DEPTH>0 1896 int nHeight; /* Height of the tree headed by this node */ 1897 #endif 1898 int iTable; /* TK_COLUMN: cursor number of table holding column 1899 ** TK_REGISTER: register number 1900 ** TK_TRIGGER: 1 -> new, 0 -> old 1901 ** EP_Unlikely: 1000 times likelihood */ 1902 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1903 ** TK_VARIABLE: variable number (always >= 1). */ 1904 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1905 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1906 u8 op2; /* TK_REGISTER: original value of Expr.op 1907 ** TK_COLUMN: the value of p5 for OP_Column 1908 ** TK_AGG_FUNCTION: nesting depth */ 1909 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1910 Table *pTab; /* Table for TK_COLUMN expressions. */ 1911 }; 1912 1913 /* 1914 ** The following are the meanings of bits in the Expr.flags field. 1915 */ 1916 #define EP_FromJoin 0x000001 /* Originated in ON or USING clause of a join */ 1917 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 1918 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 1919 #define EP_Error 0x000008 /* Expression contains one or more errors */ 1920 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 1921 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 1922 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 1923 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 1924 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 1925 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 1926 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 1927 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 1928 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 1929 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 1930 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 1931 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 1932 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 1933 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 1934 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 1935 #define EP_Constant 0x080000 /* Node is a constant */ 1936 1937 /* 1938 ** These macros can be used to test, set, or clear bits in the 1939 ** Expr.flags field. 1940 */ 1941 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 1942 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 1943 #define ExprSetProperty(E,P) (E)->flags|=(P) 1944 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1945 1946 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 1947 ** and Accreditation only. It works like ExprSetProperty() during VVA 1948 ** processes but is a no-op for delivery. 1949 */ 1950 #ifdef SQLITE_DEBUG 1951 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 1952 #else 1953 # define ExprSetVVAProperty(E,P) 1954 #endif 1955 1956 /* 1957 ** Macros to determine the number of bytes required by a normal Expr 1958 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1959 ** and an Expr struct with the EP_TokenOnly flag set. 1960 */ 1961 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1962 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1963 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1964 1965 /* 1966 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1967 ** above sqlite3ExprDup() for details. 1968 */ 1969 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1970 1971 /* 1972 ** A list of expressions. Each expression may optionally have a 1973 ** name. An expr/name combination can be used in several ways, such 1974 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1975 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1976 ** also be used as the argument to a function, in which case the a.zName 1977 ** field is not used. 1978 ** 1979 ** By default the Expr.zSpan field holds a human-readable description of 1980 ** the expression that is used in the generation of error messages and 1981 ** column labels. In this case, Expr.zSpan is typically the text of a 1982 ** column expression as it exists in a SELECT statement. However, if 1983 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1984 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1985 ** form is used for name resolution with nested FROM clauses. 1986 */ 1987 struct ExprList { 1988 int nExpr; /* Number of expressions on the list */ 1989 struct ExprList_item { /* For each expression in the list */ 1990 Expr *pExpr; /* The list of expressions */ 1991 char *zName; /* Token associated with this expression */ 1992 char *zSpan; /* Original text of the expression */ 1993 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1994 unsigned done :1; /* A flag to indicate when processing is finished */ 1995 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1996 unsigned reusable :1; /* Constant expression is reusable */ 1997 union { 1998 struct { 1999 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2000 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2001 } x; 2002 int iConstExprReg; /* Register in which Expr value is cached */ 2003 } u; 2004 } *a; /* Alloc a power of two greater or equal to nExpr */ 2005 }; 2006 2007 /* 2008 ** An instance of this structure is used by the parser to record both 2009 ** the parse tree for an expression and the span of input text for an 2010 ** expression. 2011 */ 2012 struct ExprSpan { 2013 Expr *pExpr; /* The expression parse tree */ 2014 const char *zStart; /* First character of input text */ 2015 const char *zEnd; /* One character past the end of input text */ 2016 }; 2017 2018 /* 2019 ** An instance of this structure can hold a simple list of identifiers, 2020 ** such as the list "a,b,c" in the following statements: 2021 ** 2022 ** INSERT INTO t(a,b,c) VALUES ...; 2023 ** CREATE INDEX idx ON t(a,b,c); 2024 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2025 ** 2026 ** The IdList.a.idx field is used when the IdList represents the list of 2027 ** column names after a table name in an INSERT statement. In the statement 2028 ** 2029 ** INSERT INTO t(a,b,c) ... 2030 ** 2031 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2032 */ 2033 struct IdList { 2034 struct IdList_item { 2035 char *zName; /* Name of the identifier */ 2036 int idx; /* Index in some Table.aCol[] of a column named zName */ 2037 } *a; 2038 int nId; /* Number of identifiers on the list */ 2039 }; 2040 2041 /* 2042 ** The bitmask datatype defined below is used for various optimizations. 2043 ** 2044 ** Changing this from a 64-bit to a 32-bit type limits the number of 2045 ** tables in a join to 32 instead of 64. But it also reduces the size 2046 ** of the library by 738 bytes on ix86. 2047 */ 2048 typedef u64 Bitmask; 2049 2050 /* 2051 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2052 */ 2053 #define BMS ((int)(sizeof(Bitmask)*8)) 2054 2055 /* 2056 ** A bit in a Bitmask 2057 */ 2058 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2059 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2060 2061 /* 2062 ** The following structure describes the FROM clause of a SELECT statement. 2063 ** Each table or subquery in the FROM clause is a separate element of 2064 ** the SrcList.a[] array. 2065 ** 2066 ** With the addition of multiple database support, the following structure 2067 ** can also be used to describe a particular table such as the table that 2068 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2069 ** such a table must be a simple name: ID. But in SQLite, the table can 2070 ** now be identified by a database name, a dot, then the table name: ID.ID. 2071 ** 2072 ** The jointype starts out showing the join type between the current table 2073 ** and the next table on the list. The parser builds the list this way. 2074 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2075 ** jointype expresses the join between the table and the previous table. 2076 ** 2077 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2078 ** contains more than 63 columns and the 64-th or later column is used. 2079 */ 2080 struct SrcList { 2081 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2082 u32 nAlloc; /* Number of entries allocated in a[] below */ 2083 struct SrcList_item { 2084 Schema *pSchema; /* Schema to which this item is fixed */ 2085 char *zDatabase; /* Name of database holding this table */ 2086 char *zName; /* Name of the table */ 2087 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2088 Table *pTab; /* An SQL table corresponding to zName */ 2089 Select *pSelect; /* A SELECT statement used in place of a table name */ 2090 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2091 int regReturn; /* Register holding return address of addrFillSub */ 2092 int regResult; /* Registers holding results of a co-routine */ 2093 u8 jointype; /* Type of join between this able and the previous */ 2094 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2095 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2096 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2097 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2098 #ifndef SQLITE_OMIT_EXPLAIN 2099 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2100 #endif 2101 int iCursor; /* The VDBE cursor number used to access this table */ 2102 Expr *pOn; /* The ON clause of a join */ 2103 IdList *pUsing; /* The USING clause of a join */ 2104 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2105 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2106 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2107 } a[1]; /* One entry for each identifier on the list */ 2108 }; 2109 2110 /* 2111 ** Permitted values of the SrcList.a.jointype field 2112 */ 2113 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2114 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2115 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2116 #define JT_LEFT 0x0008 /* Left outer join */ 2117 #define JT_RIGHT 0x0010 /* Right outer join */ 2118 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2119 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2120 2121 2122 /* 2123 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2124 ** and the WhereInfo.wctrlFlags member. 2125 */ 2126 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2127 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2128 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2129 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2130 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2131 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2132 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2133 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2134 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2135 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2136 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2137 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2138 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2139 2140 /* Allowed return values from sqlite3WhereIsDistinct() 2141 */ 2142 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2143 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2144 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2145 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2146 2147 /* 2148 ** A NameContext defines a context in which to resolve table and column 2149 ** names. The context consists of a list of tables (the pSrcList) field and 2150 ** a list of named expression (pEList). The named expression list may 2151 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2152 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2153 ** pEList corresponds to the result set of a SELECT and is NULL for 2154 ** other statements. 2155 ** 2156 ** NameContexts can be nested. When resolving names, the inner-most 2157 ** context is searched first. If no match is found, the next outer 2158 ** context is checked. If there is still no match, the next context 2159 ** is checked. This process continues until either a match is found 2160 ** or all contexts are check. When a match is found, the nRef member of 2161 ** the context containing the match is incremented. 2162 ** 2163 ** Each subquery gets a new NameContext. The pNext field points to the 2164 ** NameContext in the parent query. Thus the process of scanning the 2165 ** NameContext list corresponds to searching through successively outer 2166 ** subqueries looking for a match. 2167 */ 2168 struct NameContext { 2169 Parse *pParse; /* The parser */ 2170 SrcList *pSrcList; /* One or more tables used to resolve names */ 2171 ExprList *pEList; /* Optional list of result-set columns */ 2172 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2173 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2174 int nRef; /* Number of names resolved by this context */ 2175 int nErr; /* Number of errors encountered while resolving names */ 2176 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2177 }; 2178 2179 /* 2180 ** Allowed values for the NameContext, ncFlags field. 2181 */ 2182 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2183 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2184 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2185 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2186 #define NC_PartIdx 0x10 /* True if resolving a partial index WHERE */ 2187 2188 /* 2189 ** An instance of the following structure contains all information 2190 ** needed to generate code for a single SELECT statement. 2191 ** 2192 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2193 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2194 ** limit and nOffset to the value of the offset (or 0 if there is not 2195 ** offset). But later on, nLimit and nOffset become the memory locations 2196 ** in the VDBE that record the limit and offset counters. 2197 ** 2198 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2199 ** These addresses must be stored so that we can go back and fill in 2200 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2201 ** the number of columns in P2 can be computed at the same time 2202 ** as the OP_OpenEphm instruction is coded because not 2203 ** enough information about the compound query is known at that point. 2204 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2205 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2206 ** sequences for the ORDER BY clause. 2207 */ 2208 struct Select { 2209 ExprList *pEList; /* The fields of the result */ 2210 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2211 u16 selFlags; /* Various SF_* values */ 2212 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2213 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2214 u64 nSelectRow; /* Estimated number of result rows */ 2215 SrcList *pSrc; /* The FROM clause */ 2216 Expr *pWhere; /* The WHERE clause */ 2217 ExprList *pGroupBy; /* The GROUP BY clause */ 2218 Expr *pHaving; /* The HAVING clause */ 2219 ExprList *pOrderBy; /* The ORDER BY clause */ 2220 Select *pPrior; /* Prior select in a compound select statement */ 2221 Select *pNext; /* Next select to the left in a compound */ 2222 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2223 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2224 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2225 }; 2226 2227 /* 2228 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2229 ** "Select Flag". 2230 */ 2231 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2232 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2233 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2234 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2235 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2236 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2237 /* 0x0040 NOT USED */ 2238 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2239 /* 0x0100 NOT USED */ 2240 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2241 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2242 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2243 #define SF_Compound 0x1000 /* Part of a compound query */ 2244 2245 2246 /* 2247 ** The results of a SELECT can be distributed in several ways, as defined 2248 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2249 ** Type". 2250 ** 2251 ** SRT_Union Store results as a key in a temporary index 2252 ** identified by pDest->iSDParm. 2253 ** 2254 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2255 ** 2256 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2257 ** set is not empty. 2258 ** 2259 ** SRT_Discard Throw the results away. This is used by SELECT 2260 ** statements within triggers whose only purpose is 2261 ** the side-effects of functions. 2262 ** 2263 ** All of the above are free to ignore their ORDER BY clause. Those that 2264 ** follow must honor the ORDER BY clause. 2265 ** 2266 ** SRT_Output Generate a row of output (using the OP_ResultRow 2267 ** opcode) for each row in the result set. 2268 ** 2269 ** SRT_Mem Only valid if the result is a single column. 2270 ** Store the first column of the first result row 2271 ** in register pDest->iSDParm then abandon the rest 2272 ** of the query. This destination implies "LIMIT 1". 2273 ** 2274 ** SRT_Set The result must be a single column. Store each 2275 ** row of result as the key in table pDest->iSDParm. 2276 ** Apply the affinity pDest->affSdst before storing 2277 ** results. Used to implement "IN (SELECT ...)". 2278 ** 2279 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2280 ** the result there. The cursor is left open after 2281 ** returning. This is like SRT_Table except that 2282 ** this destination uses OP_OpenEphemeral to create 2283 ** the table first. 2284 ** 2285 ** SRT_Coroutine Generate a co-routine that returns a new row of 2286 ** results each time it is invoked. The entry point 2287 ** of the co-routine is stored in register pDest->iSDParm 2288 ** and the result row is stored in pDest->nDest registers 2289 ** starting with pDest->iSdst. 2290 ** 2291 ** SRT_Table Store results in temporary table pDest->iSDParm. 2292 ** SRT_Fifo This is like SRT_EphemTab except that the table 2293 ** is assumed to already be open. SRT_Fifo has 2294 ** the additional property of being able to ignore 2295 ** the ORDER BY clause. 2296 ** 2297 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2298 ** But also use temporary table pDest->iSDParm+1 as 2299 ** a record of all prior results and ignore any duplicate 2300 ** rows. Name means: "Distinct Fifo". 2301 ** 2302 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2303 ** an index). Append a sequence number so that all entries 2304 ** are distinct. 2305 ** 2306 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2307 ** the same record has never been stored before. The 2308 ** index at pDest->iSDParm+1 hold all prior stores. 2309 */ 2310 #define SRT_Union 1 /* Store result as keys in an index */ 2311 #define SRT_Except 2 /* Remove result from a UNION index */ 2312 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2313 #define SRT_Discard 4 /* Do not save the results anywhere */ 2314 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2315 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2316 #define SRT_Queue 7 /* Store result in an queue */ 2317 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2318 2319 /* The ORDER BY clause is ignored for all of the above */ 2320 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2321 2322 #define SRT_Output 9 /* Output each row of result */ 2323 #define SRT_Mem 10 /* Store result in a memory cell */ 2324 #define SRT_Set 11 /* Store results as keys in an index */ 2325 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2326 #define SRT_Coroutine 13 /* Generate a single row of result */ 2327 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2328 2329 /* 2330 ** An instance of this object describes where to put of the results of 2331 ** a SELECT statement. 2332 */ 2333 struct SelectDest { 2334 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2335 char affSdst; /* Affinity used when eDest==SRT_Set */ 2336 int iSDParm; /* A parameter used by the eDest disposal method */ 2337 int iSdst; /* Base register where results are written */ 2338 int nSdst; /* Number of registers allocated */ 2339 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2340 }; 2341 2342 /* 2343 ** During code generation of statements that do inserts into AUTOINCREMENT 2344 ** tables, the following information is attached to the Table.u.autoInc.p 2345 ** pointer of each autoincrement table to record some side information that 2346 ** the code generator needs. We have to keep per-table autoincrement 2347 ** information in case inserts are down within triggers. Triggers do not 2348 ** normally coordinate their activities, but we do need to coordinate the 2349 ** loading and saving of autoincrement information. 2350 */ 2351 struct AutoincInfo { 2352 AutoincInfo *pNext; /* Next info block in a list of them all */ 2353 Table *pTab; /* Table this info block refers to */ 2354 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2355 int regCtr; /* Memory register holding the rowid counter */ 2356 }; 2357 2358 /* 2359 ** Size of the column cache 2360 */ 2361 #ifndef SQLITE_N_COLCACHE 2362 # define SQLITE_N_COLCACHE 10 2363 #endif 2364 2365 /* 2366 ** At least one instance of the following structure is created for each 2367 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2368 ** statement. All such objects are stored in the linked list headed at 2369 ** Parse.pTriggerPrg and deleted once statement compilation has been 2370 ** completed. 2371 ** 2372 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2373 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2374 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2375 ** The Parse.pTriggerPrg list never contains two entries with the same 2376 ** values for both pTrigger and orconf. 2377 ** 2378 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2379 ** accessed (or set to 0 for triggers fired as a result of INSERT 2380 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2381 ** a mask of new.* columns used by the program. 2382 */ 2383 struct TriggerPrg { 2384 Trigger *pTrigger; /* Trigger this program was coded from */ 2385 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2386 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2387 int orconf; /* Default ON CONFLICT policy */ 2388 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2389 }; 2390 2391 /* 2392 ** The yDbMask datatype for the bitmask of all attached databases. 2393 */ 2394 #if SQLITE_MAX_ATTACHED>30 2395 typedef sqlite3_uint64 yDbMask; 2396 #else 2397 typedef unsigned int yDbMask; 2398 #endif 2399 2400 /* 2401 ** An SQL parser context. A copy of this structure is passed through 2402 ** the parser and down into all the parser action routine in order to 2403 ** carry around information that is global to the entire parse. 2404 ** 2405 ** The structure is divided into two parts. When the parser and code 2406 ** generate call themselves recursively, the first part of the structure 2407 ** is constant but the second part is reset at the beginning and end of 2408 ** each recursion. 2409 ** 2410 ** The nTableLock and aTableLock variables are only used if the shared-cache 2411 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2412 ** used to store the set of table-locks required by the statement being 2413 ** compiled. Function sqlite3TableLock() is used to add entries to the 2414 ** list. 2415 */ 2416 struct Parse { 2417 sqlite3 *db; /* The main database structure */ 2418 char *zErrMsg; /* An error message */ 2419 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2420 int rc; /* Return code from execution */ 2421 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2422 u8 checkSchema; /* Causes schema cookie check after an error */ 2423 u8 nested; /* Number of nested calls to the parser/code generator */ 2424 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2425 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2426 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2427 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2428 u8 okConstFactor; /* OK to factor out constants */ 2429 int aTempReg[8]; /* Holding area for temporary registers */ 2430 int nRangeReg; /* Size of the temporary register block */ 2431 int iRangeReg; /* First register in temporary register block */ 2432 int nErr; /* Number of errors seen */ 2433 int nTab; /* Number of previously allocated VDBE cursors */ 2434 int nMem; /* Number of memory cells used so far */ 2435 int nSet; /* Number of sets used so far */ 2436 int nOnce; /* Number of OP_Once instructions so far */ 2437 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2438 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2439 int ckBase; /* Base register of data during check constraints */ 2440 int iPartIdxTab; /* Table corresponding to a partial index */ 2441 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2442 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2443 int nLabel; /* Number of labels used */ 2444 int *aLabel; /* Space to hold the labels */ 2445 struct yColCache { 2446 int iTable; /* Table cursor number */ 2447 i16 iColumn; /* Table column number */ 2448 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2449 int iLevel; /* Nesting level */ 2450 int iReg; /* Reg with value of this column. 0 means none. */ 2451 int lru; /* Least recently used entry has the smallest value */ 2452 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2453 ExprList *pConstExpr;/* Constant expressions */ 2454 Token constraintName;/* Name of the constraint currently being parsed */ 2455 yDbMask writeMask; /* Start a write transaction on these databases */ 2456 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2457 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2458 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2459 int regRoot; /* Register holding root page number for new objects */ 2460 int nMaxArg; /* Max args passed to user function by sub-program */ 2461 #ifndef SQLITE_OMIT_SHARED_CACHE 2462 int nTableLock; /* Number of locks in aTableLock */ 2463 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2464 #endif 2465 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2466 2467 /* Information used while coding trigger programs. */ 2468 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2469 Table *pTriggerTab; /* Table triggers are being coded for */ 2470 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2471 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2472 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2473 u32 oldmask; /* Mask of old.* columns referenced */ 2474 u32 newmask; /* Mask of new.* columns referenced */ 2475 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2476 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2477 u8 disableTriggers; /* True to disable triggers */ 2478 2479 /************************************************************************ 2480 ** Above is constant between recursions. Below is reset before and after 2481 ** each recursion. The boundary between these two regions is determined 2482 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2483 ** in the recursive region. 2484 ************************************************************************/ 2485 2486 int nVar; /* Number of '?' variables seen in the SQL so far */ 2487 int nzVar; /* Number of available slots in azVar[] */ 2488 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2489 u8 bFreeWith; /* True if pWith should be freed with parser */ 2490 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2491 #ifndef SQLITE_OMIT_VIRTUALTABLE 2492 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2493 int nVtabLock; /* Number of virtual tables to lock */ 2494 #endif 2495 int nAlias; /* Number of aliased result set columns */ 2496 int nHeight; /* Expression tree height of current sub-select */ 2497 #ifndef SQLITE_OMIT_EXPLAIN 2498 int iSelectId; /* ID of current select for EXPLAIN output */ 2499 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2500 #endif 2501 char **azVar; /* Pointers to names of parameters */ 2502 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2503 const char *zTail; /* All SQL text past the last semicolon parsed */ 2504 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2505 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2506 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2507 Token sNameToken; /* Token with unqualified schema object name */ 2508 Token sLastToken; /* The last token parsed */ 2509 #ifndef SQLITE_OMIT_VIRTUALTABLE 2510 Token sArg; /* Complete text of a module argument */ 2511 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2512 #endif 2513 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2514 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2515 With *pWith; /* Current WITH clause, or NULL */ 2516 }; 2517 2518 /* 2519 ** Return true if currently inside an sqlite3_declare_vtab() call. 2520 */ 2521 #ifdef SQLITE_OMIT_VIRTUALTABLE 2522 #define IN_DECLARE_VTAB 0 2523 #else 2524 #define IN_DECLARE_VTAB (pParse->declareVtab) 2525 #endif 2526 2527 /* 2528 ** An instance of the following structure can be declared on a stack and used 2529 ** to save the Parse.zAuthContext value so that it can be restored later. 2530 */ 2531 struct AuthContext { 2532 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2533 Parse *pParse; /* The Parse structure */ 2534 }; 2535 2536 /* 2537 ** Bitfield flags for P5 value in various opcodes. 2538 */ 2539 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2540 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2541 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2542 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2543 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2544 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2545 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2546 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2547 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2548 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2549 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2550 2551 /* 2552 * Each trigger present in the database schema is stored as an instance of 2553 * struct Trigger. 2554 * 2555 * Pointers to instances of struct Trigger are stored in two ways. 2556 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2557 * database). This allows Trigger structures to be retrieved by name. 2558 * 2. All triggers associated with a single table form a linked list, using the 2559 * pNext member of struct Trigger. A pointer to the first element of the 2560 * linked list is stored as the "pTrigger" member of the associated 2561 * struct Table. 2562 * 2563 * The "step_list" member points to the first element of a linked list 2564 * containing the SQL statements specified as the trigger program. 2565 */ 2566 struct Trigger { 2567 char *zName; /* The name of the trigger */ 2568 char *table; /* The table or view to which the trigger applies */ 2569 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2570 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2571 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2572 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2573 the <column-list> is stored here */ 2574 Schema *pSchema; /* Schema containing the trigger */ 2575 Schema *pTabSchema; /* Schema containing the table */ 2576 TriggerStep *step_list; /* Link list of trigger program steps */ 2577 Trigger *pNext; /* Next trigger associated with the table */ 2578 }; 2579 2580 /* 2581 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2582 ** determine which. 2583 ** 2584 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2585 ** In that cases, the constants below can be ORed together. 2586 */ 2587 #define TRIGGER_BEFORE 1 2588 #define TRIGGER_AFTER 2 2589 2590 /* 2591 * An instance of struct TriggerStep is used to store a single SQL statement 2592 * that is a part of a trigger-program. 2593 * 2594 * Instances of struct TriggerStep are stored in a singly linked list (linked 2595 * using the "pNext" member) referenced by the "step_list" member of the 2596 * associated struct Trigger instance. The first element of the linked list is 2597 * the first step of the trigger-program. 2598 * 2599 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2600 * "SELECT" statement. The meanings of the other members is determined by the 2601 * value of "op" as follows: 2602 * 2603 * (op == TK_INSERT) 2604 * orconf -> stores the ON CONFLICT algorithm 2605 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2606 * this stores a pointer to the SELECT statement. Otherwise NULL. 2607 * target -> A token holding the quoted name of the table to insert into. 2608 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2609 * this stores values to be inserted. Otherwise NULL. 2610 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2611 * statement, then this stores the column-names to be 2612 * inserted into. 2613 * 2614 * (op == TK_DELETE) 2615 * target -> A token holding the quoted name of the table to delete from. 2616 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2617 * Otherwise NULL. 2618 * 2619 * (op == TK_UPDATE) 2620 * target -> A token holding the quoted name of the table to update rows of. 2621 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2622 * Otherwise NULL. 2623 * pExprList -> A list of the columns to update and the expressions to update 2624 * them to. See sqlite3Update() documentation of "pChanges" 2625 * argument. 2626 * 2627 */ 2628 struct TriggerStep { 2629 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2630 u8 orconf; /* OE_Rollback etc. */ 2631 Trigger *pTrig; /* The trigger that this step is a part of */ 2632 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2633 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2634 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2635 ExprList *pExprList; /* SET clause for UPDATE. */ 2636 IdList *pIdList; /* Column names for INSERT */ 2637 TriggerStep *pNext; /* Next in the link-list */ 2638 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2639 }; 2640 2641 /* 2642 ** The following structure contains information used by the sqliteFix... 2643 ** routines as they walk the parse tree to make database references 2644 ** explicit. 2645 */ 2646 typedef struct DbFixer DbFixer; 2647 struct DbFixer { 2648 Parse *pParse; /* The parsing context. Error messages written here */ 2649 Schema *pSchema; /* Fix items to this schema */ 2650 int bVarOnly; /* Check for variable references only */ 2651 const char *zDb; /* Make sure all objects are contained in this database */ 2652 const char *zType; /* Type of the container - used for error messages */ 2653 const Token *pName; /* Name of the container - used for error messages */ 2654 }; 2655 2656 /* 2657 ** An objected used to accumulate the text of a string where we 2658 ** do not necessarily know how big the string will be in the end. 2659 */ 2660 struct StrAccum { 2661 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2662 char *zBase; /* A base allocation. Not from malloc. */ 2663 char *zText; /* The string collected so far */ 2664 int nChar; /* Length of the string so far */ 2665 int nAlloc; /* Amount of space allocated in zText */ 2666 int mxAlloc; /* Maximum allowed string length */ 2667 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2668 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2669 }; 2670 #define STRACCUM_NOMEM 1 2671 #define STRACCUM_TOOBIG 2 2672 2673 /* 2674 ** A pointer to this structure is used to communicate information 2675 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2676 */ 2677 typedef struct { 2678 sqlite3 *db; /* The database being initialized */ 2679 char **pzErrMsg; /* Error message stored here */ 2680 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2681 int rc; /* Result code stored here */ 2682 } InitData; 2683 2684 /* 2685 ** Structure containing global configuration data for the SQLite library. 2686 ** 2687 ** This structure also contains some state information. 2688 */ 2689 struct Sqlite3Config { 2690 int bMemstat; /* True to enable memory status */ 2691 int bCoreMutex; /* True to enable core mutexing */ 2692 int bFullMutex; /* True to enable full mutexing */ 2693 int bOpenUri; /* True to interpret filenames as URIs */ 2694 int bUseCis; /* Use covering indices for full-scans */ 2695 int mxStrlen; /* Maximum string length */ 2696 int neverCorrupt; /* Database is always well-formed */ 2697 int szLookaside; /* Default lookaside buffer size */ 2698 int nLookaside; /* Default lookaside buffer count */ 2699 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2700 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2701 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2702 void *pHeap; /* Heap storage space */ 2703 int nHeap; /* Size of pHeap[] */ 2704 int mnReq, mxReq; /* Min and max heap requests sizes */ 2705 sqlite3_int64 szMmap; /* mmap() space per open file */ 2706 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2707 void *pScratch; /* Scratch memory */ 2708 int szScratch; /* Size of each scratch buffer */ 2709 int nScratch; /* Number of scratch buffers */ 2710 void *pPage; /* Page cache memory */ 2711 int szPage; /* Size of each page in pPage[] */ 2712 int nPage; /* Number of pages in pPage[] */ 2713 int mxParserStack; /* maximum depth of the parser stack */ 2714 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2715 /* The above might be initialized to non-zero. The following need to always 2716 ** initially be zero, however. */ 2717 int isInit; /* True after initialization has finished */ 2718 int inProgress; /* True while initialization in progress */ 2719 int isMutexInit; /* True after mutexes are initialized */ 2720 int isMallocInit; /* True after malloc is initialized */ 2721 int isPCacheInit; /* True after malloc is initialized */ 2722 int nRefInitMutex; /* Number of users of pInitMutex */ 2723 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2724 void (*xLog)(void*,int,const char*); /* Function for logging */ 2725 void *pLogArg; /* First argument to xLog() */ 2726 #ifdef SQLITE_ENABLE_SQLLOG 2727 void(*xSqllog)(void*,sqlite3*,const char*, int); 2728 void *pSqllogArg; 2729 #endif 2730 #ifdef SQLITE_VDBE_COVERAGE 2731 /* The following callback (if not NULL) is invoked on every VDBE branch 2732 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2733 */ 2734 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2735 void *pVdbeBranchArg; /* 1st argument */ 2736 #endif 2737 #ifndef SQLITE_OMIT_BUILTIN_TEST 2738 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2739 #endif 2740 int bLocaltimeFault; /* True to fail localtime() calls */ 2741 }; 2742 2743 /* 2744 ** This macro is used inside of assert() statements to indicate that 2745 ** the assert is only valid on a well-formed database. Instead of: 2746 ** 2747 ** assert( X ); 2748 ** 2749 ** One writes: 2750 ** 2751 ** assert( X || CORRUPT_DB ); 2752 ** 2753 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2754 ** that the database is definitely corrupt, only that it might be corrupt. 2755 ** For most test cases, CORRUPT_DB is set to false using a special 2756 ** sqlite3_test_control(). This enables assert() statements to prove 2757 ** things that are always true for well-formed databases. 2758 */ 2759 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2760 2761 /* 2762 ** Context pointer passed down through the tree-walk. 2763 */ 2764 struct Walker { 2765 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2766 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2767 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2768 Parse *pParse; /* Parser context. */ 2769 int walkerDepth; /* Number of subqueries */ 2770 union { /* Extra data for callback */ 2771 NameContext *pNC; /* Naming context */ 2772 int i; /* Integer value */ 2773 SrcList *pSrcList; /* FROM clause */ 2774 struct SrcCount *pSrcCount; /* Counting column references */ 2775 } u; 2776 }; 2777 2778 /* Forward declarations */ 2779 int sqlite3WalkExpr(Walker*, Expr*); 2780 int sqlite3WalkExprList(Walker*, ExprList*); 2781 int sqlite3WalkSelect(Walker*, Select*); 2782 int sqlite3WalkSelectExpr(Walker*, Select*); 2783 int sqlite3WalkSelectFrom(Walker*, Select*); 2784 2785 /* 2786 ** Return code from the parse-tree walking primitives and their 2787 ** callbacks. 2788 */ 2789 #define WRC_Continue 0 /* Continue down into children */ 2790 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2791 #define WRC_Abort 2 /* Abandon the tree walk */ 2792 2793 /* 2794 ** An instance of this structure represents a set of one or more CTEs 2795 ** (common table expressions) created by a single WITH clause. 2796 */ 2797 struct With { 2798 int nCte; /* Number of CTEs in the WITH clause */ 2799 With *pOuter; /* Containing WITH clause, or NULL */ 2800 struct Cte { /* For each CTE in the WITH clause.... */ 2801 char *zName; /* Name of this CTE */ 2802 ExprList *pCols; /* List of explicit column names, or NULL */ 2803 Select *pSelect; /* The definition of this CTE */ 2804 const char *zErr; /* Error message for circular references */ 2805 } a[1]; 2806 }; 2807 2808 /* 2809 ** Assuming zIn points to the first byte of a UTF-8 character, 2810 ** advance zIn to point to the first byte of the next UTF-8 character. 2811 */ 2812 #define SQLITE_SKIP_UTF8(zIn) { \ 2813 if( (*(zIn++))>=0xc0 ){ \ 2814 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2815 } \ 2816 } 2817 2818 /* 2819 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2820 ** the same name but without the _BKPT suffix. These macros invoke 2821 ** routines that report the line-number on which the error originated 2822 ** using sqlite3_log(). The routines also provide a convenient place 2823 ** to set a debugger breakpoint. 2824 */ 2825 int sqlite3CorruptError(int); 2826 int sqlite3MisuseError(int); 2827 int sqlite3CantopenError(int); 2828 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2829 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2830 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2831 2832 2833 /* 2834 ** FTS4 is really an extension for FTS3. It is enabled using the 2835 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2836 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2837 */ 2838 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2839 # define SQLITE_ENABLE_FTS3 2840 #endif 2841 2842 /* 2843 ** The ctype.h header is needed for non-ASCII systems. It is also 2844 ** needed by FTS3 when FTS3 is included in the amalgamation. 2845 */ 2846 #if !defined(SQLITE_ASCII) || \ 2847 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2848 # include <ctype.h> 2849 #endif 2850 2851 /* 2852 ** The following macros mimic the standard library functions toupper(), 2853 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2854 ** sqlite versions only work for ASCII characters, regardless of locale. 2855 */ 2856 #ifdef SQLITE_ASCII 2857 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2858 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2859 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2860 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2861 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2862 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2863 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2864 #else 2865 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2866 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2867 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2868 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2869 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2870 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2871 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2872 #endif 2873 2874 /* 2875 ** Internal function prototypes 2876 */ 2877 #define sqlite3StrICmp sqlite3_stricmp 2878 int sqlite3Strlen30(const char*); 2879 #define sqlite3StrNICmp sqlite3_strnicmp 2880 2881 int sqlite3MallocInit(void); 2882 void sqlite3MallocEnd(void); 2883 void *sqlite3Malloc(int); 2884 void *sqlite3MallocZero(int); 2885 void *sqlite3DbMallocZero(sqlite3*, int); 2886 void *sqlite3DbMallocRaw(sqlite3*, int); 2887 char *sqlite3DbStrDup(sqlite3*,const char*); 2888 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2889 void *sqlite3Realloc(void*, int); 2890 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2891 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2892 void sqlite3DbFree(sqlite3*, void*); 2893 int sqlite3MallocSize(void*); 2894 int sqlite3DbMallocSize(sqlite3*, void*); 2895 void *sqlite3ScratchMalloc(int); 2896 void sqlite3ScratchFree(void*); 2897 void *sqlite3PageMalloc(int); 2898 void sqlite3PageFree(void*); 2899 void sqlite3MemSetDefault(void); 2900 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2901 int sqlite3HeapNearlyFull(void); 2902 2903 /* 2904 ** On systems with ample stack space and that support alloca(), make 2905 ** use of alloca() to obtain space for large automatic objects. By default, 2906 ** obtain space from malloc(). 2907 ** 2908 ** The alloca() routine never returns NULL. This will cause code paths 2909 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2910 */ 2911 #ifdef SQLITE_USE_ALLOCA 2912 # define sqlite3StackAllocRaw(D,N) alloca(N) 2913 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2914 # define sqlite3StackFree(D,P) 2915 #else 2916 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2917 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2918 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2919 #endif 2920 2921 #ifdef SQLITE_ENABLE_MEMSYS3 2922 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2923 #endif 2924 #ifdef SQLITE_ENABLE_MEMSYS5 2925 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2926 #endif 2927 2928 2929 #ifndef SQLITE_MUTEX_OMIT 2930 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2931 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2932 sqlite3_mutex *sqlite3MutexAlloc(int); 2933 int sqlite3MutexInit(void); 2934 int sqlite3MutexEnd(void); 2935 #endif 2936 2937 int sqlite3StatusValue(int); 2938 void sqlite3StatusAdd(int, int); 2939 void sqlite3StatusSet(int, int); 2940 2941 #ifndef SQLITE_OMIT_FLOATING_POINT 2942 int sqlite3IsNaN(double); 2943 #else 2944 # define sqlite3IsNaN(X) 0 2945 #endif 2946 2947 /* 2948 ** An instance of the following structure holds information about SQL 2949 ** functions arguments that are the parameters to the printf() function. 2950 */ 2951 struct PrintfArguments { 2952 int nArg; /* Total number of arguments */ 2953 int nUsed; /* Number of arguments used so far */ 2954 sqlite3_value **apArg; /* The argument values */ 2955 }; 2956 2957 #define SQLITE_PRINTF_INTERNAL 0x01 2958 #define SQLITE_PRINTF_SQLFUNC 0x02 2959 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 2960 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 2961 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2962 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2963 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2964 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2965 void sqlite3DebugPrintf(const char*, ...); 2966 #endif 2967 #if defined(SQLITE_TEST) 2968 void *sqlite3TestTextToPtr(const char*); 2969 #endif 2970 2971 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2972 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2973 void sqlite3ExplainBegin(Vdbe*); 2974 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2975 void sqlite3ExplainNL(Vdbe*); 2976 void sqlite3ExplainPush(Vdbe*); 2977 void sqlite3ExplainPop(Vdbe*); 2978 void sqlite3ExplainFinish(Vdbe*); 2979 void sqlite3ExplainSelect(Vdbe*, Select*); 2980 void sqlite3ExplainExpr(Vdbe*, Expr*); 2981 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2982 const char *sqlite3VdbeExplanation(Vdbe*); 2983 #else 2984 # define sqlite3ExplainBegin(X) 2985 # define sqlite3ExplainSelect(A,B) 2986 # define sqlite3ExplainExpr(A,B) 2987 # define sqlite3ExplainExprList(A,B) 2988 # define sqlite3ExplainFinish(X) 2989 # define sqlite3VdbeExplanation(X) 0 2990 #endif 2991 2992 2993 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2994 void sqlite3ErrorMsg(Parse*, const char*, ...); 2995 int sqlite3Dequote(char*); 2996 int sqlite3KeywordCode(const unsigned char*, int); 2997 int sqlite3RunParser(Parse*, const char*, char **); 2998 void sqlite3FinishCoding(Parse*); 2999 int sqlite3GetTempReg(Parse*); 3000 void sqlite3ReleaseTempReg(Parse*,int); 3001 int sqlite3GetTempRange(Parse*,int); 3002 void sqlite3ReleaseTempRange(Parse*,int,int); 3003 void sqlite3ClearTempRegCache(Parse*); 3004 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3005 Expr *sqlite3Expr(sqlite3*,int,const char*); 3006 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3007 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3008 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3009 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3010 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3011 void sqlite3ExprDelete(sqlite3*, Expr*); 3012 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3013 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3014 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3015 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3016 int sqlite3Init(sqlite3*, char**); 3017 int sqlite3InitCallback(void*, int, char**, char**); 3018 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3019 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3020 void sqlite3ResetOneSchema(sqlite3*,int); 3021 void sqlite3CollapseDatabaseArray(sqlite3*); 3022 void sqlite3BeginParse(Parse*,int); 3023 void sqlite3CommitInternalChanges(sqlite3*); 3024 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3025 void sqlite3OpenMasterTable(Parse *, int); 3026 Index *sqlite3PrimaryKeyIndex(Table*); 3027 i16 sqlite3ColumnOfIndex(Index*, i16); 3028 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3029 void sqlite3AddColumn(Parse*,Token*); 3030 void sqlite3AddNotNull(Parse*, int); 3031 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3032 void sqlite3AddCheckConstraint(Parse*, Expr*); 3033 void sqlite3AddColumnType(Parse*,Token*); 3034 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3035 void sqlite3AddCollateType(Parse*, Token*); 3036 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3037 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3038 sqlite3_vfs**,char**,char **); 3039 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3040 int sqlite3CodeOnce(Parse *); 3041 3042 #ifdef SQLITE_OMIT_BUILTIN_TEST 3043 # define sqlite3FaultSim(X) SQLITE_OK 3044 #else 3045 int sqlite3FaultSim(int); 3046 #endif 3047 3048 Bitvec *sqlite3BitvecCreate(u32); 3049 int sqlite3BitvecTest(Bitvec*, u32); 3050 int sqlite3BitvecSet(Bitvec*, u32); 3051 void sqlite3BitvecClear(Bitvec*, u32, void*); 3052 void sqlite3BitvecDestroy(Bitvec*); 3053 u32 sqlite3BitvecSize(Bitvec*); 3054 int sqlite3BitvecBuiltinTest(int,int*); 3055 3056 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3057 void sqlite3RowSetClear(RowSet*); 3058 void sqlite3RowSetInsert(RowSet*, i64); 3059 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3060 int sqlite3RowSetNext(RowSet*, i64*); 3061 3062 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3063 3064 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3065 int sqlite3ViewGetColumnNames(Parse*,Table*); 3066 #else 3067 # define sqlite3ViewGetColumnNames(A,B) 0 3068 #endif 3069 3070 void sqlite3DropTable(Parse*, SrcList*, int, int); 3071 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3072 void sqlite3DeleteTable(sqlite3*, Table*); 3073 #ifndef SQLITE_OMIT_AUTOINCREMENT 3074 void sqlite3AutoincrementBegin(Parse *pParse); 3075 void sqlite3AutoincrementEnd(Parse *pParse); 3076 #else 3077 # define sqlite3AutoincrementBegin(X) 3078 # define sqlite3AutoincrementEnd(X) 3079 #endif 3080 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3081 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3082 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3083 int sqlite3IdListIndex(IdList*,const char*); 3084 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3085 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3086 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3087 Token*, Select*, Expr*, IdList*); 3088 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3089 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3090 void sqlite3SrcListShiftJoinType(SrcList*); 3091 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3092 void sqlite3IdListDelete(sqlite3*, IdList*); 3093 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3094 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3095 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3096 Expr*, int, int); 3097 void sqlite3DropIndex(Parse*, SrcList*, int); 3098 int sqlite3Select(Parse*, Select*, SelectDest*); 3099 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3100 Expr*,ExprList*,u16,Expr*,Expr*); 3101 void sqlite3SelectDelete(sqlite3*, Select*); 3102 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3103 int sqlite3IsReadOnly(Parse*, Table*, int); 3104 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3105 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3106 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3107 #endif 3108 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3109 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3110 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3111 void sqlite3WhereEnd(WhereInfo*); 3112 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3113 int sqlite3WhereIsDistinct(WhereInfo*); 3114 int sqlite3WhereIsOrdered(WhereInfo*); 3115 int sqlite3WhereIsSorted(WhereInfo*); 3116 int sqlite3WhereContinueLabel(WhereInfo*); 3117 int sqlite3WhereBreakLabel(WhereInfo*); 3118 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3119 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3120 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3121 void sqlite3ExprCodeMove(Parse*, int, int, int); 3122 void sqlite3ExprCacheStore(Parse*, int, int, int); 3123 void sqlite3ExprCachePush(Parse*); 3124 void sqlite3ExprCachePop(Parse*); 3125 void sqlite3ExprCacheRemove(Parse*, int, int); 3126 void sqlite3ExprCacheClear(Parse*); 3127 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3128 void sqlite3ExprCode(Parse*, Expr*, int); 3129 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3130 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3131 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3132 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3133 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3134 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3135 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3136 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3137 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3138 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3139 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3140 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3141 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3142 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3143 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3144 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3145 void sqlite3Vacuum(Parse*); 3146 int sqlite3RunVacuum(char**, sqlite3*); 3147 char *sqlite3NameFromToken(sqlite3*, Token*); 3148 int sqlite3ExprCompare(Expr*, Expr*, int); 3149 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3150 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3151 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3152 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3153 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3154 Vdbe *sqlite3GetVdbe(Parse*); 3155 void sqlite3PrngSaveState(void); 3156 void sqlite3PrngRestoreState(void); 3157 void sqlite3RollbackAll(sqlite3*,int); 3158 void sqlite3CodeVerifySchema(Parse*, int); 3159 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3160 void sqlite3BeginTransaction(Parse*, int); 3161 void sqlite3CommitTransaction(Parse*); 3162 void sqlite3RollbackTransaction(Parse*); 3163 void sqlite3Savepoint(Parse*, int, Token*); 3164 void sqlite3CloseSavepoints(sqlite3 *); 3165 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3166 int sqlite3ExprIsConstant(Expr*); 3167 int sqlite3ExprIsConstantNotJoin(Expr*); 3168 int sqlite3ExprIsConstantOrFunction(Expr*); 3169 int sqlite3ExprIsInteger(Expr*, int*); 3170 int sqlite3ExprCanBeNull(const Expr*); 3171 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3172 int sqlite3IsRowid(const char*); 3173 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3174 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3175 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3176 void sqlite3ResolvePartIdxLabel(Parse*,int); 3177 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3178 u8,u8,int,int*); 3179 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3180 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3181 void sqlite3BeginWriteOperation(Parse*, int, int); 3182 void sqlite3MultiWrite(Parse*); 3183 void sqlite3MayAbort(Parse*); 3184 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3185 void sqlite3UniqueConstraint(Parse*, int, Index*); 3186 void sqlite3RowidConstraint(Parse*, int, Table*); 3187 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3188 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3189 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3190 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3191 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3192 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3193 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3194 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3195 void sqlite3RegisterDateTimeFunctions(void); 3196 void sqlite3RegisterGlobalFunctions(void); 3197 int sqlite3SafetyCheckOk(sqlite3*); 3198 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3199 void sqlite3ChangeCookie(Parse*, int); 3200 3201 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3202 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3203 #endif 3204 3205 #ifndef SQLITE_OMIT_TRIGGER 3206 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3207 Expr*,int, int); 3208 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3209 void sqlite3DropTrigger(Parse*, SrcList*, int); 3210 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3211 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3212 Trigger *sqlite3TriggerList(Parse *, Table *); 3213 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3214 int, int, int); 3215 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3216 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3217 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3218 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3219 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3220 Select*,u8); 3221 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3222 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3223 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3224 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3225 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3226 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3227 #else 3228 # define sqlite3TriggersExist(B,C,D,E,F) 0 3229 # define sqlite3DeleteTrigger(A,B) 3230 # define sqlite3DropTriggerPtr(A,B) 3231 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3232 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3233 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3234 # define sqlite3TriggerList(X, Y) 0 3235 # define sqlite3ParseToplevel(p) p 3236 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3237 #endif 3238 3239 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3240 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3241 void sqlite3DeferForeignKey(Parse*, int); 3242 #ifndef SQLITE_OMIT_AUTHORIZATION 3243 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3244 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3245 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3246 void sqlite3AuthContextPop(AuthContext*); 3247 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3248 #else 3249 # define sqlite3AuthRead(a,b,c,d) 3250 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3251 # define sqlite3AuthContextPush(a,b,c) 3252 # define sqlite3AuthContextPop(a) ((void)(a)) 3253 #endif 3254 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3255 void sqlite3Detach(Parse*, Expr*); 3256 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3257 int sqlite3FixSrcList(DbFixer*, SrcList*); 3258 int sqlite3FixSelect(DbFixer*, Select*); 3259 int sqlite3FixExpr(DbFixer*, Expr*); 3260 int sqlite3FixExprList(DbFixer*, ExprList*); 3261 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3262 int sqlite3AtoF(const char *z, double*, int, u8); 3263 int sqlite3GetInt32(const char *, int*); 3264 int sqlite3Atoi(const char*); 3265 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3266 int sqlite3Utf8CharLen(const char *pData, int nByte); 3267 u32 sqlite3Utf8Read(const u8**); 3268 LogEst sqlite3LogEst(u64); 3269 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3270 #ifndef SQLITE_OMIT_VIRTUALTABLE 3271 LogEst sqlite3LogEstFromDouble(double); 3272 #endif 3273 u64 sqlite3LogEstToInt(LogEst); 3274 3275 /* 3276 ** Routines to read and write variable-length integers. These used to 3277 ** be defined locally, but now we use the varint routines in the util.c 3278 ** file. Code should use the MACRO forms below, as the Varint32 versions 3279 ** are coded to assume the single byte case is already handled (which 3280 ** the MACRO form does). 3281 */ 3282 int sqlite3PutVarint(unsigned char*, u64); 3283 int sqlite3PutVarint32(unsigned char*, u32); 3284 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3285 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3286 int sqlite3VarintLen(u64 v); 3287 3288 /* 3289 ** The header of a record consists of a sequence variable-length integers. 3290 ** These integers are almost always small and are encoded as a single byte. 3291 ** The following macros take advantage this fact to provide a fast encode 3292 ** and decode of the integers in a record header. It is faster for the common 3293 ** case where the integer is a single byte. It is a little slower when the 3294 ** integer is two or more bytes. But overall it is faster. 3295 ** 3296 ** The following expressions are equivalent: 3297 ** 3298 ** x = sqlite3GetVarint32( A, &B ); 3299 ** x = sqlite3PutVarint32( A, B ); 3300 ** 3301 ** x = getVarint32( A, B ); 3302 ** x = putVarint32( A, B ); 3303 ** 3304 */ 3305 #define getVarint32(A,B) \ 3306 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3307 #define putVarint32(A,B) \ 3308 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3309 sqlite3PutVarint32((A),(B))) 3310 #define getVarint sqlite3GetVarint 3311 #define putVarint sqlite3PutVarint 3312 3313 3314 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3315 void sqlite3TableAffinity(Vdbe*, Table*, int); 3316 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3317 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3318 char sqlite3ExprAffinity(Expr *pExpr); 3319 int sqlite3Atoi64(const char*, i64*, int, u8); 3320 void sqlite3Error(sqlite3*, int, const char*,...); 3321 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3322 u8 sqlite3HexToInt(int h); 3323 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3324 3325 #if defined(SQLITE_TEST) 3326 const char *sqlite3ErrName(int); 3327 #endif 3328 3329 const char *sqlite3ErrStr(int); 3330 int sqlite3ReadSchema(Parse *pParse); 3331 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3332 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3333 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3334 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*); 3335 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3336 Expr *sqlite3ExprSkipCollate(Expr*); 3337 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3338 int sqlite3CheckObjectName(Parse *, const char *); 3339 void sqlite3VdbeSetChanges(sqlite3 *, int); 3340 int sqlite3AddInt64(i64*,i64); 3341 int sqlite3SubInt64(i64*,i64); 3342 int sqlite3MulInt64(i64*,i64); 3343 int sqlite3AbsInt32(int); 3344 #ifdef SQLITE_ENABLE_8_3_NAMES 3345 void sqlite3FileSuffix3(const char*, char*); 3346 #else 3347 # define sqlite3FileSuffix3(X,Y) 3348 #endif 3349 u8 sqlite3GetBoolean(const char *z,int); 3350 3351 const void *sqlite3ValueText(sqlite3_value*, u8); 3352 int sqlite3ValueBytes(sqlite3_value*, u8); 3353 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3354 void(*)(void*)); 3355 void sqlite3ValueSetNull(sqlite3_value*); 3356 void sqlite3ValueFree(sqlite3_value*); 3357 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3358 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3359 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3360 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3361 #ifndef SQLITE_AMALGAMATION 3362 extern const unsigned char sqlite3OpcodeProperty[]; 3363 extern const unsigned char sqlite3UpperToLower[]; 3364 extern const unsigned char sqlite3CtypeMap[]; 3365 extern const Token sqlite3IntTokens[]; 3366 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3367 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3368 #ifndef SQLITE_OMIT_WSD 3369 extern int sqlite3PendingByte; 3370 #endif 3371 #endif 3372 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3373 void sqlite3Reindex(Parse*, Token*, Token*); 3374 void sqlite3AlterFunctions(void); 3375 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3376 int sqlite3GetToken(const unsigned char *, int *); 3377 void sqlite3NestedParse(Parse*, const char*, ...); 3378 void sqlite3ExpirePreparedStatements(sqlite3*); 3379 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3380 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3381 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3382 int sqlite3ResolveExprNames(NameContext*, Expr*); 3383 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3384 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3385 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3386 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3387 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3388 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3389 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3390 char sqlite3AffinityType(const char*, u8*); 3391 void sqlite3Analyze(Parse*, Token*, Token*); 3392 int sqlite3InvokeBusyHandler(BusyHandler*); 3393 int sqlite3FindDb(sqlite3*, Token*); 3394 int sqlite3FindDbName(sqlite3 *, const char *); 3395 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3396 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3397 void sqlite3DefaultRowEst(Index*); 3398 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3399 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3400 void sqlite3MinimumFileFormat(Parse*, int, int); 3401 void sqlite3SchemaClear(void *); 3402 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3403 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3404 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3405 void sqlite3KeyInfoUnref(KeyInfo*); 3406 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3407 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3408 #ifdef SQLITE_DEBUG 3409 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3410 #endif 3411 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3412 void (*)(sqlite3_context*,int,sqlite3_value **), 3413 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3414 FuncDestructor *pDestructor 3415 ); 3416 int sqlite3ApiExit(sqlite3 *db, int); 3417 int sqlite3OpenTempDatabase(Parse *); 3418 3419 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3420 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3421 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3422 void sqlite3AppendSpace(StrAccum*,int); 3423 char *sqlite3StrAccumFinish(StrAccum*); 3424 void sqlite3StrAccumReset(StrAccum*); 3425 void sqlite3SelectDestInit(SelectDest*,int,int); 3426 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3427 3428 void sqlite3BackupRestart(sqlite3_backup *); 3429 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3430 3431 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3432 void sqlite3AnalyzeFunctions(void); 3433 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3434 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3435 #endif 3436 3437 /* 3438 ** The interface to the LEMON-generated parser 3439 */ 3440 void *sqlite3ParserAlloc(void*(*)(size_t)); 3441 void sqlite3ParserFree(void*, void(*)(void*)); 3442 void sqlite3Parser(void*, int, Token, Parse*); 3443 #ifdef YYTRACKMAXSTACKDEPTH 3444 int sqlite3ParserStackPeak(void*); 3445 #endif 3446 3447 void sqlite3AutoLoadExtensions(sqlite3*); 3448 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3449 void sqlite3CloseExtensions(sqlite3*); 3450 #else 3451 # define sqlite3CloseExtensions(X) 3452 #endif 3453 3454 #ifndef SQLITE_OMIT_SHARED_CACHE 3455 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3456 #else 3457 #define sqlite3TableLock(v,w,x,y,z) 3458 #endif 3459 3460 #ifdef SQLITE_TEST 3461 int sqlite3Utf8To8(unsigned char*); 3462 #endif 3463 3464 #ifdef SQLITE_OMIT_VIRTUALTABLE 3465 # define sqlite3VtabClear(Y) 3466 # define sqlite3VtabSync(X,Y) SQLITE_OK 3467 # define sqlite3VtabRollback(X) 3468 # define sqlite3VtabCommit(X) 3469 # define sqlite3VtabInSync(db) 0 3470 # define sqlite3VtabLock(X) 3471 # define sqlite3VtabUnlock(X) 3472 # define sqlite3VtabUnlockList(X) 3473 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3474 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3475 #else 3476 void sqlite3VtabClear(sqlite3 *db, Table*); 3477 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3478 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3479 int sqlite3VtabRollback(sqlite3 *db); 3480 int sqlite3VtabCommit(sqlite3 *db); 3481 void sqlite3VtabLock(VTable *); 3482 void sqlite3VtabUnlock(VTable *); 3483 void sqlite3VtabUnlockList(sqlite3*); 3484 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3485 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3486 VTable *sqlite3GetVTable(sqlite3*, Table*); 3487 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3488 #endif 3489 void sqlite3VtabMakeWritable(Parse*,Table*); 3490 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3491 void sqlite3VtabFinishParse(Parse*, Token*); 3492 void sqlite3VtabArgInit(Parse*); 3493 void sqlite3VtabArgExtend(Parse*, Token*); 3494 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3495 int sqlite3VtabCallConnect(Parse*, Table*); 3496 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3497 int sqlite3VtabBegin(sqlite3 *, VTable *); 3498 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3499 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3500 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3501 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3502 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3503 void sqlite3ParserReset(Parse*); 3504 int sqlite3Reprepare(Vdbe*); 3505 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3506 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3507 int sqlite3TempInMemory(const sqlite3*); 3508 const char *sqlite3JournalModename(int); 3509 #ifndef SQLITE_OMIT_WAL 3510 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3511 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3512 #endif 3513 #ifndef SQLITE_OMIT_CTE 3514 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3515 void sqlite3WithDelete(sqlite3*,With*); 3516 void sqlite3WithPush(Parse*, With*, u8); 3517 #else 3518 #define sqlite3WithPush(x,y,z) 3519 #define sqlite3WithDelete(x,y) 3520 #endif 3521 3522 /* Declarations for functions in fkey.c. All of these are replaced by 3523 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3524 ** key functionality is available. If OMIT_TRIGGER is defined but 3525 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3526 ** this case foreign keys are parsed, but no other functionality is 3527 ** provided (enforcement of FK constraints requires the triggers sub-system). 3528 */ 3529 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3530 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3531 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3532 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3533 int sqlite3FkRequired(Parse*, Table*, int*, int); 3534 u32 sqlite3FkOldmask(Parse*, Table*); 3535 FKey *sqlite3FkReferences(Table *); 3536 #else 3537 #define sqlite3FkActions(a,b,c,d,e,f) 3538 #define sqlite3FkCheck(a,b,c,d,e,f) 3539 #define sqlite3FkDropTable(a,b,c) 3540 #define sqlite3FkOldmask(a,b) 0 3541 #define sqlite3FkRequired(a,b,c,d) 0 3542 #endif 3543 #ifndef SQLITE_OMIT_FOREIGN_KEY 3544 void sqlite3FkDelete(sqlite3 *, Table*); 3545 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3546 #else 3547 #define sqlite3FkDelete(a,b) 3548 #define sqlite3FkLocateIndex(a,b,c,d,e) 3549 #endif 3550 3551 3552 /* 3553 ** Available fault injectors. Should be numbered beginning with 0. 3554 */ 3555 #define SQLITE_FAULTINJECTOR_MALLOC 0 3556 #define SQLITE_FAULTINJECTOR_COUNT 1 3557 3558 /* 3559 ** The interface to the code in fault.c used for identifying "benign" 3560 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3561 ** is not defined. 3562 */ 3563 #ifndef SQLITE_OMIT_BUILTIN_TEST 3564 void sqlite3BeginBenignMalloc(void); 3565 void sqlite3EndBenignMalloc(void); 3566 #else 3567 #define sqlite3BeginBenignMalloc() 3568 #define sqlite3EndBenignMalloc() 3569 #endif 3570 3571 #define IN_INDEX_ROWID 1 3572 #define IN_INDEX_EPH 2 3573 #define IN_INDEX_INDEX_ASC 3 3574 #define IN_INDEX_INDEX_DESC 4 3575 int sqlite3FindInIndex(Parse *, Expr *, int*); 3576 3577 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3578 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3579 int sqlite3JournalSize(sqlite3_vfs *); 3580 int sqlite3JournalCreate(sqlite3_file *); 3581 int sqlite3JournalExists(sqlite3_file *p); 3582 #else 3583 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3584 #define sqlite3JournalExists(p) 1 3585 #endif 3586 3587 void sqlite3MemJournalOpen(sqlite3_file *); 3588 int sqlite3MemJournalSize(void); 3589 int sqlite3IsMemJournal(sqlite3_file *); 3590 3591 #if SQLITE_MAX_EXPR_DEPTH>0 3592 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3593 int sqlite3SelectExprHeight(Select *); 3594 int sqlite3ExprCheckHeight(Parse*, int); 3595 #else 3596 #define sqlite3ExprSetHeight(x,y) 3597 #define sqlite3SelectExprHeight(x) 0 3598 #define sqlite3ExprCheckHeight(x,y) 3599 #endif 3600 3601 u32 sqlite3Get4byte(const u8*); 3602 void sqlite3Put4byte(u8*, u32); 3603 3604 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3605 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3606 void sqlite3ConnectionUnlocked(sqlite3 *db); 3607 void sqlite3ConnectionClosed(sqlite3 *db); 3608 #else 3609 #define sqlite3ConnectionBlocked(x,y) 3610 #define sqlite3ConnectionUnlocked(x) 3611 #define sqlite3ConnectionClosed(x) 3612 #endif 3613 3614 #ifdef SQLITE_DEBUG 3615 void sqlite3ParserTrace(FILE*, char *); 3616 #endif 3617 3618 /* 3619 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3620 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3621 ** print I/O tracing messages. 3622 */ 3623 #ifdef SQLITE_ENABLE_IOTRACE 3624 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3625 void sqlite3VdbeIOTraceSql(Vdbe*); 3626 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3627 #else 3628 # define IOTRACE(A) 3629 # define sqlite3VdbeIOTraceSql(X) 3630 #endif 3631 3632 /* 3633 ** These routines are available for the mem2.c debugging memory allocator 3634 ** only. They are used to verify that different "types" of memory 3635 ** allocations are properly tracked by the system. 3636 ** 3637 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3638 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3639 ** a single bit set. 3640 ** 3641 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3642 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3643 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3644 ** 3645 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3646 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3647 ** 3648 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3649 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3650 ** it might have been allocated by lookaside, except the allocation was 3651 ** too large or lookaside was already full. It is important to verify 3652 ** that allocations that might have been satisfied by lookaside are not 3653 ** passed back to non-lookaside free() routines. Asserts such as the 3654 ** example above are placed on the non-lookaside free() routines to verify 3655 ** this constraint. 3656 ** 3657 ** All of this is no-op for a production build. It only comes into 3658 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3659 */ 3660 #ifdef SQLITE_MEMDEBUG 3661 void sqlite3MemdebugSetType(void*,u8); 3662 int sqlite3MemdebugHasType(void*,u8); 3663 int sqlite3MemdebugNoType(void*,u8); 3664 #else 3665 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3666 # define sqlite3MemdebugHasType(X,Y) 1 3667 # define sqlite3MemdebugNoType(X,Y) 1 3668 #endif 3669 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3670 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3671 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3672 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3673 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3674 3675 #endif /* _SQLITEINT_H_ */ 3676