1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** These #defines should enable >2GB file support on POSIX if the 28 ** underlying operating system supports it. If the OS lacks 29 ** large file support, or if the OS is windows, these should be no-ops. 30 ** 31 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 32 ** system #includes. Hence, this block of code must be the very first 33 ** code in all source files. 34 ** 35 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 36 ** on the compiler command line. This is necessary if you are compiling 37 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 38 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 39 ** without this option, LFS is enable. But LFS does not exist in the kernel 40 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 41 ** portability you should omit LFS. 42 ** 43 ** The previous paragraph was written in 2005. (This paragraph is written 44 ** on 2008-11-28.) These days, all Linux kernels support large files, so 45 ** you should probably leave LFS enabled. But some embedded platforms might 46 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 47 ** 48 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 49 */ 50 #ifndef SQLITE_DISABLE_LFS 51 # define _LARGE_FILE 1 52 # ifndef _FILE_OFFSET_BITS 53 # define _FILE_OFFSET_BITS 64 54 # endif 55 # define _LARGEFILE_SOURCE 1 56 #endif 57 58 /* Needed for various definitions... */ 59 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 60 # define _GNU_SOURCE 61 #endif 62 63 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 64 # define _BSD_SOURCE 65 #endif 66 67 /* 68 ** For MinGW, check to see if we can include the header file containing its 69 ** version information, among other things. Normally, this internal MinGW 70 ** header file would [only] be included automatically by other MinGW header 71 ** files; however, the contained version information is now required by this 72 ** header file to work around binary compatibility issues (see below) and 73 ** this is the only known way to reliably obtain it. This entire #if block 74 ** would be completely unnecessary if there was any other way of detecting 75 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 76 ** some MinGW-specific macros). When compiling for MinGW, either the 77 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 78 ** defined; otherwise, detection of conditions specific to MinGW will be 79 ** disabled. 80 */ 81 #if defined(_HAVE_MINGW_H) 82 # include "mingw.h" 83 #elif defined(_HAVE__MINGW_H) 84 # include "_mingw.h" 85 #endif 86 87 /* 88 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 89 ** define is required to maintain binary compatibility with the MSVC runtime 90 ** library in use (e.g. for Windows XP). 91 */ 92 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 93 defined(_WIN32) && !defined(_WIN64) && \ 94 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 95 defined(__MSVCRT__) 96 # define _USE_32BIT_TIME_T 97 #endif 98 99 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 100 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 101 ** MinGW. 102 */ 103 #include "sqlite3.h" 104 105 /* 106 ** Include the configuration header output by 'configure' if we're using the 107 ** autoconf-based build 108 */ 109 #ifdef _HAVE_SQLITE_CONFIG_H 110 #include "config.h" 111 #endif 112 113 #include "sqliteLimit.h" 114 115 /* Disable nuisance warnings on Borland compilers */ 116 #if defined(__BORLANDC__) 117 #pragma warn -rch /* unreachable code */ 118 #pragma warn -ccc /* Condition is always true or false */ 119 #pragma warn -aus /* Assigned value is never used */ 120 #pragma warn -csu /* Comparing signed and unsigned */ 121 #pragma warn -spa /* Suspicious pointer arithmetic */ 122 #endif 123 124 /* 125 ** Include standard header files as necessary 126 */ 127 #ifdef HAVE_STDINT_H 128 #include <stdint.h> 129 #endif 130 #ifdef HAVE_INTTYPES_H 131 #include <inttypes.h> 132 #endif 133 134 /* 135 ** The following macros are used to cast pointers to integers and 136 ** integers to pointers. The way you do this varies from one compiler 137 ** to the next, so we have developed the following set of #if statements 138 ** to generate appropriate macros for a wide range of compilers. 139 ** 140 ** The correct "ANSI" way to do this is to use the intptr_t type. 141 ** Unfortunately, that typedef is not available on all compilers, or 142 ** if it is available, it requires an #include of specific headers 143 ** that vary from one machine to the next. 144 ** 145 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 146 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 147 ** So we have to define the macros in different ways depending on the 148 ** compiler. 149 */ 150 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 151 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 152 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 153 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 154 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 155 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 156 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 157 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 158 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 159 #else /* Generates a warning - but it always works */ 160 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 161 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 162 #endif 163 164 /* 165 ** A macro to hint to the compiler that a function should not be 166 ** inlined. 167 */ 168 #if defined(__GNUC__) 169 # define SQLITE_NOINLINE __attribute__((noinline)) 170 #elif defined(_MSC_VER) && _MSC_VER>=1310 171 # define SQLITE_NOINLINE __declspec(noinline) 172 #else 173 # define SQLITE_NOINLINE 174 #endif 175 176 /* 177 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 178 ** 0 means mutexes are permanently disable and the library is never 179 ** threadsafe. 1 means the library is serialized which is the highest 180 ** level of threadsafety. 2 means the library is multithreaded - multiple 181 ** threads can use SQLite as long as no two threads try to use the same 182 ** database connection at the same time. 183 ** 184 ** Older versions of SQLite used an optional THREADSAFE macro. 185 ** We support that for legacy. 186 */ 187 #if !defined(SQLITE_THREADSAFE) 188 # if defined(THREADSAFE) 189 # define SQLITE_THREADSAFE THREADSAFE 190 # else 191 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 192 # endif 193 #endif 194 195 /* 196 ** Powersafe overwrite is on by default. But can be turned off using 197 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 198 */ 199 #ifndef SQLITE_POWERSAFE_OVERWRITE 200 # define SQLITE_POWERSAFE_OVERWRITE 1 201 #endif 202 203 /* 204 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 205 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 206 ** which case memory allocation statistics are disabled by default. 207 */ 208 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 209 # define SQLITE_DEFAULT_MEMSTATUS 1 210 #endif 211 212 /* 213 ** Exactly one of the following macros must be defined in order to 214 ** specify which memory allocation subsystem to use. 215 ** 216 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 217 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 218 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 219 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 220 ** 221 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 222 ** assert() macro is enabled, each call into the Win32 native heap subsystem 223 ** will cause HeapValidate to be called. If heap validation should fail, an 224 ** assertion will be triggered. 225 ** 226 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 227 ** the default. 228 */ 229 #if defined(SQLITE_SYSTEM_MALLOC) \ 230 + defined(SQLITE_WIN32_MALLOC) \ 231 + defined(SQLITE_ZERO_MALLOC) \ 232 + defined(SQLITE_MEMDEBUG)>1 233 # error "Two or more of the following compile-time configuration options\ 234 are defined but at most one is allowed:\ 235 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 236 SQLITE_ZERO_MALLOC" 237 #endif 238 #if defined(SQLITE_SYSTEM_MALLOC) \ 239 + defined(SQLITE_WIN32_MALLOC) \ 240 + defined(SQLITE_ZERO_MALLOC) \ 241 + defined(SQLITE_MEMDEBUG)==0 242 # define SQLITE_SYSTEM_MALLOC 1 243 #endif 244 245 /* 246 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 247 ** sizes of memory allocations below this value where possible. 248 */ 249 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 250 # define SQLITE_MALLOC_SOFT_LIMIT 1024 251 #endif 252 253 /* 254 ** We need to define _XOPEN_SOURCE as follows in order to enable 255 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 256 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 257 ** it. 258 */ 259 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 260 # define _XOPEN_SOURCE 600 261 #endif 262 263 /* 264 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 265 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 266 ** make it true by defining or undefining NDEBUG. 267 ** 268 ** Setting NDEBUG makes the code smaller and faster by disabling the 269 ** assert() statements in the code. So we want the default action 270 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 271 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 272 ** feature. 273 */ 274 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 275 # define NDEBUG 1 276 #endif 277 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 278 # undef NDEBUG 279 #endif 280 281 /* 282 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 283 */ 284 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 285 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 286 #endif 287 288 /* 289 ** The testcase() macro is used to aid in coverage testing. When 290 ** doing coverage testing, the condition inside the argument to 291 ** testcase() must be evaluated both true and false in order to 292 ** get full branch coverage. The testcase() macro is inserted 293 ** to help ensure adequate test coverage in places where simple 294 ** condition/decision coverage is inadequate. For example, testcase() 295 ** can be used to make sure boundary values are tested. For 296 ** bitmask tests, testcase() can be used to make sure each bit 297 ** is significant and used at least once. On switch statements 298 ** where multiple cases go to the same block of code, testcase() 299 ** can insure that all cases are evaluated. 300 ** 301 */ 302 #ifdef SQLITE_COVERAGE_TEST 303 void sqlite3Coverage(int); 304 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 305 #else 306 # define testcase(X) 307 #endif 308 309 /* 310 ** The TESTONLY macro is used to enclose variable declarations or 311 ** other bits of code that are needed to support the arguments 312 ** within testcase() and assert() macros. 313 */ 314 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 315 # define TESTONLY(X) X 316 #else 317 # define TESTONLY(X) 318 #endif 319 320 /* 321 ** Sometimes we need a small amount of code such as a variable initialization 322 ** to setup for a later assert() statement. We do not want this code to 323 ** appear when assert() is disabled. The following macro is therefore 324 ** used to contain that setup code. The "VVA" acronym stands for 325 ** "Verification, Validation, and Accreditation". In other words, the 326 ** code within VVA_ONLY() will only run during verification processes. 327 */ 328 #ifndef NDEBUG 329 # define VVA_ONLY(X) X 330 #else 331 # define VVA_ONLY(X) 332 #endif 333 334 /* 335 ** The ALWAYS and NEVER macros surround boolean expressions which 336 ** are intended to always be true or false, respectively. Such 337 ** expressions could be omitted from the code completely. But they 338 ** are included in a few cases in order to enhance the resilience 339 ** of SQLite to unexpected behavior - to make the code "self-healing" 340 ** or "ductile" rather than being "brittle" and crashing at the first 341 ** hint of unplanned behavior. 342 ** 343 ** In other words, ALWAYS and NEVER are added for defensive code. 344 ** 345 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 346 ** be true and false so that the unreachable code they specify will 347 ** not be counted as untested code. 348 */ 349 #if defined(SQLITE_COVERAGE_TEST) 350 # define ALWAYS(X) (1) 351 # define NEVER(X) (0) 352 #elif !defined(NDEBUG) 353 # define ALWAYS(X) ((X)?1:(assert(0),0)) 354 # define NEVER(X) ((X)?(assert(0),1):0) 355 #else 356 # define ALWAYS(X) (X) 357 # define NEVER(X) (X) 358 #endif 359 360 /* 361 ** Return true (non-zero) if the input is an integer that is too large 362 ** to fit in 32-bits. This macro is used inside of various testcase() 363 ** macros to verify that we have tested SQLite for large-file support. 364 */ 365 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 366 367 /* 368 ** The macro unlikely() is a hint that surrounds a boolean 369 ** expression that is usually false. Macro likely() surrounds 370 ** a boolean expression that is usually true. These hints could, 371 ** in theory, be used by the compiler to generate better code, but 372 ** currently they are just comments for human readers. 373 */ 374 #define likely(X) (X) 375 #define unlikely(X) (X) 376 377 #include "hash.h" 378 #include "parse.h" 379 #include <stdio.h> 380 #include <stdlib.h> 381 #include <string.h> 382 #include <assert.h> 383 #include <stddef.h> 384 385 /* 386 ** If compiling for a processor that lacks floating point support, 387 ** substitute integer for floating-point 388 */ 389 #ifdef SQLITE_OMIT_FLOATING_POINT 390 # define double sqlite_int64 391 # define float sqlite_int64 392 # define LONGDOUBLE_TYPE sqlite_int64 393 # ifndef SQLITE_BIG_DBL 394 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 395 # endif 396 # define SQLITE_OMIT_DATETIME_FUNCS 1 397 # define SQLITE_OMIT_TRACE 1 398 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 399 # undef SQLITE_HAVE_ISNAN 400 #endif 401 #ifndef SQLITE_BIG_DBL 402 # define SQLITE_BIG_DBL (1e99) 403 #endif 404 405 /* 406 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 407 ** afterward. Having this macro allows us to cause the C compiler 408 ** to omit code used by TEMP tables without messy #ifndef statements. 409 */ 410 #ifdef SQLITE_OMIT_TEMPDB 411 #define OMIT_TEMPDB 1 412 #else 413 #define OMIT_TEMPDB 0 414 #endif 415 416 /* 417 ** The "file format" number is an integer that is incremented whenever 418 ** the VDBE-level file format changes. The following macros define the 419 ** the default file format for new databases and the maximum file format 420 ** that the library can read. 421 */ 422 #define SQLITE_MAX_FILE_FORMAT 4 423 #ifndef SQLITE_DEFAULT_FILE_FORMAT 424 # define SQLITE_DEFAULT_FILE_FORMAT 4 425 #endif 426 427 /* 428 ** Determine whether triggers are recursive by default. This can be 429 ** changed at run-time using a pragma. 430 */ 431 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 432 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 433 #endif 434 435 /* 436 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 437 ** on the command-line 438 */ 439 #ifndef SQLITE_TEMP_STORE 440 # define SQLITE_TEMP_STORE 1 441 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 442 #endif 443 444 /* 445 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 446 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 447 ** to zero. 448 */ 449 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 450 # undef SQLITE_MAX_WORKER_THREADS 451 # define SQLITE_MAX_WORKER_THREADS 0 452 #endif 453 #ifndef SQLITE_MAX_WORKER_THREADS 454 # define SQLITE_MAX_WORKER_THREADS 8 455 #endif 456 #ifndef SQLITE_DEFAULT_WORKER_THREADS 457 # define SQLITE_DEFAULT_WORKER_THREADS 0 458 #endif 459 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 460 # undef SQLITE_MAX_WORKER_THREADS 461 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 462 #endif 463 464 465 /* 466 ** GCC does not define the offsetof() macro so we'll have to do it 467 ** ourselves. 468 */ 469 #ifndef offsetof 470 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 471 #endif 472 473 /* 474 ** Macros to compute minimum and maximum of two numbers. 475 */ 476 #define MIN(A,B) ((A)<(B)?(A):(B)) 477 #define MAX(A,B) ((A)>(B)?(A):(B)) 478 479 /* 480 ** Swap two objects of type TYPE. 481 */ 482 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 483 484 /* 485 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 486 ** not, there are still machines out there that use EBCDIC.) 487 */ 488 #if 'A' == '\301' 489 # define SQLITE_EBCDIC 1 490 #else 491 # define SQLITE_ASCII 1 492 #endif 493 494 /* 495 ** Integers of known sizes. These typedefs might change for architectures 496 ** where the sizes very. Preprocessor macros are available so that the 497 ** types can be conveniently redefined at compile-type. Like this: 498 ** 499 ** cc '-DUINTPTR_TYPE=long long int' ... 500 */ 501 #ifndef UINT32_TYPE 502 # ifdef HAVE_UINT32_T 503 # define UINT32_TYPE uint32_t 504 # else 505 # define UINT32_TYPE unsigned int 506 # endif 507 #endif 508 #ifndef UINT16_TYPE 509 # ifdef HAVE_UINT16_T 510 # define UINT16_TYPE uint16_t 511 # else 512 # define UINT16_TYPE unsigned short int 513 # endif 514 #endif 515 #ifndef INT16_TYPE 516 # ifdef HAVE_INT16_T 517 # define INT16_TYPE int16_t 518 # else 519 # define INT16_TYPE short int 520 # endif 521 #endif 522 #ifndef UINT8_TYPE 523 # ifdef HAVE_UINT8_T 524 # define UINT8_TYPE uint8_t 525 # else 526 # define UINT8_TYPE unsigned char 527 # endif 528 #endif 529 #ifndef INT8_TYPE 530 # ifdef HAVE_INT8_T 531 # define INT8_TYPE int8_t 532 # else 533 # define INT8_TYPE signed char 534 # endif 535 #endif 536 #ifndef LONGDOUBLE_TYPE 537 # define LONGDOUBLE_TYPE long double 538 #endif 539 typedef sqlite_int64 i64; /* 8-byte signed integer */ 540 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 541 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 542 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 543 typedef INT16_TYPE i16; /* 2-byte signed integer */ 544 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 545 typedef INT8_TYPE i8; /* 1-byte signed integer */ 546 547 /* 548 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 549 ** that can be stored in a u32 without loss of data. The value 550 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 551 ** have to specify the value in the less intuitive manner shown: 552 */ 553 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 554 555 /* 556 ** The datatype used to store estimates of the number of rows in a 557 ** table or index. This is an unsigned integer type. For 99.9% of 558 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 559 ** can be used at compile-time if desired. 560 */ 561 #ifdef SQLITE_64BIT_STATS 562 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 563 #else 564 typedef u32 tRowcnt; /* 32-bit is the default */ 565 #endif 566 567 /* 568 ** Estimated quantities used for query planning are stored as 16-bit 569 ** logarithms. For quantity X, the value stored is 10*log2(X). This 570 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 571 ** But the allowed values are "grainy". Not every value is representable. 572 ** For example, quantities 16 and 17 are both represented by a LogEst 573 ** of 40. However, since LogEst quantities are suppose to be estimates, 574 ** not exact values, this imprecision is not a problem. 575 ** 576 ** "LogEst" is short for "Logarithmic Estimate". 577 ** 578 ** Examples: 579 ** 1 -> 0 20 -> 43 10000 -> 132 580 ** 2 -> 10 25 -> 46 25000 -> 146 581 ** 3 -> 16 100 -> 66 1000000 -> 199 582 ** 4 -> 20 1000 -> 99 1048576 -> 200 583 ** 10 -> 33 1024 -> 100 4294967296 -> 320 584 ** 585 ** The LogEst can be negative to indicate fractional values. 586 ** Examples: 587 ** 588 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 589 */ 590 typedef INT16_TYPE LogEst; 591 592 /* 593 ** Macros to determine whether the machine is big or little endian, 594 ** and whether or not that determination is run-time or compile-time. 595 ** 596 ** For best performance, an attempt is made to guess at the byte-order 597 ** using C-preprocessor macros. If that is unsuccessful, or if 598 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 599 ** at run-time. 600 */ 601 #ifdef SQLITE_AMALGAMATION 602 const int sqlite3one = 1; 603 #else 604 extern const int sqlite3one; 605 #endif 606 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 607 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 608 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 609 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 610 # define SQLITE_BYTEORDER 1234 611 # define SQLITE_BIGENDIAN 0 612 # define SQLITE_LITTLEENDIAN 1 613 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 614 #endif 615 #if (defined(sparc) || defined(__ppc__)) \ 616 && !defined(SQLITE_RUNTIME_BYTEORDER) 617 # define SQLITE_BYTEORDER 4321 618 # define SQLITE_BIGENDIAN 1 619 # define SQLITE_LITTLEENDIAN 0 620 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 621 #endif 622 #if !defined(SQLITE_BYTEORDER) 623 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 624 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 625 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 626 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 627 #endif 628 629 /* 630 ** Constants for the largest and smallest possible 64-bit signed integers. 631 ** These macros are designed to work correctly on both 32-bit and 64-bit 632 ** compilers. 633 */ 634 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 635 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 636 637 /* 638 ** Round up a number to the next larger multiple of 8. This is used 639 ** to force 8-byte alignment on 64-bit architectures. 640 */ 641 #define ROUND8(x) (((x)+7)&~7) 642 643 /* 644 ** Round down to the nearest multiple of 8 645 */ 646 #define ROUNDDOWN8(x) ((x)&~7) 647 648 /* 649 ** Assert that the pointer X is aligned to an 8-byte boundary. This 650 ** macro is used only within assert() to verify that the code gets 651 ** all alignment restrictions correct. 652 ** 653 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 654 ** underlying malloc() implementation might return us 4-byte aligned 655 ** pointers. In that case, only verify 4-byte alignment. 656 */ 657 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 658 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 659 #else 660 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 661 #endif 662 663 /* 664 ** Disable MMAP on platforms where it is known to not work 665 */ 666 #if defined(__OpenBSD__) || defined(__QNXNTO__) 667 # undef SQLITE_MAX_MMAP_SIZE 668 # define SQLITE_MAX_MMAP_SIZE 0 669 #endif 670 671 /* 672 ** Default maximum size of memory used by memory-mapped I/O in the VFS 673 */ 674 #ifdef __APPLE__ 675 # include <TargetConditionals.h> 676 # if TARGET_OS_IPHONE 677 # undef SQLITE_MAX_MMAP_SIZE 678 # define SQLITE_MAX_MMAP_SIZE 0 679 # endif 680 #endif 681 #ifndef SQLITE_MAX_MMAP_SIZE 682 # if defined(__linux__) \ 683 || defined(_WIN32) \ 684 || (defined(__APPLE__) && defined(__MACH__)) \ 685 || defined(__sun) 686 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 687 # else 688 # define SQLITE_MAX_MMAP_SIZE 0 689 # endif 690 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 691 #endif 692 693 /* 694 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 695 ** default MMAP_SIZE is specified at compile-time, make sure that it does 696 ** not exceed the maximum mmap size. 697 */ 698 #ifndef SQLITE_DEFAULT_MMAP_SIZE 699 # define SQLITE_DEFAULT_MMAP_SIZE 0 700 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 701 #endif 702 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 703 # undef SQLITE_DEFAULT_MMAP_SIZE 704 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 705 #endif 706 707 /* 708 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 709 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 710 ** define SQLITE_ENABLE_STAT3_OR_STAT4 711 */ 712 #ifdef SQLITE_ENABLE_STAT4 713 # undef SQLITE_ENABLE_STAT3 714 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 715 #elif SQLITE_ENABLE_STAT3 716 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 717 #elif SQLITE_ENABLE_STAT3_OR_STAT4 718 # undef SQLITE_ENABLE_STAT3_OR_STAT4 719 #endif 720 721 /* 722 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 723 ** the Select query generator tracing logic is turned on. 724 */ 725 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 726 # define SELECTTRACE_ENABLED 1 727 #else 728 # define SELECTTRACE_ENABLED 0 729 #endif 730 731 /* 732 ** An instance of the following structure is used to store the busy-handler 733 ** callback for a given sqlite handle. 734 ** 735 ** The sqlite.busyHandler member of the sqlite struct contains the busy 736 ** callback for the database handle. Each pager opened via the sqlite 737 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 738 ** callback is currently invoked only from within pager.c. 739 */ 740 typedef struct BusyHandler BusyHandler; 741 struct BusyHandler { 742 int (*xFunc)(void *,int); /* The busy callback */ 743 void *pArg; /* First arg to busy callback */ 744 int nBusy; /* Incremented with each busy call */ 745 }; 746 747 /* 748 ** Name of the master database table. The master database table 749 ** is a special table that holds the names and attributes of all 750 ** user tables and indices. 751 */ 752 #define MASTER_NAME "sqlite_master" 753 #define TEMP_MASTER_NAME "sqlite_temp_master" 754 755 /* 756 ** The root-page of the master database table. 757 */ 758 #define MASTER_ROOT 1 759 760 /* 761 ** The name of the schema table. 762 */ 763 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 764 765 /* 766 ** A convenience macro that returns the number of elements in 767 ** an array. 768 */ 769 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 770 771 /* 772 ** Determine if the argument is a power of two 773 */ 774 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 775 776 /* 777 ** The following value as a destructor means to use sqlite3DbFree(). 778 ** The sqlite3DbFree() routine requires two parameters instead of the 779 ** one parameter that destructors normally want. So we have to introduce 780 ** this magic value that the code knows to handle differently. Any 781 ** pointer will work here as long as it is distinct from SQLITE_STATIC 782 ** and SQLITE_TRANSIENT. 783 */ 784 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 785 786 /* 787 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 788 ** not support Writable Static Data (WSD) such as global and static variables. 789 ** All variables must either be on the stack or dynamically allocated from 790 ** the heap. When WSD is unsupported, the variable declarations scattered 791 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 792 ** macro is used for this purpose. And instead of referencing the variable 793 ** directly, we use its constant as a key to lookup the run-time allocated 794 ** buffer that holds real variable. The constant is also the initializer 795 ** for the run-time allocated buffer. 796 ** 797 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 798 ** macros become no-ops and have zero performance impact. 799 */ 800 #ifdef SQLITE_OMIT_WSD 801 #define SQLITE_WSD const 802 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 803 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 804 int sqlite3_wsd_init(int N, int J); 805 void *sqlite3_wsd_find(void *K, int L); 806 #else 807 #define SQLITE_WSD 808 #define GLOBAL(t,v) v 809 #define sqlite3GlobalConfig sqlite3Config 810 #endif 811 812 /* 813 ** The following macros are used to suppress compiler warnings and to 814 ** make it clear to human readers when a function parameter is deliberately 815 ** left unused within the body of a function. This usually happens when 816 ** a function is called via a function pointer. For example the 817 ** implementation of an SQL aggregate step callback may not use the 818 ** parameter indicating the number of arguments passed to the aggregate, 819 ** if it knows that this is enforced elsewhere. 820 ** 821 ** When a function parameter is not used at all within the body of a function, 822 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 823 ** However, these macros may also be used to suppress warnings related to 824 ** parameters that may or may not be used depending on compilation options. 825 ** For example those parameters only used in assert() statements. In these 826 ** cases the parameters are named as per the usual conventions. 827 */ 828 #define UNUSED_PARAMETER(x) (void)(x) 829 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 830 831 /* 832 ** Forward references to structures 833 */ 834 typedef struct AggInfo AggInfo; 835 typedef struct AuthContext AuthContext; 836 typedef struct AutoincInfo AutoincInfo; 837 typedef struct Bitvec Bitvec; 838 typedef struct CollSeq CollSeq; 839 typedef struct Column Column; 840 typedef struct Db Db; 841 typedef struct Schema Schema; 842 typedef struct Expr Expr; 843 typedef struct ExprList ExprList; 844 typedef struct ExprSpan ExprSpan; 845 typedef struct FKey FKey; 846 typedef struct FuncDestructor FuncDestructor; 847 typedef struct FuncDef FuncDef; 848 typedef struct FuncDefHash FuncDefHash; 849 typedef struct IdList IdList; 850 typedef struct Index Index; 851 typedef struct IndexSample IndexSample; 852 typedef struct KeyClass KeyClass; 853 typedef struct KeyInfo KeyInfo; 854 typedef struct Lookaside Lookaside; 855 typedef struct LookasideSlot LookasideSlot; 856 typedef struct Module Module; 857 typedef struct NameContext NameContext; 858 typedef struct Parse Parse; 859 typedef struct PrintfArguments PrintfArguments; 860 typedef struct RowSet RowSet; 861 typedef struct Savepoint Savepoint; 862 typedef struct Select Select; 863 typedef struct SQLiteThread SQLiteThread; 864 typedef struct SelectDest SelectDest; 865 typedef struct SrcList SrcList; 866 typedef struct StrAccum StrAccum; 867 typedef struct Table Table; 868 typedef struct TableLock TableLock; 869 typedef struct Token Token; 870 typedef struct TreeView TreeView; 871 typedef struct Trigger Trigger; 872 typedef struct TriggerPrg TriggerPrg; 873 typedef struct TriggerStep TriggerStep; 874 typedef struct UnpackedRecord UnpackedRecord; 875 typedef struct VTable VTable; 876 typedef struct VtabCtx VtabCtx; 877 typedef struct Walker Walker; 878 typedef struct WhereInfo WhereInfo; 879 typedef struct With With; 880 881 /* 882 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 883 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 884 ** pointer types (i.e. FuncDef) defined above. 885 */ 886 #include "btree.h" 887 #include "vdbe.h" 888 #include "pager.h" 889 #include "pcache.h" 890 891 #include "os.h" 892 #include "mutex.h" 893 894 895 /* 896 ** Each database file to be accessed by the system is an instance 897 ** of the following structure. There are normally two of these structures 898 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 899 ** aDb[1] is the database file used to hold temporary tables. Additional 900 ** databases may be attached. 901 */ 902 struct Db { 903 char *zName; /* Name of this database */ 904 Btree *pBt; /* The B*Tree structure for this database file */ 905 u8 safety_level; /* How aggressive at syncing data to disk */ 906 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 907 }; 908 909 /* 910 ** An instance of the following structure stores a database schema. 911 ** 912 ** Most Schema objects are associated with a Btree. The exception is 913 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 914 ** In shared cache mode, a single Schema object can be shared by multiple 915 ** Btrees that refer to the same underlying BtShared object. 916 ** 917 ** Schema objects are automatically deallocated when the last Btree that 918 ** references them is destroyed. The TEMP Schema is manually freed by 919 ** sqlite3_close(). 920 * 921 ** A thread must be holding a mutex on the corresponding Btree in order 922 ** to access Schema content. This implies that the thread must also be 923 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 924 ** For a TEMP Schema, only the connection mutex is required. 925 */ 926 struct Schema { 927 int schema_cookie; /* Database schema version number for this file */ 928 int iGeneration; /* Generation counter. Incremented with each change */ 929 Hash tblHash; /* All tables indexed by name */ 930 Hash idxHash; /* All (named) indices indexed by name */ 931 Hash trigHash; /* All triggers indexed by name */ 932 Hash fkeyHash; /* All foreign keys by referenced table name */ 933 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 934 u8 file_format; /* Schema format version for this file */ 935 u8 enc; /* Text encoding used by this database */ 936 u16 schemaFlags; /* Flags associated with this schema */ 937 int cache_size; /* Number of pages to use in the cache */ 938 }; 939 940 /* 941 ** These macros can be used to test, set, or clear bits in the 942 ** Db.pSchema->flags field. 943 */ 944 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 945 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 946 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 947 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 948 949 /* 950 ** Allowed values for the DB.pSchema->flags field. 951 ** 952 ** The DB_SchemaLoaded flag is set after the database schema has been 953 ** read into internal hash tables. 954 ** 955 ** DB_UnresetViews means that one or more views have column names that 956 ** have been filled out. If the schema changes, these column names might 957 ** changes and so the view will need to be reset. 958 */ 959 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 960 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 961 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 962 963 /* 964 ** The number of different kinds of things that can be limited 965 ** using the sqlite3_limit() interface. 966 */ 967 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 968 969 /* 970 ** Lookaside malloc is a set of fixed-size buffers that can be used 971 ** to satisfy small transient memory allocation requests for objects 972 ** associated with a particular database connection. The use of 973 ** lookaside malloc provides a significant performance enhancement 974 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 975 ** SQL statements. 976 ** 977 ** The Lookaside structure holds configuration information about the 978 ** lookaside malloc subsystem. Each available memory allocation in 979 ** the lookaside subsystem is stored on a linked list of LookasideSlot 980 ** objects. 981 ** 982 ** Lookaside allocations are only allowed for objects that are associated 983 ** with a particular database connection. Hence, schema information cannot 984 ** be stored in lookaside because in shared cache mode the schema information 985 ** is shared by multiple database connections. Therefore, while parsing 986 ** schema information, the Lookaside.bEnabled flag is cleared so that 987 ** lookaside allocations are not used to construct the schema objects. 988 */ 989 struct Lookaside { 990 u16 sz; /* Size of each buffer in bytes */ 991 u8 bEnabled; /* False to disable new lookaside allocations */ 992 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 993 int nOut; /* Number of buffers currently checked out */ 994 int mxOut; /* Highwater mark for nOut */ 995 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 996 LookasideSlot *pFree; /* List of available buffers */ 997 void *pStart; /* First byte of available memory space */ 998 void *pEnd; /* First byte past end of available space */ 999 }; 1000 struct LookasideSlot { 1001 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1002 }; 1003 1004 /* 1005 ** A hash table for function definitions. 1006 ** 1007 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1008 ** Collisions are on the FuncDef.pHash chain. 1009 */ 1010 struct FuncDefHash { 1011 FuncDef *a[23]; /* Hash table for functions */ 1012 }; 1013 1014 #ifdef SQLITE_USER_AUTHENTICATION 1015 /* 1016 ** Information held in the "sqlite3" database connection object and used 1017 ** to manage user authentication. 1018 */ 1019 typedef struct sqlite3_userauth sqlite3_userauth; 1020 struct sqlite3_userauth { 1021 u8 authLevel; /* Current authentication level */ 1022 int nAuthPW; /* Size of the zAuthPW in bytes */ 1023 char *zAuthPW; /* Password used to authenticate */ 1024 char *zAuthUser; /* User name used to authenticate */ 1025 }; 1026 1027 /* Allowed values for sqlite3_userauth.authLevel */ 1028 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1029 #define UAUTH_Fail 1 /* User authentication failed */ 1030 #define UAUTH_User 2 /* Authenticated as a normal user */ 1031 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1032 1033 /* Functions used only by user authorization logic */ 1034 int sqlite3UserAuthTable(const char*); 1035 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1036 void sqlite3UserAuthInit(sqlite3*); 1037 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1038 1039 #endif /* SQLITE_USER_AUTHENTICATION */ 1040 1041 /* 1042 ** typedef for the authorization callback function. 1043 */ 1044 #ifdef SQLITE_USER_AUTHENTICATION 1045 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1046 const char*, const char*); 1047 #else 1048 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1049 const char*); 1050 #endif 1051 1052 1053 /* 1054 ** Each database connection is an instance of the following structure. 1055 */ 1056 struct sqlite3 { 1057 sqlite3_vfs *pVfs; /* OS Interface */ 1058 struct Vdbe *pVdbe; /* List of active virtual machines */ 1059 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1060 sqlite3_mutex *mutex; /* Connection mutex */ 1061 Db *aDb; /* All backends */ 1062 int nDb; /* Number of backends currently in use */ 1063 int flags; /* Miscellaneous flags. See below */ 1064 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1065 i64 szMmap; /* Default mmap_size setting */ 1066 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1067 int errCode; /* Most recent error code (SQLITE_*) */ 1068 int errMask; /* & result codes with this before returning */ 1069 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1070 u8 enc; /* Text encoding */ 1071 u8 autoCommit; /* The auto-commit flag. */ 1072 u8 temp_store; /* 1: file 2: memory 0: default */ 1073 u8 mallocFailed; /* True if we have seen a malloc failure */ 1074 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1075 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1076 u8 suppressErr; /* Do not issue error messages if true */ 1077 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1078 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1079 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1080 u32 magic; /* Magic number for detect library misuse */ 1081 int nChange; /* Value returned by sqlite3_changes() */ 1082 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1083 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1084 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1085 struct sqlite3InitInfo { /* Information used during initialization */ 1086 int newTnum; /* Rootpage of table being initialized */ 1087 u8 iDb; /* Which db file is being initialized */ 1088 u8 busy; /* TRUE if currently initializing */ 1089 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1090 u8 imposterTable; /* Building an imposter table */ 1091 } init; 1092 int nVdbeActive; /* Number of VDBEs currently running */ 1093 int nVdbeRead; /* Number of active VDBEs that read or write */ 1094 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1095 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1096 int nExtension; /* Number of loaded extensions */ 1097 void **aExtension; /* Array of shared library handles */ 1098 void (*xTrace)(void*,const char*); /* Trace function */ 1099 void *pTraceArg; /* Argument to the trace function */ 1100 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1101 void *pProfileArg; /* Argument to profile function */ 1102 void *pCommitArg; /* Argument to xCommitCallback() */ 1103 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1104 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1105 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1106 void *pUpdateArg; 1107 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1108 #ifndef SQLITE_OMIT_WAL 1109 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1110 void *pWalArg; 1111 #endif 1112 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1113 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1114 void *pCollNeededArg; 1115 sqlite3_value *pErr; /* Most recent error message */ 1116 union { 1117 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1118 double notUsed1; /* Spacer */ 1119 } u1; 1120 Lookaside lookaside; /* Lookaside malloc configuration */ 1121 #ifndef SQLITE_OMIT_AUTHORIZATION 1122 sqlite3_xauth xAuth; /* Access authorization function */ 1123 void *pAuthArg; /* 1st argument to the access auth function */ 1124 #endif 1125 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1126 int (*xProgress)(void *); /* The progress callback */ 1127 void *pProgressArg; /* Argument to the progress callback */ 1128 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1129 #endif 1130 #ifndef SQLITE_OMIT_VIRTUALTABLE 1131 int nVTrans; /* Allocated size of aVTrans */ 1132 Hash aModule; /* populated by sqlite3_create_module() */ 1133 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1134 VTable **aVTrans; /* Virtual tables with open transactions */ 1135 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1136 #endif 1137 FuncDefHash aFunc; /* Hash table of connection functions */ 1138 Hash aCollSeq; /* All collating sequences */ 1139 BusyHandler busyHandler; /* Busy callback */ 1140 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1141 Savepoint *pSavepoint; /* List of active savepoints */ 1142 int busyTimeout; /* Busy handler timeout, in msec */ 1143 int nSavepoint; /* Number of non-transaction savepoints */ 1144 int nStatement; /* Number of nested statement-transactions */ 1145 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1146 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1147 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1148 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1149 /* The following variables are all protected by the STATIC_MASTER 1150 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1151 ** 1152 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1153 ** unlock so that it can proceed. 1154 ** 1155 ** When X.pBlockingConnection==Y, that means that something that X tried 1156 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1157 ** held by Y. 1158 */ 1159 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1160 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1161 void *pUnlockArg; /* Argument to xUnlockNotify */ 1162 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1163 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1164 #endif 1165 #ifdef SQLITE_USER_AUTHENTICATION 1166 sqlite3_userauth auth; /* User authentication information */ 1167 #endif 1168 }; 1169 1170 /* 1171 ** A macro to discover the encoding of a database. 1172 */ 1173 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1174 #define ENC(db) ((db)->enc) 1175 1176 /* 1177 ** Possible values for the sqlite3.flags. 1178 */ 1179 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1180 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1181 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1182 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1183 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1184 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1185 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1186 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1187 /* DELETE, or UPDATE and return */ 1188 /* the count using a callback. */ 1189 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1190 /* result set is empty */ 1191 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1192 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1193 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1194 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1195 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1196 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1197 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1198 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1199 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1200 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1201 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1202 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1203 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1204 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1205 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1206 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1207 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1208 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1209 1210 1211 /* 1212 ** Bits of the sqlite3.dbOptFlags field that are used by the 1213 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1214 ** selectively disable various optimizations. 1215 */ 1216 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1217 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1218 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1219 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1220 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1221 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1222 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1223 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1224 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1225 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1226 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1227 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1228 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1229 1230 /* 1231 ** Macros for testing whether or not optimizations are enabled or disabled. 1232 */ 1233 #ifndef SQLITE_OMIT_BUILTIN_TEST 1234 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1235 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1236 #else 1237 #define OptimizationDisabled(db, mask) 0 1238 #define OptimizationEnabled(db, mask) 1 1239 #endif 1240 1241 /* 1242 ** Return true if it OK to factor constant expressions into the initialization 1243 ** code. The argument is a Parse object for the code generator. 1244 */ 1245 #define ConstFactorOk(P) ((P)->okConstFactor) 1246 1247 /* 1248 ** Possible values for the sqlite.magic field. 1249 ** The numbers are obtained at random and have no special meaning, other 1250 ** than being distinct from one another. 1251 */ 1252 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1253 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1254 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1255 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1256 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1257 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1258 1259 /* 1260 ** Each SQL function is defined by an instance of the following 1261 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1262 ** hash table. When multiple functions have the same name, the hash table 1263 ** points to a linked list of these structures. 1264 */ 1265 struct FuncDef { 1266 i16 nArg; /* Number of arguments. -1 means unlimited */ 1267 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1268 void *pUserData; /* User data parameter */ 1269 FuncDef *pNext; /* Next function with same name */ 1270 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1271 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1272 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1273 char *zName; /* SQL name of the function. */ 1274 FuncDef *pHash; /* Next with a different name but the same hash */ 1275 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1276 }; 1277 1278 /* 1279 ** This structure encapsulates a user-function destructor callback (as 1280 ** configured using create_function_v2()) and a reference counter. When 1281 ** create_function_v2() is called to create a function with a destructor, 1282 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1283 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1284 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1285 ** member of each of the new FuncDef objects is set to point to the allocated 1286 ** FuncDestructor. 1287 ** 1288 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1289 ** count on this object is decremented. When it reaches 0, the destructor 1290 ** is invoked and the FuncDestructor structure freed. 1291 */ 1292 struct FuncDestructor { 1293 int nRef; 1294 void (*xDestroy)(void *); 1295 void *pUserData; 1296 }; 1297 1298 /* 1299 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1300 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1301 ** are assert() statements in the code to verify this. 1302 */ 1303 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1304 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1305 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1306 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1307 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1308 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1309 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1310 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1311 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1312 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1313 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1314 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1315 1316 /* 1317 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1318 ** used to create the initializers for the FuncDef structures. 1319 ** 1320 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1321 ** Used to create a scalar function definition of a function zName 1322 ** implemented by C function xFunc that accepts nArg arguments. The 1323 ** value passed as iArg is cast to a (void*) and made available 1324 ** as the user-data (sqlite3_user_data()) for the function. If 1325 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1326 ** 1327 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1328 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1329 ** 1330 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1331 ** Used to create an aggregate function definition implemented by 1332 ** the C functions xStep and xFinal. The first four parameters 1333 ** are interpreted in the same way as the first 4 parameters to 1334 ** FUNCTION(). 1335 ** 1336 ** LIKEFUNC(zName, nArg, pArg, flags) 1337 ** Used to create a scalar function definition of a function zName 1338 ** that accepts nArg arguments and is implemented by a call to C 1339 ** function likeFunc. Argument pArg is cast to a (void *) and made 1340 ** available as the function user-data (sqlite3_user_data()). The 1341 ** FuncDef.flags variable is set to the value passed as the flags 1342 ** parameter. 1343 */ 1344 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1345 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1346 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1347 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1348 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1349 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1350 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1351 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1352 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1353 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1354 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1355 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1356 #define LIKEFUNC(zName, nArg, arg, flags) \ 1357 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1358 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1359 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1360 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1361 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1362 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1363 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1364 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1365 1366 /* 1367 ** All current savepoints are stored in a linked list starting at 1368 ** sqlite3.pSavepoint. The first element in the list is the most recently 1369 ** opened savepoint. Savepoints are added to the list by the vdbe 1370 ** OP_Savepoint instruction. 1371 */ 1372 struct Savepoint { 1373 char *zName; /* Savepoint name (nul-terminated) */ 1374 i64 nDeferredCons; /* Number of deferred fk violations */ 1375 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1376 Savepoint *pNext; /* Parent savepoint (if any) */ 1377 }; 1378 1379 /* 1380 ** The following are used as the second parameter to sqlite3Savepoint(), 1381 ** and as the P1 argument to the OP_Savepoint instruction. 1382 */ 1383 #define SAVEPOINT_BEGIN 0 1384 #define SAVEPOINT_RELEASE 1 1385 #define SAVEPOINT_ROLLBACK 2 1386 1387 1388 /* 1389 ** Each SQLite module (virtual table definition) is defined by an 1390 ** instance of the following structure, stored in the sqlite3.aModule 1391 ** hash table. 1392 */ 1393 struct Module { 1394 const sqlite3_module *pModule; /* Callback pointers */ 1395 const char *zName; /* Name passed to create_module() */ 1396 void *pAux; /* pAux passed to create_module() */ 1397 void (*xDestroy)(void *); /* Module destructor function */ 1398 }; 1399 1400 /* 1401 ** information about each column of an SQL table is held in an instance 1402 ** of this structure. 1403 */ 1404 struct Column { 1405 char *zName; /* Name of this column */ 1406 Expr *pDflt; /* Default value of this column */ 1407 char *zDflt; /* Original text of the default value */ 1408 char *zType; /* Data type for this column */ 1409 char *zColl; /* Collating sequence. If NULL, use the default */ 1410 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1411 char affinity; /* One of the SQLITE_AFF_... values */ 1412 u8 szEst; /* Estimated size of this column. INT==1 */ 1413 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1414 }; 1415 1416 /* Allowed values for Column.colFlags: 1417 */ 1418 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1419 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1420 1421 /* 1422 ** A "Collating Sequence" is defined by an instance of the following 1423 ** structure. Conceptually, a collating sequence consists of a name and 1424 ** a comparison routine that defines the order of that sequence. 1425 ** 1426 ** If CollSeq.xCmp is NULL, it means that the 1427 ** collating sequence is undefined. Indices built on an undefined 1428 ** collating sequence may not be read or written. 1429 */ 1430 struct CollSeq { 1431 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1432 u8 enc; /* Text encoding handled by xCmp() */ 1433 void *pUser; /* First argument to xCmp() */ 1434 int (*xCmp)(void*,int, const void*, int, const void*); 1435 void (*xDel)(void*); /* Destructor for pUser */ 1436 }; 1437 1438 /* 1439 ** A sort order can be either ASC or DESC. 1440 */ 1441 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1442 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1443 1444 /* 1445 ** Column affinity types. 1446 ** 1447 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1448 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1449 ** the speed a little by numbering the values consecutively. 1450 ** 1451 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1452 ** when multiple affinity types are concatenated into a string and 1453 ** used as the P4 operand, they will be more readable. 1454 ** 1455 ** Note also that the numeric types are grouped together so that testing 1456 ** for a numeric type is a single comparison. And the NONE type is first. 1457 */ 1458 #define SQLITE_AFF_NONE 'A' 1459 #define SQLITE_AFF_TEXT 'B' 1460 #define SQLITE_AFF_NUMERIC 'C' 1461 #define SQLITE_AFF_INTEGER 'D' 1462 #define SQLITE_AFF_REAL 'E' 1463 1464 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1465 1466 /* 1467 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1468 ** affinity value. 1469 */ 1470 #define SQLITE_AFF_MASK 0x47 1471 1472 /* 1473 ** Additional bit values that can be ORed with an affinity without 1474 ** changing the affinity. 1475 ** 1476 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1477 ** It causes an assert() to fire if either operand to a comparison 1478 ** operator is NULL. It is added to certain comparison operators to 1479 ** prove that the operands are always NOT NULL. 1480 */ 1481 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1482 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1483 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1484 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1485 1486 /* 1487 ** An object of this type is created for each virtual table present in 1488 ** the database schema. 1489 ** 1490 ** If the database schema is shared, then there is one instance of this 1491 ** structure for each database connection (sqlite3*) that uses the shared 1492 ** schema. This is because each database connection requires its own unique 1493 ** instance of the sqlite3_vtab* handle used to access the virtual table 1494 ** implementation. sqlite3_vtab* handles can not be shared between 1495 ** database connections, even when the rest of the in-memory database 1496 ** schema is shared, as the implementation often stores the database 1497 ** connection handle passed to it via the xConnect() or xCreate() method 1498 ** during initialization internally. This database connection handle may 1499 ** then be used by the virtual table implementation to access real tables 1500 ** within the database. So that they appear as part of the callers 1501 ** transaction, these accesses need to be made via the same database 1502 ** connection as that used to execute SQL operations on the virtual table. 1503 ** 1504 ** All VTable objects that correspond to a single table in a shared 1505 ** database schema are initially stored in a linked-list pointed to by 1506 ** the Table.pVTable member variable of the corresponding Table object. 1507 ** When an sqlite3_prepare() operation is required to access the virtual 1508 ** table, it searches the list for the VTable that corresponds to the 1509 ** database connection doing the preparing so as to use the correct 1510 ** sqlite3_vtab* handle in the compiled query. 1511 ** 1512 ** When an in-memory Table object is deleted (for example when the 1513 ** schema is being reloaded for some reason), the VTable objects are not 1514 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1515 ** immediately. Instead, they are moved from the Table.pVTable list to 1516 ** another linked list headed by the sqlite3.pDisconnect member of the 1517 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1518 ** next time a statement is prepared using said sqlite3*. This is done 1519 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1520 ** Refer to comments above function sqlite3VtabUnlockList() for an 1521 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1522 ** list without holding the corresponding sqlite3.mutex mutex. 1523 ** 1524 ** The memory for objects of this type is always allocated by 1525 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1526 ** the first argument. 1527 */ 1528 struct VTable { 1529 sqlite3 *db; /* Database connection associated with this table */ 1530 Module *pMod; /* Pointer to module implementation */ 1531 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1532 int nRef; /* Number of pointers to this structure */ 1533 u8 bConstraint; /* True if constraints are supported */ 1534 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1535 VTable *pNext; /* Next in linked list (see above) */ 1536 }; 1537 1538 /* 1539 ** Each SQL table is represented in memory by an instance of the 1540 ** following structure. 1541 ** 1542 ** Table.zName is the name of the table. The case of the original 1543 ** CREATE TABLE statement is stored, but case is not significant for 1544 ** comparisons. 1545 ** 1546 ** Table.nCol is the number of columns in this table. Table.aCol is a 1547 ** pointer to an array of Column structures, one for each column. 1548 ** 1549 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1550 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1551 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1552 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1553 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1554 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1555 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1556 ** 1557 ** Table.tnum is the page number for the root BTree page of the table in the 1558 ** database file. If Table.iDb is the index of the database table backend 1559 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1560 ** holds temporary tables and indices. If TF_Ephemeral is set 1561 ** then the table is stored in a file that is automatically deleted 1562 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1563 ** refers VDBE cursor number that holds the table open, not to the root 1564 ** page number. Transient tables are used to hold the results of a 1565 ** sub-query that appears instead of a real table name in the FROM clause 1566 ** of a SELECT statement. 1567 */ 1568 struct Table { 1569 char *zName; /* Name of the table or view */ 1570 Column *aCol; /* Information about each column */ 1571 Index *pIndex; /* List of SQL indexes on this table. */ 1572 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1573 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1574 char *zColAff; /* String defining the affinity of each column */ 1575 #ifndef SQLITE_OMIT_CHECK 1576 ExprList *pCheck; /* All CHECK constraints */ 1577 #endif 1578 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1579 int tnum; /* Root BTree node for this table (see note above) */ 1580 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1581 i16 nCol; /* Number of columns in this table */ 1582 u16 nRef; /* Number of pointers to this Table */ 1583 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1584 #ifdef SQLITE_ENABLE_COSTMULT 1585 LogEst costMult; /* Cost multiplier for using this table */ 1586 #endif 1587 u8 tabFlags; /* Mask of TF_* values */ 1588 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1589 #ifndef SQLITE_OMIT_ALTERTABLE 1590 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1591 #endif 1592 #ifndef SQLITE_OMIT_VIRTUALTABLE 1593 int nModuleArg; /* Number of arguments to the module */ 1594 char **azModuleArg; /* Text of all module args. [0] is module name */ 1595 VTable *pVTable; /* List of VTable objects. */ 1596 #endif 1597 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1598 Schema *pSchema; /* Schema that contains this table */ 1599 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1600 }; 1601 1602 /* 1603 ** Allowed values for Table.tabFlags. 1604 */ 1605 #define TF_Readonly 0x01 /* Read-only system table */ 1606 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1607 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1608 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1609 #define TF_Virtual 0x10 /* Is a virtual table */ 1610 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1611 1612 1613 /* 1614 ** Test to see whether or not a table is a virtual table. This is 1615 ** done as a macro so that it will be optimized out when virtual 1616 ** table support is omitted from the build. 1617 */ 1618 #ifndef SQLITE_OMIT_VIRTUALTABLE 1619 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1620 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1621 #else 1622 # define IsVirtual(X) 0 1623 # define IsHiddenColumn(X) 0 1624 #endif 1625 1626 /* Does the table have a rowid */ 1627 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1628 1629 /* 1630 ** Each foreign key constraint is an instance of the following structure. 1631 ** 1632 ** A foreign key is associated with two tables. The "from" table is 1633 ** the table that contains the REFERENCES clause that creates the foreign 1634 ** key. The "to" table is the table that is named in the REFERENCES clause. 1635 ** Consider this example: 1636 ** 1637 ** CREATE TABLE ex1( 1638 ** a INTEGER PRIMARY KEY, 1639 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1640 ** ); 1641 ** 1642 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1643 ** Equivalent names: 1644 ** 1645 ** from-table == child-table 1646 ** to-table == parent-table 1647 ** 1648 ** Each REFERENCES clause generates an instance of the following structure 1649 ** which is attached to the from-table. The to-table need not exist when 1650 ** the from-table is created. The existence of the to-table is not checked. 1651 ** 1652 ** The list of all parents for child Table X is held at X.pFKey. 1653 ** 1654 ** A list of all children for a table named Z (which might not even exist) 1655 ** is held in Schema.fkeyHash with a hash key of Z. 1656 */ 1657 struct FKey { 1658 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1659 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1660 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1661 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1662 FKey *pPrevTo; /* Previous with the same zTo */ 1663 int nCol; /* Number of columns in this key */ 1664 /* EV: R-30323-21917 */ 1665 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1666 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1667 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1668 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1669 int iFrom; /* Index of column in pFrom */ 1670 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1671 } aCol[1]; /* One entry for each of nCol columns */ 1672 }; 1673 1674 /* 1675 ** SQLite supports many different ways to resolve a constraint 1676 ** error. ROLLBACK processing means that a constraint violation 1677 ** causes the operation in process to fail and for the current transaction 1678 ** to be rolled back. ABORT processing means the operation in process 1679 ** fails and any prior changes from that one operation are backed out, 1680 ** but the transaction is not rolled back. FAIL processing means that 1681 ** the operation in progress stops and returns an error code. But prior 1682 ** changes due to the same operation are not backed out and no rollback 1683 ** occurs. IGNORE means that the particular row that caused the constraint 1684 ** error is not inserted or updated. Processing continues and no error 1685 ** is returned. REPLACE means that preexisting database rows that caused 1686 ** a UNIQUE constraint violation are removed so that the new insert or 1687 ** update can proceed. Processing continues and no error is reported. 1688 ** 1689 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1690 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1691 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1692 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1693 ** referenced table row is propagated into the row that holds the 1694 ** foreign key. 1695 ** 1696 ** The following symbolic values are used to record which type 1697 ** of action to take. 1698 */ 1699 #define OE_None 0 /* There is no constraint to check */ 1700 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1701 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1702 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1703 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1704 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1705 1706 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1707 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1708 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1709 #define OE_Cascade 9 /* Cascade the changes */ 1710 1711 #define OE_Default 10 /* Do whatever the default action is */ 1712 1713 1714 /* 1715 ** An instance of the following structure is passed as the first 1716 ** argument to sqlite3VdbeKeyCompare and is used to control the 1717 ** comparison of the two index keys. 1718 ** 1719 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1720 ** are nField slots for the columns of an index then one extra slot 1721 ** for the rowid at the end. 1722 */ 1723 struct KeyInfo { 1724 u32 nRef; /* Number of references to this KeyInfo object */ 1725 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1726 u16 nField; /* Number of key columns in the index */ 1727 u16 nXField; /* Number of columns beyond the key columns */ 1728 sqlite3 *db; /* The database connection */ 1729 u8 *aSortOrder; /* Sort order for each column. */ 1730 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1731 }; 1732 1733 /* 1734 ** An instance of the following structure holds information about a 1735 ** single index record that has already been parsed out into individual 1736 ** values. 1737 ** 1738 ** A record is an object that contains one or more fields of data. 1739 ** Records are used to store the content of a table row and to store 1740 ** the key of an index. A blob encoding of a record is created by 1741 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1742 ** OP_Column opcode. 1743 ** 1744 ** This structure holds a record that has already been disassembled 1745 ** into its constituent fields. 1746 ** 1747 ** The r1 and r2 member variables are only used by the optimized comparison 1748 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1749 */ 1750 struct UnpackedRecord { 1751 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1752 u16 nField; /* Number of entries in apMem[] */ 1753 i8 default_rc; /* Comparison result if keys are equal */ 1754 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1755 Mem *aMem; /* Values */ 1756 int r1; /* Value to return if (lhs > rhs) */ 1757 int r2; /* Value to return if (rhs < lhs) */ 1758 }; 1759 1760 1761 /* 1762 ** Each SQL index is represented in memory by an 1763 ** instance of the following structure. 1764 ** 1765 ** The columns of the table that are to be indexed are described 1766 ** by the aiColumn[] field of this structure. For example, suppose 1767 ** we have the following table and index: 1768 ** 1769 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1770 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1771 ** 1772 ** In the Table structure describing Ex1, nCol==3 because there are 1773 ** three columns in the table. In the Index structure describing 1774 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1775 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1776 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1777 ** The second column to be indexed (c1) has an index of 0 in 1778 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1779 ** 1780 ** The Index.onError field determines whether or not the indexed columns 1781 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1782 ** it means this is not a unique index. Otherwise it is a unique index 1783 ** and the value of Index.onError indicate the which conflict resolution 1784 ** algorithm to employ whenever an attempt is made to insert a non-unique 1785 ** element. 1786 */ 1787 struct Index { 1788 char *zName; /* Name of this index */ 1789 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1790 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1791 Table *pTable; /* The SQL table being indexed */ 1792 char *zColAff; /* String defining the affinity of each column */ 1793 Index *pNext; /* The next index associated with the same table */ 1794 Schema *pSchema; /* Schema containing this index */ 1795 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1796 char **azColl; /* Array of collation sequence names for index */ 1797 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1798 int tnum; /* DB Page containing root of this index */ 1799 LogEst szIdxRow; /* Estimated average row size in bytes */ 1800 u16 nKeyCol; /* Number of columns forming the key */ 1801 u16 nColumn; /* Number of columns stored in the index */ 1802 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1803 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1804 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1805 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1806 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1807 unsigned isCovering:1; /* True if this is a covering index */ 1808 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1809 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1810 int nSample; /* Number of elements in aSample[] */ 1811 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1812 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1813 IndexSample *aSample; /* Samples of the left-most key */ 1814 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1815 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1816 #endif 1817 }; 1818 1819 /* 1820 ** Allowed values for Index.idxType 1821 */ 1822 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1823 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1824 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1825 1826 /* Return true if index X is a PRIMARY KEY index */ 1827 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1828 1829 /* Return true if index X is a UNIQUE index */ 1830 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1831 1832 /* 1833 ** Each sample stored in the sqlite_stat3 table is represented in memory 1834 ** using a structure of this type. See documentation at the top of the 1835 ** analyze.c source file for additional information. 1836 */ 1837 struct IndexSample { 1838 void *p; /* Pointer to sampled record */ 1839 int n; /* Size of record in bytes */ 1840 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1841 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1842 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1843 }; 1844 1845 /* 1846 ** Each token coming out of the lexer is an instance of 1847 ** this structure. Tokens are also used as part of an expression. 1848 ** 1849 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1850 ** may contain random values. Do not make any assumptions about Token.dyn 1851 ** and Token.n when Token.z==0. 1852 */ 1853 struct Token { 1854 const char *z; /* Text of the token. Not NULL-terminated! */ 1855 unsigned int n; /* Number of characters in this token */ 1856 }; 1857 1858 /* 1859 ** An instance of this structure contains information needed to generate 1860 ** code for a SELECT that contains aggregate functions. 1861 ** 1862 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1863 ** pointer to this structure. The Expr.iColumn field is the index in 1864 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1865 ** code for that node. 1866 ** 1867 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1868 ** original Select structure that describes the SELECT statement. These 1869 ** fields do not need to be freed when deallocating the AggInfo structure. 1870 */ 1871 struct AggInfo { 1872 u8 directMode; /* Direct rendering mode means take data directly 1873 ** from source tables rather than from accumulators */ 1874 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1875 ** than the source table */ 1876 int sortingIdx; /* Cursor number of the sorting index */ 1877 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1878 int nSortingColumn; /* Number of columns in the sorting index */ 1879 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1880 ExprList *pGroupBy; /* The group by clause */ 1881 struct AggInfo_col { /* For each column used in source tables */ 1882 Table *pTab; /* Source table */ 1883 int iTable; /* Cursor number of the source table */ 1884 int iColumn; /* Column number within the source table */ 1885 int iSorterColumn; /* Column number in the sorting index */ 1886 int iMem; /* Memory location that acts as accumulator */ 1887 Expr *pExpr; /* The original expression */ 1888 } *aCol; 1889 int nColumn; /* Number of used entries in aCol[] */ 1890 int nAccumulator; /* Number of columns that show through to the output. 1891 ** Additional columns are used only as parameters to 1892 ** aggregate functions */ 1893 struct AggInfo_func { /* For each aggregate function */ 1894 Expr *pExpr; /* Expression encoding the function */ 1895 FuncDef *pFunc; /* The aggregate function implementation */ 1896 int iMem; /* Memory location that acts as accumulator */ 1897 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1898 } *aFunc; 1899 int nFunc; /* Number of entries in aFunc[] */ 1900 }; 1901 1902 /* 1903 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1904 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1905 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1906 ** it uses less memory in the Expr object, which is a big memory user 1907 ** in systems with lots of prepared statements. And few applications 1908 ** need more than about 10 or 20 variables. But some extreme users want 1909 ** to have prepared statements with over 32767 variables, and for them 1910 ** the option is available (at compile-time). 1911 */ 1912 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1913 typedef i16 ynVar; 1914 #else 1915 typedef int ynVar; 1916 #endif 1917 1918 /* 1919 ** Each node of an expression in the parse tree is an instance 1920 ** of this structure. 1921 ** 1922 ** Expr.op is the opcode. The integer parser token codes are reused 1923 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1924 ** code representing the ">=" operator. This same integer code is reused 1925 ** to represent the greater-than-or-equal-to operator in the expression 1926 ** tree. 1927 ** 1928 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1929 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1930 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1931 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1932 ** then Expr.token contains the name of the function. 1933 ** 1934 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1935 ** binary operator. Either or both may be NULL. 1936 ** 1937 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1938 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1939 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1940 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1941 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1942 ** valid. 1943 ** 1944 ** An expression of the form ID or ID.ID refers to a column in a table. 1945 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1946 ** the integer cursor number of a VDBE cursor pointing to that table and 1947 ** Expr.iColumn is the column number for the specific column. If the 1948 ** expression is used as a result in an aggregate SELECT, then the 1949 ** value is also stored in the Expr.iAgg column in the aggregate so that 1950 ** it can be accessed after all aggregates are computed. 1951 ** 1952 ** If the expression is an unbound variable marker (a question mark 1953 ** character '?' in the original SQL) then the Expr.iTable holds the index 1954 ** number for that variable. 1955 ** 1956 ** If the expression is a subquery then Expr.iColumn holds an integer 1957 ** register number containing the result of the subquery. If the 1958 ** subquery gives a constant result, then iTable is -1. If the subquery 1959 ** gives a different answer at different times during statement processing 1960 ** then iTable is the address of a subroutine that computes the subquery. 1961 ** 1962 ** If the Expr is of type OP_Column, and the table it is selecting from 1963 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1964 ** corresponding table definition. 1965 ** 1966 ** ALLOCATION NOTES: 1967 ** 1968 ** Expr objects can use a lot of memory space in database schema. To 1969 ** help reduce memory requirements, sometimes an Expr object will be 1970 ** truncated. And to reduce the number of memory allocations, sometimes 1971 ** two or more Expr objects will be stored in a single memory allocation, 1972 ** together with Expr.zToken strings. 1973 ** 1974 ** If the EP_Reduced and EP_TokenOnly flags are set when 1975 ** an Expr object is truncated. When EP_Reduced is set, then all 1976 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1977 ** are contained within the same memory allocation. Note, however, that 1978 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1979 ** allocated, regardless of whether or not EP_Reduced is set. 1980 */ 1981 struct Expr { 1982 u8 op; /* Operation performed by this node */ 1983 char affinity; /* The affinity of the column or 0 if not a column */ 1984 u32 flags; /* Various flags. EP_* See below */ 1985 union { 1986 char *zToken; /* Token value. Zero terminated and dequoted */ 1987 int iValue; /* Non-negative integer value if EP_IntValue */ 1988 } u; 1989 1990 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1991 ** space is allocated for the fields below this point. An attempt to 1992 ** access them will result in a segfault or malfunction. 1993 *********************************************************************/ 1994 1995 Expr *pLeft; /* Left subnode */ 1996 Expr *pRight; /* Right subnode */ 1997 union { 1998 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 1999 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2000 } x; 2001 2002 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2003 ** space is allocated for the fields below this point. An attempt to 2004 ** access them will result in a segfault or malfunction. 2005 *********************************************************************/ 2006 2007 #if SQLITE_MAX_EXPR_DEPTH>0 2008 int nHeight; /* Height of the tree headed by this node */ 2009 #endif 2010 int iTable; /* TK_COLUMN: cursor number of table holding column 2011 ** TK_REGISTER: register number 2012 ** TK_TRIGGER: 1 -> new, 0 -> old 2013 ** EP_Unlikely: 134217728 times likelihood */ 2014 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2015 ** TK_VARIABLE: variable number (always >= 1). */ 2016 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2017 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2018 u8 op2; /* TK_REGISTER: original value of Expr.op 2019 ** TK_COLUMN: the value of p5 for OP_Column 2020 ** TK_AGG_FUNCTION: nesting depth */ 2021 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2022 Table *pTab; /* Table for TK_COLUMN expressions. */ 2023 }; 2024 2025 /* 2026 ** The following are the meanings of bits in the Expr.flags field. 2027 */ 2028 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2029 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2030 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2031 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2032 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2033 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2034 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2035 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2036 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2037 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2038 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2039 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2040 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2041 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2042 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2043 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2044 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2045 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2046 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2047 #define EP_Constant 0x080000 /* Node is a constant */ 2048 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2049 2050 /* 2051 ** These macros can be used to test, set, or clear bits in the 2052 ** Expr.flags field. 2053 */ 2054 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2055 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2056 #define ExprSetProperty(E,P) (E)->flags|=(P) 2057 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2058 2059 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2060 ** and Accreditation only. It works like ExprSetProperty() during VVA 2061 ** processes but is a no-op for delivery. 2062 */ 2063 #ifdef SQLITE_DEBUG 2064 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2065 #else 2066 # define ExprSetVVAProperty(E,P) 2067 #endif 2068 2069 /* 2070 ** Macros to determine the number of bytes required by a normal Expr 2071 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2072 ** and an Expr struct with the EP_TokenOnly flag set. 2073 */ 2074 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2075 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2076 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2077 2078 /* 2079 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2080 ** above sqlite3ExprDup() for details. 2081 */ 2082 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2083 2084 /* 2085 ** A list of expressions. Each expression may optionally have a 2086 ** name. An expr/name combination can be used in several ways, such 2087 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2088 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2089 ** also be used as the argument to a function, in which case the a.zName 2090 ** field is not used. 2091 ** 2092 ** By default the Expr.zSpan field holds a human-readable description of 2093 ** the expression that is used in the generation of error messages and 2094 ** column labels. In this case, Expr.zSpan is typically the text of a 2095 ** column expression as it exists in a SELECT statement. However, if 2096 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2097 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2098 ** form is used for name resolution with nested FROM clauses. 2099 */ 2100 struct ExprList { 2101 int nExpr; /* Number of expressions on the list */ 2102 struct ExprList_item { /* For each expression in the list */ 2103 Expr *pExpr; /* The list of expressions */ 2104 char *zName; /* Token associated with this expression */ 2105 char *zSpan; /* Original text of the expression */ 2106 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2107 unsigned done :1; /* A flag to indicate when processing is finished */ 2108 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2109 unsigned reusable :1; /* Constant expression is reusable */ 2110 union { 2111 struct { 2112 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2113 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2114 } x; 2115 int iConstExprReg; /* Register in which Expr value is cached */ 2116 } u; 2117 } *a; /* Alloc a power of two greater or equal to nExpr */ 2118 }; 2119 2120 /* 2121 ** An instance of this structure is used by the parser to record both 2122 ** the parse tree for an expression and the span of input text for an 2123 ** expression. 2124 */ 2125 struct ExprSpan { 2126 Expr *pExpr; /* The expression parse tree */ 2127 const char *zStart; /* First character of input text */ 2128 const char *zEnd; /* One character past the end of input text */ 2129 }; 2130 2131 /* 2132 ** An instance of this structure can hold a simple list of identifiers, 2133 ** such as the list "a,b,c" in the following statements: 2134 ** 2135 ** INSERT INTO t(a,b,c) VALUES ...; 2136 ** CREATE INDEX idx ON t(a,b,c); 2137 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2138 ** 2139 ** The IdList.a.idx field is used when the IdList represents the list of 2140 ** column names after a table name in an INSERT statement. In the statement 2141 ** 2142 ** INSERT INTO t(a,b,c) ... 2143 ** 2144 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2145 */ 2146 struct IdList { 2147 struct IdList_item { 2148 char *zName; /* Name of the identifier */ 2149 int idx; /* Index in some Table.aCol[] of a column named zName */ 2150 } *a; 2151 int nId; /* Number of identifiers on the list */ 2152 }; 2153 2154 /* 2155 ** The bitmask datatype defined below is used for various optimizations. 2156 ** 2157 ** Changing this from a 64-bit to a 32-bit type limits the number of 2158 ** tables in a join to 32 instead of 64. But it also reduces the size 2159 ** of the library by 738 bytes on ix86. 2160 */ 2161 typedef u64 Bitmask; 2162 2163 /* 2164 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2165 */ 2166 #define BMS ((int)(sizeof(Bitmask)*8)) 2167 2168 /* 2169 ** A bit in a Bitmask 2170 */ 2171 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2172 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2173 2174 /* 2175 ** The following structure describes the FROM clause of a SELECT statement. 2176 ** Each table or subquery in the FROM clause is a separate element of 2177 ** the SrcList.a[] array. 2178 ** 2179 ** With the addition of multiple database support, the following structure 2180 ** can also be used to describe a particular table such as the table that 2181 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2182 ** such a table must be a simple name: ID. But in SQLite, the table can 2183 ** now be identified by a database name, a dot, then the table name: ID.ID. 2184 ** 2185 ** The jointype starts out showing the join type between the current table 2186 ** and the next table on the list. The parser builds the list this way. 2187 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2188 ** jointype expresses the join between the table and the previous table. 2189 ** 2190 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2191 ** contains more than 63 columns and the 64-th or later column is used. 2192 */ 2193 struct SrcList { 2194 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2195 u32 nAlloc; /* Number of entries allocated in a[] below */ 2196 struct SrcList_item { 2197 Schema *pSchema; /* Schema to which this item is fixed */ 2198 char *zDatabase; /* Name of database holding this table */ 2199 char *zName; /* Name of the table */ 2200 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2201 Table *pTab; /* An SQL table corresponding to zName */ 2202 Select *pSelect; /* A SELECT statement used in place of a table name */ 2203 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2204 int regReturn; /* Register holding return address of addrFillSub */ 2205 int regResult; /* Registers holding results of a co-routine */ 2206 u8 jointype; /* Type of join between this able and the previous */ 2207 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2208 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2209 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2210 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2211 #ifndef SQLITE_OMIT_EXPLAIN 2212 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2213 #endif 2214 int iCursor; /* The VDBE cursor number used to access this table */ 2215 Expr *pOn; /* The ON clause of a join */ 2216 IdList *pUsing; /* The USING clause of a join */ 2217 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2218 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2219 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2220 } a[1]; /* One entry for each identifier on the list */ 2221 }; 2222 2223 /* 2224 ** Permitted values of the SrcList.a.jointype field 2225 */ 2226 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2227 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2228 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2229 #define JT_LEFT 0x0008 /* Left outer join */ 2230 #define JT_RIGHT 0x0010 /* Right outer join */ 2231 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2232 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2233 2234 2235 /* 2236 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2237 ** and the WhereInfo.wctrlFlags member. 2238 */ 2239 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2240 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2241 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2242 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2243 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2244 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2245 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2246 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2247 /* 0x0080 // not currently used */ 2248 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2249 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2250 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2251 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2252 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2253 2254 /* Allowed return values from sqlite3WhereIsDistinct() 2255 */ 2256 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2257 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2258 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2259 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2260 2261 /* 2262 ** A NameContext defines a context in which to resolve table and column 2263 ** names. The context consists of a list of tables (the pSrcList) field and 2264 ** a list of named expression (pEList). The named expression list may 2265 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2266 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2267 ** pEList corresponds to the result set of a SELECT and is NULL for 2268 ** other statements. 2269 ** 2270 ** NameContexts can be nested. When resolving names, the inner-most 2271 ** context is searched first. If no match is found, the next outer 2272 ** context is checked. If there is still no match, the next context 2273 ** is checked. This process continues until either a match is found 2274 ** or all contexts are check. When a match is found, the nRef member of 2275 ** the context containing the match is incremented. 2276 ** 2277 ** Each subquery gets a new NameContext. The pNext field points to the 2278 ** NameContext in the parent query. Thus the process of scanning the 2279 ** NameContext list corresponds to searching through successively outer 2280 ** subqueries looking for a match. 2281 */ 2282 struct NameContext { 2283 Parse *pParse; /* The parser */ 2284 SrcList *pSrcList; /* One or more tables used to resolve names */ 2285 ExprList *pEList; /* Optional list of result-set columns */ 2286 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2287 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2288 int nRef; /* Number of names resolved by this context */ 2289 int nErr; /* Number of errors encountered while resolving names */ 2290 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2291 }; 2292 2293 /* 2294 ** Allowed values for the NameContext, ncFlags field. 2295 ** 2296 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2297 ** SQLITE_FUNC_MINMAX. 2298 ** 2299 */ 2300 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2301 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2302 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2303 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2304 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2305 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2306 2307 /* 2308 ** An instance of the following structure contains all information 2309 ** needed to generate code for a single SELECT statement. 2310 ** 2311 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2312 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2313 ** limit and nOffset to the value of the offset (or 0 if there is not 2314 ** offset). But later on, nLimit and nOffset become the memory locations 2315 ** in the VDBE that record the limit and offset counters. 2316 ** 2317 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2318 ** These addresses must be stored so that we can go back and fill in 2319 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2320 ** the number of columns in P2 can be computed at the same time 2321 ** as the OP_OpenEphm instruction is coded because not 2322 ** enough information about the compound query is known at that point. 2323 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2324 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2325 ** sequences for the ORDER BY clause. 2326 */ 2327 struct Select { 2328 ExprList *pEList; /* The fields of the result */ 2329 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2330 u16 selFlags; /* Various SF_* values */ 2331 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2332 #if SELECTTRACE_ENABLED 2333 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2334 #endif 2335 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2336 u64 nSelectRow; /* Estimated number of result rows */ 2337 SrcList *pSrc; /* The FROM clause */ 2338 Expr *pWhere; /* The WHERE clause */ 2339 ExprList *pGroupBy; /* The GROUP BY clause */ 2340 Expr *pHaving; /* The HAVING clause */ 2341 ExprList *pOrderBy; /* The ORDER BY clause */ 2342 Select *pPrior; /* Prior select in a compound select statement */ 2343 Select *pNext; /* Next select to the left in a compound */ 2344 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2345 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2346 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2347 }; 2348 2349 /* 2350 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2351 ** "Select Flag". 2352 */ 2353 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2354 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2355 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2356 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2357 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2358 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2359 #define SF_Compound 0x0040 /* Part of a compound query */ 2360 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2361 #define SF_AllValues 0x0100 /* All terms of compound are VALUES */ 2362 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2363 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2364 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2365 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2366 2367 2368 /* 2369 ** The results of a SELECT can be distributed in several ways, as defined 2370 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2371 ** Type". 2372 ** 2373 ** SRT_Union Store results as a key in a temporary index 2374 ** identified by pDest->iSDParm. 2375 ** 2376 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2377 ** 2378 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2379 ** set is not empty. 2380 ** 2381 ** SRT_Discard Throw the results away. This is used by SELECT 2382 ** statements within triggers whose only purpose is 2383 ** the side-effects of functions. 2384 ** 2385 ** All of the above are free to ignore their ORDER BY clause. Those that 2386 ** follow must honor the ORDER BY clause. 2387 ** 2388 ** SRT_Output Generate a row of output (using the OP_ResultRow 2389 ** opcode) for each row in the result set. 2390 ** 2391 ** SRT_Mem Only valid if the result is a single column. 2392 ** Store the first column of the first result row 2393 ** in register pDest->iSDParm then abandon the rest 2394 ** of the query. This destination implies "LIMIT 1". 2395 ** 2396 ** SRT_Set The result must be a single column. Store each 2397 ** row of result as the key in table pDest->iSDParm. 2398 ** Apply the affinity pDest->affSdst before storing 2399 ** results. Used to implement "IN (SELECT ...)". 2400 ** 2401 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2402 ** the result there. The cursor is left open after 2403 ** returning. This is like SRT_Table except that 2404 ** this destination uses OP_OpenEphemeral to create 2405 ** the table first. 2406 ** 2407 ** SRT_Coroutine Generate a co-routine that returns a new row of 2408 ** results each time it is invoked. The entry point 2409 ** of the co-routine is stored in register pDest->iSDParm 2410 ** and the result row is stored in pDest->nDest registers 2411 ** starting with pDest->iSdst. 2412 ** 2413 ** SRT_Table Store results in temporary table pDest->iSDParm. 2414 ** SRT_Fifo This is like SRT_EphemTab except that the table 2415 ** is assumed to already be open. SRT_Fifo has 2416 ** the additional property of being able to ignore 2417 ** the ORDER BY clause. 2418 ** 2419 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2420 ** But also use temporary table pDest->iSDParm+1 as 2421 ** a record of all prior results and ignore any duplicate 2422 ** rows. Name means: "Distinct Fifo". 2423 ** 2424 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2425 ** an index). Append a sequence number so that all entries 2426 ** are distinct. 2427 ** 2428 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2429 ** the same record has never been stored before. The 2430 ** index at pDest->iSDParm+1 hold all prior stores. 2431 */ 2432 #define SRT_Union 1 /* Store result as keys in an index */ 2433 #define SRT_Except 2 /* Remove result from a UNION index */ 2434 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2435 #define SRT_Discard 4 /* Do not save the results anywhere */ 2436 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2437 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2438 #define SRT_Queue 7 /* Store result in an queue */ 2439 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2440 2441 /* The ORDER BY clause is ignored for all of the above */ 2442 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2443 2444 #define SRT_Output 9 /* Output each row of result */ 2445 #define SRT_Mem 10 /* Store result in a memory cell */ 2446 #define SRT_Set 11 /* Store results as keys in an index */ 2447 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2448 #define SRT_Coroutine 13 /* Generate a single row of result */ 2449 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2450 2451 /* 2452 ** An instance of this object describes where to put of the results of 2453 ** a SELECT statement. 2454 */ 2455 struct SelectDest { 2456 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2457 char affSdst; /* Affinity used when eDest==SRT_Set */ 2458 int iSDParm; /* A parameter used by the eDest disposal method */ 2459 int iSdst; /* Base register where results are written */ 2460 int nSdst; /* Number of registers allocated */ 2461 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2462 }; 2463 2464 /* 2465 ** During code generation of statements that do inserts into AUTOINCREMENT 2466 ** tables, the following information is attached to the Table.u.autoInc.p 2467 ** pointer of each autoincrement table to record some side information that 2468 ** the code generator needs. We have to keep per-table autoincrement 2469 ** information in case inserts are down within triggers. Triggers do not 2470 ** normally coordinate their activities, but we do need to coordinate the 2471 ** loading and saving of autoincrement information. 2472 */ 2473 struct AutoincInfo { 2474 AutoincInfo *pNext; /* Next info block in a list of them all */ 2475 Table *pTab; /* Table this info block refers to */ 2476 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2477 int regCtr; /* Memory register holding the rowid counter */ 2478 }; 2479 2480 /* 2481 ** Size of the column cache 2482 */ 2483 #ifndef SQLITE_N_COLCACHE 2484 # define SQLITE_N_COLCACHE 10 2485 #endif 2486 2487 /* 2488 ** At least one instance of the following structure is created for each 2489 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2490 ** statement. All such objects are stored in the linked list headed at 2491 ** Parse.pTriggerPrg and deleted once statement compilation has been 2492 ** completed. 2493 ** 2494 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2495 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2496 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2497 ** The Parse.pTriggerPrg list never contains two entries with the same 2498 ** values for both pTrigger and orconf. 2499 ** 2500 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2501 ** accessed (or set to 0 for triggers fired as a result of INSERT 2502 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2503 ** a mask of new.* columns used by the program. 2504 */ 2505 struct TriggerPrg { 2506 Trigger *pTrigger; /* Trigger this program was coded from */ 2507 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2508 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2509 int orconf; /* Default ON CONFLICT policy */ 2510 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2511 }; 2512 2513 /* 2514 ** The yDbMask datatype for the bitmask of all attached databases. 2515 */ 2516 #if SQLITE_MAX_ATTACHED>30 2517 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2518 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2519 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2520 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2521 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2522 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2523 #else 2524 typedef unsigned int yDbMask; 2525 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2526 # define DbMaskZero(M) (M)=0 2527 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2528 # define DbMaskAllZero(M) (M)==0 2529 # define DbMaskNonZero(M) (M)!=0 2530 #endif 2531 2532 /* 2533 ** An SQL parser context. A copy of this structure is passed through 2534 ** the parser and down into all the parser action routine in order to 2535 ** carry around information that is global to the entire parse. 2536 ** 2537 ** The structure is divided into two parts. When the parser and code 2538 ** generate call themselves recursively, the first part of the structure 2539 ** is constant but the second part is reset at the beginning and end of 2540 ** each recursion. 2541 ** 2542 ** The nTableLock and aTableLock variables are only used if the shared-cache 2543 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2544 ** used to store the set of table-locks required by the statement being 2545 ** compiled. Function sqlite3TableLock() is used to add entries to the 2546 ** list. 2547 */ 2548 struct Parse { 2549 sqlite3 *db; /* The main database structure */ 2550 char *zErrMsg; /* An error message */ 2551 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2552 int rc; /* Return code from execution */ 2553 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2554 u8 checkSchema; /* Causes schema cookie check after an error */ 2555 u8 nested; /* Number of nested calls to the parser/code generator */ 2556 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2557 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2558 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2559 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2560 u8 okConstFactor; /* OK to factor out constants */ 2561 int aTempReg[8]; /* Holding area for temporary registers */ 2562 int nRangeReg; /* Size of the temporary register block */ 2563 int iRangeReg; /* First register in temporary register block */ 2564 int nErr; /* Number of errors seen */ 2565 int nTab; /* Number of previously allocated VDBE cursors */ 2566 int nMem; /* Number of memory cells used so far */ 2567 int nSet; /* Number of sets used so far */ 2568 int nOnce; /* Number of OP_Once instructions so far */ 2569 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2570 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2571 int ckBase; /* Base register of data during check constraints */ 2572 int iPartIdxTab; /* Table corresponding to a partial index */ 2573 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2574 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2575 int nLabel; /* Number of labels used */ 2576 int *aLabel; /* Space to hold the labels */ 2577 struct yColCache { 2578 int iTable; /* Table cursor number */ 2579 i16 iColumn; /* Table column number */ 2580 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2581 int iLevel; /* Nesting level */ 2582 int iReg; /* Reg with value of this column. 0 means none. */ 2583 int lru; /* Least recently used entry has the smallest value */ 2584 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2585 ExprList *pConstExpr;/* Constant expressions */ 2586 Token constraintName;/* Name of the constraint currently being parsed */ 2587 yDbMask writeMask; /* Start a write transaction on these databases */ 2588 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2589 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2590 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2591 int regRoot; /* Register holding root page number for new objects */ 2592 int nMaxArg; /* Max args passed to user function by sub-program */ 2593 #if SELECTTRACE_ENABLED 2594 int nSelect; /* Number of SELECT statements seen */ 2595 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2596 #endif 2597 #ifndef SQLITE_OMIT_SHARED_CACHE 2598 int nTableLock; /* Number of locks in aTableLock */ 2599 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2600 #endif 2601 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2602 2603 /* Information used while coding trigger programs. */ 2604 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2605 Table *pTriggerTab; /* Table triggers are being coded for */ 2606 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2607 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2608 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2609 u32 oldmask; /* Mask of old.* columns referenced */ 2610 u32 newmask; /* Mask of new.* columns referenced */ 2611 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2612 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2613 u8 disableTriggers; /* True to disable triggers */ 2614 2615 /************************************************************************ 2616 ** Above is constant between recursions. Below is reset before and after 2617 ** each recursion. The boundary between these two regions is determined 2618 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2619 ** in the recursive region. 2620 ************************************************************************/ 2621 2622 int nVar; /* Number of '?' variables seen in the SQL so far */ 2623 int nzVar; /* Number of available slots in azVar[] */ 2624 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2625 u8 bFreeWith; /* True if pWith should be freed with parser */ 2626 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2627 #ifndef SQLITE_OMIT_VIRTUALTABLE 2628 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2629 int nVtabLock; /* Number of virtual tables to lock */ 2630 #endif 2631 int nAlias; /* Number of aliased result set columns */ 2632 int nHeight; /* Expression tree height of current sub-select */ 2633 #ifndef SQLITE_OMIT_EXPLAIN 2634 int iSelectId; /* ID of current select for EXPLAIN output */ 2635 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2636 #endif 2637 char **azVar; /* Pointers to names of parameters */ 2638 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2639 const char *zTail; /* All SQL text past the last semicolon parsed */ 2640 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2641 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2642 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2643 Token sNameToken; /* Token with unqualified schema object name */ 2644 Token sLastToken; /* The last token parsed */ 2645 #ifndef SQLITE_OMIT_VIRTUALTABLE 2646 Token sArg; /* Complete text of a module argument */ 2647 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2648 #endif 2649 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2650 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2651 With *pWith; /* Current WITH clause, or NULL */ 2652 }; 2653 2654 /* 2655 ** Return true if currently inside an sqlite3_declare_vtab() call. 2656 */ 2657 #ifdef SQLITE_OMIT_VIRTUALTABLE 2658 #define IN_DECLARE_VTAB 0 2659 #else 2660 #define IN_DECLARE_VTAB (pParse->declareVtab) 2661 #endif 2662 2663 /* 2664 ** An instance of the following structure can be declared on a stack and used 2665 ** to save the Parse.zAuthContext value so that it can be restored later. 2666 */ 2667 struct AuthContext { 2668 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2669 Parse *pParse; /* The Parse structure */ 2670 }; 2671 2672 /* 2673 ** Bitfield flags for P5 value in various opcodes. 2674 */ 2675 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2676 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2677 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2678 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2679 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2680 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2681 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2682 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2683 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2684 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2685 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2686 2687 /* 2688 * Each trigger present in the database schema is stored as an instance of 2689 * struct Trigger. 2690 * 2691 * Pointers to instances of struct Trigger are stored in two ways. 2692 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2693 * database). This allows Trigger structures to be retrieved by name. 2694 * 2. All triggers associated with a single table form a linked list, using the 2695 * pNext member of struct Trigger. A pointer to the first element of the 2696 * linked list is stored as the "pTrigger" member of the associated 2697 * struct Table. 2698 * 2699 * The "step_list" member points to the first element of a linked list 2700 * containing the SQL statements specified as the trigger program. 2701 */ 2702 struct Trigger { 2703 char *zName; /* The name of the trigger */ 2704 char *table; /* The table or view to which the trigger applies */ 2705 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2706 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2707 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2708 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2709 the <column-list> is stored here */ 2710 Schema *pSchema; /* Schema containing the trigger */ 2711 Schema *pTabSchema; /* Schema containing the table */ 2712 TriggerStep *step_list; /* Link list of trigger program steps */ 2713 Trigger *pNext; /* Next trigger associated with the table */ 2714 }; 2715 2716 /* 2717 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2718 ** determine which. 2719 ** 2720 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2721 ** In that cases, the constants below can be ORed together. 2722 */ 2723 #define TRIGGER_BEFORE 1 2724 #define TRIGGER_AFTER 2 2725 2726 /* 2727 * An instance of struct TriggerStep is used to store a single SQL statement 2728 * that is a part of a trigger-program. 2729 * 2730 * Instances of struct TriggerStep are stored in a singly linked list (linked 2731 * using the "pNext" member) referenced by the "step_list" member of the 2732 * associated struct Trigger instance. The first element of the linked list is 2733 * the first step of the trigger-program. 2734 * 2735 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2736 * "SELECT" statement. The meanings of the other members is determined by the 2737 * value of "op" as follows: 2738 * 2739 * (op == TK_INSERT) 2740 * orconf -> stores the ON CONFLICT algorithm 2741 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2742 * this stores a pointer to the SELECT statement. Otherwise NULL. 2743 * target -> A token holding the quoted name of the table to insert into. 2744 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2745 * this stores values to be inserted. Otherwise NULL. 2746 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2747 * statement, then this stores the column-names to be 2748 * inserted into. 2749 * 2750 * (op == TK_DELETE) 2751 * target -> A token holding the quoted name of the table to delete from. 2752 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2753 * Otherwise NULL. 2754 * 2755 * (op == TK_UPDATE) 2756 * target -> A token holding the quoted name of the table to update rows of. 2757 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2758 * Otherwise NULL. 2759 * pExprList -> A list of the columns to update and the expressions to update 2760 * them to. See sqlite3Update() documentation of "pChanges" 2761 * argument. 2762 * 2763 */ 2764 struct TriggerStep { 2765 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2766 u8 orconf; /* OE_Rollback etc. */ 2767 Trigger *pTrig; /* The trigger that this step is a part of */ 2768 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2769 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2770 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2771 ExprList *pExprList; /* SET clause for UPDATE. */ 2772 IdList *pIdList; /* Column names for INSERT */ 2773 TriggerStep *pNext; /* Next in the link-list */ 2774 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2775 }; 2776 2777 /* 2778 ** The following structure contains information used by the sqliteFix... 2779 ** routines as they walk the parse tree to make database references 2780 ** explicit. 2781 */ 2782 typedef struct DbFixer DbFixer; 2783 struct DbFixer { 2784 Parse *pParse; /* The parsing context. Error messages written here */ 2785 Schema *pSchema; /* Fix items to this schema */ 2786 int bVarOnly; /* Check for variable references only */ 2787 const char *zDb; /* Make sure all objects are contained in this database */ 2788 const char *zType; /* Type of the container - used for error messages */ 2789 const Token *pName; /* Name of the container - used for error messages */ 2790 }; 2791 2792 /* 2793 ** An objected used to accumulate the text of a string where we 2794 ** do not necessarily know how big the string will be in the end. 2795 */ 2796 struct StrAccum { 2797 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2798 char *zBase; /* A base allocation. Not from malloc. */ 2799 char *zText; /* The string collected so far */ 2800 int nChar; /* Length of the string so far */ 2801 int nAlloc; /* Amount of space allocated in zText */ 2802 int mxAlloc; /* Maximum allowed string length */ 2803 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2804 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2805 }; 2806 #define STRACCUM_NOMEM 1 2807 #define STRACCUM_TOOBIG 2 2808 2809 /* 2810 ** A pointer to this structure is used to communicate information 2811 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2812 */ 2813 typedef struct { 2814 sqlite3 *db; /* The database being initialized */ 2815 char **pzErrMsg; /* Error message stored here */ 2816 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2817 int rc; /* Result code stored here */ 2818 } InitData; 2819 2820 /* 2821 ** Structure containing global configuration data for the SQLite library. 2822 ** 2823 ** This structure also contains some state information. 2824 */ 2825 struct Sqlite3Config { 2826 int bMemstat; /* True to enable memory status */ 2827 int bCoreMutex; /* True to enable core mutexing */ 2828 int bFullMutex; /* True to enable full mutexing */ 2829 int bOpenUri; /* True to interpret filenames as URIs */ 2830 int bUseCis; /* Use covering indices for full-scans */ 2831 int mxStrlen; /* Maximum string length */ 2832 int neverCorrupt; /* Database is always well-formed */ 2833 int szLookaside; /* Default lookaside buffer size */ 2834 int nLookaside; /* Default lookaside buffer count */ 2835 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2836 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2837 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2838 void *pHeap; /* Heap storage space */ 2839 int nHeap; /* Size of pHeap[] */ 2840 int mnReq, mxReq; /* Min and max heap requests sizes */ 2841 sqlite3_int64 szMmap; /* mmap() space per open file */ 2842 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2843 void *pScratch; /* Scratch memory */ 2844 int szScratch; /* Size of each scratch buffer */ 2845 int nScratch; /* Number of scratch buffers */ 2846 void *pPage; /* Page cache memory */ 2847 int szPage; /* Size of each page in pPage[] */ 2848 int nPage; /* Number of pages in pPage[] */ 2849 int mxParserStack; /* maximum depth of the parser stack */ 2850 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2851 u32 szPma; /* Maximum Sorter PMA size */ 2852 /* The above might be initialized to non-zero. The following need to always 2853 ** initially be zero, however. */ 2854 int isInit; /* True after initialization has finished */ 2855 int inProgress; /* True while initialization in progress */ 2856 int isMutexInit; /* True after mutexes are initialized */ 2857 int isMallocInit; /* True after malloc is initialized */ 2858 int isPCacheInit; /* True after malloc is initialized */ 2859 int nRefInitMutex; /* Number of users of pInitMutex */ 2860 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2861 void (*xLog)(void*,int,const char*); /* Function for logging */ 2862 void *pLogArg; /* First argument to xLog() */ 2863 #ifdef SQLITE_ENABLE_SQLLOG 2864 void(*xSqllog)(void*,sqlite3*,const char*, int); 2865 void *pSqllogArg; 2866 #endif 2867 #ifdef SQLITE_VDBE_COVERAGE 2868 /* The following callback (if not NULL) is invoked on every VDBE branch 2869 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2870 */ 2871 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2872 void *pVdbeBranchArg; /* 1st argument */ 2873 #endif 2874 #ifndef SQLITE_OMIT_BUILTIN_TEST 2875 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2876 #endif 2877 int bLocaltimeFault; /* True to fail localtime() calls */ 2878 }; 2879 2880 /* 2881 ** This macro is used inside of assert() statements to indicate that 2882 ** the assert is only valid on a well-formed database. Instead of: 2883 ** 2884 ** assert( X ); 2885 ** 2886 ** One writes: 2887 ** 2888 ** assert( X || CORRUPT_DB ); 2889 ** 2890 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2891 ** that the database is definitely corrupt, only that it might be corrupt. 2892 ** For most test cases, CORRUPT_DB is set to false using a special 2893 ** sqlite3_test_control(). This enables assert() statements to prove 2894 ** things that are always true for well-formed databases. 2895 */ 2896 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2897 2898 /* 2899 ** Context pointer passed down through the tree-walk. 2900 */ 2901 struct Walker { 2902 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2903 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2904 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2905 Parse *pParse; /* Parser context. */ 2906 int walkerDepth; /* Number of subqueries */ 2907 u8 eCode; /* A small processing code */ 2908 union { /* Extra data for callback */ 2909 NameContext *pNC; /* Naming context */ 2910 int n; /* A counter */ 2911 int iCur; /* A cursor number */ 2912 SrcList *pSrcList; /* FROM clause */ 2913 struct SrcCount *pSrcCount; /* Counting column references */ 2914 } u; 2915 }; 2916 2917 /* Forward declarations */ 2918 int sqlite3WalkExpr(Walker*, Expr*); 2919 int sqlite3WalkExprList(Walker*, ExprList*); 2920 int sqlite3WalkSelect(Walker*, Select*); 2921 int sqlite3WalkSelectExpr(Walker*, Select*); 2922 int sqlite3WalkSelectFrom(Walker*, Select*); 2923 2924 /* 2925 ** Return code from the parse-tree walking primitives and their 2926 ** callbacks. 2927 */ 2928 #define WRC_Continue 0 /* Continue down into children */ 2929 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2930 #define WRC_Abort 2 /* Abandon the tree walk */ 2931 2932 /* 2933 ** An instance of this structure represents a set of one or more CTEs 2934 ** (common table expressions) created by a single WITH clause. 2935 */ 2936 struct With { 2937 int nCte; /* Number of CTEs in the WITH clause */ 2938 With *pOuter; /* Containing WITH clause, or NULL */ 2939 struct Cte { /* For each CTE in the WITH clause.... */ 2940 char *zName; /* Name of this CTE */ 2941 ExprList *pCols; /* List of explicit column names, or NULL */ 2942 Select *pSelect; /* The definition of this CTE */ 2943 const char *zErr; /* Error message for circular references */ 2944 } a[1]; 2945 }; 2946 2947 #ifdef SQLITE_DEBUG 2948 /* 2949 ** An instance of the TreeView object is used for printing the content of 2950 ** data structures on sqlite3DebugPrintf() using a tree-like view. 2951 */ 2952 struct TreeView { 2953 int iLevel; /* Which level of the tree we are on */ 2954 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 2955 }; 2956 #endif /* SQLITE_DEBUG */ 2957 2958 /* 2959 ** Assuming zIn points to the first byte of a UTF-8 character, 2960 ** advance zIn to point to the first byte of the next UTF-8 character. 2961 */ 2962 #define SQLITE_SKIP_UTF8(zIn) { \ 2963 if( (*(zIn++))>=0xc0 ){ \ 2964 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2965 } \ 2966 } 2967 2968 /* 2969 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2970 ** the same name but without the _BKPT suffix. These macros invoke 2971 ** routines that report the line-number on which the error originated 2972 ** using sqlite3_log(). The routines also provide a convenient place 2973 ** to set a debugger breakpoint. 2974 */ 2975 int sqlite3CorruptError(int); 2976 int sqlite3MisuseError(int); 2977 int sqlite3CantopenError(int); 2978 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2979 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2980 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2981 2982 2983 /* 2984 ** FTS4 is really an extension for FTS3. It is enabled using the 2985 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 2986 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 2987 */ 2988 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2989 # define SQLITE_ENABLE_FTS3 1 2990 #endif 2991 2992 /* 2993 ** The ctype.h header is needed for non-ASCII systems. It is also 2994 ** needed by FTS3 when FTS3 is included in the amalgamation. 2995 */ 2996 #if !defined(SQLITE_ASCII) || \ 2997 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2998 # include <ctype.h> 2999 #endif 3000 3001 /* 3002 ** The following macros mimic the standard library functions toupper(), 3003 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3004 ** sqlite versions only work for ASCII characters, regardless of locale. 3005 */ 3006 #ifdef SQLITE_ASCII 3007 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3008 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3009 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3010 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3011 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3012 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3013 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3014 #else 3015 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3016 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3017 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3018 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3019 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3020 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3021 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3022 #endif 3023 int sqlite3IsIdChar(u8); 3024 3025 /* 3026 ** Internal function prototypes 3027 */ 3028 #define sqlite3StrICmp sqlite3_stricmp 3029 int sqlite3Strlen30(const char*); 3030 #define sqlite3StrNICmp sqlite3_strnicmp 3031 3032 int sqlite3MallocInit(void); 3033 void sqlite3MallocEnd(void); 3034 void *sqlite3Malloc(u64); 3035 void *sqlite3MallocZero(u64); 3036 void *sqlite3DbMallocZero(sqlite3*, u64); 3037 void *sqlite3DbMallocRaw(sqlite3*, u64); 3038 char *sqlite3DbStrDup(sqlite3*,const char*); 3039 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3040 void *sqlite3Realloc(void*, u64); 3041 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3042 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3043 void sqlite3DbFree(sqlite3*, void*); 3044 int sqlite3MallocSize(void*); 3045 int sqlite3DbMallocSize(sqlite3*, void*); 3046 void *sqlite3ScratchMalloc(int); 3047 void sqlite3ScratchFree(void*); 3048 void *sqlite3PageMalloc(int); 3049 void sqlite3PageFree(void*); 3050 void sqlite3MemSetDefault(void); 3051 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3052 int sqlite3HeapNearlyFull(void); 3053 3054 /* 3055 ** On systems with ample stack space and that support alloca(), make 3056 ** use of alloca() to obtain space for large automatic objects. By default, 3057 ** obtain space from malloc(). 3058 ** 3059 ** The alloca() routine never returns NULL. This will cause code paths 3060 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3061 */ 3062 #ifdef SQLITE_USE_ALLOCA 3063 # define sqlite3StackAllocRaw(D,N) alloca(N) 3064 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3065 # define sqlite3StackFree(D,P) 3066 #else 3067 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3068 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3069 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3070 #endif 3071 3072 #ifdef SQLITE_ENABLE_MEMSYS3 3073 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3074 #endif 3075 #ifdef SQLITE_ENABLE_MEMSYS5 3076 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3077 #endif 3078 3079 3080 #ifndef SQLITE_MUTEX_OMIT 3081 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3082 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3083 sqlite3_mutex *sqlite3MutexAlloc(int); 3084 int sqlite3MutexInit(void); 3085 int sqlite3MutexEnd(void); 3086 #endif 3087 3088 int sqlite3StatusValue(int); 3089 void sqlite3StatusAdd(int, int); 3090 void sqlite3StatusSet(int, int); 3091 3092 #ifndef SQLITE_OMIT_FLOATING_POINT 3093 int sqlite3IsNaN(double); 3094 #else 3095 # define sqlite3IsNaN(X) 0 3096 #endif 3097 3098 /* 3099 ** An instance of the following structure holds information about SQL 3100 ** functions arguments that are the parameters to the printf() function. 3101 */ 3102 struct PrintfArguments { 3103 int nArg; /* Total number of arguments */ 3104 int nUsed; /* Number of arguments used so far */ 3105 sqlite3_value **apArg; /* The argument values */ 3106 }; 3107 3108 #define SQLITE_PRINTF_INTERNAL 0x01 3109 #define SQLITE_PRINTF_SQLFUNC 0x02 3110 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3111 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3112 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3113 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3114 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 3115 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 3116 void sqlite3DebugPrintf(const char*, ...); 3117 #endif 3118 #if defined(SQLITE_TEST) 3119 void *sqlite3TestTextToPtr(const char*); 3120 #endif 3121 3122 #if defined(SQLITE_DEBUG) 3123 TreeView *sqlite3TreeViewPush(TreeView*,u8); 3124 void sqlite3TreeViewPop(TreeView*); 3125 void sqlite3TreeViewLine(TreeView*, const char*, ...); 3126 void sqlite3TreeViewItem(TreeView*, const char*, u8); 3127 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3128 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3129 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3130 #endif 3131 3132 3133 void sqlite3SetString(char **, sqlite3*, const char*, ...); 3134 void sqlite3ErrorMsg(Parse*, const char*, ...); 3135 int sqlite3Dequote(char*); 3136 int sqlite3KeywordCode(const unsigned char*, int); 3137 int sqlite3RunParser(Parse*, const char*, char **); 3138 void sqlite3FinishCoding(Parse*); 3139 int sqlite3GetTempReg(Parse*); 3140 void sqlite3ReleaseTempReg(Parse*,int); 3141 int sqlite3GetTempRange(Parse*,int); 3142 void sqlite3ReleaseTempRange(Parse*,int,int); 3143 void sqlite3ClearTempRegCache(Parse*); 3144 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3145 Expr *sqlite3Expr(sqlite3*,int,const char*); 3146 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3147 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3148 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3149 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3150 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3151 void sqlite3ExprDelete(sqlite3*, Expr*); 3152 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3153 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3154 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3155 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3156 int sqlite3Init(sqlite3*, char**); 3157 int sqlite3InitCallback(void*, int, char**, char**); 3158 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3159 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3160 void sqlite3ResetOneSchema(sqlite3*,int); 3161 void sqlite3CollapseDatabaseArray(sqlite3*); 3162 void sqlite3BeginParse(Parse*,int); 3163 void sqlite3CommitInternalChanges(sqlite3*); 3164 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3165 void sqlite3OpenMasterTable(Parse *, int); 3166 Index *sqlite3PrimaryKeyIndex(Table*); 3167 i16 sqlite3ColumnOfIndex(Index*, i16); 3168 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3169 void sqlite3AddColumn(Parse*,Token*); 3170 void sqlite3AddNotNull(Parse*, int); 3171 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3172 void sqlite3AddCheckConstraint(Parse*, Expr*); 3173 void sqlite3AddColumnType(Parse*,Token*); 3174 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3175 void sqlite3AddCollateType(Parse*, Token*); 3176 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3177 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3178 sqlite3_vfs**,char**,char **); 3179 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3180 int sqlite3CodeOnce(Parse *); 3181 3182 #ifdef SQLITE_OMIT_BUILTIN_TEST 3183 # define sqlite3FaultSim(X) SQLITE_OK 3184 #else 3185 int sqlite3FaultSim(int); 3186 #endif 3187 3188 Bitvec *sqlite3BitvecCreate(u32); 3189 int sqlite3BitvecTest(Bitvec*, u32); 3190 int sqlite3BitvecSet(Bitvec*, u32); 3191 void sqlite3BitvecClear(Bitvec*, u32, void*); 3192 void sqlite3BitvecDestroy(Bitvec*); 3193 u32 sqlite3BitvecSize(Bitvec*); 3194 int sqlite3BitvecBuiltinTest(int,int*); 3195 3196 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3197 void sqlite3RowSetClear(RowSet*); 3198 void sqlite3RowSetInsert(RowSet*, i64); 3199 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3200 int sqlite3RowSetNext(RowSet*, i64*); 3201 3202 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3203 3204 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3205 int sqlite3ViewGetColumnNames(Parse*,Table*); 3206 #else 3207 # define sqlite3ViewGetColumnNames(A,B) 0 3208 #endif 3209 3210 #if SQLITE_MAX_ATTACHED>30 3211 int sqlite3DbMaskAllZero(yDbMask); 3212 #endif 3213 void sqlite3DropTable(Parse*, SrcList*, int, int); 3214 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3215 void sqlite3DeleteTable(sqlite3*, Table*); 3216 #ifndef SQLITE_OMIT_AUTOINCREMENT 3217 void sqlite3AutoincrementBegin(Parse *pParse); 3218 void sqlite3AutoincrementEnd(Parse *pParse); 3219 #else 3220 # define sqlite3AutoincrementBegin(X) 3221 # define sqlite3AutoincrementEnd(X) 3222 #endif 3223 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3224 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3225 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3226 int sqlite3IdListIndex(IdList*,const char*); 3227 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3228 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3229 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3230 Token*, Select*, Expr*, IdList*); 3231 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3232 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3233 void sqlite3SrcListShiftJoinType(SrcList*); 3234 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3235 void sqlite3IdListDelete(sqlite3*, IdList*); 3236 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3237 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3238 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3239 Expr*, int, int); 3240 void sqlite3DropIndex(Parse*, SrcList*, int); 3241 int sqlite3Select(Parse*, Select*, SelectDest*); 3242 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3243 Expr*,ExprList*,u16,Expr*,Expr*); 3244 void sqlite3SelectDelete(sqlite3*, Select*); 3245 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3246 int sqlite3IsReadOnly(Parse*, Table*, int); 3247 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3248 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3249 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3250 #endif 3251 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3252 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3253 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3254 void sqlite3WhereEnd(WhereInfo*); 3255 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3256 int sqlite3WhereIsDistinct(WhereInfo*); 3257 int sqlite3WhereIsOrdered(WhereInfo*); 3258 int sqlite3WhereIsSorted(WhereInfo*); 3259 int sqlite3WhereContinueLabel(WhereInfo*); 3260 int sqlite3WhereBreakLabel(WhereInfo*); 3261 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3262 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3263 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3264 void sqlite3ExprCodeMove(Parse*, int, int, int); 3265 void sqlite3ExprCacheStore(Parse*, int, int, int); 3266 void sqlite3ExprCachePush(Parse*); 3267 void sqlite3ExprCachePop(Parse*); 3268 void sqlite3ExprCacheRemove(Parse*, int, int); 3269 void sqlite3ExprCacheClear(Parse*); 3270 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3271 void sqlite3ExprCode(Parse*, Expr*, int); 3272 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3273 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3274 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3275 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3276 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3277 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3278 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3279 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3280 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3281 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3282 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3283 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3284 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3285 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3286 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3287 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3288 void sqlite3Vacuum(Parse*); 3289 int sqlite3RunVacuum(char**, sqlite3*); 3290 char *sqlite3NameFromToken(sqlite3*, Token*); 3291 int sqlite3ExprCompare(Expr*, Expr*, int); 3292 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3293 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3294 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3295 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3296 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3297 Vdbe *sqlite3GetVdbe(Parse*); 3298 void sqlite3PrngSaveState(void); 3299 void sqlite3PrngRestoreState(void); 3300 void sqlite3RollbackAll(sqlite3*,int); 3301 void sqlite3CodeVerifySchema(Parse*, int); 3302 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3303 void sqlite3BeginTransaction(Parse*, int); 3304 void sqlite3CommitTransaction(Parse*); 3305 void sqlite3RollbackTransaction(Parse*); 3306 void sqlite3Savepoint(Parse*, int, Token*); 3307 void sqlite3CloseSavepoints(sqlite3 *); 3308 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3309 int sqlite3ExprIsConstant(Expr*); 3310 int sqlite3ExprIsConstantNotJoin(Expr*); 3311 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3312 int sqlite3ExprIsTableConstant(Expr*,int); 3313 int sqlite3ExprIsInteger(Expr*, int*); 3314 int sqlite3ExprCanBeNull(const Expr*); 3315 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3316 int sqlite3IsRowid(const char*); 3317 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3318 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3319 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3320 void sqlite3ResolvePartIdxLabel(Parse*,int); 3321 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3322 u8,u8,int,int*); 3323 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3324 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3325 void sqlite3BeginWriteOperation(Parse*, int, int); 3326 void sqlite3MultiWrite(Parse*); 3327 void sqlite3MayAbort(Parse*); 3328 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3329 void sqlite3UniqueConstraint(Parse*, int, Index*); 3330 void sqlite3RowidConstraint(Parse*, int, Table*); 3331 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3332 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3333 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3334 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3335 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3336 #if SELECTTRACE_ENABLED 3337 void sqlite3SelectSetName(Select*,const char*); 3338 #else 3339 # define sqlite3SelectSetName(A,B) 3340 #endif 3341 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3342 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3343 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3344 void sqlite3RegisterDateTimeFunctions(void); 3345 void sqlite3RegisterGlobalFunctions(void); 3346 int sqlite3SafetyCheckOk(sqlite3*); 3347 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3348 void sqlite3ChangeCookie(Parse*, int); 3349 3350 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3351 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3352 #endif 3353 3354 #ifndef SQLITE_OMIT_TRIGGER 3355 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3356 Expr*,int, int); 3357 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3358 void sqlite3DropTrigger(Parse*, SrcList*, int); 3359 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3360 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3361 Trigger *sqlite3TriggerList(Parse *, Table *); 3362 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3363 int, int, int); 3364 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3365 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3366 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3367 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3368 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3369 Select*,u8); 3370 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3371 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3372 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3373 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3374 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3375 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3376 #else 3377 # define sqlite3TriggersExist(B,C,D,E,F) 0 3378 # define sqlite3DeleteTrigger(A,B) 3379 # define sqlite3DropTriggerPtr(A,B) 3380 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3381 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3382 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3383 # define sqlite3TriggerList(X, Y) 0 3384 # define sqlite3ParseToplevel(p) p 3385 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3386 #endif 3387 3388 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3389 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3390 void sqlite3DeferForeignKey(Parse*, int); 3391 #ifndef SQLITE_OMIT_AUTHORIZATION 3392 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3393 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3394 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3395 void sqlite3AuthContextPop(AuthContext*); 3396 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3397 #else 3398 # define sqlite3AuthRead(a,b,c,d) 3399 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3400 # define sqlite3AuthContextPush(a,b,c) 3401 # define sqlite3AuthContextPop(a) ((void)(a)) 3402 #endif 3403 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3404 void sqlite3Detach(Parse*, Expr*); 3405 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3406 int sqlite3FixSrcList(DbFixer*, SrcList*); 3407 int sqlite3FixSelect(DbFixer*, Select*); 3408 int sqlite3FixExpr(DbFixer*, Expr*); 3409 int sqlite3FixExprList(DbFixer*, ExprList*); 3410 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3411 int sqlite3AtoF(const char *z, double*, int, u8); 3412 int sqlite3GetInt32(const char *, int*); 3413 int sqlite3Atoi(const char*); 3414 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3415 int sqlite3Utf8CharLen(const char *pData, int nByte); 3416 u32 sqlite3Utf8Read(const u8**); 3417 LogEst sqlite3LogEst(u64); 3418 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3419 #ifndef SQLITE_OMIT_VIRTUALTABLE 3420 LogEst sqlite3LogEstFromDouble(double); 3421 #endif 3422 u64 sqlite3LogEstToInt(LogEst); 3423 3424 /* 3425 ** Routines to read and write variable-length integers. These used to 3426 ** be defined locally, but now we use the varint routines in the util.c 3427 ** file. 3428 */ 3429 int sqlite3PutVarint(unsigned char*, u64); 3430 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3431 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3432 int sqlite3VarintLen(u64 v); 3433 3434 /* 3435 ** The common case is for a varint to be a single byte. They following 3436 ** macros handle the common case without a procedure call, but then call 3437 ** the procedure for larger varints. 3438 */ 3439 #define getVarint32(A,B) \ 3440 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3441 #define putVarint32(A,B) \ 3442 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3443 sqlite3PutVarint((A),(B))) 3444 #define getVarint sqlite3GetVarint 3445 #define putVarint sqlite3PutVarint 3446 3447 3448 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3449 void sqlite3TableAffinity(Vdbe*, Table*, int); 3450 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3451 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3452 char sqlite3ExprAffinity(Expr *pExpr); 3453 int sqlite3Atoi64(const char*, i64*, int, u8); 3454 int sqlite3DecOrHexToI64(const char*, i64*); 3455 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3456 void sqlite3Error(sqlite3*,int); 3457 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3458 u8 sqlite3HexToInt(int h); 3459 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3460 3461 #if defined(SQLITE_TEST) 3462 const char *sqlite3ErrName(int); 3463 #endif 3464 3465 const char *sqlite3ErrStr(int); 3466 int sqlite3ReadSchema(Parse *pParse); 3467 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3468 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3469 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3470 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*); 3471 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3472 Expr *sqlite3ExprSkipCollate(Expr*); 3473 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3474 int sqlite3CheckObjectName(Parse *, const char *); 3475 void sqlite3VdbeSetChanges(sqlite3 *, int); 3476 int sqlite3AddInt64(i64*,i64); 3477 int sqlite3SubInt64(i64*,i64); 3478 int sqlite3MulInt64(i64*,i64); 3479 int sqlite3AbsInt32(int); 3480 #ifdef SQLITE_ENABLE_8_3_NAMES 3481 void sqlite3FileSuffix3(const char*, char*); 3482 #else 3483 # define sqlite3FileSuffix3(X,Y) 3484 #endif 3485 u8 sqlite3GetBoolean(const char *z,u8); 3486 3487 const void *sqlite3ValueText(sqlite3_value*, u8); 3488 int sqlite3ValueBytes(sqlite3_value*, u8); 3489 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3490 void(*)(void*)); 3491 void sqlite3ValueSetNull(sqlite3_value*); 3492 void sqlite3ValueFree(sqlite3_value*); 3493 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3494 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3495 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3496 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3497 #ifndef SQLITE_AMALGAMATION 3498 extern const unsigned char sqlite3OpcodeProperty[]; 3499 extern const unsigned char sqlite3UpperToLower[]; 3500 extern const unsigned char sqlite3CtypeMap[]; 3501 extern const Token sqlite3IntTokens[]; 3502 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3503 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3504 #ifndef SQLITE_OMIT_WSD 3505 extern int sqlite3PendingByte; 3506 #endif 3507 #endif 3508 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3509 void sqlite3Reindex(Parse*, Token*, Token*); 3510 void sqlite3AlterFunctions(void); 3511 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3512 int sqlite3GetToken(const unsigned char *, int *); 3513 void sqlite3NestedParse(Parse*, const char*, ...); 3514 void sqlite3ExpirePreparedStatements(sqlite3*); 3515 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3516 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3517 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3518 int sqlite3ResolveExprNames(NameContext*, Expr*); 3519 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3520 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3521 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3522 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3523 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3524 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3525 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3526 char sqlite3AffinityType(const char*, u8*); 3527 void sqlite3Analyze(Parse*, Token*, Token*); 3528 int sqlite3InvokeBusyHandler(BusyHandler*); 3529 int sqlite3FindDb(sqlite3*, Token*); 3530 int sqlite3FindDbName(sqlite3 *, const char *); 3531 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3532 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3533 void sqlite3DefaultRowEst(Index*); 3534 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3535 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3536 void sqlite3MinimumFileFormat(Parse*, int, int); 3537 void sqlite3SchemaClear(void *); 3538 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3539 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3540 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3541 void sqlite3KeyInfoUnref(KeyInfo*); 3542 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3543 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3544 #ifdef SQLITE_DEBUG 3545 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3546 #endif 3547 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3548 void (*)(sqlite3_context*,int,sqlite3_value **), 3549 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3550 FuncDestructor *pDestructor 3551 ); 3552 int sqlite3ApiExit(sqlite3 *db, int); 3553 int sqlite3OpenTempDatabase(Parse *); 3554 3555 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3556 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3557 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3558 void sqlite3AppendChar(StrAccum*,int,char); 3559 char *sqlite3StrAccumFinish(StrAccum*); 3560 void sqlite3StrAccumReset(StrAccum*); 3561 void sqlite3SelectDestInit(SelectDest*,int,int); 3562 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3563 3564 void sqlite3BackupRestart(sqlite3_backup *); 3565 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3566 3567 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3568 void sqlite3AnalyzeFunctions(void); 3569 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3570 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3571 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3572 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3573 #endif 3574 3575 /* 3576 ** The interface to the LEMON-generated parser 3577 */ 3578 void *sqlite3ParserAlloc(void*(*)(u64)); 3579 void sqlite3ParserFree(void*, void(*)(void*)); 3580 void sqlite3Parser(void*, int, Token, Parse*); 3581 #ifdef YYTRACKMAXSTACKDEPTH 3582 int sqlite3ParserStackPeak(void*); 3583 #endif 3584 3585 void sqlite3AutoLoadExtensions(sqlite3*); 3586 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3587 void sqlite3CloseExtensions(sqlite3*); 3588 #else 3589 # define sqlite3CloseExtensions(X) 3590 #endif 3591 3592 #ifndef SQLITE_OMIT_SHARED_CACHE 3593 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3594 #else 3595 #define sqlite3TableLock(v,w,x,y,z) 3596 #endif 3597 3598 #ifdef SQLITE_TEST 3599 int sqlite3Utf8To8(unsigned char*); 3600 #endif 3601 3602 #ifdef SQLITE_OMIT_VIRTUALTABLE 3603 # define sqlite3VtabClear(Y) 3604 # define sqlite3VtabSync(X,Y) SQLITE_OK 3605 # define sqlite3VtabRollback(X) 3606 # define sqlite3VtabCommit(X) 3607 # define sqlite3VtabInSync(db) 0 3608 # define sqlite3VtabLock(X) 3609 # define sqlite3VtabUnlock(X) 3610 # define sqlite3VtabUnlockList(X) 3611 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3612 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3613 #else 3614 void sqlite3VtabClear(sqlite3 *db, Table*); 3615 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3616 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3617 int sqlite3VtabRollback(sqlite3 *db); 3618 int sqlite3VtabCommit(sqlite3 *db); 3619 void sqlite3VtabLock(VTable *); 3620 void sqlite3VtabUnlock(VTable *); 3621 void sqlite3VtabUnlockList(sqlite3*); 3622 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3623 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3624 VTable *sqlite3GetVTable(sqlite3*, Table*); 3625 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3626 #endif 3627 void sqlite3VtabMakeWritable(Parse*,Table*); 3628 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3629 void sqlite3VtabFinishParse(Parse*, Token*); 3630 void sqlite3VtabArgInit(Parse*); 3631 void sqlite3VtabArgExtend(Parse*, Token*); 3632 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3633 int sqlite3VtabCallConnect(Parse*, Table*); 3634 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3635 int sqlite3VtabBegin(sqlite3 *, VTable *); 3636 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3637 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3638 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3639 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3640 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3641 void sqlite3ParserReset(Parse*); 3642 int sqlite3Reprepare(Vdbe*); 3643 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3644 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3645 int sqlite3TempInMemory(const sqlite3*); 3646 const char *sqlite3JournalModename(int); 3647 #ifndef SQLITE_OMIT_WAL 3648 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3649 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3650 #endif 3651 #ifndef SQLITE_OMIT_CTE 3652 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3653 void sqlite3WithDelete(sqlite3*,With*); 3654 void sqlite3WithPush(Parse*, With*, u8); 3655 #else 3656 #define sqlite3WithPush(x,y,z) 3657 #define sqlite3WithDelete(x,y) 3658 #endif 3659 3660 /* Declarations for functions in fkey.c. All of these are replaced by 3661 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3662 ** key functionality is available. If OMIT_TRIGGER is defined but 3663 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3664 ** this case foreign keys are parsed, but no other functionality is 3665 ** provided (enforcement of FK constraints requires the triggers sub-system). 3666 */ 3667 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3668 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3669 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3670 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3671 int sqlite3FkRequired(Parse*, Table*, int*, int); 3672 u32 sqlite3FkOldmask(Parse*, Table*); 3673 FKey *sqlite3FkReferences(Table *); 3674 #else 3675 #define sqlite3FkActions(a,b,c,d,e,f) 3676 #define sqlite3FkCheck(a,b,c,d,e,f) 3677 #define sqlite3FkDropTable(a,b,c) 3678 #define sqlite3FkOldmask(a,b) 0 3679 #define sqlite3FkRequired(a,b,c,d) 0 3680 #endif 3681 #ifndef SQLITE_OMIT_FOREIGN_KEY 3682 void sqlite3FkDelete(sqlite3 *, Table*); 3683 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3684 #else 3685 #define sqlite3FkDelete(a,b) 3686 #define sqlite3FkLocateIndex(a,b,c,d,e) 3687 #endif 3688 3689 3690 /* 3691 ** Available fault injectors. Should be numbered beginning with 0. 3692 */ 3693 #define SQLITE_FAULTINJECTOR_MALLOC 0 3694 #define SQLITE_FAULTINJECTOR_COUNT 1 3695 3696 /* 3697 ** The interface to the code in fault.c used for identifying "benign" 3698 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3699 ** is not defined. 3700 */ 3701 #ifndef SQLITE_OMIT_BUILTIN_TEST 3702 void sqlite3BeginBenignMalloc(void); 3703 void sqlite3EndBenignMalloc(void); 3704 #else 3705 #define sqlite3BeginBenignMalloc() 3706 #define sqlite3EndBenignMalloc() 3707 #endif 3708 3709 /* 3710 ** Allowed return values from sqlite3FindInIndex() 3711 */ 3712 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3713 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3714 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3715 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3716 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3717 /* 3718 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3719 */ 3720 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3721 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3722 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3723 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3724 3725 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3726 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3727 int sqlite3JournalSize(sqlite3_vfs *); 3728 int sqlite3JournalCreate(sqlite3_file *); 3729 int sqlite3JournalExists(sqlite3_file *p); 3730 #else 3731 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3732 #define sqlite3JournalExists(p) 1 3733 #endif 3734 3735 void sqlite3MemJournalOpen(sqlite3_file *); 3736 int sqlite3MemJournalSize(void); 3737 int sqlite3IsMemJournal(sqlite3_file *); 3738 3739 #if SQLITE_MAX_EXPR_DEPTH>0 3740 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3741 int sqlite3SelectExprHeight(Select *); 3742 int sqlite3ExprCheckHeight(Parse*, int); 3743 #else 3744 #define sqlite3ExprSetHeight(x,y) 3745 #define sqlite3SelectExprHeight(x) 0 3746 #define sqlite3ExprCheckHeight(x,y) 3747 #endif 3748 3749 u32 sqlite3Get4byte(const u8*); 3750 void sqlite3Put4byte(u8*, u32); 3751 3752 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3753 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3754 void sqlite3ConnectionUnlocked(sqlite3 *db); 3755 void sqlite3ConnectionClosed(sqlite3 *db); 3756 #else 3757 #define sqlite3ConnectionBlocked(x,y) 3758 #define sqlite3ConnectionUnlocked(x) 3759 #define sqlite3ConnectionClosed(x) 3760 #endif 3761 3762 #ifdef SQLITE_DEBUG 3763 void sqlite3ParserTrace(FILE*, char *); 3764 #endif 3765 3766 /* 3767 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3768 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3769 ** print I/O tracing messages. 3770 */ 3771 #ifdef SQLITE_ENABLE_IOTRACE 3772 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3773 void sqlite3VdbeIOTraceSql(Vdbe*); 3774 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3775 #else 3776 # define IOTRACE(A) 3777 # define sqlite3VdbeIOTraceSql(X) 3778 #endif 3779 3780 /* 3781 ** These routines are available for the mem2.c debugging memory allocator 3782 ** only. They are used to verify that different "types" of memory 3783 ** allocations are properly tracked by the system. 3784 ** 3785 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3786 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3787 ** a single bit set. 3788 ** 3789 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3790 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3791 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3792 ** 3793 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3794 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3795 ** 3796 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3797 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3798 ** it might have been allocated by lookaside, except the allocation was 3799 ** too large or lookaside was already full. It is important to verify 3800 ** that allocations that might have been satisfied by lookaside are not 3801 ** passed back to non-lookaside free() routines. Asserts such as the 3802 ** example above are placed on the non-lookaside free() routines to verify 3803 ** this constraint. 3804 ** 3805 ** All of this is no-op for a production build. It only comes into 3806 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3807 */ 3808 #ifdef SQLITE_MEMDEBUG 3809 void sqlite3MemdebugSetType(void*,u8); 3810 int sqlite3MemdebugHasType(void*,u8); 3811 int sqlite3MemdebugNoType(void*,u8); 3812 #else 3813 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3814 # define sqlite3MemdebugHasType(X,Y) 1 3815 # define sqlite3MemdebugNoType(X,Y) 1 3816 #endif 3817 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3818 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3819 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3820 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3821 3822 /* 3823 ** Threading interface 3824 */ 3825 #if SQLITE_MAX_WORKER_THREADS>0 3826 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3827 int sqlite3ThreadJoin(SQLiteThread*, void**); 3828 #endif 3829 3830 #endif /* _SQLITEINT_H_ */ 3831