1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.400 2005/07/23 22:59:56 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** These #defines should enable >2GB file support on Posix if the 21 ** underlying operating system supports it. If the OS lacks 22 ** large file support, or if the OS is windows, these should be no-ops. 23 ** 24 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 25 ** on the compiler command line. This is necessary if you are compiling 26 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 27 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 28 ** without this option, LFS is enable. But LFS does not exist in the kernel 29 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 30 ** portability you should omit LFS. 31 ** 32 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 33 */ 34 #ifndef SQLITE_DISABLE_LFS 35 # define _LARGE_FILE 1 36 # ifndef _FILE_OFFSET_BITS 37 # define _FILE_OFFSET_BITS 64 38 # endif 39 # define _LARGEFILE_SOURCE 1 40 #endif 41 42 #include "sqlite3.h" 43 #include "hash.h" 44 #include "parse.h" 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <string.h> 48 #include <assert.h> 49 #include <stddef.h> 50 51 /* 52 ** The maximum number of in-memory pages to use for the main database 53 ** table and for temporary tables. Internally, the MAX_PAGES and 54 ** TEMP_PAGES macros are used. To override the default values at 55 ** compilation time, the SQLITE_DEFAULT_CACHE_SIZE and 56 ** SQLITE_DEFAULT_TEMP_CACHE_SIZE macros should be set. 57 */ 58 #ifdef SQLITE_DEFAULT_CACHE_SIZE 59 # define MAX_PAGES SQLITE_DEFAULT_CACHE_SIZE 60 #else 61 # define MAX_PAGES 2000 62 #endif 63 #ifdef SQLITE_DEFAULT_TEMP_CACHE_SIZE 64 # define TEMP_PAGES SQLITE_DEFAULT_TEMP_CACHE_SIZE 65 #else 66 # define TEMP_PAGES 500 67 #endif 68 69 /* 70 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 71 ** afterward. Having this macro allows us to cause the C compiler 72 ** to omit code used by TEMP tables without messy #ifndef statements. 73 */ 74 #ifdef SQLITE_OMIT_TEMPDB 75 #define OMIT_TEMPDB 1 76 #else 77 #define OMIT_TEMPDB 0 78 #endif 79 80 /* 81 ** If the following macro is set to 1, then NULL values are considered 82 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT 83 ** compound queries. No other SQL database engine (among those tested) 84 ** works this way except for OCELOT. But the SQL92 spec implies that 85 ** this is how things should work. 86 ** 87 ** If the following macro is set to 0, then NULLs are indistinct for 88 ** SELECT DISTINCT and for UNION. 89 */ 90 #define NULL_ALWAYS_DISTINCT 0 91 92 /* 93 ** If the following macro is set to 1, then NULL values are considered 94 ** distinct when determining whether or not two entries are the same 95 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 96 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 97 ** is the way things are suppose to work. 98 ** 99 ** If the following macro is set to 0, the NULLs are indistinct for 100 ** a UNIQUE index. In this mode, you can only have a single NULL entry 101 ** for a column declared UNIQUE. This is the way Informix and SQL Server 102 ** work. 103 */ 104 #define NULL_DISTINCT_FOR_UNIQUE 1 105 106 /* 107 ** The maximum number of attached databases. This must be at least 2 108 ** in order to support the main database file (0) and the file used to 109 ** hold temporary tables (1). And it must be less than 32 because 110 ** we use a bitmask of databases with a u32 in places (for example 111 ** the Parse.cookieMask field). 112 */ 113 #define MAX_ATTACHED 10 114 115 /* 116 ** The maximum value of a ?nnn wildcard that the parser will accept. 117 */ 118 #define SQLITE_MAX_VARIABLE_NUMBER 999 119 120 /* 121 ** When building SQLite for embedded systems where memory is scarce, 122 ** you can define one or more of the following macros to omit extra 123 ** features of the library and thus keep the size of the library to 124 ** a minimum. 125 */ 126 /* #define SQLITE_OMIT_AUTHORIZATION 1 */ 127 /* #define SQLITE_OMIT_MEMORYDB 1 */ 128 /* #define SQLITE_OMIT_VACUUM 1 */ 129 /* #define SQLITE_OMIT_DATETIME_FUNCS 1 */ 130 /* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */ 131 /* #define SQLITE_OMIT_AUTOVACUUM */ 132 /* #define SQLITE_OMIT_ALTERTABLE */ 133 134 /* 135 ** Provide a default value for TEMP_STORE in case it is not specified 136 ** on the command-line 137 */ 138 #ifndef TEMP_STORE 139 # define TEMP_STORE 1 140 #endif 141 142 /* 143 ** GCC does not define the offsetof() macro so we'll have to do it 144 ** ourselves. 145 */ 146 #ifndef offsetof 147 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 148 #endif 149 150 /* 151 ** Integers of known sizes. These typedefs might change for architectures 152 ** where the sizes very. Preprocessor macros are available so that the 153 ** types can be conveniently redefined at compile-type. Like this: 154 ** 155 ** cc '-DUINTPTR_TYPE=long long int' ... 156 */ 157 #ifndef UINT64_TYPE 158 # if defined(_MSC_VER) || defined(__BORLANDC__) 159 # define UINT64_TYPE unsigned __int64 160 # else 161 # define UINT64_TYPE unsigned long long int 162 # endif 163 #endif 164 #ifndef UINT32_TYPE 165 # define UINT32_TYPE unsigned int 166 #endif 167 #ifndef UINT16_TYPE 168 # define UINT16_TYPE unsigned short int 169 #endif 170 #ifndef INT16_TYPE 171 # define INT16_TYPE short int 172 #endif 173 #ifndef UINT8_TYPE 174 # define UINT8_TYPE unsigned char 175 #endif 176 #ifndef INT8_TYPE 177 # define INT8_TYPE signed char 178 #endif 179 #ifndef LONGDOUBLE_TYPE 180 # define LONGDOUBLE_TYPE long double 181 #endif 182 typedef sqlite_int64 i64; /* 8-byte signed integer */ 183 typedef UINT64_TYPE u64; /* 8-byte unsigned integer */ 184 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 185 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 186 typedef INT16_TYPE i16; /* 2-byte signed integer */ 187 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 188 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 189 190 /* 191 ** Macros to determine whether the machine is big or little endian, 192 ** evaluated at runtime. 193 */ 194 extern const int sqlite3one; 195 #define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 196 #define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 197 198 /* 199 ** An instance of the following structure is used to store the busy-handler 200 ** callback for a given sqlite handle. 201 ** 202 ** The sqlite.busyHandler member of the sqlite struct contains the busy 203 ** callback for the database handle. Each pager opened via the sqlite 204 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 205 ** callback is currently invoked only from within pager.c. 206 */ 207 typedef struct BusyHandler BusyHandler; 208 struct BusyHandler { 209 int (*xFunc)(void *,int); /* The busy callback */ 210 void *pArg; /* First arg to busy callback */ 211 int nBusy; /* Incremented with each busy call */ 212 }; 213 214 /* 215 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 216 ** "BusyHandler typedefs. 217 */ 218 #include "vdbe.h" 219 #include "btree.h" 220 221 /* 222 ** This macro casts a pointer to an integer. Useful for doing 223 ** pointer arithmetic. 224 */ 225 #define Addr(X) ((uptr)X) 226 227 /* 228 ** If memory allocation problems are found, recompile with 229 ** 230 ** -DSQLITE_DEBUG=1 231 ** 232 ** to enable some sanity checking on malloc() and free(). To 233 ** check for memory leaks, recompile with 234 ** 235 ** -DSQLITE_DEBUG=2 236 ** 237 ** and a line of text will be written to standard error for 238 ** each malloc() and free(). This output can be analyzed 239 ** by an AWK script to determine if there are any leaks. 240 */ 241 #ifdef SQLITE_MEMDEBUG 242 # define sqliteMalloc(X) sqlite3Malloc_(X,1,__FILE__,__LINE__) 243 # define sqliteMallocRaw(X) sqlite3Malloc_(X,0,__FILE__,__LINE__) 244 # define sqliteFree(X) sqlite3Free_(X,__FILE__,__LINE__) 245 # define sqliteRealloc(X,Y) sqlite3Realloc_(X,Y,__FILE__,__LINE__) 246 # define sqliteStrDup(X) sqlite3StrDup_(X,__FILE__,__LINE__) 247 # define sqliteStrNDup(X,Y) sqlite3StrNDup_(X,Y,__FILE__,__LINE__) 248 #else 249 # define sqliteFree sqlite3FreeX 250 # define sqliteMalloc sqlite3Malloc 251 # define sqliteMallocRaw sqlite3MallocRaw 252 # define sqliteRealloc sqlite3Realloc 253 # define sqliteStrDup sqlite3StrDup 254 # define sqliteStrNDup sqlite3StrNDup 255 #endif 256 257 /* 258 ** This variable gets set if malloc() ever fails. After it gets set, 259 ** the SQLite library shuts down permanently. 260 */ 261 extern int sqlite3_malloc_failed; 262 263 /* 264 ** The following global variables are used for testing and debugging 265 ** only. They only work if SQLITE_DEBUG is defined. 266 */ 267 #ifdef SQLITE_MEMDEBUG 268 extern int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ 269 extern int sqlite3_nFree; /* Number of sqliteFree() calls */ 270 extern int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 271 extern int sqlite3_iMallocReset; /* Set iMallocFail to this when it reaches 0 */ 272 #endif 273 274 /* 275 ** Name of the master database table. The master database table 276 ** is a special table that holds the names and attributes of all 277 ** user tables and indices. 278 */ 279 #define MASTER_NAME "sqlite_master" 280 #define TEMP_MASTER_NAME "sqlite_temp_master" 281 282 /* 283 ** The root-page of the master database table. 284 */ 285 #define MASTER_ROOT 1 286 287 /* 288 ** The name of the schema table. 289 */ 290 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 291 292 /* 293 ** A convenience macro that returns the number of elements in 294 ** an array. 295 */ 296 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 297 298 /* 299 ** Forward references to structures 300 */ 301 typedef struct AggExpr AggExpr; 302 typedef struct AuthContext AuthContext; 303 typedef struct CollSeq CollSeq; 304 typedef struct Column Column; 305 typedef struct Db Db; 306 typedef struct Expr Expr; 307 typedef struct ExprList ExprList; 308 typedef struct FKey FKey; 309 typedef struct FuncDef FuncDef; 310 typedef struct IdList IdList; 311 typedef struct Index Index; 312 typedef struct KeyClass KeyClass; 313 typedef struct KeyInfo KeyInfo; 314 typedef struct NameContext NameContext; 315 typedef struct Parse Parse; 316 typedef struct Select Select; 317 typedef struct SrcList SrcList; 318 typedef struct Table Table; 319 typedef struct Token Token; 320 typedef struct TriggerStack TriggerStack; 321 typedef struct TriggerStep TriggerStep; 322 typedef struct Trigger Trigger; 323 typedef struct WhereInfo WhereInfo; 324 typedef struct WhereLevel WhereLevel; 325 326 /* 327 ** Each database file to be accessed by the system is an instance 328 ** of the following structure. There are normally two of these structures 329 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 330 ** aDb[1] is the database file used to hold temporary tables. Additional 331 ** databases may be attached. 332 */ 333 struct Db { 334 char *zName; /* Name of this database */ 335 Btree *pBt; /* The B*Tree structure for this database file */ 336 int schema_cookie; /* Database schema version number for this file */ 337 Hash tblHash; /* All tables indexed by name */ 338 Hash idxHash; /* All (named) indices indexed by name */ 339 Hash trigHash; /* All triggers indexed by name */ 340 Hash aFKey; /* Foreign keys indexed by to-table */ 341 u16 flags; /* Flags associated with this database */ 342 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 343 u8 safety_level; /* How aggressive at synching data to disk */ 344 int cache_size; /* Number of pages to use in the cache */ 345 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 346 void *pAux; /* Auxiliary data. Usually NULL */ 347 void (*xFreeAux)(void*); /* Routine to free pAux */ 348 }; 349 350 /* 351 ** These macros can be used to test, set, or clear bits in the 352 ** Db.flags field. 353 */ 354 #define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) 355 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) 356 #define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) 357 #define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) 358 359 /* 360 ** Allowed values for the DB.flags field. 361 ** 362 ** The DB_SchemaLoaded flag is set after the database schema has been 363 ** read into internal hash tables. 364 ** 365 ** DB_UnresetViews means that one or more views have column names that 366 ** have been filled out. If the schema changes, these column names might 367 ** changes and so the view will need to be reset. 368 */ 369 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 370 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 371 372 #define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 373 374 /* 375 ** Each database is an instance of the following structure. 376 ** 377 ** The sqlite.lastRowid records the last insert rowid generated by an 378 ** insert statement. Inserts on views do not affect its value. Each 379 ** trigger has its own context, so that lastRowid can be updated inside 380 ** triggers as usual. The previous value will be restored once the trigger 381 ** exits. Upon entering a before or instead of trigger, lastRowid is no 382 ** longer (since after version 2.8.12) reset to -1. 383 ** 384 ** The sqlite.nChange does not count changes within triggers and keeps no 385 ** context. It is reset at start of sqlite3_exec. 386 ** The sqlite.lsChange represents the number of changes made by the last 387 ** insert, update, or delete statement. It remains constant throughout the 388 ** length of a statement and is then updated by OP_SetCounts. It keeps a 389 ** context stack just like lastRowid so that the count of changes 390 ** within a trigger is not seen outside the trigger. Changes to views do not 391 ** affect the value of lsChange. 392 ** The sqlite.csChange keeps track of the number of current changes (since 393 ** the last statement) and is used to update sqlite_lsChange. 394 ** 395 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 396 ** store the most recent error code and, if applicable, string. The 397 ** internal function sqlite3Error() is used to set these variables 398 ** consistently. 399 */ 400 struct sqlite3 { 401 int nDb; /* Number of backends currently in use */ 402 Db *aDb; /* All backends */ 403 int flags; /* Miscellanous flags. See below */ 404 int errCode; /* Most recent error code (SQLITE_*) */ 405 u8 enc; /* Text encoding for this database. */ 406 u8 autoCommit; /* The auto-commit flag. */ 407 u8 file_format; /* What file format version is this database? */ 408 u8 temp_store; /* 1: file 2: memory 0: default */ 409 int nTable; /* Number of tables in the database */ 410 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 411 i64 lastRowid; /* ROWID of most recent insert (see above) */ 412 i64 priorNewRowid; /* Last randomly generated ROWID */ 413 int magic; /* Magic number for detect library misuse */ 414 int nChange; /* Value returned by sqlite3_changes() */ 415 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 416 struct sqlite3InitInfo { /* Information used during initialization */ 417 int iDb; /* When back is being initialized */ 418 int newTnum; /* Rootpage of table being initialized */ 419 u8 busy; /* TRUE if currently initializing */ 420 } init; 421 struct Vdbe *pVdbe; /* List of active virtual machines */ 422 int activeVdbeCnt; /* Number of vdbes currently executing */ 423 void (*xTrace)(void*,const char*); /* Trace function */ 424 void *pTraceArg; /* Argument to the trace function */ 425 void *pCommitArg; /* Argument to xCommitCallback() */ 426 int (*xCommitCallback)(void*);/* Invoked at every commit. */ 427 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 428 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 429 void *pCollNeededArg; 430 sqlite3_value *pValue; /* Value used for transient conversions */ 431 sqlite3_value *pErr; /* Most recent error message */ 432 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 433 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 434 #ifndef SQLITE_OMIT_AUTHORIZATION 435 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 436 /* Access authorization function */ 437 void *pAuthArg; /* 1st argument to the access auth function */ 438 #endif 439 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 440 int (*xProgress)(void *); /* The progress callback */ 441 void *pProgressArg; /* Argument to the progress callback */ 442 int nProgressOps; /* Number of opcodes for progress callback */ 443 #endif 444 #ifndef SQLITE_OMIT_GLOBALRECOVER 445 sqlite3 *pNext; /* Linked list of open db handles. */ 446 #endif 447 Hash aFunc; /* All functions that can be in SQL exprs */ 448 Hash aCollSeq; /* All collating sequences */ 449 BusyHandler busyHandler; /* Busy callback */ 450 int busyTimeout; /* Busy handler timeout, in msec */ 451 Db aDbStatic[2]; /* Static space for the 2 default backends */ 452 #ifdef SQLITE_SSE 453 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 454 #endif 455 }; 456 457 /* 458 ** Possible values for the sqlite.flags and or Db.flags fields. 459 ** 460 ** On sqlite.flags, the SQLITE_InTrans value means that we have 461 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 462 ** transaction is active on that particular database file. 463 */ 464 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 465 #define SQLITE_Initialized 0x00000002 /* True after initialization */ 466 #define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ 467 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 468 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 469 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 470 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 471 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 472 /* DELETE, or UPDATE and return */ 473 /* the count using a callback. */ 474 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 475 /* result set is empty */ 476 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 477 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 478 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 479 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 480 ** accessing read-only databases */ 481 482 /* 483 ** Possible values for the sqlite.magic field. 484 ** The numbers are obtained at random and have no special meaning, other 485 ** than being distinct from one another. 486 */ 487 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 488 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 489 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 490 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 491 492 /* 493 ** Each SQL function is defined by an instance of the following 494 ** structure. A pointer to this structure is stored in the sqlite.aFunc 495 ** hash table. When multiple functions have the same name, the hash table 496 ** points to a linked list of these structures. 497 */ 498 struct FuncDef { 499 char *zName; /* SQL name of the function */ 500 int nArg; /* Number of arguments. -1 means unlimited */ 501 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 502 void *pUserData; /* User data parameter */ 503 FuncDef *pNext; /* Next function with same name */ 504 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 505 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 506 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 507 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 508 }; 509 510 /* 511 ** information about each column of an SQL table is held in an instance 512 ** of this structure. 513 */ 514 struct Column { 515 char *zName; /* Name of this column */ 516 Expr *pDflt; /* Default value of this column */ 517 char *zType; /* Data type for this column */ 518 CollSeq *pColl; /* Collating sequence. If NULL, use the default */ 519 u8 notNull; /* True if there is a NOT NULL constraint */ 520 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 521 char affinity; /* One of the SQLITE_AFF_... values */ 522 }; 523 524 /* 525 ** A "Collating Sequence" is defined by an instance of the following 526 ** structure. Conceptually, a collating sequence consists of a name and 527 ** a comparison routine that defines the order of that sequence. 528 ** 529 ** There may two seperate implementations of the collation function, one 530 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 531 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 532 ** native byte order. When a collation sequence is invoked, SQLite selects 533 ** the version that will require the least expensive encoding 534 ** transalations, if any. 535 ** 536 ** The CollSeq.pUser member variable is an extra parameter that passed in 537 ** as the first argument to the UTF-8 comparison function, xCmp. 538 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 539 ** xCmp16. 540 ** 541 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 542 ** collating sequence is undefined. Indices built on an undefined 543 ** collating sequence may not be read or written. 544 */ 545 struct CollSeq { 546 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 547 u8 enc; /* Text encoding handled by xCmp() */ 548 void *pUser; /* First argument to xCmp() */ 549 int (*xCmp)(void*,int, const void*, int, const void*); 550 }; 551 552 /* 553 ** A sort order can be either ASC or DESC. 554 */ 555 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 556 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 557 558 /* 559 ** Column affinity types. 560 */ 561 #define SQLITE_AFF_INTEGER 'i' 562 #define SQLITE_AFF_NUMERIC 'n' 563 #define SQLITE_AFF_TEXT 't' 564 #define SQLITE_AFF_NONE 'o' 565 566 567 /* 568 ** Each SQL table is represented in memory by an instance of the 569 ** following structure. 570 ** 571 ** Table.zName is the name of the table. The case of the original 572 ** CREATE TABLE statement is stored, but case is not significant for 573 ** comparisons. 574 ** 575 ** Table.nCol is the number of columns in this table. Table.aCol is a 576 ** pointer to an array of Column structures, one for each column. 577 ** 578 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 579 ** the column that is that key. Otherwise Table.iPKey is negative. Note 580 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 581 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 582 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 583 ** is generated for each row of the table. Table.hasPrimKey is true if 584 ** the table has any PRIMARY KEY, INTEGER or otherwise. 585 ** 586 ** Table.tnum is the page number for the root BTree page of the table in the 587 ** database file. If Table.iDb is the index of the database table backend 588 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 589 ** holds temporary tables and indices. If Table.isTransient 590 ** is true, then the table is stored in a file that is automatically deleted 591 ** when the VDBE cursor to the table is closed. In this case Table.tnum 592 ** refers VDBE cursor number that holds the table open, not to the root 593 ** page number. Transient tables are used to hold the results of a 594 ** sub-query that appears instead of a real table name in the FROM clause 595 ** of a SELECT statement. 596 */ 597 struct Table { 598 char *zName; /* Name of the table */ 599 int nCol; /* Number of columns in this table */ 600 Column *aCol; /* Information about each column */ 601 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 602 Index *pIndex; /* List of SQL indexes on this table. */ 603 int tnum; /* Root BTree node for this table (see note above) */ 604 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 605 u8 readOnly; /* True if this table should not be written by the user */ 606 u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ 607 u8 isTransient; /* True if automatically deleted when VDBE finishes */ 608 u8 hasPrimKey; /* True if there exists a primary key */ 609 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 610 u8 autoInc; /* True if the integer primary key is autoincrement */ 611 int nRef; /* Number of pointers to this Table */ 612 Trigger *pTrigger; /* List of SQL triggers on this table */ 613 FKey *pFKey; /* Linked list of all foreign keys in this table */ 614 char *zColAff; /* String defining the affinity of each column */ 615 #ifndef SQLITE_OMIT_ALTERTABLE 616 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 617 #endif 618 }; 619 620 /* 621 ** Each foreign key constraint is an instance of the following structure. 622 ** 623 ** A foreign key is associated with two tables. The "from" table is 624 ** the table that contains the REFERENCES clause that creates the foreign 625 ** key. The "to" table is the table that is named in the REFERENCES clause. 626 ** Consider this example: 627 ** 628 ** CREATE TABLE ex1( 629 ** a INTEGER PRIMARY KEY, 630 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 631 ** ); 632 ** 633 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 634 ** 635 ** Each REFERENCES clause generates an instance of the following structure 636 ** which is attached to the from-table. The to-table need not exist when 637 ** the from-table is created. The existance of the to-table is not checked 638 ** until an attempt is made to insert data into the from-table. 639 ** 640 ** The sqlite.aFKey hash table stores pointers to this structure 641 ** given the name of a to-table. For each to-table, all foreign keys 642 ** associated with that table are on a linked list using the FKey.pNextTo 643 ** field. 644 */ 645 struct FKey { 646 Table *pFrom; /* The table that constains the REFERENCES clause */ 647 FKey *pNextFrom; /* Next foreign key in pFrom */ 648 char *zTo; /* Name of table that the key points to */ 649 FKey *pNextTo; /* Next foreign key that points to zTo */ 650 int nCol; /* Number of columns in this key */ 651 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 652 int iFrom; /* Index of column in pFrom */ 653 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 654 } *aCol; /* One entry for each of nCol column s */ 655 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 656 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 657 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 658 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 659 }; 660 661 /* 662 ** SQLite supports many different ways to resolve a contraint 663 ** error. ROLLBACK processing means that a constraint violation 664 ** causes the operation in process to fail and for the current transaction 665 ** to be rolled back. ABORT processing means the operation in process 666 ** fails and any prior changes from that one operation are backed out, 667 ** but the transaction is not rolled back. FAIL processing means that 668 ** the operation in progress stops and returns an error code. But prior 669 ** changes due to the same operation are not backed out and no rollback 670 ** occurs. IGNORE means that the particular row that caused the constraint 671 ** error is not inserted or updated. Processing continues and no error 672 ** is returned. REPLACE means that preexisting database rows that caused 673 ** a UNIQUE constraint violation are removed so that the new insert or 674 ** update can proceed. Processing continues and no error is reported. 675 ** 676 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 677 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 678 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 679 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 680 ** referenced table row is propagated into the row that holds the 681 ** foreign key. 682 ** 683 ** The following symbolic values are used to record which type 684 ** of action to take. 685 */ 686 #define OE_None 0 /* There is no constraint to check */ 687 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 688 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 689 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 690 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 691 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 692 693 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 694 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 695 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 696 #define OE_Cascade 9 /* Cascade the changes */ 697 698 #define OE_Default 99 /* Do whatever the default action is */ 699 700 701 /* 702 ** An instance of the following structure is passed as the first 703 ** argument to sqlite3VdbeKeyCompare and is used to control the 704 ** comparison of the two index keys. 705 ** 706 ** If the KeyInfo.incrKey value is true and the comparison would 707 ** otherwise be equal, then return a result as if the second key 708 ** were larger. 709 */ 710 struct KeyInfo { 711 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 712 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 713 int nField; /* Number of entries in aColl[] */ 714 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 715 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 716 }; 717 718 /* 719 ** Each SQL index is represented in memory by an 720 ** instance of the following structure. 721 ** 722 ** The columns of the table that are to be indexed are described 723 ** by the aiColumn[] field of this structure. For example, suppose 724 ** we have the following table and index: 725 ** 726 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 727 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 728 ** 729 ** In the Table structure describing Ex1, nCol==3 because there are 730 ** three columns in the table. In the Index structure describing 731 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 732 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 733 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 734 ** The second column to be indexed (c1) has an index of 0 in 735 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 736 ** 737 ** The Index.onError field determines whether or not the indexed columns 738 ** must be unique and what to do if they are not. When Index.onError=OE_None, 739 ** it means this is not a unique index. Otherwise it is a unique index 740 ** and the value of Index.onError indicate the which conflict resolution 741 ** algorithm to employ whenever an attempt is made to insert a non-unique 742 ** element. 743 */ 744 struct Index { 745 char *zName; /* Name of this index */ 746 int nColumn; /* Number of columns in the table used by this index */ 747 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 748 int *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 749 Table *pTable; /* The SQL table being indexed */ 750 int tnum; /* Page containing root of this index in database file */ 751 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 752 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 753 u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ 754 char *zColAff; /* String defining the affinity of each column */ 755 Index *pNext; /* The next index associated with the same table */ 756 KeyInfo keyInfo; /* Info on how to order keys. MUST BE LAST */ 757 }; 758 759 /* 760 ** Each token coming out of the lexer is an instance of 761 ** this structure. Tokens are also used as part of an expression. 762 ** 763 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 764 ** may contain random values. Do not make any assuptions about Token.dyn 765 ** and Token.n when Token.z==0. 766 */ 767 struct Token { 768 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 769 unsigned dyn : 1; /* True for malloced memory, false for static */ 770 unsigned n : 31; /* Number of characters in this token */ 771 }; 772 773 /* 774 ** Each node of an expression in the parse tree is an instance 775 ** of this structure. 776 ** 777 ** Expr.op is the opcode. The integer parser token codes are reused 778 ** as opcodes here. For example, the parser defines TK_GE to be an integer 779 ** code representing the ">=" operator. This same integer code is reused 780 ** to represent the greater-than-or-equal-to operator in the expression 781 ** tree. 782 ** 783 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 784 ** of argument if the expression is a function. 785 ** 786 ** Expr.token is the operator token for this node. For some expressions 787 ** that have subexpressions, Expr.token can be the complete text that gave 788 ** rise to the Expr. In the latter case, the token is marked as being 789 ** a compound token. 790 ** 791 ** An expression of the form ID or ID.ID refers to a column in a table. 792 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 793 ** the integer cursor number of a VDBE cursor pointing to that table and 794 ** Expr.iColumn is the column number for the specific column. If the 795 ** expression is used as a result in an aggregate SELECT, then the 796 ** value is also stored in the Expr.iAgg column in the aggregate so that 797 ** it can be accessed after all aggregates are computed. 798 ** 799 ** If the expression is a function, the Expr.iTable is an integer code 800 ** representing which function. If the expression is an unbound variable 801 ** marker (a question mark character '?' in the original SQL) then the 802 ** Expr.iTable holds the index number for that variable. 803 ** 804 ** If the expression is a subquery then Expr.iColumn holds an integer 805 ** register number containing the result of the subquery. If the 806 ** subquery gives a constant result, then iTable is -1. If the subquery 807 ** gives a different answer at different times during statement processing 808 ** then iTable is the address of a subroutine that computes the subquery. 809 ** 810 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 811 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 812 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 813 ** operand. 814 ** 815 ** If the Expr is of type OP_Column, and the table it is selecting from 816 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 817 ** corresponding table definition. 818 */ 819 struct Expr { 820 u8 op; /* Operation performed by this node */ 821 char affinity; /* The affinity of the column or 0 if not a column */ 822 u8 iDb; /* Database referenced by this expression */ 823 u8 flags; /* Various flags. See below */ 824 CollSeq *pColl; /* The collation type of the column or 0 */ 825 Expr *pLeft, *pRight; /* Left and right subnodes */ 826 ExprList *pList; /* A list of expressions used as function arguments 827 ** or in "<expr> IN (<expr-list)" */ 828 Token token; /* An operand token */ 829 Token span; /* Complete text of the expression */ 830 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 831 ** iColumn-th field of the iTable-th table. */ 832 int iAgg; /* When op==TK_COLUMN and pParse->fillAgg==FALSE, pull 833 ** result from the iAgg-th element of the aggregator */ 834 int iAggCtx; /* The value to pass as P1 of OP_AggGet. */ 835 Select *pSelect; /* When the expression is a sub-select. Also the 836 ** right side of "<expr> IN (<select>)" */ 837 Table *pTab; /* Table for OP_Column expressions. */ 838 }; 839 840 /* 841 ** The following are the meanings of bits in the Expr.flags field. 842 */ 843 #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ 844 #define EP_Agg 0x02 /* Contains one or more aggregate functions */ 845 #define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */ 846 #define EP_Error 0x08 /* Expression contains one or more errors */ 847 #define EP_Not 0x10 /* Operator preceeded by NOT */ 848 #define EP_VarSelect 0x20 /* pSelect is correlated, not constant */ 849 850 /* 851 ** These macros can be used to test, set, or clear bits in the 852 ** Expr.flags field. 853 */ 854 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 855 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 856 #define ExprSetProperty(E,P) (E)->flags|=(P) 857 #define ExprClearProperty(E,P) (E)->flags&=~(P) 858 859 /* 860 ** A list of expressions. Each expression may optionally have a 861 ** name. An expr/name combination can be used in several ways, such 862 ** as the list of "expr AS ID" fields following a "SELECT" or in the 863 ** list of "ID = expr" items in an UPDATE. A list of expressions can 864 ** also be used as the argument to a function, in which case the a.zName 865 ** field is not used. 866 */ 867 struct ExprList { 868 int nExpr; /* Number of expressions on the list */ 869 int nAlloc; /* Number of entries allocated below */ 870 struct ExprList_item { 871 Expr *pExpr; /* The list of expressions */ 872 char *zName; /* Token associated with this expression */ 873 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 874 u8 isAgg; /* True if this is an aggregate like count(*) */ 875 u8 done; /* A flag to indicate when processing is finished */ 876 } *a; /* One entry for each expression */ 877 }; 878 879 /* 880 ** An instance of this structure can hold a simple list of identifiers, 881 ** such as the list "a,b,c" in the following statements: 882 ** 883 ** INSERT INTO t(a,b,c) VALUES ...; 884 ** CREATE INDEX idx ON t(a,b,c); 885 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 886 ** 887 ** The IdList.a.idx field is used when the IdList represents the list of 888 ** column names after a table name in an INSERT statement. In the statement 889 ** 890 ** INSERT INTO t(a,b,c) ... 891 ** 892 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 893 */ 894 struct IdList { 895 int nId; /* Number of identifiers on the list */ 896 int nAlloc; /* Number of entries allocated for a[] below */ 897 struct IdList_item { 898 char *zName; /* Name of the identifier */ 899 int idx; /* Index in some Table.aCol[] of a column named zName */ 900 } *a; 901 }; 902 903 /* 904 ** The bitmask datatype defined below is used for various optimizations. 905 */ 906 typedef unsigned int Bitmask; 907 908 /* 909 ** The following structure describes the FROM clause of a SELECT statement. 910 ** Each table or subquery in the FROM clause is a separate element of 911 ** the SrcList.a[] array. 912 ** 913 ** With the addition of multiple database support, the following structure 914 ** can also be used to describe a particular table such as the table that 915 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 916 ** such a table must be a simple name: ID. But in SQLite, the table can 917 ** now be identified by a database name, a dot, then the table name: ID.ID. 918 */ 919 struct SrcList { 920 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 921 i16 nAlloc; /* Number of entries allocated in a[] below */ 922 struct SrcList_item { 923 char *zDatabase; /* Name of database holding this table */ 924 char *zName; /* Name of the table */ 925 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 926 Table *pTab; /* An SQL table corresponding to zName */ 927 Select *pSelect; /* A SELECT statement used in place of a table name */ 928 u8 jointype; /* Type of join between this table and the next */ 929 i16 iCursor; /* The VDBE cursor number used to access this table */ 930 Expr *pOn; /* The ON clause of a join */ 931 IdList *pUsing; /* The USING clause of a join */ 932 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 933 } a[1]; /* One entry for each identifier on the list */ 934 }; 935 936 /* 937 ** Permitted values of the SrcList.a.jointype field 938 */ 939 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 940 #define JT_NATURAL 0x0002 /* True for a "natural" join */ 941 #define JT_LEFT 0x0004 /* Left outer join */ 942 #define JT_RIGHT 0x0008 /* Right outer join */ 943 #define JT_OUTER 0x0010 /* The "OUTER" keyword is present */ 944 #define JT_ERROR 0x0020 /* unknown or unsupported join type */ 945 946 /* 947 ** For each nested loop in a WHERE clause implementation, the WhereInfo 948 ** structure contains a single instance of this structure. This structure 949 ** is intended to be private the the where.c module and should not be 950 ** access or modified by other modules. 951 */ 952 struct WhereLevel { 953 int iFrom; /* Which entry in the FROM clause */ 954 int flags; /* Flags associated with this level */ 955 int iMem; /* First memory cell used by this level */ 956 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 957 Index *pIdx; /* Index used. NULL if no index */ 958 int iTabCur; /* The VDBE cursor used to access the table */ 959 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 960 int brk; /* Jump here to break out of the loop */ 961 int cont; /* Jump here to continue with the next loop cycle */ 962 int top; /* First instruction of interior of the loop */ 963 int op, p1, p2; /* Opcode used to terminate the loop */ 964 int nEq; /* Number of == or IN constraints on this loop */ 965 int nIn; /* Number of IN operators constraining this loop */ 966 int *aInLoop; /* Loop terminators for IN operators */ 967 }; 968 969 /* 970 ** The WHERE clause processing routine has two halves. The 971 ** first part does the start of the WHERE loop and the second 972 ** half does the tail of the WHERE loop. An instance of 973 ** this structure is returned by the first half and passed 974 ** into the second half to give some continuity. 975 */ 976 struct WhereInfo { 977 Parse *pParse; 978 SrcList *pTabList; /* List of tables in the join */ 979 int iTop; /* The very beginning of the WHERE loop */ 980 int iContinue; /* Jump here to continue with next record */ 981 int iBreak; /* Jump here to break out of the loop */ 982 int nLevel; /* Number of nested loop */ 983 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 984 }; 985 986 /* 987 ** A NameContext defines a context in which to resolve table and column 988 ** names. The context consists of a list of tables (the pSrcList) field and 989 ** a list of named expression (pEList). The named expression list may 990 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 991 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 992 ** pEList corresponds to the result set of a SELECT and is NULL for 993 ** other statements. 994 ** 995 ** NameContexts can be nested. When resolving names, the inner-most 996 ** context is searched first. If no match is found, the next outer 997 ** context is checked. If there is still no match, the next context 998 ** is checked. This process continues until either a match is found 999 ** or all contexts are check. When a match is found, the nRef member of 1000 ** the context containing the match is incremented. 1001 ** 1002 ** Each subquery gets a new NameContext. The pNext field points to the 1003 ** NameContext in the parent query. Thus the process of scanning the 1004 ** NameContext list corresponds to searching through successively outer 1005 ** subqueries looking for a match. 1006 */ 1007 struct NameContext { 1008 Parse *pParse; /* The parser */ 1009 SrcList *pSrcList; /* One or more tables used to resolve names */ 1010 ExprList *pEList; /* Optional list of named expressions */ 1011 int nRef; /* Number of names resolved by this context */ 1012 int nErr; /* Number of errors encountered while resolving names */ 1013 u8 allowAgg; /* Aggregate functions allowed here */ 1014 u8 hasAgg; 1015 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1016 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1017 }; 1018 1019 /* 1020 ** An instance of the following structure contains all information 1021 ** needed to generate code for a single SELECT statement. 1022 ** 1023 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1024 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1025 ** limit and nOffset to the value of the offset (or 0 if there is not 1026 ** offset). But later on, nLimit and nOffset become the memory locations 1027 ** in the VDBE that record the limit and offset counters. 1028 */ 1029 struct Select { 1030 ExprList *pEList; /* The fields of the result */ 1031 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1032 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1033 SrcList *pSrc; /* The FROM clause */ 1034 Expr *pWhere; /* The WHERE clause */ 1035 ExprList *pGroupBy; /* The GROUP BY clause */ 1036 Expr *pHaving; /* The HAVING clause */ 1037 ExprList *pOrderBy; /* The ORDER BY clause */ 1038 Select *pPrior; /* Prior select in a compound select statement */ 1039 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1040 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1041 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1042 IdList **ppOpenVirtual;/* OP_OpenVirtual addresses used by multi-selects */ 1043 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1044 u8 isAgg; /* True if this is an aggregate query */ 1045 }; 1046 1047 /* 1048 ** The results of a select can be distributed in several ways. 1049 */ 1050 #define SRT_Callback 1 /* Invoke a callback with each row of result */ 1051 #define SRT_Mem 2 /* Store result in a memory cell */ 1052 #define SRT_Set 3 /* Store result as unique keys in a table */ 1053 #define SRT_Union 5 /* Store result as keys in a table */ 1054 #define SRT_Except 6 /* Remove result from a UNION table */ 1055 #define SRT_Table 7 /* Store result as data with a unique key */ 1056 #define SRT_TempTable 8 /* Store result in a trasient table */ 1057 #define SRT_Discard 9 /* Do not save the results anywhere */ 1058 #define SRT_Sorter 10 /* Store results in the sorter */ 1059 #define SRT_Subroutine 11 /* Call a subroutine to handle results */ 1060 #define SRT_Exists 12 /* Put 0 or 1 in a memory cell */ 1061 1062 /* 1063 ** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)") 1064 ** we have to do some additional analysis of expressions. An instance 1065 ** of the following structure holds information about a single subexpression 1066 ** somewhere in the SELECT statement. An array of these structures holds 1067 ** all the information we need to generate code for aggregate 1068 ** expressions. 1069 ** 1070 ** Note that when analyzing a SELECT containing aggregates, both 1071 ** non-aggregate field variables and aggregate functions are stored 1072 ** in the AggExpr array of the Parser structure. 1073 ** 1074 ** The pExpr field points to an expression that is part of either the 1075 ** field list, the GROUP BY clause, the HAVING clause or the ORDER BY 1076 ** clause. The expression will be freed when those clauses are cleaned 1077 ** up. Do not try to delete the expression attached to AggExpr.pExpr. 1078 ** 1079 ** If AggExpr.pExpr==0, that means the expression is "count(*)". 1080 */ 1081 struct AggExpr { 1082 int isAgg; /* if TRUE contains an aggregate function */ 1083 Expr *pExpr; /* The expression */ 1084 FuncDef *pFunc; /* Information about the aggregate function */ 1085 }; 1086 1087 /* 1088 ** An SQL parser context. A copy of this structure is passed through 1089 ** the parser and down into all the parser action routine in order to 1090 ** carry around information that is global to the entire parse. 1091 ** 1092 ** The structure is divided into two parts. When the parser and code 1093 ** generate call themselves recursively, the first part of the structure 1094 ** is constant but the second part is reset at the beginning and end of 1095 ** each recursion. 1096 */ 1097 struct Parse { 1098 sqlite3 *db; /* The main database structure */ 1099 int rc; /* Return code from execution */ 1100 char *zErrMsg; /* An error message */ 1101 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1102 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1103 u8 nameClash; /* A permanent table name clashes with temp table name */ 1104 u8 checkSchema; /* Causes schema cookie check after an error */ 1105 u8 nested; /* Number of nested calls to the parser/code generator */ 1106 u8 fillAgg; /* If true, ignore the Expr.iAgg field. Normally false */ 1107 int nErr; /* Number of errors seen */ 1108 int nTab; /* Number of previously allocated VDBE cursors */ 1109 int nMem; /* Number of memory cells used so far */ 1110 int nSet; /* Number of sets used so far */ 1111 u32 writeMask; /* Start a write transaction on these databases */ 1112 u32 cookieMask; /* Bitmask of schema verified databases */ 1113 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1114 int cookieValue[MAX_ATTACHED+2]; /* Values of cookies to verify */ 1115 1116 /* Above is constant between recursions. Below is reset before and after 1117 ** each recursion */ 1118 1119 int nVar; /* Number of '?' variables seen in the SQL so far */ 1120 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1121 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1122 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1123 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1124 Token sErrToken; /* The token at which the error occurred */ 1125 Token sNameToken; /* Token with unqualified schema object name */ 1126 Token sLastToken; /* The last token parsed */ 1127 const char *zSql; /* All SQL text */ 1128 const char *zTail; /* All SQL text past the last semicolon parsed */ 1129 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1130 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1131 TriggerStack *trigStack; /* Trigger actions being coded */ 1132 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1133 int nAgg; /* Number of aggregate expressions */ 1134 AggExpr *aAgg; /* An array of aggregate expressions */ 1135 int nMaxDepth; /* Maximum depth of subquery recursion */ 1136 }; 1137 1138 /* 1139 ** An instance of the following structure can be declared on a stack and used 1140 ** to save the Parse.zAuthContext value so that it can be restored later. 1141 */ 1142 struct AuthContext { 1143 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1144 Parse *pParse; /* The Parse structure */ 1145 }; 1146 1147 /* 1148 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1149 */ 1150 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1151 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1152 1153 /* 1154 * Each trigger present in the database schema is stored as an instance of 1155 * struct Trigger. 1156 * 1157 * Pointers to instances of struct Trigger are stored in two ways. 1158 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1159 * database). This allows Trigger structures to be retrieved by name. 1160 * 2. All triggers associated with a single table form a linked list, using the 1161 * pNext member of struct Trigger. A pointer to the first element of the 1162 * linked list is stored as the "pTrigger" member of the associated 1163 * struct Table. 1164 * 1165 * The "step_list" member points to the first element of a linked list 1166 * containing the SQL statements specified as the trigger program. 1167 */ 1168 struct Trigger { 1169 char *name; /* The name of the trigger */ 1170 char *table; /* The table or view to which the trigger applies */ 1171 u8 iDb; /* Database containing this trigger */ 1172 u8 iTabDb; /* Database containing Trigger.table */ 1173 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1174 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1175 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1176 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1177 the <column-list> is stored here */ 1178 int foreach; /* One of TK_ROW or TK_STATEMENT */ 1179 Token nameToken; /* Token containing zName. Use during parsing only */ 1180 1181 TriggerStep *step_list; /* Link list of trigger program steps */ 1182 Trigger *pNext; /* Next trigger associated with the table */ 1183 }; 1184 1185 /* 1186 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1187 ** determine which. 1188 ** 1189 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1190 ** In that cases, the constants below can be ORed together. 1191 */ 1192 #define TRIGGER_BEFORE 1 1193 #define TRIGGER_AFTER 2 1194 1195 /* 1196 * An instance of struct TriggerStep is used to store a single SQL statement 1197 * that is a part of a trigger-program. 1198 * 1199 * Instances of struct TriggerStep are stored in a singly linked list (linked 1200 * using the "pNext" member) referenced by the "step_list" member of the 1201 * associated struct Trigger instance. The first element of the linked list is 1202 * the first step of the trigger-program. 1203 * 1204 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1205 * "SELECT" statement. The meanings of the other members is determined by the 1206 * value of "op" as follows: 1207 * 1208 * (op == TK_INSERT) 1209 * orconf -> stores the ON CONFLICT algorithm 1210 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1211 * this stores a pointer to the SELECT statement. Otherwise NULL. 1212 * target -> A token holding the name of the table to insert into. 1213 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1214 * this stores values to be inserted. Otherwise NULL. 1215 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1216 * statement, then this stores the column-names to be 1217 * inserted into. 1218 * 1219 * (op == TK_DELETE) 1220 * target -> A token holding the name of the table to delete from. 1221 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1222 * Otherwise NULL. 1223 * 1224 * (op == TK_UPDATE) 1225 * target -> A token holding the name of the table to update rows of. 1226 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1227 * Otherwise NULL. 1228 * pExprList -> A list of the columns to update and the expressions to update 1229 * them to. See sqlite3Update() documentation of "pChanges" 1230 * argument. 1231 * 1232 */ 1233 struct TriggerStep { 1234 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1235 int orconf; /* OE_Rollback etc. */ 1236 Trigger *pTrig; /* The trigger that this step is a part of */ 1237 1238 Select *pSelect; /* Valid for SELECT and sometimes 1239 INSERT steps (when pExprList == 0) */ 1240 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1241 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1242 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1243 INSERT steps (when pSelect == 0) */ 1244 IdList *pIdList; /* Valid for INSERT statements only */ 1245 1246 TriggerStep * pNext; /* Next in the link-list */ 1247 }; 1248 1249 /* 1250 * An instance of struct TriggerStack stores information required during code 1251 * generation of a single trigger program. While the trigger program is being 1252 * coded, its associated TriggerStack instance is pointed to by the 1253 * "pTriggerStack" member of the Parse structure. 1254 * 1255 * The pTab member points to the table that triggers are being coded on. The 1256 * newIdx member contains the index of the vdbe cursor that points at the temp 1257 * table that stores the new.* references. If new.* references are not valid 1258 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1259 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1260 * 1261 * The ON CONFLICT policy to be used for the trigger program steps is stored 1262 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1263 * specified for individual triggers steps is used. 1264 * 1265 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1266 * constructed. When coding nested triggers (triggers fired by other triggers) 1267 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1268 * pointer. Once the nested trigger has been coded, the pNext value is restored 1269 * to the pTriggerStack member of the Parse stucture and coding of the parent 1270 * trigger continues. 1271 * 1272 * Before a nested trigger is coded, the linked list pointed to by the 1273 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1274 * recursively. If this condition is detected, the nested trigger is not coded. 1275 */ 1276 struct TriggerStack { 1277 Table *pTab; /* Table that triggers are currently being coded on */ 1278 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1279 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1280 int orconf; /* Current orconf policy */ 1281 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1282 Trigger *pTrigger; /* The trigger currently being coded */ 1283 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1284 }; 1285 1286 /* 1287 ** The following structure contains information used by the sqliteFix... 1288 ** routines as they walk the parse tree to make database references 1289 ** explicit. 1290 */ 1291 typedef struct DbFixer DbFixer; 1292 struct DbFixer { 1293 Parse *pParse; /* The parsing context. Error messages written here */ 1294 const char *zDb; /* Make sure all objects are contained in this database */ 1295 const char *zType; /* Type of the container - used for error messages */ 1296 const Token *pName; /* Name of the container - used for error messages */ 1297 }; 1298 1299 /* 1300 ** A pointer to this structure is used to communicate information 1301 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1302 */ 1303 typedef struct { 1304 sqlite3 *db; /* The database being initialized */ 1305 char **pzErrMsg; /* Error message stored here */ 1306 } InitData; 1307 1308 /* 1309 * This global flag is set for performance testing of triggers. When it is set 1310 * SQLite will perform the overhead of building new and old trigger references 1311 * even when no triggers exist 1312 */ 1313 extern int sqlite3_always_code_trigger_setup; 1314 1315 /* 1316 ** Internal function prototypes 1317 */ 1318 int sqlite3StrICmp(const char *, const char *); 1319 int sqlite3StrNICmp(const char *, const char *, int); 1320 int sqlite3HashNoCase(const char *, int); 1321 int sqlite3IsNumber(const char*, int*, u8); 1322 int sqlite3Compare(const char *, const char *); 1323 int sqlite3SortCompare(const char *, const char *); 1324 void sqlite3RealToSortable(double r, char *); 1325 #ifdef SQLITE_MEMDEBUG 1326 void *sqlite3Malloc_(int,int,char*,int); 1327 void sqlite3Free_(void*,char*,int); 1328 void *sqlite3Realloc_(void*,int,char*,int); 1329 char *sqlite3StrDup_(const char*,char*,int); 1330 char *sqlite3StrNDup_(const char*, int,char*,int); 1331 void sqlite3CheckMemory(void*,int); 1332 #else 1333 void *sqlite3Malloc(int); 1334 void *sqlite3MallocRaw(int); 1335 void sqlite3Free(void*); 1336 void *sqlite3Realloc(void*,int); 1337 char *sqlite3StrDup(const char*); 1338 char *sqlite3StrNDup(const char*, int); 1339 # define sqlite3CheckMemory(a,b) 1340 # define sqlite3MallocX sqlite3Malloc 1341 #endif 1342 void sqlite3FreeX(void*); 1343 void *sqlite3MallocX(int); 1344 char *sqlite3MPrintf(const char*, ...); 1345 char *sqlite3VMPrintf(const char*, va_list); 1346 void sqlite3DebugPrintf(const char*, ...); 1347 void *sqlite3TextToPtr(const char*); 1348 void sqlite3SetString(char **, ...); 1349 void sqlite3ErrorMsg(Parse*, const char*, ...); 1350 void sqlite3Dequote(char*); 1351 int sqlite3KeywordCode(const char*, int); 1352 int sqlite3RunParser(Parse*, const char*, char **); 1353 void sqlite3FinishCoding(Parse*); 1354 Expr *sqlite3Expr(int, Expr*, Expr*, const Token*); 1355 Expr *sqlite3RegisterExpr(Parse*,Token*); 1356 Expr *sqlite3ExprAnd(Expr*, Expr*); 1357 void sqlite3ExprSpan(Expr*,Token*,Token*); 1358 Expr *sqlite3ExprFunction(ExprList*, Token*); 1359 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1360 void sqlite3ExprDelete(Expr*); 1361 ExprList *sqlite3ExprListAppend(ExprList*,Expr*,Token*); 1362 void sqlite3ExprListDelete(ExprList*); 1363 int sqlite3Init(sqlite3*, char**); 1364 int sqlite3InitCallback(void*, int, char**, char**); 1365 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1366 void sqlite3ResetInternalSchema(sqlite3*, int); 1367 void sqlite3BeginParse(Parse*,int); 1368 void sqlite3RollbackInternalChanges(sqlite3*); 1369 void sqlite3CommitInternalChanges(sqlite3*); 1370 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1371 void sqlite3OpenMasterTable(Vdbe *v, int); 1372 void sqlite3StartTable(Parse*,Token*,Token*,Token*,int,int); 1373 void sqlite3AddColumn(Parse*,Token*); 1374 void sqlite3AddNotNull(Parse*, int); 1375 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int); 1376 void sqlite3AddColumnType(Parse*,Token*); 1377 void sqlite3AddDefaultValue(Parse*,Expr*); 1378 void sqlite3AddCollateType(Parse*, const char*, int); 1379 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1380 1381 #ifndef SQLITE_OMIT_VIEW 1382 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int); 1383 int sqlite3ViewGetColumnNames(Parse*,Table*); 1384 #else 1385 # define sqlite3ViewGetColumnNames(A,B) 0 1386 #endif 1387 1388 void sqlite3DropTable(Parse*, SrcList*, int); 1389 void sqlite3DeleteTable(sqlite3*, Table*); 1390 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1391 IdList *sqlite3IdListAppend(IdList*, Token*); 1392 int sqlite3IdListIndex(IdList*,const char*); 1393 SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*); 1394 void sqlite3SrcListAddAlias(SrcList*, Token*); 1395 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1396 void sqlite3IdListDelete(IdList*); 1397 void sqlite3SrcListDelete(SrcList*); 1398 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1399 Token*); 1400 void sqlite3DropIndex(Parse*, SrcList*); 1401 void sqlite3AddKeyType(Vdbe*, ExprList*); 1402 void sqlite3AddIdxKeyType(Vdbe*, Index*); 1403 int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); 1404 Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1405 int,Expr*,Expr*); 1406 void sqlite3SelectDelete(Select*); 1407 void sqlite3SelectUnbind(Select*); 1408 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1409 int sqlite3IsReadOnly(Parse*, Table*, int); 1410 void sqlite3OpenTableForReading(Vdbe*, int iCur, Table*); 1411 void sqlite3OpenTable(Vdbe*, int iCur, Table*, int); 1412 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1413 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1414 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); 1415 void sqlite3WhereEnd(WhereInfo*); 1416 void sqlite3ExprCode(Parse*, Expr*); 1417 void sqlite3ExprCodeAndCache(Parse*, Expr*); 1418 int sqlite3ExprCodeExprList(Parse*, ExprList*); 1419 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1420 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1421 void sqlite3NextedParse(Parse*, const char*, ...); 1422 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1423 Table *sqlite3LocateTable(Parse*,const char*, const char*); 1424 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1425 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1426 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1427 void sqlite3Vacuum(Parse*, Token*); 1428 int sqlite3RunVacuum(char**, sqlite3*); 1429 char *sqlite3NameFromToken(Token*); 1430 int sqlite3ExprCheck(Parse*, Expr*, int, int*); 1431 int sqlite3ExprCompare(Expr*, Expr*); 1432 int sqliteFuncId(Token*); 1433 int sqlite3ExprResolveNames(NameContext *, Expr *); 1434 int sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1435 Vdbe *sqlite3GetVdbe(Parse*); 1436 void sqlite3Randomness(int, void*); 1437 void sqlite3RollbackAll(sqlite3*); 1438 void sqlite3CodeVerifySchema(Parse*, int); 1439 void sqlite3BeginTransaction(Parse*, int); 1440 void sqlite3CommitTransaction(Parse*); 1441 void sqlite3RollbackTransaction(Parse*); 1442 int sqlite3ExprIsConstant(Expr*); 1443 int sqlite3ExprIsConstantOrFunction(Expr*); 1444 int sqlite3ExprIsInteger(Expr*, int*); 1445 int sqlite3IsRowid(const char*); 1446 void sqlite3GenerateRowDelete(sqlite3*, Vdbe*, Table*, int, int); 1447 void sqlite3GenerateRowIndexDelete(sqlite3*, Vdbe*, Table*, int, char*); 1448 void sqlite3GenerateIndexKey(Vdbe*, Index*, int); 1449 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1450 void sqlite3CompleteInsertion(Parse*, Table*, int, char*, int, int, int); 1451 void sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 1452 void sqlite3BeginWriteOperation(Parse*, int, int); 1453 Expr *sqlite3ExprDup(Expr*); 1454 void sqlite3TokenCopy(Token*, Token*); 1455 ExprList *sqlite3ExprListDup(ExprList*); 1456 SrcList *sqlite3SrcListDup(SrcList*); 1457 IdList *sqlite3IdListDup(IdList*); 1458 Select *sqlite3SelectDup(Select*); 1459 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 1460 void sqlite3RegisterBuiltinFunctions(sqlite3*); 1461 void sqlite3RegisterDateTimeFunctions(sqlite3*); 1462 int sqlite3SafetyOn(sqlite3*); 1463 int sqlite3SafetyOff(sqlite3*); 1464 int sqlite3SafetyCheck(sqlite3*); 1465 void sqlite3ChangeCookie(sqlite3*, Vdbe*, int); 1466 1467 #ifndef SQLITE_OMIT_TRIGGER 1468 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 1469 int,Expr*,int); 1470 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 1471 void sqlite3DropTrigger(Parse*, SrcList*); 1472 void sqlite3DropTriggerPtr(Parse*, Trigger*, int); 1473 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 1474 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1475 int, int); 1476 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1477 void sqlite3DeleteTriggerStep(TriggerStep*); 1478 TriggerStep *sqlite3TriggerSelectStep(Select*); 1479 TriggerStep *sqlite3TriggerInsertStep(Token*, IdList*, ExprList*,Select*,int); 1480 TriggerStep *sqlite3TriggerUpdateStep(Token*, ExprList*, Expr*, int); 1481 TriggerStep *sqlite3TriggerDeleteStep(Token*, Expr*); 1482 void sqlite3DeleteTrigger(Trigger*); 1483 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 1484 #else 1485 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 1486 # define sqlite3DeleteTrigger(A) 1487 # define sqlite3DropTriggerPtr(A,B,C) 1488 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 1489 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 0 1490 #endif 1491 1492 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 1493 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 1494 void sqlite3DeferForeignKey(Parse*, int); 1495 #ifndef SQLITE_OMIT_AUTHORIZATION 1496 void sqlite3AuthRead(Parse*,Expr*,SrcList*); 1497 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 1498 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 1499 void sqlite3AuthContextPop(AuthContext*); 1500 #else 1501 # define sqlite3AuthRead(a,b,c) 1502 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 1503 # define sqlite3AuthContextPush(a,b,c) 1504 # define sqlite3AuthContextPop(a) ((void)(a)) 1505 #endif 1506 void sqlite3Attach(Parse*, Token*, Token*, int, Token*); 1507 void sqlite3Detach(Parse*, Token*); 1508 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 1509 int omitJournal, int nCache, Btree **ppBtree); 1510 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 1511 int sqlite3FixSrcList(DbFixer*, SrcList*); 1512 int sqlite3FixSelect(DbFixer*, Select*); 1513 int sqlite3FixExpr(DbFixer*, Expr*); 1514 int sqlite3FixExprList(DbFixer*, ExprList*); 1515 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 1516 int sqlite3AtoF(const char *z, double*); 1517 char *sqlite3_snprintf(int,char*,const char*,...); 1518 int sqlite3GetInt32(const char *, int*); 1519 int sqlite3FitsIn64Bits(const char *); 1520 int sqlite3utf16ByteLen(const void *pData, int nChar); 1521 int sqlite3utf8CharLen(const char *pData, int nByte); 1522 int sqlite3ReadUtf8(const unsigned char *); 1523 int sqlite3PutVarint(unsigned char *, u64); 1524 int sqlite3GetVarint(const unsigned char *, u64 *); 1525 int sqlite3GetVarint32(const unsigned char *, u32 *); 1526 int sqlite3VarintLen(u64 v); 1527 void sqlite3IndexAffinityStr(Vdbe *, Index *); 1528 void sqlite3TableAffinityStr(Vdbe *, Table *); 1529 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 1530 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 1531 char sqlite3ExprAffinity(Expr *pExpr); 1532 int sqlite3atoi64(const char*, i64*); 1533 void sqlite3Error(sqlite3*, int, const char*,...); 1534 void *sqlite3HexToBlob(const char *z); 1535 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 1536 const char *sqlite3ErrStr(int); 1537 int sqlite3ReadUniChar(const char *zStr, int *pOffset, u8 *pEnc, int fold); 1538 int sqlite3ReadSchema(Parse *pParse); 1539 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 1540 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 1541 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 1542 int sqlite3CheckCollSeq(Parse *, CollSeq *); 1543 int sqlite3CheckIndexCollSeq(Parse *, Index *); 1544 int sqlite3CheckObjectName(Parse *, const char *); 1545 void sqlite3VdbeSetChanges(sqlite3 *, int); 1546 void sqlite3utf16Substr(sqlite3_context *,int,sqlite3_value **); 1547 1548 const void *sqlite3ValueText(sqlite3_value*, u8); 1549 int sqlite3ValueBytes(sqlite3_value*, u8); 1550 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); 1551 void sqlite3ValueFree(sqlite3_value*); 1552 sqlite3_value *sqlite3ValueNew(); 1553 sqlite3_value *sqlite3GetTransientValue(sqlite3*db); 1554 int sqlite3ValueFromExpr(Expr *, u8, u8, sqlite3_value **); 1555 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 1556 extern const unsigned char sqlite3UpperToLower[]; 1557 void sqlite3RootPageMoved(Db*, int, int); 1558 void sqlite3Reindex(Parse*, Token*, Token*); 1559 void sqlite3AlterFunctions(sqlite3*); 1560 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 1561 int sqlite3GetToken(const unsigned char *, int *); 1562 void sqlite3NestedParse(Parse*, const char*, ...); 1563 void sqlite3ExpirePreparedStatements(sqlite3*); 1564 void sqlite3CodeSubselect(Parse *, Expr *); 1565 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 1566 void sqlite3ColumnDefault(Vdbe *, Table *, int); 1567 void sqlite3AlterFinishAddColumn(Parse *, Token *); 1568 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 1569 const char *sqlite3TestErrorName(int); 1570 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 1571 char sqlite3AffinityType(const Token*); 1572 void sqlite3Analyze(Parse*, Token*, Token*); 1573 int sqlite3InvokeBusyHandler(BusyHandler*); 1574 int sqlite3FindDb(sqlite3*, Token*); 1575 void sqlite3AnalysisLoad(sqlite3*,int iDB); 1576 void sqlite3DefaultRowEst(Index*); 1577 1578 #ifdef SQLITE_SSE 1579 #include "sseInt.h" 1580 #endif 1581 1582 #endif 1583