xref: /sqlite-3.40.0/src/sqliteInt.h (revision 5d00d0a8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** These #defines should enable >2GB file support on POSIX if the
20 ** underlying operating system supports it.  If the OS lacks
21 ** large file support, or if the OS is windows, these should be no-ops.
22 **
23 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
24 ** system #includes.  Hence, this block of code must be the very first
25 ** code in all source files.
26 **
27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
28 ** on the compiler command line.  This is necessary if you are compiling
29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
30 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
31 ** without this option, LFS is enable.  But LFS does not exist in the kernel
32 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
33 ** portability you should omit LFS.
34 **
35 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
36 */
37 #ifndef SQLITE_DISABLE_LFS
38 # define _LARGE_FILE       1
39 # ifndef _FILE_OFFSET_BITS
40 #   define _FILE_OFFSET_BITS 64
41 # endif
42 # define _LARGEFILE_SOURCE 1
43 #endif
44 
45 /*
46 ** Include the configuration header output by 'configure' if we're using the
47 ** autoconf-based build
48 */
49 #ifdef _HAVE_SQLITE_CONFIG_H
50 #include "config.h"
51 #endif
52 
53 #include "sqliteLimit.h"
54 
55 /* Disable nuisance warnings on Borland compilers */
56 #if defined(__BORLANDC__)
57 #pragma warn -rch /* unreachable code */
58 #pragma warn -ccc /* Condition is always true or false */
59 #pragma warn -aus /* Assigned value is never used */
60 #pragma warn -csu /* Comparing signed and unsigned */
61 #pragma warn -spa /* Suspicious pointer arithmetic */
62 #endif
63 
64 /* Needed for various definitions... */
65 #ifndef _GNU_SOURCE
66 # define _GNU_SOURCE
67 #endif
68 
69 /*
70 ** Include standard header files as necessary
71 */
72 #ifdef HAVE_STDINT_H
73 #include <stdint.h>
74 #endif
75 #ifdef HAVE_INTTYPES_H
76 #include <inttypes.h>
77 #endif
78 
79 #define SQLITE_INDEX_SAMPLES 10
80 
81 /*
82 ** This macro is used to "hide" some ugliness in casting an int
83 ** value to a ptr value under the MSVC 64-bit compiler.   Casting
84 ** non 64-bit values to ptr types results in a "hard" error with
85 ** the MSVC 64-bit compiler which this attempts to avoid.
86 **
87 ** A simple compiler pragma or casting sequence could not be found
88 ** to correct this in all situations, so this macro was introduced.
89 **
90 ** It could be argued that the intptr_t type could be used in this
91 ** case, but that type is not available on all compilers, or
92 ** requires the #include of specific headers which differs between
93 ** platforms.
94 **
95 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
96 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
97 ** So we have to define the macros in different ways depending on the
98 ** compiler.
99 */
100 #if defined(__GNUC__)
101 # if defined(HAVE_STDINT_H)
102 #   define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
103 #   define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
104 # else
105 #   define SQLITE_INT_TO_PTR(X)  ((void*)(X))
106 #   define SQLITE_PTR_TO_INT(X)  ((int)(X))
107 # endif
108 #else
109 # define SQLITE_INT_TO_PTR(X)   ((void*)&((char*)0)[X])
110 # define SQLITE_PTR_TO_INT(X)   ((int)(((char*)X)-(char*)0))
111 #endif
112 
113 
114 /*
115 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
116 ** Older versions of SQLite used an optional THREADSAFE macro.
117 ** We support that for legacy
118 */
119 #if !defined(SQLITE_THREADSAFE)
120 #if defined(THREADSAFE)
121 # define SQLITE_THREADSAFE THREADSAFE
122 #else
123 # define SQLITE_THREADSAFE 1
124 #endif
125 #endif
126 
127 /*
128 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
129 ** It determines whether or not the features related to
130 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
131 ** be overridden at runtime using the sqlite3_config() API.
132 */
133 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
134 # define SQLITE_DEFAULT_MEMSTATUS 1
135 #endif
136 
137 /*
138 ** Exactly one of the following macros must be defined in order to
139 ** specify which memory allocation subsystem to use.
140 **
141 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
142 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
143 **     SQLITE_MEMORY_SIZE            // internal allocator #1
144 **     SQLITE_MMAP_HEAP_SIZE         // internal mmap() allocator
145 **     SQLITE_POW2_MEMORY_SIZE       // internal power-of-two allocator
146 **
147 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
148 ** the default.
149 */
150 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
151     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
152     defined(SQLITE_POW2_MEMORY_SIZE)>1
153 # error "At most one of the following compile-time configuration options\
154  is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
155  SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
156 #endif
157 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
158     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
159     defined(SQLITE_POW2_MEMORY_SIZE)==0
160 # define SQLITE_SYSTEM_MALLOC 1
161 #endif
162 
163 /*
164 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
165 ** sizes of memory allocations below this value where possible.
166 */
167 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
168 # define SQLITE_MALLOC_SOFT_LIMIT 1024
169 #endif
170 
171 /*
172 ** We need to define _XOPEN_SOURCE as follows in order to enable
173 ** recursive mutexes on most Unix systems.  But Mac OS X is different.
174 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
175 ** so it is omitted there.  See ticket #2673.
176 **
177 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
178 ** implemented on some systems.  So we avoid defining it at all
179 ** if it is already defined or if it is unneeded because we are
180 ** not doing a threadsafe build.  Ticket #2681.
181 **
182 ** See also ticket #2741.
183 */
184 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
185 #  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
186 #endif
187 
188 /*
189 ** The TCL headers are only needed when compiling the TCL bindings.
190 */
191 #if defined(SQLITE_TCL) || defined(TCLSH)
192 # include <tcl.h>
193 #endif
194 
195 /*
196 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
197 ** Setting NDEBUG makes the code smaller and run faster.  So the following
198 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
199 ** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
200 ** feature.
201 */
202 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
203 # define NDEBUG 1
204 #endif
205 
206 /*
207 ** The testcase() macro is used to aid in coverage testing.  When
208 ** doing coverage testing, the condition inside the argument to
209 ** testcase() must be evaluated both true and false in order to
210 ** get full branch coverage.  The testcase() macro is inserted
211 ** to help ensure adequate test coverage in places where simple
212 ** condition/decision coverage is inadequate.  For example, testcase()
213 ** can be used to make sure boundary values are tested.  For
214 ** bitmask tests, testcase() can be used to make sure each bit
215 ** is significant and used at least once.  On switch statements
216 ** where multiple cases go to the same block of code, testcase()
217 ** can insure that all cases are evaluated.
218 **
219 */
220 #ifdef SQLITE_COVERAGE_TEST
221   void sqlite3Coverage(int);
222 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
223 #else
224 # define testcase(X)
225 #endif
226 
227 /*
228 ** The TESTONLY macro is used to enclose variable declarations or
229 ** other bits of code that are needed to support the arguments
230 ** within testcase() and assert() macros.
231 */
232 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
233 # define TESTONLY(X)  X
234 #else
235 # define TESTONLY(X)
236 #endif
237 
238 /*
239 ** Sometimes we need a small amount of code such as a variable initialization
240 ** to setup for a later assert() statement.  We do not want this code to
241 ** appear when assert() is disabled.  The following macro is therefore
242 ** used to contain that setup code.  The "VVA" acronym stands for
243 ** "Verification, Validation, and Accreditation".  In other words, the
244 ** code within VVA_ONLY() will only run during verification processes.
245 */
246 #ifndef NDEBUG
247 # define VVA_ONLY(X)  X
248 #else
249 # define VVA_ONLY(X)
250 #endif
251 
252 /*
253 ** The ALWAYS and NEVER macros surround boolean expressions which
254 ** are intended to always be true or false, respectively.  Such
255 ** expressions could be omitted from the code completely.  But they
256 ** are included in a few cases in order to enhance the resilience
257 ** of SQLite to unexpected behavior - to make the code "self-healing"
258 ** or "ductile" rather than being "brittle" and crashing at the first
259 ** hint of unplanned behavior.
260 **
261 ** In other words, ALWAYS and NEVER are added for defensive code.
262 **
263 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
264 ** be true and false so that the unreachable code then specify will
265 ** not be counted as untested code.
266 */
267 #if defined(SQLITE_COVERAGE_TEST)
268 # define ALWAYS(X)      (1)
269 # define NEVER(X)       (0)
270 #elif !defined(NDEBUG)
271 # define ALWAYS(X)      ((X)?1:(assert(0),0))
272 # define NEVER(X)       ((X)?(assert(0),1):0)
273 #else
274 # define ALWAYS(X)      (X)
275 # define NEVER(X)       (X)
276 #endif
277 
278 /*
279 ** The macro unlikely() is a hint that surrounds a boolean
280 ** expression that is usually false.  Macro likely() surrounds
281 ** a boolean expression that is usually true.  GCC is able to
282 ** use these hints to generate better code, sometimes.
283 */
284 #if defined(__GNUC__) && 0
285 # define likely(X)    __builtin_expect((X),1)
286 # define unlikely(X)  __builtin_expect((X),0)
287 #else
288 # define likely(X)    !!(X)
289 # define unlikely(X)  !!(X)
290 #endif
291 
292 #include "sqlite3.h"
293 #include "hash.h"
294 #include "parse.h"
295 #include <stdio.h>
296 #include <stdlib.h>
297 #include <string.h>
298 #include <assert.h>
299 #include <stddef.h>
300 
301 /*
302 ** If compiling for a processor that lacks floating point support,
303 ** substitute integer for floating-point
304 */
305 #ifdef SQLITE_OMIT_FLOATING_POINT
306 # define double sqlite_int64
307 # define LONGDOUBLE_TYPE sqlite_int64
308 # ifndef SQLITE_BIG_DBL
309 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
310 # endif
311 # define SQLITE_OMIT_DATETIME_FUNCS 1
312 # define SQLITE_OMIT_TRACE 1
313 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
314 # undef SQLITE_HAVE_ISNAN
315 #endif
316 #ifndef SQLITE_BIG_DBL
317 # define SQLITE_BIG_DBL (1e99)
318 #endif
319 
320 /*
321 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
322 ** afterward. Having this macro allows us to cause the C compiler
323 ** to omit code used by TEMP tables without messy #ifndef statements.
324 */
325 #ifdef SQLITE_OMIT_TEMPDB
326 #define OMIT_TEMPDB 1
327 #else
328 #define OMIT_TEMPDB 0
329 #endif
330 
331 /*
332 ** If the following macro is set to 1, then NULL values are considered
333 ** distinct when determining whether or not two entries are the same
334 ** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
335 ** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
336 ** is the way things are suppose to work.
337 **
338 ** If the following macro is set to 0, the NULLs are indistinct for
339 ** a UNIQUE index.  In this mode, you can only have a single NULL entry
340 ** for a column declared UNIQUE.  This is the way Informix and SQL Server
341 ** work.
342 */
343 #define NULL_DISTINCT_FOR_UNIQUE 1
344 
345 /*
346 ** The "file format" number is an integer that is incremented whenever
347 ** the VDBE-level file format changes.  The following macros define the
348 ** the default file format for new databases and the maximum file format
349 ** that the library can read.
350 */
351 #define SQLITE_MAX_FILE_FORMAT 4
352 #ifndef SQLITE_DEFAULT_FILE_FORMAT
353 # define SQLITE_DEFAULT_FILE_FORMAT 1
354 #endif
355 
356 /*
357 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
358 ** on the command-line
359 */
360 #ifndef SQLITE_TEMP_STORE
361 # define SQLITE_TEMP_STORE 1
362 #endif
363 
364 /*
365 ** GCC does not define the offsetof() macro so we'll have to do it
366 ** ourselves.
367 */
368 #ifndef offsetof
369 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
370 #endif
371 
372 /*
373 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
374 ** not, there are still machines out there that use EBCDIC.)
375 */
376 #if 'A' == '\301'
377 # define SQLITE_EBCDIC 1
378 #else
379 # define SQLITE_ASCII 1
380 #endif
381 
382 /*
383 ** Integers of known sizes.  These typedefs might change for architectures
384 ** where the sizes very.  Preprocessor macros are available so that the
385 ** types can be conveniently redefined at compile-type.  Like this:
386 **
387 **         cc '-DUINTPTR_TYPE=long long int' ...
388 */
389 #ifndef UINT32_TYPE
390 # ifdef HAVE_UINT32_T
391 #  define UINT32_TYPE uint32_t
392 # else
393 #  define UINT32_TYPE unsigned int
394 # endif
395 #endif
396 #ifndef UINT16_TYPE
397 # ifdef HAVE_UINT16_T
398 #  define UINT16_TYPE uint16_t
399 # else
400 #  define UINT16_TYPE unsigned short int
401 # endif
402 #endif
403 #ifndef INT16_TYPE
404 # ifdef HAVE_INT16_T
405 #  define INT16_TYPE int16_t
406 # else
407 #  define INT16_TYPE short int
408 # endif
409 #endif
410 #ifndef UINT8_TYPE
411 # ifdef HAVE_UINT8_T
412 #  define UINT8_TYPE uint8_t
413 # else
414 #  define UINT8_TYPE unsigned char
415 # endif
416 #endif
417 #ifndef INT8_TYPE
418 # ifdef HAVE_INT8_T
419 #  define INT8_TYPE int8_t
420 # else
421 #  define INT8_TYPE signed char
422 # endif
423 #endif
424 #ifndef LONGDOUBLE_TYPE
425 # define LONGDOUBLE_TYPE long double
426 #endif
427 typedef sqlite_int64 i64;          /* 8-byte signed integer */
428 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
429 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
430 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
431 typedef INT16_TYPE i16;            /* 2-byte signed integer */
432 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
433 typedef INT8_TYPE i8;              /* 1-byte signed integer */
434 
435 /*
436 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
437 ** that can be stored in a u32 without loss of data.  The value
438 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
439 ** have to specify the value in the less intuitive manner shown:
440 */
441 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
442 
443 /*
444 ** Macros to determine whether the machine is big or little endian,
445 ** evaluated at runtime.
446 */
447 #ifdef SQLITE_AMALGAMATION
448 const int sqlite3one = 1;
449 #else
450 extern const int sqlite3one;
451 #endif
452 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\
453                              || defined(__x86_64) || defined(__x86_64__)
454 # define SQLITE_BIGENDIAN    0
455 # define SQLITE_LITTLEENDIAN 1
456 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
457 #else
458 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
459 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
460 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
461 #endif
462 
463 /*
464 ** Constants for the largest and smallest possible 64-bit signed integers.
465 ** These macros are designed to work correctly on both 32-bit and 64-bit
466 ** compilers.
467 */
468 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
469 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
470 
471 /*
472 ** Round up a number to the next larger multiple of 8.  This is used
473 ** to force 8-byte alignment on 64-bit architectures.
474 */
475 #define ROUND8(x)     (((x)+7)&~7)
476 
477 /*
478 ** Round down to the nearest multiple of 8
479 */
480 #define ROUNDDOWN8(x) ((x)&~7)
481 
482 /*
483 ** Assert that the pointer X is aligned to an 8-byte boundary.
484 */
485 #define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
486 
487 
488 /*
489 ** An instance of the following structure is used to store the busy-handler
490 ** callback for a given sqlite handle.
491 **
492 ** The sqlite.busyHandler member of the sqlite struct contains the busy
493 ** callback for the database handle. Each pager opened via the sqlite
494 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
495 ** callback is currently invoked only from within pager.c.
496 */
497 typedef struct BusyHandler BusyHandler;
498 struct BusyHandler {
499   int (*xFunc)(void *,int);  /* The busy callback */
500   void *pArg;                /* First arg to busy callback */
501   int nBusy;                 /* Incremented with each busy call */
502 };
503 
504 /*
505 ** Name of the master database table.  The master database table
506 ** is a special table that holds the names and attributes of all
507 ** user tables and indices.
508 */
509 #define MASTER_NAME       "sqlite_master"
510 #define TEMP_MASTER_NAME  "sqlite_temp_master"
511 
512 /*
513 ** The root-page of the master database table.
514 */
515 #define MASTER_ROOT       1
516 
517 /*
518 ** The name of the schema table.
519 */
520 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
521 
522 /*
523 ** A convenience macro that returns the number of elements in
524 ** an array.
525 */
526 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
527 
528 /*
529 ** The following value as a destructor means to use sqlite3DbFree().
530 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
531 */
532 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3DbFree)
533 
534 /*
535 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
536 ** not support Writable Static Data (WSD) such as global and static variables.
537 ** All variables must either be on the stack or dynamically allocated from
538 ** the heap.  When WSD is unsupported, the variable declarations scattered
539 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
540 ** macro is used for this purpose.  And instead of referencing the variable
541 ** directly, we use its constant as a key to lookup the run-time allocated
542 ** buffer that holds real variable.  The constant is also the initializer
543 ** for the run-time allocated buffer.
544 **
545 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
546 ** macros become no-ops and have zero performance impact.
547 */
548 #ifdef SQLITE_OMIT_WSD
549   #define SQLITE_WSD const
550   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
551   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
552   int sqlite3_wsd_init(int N, int J);
553   void *sqlite3_wsd_find(void *K, int L);
554 #else
555   #define SQLITE_WSD
556   #define GLOBAL(t,v) v
557   #define sqlite3GlobalConfig sqlite3Config
558 #endif
559 
560 /*
561 ** The following macros are used to suppress compiler warnings and to
562 ** make it clear to human readers when a function parameter is deliberately
563 ** left unused within the body of a function. This usually happens when
564 ** a function is called via a function pointer. For example the
565 ** implementation of an SQL aggregate step callback may not use the
566 ** parameter indicating the number of arguments passed to the aggregate,
567 ** if it knows that this is enforced elsewhere.
568 **
569 ** When a function parameter is not used at all within the body of a function,
570 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
571 ** However, these macros may also be used to suppress warnings related to
572 ** parameters that may or may not be used depending on compilation options.
573 ** For example those parameters only used in assert() statements. In these
574 ** cases the parameters are named as per the usual conventions.
575 */
576 #define UNUSED_PARAMETER(x) (void)(x)
577 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
578 
579 /*
580 ** Forward references to structures
581 */
582 typedef struct AggInfo AggInfo;
583 typedef struct AuthContext AuthContext;
584 typedef struct AutoincInfo AutoincInfo;
585 typedef struct Bitvec Bitvec;
586 typedef struct RowSet RowSet;
587 typedef struct CollSeq CollSeq;
588 typedef struct Column Column;
589 typedef struct Db Db;
590 typedef struct Schema Schema;
591 typedef struct Expr Expr;
592 typedef struct ExprList ExprList;
593 typedef struct ExprSpan ExprSpan;
594 typedef struct FKey FKey;
595 typedef struct FuncDef FuncDef;
596 typedef struct FuncDefHash FuncDefHash;
597 typedef struct IdList IdList;
598 typedef struct Index Index;
599 typedef struct IndexSample IndexSample;
600 typedef struct KeyClass KeyClass;
601 typedef struct KeyInfo KeyInfo;
602 typedef struct Lookaside Lookaside;
603 typedef struct LookasideSlot LookasideSlot;
604 typedef struct Module Module;
605 typedef struct NameContext NameContext;
606 typedef struct Parse Parse;
607 typedef struct Savepoint Savepoint;
608 typedef struct Select Select;
609 typedef struct SrcList SrcList;
610 typedef struct StrAccum StrAccum;
611 typedef struct Table Table;
612 typedef struct TableLock TableLock;
613 typedef struct Token Token;
614 typedef struct TriggerStack TriggerStack;
615 typedef struct TriggerStep TriggerStep;
616 typedef struct Trigger Trigger;
617 typedef struct UnpackedRecord UnpackedRecord;
618 typedef struct VTable VTable;
619 typedef struct Walker Walker;
620 typedef struct WherePlan WherePlan;
621 typedef struct WhereInfo WhereInfo;
622 typedef struct WhereLevel WhereLevel;
623 
624 /*
625 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
626 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
627 ** pointer types (i.e. FuncDef) defined above.
628 */
629 #include "btree.h"
630 #include "vdbe.h"
631 #include "pager.h"
632 #include "pcache.h"
633 
634 #include "os.h"
635 #include "mutex.h"
636 
637 
638 /*
639 ** Each database file to be accessed by the system is an instance
640 ** of the following structure.  There are normally two of these structures
641 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
642 ** aDb[1] is the database file used to hold temporary tables.  Additional
643 ** databases may be attached.
644 */
645 struct Db {
646   char *zName;         /* Name of this database */
647   Btree *pBt;          /* The B*Tree structure for this database file */
648   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
649   u8 safety_level;     /* How aggressive at syncing data to disk */
650   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
651 };
652 
653 /*
654 ** An instance of the following structure stores a database schema.
655 **
656 ** If there are no virtual tables configured in this schema, the
657 ** Schema.db variable is set to NULL. After the first virtual table
658 ** has been added, it is set to point to the database connection
659 ** used to create the connection. Once a virtual table has been
660 ** added to the Schema structure and the Schema.db variable populated,
661 ** only that database connection may use the Schema to prepare
662 ** statements.
663 */
664 struct Schema {
665   int schema_cookie;   /* Database schema version number for this file */
666   Hash tblHash;        /* All tables indexed by name */
667   Hash idxHash;        /* All (named) indices indexed by name */
668   Hash trigHash;       /* All triggers indexed by name */
669   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
670   u8 file_format;      /* Schema format version for this file */
671   u8 enc;              /* Text encoding used by this database */
672   u16 flags;           /* Flags associated with this schema */
673   int cache_size;      /* Number of pages to use in the cache */
674 #ifndef SQLITE_OMIT_VIRTUALTABLE
675   sqlite3 *db;         /* "Owner" connection. See comment above */
676 #endif
677 };
678 
679 /*
680 ** These macros can be used to test, set, or clear bits in the
681 ** Db.flags field.
682 */
683 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
684 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
685 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
686 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
687 
688 /*
689 ** Allowed values for the DB.flags field.
690 **
691 ** The DB_SchemaLoaded flag is set after the database schema has been
692 ** read into internal hash tables.
693 **
694 ** DB_UnresetViews means that one or more views have column names that
695 ** have been filled out.  If the schema changes, these column names might
696 ** changes and so the view will need to be reset.
697 */
698 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
699 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
700 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
701 
702 /*
703 ** The number of different kinds of things that can be limited
704 ** using the sqlite3_limit() interface.
705 */
706 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
707 
708 /*
709 ** Lookaside malloc is a set of fixed-size buffers that can be used
710 ** to satisfy small transient memory allocation requests for objects
711 ** associated with a particular database connection.  The use of
712 ** lookaside malloc provides a significant performance enhancement
713 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
714 ** SQL statements.
715 **
716 ** The Lookaside structure holds configuration information about the
717 ** lookaside malloc subsystem.  Each available memory allocation in
718 ** the lookaside subsystem is stored on a linked list of LookasideSlot
719 ** objects.
720 **
721 ** Lookaside allocations are only allowed for objects that are associated
722 ** with a particular database connection.  Hence, schema information cannot
723 ** be stored in lookaside because in shared cache mode the schema information
724 ** is shared by multiple database connections.  Therefore, while parsing
725 ** schema information, the Lookaside.bEnabled flag is cleared so that
726 ** lookaside allocations are not used to construct the schema objects.
727 */
728 struct Lookaside {
729   u16 sz;                 /* Size of each buffer in bytes */
730   u8 bEnabled;            /* False to disable new lookaside allocations */
731   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
732   int nOut;               /* Number of buffers currently checked out */
733   int mxOut;              /* Highwater mark for nOut */
734   LookasideSlot *pFree;   /* List of available buffers */
735   void *pStart;           /* First byte of available memory space */
736   void *pEnd;             /* First byte past end of available space */
737 };
738 struct LookasideSlot {
739   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
740 };
741 
742 /*
743 ** A hash table for function definitions.
744 **
745 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
746 ** Collisions are on the FuncDef.pHash chain.
747 */
748 struct FuncDefHash {
749   FuncDef *a[23];       /* Hash table for functions */
750 };
751 
752 /*
753 ** Each database is an instance of the following structure.
754 **
755 ** The sqlite.lastRowid records the last insert rowid generated by an
756 ** insert statement.  Inserts on views do not affect its value.  Each
757 ** trigger has its own context, so that lastRowid can be updated inside
758 ** triggers as usual.  The previous value will be restored once the trigger
759 ** exits.  Upon entering a before or instead of trigger, lastRowid is no
760 ** longer (since after version 2.8.12) reset to -1.
761 **
762 ** The sqlite.nChange does not count changes within triggers and keeps no
763 ** context.  It is reset at start of sqlite3_exec.
764 ** The sqlite.lsChange represents the number of changes made by the last
765 ** insert, update, or delete statement.  It remains constant throughout the
766 ** length of a statement and is then updated by OP_SetCounts.  It keeps a
767 ** context stack just like lastRowid so that the count of changes
768 ** within a trigger is not seen outside the trigger.  Changes to views do not
769 ** affect the value of lsChange.
770 ** The sqlite.csChange keeps track of the number of current changes (since
771 ** the last statement) and is used to update sqlite_lsChange.
772 **
773 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
774 ** store the most recent error code and, if applicable, string. The
775 ** internal function sqlite3Error() is used to set these variables
776 ** consistently.
777 */
778 struct sqlite3 {
779   sqlite3_vfs *pVfs;            /* OS Interface */
780   int nDb;                      /* Number of backends currently in use */
781   Db *aDb;                      /* All backends */
782   int flags;                    /* Miscellaneous flags. See below */
783   int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
784   int errCode;                  /* Most recent error code (SQLITE_*) */
785   int errMask;                  /* & result codes with this before returning */
786   u8 autoCommit;                /* The auto-commit flag. */
787   u8 temp_store;                /* 1: file 2: memory 0: default */
788   u8 mallocFailed;              /* True if we have seen a malloc failure */
789   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
790   u8 dfltJournalMode;           /* Default journal mode for attached dbs */
791   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
792   int nextPagesize;             /* Pagesize after VACUUM if >0 */
793   int nTable;                   /* Number of tables in the database */
794   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
795   i64 lastRowid;                /* ROWID of most recent insert (see above) */
796   u32 magic;                    /* Magic number for detect library misuse */
797   int nChange;                  /* Value returned by sqlite3_changes() */
798   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
799   sqlite3_mutex *mutex;         /* Connection mutex */
800   int aLimit[SQLITE_N_LIMIT];   /* Limits */
801   struct sqlite3InitInfo {      /* Information used during initialization */
802     int iDb;                    /* When back is being initialized */
803     int newTnum;                /* Rootpage of table being initialized */
804     u8 busy;                    /* TRUE if currently initializing */
805     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
806   } init;
807   int nExtension;               /* Number of loaded extensions */
808   void **aExtension;            /* Array of shared library handles */
809   struct Vdbe *pVdbe;           /* List of active virtual machines */
810   int activeVdbeCnt;            /* Number of VDBEs currently executing */
811   int writeVdbeCnt;             /* Number of active VDBEs that are writing */
812   void (*xTrace)(void*,const char*);        /* Trace function */
813   void *pTraceArg;                          /* Argument to the trace function */
814   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
815   void *pProfileArg;                        /* Argument to profile function */
816   void *pCommitArg;                 /* Argument to xCommitCallback() */
817   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
818   void *pRollbackArg;               /* Argument to xRollbackCallback() */
819   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
820   void *pUpdateArg;
821   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
822   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
823   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
824   void *pCollNeededArg;
825   sqlite3_value *pErr;          /* Most recent error message */
826   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
827   char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
828   union {
829     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
830     double notUsed1;            /* Spacer */
831   } u1;
832   Lookaside lookaside;          /* Lookaside malloc configuration */
833 #ifndef SQLITE_OMIT_AUTHORIZATION
834   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
835                                 /* Access authorization function */
836   void *pAuthArg;               /* 1st argument to the access auth function */
837 #endif
838 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
839   int (*xProgress)(void *);     /* The progress callback */
840   void *pProgressArg;           /* Argument to the progress callback */
841   int nProgressOps;             /* Number of opcodes for progress callback */
842 #endif
843 #ifndef SQLITE_OMIT_VIRTUALTABLE
844   Hash aModule;                 /* populated by sqlite3_create_module() */
845   Table *pVTab;                 /* vtab with active Connect/Create method */
846   VTable **aVTrans;             /* Virtual tables with open transactions */
847   int nVTrans;                  /* Allocated size of aVTrans */
848   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
849 #endif
850   FuncDefHash aFunc;            /* Hash table of connection functions */
851   Hash aCollSeq;                /* All collating sequences */
852   BusyHandler busyHandler;      /* Busy callback */
853   int busyTimeout;              /* Busy handler timeout, in msec */
854   Db aDbStatic[2];              /* Static space for the 2 default backends */
855   Savepoint *pSavepoint;        /* List of active savepoints */
856   int nSavepoint;               /* Number of non-transaction savepoints */
857   int nStatement;               /* Number of nested statement-transactions  */
858   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
859 
860 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
861   /* The following variables are all protected by the STATIC_MASTER
862   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
863   **
864   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
865   ** unlock so that it can proceed.
866   **
867   ** When X.pBlockingConnection==Y, that means that something that X tried
868   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
869   ** held by Y.
870   */
871   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
872   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
873   void *pUnlockArg;                     /* Argument to xUnlockNotify */
874   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
875   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
876 #endif
877 };
878 
879 /*
880 ** A macro to discover the encoding of a database.
881 */
882 #define ENC(db) ((db)->aDb[0].pSchema->enc)
883 
884 /*
885 ** Possible values for the sqlite.flags and or Db.flags fields.
886 **
887 ** On sqlite.flags, the SQLITE_InTrans value means that we have
888 ** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
889 ** transaction is active on that particular database file.
890 */
891 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
892 #define SQLITE_InTrans        0x00000008  /* True if in a transaction */
893 #define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
894 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
895 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
896 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
897                                           /*   DELETE, or UPDATE and return */
898                                           /*   the count using a callback. */
899 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
900                                           /*   result set is empty */
901 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
902 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
903 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
904 #define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when
905                                           ** accessing read-only databases */
906 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
907 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
908 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
909 #define SQLITE_FullFSync      0x00010000  /* Use full fsync on the backend */
910 #define SQLITE_LoadExtension  0x00020000  /* Enable load_extension */
911 
912 #define SQLITE_RecoveryMode   0x00040000  /* Ignore schema errors */
913 #define SQLITE_ReverseOrder   0x00100000  /* Reverse unordered SELECTs */
914 
915 /*
916 ** Possible values for the sqlite.magic field.
917 ** The numbers are obtained at random and have no special meaning, other
918 ** than being distinct from one another.
919 */
920 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
921 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
922 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
923 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
924 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
925 
926 /*
927 ** Each SQL function is defined by an instance of the following
928 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
929 ** hash table.  When multiple functions have the same name, the hash table
930 ** points to a linked list of these structures.
931 */
932 struct FuncDef {
933   i16 nArg;            /* Number of arguments.  -1 means unlimited */
934   u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
935   u8 flags;            /* Some combination of SQLITE_FUNC_* */
936   void *pUserData;     /* User data parameter */
937   FuncDef *pNext;      /* Next function with same name */
938   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
939   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
940   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
941   char *zName;         /* SQL name of the function. */
942   FuncDef *pHash;      /* Next with a different name but the same hash */
943 };
944 
945 /*
946 ** Possible values for FuncDef.flags
947 */
948 #define SQLITE_FUNC_LIKE     0x01 /* Candidate for the LIKE optimization */
949 #define SQLITE_FUNC_CASE     0x02 /* Case-sensitive LIKE-type function */
950 #define SQLITE_FUNC_EPHEM    0x04 /* Ephemeral.  Delete with VDBE */
951 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
952 #define SQLITE_FUNC_PRIVATE  0x10 /* Allowed for internal use only */
953 #define SQLITE_FUNC_COUNT    0x20 /* Built-in count(*) aggregate */
954 
955 /*
956 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
957 ** used to create the initializers for the FuncDef structures.
958 **
959 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
960 **     Used to create a scalar function definition of a function zName
961 **     implemented by C function xFunc that accepts nArg arguments. The
962 **     value passed as iArg is cast to a (void*) and made available
963 **     as the user-data (sqlite3_user_data()) for the function. If
964 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
965 **
966 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
967 **     Used to create an aggregate function definition implemented by
968 **     the C functions xStep and xFinal. The first four parameters
969 **     are interpreted in the same way as the first 4 parameters to
970 **     FUNCTION().
971 **
972 **   LIKEFUNC(zName, nArg, pArg, flags)
973 **     Used to create a scalar function definition of a function zName
974 **     that accepts nArg arguments and is implemented by a call to C
975 **     function likeFunc. Argument pArg is cast to a (void *) and made
976 **     available as the function user-data (sqlite3_user_data()). The
977 **     FuncDef.flags variable is set to the value passed as the flags
978 **     parameter.
979 */
980 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
981   {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
982    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0}
983 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
984   {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
985    pArg, 0, xFunc, 0, 0, #zName, 0}
986 #define LIKEFUNC(zName, nArg, arg, flags) \
987   {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0}
988 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
989   {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
990    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0}
991 
992 /*
993 ** All current savepoints are stored in a linked list starting at
994 ** sqlite3.pSavepoint. The first element in the list is the most recently
995 ** opened savepoint. Savepoints are added to the list by the vdbe
996 ** OP_Savepoint instruction.
997 */
998 struct Savepoint {
999   char *zName;                        /* Savepoint name (nul-terminated) */
1000   Savepoint *pNext;                   /* Parent savepoint (if any) */
1001 };
1002 
1003 /*
1004 ** The following are used as the second parameter to sqlite3Savepoint(),
1005 ** and as the P1 argument to the OP_Savepoint instruction.
1006 */
1007 #define SAVEPOINT_BEGIN      0
1008 #define SAVEPOINT_RELEASE    1
1009 #define SAVEPOINT_ROLLBACK   2
1010 
1011 
1012 /*
1013 ** Each SQLite module (virtual table definition) is defined by an
1014 ** instance of the following structure, stored in the sqlite3.aModule
1015 ** hash table.
1016 */
1017 struct Module {
1018   const sqlite3_module *pModule;       /* Callback pointers */
1019   const char *zName;                   /* Name passed to create_module() */
1020   void *pAux;                          /* pAux passed to create_module() */
1021   void (*xDestroy)(void *);            /* Module destructor function */
1022 };
1023 
1024 /*
1025 ** information about each column of an SQL table is held in an instance
1026 ** of this structure.
1027 */
1028 struct Column {
1029   char *zName;     /* Name of this column */
1030   Expr *pDflt;     /* Default value of this column */
1031   char *zDflt;     /* Original text of the default value */
1032   char *zType;     /* Data type for this column */
1033   char *zColl;     /* Collating sequence.  If NULL, use the default */
1034   u8 notNull;      /* True if there is a NOT NULL constraint */
1035   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
1036   char affinity;   /* One of the SQLITE_AFF_... values */
1037 #ifndef SQLITE_OMIT_VIRTUALTABLE
1038   u8 isHidden;     /* True if this column is 'hidden' */
1039 #endif
1040 };
1041 
1042 /*
1043 ** A "Collating Sequence" is defined by an instance of the following
1044 ** structure. Conceptually, a collating sequence consists of a name and
1045 ** a comparison routine that defines the order of that sequence.
1046 **
1047 ** There may two separate implementations of the collation function, one
1048 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
1049 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
1050 ** native byte order. When a collation sequence is invoked, SQLite selects
1051 ** the version that will require the least expensive encoding
1052 ** translations, if any.
1053 **
1054 ** The CollSeq.pUser member variable is an extra parameter that passed in
1055 ** as the first argument to the UTF-8 comparison function, xCmp.
1056 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
1057 ** xCmp16.
1058 **
1059 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
1060 ** collating sequence is undefined.  Indices built on an undefined
1061 ** collating sequence may not be read or written.
1062 */
1063 struct CollSeq {
1064   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1065   u8 enc;               /* Text encoding handled by xCmp() */
1066   u8 type;              /* One of the SQLITE_COLL_... values below */
1067   void *pUser;          /* First argument to xCmp() */
1068   int (*xCmp)(void*,int, const void*, int, const void*);
1069   void (*xDel)(void*);  /* Destructor for pUser */
1070 };
1071 
1072 /*
1073 ** Allowed values of CollSeq.type:
1074 */
1075 #define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
1076 #define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
1077 #define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
1078 #define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
1079 
1080 /*
1081 ** A sort order can be either ASC or DESC.
1082 */
1083 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1084 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1085 
1086 /*
1087 ** Column affinity types.
1088 **
1089 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1090 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1091 ** the speed a little by numbering the values consecutively.
1092 **
1093 ** But rather than start with 0 or 1, we begin with 'a'.  That way,
1094 ** when multiple affinity types are concatenated into a string and
1095 ** used as the P4 operand, they will be more readable.
1096 **
1097 ** Note also that the numeric types are grouped together so that testing
1098 ** for a numeric type is a single comparison.
1099 */
1100 #define SQLITE_AFF_TEXT     'a'
1101 #define SQLITE_AFF_NONE     'b'
1102 #define SQLITE_AFF_NUMERIC  'c'
1103 #define SQLITE_AFF_INTEGER  'd'
1104 #define SQLITE_AFF_REAL     'e'
1105 
1106 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1107 
1108 /*
1109 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1110 ** affinity value.
1111 */
1112 #define SQLITE_AFF_MASK     0x67
1113 
1114 /*
1115 ** Additional bit values that can be ORed with an affinity without
1116 ** changing the affinity.
1117 */
1118 #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
1119 #define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
1120 
1121 /*
1122 ** An object of this type is created for each virtual table present in
1123 ** the database schema.
1124 **
1125 ** If the database schema is shared, then there is one instance of this
1126 ** structure for each database connection (sqlite3*) that uses the shared
1127 ** schema. This is because each database connection requires its own unique
1128 ** instance of the sqlite3_vtab* handle used to access the virtual table
1129 ** implementation. sqlite3_vtab* handles can not be shared between
1130 ** database connections, even when the rest of the in-memory database
1131 ** schema is shared, as the implementation often stores the database
1132 ** connection handle passed to it via the xConnect() or xCreate() method
1133 ** during initialization internally. This database connection handle may
1134 ** then used by the virtual table implementation to access real tables
1135 ** within the database. So that they appear as part of the callers
1136 ** transaction, these accesses need to be made via the same database
1137 ** connection as that used to execute SQL operations on the virtual table.
1138 **
1139 ** All VTable objects that correspond to a single table in a shared
1140 ** database schema are initially stored in a linked-list pointed to by
1141 ** the Table.pVTable member variable of the corresponding Table object.
1142 ** When an sqlite3_prepare() operation is required to access the virtual
1143 ** table, it searches the list for the VTable that corresponds to the
1144 ** database connection doing the preparing so as to use the correct
1145 ** sqlite3_vtab* handle in the compiled query.
1146 **
1147 ** When an in-memory Table object is deleted (for example when the
1148 ** schema is being reloaded for some reason), the VTable objects are not
1149 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1150 ** immediately. Instead, they are moved from the Table.pVTable list to
1151 ** another linked list headed by the sqlite3.pDisconnect member of the
1152 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1153 ** next time a statement is prepared using said sqlite3*. This is done
1154 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1155 ** Refer to comments above function sqlite3VtabUnlockList() for an
1156 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1157 ** list without holding the corresponding sqlite3.mutex mutex.
1158 **
1159 ** The memory for objects of this type is always allocated by
1160 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1161 ** the first argument.
1162 */
1163 struct VTable {
1164   sqlite3 *db;              /* Database connection associated with this table */
1165   Module *pMod;             /* Pointer to module implementation */
1166   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1167   int nRef;                 /* Number of pointers to this structure */
1168   VTable *pNext;            /* Next in linked list (see above) */
1169 };
1170 
1171 /*
1172 ** Each SQL table is represented in memory by an instance of the
1173 ** following structure.
1174 **
1175 ** Table.zName is the name of the table.  The case of the original
1176 ** CREATE TABLE statement is stored, but case is not significant for
1177 ** comparisons.
1178 **
1179 ** Table.nCol is the number of columns in this table.  Table.aCol is a
1180 ** pointer to an array of Column structures, one for each column.
1181 **
1182 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1183 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1184 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1185 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1186 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1187 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
1188 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1189 **
1190 ** Table.tnum is the page number for the root BTree page of the table in the
1191 ** database file.  If Table.iDb is the index of the database table backend
1192 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1193 ** holds temporary tables and indices.  If TF_Ephemeral is set
1194 ** then the table is stored in a file that is automatically deleted
1195 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
1196 ** refers VDBE cursor number that holds the table open, not to the root
1197 ** page number.  Transient tables are used to hold the results of a
1198 ** sub-query that appears instead of a real table name in the FROM clause
1199 ** of a SELECT statement.
1200 */
1201 struct Table {
1202   sqlite3 *dbMem;      /* DB connection used for lookaside allocations. */
1203   char *zName;         /* Name of the table or view */
1204   int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1205   int nCol;            /* Number of columns in this table */
1206   Column *aCol;        /* Information about each column */
1207   Index *pIndex;       /* List of SQL indexes on this table. */
1208   int tnum;            /* Root BTree node for this table (see note above) */
1209   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1210   u16 nRef;            /* Number of pointers to this Table */
1211   u8 tabFlags;         /* Mask of TF_* values */
1212   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1213   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1214   char *zColAff;       /* String defining the affinity of each column */
1215 #ifndef SQLITE_OMIT_CHECK
1216   Expr *pCheck;        /* The AND of all CHECK constraints */
1217 #endif
1218 #ifndef SQLITE_OMIT_ALTERTABLE
1219   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1220 #endif
1221 #ifndef SQLITE_OMIT_VIRTUALTABLE
1222   VTable *pVTable;     /* List of VTable objects. */
1223   int nModuleArg;      /* Number of arguments to the module */
1224   char **azModuleArg;  /* Text of all module args. [0] is module name */
1225 #endif
1226   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1227   Schema *pSchema;     /* Schema that contains this table */
1228   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1229 };
1230 
1231 /*
1232 ** Allowed values for Tabe.tabFlags.
1233 */
1234 #define TF_Readonly        0x01    /* Read-only system table */
1235 #define TF_Ephemeral       0x02    /* An ephemeral table */
1236 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1237 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1238 #define TF_Virtual         0x10    /* Is a virtual table */
1239 #define TF_NeedMetadata    0x20    /* aCol[].zType and aCol[].pColl missing */
1240 
1241 
1242 
1243 /*
1244 ** Test to see whether or not a table is a virtual table.  This is
1245 ** done as a macro so that it will be optimized out when virtual
1246 ** table support is omitted from the build.
1247 */
1248 #ifndef SQLITE_OMIT_VIRTUALTABLE
1249 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1250 #  define IsHiddenColumn(X) ((X)->isHidden)
1251 #else
1252 #  define IsVirtual(X)      0
1253 #  define IsHiddenColumn(X) 0
1254 #endif
1255 
1256 /*
1257 ** Each foreign key constraint is an instance of the following structure.
1258 **
1259 ** A foreign key is associated with two tables.  The "from" table is
1260 ** the table that contains the REFERENCES clause that creates the foreign
1261 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1262 ** Consider this example:
1263 **
1264 **     CREATE TABLE ex1(
1265 **       a INTEGER PRIMARY KEY,
1266 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1267 **     );
1268 **
1269 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1270 **
1271 ** Each REFERENCES clause generates an instance of the following structure
1272 ** which is attached to the from-table.  The to-table need not exist when
1273 ** the from-table is created.  The existence of the to-table is not checked.
1274 */
1275 struct FKey {
1276   Table *pFrom;     /* The table that contains the REFERENCES clause */
1277   FKey *pNextFrom;  /* Next foreign key in pFrom */
1278   char *zTo;        /* Name of table that the key points to */
1279   int nCol;         /* Number of columns in this key */
1280   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
1281   u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
1282   u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
1283   u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
1284   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
1285     int iFrom;         /* Index of column in pFrom */
1286     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
1287   } aCol[1];        /* One entry for each of nCol column s */
1288 };
1289 
1290 /*
1291 ** SQLite supports many different ways to resolve a constraint
1292 ** error.  ROLLBACK processing means that a constraint violation
1293 ** causes the operation in process to fail and for the current transaction
1294 ** to be rolled back.  ABORT processing means the operation in process
1295 ** fails and any prior changes from that one operation are backed out,
1296 ** but the transaction is not rolled back.  FAIL processing means that
1297 ** the operation in progress stops and returns an error code.  But prior
1298 ** changes due to the same operation are not backed out and no rollback
1299 ** occurs.  IGNORE means that the particular row that caused the constraint
1300 ** error is not inserted or updated.  Processing continues and no error
1301 ** is returned.  REPLACE means that preexisting database rows that caused
1302 ** a UNIQUE constraint violation are removed so that the new insert or
1303 ** update can proceed.  Processing continues and no error is reported.
1304 **
1305 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1306 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1307 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1308 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1309 ** referenced table row is propagated into the row that holds the
1310 ** foreign key.
1311 **
1312 ** The following symbolic values are used to record which type
1313 ** of action to take.
1314 */
1315 #define OE_None     0   /* There is no constraint to check */
1316 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1317 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1318 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1319 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1320 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1321 
1322 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1323 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1324 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1325 #define OE_Cascade  9   /* Cascade the changes */
1326 
1327 #define OE_Default  99  /* Do whatever the default action is */
1328 
1329 
1330 /*
1331 ** An instance of the following structure is passed as the first
1332 ** argument to sqlite3VdbeKeyCompare and is used to control the
1333 ** comparison of the two index keys.
1334 */
1335 struct KeyInfo {
1336   sqlite3 *db;        /* The database connection */
1337   u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
1338   u16 nField;         /* Number of entries in aColl[] */
1339   u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
1340   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1341 };
1342 
1343 /*
1344 ** An instance of the following structure holds information about a
1345 ** single index record that has already been parsed out into individual
1346 ** values.
1347 **
1348 ** A record is an object that contains one or more fields of data.
1349 ** Records are used to store the content of a table row and to store
1350 ** the key of an index.  A blob encoding of a record is created by
1351 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1352 ** OP_Column opcode.
1353 **
1354 ** This structure holds a record that has already been disassembled
1355 ** into its constituent fields.
1356 */
1357 struct UnpackedRecord {
1358   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1359   u16 nField;         /* Number of entries in apMem[] */
1360   u16 flags;          /* Boolean settings.  UNPACKED_... below */
1361   i64 rowid;          /* Used by UNPACKED_PREFIX_SEARCH */
1362   Mem *aMem;          /* Values */
1363 };
1364 
1365 /*
1366 ** Allowed values of UnpackedRecord.flags
1367 */
1368 #define UNPACKED_NEED_FREE     0x0001  /* Memory is from sqlite3Malloc() */
1369 #define UNPACKED_NEED_DESTROY  0x0002  /* apMem[]s should all be destroyed */
1370 #define UNPACKED_IGNORE_ROWID  0x0004  /* Ignore trailing rowid on key1 */
1371 #define UNPACKED_INCRKEY       0x0008  /* Make this key an epsilon larger */
1372 #define UNPACKED_PREFIX_MATCH  0x0010  /* A prefix match is considered OK */
1373 #define UNPACKED_PREFIX_SEARCH 0x0020  /* A prefix match is considered OK */
1374 
1375 /*
1376 ** Each SQL index is represented in memory by an
1377 ** instance of the following structure.
1378 **
1379 ** The columns of the table that are to be indexed are described
1380 ** by the aiColumn[] field of this structure.  For example, suppose
1381 ** we have the following table and index:
1382 **
1383 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1384 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1385 **
1386 ** In the Table structure describing Ex1, nCol==3 because there are
1387 ** three columns in the table.  In the Index structure describing
1388 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1389 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1390 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1391 ** The second column to be indexed (c1) has an index of 0 in
1392 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1393 **
1394 ** The Index.onError field determines whether or not the indexed columns
1395 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1396 ** it means this is not a unique index.  Otherwise it is a unique index
1397 ** and the value of Index.onError indicate the which conflict resolution
1398 ** algorithm to employ whenever an attempt is made to insert a non-unique
1399 ** element.
1400 */
1401 struct Index {
1402   char *zName;     /* Name of this index */
1403   int nColumn;     /* Number of columns in the table used by this index */
1404   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
1405   unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1406   Table *pTable;   /* The SQL table being indexed */
1407   int tnum;        /* Page containing root of this index in database file */
1408   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1409   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
1410   char *zColAff;   /* String defining the affinity of each column */
1411   Index *pNext;    /* The next index associated with the same table */
1412   Schema *pSchema; /* Schema containing this index */
1413   u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
1414   char **azColl;   /* Array of collation sequence names for index */
1415   IndexSample *aSample;    /* Array of SQLITE_INDEX_SAMPLES samples */
1416 };
1417 
1418 /*
1419 ** Each sample stored in the sqlite_stat2 table is represented in memory
1420 ** using a structure of this type.
1421 */
1422 struct IndexSample {
1423   union {
1424     char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
1425     double r;       /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
1426   } u;
1427   u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
1428   u8 nByte;         /* Size in byte of text or blob. */
1429 };
1430 
1431 /*
1432 ** Each token coming out of the lexer is an instance of
1433 ** this structure.  Tokens are also used as part of an expression.
1434 **
1435 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1436 ** may contain random values.  Do not make any assumptions about Token.dyn
1437 ** and Token.n when Token.z==0.
1438 */
1439 struct Token {
1440   const char *z;     /* Text of the token.  Not NULL-terminated! */
1441   unsigned int n;    /* Number of characters in this token */
1442 };
1443 
1444 /*
1445 ** An instance of this structure contains information needed to generate
1446 ** code for a SELECT that contains aggregate functions.
1447 **
1448 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1449 ** pointer to this structure.  The Expr.iColumn field is the index in
1450 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1451 ** code for that node.
1452 **
1453 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1454 ** original Select structure that describes the SELECT statement.  These
1455 ** fields do not need to be freed when deallocating the AggInfo structure.
1456 */
1457 struct AggInfo {
1458   u8 directMode;          /* Direct rendering mode means take data directly
1459                           ** from source tables rather than from accumulators */
1460   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1461                           ** than the source table */
1462   int sortingIdx;         /* Cursor number of the sorting index */
1463   ExprList *pGroupBy;     /* The group by clause */
1464   int nSortingColumn;     /* Number of columns in the sorting index */
1465   struct AggInfo_col {    /* For each column used in source tables */
1466     Table *pTab;             /* Source table */
1467     int iTable;              /* Cursor number of the source table */
1468     int iColumn;             /* Column number within the source table */
1469     int iSorterColumn;       /* Column number in the sorting index */
1470     int iMem;                /* Memory location that acts as accumulator */
1471     Expr *pExpr;             /* The original expression */
1472   } *aCol;
1473   int nColumn;            /* Number of used entries in aCol[] */
1474   int nColumnAlloc;       /* Number of slots allocated for aCol[] */
1475   int nAccumulator;       /* Number of columns that show through to the output.
1476                           ** Additional columns are used only as parameters to
1477                           ** aggregate functions */
1478   struct AggInfo_func {   /* For each aggregate function */
1479     Expr *pExpr;             /* Expression encoding the function */
1480     FuncDef *pFunc;          /* The aggregate function implementation */
1481     int iMem;                /* Memory location that acts as accumulator */
1482     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1483   } *aFunc;
1484   int nFunc;              /* Number of entries in aFunc[] */
1485   int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
1486 };
1487 
1488 /*
1489 ** Each node of an expression in the parse tree is an instance
1490 ** of this structure.
1491 **
1492 ** Expr.op is the opcode. The integer parser token codes are reused
1493 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1494 ** code representing the ">=" operator. This same integer code is reused
1495 ** to represent the greater-than-or-equal-to operator in the expression
1496 ** tree.
1497 **
1498 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1499 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1500 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1501 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1502 ** then Expr.token contains the name of the function.
1503 **
1504 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1505 ** binary operator. Either or both may be NULL.
1506 **
1507 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1508 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1509 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1510 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1511 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1512 ** valid.
1513 **
1514 ** An expression of the form ID or ID.ID refers to a column in a table.
1515 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1516 ** the integer cursor number of a VDBE cursor pointing to that table and
1517 ** Expr.iColumn is the column number for the specific column.  If the
1518 ** expression is used as a result in an aggregate SELECT, then the
1519 ** value is also stored in the Expr.iAgg column in the aggregate so that
1520 ** it can be accessed after all aggregates are computed.
1521 **
1522 ** If the expression is an unbound variable marker (a question mark
1523 ** character '?' in the original SQL) then the Expr.iTable holds the index
1524 ** number for that variable.
1525 **
1526 ** If the expression is a subquery then Expr.iColumn holds an integer
1527 ** register number containing the result of the subquery.  If the
1528 ** subquery gives a constant result, then iTable is -1.  If the subquery
1529 ** gives a different answer at different times during statement processing
1530 ** then iTable is the address of a subroutine that computes the subquery.
1531 **
1532 ** If the Expr is of type OP_Column, and the table it is selecting from
1533 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1534 ** corresponding table definition.
1535 **
1536 ** ALLOCATION NOTES:
1537 **
1538 ** Expr objects can use a lot of memory space in database schema.  To
1539 ** help reduce memory requirements, sometimes an Expr object will be
1540 ** truncated.  And to reduce the number of memory allocations, sometimes
1541 ** two or more Expr objects will be stored in a single memory allocation,
1542 ** together with Expr.zToken strings.
1543 **
1544 ** If the EP_Reduced and EP_TokenOnly flags are set when
1545 ** an Expr object is truncated.  When EP_Reduced is set, then all
1546 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1547 ** are contained within the same memory allocation.  Note, however, that
1548 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1549 ** allocated, regardless of whether or not EP_Reduced is set.
1550 */
1551 struct Expr {
1552   u8 op;                 /* Operation performed by this node */
1553   char affinity;         /* The affinity of the column or 0 if not a column */
1554   u16 flags;             /* Various flags.  EP_* See below */
1555   union {
1556     char *zToken;          /* Token value. Zero terminated and dequoted */
1557     int iValue;            /* Integer value if EP_IntValue */
1558   } u;
1559 
1560   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1561   ** space is allocated for the fields below this point. An attempt to
1562   ** access them will result in a segfault or malfunction.
1563   *********************************************************************/
1564 
1565   Expr *pLeft;           /* Left subnode */
1566   Expr *pRight;          /* Right subnode */
1567   union {
1568     ExprList *pList;     /* Function arguments or in "<expr> IN (<expr-list)" */
1569     Select *pSelect;     /* Used for sub-selects and "<expr> IN (<select>)" */
1570   } x;
1571   CollSeq *pColl;        /* The collation type of the column or 0 */
1572 
1573   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1574   ** space is allocated for the fields below this point. An attempt to
1575   ** access them will result in a segfault or malfunction.
1576   *********************************************************************/
1577 
1578   int iTable;            /* TK_COLUMN: cursor number of table holding column
1579                          ** TK_REGISTER: register number */
1580   i16 iColumn;           /* TK_COLUMN: column index.  -1 for rowid */
1581   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1582   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
1583   u8 flags2;             /* Second set of flags.  EP2_... */
1584   u8 op2;                /* If a TK_REGISTER, the original value of Expr.op */
1585   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1586   Table *pTab;           /* Table for TK_COLUMN expressions. */
1587 #if SQLITE_MAX_EXPR_DEPTH>0
1588   int nHeight;           /* Height of the tree headed by this node */
1589 #endif
1590 };
1591 
1592 /*
1593 ** The following are the meanings of bits in the Expr.flags field.
1594 */
1595 #define EP_FromJoin   0x0001  /* Originated in ON or USING clause of a join */
1596 #define EP_Agg        0x0002  /* Contains one or more aggregate functions */
1597 #define EP_Resolved   0x0004  /* IDs have been resolved to COLUMNs */
1598 #define EP_Error      0x0008  /* Expression contains one or more errors */
1599 #define EP_Distinct   0x0010  /* Aggregate function with DISTINCT keyword */
1600 #define EP_VarSelect  0x0020  /* pSelect is correlated, not constant */
1601 #define EP_DblQuoted  0x0040  /* token.z was originally in "..." */
1602 #define EP_InfixFunc  0x0080  /* True for an infix function: LIKE, GLOB, etc */
1603 #define EP_ExpCollate 0x0100  /* Collating sequence specified explicitly */
1604 #define EP_AnyAff     0x0200  /* Can take a cached column of any affinity */
1605 #define EP_FixedDest  0x0400  /* Result needed in a specific register */
1606 #define EP_IntValue   0x0800  /* Integer value contained in u.iValue */
1607 #define EP_xIsSelect  0x1000  /* x.pSelect is valid (otherwise x.pList is) */
1608 
1609 #define EP_Reduced    0x2000  /* Expr struct is EXPR_REDUCEDSIZE bytes only */
1610 #define EP_TokenOnly  0x4000  /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
1611 #define EP_Static     0x8000  /* Held in memory not obtained from malloc() */
1612 
1613 /*
1614 ** The following are the meanings of bits in the Expr.flags2 field.
1615 */
1616 #define EP2_MallocedToken  0x0001  /* Need to sqlite3DbFree() Expr.zToken */
1617 #define EP2_Irreducible    0x0002  /* Cannot EXPRDUP_REDUCE this Expr */
1618 
1619 /*
1620 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
1621 ** flag on an expression structure.  This flag is used for VV&A only.  The
1622 ** routine is implemented as a macro that only works when in debugging mode,
1623 ** so as not to burden production code.
1624 */
1625 #ifdef SQLITE_DEBUG
1626 # define ExprSetIrreducible(X)  (X)->flags2 |= EP2_Irreducible
1627 #else
1628 # define ExprSetIrreducible(X)
1629 #endif
1630 
1631 /*
1632 ** These macros can be used to test, set, or clear bits in the
1633 ** Expr.flags field.
1634 */
1635 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
1636 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
1637 #define ExprSetProperty(E,P)     (E)->flags|=(P)
1638 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
1639 
1640 /*
1641 ** Macros to determine the number of bytes required by a normal Expr
1642 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
1643 ** and an Expr struct with the EP_TokenOnly flag set.
1644 */
1645 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
1646 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
1647 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
1648 
1649 /*
1650 ** Flags passed to the sqlite3ExprDup() function. See the header comment
1651 ** above sqlite3ExprDup() for details.
1652 */
1653 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
1654 
1655 /*
1656 ** A list of expressions.  Each expression may optionally have a
1657 ** name.  An expr/name combination can be used in several ways, such
1658 ** as the list of "expr AS ID" fields following a "SELECT" or in the
1659 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
1660 ** also be used as the argument to a function, in which case the a.zName
1661 ** field is not used.
1662 */
1663 struct ExprList {
1664   int nExpr;             /* Number of expressions on the list */
1665   int nAlloc;            /* Number of entries allocated below */
1666   int iECursor;          /* VDBE Cursor associated with this ExprList */
1667   struct ExprList_item {
1668     Expr *pExpr;           /* The list of expressions */
1669     char *zName;           /* Token associated with this expression */
1670     char *zSpan;           /* Original text of the expression */
1671     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
1672     u8 done;               /* A flag to indicate when processing is finished */
1673     u16 iCol;              /* For ORDER BY, column number in result set */
1674     u16 iAlias;            /* Index into Parse.aAlias[] for zName */
1675   } *a;                  /* One entry for each expression */
1676 };
1677 
1678 /*
1679 ** An instance of this structure is used by the parser to record both
1680 ** the parse tree for an expression and the span of input text for an
1681 ** expression.
1682 */
1683 struct ExprSpan {
1684   Expr *pExpr;          /* The expression parse tree */
1685   const char *zStart;   /* First character of input text */
1686   const char *zEnd;     /* One character past the end of input text */
1687 };
1688 
1689 /*
1690 ** An instance of this structure can hold a simple list of identifiers,
1691 ** such as the list "a,b,c" in the following statements:
1692 **
1693 **      INSERT INTO t(a,b,c) VALUES ...;
1694 **      CREATE INDEX idx ON t(a,b,c);
1695 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1696 **
1697 ** The IdList.a.idx field is used when the IdList represents the list of
1698 ** column names after a table name in an INSERT statement.  In the statement
1699 **
1700 **     INSERT INTO t(a,b,c) ...
1701 **
1702 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1703 */
1704 struct IdList {
1705   struct IdList_item {
1706     char *zName;      /* Name of the identifier */
1707     int idx;          /* Index in some Table.aCol[] of a column named zName */
1708   } *a;
1709   int nId;         /* Number of identifiers on the list */
1710   int nAlloc;      /* Number of entries allocated for a[] below */
1711 };
1712 
1713 /*
1714 ** The bitmask datatype defined below is used for various optimizations.
1715 **
1716 ** Changing this from a 64-bit to a 32-bit type limits the number of
1717 ** tables in a join to 32 instead of 64.  But it also reduces the size
1718 ** of the library by 738 bytes on ix86.
1719 */
1720 typedef u64 Bitmask;
1721 
1722 /*
1723 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
1724 */
1725 #define BMS  ((int)(sizeof(Bitmask)*8))
1726 
1727 /*
1728 ** The following structure describes the FROM clause of a SELECT statement.
1729 ** Each table or subquery in the FROM clause is a separate element of
1730 ** the SrcList.a[] array.
1731 **
1732 ** With the addition of multiple database support, the following structure
1733 ** can also be used to describe a particular table such as the table that
1734 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
1735 ** such a table must be a simple name: ID.  But in SQLite, the table can
1736 ** now be identified by a database name, a dot, then the table name: ID.ID.
1737 **
1738 ** The jointype starts out showing the join type between the current table
1739 ** and the next table on the list.  The parser builds the list this way.
1740 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1741 ** jointype expresses the join between the table and the previous table.
1742 */
1743 struct SrcList {
1744   i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
1745   i16 nAlloc;      /* Number of entries allocated in a[] below */
1746   struct SrcList_item {
1747     char *zDatabase;  /* Name of database holding this table */
1748     char *zName;      /* Name of the table */
1749     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
1750     Table *pTab;      /* An SQL table corresponding to zName */
1751     Select *pSelect;  /* A SELECT statement used in place of a table name */
1752     u8 isPopulated;   /* Temporary table associated with SELECT is populated */
1753     u8 jointype;      /* Type of join between this able and the previous */
1754     u8 notIndexed;    /* True if there is a NOT INDEXED clause */
1755     int iCursor;      /* The VDBE cursor number used to access this table */
1756     Expr *pOn;        /* The ON clause of a join */
1757     IdList *pUsing;   /* The USING clause of a join */
1758     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
1759     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
1760     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
1761   } a[1];             /* One entry for each identifier on the list */
1762 };
1763 
1764 /*
1765 ** Permitted values of the SrcList.a.jointype field
1766 */
1767 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
1768 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
1769 #define JT_NATURAL   0x0004    /* True for a "natural" join */
1770 #define JT_LEFT      0x0008    /* Left outer join */
1771 #define JT_RIGHT     0x0010    /* Right outer join */
1772 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
1773 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
1774 
1775 
1776 /*
1777 ** A WherePlan object holds information that describes a lookup
1778 ** strategy.
1779 **
1780 ** This object is intended to be opaque outside of the where.c module.
1781 ** It is included here only so that that compiler will know how big it
1782 ** is.  None of the fields in this object should be used outside of
1783 ** the where.c module.
1784 **
1785 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
1786 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true.  And pVtabIdx
1787 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true.  It is never the
1788 ** case that more than one of these conditions is true.
1789 */
1790 struct WherePlan {
1791   u32 wsFlags;                   /* WHERE_* flags that describe the strategy */
1792   u32 nEq;                       /* Number of == constraints */
1793   union {
1794     Index *pIdx;                   /* Index when WHERE_INDEXED is true */
1795     struct WhereTerm *pTerm;       /* WHERE clause term for OR-search */
1796     sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
1797   } u;
1798 };
1799 
1800 /*
1801 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1802 ** structure contains a single instance of this structure.  This structure
1803 ** is intended to be private the the where.c module and should not be
1804 ** access or modified by other modules.
1805 **
1806 ** The pIdxInfo field is used to help pick the best index on a
1807 ** virtual table.  The pIdxInfo pointer contains indexing
1808 ** information for the i-th table in the FROM clause before reordering.
1809 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1810 ** All other information in the i-th WhereLevel object for the i-th table
1811 ** after FROM clause ordering.
1812 */
1813 struct WhereLevel {
1814   WherePlan plan;       /* query plan for this element of the FROM clause */
1815   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
1816   int iTabCur;          /* The VDBE cursor used to access the table */
1817   int iIdxCur;          /* The VDBE cursor used to access pIdx */
1818   int addrBrk;          /* Jump here to break out of the loop */
1819   int addrNxt;          /* Jump here to start the next IN combination */
1820   int addrCont;         /* Jump here to continue with the next loop cycle */
1821   int addrFirst;        /* First instruction of interior of the loop */
1822   u8 iFrom;             /* Which entry in the FROM clause */
1823   u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
1824   int p1, p2;           /* Operands of the opcode used to ends the loop */
1825   union {               /* Information that depends on plan.wsFlags */
1826     struct {
1827       int nIn;              /* Number of entries in aInLoop[] */
1828       struct InLoop {
1829         int iCur;              /* The VDBE cursor used by this IN operator */
1830         int addrInTop;         /* Top of the IN loop */
1831       } *aInLoop;           /* Information about each nested IN operator */
1832     } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
1833   } u;
1834 
1835   /* The following field is really not part of the current level.  But
1836   ** we need a place to cache virtual table index information for each
1837   ** virtual table in the FROM clause and the WhereLevel structure is
1838   ** a convenient place since there is one WhereLevel for each FROM clause
1839   ** element.
1840   */
1841   sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
1842 };
1843 
1844 /*
1845 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
1846 ** and the WhereInfo.wctrlFlags member.
1847 */
1848 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
1849 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
1850 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
1851 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
1852 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
1853 #define WHERE_OMIT_OPEN        0x0010 /* Table cursor are already open */
1854 #define WHERE_OMIT_CLOSE       0x0020 /* Omit close of table & index cursors */
1855 #define WHERE_FORCE_TABLE      0x0040 /* Do not use an index-only search */
1856 
1857 /*
1858 ** The WHERE clause processing routine has two halves.  The
1859 ** first part does the start of the WHERE loop and the second
1860 ** half does the tail of the WHERE loop.  An instance of
1861 ** this structure is returned by the first half and passed
1862 ** into the second half to give some continuity.
1863 */
1864 struct WhereInfo {
1865   Parse *pParse;       /* Parsing and code generating context */
1866   u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
1867   u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
1868   SrcList *pTabList;             /* List of tables in the join */
1869   int iTop;                      /* The very beginning of the WHERE loop */
1870   int iContinue;                 /* Jump here to continue with next record */
1871   int iBreak;                    /* Jump here to break out of the loop */
1872   int nLevel;                    /* Number of nested loop */
1873   struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
1874   WhereLevel a[1];               /* Information about each nest loop in WHERE */
1875 };
1876 
1877 /*
1878 ** A NameContext defines a context in which to resolve table and column
1879 ** names.  The context consists of a list of tables (the pSrcList) field and
1880 ** a list of named expression (pEList).  The named expression list may
1881 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
1882 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
1883 ** pEList corresponds to the result set of a SELECT and is NULL for
1884 ** other statements.
1885 **
1886 ** NameContexts can be nested.  When resolving names, the inner-most
1887 ** context is searched first.  If no match is found, the next outer
1888 ** context is checked.  If there is still no match, the next context
1889 ** is checked.  This process continues until either a match is found
1890 ** or all contexts are check.  When a match is found, the nRef member of
1891 ** the context containing the match is incremented.
1892 **
1893 ** Each subquery gets a new NameContext.  The pNext field points to the
1894 ** NameContext in the parent query.  Thus the process of scanning the
1895 ** NameContext list corresponds to searching through successively outer
1896 ** subqueries looking for a match.
1897 */
1898 struct NameContext {
1899   Parse *pParse;       /* The parser */
1900   SrcList *pSrcList;   /* One or more tables used to resolve names */
1901   ExprList *pEList;    /* Optional list of named expressions */
1902   int nRef;            /* Number of names resolved by this context */
1903   int nErr;            /* Number of errors encountered while resolving names */
1904   u8 allowAgg;         /* Aggregate functions allowed here */
1905   u8 hasAgg;           /* True if aggregates are seen */
1906   u8 isCheck;          /* True if resolving names in a CHECK constraint */
1907   int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
1908   AggInfo *pAggInfo;   /* Information about aggregates at this level */
1909   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
1910 };
1911 
1912 /*
1913 ** An instance of the following structure contains all information
1914 ** needed to generate code for a single SELECT statement.
1915 **
1916 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
1917 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
1918 ** limit and nOffset to the value of the offset (or 0 if there is not
1919 ** offset).  But later on, nLimit and nOffset become the memory locations
1920 ** in the VDBE that record the limit and offset counters.
1921 **
1922 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
1923 ** These addresses must be stored so that we can go back and fill in
1924 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
1925 ** the number of columns in P2 can be computed at the same time
1926 ** as the OP_OpenEphm instruction is coded because not
1927 ** enough information about the compound query is known at that point.
1928 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
1929 ** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
1930 ** sequences for the ORDER BY clause.
1931 */
1932 struct Select {
1933   ExprList *pEList;      /* The fields of the result */
1934   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
1935   char affinity;         /* MakeRecord with this affinity for SRT_Set */
1936   u16 selFlags;          /* Various SF_* values */
1937   SrcList *pSrc;         /* The FROM clause */
1938   Expr *pWhere;          /* The WHERE clause */
1939   ExprList *pGroupBy;    /* The GROUP BY clause */
1940   Expr *pHaving;         /* The HAVING clause */
1941   ExprList *pOrderBy;    /* The ORDER BY clause */
1942   Select *pPrior;        /* Prior select in a compound select statement */
1943   Select *pNext;         /* Next select to the left in a compound */
1944   Select *pRightmost;    /* Right-most select in a compound select statement */
1945   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
1946   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
1947   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
1948   int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
1949 };
1950 
1951 /*
1952 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
1953 ** "Select Flag".
1954 */
1955 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
1956 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
1957 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
1958 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
1959 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
1960 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
1961 
1962 
1963 /*
1964 ** The results of a select can be distributed in several ways.  The
1965 ** "SRT" prefix means "SELECT Result Type".
1966 */
1967 #define SRT_Union        1  /* Store result as keys in an index */
1968 #define SRT_Except       2  /* Remove result from a UNION index */
1969 #define SRT_Exists       3  /* Store 1 if the result is not empty */
1970 #define SRT_Discard      4  /* Do not save the results anywhere */
1971 
1972 /* The ORDER BY clause is ignored for all of the above */
1973 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
1974 
1975 #define SRT_Output       5  /* Output each row of result */
1976 #define SRT_Mem          6  /* Store result in a memory cell */
1977 #define SRT_Set          7  /* Store results as keys in an index */
1978 #define SRT_Table        8  /* Store result as data with an automatic rowid */
1979 #define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
1980 #define SRT_Coroutine   10  /* Generate a single row of result */
1981 
1982 /*
1983 ** A structure used to customize the behavior of sqlite3Select(). See
1984 ** comments above sqlite3Select() for details.
1985 */
1986 typedef struct SelectDest SelectDest;
1987 struct SelectDest {
1988   u8 eDest;         /* How to dispose of the results */
1989   u8 affinity;      /* Affinity used when eDest==SRT_Set */
1990   int iParm;        /* A parameter used by the eDest disposal method */
1991   int iMem;         /* Base register where results are written */
1992   int nMem;         /* Number of registers allocated */
1993 };
1994 
1995 /*
1996 ** During code generation of statements that do inserts into AUTOINCREMENT
1997 ** tables, the following information is attached to the Table.u.autoInc.p
1998 ** pointer of each autoincrement table to record some side information that
1999 ** the code generator needs.  We have to keep per-table autoincrement
2000 ** information in case inserts are down within triggers.  Triggers do not
2001 ** normally coordinate their activities, but we do need to coordinate the
2002 ** loading and saving of autoincrement information.
2003 */
2004 struct AutoincInfo {
2005   AutoincInfo *pNext;   /* Next info block in a list of them all */
2006   Table *pTab;          /* Table this info block refers to */
2007   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2008   int regCtr;           /* Memory register holding the rowid counter */
2009 };
2010 
2011 /*
2012 ** Size of the column cache
2013 */
2014 #ifndef SQLITE_N_COLCACHE
2015 # define SQLITE_N_COLCACHE 10
2016 #endif
2017 
2018 /*
2019 ** An SQL parser context.  A copy of this structure is passed through
2020 ** the parser and down into all the parser action routine in order to
2021 ** carry around information that is global to the entire parse.
2022 **
2023 ** The structure is divided into two parts.  When the parser and code
2024 ** generate call themselves recursively, the first part of the structure
2025 ** is constant but the second part is reset at the beginning and end of
2026 ** each recursion.
2027 **
2028 ** The nTableLock and aTableLock variables are only used if the shared-cache
2029 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2030 ** used to store the set of table-locks required by the statement being
2031 ** compiled. Function sqlite3TableLock() is used to add entries to the
2032 ** list.
2033 */
2034 struct Parse {
2035   sqlite3 *db;         /* The main database structure */
2036   int rc;              /* Return code from execution */
2037   char *zErrMsg;       /* An error message */
2038   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2039   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2040   u8 nameClash;        /* A permanent table name clashes with temp table name */
2041   u8 checkSchema;      /* Causes schema cookie check after an error */
2042   u8 nested;           /* Number of nested calls to the parser/code generator */
2043   u8 parseError;       /* True after a parsing error.  Ticket #1794 */
2044   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2045   u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
2046   int aTempReg[8];     /* Holding area for temporary registers */
2047   int nRangeReg;       /* Size of the temporary register block */
2048   int iRangeReg;       /* First register in temporary register block */
2049   int nErr;            /* Number of errors seen */
2050   int nTab;            /* Number of previously allocated VDBE cursors */
2051   int nMem;            /* Number of memory cells used so far */
2052   int nSet;            /* Number of sets used so far */
2053   int ckBase;          /* Base register of data during check constraints */
2054   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2055   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2056   u8 nColCache;        /* Number of entries in the column cache */
2057   u8 iColCache;        /* Next entry of the cache to replace */
2058   struct yColCache {
2059     int iTable;           /* Table cursor number */
2060     int iColumn;          /* Table column number */
2061     u8 affChange;         /* True if this register has had an affinity change */
2062     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2063     int iLevel;           /* Nesting level */
2064     int iReg;             /* Reg with value of this column. 0 means none. */
2065     int lru;              /* Least recently used entry has the smallest value */
2066   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2067   u32 writeMask;       /* Start a write transaction on these databases */
2068   u32 cookieMask;      /* Bitmask of schema verified databases */
2069   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
2070   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2071 #ifndef SQLITE_OMIT_SHARED_CACHE
2072   int nTableLock;        /* Number of locks in aTableLock */
2073   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2074 #endif
2075   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2076   int regRoot;         /* Register holding root page number for new objects */
2077   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2078 
2079   /* Above is constant between recursions.  Below is reset before and after
2080   ** each recursion */
2081 
2082   int nVar;            /* Number of '?' variables seen in the SQL so far */
2083   int nVarExpr;        /* Number of used slots in apVarExpr[] */
2084   int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
2085   Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
2086   int nAlias;          /* Number of aliased result set columns */
2087   int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
2088   int *aAlias;         /* Register used to hold aliased result */
2089   u8 explain;          /* True if the EXPLAIN flag is found on the query */
2090   Token sNameToken;    /* Token with unqualified schema object name */
2091   Token sLastToken;    /* The last token parsed */
2092   const char *zTail;   /* All SQL text past the last semicolon parsed */
2093   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
2094   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2095   TriggerStack *trigStack;  /* Trigger actions being coded */
2096   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2097 #ifndef SQLITE_OMIT_VIRTUALTABLE
2098   Token sArg;                /* Complete text of a module argument */
2099   u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
2100   int nVtabLock;             /* Number of virtual tables to lock */
2101   Table **apVtabLock;        /* Pointer to virtual tables needing locking */
2102 #endif
2103   int nHeight;            /* Expression tree height of current sub-select */
2104   Table *pZombieTab;      /* List of Table objects to delete after code gen */
2105 };
2106 
2107 #ifdef SQLITE_OMIT_VIRTUALTABLE
2108   #define IN_DECLARE_VTAB 0
2109 #else
2110   #define IN_DECLARE_VTAB (pParse->declareVtab)
2111 #endif
2112 
2113 /*
2114 ** An instance of the following structure can be declared on a stack and used
2115 ** to save the Parse.zAuthContext value so that it can be restored later.
2116 */
2117 struct AuthContext {
2118   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2119   Parse *pParse;              /* The Parse structure */
2120 };
2121 
2122 /*
2123 ** Bitfield flags for P5 value in OP_Insert and OP_Delete
2124 */
2125 #define OPFLAG_NCHANGE    1    /* Set to update db->nChange */
2126 #define OPFLAG_LASTROWID  2    /* Set to update db->lastRowid */
2127 #define OPFLAG_ISUPDATE   4    /* This OP_Insert is an sql UPDATE */
2128 #define OPFLAG_APPEND     8    /* This is likely to be an append */
2129 #define OPFLAG_USESEEKRESULT 16    /* Try to avoid a seek in BtreeInsert() */
2130 
2131 /*
2132  * Each trigger present in the database schema is stored as an instance of
2133  * struct Trigger.
2134  *
2135  * Pointers to instances of struct Trigger are stored in two ways.
2136  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2137  *    database). This allows Trigger structures to be retrieved by name.
2138  * 2. All triggers associated with a single table form a linked list, using the
2139  *    pNext member of struct Trigger. A pointer to the first element of the
2140  *    linked list is stored as the "pTrigger" member of the associated
2141  *    struct Table.
2142  *
2143  * The "step_list" member points to the first element of a linked list
2144  * containing the SQL statements specified as the trigger program.
2145  */
2146 struct Trigger {
2147   char *name;             /* The name of the trigger                        */
2148   char *table;            /* The table or view to which the trigger applies */
2149   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2150   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2151   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2152   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2153                              the <column-list> is stored here */
2154   Schema *pSchema;        /* Schema containing the trigger */
2155   Schema *pTabSchema;     /* Schema containing the table */
2156   TriggerStep *step_list; /* Link list of trigger program steps             */
2157   Trigger *pNext;         /* Next trigger associated with the table */
2158 };
2159 
2160 /*
2161 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2162 ** determine which.
2163 **
2164 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2165 ** In that cases, the constants below can be ORed together.
2166 */
2167 #define TRIGGER_BEFORE  1
2168 #define TRIGGER_AFTER   2
2169 
2170 /*
2171  * An instance of struct TriggerStep is used to store a single SQL statement
2172  * that is a part of a trigger-program.
2173  *
2174  * Instances of struct TriggerStep are stored in a singly linked list (linked
2175  * using the "pNext" member) referenced by the "step_list" member of the
2176  * associated struct Trigger instance. The first element of the linked list is
2177  * the first step of the trigger-program.
2178  *
2179  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2180  * "SELECT" statement. The meanings of the other members is determined by the
2181  * value of "op" as follows:
2182  *
2183  * (op == TK_INSERT)
2184  * orconf    -> stores the ON CONFLICT algorithm
2185  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2186  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2187  * target    -> A token holding the quoted name of the table to insert into.
2188  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2189  *              this stores values to be inserted. Otherwise NULL.
2190  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2191  *              statement, then this stores the column-names to be
2192  *              inserted into.
2193  *
2194  * (op == TK_DELETE)
2195  * target    -> A token holding the quoted name of the table to delete from.
2196  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2197  *              Otherwise NULL.
2198  *
2199  * (op == TK_UPDATE)
2200  * target    -> A token holding the quoted name of the table to update rows of.
2201  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2202  *              Otherwise NULL.
2203  * pExprList -> A list of the columns to update and the expressions to update
2204  *              them to. See sqlite3Update() documentation of "pChanges"
2205  *              argument.
2206  *
2207  */
2208 struct TriggerStep {
2209   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2210   u8 orconf;           /* OE_Rollback etc. */
2211   Trigger *pTrig;      /* The trigger that this step is a part of */
2212   Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2213   Token target;        /* Target table for DELETE, UPDATE, INSERT */
2214   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2215   ExprList *pExprList; /* SET clause for UPDATE.  VALUES clause for INSERT */
2216   IdList *pIdList;     /* Column names for INSERT */
2217   TriggerStep *pNext;  /* Next in the link-list */
2218   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2219 };
2220 
2221 /*
2222  * An instance of struct TriggerStack stores information required during code
2223  * generation of a single trigger program. While the trigger program is being
2224  * coded, its associated TriggerStack instance is pointed to by the
2225  * "pTriggerStack" member of the Parse structure.
2226  *
2227  * The pTab member points to the table that triggers are being coded on. The
2228  * newIdx member contains the index of the vdbe cursor that points at the temp
2229  * table that stores the new.* references. If new.* references are not valid
2230  * for the trigger being coded (for example an ON DELETE trigger), then newIdx
2231  * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
2232  *
2233  * The ON CONFLICT policy to be used for the trigger program steps is stored
2234  * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
2235  * specified for individual triggers steps is used.
2236  *
2237  * struct TriggerStack has a "pNext" member, to allow linked lists to be
2238  * constructed. When coding nested triggers (triggers fired by other triggers)
2239  * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
2240  * pointer. Once the nested trigger has been coded, the pNext value is restored
2241  * to the pTriggerStack member of the Parse stucture and coding of the parent
2242  * trigger continues.
2243  *
2244  * Before a nested trigger is coded, the linked list pointed to by the
2245  * pTriggerStack is scanned to ensure that the trigger is not about to be coded
2246  * recursively. If this condition is detected, the nested trigger is not coded.
2247  */
2248 struct TriggerStack {
2249   Table *pTab;         /* Table that triggers are currently being coded on */
2250   int newIdx;          /* Index of vdbe cursor to "new" temp table */
2251   int oldIdx;          /* Index of vdbe cursor to "old" temp table */
2252   u32 newColMask;
2253   u32 oldColMask;
2254   int orconf;          /* Current orconf policy */
2255   int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
2256   Trigger *pTrigger;   /* The trigger currently being coded */
2257   TriggerStack *pNext; /* Next trigger down on the trigger stack */
2258 };
2259 
2260 /*
2261 ** The following structure contains information used by the sqliteFix...
2262 ** routines as they walk the parse tree to make database references
2263 ** explicit.
2264 */
2265 typedef struct DbFixer DbFixer;
2266 struct DbFixer {
2267   Parse *pParse;      /* The parsing context.  Error messages written here */
2268   const char *zDb;    /* Make sure all objects are contained in this database */
2269   const char *zType;  /* Type of the container - used for error messages */
2270   const Token *pName; /* Name of the container - used for error messages */
2271 };
2272 
2273 /*
2274 ** An objected used to accumulate the text of a string where we
2275 ** do not necessarily know how big the string will be in the end.
2276 */
2277 struct StrAccum {
2278   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2279   char *zBase;         /* A base allocation.  Not from malloc. */
2280   char *zText;         /* The string collected so far */
2281   int  nChar;          /* Length of the string so far */
2282   int  nAlloc;         /* Amount of space allocated in zText */
2283   int  mxAlloc;        /* Maximum allowed string length */
2284   u8   mallocFailed;   /* Becomes true if any memory allocation fails */
2285   u8   useMalloc;      /* True if zText is enlargeable using realloc */
2286   u8   tooBig;         /* Becomes true if string size exceeds limits */
2287 };
2288 
2289 /*
2290 ** A pointer to this structure is used to communicate information
2291 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2292 */
2293 typedef struct {
2294   sqlite3 *db;        /* The database being initialized */
2295   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2296   char **pzErrMsg;    /* Error message stored here */
2297   int rc;             /* Result code stored here */
2298 } InitData;
2299 
2300 /*
2301 ** Structure containing global configuration data for the SQLite library.
2302 **
2303 ** This structure also contains some state information.
2304 */
2305 struct Sqlite3Config {
2306   int bMemstat;                     /* True to enable memory status */
2307   int bCoreMutex;                   /* True to enable core mutexing */
2308   int bFullMutex;                   /* True to enable full mutexing */
2309   int mxStrlen;                     /* Maximum string length */
2310   int szLookaside;                  /* Default lookaside buffer size */
2311   int nLookaside;                   /* Default lookaside buffer count */
2312   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2313   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2314   sqlite3_pcache_methods pcache;    /* Low-level page-cache interface */
2315   void *pHeap;                      /* Heap storage space */
2316   int nHeap;                        /* Size of pHeap[] */
2317   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2318   void *pScratch;                   /* Scratch memory */
2319   int szScratch;                    /* Size of each scratch buffer */
2320   int nScratch;                     /* Number of scratch buffers */
2321   void *pPage;                      /* Page cache memory */
2322   int szPage;                       /* Size of each page in pPage[] */
2323   int nPage;                        /* Number of pages in pPage[] */
2324   int mxParserStack;                /* maximum depth of the parser stack */
2325   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2326   /* The above might be initialized to non-zero.  The following need to always
2327   ** initially be zero, however. */
2328   int isInit;                       /* True after initialization has finished */
2329   int inProgress;                   /* True while initialization in progress */
2330   int isMutexInit;                  /* True after mutexes are initialized */
2331   int isMallocInit;                 /* True after malloc is initialized */
2332   int isPCacheInit;                 /* True after malloc is initialized */
2333   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2334   int nRefInitMutex;                /* Number of users of pInitMutex */
2335 };
2336 
2337 /*
2338 ** Context pointer passed down through the tree-walk.
2339 */
2340 struct Walker {
2341   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2342   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2343   Parse *pParse;                            /* Parser context.  */
2344   union {                                   /* Extra data for callback */
2345     NameContext *pNC;                          /* Naming context */
2346     int i;                                     /* Integer value */
2347   } u;
2348 };
2349 
2350 /* Forward declarations */
2351 int sqlite3WalkExpr(Walker*, Expr*);
2352 int sqlite3WalkExprList(Walker*, ExprList*);
2353 int sqlite3WalkSelect(Walker*, Select*);
2354 int sqlite3WalkSelectExpr(Walker*, Select*);
2355 int sqlite3WalkSelectFrom(Walker*, Select*);
2356 
2357 /*
2358 ** Return code from the parse-tree walking primitives and their
2359 ** callbacks.
2360 */
2361 #define WRC_Continue    0   /* Continue down into children */
2362 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2363 #define WRC_Abort       2   /* Abandon the tree walk */
2364 
2365 /*
2366 ** Assuming zIn points to the first byte of a UTF-8 character,
2367 ** advance zIn to point to the first byte of the next UTF-8 character.
2368 */
2369 #define SQLITE_SKIP_UTF8(zIn) {                        \
2370   if( (*(zIn++))>=0xc0 ){                              \
2371     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2372   }                                                    \
2373 }
2374 
2375 /*
2376 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
2377 ** builds) or a function call (for debugging).  If it is a function call,
2378 ** it allows the operator to set a breakpoint at the spot where database
2379 ** corruption is first detected.
2380 */
2381 #ifdef SQLITE_DEBUG
2382   int sqlite3Corrupt(void);
2383 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
2384 #else
2385 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
2386 #endif
2387 
2388 /*
2389 ** The ctype.h header is needed for non-ASCII systems.  It is also
2390 ** needed by FTS3 when FTS3 is included in the amalgamation.
2391 */
2392 #if !defined(SQLITE_ASCII) || \
2393     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2394 # include <ctype.h>
2395 #endif
2396 
2397 /*
2398 ** The following macros mimic the standard library functions toupper(),
2399 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2400 ** sqlite versions only work for ASCII characters, regardless of locale.
2401 */
2402 #ifdef SQLITE_ASCII
2403 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2404 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2405 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2406 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2407 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2408 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2409 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
2410 #else
2411 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
2412 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
2413 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
2414 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
2415 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
2416 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
2417 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
2418 #endif
2419 
2420 /*
2421 ** Internal function prototypes
2422 */
2423 int sqlite3StrICmp(const char *, const char *);
2424 int sqlite3IsNumber(const char*, int*, u8);
2425 int sqlite3Strlen30(const char*);
2426 #define sqlite3StrNICmp sqlite3_strnicmp
2427 
2428 int sqlite3MallocInit(void);
2429 void sqlite3MallocEnd(void);
2430 void *sqlite3Malloc(int);
2431 void *sqlite3MallocZero(int);
2432 void *sqlite3DbMallocZero(sqlite3*, int);
2433 void *sqlite3DbMallocRaw(sqlite3*, int);
2434 char *sqlite3DbStrDup(sqlite3*,const char*);
2435 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2436 void *sqlite3Realloc(void*, int);
2437 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2438 void *sqlite3DbRealloc(sqlite3 *, void *, int);
2439 void sqlite3DbFree(sqlite3*, void*);
2440 int sqlite3MallocSize(void*);
2441 int sqlite3DbMallocSize(sqlite3*, void*);
2442 void *sqlite3ScratchMalloc(int);
2443 void sqlite3ScratchFree(void*);
2444 void *sqlite3PageMalloc(int);
2445 void sqlite3PageFree(void*);
2446 void sqlite3MemSetDefault(void);
2447 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2448 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64);
2449 
2450 /*
2451 ** On systems with ample stack space and that support alloca(), make
2452 ** use of alloca() to obtain space for large automatic objects.  By default,
2453 ** obtain space from malloc().
2454 **
2455 ** The alloca() routine never returns NULL.  This will cause code paths
2456 ** that deal with sqlite3StackAlloc() failures to be unreachable.
2457 */
2458 #ifdef SQLITE_USE_ALLOCA
2459 # define sqlite3StackAllocRaw(D,N)   alloca(N)
2460 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
2461 # define sqlite3StackFree(D,P)
2462 #else
2463 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
2464 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
2465 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
2466 #endif
2467 
2468 #ifdef SQLITE_ENABLE_MEMSYS3
2469 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
2470 #endif
2471 #ifdef SQLITE_ENABLE_MEMSYS5
2472 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
2473 #endif
2474 
2475 
2476 #ifndef SQLITE_MUTEX_OMIT
2477   sqlite3_mutex_methods *sqlite3DefaultMutex(void);
2478   sqlite3_mutex *sqlite3MutexAlloc(int);
2479   int sqlite3MutexInit(void);
2480   int sqlite3MutexEnd(void);
2481 #endif
2482 
2483 int sqlite3StatusValue(int);
2484 void sqlite3StatusAdd(int, int);
2485 void sqlite3StatusSet(int, int);
2486 
2487 int sqlite3IsNaN(double);
2488 
2489 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
2490 char *sqlite3MPrintf(sqlite3*,const char*, ...);
2491 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
2492 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
2493 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
2494   void sqlite3DebugPrintf(const char*, ...);
2495 #endif
2496 #if defined(SQLITE_TEST)
2497   void *sqlite3TestTextToPtr(const char*);
2498 #endif
2499 void sqlite3SetString(char **, sqlite3*, const char*, ...);
2500 void sqlite3ErrorMsg(Parse*, const char*, ...);
2501 void sqlite3ErrorClear(Parse*);
2502 int sqlite3Dequote(char*);
2503 int sqlite3KeywordCode(const unsigned char*, int);
2504 int sqlite3RunParser(Parse*, const char*, char **);
2505 void sqlite3FinishCoding(Parse*);
2506 int sqlite3GetTempReg(Parse*);
2507 void sqlite3ReleaseTempReg(Parse*,int);
2508 int sqlite3GetTempRange(Parse*,int);
2509 void sqlite3ReleaseTempRange(Parse*,int,int);
2510 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
2511 Expr *sqlite3Expr(sqlite3*,int,const char*);
2512 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
2513 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
2514 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
2515 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
2516 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
2517 void sqlite3ExprClear(sqlite3*, Expr*);
2518 void sqlite3ExprDelete(sqlite3*, Expr*);
2519 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
2520 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
2521 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
2522 void sqlite3ExprListDelete(sqlite3*, ExprList*);
2523 int sqlite3Init(sqlite3*, char**);
2524 int sqlite3InitCallback(void*, int, char**, char**);
2525 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
2526 void sqlite3ResetInternalSchema(sqlite3*, int);
2527 void sqlite3BeginParse(Parse*,int);
2528 void sqlite3CommitInternalChanges(sqlite3*);
2529 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
2530 void sqlite3OpenMasterTable(Parse *, int);
2531 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
2532 void sqlite3AddColumn(Parse*,Token*);
2533 void sqlite3AddNotNull(Parse*, int);
2534 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
2535 void sqlite3AddCheckConstraint(Parse*, Expr*);
2536 void sqlite3AddColumnType(Parse*,Token*);
2537 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
2538 void sqlite3AddCollateType(Parse*, Token*);
2539 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
2540 
2541 Bitvec *sqlite3BitvecCreate(u32);
2542 int sqlite3BitvecTest(Bitvec*, u32);
2543 int sqlite3BitvecSet(Bitvec*, u32);
2544 void sqlite3BitvecClear(Bitvec*, u32, void*);
2545 void sqlite3BitvecDestroy(Bitvec*);
2546 u32 sqlite3BitvecSize(Bitvec*);
2547 int sqlite3BitvecBuiltinTest(int,int*);
2548 
2549 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
2550 void sqlite3RowSetClear(RowSet*);
2551 void sqlite3RowSetInsert(RowSet*, i64);
2552 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
2553 int sqlite3RowSetNext(RowSet*, i64*);
2554 
2555 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
2556 
2557 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2558   int sqlite3ViewGetColumnNames(Parse*,Table*);
2559 #else
2560 # define sqlite3ViewGetColumnNames(A,B) 0
2561 #endif
2562 
2563 void sqlite3DropTable(Parse*, SrcList*, int, int);
2564 void sqlite3DeleteTable(Table*);
2565 #ifndef SQLITE_OMIT_AUTOINCREMENT
2566   void sqlite3AutoincrementBegin(Parse *pParse);
2567   void sqlite3AutoincrementEnd(Parse *pParse);
2568 #else
2569 # define sqlite3AutoincrementBegin(X)
2570 # define sqlite3AutoincrementEnd(X)
2571 #endif
2572 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
2573 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
2574 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
2575 int sqlite3IdListIndex(IdList*,const char*);
2576 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
2577 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
2578 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
2579                                       Token*, Select*, Expr*, IdList*);
2580 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
2581 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
2582 void sqlite3SrcListShiftJoinType(SrcList*);
2583 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
2584 void sqlite3IdListDelete(sqlite3*, IdList*);
2585 void sqlite3SrcListDelete(sqlite3*, SrcList*);
2586 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
2587                         Token*, int, int);
2588 void sqlite3DropIndex(Parse*, SrcList*, int);
2589 int sqlite3Select(Parse*, Select*, SelectDest*);
2590 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
2591                          Expr*,ExprList*,int,Expr*,Expr*);
2592 void sqlite3SelectDelete(sqlite3*, Select*);
2593 Table *sqlite3SrcListLookup(Parse*, SrcList*);
2594 int sqlite3IsReadOnly(Parse*, Table*, int);
2595 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
2596 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
2597 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
2598 #endif
2599 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2600 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
2601 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
2602 void sqlite3WhereEnd(WhereInfo*);
2603 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
2604 void sqlite3ExprCodeMove(Parse*, int, int, int);
2605 void sqlite3ExprCodeCopy(Parse*, int, int, int);
2606 void sqlite3ExprCacheStore(Parse*, int, int, int);
2607 void sqlite3ExprCachePush(Parse*);
2608 void sqlite3ExprCachePop(Parse*, int);
2609 void sqlite3ExprCacheRemove(Parse*, int);
2610 void sqlite3ExprCacheClear(Parse*);
2611 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2612 void sqlite3ExprHardCopy(Parse*,int,int);
2613 int sqlite3ExprCode(Parse*, Expr*, int);
2614 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2615 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2616 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2617 void sqlite3ExprCodeConstants(Parse*, Expr*);
2618 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2619 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2620 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2621 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2622 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2623 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2624 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2625 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2626 void sqlite3Vacuum(Parse*);
2627 int sqlite3RunVacuum(char**, sqlite3*);
2628 char *sqlite3NameFromToken(sqlite3*, Token*);
2629 int sqlite3ExprCompare(Expr*, Expr*);
2630 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2631 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2632 Vdbe *sqlite3GetVdbe(Parse*);
2633 Expr *sqlite3CreateIdExpr(Parse *, const char*);
2634 void sqlite3PrngSaveState(void);
2635 void sqlite3PrngRestoreState(void);
2636 void sqlite3PrngResetState(void);
2637 void sqlite3RollbackAll(sqlite3*);
2638 void sqlite3CodeVerifySchema(Parse*, int);
2639 void sqlite3BeginTransaction(Parse*, int);
2640 void sqlite3CommitTransaction(Parse*);
2641 void sqlite3RollbackTransaction(Parse*);
2642 void sqlite3Savepoint(Parse*, int, Token*);
2643 void sqlite3CloseSavepoints(sqlite3 *);
2644 int sqlite3ExprIsConstant(Expr*);
2645 int sqlite3ExprIsConstantNotJoin(Expr*);
2646 int sqlite3ExprIsConstantOrFunction(Expr*);
2647 int sqlite3ExprIsInteger(Expr*, int*);
2648 int sqlite3IsRowid(const char*);
2649 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
2650 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2651 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2652 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2653                                      int*,int,int,int,int,int*);
2654 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int,int,int);
2655 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2656 void sqlite3BeginWriteOperation(Parse*, int, int);
2657 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
2658 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
2659 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
2660 IdList *sqlite3IdListDup(sqlite3*,IdList*);
2661 Select *sqlite3SelectDup(sqlite3*,Select*,int);
2662 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
2663 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
2664 void sqlite3RegisterBuiltinFunctions(sqlite3*);
2665 void sqlite3RegisterDateTimeFunctions(void);
2666 void sqlite3RegisterGlobalFunctions(void);
2667 #ifdef SQLITE_DEBUG
2668   int sqlite3SafetyOn(sqlite3*);
2669   int sqlite3SafetyOff(sqlite3*);
2670 #else
2671 # define sqlite3SafetyOn(A) 0
2672 # define sqlite3SafetyOff(A) 0
2673 #endif
2674 int sqlite3SafetyCheckOk(sqlite3*);
2675 int sqlite3SafetyCheckSickOrOk(sqlite3*);
2676 void sqlite3ChangeCookie(Parse*, int);
2677 
2678 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
2679 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
2680 #endif
2681 
2682 #ifndef SQLITE_OMIT_TRIGGER
2683   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2684                            Expr*,int, int);
2685   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2686   void sqlite3DropTrigger(Parse*, SrcList*, int);
2687   void sqlite3DropTriggerPtr(Parse*, Trigger*);
2688   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
2689   Trigger *sqlite3TriggerList(Parse *, Table *);
2690   int sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
2691                             int, int, int, int, u32*, u32*);
2692   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2693   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2694   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2695   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2696                                         ExprList*,Select*,u8);
2697   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
2698   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2699   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2700   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2701 #else
2702 # define sqlite3TriggersExist(B,C,D,E,F) 0
2703 # define sqlite3DeleteTrigger(A,B)
2704 # define sqlite3DropTriggerPtr(A,B)
2705 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2706 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K,L) 0
2707 # define sqlite3TriggerList(X, Y) 0
2708 #endif
2709 
2710 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2711 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2712 void sqlite3DeferForeignKey(Parse*, int);
2713 #ifndef SQLITE_OMIT_AUTHORIZATION
2714   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2715   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2716   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2717   void sqlite3AuthContextPop(AuthContext*);
2718 #else
2719 # define sqlite3AuthRead(a,b,c,d)
2720 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
2721 # define sqlite3AuthContextPush(a,b,c)
2722 # define sqlite3AuthContextPop(a)  ((void)(a))
2723 #endif
2724 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2725 void sqlite3Detach(Parse*, Expr*);
2726 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
2727                        int omitJournal, int nCache, int flags, Btree **ppBtree);
2728 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2729 int sqlite3FixSrcList(DbFixer*, SrcList*);
2730 int sqlite3FixSelect(DbFixer*, Select*);
2731 int sqlite3FixExpr(DbFixer*, Expr*);
2732 int sqlite3FixExprList(DbFixer*, ExprList*);
2733 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2734 int sqlite3AtoF(const char *z, double*);
2735 int sqlite3GetInt32(const char *, int*);
2736 int sqlite3FitsIn64Bits(const char *, int);
2737 int sqlite3Utf16ByteLen(const void *pData, int nChar);
2738 int sqlite3Utf8CharLen(const char *pData, int nByte);
2739 int sqlite3Utf8Read(const u8*, const u8**);
2740 
2741 /*
2742 ** Routines to read and write variable-length integers.  These used to
2743 ** be defined locally, but now we use the varint routines in the util.c
2744 ** file.  Code should use the MACRO forms below, as the Varint32 versions
2745 ** are coded to assume the single byte case is already handled (which
2746 ** the MACRO form does).
2747 */
2748 int sqlite3PutVarint(unsigned char*, u64);
2749 int sqlite3PutVarint32(unsigned char*, u32);
2750 u8 sqlite3GetVarint(const unsigned char *, u64 *);
2751 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
2752 int sqlite3VarintLen(u64 v);
2753 
2754 /*
2755 ** The header of a record consists of a sequence variable-length integers.
2756 ** These integers are almost always small and are encoded as a single byte.
2757 ** The following macros take advantage this fact to provide a fast encode
2758 ** and decode of the integers in a record header.  It is faster for the common
2759 ** case where the integer is a single byte.  It is a little slower when the
2760 ** integer is two or more bytes.  But overall it is faster.
2761 **
2762 ** The following expressions are equivalent:
2763 **
2764 **     x = sqlite3GetVarint32( A, &B );
2765 **     x = sqlite3PutVarint32( A, B );
2766 **
2767 **     x = getVarint32( A, B );
2768 **     x = putVarint32( A, B );
2769 **
2770 */
2771 #define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
2772 #define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
2773 #define getVarint    sqlite3GetVarint
2774 #define putVarint    sqlite3PutVarint
2775 
2776 
2777 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
2778 void sqlite3TableAffinityStr(Vdbe *, Table *);
2779 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2780 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2781 char sqlite3ExprAffinity(Expr *pExpr);
2782 int sqlite3Atoi64(const char*, i64*);
2783 void sqlite3Error(sqlite3*, int, const char*,...);
2784 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2785 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2786 const char *sqlite3ErrStr(int);
2787 int sqlite3ReadSchema(Parse *pParse);
2788 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
2789 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
2790 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2791 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
2792 int sqlite3CheckCollSeq(Parse *, CollSeq *);
2793 int sqlite3CheckObjectName(Parse *, const char *);
2794 void sqlite3VdbeSetChanges(sqlite3 *, int);
2795 
2796 const void *sqlite3ValueText(sqlite3_value*, u8);
2797 int sqlite3ValueBytes(sqlite3_value*, u8);
2798 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
2799                         void(*)(void*));
2800 void sqlite3ValueFree(sqlite3_value*);
2801 sqlite3_value *sqlite3ValueNew(sqlite3 *);
2802 char *sqlite3Utf16to8(sqlite3 *, const void*, int);
2803 #ifdef SQLITE_ENABLE_STAT2
2804 char *sqlite3Utf8to16(sqlite3 *, int, char *, int, int *);
2805 #endif
2806 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
2807 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
2808 #ifndef SQLITE_AMALGAMATION
2809 extern const unsigned char sqlite3UpperToLower[];
2810 extern const unsigned char sqlite3CtypeMap[];
2811 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
2812 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
2813 extern int sqlite3PendingByte;
2814 #endif
2815 void sqlite3RootPageMoved(Db*, int, int);
2816 void sqlite3Reindex(Parse*, Token*, Token*);
2817 void sqlite3AlterFunctions(sqlite3*);
2818 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
2819 int sqlite3GetToken(const unsigned char *, int *);
2820 void sqlite3NestedParse(Parse*, const char*, ...);
2821 void sqlite3ExpirePreparedStatements(sqlite3*);
2822 void sqlite3CodeSubselect(Parse *, Expr *, int, int);
2823 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
2824 int sqlite3ResolveExprNames(NameContext*, Expr*);
2825 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
2826 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
2827 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
2828 void sqlite3AlterFinishAddColumn(Parse *, Token *);
2829 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
2830 CollSeq *sqlite3GetCollSeq(sqlite3*, int, CollSeq *, const char*);
2831 char sqlite3AffinityType(const char*);
2832 void sqlite3Analyze(Parse*, Token*, Token*);
2833 int sqlite3InvokeBusyHandler(BusyHandler*);
2834 int sqlite3FindDb(sqlite3*, Token*);
2835 int sqlite3FindDbName(sqlite3 *, const char *);
2836 int sqlite3AnalysisLoad(sqlite3*,int iDB);
2837 void sqlite3DeleteIndexSamples(Index*);
2838 void sqlite3DefaultRowEst(Index*);
2839 void sqlite3RegisterLikeFunctions(sqlite3*, int);
2840 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
2841 void sqlite3MinimumFileFormat(Parse*, int, int);
2842 void sqlite3SchemaFree(void *);
2843 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
2844 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
2845 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
2846 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
2847   void (*)(sqlite3_context*,int,sqlite3_value **),
2848   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
2849 int sqlite3ApiExit(sqlite3 *db, int);
2850 int sqlite3OpenTempDatabase(Parse *);
2851 
2852 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
2853 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
2854 char *sqlite3StrAccumFinish(StrAccum*);
2855 void sqlite3StrAccumReset(StrAccum*);
2856 void sqlite3SelectDestInit(SelectDest*,int,int);
2857 
2858 void sqlite3BackupRestart(sqlite3_backup *);
2859 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
2860 
2861 /*
2862 ** The interface to the LEMON-generated parser
2863 */
2864 void *sqlite3ParserAlloc(void*(*)(size_t));
2865 void sqlite3ParserFree(void*, void(*)(void*));
2866 void sqlite3Parser(void*, int, Token, Parse*);
2867 #ifdef YYTRACKMAXSTACKDEPTH
2868   int sqlite3ParserStackPeak(void*);
2869 #endif
2870 
2871 void sqlite3AutoLoadExtensions(sqlite3*);
2872 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2873   void sqlite3CloseExtensions(sqlite3*);
2874 #else
2875 # define sqlite3CloseExtensions(X)
2876 #endif
2877 
2878 #ifndef SQLITE_OMIT_SHARED_CACHE
2879   void sqlite3TableLock(Parse *, int, int, u8, const char *);
2880 #else
2881   #define sqlite3TableLock(v,w,x,y,z)
2882 #endif
2883 
2884 #ifdef SQLITE_TEST
2885   int sqlite3Utf8To8(unsigned char*);
2886 #endif
2887 
2888 #ifdef SQLITE_OMIT_VIRTUALTABLE
2889 #  define sqlite3VtabClear(Y)
2890 #  define sqlite3VtabSync(X,Y) SQLITE_OK
2891 #  define sqlite3VtabRollback(X)
2892 #  define sqlite3VtabCommit(X)
2893 #  define sqlite3VtabInSync(db) 0
2894 #  define sqlite3VtabLock(X)
2895 #  define sqlite3VtabUnlock(X)
2896 #  define sqlite3VtabUnlockList(X)
2897 #else
2898    void sqlite3VtabClear(Table*);
2899    int sqlite3VtabSync(sqlite3 *db, char **);
2900    int sqlite3VtabRollback(sqlite3 *db);
2901    int sqlite3VtabCommit(sqlite3 *db);
2902    void sqlite3VtabLock(VTable *);
2903    void sqlite3VtabUnlock(VTable *);
2904    void sqlite3VtabUnlockList(sqlite3*);
2905 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
2906 #endif
2907 void sqlite3VtabMakeWritable(Parse*,Table*);
2908 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
2909 void sqlite3VtabFinishParse(Parse*, Token*);
2910 void sqlite3VtabArgInit(Parse*);
2911 void sqlite3VtabArgExtend(Parse*, Token*);
2912 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
2913 int sqlite3VtabCallConnect(Parse*, Table*);
2914 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
2915 int sqlite3VtabBegin(sqlite3 *, VTable *);
2916 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
2917 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
2918 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
2919 int sqlite3Reprepare(Vdbe*);
2920 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
2921 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
2922 int sqlite3TempInMemory(const sqlite3*);
2923 VTable *sqlite3GetVTable(sqlite3*, Table*);
2924 
2925 
2926 
2927 /*
2928 ** Available fault injectors.  Should be numbered beginning with 0.
2929 */
2930 #define SQLITE_FAULTINJECTOR_MALLOC     0
2931 #define SQLITE_FAULTINJECTOR_COUNT      1
2932 
2933 /*
2934 ** The interface to the code in fault.c used for identifying "benign"
2935 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
2936 ** is not defined.
2937 */
2938 #ifndef SQLITE_OMIT_BUILTIN_TEST
2939   void sqlite3BeginBenignMalloc(void);
2940   void sqlite3EndBenignMalloc(void);
2941 #else
2942   #define sqlite3BeginBenignMalloc()
2943   #define sqlite3EndBenignMalloc()
2944 #endif
2945 
2946 #define IN_INDEX_ROWID           1
2947 #define IN_INDEX_EPH             2
2948 #define IN_INDEX_INDEX           3
2949 int sqlite3FindInIndex(Parse *, Expr *, int*);
2950 
2951 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
2952   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
2953   int sqlite3JournalSize(sqlite3_vfs *);
2954   int sqlite3JournalCreate(sqlite3_file *);
2955 #else
2956   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
2957 #endif
2958 
2959 void sqlite3MemJournalOpen(sqlite3_file *);
2960 int sqlite3MemJournalSize(void);
2961 int sqlite3IsMemJournal(sqlite3_file *);
2962 
2963 #if SQLITE_MAX_EXPR_DEPTH>0
2964   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
2965   int sqlite3SelectExprHeight(Select *);
2966   int sqlite3ExprCheckHeight(Parse*, int);
2967 #else
2968   #define sqlite3ExprSetHeight(x,y)
2969   #define sqlite3SelectExprHeight(x) 0
2970   #define sqlite3ExprCheckHeight(x,y)
2971 #endif
2972 
2973 u32 sqlite3Get4byte(const u8*);
2974 void sqlite3Put4byte(u8*, u32);
2975 
2976 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
2977   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
2978   void sqlite3ConnectionUnlocked(sqlite3 *db);
2979   void sqlite3ConnectionClosed(sqlite3 *db);
2980 #else
2981   #define sqlite3ConnectionBlocked(x,y)
2982   #define sqlite3ConnectionUnlocked(x)
2983   #define sqlite3ConnectionClosed(x)
2984 #endif
2985 
2986 #ifdef SQLITE_DEBUG
2987   void sqlite3ParserTrace(FILE*, char *);
2988 #endif
2989 
2990 /*
2991 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
2992 ** sqlite3IoTrace is a pointer to a printf-like routine used to
2993 ** print I/O tracing messages.
2994 */
2995 #ifdef SQLITE_ENABLE_IOTRACE
2996 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
2997   void sqlite3VdbeIOTraceSql(Vdbe*);
2998 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
2999 #else
3000 # define IOTRACE(A)
3001 # define sqlite3VdbeIOTraceSql(X)
3002 #endif
3003 
3004 #endif
3005