1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The number of samples of an index that SQLite takes in order to 81 ** construct a histogram of the table content when running ANALYZE 82 ** and with SQLITE_ENABLE_STAT2 83 */ 84 #define SQLITE_INDEX_SAMPLES 10 85 86 /* 87 ** The following macros are used to cast pointers to integers and 88 ** integers to pointers. The way you do this varies from one compiler 89 ** to the next, so we have developed the following set of #if statements 90 ** to generate appropriate macros for a wide range of compilers. 91 ** 92 ** The correct "ANSI" way to do this is to use the intptr_t type. 93 ** Unfortunately, that typedef is not available on all compilers, or 94 ** if it is available, it requires an #include of specific headers 95 ** that vary from one machine to the next. 96 ** 97 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 98 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 99 ** So we have to define the macros in different ways depending on the 100 ** compiler. 101 */ 102 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 104 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 105 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 107 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 108 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 111 #else /* Generates a warning - but it always works */ 112 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 113 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 114 #endif 115 116 /* 117 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 118 ** Older versions of SQLite used an optional THREADSAFE macro. 119 ** We support that for legacy 120 */ 121 #if !defined(SQLITE_THREADSAFE) 122 #if defined(THREADSAFE) 123 # define SQLITE_THREADSAFE THREADSAFE 124 #else 125 # define SQLITE_THREADSAFE 1 126 #endif 127 #endif 128 129 /* 130 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 131 ** It determines whether or not the features related to 132 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 133 ** be overridden at runtime using the sqlite3_config() API. 134 */ 135 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 136 # define SQLITE_DEFAULT_MEMSTATUS 1 137 #endif 138 139 /* 140 ** Exactly one of the following macros must be defined in order to 141 ** specify which memory allocation subsystem to use. 142 ** 143 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 144 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 145 ** 146 ** (Historical note: There used to be several other options, but we've 147 ** pared it down to just these two.) 148 ** 149 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 150 ** the default. 151 */ 152 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1 153 # error "At most one of the following compile-time configuration options\ 154 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG" 155 #endif 156 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0 157 # define SQLITE_SYSTEM_MALLOC 1 158 #endif 159 160 /* 161 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 162 ** sizes of memory allocations below this value where possible. 163 */ 164 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 165 # define SQLITE_MALLOC_SOFT_LIMIT 1024 166 #endif 167 168 /* 169 ** We need to define _XOPEN_SOURCE as follows in order to enable 170 ** recursive mutexes on most Unix systems. But Mac OS X is different. 171 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 172 ** so it is omitted there. See ticket #2673. 173 ** 174 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 175 ** implemented on some systems. So we avoid defining it at all 176 ** if it is already defined or if it is unneeded because we are 177 ** not doing a threadsafe build. Ticket #2681. 178 ** 179 ** See also ticket #2741. 180 */ 181 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 182 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 183 #endif 184 185 /* 186 ** The TCL headers are only needed when compiling the TCL bindings. 187 */ 188 #if defined(SQLITE_TCL) || defined(TCLSH) 189 # include <tcl.h> 190 #endif 191 192 /* 193 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 194 ** Setting NDEBUG makes the code smaller and run faster. So the following 195 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 196 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 197 ** feature. 198 */ 199 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 200 # define NDEBUG 1 201 #endif 202 203 /* 204 ** The testcase() macro is used to aid in coverage testing. When 205 ** doing coverage testing, the condition inside the argument to 206 ** testcase() must be evaluated both true and false in order to 207 ** get full branch coverage. The testcase() macro is inserted 208 ** to help ensure adequate test coverage in places where simple 209 ** condition/decision coverage is inadequate. For example, testcase() 210 ** can be used to make sure boundary values are tested. For 211 ** bitmask tests, testcase() can be used to make sure each bit 212 ** is significant and used at least once. On switch statements 213 ** where multiple cases go to the same block of code, testcase() 214 ** can insure that all cases are evaluated. 215 ** 216 */ 217 #ifdef SQLITE_COVERAGE_TEST 218 void sqlite3Coverage(int); 219 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 220 #else 221 # define testcase(X) 222 #endif 223 224 /* 225 ** The TESTONLY macro is used to enclose variable declarations or 226 ** other bits of code that are needed to support the arguments 227 ** within testcase() and assert() macros. 228 */ 229 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 230 # define TESTONLY(X) X 231 #else 232 # define TESTONLY(X) 233 #endif 234 235 /* 236 ** Sometimes we need a small amount of code such as a variable initialization 237 ** to setup for a later assert() statement. We do not want this code to 238 ** appear when assert() is disabled. The following macro is therefore 239 ** used to contain that setup code. The "VVA" acronym stands for 240 ** "Verification, Validation, and Accreditation". In other words, the 241 ** code within VVA_ONLY() will only run during verification processes. 242 */ 243 #ifndef NDEBUG 244 # define VVA_ONLY(X) X 245 #else 246 # define VVA_ONLY(X) 247 #endif 248 249 /* 250 ** The ALWAYS and NEVER macros surround boolean expressions which 251 ** are intended to always be true or false, respectively. Such 252 ** expressions could be omitted from the code completely. But they 253 ** are included in a few cases in order to enhance the resilience 254 ** of SQLite to unexpected behavior - to make the code "self-healing" 255 ** or "ductile" rather than being "brittle" and crashing at the first 256 ** hint of unplanned behavior. 257 ** 258 ** In other words, ALWAYS and NEVER are added for defensive code. 259 ** 260 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 261 ** be true and false so that the unreachable code then specify will 262 ** not be counted as untested code. 263 */ 264 #if defined(SQLITE_COVERAGE_TEST) 265 # define ALWAYS(X) (1) 266 # define NEVER(X) (0) 267 #elif !defined(NDEBUG) 268 # define ALWAYS(X) ((X)?1:(assert(0),0)) 269 # define NEVER(X) ((X)?(assert(0),1):0) 270 #else 271 # define ALWAYS(X) (X) 272 # define NEVER(X) (X) 273 #endif 274 275 /* 276 ** The macro unlikely() is a hint that surrounds a boolean 277 ** expression that is usually false. Macro likely() surrounds 278 ** a boolean expression that is usually true. GCC is able to 279 ** use these hints to generate better code, sometimes. 280 */ 281 #if defined(__GNUC__) && 0 282 # define likely(X) __builtin_expect((X),1) 283 # define unlikely(X) __builtin_expect((X),0) 284 #else 285 # define likely(X) !!(X) 286 # define unlikely(X) !!(X) 287 #endif 288 289 #include "sqlite3.h" 290 #include "hash.h" 291 #include "parse.h" 292 #include <stdio.h> 293 #include <stdlib.h> 294 #include <string.h> 295 #include <assert.h> 296 #include <stddef.h> 297 298 /* 299 ** If compiling for a processor that lacks floating point support, 300 ** substitute integer for floating-point 301 */ 302 #ifdef SQLITE_OMIT_FLOATING_POINT 303 # define double sqlite_int64 304 # define float sqlite_int64 305 # define LONGDOUBLE_TYPE sqlite_int64 306 # ifndef SQLITE_BIG_DBL 307 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 308 # endif 309 # define SQLITE_OMIT_DATETIME_FUNCS 1 310 # define SQLITE_OMIT_TRACE 1 311 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 312 # undef SQLITE_HAVE_ISNAN 313 #endif 314 #ifndef SQLITE_BIG_DBL 315 # define SQLITE_BIG_DBL (1e99) 316 #endif 317 318 /* 319 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 320 ** afterward. Having this macro allows us to cause the C compiler 321 ** to omit code used by TEMP tables without messy #ifndef statements. 322 */ 323 #ifdef SQLITE_OMIT_TEMPDB 324 #define OMIT_TEMPDB 1 325 #else 326 #define OMIT_TEMPDB 0 327 #endif 328 329 /* 330 ** The "file format" number is an integer that is incremented whenever 331 ** the VDBE-level file format changes. The following macros define the 332 ** the default file format for new databases and the maximum file format 333 ** that the library can read. 334 */ 335 #define SQLITE_MAX_FILE_FORMAT 4 336 #ifndef SQLITE_DEFAULT_FILE_FORMAT 337 # define SQLITE_DEFAULT_FILE_FORMAT 1 338 #endif 339 340 /* 341 ** Determine whether triggers are recursive by default. This can be 342 ** changed at run-time using a pragma. 343 */ 344 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 345 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 346 #endif 347 348 /* 349 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 350 ** on the command-line 351 */ 352 #ifndef SQLITE_TEMP_STORE 353 # define SQLITE_TEMP_STORE 1 354 #endif 355 356 /* 357 ** GCC does not define the offsetof() macro so we'll have to do it 358 ** ourselves. 359 */ 360 #ifndef offsetof 361 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 362 #endif 363 364 /* 365 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 366 ** not, there are still machines out there that use EBCDIC.) 367 */ 368 #if 'A' == '\301' 369 # define SQLITE_EBCDIC 1 370 #else 371 # define SQLITE_ASCII 1 372 #endif 373 374 /* 375 ** Integers of known sizes. These typedefs might change for architectures 376 ** where the sizes very. Preprocessor macros are available so that the 377 ** types can be conveniently redefined at compile-type. Like this: 378 ** 379 ** cc '-DUINTPTR_TYPE=long long int' ... 380 */ 381 #ifndef UINT32_TYPE 382 # ifdef HAVE_UINT32_T 383 # define UINT32_TYPE uint32_t 384 # else 385 # define UINT32_TYPE unsigned int 386 # endif 387 #endif 388 #ifndef UINT16_TYPE 389 # ifdef HAVE_UINT16_T 390 # define UINT16_TYPE uint16_t 391 # else 392 # define UINT16_TYPE unsigned short int 393 # endif 394 #endif 395 #ifndef INT16_TYPE 396 # ifdef HAVE_INT16_T 397 # define INT16_TYPE int16_t 398 # else 399 # define INT16_TYPE short int 400 # endif 401 #endif 402 #ifndef UINT8_TYPE 403 # ifdef HAVE_UINT8_T 404 # define UINT8_TYPE uint8_t 405 # else 406 # define UINT8_TYPE unsigned char 407 # endif 408 #endif 409 #ifndef INT8_TYPE 410 # ifdef HAVE_INT8_T 411 # define INT8_TYPE int8_t 412 # else 413 # define INT8_TYPE signed char 414 # endif 415 #endif 416 #ifndef LONGDOUBLE_TYPE 417 # define LONGDOUBLE_TYPE long double 418 #endif 419 typedef sqlite_int64 i64; /* 8-byte signed integer */ 420 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 421 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 422 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 423 typedef INT16_TYPE i16; /* 2-byte signed integer */ 424 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 425 typedef INT8_TYPE i8; /* 1-byte signed integer */ 426 427 /* 428 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 429 ** that can be stored in a u32 without loss of data. The value 430 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 431 ** have to specify the value in the less intuitive manner shown: 432 */ 433 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 434 435 /* 436 ** Macros to determine whether the machine is big or little endian, 437 ** evaluated at runtime. 438 */ 439 #ifdef SQLITE_AMALGAMATION 440 const int sqlite3one = 1; 441 #else 442 extern const int sqlite3one; 443 #endif 444 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 445 || defined(__x86_64) || defined(__x86_64__) 446 # define SQLITE_BIGENDIAN 0 447 # define SQLITE_LITTLEENDIAN 1 448 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 449 #else 450 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 451 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 452 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 453 #endif 454 455 /* 456 ** Constants for the largest and smallest possible 64-bit signed integers. 457 ** These macros are designed to work correctly on both 32-bit and 64-bit 458 ** compilers. 459 */ 460 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 461 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 462 463 /* 464 ** Round up a number to the next larger multiple of 8. This is used 465 ** to force 8-byte alignment on 64-bit architectures. 466 */ 467 #define ROUND8(x) (((x)+7)&~7) 468 469 /* 470 ** Round down to the nearest multiple of 8 471 */ 472 #define ROUNDDOWN8(x) ((x)&~7) 473 474 /* 475 ** Assert that the pointer X is aligned to an 8-byte boundary. This 476 ** macro is used only within assert() to verify that the code gets 477 ** all alignment restrictions correct. 478 ** 479 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 480 ** underlying malloc() implemention might return us 4-byte aligned 481 ** pointers. In that case, only verify 4-byte alignment. 482 */ 483 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 484 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 485 #else 486 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 487 #endif 488 489 490 /* 491 ** An instance of the following structure is used to store the busy-handler 492 ** callback for a given sqlite handle. 493 ** 494 ** The sqlite.busyHandler member of the sqlite struct contains the busy 495 ** callback for the database handle. Each pager opened via the sqlite 496 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 497 ** callback is currently invoked only from within pager.c. 498 */ 499 typedef struct BusyHandler BusyHandler; 500 struct BusyHandler { 501 int (*xFunc)(void *,int); /* The busy callback */ 502 void *pArg; /* First arg to busy callback */ 503 int nBusy; /* Incremented with each busy call */ 504 }; 505 506 /* 507 ** Name of the master database table. The master database table 508 ** is a special table that holds the names and attributes of all 509 ** user tables and indices. 510 */ 511 #define MASTER_NAME "sqlite_master" 512 #define TEMP_MASTER_NAME "sqlite_temp_master" 513 514 /* 515 ** The root-page of the master database table. 516 */ 517 #define MASTER_ROOT 1 518 519 /* 520 ** The name of the schema table. 521 */ 522 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 523 524 /* 525 ** A convenience macro that returns the number of elements in 526 ** an array. 527 */ 528 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 529 530 /* 531 ** The following value as a destructor means to use sqlite3DbFree(). 532 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 533 */ 534 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 535 536 /* 537 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 538 ** not support Writable Static Data (WSD) such as global and static variables. 539 ** All variables must either be on the stack or dynamically allocated from 540 ** the heap. When WSD is unsupported, the variable declarations scattered 541 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 542 ** macro is used for this purpose. And instead of referencing the variable 543 ** directly, we use its constant as a key to lookup the run-time allocated 544 ** buffer that holds real variable. The constant is also the initializer 545 ** for the run-time allocated buffer. 546 ** 547 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 548 ** macros become no-ops and have zero performance impact. 549 */ 550 #ifdef SQLITE_OMIT_WSD 551 #define SQLITE_WSD const 552 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 553 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 554 int sqlite3_wsd_init(int N, int J); 555 void *sqlite3_wsd_find(void *K, int L); 556 #else 557 #define SQLITE_WSD 558 #define GLOBAL(t,v) v 559 #define sqlite3GlobalConfig sqlite3Config 560 #endif 561 562 /* 563 ** The following macros are used to suppress compiler warnings and to 564 ** make it clear to human readers when a function parameter is deliberately 565 ** left unused within the body of a function. This usually happens when 566 ** a function is called via a function pointer. For example the 567 ** implementation of an SQL aggregate step callback may not use the 568 ** parameter indicating the number of arguments passed to the aggregate, 569 ** if it knows that this is enforced elsewhere. 570 ** 571 ** When a function parameter is not used at all within the body of a function, 572 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 573 ** However, these macros may also be used to suppress warnings related to 574 ** parameters that may or may not be used depending on compilation options. 575 ** For example those parameters only used in assert() statements. In these 576 ** cases the parameters are named as per the usual conventions. 577 */ 578 #define UNUSED_PARAMETER(x) (void)(x) 579 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 580 581 /* 582 ** Forward references to structures 583 */ 584 typedef struct AggInfo AggInfo; 585 typedef struct AuthContext AuthContext; 586 typedef struct AutoincInfo AutoincInfo; 587 typedef struct Bitvec Bitvec; 588 typedef struct CollSeq CollSeq; 589 typedef struct Column Column; 590 typedef struct Db Db; 591 typedef struct Schema Schema; 592 typedef struct Expr Expr; 593 typedef struct ExprList ExprList; 594 typedef struct ExprSpan ExprSpan; 595 typedef struct FKey FKey; 596 typedef struct FuncDef FuncDef; 597 typedef struct FuncDefHash FuncDefHash; 598 typedef struct IdList IdList; 599 typedef struct Index Index; 600 typedef struct IndexSample IndexSample; 601 typedef struct KeyClass KeyClass; 602 typedef struct KeyInfo KeyInfo; 603 typedef struct Lookaside Lookaside; 604 typedef struct LookasideSlot LookasideSlot; 605 typedef struct Module Module; 606 typedef struct NameContext NameContext; 607 typedef struct Parse Parse; 608 typedef struct RowSet RowSet; 609 typedef struct Savepoint Savepoint; 610 typedef struct Select Select; 611 typedef struct SrcList SrcList; 612 typedef struct StrAccum StrAccum; 613 typedef struct Table Table; 614 typedef struct TableLock TableLock; 615 typedef struct Token Token; 616 typedef struct Trigger Trigger; 617 typedef struct TriggerPrg TriggerPrg; 618 typedef struct TriggerStep TriggerStep; 619 typedef struct UnpackedRecord UnpackedRecord; 620 typedef struct VTable VTable; 621 typedef struct Walker Walker; 622 typedef struct WherePlan WherePlan; 623 typedef struct WhereInfo WhereInfo; 624 typedef struct WhereLevel WhereLevel; 625 626 /* 627 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 628 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 629 ** pointer types (i.e. FuncDef) defined above. 630 */ 631 #include "btree.h" 632 #include "vdbe.h" 633 #include "pager.h" 634 #include "pcache.h" 635 636 #include "os.h" 637 #include "mutex.h" 638 639 640 /* 641 ** Each database file to be accessed by the system is an instance 642 ** of the following structure. There are normally two of these structures 643 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 644 ** aDb[1] is the database file used to hold temporary tables. Additional 645 ** databases may be attached. 646 */ 647 struct Db { 648 char *zName; /* Name of this database */ 649 Btree *pBt; /* The B*Tree structure for this database file */ 650 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 651 u8 safety_level; /* How aggressive at syncing data to disk */ 652 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 653 }; 654 655 /* 656 ** An instance of the following structure stores a database schema. 657 ** 658 ** If there are no virtual tables configured in this schema, the 659 ** Schema.db variable is set to NULL. After the first virtual table 660 ** has been added, it is set to point to the database connection 661 ** used to create the connection. Once a virtual table has been 662 ** added to the Schema structure and the Schema.db variable populated, 663 ** only that database connection may use the Schema to prepare 664 ** statements. 665 */ 666 struct Schema { 667 int schema_cookie; /* Database schema version number for this file */ 668 Hash tblHash; /* All tables indexed by name */ 669 Hash idxHash; /* All (named) indices indexed by name */ 670 Hash trigHash; /* All triggers indexed by name */ 671 Hash fkeyHash; /* All foreign keys by referenced table name */ 672 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 673 u8 file_format; /* Schema format version for this file */ 674 u8 enc; /* Text encoding used by this database */ 675 u16 flags; /* Flags associated with this schema */ 676 int cache_size; /* Number of pages to use in the cache */ 677 #ifndef SQLITE_OMIT_VIRTUALTABLE 678 sqlite3 *db; /* "Owner" connection. See comment above */ 679 #endif 680 }; 681 682 /* 683 ** These macros can be used to test, set, or clear bits in the 684 ** Db.pSchema->flags field. 685 */ 686 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 687 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 688 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 689 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 690 691 /* 692 ** Allowed values for the DB.pSchema->flags field. 693 ** 694 ** The DB_SchemaLoaded flag is set after the database schema has been 695 ** read into internal hash tables. 696 ** 697 ** DB_UnresetViews means that one or more views have column names that 698 ** have been filled out. If the schema changes, these column names might 699 ** changes and so the view will need to be reset. 700 */ 701 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 702 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 703 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 704 705 /* 706 ** The number of different kinds of things that can be limited 707 ** using the sqlite3_limit() interface. 708 */ 709 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 710 711 /* 712 ** Lookaside malloc is a set of fixed-size buffers that can be used 713 ** to satisfy small transient memory allocation requests for objects 714 ** associated with a particular database connection. The use of 715 ** lookaside malloc provides a significant performance enhancement 716 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 717 ** SQL statements. 718 ** 719 ** The Lookaside structure holds configuration information about the 720 ** lookaside malloc subsystem. Each available memory allocation in 721 ** the lookaside subsystem is stored on a linked list of LookasideSlot 722 ** objects. 723 ** 724 ** Lookaside allocations are only allowed for objects that are associated 725 ** with a particular database connection. Hence, schema information cannot 726 ** be stored in lookaside because in shared cache mode the schema information 727 ** is shared by multiple database connections. Therefore, while parsing 728 ** schema information, the Lookaside.bEnabled flag is cleared so that 729 ** lookaside allocations are not used to construct the schema objects. 730 */ 731 struct Lookaside { 732 u16 sz; /* Size of each buffer in bytes */ 733 u8 bEnabled; /* False to disable new lookaside allocations */ 734 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 735 int nOut; /* Number of buffers currently checked out */ 736 int mxOut; /* Highwater mark for nOut */ 737 LookasideSlot *pFree; /* List of available buffers */ 738 void *pStart; /* First byte of available memory space */ 739 void *pEnd; /* First byte past end of available space */ 740 }; 741 struct LookasideSlot { 742 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 743 }; 744 745 /* 746 ** A hash table for function definitions. 747 ** 748 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 749 ** Collisions are on the FuncDef.pHash chain. 750 */ 751 struct FuncDefHash { 752 FuncDef *a[23]; /* Hash table for functions */ 753 }; 754 755 /* 756 ** Each database connection is an instance of the following structure. 757 ** 758 ** The sqlite.lastRowid records the last insert rowid generated by an 759 ** insert statement. Inserts on views do not affect its value. Each 760 ** trigger has its own context, so that lastRowid can be updated inside 761 ** triggers as usual. The previous value will be restored once the trigger 762 ** exits. Upon entering a before or instead of trigger, lastRowid is no 763 ** longer (since after version 2.8.12) reset to -1. 764 ** 765 ** The sqlite.nChange does not count changes within triggers and keeps no 766 ** context. It is reset at start of sqlite3_exec. 767 ** The sqlite.lsChange represents the number of changes made by the last 768 ** insert, update, or delete statement. It remains constant throughout the 769 ** length of a statement and is then updated by OP_SetCounts. It keeps a 770 ** context stack just like lastRowid so that the count of changes 771 ** within a trigger is not seen outside the trigger. Changes to views do not 772 ** affect the value of lsChange. 773 ** The sqlite.csChange keeps track of the number of current changes (since 774 ** the last statement) and is used to update sqlite_lsChange. 775 ** 776 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 777 ** store the most recent error code and, if applicable, string. The 778 ** internal function sqlite3Error() is used to set these variables 779 ** consistently. 780 */ 781 struct sqlite3 { 782 sqlite3_vfs *pVfs; /* OS Interface */ 783 int nDb; /* Number of backends currently in use */ 784 Db *aDb; /* All backends */ 785 int flags; /* Miscellaneous flags. See below */ 786 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 787 int errCode; /* Most recent error code (SQLITE_*) */ 788 int errMask; /* & result codes with this before returning */ 789 u8 autoCommit; /* The auto-commit flag. */ 790 u8 temp_store; /* 1: file 2: memory 0: default */ 791 u8 mallocFailed; /* True if we have seen a malloc failure */ 792 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 793 u8 dfltJournalMode; /* Default journal mode for attached dbs */ 794 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 795 u8 suppressErr; /* Do not issue error messages if true */ 796 int nextPagesize; /* Pagesize after VACUUM if >0 */ 797 int nTable; /* Number of tables in the database */ 798 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 799 i64 lastRowid; /* ROWID of most recent insert (see above) */ 800 u32 magic; /* Magic number for detect library misuse */ 801 int nChange; /* Value returned by sqlite3_changes() */ 802 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 803 sqlite3_mutex *mutex; /* Connection mutex */ 804 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 805 struct sqlite3InitInfo { /* Information used during initialization */ 806 int iDb; /* When back is being initialized */ 807 int newTnum; /* Rootpage of table being initialized */ 808 u8 busy; /* TRUE if currently initializing */ 809 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 810 } init; 811 int nExtension; /* Number of loaded extensions */ 812 void **aExtension; /* Array of shared library handles */ 813 struct Vdbe *pVdbe; /* List of active virtual machines */ 814 int activeVdbeCnt; /* Number of VDBEs currently executing */ 815 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 816 void (*xTrace)(void*,const char*); /* Trace function */ 817 void *pTraceArg; /* Argument to the trace function */ 818 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 819 void *pProfileArg; /* Argument to profile function */ 820 void *pCommitArg; /* Argument to xCommitCallback() */ 821 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 822 void *pRollbackArg; /* Argument to xRollbackCallback() */ 823 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 824 void *pUpdateArg; 825 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 826 #ifndef SQLITE_OMIT_WAL 827 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 828 void *pWalArg; 829 #endif 830 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 831 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 832 void *pCollNeededArg; 833 sqlite3_value *pErr; /* Most recent error message */ 834 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 835 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 836 union { 837 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 838 double notUsed1; /* Spacer */ 839 } u1; 840 Lookaside lookaside; /* Lookaside malloc configuration */ 841 #ifndef SQLITE_OMIT_AUTHORIZATION 842 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 843 /* Access authorization function */ 844 void *pAuthArg; /* 1st argument to the access auth function */ 845 #endif 846 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 847 int (*xProgress)(void *); /* The progress callback */ 848 void *pProgressArg; /* Argument to the progress callback */ 849 int nProgressOps; /* Number of opcodes for progress callback */ 850 #endif 851 #ifndef SQLITE_OMIT_VIRTUALTABLE 852 Hash aModule; /* populated by sqlite3_create_module() */ 853 Table *pVTab; /* vtab with active Connect/Create method */ 854 VTable **aVTrans; /* Virtual tables with open transactions */ 855 int nVTrans; /* Allocated size of aVTrans */ 856 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 857 #endif 858 FuncDefHash aFunc; /* Hash table of connection functions */ 859 Hash aCollSeq; /* All collating sequences */ 860 BusyHandler busyHandler; /* Busy callback */ 861 int busyTimeout; /* Busy handler timeout, in msec */ 862 Db aDbStatic[2]; /* Static space for the 2 default backends */ 863 Savepoint *pSavepoint; /* List of active savepoints */ 864 int nSavepoint; /* Number of non-transaction savepoints */ 865 int nStatement; /* Number of nested statement-transactions */ 866 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 867 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 868 869 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 870 /* The following variables are all protected by the STATIC_MASTER 871 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 872 ** 873 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 874 ** unlock so that it can proceed. 875 ** 876 ** When X.pBlockingConnection==Y, that means that something that X tried 877 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 878 ** held by Y. 879 */ 880 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 881 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 882 void *pUnlockArg; /* Argument to xUnlockNotify */ 883 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 884 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 885 #endif 886 }; 887 888 /* 889 ** A macro to discover the encoding of a database. 890 */ 891 #define ENC(db) ((db)->aDb[0].pSchema->enc) 892 893 /* 894 ** Possible values for the sqlite3.flags. 895 */ 896 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 897 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 898 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 899 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 900 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 901 /* DELETE, or UPDATE and return */ 902 /* the count using a callback. */ 903 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 904 /* result set is empty */ 905 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 906 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 907 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 908 #define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when 909 ** accessing read-only databases */ 910 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 911 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 912 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 913 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 914 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 915 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 916 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 917 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 918 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 919 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 920 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 921 922 /* 923 ** Bits of the sqlite3.flags field that are used by the 924 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 925 ** These must be the low-order bits of the flags field. 926 */ 927 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 928 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 929 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 930 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 931 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 932 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 933 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 934 935 /* 936 ** Possible values for the sqlite.magic field. 937 ** The numbers are obtained at random and have no special meaning, other 938 ** than being distinct from one another. 939 */ 940 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 941 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 942 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 943 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 944 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 945 946 /* 947 ** Each SQL function is defined by an instance of the following 948 ** structure. A pointer to this structure is stored in the sqlite.aFunc 949 ** hash table. When multiple functions have the same name, the hash table 950 ** points to a linked list of these structures. 951 */ 952 struct FuncDef { 953 i16 nArg; /* Number of arguments. -1 means unlimited */ 954 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 955 u8 flags; /* Some combination of SQLITE_FUNC_* */ 956 void *pUserData; /* User data parameter */ 957 FuncDef *pNext; /* Next function with same name */ 958 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 959 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 960 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 961 char *zName; /* SQL name of the function. */ 962 FuncDef *pHash; /* Next with a different name but the same hash */ 963 }; 964 965 /* 966 ** Possible values for FuncDef.flags 967 */ 968 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 969 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 970 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 971 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 972 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ 973 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 974 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ 975 976 /* 977 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 978 ** used to create the initializers for the FuncDef structures. 979 ** 980 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 981 ** Used to create a scalar function definition of a function zName 982 ** implemented by C function xFunc that accepts nArg arguments. The 983 ** value passed as iArg is cast to a (void*) and made available 984 ** as the user-data (sqlite3_user_data()) for the function. If 985 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 986 ** 987 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 988 ** Used to create an aggregate function definition implemented by 989 ** the C functions xStep and xFinal. The first four parameters 990 ** are interpreted in the same way as the first 4 parameters to 991 ** FUNCTION(). 992 ** 993 ** LIKEFUNC(zName, nArg, pArg, flags) 994 ** Used to create a scalar function definition of a function zName 995 ** that accepts nArg arguments and is implemented by a call to C 996 ** function likeFunc. Argument pArg is cast to a (void *) and made 997 ** available as the function user-data (sqlite3_user_data()). The 998 ** FuncDef.flags variable is set to the value passed as the flags 999 ** parameter. 1000 */ 1001 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1002 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1003 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0} 1004 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1005 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1006 pArg, 0, xFunc, 0, 0, #zName, 0} 1007 #define LIKEFUNC(zName, nArg, arg, flags) \ 1008 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0} 1009 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1010 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1011 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0} 1012 1013 /* 1014 ** All current savepoints are stored in a linked list starting at 1015 ** sqlite3.pSavepoint. The first element in the list is the most recently 1016 ** opened savepoint. Savepoints are added to the list by the vdbe 1017 ** OP_Savepoint instruction. 1018 */ 1019 struct Savepoint { 1020 char *zName; /* Savepoint name (nul-terminated) */ 1021 i64 nDeferredCons; /* Number of deferred fk violations */ 1022 Savepoint *pNext; /* Parent savepoint (if any) */ 1023 }; 1024 1025 /* 1026 ** The following are used as the second parameter to sqlite3Savepoint(), 1027 ** and as the P1 argument to the OP_Savepoint instruction. 1028 */ 1029 #define SAVEPOINT_BEGIN 0 1030 #define SAVEPOINT_RELEASE 1 1031 #define SAVEPOINT_ROLLBACK 2 1032 1033 1034 /* 1035 ** Each SQLite module (virtual table definition) is defined by an 1036 ** instance of the following structure, stored in the sqlite3.aModule 1037 ** hash table. 1038 */ 1039 struct Module { 1040 const sqlite3_module *pModule; /* Callback pointers */ 1041 const char *zName; /* Name passed to create_module() */ 1042 void *pAux; /* pAux passed to create_module() */ 1043 void (*xDestroy)(void *); /* Module destructor function */ 1044 }; 1045 1046 /* 1047 ** information about each column of an SQL table is held in an instance 1048 ** of this structure. 1049 */ 1050 struct Column { 1051 char *zName; /* Name of this column */ 1052 Expr *pDflt; /* Default value of this column */ 1053 char *zDflt; /* Original text of the default value */ 1054 char *zType; /* Data type for this column */ 1055 char *zColl; /* Collating sequence. If NULL, use the default */ 1056 u8 notNull; /* True if there is a NOT NULL constraint */ 1057 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1058 char affinity; /* One of the SQLITE_AFF_... values */ 1059 #ifndef SQLITE_OMIT_VIRTUALTABLE 1060 u8 isHidden; /* True if this column is 'hidden' */ 1061 #endif 1062 }; 1063 1064 /* 1065 ** A "Collating Sequence" is defined by an instance of the following 1066 ** structure. Conceptually, a collating sequence consists of a name and 1067 ** a comparison routine that defines the order of that sequence. 1068 ** 1069 ** There may two separate implementations of the collation function, one 1070 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1071 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1072 ** native byte order. When a collation sequence is invoked, SQLite selects 1073 ** the version that will require the least expensive encoding 1074 ** translations, if any. 1075 ** 1076 ** The CollSeq.pUser member variable is an extra parameter that passed in 1077 ** as the first argument to the UTF-8 comparison function, xCmp. 1078 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1079 ** xCmp16. 1080 ** 1081 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1082 ** collating sequence is undefined. Indices built on an undefined 1083 ** collating sequence may not be read or written. 1084 */ 1085 struct CollSeq { 1086 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1087 u8 enc; /* Text encoding handled by xCmp() */ 1088 u8 type; /* One of the SQLITE_COLL_... values below */ 1089 void *pUser; /* First argument to xCmp() */ 1090 int (*xCmp)(void*,int, const void*, int, const void*); 1091 void (*xDel)(void*); /* Destructor for pUser */ 1092 }; 1093 1094 /* 1095 ** Allowed values of CollSeq.type: 1096 */ 1097 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 1098 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 1099 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 1100 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 1101 1102 /* 1103 ** A sort order can be either ASC or DESC. 1104 */ 1105 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1106 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1107 1108 /* 1109 ** Column affinity types. 1110 ** 1111 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1112 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1113 ** the speed a little by numbering the values consecutively. 1114 ** 1115 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1116 ** when multiple affinity types are concatenated into a string and 1117 ** used as the P4 operand, they will be more readable. 1118 ** 1119 ** Note also that the numeric types are grouped together so that testing 1120 ** for a numeric type is a single comparison. 1121 */ 1122 #define SQLITE_AFF_TEXT 'a' 1123 #define SQLITE_AFF_NONE 'b' 1124 #define SQLITE_AFF_NUMERIC 'c' 1125 #define SQLITE_AFF_INTEGER 'd' 1126 #define SQLITE_AFF_REAL 'e' 1127 1128 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1129 1130 /* 1131 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1132 ** affinity value. 1133 */ 1134 #define SQLITE_AFF_MASK 0x67 1135 1136 /* 1137 ** Additional bit values that can be ORed with an affinity without 1138 ** changing the affinity. 1139 */ 1140 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1141 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1142 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1143 1144 /* 1145 ** An object of this type is created for each virtual table present in 1146 ** the database schema. 1147 ** 1148 ** If the database schema is shared, then there is one instance of this 1149 ** structure for each database connection (sqlite3*) that uses the shared 1150 ** schema. This is because each database connection requires its own unique 1151 ** instance of the sqlite3_vtab* handle used to access the virtual table 1152 ** implementation. sqlite3_vtab* handles can not be shared between 1153 ** database connections, even when the rest of the in-memory database 1154 ** schema is shared, as the implementation often stores the database 1155 ** connection handle passed to it via the xConnect() or xCreate() method 1156 ** during initialization internally. This database connection handle may 1157 ** then used by the virtual table implementation to access real tables 1158 ** within the database. So that they appear as part of the callers 1159 ** transaction, these accesses need to be made via the same database 1160 ** connection as that used to execute SQL operations on the virtual table. 1161 ** 1162 ** All VTable objects that correspond to a single table in a shared 1163 ** database schema are initially stored in a linked-list pointed to by 1164 ** the Table.pVTable member variable of the corresponding Table object. 1165 ** When an sqlite3_prepare() operation is required to access the virtual 1166 ** table, it searches the list for the VTable that corresponds to the 1167 ** database connection doing the preparing so as to use the correct 1168 ** sqlite3_vtab* handle in the compiled query. 1169 ** 1170 ** When an in-memory Table object is deleted (for example when the 1171 ** schema is being reloaded for some reason), the VTable objects are not 1172 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1173 ** immediately. Instead, they are moved from the Table.pVTable list to 1174 ** another linked list headed by the sqlite3.pDisconnect member of the 1175 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1176 ** next time a statement is prepared using said sqlite3*. This is done 1177 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1178 ** Refer to comments above function sqlite3VtabUnlockList() for an 1179 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1180 ** list without holding the corresponding sqlite3.mutex mutex. 1181 ** 1182 ** The memory for objects of this type is always allocated by 1183 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1184 ** the first argument. 1185 */ 1186 struct VTable { 1187 sqlite3 *db; /* Database connection associated with this table */ 1188 Module *pMod; /* Pointer to module implementation */ 1189 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1190 int nRef; /* Number of pointers to this structure */ 1191 VTable *pNext; /* Next in linked list (see above) */ 1192 }; 1193 1194 /* 1195 ** Each SQL table is represented in memory by an instance of the 1196 ** following structure. 1197 ** 1198 ** Table.zName is the name of the table. The case of the original 1199 ** CREATE TABLE statement is stored, but case is not significant for 1200 ** comparisons. 1201 ** 1202 ** Table.nCol is the number of columns in this table. Table.aCol is a 1203 ** pointer to an array of Column structures, one for each column. 1204 ** 1205 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1206 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1207 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1208 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1209 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1210 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1211 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1212 ** 1213 ** Table.tnum is the page number for the root BTree page of the table in the 1214 ** database file. If Table.iDb is the index of the database table backend 1215 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1216 ** holds temporary tables and indices. If TF_Ephemeral is set 1217 ** then the table is stored in a file that is automatically deleted 1218 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1219 ** refers VDBE cursor number that holds the table open, not to the root 1220 ** page number. Transient tables are used to hold the results of a 1221 ** sub-query that appears instead of a real table name in the FROM clause 1222 ** of a SELECT statement. 1223 */ 1224 struct Table { 1225 sqlite3 *dbMem; /* DB connection used for lookaside allocations. */ 1226 char *zName; /* Name of the table or view */ 1227 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1228 int nCol; /* Number of columns in this table */ 1229 Column *aCol; /* Information about each column */ 1230 Index *pIndex; /* List of SQL indexes on this table. */ 1231 int tnum; /* Root BTree node for this table (see note above) */ 1232 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1233 u16 nRef; /* Number of pointers to this Table */ 1234 u8 tabFlags; /* Mask of TF_* values */ 1235 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1236 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1237 char *zColAff; /* String defining the affinity of each column */ 1238 #ifndef SQLITE_OMIT_CHECK 1239 Expr *pCheck; /* The AND of all CHECK constraints */ 1240 #endif 1241 #ifndef SQLITE_OMIT_ALTERTABLE 1242 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1243 #endif 1244 #ifndef SQLITE_OMIT_VIRTUALTABLE 1245 VTable *pVTable; /* List of VTable objects. */ 1246 int nModuleArg; /* Number of arguments to the module */ 1247 char **azModuleArg; /* Text of all module args. [0] is module name */ 1248 #endif 1249 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1250 Schema *pSchema; /* Schema that contains this table */ 1251 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1252 }; 1253 1254 /* 1255 ** Allowed values for Tabe.tabFlags. 1256 */ 1257 #define TF_Readonly 0x01 /* Read-only system table */ 1258 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1259 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1260 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1261 #define TF_Virtual 0x10 /* Is a virtual table */ 1262 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1263 1264 1265 1266 /* 1267 ** Test to see whether or not a table is a virtual table. This is 1268 ** done as a macro so that it will be optimized out when virtual 1269 ** table support is omitted from the build. 1270 */ 1271 #ifndef SQLITE_OMIT_VIRTUALTABLE 1272 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1273 # define IsHiddenColumn(X) ((X)->isHidden) 1274 #else 1275 # define IsVirtual(X) 0 1276 # define IsHiddenColumn(X) 0 1277 #endif 1278 1279 /* 1280 ** Each foreign key constraint is an instance of the following structure. 1281 ** 1282 ** A foreign key is associated with two tables. The "from" table is 1283 ** the table that contains the REFERENCES clause that creates the foreign 1284 ** key. The "to" table is the table that is named in the REFERENCES clause. 1285 ** Consider this example: 1286 ** 1287 ** CREATE TABLE ex1( 1288 ** a INTEGER PRIMARY KEY, 1289 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1290 ** ); 1291 ** 1292 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1293 ** 1294 ** Each REFERENCES clause generates an instance of the following structure 1295 ** which is attached to the from-table. The to-table need not exist when 1296 ** the from-table is created. The existence of the to-table is not checked. 1297 */ 1298 struct FKey { 1299 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1300 FKey *pNextFrom; /* Next foreign key in pFrom */ 1301 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1302 FKey *pNextTo; /* Next foreign key on table named zTo */ 1303 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1304 int nCol; /* Number of columns in this key */ 1305 /* EV: R-30323-21917 */ 1306 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1307 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1308 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1309 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1310 int iFrom; /* Index of column in pFrom */ 1311 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1312 } aCol[1]; /* One entry for each of nCol column s */ 1313 }; 1314 1315 /* 1316 ** SQLite supports many different ways to resolve a constraint 1317 ** error. ROLLBACK processing means that a constraint violation 1318 ** causes the operation in process to fail and for the current transaction 1319 ** to be rolled back. ABORT processing means the operation in process 1320 ** fails and any prior changes from that one operation are backed out, 1321 ** but the transaction is not rolled back. FAIL processing means that 1322 ** the operation in progress stops and returns an error code. But prior 1323 ** changes due to the same operation are not backed out and no rollback 1324 ** occurs. IGNORE means that the particular row that caused the constraint 1325 ** error is not inserted or updated. Processing continues and no error 1326 ** is returned. REPLACE means that preexisting database rows that caused 1327 ** a UNIQUE constraint violation are removed so that the new insert or 1328 ** update can proceed. Processing continues and no error is reported. 1329 ** 1330 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1331 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1332 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1333 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1334 ** referenced table row is propagated into the row that holds the 1335 ** foreign key. 1336 ** 1337 ** The following symbolic values are used to record which type 1338 ** of action to take. 1339 */ 1340 #define OE_None 0 /* There is no constraint to check */ 1341 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1342 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1343 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1344 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1345 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1346 1347 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1348 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1349 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1350 #define OE_Cascade 9 /* Cascade the changes */ 1351 1352 #define OE_Default 99 /* Do whatever the default action is */ 1353 1354 1355 /* 1356 ** An instance of the following structure is passed as the first 1357 ** argument to sqlite3VdbeKeyCompare and is used to control the 1358 ** comparison of the two index keys. 1359 */ 1360 struct KeyInfo { 1361 sqlite3 *db; /* The database connection */ 1362 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 1363 u16 nField; /* Number of entries in aColl[] */ 1364 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 1365 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1366 }; 1367 1368 /* 1369 ** An instance of the following structure holds information about a 1370 ** single index record that has already been parsed out into individual 1371 ** values. 1372 ** 1373 ** A record is an object that contains one or more fields of data. 1374 ** Records are used to store the content of a table row and to store 1375 ** the key of an index. A blob encoding of a record is created by 1376 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1377 ** OP_Column opcode. 1378 ** 1379 ** This structure holds a record that has already been disassembled 1380 ** into its constituent fields. 1381 */ 1382 struct UnpackedRecord { 1383 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1384 u16 nField; /* Number of entries in apMem[] */ 1385 u16 flags; /* Boolean settings. UNPACKED_... below */ 1386 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1387 Mem *aMem; /* Values */ 1388 }; 1389 1390 /* 1391 ** Allowed values of UnpackedRecord.flags 1392 */ 1393 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 1394 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 1395 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 1396 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 1397 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 1398 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ 1399 1400 /* 1401 ** Each SQL index is represented in memory by an 1402 ** instance of the following structure. 1403 ** 1404 ** The columns of the table that are to be indexed are described 1405 ** by the aiColumn[] field of this structure. For example, suppose 1406 ** we have the following table and index: 1407 ** 1408 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1409 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1410 ** 1411 ** In the Table structure describing Ex1, nCol==3 because there are 1412 ** three columns in the table. In the Index structure describing 1413 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1414 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1415 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1416 ** The second column to be indexed (c1) has an index of 0 in 1417 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1418 ** 1419 ** The Index.onError field determines whether or not the indexed columns 1420 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1421 ** it means this is not a unique index. Otherwise it is a unique index 1422 ** and the value of Index.onError indicate the which conflict resolution 1423 ** algorithm to employ whenever an attempt is made to insert a non-unique 1424 ** element. 1425 */ 1426 struct Index { 1427 char *zName; /* Name of this index */ 1428 int nColumn; /* Number of columns in the table used by this index */ 1429 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1430 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1431 Table *pTable; /* The SQL table being indexed */ 1432 int tnum; /* Page containing root of this index in database file */ 1433 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1434 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1435 char *zColAff; /* String defining the affinity of each column */ 1436 Index *pNext; /* The next index associated with the same table */ 1437 Schema *pSchema; /* Schema containing this index */ 1438 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1439 char **azColl; /* Array of collation sequence names for index */ 1440 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ 1441 }; 1442 1443 /* 1444 ** Each sample stored in the sqlite_stat2 table is represented in memory 1445 ** using a structure of this type. 1446 */ 1447 struct IndexSample { 1448 union { 1449 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1450 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ 1451 } u; 1452 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1453 u8 nByte; /* Size in byte of text or blob. */ 1454 }; 1455 1456 /* 1457 ** Each token coming out of the lexer is an instance of 1458 ** this structure. Tokens are also used as part of an expression. 1459 ** 1460 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1461 ** may contain random values. Do not make any assumptions about Token.dyn 1462 ** and Token.n when Token.z==0. 1463 */ 1464 struct Token { 1465 const char *z; /* Text of the token. Not NULL-terminated! */ 1466 unsigned int n; /* Number of characters in this token */ 1467 }; 1468 1469 /* 1470 ** An instance of this structure contains information needed to generate 1471 ** code for a SELECT that contains aggregate functions. 1472 ** 1473 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1474 ** pointer to this structure. The Expr.iColumn field is the index in 1475 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1476 ** code for that node. 1477 ** 1478 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1479 ** original Select structure that describes the SELECT statement. These 1480 ** fields do not need to be freed when deallocating the AggInfo structure. 1481 */ 1482 struct AggInfo { 1483 u8 directMode; /* Direct rendering mode means take data directly 1484 ** from source tables rather than from accumulators */ 1485 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1486 ** than the source table */ 1487 int sortingIdx; /* Cursor number of the sorting index */ 1488 ExprList *pGroupBy; /* The group by clause */ 1489 int nSortingColumn; /* Number of columns in the sorting index */ 1490 struct AggInfo_col { /* For each column used in source tables */ 1491 Table *pTab; /* Source table */ 1492 int iTable; /* Cursor number of the source table */ 1493 int iColumn; /* Column number within the source table */ 1494 int iSorterColumn; /* Column number in the sorting index */ 1495 int iMem; /* Memory location that acts as accumulator */ 1496 Expr *pExpr; /* The original expression */ 1497 } *aCol; 1498 int nColumn; /* Number of used entries in aCol[] */ 1499 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1500 int nAccumulator; /* Number of columns that show through to the output. 1501 ** Additional columns are used only as parameters to 1502 ** aggregate functions */ 1503 struct AggInfo_func { /* For each aggregate function */ 1504 Expr *pExpr; /* Expression encoding the function */ 1505 FuncDef *pFunc; /* The aggregate function implementation */ 1506 int iMem; /* Memory location that acts as accumulator */ 1507 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1508 } *aFunc; 1509 int nFunc; /* Number of entries in aFunc[] */ 1510 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1511 }; 1512 1513 /* 1514 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1515 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1516 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1517 ** it uses less memory in the Expr object, which is a big memory user 1518 ** in systems with lots of prepared statements. And few applications 1519 ** need more than about 10 or 20 variables. But some extreme users want 1520 ** to have prepared statements with over 32767 variables, and for them 1521 ** the option is available (at compile-time). 1522 */ 1523 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1524 typedef i16 ynVar; 1525 #else 1526 typedef int ynVar; 1527 #endif 1528 1529 /* 1530 ** Each node of an expression in the parse tree is an instance 1531 ** of this structure. 1532 ** 1533 ** Expr.op is the opcode. The integer parser token codes are reused 1534 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1535 ** code representing the ">=" operator. This same integer code is reused 1536 ** to represent the greater-than-or-equal-to operator in the expression 1537 ** tree. 1538 ** 1539 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1540 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1541 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1542 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1543 ** then Expr.token contains the name of the function. 1544 ** 1545 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1546 ** binary operator. Either or both may be NULL. 1547 ** 1548 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1549 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1550 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1551 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1552 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1553 ** valid. 1554 ** 1555 ** An expression of the form ID or ID.ID refers to a column in a table. 1556 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1557 ** the integer cursor number of a VDBE cursor pointing to that table and 1558 ** Expr.iColumn is the column number for the specific column. If the 1559 ** expression is used as a result in an aggregate SELECT, then the 1560 ** value is also stored in the Expr.iAgg column in the aggregate so that 1561 ** it can be accessed after all aggregates are computed. 1562 ** 1563 ** If the expression is an unbound variable marker (a question mark 1564 ** character '?' in the original SQL) then the Expr.iTable holds the index 1565 ** number for that variable. 1566 ** 1567 ** If the expression is a subquery then Expr.iColumn holds an integer 1568 ** register number containing the result of the subquery. If the 1569 ** subquery gives a constant result, then iTable is -1. If the subquery 1570 ** gives a different answer at different times during statement processing 1571 ** then iTable is the address of a subroutine that computes the subquery. 1572 ** 1573 ** If the Expr is of type OP_Column, and the table it is selecting from 1574 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1575 ** corresponding table definition. 1576 ** 1577 ** ALLOCATION NOTES: 1578 ** 1579 ** Expr objects can use a lot of memory space in database schema. To 1580 ** help reduce memory requirements, sometimes an Expr object will be 1581 ** truncated. And to reduce the number of memory allocations, sometimes 1582 ** two or more Expr objects will be stored in a single memory allocation, 1583 ** together with Expr.zToken strings. 1584 ** 1585 ** If the EP_Reduced and EP_TokenOnly flags are set when 1586 ** an Expr object is truncated. When EP_Reduced is set, then all 1587 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1588 ** are contained within the same memory allocation. Note, however, that 1589 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1590 ** allocated, regardless of whether or not EP_Reduced is set. 1591 */ 1592 struct Expr { 1593 u8 op; /* Operation performed by this node */ 1594 char affinity; /* The affinity of the column or 0 if not a column */ 1595 u16 flags; /* Various flags. EP_* See below */ 1596 union { 1597 char *zToken; /* Token value. Zero terminated and dequoted */ 1598 int iValue; /* Integer value if EP_IntValue */ 1599 } u; 1600 1601 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1602 ** space is allocated for the fields below this point. An attempt to 1603 ** access them will result in a segfault or malfunction. 1604 *********************************************************************/ 1605 1606 Expr *pLeft; /* Left subnode */ 1607 Expr *pRight; /* Right subnode */ 1608 union { 1609 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1610 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1611 } x; 1612 CollSeq *pColl; /* The collation type of the column or 0 */ 1613 1614 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1615 ** space is allocated for the fields below this point. An attempt to 1616 ** access them will result in a segfault or malfunction. 1617 *********************************************************************/ 1618 1619 int iTable; /* TK_COLUMN: cursor number of table holding column 1620 ** TK_REGISTER: register number 1621 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1622 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1623 ** TK_VARIABLE: variable number (always >= 1). */ 1624 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1625 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1626 u8 flags2; /* Second set of flags. EP2_... */ 1627 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1628 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1629 Table *pTab; /* Table for TK_COLUMN expressions. */ 1630 #if SQLITE_MAX_EXPR_DEPTH>0 1631 int nHeight; /* Height of the tree headed by this node */ 1632 #endif 1633 }; 1634 1635 /* 1636 ** The following are the meanings of bits in the Expr.flags field. 1637 */ 1638 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1639 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1640 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1641 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1642 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1643 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1644 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1645 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1646 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1647 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1648 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1649 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1650 1651 #define EP_Reduced 0x1000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1652 #define EP_TokenOnly 0x2000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1653 #define EP_Static 0x4000 /* Held in memory not obtained from malloc() */ 1654 1655 /* 1656 ** The following are the meanings of bits in the Expr.flags2 field. 1657 */ 1658 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1659 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1660 1661 /* 1662 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1663 ** flag on an expression structure. This flag is used for VV&A only. The 1664 ** routine is implemented as a macro that only works when in debugging mode, 1665 ** so as not to burden production code. 1666 */ 1667 #ifdef SQLITE_DEBUG 1668 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1669 #else 1670 # define ExprSetIrreducible(X) 1671 #endif 1672 1673 /* 1674 ** These macros can be used to test, set, or clear bits in the 1675 ** Expr.flags field. 1676 */ 1677 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1678 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1679 #define ExprSetProperty(E,P) (E)->flags|=(P) 1680 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1681 1682 /* 1683 ** Macros to determine the number of bytes required by a normal Expr 1684 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1685 ** and an Expr struct with the EP_TokenOnly flag set. 1686 */ 1687 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1688 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1689 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1690 1691 /* 1692 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1693 ** above sqlite3ExprDup() for details. 1694 */ 1695 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1696 1697 /* 1698 ** A list of expressions. Each expression may optionally have a 1699 ** name. An expr/name combination can be used in several ways, such 1700 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1701 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1702 ** also be used as the argument to a function, in which case the a.zName 1703 ** field is not used. 1704 */ 1705 struct ExprList { 1706 int nExpr; /* Number of expressions on the list */ 1707 int nAlloc; /* Number of entries allocated below */ 1708 int iECursor; /* VDBE Cursor associated with this ExprList */ 1709 struct ExprList_item { 1710 Expr *pExpr; /* The list of expressions */ 1711 char *zName; /* Token associated with this expression */ 1712 char *zSpan; /* Original text of the expression */ 1713 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1714 u8 done; /* A flag to indicate when processing is finished */ 1715 u16 iCol; /* For ORDER BY, column number in result set */ 1716 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1717 } *a; /* One entry for each expression */ 1718 }; 1719 1720 /* 1721 ** An instance of this structure is used by the parser to record both 1722 ** the parse tree for an expression and the span of input text for an 1723 ** expression. 1724 */ 1725 struct ExprSpan { 1726 Expr *pExpr; /* The expression parse tree */ 1727 const char *zStart; /* First character of input text */ 1728 const char *zEnd; /* One character past the end of input text */ 1729 }; 1730 1731 /* 1732 ** An instance of this structure can hold a simple list of identifiers, 1733 ** such as the list "a,b,c" in the following statements: 1734 ** 1735 ** INSERT INTO t(a,b,c) VALUES ...; 1736 ** CREATE INDEX idx ON t(a,b,c); 1737 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1738 ** 1739 ** The IdList.a.idx field is used when the IdList represents the list of 1740 ** column names after a table name in an INSERT statement. In the statement 1741 ** 1742 ** INSERT INTO t(a,b,c) ... 1743 ** 1744 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1745 */ 1746 struct IdList { 1747 struct IdList_item { 1748 char *zName; /* Name of the identifier */ 1749 int idx; /* Index in some Table.aCol[] of a column named zName */ 1750 } *a; 1751 int nId; /* Number of identifiers on the list */ 1752 int nAlloc; /* Number of entries allocated for a[] below */ 1753 }; 1754 1755 /* 1756 ** The bitmask datatype defined below is used for various optimizations. 1757 ** 1758 ** Changing this from a 64-bit to a 32-bit type limits the number of 1759 ** tables in a join to 32 instead of 64. But it also reduces the size 1760 ** of the library by 738 bytes on ix86. 1761 */ 1762 typedef u64 Bitmask; 1763 1764 /* 1765 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1766 */ 1767 #define BMS ((int)(sizeof(Bitmask)*8)) 1768 1769 /* 1770 ** The following structure describes the FROM clause of a SELECT statement. 1771 ** Each table or subquery in the FROM clause is a separate element of 1772 ** the SrcList.a[] array. 1773 ** 1774 ** With the addition of multiple database support, the following structure 1775 ** can also be used to describe a particular table such as the table that 1776 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1777 ** such a table must be a simple name: ID. But in SQLite, the table can 1778 ** now be identified by a database name, a dot, then the table name: ID.ID. 1779 ** 1780 ** The jointype starts out showing the join type between the current table 1781 ** and the next table on the list. The parser builds the list this way. 1782 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1783 ** jointype expresses the join between the table and the previous table. 1784 ** 1785 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1786 ** contains more than 63 columns and the 64-th or later column is used. 1787 */ 1788 struct SrcList { 1789 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1790 i16 nAlloc; /* Number of entries allocated in a[] below */ 1791 struct SrcList_item { 1792 char *zDatabase; /* Name of database holding this table */ 1793 char *zName; /* Name of the table */ 1794 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1795 Table *pTab; /* An SQL table corresponding to zName */ 1796 Select *pSelect; /* A SELECT statement used in place of a table name */ 1797 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1798 u8 jointype; /* Type of join between this able and the previous */ 1799 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1800 int iCursor; /* The VDBE cursor number used to access this table */ 1801 Expr *pOn; /* The ON clause of a join */ 1802 IdList *pUsing; /* The USING clause of a join */ 1803 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1804 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1805 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1806 } a[1]; /* One entry for each identifier on the list */ 1807 }; 1808 1809 /* 1810 ** Permitted values of the SrcList.a.jointype field 1811 */ 1812 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1813 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1814 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1815 #define JT_LEFT 0x0008 /* Left outer join */ 1816 #define JT_RIGHT 0x0010 /* Right outer join */ 1817 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1818 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1819 1820 1821 /* 1822 ** A WherePlan object holds information that describes a lookup 1823 ** strategy. 1824 ** 1825 ** This object is intended to be opaque outside of the where.c module. 1826 ** It is included here only so that that compiler will know how big it 1827 ** is. None of the fields in this object should be used outside of 1828 ** the where.c module. 1829 ** 1830 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1831 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1832 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1833 ** case that more than one of these conditions is true. 1834 */ 1835 struct WherePlan { 1836 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1837 u32 nEq; /* Number of == constraints */ 1838 union { 1839 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1840 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1841 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1842 } u; 1843 }; 1844 1845 /* 1846 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1847 ** structure contains a single instance of this structure. This structure 1848 ** is intended to be private the the where.c module and should not be 1849 ** access or modified by other modules. 1850 ** 1851 ** The pIdxInfo field is used to help pick the best index on a 1852 ** virtual table. The pIdxInfo pointer contains indexing 1853 ** information for the i-th table in the FROM clause before reordering. 1854 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1855 ** All other information in the i-th WhereLevel object for the i-th table 1856 ** after FROM clause ordering. 1857 */ 1858 struct WhereLevel { 1859 WherePlan plan; /* query plan for this element of the FROM clause */ 1860 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1861 int iTabCur; /* The VDBE cursor used to access the table */ 1862 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1863 int addrBrk; /* Jump here to break out of the loop */ 1864 int addrNxt; /* Jump here to start the next IN combination */ 1865 int addrCont; /* Jump here to continue with the next loop cycle */ 1866 int addrFirst; /* First instruction of interior of the loop */ 1867 u8 iFrom; /* Which entry in the FROM clause */ 1868 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1869 int p1, p2; /* Operands of the opcode used to ends the loop */ 1870 union { /* Information that depends on plan.wsFlags */ 1871 struct { 1872 int nIn; /* Number of entries in aInLoop[] */ 1873 struct InLoop { 1874 int iCur; /* The VDBE cursor used by this IN operator */ 1875 int addrInTop; /* Top of the IN loop */ 1876 } *aInLoop; /* Information about each nested IN operator */ 1877 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1878 } u; 1879 1880 /* The following field is really not part of the current level. But 1881 ** we need a place to cache virtual table index information for each 1882 ** virtual table in the FROM clause and the WhereLevel structure is 1883 ** a convenient place since there is one WhereLevel for each FROM clause 1884 ** element. 1885 */ 1886 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1887 }; 1888 1889 /* 1890 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1891 ** and the WhereInfo.wctrlFlags member. 1892 */ 1893 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1894 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1895 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1896 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1897 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1898 #define WHERE_OMIT_OPEN 0x0010 /* Table cursors are already open */ 1899 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */ 1900 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */ 1901 #define WHERE_ONETABLE_ONLY 0x0080 /* Only code the 1st table in pTabList */ 1902 1903 /* 1904 ** The WHERE clause processing routine has two halves. The 1905 ** first part does the start of the WHERE loop and the second 1906 ** half does the tail of the WHERE loop. An instance of 1907 ** this structure is returned by the first half and passed 1908 ** into the second half to give some continuity. 1909 */ 1910 struct WhereInfo { 1911 Parse *pParse; /* Parsing and code generating context */ 1912 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1913 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1914 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1915 SrcList *pTabList; /* List of tables in the join */ 1916 int iTop; /* The very beginning of the WHERE loop */ 1917 int iContinue; /* Jump here to continue with next record */ 1918 int iBreak; /* Jump here to break out of the loop */ 1919 int nLevel; /* Number of nested loop */ 1920 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1921 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 1922 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1923 }; 1924 1925 /* 1926 ** A NameContext defines a context in which to resolve table and column 1927 ** names. The context consists of a list of tables (the pSrcList) field and 1928 ** a list of named expression (pEList). The named expression list may 1929 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1930 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1931 ** pEList corresponds to the result set of a SELECT and is NULL for 1932 ** other statements. 1933 ** 1934 ** NameContexts can be nested. When resolving names, the inner-most 1935 ** context is searched first. If no match is found, the next outer 1936 ** context is checked. If there is still no match, the next context 1937 ** is checked. This process continues until either a match is found 1938 ** or all contexts are check. When a match is found, the nRef member of 1939 ** the context containing the match is incremented. 1940 ** 1941 ** Each subquery gets a new NameContext. The pNext field points to the 1942 ** NameContext in the parent query. Thus the process of scanning the 1943 ** NameContext list corresponds to searching through successively outer 1944 ** subqueries looking for a match. 1945 */ 1946 struct NameContext { 1947 Parse *pParse; /* The parser */ 1948 SrcList *pSrcList; /* One or more tables used to resolve names */ 1949 ExprList *pEList; /* Optional list of named expressions */ 1950 int nRef; /* Number of names resolved by this context */ 1951 int nErr; /* Number of errors encountered while resolving names */ 1952 u8 allowAgg; /* Aggregate functions allowed here */ 1953 u8 hasAgg; /* True if aggregates are seen */ 1954 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1955 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1956 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1957 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1958 }; 1959 1960 /* 1961 ** An instance of the following structure contains all information 1962 ** needed to generate code for a single SELECT statement. 1963 ** 1964 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1965 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1966 ** limit and nOffset to the value of the offset (or 0 if there is not 1967 ** offset). But later on, nLimit and nOffset become the memory locations 1968 ** in the VDBE that record the limit and offset counters. 1969 ** 1970 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1971 ** These addresses must be stored so that we can go back and fill in 1972 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1973 ** the number of columns in P2 can be computed at the same time 1974 ** as the OP_OpenEphm instruction is coded because not 1975 ** enough information about the compound query is known at that point. 1976 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1977 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1978 ** sequences for the ORDER BY clause. 1979 */ 1980 struct Select { 1981 ExprList *pEList; /* The fields of the result */ 1982 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1983 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1984 u16 selFlags; /* Various SF_* values */ 1985 SrcList *pSrc; /* The FROM clause */ 1986 Expr *pWhere; /* The WHERE clause */ 1987 ExprList *pGroupBy; /* The GROUP BY clause */ 1988 Expr *pHaving; /* The HAVING clause */ 1989 ExprList *pOrderBy; /* The ORDER BY clause */ 1990 Select *pPrior; /* Prior select in a compound select statement */ 1991 Select *pNext; /* Next select to the left in a compound */ 1992 Select *pRightmost; /* Right-most select in a compound select statement */ 1993 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1994 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1995 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1996 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1997 }; 1998 1999 /* 2000 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2001 ** "Select Flag". 2002 */ 2003 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2004 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2005 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2006 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2007 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2008 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2009 2010 2011 /* 2012 ** The results of a select can be distributed in several ways. The 2013 ** "SRT" prefix means "SELECT Result Type". 2014 */ 2015 #define SRT_Union 1 /* Store result as keys in an index */ 2016 #define SRT_Except 2 /* Remove result from a UNION index */ 2017 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2018 #define SRT_Discard 4 /* Do not save the results anywhere */ 2019 2020 /* The ORDER BY clause is ignored for all of the above */ 2021 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2022 2023 #define SRT_Output 5 /* Output each row of result */ 2024 #define SRT_Mem 6 /* Store result in a memory cell */ 2025 #define SRT_Set 7 /* Store results as keys in an index */ 2026 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2027 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2028 #define SRT_Coroutine 10 /* Generate a single row of result */ 2029 2030 /* 2031 ** A structure used to customize the behavior of sqlite3Select(). See 2032 ** comments above sqlite3Select() for details. 2033 */ 2034 typedef struct SelectDest SelectDest; 2035 struct SelectDest { 2036 u8 eDest; /* How to dispose of the results */ 2037 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2038 int iParm; /* A parameter used by the eDest disposal method */ 2039 int iMem; /* Base register where results are written */ 2040 int nMem; /* Number of registers allocated */ 2041 }; 2042 2043 /* 2044 ** During code generation of statements that do inserts into AUTOINCREMENT 2045 ** tables, the following information is attached to the Table.u.autoInc.p 2046 ** pointer of each autoincrement table to record some side information that 2047 ** the code generator needs. We have to keep per-table autoincrement 2048 ** information in case inserts are down within triggers. Triggers do not 2049 ** normally coordinate their activities, but we do need to coordinate the 2050 ** loading and saving of autoincrement information. 2051 */ 2052 struct AutoincInfo { 2053 AutoincInfo *pNext; /* Next info block in a list of them all */ 2054 Table *pTab; /* Table this info block refers to */ 2055 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2056 int regCtr; /* Memory register holding the rowid counter */ 2057 }; 2058 2059 /* 2060 ** Size of the column cache 2061 */ 2062 #ifndef SQLITE_N_COLCACHE 2063 # define SQLITE_N_COLCACHE 10 2064 #endif 2065 2066 /* 2067 ** At least one instance of the following structure is created for each 2068 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2069 ** statement. All such objects are stored in the linked list headed at 2070 ** Parse.pTriggerPrg and deleted once statement compilation has been 2071 ** completed. 2072 ** 2073 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2074 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2075 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2076 ** The Parse.pTriggerPrg list never contains two entries with the same 2077 ** values for both pTrigger and orconf. 2078 ** 2079 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2080 ** accessed (or set to 0 for triggers fired as a result of INSERT 2081 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2082 ** a mask of new.* columns used by the program. 2083 */ 2084 struct TriggerPrg { 2085 Trigger *pTrigger; /* Trigger this program was coded from */ 2086 int orconf; /* Default ON CONFLICT policy */ 2087 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2088 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2089 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2090 }; 2091 2092 /* 2093 ** An SQL parser context. A copy of this structure is passed through 2094 ** the parser and down into all the parser action routine in order to 2095 ** carry around information that is global to the entire parse. 2096 ** 2097 ** The structure is divided into two parts. When the parser and code 2098 ** generate call themselves recursively, the first part of the structure 2099 ** is constant but the second part is reset at the beginning and end of 2100 ** each recursion. 2101 ** 2102 ** The nTableLock and aTableLock variables are only used if the shared-cache 2103 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2104 ** used to store the set of table-locks required by the statement being 2105 ** compiled. Function sqlite3TableLock() is used to add entries to the 2106 ** list. 2107 */ 2108 struct Parse { 2109 sqlite3 *db; /* The main database structure */ 2110 int rc; /* Return code from execution */ 2111 char *zErrMsg; /* An error message */ 2112 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2113 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2114 u8 nameClash; /* A permanent table name clashes with temp table name */ 2115 u8 checkSchema; /* Causes schema cookie check after an error */ 2116 u8 nested; /* Number of nested calls to the parser/code generator */ 2117 u8 parseError; /* True after a parsing error. Ticket #1794 */ 2118 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2119 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2120 int aTempReg[8]; /* Holding area for temporary registers */ 2121 int nRangeReg; /* Size of the temporary register block */ 2122 int iRangeReg; /* First register in temporary register block */ 2123 int nErr; /* Number of errors seen */ 2124 int nTab; /* Number of previously allocated VDBE cursors */ 2125 int nMem; /* Number of memory cells used so far */ 2126 int nSet; /* Number of sets used so far */ 2127 int ckBase; /* Base register of data during check constraints */ 2128 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2129 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2130 u8 nColCache; /* Number of entries in the column cache */ 2131 u8 iColCache; /* Next entry of the cache to replace */ 2132 struct yColCache { 2133 int iTable; /* Table cursor number */ 2134 int iColumn; /* Table column number */ 2135 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2136 int iLevel; /* Nesting level */ 2137 int iReg; /* Reg with value of this column. 0 means none. */ 2138 int lru; /* Least recently used entry has the smallest value */ 2139 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2140 u32 writeMask; /* Start a write transaction on these databases */ 2141 u32 cookieMask; /* Bitmask of schema verified databases */ 2142 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ 2143 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2144 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2145 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2146 #ifndef SQLITE_OMIT_SHARED_CACHE 2147 int nTableLock; /* Number of locks in aTableLock */ 2148 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2149 #endif 2150 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2151 int regRoot; /* Register holding root page number for new objects */ 2152 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2153 int nMaxArg; /* Max args passed to user function by sub-program */ 2154 2155 /* Information used while coding trigger programs. */ 2156 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2157 Table *pTriggerTab; /* Table triggers are being coded for */ 2158 u32 oldmask; /* Mask of old.* columns referenced */ 2159 u32 newmask; /* Mask of new.* columns referenced */ 2160 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2161 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2162 u8 disableTriggers; /* True to disable triggers */ 2163 double nQueryLoop; /* Estimated number of iterations of a query */ 2164 2165 /* Above is constant between recursions. Below is reset before and after 2166 ** each recursion */ 2167 2168 int nVar; /* Number of '?' variables seen in the SQL so far */ 2169 int nVarExpr; /* Number of used slots in apVarExpr[] */ 2170 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 2171 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 2172 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2173 int nAlias; /* Number of aliased result set columns */ 2174 int nAliasAlloc; /* Number of allocated slots for aAlias[] */ 2175 int *aAlias; /* Register used to hold aliased result */ 2176 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2177 Token sNameToken; /* Token with unqualified schema object name */ 2178 Token sLastToken; /* The last token parsed */ 2179 const char *zTail; /* All SQL text past the last semicolon parsed */ 2180 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2181 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2182 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2183 #ifndef SQLITE_OMIT_VIRTUALTABLE 2184 Token sArg; /* Complete text of a module argument */ 2185 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2186 int nVtabLock; /* Number of virtual tables to lock */ 2187 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2188 #endif 2189 int nHeight; /* Expression tree height of current sub-select */ 2190 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2191 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2192 }; 2193 2194 #ifdef SQLITE_OMIT_VIRTUALTABLE 2195 #define IN_DECLARE_VTAB 0 2196 #else 2197 #define IN_DECLARE_VTAB (pParse->declareVtab) 2198 #endif 2199 2200 /* 2201 ** An instance of the following structure can be declared on a stack and used 2202 ** to save the Parse.zAuthContext value so that it can be restored later. 2203 */ 2204 struct AuthContext { 2205 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2206 Parse *pParse; /* The Parse structure */ 2207 }; 2208 2209 /* 2210 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2211 */ 2212 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2213 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2214 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2215 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2216 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2217 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2218 2219 /* 2220 * Each trigger present in the database schema is stored as an instance of 2221 * struct Trigger. 2222 * 2223 * Pointers to instances of struct Trigger are stored in two ways. 2224 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2225 * database). This allows Trigger structures to be retrieved by name. 2226 * 2. All triggers associated with a single table form a linked list, using the 2227 * pNext member of struct Trigger. A pointer to the first element of the 2228 * linked list is stored as the "pTrigger" member of the associated 2229 * struct Table. 2230 * 2231 * The "step_list" member points to the first element of a linked list 2232 * containing the SQL statements specified as the trigger program. 2233 */ 2234 struct Trigger { 2235 char *zName; /* The name of the trigger */ 2236 char *table; /* The table or view to which the trigger applies */ 2237 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2238 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2239 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2240 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2241 the <column-list> is stored here */ 2242 Schema *pSchema; /* Schema containing the trigger */ 2243 Schema *pTabSchema; /* Schema containing the table */ 2244 TriggerStep *step_list; /* Link list of trigger program steps */ 2245 Trigger *pNext; /* Next trigger associated with the table */ 2246 }; 2247 2248 /* 2249 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2250 ** determine which. 2251 ** 2252 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2253 ** In that cases, the constants below can be ORed together. 2254 */ 2255 #define TRIGGER_BEFORE 1 2256 #define TRIGGER_AFTER 2 2257 2258 /* 2259 * An instance of struct TriggerStep is used to store a single SQL statement 2260 * that is a part of a trigger-program. 2261 * 2262 * Instances of struct TriggerStep are stored in a singly linked list (linked 2263 * using the "pNext" member) referenced by the "step_list" member of the 2264 * associated struct Trigger instance. The first element of the linked list is 2265 * the first step of the trigger-program. 2266 * 2267 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2268 * "SELECT" statement. The meanings of the other members is determined by the 2269 * value of "op" as follows: 2270 * 2271 * (op == TK_INSERT) 2272 * orconf -> stores the ON CONFLICT algorithm 2273 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2274 * this stores a pointer to the SELECT statement. Otherwise NULL. 2275 * target -> A token holding the quoted name of the table to insert into. 2276 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2277 * this stores values to be inserted. Otherwise NULL. 2278 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2279 * statement, then this stores the column-names to be 2280 * inserted into. 2281 * 2282 * (op == TK_DELETE) 2283 * target -> A token holding the quoted name of the table to delete from. 2284 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2285 * Otherwise NULL. 2286 * 2287 * (op == TK_UPDATE) 2288 * target -> A token holding the quoted name of the table to update rows of. 2289 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2290 * Otherwise NULL. 2291 * pExprList -> A list of the columns to update and the expressions to update 2292 * them to. See sqlite3Update() documentation of "pChanges" 2293 * argument. 2294 * 2295 */ 2296 struct TriggerStep { 2297 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2298 u8 orconf; /* OE_Rollback etc. */ 2299 Trigger *pTrig; /* The trigger that this step is a part of */ 2300 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2301 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2302 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2303 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2304 IdList *pIdList; /* Column names for INSERT */ 2305 TriggerStep *pNext; /* Next in the link-list */ 2306 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2307 }; 2308 2309 /* 2310 ** The following structure contains information used by the sqliteFix... 2311 ** routines as they walk the parse tree to make database references 2312 ** explicit. 2313 */ 2314 typedef struct DbFixer DbFixer; 2315 struct DbFixer { 2316 Parse *pParse; /* The parsing context. Error messages written here */ 2317 const char *zDb; /* Make sure all objects are contained in this database */ 2318 const char *zType; /* Type of the container - used for error messages */ 2319 const Token *pName; /* Name of the container - used for error messages */ 2320 }; 2321 2322 /* 2323 ** An objected used to accumulate the text of a string where we 2324 ** do not necessarily know how big the string will be in the end. 2325 */ 2326 struct StrAccum { 2327 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2328 char *zBase; /* A base allocation. Not from malloc. */ 2329 char *zText; /* The string collected so far */ 2330 int nChar; /* Length of the string so far */ 2331 int nAlloc; /* Amount of space allocated in zText */ 2332 int mxAlloc; /* Maximum allowed string length */ 2333 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2334 u8 useMalloc; /* True if zText is enlargeable using realloc */ 2335 u8 tooBig; /* Becomes true if string size exceeds limits */ 2336 }; 2337 2338 /* 2339 ** A pointer to this structure is used to communicate information 2340 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2341 */ 2342 typedef struct { 2343 sqlite3 *db; /* The database being initialized */ 2344 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2345 char **pzErrMsg; /* Error message stored here */ 2346 int rc; /* Result code stored here */ 2347 } InitData; 2348 2349 /* 2350 ** Structure containing global configuration data for the SQLite library. 2351 ** 2352 ** This structure also contains some state information. 2353 */ 2354 struct Sqlite3Config { 2355 int bMemstat; /* True to enable memory status */ 2356 int bCoreMutex; /* True to enable core mutexing */ 2357 int bFullMutex; /* True to enable full mutexing */ 2358 int mxStrlen; /* Maximum string length */ 2359 int szLookaside; /* Default lookaside buffer size */ 2360 int nLookaside; /* Default lookaside buffer count */ 2361 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2362 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2363 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */ 2364 void *pHeap; /* Heap storage space */ 2365 int nHeap; /* Size of pHeap[] */ 2366 int mnReq, mxReq; /* Min and max heap requests sizes */ 2367 void *pScratch; /* Scratch memory */ 2368 int szScratch; /* Size of each scratch buffer */ 2369 int nScratch; /* Number of scratch buffers */ 2370 void *pPage; /* Page cache memory */ 2371 int szPage; /* Size of each page in pPage[] */ 2372 int nPage; /* Number of pages in pPage[] */ 2373 int mxParserStack; /* maximum depth of the parser stack */ 2374 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2375 /* The above might be initialized to non-zero. The following need to always 2376 ** initially be zero, however. */ 2377 int isInit; /* True after initialization has finished */ 2378 int inProgress; /* True while initialization in progress */ 2379 int isMutexInit; /* True after mutexes are initialized */ 2380 int isMallocInit; /* True after malloc is initialized */ 2381 int isPCacheInit; /* True after malloc is initialized */ 2382 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2383 int nRefInitMutex; /* Number of users of pInitMutex */ 2384 void (*xLog)(void*,int,const char*); /* Function for logging */ 2385 void *pLogArg; /* First argument to xLog() */ 2386 }; 2387 2388 /* 2389 ** Context pointer passed down through the tree-walk. 2390 */ 2391 struct Walker { 2392 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2393 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2394 Parse *pParse; /* Parser context. */ 2395 union { /* Extra data for callback */ 2396 NameContext *pNC; /* Naming context */ 2397 int i; /* Integer value */ 2398 } u; 2399 }; 2400 2401 /* Forward declarations */ 2402 int sqlite3WalkExpr(Walker*, Expr*); 2403 int sqlite3WalkExprList(Walker*, ExprList*); 2404 int sqlite3WalkSelect(Walker*, Select*); 2405 int sqlite3WalkSelectExpr(Walker*, Select*); 2406 int sqlite3WalkSelectFrom(Walker*, Select*); 2407 2408 /* 2409 ** Return code from the parse-tree walking primitives and their 2410 ** callbacks. 2411 */ 2412 #define WRC_Continue 0 /* Continue down into children */ 2413 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2414 #define WRC_Abort 2 /* Abandon the tree walk */ 2415 2416 /* 2417 ** Assuming zIn points to the first byte of a UTF-8 character, 2418 ** advance zIn to point to the first byte of the next UTF-8 character. 2419 */ 2420 #define SQLITE_SKIP_UTF8(zIn) { \ 2421 if( (*(zIn++))>=0xc0 ){ \ 2422 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2423 } \ 2424 } 2425 2426 /* 2427 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2428 ** the same name but without the _BKPT suffix. These macros invoke 2429 ** routines that report the line-number on which the error originated 2430 ** using sqlite3_log(). The routines also provide a convenient place 2431 ** to set a debugger breakpoint. 2432 */ 2433 int sqlite3CorruptError(int); 2434 int sqlite3MisuseError(int); 2435 int sqlite3CantopenError(int); 2436 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2437 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2438 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2439 2440 2441 /* 2442 ** FTS4 is really an extension for FTS3. It is enabled using the 2443 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2444 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2445 */ 2446 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2447 # define SQLITE_ENABLE_FTS3 2448 #endif 2449 2450 /* 2451 ** The ctype.h header is needed for non-ASCII systems. It is also 2452 ** needed by FTS3 when FTS3 is included in the amalgamation. 2453 */ 2454 #if !defined(SQLITE_ASCII) || \ 2455 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2456 # include <ctype.h> 2457 #endif 2458 2459 /* 2460 ** The following macros mimic the standard library functions toupper(), 2461 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2462 ** sqlite versions only work for ASCII characters, regardless of locale. 2463 */ 2464 #ifdef SQLITE_ASCII 2465 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2466 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2467 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2468 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2469 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2470 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2471 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2472 #else 2473 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2474 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2475 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2476 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2477 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2478 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2479 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2480 #endif 2481 2482 /* 2483 ** Internal function prototypes 2484 */ 2485 int sqlite3StrICmp(const char *, const char *); 2486 int sqlite3IsNumber(const char*, int*, u8); 2487 int sqlite3Strlen30(const char*); 2488 #define sqlite3StrNICmp sqlite3_strnicmp 2489 2490 int sqlite3MallocInit(void); 2491 void sqlite3MallocEnd(void); 2492 void *sqlite3Malloc(int); 2493 void *sqlite3MallocZero(int); 2494 void *sqlite3DbMallocZero(sqlite3*, int); 2495 void *sqlite3DbMallocRaw(sqlite3*, int); 2496 char *sqlite3DbStrDup(sqlite3*,const char*); 2497 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2498 void *sqlite3Realloc(void*, int); 2499 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2500 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2501 void sqlite3DbFree(sqlite3*, void*); 2502 int sqlite3MallocSize(void*); 2503 int sqlite3DbMallocSize(sqlite3*, void*); 2504 void *sqlite3ScratchMalloc(int); 2505 void sqlite3ScratchFree(void*); 2506 void *sqlite3PageMalloc(int); 2507 void sqlite3PageFree(void*); 2508 void sqlite3MemSetDefault(void); 2509 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2510 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64); 2511 2512 /* 2513 ** On systems with ample stack space and that support alloca(), make 2514 ** use of alloca() to obtain space for large automatic objects. By default, 2515 ** obtain space from malloc(). 2516 ** 2517 ** The alloca() routine never returns NULL. This will cause code paths 2518 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2519 */ 2520 #ifdef SQLITE_USE_ALLOCA 2521 # define sqlite3StackAllocRaw(D,N) alloca(N) 2522 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2523 # define sqlite3StackFree(D,P) 2524 #else 2525 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2526 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2527 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2528 #endif 2529 2530 #ifdef SQLITE_ENABLE_MEMSYS3 2531 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2532 #endif 2533 #ifdef SQLITE_ENABLE_MEMSYS5 2534 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2535 #endif 2536 2537 2538 #ifndef SQLITE_MUTEX_OMIT 2539 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2540 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2541 sqlite3_mutex *sqlite3MutexAlloc(int); 2542 int sqlite3MutexInit(void); 2543 int sqlite3MutexEnd(void); 2544 #endif 2545 2546 int sqlite3StatusValue(int); 2547 void sqlite3StatusAdd(int, int); 2548 void sqlite3StatusSet(int, int); 2549 2550 #ifndef SQLITE_OMIT_FLOATING_POINT 2551 int sqlite3IsNaN(double); 2552 #else 2553 # define sqlite3IsNaN(X) 0 2554 #endif 2555 2556 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2557 #ifndef SQLITE_OMIT_TRACE 2558 void sqlite3XPrintf(StrAccum*, const char*, ...); 2559 #endif 2560 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2561 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2562 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2563 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2564 void sqlite3DebugPrintf(const char*, ...); 2565 #endif 2566 #if defined(SQLITE_TEST) 2567 void *sqlite3TestTextToPtr(const char*); 2568 #endif 2569 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2570 void sqlite3ErrorMsg(Parse*, const char*, ...); 2571 int sqlite3Dequote(char*); 2572 int sqlite3KeywordCode(const unsigned char*, int); 2573 int sqlite3RunParser(Parse*, const char*, char **); 2574 void sqlite3FinishCoding(Parse*); 2575 int sqlite3GetTempReg(Parse*); 2576 void sqlite3ReleaseTempReg(Parse*,int); 2577 int sqlite3GetTempRange(Parse*,int); 2578 void sqlite3ReleaseTempRange(Parse*,int,int); 2579 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2580 Expr *sqlite3Expr(sqlite3*,int,const char*); 2581 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2582 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2583 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2584 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2585 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2586 void sqlite3ExprDelete(sqlite3*, Expr*); 2587 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2588 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2589 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2590 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2591 int sqlite3Init(sqlite3*, char**); 2592 int sqlite3InitCallback(void*, int, char**, char**); 2593 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2594 void sqlite3ResetInternalSchema(sqlite3*, int); 2595 void sqlite3BeginParse(Parse*,int); 2596 void sqlite3CommitInternalChanges(sqlite3*); 2597 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2598 void sqlite3OpenMasterTable(Parse *, int); 2599 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2600 void sqlite3AddColumn(Parse*,Token*); 2601 void sqlite3AddNotNull(Parse*, int); 2602 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2603 void sqlite3AddCheckConstraint(Parse*, Expr*); 2604 void sqlite3AddColumnType(Parse*,Token*); 2605 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2606 void sqlite3AddCollateType(Parse*, Token*); 2607 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2608 2609 Bitvec *sqlite3BitvecCreate(u32); 2610 int sqlite3BitvecTest(Bitvec*, u32); 2611 int sqlite3BitvecSet(Bitvec*, u32); 2612 void sqlite3BitvecClear(Bitvec*, u32, void*); 2613 void sqlite3BitvecDestroy(Bitvec*); 2614 u32 sqlite3BitvecSize(Bitvec*); 2615 int sqlite3BitvecBuiltinTest(int,int*); 2616 2617 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2618 void sqlite3RowSetClear(RowSet*); 2619 void sqlite3RowSetInsert(RowSet*, i64); 2620 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2621 int sqlite3RowSetNext(RowSet*, i64*); 2622 2623 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2624 2625 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2626 int sqlite3ViewGetColumnNames(Parse*,Table*); 2627 #else 2628 # define sqlite3ViewGetColumnNames(A,B) 0 2629 #endif 2630 2631 void sqlite3DropTable(Parse*, SrcList*, int, int); 2632 void sqlite3DeleteTable(Table*); 2633 #ifndef SQLITE_OMIT_AUTOINCREMENT 2634 void sqlite3AutoincrementBegin(Parse *pParse); 2635 void sqlite3AutoincrementEnd(Parse *pParse); 2636 #else 2637 # define sqlite3AutoincrementBegin(X) 2638 # define sqlite3AutoincrementEnd(X) 2639 #endif 2640 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2641 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2642 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2643 int sqlite3IdListIndex(IdList*,const char*); 2644 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2645 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2646 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2647 Token*, Select*, Expr*, IdList*); 2648 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2649 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2650 void sqlite3SrcListShiftJoinType(SrcList*); 2651 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2652 void sqlite3IdListDelete(sqlite3*, IdList*); 2653 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2654 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2655 Token*, int, int); 2656 void sqlite3DropIndex(Parse*, SrcList*, int); 2657 int sqlite3Select(Parse*, Select*, SelectDest*); 2658 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2659 Expr*,ExprList*,int,Expr*,Expr*); 2660 void sqlite3SelectDelete(sqlite3*, Select*); 2661 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2662 int sqlite3IsReadOnly(Parse*, Table*, int); 2663 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2664 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2665 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2666 #endif 2667 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2668 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2669 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); 2670 void sqlite3WhereEnd(WhereInfo*); 2671 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); 2672 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2673 void sqlite3ExprCodeMove(Parse*, int, int, int); 2674 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2675 void sqlite3ExprCacheStore(Parse*, int, int, int); 2676 void sqlite3ExprCachePush(Parse*); 2677 void sqlite3ExprCachePop(Parse*, int); 2678 void sqlite3ExprCacheRemove(Parse*, int, int); 2679 void sqlite3ExprCacheClear(Parse*); 2680 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2681 void sqlite3ExprHardCopy(Parse*,int,int); 2682 int sqlite3ExprCode(Parse*, Expr*, int); 2683 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2684 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2685 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2686 void sqlite3ExprCodeConstants(Parse*, Expr*); 2687 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2688 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2689 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2690 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2691 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2692 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2693 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2694 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2695 void sqlite3Vacuum(Parse*); 2696 int sqlite3RunVacuum(char**, sqlite3*); 2697 char *sqlite3NameFromToken(sqlite3*, Token*); 2698 int sqlite3ExprCompare(Expr*, Expr*); 2699 int sqlite3ExprListCompare(ExprList*, ExprList*); 2700 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2701 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2702 Vdbe *sqlite3GetVdbe(Parse*); 2703 void sqlite3PrngSaveState(void); 2704 void sqlite3PrngRestoreState(void); 2705 void sqlite3PrngResetState(void); 2706 void sqlite3RollbackAll(sqlite3*); 2707 void sqlite3CodeVerifySchema(Parse*, int); 2708 void sqlite3BeginTransaction(Parse*, int); 2709 void sqlite3CommitTransaction(Parse*); 2710 void sqlite3RollbackTransaction(Parse*); 2711 void sqlite3Savepoint(Parse*, int, Token*); 2712 void sqlite3CloseSavepoints(sqlite3 *); 2713 int sqlite3ExprIsConstant(Expr*); 2714 int sqlite3ExprIsConstantNotJoin(Expr*); 2715 int sqlite3ExprIsConstantOrFunction(Expr*); 2716 int sqlite3ExprIsInteger(Expr*, int*); 2717 int sqlite3ExprCanBeNull(const Expr*); 2718 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2719 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2720 int sqlite3IsRowid(const char*); 2721 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2722 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2723 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2724 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2725 int*,int,int,int,int,int*); 2726 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2727 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2728 void sqlite3BeginWriteOperation(Parse*, int, int); 2729 void sqlite3MultiWrite(Parse*); 2730 void sqlite3MayAbort(Parse*); 2731 void sqlite3HaltConstraint(Parse*, int, char*, int); 2732 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2733 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2734 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2735 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2736 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2737 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2738 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2739 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2740 void sqlite3RegisterDateTimeFunctions(void); 2741 void sqlite3RegisterGlobalFunctions(void); 2742 int sqlite3SafetyCheckOk(sqlite3*); 2743 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2744 void sqlite3ChangeCookie(Parse*, int); 2745 2746 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2747 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2748 #endif 2749 2750 #ifndef SQLITE_OMIT_TRIGGER 2751 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2752 Expr*,int, int); 2753 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2754 void sqlite3DropTrigger(Parse*, SrcList*, int); 2755 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2756 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2757 Trigger *sqlite3TriggerList(Parse *, Table *); 2758 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2759 int, int, int); 2760 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2761 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2762 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2763 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2764 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2765 ExprList*,Select*,u8); 2766 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2767 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2768 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2769 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2770 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2771 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2772 #else 2773 # define sqlite3TriggersExist(B,C,D,E,F) 0 2774 # define sqlite3DeleteTrigger(A,B) 2775 # define sqlite3DropTriggerPtr(A,B) 2776 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2777 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2778 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2779 # define sqlite3TriggerList(X, Y) 0 2780 # define sqlite3ParseToplevel(p) p 2781 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2782 #endif 2783 2784 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2785 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2786 void sqlite3DeferForeignKey(Parse*, int); 2787 #ifndef SQLITE_OMIT_AUTHORIZATION 2788 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2789 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2790 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2791 void sqlite3AuthContextPop(AuthContext*); 2792 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2793 #else 2794 # define sqlite3AuthRead(a,b,c,d) 2795 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2796 # define sqlite3AuthContextPush(a,b,c) 2797 # define sqlite3AuthContextPop(a) ((void)(a)) 2798 #endif 2799 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2800 void sqlite3Detach(Parse*, Expr*); 2801 int sqlite3BtreeFactory(sqlite3 *db, const char *zFilename, 2802 int omitJournal, int nCache, int flags, Btree **ppBtree); 2803 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2804 int sqlite3FixSrcList(DbFixer*, SrcList*); 2805 int sqlite3FixSelect(DbFixer*, Select*); 2806 int sqlite3FixExpr(DbFixer*, Expr*); 2807 int sqlite3FixExprList(DbFixer*, ExprList*); 2808 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2809 int sqlite3AtoF(const char *z, double*); 2810 int sqlite3GetInt32(const char *, int*); 2811 int sqlite3FitsIn64Bits(const char *, int); 2812 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2813 int sqlite3Utf8CharLen(const char *pData, int nByte); 2814 int sqlite3Utf8Read(const u8*, const u8**); 2815 2816 /* 2817 ** Routines to read and write variable-length integers. These used to 2818 ** be defined locally, but now we use the varint routines in the util.c 2819 ** file. Code should use the MACRO forms below, as the Varint32 versions 2820 ** are coded to assume the single byte case is already handled (which 2821 ** the MACRO form does). 2822 */ 2823 int sqlite3PutVarint(unsigned char*, u64); 2824 int sqlite3PutVarint32(unsigned char*, u32); 2825 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2826 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2827 int sqlite3VarintLen(u64 v); 2828 2829 /* 2830 ** The header of a record consists of a sequence variable-length integers. 2831 ** These integers are almost always small and are encoded as a single byte. 2832 ** The following macros take advantage this fact to provide a fast encode 2833 ** and decode of the integers in a record header. It is faster for the common 2834 ** case where the integer is a single byte. It is a little slower when the 2835 ** integer is two or more bytes. But overall it is faster. 2836 ** 2837 ** The following expressions are equivalent: 2838 ** 2839 ** x = sqlite3GetVarint32( A, &B ); 2840 ** x = sqlite3PutVarint32( A, B ); 2841 ** 2842 ** x = getVarint32( A, B ); 2843 ** x = putVarint32( A, B ); 2844 ** 2845 */ 2846 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2847 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2848 #define getVarint sqlite3GetVarint 2849 #define putVarint sqlite3PutVarint 2850 2851 2852 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2853 void sqlite3TableAffinityStr(Vdbe *, Table *); 2854 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2855 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2856 char sqlite3ExprAffinity(Expr *pExpr); 2857 int sqlite3Atoi64(const char*, i64*); 2858 void sqlite3Error(sqlite3*, int, const char*,...); 2859 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2860 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2861 const char *sqlite3ErrStr(int); 2862 int sqlite3ReadSchema(Parse *pParse); 2863 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2864 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2865 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2866 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 2867 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2868 int sqlite3CheckObjectName(Parse *, const char *); 2869 void sqlite3VdbeSetChanges(sqlite3 *, int); 2870 2871 const void *sqlite3ValueText(sqlite3_value*, u8); 2872 int sqlite3ValueBytes(sqlite3_value*, u8); 2873 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2874 void(*)(void*)); 2875 void sqlite3ValueFree(sqlite3_value*); 2876 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2877 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 2878 #ifdef SQLITE_ENABLE_STAT2 2879 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 2880 #endif 2881 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2882 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2883 #ifndef SQLITE_AMALGAMATION 2884 extern const unsigned char sqlite3OpcodeProperty[]; 2885 extern const unsigned char sqlite3UpperToLower[]; 2886 extern const unsigned char sqlite3CtypeMap[]; 2887 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2888 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2889 #ifndef SQLITE_OMIT_WSD 2890 extern int sqlite3PendingByte; 2891 #endif 2892 #endif 2893 void sqlite3RootPageMoved(Db*, int, int); 2894 void sqlite3Reindex(Parse*, Token*, Token*); 2895 void sqlite3AlterFunctions(void); 2896 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2897 int sqlite3GetToken(const unsigned char *, int *); 2898 void sqlite3NestedParse(Parse*, const char*, ...); 2899 void sqlite3ExpirePreparedStatements(sqlite3*); 2900 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 2901 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 2902 int sqlite3ResolveExprNames(NameContext*, Expr*); 2903 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 2904 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 2905 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 2906 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2907 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2908 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 2909 char sqlite3AffinityType(const char*); 2910 void sqlite3Analyze(Parse*, Token*, Token*); 2911 int sqlite3InvokeBusyHandler(BusyHandler*); 2912 int sqlite3FindDb(sqlite3*, Token*); 2913 int sqlite3FindDbName(sqlite3 *, const char *); 2914 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2915 void sqlite3DeleteIndexSamples(Index*); 2916 void sqlite3DefaultRowEst(Index*); 2917 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2918 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2919 void sqlite3MinimumFileFormat(Parse*, int, int); 2920 void sqlite3SchemaFree(void *); 2921 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2922 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2923 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2924 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2925 void (*)(sqlite3_context*,int,sqlite3_value **), 2926 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 2927 int sqlite3ApiExit(sqlite3 *db, int); 2928 int sqlite3OpenTempDatabase(Parse *); 2929 2930 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2931 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2932 char *sqlite3StrAccumFinish(StrAccum*); 2933 void sqlite3StrAccumReset(StrAccum*); 2934 void sqlite3SelectDestInit(SelectDest*,int,int); 2935 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 2936 2937 void sqlite3BackupRestart(sqlite3_backup *); 2938 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 2939 2940 /* 2941 ** The interface to the LEMON-generated parser 2942 */ 2943 void *sqlite3ParserAlloc(void*(*)(size_t)); 2944 void sqlite3ParserFree(void*, void(*)(void*)); 2945 void sqlite3Parser(void*, int, Token, Parse*); 2946 #ifdef YYTRACKMAXSTACKDEPTH 2947 int sqlite3ParserStackPeak(void*); 2948 #endif 2949 2950 void sqlite3AutoLoadExtensions(sqlite3*); 2951 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2952 void sqlite3CloseExtensions(sqlite3*); 2953 #else 2954 # define sqlite3CloseExtensions(X) 2955 #endif 2956 2957 #ifndef SQLITE_OMIT_SHARED_CACHE 2958 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2959 #else 2960 #define sqlite3TableLock(v,w,x,y,z) 2961 #endif 2962 2963 #ifdef SQLITE_TEST 2964 int sqlite3Utf8To8(unsigned char*); 2965 #endif 2966 2967 #ifdef SQLITE_OMIT_VIRTUALTABLE 2968 # define sqlite3VtabClear(Y) 2969 # define sqlite3VtabSync(X,Y) SQLITE_OK 2970 # define sqlite3VtabRollback(X) 2971 # define sqlite3VtabCommit(X) 2972 # define sqlite3VtabInSync(db) 0 2973 # define sqlite3VtabLock(X) 2974 # define sqlite3VtabUnlock(X) 2975 # define sqlite3VtabUnlockList(X) 2976 #else 2977 void sqlite3VtabClear(Table*); 2978 int sqlite3VtabSync(sqlite3 *db, char **); 2979 int sqlite3VtabRollback(sqlite3 *db); 2980 int sqlite3VtabCommit(sqlite3 *db); 2981 void sqlite3VtabLock(VTable *); 2982 void sqlite3VtabUnlock(VTable *); 2983 void sqlite3VtabUnlockList(sqlite3*); 2984 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 2985 #endif 2986 void sqlite3VtabMakeWritable(Parse*,Table*); 2987 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 2988 void sqlite3VtabFinishParse(Parse*, Token*); 2989 void sqlite3VtabArgInit(Parse*); 2990 void sqlite3VtabArgExtend(Parse*, Token*); 2991 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 2992 int sqlite3VtabCallConnect(Parse*, Table*); 2993 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 2994 int sqlite3VtabBegin(sqlite3 *, VTable *); 2995 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 2996 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 2997 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 2998 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 2999 int sqlite3Reprepare(Vdbe*); 3000 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3001 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3002 int sqlite3TempInMemory(const sqlite3*); 3003 VTable *sqlite3GetVTable(sqlite3*, Table*); 3004 const char *sqlite3JournalModename(int); 3005 int sqlite3Checkpoint(sqlite3*, int); 3006 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3007 3008 /* Declarations for functions in fkey.c. All of these are replaced by 3009 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3010 ** key functionality is available. If OMIT_TRIGGER is defined but 3011 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3012 ** this case foreign keys are parsed, but no other functionality is 3013 ** provided (enforcement of FK constraints requires the triggers sub-system). 3014 */ 3015 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3016 void sqlite3FkCheck(Parse*, Table*, int, int); 3017 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3018 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3019 int sqlite3FkRequired(Parse*, Table*, int*, int); 3020 u32 sqlite3FkOldmask(Parse*, Table*); 3021 FKey *sqlite3FkReferences(Table *); 3022 #else 3023 #define sqlite3FkActions(a,b,c,d) 3024 #define sqlite3FkCheck(a,b,c,d) 3025 #define sqlite3FkDropTable(a,b,c) 3026 #define sqlite3FkOldmask(a,b) 0 3027 #define sqlite3FkRequired(a,b,c,d) 0 3028 #endif 3029 #ifndef SQLITE_OMIT_FOREIGN_KEY 3030 void sqlite3FkDelete(Table*); 3031 #else 3032 #define sqlite3FkDelete(a) 3033 #endif 3034 3035 3036 /* 3037 ** Available fault injectors. Should be numbered beginning with 0. 3038 */ 3039 #define SQLITE_FAULTINJECTOR_MALLOC 0 3040 #define SQLITE_FAULTINJECTOR_COUNT 1 3041 3042 /* 3043 ** The interface to the code in fault.c used for identifying "benign" 3044 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3045 ** is not defined. 3046 */ 3047 #ifndef SQLITE_OMIT_BUILTIN_TEST 3048 void sqlite3BeginBenignMalloc(void); 3049 void sqlite3EndBenignMalloc(void); 3050 #else 3051 #define sqlite3BeginBenignMalloc() 3052 #define sqlite3EndBenignMalloc() 3053 #endif 3054 3055 #define IN_INDEX_ROWID 1 3056 #define IN_INDEX_EPH 2 3057 #define IN_INDEX_INDEX 3 3058 int sqlite3FindInIndex(Parse *, Expr *, int*); 3059 3060 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3061 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3062 int sqlite3JournalSize(sqlite3_vfs *); 3063 int sqlite3JournalCreate(sqlite3_file *); 3064 #else 3065 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3066 #endif 3067 3068 void sqlite3MemJournalOpen(sqlite3_file *); 3069 int sqlite3MemJournalSize(void); 3070 int sqlite3IsMemJournal(sqlite3_file *); 3071 3072 #if SQLITE_MAX_EXPR_DEPTH>0 3073 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3074 int sqlite3SelectExprHeight(Select *); 3075 int sqlite3ExprCheckHeight(Parse*, int); 3076 #else 3077 #define sqlite3ExprSetHeight(x,y) 3078 #define sqlite3SelectExprHeight(x) 0 3079 #define sqlite3ExprCheckHeight(x,y) 3080 #endif 3081 3082 u32 sqlite3Get4byte(const u8*); 3083 void sqlite3Put4byte(u8*, u32); 3084 3085 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3086 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3087 void sqlite3ConnectionUnlocked(sqlite3 *db); 3088 void sqlite3ConnectionClosed(sqlite3 *db); 3089 #else 3090 #define sqlite3ConnectionBlocked(x,y) 3091 #define sqlite3ConnectionUnlocked(x) 3092 #define sqlite3ConnectionClosed(x) 3093 #endif 3094 3095 #ifdef SQLITE_DEBUG 3096 void sqlite3ParserTrace(FILE*, char *); 3097 #endif 3098 3099 /* 3100 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3101 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3102 ** print I/O tracing messages. 3103 */ 3104 #ifdef SQLITE_ENABLE_IOTRACE 3105 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3106 void sqlite3VdbeIOTraceSql(Vdbe*); 3107 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3108 #else 3109 # define IOTRACE(A) 3110 # define sqlite3VdbeIOTraceSql(X) 3111 #endif 3112 3113 /* 3114 ** These routines are available for the mem2.c debugging memory allocator 3115 ** only. They are used to verify that different "types" of memory 3116 ** allocations are properly tracked by the system. 3117 ** 3118 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3119 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3120 ** a single bit set. 3121 ** 3122 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3123 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3124 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3125 ** For example: 3126 ** 3127 ** assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 3128 ** 3129 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3130 ** and MEMTYPE_DB. If an allocation is MEMTYPE_DB, that means it might have 3131 ** been allocated by lookaside, except the allocation was too large or 3132 ** lookaside was already full. It is important to verify that allocations 3133 ** that might have been satisfied by lookaside are not passed back to 3134 ** non-lookaside free() routines. Asserts such as the example above are 3135 ** placed on the non-lookaside free() routines to verify this constraint. 3136 ** 3137 ** All of this is no-op for a production build. It only comes into 3138 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3139 */ 3140 #ifdef SQLITE_MEMDEBUG 3141 void sqlite3MemdebugSetType(void*,u8); 3142 int sqlite3MemdebugHasType(void*,u8); 3143 #else 3144 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3145 # define sqlite3MemdebugHasType(X,Y) 1 3146 #endif 3147 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3148 #define MEMTYPE_DB 0x02 /* Associated with a database connection */ 3149 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3150 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3151 3152 #endif /* _SQLITEINT_H_ */ 3153