1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 #define SQLITE_INDEX_SAMPLES 10 80 81 /* 82 ** This macro is used to "hide" some ugliness in casting an int 83 ** value to a ptr value under the MSVC 64-bit compiler. Casting 84 ** non 64-bit values to ptr types results in a "hard" error with 85 ** the MSVC 64-bit compiler which this attempts to avoid. 86 ** 87 ** A simple compiler pragma or casting sequence could not be found 88 ** to correct this in all situations, so this macro was introduced. 89 ** 90 ** It could be argued that the intptr_t type could be used in this 91 ** case, but that type is not available on all compilers, or 92 ** requires the #include of specific headers which differs between 93 ** platforms. 94 ** 95 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 96 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 97 ** So we have to define the macros in different ways depending on the 98 ** compiler. 99 */ 100 #if defined(__GNUC__) 101 # if defined(HAVE_STDINT_H) 102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 104 # else 105 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 106 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 107 # endif 108 #else 109 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 110 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 111 #endif 112 113 114 /* 115 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 116 ** Older versions of SQLite used an optional THREADSAFE macro. 117 ** We support that for legacy 118 */ 119 #if !defined(SQLITE_THREADSAFE) 120 #if defined(THREADSAFE) 121 # define SQLITE_THREADSAFE THREADSAFE 122 #else 123 # define SQLITE_THREADSAFE 1 124 #endif 125 #endif 126 127 /* 128 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 129 ** It determines whether or not the features related to 130 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 131 ** be overridden at runtime using the sqlite3_config() API. 132 */ 133 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 134 # define SQLITE_DEFAULT_MEMSTATUS 1 135 #endif 136 137 /* 138 ** Exactly one of the following macros must be defined in order to 139 ** specify which memory allocation subsystem to use. 140 ** 141 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 142 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 143 ** SQLITE_MEMORY_SIZE // internal allocator #1 144 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator 145 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator 146 ** 147 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 148 ** the default. 149 */ 150 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 151 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 152 defined(SQLITE_POW2_MEMORY_SIZE)>1 153 # error "At most one of the following compile-time configuration options\ 154 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ 155 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" 156 #endif 157 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 158 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 159 defined(SQLITE_POW2_MEMORY_SIZE)==0 160 # define SQLITE_SYSTEM_MALLOC 1 161 #endif 162 163 /* 164 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 165 ** sizes of memory allocations below this value where possible. 166 */ 167 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 168 # define SQLITE_MALLOC_SOFT_LIMIT 1024 169 #endif 170 171 /* 172 ** We need to define _XOPEN_SOURCE as follows in order to enable 173 ** recursive mutexes on most Unix systems. But Mac OS X is different. 174 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 175 ** so it is omitted there. See ticket #2673. 176 ** 177 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 178 ** implemented on some systems. So we avoid defining it at all 179 ** if it is already defined or if it is unneeded because we are 180 ** not doing a threadsafe build. Ticket #2681. 181 ** 182 ** See also ticket #2741. 183 */ 184 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 185 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 186 #endif 187 188 /* 189 ** The TCL headers are only needed when compiling the TCL bindings. 190 */ 191 #if defined(SQLITE_TCL) || defined(TCLSH) 192 # include <tcl.h> 193 #endif 194 195 /* 196 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 197 ** Setting NDEBUG makes the code smaller and run faster. So the following 198 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 199 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 200 ** feature. 201 */ 202 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 203 # define NDEBUG 1 204 #endif 205 206 /* 207 ** The testcase() macro is used to aid in coverage testing. When 208 ** doing coverage testing, the condition inside the argument to 209 ** testcase() must be evaluated both true and false in order to 210 ** get full branch coverage. The testcase() macro is inserted 211 ** to help ensure adequate test coverage in places where simple 212 ** condition/decision coverage is inadequate. For example, testcase() 213 ** can be used to make sure boundary values are tested. For 214 ** bitmask tests, testcase() can be used to make sure each bit 215 ** is significant and used at least once. On switch statements 216 ** where multiple cases go to the same block of code, testcase() 217 ** can insure that all cases are evaluated. 218 ** 219 */ 220 #ifdef SQLITE_COVERAGE_TEST 221 void sqlite3Coverage(int); 222 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 223 #else 224 # define testcase(X) 225 #endif 226 227 /* 228 ** The TESTONLY macro is used to enclose variable declarations or 229 ** other bits of code that are needed to support the arguments 230 ** within testcase() and assert() macros. 231 */ 232 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 233 # define TESTONLY(X) X 234 #else 235 # define TESTONLY(X) 236 #endif 237 238 /* 239 ** Sometimes we need a small amount of code such as a variable initialization 240 ** to setup for a later assert() statement. We do not want this code to 241 ** appear when assert() is disabled. The following macro is therefore 242 ** used to contain that setup code. The "VVA" acronym stands for 243 ** "Verification, Validation, and Accreditation". In other words, the 244 ** code within VVA_ONLY() will only run during verification processes. 245 */ 246 #ifndef NDEBUG 247 # define VVA_ONLY(X) X 248 #else 249 # define VVA_ONLY(X) 250 #endif 251 252 /* 253 ** The ALWAYS and NEVER macros surround boolean expressions which 254 ** are intended to always be true or false, respectively. Such 255 ** expressions could be omitted from the code completely. But they 256 ** are included in a few cases in order to enhance the resilience 257 ** of SQLite to unexpected behavior - to make the code "self-healing" 258 ** or "ductile" rather than being "brittle" and crashing at the first 259 ** hint of unplanned behavior. 260 ** 261 ** In other words, ALWAYS and NEVER are added for defensive code. 262 ** 263 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 264 ** be true and false so that the unreachable code then specify will 265 ** not be counted as untested code. 266 */ 267 #if defined(SQLITE_COVERAGE_TEST) 268 # define ALWAYS(X) (1) 269 # define NEVER(X) (0) 270 #elif !defined(NDEBUG) 271 # define ALWAYS(X) ((X)?1:(assert(0),0)) 272 # define NEVER(X) ((X)?(assert(0),1):0) 273 #else 274 # define ALWAYS(X) (X) 275 # define NEVER(X) (X) 276 #endif 277 278 /* 279 ** The macro unlikely() is a hint that surrounds a boolean 280 ** expression that is usually false. Macro likely() surrounds 281 ** a boolean expression that is usually true. GCC is able to 282 ** use these hints to generate better code, sometimes. 283 */ 284 #if defined(__GNUC__) && 0 285 # define likely(X) __builtin_expect((X),1) 286 # define unlikely(X) __builtin_expect((X),0) 287 #else 288 # define likely(X) !!(X) 289 # define unlikely(X) !!(X) 290 #endif 291 292 #include "sqlite3.h" 293 #include "hash.h" 294 #include "parse.h" 295 #include <stdio.h> 296 #include <stdlib.h> 297 #include <string.h> 298 #include <assert.h> 299 #include <stddef.h> 300 301 /* 302 ** If compiling for a processor that lacks floating point support, 303 ** substitute integer for floating-point 304 */ 305 #ifdef SQLITE_OMIT_FLOATING_POINT 306 # define double sqlite_int64 307 # define LONGDOUBLE_TYPE sqlite_int64 308 # ifndef SQLITE_BIG_DBL 309 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 310 # endif 311 # define SQLITE_OMIT_DATETIME_FUNCS 1 312 # define SQLITE_OMIT_TRACE 1 313 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 314 # undef SQLITE_HAVE_ISNAN 315 #endif 316 #ifndef SQLITE_BIG_DBL 317 # define SQLITE_BIG_DBL (1e99) 318 #endif 319 320 /* 321 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 322 ** afterward. Having this macro allows us to cause the C compiler 323 ** to omit code used by TEMP tables without messy #ifndef statements. 324 */ 325 #ifdef SQLITE_OMIT_TEMPDB 326 #define OMIT_TEMPDB 1 327 #else 328 #define OMIT_TEMPDB 0 329 #endif 330 331 /* 332 ** If the following macro is set to 1, then NULL values are considered 333 ** distinct when determining whether or not two entries are the same 334 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 335 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 336 ** is the way things are suppose to work. 337 ** 338 ** If the following macro is set to 0, the NULLs are indistinct for 339 ** a UNIQUE index. In this mode, you can only have a single NULL entry 340 ** for a column declared UNIQUE. This is the way Informix and SQL Server 341 ** work. 342 */ 343 #define NULL_DISTINCT_FOR_UNIQUE 1 344 345 /* 346 ** The "file format" number is an integer that is incremented whenever 347 ** the VDBE-level file format changes. The following macros define the 348 ** the default file format for new databases and the maximum file format 349 ** that the library can read. 350 */ 351 #define SQLITE_MAX_FILE_FORMAT 4 352 #ifndef SQLITE_DEFAULT_FILE_FORMAT 353 # define SQLITE_DEFAULT_FILE_FORMAT 1 354 #endif 355 356 /* 357 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 358 ** on the command-line 359 */ 360 #ifndef SQLITE_TEMP_STORE 361 # define SQLITE_TEMP_STORE 1 362 #endif 363 364 /* 365 ** GCC does not define the offsetof() macro so we'll have to do it 366 ** ourselves. 367 */ 368 #ifndef offsetof 369 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 370 #endif 371 372 /* 373 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 374 ** not, there are still machines out there that use EBCDIC.) 375 */ 376 #if 'A' == '\301' 377 # define SQLITE_EBCDIC 1 378 #else 379 # define SQLITE_ASCII 1 380 #endif 381 382 /* 383 ** Integers of known sizes. These typedefs might change for architectures 384 ** where the sizes very. Preprocessor macros are available so that the 385 ** types can be conveniently redefined at compile-type. Like this: 386 ** 387 ** cc '-DUINTPTR_TYPE=long long int' ... 388 */ 389 #ifndef UINT32_TYPE 390 # ifdef HAVE_UINT32_T 391 # define UINT32_TYPE uint32_t 392 # else 393 # define UINT32_TYPE unsigned int 394 # endif 395 #endif 396 #ifndef UINT16_TYPE 397 # ifdef HAVE_UINT16_T 398 # define UINT16_TYPE uint16_t 399 # else 400 # define UINT16_TYPE unsigned short int 401 # endif 402 #endif 403 #ifndef INT16_TYPE 404 # ifdef HAVE_INT16_T 405 # define INT16_TYPE int16_t 406 # else 407 # define INT16_TYPE short int 408 # endif 409 #endif 410 #ifndef UINT8_TYPE 411 # ifdef HAVE_UINT8_T 412 # define UINT8_TYPE uint8_t 413 # else 414 # define UINT8_TYPE unsigned char 415 # endif 416 #endif 417 #ifndef INT8_TYPE 418 # ifdef HAVE_INT8_T 419 # define INT8_TYPE int8_t 420 # else 421 # define INT8_TYPE signed char 422 # endif 423 #endif 424 #ifndef LONGDOUBLE_TYPE 425 # define LONGDOUBLE_TYPE long double 426 #endif 427 typedef sqlite_int64 i64; /* 8-byte signed integer */ 428 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 429 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 430 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 431 typedef INT16_TYPE i16; /* 2-byte signed integer */ 432 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 433 typedef INT8_TYPE i8; /* 1-byte signed integer */ 434 435 /* 436 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 437 ** that can be stored in a u32 without loss of data. The value 438 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 439 ** have to specify the value in the less intuitive manner shown: 440 */ 441 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 442 443 /* 444 ** Macros to determine whether the machine is big or little endian, 445 ** evaluated at runtime. 446 */ 447 #ifdef SQLITE_AMALGAMATION 448 const int sqlite3one = 1; 449 #else 450 extern const int sqlite3one; 451 #endif 452 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 453 || defined(__x86_64) || defined(__x86_64__) 454 # define SQLITE_BIGENDIAN 0 455 # define SQLITE_LITTLEENDIAN 1 456 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 457 #else 458 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 459 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 460 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 461 #endif 462 463 /* 464 ** Constants for the largest and smallest possible 64-bit signed integers. 465 ** These macros are designed to work correctly on both 32-bit and 64-bit 466 ** compilers. 467 */ 468 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 469 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 470 471 /* 472 ** Round up a number to the next larger multiple of 8. This is used 473 ** to force 8-byte alignment on 64-bit architectures. 474 */ 475 #define ROUND8(x) (((x)+7)&~7) 476 477 /* 478 ** Round down to the nearest multiple of 8 479 */ 480 #define ROUNDDOWN8(x) ((x)&~7) 481 482 /* 483 ** Assert that the pointer X is aligned to an 8-byte boundary. 484 */ 485 #define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 486 487 488 /* 489 ** An instance of the following structure is used to store the busy-handler 490 ** callback for a given sqlite handle. 491 ** 492 ** The sqlite.busyHandler member of the sqlite struct contains the busy 493 ** callback for the database handle. Each pager opened via the sqlite 494 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 495 ** callback is currently invoked only from within pager.c. 496 */ 497 typedef struct BusyHandler BusyHandler; 498 struct BusyHandler { 499 int (*xFunc)(void *,int); /* The busy callback */ 500 void *pArg; /* First arg to busy callback */ 501 int nBusy; /* Incremented with each busy call */ 502 }; 503 504 /* 505 ** Name of the master database table. The master database table 506 ** is a special table that holds the names and attributes of all 507 ** user tables and indices. 508 */ 509 #define MASTER_NAME "sqlite_master" 510 #define TEMP_MASTER_NAME "sqlite_temp_master" 511 512 /* 513 ** The root-page of the master database table. 514 */ 515 #define MASTER_ROOT 1 516 517 /* 518 ** The name of the schema table. 519 */ 520 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 521 522 /* 523 ** A convenience macro that returns the number of elements in 524 ** an array. 525 */ 526 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 527 528 /* 529 ** The following value as a destructor means to use sqlite3DbFree(). 530 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 531 */ 532 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 533 534 /* 535 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 536 ** not support Writable Static Data (WSD) such as global and static variables. 537 ** All variables must either be on the stack or dynamically allocated from 538 ** the heap. When WSD is unsupported, the variable declarations scattered 539 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 540 ** macro is used for this purpose. And instead of referencing the variable 541 ** directly, we use its constant as a key to lookup the run-time allocated 542 ** buffer that holds real variable. The constant is also the initializer 543 ** for the run-time allocated buffer. 544 ** 545 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 546 ** macros become no-ops and have zero performance impact. 547 */ 548 #ifdef SQLITE_OMIT_WSD 549 #define SQLITE_WSD const 550 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 551 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 552 int sqlite3_wsd_init(int N, int J); 553 void *sqlite3_wsd_find(void *K, int L); 554 #else 555 #define SQLITE_WSD 556 #define GLOBAL(t,v) v 557 #define sqlite3GlobalConfig sqlite3Config 558 #endif 559 560 /* 561 ** The following macros are used to suppress compiler warnings and to 562 ** make it clear to human readers when a function parameter is deliberately 563 ** left unused within the body of a function. This usually happens when 564 ** a function is called via a function pointer. For example the 565 ** implementation of an SQL aggregate step callback may not use the 566 ** parameter indicating the number of arguments passed to the aggregate, 567 ** if it knows that this is enforced elsewhere. 568 ** 569 ** When a function parameter is not used at all within the body of a function, 570 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 571 ** However, these macros may also be used to suppress warnings related to 572 ** parameters that may or may not be used depending on compilation options. 573 ** For example those parameters only used in assert() statements. In these 574 ** cases the parameters are named as per the usual conventions. 575 */ 576 #define UNUSED_PARAMETER(x) (void)(x) 577 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 578 579 /* 580 ** Forward references to structures 581 */ 582 typedef struct AggInfo AggInfo; 583 typedef struct AuthContext AuthContext; 584 typedef struct AutoincInfo AutoincInfo; 585 typedef struct Bitvec Bitvec; 586 typedef struct RowSet RowSet; 587 typedef struct CollSeq CollSeq; 588 typedef struct Column Column; 589 typedef struct Db Db; 590 typedef struct Schema Schema; 591 typedef struct Expr Expr; 592 typedef struct ExprList ExprList; 593 typedef struct ExprSpan ExprSpan; 594 typedef struct FKey FKey; 595 typedef struct FuncDef FuncDef; 596 typedef struct FuncDefHash FuncDefHash; 597 typedef struct IdList IdList; 598 typedef struct Index Index; 599 typedef struct IndexSample IndexSample; 600 typedef struct KeyClass KeyClass; 601 typedef struct KeyInfo KeyInfo; 602 typedef struct Lookaside Lookaside; 603 typedef struct LookasideSlot LookasideSlot; 604 typedef struct Module Module; 605 typedef struct NameContext NameContext; 606 typedef struct Parse Parse; 607 typedef struct Savepoint Savepoint; 608 typedef struct Select Select; 609 typedef struct SrcList SrcList; 610 typedef struct StrAccum StrAccum; 611 typedef struct Table Table; 612 typedef struct TableLock TableLock; 613 typedef struct Token Token; 614 typedef struct TriggerStack TriggerStack; 615 typedef struct TriggerStep TriggerStep; 616 typedef struct Trigger Trigger; 617 typedef struct UnpackedRecord UnpackedRecord; 618 typedef struct VTable VTable; 619 typedef struct Walker Walker; 620 typedef struct WherePlan WherePlan; 621 typedef struct WhereInfo WhereInfo; 622 typedef struct WhereLevel WhereLevel; 623 624 /* 625 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 626 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 627 ** pointer types (i.e. FuncDef) defined above. 628 */ 629 #include "btree.h" 630 #include "vdbe.h" 631 #include "pager.h" 632 #include "pcache.h" 633 634 #include "os.h" 635 #include "mutex.h" 636 637 638 /* 639 ** Each database file to be accessed by the system is an instance 640 ** of the following structure. There are normally two of these structures 641 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 642 ** aDb[1] is the database file used to hold temporary tables. Additional 643 ** databases may be attached. 644 */ 645 struct Db { 646 char *zName; /* Name of this database */ 647 Btree *pBt; /* The B*Tree structure for this database file */ 648 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 649 u8 safety_level; /* How aggressive at syncing data to disk */ 650 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 651 }; 652 653 /* 654 ** An instance of the following structure stores a database schema. 655 ** 656 ** If there are no virtual tables configured in this schema, the 657 ** Schema.db variable is set to NULL. After the first virtual table 658 ** has been added, it is set to point to the database connection 659 ** used to create the connection. Once a virtual table has been 660 ** added to the Schema structure and the Schema.db variable populated, 661 ** only that database connection may use the Schema to prepare 662 ** statements. 663 */ 664 struct Schema { 665 int schema_cookie; /* Database schema version number for this file */ 666 Hash tblHash; /* All tables indexed by name */ 667 Hash idxHash; /* All (named) indices indexed by name */ 668 Hash trigHash; /* All triggers indexed by name */ 669 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 670 u8 file_format; /* Schema format version for this file */ 671 u8 enc; /* Text encoding used by this database */ 672 u16 flags; /* Flags associated with this schema */ 673 int cache_size; /* Number of pages to use in the cache */ 674 #ifndef SQLITE_OMIT_VIRTUALTABLE 675 sqlite3 *db; /* "Owner" connection. See comment above */ 676 #endif 677 }; 678 679 /* 680 ** These macros can be used to test, set, or clear bits in the 681 ** Db.flags field. 682 */ 683 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 684 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 685 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 686 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 687 688 /* 689 ** Allowed values for the DB.flags field. 690 ** 691 ** The DB_SchemaLoaded flag is set after the database schema has been 692 ** read into internal hash tables. 693 ** 694 ** DB_UnresetViews means that one or more views have column names that 695 ** have been filled out. If the schema changes, these column names might 696 ** changes and so the view will need to be reset. 697 */ 698 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 699 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 700 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 701 702 /* 703 ** The number of different kinds of things that can be limited 704 ** using the sqlite3_limit() interface. 705 */ 706 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) 707 708 /* 709 ** Lookaside malloc is a set of fixed-size buffers that can be used 710 ** to satisfy small transient memory allocation requests for objects 711 ** associated with a particular database connection. The use of 712 ** lookaside malloc provides a significant performance enhancement 713 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 714 ** SQL statements. 715 ** 716 ** The Lookaside structure holds configuration information about the 717 ** lookaside malloc subsystem. Each available memory allocation in 718 ** the lookaside subsystem is stored on a linked list of LookasideSlot 719 ** objects. 720 ** 721 ** Lookaside allocations are only allowed for objects that are associated 722 ** with a particular database connection. Hence, schema information cannot 723 ** be stored in lookaside because in shared cache mode the schema information 724 ** is shared by multiple database connections. Therefore, while parsing 725 ** schema information, the Lookaside.bEnabled flag is cleared so that 726 ** lookaside allocations are not used to construct the schema objects. 727 */ 728 struct Lookaside { 729 u16 sz; /* Size of each buffer in bytes */ 730 u8 bEnabled; /* False to disable new lookaside allocations */ 731 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 732 int nOut; /* Number of buffers currently checked out */ 733 int mxOut; /* Highwater mark for nOut */ 734 LookasideSlot *pFree; /* List of available buffers */ 735 void *pStart; /* First byte of available memory space */ 736 void *pEnd; /* First byte past end of available space */ 737 }; 738 struct LookasideSlot { 739 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 740 }; 741 742 /* 743 ** A hash table for function definitions. 744 ** 745 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 746 ** Collisions are on the FuncDef.pHash chain. 747 */ 748 struct FuncDefHash { 749 FuncDef *a[23]; /* Hash table for functions */ 750 }; 751 752 /* 753 ** Each database is an instance of the following structure. 754 ** 755 ** The sqlite.lastRowid records the last insert rowid generated by an 756 ** insert statement. Inserts on views do not affect its value. Each 757 ** trigger has its own context, so that lastRowid can be updated inside 758 ** triggers as usual. The previous value will be restored once the trigger 759 ** exits. Upon entering a before or instead of trigger, lastRowid is no 760 ** longer (since after version 2.8.12) reset to -1. 761 ** 762 ** The sqlite.nChange does not count changes within triggers and keeps no 763 ** context. It is reset at start of sqlite3_exec. 764 ** The sqlite.lsChange represents the number of changes made by the last 765 ** insert, update, or delete statement. It remains constant throughout the 766 ** length of a statement and is then updated by OP_SetCounts. It keeps a 767 ** context stack just like lastRowid so that the count of changes 768 ** within a trigger is not seen outside the trigger. Changes to views do not 769 ** affect the value of lsChange. 770 ** The sqlite.csChange keeps track of the number of current changes (since 771 ** the last statement) and is used to update sqlite_lsChange. 772 ** 773 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 774 ** store the most recent error code and, if applicable, string. The 775 ** internal function sqlite3Error() is used to set these variables 776 ** consistently. 777 */ 778 struct sqlite3 { 779 sqlite3_vfs *pVfs; /* OS Interface */ 780 int nDb; /* Number of backends currently in use */ 781 Db *aDb; /* All backends */ 782 int flags; /* Miscellaneous flags. See below */ 783 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 784 int errCode; /* Most recent error code (SQLITE_*) */ 785 int errMask; /* & result codes with this before returning */ 786 u8 autoCommit; /* The auto-commit flag. */ 787 u8 temp_store; /* 1: file 2: memory 0: default */ 788 u8 mallocFailed; /* True if we have seen a malloc failure */ 789 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 790 u8 dfltJournalMode; /* Default journal mode for attached dbs */ 791 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 792 int nextPagesize; /* Pagesize after VACUUM if >0 */ 793 int nTable; /* Number of tables in the database */ 794 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 795 i64 lastRowid; /* ROWID of most recent insert (see above) */ 796 u32 magic; /* Magic number for detect library misuse */ 797 int nChange; /* Value returned by sqlite3_changes() */ 798 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 799 sqlite3_mutex *mutex; /* Connection mutex */ 800 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 801 struct sqlite3InitInfo { /* Information used during initialization */ 802 int iDb; /* When back is being initialized */ 803 int newTnum; /* Rootpage of table being initialized */ 804 u8 busy; /* TRUE if currently initializing */ 805 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 806 } init; 807 int nExtension; /* Number of loaded extensions */ 808 void **aExtension; /* Array of shared library handles */ 809 struct Vdbe *pVdbe; /* List of active virtual machines */ 810 int activeVdbeCnt; /* Number of VDBEs currently executing */ 811 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 812 void (*xTrace)(void*,const char*); /* Trace function */ 813 void *pTraceArg; /* Argument to the trace function */ 814 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 815 void *pProfileArg; /* Argument to profile function */ 816 void *pCommitArg; /* Argument to xCommitCallback() */ 817 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 818 void *pRollbackArg; /* Argument to xRollbackCallback() */ 819 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 820 void *pUpdateArg; 821 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 822 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 823 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 824 void *pCollNeededArg; 825 sqlite3_value *pErr; /* Most recent error message */ 826 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 827 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 828 union { 829 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 830 double notUsed1; /* Spacer */ 831 } u1; 832 Lookaside lookaside; /* Lookaside malloc configuration */ 833 #ifndef SQLITE_OMIT_AUTHORIZATION 834 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 835 /* Access authorization function */ 836 void *pAuthArg; /* 1st argument to the access auth function */ 837 #endif 838 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 839 int (*xProgress)(void *); /* The progress callback */ 840 void *pProgressArg; /* Argument to the progress callback */ 841 int nProgressOps; /* Number of opcodes for progress callback */ 842 #endif 843 #ifndef SQLITE_OMIT_VIRTUALTABLE 844 Hash aModule; /* populated by sqlite3_create_module() */ 845 Table *pVTab; /* vtab with active Connect/Create method */ 846 VTable **aVTrans; /* Virtual tables with open transactions */ 847 int nVTrans; /* Allocated size of aVTrans */ 848 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 849 #endif 850 FuncDefHash aFunc; /* Hash table of connection functions */ 851 Hash aCollSeq; /* All collating sequences */ 852 BusyHandler busyHandler; /* Busy callback */ 853 int busyTimeout; /* Busy handler timeout, in msec */ 854 Db aDbStatic[2]; /* Static space for the 2 default backends */ 855 Savepoint *pSavepoint; /* List of active savepoints */ 856 int nSavepoint; /* Number of non-transaction savepoints */ 857 int nStatement; /* Number of nested statement-transactions */ 858 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 859 860 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 861 /* The following variables are all protected by the STATIC_MASTER 862 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 863 ** 864 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 865 ** unlock so that it can proceed. 866 ** 867 ** When X.pBlockingConnection==Y, that means that something that X tried 868 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 869 ** held by Y. 870 */ 871 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 872 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 873 void *pUnlockArg; /* Argument to xUnlockNotify */ 874 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 875 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 876 #endif 877 }; 878 879 /* 880 ** A macro to discover the encoding of a database. 881 */ 882 #define ENC(db) ((db)->aDb[0].pSchema->enc) 883 884 /* 885 ** Possible values for the sqlite.flags and or Db.flags fields. 886 ** 887 ** On sqlite.flags, the SQLITE_InTrans value means that we have 888 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 889 ** transaction is active on that particular database file. 890 */ 891 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 892 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 893 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 894 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 895 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 896 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 897 /* DELETE, or UPDATE and return */ 898 /* the count using a callback. */ 899 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 900 /* result set is empty */ 901 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 902 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 903 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 904 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 905 ** accessing read-only databases */ 906 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 907 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 908 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 909 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 910 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 911 912 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 913 #define SQLITE_ReverseOrder 0x00100000 /* Reverse unordered SELECTs */ 914 915 /* 916 ** Possible values for the sqlite.magic field. 917 ** The numbers are obtained at random and have no special meaning, other 918 ** than being distinct from one another. 919 */ 920 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 921 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 922 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 923 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 924 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 925 926 /* 927 ** Each SQL function is defined by an instance of the following 928 ** structure. A pointer to this structure is stored in the sqlite.aFunc 929 ** hash table. When multiple functions have the same name, the hash table 930 ** points to a linked list of these structures. 931 */ 932 struct FuncDef { 933 i16 nArg; /* Number of arguments. -1 means unlimited */ 934 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 935 u8 flags; /* Some combination of SQLITE_FUNC_* */ 936 void *pUserData; /* User data parameter */ 937 FuncDef *pNext; /* Next function with same name */ 938 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 939 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 940 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 941 char *zName; /* SQL name of the function. */ 942 FuncDef *pHash; /* Next with a different name but the same hash */ 943 }; 944 945 /* 946 ** Possible values for FuncDef.flags 947 */ 948 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 949 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 950 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 951 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 952 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ 953 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 954 955 /* 956 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 957 ** used to create the initializers for the FuncDef structures. 958 ** 959 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 960 ** Used to create a scalar function definition of a function zName 961 ** implemented by C function xFunc that accepts nArg arguments. The 962 ** value passed as iArg is cast to a (void*) and made available 963 ** as the user-data (sqlite3_user_data()) for the function. If 964 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 965 ** 966 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 967 ** Used to create an aggregate function definition implemented by 968 ** the C functions xStep and xFinal. The first four parameters 969 ** are interpreted in the same way as the first 4 parameters to 970 ** FUNCTION(). 971 ** 972 ** LIKEFUNC(zName, nArg, pArg, flags) 973 ** Used to create a scalar function definition of a function zName 974 ** that accepts nArg arguments and is implemented by a call to C 975 ** function likeFunc. Argument pArg is cast to a (void *) and made 976 ** available as the function user-data (sqlite3_user_data()). The 977 ** FuncDef.flags variable is set to the value passed as the flags 978 ** parameter. 979 */ 980 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 981 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 982 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0} 983 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 984 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 985 pArg, 0, xFunc, 0, 0, #zName, 0} 986 #define LIKEFUNC(zName, nArg, arg, flags) \ 987 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0} 988 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 989 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 990 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0} 991 992 /* 993 ** All current savepoints are stored in a linked list starting at 994 ** sqlite3.pSavepoint. The first element in the list is the most recently 995 ** opened savepoint. Savepoints are added to the list by the vdbe 996 ** OP_Savepoint instruction. 997 */ 998 struct Savepoint { 999 char *zName; /* Savepoint name (nul-terminated) */ 1000 Savepoint *pNext; /* Parent savepoint (if any) */ 1001 }; 1002 1003 /* 1004 ** The following are used as the second parameter to sqlite3Savepoint(), 1005 ** and as the P1 argument to the OP_Savepoint instruction. 1006 */ 1007 #define SAVEPOINT_BEGIN 0 1008 #define SAVEPOINT_RELEASE 1 1009 #define SAVEPOINT_ROLLBACK 2 1010 1011 1012 /* 1013 ** Each SQLite module (virtual table definition) is defined by an 1014 ** instance of the following structure, stored in the sqlite3.aModule 1015 ** hash table. 1016 */ 1017 struct Module { 1018 const sqlite3_module *pModule; /* Callback pointers */ 1019 const char *zName; /* Name passed to create_module() */ 1020 void *pAux; /* pAux passed to create_module() */ 1021 void (*xDestroy)(void *); /* Module destructor function */ 1022 }; 1023 1024 /* 1025 ** information about each column of an SQL table is held in an instance 1026 ** of this structure. 1027 */ 1028 struct Column { 1029 char *zName; /* Name of this column */ 1030 Expr *pDflt; /* Default value of this column */ 1031 char *zDflt; /* Original text of the default value */ 1032 char *zType; /* Data type for this column */ 1033 char *zColl; /* Collating sequence. If NULL, use the default */ 1034 u8 notNull; /* True if there is a NOT NULL constraint */ 1035 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1036 char affinity; /* One of the SQLITE_AFF_... values */ 1037 #ifndef SQLITE_OMIT_VIRTUALTABLE 1038 u8 isHidden; /* True if this column is 'hidden' */ 1039 #endif 1040 }; 1041 1042 /* 1043 ** A "Collating Sequence" is defined by an instance of the following 1044 ** structure. Conceptually, a collating sequence consists of a name and 1045 ** a comparison routine that defines the order of that sequence. 1046 ** 1047 ** There may two separate implementations of the collation function, one 1048 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1049 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1050 ** native byte order. When a collation sequence is invoked, SQLite selects 1051 ** the version that will require the least expensive encoding 1052 ** translations, if any. 1053 ** 1054 ** The CollSeq.pUser member variable is an extra parameter that passed in 1055 ** as the first argument to the UTF-8 comparison function, xCmp. 1056 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1057 ** xCmp16. 1058 ** 1059 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1060 ** collating sequence is undefined. Indices built on an undefined 1061 ** collating sequence may not be read or written. 1062 */ 1063 struct CollSeq { 1064 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1065 u8 enc; /* Text encoding handled by xCmp() */ 1066 u8 type; /* One of the SQLITE_COLL_... values below */ 1067 void *pUser; /* First argument to xCmp() */ 1068 int (*xCmp)(void*,int, const void*, int, const void*); 1069 void (*xDel)(void*); /* Destructor for pUser */ 1070 }; 1071 1072 /* 1073 ** Allowed values of CollSeq.type: 1074 */ 1075 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 1076 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 1077 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 1078 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 1079 1080 /* 1081 ** A sort order can be either ASC or DESC. 1082 */ 1083 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1084 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1085 1086 /* 1087 ** Column affinity types. 1088 ** 1089 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1090 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1091 ** the speed a little by numbering the values consecutively. 1092 ** 1093 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1094 ** when multiple affinity types are concatenated into a string and 1095 ** used as the P4 operand, they will be more readable. 1096 ** 1097 ** Note also that the numeric types are grouped together so that testing 1098 ** for a numeric type is a single comparison. 1099 */ 1100 #define SQLITE_AFF_TEXT 'a' 1101 #define SQLITE_AFF_NONE 'b' 1102 #define SQLITE_AFF_NUMERIC 'c' 1103 #define SQLITE_AFF_INTEGER 'd' 1104 #define SQLITE_AFF_REAL 'e' 1105 1106 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1107 1108 /* 1109 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1110 ** affinity value. 1111 */ 1112 #define SQLITE_AFF_MASK 0x67 1113 1114 /* 1115 ** Additional bit values that can be ORed with an affinity without 1116 ** changing the affinity. 1117 */ 1118 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1119 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1120 1121 /* 1122 ** An object of this type is created for each virtual table present in 1123 ** the database schema. 1124 ** 1125 ** If the database schema is shared, then there is one instance of this 1126 ** structure for each database connection (sqlite3*) that uses the shared 1127 ** schema. This is because each database connection requires its own unique 1128 ** instance of the sqlite3_vtab* handle used to access the virtual table 1129 ** implementation. sqlite3_vtab* handles can not be shared between 1130 ** database connections, even when the rest of the in-memory database 1131 ** schema is shared, as the implementation often stores the database 1132 ** connection handle passed to it via the xConnect() or xCreate() method 1133 ** during initialization internally. This database connection handle may 1134 ** then used by the virtual table implementation to access real tables 1135 ** within the database. So that they appear as part of the callers 1136 ** transaction, these accesses need to be made via the same database 1137 ** connection as that used to execute SQL operations on the virtual table. 1138 ** 1139 ** All VTable objects that correspond to a single table in a shared 1140 ** database schema are initially stored in a linked-list pointed to by 1141 ** the Table.pVTable member variable of the corresponding Table object. 1142 ** When an sqlite3_prepare() operation is required to access the virtual 1143 ** table, it searches the list for the VTable that corresponds to the 1144 ** database connection doing the preparing so as to use the correct 1145 ** sqlite3_vtab* handle in the compiled query. 1146 ** 1147 ** When an in-memory Table object is deleted (for example when the 1148 ** schema is being reloaded for some reason), the VTable objects are not 1149 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1150 ** immediately. Instead, they are moved from the Table.pVTable list to 1151 ** another linked list headed by the sqlite3.pDisconnect member of the 1152 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1153 ** next time a statement is prepared using said sqlite3*. This is done 1154 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1155 ** Refer to comments above function sqlite3VtabUnlockList() for an 1156 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1157 ** list without holding the corresponding sqlite3.mutex mutex. 1158 ** 1159 ** The memory for objects of this type is always allocated by 1160 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1161 ** the first argument. 1162 */ 1163 struct VTable { 1164 sqlite3 *db; /* Database connection associated with this table */ 1165 Module *pMod; /* Pointer to module implementation */ 1166 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1167 int nRef; /* Number of pointers to this structure */ 1168 VTable *pNext; /* Next in linked list (see above) */ 1169 }; 1170 1171 /* 1172 ** Each SQL table is represented in memory by an instance of the 1173 ** following structure. 1174 ** 1175 ** Table.zName is the name of the table. The case of the original 1176 ** CREATE TABLE statement is stored, but case is not significant for 1177 ** comparisons. 1178 ** 1179 ** Table.nCol is the number of columns in this table. Table.aCol is a 1180 ** pointer to an array of Column structures, one for each column. 1181 ** 1182 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1183 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1184 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1185 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1186 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1187 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1188 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1189 ** 1190 ** Table.tnum is the page number for the root BTree page of the table in the 1191 ** database file. If Table.iDb is the index of the database table backend 1192 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1193 ** holds temporary tables and indices. If TF_Ephemeral is set 1194 ** then the table is stored in a file that is automatically deleted 1195 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1196 ** refers VDBE cursor number that holds the table open, not to the root 1197 ** page number. Transient tables are used to hold the results of a 1198 ** sub-query that appears instead of a real table name in the FROM clause 1199 ** of a SELECT statement. 1200 */ 1201 struct Table { 1202 sqlite3 *dbMem; /* DB connection used for lookaside allocations. */ 1203 char *zName; /* Name of the table or view */ 1204 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1205 int nCol; /* Number of columns in this table */ 1206 Column *aCol; /* Information about each column */ 1207 Index *pIndex; /* List of SQL indexes on this table. */ 1208 int tnum; /* Root BTree node for this table (see note above) */ 1209 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1210 u16 nRef; /* Number of pointers to this Table */ 1211 u8 tabFlags; /* Mask of TF_* values */ 1212 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1213 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1214 char *zColAff; /* String defining the affinity of each column */ 1215 #ifndef SQLITE_OMIT_CHECK 1216 Expr *pCheck; /* The AND of all CHECK constraints */ 1217 #endif 1218 #ifndef SQLITE_OMIT_ALTERTABLE 1219 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1220 #endif 1221 #ifndef SQLITE_OMIT_VIRTUALTABLE 1222 VTable *pVTable; /* List of VTable objects. */ 1223 int nModuleArg; /* Number of arguments to the module */ 1224 char **azModuleArg; /* Text of all module args. [0] is module name */ 1225 #endif 1226 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1227 Schema *pSchema; /* Schema that contains this table */ 1228 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1229 }; 1230 1231 /* 1232 ** Allowed values for Tabe.tabFlags. 1233 */ 1234 #define TF_Readonly 0x01 /* Read-only system table */ 1235 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1236 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1237 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1238 #define TF_Virtual 0x10 /* Is a virtual table */ 1239 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1240 1241 1242 1243 /* 1244 ** Test to see whether or not a table is a virtual table. This is 1245 ** done as a macro so that it will be optimized out when virtual 1246 ** table support is omitted from the build. 1247 */ 1248 #ifndef SQLITE_OMIT_VIRTUALTABLE 1249 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1250 # define IsHiddenColumn(X) ((X)->isHidden) 1251 #else 1252 # define IsVirtual(X) 0 1253 # define IsHiddenColumn(X) 0 1254 #endif 1255 1256 /* 1257 ** Each foreign key constraint is an instance of the following structure. 1258 ** 1259 ** A foreign key is associated with two tables. The "from" table is 1260 ** the table that contains the REFERENCES clause that creates the foreign 1261 ** key. The "to" table is the table that is named in the REFERENCES clause. 1262 ** Consider this example: 1263 ** 1264 ** CREATE TABLE ex1( 1265 ** a INTEGER PRIMARY KEY, 1266 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1267 ** ); 1268 ** 1269 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1270 ** 1271 ** Each REFERENCES clause generates an instance of the following structure 1272 ** which is attached to the from-table. The to-table need not exist when 1273 ** the from-table is created. The existence of the to-table is not checked. 1274 */ 1275 struct FKey { 1276 Table *pFrom; /* The table that contains the REFERENCES clause */ 1277 FKey *pNextFrom; /* Next foreign key in pFrom */ 1278 char *zTo; /* Name of table that the key points to */ 1279 int nCol; /* Number of columns in this key */ 1280 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1281 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 1282 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 1283 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 1284 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1285 int iFrom; /* Index of column in pFrom */ 1286 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1287 } aCol[1]; /* One entry for each of nCol column s */ 1288 }; 1289 1290 /* 1291 ** SQLite supports many different ways to resolve a constraint 1292 ** error. ROLLBACK processing means that a constraint violation 1293 ** causes the operation in process to fail and for the current transaction 1294 ** to be rolled back. ABORT processing means the operation in process 1295 ** fails and any prior changes from that one operation are backed out, 1296 ** but the transaction is not rolled back. FAIL processing means that 1297 ** the operation in progress stops and returns an error code. But prior 1298 ** changes due to the same operation are not backed out and no rollback 1299 ** occurs. IGNORE means that the particular row that caused the constraint 1300 ** error is not inserted or updated. Processing continues and no error 1301 ** is returned. REPLACE means that preexisting database rows that caused 1302 ** a UNIQUE constraint violation are removed so that the new insert or 1303 ** update can proceed. Processing continues and no error is reported. 1304 ** 1305 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1306 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1307 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1308 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1309 ** referenced table row is propagated into the row that holds the 1310 ** foreign key. 1311 ** 1312 ** The following symbolic values are used to record which type 1313 ** of action to take. 1314 */ 1315 #define OE_None 0 /* There is no constraint to check */ 1316 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1317 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1318 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1319 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1320 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1321 1322 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1323 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1324 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1325 #define OE_Cascade 9 /* Cascade the changes */ 1326 1327 #define OE_Default 99 /* Do whatever the default action is */ 1328 1329 1330 /* 1331 ** An instance of the following structure is passed as the first 1332 ** argument to sqlite3VdbeKeyCompare and is used to control the 1333 ** comparison of the two index keys. 1334 */ 1335 struct KeyInfo { 1336 sqlite3 *db; /* The database connection */ 1337 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 1338 u16 nField; /* Number of entries in aColl[] */ 1339 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 1340 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1341 }; 1342 1343 /* 1344 ** An instance of the following structure holds information about a 1345 ** single index record that has already been parsed out into individual 1346 ** values. 1347 ** 1348 ** A record is an object that contains one or more fields of data. 1349 ** Records are used to store the content of a table row and to store 1350 ** the key of an index. A blob encoding of a record is created by 1351 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1352 ** OP_Column opcode. 1353 ** 1354 ** This structure holds a record that has already been disassembled 1355 ** into its constituent fields. 1356 */ 1357 struct UnpackedRecord { 1358 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1359 u16 nField; /* Number of entries in apMem[] */ 1360 u16 flags; /* Boolean settings. UNPACKED_... below */ 1361 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1362 Mem *aMem; /* Values */ 1363 }; 1364 1365 /* 1366 ** Allowed values of UnpackedRecord.flags 1367 */ 1368 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 1369 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 1370 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 1371 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 1372 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 1373 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ 1374 1375 /* 1376 ** Each SQL index is represented in memory by an 1377 ** instance of the following structure. 1378 ** 1379 ** The columns of the table that are to be indexed are described 1380 ** by the aiColumn[] field of this structure. For example, suppose 1381 ** we have the following table and index: 1382 ** 1383 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1384 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1385 ** 1386 ** In the Table structure describing Ex1, nCol==3 because there are 1387 ** three columns in the table. In the Index structure describing 1388 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1389 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1390 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1391 ** The second column to be indexed (c1) has an index of 0 in 1392 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1393 ** 1394 ** The Index.onError field determines whether or not the indexed columns 1395 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1396 ** it means this is not a unique index. Otherwise it is a unique index 1397 ** and the value of Index.onError indicate the which conflict resolution 1398 ** algorithm to employ whenever an attempt is made to insert a non-unique 1399 ** element. 1400 */ 1401 struct Index { 1402 char *zName; /* Name of this index */ 1403 int nColumn; /* Number of columns in the table used by this index */ 1404 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1405 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1406 Table *pTable; /* The SQL table being indexed */ 1407 int tnum; /* Page containing root of this index in database file */ 1408 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1409 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1410 char *zColAff; /* String defining the affinity of each column */ 1411 Index *pNext; /* The next index associated with the same table */ 1412 Schema *pSchema; /* Schema containing this index */ 1413 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1414 char **azColl; /* Array of collation sequence names for index */ 1415 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ 1416 }; 1417 1418 /* 1419 ** Each sample stored in the sqlite_stat2 table is represented in memory 1420 ** using a structure of this type. 1421 */ 1422 struct IndexSample { 1423 union { 1424 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1425 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ 1426 } u; 1427 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1428 u8 nByte; /* Size in byte of text or blob. */ 1429 }; 1430 1431 /* 1432 ** Each token coming out of the lexer is an instance of 1433 ** this structure. Tokens are also used as part of an expression. 1434 ** 1435 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1436 ** may contain random values. Do not make any assumptions about Token.dyn 1437 ** and Token.n when Token.z==0. 1438 */ 1439 struct Token { 1440 const char *z; /* Text of the token. Not NULL-terminated! */ 1441 unsigned int n; /* Number of characters in this token */ 1442 }; 1443 1444 /* 1445 ** An instance of this structure contains information needed to generate 1446 ** code for a SELECT that contains aggregate functions. 1447 ** 1448 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1449 ** pointer to this structure. The Expr.iColumn field is the index in 1450 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1451 ** code for that node. 1452 ** 1453 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1454 ** original Select structure that describes the SELECT statement. These 1455 ** fields do not need to be freed when deallocating the AggInfo structure. 1456 */ 1457 struct AggInfo { 1458 u8 directMode; /* Direct rendering mode means take data directly 1459 ** from source tables rather than from accumulators */ 1460 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1461 ** than the source table */ 1462 int sortingIdx; /* Cursor number of the sorting index */ 1463 ExprList *pGroupBy; /* The group by clause */ 1464 int nSortingColumn; /* Number of columns in the sorting index */ 1465 struct AggInfo_col { /* For each column used in source tables */ 1466 Table *pTab; /* Source table */ 1467 int iTable; /* Cursor number of the source table */ 1468 int iColumn; /* Column number within the source table */ 1469 int iSorterColumn; /* Column number in the sorting index */ 1470 int iMem; /* Memory location that acts as accumulator */ 1471 Expr *pExpr; /* The original expression */ 1472 } *aCol; 1473 int nColumn; /* Number of used entries in aCol[] */ 1474 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1475 int nAccumulator; /* Number of columns that show through to the output. 1476 ** Additional columns are used only as parameters to 1477 ** aggregate functions */ 1478 struct AggInfo_func { /* For each aggregate function */ 1479 Expr *pExpr; /* Expression encoding the function */ 1480 FuncDef *pFunc; /* The aggregate function implementation */ 1481 int iMem; /* Memory location that acts as accumulator */ 1482 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1483 } *aFunc; 1484 int nFunc; /* Number of entries in aFunc[] */ 1485 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1486 }; 1487 1488 /* 1489 ** Each node of an expression in the parse tree is an instance 1490 ** of this structure. 1491 ** 1492 ** Expr.op is the opcode. The integer parser token codes are reused 1493 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1494 ** code representing the ">=" operator. This same integer code is reused 1495 ** to represent the greater-than-or-equal-to operator in the expression 1496 ** tree. 1497 ** 1498 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1499 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1500 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1501 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1502 ** then Expr.token contains the name of the function. 1503 ** 1504 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1505 ** binary operator. Either or both may be NULL. 1506 ** 1507 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1508 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1509 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1510 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1511 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1512 ** valid. 1513 ** 1514 ** An expression of the form ID or ID.ID refers to a column in a table. 1515 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1516 ** the integer cursor number of a VDBE cursor pointing to that table and 1517 ** Expr.iColumn is the column number for the specific column. If the 1518 ** expression is used as a result in an aggregate SELECT, then the 1519 ** value is also stored in the Expr.iAgg column in the aggregate so that 1520 ** it can be accessed after all aggregates are computed. 1521 ** 1522 ** If the expression is an unbound variable marker (a question mark 1523 ** character '?' in the original SQL) then the Expr.iTable holds the index 1524 ** number for that variable. 1525 ** 1526 ** If the expression is a subquery then Expr.iColumn holds an integer 1527 ** register number containing the result of the subquery. If the 1528 ** subquery gives a constant result, then iTable is -1. If the subquery 1529 ** gives a different answer at different times during statement processing 1530 ** then iTable is the address of a subroutine that computes the subquery. 1531 ** 1532 ** If the Expr is of type OP_Column, and the table it is selecting from 1533 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1534 ** corresponding table definition. 1535 ** 1536 ** ALLOCATION NOTES: 1537 ** 1538 ** Expr objects can use a lot of memory space in database schema. To 1539 ** help reduce memory requirements, sometimes an Expr object will be 1540 ** truncated. And to reduce the number of memory allocations, sometimes 1541 ** two or more Expr objects will be stored in a single memory allocation, 1542 ** together with Expr.zToken strings. 1543 ** 1544 ** If the EP_Reduced and EP_TokenOnly flags are set when 1545 ** an Expr object is truncated. When EP_Reduced is set, then all 1546 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1547 ** are contained within the same memory allocation. Note, however, that 1548 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1549 ** allocated, regardless of whether or not EP_Reduced is set. 1550 */ 1551 struct Expr { 1552 u8 op; /* Operation performed by this node */ 1553 char affinity; /* The affinity of the column or 0 if not a column */ 1554 u16 flags; /* Various flags. EP_* See below */ 1555 union { 1556 char *zToken; /* Token value. Zero terminated and dequoted */ 1557 int iValue; /* Integer value if EP_IntValue */ 1558 } u; 1559 1560 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1561 ** space is allocated for the fields below this point. An attempt to 1562 ** access them will result in a segfault or malfunction. 1563 *********************************************************************/ 1564 1565 Expr *pLeft; /* Left subnode */ 1566 Expr *pRight; /* Right subnode */ 1567 union { 1568 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1569 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1570 } x; 1571 CollSeq *pColl; /* The collation type of the column or 0 */ 1572 1573 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1574 ** space is allocated for the fields below this point. An attempt to 1575 ** access them will result in a segfault or malfunction. 1576 *********************************************************************/ 1577 1578 int iTable; /* TK_COLUMN: cursor number of table holding column 1579 ** TK_REGISTER: register number */ 1580 i16 iColumn; /* TK_COLUMN: column index. -1 for rowid */ 1581 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1582 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1583 u8 flags2; /* Second set of flags. EP2_... */ 1584 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1585 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1586 Table *pTab; /* Table for TK_COLUMN expressions. */ 1587 #if SQLITE_MAX_EXPR_DEPTH>0 1588 int nHeight; /* Height of the tree headed by this node */ 1589 #endif 1590 }; 1591 1592 /* 1593 ** The following are the meanings of bits in the Expr.flags field. 1594 */ 1595 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1596 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1597 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1598 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1599 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1600 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1601 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1602 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1603 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1604 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */ 1605 #define EP_FixedDest 0x0400 /* Result needed in a specific register */ 1606 #define EP_IntValue 0x0800 /* Integer value contained in u.iValue */ 1607 #define EP_xIsSelect 0x1000 /* x.pSelect is valid (otherwise x.pList is) */ 1608 1609 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1610 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1611 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1612 1613 /* 1614 ** The following are the meanings of bits in the Expr.flags2 field. 1615 */ 1616 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1617 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1618 1619 /* 1620 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1621 ** flag on an expression structure. This flag is used for VV&A only. The 1622 ** routine is implemented as a macro that only works when in debugging mode, 1623 ** so as not to burden production code. 1624 */ 1625 #ifdef SQLITE_DEBUG 1626 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1627 #else 1628 # define ExprSetIrreducible(X) 1629 #endif 1630 1631 /* 1632 ** These macros can be used to test, set, or clear bits in the 1633 ** Expr.flags field. 1634 */ 1635 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1636 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1637 #define ExprSetProperty(E,P) (E)->flags|=(P) 1638 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1639 1640 /* 1641 ** Macros to determine the number of bytes required by a normal Expr 1642 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1643 ** and an Expr struct with the EP_TokenOnly flag set. 1644 */ 1645 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1646 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1647 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1648 1649 /* 1650 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1651 ** above sqlite3ExprDup() for details. 1652 */ 1653 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1654 1655 /* 1656 ** A list of expressions. Each expression may optionally have a 1657 ** name. An expr/name combination can be used in several ways, such 1658 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1659 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1660 ** also be used as the argument to a function, in which case the a.zName 1661 ** field is not used. 1662 */ 1663 struct ExprList { 1664 int nExpr; /* Number of expressions on the list */ 1665 int nAlloc; /* Number of entries allocated below */ 1666 int iECursor; /* VDBE Cursor associated with this ExprList */ 1667 struct ExprList_item { 1668 Expr *pExpr; /* The list of expressions */ 1669 char *zName; /* Token associated with this expression */ 1670 char *zSpan; /* Original text of the expression */ 1671 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1672 u8 done; /* A flag to indicate when processing is finished */ 1673 u16 iCol; /* For ORDER BY, column number in result set */ 1674 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1675 } *a; /* One entry for each expression */ 1676 }; 1677 1678 /* 1679 ** An instance of this structure is used by the parser to record both 1680 ** the parse tree for an expression and the span of input text for an 1681 ** expression. 1682 */ 1683 struct ExprSpan { 1684 Expr *pExpr; /* The expression parse tree */ 1685 const char *zStart; /* First character of input text */ 1686 const char *zEnd; /* One character past the end of input text */ 1687 }; 1688 1689 /* 1690 ** An instance of this structure can hold a simple list of identifiers, 1691 ** such as the list "a,b,c" in the following statements: 1692 ** 1693 ** INSERT INTO t(a,b,c) VALUES ...; 1694 ** CREATE INDEX idx ON t(a,b,c); 1695 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1696 ** 1697 ** The IdList.a.idx field is used when the IdList represents the list of 1698 ** column names after a table name in an INSERT statement. In the statement 1699 ** 1700 ** INSERT INTO t(a,b,c) ... 1701 ** 1702 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1703 */ 1704 struct IdList { 1705 struct IdList_item { 1706 char *zName; /* Name of the identifier */ 1707 int idx; /* Index in some Table.aCol[] of a column named zName */ 1708 } *a; 1709 int nId; /* Number of identifiers on the list */ 1710 int nAlloc; /* Number of entries allocated for a[] below */ 1711 }; 1712 1713 /* 1714 ** The bitmask datatype defined below is used for various optimizations. 1715 ** 1716 ** Changing this from a 64-bit to a 32-bit type limits the number of 1717 ** tables in a join to 32 instead of 64. But it also reduces the size 1718 ** of the library by 738 bytes on ix86. 1719 */ 1720 typedef u64 Bitmask; 1721 1722 /* 1723 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1724 */ 1725 #define BMS ((int)(sizeof(Bitmask)*8)) 1726 1727 /* 1728 ** The following structure describes the FROM clause of a SELECT statement. 1729 ** Each table or subquery in the FROM clause is a separate element of 1730 ** the SrcList.a[] array. 1731 ** 1732 ** With the addition of multiple database support, the following structure 1733 ** can also be used to describe a particular table such as the table that 1734 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1735 ** such a table must be a simple name: ID. But in SQLite, the table can 1736 ** now be identified by a database name, a dot, then the table name: ID.ID. 1737 ** 1738 ** The jointype starts out showing the join type between the current table 1739 ** and the next table on the list. The parser builds the list this way. 1740 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1741 ** jointype expresses the join between the table and the previous table. 1742 */ 1743 struct SrcList { 1744 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1745 i16 nAlloc; /* Number of entries allocated in a[] below */ 1746 struct SrcList_item { 1747 char *zDatabase; /* Name of database holding this table */ 1748 char *zName; /* Name of the table */ 1749 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1750 Table *pTab; /* An SQL table corresponding to zName */ 1751 Select *pSelect; /* A SELECT statement used in place of a table name */ 1752 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1753 u8 jointype; /* Type of join between this able and the previous */ 1754 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1755 int iCursor; /* The VDBE cursor number used to access this table */ 1756 Expr *pOn; /* The ON clause of a join */ 1757 IdList *pUsing; /* The USING clause of a join */ 1758 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1759 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1760 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1761 } a[1]; /* One entry for each identifier on the list */ 1762 }; 1763 1764 /* 1765 ** Permitted values of the SrcList.a.jointype field 1766 */ 1767 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1768 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1769 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1770 #define JT_LEFT 0x0008 /* Left outer join */ 1771 #define JT_RIGHT 0x0010 /* Right outer join */ 1772 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1773 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1774 1775 1776 /* 1777 ** A WherePlan object holds information that describes a lookup 1778 ** strategy. 1779 ** 1780 ** This object is intended to be opaque outside of the where.c module. 1781 ** It is included here only so that that compiler will know how big it 1782 ** is. None of the fields in this object should be used outside of 1783 ** the where.c module. 1784 ** 1785 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1786 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1787 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1788 ** case that more than one of these conditions is true. 1789 */ 1790 struct WherePlan { 1791 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1792 u32 nEq; /* Number of == constraints */ 1793 union { 1794 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1795 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1796 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1797 } u; 1798 }; 1799 1800 /* 1801 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1802 ** structure contains a single instance of this structure. This structure 1803 ** is intended to be private the the where.c module and should not be 1804 ** access or modified by other modules. 1805 ** 1806 ** The pIdxInfo field is used to help pick the best index on a 1807 ** virtual table. The pIdxInfo pointer contains indexing 1808 ** information for the i-th table in the FROM clause before reordering. 1809 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1810 ** All other information in the i-th WhereLevel object for the i-th table 1811 ** after FROM clause ordering. 1812 */ 1813 struct WhereLevel { 1814 WherePlan plan; /* query plan for this element of the FROM clause */ 1815 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1816 int iTabCur; /* The VDBE cursor used to access the table */ 1817 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1818 int addrBrk; /* Jump here to break out of the loop */ 1819 int addrNxt; /* Jump here to start the next IN combination */ 1820 int addrCont; /* Jump here to continue with the next loop cycle */ 1821 int addrFirst; /* First instruction of interior of the loop */ 1822 u8 iFrom; /* Which entry in the FROM clause */ 1823 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1824 int p1, p2; /* Operands of the opcode used to ends the loop */ 1825 union { /* Information that depends on plan.wsFlags */ 1826 struct { 1827 int nIn; /* Number of entries in aInLoop[] */ 1828 struct InLoop { 1829 int iCur; /* The VDBE cursor used by this IN operator */ 1830 int addrInTop; /* Top of the IN loop */ 1831 } *aInLoop; /* Information about each nested IN operator */ 1832 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1833 } u; 1834 1835 /* The following field is really not part of the current level. But 1836 ** we need a place to cache virtual table index information for each 1837 ** virtual table in the FROM clause and the WhereLevel structure is 1838 ** a convenient place since there is one WhereLevel for each FROM clause 1839 ** element. 1840 */ 1841 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1842 }; 1843 1844 /* 1845 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1846 ** and the WhereInfo.wctrlFlags member. 1847 */ 1848 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1849 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1850 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1851 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1852 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1853 #define WHERE_OMIT_OPEN 0x0010 /* Table cursor are already open */ 1854 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */ 1855 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */ 1856 1857 /* 1858 ** The WHERE clause processing routine has two halves. The 1859 ** first part does the start of the WHERE loop and the second 1860 ** half does the tail of the WHERE loop. An instance of 1861 ** this structure is returned by the first half and passed 1862 ** into the second half to give some continuity. 1863 */ 1864 struct WhereInfo { 1865 Parse *pParse; /* Parsing and code generating context */ 1866 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1867 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1868 SrcList *pTabList; /* List of tables in the join */ 1869 int iTop; /* The very beginning of the WHERE loop */ 1870 int iContinue; /* Jump here to continue with next record */ 1871 int iBreak; /* Jump here to break out of the loop */ 1872 int nLevel; /* Number of nested loop */ 1873 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1874 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1875 }; 1876 1877 /* 1878 ** A NameContext defines a context in which to resolve table and column 1879 ** names. The context consists of a list of tables (the pSrcList) field and 1880 ** a list of named expression (pEList). The named expression list may 1881 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1882 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1883 ** pEList corresponds to the result set of a SELECT and is NULL for 1884 ** other statements. 1885 ** 1886 ** NameContexts can be nested. When resolving names, the inner-most 1887 ** context is searched first. If no match is found, the next outer 1888 ** context is checked. If there is still no match, the next context 1889 ** is checked. This process continues until either a match is found 1890 ** or all contexts are check. When a match is found, the nRef member of 1891 ** the context containing the match is incremented. 1892 ** 1893 ** Each subquery gets a new NameContext. The pNext field points to the 1894 ** NameContext in the parent query. Thus the process of scanning the 1895 ** NameContext list corresponds to searching through successively outer 1896 ** subqueries looking for a match. 1897 */ 1898 struct NameContext { 1899 Parse *pParse; /* The parser */ 1900 SrcList *pSrcList; /* One or more tables used to resolve names */ 1901 ExprList *pEList; /* Optional list of named expressions */ 1902 int nRef; /* Number of names resolved by this context */ 1903 int nErr; /* Number of errors encountered while resolving names */ 1904 u8 allowAgg; /* Aggregate functions allowed here */ 1905 u8 hasAgg; /* True if aggregates are seen */ 1906 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1907 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1908 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1909 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1910 }; 1911 1912 /* 1913 ** An instance of the following structure contains all information 1914 ** needed to generate code for a single SELECT statement. 1915 ** 1916 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1917 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1918 ** limit and nOffset to the value of the offset (or 0 if there is not 1919 ** offset). But later on, nLimit and nOffset become the memory locations 1920 ** in the VDBE that record the limit and offset counters. 1921 ** 1922 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1923 ** These addresses must be stored so that we can go back and fill in 1924 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1925 ** the number of columns in P2 can be computed at the same time 1926 ** as the OP_OpenEphm instruction is coded because not 1927 ** enough information about the compound query is known at that point. 1928 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1929 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1930 ** sequences for the ORDER BY clause. 1931 */ 1932 struct Select { 1933 ExprList *pEList; /* The fields of the result */ 1934 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1935 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1936 u16 selFlags; /* Various SF_* values */ 1937 SrcList *pSrc; /* The FROM clause */ 1938 Expr *pWhere; /* The WHERE clause */ 1939 ExprList *pGroupBy; /* The GROUP BY clause */ 1940 Expr *pHaving; /* The HAVING clause */ 1941 ExprList *pOrderBy; /* The ORDER BY clause */ 1942 Select *pPrior; /* Prior select in a compound select statement */ 1943 Select *pNext; /* Next select to the left in a compound */ 1944 Select *pRightmost; /* Right-most select in a compound select statement */ 1945 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1946 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1947 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1948 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1949 }; 1950 1951 /* 1952 ** Allowed values for Select.selFlags. The "SF" prefix stands for 1953 ** "Select Flag". 1954 */ 1955 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 1956 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 1957 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 1958 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 1959 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 1960 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 1961 1962 1963 /* 1964 ** The results of a select can be distributed in several ways. The 1965 ** "SRT" prefix means "SELECT Result Type". 1966 */ 1967 #define SRT_Union 1 /* Store result as keys in an index */ 1968 #define SRT_Except 2 /* Remove result from a UNION index */ 1969 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 1970 #define SRT_Discard 4 /* Do not save the results anywhere */ 1971 1972 /* The ORDER BY clause is ignored for all of the above */ 1973 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 1974 1975 #define SRT_Output 5 /* Output each row of result */ 1976 #define SRT_Mem 6 /* Store result in a memory cell */ 1977 #define SRT_Set 7 /* Store results as keys in an index */ 1978 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 1979 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 1980 #define SRT_Coroutine 10 /* Generate a single row of result */ 1981 1982 /* 1983 ** A structure used to customize the behavior of sqlite3Select(). See 1984 ** comments above sqlite3Select() for details. 1985 */ 1986 typedef struct SelectDest SelectDest; 1987 struct SelectDest { 1988 u8 eDest; /* How to dispose of the results */ 1989 u8 affinity; /* Affinity used when eDest==SRT_Set */ 1990 int iParm; /* A parameter used by the eDest disposal method */ 1991 int iMem; /* Base register where results are written */ 1992 int nMem; /* Number of registers allocated */ 1993 }; 1994 1995 /* 1996 ** During code generation of statements that do inserts into AUTOINCREMENT 1997 ** tables, the following information is attached to the Table.u.autoInc.p 1998 ** pointer of each autoincrement table to record some side information that 1999 ** the code generator needs. We have to keep per-table autoincrement 2000 ** information in case inserts are down within triggers. Triggers do not 2001 ** normally coordinate their activities, but we do need to coordinate the 2002 ** loading and saving of autoincrement information. 2003 */ 2004 struct AutoincInfo { 2005 AutoincInfo *pNext; /* Next info block in a list of them all */ 2006 Table *pTab; /* Table this info block refers to */ 2007 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2008 int regCtr; /* Memory register holding the rowid counter */ 2009 }; 2010 2011 /* 2012 ** Size of the column cache 2013 */ 2014 #ifndef SQLITE_N_COLCACHE 2015 # define SQLITE_N_COLCACHE 10 2016 #endif 2017 2018 /* 2019 ** An SQL parser context. A copy of this structure is passed through 2020 ** the parser and down into all the parser action routine in order to 2021 ** carry around information that is global to the entire parse. 2022 ** 2023 ** The structure is divided into two parts. When the parser and code 2024 ** generate call themselves recursively, the first part of the structure 2025 ** is constant but the second part is reset at the beginning and end of 2026 ** each recursion. 2027 ** 2028 ** The nTableLock and aTableLock variables are only used if the shared-cache 2029 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2030 ** used to store the set of table-locks required by the statement being 2031 ** compiled. Function sqlite3TableLock() is used to add entries to the 2032 ** list. 2033 */ 2034 struct Parse { 2035 sqlite3 *db; /* The main database structure */ 2036 int rc; /* Return code from execution */ 2037 char *zErrMsg; /* An error message */ 2038 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2039 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2040 u8 nameClash; /* A permanent table name clashes with temp table name */ 2041 u8 checkSchema; /* Causes schema cookie check after an error */ 2042 u8 nested; /* Number of nested calls to the parser/code generator */ 2043 u8 parseError; /* True after a parsing error. Ticket #1794 */ 2044 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2045 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2046 int aTempReg[8]; /* Holding area for temporary registers */ 2047 int nRangeReg; /* Size of the temporary register block */ 2048 int iRangeReg; /* First register in temporary register block */ 2049 int nErr; /* Number of errors seen */ 2050 int nTab; /* Number of previously allocated VDBE cursors */ 2051 int nMem; /* Number of memory cells used so far */ 2052 int nSet; /* Number of sets used so far */ 2053 int ckBase; /* Base register of data during check constraints */ 2054 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2055 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2056 u8 nColCache; /* Number of entries in the column cache */ 2057 u8 iColCache; /* Next entry of the cache to replace */ 2058 struct yColCache { 2059 int iTable; /* Table cursor number */ 2060 int iColumn; /* Table column number */ 2061 u8 affChange; /* True if this register has had an affinity change */ 2062 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2063 int iLevel; /* Nesting level */ 2064 int iReg; /* Reg with value of this column. 0 means none. */ 2065 int lru; /* Least recently used entry has the smallest value */ 2066 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2067 u32 writeMask; /* Start a write transaction on these databases */ 2068 u32 cookieMask; /* Bitmask of schema verified databases */ 2069 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2070 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2071 #ifndef SQLITE_OMIT_SHARED_CACHE 2072 int nTableLock; /* Number of locks in aTableLock */ 2073 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2074 #endif 2075 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2076 int regRoot; /* Register holding root page number for new objects */ 2077 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2078 2079 /* Above is constant between recursions. Below is reset before and after 2080 ** each recursion */ 2081 2082 int nVar; /* Number of '?' variables seen in the SQL so far */ 2083 int nVarExpr; /* Number of used slots in apVarExpr[] */ 2084 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 2085 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 2086 int nAlias; /* Number of aliased result set columns */ 2087 int nAliasAlloc; /* Number of allocated slots for aAlias[] */ 2088 int *aAlias; /* Register used to hold aliased result */ 2089 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2090 Token sNameToken; /* Token with unqualified schema object name */ 2091 Token sLastToken; /* The last token parsed */ 2092 const char *zTail; /* All SQL text past the last semicolon parsed */ 2093 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2094 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2095 TriggerStack *trigStack; /* Trigger actions being coded */ 2096 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2097 #ifndef SQLITE_OMIT_VIRTUALTABLE 2098 Token sArg; /* Complete text of a module argument */ 2099 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2100 int nVtabLock; /* Number of virtual tables to lock */ 2101 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2102 #endif 2103 int nHeight; /* Expression tree height of current sub-select */ 2104 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2105 }; 2106 2107 #ifdef SQLITE_OMIT_VIRTUALTABLE 2108 #define IN_DECLARE_VTAB 0 2109 #else 2110 #define IN_DECLARE_VTAB (pParse->declareVtab) 2111 #endif 2112 2113 /* 2114 ** An instance of the following structure can be declared on a stack and used 2115 ** to save the Parse.zAuthContext value so that it can be restored later. 2116 */ 2117 struct AuthContext { 2118 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2119 Parse *pParse; /* The Parse structure */ 2120 }; 2121 2122 /* 2123 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2124 */ 2125 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 2126 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 2127 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 2128 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 2129 #define OPFLAG_USESEEKRESULT 16 /* Try to avoid a seek in BtreeInsert() */ 2130 2131 /* 2132 * Each trigger present in the database schema is stored as an instance of 2133 * struct Trigger. 2134 * 2135 * Pointers to instances of struct Trigger are stored in two ways. 2136 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2137 * database). This allows Trigger structures to be retrieved by name. 2138 * 2. All triggers associated with a single table form a linked list, using the 2139 * pNext member of struct Trigger. A pointer to the first element of the 2140 * linked list is stored as the "pTrigger" member of the associated 2141 * struct Table. 2142 * 2143 * The "step_list" member points to the first element of a linked list 2144 * containing the SQL statements specified as the trigger program. 2145 */ 2146 struct Trigger { 2147 char *name; /* The name of the trigger */ 2148 char *table; /* The table or view to which the trigger applies */ 2149 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2150 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2151 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2152 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2153 the <column-list> is stored here */ 2154 Schema *pSchema; /* Schema containing the trigger */ 2155 Schema *pTabSchema; /* Schema containing the table */ 2156 TriggerStep *step_list; /* Link list of trigger program steps */ 2157 Trigger *pNext; /* Next trigger associated with the table */ 2158 }; 2159 2160 /* 2161 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2162 ** determine which. 2163 ** 2164 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2165 ** In that cases, the constants below can be ORed together. 2166 */ 2167 #define TRIGGER_BEFORE 1 2168 #define TRIGGER_AFTER 2 2169 2170 /* 2171 * An instance of struct TriggerStep is used to store a single SQL statement 2172 * that is a part of a trigger-program. 2173 * 2174 * Instances of struct TriggerStep are stored in a singly linked list (linked 2175 * using the "pNext" member) referenced by the "step_list" member of the 2176 * associated struct Trigger instance. The first element of the linked list is 2177 * the first step of the trigger-program. 2178 * 2179 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2180 * "SELECT" statement. The meanings of the other members is determined by the 2181 * value of "op" as follows: 2182 * 2183 * (op == TK_INSERT) 2184 * orconf -> stores the ON CONFLICT algorithm 2185 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2186 * this stores a pointer to the SELECT statement. Otherwise NULL. 2187 * target -> A token holding the quoted name of the table to insert into. 2188 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2189 * this stores values to be inserted. Otherwise NULL. 2190 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2191 * statement, then this stores the column-names to be 2192 * inserted into. 2193 * 2194 * (op == TK_DELETE) 2195 * target -> A token holding the quoted name of the table to delete from. 2196 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2197 * Otherwise NULL. 2198 * 2199 * (op == TK_UPDATE) 2200 * target -> A token holding the quoted name of the table to update rows of. 2201 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2202 * Otherwise NULL. 2203 * pExprList -> A list of the columns to update and the expressions to update 2204 * them to. See sqlite3Update() documentation of "pChanges" 2205 * argument. 2206 * 2207 */ 2208 struct TriggerStep { 2209 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2210 u8 orconf; /* OE_Rollback etc. */ 2211 Trigger *pTrig; /* The trigger that this step is a part of */ 2212 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2213 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2214 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2215 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2216 IdList *pIdList; /* Column names for INSERT */ 2217 TriggerStep *pNext; /* Next in the link-list */ 2218 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2219 }; 2220 2221 /* 2222 * An instance of struct TriggerStack stores information required during code 2223 * generation of a single trigger program. While the trigger program is being 2224 * coded, its associated TriggerStack instance is pointed to by the 2225 * "pTriggerStack" member of the Parse structure. 2226 * 2227 * The pTab member points to the table that triggers are being coded on. The 2228 * newIdx member contains the index of the vdbe cursor that points at the temp 2229 * table that stores the new.* references. If new.* references are not valid 2230 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 2231 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 2232 * 2233 * The ON CONFLICT policy to be used for the trigger program steps is stored 2234 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 2235 * specified for individual triggers steps is used. 2236 * 2237 * struct TriggerStack has a "pNext" member, to allow linked lists to be 2238 * constructed. When coding nested triggers (triggers fired by other triggers) 2239 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 2240 * pointer. Once the nested trigger has been coded, the pNext value is restored 2241 * to the pTriggerStack member of the Parse stucture and coding of the parent 2242 * trigger continues. 2243 * 2244 * Before a nested trigger is coded, the linked list pointed to by the 2245 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 2246 * recursively. If this condition is detected, the nested trigger is not coded. 2247 */ 2248 struct TriggerStack { 2249 Table *pTab; /* Table that triggers are currently being coded on */ 2250 int newIdx; /* Index of vdbe cursor to "new" temp table */ 2251 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 2252 u32 newColMask; 2253 u32 oldColMask; 2254 int orconf; /* Current orconf policy */ 2255 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 2256 Trigger *pTrigger; /* The trigger currently being coded */ 2257 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 2258 }; 2259 2260 /* 2261 ** The following structure contains information used by the sqliteFix... 2262 ** routines as they walk the parse tree to make database references 2263 ** explicit. 2264 */ 2265 typedef struct DbFixer DbFixer; 2266 struct DbFixer { 2267 Parse *pParse; /* The parsing context. Error messages written here */ 2268 const char *zDb; /* Make sure all objects are contained in this database */ 2269 const char *zType; /* Type of the container - used for error messages */ 2270 const Token *pName; /* Name of the container - used for error messages */ 2271 }; 2272 2273 /* 2274 ** An objected used to accumulate the text of a string where we 2275 ** do not necessarily know how big the string will be in the end. 2276 */ 2277 struct StrAccum { 2278 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2279 char *zBase; /* A base allocation. Not from malloc. */ 2280 char *zText; /* The string collected so far */ 2281 int nChar; /* Length of the string so far */ 2282 int nAlloc; /* Amount of space allocated in zText */ 2283 int mxAlloc; /* Maximum allowed string length */ 2284 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2285 u8 useMalloc; /* True if zText is enlargeable using realloc */ 2286 u8 tooBig; /* Becomes true if string size exceeds limits */ 2287 }; 2288 2289 /* 2290 ** A pointer to this structure is used to communicate information 2291 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2292 */ 2293 typedef struct { 2294 sqlite3 *db; /* The database being initialized */ 2295 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2296 char **pzErrMsg; /* Error message stored here */ 2297 int rc; /* Result code stored here */ 2298 } InitData; 2299 2300 /* 2301 ** Structure containing global configuration data for the SQLite library. 2302 ** 2303 ** This structure also contains some state information. 2304 */ 2305 struct Sqlite3Config { 2306 int bMemstat; /* True to enable memory status */ 2307 int bCoreMutex; /* True to enable core mutexing */ 2308 int bFullMutex; /* True to enable full mutexing */ 2309 int mxStrlen; /* Maximum string length */ 2310 int szLookaside; /* Default lookaside buffer size */ 2311 int nLookaside; /* Default lookaside buffer count */ 2312 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2313 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2314 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */ 2315 void *pHeap; /* Heap storage space */ 2316 int nHeap; /* Size of pHeap[] */ 2317 int mnReq, mxReq; /* Min and max heap requests sizes */ 2318 void *pScratch; /* Scratch memory */ 2319 int szScratch; /* Size of each scratch buffer */ 2320 int nScratch; /* Number of scratch buffers */ 2321 void *pPage; /* Page cache memory */ 2322 int szPage; /* Size of each page in pPage[] */ 2323 int nPage; /* Number of pages in pPage[] */ 2324 int mxParserStack; /* maximum depth of the parser stack */ 2325 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2326 /* The above might be initialized to non-zero. The following need to always 2327 ** initially be zero, however. */ 2328 int isInit; /* True after initialization has finished */ 2329 int inProgress; /* True while initialization in progress */ 2330 int isMutexInit; /* True after mutexes are initialized */ 2331 int isMallocInit; /* True after malloc is initialized */ 2332 int isPCacheInit; /* True after malloc is initialized */ 2333 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2334 int nRefInitMutex; /* Number of users of pInitMutex */ 2335 }; 2336 2337 /* 2338 ** Context pointer passed down through the tree-walk. 2339 */ 2340 struct Walker { 2341 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2342 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2343 Parse *pParse; /* Parser context. */ 2344 union { /* Extra data for callback */ 2345 NameContext *pNC; /* Naming context */ 2346 int i; /* Integer value */ 2347 } u; 2348 }; 2349 2350 /* Forward declarations */ 2351 int sqlite3WalkExpr(Walker*, Expr*); 2352 int sqlite3WalkExprList(Walker*, ExprList*); 2353 int sqlite3WalkSelect(Walker*, Select*); 2354 int sqlite3WalkSelectExpr(Walker*, Select*); 2355 int sqlite3WalkSelectFrom(Walker*, Select*); 2356 2357 /* 2358 ** Return code from the parse-tree walking primitives and their 2359 ** callbacks. 2360 */ 2361 #define WRC_Continue 0 /* Continue down into children */ 2362 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2363 #define WRC_Abort 2 /* Abandon the tree walk */ 2364 2365 /* 2366 ** Assuming zIn points to the first byte of a UTF-8 character, 2367 ** advance zIn to point to the first byte of the next UTF-8 character. 2368 */ 2369 #define SQLITE_SKIP_UTF8(zIn) { \ 2370 if( (*(zIn++))>=0xc0 ){ \ 2371 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2372 } \ 2373 } 2374 2375 /* 2376 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 2377 ** builds) or a function call (for debugging). If it is a function call, 2378 ** it allows the operator to set a breakpoint at the spot where database 2379 ** corruption is first detected. 2380 */ 2381 #ifdef SQLITE_DEBUG 2382 int sqlite3Corrupt(void); 2383 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 2384 #else 2385 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 2386 #endif 2387 2388 /* 2389 ** The ctype.h header is needed for non-ASCII systems. It is also 2390 ** needed by FTS3 when FTS3 is included in the amalgamation. 2391 */ 2392 #if !defined(SQLITE_ASCII) || \ 2393 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2394 # include <ctype.h> 2395 #endif 2396 2397 /* 2398 ** The following macros mimic the standard library functions toupper(), 2399 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2400 ** sqlite versions only work for ASCII characters, regardless of locale. 2401 */ 2402 #ifdef SQLITE_ASCII 2403 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2404 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2405 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2406 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2407 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2408 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2409 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2410 #else 2411 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2412 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2413 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2414 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2415 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2416 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2417 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2418 #endif 2419 2420 /* 2421 ** Internal function prototypes 2422 */ 2423 int sqlite3StrICmp(const char *, const char *); 2424 int sqlite3IsNumber(const char*, int*, u8); 2425 int sqlite3Strlen30(const char*); 2426 #define sqlite3StrNICmp sqlite3_strnicmp 2427 2428 int sqlite3MallocInit(void); 2429 void sqlite3MallocEnd(void); 2430 void *sqlite3Malloc(int); 2431 void *sqlite3MallocZero(int); 2432 void *sqlite3DbMallocZero(sqlite3*, int); 2433 void *sqlite3DbMallocRaw(sqlite3*, int); 2434 char *sqlite3DbStrDup(sqlite3*,const char*); 2435 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2436 void *sqlite3Realloc(void*, int); 2437 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2438 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2439 void sqlite3DbFree(sqlite3*, void*); 2440 int sqlite3MallocSize(void*); 2441 int sqlite3DbMallocSize(sqlite3*, void*); 2442 void *sqlite3ScratchMalloc(int); 2443 void sqlite3ScratchFree(void*); 2444 void *sqlite3PageMalloc(int); 2445 void sqlite3PageFree(void*); 2446 void sqlite3MemSetDefault(void); 2447 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2448 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64); 2449 2450 /* 2451 ** On systems with ample stack space and that support alloca(), make 2452 ** use of alloca() to obtain space for large automatic objects. By default, 2453 ** obtain space from malloc(). 2454 ** 2455 ** The alloca() routine never returns NULL. This will cause code paths 2456 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2457 */ 2458 #ifdef SQLITE_USE_ALLOCA 2459 # define sqlite3StackAllocRaw(D,N) alloca(N) 2460 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2461 # define sqlite3StackFree(D,P) 2462 #else 2463 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2464 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2465 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2466 #endif 2467 2468 #ifdef SQLITE_ENABLE_MEMSYS3 2469 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2470 #endif 2471 #ifdef SQLITE_ENABLE_MEMSYS5 2472 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2473 #endif 2474 2475 2476 #ifndef SQLITE_MUTEX_OMIT 2477 sqlite3_mutex_methods *sqlite3DefaultMutex(void); 2478 sqlite3_mutex *sqlite3MutexAlloc(int); 2479 int sqlite3MutexInit(void); 2480 int sqlite3MutexEnd(void); 2481 #endif 2482 2483 int sqlite3StatusValue(int); 2484 void sqlite3StatusAdd(int, int); 2485 void sqlite3StatusSet(int, int); 2486 2487 int sqlite3IsNaN(double); 2488 2489 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2490 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2491 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2492 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2493 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2494 void sqlite3DebugPrintf(const char*, ...); 2495 #endif 2496 #if defined(SQLITE_TEST) 2497 void *sqlite3TestTextToPtr(const char*); 2498 #endif 2499 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2500 void sqlite3ErrorMsg(Parse*, const char*, ...); 2501 void sqlite3ErrorClear(Parse*); 2502 int sqlite3Dequote(char*); 2503 int sqlite3KeywordCode(const unsigned char*, int); 2504 int sqlite3RunParser(Parse*, const char*, char **); 2505 void sqlite3FinishCoding(Parse*); 2506 int sqlite3GetTempReg(Parse*); 2507 void sqlite3ReleaseTempReg(Parse*,int); 2508 int sqlite3GetTempRange(Parse*,int); 2509 void sqlite3ReleaseTempRange(Parse*,int,int); 2510 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2511 Expr *sqlite3Expr(sqlite3*,int,const char*); 2512 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2513 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2514 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2515 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2516 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2517 void sqlite3ExprClear(sqlite3*, Expr*); 2518 void sqlite3ExprDelete(sqlite3*, Expr*); 2519 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2520 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2521 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2522 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2523 int sqlite3Init(sqlite3*, char**); 2524 int sqlite3InitCallback(void*, int, char**, char**); 2525 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2526 void sqlite3ResetInternalSchema(sqlite3*, int); 2527 void sqlite3BeginParse(Parse*,int); 2528 void sqlite3CommitInternalChanges(sqlite3*); 2529 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2530 void sqlite3OpenMasterTable(Parse *, int); 2531 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2532 void sqlite3AddColumn(Parse*,Token*); 2533 void sqlite3AddNotNull(Parse*, int); 2534 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2535 void sqlite3AddCheckConstraint(Parse*, Expr*); 2536 void sqlite3AddColumnType(Parse*,Token*); 2537 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2538 void sqlite3AddCollateType(Parse*, Token*); 2539 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2540 2541 Bitvec *sqlite3BitvecCreate(u32); 2542 int sqlite3BitvecTest(Bitvec*, u32); 2543 int sqlite3BitvecSet(Bitvec*, u32); 2544 void sqlite3BitvecClear(Bitvec*, u32, void*); 2545 void sqlite3BitvecDestroy(Bitvec*); 2546 u32 sqlite3BitvecSize(Bitvec*); 2547 int sqlite3BitvecBuiltinTest(int,int*); 2548 2549 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2550 void sqlite3RowSetClear(RowSet*); 2551 void sqlite3RowSetInsert(RowSet*, i64); 2552 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2553 int sqlite3RowSetNext(RowSet*, i64*); 2554 2555 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2556 2557 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2558 int sqlite3ViewGetColumnNames(Parse*,Table*); 2559 #else 2560 # define sqlite3ViewGetColumnNames(A,B) 0 2561 #endif 2562 2563 void sqlite3DropTable(Parse*, SrcList*, int, int); 2564 void sqlite3DeleteTable(Table*); 2565 #ifndef SQLITE_OMIT_AUTOINCREMENT 2566 void sqlite3AutoincrementBegin(Parse *pParse); 2567 void sqlite3AutoincrementEnd(Parse *pParse); 2568 #else 2569 # define sqlite3AutoincrementBegin(X) 2570 # define sqlite3AutoincrementEnd(X) 2571 #endif 2572 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2573 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2574 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2575 int sqlite3IdListIndex(IdList*,const char*); 2576 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2577 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2578 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2579 Token*, Select*, Expr*, IdList*); 2580 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2581 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2582 void sqlite3SrcListShiftJoinType(SrcList*); 2583 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2584 void sqlite3IdListDelete(sqlite3*, IdList*); 2585 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2586 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2587 Token*, int, int); 2588 void sqlite3DropIndex(Parse*, SrcList*, int); 2589 int sqlite3Select(Parse*, Select*, SelectDest*); 2590 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2591 Expr*,ExprList*,int,Expr*,Expr*); 2592 void sqlite3SelectDelete(sqlite3*, Select*); 2593 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2594 int sqlite3IsReadOnly(Parse*, Table*, int); 2595 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2596 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2597 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2598 #endif 2599 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2600 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2601 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); 2602 void sqlite3WhereEnd(WhereInfo*); 2603 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int); 2604 void sqlite3ExprCodeMove(Parse*, int, int, int); 2605 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2606 void sqlite3ExprCacheStore(Parse*, int, int, int); 2607 void sqlite3ExprCachePush(Parse*); 2608 void sqlite3ExprCachePop(Parse*, int); 2609 void sqlite3ExprCacheRemove(Parse*, int); 2610 void sqlite3ExprCacheClear(Parse*); 2611 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2612 void sqlite3ExprHardCopy(Parse*,int,int); 2613 int sqlite3ExprCode(Parse*, Expr*, int); 2614 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2615 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2616 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2617 void sqlite3ExprCodeConstants(Parse*, Expr*); 2618 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2619 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2620 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2621 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2622 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2623 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2624 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2625 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2626 void sqlite3Vacuum(Parse*); 2627 int sqlite3RunVacuum(char**, sqlite3*); 2628 char *sqlite3NameFromToken(sqlite3*, Token*); 2629 int sqlite3ExprCompare(Expr*, Expr*); 2630 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2631 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2632 Vdbe *sqlite3GetVdbe(Parse*); 2633 Expr *sqlite3CreateIdExpr(Parse *, const char*); 2634 void sqlite3PrngSaveState(void); 2635 void sqlite3PrngRestoreState(void); 2636 void sqlite3PrngResetState(void); 2637 void sqlite3RollbackAll(sqlite3*); 2638 void sqlite3CodeVerifySchema(Parse*, int); 2639 void sqlite3BeginTransaction(Parse*, int); 2640 void sqlite3CommitTransaction(Parse*); 2641 void sqlite3RollbackTransaction(Parse*); 2642 void sqlite3Savepoint(Parse*, int, Token*); 2643 void sqlite3CloseSavepoints(sqlite3 *); 2644 int sqlite3ExprIsConstant(Expr*); 2645 int sqlite3ExprIsConstantNotJoin(Expr*); 2646 int sqlite3ExprIsConstantOrFunction(Expr*); 2647 int sqlite3ExprIsInteger(Expr*, int*); 2648 int sqlite3IsRowid(const char*); 2649 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int); 2650 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2651 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2652 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2653 int*,int,int,int,int,int*); 2654 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int,int,int); 2655 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2656 void sqlite3BeginWriteOperation(Parse*, int, int); 2657 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2658 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2659 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2660 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2661 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2662 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2663 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2664 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2665 void sqlite3RegisterDateTimeFunctions(void); 2666 void sqlite3RegisterGlobalFunctions(void); 2667 #ifdef SQLITE_DEBUG 2668 int sqlite3SafetyOn(sqlite3*); 2669 int sqlite3SafetyOff(sqlite3*); 2670 #else 2671 # define sqlite3SafetyOn(A) 0 2672 # define sqlite3SafetyOff(A) 0 2673 #endif 2674 int sqlite3SafetyCheckOk(sqlite3*); 2675 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2676 void sqlite3ChangeCookie(Parse*, int); 2677 2678 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2679 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2680 #endif 2681 2682 #ifndef SQLITE_OMIT_TRIGGER 2683 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2684 Expr*,int, int); 2685 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2686 void sqlite3DropTrigger(Parse*, SrcList*, int); 2687 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2688 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2689 Trigger *sqlite3TriggerList(Parse *, Table *); 2690 int sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2691 int, int, int, int, u32*, u32*); 2692 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2693 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2694 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2695 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2696 ExprList*,Select*,u8); 2697 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2698 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2699 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2700 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2701 #else 2702 # define sqlite3TriggersExist(B,C,D,E,F) 0 2703 # define sqlite3DeleteTrigger(A,B) 2704 # define sqlite3DropTriggerPtr(A,B) 2705 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2706 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K,L) 0 2707 # define sqlite3TriggerList(X, Y) 0 2708 #endif 2709 2710 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2711 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2712 void sqlite3DeferForeignKey(Parse*, int); 2713 #ifndef SQLITE_OMIT_AUTHORIZATION 2714 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2715 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2716 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2717 void sqlite3AuthContextPop(AuthContext*); 2718 #else 2719 # define sqlite3AuthRead(a,b,c,d) 2720 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2721 # define sqlite3AuthContextPush(a,b,c) 2722 # define sqlite3AuthContextPop(a) ((void)(a)) 2723 #endif 2724 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2725 void sqlite3Detach(Parse*, Expr*); 2726 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 2727 int omitJournal, int nCache, int flags, Btree **ppBtree); 2728 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2729 int sqlite3FixSrcList(DbFixer*, SrcList*); 2730 int sqlite3FixSelect(DbFixer*, Select*); 2731 int sqlite3FixExpr(DbFixer*, Expr*); 2732 int sqlite3FixExprList(DbFixer*, ExprList*); 2733 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2734 int sqlite3AtoF(const char *z, double*); 2735 int sqlite3GetInt32(const char *, int*); 2736 int sqlite3FitsIn64Bits(const char *, int); 2737 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2738 int sqlite3Utf8CharLen(const char *pData, int nByte); 2739 int sqlite3Utf8Read(const u8*, const u8**); 2740 2741 /* 2742 ** Routines to read and write variable-length integers. These used to 2743 ** be defined locally, but now we use the varint routines in the util.c 2744 ** file. Code should use the MACRO forms below, as the Varint32 versions 2745 ** are coded to assume the single byte case is already handled (which 2746 ** the MACRO form does). 2747 */ 2748 int sqlite3PutVarint(unsigned char*, u64); 2749 int sqlite3PutVarint32(unsigned char*, u32); 2750 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2751 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2752 int sqlite3VarintLen(u64 v); 2753 2754 /* 2755 ** The header of a record consists of a sequence variable-length integers. 2756 ** These integers are almost always small and are encoded as a single byte. 2757 ** The following macros take advantage this fact to provide a fast encode 2758 ** and decode of the integers in a record header. It is faster for the common 2759 ** case where the integer is a single byte. It is a little slower when the 2760 ** integer is two or more bytes. But overall it is faster. 2761 ** 2762 ** The following expressions are equivalent: 2763 ** 2764 ** x = sqlite3GetVarint32( A, &B ); 2765 ** x = sqlite3PutVarint32( A, B ); 2766 ** 2767 ** x = getVarint32( A, B ); 2768 ** x = putVarint32( A, B ); 2769 ** 2770 */ 2771 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2772 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2773 #define getVarint sqlite3GetVarint 2774 #define putVarint sqlite3PutVarint 2775 2776 2777 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2778 void sqlite3TableAffinityStr(Vdbe *, Table *); 2779 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2780 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2781 char sqlite3ExprAffinity(Expr *pExpr); 2782 int sqlite3Atoi64(const char*, i64*); 2783 void sqlite3Error(sqlite3*, int, const char*,...); 2784 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2785 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2786 const char *sqlite3ErrStr(int); 2787 int sqlite3ReadSchema(Parse *pParse); 2788 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2789 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2790 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2791 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 2792 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2793 int sqlite3CheckObjectName(Parse *, const char *); 2794 void sqlite3VdbeSetChanges(sqlite3 *, int); 2795 2796 const void *sqlite3ValueText(sqlite3_value*, u8); 2797 int sqlite3ValueBytes(sqlite3_value*, u8); 2798 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2799 void(*)(void*)); 2800 void sqlite3ValueFree(sqlite3_value*); 2801 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2802 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 2803 #ifdef SQLITE_ENABLE_STAT2 2804 char *sqlite3Utf8to16(sqlite3 *, int, char *, int, int *); 2805 #endif 2806 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2807 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2808 #ifndef SQLITE_AMALGAMATION 2809 extern const unsigned char sqlite3UpperToLower[]; 2810 extern const unsigned char sqlite3CtypeMap[]; 2811 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2812 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2813 extern int sqlite3PendingByte; 2814 #endif 2815 void sqlite3RootPageMoved(Db*, int, int); 2816 void sqlite3Reindex(Parse*, Token*, Token*); 2817 void sqlite3AlterFunctions(sqlite3*); 2818 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2819 int sqlite3GetToken(const unsigned char *, int *); 2820 void sqlite3NestedParse(Parse*, const char*, ...); 2821 void sqlite3ExpirePreparedStatements(sqlite3*); 2822 void sqlite3CodeSubselect(Parse *, Expr *, int, int); 2823 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 2824 int sqlite3ResolveExprNames(NameContext*, Expr*); 2825 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 2826 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 2827 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 2828 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2829 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2830 CollSeq *sqlite3GetCollSeq(sqlite3*, int, CollSeq *, const char*); 2831 char sqlite3AffinityType(const char*); 2832 void sqlite3Analyze(Parse*, Token*, Token*); 2833 int sqlite3InvokeBusyHandler(BusyHandler*); 2834 int sqlite3FindDb(sqlite3*, Token*); 2835 int sqlite3FindDbName(sqlite3 *, const char *); 2836 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2837 void sqlite3DeleteIndexSamples(Index*); 2838 void sqlite3DefaultRowEst(Index*); 2839 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2840 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2841 void sqlite3MinimumFileFormat(Parse*, int, int); 2842 void sqlite3SchemaFree(void *); 2843 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2844 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2845 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2846 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2847 void (*)(sqlite3_context*,int,sqlite3_value **), 2848 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 2849 int sqlite3ApiExit(sqlite3 *db, int); 2850 int sqlite3OpenTempDatabase(Parse *); 2851 2852 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2853 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2854 char *sqlite3StrAccumFinish(StrAccum*); 2855 void sqlite3StrAccumReset(StrAccum*); 2856 void sqlite3SelectDestInit(SelectDest*,int,int); 2857 2858 void sqlite3BackupRestart(sqlite3_backup *); 2859 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 2860 2861 /* 2862 ** The interface to the LEMON-generated parser 2863 */ 2864 void *sqlite3ParserAlloc(void*(*)(size_t)); 2865 void sqlite3ParserFree(void*, void(*)(void*)); 2866 void sqlite3Parser(void*, int, Token, Parse*); 2867 #ifdef YYTRACKMAXSTACKDEPTH 2868 int sqlite3ParserStackPeak(void*); 2869 #endif 2870 2871 void sqlite3AutoLoadExtensions(sqlite3*); 2872 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2873 void sqlite3CloseExtensions(sqlite3*); 2874 #else 2875 # define sqlite3CloseExtensions(X) 2876 #endif 2877 2878 #ifndef SQLITE_OMIT_SHARED_CACHE 2879 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2880 #else 2881 #define sqlite3TableLock(v,w,x,y,z) 2882 #endif 2883 2884 #ifdef SQLITE_TEST 2885 int sqlite3Utf8To8(unsigned char*); 2886 #endif 2887 2888 #ifdef SQLITE_OMIT_VIRTUALTABLE 2889 # define sqlite3VtabClear(Y) 2890 # define sqlite3VtabSync(X,Y) SQLITE_OK 2891 # define sqlite3VtabRollback(X) 2892 # define sqlite3VtabCommit(X) 2893 # define sqlite3VtabInSync(db) 0 2894 # define sqlite3VtabLock(X) 2895 # define sqlite3VtabUnlock(X) 2896 # define sqlite3VtabUnlockList(X) 2897 #else 2898 void sqlite3VtabClear(Table*); 2899 int sqlite3VtabSync(sqlite3 *db, char **); 2900 int sqlite3VtabRollback(sqlite3 *db); 2901 int sqlite3VtabCommit(sqlite3 *db); 2902 void sqlite3VtabLock(VTable *); 2903 void sqlite3VtabUnlock(VTable *); 2904 void sqlite3VtabUnlockList(sqlite3*); 2905 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 2906 #endif 2907 void sqlite3VtabMakeWritable(Parse*,Table*); 2908 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 2909 void sqlite3VtabFinishParse(Parse*, Token*); 2910 void sqlite3VtabArgInit(Parse*); 2911 void sqlite3VtabArgExtend(Parse*, Token*); 2912 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 2913 int sqlite3VtabCallConnect(Parse*, Table*); 2914 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 2915 int sqlite3VtabBegin(sqlite3 *, VTable *); 2916 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 2917 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 2918 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 2919 int sqlite3Reprepare(Vdbe*); 2920 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 2921 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 2922 int sqlite3TempInMemory(const sqlite3*); 2923 VTable *sqlite3GetVTable(sqlite3*, Table*); 2924 2925 2926 2927 /* 2928 ** Available fault injectors. Should be numbered beginning with 0. 2929 */ 2930 #define SQLITE_FAULTINJECTOR_MALLOC 0 2931 #define SQLITE_FAULTINJECTOR_COUNT 1 2932 2933 /* 2934 ** The interface to the code in fault.c used for identifying "benign" 2935 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 2936 ** is not defined. 2937 */ 2938 #ifndef SQLITE_OMIT_BUILTIN_TEST 2939 void sqlite3BeginBenignMalloc(void); 2940 void sqlite3EndBenignMalloc(void); 2941 #else 2942 #define sqlite3BeginBenignMalloc() 2943 #define sqlite3EndBenignMalloc() 2944 #endif 2945 2946 #define IN_INDEX_ROWID 1 2947 #define IN_INDEX_EPH 2 2948 #define IN_INDEX_INDEX 3 2949 int sqlite3FindInIndex(Parse *, Expr *, int*); 2950 2951 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 2952 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 2953 int sqlite3JournalSize(sqlite3_vfs *); 2954 int sqlite3JournalCreate(sqlite3_file *); 2955 #else 2956 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 2957 #endif 2958 2959 void sqlite3MemJournalOpen(sqlite3_file *); 2960 int sqlite3MemJournalSize(void); 2961 int sqlite3IsMemJournal(sqlite3_file *); 2962 2963 #if SQLITE_MAX_EXPR_DEPTH>0 2964 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 2965 int sqlite3SelectExprHeight(Select *); 2966 int sqlite3ExprCheckHeight(Parse*, int); 2967 #else 2968 #define sqlite3ExprSetHeight(x,y) 2969 #define sqlite3SelectExprHeight(x) 0 2970 #define sqlite3ExprCheckHeight(x,y) 2971 #endif 2972 2973 u32 sqlite3Get4byte(const u8*); 2974 void sqlite3Put4byte(u8*, u32); 2975 2976 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 2977 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 2978 void sqlite3ConnectionUnlocked(sqlite3 *db); 2979 void sqlite3ConnectionClosed(sqlite3 *db); 2980 #else 2981 #define sqlite3ConnectionBlocked(x,y) 2982 #define sqlite3ConnectionUnlocked(x) 2983 #define sqlite3ConnectionClosed(x) 2984 #endif 2985 2986 #ifdef SQLITE_DEBUG 2987 void sqlite3ParserTrace(FILE*, char *); 2988 #endif 2989 2990 /* 2991 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 2992 ** sqlite3IoTrace is a pointer to a printf-like routine used to 2993 ** print I/O tracing messages. 2994 */ 2995 #ifdef SQLITE_ENABLE_IOTRACE 2996 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 2997 void sqlite3VdbeIOTraceSql(Vdbe*); 2998 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 2999 #else 3000 # define IOTRACE(A) 3001 # define sqlite3VdbeIOTraceSql(X) 3002 #endif 3003 3004 #endif 3005