1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Make sure that rand_s() is available on Windows systems with MSVC 2005 20 ** or higher. 21 */ 22 #if defined(_MSC_VER) && _MSC_VER>=1400 23 # define _CRT_RAND_S 24 #endif 25 26 /* 27 ** Include the header file used to customize the compiler options for MSVC. 28 ** This should be done first so that it can successfully prevent spurious 29 ** compiler warnings due to subsequent content in this file and other files 30 ** that are included by this file. 31 */ 32 #include "msvc.h" 33 34 /* 35 ** Special setup for VxWorks 36 */ 37 #include "vxworks.h" 38 39 /* 40 ** These #defines should enable >2GB file support on POSIX if the 41 ** underlying operating system supports it. If the OS lacks 42 ** large file support, or if the OS is windows, these should be no-ops. 43 ** 44 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 45 ** system #includes. Hence, this block of code must be the very first 46 ** code in all source files. 47 ** 48 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 49 ** on the compiler command line. This is necessary if you are compiling 50 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 51 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 52 ** without this option, LFS is enable. But LFS does not exist in the kernel 53 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 54 ** portability you should omit LFS. 55 ** 56 ** The previous paragraph was written in 2005. (This paragraph is written 57 ** on 2008-11-28.) These days, all Linux kernels support large files, so 58 ** you should probably leave LFS enabled. But some embedded platforms might 59 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 60 ** 61 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 62 */ 63 #ifndef SQLITE_DISABLE_LFS 64 # define _LARGE_FILE 1 65 # ifndef _FILE_OFFSET_BITS 66 # define _FILE_OFFSET_BITS 64 67 # endif 68 # define _LARGEFILE_SOURCE 1 69 #endif 70 71 /* What version of GCC is being used. 0 means GCC is not being used */ 72 #ifdef __GNUC__ 73 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 74 #else 75 # define GCC_VERSION 0 76 #endif 77 78 /* Needed for various definitions... */ 79 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 80 # define _GNU_SOURCE 81 #endif 82 83 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 84 # define _BSD_SOURCE 85 #endif 86 87 /* 88 ** For MinGW, check to see if we can include the header file containing its 89 ** version information, among other things. Normally, this internal MinGW 90 ** header file would [only] be included automatically by other MinGW header 91 ** files; however, the contained version information is now required by this 92 ** header file to work around binary compatibility issues (see below) and 93 ** this is the only known way to reliably obtain it. This entire #if block 94 ** would be completely unnecessary if there was any other way of detecting 95 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 96 ** some MinGW-specific macros). When compiling for MinGW, either the 97 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 98 ** defined; otherwise, detection of conditions specific to MinGW will be 99 ** disabled. 100 */ 101 #if defined(_HAVE_MINGW_H) 102 # include "mingw.h" 103 #elif defined(_HAVE__MINGW_H) 104 # include "_mingw.h" 105 #endif 106 107 /* 108 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 109 ** define is required to maintain binary compatibility with the MSVC runtime 110 ** library in use (e.g. for Windows XP). 111 */ 112 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 113 defined(_WIN32) && !defined(_WIN64) && \ 114 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 115 defined(__MSVCRT__) 116 # define _USE_32BIT_TIME_T 117 #endif 118 119 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 120 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 121 ** MinGW. 122 */ 123 #include "sqlite3.h" 124 125 /* 126 ** Include the configuration header output by 'configure' if we're using the 127 ** autoconf-based build 128 */ 129 #ifdef _HAVE_SQLITE_CONFIG_H 130 #include "config.h" 131 #endif 132 133 #include "sqliteLimit.h" 134 135 /* Disable nuisance warnings on Borland compilers */ 136 #if defined(__BORLANDC__) 137 #pragma warn -rch /* unreachable code */ 138 #pragma warn -ccc /* Condition is always true or false */ 139 #pragma warn -aus /* Assigned value is never used */ 140 #pragma warn -csu /* Comparing signed and unsigned */ 141 #pragma warn -spa /* Suspicious pointer arithmetic */ 142 #endif 143 144 /* 145 ** Include standard header files as necessary 146 */ 147 #ifdef HAVE_STDINT_H 148 #include <stdint.h> 149 #endif 150 #ifdef HAVE_INTTYPES_H 151 #include <inttypes.h> 152 #endif 153 154 /* 155 ** The following macros are used to cast pointers to integers and 156 ** integers to pointers. The way you do this varies from one compiler 157 ** to the next, so we have developed the following set of #if statements 158 ** to generate appropriate macros for a wide range of compilers. 159 ** 160 ** The correct "ANSI" way to do this is to use the intptr_t type. 161 ** Unfortunately, that typedef is not available on all compilers, or 162 ** if it is available, it requires an #include of specific headers 163 ** that vary from one machine to the next. 164 ** 165 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 166 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 167 ** So we have to define the macros in different ways depending on the 168 ** compiler. 169 */ 170 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 171 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 172 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 173 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 174 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 175 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 176 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 177 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 178 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 179 #else /* Generates a warning - but it always works */ 180 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 181 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 182 #endif 183 184 /* 185 ** A macro to hint to the compiler that a function should not be 186 ** inlined. 187 */ 188 #if defined(__GNUC__) 189 # define SQLITE_NOINLINE __attribute__((noinline)) 190 #elif defined(_MSC_VER) && _MSC_VER>=1310 191 # define SQLITE_NOINLINE __declspec(noinline) 192 #else 193 # define SQLITE_NOINLINE 194 #endif 195 196 /* 197 ** Make sure that the compiler intrinsics we desire are enabled when 198 ** compiling with an appropriate version of MSVC unless prevented by 199 ** the SQLITE_DISABLE_INTRINSIC define. 200 */ 201 #if !defined(SQLITE_DISABLE_INTRINSIC) 202 # if defined(_MSC_VER) && _MSC_VER>=1300 203 # if !defined(_WIN32_WCE) 204 # include <intrin.h> 205 # pragma intrinsic(_byteswap_ushort) 206 # pragma intrinsic(_byteswap_ulong) 207 # pragma intrinsic(_ReadWriteBarrier) 208 # else 209 # include <cmnintrin.h> 210 # endif 211 # endif 212 #endif 213 214 /* 215 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 216 ** 0 means mutexes are permanently disable and the library is never 217 ** threadsafe. 1 means the library is serialized which is the highest 218 ** level of threadsafety. 2 means the library is multithreaded - multiple 219 ** threads can use SQLite as long as no two threads try to use the same 220 ** database connection at the same time. 221 ** 222 ** Older versions of SQLite used an optional THREADSAFE macro. 223 ** We support that for legacy. 224 */ 225 #if !defined(SQLITE_THREADSAFE) 226 # if defined(THREADSAFE) 227 # define SQLITE_THREADSAFE THREADSAFE 228 # else 229 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 230 # endif 231 #endif 232 233 /* 234 ** Powersafe overwrite is on by default. But can be turned off using 235 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 236 */ 237 #ifndef SQLITE_POWERSAFE_OVERWRITE 238 # define SQLITE_POWERSAFE_OVERWRITE 1 239 #endif 240 241 /* 242 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 243 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 244 ** which case memory allocation statistics are disabled by default. 245 */ 246 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 247 # define SQLITE_DEFAULT_MEMSTATUS 1 248 #endif 249 250 /* 251 ** Exactly one of the following macros must be defined in order to 252 ** specify which memory allocation subsystem to use. 253 ** 254 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 255 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 256 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 257 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 258 ** 259 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 260 ** assert() macro is enabled, each call into the Win32 native heap subsystem 261 ** will cause HeapValidate to be called. If heap validation should fail, an 262 ** assertion will be triggered. 263 ** 264 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 265 ** the default. 266 */ 267 #if defined(SQLITE_SYSTEM_MALLOC) \ 268 + defined(SQLITE_WIN32_MALLOC) \ 269 + defined(SQLITE_ZERO_MALLOC) \ 270 + defined(SQLITE_MEMDEBUG)>1 271 # error "Two or more of the following compile-time configuration options\ 272 are defined but at most one is allowed:\ 273 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 274 SQLITE_ZERO_MALLOC" 275 #endif 276 #if defined(SQLITE_SYSTEM_MALLOC) \ 277 + defined(SQLITE_WIN32_MALLOC) \ 278 + defined(SQLITE_ZERO_MALLOC) \ 279 + defined(SQLITE_MEMDEBUG)==0 280 # define SQLITE_SYSTEM_MALLOC 1 281 #endif 282 283 /* 284 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 285 ** sizes of memory allocations below this value where possible. 286 */ 287 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 288 # define SQLITE_MALLOC_SOFT_LIMIT 1024 289 #endif 290 291 /* 292 ** We need to define _XOPEN_SOURCE as follows in order to enable 293 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 294 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 295 ** it. 296 */ 297 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 298 # define _XOPEN_SOURCE 600 299 #endif 300 301 /* 302 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 303 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 304 ** make it true by defining or undefining NDEBUG. 305 ** 306 ** Setting NDEBUG makes the code smaller and faster by disabling the 307 ** assert() statements in the code. So we want the default action 308 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 309 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 310 ** feature. 311 */ 312 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 313 # define NDEBUG 1 314 #endif 315 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 316 # undef NDEBUG 317 #endif 318 319 /* 320 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 321 */ 322 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 323 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 324 #endif 325 326 /* 327 ** The testcase() macro is used to aid in coverage testing. When 328 ** doing coverage testing, the condition inside the argument to 329 ** testcase() must be evaluated both true and false in order to 330 ** get full branch coverage. The testcase() macro is inserted 331 ** to help ensure adequate test coverage in places where simple 332 ** condition/decision coverage is inadequate. For example, testcase() 333 ** can be used to make sure boundary values are tested. For 334 ** bitmask tests, testcase() can be used to make sure each bit 335 ** is significant and used at least once. On switch statements 336 ** where multiple cases go to the same block of code, testcase() 337 ** can insure that all cases are evaluated. 338 ** 339 */ 340 #ifdef SQLITE_COVERAGE_TEST 341 void sqlite3Coverage(int); 342 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 343 #else 344 # define testcase(X) 345 #endif 346 347 /* 348 ** The TESTONLY macro is used to enclose variable declarations or 349 ** other bits of code that are needed to support the arguments 350 ** within testcase() and assert() macros. 351 */ 352 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 353 # define TESTONLY(X) X 354 #else 355 # define TESTONLY(X) 356 #endif 357 358 /* 359 ** Sometimes we need a small amount of code such as a variable initialization 360 ** to setup for a later assert() statement. We do not want this code to 361 ** appear when assert() is disabled. The following macro is therefore 362 ** used to contain that setup code. The "VVA" acronym stands for 363 ** "Verification, Validation, and Accreditation". In other words, the 364 ** code within VVA_ONLY() will only run during verification processes. 365 */ 366 #ifndef NDEBUG 367 # define VVA_ONLY(X) X 368 #else 369 # define VVA_ONLY(X) 370 #endif 371 372 /* 373 ** The ALWAYS and NEVER macros surround boolean expressions which 374 ** are intended to always be true or false, respectively. Such 375 ** expressions could be omitted from the code completely. But they 376 ** are included in a few cases in order to enhance the resilience 377 ** of SQLite to unexpected behavior - to make the code "self-healing" 378 ** or "ductile" rather than being "brittle" and crashing at the first 379 ** hint of unplanned behavior. 380 ** 381 ** In other words, ALWAYS and NEVER are added for defensive code. 382 ** 383 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 384 ** be true and false so that the unreachable code they specify will 385 ** not be counted as untested code. 386 */ 387 #if defined(SQLITE_COVERAGE_TEST) 388 # define ALWAYS(X) (1) 389 # define NEVER(X) (0) 390 #elif !defined(NDEBUG) 391 # define ALWAYS(X) ((X)?1:(assert(0),0)) 392 # define NEVER(X) ((X)?(assert(0),1):0) 393 #else 394 # define ALWAYS(X) (X) 395 # define NEVER(X) (X) 396 #endif 397 398 /* 399 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is 400 ** defined. We need to defend against those failures when testing with 401 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches 402 ** during a normal build. The following macro can be used to disable tests 403 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. 404 */ 405 #if defined(SQLITE_TEST_REALLOC_STRESS) 406 # define ONLY_IF_REALLOC_STRESS(X) (X) 407 #elif !defined(NDEBUG) 408 # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) 409 #else 410 # define ONLY_IF_REALLOC_STRESS(X) (0) 411 #endif 412 413 /* 414 ** Declarations used for tracing the operating system interfaces. 415 */ 416 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 417 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 418 extern int sqlite3OSTrace; 419 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 420 # define SQLITE_HAVE_OS_TRACE 421 #else 422 # define OSTRACE(X) 423 # undef SQLITE_HAVE_OS_TRACE 424 #endif 425 426 /* 427 ** Is the sqlite3ErrName() function needed in the build? Currently, 428 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 429 ** OSTRACE is enabled), and by several "test*.c" files (which are 430 ** compiled using SQLITE_TEST). 431 */ 432 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 433 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 434 # define SQLITE_NEED_ERR_NAME 435 #else 436 # undef SQLITE_NEED_ERR_NAME 437 #endif 438 439 /* 440 ** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN 441 */ 442 #ifdef SQLITE_OMIT_EXPLAIN 443 # undef SQLITE_ENABLE_EXPLAIN_COMMENTS 444 #endif 445 446 /* 447 ** Return true (non-zero) if the input is an integer that is too large 448 ** to fit in 32-bits. This macro is used inside of various testcase() 449 ** macros to verify that we have tested SQLite for large-file support. 450 */ 451 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 452 453 /* 454 ** The macro unlikely() is a hint that surrounds a boolean 455 ** expression that is usually false. Macro likely() surrounds 456 ** a boolean expression that is usually true. These hints could, 457 ** in theory, be used by the compiler to generate better code, but 458 ** currently they are just comments for human readers. 459 */ 460 #define likely(X) (X) 461 #define unlikely(X) (X) 462 463 #include "hash.h" 464 #include "parse.h" 465 #include <stdio.h> 466 #include <stdlib.h> 467 #include <string.h> 468 #include <assert.h> 469 #include <stddef.h> 470 471 /* 472 ** If compiling for a processor that lacks floating point support, 473 ** substitute integer for floating-point 474 */ 475 #ifdef SQLITE_OMIT_FLOATING_POINT 476 # define double sqlite_int64 477 # define float sqlite_int64 478 # define LONGDOUBLE_TYPE sqlite_int64 479 # ifndef SQLITE_BIG_DBL 480 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 481 # endif 482 # define SQLITE_OMIT_DATETIME_FUNCS 1 483 # define SQLITE_OMIT_TRACE 1 484 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 485 # undef SQLITE_HAVE_ISNAN 486 #endif 487 #ifndef SQLITE_BIG_DBL 488 # define SQLITE_BIG_DBL (1e99) 489 #endif 490 491 /* 492 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 493 ** afterward. Having this macro allows us to cause the C compiler 494 ** to omit code used by TEMP tables without messy #ifndef statements. 495 */ 496 #ifdef SQLITE_OMIT_TEMPDB 497 #define OMIT_TEMPDB 1 498 #else 499 #define OMIT_TEMPDB 0 500 #endif 501 502 /* 503 ** The "file format" number is an integer that is incremented whenever 504 ** the VDBE-level file format changes. The following macros define the 505 ** the default file format for new databases and the maximum file format 506 ** that the library can read. 507 */ 508 #define SQLITE_MAX_FILE_FORMAT 4 509 #ifndef SQLITE_DEFAULT_FILE_FORMAT 510 # define SQLITE_DEFAULT_FILE_FORMAT 4 511 #endif 512 513 /* 514 ** Determine whether triggers are recursive by default. This can be 515 ** changed at run-time using a pragma. 516 */ 517 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 518 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 519 #endif 520 521 /* 522 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 523 ** on the command-line 524 */ 525 #ifndef SQLITE_TEMP_STORE 526 # define SQLITE_TEMP_STORE 1 527 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 528 #endif 529 530 /* 531 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 532 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 533 ** to zero. 534 */ 535 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 536 # undef SQLITE_MAX_WORKER_THREADS 537 # define SQLITE_MAX_WORKER_THREADS 0 538 #endif 539 #ifndef SQLITE_MAX_WORKER_THREADS 540 # define SQLITE_MAX_WORKER_THREADS 8 541 #endif 542 #ifndef SQLITE_DEFAULT_WORKER_THREADS 543 # define SQLITE_DEFAULT_WORKER_THREADS 0 544 #endif 545 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 546 # undef SQLITE_MAX_WORKER_THREADS 547 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 548 #endif 549 550 /* 551 ** The default initial allocation for the pagecache when using separate 552 ** pagecaches for each database connection. A positive number is the 553 ** number of pages. A negative number N translations means that a buffer 554 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 555 */ 556 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 557 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 558 #endif 559 560 /* 561 ** GCC does not define the offsetof() macro so we'll have to do it 562 ** ourselves. 563 */ 564 #ifndef offsetof 565 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 566 #endif 567 568 /* 569 ** Macros to compute minimum and maximum of two numbers. 570 */ 571 #ifndef MIN 572 # define MIN(A,B) ((A)<(B)?(A):(B)) 573 #endif 574 #ifndef MAX 575 # define MAX(A,B) ((A)>(B)?(A):(B)) 576 #endif 577 578 /* 579 ** Swap two objects of type TYPE. 580 */ 581 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 582 583 /* 584 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 585 ** not, there are still machines out there that use EBCDIC.) 586 */ 587 #if 'A' == '\301' 588 # define SQLITE_EBCDIC 1 589 #else 590 # define SQLITE_ASCII 1 591 #endif 592 593 /* 594 ** Integers of known sizes. These typedefs might change for architectures 595 ** where the sizes very. Preprocessor macros are available so that the 596 ** types can be conveniently redefined at compile-type. Like this: 597 ** 598 ** cc '-DUINTPTR_TYPE=long long int' ... 599 */ 600 #ifndef UINT32_TYPE 601 # ifdef HAVE_UINT32_T 602 # define UINT32_TYPE uint32_t 603 # else 604 # define UINT32_TYPE unsigned int 605 # endif 606 #endif 607 #ifndef UINT16_TYPE 608 # ifdef HAVE_UINT16_T 609 # define UINT16_TYPE uint16_t 610 # else 611 # define UINT16_TYPE unsigned short int 612 # endif 613 #endif 614 #ifndef INT16_TYPE 615 # ifdef HAVE_INT16_T 616 # define INT16_TYPE int16_t 617 # else 618 # define INT16_TYPE short int 619 # endif 620 #endif 621 #ifndef UINT8_TYPE 622 # ifdef HAVE_UINT8_T 623 # define UINT8_TYPE uint8_t 624 # else 625 # define UINT8_TYPE unsigned char 626 # endif 627 #endif 628 #ifndef INT8_TYPE 629 # ifdef HAVE_INT8_T 630 # define INT8_TYPE int8_t 631 # else 632 # define INT8_TYPE signed char 633 # endif 634 #endif 635 #ifndef LONGDOUBLE_TYPE 636 # define LONGDOUBLE_TYPE long double 637 #endif 638 typedef sqlite_int64 i64; /* 8-byte signed integer */ 639 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 640 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 641 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 642 typedef INT16_TYPE i16; /* 2-byte signed integer */ 643 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 644 typedef INT8_TYPE i8; /* 1-byte signed integer */ 645 646 /* 647 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 648 ** that can be stored in a u32 without loss of data. The value 649 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 650 ** have to specify the value in the less intuitive manner shown: 651 */ 652 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 653 654 /* 655 ** The datatype used to store estimates of the number of rows in a 656 ** table or index. This is an unsigned integer type. For 99.9% of 657 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 658 ** can be used at compile-time if desired. 659 */ 660 #ifdef SQLITE_64BIT_STATS 661 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 662 #else 663 typedef u32 tRowcnt; /* 32-bit is the default */ 664 #endif 665 666 /* 667 ** Estimated quantities used for query planning are stored as 16-bit 668 ** logarithms. For quantity X, the value stored is 10*log2(X). This 669 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 670 ** But the allowed values are "grainy". Not every value is representable. 671 ** For example, quantities 16 and 17 are both represented by a LogEst 672 ** of 40. However, since LogEst quantities are suppose to be estimates, 673 ** not exact values, this imprecision is not a problem. 674 ** 675 ** "LogEst" is short for "Logarithmic Estimate". 676 ** 677 ** Examples: 678 ** 1 -> 0 20 -> 43 10000 -> 132 679 ** 2 -> 10 25 -> 46 25000 -> 146 680 ** 3 -> 16 100 -> 66 1000000 -> 199 681 ** 4 -> 20 1000 -> 99 1048576 -> 200 682 ** 10 -> 33 1024 -> 100 4294967296 -> 320 683 ** 684 ** The LogEst can be negative to indicate fractional values. 685 ** Examples: 686 ** 687 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 688 */ 689 typedef INT16_TYPE LogEst; 690 691 /* 692 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 693 */ 694 #ifndef SQLITE_PTRSIZE 695 # if defined(__SIZEOF_POINTER__) 696 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 697 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 698 defined(_M_ARM) || defined(__arm__) || defined(__x86) 699 # define SQLITE_PTRSIZE 4 700 # else 701 # define SQLITE_PTRSIZE 8 702 # endif 703 #endif 704 705 /* The uptr type is an unsigned integer large enough to hold a pointer 706 */ 707 #if defined(HAVE_STDINT_H) 708 typedef uintptr_t uptr; 709 #elif SQLITE_PTRSIZE==4 710 typedef u32 uptr; 711 #else 712 typedef u64 uptr; 713 #endif 714 715 /* 716 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to 717 ** something between S (inclusive) and E (exclusive). 718 ** 719 ** In other words, S is a buffer and E is a pointer to the first byte after 720 ** the end of buffer S. This macro returns true if P points to something 721 ** contained within the buffer S. 722 */ 723 #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E))) 724 725 726 /* 727 ** Macros to determine whether the machine is big or little endian, 728 ** and whether or not that determination is run-time or compile-time. 729 ** 730 ** For best performance, an attempt is made to guess at the byte-order 731 ** using C-preprocessor macros. If that is unsuccessful, or if 732 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 733 ** at run-time. 734 */ 735 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 736 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 737 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 738 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 739 # define SQLITE_BYTEORDER 1234 740 # define SQLITE_BIGENDIAN 0 741 # define SQLITE_LITTLEENDIAN 1 742 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 743 #endif 744 #if (defined(sparc) || defined(__ppc__)) \ 745 && !defined(SQLITE_RUNTIME_BYTEORDER) 746 # define SQLITE_BYTEORDER 4321 747 # define SQLITE_BIGENDIAN 1 748 # define SQLITE_LITTLEENDIAN 0 749 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 750 #endif 751 #if !defined(SQLITE_BYTEORDER) 752 # ifdef SQLITE_AMALGAMATION 753 const int sqlite3one = 1; 754 # else 755 extern const int sqlite3one; 756 # endif 757 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 758 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 759 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 760 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 761 #endif 762 763 /* 764 ** Constants for the largest and smallest possible 64-bit signed integers. 765 ** These macros are designed to work correctly on both 32-bit and 64-bit 766 ** compilers. 767 */ 768 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 769 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 770 771 /* 772 ** Round up a number to the next larger multiple of 8. This is used 773 ** to force 8-byte alignment on 64-bit architectures. 774 */ 775 #define ROUND8(x) (((x)+7)&~7) 776 777 /* 778 ** Round down to the nearest multiple of 8 779 */ 780 #define ROUNDDOWN8(x) ((x)&~7) 781 782 /* 783 ** Assert that the pointer X is aligned to an 8-byte boundary. This 784 ** macro is used only within assert() to verify that the code gets 785 ** all alignment restrictions correct. 786 ** 787 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 788 ** underlying malloc() implementation might return us 4-byte aligned 789 ** pointers. In that case, only verify 4-byte alignment. 790 */ 791 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 792 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 793 #else 794 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 795 #endif 796 797 /* 798 ** Disable MMAP on platforms where it is known to not work 799 */ 800 #if defined(__OpenBSD__) || defined(__QNXNTO__) 801 # undef SQLITE_MAX_MMAP_SIZE 802 # define SQLITE_MAX_MMAP_SIZE 0 803 #endif 804 805 /* 806 ** Default maximum size of memory used by memory-mapped I/O in the VFS 807 */ 808 #ifdef __APPLE__ 809 # include <TargetConditionals.h> 810 #endif 811 #ifndef SQLITE_MAX_MMAP_SIZE 812 # if defined(__linux__) \ 813 || defined(_WIN32) \ 814 || (defined(__APPLE__) && defined(__MACH__)) \ 815 || defined(__sun) \ 816 || defined(__FreeBSD__) \ 817 || defined(__DragonFly__) 818 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 819 # else 820 # define SQLITE_MAX_MMAP_SIZE 0 821 # endif 822 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 823 #endif 824 825 /* 826 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 827 ** default MMAP_SIZE is specified at compile-time, make sure that it does 828 ** not exceed the maximum mmap size. 829 */ 830 #ifndef SQLITE_DEFAULT_MMAP_SIZE 831 # define SQLITE_DEFAULT_MMAP_SIZE 0 832 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 833 #endif 834 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 835 # undef SQLITE_DEFAULT_MMAP_SIZE 836 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 837 #endif 838 839 /* 840 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 841 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 842 ** define SQLITE_ENABLE_STAT3_OR_STAT4 843 */ 844 #ifdef SQLITE_ENABLE_STAT4 845 # undef SQLITE_ENABLE_STAT3 846 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 847 #elif SQLITE_ENABLE_STAT3 848 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 849 #elif SQLITE_ENABLE_STAT3_OR_STAT4 850 # undef SQLITE_ENABLE_STAT3_OR_STAT4 851 #endif 852 853 /* 854 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 855 ** the Select query generator tracing logic is turned on. 856 */ 857 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 858 # define SELECTTRACE_ENABLED 1 859 #else 860 # define SELECTTRACE_ENABLED 0 861 #endif 862 863 /* 864 ** An instance of the following structure is used to store the busy-handler 865 ** callback for a given sqlite handle. 866 ** 867 ** The sqlite.busyHandler member of the sqlite struct contains the busy 868 ** callback for the database handle. Each pager opened via the sqlite 869 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 870 ** callback is currently invoked only from within pager.c. 871 */ 872 typedef struct BusyHandler BusyHandler; 873 struct BusyHandler { 874 int (*xFunc)(void *,int); /* The busy callback */ 875 void *pArg; /* First arg to busy callback */ 876 int nBusy; /* Incremented with each busy call */ 877 }; 878 879 /* 880 ** Name of the master database table. The master database table 881 ** is a special table that holds the names and attributes of all 882 ** user tables and indices. 883 */ 884 #define MASTER_NAME "sqlite_master" 885 #define TEMP_MASTER_NAME "sqlite_temp_master" 886 887 /* 888 ** The root-page of the master database table. 889 */ 890 #define MASTER_ROOT 1 891 892 /* 893 ** The name of the schema table. 894 */ 895 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 896 897 /* 898 ** A convenience macro that returns the number of elements in 899 ** an array. 900 */ 901 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 902 903 /* 904 ** Determine if the argument is a power of two 905 */ 906 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 907 908 /* 909 ** The following value as a destructor means to use sqlite3DbFree(). 910 ** The sqlite3DbFree() routine requires two parameters instead of the 911 ** one parameter that destructors normally want. So we have to introduce 912 ** this magic value that the code knows to handle differently. Any 913 ** pointer will work here as long as it is distinct from SQLITE_STATIC 914 ** and SQLITE_TRANSIENT. 915 */ 916 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 917 918 /* 919 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 920 ** not support Writable Static Data (WSD) such as global and static variables. 921 ** All variables must either be on the stack or dynamically allocated from 922 ** the heap. When WSD is unsupported, the variable declarations scattered 923 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 924 ** macro is used for this purpose. And instead of referencing the variable 925 ** directly, we use its constant as a key to lookup the run-time allocated 926 ** buffer that holds real variable. The constant is also the initializer 927 ** for the run-time allocated buffer. 928 ** 929 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 930 ** macros become no-ops and have zero performance impact. 931 */ 932 #ifdef SQLITE_OMIT_WSD 933 #define SQLITE_WSD const 934 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 935 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 936 int sqlite3_wsd_init(int N, int J); 937 void *sqlite3_wsd_find(void *K, int L); 938 #else 939 #define SQLITE_WSD 940 #define GLOBAL(t,v) v 941 #define sqlite3GlobalConfig sqlite3Config 942 #endif 943 944 /* 945 ** The following macros are used to suppress compiler warnings and to 946 ** make it clear to human readers when a function parameter is deliberately 947 ** left unused within the body of a function. This usually happens when 948 ** a function is called via a function pointer. For example the 949 ** implementation of an SQL aggregate step callback may not use the 950 ** parameter indicating the number of arguments passed to the aggregate, 951 ** if it knows that this is enforced elsewhere. 952 ** 953 ** When a function parameter is not used at all within the body of a function, 954 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 955 ** However, these macros may also be used to suppress warnings related to 956 ** parameters that may or may not be used depending on compilation options. 957 ** For example those parameters only used in assert() statements. In these 958 ** cases the parameters are named as per the usual conventions. 959 */ 960 #define UNUSED_PARAMETER(x) (void)(x) 961 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 962 963 /* 964 ** Forward references to structures 965 */ 966 typedef struct AggInfo AggInfo; 967 typedef struct AuthContext AuthContext; 968 typedef struct AutoincInfo AutoincInfo; 969 typedef struct Bitvec Bitvec; 970 typedef struct CollSeq CollSeq; 971 typedef struct Column Column; 972 typedef struct Db Db; 973 typedef struct Schema Schema; 974 typedef struct Expr Expr; 975 typedef struct ExprList ExprList; 976 typedef struct ExprSpan ExprSpan; 977 typedef struct FKey FKey; 978 typedef struct FuncDestructor FuncDestructor; 979 typedef struct FuncDef FuncDef; 980 typedef struct FuncDefHash FuncDefHash; 981 typedef struct IdList IdList; 982 typedef struct Index Index; 983 typedef struct IndexSample IndexSample; 984 typedef struct KeyClass KeyClass; 985 typedef struct KeyInfo KeyInfo; 986 typedef struct Lookaside Lookaside; 987 typedef struct LookasideSlot LookasideSlot; 988 typedef struct Module Module; 989 typedef struct NameContext NameContext; 990 typedef struct Parse Parse; 991 typedef struct PreUpdate PreUpdate; 992 typedef struct PrintfArguments PrintfArguments; 993 typedef struct RowSet RowSet; 994 typedef struct Savepoint Savepoint; 995 typedef struct Select Select; 996 typedef struct SQLiteThread SQLiteThread; 997 typedef struct SelectDest SelectDest; 998 typedef struct SrcList SrcList; 999 typedef struct StrAccum StrAccum; 1000 typedef struct Table Table; 1001 typedef struct TableLock TableLock; 1002 typedef struct Token Token; 1003 typedef struct TreeView TreeView; 1004 typedef struct Trigger Trigger; 1005 typedef struct TriggerPrg TriggerPrg; 1006 typedef struct TriggerStep TriggerStep; 1007 typedef struct UnpackedRecord UnpackedRecord; 1008 typedef struct VTable VTable; 1009 typedef struct VtabCtx VtabCtx; 1010 typedef struct Walker Walker; 1011 typedef struct WhereInfo WhereInfo; 1012 typedef struct With With; 1013 1014 /* 1015 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 1016 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 1017 ** pointer types (i.e. FuncDef) defined above. 1018 */ 1019 #include "btree.h" 1020 #include "vdbe.h" 1021 #include "pager.h" 1022 #include "pcache.h" 1023 #include "os.h" 1024 #include "mutex.h" 1025 1026 /* The SQLITE_EXTRA_DURABLE compile-time option used to set the default 1027 ** synchronous setting to EXTRA. It is no longer supported. 1028 */ 1029 #ifdef SQLITE_EXTRA_DURABLE 1030 # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE 1031 # define SQLITE_DEFAULT_SYNCHRONOUS 3 1032 #endif 1033 1034 /* 1035 ** Default synchronous levels. 1036 ** 1037 ** Note that (for historcal reasons) the PAGER_SYNCHRONOUS_* macros differ 1038 ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1. 1039 ** 1040 ** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS 1041 ** OFF 1 0 1042 ** NORMAL 2 1 1043 ** FULL 3 2 1044 ** EXTRA 4 3 1045 ** 1046 ** The "PRAGMA synchronous" statement also uses the zero-based numbers. 1047 ** In other words, the zero-based numbers are used for all external interfaces 1048 ** and the one-based values are used internally. 1049 */ 1050 #ifndef SQLITE_DEFAULT_SYNCHRONOUS 1051 # define SQLITE_DEFAULT_SYNCHRONOUS (PAGER_SYNCHRONOUS_FULL-1) 1052 #endif 1053 #ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS 1054 # define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS 1055 #endif 1056 1057 /* 1058 ** Each database file to be accessed by the system is an instance 1059 ** of the following structure. There are normally two of these structures 1060 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 1061 ** aDb[1] is the database file used to hold temporary tables. Additional 1062 ** databases may be attached. 1063 */ 1064 struct Db { 1065 char *zName; /* Name of this database */ 1066 Btree *pBt; /* The B*Tree structure for this database file */ 1067 u8 safety_level; /* How aggressive at syncing data to disk */ 1068 u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */ 1069 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 1070 }; 1071 1072 /* 1073 ** An instance of the following structure stores a database schema. 1074 ** 1075 ** Most Schema objects are associated with a Btree. The exception is 1076 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 1077 ** In shared cache mode, a single Schema object can be shared by multiple 1078 ** Btrees that refer to the same underlying BtShared object. 1079 ** 1080 ** Schema objects are automatically deallocated when the last Btree that 1081 ** references them is destroyed. The TEMP Schema is manually freed by 1082 ** sqlite3_close(). 1083 * 1084 ** A thread must be holding a mutex on the corresponding Btree in order 1085 ** to access Schema content. This implies that the thread must also be 1086 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1087 ** For a TEMP Schema, only the connection mutex is required. 1088 */ 1089 struct Schema { 1090 int schema_cookie; /* Database schema version number for this file */ 1091 int iGeneration; /* Generation counter. Incremented with each change */ 1092 Hash tblHash; /* All tables indexed by name */ 1093 Hash idxHash; /* All (named) indices indexed by name */ 1094 Hash trigHash; /* All triggers indexed by name */ 1095 Hash fkeyHash; /* All foreign keys by referenced table name */ 1096 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1097 u8 file_format; /* Schema format version for this file */ 1098 u8 enc; /* Text encoding used by this database */ 1099 u16 schemaFlags; /* Flags associated with this schema */ 1100 int cache_size; /* Number of pages to use in the cache */ 1101 }; 1102 1103 /* 1104 ** These macros can be used to test, set, or clear bits in the 1105 ** Db.pSchema->flags field. 1106 */ 1107 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1108 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1109 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1110 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1111 1112 /* 1113 ** Allowed values for the DB.pSchema->flags field. 1114 ** 1115 ** The DB_SchemaLoaded flag is set after the database schema has been 1116 ** read into internal hash tables. 1117 ** 1118 ** DB_UnresetViews means that one or more views have column names that 1119 ** have been filled out. If the schema changes, these column names might 1120 ** changes and so the view will need to be reset. 1121 */ 1122 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1123 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1124 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1125 1126 /* 1127 ** The number of different kinds of things that can be limited 1128 ** using the sqlite3_limit() interface. 1129 */ 1130 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1131 1132 /* 1133 ** Lookaside malloc is a set of fixed-size buffers that can be used 1134 ** to satisfy small transient memory allocation requests for objects 1135 ** associated with a particular database connection. The use of 1136 ** lookaside malloc provides a significant performance enhancement 1137 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1138 ** SQL statements. 1139 ** 1140 ** The Lookaside structure holds configuration information about the 1141 ** lookaside malloc subsystem. Each available memory allocation in 1142 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1143 ** objects. 1144 ** 1145 ** Lookaside allocations are only allowed for objects that are associated 1146 ** with a particular database connection. Hence, schema information cannot 1147 ** be stored in lookaside because in shared cache mode the schema information 1148 ** is shared by multiple database connections. Therefore, while parsing 1149 ** schema information, the Lookaside.bEnabled flag is cleared so that 1150 ** lookaside allocations are not used to construct the schema objects. 1151 */ 1152 struct Lookaside { 1153 u32 bDisable; /* Only operate the lookaside when zero */ 1154 u16 sz; /* Size of each buffer in bytes */ 1155 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1156 int nOut; /* Number of buffers currently checked out */ 1157 int mxOut; /* Highwater mark for nOut */ 1158 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1159 LookasideSlot *pFree; /* List of available buffers */ 1160 void *pStart; /* First byte of available memory space */ 1161 void *pEnd; /* First byte past end of available space */ 1162 }; 1163 struct LookasideSlot { 1164 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1165 }; 1166 1167 /* 1168 ** A hash table for built-in function definitions. (Application-defined 1169 ** functions use a regular table table from hash.h.) 1170 ** 1171 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1172 ** Collisions are on the FuncDef.u.pHash chain. 1173 */ 1174 #define SQLITE_FUNC_HASH_SZ 23 1175 struct FuncDefHash { 1176 FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ 1177 }; 1178 1179 #ifdef SQLITE_USER_AUTHENTICATION 1180 /* 1181 ** Information held in the "sqlite3" database connection object and used 1182 ** to manage user authentication. 1183 */ 1184 typedef struct sqlite3_userauth sqlite3_userauth; 1185 struct sqlite3_userauth { 1186 u8 authLevel; /* Current authentication level */ 1187 int nAuthPW; /* Size of the zAuthPW in bytes */ 1188 char *zAuthPW; /* Password used to authenticate */ 1189 char *zAuthUser; /* User name used to authenticate */ 1190 }; 1191 1192 /* Allowed values for sqlite3_userauth.authLevel */ 1193 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1194 #define UAUTH_Fail 1 /* User authentication failed */ 1195 #define UAUTH_User 2 /* Authenticated as a normal user */ 1196 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1197 1198 /* Functions used only by user authorization logic */ 1199 int sqlite3UserAuthTable(const char*); 1200 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1201 void sqlite3UserAuthInit(sqlite3*); 1202 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1203 1204 #endif /* SQLITE_USER_AUTHENTICATION */ 1205 1206 /* 1207 ** typedef for the authorization callback function. 1208 */ 1209 #ifdef SQLITE_USER_AUTHENTICATION 1210 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1211 const char*, const char*); 1212 #else 1213 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1214 const char*); 1215 #endif 1216 1217 1218 /* 1219 ** Each database connection is an instance of the following structure. 1220 */ 1221 struct sqlite3 { 1222 sqlite3_vfs *pVfs; /* OS Interface */ 1223 struct Vdbe *pVdbe; /* List of active virtual machines */ 1224 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1225 sqlite3_mutex *mutex; /* Connection mutex */ 1226 Db *aDb; /* All backends */ 1227 int nDb; /* Number of backends currently in use */ 1228 int flags; /* Miscellaneous flags. See below */ 1229 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1230 i64 szMmap; /* Default mmap_size setting */ 1231 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1232 int errCode; /* Most recent error code (SQLITE_*) */ 1233 int errMask; /* & result codes with this before returning */ 1234 int iSysErrno; /* Errno value from last system error */ 1235 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1236 u8 enc; /* Text encoding */ 1237 u8 autoCommit; /* The auto-commit flag. */ 1238 u8 temp_store; /* 1: file 2: memory 0: default */ 1239 u8 mallocFailed; /* True if we have seen a malloc failure */ 1240 u8 bBenignMalloc; /* Do not require OOMs if true */ 1241 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1242 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1243 u8 suppressErr; /* Do not issue error messages if true */ 1244 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1245 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1246 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1247 u32 magic; /* Magic number for detect library misuse */ 1248 int nChange; /* Value returned by sqlite3_changes() */ 1249 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1250 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1251 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1252 struct sqlite3InitInfo { /* Information used during initialization */ 1253 int newTnum; /* Rootpage of table being initialized */ 1254 u8 iDb; /* Which db file is being initialized */ 1255 u8 busy; /* TRUE if currently initializing */ 1256 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1257 u8 imposterTable; /* Building an imposter table */ 1258 } init; 1259 int nVdbeActive; /* Number of VDBEs currently running */ 1260 int nVdbeRead; /* Number of active VDBEs that read or write */ 1261 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1262 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1263 int nVDestroy; /* Number of active OP_VDestroy operations */ 1264 int nExtension; /* Number of loaded extensions */ 1265 void **aExtension; /* Array of shared library handles */ 1266 void (*xTrace)(void*,const char*); /* Trace function */ 1267 void *pTraceArg; /* Argument to the trace function */ 1268 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1269 void *pProfileArg; /* Argument to profile function */ 1270 void *pCommitArg; /* Argument to xCommitCallback() */ 1271 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1272 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1273 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1274 void *pUpdateArg; 1275 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1276 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1277 void *pPreUpdateArg; /* First argument to xPreUpdateCallback */ 1278 void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */ 1279 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64 1280 ); 1281 PreUpdate *pPreUpdate; /* Context for active pre-update callback */ 1282 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1283 #ifndef SQLITE_OMIT_WAL 1284 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1285 void *pWalArg; 1286 #endif 1287 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1288 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1289 void *pCollNeededArg; 1290 sqlite3_value *pErr; /* Most recent error message */ 1291 union { 1292 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1293 double notUsed1; /* Spacer */ 1294 } u1; 1295 Lookaside lookaside; /* Lookaside malloc configuration */ 1296 #ifndef SQLITE_OMIT_AUTHORIZATION 1297 sqlite3_xauth xAuth; /* Access authorization function */ 1298 void *pAuthArg; /* 1st argument to the access auth function */ 1299 #endif 1300 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1301 int (*xProgress)(void *); /* The progress callback */ 1302 void *pProgressArg; /* Argument to the progress callback */ 1303 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1304 #endif 1305 #ifndef SQLITE_OMIT_VIRTUALTABLE 1306 int nVTrans; /* Allocated size of aVTrans */ 1307 Hash aModule; /* populated by sqlite3_create_module() */ 1308 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1309 VTable **aVTrans; /* Virtual tables with open transactions */ 1310 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1311 #endif 1312 Hash aFunc; /* Hash table of connection functions */ 1313 Hash aCollSeq; /* All collating sequences */ 1314 BusyHandler busyHandler; /* Busy callback */ 1315 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1316 Savepoint *pSavepoint; /* List of active savepoints */ 1317 int busyTimeout; /* Busy handler timeout, in msec */ 1318 int nSavepoint; /* Number of non-transaction savepoints */ 1319 int nStatement; /* Number of nested statement-transactions */ 1320 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1321 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1322 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1323 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1324 /* The following variables are all protected by the STATIC_MASTER 1325 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1326 ** 1327 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1328 ** unlock so that it can proceed. 1329 ** 1330 ** When X.pBlockingConnection==Y, that means that something that X tried 1331 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1332 ** held by Y. 1333 */ 1334 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1335 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1336 void *pUnlockArg; /* Argument to xUnlockNotify */ 1337 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1338 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1339 #endif 1340 #ifdef SQLITE_USER_AUTHENTICATION 1341 sqlite3_userauth auth; /* User authentication information */ 1342 #endif 1343 }; 1344 1345 /* 1346 ** A macro to discover the encoding of a database. 1347 */ 1348 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1349 #define ENC(db) ((db)->enc) 1350 1351 /* 1352 ** Possible values for the sqlite3.flags. 1353 ** 1354 ** Value constraints (enforced via assert()): 1355 ** SQLITE_FullFSync == PAGER_FULLFSYNC 1356 ** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC 1357 ** SQLITE_CacheSpill == PAGER_CACHE_SPILL 1358 */ 1359 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1360 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1361 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 1362 #define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */ 1363 #define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */ 1364 #define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */ 1365 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1366 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1367 /* DELETE, or UPDATE and return */ 1368 /* the count using a callback. */ 1369 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1370 /* result set is empty */ 1371 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1372 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1373 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1374 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1375 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1376 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1377 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1378 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1379 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1380 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1381 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1382 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1383 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1384 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1385 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1386 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1387 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1388 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1389 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1390 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1391 #define SQLITE_Fts3Tokenizer 0x20000000 /* Enable fts3_tokenizer(2) */ 1392 1393 1394 /* 1395 ** Bits of the sqlite3.dbOptFlags field that are used by the 1396 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1397 ** selectively disable various optimizations. 1398 */ 1399 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1400 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1401 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1402 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1403 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1404 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1405 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1406 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1407 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1408 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1409 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1410 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1411 #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ 1412 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1413 1414 /* 1415 ** Macros for testing whether or not optimizations are enabled or disabled. 1416 */ 1417 #ifndef SQLITE_OMIT_BUILTIN_TEST 1418 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1419 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1420 #else 1421 #define OptimizationDisabled(db, mask) 0 1422 #define OptimizationEnabled(db, mask) 1 1423 #endif 1424 1425 /* 1426 ** Return true if it OK to factor constant expressions into the initialization 1427 ** code. The argument is a Parse object for the code generator. 1428 */ 1429 #define ConstFactorOk(P) ((P)->okConstFactor) 1430 1431 /* 1432 ** Possible values for the sqlite.magic field. 1433 ** The numbers are obtained at random and have no special meaning, other 1434 ** than being distinct from one another. 1435 */ 1436 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1437 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1438 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1439 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1440 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1441 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1442 1443 /* 1444 ** Each SQL function is defined by an instance of the following 1445 ** structure. For global built-in functions (ex: substr(), max(), count()) 1446 ** a pointer to this structure is held in the sqlite3BuiltinFunctions object. 1447 ** For per-connection application-defined functions, a pointer to this 1448 ** structure is held in the db->aHash hash table. 1449 ** 1450 ** The u.pHash field is used by the global built-ins. The u.pDestructor 1451 ** field is used by per-connection app-def functions. 1452 */ 1453 struct FuncDef { 1454 i8 nArg; /* Number of arguments. -1 means unlimited */ 1455 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1456 void *pUserData; /* User data parameter */ 1457 FuncDef *pNext; /* Next function with same name */ 1458 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ 1459 void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ 1460 const char *zName; /* SQL name of the function. */ 1461 union { 1462 FuncDef *pHash; /* Next with a different name but the same hash */ 1463 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1464 } u; 1465 }; 1466 1467 /* 1468 ** This structure encapsulates a user-function destructor callback (as 1469 ** configured using create_function_v2()) and a reference counter. When 1470 ** create_function_v2() is called to create a function with a destructor, 1471 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1472 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1473 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1474 ** member of each of the new FuncDef objects is set to point to the allocated 1475 ** FuncDestructor. 1476 ** 1477 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1478 ** count on this object is decremented. When it reaches 0, the destructor 1479 ** is invoked and the FuncDestructor structure freed. 1480 */ 1481 struct FuncDestructor { 1482 int nRef; 1483 void (*xDestroy)(void *); 1484 void *pUserData; 1485 }; 1486 1487 /* 1488 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1489 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And 1490 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There 1491 ** are assert() statements in the code to verify this. 1492 ** 1493 ** Value constraints (enforced via assert()): 1494 ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg 1495 ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG 1496 ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG 1497 ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API 1498 ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API 1499 */ 1500 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1501 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 1502 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 1503 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 1504 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 1505 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 1506 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 1507 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 1508 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 1509 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 1510 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 1511 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1512 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 1513 ** single query - might change over time */ 1514 1515 /* 1516 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1517 ** used to create the initializers for the FuncDef structures. 1518 ** 1519 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1520 ** Used to create a scalar function definition of a function zName 1521 ** implemented by C function xFunc that accepts nArg arguments. The 1522 ** value passed as iArg is cast to a (void*) and made available 1523 ** as the user-data (sqlite3_user_data()) for the function. If 1524 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1525 ** 1526 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1527 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1528 ** 1529 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 1530 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 1531 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 1532 ** and functions like sqlite_version() that can change, but not during 1533 ** a single query. 1534 ** 1535 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1536 ** Used to create an aggregate function definition implemented by 1537 ** the C functions xStep and xFinal. The first four parameters 1538 ** are interpreted in the same way as the first 4 parameters to 1539 ** FUNCTION(). 1540 ** 1541 ** LIKEFUNC(zName, nArg, pArg, flags) 1542 ** Used to create a scalar function definition of a function zName 1543 ** that accepts nArg arguments and is implemented by a call to C 1544 ** function likeFunc. Argument pArg is cast to a (void *) and made 1545 ** available as the function user-data (sqlite3_user_data()). The 1546 ** FuncDef.flags variable is set to the value passed as the flags 1547 ** parameter. 1548 */ 1549 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1550 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1551 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1552 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1553 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1554 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1555 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1556 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1557 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1558 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1559 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1560 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1561 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1562 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1563 pArg, 0, xFunc, 0, #zName, } 1564 #define LIKEFUNC(zName, nArg, arg, flags) \ 1565 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1566 (void *)arg, 0, likeFunc, 0, #zName, {0} } 1567 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1568 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1569 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1570 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1571 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1572 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1573 1574 /* 1575 ** All current savepoints are stored in a linked list starting at 1576 ** sqlite3.pSavepoint. The first element in the list is the most recently 1577 ** opened savepoint. Savepoints are added to the list by the vdbe 1578 ** OP_Savepoint instruction. 1579 */ 1580 struct Savepoint { 1581 char *zName; /* Savepoint name (nul-terminated) */ 1582 i64 nDeferredCons; /* Number of deferred fk violations */ 1583 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1584 Savepoint *pNext; /* Parent savepoint (if any) */ 1585 }; 1586 1587 /* 1588 ** The following are used as the second parameter to sqlite3Savepoint(), 1589 ** and as the P1 argument to the OP_Savepoint instruction. 1590 */ 1591 #define SAVEPOINT_BEGIN 0 1592 #define SAVEPOINT_RELEASE 1 1593 #define SAVEPOINT_ROLLBACK 2 1594 1595 1596 /* 1597 ** Each SQLite module (virtual table definition) is defined by an 1598 ** instance of the following structure, stored in the sqlite3.aModule 1599 ** hash table. 1600 */ 1601 struct Module { 1602 const sqlite3_module *pModule; /* Callback pointers */ 1603 const char *zName; /* Name passed to create_module() */ 1604 void *pAux; /* pAux passed to create_module() */ 1605 void (*xDestroy)(void *); /* Module destructor function */ 1606 Table *pEpoTab; /* Eponymous table for this module */ 1607 }; 1608 1609 /* 1610 ** information about each column of an SQL table is held in an instance 1611 ** of this structure. 1612 */ 1613 struct Column { 1614 char *zName; /* Name of this column, \000, then the type */ 1615 Expr *pDflt; /* Default value of this column */ 1616 char *zColl; /* Collating sequence. If NULL, use the default */ 1617 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1618 char affinity; /* One of the SQLITE_AFF_... values */ 1619 u8 szEst; /* Estimated size of value in this column. sizeof(INT)==1 */ 1620 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1621 }; 1622 1623 /* Allowed values for Column.colFlags: 1624 */ 1625 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1626 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1627 #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ 1628 1629 /* 1630 ** A "Collating Sequence" is defined by an instance of the following 1631 ** structure. Conceptually, a collating sequence consists of a name and 1632 ** a comparison routine that defines the order of that sequence. 1633 ** 1634 ** If CollSeq.xCmp is NULL, it means that the 1635 ** collating sequence is undefined. Indices built on an undefined 1636 ** collating sequence may not be read or written. 1637 */ 1638 struct CollSeq { 1639 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1640 u8 enc; /* Text encoding handled by xCmp() */ 1641 void *pUser; /* First argument to xCmp() */ 1642 int (*xCmp)(void*,int, const void*, int, const void*); 1643 void (*xDel)(void*); /* Destructor for pUser */ 1644 }; 1645 1646 /* 1647 ** A sort order can be either ASC or DESC. 1648 */ 1649 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1650 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1651 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 1652 1653 /* 1654 ** Column affinity types. 1655 ** 1656 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1657 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1658 ** the speed a little by numbering the values consecutively. 1659 ** 1660 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1661 ** when multiple affinity types are concatenated into a string and 1662 ** used as the P4 operand, they will be more readable. 1663 ** 1664 ** Note also that the numeric types are grouped together so that testing 1665 ** for a numeric type is a single comparison. And the BLOB type is first. 1666 */ 1667 #define SQLITE_AFF_BLOB 'A' 1668 #define SQLITE_AFF_TEXT 'B' 1669 #define SQLITE_AFF_NUMERIC 'C' 1670 #define SQLITE_AFF_INTEGER 'D' 1671 #define SQLITE_AFF_REAL 'E' 1672 1673 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1674 1675 /* 1676 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1677 ** affinity value. 1678 */ 1679 #define SQLITE_AFF_MASK 0x47 1680 1681 /* 1682 ** Additional bit values that can be ORed with an affinity without 1683 ** changing the affinity. 1684 ** 1685 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1686 ** It causes an assert() to fire if either operand to a comparison 1687 ** operator is NULL. It is added to certain comparison operators to 1688 ** prove that the operands are always NOT NULL. 1689 */ 1690 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1691 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1692 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1693 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1694 1695 /* 1696 ** An object of this type is created for each virtual table present in 1697 ** the database schema. 1698 ** 1699 ** If the database schema is shared, then there is one instance of this 1700 ** structure for each database connection (sqlite3*) that uses the shared 1701 ** schema. This is because each database connection requires its own unique 1702 ** instance of the sqlite3_vtab* handle used to access the virtual table 1703 ** implementation. sqlite3_vtab* handles can not be shared between 1704 ** database connections, even when the rest of the in-memory database 1705 ** schema is shared, as the implementation often stores the database 1706 ** connection handle passed to it via the xConnect() or xCreate() method 1707 ** during initialization internally. This database connection handle may 1708 ** then be used by the virtual table implementation to access real tables 1709 ** within the database. So that they appear as part of the callers 1710 ** transaction, these accesses need to be made via the same database 1711 ** connection as that used to execute SQL operations on the virtual table. 1712 ** 1713 ** All VTable objects that correspond to a single table in a shared 1714 ** database schema are initially stored in a linked-list pointed to by 1715 ** the Table.pVTable member variable of the corresponding Table object. 1716 ** When an sqlite3_prepare() operation is required to access the virtual 1717 ** table, it searches the list for the VTable that corresponds to the 1718 ** database connection doing the preparing so as to use the correct 1719 ** sqlite3_vtab* handle in the compiled query. 1720 ** 1721 ** When an in-memory Table object is deleted (for example when the 1722 ** schema is being reloaded for some reason), the VTable objects are not 1723 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1724 ** immediately. Instead, they are moved from the Table.pVTable list to 1725 ** another linked list headed by the sqlite3.pDisconnect member of the 1726 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1727 ** next time a statement is prepared using said sqlite3*. This is done 1728 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1729 ** Refer to comments above function sqlite3VtabUnlockList() for an 1730 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1731 ** list without holding the corresponding sqlite3.mutex mutex. 1732 ** 1733 ** The memory for objects of this type is always allocated by 1734 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1735 ** the first argument. 1736 */ 1737 struct VTable { 1738 sqlite3 *db; /* Database connection associated with this table */ 1739 Module *pMod; /* Pointer to module implementation */ 1740 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1741 int nRef; /* Number of pointers to this structure */ 1742 u8 bConstraint; /* True if constraints are supported */ 1743 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1744 VTable *pNext; /* Next in linked list (see above) */ 1745 }; 1746 1747 /* 1748 ** The schema for each SQL table and view is represented in memory 1749 ** by an instance of the following structure. 1750 */ 1751 struct Table { 1752 char *zName; /* Name of the table or view */ 1753 Column *aCol; /* Information about each column */ 1754 Index *pIndex; /* List of SQL indexes on this table. */ 1755 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1756 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1757 char *zColAff; /* String defining the affinity of each column */ 1758 ExprList *pCheck; /* All CHECK constraints */ 1759 /* ... also used as column name list in a VIEW */ 1760 int tnum; /* Root BTree page for this table */ 1761 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1762 i16 nCol; /* Number of columns in this table */ 1763 u16 nRef; /* Number of pointers to this Table */ 1764 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1765 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1766 #ifdef SQLITE_ENABLE_COSTMULT 1767 LogEst costMult; /* Cost multiplier for using this table */ 1768 #endif 1769 u8 tabFlags; /* Mask of TF_* values */ 1770 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1771 #ifndef SQLITE_OMIT_ALTERTABLE 1772 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1773 #endif 1774 #ifndef SQLITE_OMIT_VIRTUALTABLE 1775 int nModuleArg; /* Number of arguments to the module */ 1776 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 1777 VTable *pVTable; /* List of VTable objects. */ 1778 #endif 1779 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1780 Schema *pSchema; /* Schema that contains this table */ 1781 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1782 }; 1783 1784 /* 1785 ** Allowed values for Table.tabFlags. 1786 ** 1787 ** TF_OOOHidden applies to tables or view that have hidden columns that are 1788 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1789 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1790 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1791 ** special handling during INSERT processing. 1792 */ 1793 #define TF_Readonly 0x01 /* Read-only system table */ 1794 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1795 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1796 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1797 #define TF_Virtual 0x10 /* Is a virtual table */ 1798 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1799 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1800 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1801 1802 1803 /* 1804 ** Test to see whether or not a table is a virtual table. This is 1805 ** done as a macro so that it will be optimized out when virtual 1806 ** table support is omitted from the build. 1807 */ 1808 #ifndef SQLITE_OMIT_VIRTUALTABLE 1809 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1810 #else 1811 # define IsVirtual(X) 0 1812 #endif 1813 1814 /* 1815 ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() 1816 ** only works for non-virtual tables (ordinary tables and views) and is 1817 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The 1818 ** IsHiddenColumn() macro is general purpose. 1819 */ 1820 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) 1821 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1822 # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1823 #elif !defined(SQLITE_OMIT_VIRTUALTABLE) 1824 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1825 # define IsOrdinaryHiddenColumn(X) 0 1826 #else 1827 # define IsHiddenColumn(X) 0 1828 # define IsOrdinaryHiddenColumn(X) 0 1829 #endif 1830 1831 1832 /* Does the table have a rowid */ 1833 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1834 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1835 1836 /* 1837 ** Each foreign key constraint is an instance of the following structure. 1838 ** 1839 ** A foreign key is associated with two tables. The "from" table is 1840 ** the table that contains the REFERENCES clause that creates the foreign 1841 ** key. The "to" table is the table that is named in the REFERENCES clause. 1842 ** Consider this example: 1843 ** 1844 ** CREATE TABLE ex1( 1845 ** a INTEGER PRIMARY KEY, 1846 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1847 ** ); 1848 ** 1849 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1850 ** Equivalent names: 1851 ** 1852 ** from-table == child-table 1853 ** to-table == parent-table 1854 ** 1855 ** Each REFERENCES clause generates an instance of the following structure 1856 ** which is attached to the from-table. The to-table need not exist when 1857 ** the from-table is created. The existence of the to-table is not checked. 1858 ** 1859 ** The list of all parents for child Table X is held at X.pFKey. 1860 ** 1861 ** A list of all children for a table named Z (which might not even exist) 1862 ** is held in Schema.fkeyHash with a hash key of Z. 1863 */ 1864 struct FKey { 1865 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1866 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1867 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1868 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1869 FKey *pPrevTo; /* Previous with the same zTo */ 1870 int nCol; /* Number of columns in this key */ 1871 /* EV: R-30323-21917 */ 1872 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1873 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1874 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1875 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1876 int iFrom; /* Index of column in pFrom */ 1877 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1878 } aCol[1]; /* One entry for each of nCol columns */ 1879 }; 1880 1881 /* 1882 ** SQLite supports many different ways to resolve a constraint 1883 ** error. ROLLBACK processing means that a constraint violation 1884 ** causes the operation in process to fail and for the current transaction 1885 ** to be rolled back. ABORT processing means the operation in process 1886 ** fails and any prior changes from that one operation are backed out, 1887 ** but the transaction is not rolled back. FAIL processing means that 1888 ** the operation in progress stops and returns an error code. But prior 1889 ** changes due to the same operation are not backed out and no rollback 1890 ** occurs. IGNORE means that the particular row that caused the constraint 1891 ** error is not inserted or updated. Processing continues and no error 1892 ** is returned. REPLACE means that preexisting database rows that caused 1893 ** a UNIQUE constraint violation are removed so that the new insert or 1894 ** update can proceed. Processing continues and no error is reported. 1895 ** 1896 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1897 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1898 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1899 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1900 ** referenced table row is propagated into the row that holds the 1901 ** foreign key. 1902 ** 1903 ** The following symbolic values are used to record which type 1904 ** of action to take. 1905 */ 1906 #define OE_None 0 /* There is no constraint to check */ 1907 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1908 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1909 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1910 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1911 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1912 1913 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1914 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1915 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1916 #define OE_Cascade 9 /* Cascade the changes */ 1917 1918 #define OE_Default 10 /* Do whatever the default action is */ 1919 1920 1921 /* 1922 ** An instance of the following structure is passed as the first 1923 ** argument to sqlite3VdbeKeyCompare and is used to control the 1924 ** comparison of the two index keys. 1925 ** 1926 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1927 ** are nField slots for the columns of an index then one extra slot 1928 ** for the rowid at the end. 1929 */ 1930 struct KeyInfo { 1931 u32 nRef; /* Number of references to this KeyInfo object */ 1932 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1933 u16 nField; /* Number of key columns in the index */ 1934 u16 nXField; /* Number of columns beyond the key columns */ 1935 sqlite3 *db; /* The database connection */ 1936 u8 *aSortOrder; /* Sort order for each column. */ 1937 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1938 }; 1939 1940 /* 1941 ** This object holds a record which has been parsed out into individual 1942 ** fields, for the purposes of doing a comparison. 1943 ** 1944 ** A record is an object that contains one or more fields of data. 1945 ** Records are used to store the content of a table row and to store 1946 ** the key of an index. A blob encoding of a record is created by 1947 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1948 ** OP_Column opcode. 1949 ** 1950 ** An instance of this object serves as a "key" for doing a search on 1951 ** an index b+tree. The goal of the search is to find the entry that 1952 ** is closed to the key described by this object. This object might hold 1953 ** just a prefix of the key. The number of fields is given by 1954 ** pKeyInfo->nField. 1955 ** 1956 ** The r1 and r2 fields are the values to return if this key is less than 1957 ** or greater than a key in the btree, respectively. These are normally 1958 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree 1959 ** is in DESC order. 1960 ** 1961 ** The key comparison functions actually return default_rc when they find 1962 ** an equals comparison. default_rc can be -1, 0, or +1. If there are 1963 ** multiple entries in the b-tree with the same key (when only looking 1964 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 1965 ** cause the search to find the last match, or +1 to cause the search to 1966 ** find the first match. 1967 ** 1968 ** The key comparison functions will set eqSeen to true if they ever 1969 ** get and equal results when comparing this structure to a b-tree record. 1970 ** When default_rc!=0, the search might end up on the record immediately 1971 ** before the first match or immediately after the last match. The 1972 ** eqSeen field will indicate whether or not an exact match exists in the 1973 ** b-tree. 1974 */ 1975 struct UnpackedRecord { 1976 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1977 Mem *aMem; /* Values */ 1978 u16 nField; /* Number of entries in apMem[] */ 1979 i8 default_rc; /* Comparison result if keys are equal */ 1980 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1981 i8 r1; /* Value to return if (lhs > rhs) */ 1982 i8 r2; /* Value to return if (rhs < lhs) */ 1983 u8 eqSeen; /* True if an equality comparison has been seen */ 1984 }; 1985 1986 1987 /* 1988 ** Each SQL index is represented in memory by an 1989 ** instance of the following structure. 1990 ** 1991 ** The columns of the table that are to be indexed are described 1992 ** by the aiColumn[] field of this structure. For example, suppose 1993 ** we have the following table and index: 1994 ** 1995 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1996 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1997 ** 1998 ** In the Table structure describing Ex1, nCol==3 because there are 1999 ** three columns in the table. In the Index structure describing 2000 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 2001 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 2002 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 2003 ** The second column to be indexed (c1) has an index of 0 in 2004 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 2005 ** 2006 ** The Index.onError field determines whether or not the indexed columns 2007 ** must be unique and what to do if they are not. When Index.onError=OE_None, 2008 ** it means this is not a unique index. Otherwise it is a unique index 2009 ** and the value of Index.onError indicate the which conflict resolution 2010 ** algorithm to employ whenever an attempt is made to insert a non-unique 2011 ** element. 2012 ** 2013 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 2014 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 2015 ** table as part of parsing an existing database schema), transient instances 2016 ** of this structure may be created. In this case the Index.tnum variable is 2017 ** used to store the address of a VDBE instruction, not a database page 2018 ** number (it cannot - the database page is not allocated until the VDBE 2019 ** program is executed). See convertToWithoutRowidTable() for details. 2020 */ 2021 struct Index { 2022 char *zName; /* Name of this index */ 2023 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 2024 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 2025 Table *pTable; /* The SQL table being indexed */ 2026 char *zColAff; /* String defining the affinity of each column */ 2027 Index *pNext; /* The next index associated with the same table */ 2028 Schema *pSchema; /* Schema containing this index */ 2029 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 2030 const char **azColl; /* Array of collation sequence names for index */ 2031 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 2032 ExprList *aColExpr; /* Column expressions */ 2033 int tnum; /* DB Page containing root of this index */ 2034 LogEst szIdxRow; /* Estimated average row size in bytes */ 2035 u16 nKeyCol; /* Number of columns forming the key */ 2036 u16 nColumn; /* Number of columns stored in the index */ 2037 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2038 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 2039 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 2040 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 2041 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 2042 unsigned isCovering:1; /* True if this is a covering index */ 2043 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 2044 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2045 int nSample; /* Number of elements in aSample[] */ 2046 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 2047 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 2048 IndexSample *aSample; /* Samples of the left-most key */ 2049 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 2050 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 2051 #endif 2052 }; 2053 2054 /* 2055 ** Allowed values for Index.idxType 2056 */ 2057 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 2058 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 2059 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 2060 2061 /* Return true if index X is a PRIMARY KEY index */ 2062 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2063 2064 /* Return true if index X is a UNIQUE index */ 2065 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 2066 2067 /* The Index.aiColumn[] values are normally positive integer. But 2068 ** there are some negative values that have special meaning: 2069 */ 2070 #define XN_ROWID (-1) /* Indexed column is the rowid */ 2071 #define XN_EXPR (-2) /* Indexed column is an expression */ 2072 2073 /* 2074 ** Each sample stored in the sqlite_stat3 table is represented in memory 2075 ** using a structure of this type. See documentation at the top of the 2076 ** analyze.c source file for additional information. 2077 */ 2078 struct IndexSample { 2079 void *p; /* Pointer to sampled record */ 2080 int n; /* Size of record in bytes */ 2081 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 2082 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 2083 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 2084 }; 2085 2086 /* 2087 ** Each token coming out of the lexer is an instance of 2088 ** this structure. Tokens are also used as part of an expression. 2089 ** 2090 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 2091 ** may contain random values. Do not make any assumptions about Token.dyn 2092 ** and Token.n when Token.z==0. 2093 */ 2094 struct Token { 2095 const char *z; /* Text of the token. Not NULL-terminated! */ 2096 unsigned int n; /* Number of characters in this token */ 2097 }; 2098 2099 /* 2100 ** An instance of this structure contains information needed to generate 2101 ** code for a SELECT that contains aggregate functions. 2102 ** 2103 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 2104 ** pointer to this structure. The Expr.iColumn field is the index in 2105 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 2106 ** code for that node. 2107 ** 2108 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 2109 ** original Select structure that describes the SELECT statement. These 2110 ** fields do not need to be freed when deallocating the AggInfo structure. 2111 */ 2112 struct AggInfo { 2113 u8 directMode; /* Direct rendering mode means take data directly 2114 ** from source tables rather than from accumulators */ 2115 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 2116 ** than the source table */ 2117 int sortingIdx; /* Cursor number of the sorting index */ 2118 int sortingIdxPTab; /* Cursor number of pseudo-table */ 2119 int nSortingColumn; /* Number of columns in the sorting index */ 2120 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 2121 ExprList *pGroupBy; /* The group by clause */ 2122 struct AggInfo_col { /* For each column used in source tables */ 2123 Table *pTab; /* Source table */ 2124 int iTable; /* Cursor number of the source table */ 2125 int iColumn; /* Column number within the source table */ 2126 int iSorterColumn; /* Column number in the sorting index */ 2127 int iMem; /* Memory location that acts as accumulator */ 2128 Expr *pExpr; /* The original expression */ 2129 } *aCol; 2130 int nColumn; /* Number of used entries in aCol[] */ 2131 int nAccumulator; /* Number of columns that show through to the output. 2132 ** Additional columns are used only as parameters to 2133 ** aggregate functions */ 2134 struct AggInfo_func { /* For each aggregate function */ 2135 Expr *pExpr; /* Expression encoding the function */ 2136 FuncDef *pFunc; /* The aggregate function implementation */ 2137 int iMem; /* Memory location that acts as accumulator */ 2138 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 2139 } *aFunc; 2140 int nFunc; /* Number of entries in aFunc[] */ 2141 }; 2142 2143 /* 2144 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 2145 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 2146 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 2147 ** it uses less memory in the Expr object, which is a big memory user 2148 ** in systems with lots of prepared statements. And few applications 2149 ** need more than about 10 or 20 variables. But some extreme users want 2150 ** to have prepared statements with over 32767 variables, and for them 2151 ** the option is available (at compile-time). 2152 */ 2153 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 2154 typedef i16 ynVar; 2155 #else 2156 typedef int ynVar; 2157 #endif 2158 2159 /* 2160 ** Each node of an expression in the parse tree is an instance 2161 ** of this structure. 2162 ** 2163 ** Expr.op is the opcode. The integer parser token codes are reused 2164 ** as opcodes here. For example, the parser defines TK_GE to be an integer 2165 ** code representing the ">=" operator. This same integer code is reused 2166 ** to represent the greater-than-or-equal-to operator in the expression 2167 ** tree. 2168 ** 2169 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2170 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2171 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2172 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2173 ** then Expr.token contains the name of the function. 2174 ** 2175 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2176 ** binary operator. Either or both may be NULL. 2177 ** 2178 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2179 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2180 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2181 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2182 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2183 ** valid. 2184 ** 2185 ** An expression of the form ID or ID.ID refers to a column in a table. 2186 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2187 ** the integer cursor number of a VDBE cursor pointing to that table and 2188 ** Expr.iColumn is the column number for the specific column. If the 2189 ** expression is used as a result in an aggregate SELECT, then the 2190 ** value is also stored in the Expr.iAgg column in the aggregate so that 2191 ** it can be accessed after all aggregates are computed. 2192 ** 2193 ** If the expression is an unbound variable marker (a question mark 2194 ** character '?' in the original SQL) then the Expr.iTable holds the index 2195 ** number for that variable. 2196 ** 2197 ** If the expression is a subquery then Expr.iColumn holds an integer 2198 ** register number containing the result of the subquery. If the 2199 ** subquery gives a constant result, then iTable is -1. If the subquery 2200 ** gives a different answer at different times during statement processing 2201 ** then iTable is the address of a subroutine that computes the subquery. 2202 ** 2203 ** If the Expr is of type OP_Column, and the table it is selecting from 2204 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2205 ** corresponding table definition. 2206 ** 2207 ** ALLOCATION NOTES: 2208 ** 2209 ** Expr objects can use a lot of memory space in database schema. To 2210 ** help reduce memory requirements, sometimes an Expr object will be 2211 ** truncated. And to reduce the number of memory allocations, sometimes 2212 ** two or more Expr objects will be stored in a single memory allocation, 2213 ** together with Expr.zToken strings. 2214 ** 2215 ** If the EP_Reduced and EP_TokenOnly flags are set when 2216 ** an Expr object is truncated. When EP_Reduced is set, then all 2217 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2218 ** are contained within the same memory allocation. Note, however, that 2219 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2220 ** allocated, regardless of whether or not EP_Reduced is set. 2221 */ 2222 struct Expr { 2223 u8 op; /* Operation performed by this node */ 2224 char affinity; /* The affinity of the column or 0 if not a column */ 2225 u32 flags; /* Various flags. EP_* See below */ 2226 union { 2227 char *zToken; /* Token value. Zero terminated and dequoted */ 2228 int iValue; /* Non-negative integer value if EP_IntValue */ 2229 } u; 2230 2231 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2232 ** space is allocated for the fields below this point. An attempt to 2233 ** access them will result in a segfault or malfunction. 2234 *********************************************************************/ 2235 2236 Expr *pLeft; /* Left subnode */ 2237 Expr *pRight; /* Right subnode */ 2238 union { 2239 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2240 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2241 } x; 2242 2243 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2244 ** space is allocated for the fields below this point. An attempt to 2245 ** access them will result in a segfault or malfunction. 2246 *********************************************************************/ 2247 2248 #if SQLITE_MAX_EXPR_DEPTH>0 2249 int nHeight; /* Height of the tree headed by this node */ 2250 #endif 2251 int iTable; /* TK_COLUMN: cursor number of table holding column 2252 ** TK_REGISTER: register number 2253 ** TK_TRIGGER: 1 -> new, 0 -> old 2254 ** EP_Unlikely: 134217728 times likelihood */ 2255 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2256 ** TK_VARIABLE: variable number (always >= 1). */ 2257 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2258 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2259 u8 op2; /* TK_REGISTER: original value of Expr.op 2260 ** TK_COLUMN: the value of p5 for OP_Column 2261 ** TK_AGG_FUNCTION: nesting depth */ 2262 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2263 Table *pTab; /* Table for TK_COLUMN expressions. */ 2264 }; 2265 2266 /* 2267 ** The following are the meanings of bits in the Expr.flags field. 2268 */ 2269 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2270 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2271 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2272 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2273 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2274 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2275 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2276 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2277 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2278 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2279 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2280 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2281 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2282 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2283 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2284 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2285 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2286 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2287 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2288 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 2289 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2290 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2291 #define EP_Alias 0x400000 /* Is an alias for a result set column */ 2292 2293 /* 2294 ** Combinations of two or more EP_* flags 2295 */ 2296 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2297 2298 /* 2299 ** These macros can be used to test, set, or clear bits in the 2300 ** Expr.flags field. 2301 */ 2302 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2303 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2304 #define ExprSetProperty(E,P) (E)->flags|=(P) 2305 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2306 2307 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2308 ** and Accreditation only. It works like ExprSetProperty() during VVA 2309 ** processes but is a no-op for delivery. 2310 */ 2311 #ifdef SQLITE_DEBUG 2312 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2313 #else 2314 # define ExprSetVVAProperty(E,P) 2315 #endif 2316 2317 /* 2318 ** Macros to determine the number of bytes required by a normal Expr 2319 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2320 ** and an Expr struct with the EP_TokenOnly flag set. 2321 */ 2322 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2323 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2324 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2325 2326 /* 2327 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2328 ** above sqlite3ExprDup() for details. 2329 */ 2330 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2331 2332 /* 2333 ** A list of expressions. Each expression may optionally have a 2334 ** name. An expr/name combination can be used in several ways, such 2335 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2336 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2337 ** also be used as the argument to a function, in which case the a.zName 2338 ** field is not used. 2339 ** 2340 ** By default the Expr.zSpan field holds a human-readable description of 2341 ** the expression that is used in the generation of error messages and 2342 ** column labels. In this case, Expr.zSpan is typically the text of a 2343 ** column expression as it exists in a SELECT statement. However, if 2344 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2345 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2346 ** form is used for name resolution with nested FROM clauses. 2347 */ 2348 struct ExprList { 2349 int nExpr; /* Number of expressions on the list */ 2350 struct ExprList_item { /* For each expression in the list */ 2351 Expr *pExpr; /* The list of expressions */ 2352 char *zName; /* Token associated with this expression */ 2353 char *zSpan; /* Original text of the expression */ 2354 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2355 unsigned done :1; /* A flag to indicate when processing is finished */ 2356 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2357 unsigned reusable :1; /* Constant expression is reusable */ 2358 union { 2359 struct { 2360 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2361 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2362 } x; 2363 int iConstExprReg; /* Register in which Expr value is cached */ 2364 } u; 2365 } *a; /* Alloc a power of two greater or equal to nExpr */ 2366 }; 2367 2368 /* 2369 ** An instance of this structure is used by the parser to record both 2370 ** the parse tree for an expression and the span of input text for an 2371 ** expression. 2372 */ 2373 struct ExprSpan { 2374 Expr *pExpr; /* The expression parse tree */ 2375 const char *zStart; /* First character of input text */ 2376 const char *zEnd; /* One character past the end of input text */ 2377 }; 2378 2379 /* 2380 ** An instance of this structure can hold a simple list of identifiers, 2381 ** such as the list "a,b,c" in the following statements: 2382 ** 2383 ** INSERT INTO t(a,b,c) VALUES ...; 2384 ** CREATE INDEX idx ON t(a,b,c); 2385 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2386 ** 2387 ** The IdList.a.idx field is used when the IdList represents the list of 2388 ** column names after a table name in an INSERT statement. In the statement 2389 ** 2390 ** INSERT INTO t(a,b,c) ... 2391 ** 2392 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2393 */ 2394 struct IdList { 2395 struct IdList_item { 2396 char *zName; /* Name of the identifier */ 2397 int idx; /* Index in some Table.aCol[] of a column named zName */ 2398 } *a; 2399 int nId; /* Number of identifiers on the list */ 2400 }; 2401 2402 /* 2403 ** The bitmask datatype defined below is used for various optimizations. 2404 ** 2405 ** Changing this from a 64-bit to a 32-bit type limits the number of 2406 ** tables in a join to 32 instead of 64. But it also reduces the size 2407 ** of the library by 738 bytes on ix86. 2408 */ 2409 #ifdef SQLITE_BITMASK_TYPE 2410 typedef SQLITE_BITMASK_TYPE Bitmask; 2411 #else 2412 typedef u64 Bitmask; 2413 #endif 2414 2415 /* 2416 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2417 */ 2418 #define BMS ((int)(sizeof(Bitmask)*8)) 2419 2420 /* 2421 ** A bit in a Bitmask 2422 */ 2423 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2424 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2425 #define ALLBITS ((Bitmask)-1) 2426 2427 /* 2428 ** The following structure describes the FROM clause of a SELECT statement. 2429 ** Each table or subquery in the FROM clause is a separate element of 2430 ** the SrcList.a[] array. 2431 ** 2432 ** With the addition of multiple database support, the following structure 2433 ** can also be used to describe a particular table such as the table that 2434 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2435 ** such a table must be a simple name: ID. But in SQLite, the table can 2436 ** now be identified by a database name, a dot, then the table name: ID.ID. 2437 ** 2438 ** The jointype starts out showing the join type between the current table 2439 ** and the next table on the list. The parser builds the list this way. 2440 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2441 ** jointype expresses the join between the table and the previous table. 2442 ** 2443 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2444 ** contains more than 63 columns and the 64-th or later column is used. 2445 */ 2446 struct SrcList { 2447 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2448 u32 nAlloc; /* Number of entries allocated in a[] below */ 2449 struct SrcList_item { 2450 Schema *pSchema; /* Schema to which this item is fixed */ 2451 char *zDatabase; /* Name of database holding this table */ 2452 char *zName; /* Name of the table */ 2453 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2454 Table *pTab; /* An SQL table corresponding to zName */ 2455 Select *pSelect; /* A SELECT statement used in place of a table name */ 2456 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2457 int regReturn; /* Register holding return address of addrFillSub */ 2458 int regResult; /* Registers holding results of a co-routine */ 2459 struct { 2460 u8 jointype; /* Type of join between this able and the previous */ 2461 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2462 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 2463 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 2464 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2465 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2466 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2467 } fg; 2468 #ifndef SQLITE_OMIT_EXPLAIN 2469 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2470 #endif 2471 int iCursor; /* The VDBE cursor number used to access this table */ 2472 Expr *pOn; /* The ON clause of a join */ 2473 IdList *pUsing; /* The USING clause of a join */ 2474 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2475 union { 2476 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2477 ExprList *pFuncArg; /* Arguments to table-valued-function */ 2478 } u1; 2479 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 2480 } a[1]; /* One entry for each identifier on the list */ 2481 }; 2482 2483 /* 2484 ** Permitted values of the SrcList.a.jointype field 2485 */ 2486 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2487 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2488 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2489 #define JT_LEFT 0x0008 /* Left outer join */ 2490 #define JT_RIGHT 0x0010 /* Right outer join */ 2491 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2492 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2493 2494 2495 /* 2496 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2497 ** and the WhereInfo.wctrlFlags member. 2498 ** 2499 ** Value constraints (enforced via assert()): 2500 ** WHERE_USE_LIMIT == SF_FixedLimit 2501 */ 2502 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2503 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2504 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2505 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2506 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2507 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2508 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2509 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2510 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2511 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2512 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2513 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2514 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2515 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2516 #define WHERE_ONEPASS_MULTIROW 0x2000 /* ONEPASS is ok with multiple rows */ 2517 #define WHERE_USE_LIMIT 0x4000 /* There is a constant LIMIT clause */ 2518 2519 /* Allowed return values from sqlite3WhereIsDistinct() 2520 */ 2521 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2522 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2523 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2524 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2525 2526 /* 2527 ** A NameContext defines a context in which to resolve table and column 2528 ** names. The context consists of a list of tables (the pSrcList) field and 2529 ** a list of named expression (pEList). The named expression list may 2530 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2531 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2532 ** pEList corresponds to the result set of a SELECT and is NULL for 2533 ** other statements. 2534 ** 2535 ** NameContexts can be nested. When resolving names, the inner-most 2536 ** context is searched first. If no match is found, the next outer 2537 ** context is checked. If there is still no match, the next context 2538 ** is checked. This process continues until either a match is found 2539 ** or all contexts are check. When a match is found, the nRef member of 2540 ** the context containing the match is incremented. 2541 ** 2542 ** Each subquery gets a new NameContext. The pNext field points to the 2543 ** NameContext in the parent query. Thus the process of scanning the 2544 ** NameContext list corresponds to searching through successively outer 2545 ** subqueries looking for a match. 2546 */ 2547 struct NameContext { 2548 Parse *pParse; /* The parser */ 2549 SrcList *pSrcList; /* One or more tables used to resolve names */ 2550 ExprList *pEList; /* Optional list of result-set columns */ 2551 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2552 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2553 int nRef; /* Number of names resolved by this context */ 2554 int nErr; /* Number of errors encountered while resolving names */ 2555 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2556 }; 2557 2558 /* 2559 ** Allowed values for the NameContext, ncFlags field. 2560 ** 2561 ** Value constraints (all checked via assert()): 2562 ** NC_HasAgg == SF_HasAgg 2563 ** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX 2564 ** 2565 */ 2566 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2567 #define NC_PartIdx 0x0002 /* True if resolving a partial index WHERE */ 2568 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2569 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2570 #define NC_HasAgg 0x0010 /* One or more aggregate functions seen */ 2571 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 2572 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2573 2574 /* 2575 ** An instance of the following structure contains all information 2576 ** needed to generate code for a single SELECT statement. 2577 ** 2578 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2579 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2580 ** limit and nOffset to the value of the offset (or 0 if there is not 2581 ** offset). But later on, nLimit and nOffset become the memory locations 2582 ** in the VDBE that record the limit and offset counters. 2583 ** 2584 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2585 ** These addresses must be stored so that we can go back and fill in 2586 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2587 ** the number of columns in P2 can be computed at the same time 2588 ** as the OP_OpenEphm instruction is coded because not 2589 ** enough information about the compound query is known at that point. 2590 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2591 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2592 ** sequences for the ORDER BY clause. 2593 */ 2594 struct Select { 2595 ExprList *pEList; /* The fields of the result */ 2596 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2597 LogEst nSelectRow; /* Estimated number of result rows */ 2598 u32 selFlags; /* Various SF_* values */ 2599 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2600 #if SELECTTRACE_ENABLED 2601 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2602 #endif 2603 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2604 SrcList *pSrc; /* The FROM clause */ 2605 Expr *pWhere; /* The WHERE clause */ 2606 ExprList *pGroupBy; /* The GROUP BY clause */ 2607 Expr *pHaving; /* The HAVING clause */ 2608 ExprList *pOrderBy; /* The ORDER BY clause */ 2609 Select *pPrior; /* Prior select in a compound select statement */ 2610 Select *pNext; /* Next select to the left in a compound */ 2611 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2612 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2613 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2614 }; 2615 2616 /* 2617 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2618 ** "Select Flag". 2619 ** 2620 ** Value constraints (all checked via assert()) 2621 ** SF_HasAgg == NC_HasAgg 2622 ** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX 2623 ** SF_FixedLimit == WHERE_USE_LIMIT 2624 */ 2625 #define SF_Distinct 0x00001 /* Output should be DISTINCT */ 2626 #define SF_All 0x00002 /* Includes the ALL keyword */ 2627 #define SF_Resolved 0x00004 /* Identifiers have been resolved */ 2628 #define SF_Aggregate 0x00008 /* Contains agg functions or a GROUP BY */ 2629 #define SF_HasAgg 0x00010 /* Contains aggregate functions */ 2630 #define SF_UsesEphemeral 0x00020 /* Uses the OpenEphemeral opcode */ 2631 #define SF_Expanded 0x00040 /* sqlite3SelectExpand() called on this */ 2632 #define SF_HasTypeInfo 0x00080 /* FROM subqueries have Table metadata */ 2633 #define SF_Compound 0x00100 /* Part of a compound query */ 2634 #define SF_Values 0x00200 /* Synthesized from VALUES clause */ 2635 #define SF_MultiValue 0x00400 /* Single VALUES term with multiple rows */ 2636 #define SF_NestedFrom 0x00800 /* Part of a parenthesized FROM clause */ 2637 #define SF_MinMaxAgg 0x01000 /* Aggregate containing min() or max() */ 2638 #define SF_Recursive 0x02000 /* The recursive part of a recursive CTE */ 2639 #define SF_FixedLimit 0x04000 /* nSelectRow set by a constant LIMIT */ 2640 #define SF_MaybeConvert 0x08000 /* Need convertCompoundSelectToSubquery() */ 2641 #define SF_Converted 0x10000 /* By convertCompoundSelectToSubquery() */ 2642 #define SF_IncludeHidden 0x20000 /* Include hidden columns in output */ 2643 2644 2645 /* 2646 ** The results of a SELECT can be distributed in several ways, as defined 2647 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2648 ** Type". 2649 ** 2650 ** SRT_Union Store results as a key in a temporary index 2651 ** identified by pDest->iSDParm. 2652 ** 2653 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2654 ** 2655 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2656 ** set is not empty. 2657 ** 2658 ** SRT_Discard Throw the results away. This is used by SELECT 2659 ** statements within triggers whose only purpose is 2660 ** the side-effects of functions. 2661 ** 2662 ** All of the above are free to ignore their ORDER BY clause. Those that 2663 ** follow must honor the ORDER BY clause. 2664 ** 2665 ** SRT_Output Generate a row of output (using the OP_ResultRow 2666 ** opcode) for each row in the result set. 2667 ** 2668 ** SRT_Mem Only valid if the result is a single column. 2669 ** Store the first column of the first result row 2670 ** in register pDest->iSDParm then abandon the rest 2671 ** of the query. This destination implies "LIMIT 1". 2672 ** 2673 ** SRT_Set The result must be a single column. Store each 2674 ** row of result as the key in table pDest->iSDParm. 2675 ** Apply the affinity pDest->affSdst before storing 2676 ** results. Used to implement "IN (SELECT ...)". 2677 ** 2678 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2679 ** the result there. The cursor is left open after 2680 ** returning. This is like SRT_Table except that 2681 ** this destination uses OP_OpenEphemeral to create 2682 ** the table first. 2683 ** 2684 ** SRT_Coroutine Generate a co-routine that returns a new row of 2685 ** results each time it is invoked. The entry point 2686 ** of the co-routine is stored in register pDest->iSDParm 2687 ** and the result row is stored in pDest->nDest registers 2688 ** starting with pDest->iSdst. 2689 ** 2690 ** SRT_Table Store results in temporary table pDest->iSDParm. 2691 ** SRT_Fifo This is like SRT_EphemTab except that the table 2692 ** is assumed to already be open. SRT_Fifo has 2693 ** the additional property of being able to ignore 2694 ** the ORDER BY clause. 2695 ** 2696 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2697 ** But also use temporary table pDest->iSDParm+1 as 2698 ** a record of all prior results and ignore any duplicate 2699 ** rows. Name means: "Distinct Fifo". 2700 ** 2701 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2702 ** an index). Append a sequence number so that all entries 2703 ** are distinct. 2704 ** 2705 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2706 ** the same record has never been stored before. The 2707 ** index at pDest->iSDParm+1 hold all prior stores. 2708 */ 2709 #define SRT_Union 1 /* Store result as keys in an index */ 2710 #define SRT_Except 2 /* Remove result from a UNION index */ 2711 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2712 #define SRT_Discard 4 /* Do not save the results anywhere */ 2713 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2714 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2715 #define SRT_Queue 7 /* Store result in an queue */ 2716 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2717 2718 /* The ORDER BY clause is ignored for all of the above */ 2719 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2720 2721 #define SRT_Output 9 /* Output each row of result */ 2722 #define SRT_Mem 10 /* Store result in a memory cell */ 2723 #define SRT_Set 11 /* Store results as keys in an index */ 2724 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2725 #define SRT_Coroutine 13 /* Generate a single row of result */ 2726 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2727 2728 /* 2729 ** An instance of this object describes where to put of the results of 2730 ** a SELECT statement. 2731 */ 2732 struct SelectDest { 2733 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2734 char affSdst; /* Affinity used when eDest==SRT_Set */ 2735 int iSDParm; /* A parameter used by the eDest disposal method */ 2736 int iSdst; /* Base register where results are written */ 2737 int nSdst; /* Number of registers allocated */ 2738 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2739 }; 2740 2741 /* 2742 ** During code generation of statements that do inserts into AUTOINCREMENT 2743 ** tables, the following information is attached to the Table.u.autoInc.p 2744 ** pointer of each autoincrement table to record some side information that 2745 ** the code generator needs. We have to keep per-table autoincrement 2746 ** information in case inserts are done within triggers. Triggers do not 2747 ** normally coordinate their activities, but we do need to coordinate the 2748 ** loading and saving of autoincrement information. 2749 */ 2750 struct AutoincInfo { 2751 AutoincInfo *pNext; /* Next info block in a list of them all */ 2752 Table *pTab; /* Table this info block refers to */ 2753 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2754 int regCtr; /* Memory register holding the rowid counter */ 2755 }; 2756 2757 /* 2758 ** Size of the column cache 2759 */ 2760 #ifndef SQLITE_N_COLCACHE 2761 # define SQLITE_N_COLCACHE 10 2762 #endif 2763 2764 /* 2765 ** At least one instance of the following structure is created for each 2766 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2767 ** statement. All such objects are stored in the linked list headed at 2768 ** Parse.pTriggerPrg and deleted once statement compilation has been 2769 ** completed. 2770 ** 2771 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2772 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2773 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2774 ** The Parse.pTriggerPrg list never contains two entries with the same 2775 ** values for both pTrigger and orconf. 2776 ** 2777 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2778 ** accessed (or set to 0 for triggers fired as a result of INSERT 2779 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2780 ** a mask of new.* columns used by the program. 2781 */ 2782 struct TriggerPrg { 2783 Trigger *pTrigger; /* Trigger this program was coded from */ 2784 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2785 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2786 int orconf; /* Default ON CONFLICT policy */ 2787 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2788 }; 2789 2790 /* 2791 ** The yDbMask datatype for the bitmask of all attached databases. 2792 */ 2793 #if SQLITE_MAX_ATTACHED>30 2794 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2795 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2796 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2797 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2798 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2799 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2800 #else 2801 typedef unsigned int yDbMask; 2802 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2803 # define DbMaskZero(M) (M)=0 2804 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2805 # define DbMaskAllZero(M) (M)==0 2806 # define DbMaskNonZero(M) (M)!=0 2807 #endif 2808 2809 /* 2810 ** An SQL parser context. A copy of this structure is passed through 2811 ** the parser and down into all the parser action routine in order to 2812 ** carry around information that is global to the entire parse. 2813 ** 2814 ** The structure is divided into two parts. When the parser and code 2815 ** generate call themselves recursively, the first part of the structure 2816 ** is constant but the second part is reset at the beginning and end of 2817 ** each recursion. 2818 ** 2819 ** The nTableLock and aTableLock variables are only used if the shared-cache 2820 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2821 ** used to store the set of table-locks required by the statement being 2822 ** compiled. Function sqlite3TableLock() is used to add entries to the 2823 ** list. 2824 */ 2825 struct Parse { 2826 sqlite3 *db; /* The main database structure */ 2827 char *zErrMsg; /* An error message */ 2828 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2829 int rc; /* Return code from execution */ 2830 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2831 u8 checkSchema; /* Causes schema cookie check after an error */ 2832 u8 nested; /* Number of nested calls to the parser/code generator */ 2833 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2834 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2835 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2836 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2837 u8 okConstFactor; /* OK to factor out constants */ 2838 u8 disableLookaside; /* Number of times lookaside has been disabled */ 2839 u8 nColCache; /* Number of entries in aColCache[] */ 2840 int aTempReg[8]; /* Holding area for temporary registers */ 2841 int nRangeReg; /* Size of the temporary register block */ 2842 int iRangeReg; /* First register in temporary register block */ 2843 int nErr; /* Number of errors seen */ 2844 int nTab; /* Number of previously allocated VDBE cursors */ 2845 int nMem; /* Number of memory cells used so far */ 2846 int nSet; /* Number of sets used so far */ 2847 int nOnce; /* Number of OP_Once instructions so far */ 2848 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2849 int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ 2850 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2851 int ckBase; /* Base register of data during check constraints */ 2852 int iSelfTab; /* Table of an index whose exprs are being coded */ 2853 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2854 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2855 int nLabel; /* Number of labels used */ 2856 int *aLabel; /* Space to hold the labels */ 2857 struct yColCache { 2858 int iTable; /* Table cursor number */ 2859 i16 iColumn; /* Table column number */ 2860 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2861 int iLevel; /* Nesting level */ 2862 int iReg; /* Reg with value of this column. 0 means none. */ 2863 int lru; /* Least recently used entry has the smallest value */ 2864 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2865 ExprList *pConstExpr;/* Constant expressions */ 2866 Token constraintName;/* Name of the constraint currently being parsed */ 2867 yDbMask writeMask; /* Start a write transaction on these databases */ 2868 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2869 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2870 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2871 int regRoot; /* Register holding root page number for new objects */ 2872 int nMaxArg; /* Max args passed to user function by sub-program */ 2873 #if SELECTTRACE_ENABLED 2874 int nSelect; /* Number of SELECT statements seen */ 2875 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2876 #endif 2877 #ifndef SQLITE_OMIT_SHARED_CACHE 2878 int nTableLock; /* Number of locks in aTableLock */ 2879 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2880 #endif 2881 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2882 2883 /* Information used while coding trigger programs. */ 2884 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2885 Table *pTriggerTab; /* Table triggers are being coded for */ 2886 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2887 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2888 u32 oldmask; /* Mask of old.* columns referenced */ 2889 u32 newmask; /* Mask of new.* columns referenced */ 2890 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2891 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2892 u8 disableTriggers; /* True to disable triggers */ 2893 2894 /************************************************************************ 2895 ** Above is constant between recursions. Below is reset before and after 2896 ** each recursion. The boundary between these two regions is determined 2897 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2898 ** in the recursive region. 2899 ************************************************************************/ 2900 2901 ynVar nVar; /* Number of '?' variables seen in the SQL so far */ 2902 int nzVar; /* Number of available slots in azVar[] */ 2903 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2904 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2905 #ifndef SQLITE_OMIT_VIRTUALTABLE 2906 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2907 int nVtabLock; /* Number of virtual tables to lock */ 2908 #endif 2909 int nAlias; /* Number of aliased result set columns */ 2910 int nHeight; /* Expression tree height of current sub-select */ 2911 #ifndef SQLITE_OMIT_EXPLAIN 2912 int iSelectId; /* ID of current select for EXPLAIN output */ 2913 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2914 #endif 2915 char **azVar; /* Pointers to names of parameters */ 2916 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2917 const char *zTail; /* All SQL text past the last semicolon parsed */ 2918 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2919 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2920 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2921 Token sNameToken; /* Token with unqualified schema object name */ 2922 Token sLastToken; /* The last token parsed */ 2923 #ifndef SQLITE_OMIT_VIRTUALTABLE 2924 Token sArg; /* Complete text of a module argument */ 2925 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2926 #endif 2927 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2928 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2929 With *pWith; /* Current WITH clause, or NULL */ 2930 With *pWithToFree; /* Free this WITH object at the end of the parse */ 2931 }; 2932 2933 /* 2934 ** Return true if currently inside an sqlite3_declare_vtab() call. 2935 */ 2936 #ifdef SQLITE_OMIT_VIRTUALTABLE 2937 #define IN_DECLARE_VTAB 0 2938 #else 2939 #define IN_DECLARE_VTAB (pParse->declareVtab) 2940 #endif 2941 2942 /* 2943 ** An instance of the following structure can be declared on a stack and used 2944 ** to save the Parse.zAuthContext value so that it can be restored later. 2945 */ 2946 struct AuthContext { 2947 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2948 Parse *pParse; /* The Parse structure */ 2949 }; 2950 2951 /* 2952 ** Bitfield flags for P5 value in various opcodes. 2953 ** 2954 ** Value constraints (enforced via assert()): 2955 ** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH 2956 ** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF 2957 ** OPFLAG_BULKCSR == BTREE_BULKLOAD 2958 ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ 2959 ** OPFLAG_FORDELETE == BTREE_FORDELETE 2960 ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION 2961 ** OPFLAG_AUXDELETE == BTREE_AUXDELETE 2962 */ 2963 #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ 2964 /* Also used in P2 (not P5) of OP_Delete */ 2965 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2966 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2967 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2968 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2969 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2970 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2971 #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ 2972 #endif 2973 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2974 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2975 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2976 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2977 #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ 2978 #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ 2979 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2980 #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete: keep cursor position */ 2981 #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ 2982 2983 /* 2984 * Each trigger present in the database schema is stored as an instance of 2985 * struct Trigger. 2986 * 2987 * Pointers to instances of struct Trigger are stored in two ways. 2988 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2989 * database). This allows Trigger structures to be retrieved by name. 2990 * 2. All triggers associated with a single table form a linked list, using the 2991 * pNext member of struct Trigger. A pointer to the first element of the 2992 * linked list is stored as the "pTrigger" member of the associated 2993 * struct Table. 2994 * 2995 * The "step_list" member points to the first element of a linked list 2996 * containing the SQL statements specified as the trigger program. 2997 */ 2998 struct Trigger { 2999 char *zName; /* The name of the trigger */ 3000 char *table; /* The table or view to which the trigger applies */ 3001 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 3002 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 3003 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 3004 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 3005 the <column-list> is stored here */ 3006 Schema *pSchema; /* Schema containing the trigger */ 3007 Schema *pTabSchema; /* Schema containing the table */ 3008 TriggerStep *step_list; /* Link list of trigger program steps */ 3009 Trigger *pNext; /* Next trigger associated with the table */ 3010 }; 3011 3012 /* 3013 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 3014 ** determine which. 3015 ** 3016 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 3017 ** In that cases, the constants below can be ORed together. 3018 */ 3019 #define TRIGGER_BEFORE 1 3020 #define TRIGGER_AFTER 2 3021 3022 /* 3023 * An instance of struct TriggerStep is used to store a single SQL statement 3024 * that is a part of a trigger-program. 3025 * 3026 * Instances of struct TriggerStep are stored in a singly linked list (linked 3027 * using the "pNext" member) referenced by the "step_list" member of the 3028 * associated struct Trigger instance. The first element of the linked list is 3029 * the first step of the trigger-program. 3030 * 3031 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 3032 * "SELECT" statement. The meanings of the other members is determined by the 3033 * value of "op" as follows: 3034 * 3035 * (op == TK_INSERT) 3036 * orconf -> stores the ON CONFLICT algorithm 3037 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 3038 * this stores a pointer to the SELECT statement. Otherwise NULL. 3039 * zTarget -> Dequoted name of the table to insert into. 3040 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 3041 * this stores values to be inserted. Otherwise NULL. 3042 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 3043 * statement, then this stores the column-names to be 3044 * inserted into. 3045 * 3046 * (op == TK_DELETE) 3047 * zTarget -> Dequoted name of the table to delete from. 3048 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 3049 * Otherwise NULL. 3050 * 3051 * (op == TK_UPDATE) 3052 * zTarget -> Dequoted name of the table to update. 3053 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 3054 * Otherwise NULL. 3055 * pExprList -> A list of the columns to update and the expressions to update 3056 * them to. See sqlite3Update() documentation of "pChanges" 3057 * argument. 3058 * 3059 */ 3060 struct TriggerStep { 3061 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 3062 u8 orconf; /* OE_Rollback etc. */ 3063 Trigger *pTrig; /* The trigger that this step is a part of */ 3064 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 3065 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 3066 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 3067 ExprList *pExprList; /* SET clause for UPDATE. */ 3068 IdList *pIdList; /* Column names for INSERT */ 3069 TriggerStep *pNext; /* Next in the link-list */ 3070 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 3071 }; 3072 3073 /* 3074 ** The following structure contains information used by the sqliteFix... 3075 ** routines as they walk the parse tree to make database references 3076 ** explicit. 3077 */ 3078 typedef struct DbFixer DbFixer; 3079 struct DbFixer { 3080 Parse *pParse; /* The parsing context. Error messages written here */ 3081 Schema *pSchema; /* Fix items to this schema */ 3082 int bVarOnly; /* Check for variable references only */ 3083 const char *zDb; /* Make sure all objects are contained in this database */ 3084 const char *zType; /* Type of the container - used for error messages */ 3085 const Token *pName; /* Name of the container - used for error messages */ 3086 }; 3087 3088 /* 3089 ** An objected used to accumulate the text of a string where we 3090 ** do not necessarily know how big the string will be in the end. 3091 */ 3092 struct StrAccum { 3093 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 3094 char *zBase; /* A base allocation. Not from malloc. */ 3095 char *zText; /* The string collected so far */ 3096 u32 nChar; /* Length of the string so far */ 3097 u32 nAlloc; /* Amount of space allocated in zText */ 3098 u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 3099 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 3100 u8 printfFlags; /* SQLITE_PRINTF flags below */ 3101 }; 3102 #define STRACCUM_NOMEM 1 3103 #define STRACCUM_TOOBIG 2 3104 #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ 3105 #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ 3106 #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ 3107 3108 #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) 3109 3110 3111 /* 3112 ** A pointer to this structure is used to communicate information 3113 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 3114 */ 3115 typedef struct { 3116 sqlite3 *db; /* The database being initialized */ 3117 char **pzErrMsg; /* Error message stored here */ 3118 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 3119 int rc; /* Result code stored here */ 3120 } InitData; 3121 3122 /* 3123 ** Structure containing global configuration data for the SQLite library. 3124 ** 3125 ** This structure also contains some state information. 3126 */ 3127 struct Sqlite3Config { 3128 int bMemstat; /* True to enable memory status */ 3129 int bCoreMutex; /* True to enable core mutexing */ 3130 int bFullMutex; /* True to enable full mutexing */ 3131 int bOpenUri; /* True to interpret filenames as URIs */ 3132 int bUseCis; /* Use covering indices for full-scans */ 3133 int mxStrlen; /* Maximum string length */ 3134 int neverCorrupt; /* Database is always well-formed */ 3135 int szLookaside; /* Default lookaside buffer size */ 3136 int nLookaside; /* Default lookaside buffer count */ 3137 int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ 3138 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 3139 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 3140 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 3141 void *pHeap; /* Heap storage space */ 3142 int nHeap; /* Size of pHeap[] */ 3143 int mnReq, mxReq; /* Min and max heap requests sizes */ 3144 sqlite3_int64 szMmap; /* mmap() space per open file */ 3145 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 3146 void *pScratch; /* Scratch memory */ 3147 int szScratch; /* Size of each scratch buffer */ 3148 int nScratch; /* Number of scratch buffers */ 3149 void *pPage; /* Page cache memory */ 3150 int szPage; /* Size of each page in pPage[] */ 3151 int nPage; /* Number of pages in pPage[] */ 3152 int mxParserStack; /* maximum depth of the parser stack */ 3153 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 3154 u32 szPma; /* Maximum Sorter PMA size */ 3155 /* The above might be initialized to non-zero. The following need to always 3156 ** initially be zero, however. */ 3157 int isInit; /* True after initialization has finished */ 3158 int inProgress; /* True while initialization in progress */ 3159 int isMutexInit; /* True after mutexes are initialized */ 3160 int isMallocInit; /* True after malloc is initialized */ 3161 int isPCacheInit; /* True after malloc is initialized */ 3162 int nRefInitMutex; /* Number of users of pInitMutex */ 3163 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 3164 void (*xLog)(void*,int,const char*); /* Function for logging */ 3165 void *pLogArg; /* First argument to xLog() */ 3166 #ifdef SQLITE_ENABLE_SQLLOG 3167 void(*xSqllog)(void*,sqlite3*,const char*, int); 3168 void *pSqllogArg; 3169 #endif 3170 #ifdef SQLITE_VDBE_COVERAGE 3171 /* The following callback (if not NULL) is invoked on every VDBE branch 3172 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 3173 */ 3174 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 3175 void *pVdbeBranchArg; /* 1st argument */ 3176 #endif 3177 #ifndef SQLITE_OMIT_BUILTIN_TEST 3178 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 3179 #endif 3180 int bLocaltimeFault; /* True to fail localtime() calls */ 3181 }; 3182 3183 /* 3184 ** This macro is used inside of assert() statements to indicate that 3185 ** the assert is only valid on a well-formed database. Instead of: 3186 ** 3187 ** assert( X ); 3188 ** 3189 ** One writes: 3190 ** 3191 ** assert( X || CORRUPT_DB ); 3192 ** 3193 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 3194 ** that the database is definitely corrupt, only that it might be corrupt. 3195 ** For most test cases, CORRUPT_DB is set to false using a special 3196 ** sqlite3_test_control(). This enables assert() statements to prove 3197 ** things that are always true for well-formed databases. 3198 */ 3199 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 3200 3201 /* 3202 ** Context pointer passed down through the tree-walk. 3203 */ 3204 struct Walker { 3205 Parse *pParse; /* Parser context. */ 3206 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 3207 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 3208 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 3209 int walkerDepth; /* Number of subqueries */ 3210 u8 eCode; /* A small processing code */ 3211 union { /* Extra data for callback */ 3212 NameContext *pNC; /* Naming context */ 3213 int n; /* A counter */ 3214 int iCur; /* A cursor number */ 3215 SrcList *pSrcList; /* FROM clause */ 3216 struct SrcCount *pSrcCount; /* Counting column references */ 3217 struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ 3218 int *aiCol; /* array of column indexes */ 3219 } u; 3220 }; 3221 3222 /* Forward declarations */ 3223 int sqlite3WalkExpr(Walker*, Expr*); 3224 int sqlite3WalkExprList(Walker*, ExprList*); 3225 int sqlite3WalkSelect(Walker*, Select*); 3226 int sqlite3WalkSelectExpr(Walker*, Select*); 3227 int sqlite3WalkSelectFrom(Walker*, Select*); 3228 int sqlite3ExprWalkNoop(Walker*, Expr*); 3229 3230 /* 3231 ** Return code from the parse-tree walking primitives and their 3232 ** callbacks. 3233 */ 3234 #define WRC_Continue 0 /* Continue down into children */ 3235 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3236 #define WRC_Abort 2 /* Abandon the tree walk */ 3237 3238 /* 3239 ** An instance of this structure represents a set of one or more CTEs 3240 ** (common table expressions) created by a single WITH clause. 3241 */ 3242 struct With { 3243 int nCte; /* Number of CTEs in the WITH clause */ 3244 With *pOuter; /* Containing WITH clause, or NULL */ 3245 struct Cte { /* For each CTE in the WITH clause.... */ 3246 char *zName; /* Name of this CTE */ 3247 ExprList *pCols; /* List of explicit column names, or NULL */ 3248 Select *pSelect; /* The definition of this CTE */ 3249 const char *zCteErr; /* Error message for circular references */ 3250 } a[1]; 3251 }; 3252 3253 #ifdef SQLITE_DEBUG 3254 /* 3255 ** An instance of the TreeView object is used for printing the content of 3256 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3257 */ 3258 struct TreeView { 3259 int iLevel; /* Which level of the tree we are on */ 3260 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3261 }; 3262 #endif /* SQLITE_DEBUG */ 3263 3264 /* 3265 ** Assuming zIn points to the first byte of a UTF-8 character, 3266 ** advance zIn to point to the first byte of the next UTF-8 character. 3267 */ 3268 #define SQLITE_SKIP_UTF8(zIn) { \ 3269 if( (*(zIn++))>=0xc0 ){ \ 3270 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3271 } \ 3272 } 3273 3274 /* 3275 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3276 ** the same name but without the _BKPT suffix. These macros invoke 3277 ** routines that report the line-number on which the error originated 3278 ** using sqlite3_log(). The routines also provide a convenient place 3279 ** to set a debugger breakpoint. 3280 */ 3281 int sqlite3CorruptError(int); 3282 int sqlite3MisuseError(int); 3283 int sqlite3CantopenError(int); 3284 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3285 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3286 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3287 #ifdef SQLITE_DEBUG 3288 int sqlite3NomemError(int); 3289 int sqlite3IoerrnomemError(int); 3290 # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__) 3291 # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__) 3292 #else 3293 # define SQLITE_NOMEM_BKPT SQLITE_NOMEM 3294 # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM 3295 #endif 3296 3297 /* 3298 ** FTS3 and FTS4 both require virtual table support 3299 */ 3300 #if defined(SQLITE_OMIT_VIRTUALTABLE) 3301 # undef SQLITE_ENABLE_FTS3 3302 # undef SQLITE_ENABLE_FTS4 3303 #endif 3304 3305 /* 3306 ** FTS4 is really an extension for FTS3. It is enabled using the 3307 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3308 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3309 */ 3310 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3311 # define SQLITE_ENABLE_FTS3 1 3312 #endif 3313 3314 /* 3315 ** The ctype.h header is needed for non-ASCII systems. It is also 3316 ** needed by FTS3 when FTS3 is included in the amalgamation. 3317 */ 3318 #if !defined(SQLITE_ASCII) || \ 3319 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3320 # include <ctype.h> 3321 #endif 3322 3323 /* 3324 ** The following macros mimic the standard library functions toupper(), 3325 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3326 ** sqlite versions only work for ASCII characters, regardless of locale. 3327 */ 3328 #ifdef SQLITE_ASCII 3329 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3330 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3331 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3332 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3333 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3334 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3335 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3336 # define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80) 3337 #else 3338 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3339 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3340 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3341 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3342 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3343 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3344 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3345 # define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`') 3346 #endif 3347 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3348 int sqlite3IsIdChar(u8); 3349 #endif 3350 3351 /* 3352 ** Internal function prototypes 3353 */ 3354 int sqlite3StrICmp(const char*,const char*); 3355 int sqlite3Strlen30(const char*); 3356 char *sqlite3ColumnType(Column*,char*); 3357 #define sqlite3StrNICmp sqlite3_strnicmp 3358 3359 int sqlite3MallocInit(void); 3360 void sqlite3MallocEnd(void); 3361 void *sqlite3Malloc(u64); 3362 void *sqlite3MallocZero(u64); 3363 void *sqlite3DbMallocZero(sqlite3*, u64); 3364 void *sqlite3DbMallocRaw(sqlite3*, u64); 3365 void *sqlite3DbMallocRawNN(sqlite3*, u64); 3366 char *sqlite3DbStrDup(sqlite3*,const char*); 3367 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3368 void *sqlite3Realloc(void*, u64); 3369 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3370 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3371 void sqlite3DbFree(sqlite3*, void*); 3372 int sqlite3MallocSize(void*); 3373 int sqlite3DbMallocSize(sqlite3*, void*); 3374 void *sqlite3ScratchMalloc(int); 3375 void sqlite3ScratchFree(void*); 3376 void *sqlite3PageMalloc(int); 3377 void sqlite3PageFree(void*); 3378 void sqlite3MemSetDefault(void); 3379 #ifndef SQLITE_OMIT_BUILTIN_TEST 3380 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3381 #endif 3382 int sqlite3HeapNearlyFull(void); 3383 3384 /* 3385 ** On systems with ample stack space and that support alloca(), make 3386 ** use of alloca() to obtain space for large automatic objects. By default, 3387 ** obtain space from malloc(). 3388 ** 3389 ** The alloca() routine never returns NULL. This will cause code paths 3390 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3391 */ 3392 #ifdef SQLITE_USE_ALLOCA 3393 # define sqlite3StackAllocRaw(D,N) alloca(N) 3394 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3395 # define sqlite3StackFree(D,P) 3396 #else 3397 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3398 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3399 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3400 #endif 3401 3402 #ifdef SQLITE_ENABLE_MEMSYS3 3403 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3404 #endif 3405 #ifdef SQLITE_ENABLE_MEMSYS5 3406 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3407 #endif 3408 3409 3410 #ifndef SQLITE_MUTEX_OMIT 3411 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3412 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3413 sqlite3_mutex *sqlite3MutexAlloc(int); 3414 int sqlite3MutexInit(void); 3415 int sqlite3MutexEnd(void); 3416 #endif 3417 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) 3418 void sqlite3MemoryBarrier(void); 3419 #else 3420 # define sqlite3MemoryBarrier() 3421 #endif 3422 3423 sqlite3_int64 sqlite3StatusValue(int); 3424 void sqlite3StatusUp(int, int); 3425 void sqlite3StatusDown(int, int); 3426 void sqlite3StatusHighwater(int, int); 3427 3428 /* Access to mutexes used by sqlite3_status() */ 3429 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3430 sqlite3_mutex *sqlite3MallocMutex(void); 3431 3432 #ifndef SQLITE_OMIT_FLOATING_POINT 3433 int sqlite3IsNaN(double); 3434 #else 3435 # define sqlite3IsNaN(X) 0 3436 #endif 3437 3438 /* 3439 ** An instance of the following structure holds information about SQL 3440 ** functions arguments that are the parameters to the printf() function. 3441 */ 3442 struct PrintfArguments { 3443 int nArg; /* Total number of arguments */ 3444 int nUsed; /* Number of arguments used so far */ 3445 sqlite3_value **apArg; /* The argument values */ 3446 }; 3447 3448 void sqlite3VXPrintf(StrAccum*, const char*, va_list); 3449 void sqlite3XPrintf(StrAccum*, const char*, ...); 3450 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3451 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3452 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3453 void sqlite3DebugPrintf(const char*, ...); 3454 #endif 3455 #if defined(SQLITE_TEST) 3456 void *sqlite3TestTextToPtr(const char*); 3457 #endif 3458 3459 #if defined(SQLITE_DEBUG) 3460 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3461 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3462 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3463 void sqlite3TreeViewWith(TreeView*, const With*, u8); 3464 #endif 3465 3466 3467 void sqlite3SetString(char **, sqlite3*, const char*); 3468 void sqlite3ErrorMsg(Parse*, const char*, ...); 3469 void sqlite3Dequote(char*); 3470 void sqlite3TokenInit(Token*,char*); 3471 int sqlite3KeywordCode(const unsigned char*, int); 3472 int sqlite3RunParser(Parse*, const char*, char **); 3473 void sqlite3FinishCoding(Parse*); 3474 int sqlite3GetTempReg(Parse*); 3475 void sqlite3ReleaseTempReg(Parse*,int); 3476 int sqlite3GetTempRange(Parse*,int); 3477 void sqlite3ReleaseTempRange(Parse*,int,int); 3478 void sqlite3ClearTempRegCache(Parse*); 3479 #ifdef SQLITE_DEBUG 3480 int sqlite3NoTempsInRange(Parse*,int,int); 3481 #endif 3482 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3483 Expr *sqlite3Expr(sqlite3*,int,const char*); 3484 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3485 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3486 void sqlite3PExprAddSelect(Parse*, Expr*, Select*); 3487 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3488 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3489 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3490 void sqlite3ExprDelete(sqlite3*, Expr*); 3491 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3492 void sqlite3ExprListSetSortOrder(ExprList*,int); 3493 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3494 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3495 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3496 u32 sqlite3ExprListFlags(const ExprList*); 3497 int sqlite3Init(sqlite3*, char**); 3498 int sqlite3InitCallback(void*, int, char**, char**); 3499 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3500 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3501 void sqlite3ResetOneSchema(sqlite3*,int); 3502 void sqlite3CollapseDatabaseArray(sqlite3*); 3503 void sqlite3CommitInternalChanges(sqlite3*); 3504 void sqlite3DeleteColumnNames(sqlite3*,Table*); 3505 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 3506 void sqlite3SelectAddColumnTypeAndCollation(Parse*,Table*,Select*); 3507 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3508 void sqlite3OpenMasterTable(Parse *, int); 3509 Index *sqlite3PrimaryKeyIndex(Table*); 3510 i16 sqlite3ColumnOfIndex(Index*, i16); 3511 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3512 #if SQLITE_ENABLE_HIDDEN_COLUMNS 3513 void sqlite3ColumnPropertiesFromName(Table*, Column*); 3514 #else 3515 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ 3516 #endif 3517 void sqlite3AddColumn(Parse*,Token*,Token*); 3518 void sqlite3AddNotNull(Parse*, int); 3519 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3520 void sqlite3AddCheckConstraint(Parse*, Expr*); 3521 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3522 void sqlite3AddCollateType(Parse*, Token*); 3523 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3524 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3525 sqlite3_vfs**,char**,char **); 3526 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3527 int sqlite3CodeOnce(Parse *); 3528 3529 #ifdef SQLITE_OMIT_BUILTIN_TEST 3530 # define sqlite3FaultSim(X) SQLITE_OK 3531 #else 3532 int sqlite3FaultSim(int); 3533 #endif 3534 3535 Bitvec *sqlite3BitvecCreate(u32); 3536 int sqlite3BitvecTest(Bitvec*, u32); 3537 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3538 int sqlite3BitvecSet(Bitvec*, u32); 3539 void sqlite3BitvecClear(Bitvec*, u32, void*); 3540 void sqlite3BitvecDestroy(Bitvec*); 3541 u32 sqlite3BitvecSize(Bitvec*); 3542 #ifndef SQLITE_OMIT_BUILTIN_TEST 3543 int sqlite3BitvecBuiltinTest(int,int*); 3544 #endif 3545 3546 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3547 void sqlite3RowSetClear(RowSet*); 3548 void sqlite3RowSetInsert(RowSet*, i64); 3549 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3550 int sqlite3RowSetNext(RowSet*, i64*); 3551 3552 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 3553 3554 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3555 int sqlite3ViewGetColumnNames(Parse*,Table*); 3556 #else 3557 # define sqlite3ViewGetColumnNames(A,B) 0 3558 #endif 3559 3560 #if SQLITE_MAX_ATTACHED>30 3561 int sqlite3DbMaskAllZero(yDbMask); 3562 #endif 3563 void sqlite3DropTable(Parse*, SrcList*, int, int); 3564 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3565 void sqlite3DeleteTable(sqlite3*, Table*); 3566 #ifndef SQLITE_OMIT_AUTOINCREMENT 3567 void sqlite3AutoincrementBegin(Parse *pParse); 3568 void sqlite3AutoincrementEnd(Parse *pParse); 3569 #else 3570 # define sqlite3AutoincrementBegin(X) 3571 # define sqlite3AutoincrementEnd(X) 3572 #endif 3573 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3574 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3575 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3576 int sqlite3IdListIndex(IdList*,const char*); 3577 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3578 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3579 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3580 Token*, Select*, Expr*, IdList*); 3581 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3582 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 3583 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3584 void sqlite3SrcListShiftJoinType(SrcList*); 3585 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3586 void sqlite3IdListDelete(sqlite3*, IdList*); 3587 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3588 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3589 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3590 Expr*, int, int); 3591 void sqlite3DropIndex(Parse*, SrcList*, int); 3592 int sqlite3Select(Parse*, Select*, SelectDest*); 3593 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3594 Expr*,ExprList*,u32,Expr*,Expr*); 3595 void sqlite3SelectDelete(sqlite3*, Select*); 3596 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3597 int sqlite3IsReadOnly(Parse*, Table*, int); 3598 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3599 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3600 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3601 #endif 3602 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3603 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3604 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3605 void sqlite3WhereEnd(WhereInfo*); 3606 LogEst sqlite3WhereOutputRowCount(WhereInfo*); 3607 int sqlite3WhereIsDistinct(WhereInfo*); 3608 int sqlite3WhereIsOrdered(WhereInfo*); 3609 int sqlite3WhereIsSorted(WhereInfo*); 3610 int sqlite3WhereContinueLabel(WhereInfo*); 3611 int sqlite3WhereBreakLabel(WhereInfo*); 3612 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3613 #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ 3614 #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ 3615 #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ 3616 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 3617 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3618 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int); 3619 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3620 void sqlite3ExprCodeMove(Parse*, int, int, int); 3621 void sqlite3ExprCacheStore(Parse*, int, int, int); 3622 void sqlite3ExprCachePush(Parse*); 3623 void sqlite3ExprCachePop(Parse*); 3624 void sqlite3ExprCacheRemove(Parse*, int, int); 3625 void sqlite3ExprCacheClear(Parse*); 3626 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3627 void sqlite3ExprCode(Parse*, Expr*, int); 3628 void sqlite3ExprCodeCopy(Parse*, Expr*, int); 3629 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3630 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3631 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3632 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3633 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3634 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 3635 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3636 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3637 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 3638 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3639 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3640 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3641 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3642 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3643 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3644 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3645 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3646 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3647 void sqlite3Vacuum(Parse*); 3648 int sqlite3RunVacuum(char**, sqlite3*); 3649 char *sqlite3NameFromToken(sqlite3*, Token*); 3650 int sqlite3ExprCompare(Expr*, Expr*, int); 3651 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3652 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3653 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3654 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3655 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3656 Vdbe *sqlite3GetVdbe(Parse*); 3657 #ifndef SQLITE_OMIT_BUILTIN_TEST 3658 void sqlite3PrngSaveState(void); 3659 void sqlite3PrngRestoreState(void); 3660 #endif 3661 void sqlite3RollbackAll(sqlite3*,int); 3662 void sqlite3CodeVerifySchema(Parse*, int); 3663 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3664 void sqlite3BeginTransaction(Parse*, int); 3665 void sqlite3CommitTransaction(Parse*); 3666 void sqlite3RollbackTransaction(Parse*); 3667 void sqlite3Savepoint(Parse*, int, Token*); 3668 void sqlite3CloseSavepoints(sqlite3 *); 3669 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3670 int sqlite3ExprIsConstant(Expr*); 3671 int sqlite3ExprIsConstantNotJoin(Expr*); 3672 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3673 int sqlite3ExprIsTableConstant(Expr*,int); 3674 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3675 int sqlite3ExprContainsSubquery(Expr*); 3676 #endif 3677 int sqlite3ExprIsInteger(Expr*, int*); 3678 int sqlite3ExprCanBeNull(const Expr*); 3679 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3680 int sqlite3IsRowid(const char*); 3681 void sqlite3GenerateRowDelete( 3682 Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); 3683 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); 3684 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3685 void sqlite3ResolvePartIdxLabel(Parse*,int); 3686 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3687 u8,u8,int,int*,int*); 3688 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3689 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); 3690 void sqlite3BeginWriteOperation(Parse*, int, int); 3691 void sqlite3MultiWrite(Parse*); 3692 void sqlite3MayAbort(Parse*); 3693 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3694 void sqlite3UniqueConstraint(Parse*, int, Index*); 3695 void sqlite3RowidConstraint(Parse*, int, Table*); 3696 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3697 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3698 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3699 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3700 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3701 #if SELECTTRACE_ENABLED 3702 void sqlite3SelectSetName(Select*,const char*); 3703 #else 3704 # define sqlite3SelectSetName(A,B) 3705 #endif 3706 void sqlite3InsertBuiltinFuncs(FuncDef*,int); 3707 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); 3708 void sqlite3RegisterBuiltinFunctions(void); 3709 void sqlite3RegisterDateTimeFunctions(void); 3710 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); 3711 int sqlite3SafetyCheckOk(sqlite3*); 3712 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3713 void sqlite3ChangeCookie(Parse*, int); 3714 3715 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3716 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3717 #endif 3718 3719 #ifndef SQLITE_OMIT_TRIGGER 3720 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3721 Expr*,int, int); 3722 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3723 void sqlite3DropTrigger(Parse*, SrcList*, int); 3724 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3725 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3726 Trigger *sqlite3TriggerList(Parse *, Table *); 3727 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3728 int, int, int); 3729 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3730 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3731 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3732 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3733 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3734 Select*,u8); 3735 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3736 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3737 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3738 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3739 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3740 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3741 # define sqlite3IsToplevel(p) ((p)->pToplevel==0) 3742 #else 3743 # define sqlite3TriggersExist(B,C,D,E,F) 0 3744 # define sqlite3DeleteTrigger(A,B) 3745 # define sqlite3DropTriggerPtr(A,B) 3746 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3747 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3748 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3749 # define sqlite3TriggerList(X, Y) 0 3750 # define sqlite3ParseToplevel(p) p 3751 # define sqlite3IsToplevel(p) 1 3752 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3753 #endif 3754 3755 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3756 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3757 void sqlite3DeferForeignKey(Parse*, int); 3758 #ifndef SQLITE_OMIT_AUTHORIZATION 3759 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3760 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3761 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3762 void sqlite3AuthContextPop(AuthContext*); 3763 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3764 #else 3765 # define sqlite3AuthRead(a,b,c,d) 3766 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3767 # define sqlite3AuthContextPush(a,b,c) 3768 # define sqlite3AuthContextPop(a) ((void)(a)) 3769 #endif 3770 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3771 void sqlite3Detach(Parse*, Expr*); 3772 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3773 int sqlite3FixSrcList(DbFixer*, SrcList*); 3774 int sqlite3FixSelect(DbFixer*, Select*); 3775 int sqlite3FixExpr(DbFixer*, Expr*); 3776 int sqlite3FixExprList(DbFixer*, ExprList*); 3777 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3778 int sqlite3AtoF(const char *z, double*, int, u8); 3779 int sqlite3GetInt32(const char *, int*); 3780 int sqlite3Atoi(const char*); 3781 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3782 int sqlite3Utf8CharLen(const char *pData, int nByte); 3783 u32 sqlite3Utf8Read(const u8**); 3784 LogEst sqlite3LogEst(u64); 3785 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3786 #ifndef SQLITE_OMIT_VIRTUALTABLE 3787 LogEst sqlite3LogEstFromDouble(double); 3788 #endif 3789 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 3790 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 3791 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 3792 u64 sqlite3LogEstToInt(LogEst); 3793 #endif 3794 3795 /* 3796 ** Routines to read and write variable-length integers. These used to 3797 ** be defined locally, but now we use the varint routines in the util.c 3798 ** file. 3799 */ 3800 int sqlite3PutVarint(unsigned char*, u64); 3801 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3802 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3803 int sqlite3VarintLen(u64 v); 3804 3805 /* 3806 ** The common case is for a varint to be a single byte. They following 3807 ** macros handle the common case without a procedure call, but then call 3808 ** the procedure for larger varints. 3809 */ 3810 #define getVarint32(A,B) \ 3811 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3812 #define putVarint32(A,B) \ 3813 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3814 sqlite3PutVarint((A),(B))) 3815 #define getVarint sqlite3GetVarint 3816 #define putVarint sqlite3PutVarint 3817 3818 3819 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 3820 void sqlite3TableAffinity(Vdbe*, Table*, int); 3821 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3822 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3823 char sqlite3ExprAffinity(Expr *pExpr); 3824 int sqlite3Atoi64(const char*, i64*, int, u8); 3825 int sqlite3DecOrHexToI64(const char*, i64*); 3826 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3827 void sqlite3Error(sqlite3*,int); 3828 void sqlite3SystemError(sqlite3*,int); 3829 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3830 u8 sqlite3HexToInt(int h); 3831 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3832 3833 #if defined(SQLITE_NEED_ERR_NAME) 3834 const char *sqlite3ErrName(int); 3835 #endif 3836 3837 const char *sqlite3ErrStr(int); 3838 int sqlite3ReadSchema(Parse *pParse); 3839 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3840 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3841 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3842 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3843 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3844 Expr *sqlite3ExprSkipCollate(Expr*); 3845 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3846 int sqlite3CheckObjectName(Parse *, const char *); 3847 void sqlite3VdbeSetChanges(sqlite3 *, int); 3848 int sqlite3AddInt64(i64*,i64); 3849 int sqlite3SubInt64(i64*,i64); 3850 int sqlite3MulInt64(i64*,i64); 3851 int sqlite3AbsInt32(int); 3852 #ifdef SQLITE_ENABLE_8_3_NAMES 3853 void sqlite3FileSuffix3(const char*, char*); 3854 #else 3855 # define sqlite3FileSuffix3(X,Y) 3856 #endif 3857 u8 sqlite3GetBoolean(const char *z,u8); 3858 3859 const void *sqlite3ValueText(sqlite3_value*, u8); 3860 int sqlite3ValueBytes(sqlite3_value*, u8); 3861 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3862 void(*)(void*)); 3863 void sqlite3ValueSetNull(sqlite3_value*); 3864 void sqlite3ValueFree(sqlite3_value*); 3865 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3866 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3867 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3868 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3869 #ifndef SQLITE_AMALGAMATION 3870 extern const unsigned char sqlite3OpcodeProperty[]; 3871 extern const char sqlite3StrBINARY[]; 3872 extern const unsigned char sqlite3UpperToLower[]; 3873 extern const unsigned char sqlite3CtypeMap[]; 3874 extern const Token sqlite3IntTokens[]; 3875 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3876 extern FuncDefHash sqlite3BuiltinFunctions; 3877 #ifndef SQLITE_OMIT_WSD 3878 extern int sqlite3PendingByte; 3879 #endif 3880 #endif 3881 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3882 void sqlite3Reindex(Parse*, Token*, Token*); 3883 void sqlite3AlterFunctions(void); 3884 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3885 int sqlite3GetToken(const unsigned char *, int *); 3886 void sqlite3NestedParse(Parse*, const char*, ...); 3887 void sqlite3ExpirePreparedStatements(sqlite3*); 3888 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3889 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3890 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3891 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3892 int sqlite3ResolveExprNames(NameContext*, Expr*); 3893 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 3894 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3895 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3896 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3897 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3898 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3899 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3900 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3901 char sqlite3AffinityType(const char*, u8*); 3902 void sqlite3Analyze(Parse*, Token*, Token*); 3903 int sqlite3InvokeBusyHandler(BusyHandler*); 3904 int sqlite3FindDb(sqlite3*, Token*); 3905 int sqlite3FindDbName(sqlite3 *, const char *); 3906 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3907 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3908 void sqlite3DefaultRowEst(Index*); 3909 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3910 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3911 void sqlite3SchemaClear(void *); 3912 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3913 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3914 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3915 void sqlite3KeyInfoUnref(KeyInfo*); 3916 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3917 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3918 #ifdef SQLITE_DEBUG 3919 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3920 #endif 3921 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3922 void (*)(sqlite3_context*,int,sqlite3_value **), 3923 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3924 FuncDestructor *pDestructor 3925 ); 3926 void sqlite3OomFault(sqlite3*); 3927 void sqlite3OomClear(sqlite3*); 3928 int sqlite3ApiExit(sqlite3 *db, int); 3929 int sqlite3OpenTempDatabase(Parse *); 3930 3931 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3932 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3933 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3934 void sqlite3AppendChar(StrAccum*,int,char); 3935 char *sqlite3StrAccumFinish(StrAccum*); 3936 void sqlite3StrAccumReset(StrAccum*); 3937 void sqlite3SelectDestInit(SelectDest*,int,int); 3938 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3939 3940 void sqlite3BackupRestart(sqlite3_backup *); 3941 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3942 3943 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3944 void sqlite3AnalyzeFunctions(void); 3945 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3946 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3947 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3948 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3949 #endif 3950 3951 /* 3952 ** The interface to the LEMON-generated parser 3953 */ 3954 void *sqlite3ParserAlloc(void*(*)(u64)); 3955 void sqlite3ParserFree(void*, void(*)(void*)); 3956 void sqlite3Parser(void*, int, Token, Parse*); 3957 #ifdef YYTRACKMAXSTACKDEPTH 3958 int sqlite3ParserStackPeak(void*); 3959 #endif 3960 3961 void sqlite3AutoLoadExtensions(sqlite3*); 3962 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3963 void sqlite3CloseExtensions(sqlite3*); 3964 #else 3965 # define sqlite3CloseExtensions(X) 3966 #endif 3967 3968 #ifndef SQLITE_OMIT_SHARED_CACHE 3969 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3970 #else 3971 #define sqlite3TableLock(v,w,x,y,z) 3972 #endif 3973 3974 #ifdef SQLITE_TEST 3975 int sqlite3Utf8To8(unsigned char*); 3976 #endif 3977 3978 #ifdef SQLITE_OMIT_VIRTUALTABLE 3979 # define sqlite3VtabClear(Y) 3980 # define sqlite3VtabSync(X,Y) SQLITE_OK 3981 # define sqlite3VtabRollback(X) 3982 # define sqlite3VtabCommit(X) 3983 # define sqlite3VtabInSync(db) 0 3984 # define sqlite3VtabLock(X) 3985 # define sqlite3VtabUnlock(X) 3986 # define sqlite3VtabUnlockList(X) 3987 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3988 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3989 #else 3990 void sqlite3VtabClear(sqlite3 *db, Table*); 3991 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3992 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3993 int sqlite3VtabRollback(sqlite3 *db); 3994 int sqlite3VtabCommit(sqlite3 *db); 3995 void sqlite3VtabLock(VTable *); 3996 void sqlite3VtabUnlock(VTable *); 3997 void sqlite3VtabUnlockList(sqlite3*); 3998 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3999 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 4000 VTable *sqlite3GetVTable(sqlite3*, Table*); 4001 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 4002 #endif 4003 int sqlite3VtabEponymousTableInit(Parse*,Module*); 4004 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 4005 void sqlite3VtabMakeWritable(Parse*,Table*); 4006 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 4007 void sqlite3VtabFinishParse(Parse*, Token*); 4008 void sqlite3VtabArgInit(Parse*); 4009 void sqlite3VtabArgExtend(Parse*, Token*); 4010 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 4011 int sqlite3VtabCallConnect(Parse*, Table*); 4012 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 4013 int sqlite3VtabBegin(sqlite3 *, VTable *); 4014 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 4015 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 4016 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 4017 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 4018 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 4019 void sqlite3ParserReset(Parse*); 4020 int sqlite3Reprepare(Vdbe*); 4021 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 4022 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 4023 int sqlite3TempInMemory(const sqlite3*); 4024 const char *sqlite3JournalModename(int); 4025 #ifndef SQLITE_OMIT_WAL 4026 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 4027 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 4028 #endif 4029 #ifndef SQLITE_OMIT_CTE 4030 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 4031 void sqlite3WithDelete(sqlite3*,With*); 4032 void sqlite3WithPush(Parse*, With*, u8); 4033 #else 4034 #define sqlite3WithPush(x,y,z) 4035 #define sqlite3WithDelete(x,y) 4036 #endif 4037 4038 /* Declarations for functions in fkey.c. All of these are replaced by 4039 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 4040 ** key functionality is available. If OMIT_TRIGGER is defined but 4041 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 4042 ** this case foreign keys are parsed, but no other functionality is 4043 ** provided (enforcement of FK constraints requires the triggers sub-system). 4044 */ 4045 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 4046 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 4047 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 4048 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 4049 int sqlite3FkRequired(Parse*, Table*, int*, int); 4050 u32 sqlite3FkOldmask(Parse*, Table*); 4051 FKey *sqlite3FkReferences(Table *); 4052 #else 4053 #define sqlite3FkActions(a,b,c,d,e,f) 4054 #define sqlite3FkCheck(a,b,c,d,e,f) 4055 #define sqlite3FkDropTable(a,b,c) 4056 #define sqlite3FkOldmask(a,b) 0 4057 #define sqlite3FkRequired(a,b,c,d) 0 4058 #endif 4059 #ifndef SQLITE_OMIT_FOREIGN_KEY 4060 void sqlite3FkDelete(sqlite3 *, Table*); 4061 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 4062 #else 4063 #define sqlite3FkDelete(a,b) 4064 #define sqlite3FkLocateIndex(a,b,c,d,e) 4065 #endif 4066 4067 4068 /* 4069 ** Available fault injectors. Should be numbered beginning with 0. 4070 */ 4071 #define SQLITE_FAULTINJECTOR_MALLOC 0 4072 #define SQLITE_FAULTINJECTOR_COUNT 1 4073 4074 /* 4075 ** The interface to the code in fault.c used for identifying "benign" 4076 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 4077 ** is not defined. 4078 */ 4079 #ifndef SQLITE_OMIT_BUILTIN_TEST 4080 void sqlite3BeginBenignMalloc(void); 4081 void sqlite3EndBenignMalloc(void); 4082 #else 4083 #define sqlite3BeginBenignMalloc() 4084 #define sqlite3EndBenignMalloc() 4085 #endif 4086 4087 /* 4088 ** Allowed return values from sqlite3FindInIndex() 4089 */ 4090 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 4091 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 4092 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 4093 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 4094 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 4095 /* 4096 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 4097 */ 4098 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 4099 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 4100 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 4101 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 4102 4103 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 4104 int sqlite3JournalSize(sqlite3_vfs *); 4105 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4106 int sqlite3JournalCreate(sqlite3_file *); 4107 #endif 4108 4109 int sqlite3JournalIsInMemory(sqlite3_file *p); 4110 void sqlite3MemJournalOpen(sqlite3_file *); 4111 4112 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 4113 #if SQLITE_MAX_EXPR_DEPTH>0 4114 int sqlite3SelectExprHeight(Select *); 4115 int sqlite3ExprCheckHeight(Parse*, int); 4116 #else 4117 #define sqlite3SelectExprHeight(x) 0 4118 #define sqlite3ExprCheckHeight(x,y) 4119 #endif 4120 4121 u32 sqlite3Get4byte(const u8*); 4122 void sqlite3Put4byte(u8*, u32); 4123 4124 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 4125 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 4126 void sqlite3ConnectionUnlocked(sqlite3 *db); 4127 void sqlite3ConnectionClosed(sqlite3 *db); 4128 #else 4129 #define sqlite3ConnectionBlocked(x,y) 4130 #define sqlite3ConnectionUnlocked(x) 4131 #define sqlite3ConnectionClosed(x) 4132 #endif 4133 4134 #ifdef SQLITE_DEBUG 4135 void sqlite3ParserTrace(FILE*, char *); 4136 #endif 4137 4138 /* 4139 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 4140 ** sqlite3IoTrace is a pointer to a printf-like routine used to 4141 ** print I/O tracing messages. 4142 */ 4143 #ifdef SQLITE_ENABLE_IOTRACE 4144 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 4145 void sqlite3VdbeIOTraceSql(Vdbe*); 4146 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 4147 #else 4148 # define IOTRACE(A) 4149 # define sqlite3VdbeIOTraceSql(X) 4150 #endif 4151 4152 /* 4153 ** These routines are available for the mem2.c debugging memory allocator 4154 ** only. They are used to verify that different "types" of memory 4155 ** allocations are properly tracked by the system. 4156 ** 4157 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 4158 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 4159 ** a single bit set. 4160 ** 4161 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 4162 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4163 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 4164 ** 4165 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 4166 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4167 ** 4168 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 4169 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 4170 ** it might have been allocated by lookaside, except the allocation was 4171 ** too large or lookaside was already full. It is important to verify 4172 ** that allocations that might have been satisfied by lookaside are not 4173 ** passed back to non-lookaside free() routines. Asserts such as the 4174 ** example above are placed on the non-lookaside free() routines to verify 4175 ** this constraint. 4176 ** 4177 ** All of this is no-op for a production build. It only comes into 4178 ** play when the SQLITE_MEMDEBUG compile-time option is used. 4179 */ 4180 #ifdef SQLITE_MEMDEBUG 4181 void sqlite3MemdebugSetType(void*,u8); 4182 int sqlite3MemdebugHasType(void*,u8); 4183 int sqlite3MemdebugNoType(void*,u8); 4184 #else 4185 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 4186 # define sqlite3MemdebugHasType(X,Y) 1 4187 # define sqlite3MemdebugNoType(X,Y) 1 4188 #endif 4189 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 4190 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 4191 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 4192 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 4193 4194 /* 4195 ** Threading interface 4196 */ 4197 #if SQLITE_MAX_WORKER_THREADS>0 4198 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 4199 int sqlite3ThreadJoin(SQLiteThread*, void**); 4200 #endif 4201 4202 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 4203 int sqlite3DbstatRegister(sqlite3*); 4204 #endif 4205 4206 #endif /* _SQLITEINT_H_ */ 4207