1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 70 # define _BSD_SOURCE 71 #endif 72 73 /* 74 ** Include standard header files as necessary 75 */ 76 #ifdef HAVE_STDINT_H 77 #include <stdint.h> 78 #endif 79 #ifdef HAVE_INTTYPES_H 80 #include <inttypes.h> 81 #endif 82 83 /* 84 ** The following macros are used to cast pointers to integers and 85 ** integers to pointers. The way you do this varies from one compiler 86 ** to the next, so we have developed the following set of #if statements 87 ** to generate appropriate macros for a wide range of compilers. 88 ** 89 ** The correct "ANSI" way to do this is to use the intptr_t type. 90 ** Unfortunately, that typedef is not available on all compilers, or 91 ** if it is available, it requires an #include of specific headers 92 ** that vary from one machine to the next. 93 ** 94 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 95 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 96 ** So we have to define the macros in different ways depending on the 97 ** compiler. 98 */ 99 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 100 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 101 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 102 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 104 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 105 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 107 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 108 #else /* Generates a warning - but it always works */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 111 #endif 112 113 /* 114 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 115 ** 0 means mutexes are permanently disable and the library is never 116 ** threadsafe. 1 means the library is serialized which is the highest 117 ** level of threadsafety. 2 means the libary is multithreaded - multiple 118 ** threads can use SQLite as long as no two threads try to use the same 119 ** database connection at the same time. 120 ** 121 ** Older versions of SQLite used an optional THREADSAFE macro. 122 ** We support that for legacy. 123 */ 124 #if !defined(SQLITE_THREADSAFE) 125 #if defined(THREADSAFE) 126 # define SQLITE_THREADSAFE THREADSAFE 127 #else 128 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 129 #endif 130 #endif 131 132 /* 133 ** Powersafe overwrite is on by default. But can be turned off using 134 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 135 */ 136 #ifndef SQLITE_POWERSAFE_OVERWRITE 137 # define SQLITE_POWERSAFE_OVERWRITE 1 138 #endif 139 140 /* 141 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 142 ** It determines whether or not the features related to 143 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 144 ** be overridden at runtime using the sqlite3_config() API. 145 */ 146 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 147 # define SQLITE_DEFAULT_MEMSTATUS 1 148 #endif 149 150 /* 151 ** Exactly one of the following macros must be defined in order to 152 ** specify which memory allocation subsystem to use. 153 ** 154 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 155 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 156 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 157 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 158 ** 159 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 160 ** assert() macro is enabled, each call into the Win32 native heap subsystem 161 ** will cause HeapValidate to be called. If heap validation should fail, an 162 ** assertion will be triggered. 163 ** 164 ** (Historical note: There used to be several other options, but we've 165 ** pared it down to just these three.) 166 ** 167 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 168 ** the default. 169 */ 170 #if defined(SQLITE_SYSTEM_MALLOC) \ 171 + defined(SQLITE_WIN32_MALLOC) \ 172 + defined(SQLITE_ZERO_MALLOC) \ 173 + defined(SQLITE_MEMDEBUG)>1 174 # error "Two or more of the following compile-time configuration options\ 175 are defined but at most one is allowed:\ 176 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 177 SQLITE_ZERO_MALLOC" 178 #endif 179 #if defined(SQLITE_SYSTEM_MALLOC) \ 180 + defined(SQLITE_WIN32_MALLOC) \ 181 + defined(SQLITE_ZERO_MALLOC) \ 182 + defined(SQLITE_MEMDEBUG)==0 183 # define SQLITE_SYSTEM_MALLOC 1 184 #endif 185 186 /* 187 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 188 ** sizes of memory allocations below this value where possible. 189 */ 190 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 191 # define SQLITE_MALLOC_SOFT_LIMIT 1024 192 #endif 193 194 /* 195 ** We need to define _XOPEN_SOURCE as follows in order to enable 196 ** recursive mutexes on most Unix systems. But Mac OS X is different. 197 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 198 ** so it is omitted there. See ticket #2673. 199 ** 200 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 201 ** implemented on some systems. So we avoid defining it at all 202 ** if it is already defined or if it is unneeded because we are 203 ** not doing a threadsafe build. Ticket #2681. 204 ** 205 ** See also ticket #2741. 206 */ 207 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) \ 208 && !defined(__APPLE__) && SQLITE_THREADSAFE 209 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 210 #endif 211 212 /* 213 ** The TCL headers are only needed when compiling the TCL bindings. 214 */ 215 #if defined(SQLITE_TCL) || defined(TCLSH) 216 # include <tcl.h> 217 #endif 218 219 /* 220 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 221 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 222 ** make it true by defining or undefining NDEBUG. 223 ** 224 ** Setting NDEBUG makes the code smaller and run faster by disabling the 225 ** number assert() statements in the code. So we want the default action 226 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 227 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 228 ** feature. 229 */ 230 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 231 # define NDEBUG 1 232 #endif 233 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 234 # undef NDEBUG 235 #endif 236 237 /* 238 ** The testcase() macro is used to aid in coverage testing. When 239 ** doing coverage testing, the condition inside the argument to 240 ** testcase() must be evaluated both true and false in order to 241 ** get full branch coverage. The testcase() macro is inserted 242 ** to help ensure adequate test coverage in places where simple 243 ** condition/decision coverage is inadequate. For example, testcase() 244 ** can be used to make sure boundary values are tested. For 245 ** bitmask tests, testcase() can be used to make sure each bit 246 ** is significant and used at least once. On switch statements 247 ** where multiple cases go to the same block of code, testcase() 248 ** can insure that all cases are evaluated. 249 ** 250 */ 251 #ifdef SQLITE_COVERAGE_TEST 252 void sqlite3Coverage(int); 253 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 254 #else 255 # define testcase(X) 256 #endif 257 258 /* 259 ** The TESTONLY macro is used to enclose variable declarations or 260 ** other bits of code that are needed to support the arguments 261 ** within testcase() and assert() macros. 262 */ 263 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 264 # define TESTONLY(X) X 265 #else 266 # define TESTONLY(X) 267 #endif 268 269 /* 270 ** Sometimes we need a small amount of code such as a variable initialization 271 ** to setup for a later assert() statement. We do not want this code to 272 ** appear when assert() is disabled. The following macro is therefore 273 ** used to contain that setup code. The "VVA" acronym stands for 274 ** "Verification, Validation, and Accreditation". In other words, the 275 ** code within VVA_ONLY() will only run during verification processes. 276 */ 277 #ifndef NDEBUG 278 # define VVA_ONLY(X) X 279 #else 280 # define VVA_ONLY(X) 281 #endif 282 283 /* 284 ** The ALWAYS and NEVER macros surround boolean expressions which 285 ** are intended to always be true or false, respectively. Such 286 ** expressions could be omitted from the code completely. But they 287 ** are included in a few cases in order to enhance the resilience 288 ** of SQLite to unexpected behavior - to make the code "self-healing" 289 ** or "ductile" rather than being "brittle" and crashing at the first 290 ** hint of unplanned behavior. 291 ** 292 ** In other words, ALWAYS and NEVER are added for defensive code. 293 ** 294 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 295 ** be true and false so that the unreachable code then specify will 296 ** not be counted as untested code. 297 */ 298 #if defined(SQLITE_COVERAGE_TEST) 299 # define ALWAYS(X) (1) 300 # define NEVER(X) (0) 301 #elif !defined(NDEBUG) 302 # define ALWAYS(X) ((X)?1:(assert(0),0)) 303 # define NEVER(X) ((X)?(assert(0),1):0) 304 #else 305 # define ALWAYS(X) (X) 306 # define NEVER(X) (X) 307 #endif 308 309 /* 310 ** Return true (non-zero) if the input is a integer that is too large 311 ** to fit in 32-bits. This macro is used inside of various testcase() 312 ** macros to verify that we have tested SQLite for large-file support. 313 */ 314 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 315 316 /* 317 ** The macro unlikely() is a hint that surrounds a boolean 318 ** expression that is usually false. Macro likely() surrounds 319 ** a boolean expression that is usually true. GCC is able to 320 ** use these hints to generate better code, sometimes. 321 */ 322 #if defined(__GNUC__) && 0 323 # define likely(X) __builtin_expect((X),1) 324 # define unlikely(X) __builtin_expect((X),0) 325 #else 326 # define likely(X) !!(X) 327 # define unlikely(X) !!(X) 328 #endif 329 330 #include "sqlite3.h" 331 #include "hash.h" 332 #include "parse.h" 333 #include <stdio.h> 334 #include <stdlib.h> 335 #include <string.h> 336 #include <assert.h> 337 #include <stddef.h> 338 339 /* 340 ** If compiling for a processor that lacks floating point support, 341 ** substitute integer for floating-point 342 */ 343 #ifdef SQLITE_OMIT_FLOATING_POINT 344 # define double sqlite_int64 345 # define float sqlite_int64 346 # define LONGDOUBLE_TYPE sqlite_int64 347 # ifndef SQLITE_BIG_DBL 348 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 349 # endif 350 # define SQLITE_OMIT_DATETIME_FUNCS 1 351 # define SQLITE_OMIT_TRACE 1 352 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 353 # undef SQLITE_HAVE_ISNAN 354 #endif 355 #ifndef SQLITE_BIG_DBL 356 # define SQLITE_BIG_DBL (1e99) 357 #endif 358 359 /* 360 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 361 ** afterward. Having this macro allows us to cause the C compiler 362 ** to omit code used by TEMP tables without messy #ifndef statements. 363 */ 364 #ifdef SQLITE_OMIT_TEMPDB 365 #define OMIT_TEMPDB 1 366 #else 367 #define OMIT_TEMPDB 0 368 #endif 369 370 /* 371 ** The "file format" number is an integer that is incremented whenever 372 ** the VDBE-level file format changes. The following macros define the 373 ** the default file format for new databases and the maximum file format 374 ** that the library can read. 375 */ 376 #define SQLITE_MAX_FILE_FORMAT 4 377 #ifndef SQLITE_DEFAULT_FILE_FORMAT 378 # define SQLITE_DEFAULT_FILE_FORMAT 4 379 #endif 380 381 /* 382 ** Determine whether triggers are recursive by default. This can be 383 ** changed at run-time using a pragma. 384 */ 385 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 386 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 387 #endif 388 389 /* 390 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 391 ** on the command-line 392 */ 393 #ifndef SQLITE_TEMP_STORE 394 # define SQLITE_TEMP_STORE 1 395 #endif 396 397 /* 398 ** GCC does not define the offsetof() macro so we'll have to do it 399 ** ourselves. 400 */ 401 #ifndef offsetof 402 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 403 #endif 404 405 /* 406 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 407 ** not, there are still machines out there that use EBCDIC.) 408 */ 409 #if 'A' == '\301' 410 # define SQLITE_EBCDIC 1 411 #else 412 # define SQLITE_ASCII 1 413 #endif 414 415 /* 416 ** Integers of known sizes. These typedefs might change for architectures 417 ** where the sizes very. Preprocessor macros are available so that the 418 ** types can be conveniently redefined at compile-type. Like this: 419 ** 420 ** cc '-DUINTPTR_TYPE=long long int' ... 421 */ 422 #ifndef UINT32_TYPE 423 # ifdef HAVE_UINT32_T 424 # define UINT32_TYPE uint32_t 425 # else 426 # define UINT32_TYPE unsigned int 427 # endif 428 #endif 429 #ifndef UINT16_TYPE 430 # ifdef HAVE_UINT16_T 431 # define UINT16_TYPE uint16_t 432 # else 433 # define UINT16_TYPE unsigned short int 434 # endif 435 #endif 436 #ifndef INT16_TYPE 437 # ifdef HAVE_INT16_T 438 # define INT16_TYPE int16_t 439 # else 440 # define INT16_TYPE short int 441 # endif 442 #endif 443 #ifndef UINT8_TYPE 444 # ifdef HAVE_UINT8_T 445 # define UINT8_TYPE uint8_t 446 # else 447 # define UINT8_TYPE unsigned char 448 # endif 449 #endif 450 #ifndef INT8_TYPE 451 # ifdef HAVE_INT8_T 452 # define INT8_TYPE int8_t 453 # else 454 # define INT8_TYPE signed char 455 # endif 456 #endif 457 #ifndef LONGDOUBLE_TYPE 458 # define LONGDOUBLE_TYPE long double 459 #endif 460 typedef sqlite_int64 i64; /* 8-byte signed integer */ 461 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 462 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 463 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 464 typedef INT16_TYPE i16; /* 2-byte signed integer */ 465 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 466 typedef INT8_TYPE i8; /* 1-byte signed integer */ 467 468 /* 469 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 470 ** that can be stored in a u32 without loss of data. The value 471 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 472 ** have to specify the value in the less intuitive manner shown: 473 */ 474 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 475 476 /* 477 ** The datatype used to store estimates of the number of rows in a 478 ** table or index. This is an unsigned integer type. For 99.9% of 479 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 480 ** can be used at compile-time if desired. 481 */ 482 #ifdef SQLITE_64BIT_STATS 483 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 484 #else 485 typedef u32 tRowcnt; /* 32-bit is the default */ 486 #endif 487 488 /* 489 ** Macros to determine whether the machine is big or little endian, 490 ** evaluated at runtime. 491 */ 492 #ifdef SQLITE_AMALGAMATION 493 const int sqlite3one = 1; 494 #else 495 extern const int sqlite3one; 496 #endif 497 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 498 || defined(__x86_64) || defined(__x86_64__) 499 # define SQLITE_BIGENDIAN 0 500 # define SQLITE_LITTLEENDIAN 1 501 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 502 #else 503 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 504 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 505 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 506 #endif 507 508 /* 509 ** Constants for the largest and smallest possible 64-bit signed integers. 510 ** These macros are designed to work correctly on both 32-bit and 64-bit 511 ** compilers. 512 */ 513 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 514 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 515 516 /* 517 ** Round up a number to the next larger multiple of 8. This is used 518 ** to force 8-byte alignment on 64-bit architectures. 519 */ 520 #define ROUND8(x) (((x)+7)&~7) 521 522 /* 523 ** Round down to the nearest multiple of 8 524 */ 525 #define ROUNDDOWN8(x) ((x)&~7) 526 527 /* 528 ** Assert that the pointer X is aligned to an 8-byte boundary. This 529 ** macro is used only within assert() to verify that the code gets 530 ** all alignment restrictions correct. 531 ** 532 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 533 ** underlying malloc() implemention might return us 4-byte aligned 534 ** pointers. In that case, only verify 4-byte alignment. 535 */ 536 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 537 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 538 #else 539 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 540 #endif 541 542 543 /* 544 ** An instance of the following structure is used to store the busy-handler 545 ** callback for a given sqlite handle. 546 ** 547 ** The sqlite.busyHandler member of the sqlite struct contains the busy 548 ** callback for the database handle. Each pager opened via the sqlite 549 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 550 ** callback is currently invoked only from within pager.c. 551 */ 552 typedef struct BusyHandler BusyHandler; 553 struct BusyHandler { 554 int (*xFunc)(void *,int); /* The busy callback */ 555 void *pArg; /* First arg to busy callback */ 556 int nBusy; /* Incremented with each busy call */ 557 }; 558 559 /* 560 ** Name of the master database table. The master database table 561 ** is a special table that holds the names and attributes of all 562 ** user tables and indices. 563 */ 564 #define MASTER_NAME "sqlite_master" 565 #define TEMP_MASTER_NAME "sqlite_temp_master" 566 567 /* 568 ** The root-page of the master database table. 569 */ 570 #define MASTER_ROOT 1 571 572 /* 573 ** The name of the schema table. 574 */ 575 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 576 577 /* 578 ** A convenience macro that returns the number of elements in 579 ** an array. 580 */ 581 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 582 583 /* 584 ** Determine if the argument is a power of two 585 */ 586 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 587 588 /* 589 ** The following value as a destructor means to use sqlite3DbFree(). 590 ** The sqlite3DbFree() routine requires two parameters instead of the 591 ** one parameter that destructors normally want. So we have to introduce 592 ** this magic value that the code knows to handle differently. Any 593 ** pointer will work here as long as it is distinct from SQLITE_STATIC 594 ** and SQLITE_TRANSIENT. 595 */ 596 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 597 598 /* 599 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 600 ** not support Writable Static Data (WSD) such as global and static variables. 601 ** All variables must either be on the stack or dynamically allocated from 602 ** the heap. When WSD is unsupported, the variable declarations scattered 603 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 604 ** macro is used for this purpose. And instead of referencing the variable 605 ** directly, we use its constant as a key to lookup the run-time allocated 606 ** buffer that holds real variable. The constant is also the initializer 607 ** for the run-time allocated buffer. 608 ** 609 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 610 ** macros become no-ops and have zero performance impact. 611 */ 612 #ifdef SQLITE_OMIT_WSD 613 #define SQLITE_WSD const 614 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 615 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 616 int sqlite3_wsd_init(int N, int J); 617 void *sqlite3_wsd_find(void *K, int L); 618 #else 619 #define SQLITE_WSD 620 #define GLOBAL(t,v) v 621 #define sqlite3GlobalConfig sqlite3Config 622 #endif 623 624 /* 625 ** The following macros are used to suppress compiler warnings and to 626 ** make it clear to human readers when a function parameter is deliberately 627 ** left unused within the body of a function. This usually happens when 628 ** a function is called via a function pointer. For example the 629 ** implementation of an SQL aggregate step callback may not use the 630 ** parameter indicating the number of arguments passed to the aggregate, 631 ** if it knows that this is enforced elsewhere. 632 ** 633 ** When a function parameter is not used at all within the body of a function, 634 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 635 ** However, these macros may also be used to suppress warnings related to 636 ** parameters that may or may not be used depending on compilation options. 637 ** For example those parameters only used in assert() statements. In these 638 ** cases the parameters are named as per the usual conventions. 639 */ 640 #define UNUSED_PARAMETER(x) (void)(x) 641 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 642 643 /* 644 ** Forward references to structures 645 */ 646 typedef struct AggInfo AggInfo; 647 typedef struct AuthContext AuthContext; 648 typedef struct AutoincInfo AutoincInfo; 649 typedef struct Bitvec Bitvec; 650 typedef struct CollSeq CollSeq; 651 typedef struct Column Column; 652 typedef struct Db Db; 653 typedef struct Schema Schema; 654 typedef struct Expr Expr; 655 typedef struct ExprList ExprList; 656 typedef struct ExprSpan ExprSpan; 657 typedef struct FKey FKey; 658 typedef struct FuncDestructor FuncDestructor; 659 typedef struct FuncDef FuncDef; 660 typedef struct FuncDefHash FuncDefHash; 661 typedef struct IdList IdList; 662 typedef struct Index Index; 663 typedef struct IndexSample IndexSample; 664 typedef struct KeyClass KeyClass; 665 typedef struct KeyInfo KeyInfo; 666 typedef struct Lookaside Lookaside; 667 typedef struct LookasideSlot LookasideSlot; 668 typedef struct Module Module; 669 typedef struct NameContext NameContext; 670 typedef struct Parse Parse; 671 typedef struct RowSet RowSet; 672 typedef struct Savepoint Savepoint; 673 typedef struct Select Select; 674 typedef struct SelectDest SelectDest; 675 typedef struct SrcList SrcList; 676 typedef struct StrAccum StrAccum; 677 typedef struct Table Table; 678 typedef struct TableLock TableLock; 679 typedef struct Token Token; 680 typedef struct Trigger Trigger; 681 typedef struct TriggerPrg TriggerPrg; 682 typedef struct TriggerStep TriggerStep; 683 typedef struct UnpackedRecord UnpackedRecord; 684 typedef struct VTable VTable; 685 typedef struct VtabCtx VtabCtx; 686 typedef struct Walker Walker; 687 typedef struct WherePlan WherePlan; 688 typedef struct WhereInfo WhereInfo; 689 typedef struct WhereLevel WhereLevel; 690 691 /* 692 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 693 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 694 ** pointer types (i.e. FuncDef) defined above. 695 */ 696 #include "btree.h" 697 #include "vdbe.h" 698 #include "pager.h" 699 #include "pcache.h" 700 701 #include "os.h" 702 #include "mutex.h" 703 704 705 /* 706 ** Each database file to be accessed by the system is an instance 707 ** of the following structure. There are normally two of these structures 708 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 709 ** aDb[1] is the database file used to hold temporary tables. Additional 710 ** databases may be attached. 711 */ 712 struct Db { 713 char *zName; /* Name of this database */ 714 Btree *pBt; /* The B*Tree structure for this database file */ 715 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 716 u8 safety_level; /* How aggressive at syncing data to disk */ 717 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 718 }; 719 720 /* 721 ** An instance of the following structure stores a database schema. 722 ** 723 ** Most Schema objects are associated with a Btree. The exception is 724 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 725 ** In shared cache mode, a single Schema object can be shared by multiple 726 ** Btrees that refer to the same underlying BtShared object. 727 ** 728 ** Schema objects are automatically deallocated when the last Btree that 729 ** references them is destroyed. The TEMP Schema is manually freed by 730 ** sqlite3_close(). 731 * 732 ** A thread must be holding a mutex on the corresponding Btree in order 733 ** to access Schema content. This implies that the thread must also be 734 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 735 ** For a TEMP Schema, only the connection mutex is required. 736 */ 737 struct Schema { 738 int schema_cookie; /* Database schema version number for this file */ 739 int iGeneration; /* Generation counter. Incremented with each change */ 740 Hash tblHash; /* All tables indexed by name */ 741 Hash idxHash; /* All (named) indices indexed by name */ 742 Hash trigHash; /* All triggers indexed by name */ 743 Hash fkeyHash; /* All foreign keys by referenced table name */ 744 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 745 u8 file_format; /* Schema format version for this file */ 746 u8 enc; /* Text encoding used by this database */ 747 u16 flags; /* Flags associated with this schema */ 748 int cache_size; /* Number of pages to use in the cache */ 749 }; 750 751 /* 752 ** These macros can be used to test, set, or clear bits in the 753 ** Db.pSchema->flags field. 754 */ 755 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 756 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 757 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 758 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 759 760 /* 761 ** Allowed values for the DB.pSchema->flags field. 762 ** 763 ** The DB_SchemaLoaded flag is set after the database schema has been 764 ** read into internal hash tables. 765 ** 766 ** DB_UnresetViews means that one or more views have column names that 767 ** have been filled out. If the schema changes, these column names might 768 ** changes and so the view will need to be reset. 769 */ 770 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 771 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 772 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 773 774 /* 775 ** The number of different kinds of things that can be limited 776 ** using the sqlite3_limit() interface. 777 */ 778 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 779 780 /* 781 ** Lookaside malloc is a set of fixed-size buffers that can be used 782 ** to satisfy small transient memory allocation requests for objects 783 ** associated with a particular database connection. The use of 784 ** lookaside malloc provides a significant performance enhancement 785 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 786 ** SQL statements. 787 ** 788 ** The Lookaside structure holds configuration information about the 789 ** lookaside malloc subsystem. Each available memory allocation in 790 ** the lookaside subsystem is stored on a linked list of LookasideSlot 791 ** objects. 792 ** 793 ** Lookaside allocations are only allowed for objects that are associated 794 ** with a particular database connection. Hence, schema information cannot 795 ** be stored in lookaside because in shared cache mode the schema information 796 ** is shared by multiple database connections. Therefore, while parsing 797 ** schema information, the Lookaside.bEnabled flag is cleared so that 798 ** lookaside allocations are not used to construct the schema objects. 799 */ 800 struct Lookaside { 801 u16 sz; /* Size of each buffer in bytes */ 802 u8 bEnabled; /* False to disable new lookaside allocations */ 803 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 804 int nOut; /* Number of buffers currently checked out */ 805 int mxOut; /* Highwater mark for nOut */ 806 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 807 LookasideSlot *pFree; /* List of available buffers */ 808 void *pStart; /* First byte of available memory space */ 809 void *pEnd; /* First byte past end of available space */ 810 }; 811 struct LookasideSlot { 812 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 813 }; 814 815 /* 816 ** A hash table for function definitions. 817 ** 818 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 819 ** Collisions are on the FuncDef.pHash chain. 820 */ 821 struct FuncDefHash { 822 FuncDef *a[23]; /* Hash table for functions */ 823 }; 824 825 /* 826 ** Each database connection is an instance of the following structure. 827 */ 828 struct sqlite3 { 829 sqlite3_vfs *pVfs; /* OS Interface */ 830 struct Vdbe *pVdbe; /* List of active virtual machines */ 831 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 832 sqlite3_mutex *mutex; /* Connection mutex */ 833 Db *aDb; /* All backends */ 834 int nDb; /* Number of backends currently in use */ 835 int flags; /* Miscellaneous flags. See below */ 836 i64 lastRowid; /* ROWID of most recent insert (see above) */ 837 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 838 int errCode; /* Most recent error code (SQLITE_*) */ 839 int errMask; /* & result codes with this before returning */ 840 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 841 u8 autoCommit; /* The auto-commit flag. */ 842 u8 temp_store; /* 1: file 2: memory 0: default */ 843 u8 mallocFailed; /* True if we have seen a malloc failure */ 844 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 845 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 846 u8 suppressErr; /* Do not issue error messages if true */ 847 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 848 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 849 int nextPagesize; /* Pagesize after VACUUM if >0 */ 850 u32 magic; /* Magic number for detect library misuse */ 851 int nChange; /* Value returned by sqlite3_changes() */ 852 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 853 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 854 struct sqlite3InitInfo { /* Information used during initialization */ 855 int newTnum; /* Rootpage of table being initialized */ 856 u8 iDb; /* Which db file is being initialized */ 857 u8 busy; /* TRUE if currently initializing */ 858 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 859 } init; 860 int activeVdbeCnt; /* Number of VDBEs currently executing */ 861 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 862 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 863 int nExtension; /* Number of loaded extensions */ 864 void **aExtension; /* Array of shared library handles */ 865 void (*xTrace)(void*,const char*); /* Trace function */ 866 void *pTraceArg; /* Argument to the trace function */ 867 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 868 void *pProfileArg; /* Argument to profile function */ 869 void *pCommitArg; /* Argument to xCommitCallback() */ 870 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 871 void *pRollbackArg; /* Argument to xRollbackCallback() */ 872 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 873 void *pUpdateArg; 874 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 875 #ifndef SQLITE_OMIT_WAL 876 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 877 void *pWalArg; 878 #endif 879 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 880 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 881 void *pCollNeededArg; 882 sqlite3_value *pErr; /* Most recent error message */ 883 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 884 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 885 union { 886 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 887 double notUsed1; /* Spacer */ 888 } u1; 889 Lookaside lookaside; /* Lookaside malloc configuration */ 890 #ifndef SQLITE_OMIT_AUTHORIZATION 891 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 892 /* Access authorization function */ 893 void *pAuthArg; /* 1st argument to the access auth function */ 894 #endif 895 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 896 int (*xProgress)(void *); /* The progress callback */ 897 void *pProgressArg; /* Argument to the progress callback */ 898 int nProgressOps; /* Number of opcodes for progress callback */ 899 #endif 900 #ifndef SQLITE_OMIT_VIRTUALTABLE 901 int nVTrans; /* Allocated size of aVTrans */ 902 Hash aModule; /* populated by sqlite3_create_module() */ 903 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 904 VTable **aVTrans; /* Virtual tables with open transactions */ 905 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 906 #endif 907 FuncDefHash aFunc; /* Hash table of connection functions */ 908 Hash aCollSeq; /* All collating sequences */ 909 BusyHandler busyHandler; /* Busy callback */ 910 Db aDbStatic[2]; /* Static space for the 2 default backends */ 911 Savepoint *pSavepoint; /* List of active savepoints */ 912 int busyTimeout; /* Busy handler timeout, in msec */ 913 int nSavepoint; /* Number of non-transaction savepoints */ 914 int nStatement; /* Number of nested statement-transactions */ 915 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 916 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 917 918 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 919 /* The following variables are all protected by the STATIC_MASTER 920 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 921 ** 922 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 923 ** unlock so that it can proceed. 924 ** 925 ** When X.pBlockingConnection==Y, that means that something that X tried 926 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 927 ** held by Y. 928 */ 929 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 930 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 931 void *pUnlockArg; /* Argument to xUnlockNotify */ 932 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 933 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 934 #endif 935 }; 936 937 /* 938 ** A macro to discover the encoding of a database. 939 */ 940 #define ENC(db) ((db)->aDb[0].pSchema->enc) 941 942 /* 943 ** Possible values for the sqlite3.flags. 944 */ 945 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 946 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 947 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 948 #define SQLITE_ShortColNames 0x00000008 /* Show short columns names */ 949 #define SQLITE_CountRows 0x00000010 /* Count rows changed by INSERT, */ 950 /* DELETE, or UPDATE and return */ 951 /* the count using a callback. */ 952 #define SQLITE_NullCallback 0x00000020 /* Invoke the callback once if the */ 953 /* result set is empty */ 954 #define SQLITE_SqlTrace 0x00000040 /* Debug print SQL as it executes */ 955 #define SQLITE_VdbeListing 0x00000080 /* Debug listings of VDBE programs */ 956 #define SQLITE_WriteSchema 0x00000100 /* OK to update SQLITE_MASTER */ 957 #define SQLITE_VdbeAddopTrace 0x00000200 /* Trace sqlite3VdbeAddOp() calls */ 958 #define SQLITE_IgnoreChecks 0x00000400 /* Do not enforce check constraints */ 959 #define SQLITE_ReadUncommitted 0x0000800 /* For shared-cache mode */ 960 #define SQLITE_LegacyFileFmt 0x00001000 /* Create new databases in format 1 */ 961 #define SQLITE_FullFSync 0x00002000 /* Use full fsync on the backend */ 962 #define SQLITE_CkptFullFSync 0x00004000 /* Use full fsync for checkpoint */ 963 #define SQLITE_RecoveryMode 0x00008000 /* Ignore schema errors */ 964 #define SQLITE_ReverseOrder 0x00010000 /* Reverse unordered SELECTs */ 965 #define SQLITE_RecTriggers 0x00020000 /* Enable recursive triggers */ 966 #define SQLITE_ForeignKeys 0x00040000 /* Enforce foreign key constraints */ 967 #define SQLITE_AutoIndex 0x00080000 /* Enable automatic indexes */ 968 #define SQLITE_PreferBuiltin 0x00100000 /* Preference to built-in funcs */ 969 #define SQLITE_LoadExtension 0x00200000 /* Enable load_extension */ 970 #define SQLITE_EnableTrigger 0x00400000 /* True to enable triggers */ 971 972 /* 973 ** Bits of the sqlite3.dbOptFlags field that are used by the 974 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 975 ** selectively disable various optimizations. 976 */ 977 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 978 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 979 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 980 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 981 #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ 982 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 983 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 984 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 985 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 986 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 987 #define SQLITE_AllOpts 0xffff /* All optimizations */ 988 989 /* 990 ** Macros for testing whether or not optimizations are enabled or disabled. 991 */ 992 #ifndef SQLITE_OMIT_BUILTIN_TEST 993 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 994 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 995 #else 996 #define OptimizationDisabled(db, mask) 0 997 #define OptimizationEnabled(db, mask) 1 998 #endif 999 1000 /* 1001 ** Possible values for the sqlite.magic field. 1002 ** The numbers are obtained at random and have no special meaning, other 1003 ** than being distinct from one another. 1004 */ 1005 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1006 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1007 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1008 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1009 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1010 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1011 1012 /* 1013 ** Each SQL function is defined by an instance of the following 1014 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1015 ** hash table. When multiple functions have the same name, the hash table 1016 ** points to a linked list of these structures. 1017 */ 1018 struct FuncDef { 1019 i16 nArg; /* Number of arguments. -1 means unlimited */ 1020 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 1021 u8 flags; /* Some combination of SQLITE_FUNC_* */ 1022 void *pUserData; /* User data parameter */ 1023 FuncDef *pNext; /* Next function with same name */ 1024 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1025 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1026 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1027 char *zName; /* SQL name of the function. */ 1028 FuncDef *pHash; /* Next with a different name but the same hash */ 1029 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1030 }; 1031 1032 /* 1033 ** This structure encapsulates a user-function destructor callback (as 1034 ** configured using create_function_v2()) and a reference counter. When 1035 ** create_function_v2() is called to create a function with a destructor, 1036 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1037 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1038 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1039 ** member of each of the new FuncDef objects is set to point to the allocated 1040 ** FuncDestructor. 1041 ** 1042 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1043 ** count on this object is decremented. When it reaches 0, the destructor 1044 ** is invoked and the FuncDestructor structure freed. 1045 */ 1046 struct FuncDestructor { 1047 int nRef; 1048 void (*xDestroy)(void *); 1049 void *pUserData; 1050 }; 1051 1052 /* 1053 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1054 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1055 ** are assert() statements in the code to verify this. 1056 */ 1057 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1058 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1059 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1060 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1061 #define SQLITE_FUNC_COUNT 0x10 /* Built-in count(*) aggregate */ 1062 #define SQLITE_FUNC_COALESCE 0x20 /* Built-in coalesce() or ifnull() function */ 1063 #define SQLITE_FUNC_LENGTH 0x40 /* Built-in length() function */ 1064 #define SQLITE_FUNC_TYPEOF 0x80 /* Built-in typeof() function */ 1065 1066 /* 1067 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1068 ** used to create the initializers for the FuncDef structures. 1069 ** 1070 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1071 ** Used to create a scalar function definition of a function zName 1072 ** implemented by C function xFunc that accepts nArg arguments. The 1073 ** value passed as iArg is cast to a (void*) and made available 1074 ** as the user-data (sqlite3_user_data()) for the function. If 1075 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1076 ** 1077 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1078 ** Used to create an aggregate function definition implemented by 1079 ** the C functions xStep and xFinal. The first four parameters 1080 ** are interpreted in the same way as the first 4 parameters to 1081 ** FUNCTION(). 1082 ** 1083 ** LIKEFUNC(zName, nArg, pArg, flags) 1084 ** Used to create a scalar function definition of a function zName 1085 ** that accepts nArg arguments and is implemented by a call to C 1086 ** function likeFunc. Argument pArg is cast to a (void *) and made 1087 ** available as the function user-data (sqlite3_user_data()). The 1088 ** FuncDef.flags variable is set to the value passed as the flags 1089 ** parameter. 1090 */ 1091 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1092 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL), \ 1093 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1094 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1095 {nArg, SQLITE_UTF8, (bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1096 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1097 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1098 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1099 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1100 #define LIKEFUNC(zName, nArg, arg, flags) \ 1101 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1102 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1103 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1104 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1105 1106 /* 1107 ** All current savepoints are stored in a linked list starting at 1108 ** sqlite3.pSavepoint. The first element in the list is the most recently 1109 ** opened savepoint. Savepoints are added to the list by the vdbe 1110 ** OP_Savepoint instruction. 1111 */ 1112 struct Savepoint { 1113 char *zName; /* Savepoint name (nul-terminated) */ 1114 i64 nDeferredCons; /* Number of deferred fk violations */ 1115 Savepoint *pNext; /* Parent savepoint (if any) */ 1116 }; 1117 1118 /* 1119 ** The following are used as the second parameter to sqlite3Savepoint(), 1120 ** and as the P1 argument to the OP_Savepoint instruction. 1121 */ 1122 #define SAVEPOINT_BEGIN 0 1123 #define SAVEPOINT_RELEASE 1 1124 #define SAVEPOINT_ROLLBACK 2 1125 1126 1127 /* 1128 ** Each SQLite module (virtual table definition) is defined by an 1129 ** instance of the following structure, stored in the sqlite3.aModule 1130 ** hash table. 1131 */ 1132 struct Module { 1133 const sqlite3_module *pModule; /* Callback pointers */ 1134 const char *zName; /* Name passed to create_module() */ 1135 void *pAux; /* pAux passed to create_module() */ 1136 void (*xDestroy)(void *); /* Module destructor function */ 1137 }; 1138 1139 /* 1140 ** information about each column of an SQL table is held in an instance 1141 ** of this structure. 1142 */ 1143 struct Column { 1144 char *zName; /* Name of this column */ 1145 Expr *pDflt; /* Default value of this column */ 1146 char *zDflt; /* Original text of the default value */ 1147 char *zType; /* Data type for this column */ 1148 char *zColl; /* Collating sequence. If NULL, use the default */ 1149 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1150 char affinity; /* One of the SQLITE_AFF_... values */ 1151 u16 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1152 }; 1153 1154 /* Allowed values for Column.colFlags: 1155 */ 1156 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1157 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1158 1159 /* 1160 ** A "Collating Sequence" is defined by an instance of the following 1161 ** structure. Conceptually, a collating sequence consists of a name and 1162 ** a comparison routine that defines the order of that sequence. 1163 ** 1164 ** If CollSeq.xCmp is NULL, it means that the 1165 ** collating sequence is undefined. Indices built on an undefined 1166 ** collating sequence may not be read or written. 1167 */ 1168 struct CollSeq { 1169 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1170 u8 enc; /* Text encoding handled by xCmp() */ 1171 void *pUser; /* First argument to xCmp() */ 1172 int (*xCmp)(void*,int, const void*, int, const void*); 1173 void (*xDel)(void*); /* Destructor for pUser */ 1174 }; 1175 1176 /* 1177 ** A sort order can be either ASC or DESC. 1178 */ 1179 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1180 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1181 1182 /* 1183 ** Column affinity types. 1184 ** 1185 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1186 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1187 ** the speed a little by numbering the values consecutively. 1188 ** 1189 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1190 ** when multiple affinity types are concatenated into a string and 1191 ** used as the P4 operand, they will be more readable. 1192 ** 1193 ** Note also that the numeric types are grouped together so that testing 1194 ** for a numeric type is a single comparison. 1195 */ 1196 #define SQLITE_AFF_TEXT 'a' 1197 #define SQLITE_AFF_NONE 'b' 1198 #define SQLITE_AFF_NUMERIC 'c' 1199 #define SQLITE_AFF_INTEGER 'd' 1200 #define SQLITE_AFF_REAL 'e' 1201 1202 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1203 1204 /* 1205 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1206 ** affinity value. 1207 */ 1208 #define SQLITE_AFF_MASK 0x67 1209 1210 /* 1211 ** Additional bit values that can be ORed with an affinity without 1212 ** changing the affinity. 1213 */ 1214 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1215 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1216 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1217 1218 /* 1219 ** An object of this type is created for each virtual table present in 1220 ** the database schema. 1221 ** 1222 ** If the database schema is shared, then there is one instance of this 1223 ** structure for each database connection (sqlite3*) that uses the shared 1224 ** schema. This is because each database connection requires its own unique 1225 ** instance of the sqlite3_vtab* handle used to access the virtual table 1226 ** implementation. sqlite3_vtab* handles can not be shared between 1227 ** database connections, even when the rest of the in-memory database 1228 ** schema is shared, as the implementation often stores the database 1229 ** connection handle passed to it via the xConnect() or xCreate() method 1230 ** during initialization internally. This database connection handle may 1231 ** then be used by the virtual table implementation to access real tables 1232 ** within the database. So that they appear as part of the callers 1233 ** transaction, these accesses need to be made via the same database 1234 ** connection as that used to execute SQL operations on the virtual table. 1235 ** 1236 ** All VTable objects that correspond to a single table in a shared 1237 ** database schema are initially stored in a linked-list pointed to by 1238 ** the Table.pVTable member variable of the corresponding Table object. 1239 ** When an sqlite3_prepare() operation is required to access the virtual 1240 ** table, it searches the list for the VTable that corresponds to the 1241 ** database connection doing the preparing so as to use the correct 1242 ** sqlite3_vtab* handle in the compiled query. 1243 ** 1244 ** When an in-memory Table object is deleted (for example when the 1245 ** schema is being reloaded for some reason), the VTable objects are not 1246 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1247 ** immediately. Instead, they are moved from the Table.pVTable list to 1248 ** another linked list headed by the sqlite3.pDisconnect member of the 1249 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1250 ** next time a statement is prepared using said sqlite3*. This is done 1251 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1252 ** Refer to comments above function sqlite3VtabUnlockList() for an 1253 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1254 ** list without holding the corresponding sqlite3.mutex mutex. 1255 ** 1256 ** The memory for objects of this type is always allocated by 1257 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1258 ** the first argument. 1259 */ 1260 struct VTable { 1261 sqlite3 *db; /* Database connection associated with this table */ 1262 Module *pMod; /* Pointer to module implementation */ 1263 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1264 int nRef; /* Number of pointers to this structure */ 1265 u8 bConstraint; /* True if constraints are supported */ 1266 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1267 VTable *pNext; /* Next in linked list (see above) */ 1268 }; 1269 1270 /* 1271 ** Each SQL table is represented in memory by an instance of the 1272 ** following structure. 1273 ** 1274 ** Table.zName is the name of the table. The case of the original 1275 ** CREATE TABLE statement is stored, but case is not significant for 1276 ** comparisons. 1277 ** 1278 ** Table.nCol is the number of columns in this table. Table.aCol is a 1279 ** pointer to an array of Column structures, one for each column. 1280 ** 1281 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1282 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1283 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1284 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1285 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1286 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1287 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1288 ** 1289 ** Table.tnum is the page number for the root BTree page of the table in the 1290 ** database file. If Table.iDb is the index of the database table backend 1291 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1292 ** holds temporary tables and indices. If TF_Ephemeral is set 1293 ** then the table is stored in a file that is automatically deleted 1294 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1295 ** refers VDBE cursor number that holds the table open, not to the root 1296 ** page number. Transient tables are used to hold the results of a 1297 ** sub-query that appears instead of a real table name in the FROM clause 1298 ** of a SELECT statement. 1299 */ 1300 struct Table { 1301 char *zName; /* Name of the table or view */ 1302 Column *aCol; /* Information about each column */ 1303 Index *pIndex; /* List of SQL indexes on this table. */ 1304 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1305 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1306 char *zColAff; /* String defining the affinity of each column */ 1307 #ifndef SQLITE_OMIT_CHECK 1308 ExprList *pCheck; /* All CHECK constraints */ 1309 #endif 1310 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1311 int tnum; /* Root BTree node for this table (see note above) */ 1312 i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1313 i16 nCol; /* Number of columns in this table */ 1314 u16 nRef; /* Number of pointers to this Table */ 1315 u8 tabFlags; /* Mask of TF_* values */ 1316 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1317 #ifndef SQLITE_OMIT_ALTERTABLE 1318 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1319 #endif 1320 #ifndef SQLITE_OMIT_VIRTUALTABLE 1321 int nModuleArg; /* Number of arguments to the module */ 1322 char **azModuleArg; /* Text of all module args. [0] is module name */ 1323 VTable *pVTable; /* List of VTable objects. */ 1324 #endif 1325 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1326 Schema *pSchema; /* Schema that contains this table */ 1327 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1328 }; 1329 1330 /* 1331 ** Allowed values for Tabe.tabFlags. 1332 */ 1333 #define TF_Readonly 0x01 /* Read-only system table */ 1334 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1335 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1336 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1337 #define TF_Virtual 0x10 /* Is a virtual table */ 1338 1339 1340 /* 1341 ** Test to see whether or not a table is a virtual table. This is 1342 ** done as a macro so that it will be optimized out when virtual 1343 ** table support is omitted from the build. 1344 */ 1345 #ifndef SQLITE_OMIT_VIRTUALTABLE 1346 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1347 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1348 #else 1349 # define IsVirtual(X) 0 1350 # define IsHiddenColumn(X) 0 1351 #endif 1352 1353 /* 1354 ** Each foreign key constraint is an instance of the following structure. 1355 ** 1356 ** A foreign key is associated with two tables. The "from" table is 1357 ** the table that contains the REFERENCES clause that creates the foreign 1358 ** key. The "to" table is the table that is named in the REFERENCES clause. 1359 ** Consider this example: 1360 ** 1361 ** CREATE TABLE ex1( 1362 ** a INTEGER PRIMARY KEY, 1363 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1364 ** ); 1365 ** 1366 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1367 ** 1368 ** Each REFERENCES clause generates an instance of the following structure 1369 ** which is attached to the from-table. The to-table need not exist when 1370 ** the from-table is created. The existence of the to-table is not checked. 1371 */ 1372 struct FKey { 1373 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1374 FKey *pNextFrom; /* Next foreign key in pFrom */ 1375 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1376 FKey *pNextTo; /* Next foreign key on table named zTo */ 1377 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1378 int nCol; /* Number of columns in this key */ 1379 /* EV: R-30323-21917 */ 1380 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1381 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1382 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1383 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1384 int iFrom; /* Index of column in pFrom */ 1385 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1386 } aCol[1]; /* One entry for each of nCol column s */ 1387 }; 1388 1389 /* 1390 ** SQLite supports many different ways to resolve a constraint 1391 ** error. ROLLBACK processing means that a constraint violation 1392 ** causes the operation in process to fail and for the current transaction 1393 ** to be rolled back. ABORT processing means the operation in process 1394 ** fails and any prior changes from that one operation are backed out, 1395 ** but the transaction is not rolled back. FAIL processing means that 1396 ** the operation in progress stops and returns an error code. But prior 1397 ** changes due to the same operation are not backed out and no rollback 1398 ** occurs. IGNORE means that the particular row that caused the constraint 1399 ** error is not inserted or updated. Processing continues and no error 1400 ** is returned. REPLACE means that preexisting database rows that caused 1401 ** a UNIQUE constraint violation are removed so that the new insert or 1402 ** update can proceed. Processing continues and no error is reported. 1403 ** 1404 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1405 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1406 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1407 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1408 ** referenced table row is propagated into the row that holds the 1409 ** foreign key. 1410 ** 1411 ** The following symbolic values are used to record which type 1412 ** of action to take. 1413 */ 1414 #define OE_None 0 /* There is no constraint to check */ 1415 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1416 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1417 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1418 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1419 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1420 1421 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1422 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1423 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1424 #define OE_Cascade 9 /* Cascade the changes */ 1425 1426 #define OE_Default 99 /* Do whatever the default action is */ 1427 1428 1429 /* 1430 ** An instance of the following structure is passed as the first 1431 ** argument to sqlite3VdbeKeyCompare and is used to control the 1432 ** comparison of the two index keys. 1433 */ 1434 struct KeyInfo { 1435 sqlite3 *db; /* The database connection */ 1436 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1437 u16 nField; /* Number of entries in aColl[] */ 1438 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1439 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1440 }; 1441 1442 /* 1443 ** An instance of the following structure holds information about a 1444 ** single index record that has already been parsed out into individual 1445 ** values. 1446 ** 1447 ** A record is an object that contains one or more fields of data. 1448 ** Records are used to store the content of a table row and to store 1449 ** the key of an index. A blob encoding of a record is created by 1450 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1451 ** OP_Column opcode. 1452 ** 1453 ** This structure holds a record that has already been disassembled 1454 ** into its constituent fields. 1455 */ 1456 struct UnpackedRecord { 1457 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1458 u16 nField; /* Number of entries in apMem[] */ 1459 u8 flags; /* Boolean settings. UNPACKED_... below */ 1460 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1461 Mem *aMem; /* Values */ 1462 }; 1463 1464 /* 1465 ** Allowed values of UnpackedRecord.flags 1466 */ 1467 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1468 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1469 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1470 1471 /* 1472 ** Each SQL index is represented in memory by an 1473 ** instance of the following structure. 1474 ** 1475 ** The columns of the table that are to be indexed are described 1476 ** by the aiColumn[] field of this structure. For example, suppose 1477 ** we have the following table and index: 1478 ** 1479 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1480 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1481 ** 1482 ** In the Table structure describing Ex1, nCol==3 because there are 1483 ** three columns in the table. In the Index structure describing 1484 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1485 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1486 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1487 ** The second column to be indexed (c1) has an index of 0 in 1488 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1489 ** 1490 ** The Index.onError field determines whether or not the indexed columns 1491 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1492 ** it means this is not a unique index. Otherwise it is a unique index 1493 ** and the value of Index.onError indicate the which conflict resolution 1494 ** algorithm to employ whenever an attempt is made to insert a non-unique 1495 ** element. 1496 */ 1497 struct Index { 1498 char *zName; /* Name of this index */ 1499 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1500 tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ 1501 Table *pTable; /* The SQL table being indexed */ 1502 char *zColAff; /* String defining the affinity of each column */ 1503 Index *pNext; /* The next index associated with the same table */ 1504 Schema *pSchema; /* Schema containing this index */ 1505 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1506 char **azColl; /* Array of collation sequence names for index */ 1507 int tnum; /* DB Page containing root of this index */ 1508 u16 nColumn; /* Number of columns in table used by this index */ 1509 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1510 unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1511 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1512 #ifdef SQLITE_ENABLE_STAT3 1513 int nSample; /* Number of elements in aSample[] */ 1514 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1515 IndexSample *aSample; /* Samples of the left-most key */ 1516 #endif 1517 }; 1518 1519 /* 1520 ** Each sample stored in the sqlite_stat3 table is represented in memory 1521 ** using a structure of this type. See documentation at the top of the 1522 ** analyze.c source file for additional information. 1523 */ 1524 struct IndexSample { 1525 union { 1526 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1527 double r; /* Value if eType is SQLITE_FLOAT */ 1528 i64 i; /* Value if eType is SQLITE_INTEGER */ 1529 } u; 1530 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1531 int nByte; /* Size in byte of text or blob. */ 1532 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1533 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1534 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1535 }; 1536 1537 /* 1538 ** Each token coming out of the lexer is an instance of 1539 ** this structure. Tokens are also used as part of an expression. 1540 ** 1541 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1542 ** may contain random values. Do not make any assumptions about Token.dyn 1543 ** and Token.n when Token.z==0. 1544 */ 1545 struct Token { 1546 const char *z; /* Text of the token. Not NULL-terminated! */ 1547 unsigned int n; /* Number of characters in this token */ 1548 }; 1549 1550 /* 1551 ** An instance of this structure contains information needed to generate 1552 ** code for a SELECT that contains aggregate functions. 1553 ** 1554 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1555 ** pointer to this structure. The Expr.iColumn field is the index in 1556 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1557 ** code for that node. 1558 ** 1559 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1560 ** original Select structure that describes the SELECT statement. These 1561 ** fields do not need to be freed when deallocating the AggInfo structure. 1562 */ 1563 struct AggInfo { 1564 u8 directMode; /* Direct rendering mode means take data directly 1565 ** from source tables rather than from accumulators */ 1566 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1567 ** than the source table */ 1568 int sortingIdx; /* Cursor number of the sorting index */ 1569 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1570 int nSortingColumn; /* Number of columns in the sorting index */ 1571 ExprList *pGroupBy; /* The group by clause */ 1572 struct AggInfo_col { /* For each column used in source tables */ 1573 Table *pTab; /* Source table */ 1574 int iTable; /* Cursor number of the source table */ 1575 int iColumn; /* Column number within the source table */ 1576 int iSorterColumn; /* Column number in the sorting index */ 1577 int iMem; /* Memory location that acts as accumulator */ 1578 Expr *pExpr; /* The original expression */ 1579 } *aCol; 1580 int nColumn; /* Number of used entries in aCol[] */ 1581 int nAccumulator; /* Number of columns that show through to the output. 1582 ** Additional columns are used only as parameters to 1583 ** aggregate functions */ 1584 struct AggInfo_func { /* For each aggregate function */ 1585 Expr *pExpr; /* Expression encoding the function */ 1586 FuncDef *pFunc; /* The aggregate function implementation */ 1587 int iMem; /* Memory location that acts as accumulator */ 1588 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1589 } *aFunc; 1590 int nFunc; /* Number of entries in aFunc[] */ 1591 }; 1592 1593 /* 1594 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1595 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1596 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1597 ** it uses less memory in the Expr object, which is a big memory user 1598 ** in systems with lots of prepared statements. And few applications 1599 ** need more than about 10 or 20 variables. But some extreme users want 1600 ** to have prepared statements with over 32767 variables, and for them 1601 ** the option is available (at compile-time). 1602 */ 1603 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1604 typedef i16 ynVar; 1605 #else 1606 typedef int ynVar; 1607 #endif 1608 1609 /* 1610 ** Each node of an expression in the parse tree is an instance 1611 ** of this structure. 1612 ** 1613 ** Expr.op is the opcode. The integer parser token codes are reused 1614 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1615 ** code representing the ">=" operator. This same integer code is reused 1616 ** to represent the greater-than-or-equal-to operator in the expression 1617 ** tree. 1618 ** 1619 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1620 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1621 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1622 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1623 ** then Expr.token contains the name of the function. 1624 ** 1625 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1626 ** binary operator. Either or both may be NULL. 1627 ** 1628 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1629 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1630 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1631 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1632 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1633 ** valid. 1634 ** 1635 ** An expression of the form ID or ID.ID refers to a column in a table. 1636 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1637 ** the integer cursor number of a VDBE cursor pointing to that table and 1638 ** Expr.iColumn is the column number for the specific column. If the 1639 ** expression is used as a result in an aggregate SELECT, then the 1640 ** value is also stored in the Expr.iAgg column in the aggregate so that 1641 ** it can be accessed after all aggregates are computed. 1642 ** 1643 ** If the expression is an unbound variable marker (a question mark 1644 ** character '?' in the original SQL) then the Expr.iTable holds the index 1645 ** number for that variable. 1646 ** 1647 ** If the expression is a subquery then Expr.iColumn holds an integer 1648 ** register number containing the result of the subquery. If the 1649 ** subquery gives a constant result, then iTable is -1. If the subquery 1650 ** gives a different answer at different times during statement processing 1651 ** then iTable is the address of a subroutine that computes the subquery. 1652 ** 1653 ** If the Expr is of type OP_Column, and the table it is selecting from 1654 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1655 ** corresponding table definition. 1656 ** 1657 ** ALLOCATION NOTES: 1658 ** 1659 ** Expr objects can use a lot of memory space in database schema. To 1660 ** help reduce memory requirements, sometimes an Expr object will be 1661 ** truncated. And to reduce the number of memory allocations, sometimes 1662 ** two or more Expr objects will be stored in a single memory allocation, 1663 ** together with Expr.zToken strings. 1664 ** 1665 ** If the EP_Reduced and EP_TokenOnly flags are set when 1666 ** an Expr object is truncated. When EP_Reduced is set, then all 1667 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1668 ** are contained within the same memory allocation. Note, however, that 1669 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1670 ** allocated, regardless of whether or not EP_Reduced is set. 1671 */ 1672 struct Expr { 1673 u8 op; /* Operation performed by this node */ 1674 char affinity; /* The affinity of the column or 0 if not a column */ 1675 u16 flags; /* Various flags. EP_* See below */ 1676 union { 1677 char *zToken; /* Token value. Zero terminated and dequoted */ 1678 int iValue; /* Non-negative integer value if EP_IntValue */ 1679 } u; 1680 1681 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1682 ** space is allocated for the fields below this point. An attempt to 1683 ** access them will result in a segfault or malfunction. 1684 *********************************************************************/ 1685 1686 Expr *pLeft; /* Left subnode */ 1687 Expr *pRight; /* Right subnode */ 1688 union { 1689 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1690 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1691 } x; 1692 1693 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1694 ** space is allocated for the fields below this point. An attempt to 1695 ** access them will result in a segfault or malfunction. 1696 *********************************************************************/ 1697 1698 #if SQLITE_MAX_EXPR_DEPTH>0 1699 int nHeight; /* Height of the tree headed by this node */ 1700 #endif 1701 int iTable; /* TK_COLUMN: cursor number of table holding column 1702 ** TK_REGISTER: register number 1703 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1704 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1705 ** TK_VARIABLE: variable number (always >= 1). */ 1706 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1707 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1708 u8 flags2; /* Second set of flags. EP2_... */ 1709 u8 op2; /* TK_REGISTER: original value of Expr.op 1710 ** TK_COLUMN: the value of p5 for OP_Column 1711 ** TK_AGG_FUNCTION: nesting depth */ 1712 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1713 Table *pTab; /* Table for TK_COLUMN expressions. */ 1714 }; 1715 1716 /* 1717 ** The following are the meanings of bits in the Expr.flags field. 1718 */ 1719 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1720 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1721 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1722 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1723 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1724 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1725 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1726 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1727 #define EP_Collate 0x0100 /* Tree contains a TK_COLLATE opeartor */ 1728 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1729 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1730 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1731 #define EP_Hint 0x1000 /* Not used */ 1732 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1733 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1734 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1735 1736 /* 1737 ** The following are the meanings of bits in the Expr.flags2 field. 1738 */ 1739 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1740 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1741 1742 /* 1743 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1744 ** flag on an expression structure. This flag is used for VV&A only. The 1745 ** routine is implemented as a macro that only works when in debugging mode, 1746 ** so as not to burden production code. 1747 */ 1748 #ifdef SQLITE_DEBUG 1749 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1750 #else 1751 # define ExprSetIrreducible(X) 1752 #endif 1753 1754 /* 1755 ** These macros can be used to test, set, or clear bits in the 1756 ** Expr.flags field. 1757 */ 1758 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1759 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1760 #define ExprSetProperty(E,P) (E)->flags|=(P) 1761 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1762 1763 /* 1764 ** Macros to determine the number of bytes required by a normal Expr 1765 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1766 ** and an Expr struct with the EP_TokenOnly flag set. 1767 */ 1768 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1769 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1770 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1771 1772 /* 1773 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1774 ** above sqlite3ExprDup() for details. 1775 */ 1776 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1777 1778 /* 1779 ** A list of expressions. Each expression may optionally have a 1780 ** name. An expr/name combination can be used in several ways, such 1781 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1782 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1783 ** also be used as the argument to a function, in which case the a.zName 1784 ** field is not used. 1785 ** 1786 ** By default the Expr.zSpan field holds a human-readable description of 1787 ** the expression that is used in the generation of error messages and 1788 ** column labels. In this case, Expr.zSpan is typically the text of a 1789 ** column expression as it exists in a SELECT statement. However, if 1790 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 1791 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 1792 ** form is used for name resolution with nested FROM clauses. 1793 */ 1794 struct ExprList { 1795 int nExpr; /* Number of expressions on the list */ 1796 int iECursor; /* VDBE Cursor associated with this ExprList */ 1797 struct ExprList_item { /* For each expression in the list */ 1798 Expr *pExpr; /* The list of expressions */ 1799 char *zName; /* Token associated with this expression */ 1800 char *zSpan; /* Original text of the expression */ 1801 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1802 unsigned done :1; /* A flag to indicate when processing is finished */ 1803 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 1804 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1805 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1806 } *a; /* Alloc a power of two greater or equal to nExpr */ 1807 }; 1808 1809 /* 1810 ** An instance of this structure is used by the parser to record both 1811 ** the parse tree for an expression and the span of input text for an 1812 ** expression. 1813 */ 1814 struct ExprSpan { 1815 Expr *pExpr; /* The expression parse tree */ 1816 const char *zStart; /* First character of input text */ 1817 const char *zEnd; /* One character past the end of input text */ 1818 }; 1819 1820 /* 1821 ** An instance of this structure can hold a simple list of identifiers, 1822 ** such as the list "a,b,c" in the following statements: 1823 ** 1824 ** INSERT INTO t(a,b,c) VALUES ...; 1825 ** CREATE INDEX idx ON t(a,b,c); 1826 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1827 ** 1828 ** The IdList.a.idx field is used when the IdList represents the list of 1829 ** column names after a table name in an INSERT statement. In the statement 1830 ** 1831 ** INSERT INTO t(a,b,c) ... 1832 ** 1833 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1834 */ 1835 struct IdList { 1836 struct IdList_item { 1837 char *zName; /* Name of the identifier */ 1838 int idx; /* Index in some Table.aCol[] of a column named zName */ 1839 } *a; 1840 int nId; /* Number of identifiers on the list */ 1841 }; 1842 1843 /* 1844 ** The bitmask datatype defined below is used for various optimizations. 1845 ** 1846 ** Changing this from a 64-bit to a 32-bit type limits the number of 1847 ** tables in a join to 32 instead of 64. But it also reduces the size 1848 ** of the library by 738 bytes on ix86. 1849 */ 1850 typedef u64 Bitmask; 1851 1852 /* 1853 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1854 */ 1855 #define BMS ((int)(sizeof(Bitmask)*8)) 1856 1857 /* 1858 ** The following structure describes the FROM clause of a SELECT statement. 1859 ** Each table or subquery in the FROM clause is a separate element of 1860 ** the SrcList.a[] array. 1861 ** 1862 ** With the addition of multiple database support, the following structure 1863 ** can also be used to describe a particular table such as the table that 1864 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1865 ** such a table must be a simple name: ID. But in SQLite, the table can 1866 ** now be identified by a database name, a dot, then the table name: ID.ID. 1867 ** 1868 ** The jointype starts out showing the join type between the current table 1869 ** and the next table on the list. The parser builds the list this way. 1870 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1871 ** jointype expresses the join between the table and the previous table. 1872 ** 1873 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1874 ** contains more than 63 columns and the 64-th or later column is used. 1875 */ 1876 struct SrcList { 1877 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1878 i16 nAlloc; /* Number of entries allocated in a[] below */ 1879 struct SrcList_item { 1880 Schema *pSchema; /* Schema to which this item is fixed */ 1881 char *zDatabase; /* Name of database holding this table */ 1882 char *zName; /* Name of the table */ 1883 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1884 Table *pTab; /* An SQL table corresponding to zName */ 1885 Select *pSelect; /* A SELECT statement used in place of a table name */ 1886 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1887 int regReturn; /* Register holding return address of addrFillSub */ 1888 u8 jointype; /* Type of join between this able and the previous */ 1889 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 1890 unsigned isCorrelated :1; /* True if sub-query is correlated */ 1891 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 1892 #ifndef SQLITE_OMIT_EXPLAIN 1893 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1894 #endif 1895 int iCursor; /* The VDBE cursor number used to access this table */ 1896 Expr *pOn; /* The ON clause of a join */ 1897 IdList *pUsing; /* The USING clause of a join */ 1898 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1899 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1900 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1901 } a[1]; /* One entry for each identifier on the list */ 1902 }; 1903 1904 /* 1905 ** Permitted values of the SrcList.a.jointype field 1906 */ 1907 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1908 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1909 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1910 #define JT_LEFT 0x0008 /* Left outer join */ 1911 #define JT_RIGHT 0x0010 /* Right outer join */ 1912 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1913 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1914 1915 1916 /* 1917 ** A WherePlan object holds information that describes a lookup 1918 ** strategy. 1919 ** 1920 ** This object is intended to be opaque outside of the where.c module. 1921 ** It is included here only so that that compiler will know how big it 1922 ** is. None of the fields in this object should be used outside of 1923 ** the where.c module. 1924 ** 1925 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1926 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1927 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1928 ** case that more than one of these conditions is true. 1929 */ 1930 struct WherePlan { 1931 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1932 u16 nEq; /* Number of == constraints */ 1933 u16 nOBSat; /* Number of ORDER BY terms satisfied */ 1934 double nRow; /* Estimated number of rows (for EQP) */ 1935 union { 1936 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1937 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1938 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1939 } u; 1940 }; 1941 1942 /* 1943 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1944 ** structure contains a single instance of this structure. This structure 1945 ** is intended to be private to the where.c module and should not be 1946 ** access or modified by other modules. 1947 ** 1948 ** The pIdxInfo field is used to help pick the best index on a 1949 ** virtual table. The pIdxInfo pointer contains indexing 1950 ** information for the i-th table in the FROM clause before reordering. 1951 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1952 ** All other information in the i-th WhereLevel object for the i-th table 1953 ** after FROM clause ordering. 1954 */ 1955 struct WhereLevel { 1956 WherePlan plan; /* query plan for this element of the FROM clause */ 1957 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1958 int iTabCur; /* The VDBE cursor used to access the table */ 1959 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1960 int addrBrk; /* Jump here to break out of the loop */ 1961 int addrNxt; /* Jump here to start the next IN combination */ 1962 int addrCont; /* Jump here to continue with the next loop cycle */ 1963 int addrFirst; /* First instruction of interior of the loop */ 1964 u8 iFrom; /* Which entry in the FROM clause */ 1965 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1966 int p1, p2; /* Operands of the opcode used to ends the loop */ 1967 union { /* Information that depends on plan.wsFlags */ 1968 struct { 1969 int nIn; /* Number of entries in aInLoop[] */ 1970 struct InLoop { 1971 int iCur; /* The VDBE cursor used by this IN operator */ 1972 int addrInTop; /* Top of the IN loop */ 1973 u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ 1974 } *aInLoop; /* Information about each nested IN operator */ 1975 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1976 Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ 1977 } u; 1978 double rOptCost; /* "Optimal" cost for this level */ 1979 1980 /* The following field is really not part of the current level. But 1981 ** we need a place to cache virtual table index information for each 1982 ** virtual table in the FROM clause and the WhereLevel structure is 1983 ** a convenient place since there is one WhereLevel for each FROM clause 1984 ** element. 1985 */ 1986 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1987 }; 1988 1989 /* 1990 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1991 ** and the WhereInfo.wctrlFlags member. 1992 */ 1993 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1994 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1995 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1996 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1997 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1998 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 1999 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2000 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2001 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 2002 2003 /* 2004 ** The WHERE clause processing routine has two halves. The 2005 ** first part does the start of the WHERE loop and the second 2006 ** half does the tail of the WHERE loop. An instance of 2007 ** this structure is returned by the first half and passed 2008 ** into the second half to give some continuity. 2009 */ 2010 struct WhereInfo { 2011 Parse *pParse; /* Parsing and code generating context */ 2012 SrcList *pTabList; /* List of tables in the join */ 2013 u16 nOBSat; /* Number of ORDER BY terms satisfied by indices */ 2014 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 2015 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE/DELETE */ 2016 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 2017 u8 eDistinct; /* One of the WHERE_DISTINCT_* values below */ 2018 int iTop; /* The very beginning of the WHERE loop */ 2019 int iContinue; /* Jump here to continue with next record */ 2020 int iBreak; /* Jump here to break out of the loop */ 2021 int nLevel; /* Number of nested loop */ 2022 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 2023 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 2024 double nRowOut; /* Estimated number of output rows */ 2025 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 2026 }; 2027 2028 /* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */ 2029 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2030 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2031 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2032 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2033 2034 /* 2035 ** A NameContext defines a context in which to resolve table and column 2036 ** names. The context consists of a list of tables (the pSrcList) field and 2037 ** a list of named expression (pEList). The named expression list may 2038 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2039 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2040 ** pEList corresponds to the result set of a SELECT and is NULL for 2041 ** other statements. 2042 ** 2043 ** NameContexts can be nested. When resolving names, the inner-most 2044 ** context is searched first. If no match is found, the next outer 2045 ** context is checked. If there is still no match, the next context 2046 ** is checked. This process continues until either a match is found 2047 ** or all contexts are check. When a match is found, the nRef member of 2048 ** the context containing the match is incremented. 2049 ** 2050 ** Each subquery gets a new NameContext. The pNext field points to the 2051 ** NameContext in the parent query. Thus the process of scanning the 2052 ** NameContext list corresponds to searching through successively outer 2053 ** subqueries looking for a match. 2054 */ 2055 struct NameContext { 2056 Parse *pParse; /* The parser */ 2057 SrcList *pSrcList; /* One or more tables used to resolve names */ 2058 ExprList *pEList; /* Optional list of named expressions */ 2059 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2060 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2061 int nRef; /* Number of names resolved by this context */ 2062 int nErr; /* Number of errors encountered while resolving names */ 2063 u8 ncFlags; /* Zero or more NC_* flags defined below */ 2064 }; 2065 2066 /* 2067 ** Allowed values for the NameContext, ncFlags field. 2068 */ 2069 #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ 2070 #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ 2071 #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ 2072 #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ 2073 2074 /* 2075 ** An instance of the following structure contains all information 2076 ** needed to generate code for a single SELECT statement. 2077 ** 2078 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2079 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2080 ** limit and nOffset to the value of the offset (or 0 if there is not 2081 ** offset). But later on, nLimit and nOffset become the memory locations 2082 ** in the VDBE that record the limit and offset counters. 2083 ** 2084 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2085 ** These addresses must be stored so that we can go back and fill in 2086 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2087 ** the number of columns in P2 can be computed at the same time 2088 ** as the OP_OpenEphm instruction is coded because not 2089 ** enough information about the compound query is known at that point. 2090 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2091 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2092 ** sequences for the ORDER BY clause. 2093 */ 2094 struct Select { 2095 ExprList *pEList; /* The fields of the result */ 2096 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2097 u16 selFlags; /* Various SF_* values */ 2098 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2099 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2100 double nSelectRow; /* Estimated number of result rows */ 2101 SrcList *pSrc; /* The FROM clause */ 2102 Expr *pWhere; /* The WHERE clause */ 2103 ExprList *pGroupBy; /* The GROUP BY clause */ 2104 Expr *pHaving; /* The HAVING clause */ 2105 ExprList *pOrderBy; /* The ORDER BY clause */ 2106 Select *pPrior; /* Prior select in a compound select statement */ 2107 Select *pNext; /* Next select to the left in a compound */ 2108 Select *pRightmost; /* Right-most select in a compound select statement */ 2109 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2110 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2111 }; 2112 2113 /* 2114 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2115 ** "Select Flag". 2116 */ 2117 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2118 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2119 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2120 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2121 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2122 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2123 #define SF_UseSorter 0x0040 /* Sort using a sorter */ 2124 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2125 #define SF_Materialize 0x0100 /* Force materialization of views */ 2126 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2127 2128 2129 /* 2130 ** The results of a select can be distributed in several ways. The 2131 ** "SRT" prefix means "SELECT Result Type". 2132 */ 2133 #define SRT_Union 1 /* Store result as keys in an index */ 2134 #define SRT_Except 2 /* Remove result from a UNION index */ 2135 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2136 #define SRT_Discard 4 /* Do not save the results anywhere */ 2137 2138 /* The ORDER BY clause is ignored for all of the above */ 2139 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2140 2141 #define SRT_Output 5 /* Output each row of result */ 2142 #define SRT_Mem 6 /* Store result in a memory cell */ 2143 #define SRT_Set 7 /* Store results as keys in an index */ 2144 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2145 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2146 #define SRT_Coroutine 10 /* Generate a single row of result */ 2147 2148 /* 2149 ** An instance of this object describes where to put of the results of 2150 ** a SELECT statement. 2151 */ 2152 struct SelectDest { 2153 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2154 char affSdst; /* Affinity used when eDest==SRT_Set */ 2155 int iSDParm; /* A parameter used by the eDest disposal method */ 2156 int iSdst; /* Base register where results are written */ 2157 int nSdst; /* Number of registers allocated */ 2158 }; 2159 2160 /* 2161 ** During code generation of statements that do inserts into AUTOINCREMENT 2162 ** tables, the following information is attached to the Table.u.autoInc.p 2163 ** pointer of each autoincrement table to record some side information that 2164 ** the code generator needs. We have to keep per-table autoincrement 2165 ** information in case inserts are down within triggers. Triggers do not 2166 ** normally coordinate their activities, but we do need to coordinate the 2167 ** loading and saving of autoincrement information. 2168 */ 2169 struct AutoincInfo { 2170 AutoincInfo *pNext; /* Next info block in a list of them all */ 2171 Table *pTab; /* Table this info block refers to */ 2172 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2173 int regCtr; /* Memory register holding the rowid counter */ 2174 }; 2175 2176 /* 2177 ** Size of the column cache 2178 */ 2179 #ifndef SQLITE_N_COLCACHE 2180 # define SQLITE_N_COLCACHE 10 2181 #endif 2182 2183 /* 2184 ** At least one instance of the following structure is created for each 2185 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2186 ** statement. All such objects are stored in the linked list headed at 2187 ** Parse.pTriggerPrg and deleted once statement compilation has been 2188 ** completed. 2189 ** 2190 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2191 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2192 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2193 ** The Parse.pTriggerPrg list never contains two entries with the same 2194 ** values for both pTrigger and orconf. 2195 ** 2196 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2197 ** accessed (or set to 0 for triggers fired as a result of INSERT 2198 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2199 ** a mask of new.* columns used by the program. 2200 */ 2201 struct TriggerPrg { 2202 Trigger *pTrigger; /* Trigger this program was coded from */ 2203 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2204 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2205 int orconf; /* Default ON CONFLICT policy */ 2206 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2207 }; 2208 2209 /* 2210 ** The yDbMask datatype for the bitmask of all attached databases. 2211 */ 2212 #if SQLITE_MAX_ATTACHED>30 2213 typedef sqlite3_uint64 yDbMask; 2214 #else 2215 typedef unsigned int yDbMask; 2216 #endif 2217 2218 /* 2219 ** An SQL parser context. A copy of this structure is passed through 2220 ** the parser and down into all the parser action routine in order to 2221 ** carry around information that is global to the entire parse. 2222 ** 2223 ** The structure is divided into two parts. When the parser and code 2224 ** generate call themselves recursively, the first part of the structure 2225 ** is constant but the second part is reset at the beginning and end of 2226 ** each recursion. 2227 ** 2228 ** The nTableLock and aTableLock variables are only used if the shared-cache 2229 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2230 ** used to store the set of table-locks required by the statement being 2231 ** compiled. Function sqlite3TableLock() is used to add entries to the 2232 ** list. 2233 */ 2234 struct Parse { 2235 sqlite3 *db; /* The main database structure */ 2236 char *zErrMsg; /* An error message */ 2237 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2238 int rc; /* Return code from execution */ 2239 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2240 u8 checkSchema; /* Causes schema cookie check after an error */ 2241 u8 nested; /* Number of nested calls to the parser/code generator */ 2242 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2243 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2244 u8 nColCache; /* Number of entries in aColCache[] */ 2245 u8 iColCache; /* Next entry in aColCache[] to replace */ 2246 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2247 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2248 int aTempReg[8]; /* Holding area for temporary registers */ 2249 int nRangeReg; /* Size of the temporary register block */ 2250 int iRangeReg; /* First register in temporary register block */ 2251 int nErr; /* Number of errors seen */ 2252 int nTab; /* Number of previously allocated VDBE cursors */ 2253 int nMem; /* Number of memory cells used so far */ 2254 int nSet; /* Number of sets used so far */ 2255 int nOnce; /* Number of OP_Once instructions so far */ 2256 int ckBase; /* Base register of data during check constraints */ 2257 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2258 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2259 struct yColCache { 2260 int iTable; /* Table cursor number */ 2261 int iColumn; /* Table column number */ 2262 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2263 int iLevel; /* Nesting level */ 2264 int iReg; /* Reg with value of this column. 0 means none. */ 2265 int lru; /* Least recently used entry has the smallest value */ 2266 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2267 yDbMask writeMask; /* Start a write transaction on these databases */ 2268 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2269 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2270 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2271 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2272 int regRoot; /* Register holding root page number for new objects */ 2273 int nMaxArg; /* Max args passed to user function by sub-program */ 2274 Token constraintName;/* Name of the constraint currently being parsed */ 2275 #ifndef SQLITE_OMIT_SHARED_CACHE 2276 int nTableLock; /* Number of locks in aTableLock */ 2277 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2278 #endif 2279 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2280 2281 /* Information used while coding trigger programs. */ 2282 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2283 Table *pTriggerTab; /* Table triggers are being coded for */ 2284 double nQueryLoop; /* Estimated number of iterations of a query */ 2285 u32 oldmask; /* Mask of old.* columns referenced */ 2286 u32 newmask; /* Mask of new.* columns referenced */ 2287 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2288 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2289 u8 disableTriggers; /* True to disable triggers */ 2290 2291 /* Above is constant between recursions. Below is reset before and after 2292 ** each recursion */ 2293 2294 int nVar; /* Number of '?' variables seen in the SQL so far */ 2295 int nzVar; /* Number of available slots in azVar[] */ 2296 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2297 #ifndef SQLITE_OMIT_VIRTUALTABLE 2298 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2299 int nVtabLock; /* Number of virtual tables to lock */ 2300 #endif 2301 int nAlias; /* Number of aliased result set columns */ 2302 int nHeight; /* Expression tree height of current sub-select */ 2303 #ifndef SQLITE_OMIT_EXPLAIN 2304 int iSelectId; /* ID of current select for EXPLAIN output */ 2305 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2306 #endif 2307 char **azVar; /* Pointers to names of parameters */ 2308 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2309 int *aAlias; /* Register used to hold aliased result */ 2310 const char *zTail; /* All SQL text past the last semicolon parsed */ 2311 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2312 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2313 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2314 Token sNameToken; /* Token with unqualified schema object name */ 2315 Token sLastToken; /* The last token parsed */ 2316 #ifndef SQLITE_OMIT_VIRTUALTABLE 2317 Token sArg; /* Complete text of a module argument */ 2318 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2319 #endif 2320 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2321 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2322 }; 2323 2324 /* 2325 ** Return true if currently inside an sqlite3_declare_vtab() call. 2326 */ 2327 #ifdef SQLITE_OMIT_VIRTUALTABLE 2328 #define IN_DECLARE_VTAB 0 2329 #else 2330 #define IN_DECLARE_VTAB (pParse->declareVtab) 2331 #endif 2332 2333 /* 2334 ** An instance of the following structure can be declared on a stack and used 2335 ** to save the Parse.zAuthContext value so that it can be restored later. 2336 */ 2337 struct AuthContext { 2338 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2339 Parse *pParse; /* The Parse structure */ 2340 }; 2341 2342 /* 2343 ** Bitfield flags for P5 value in various opcodes. 2344 */ 2345 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2346 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2347 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2348 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2349 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2350 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2351 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2352 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2353 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2354 #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ 2355 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2356 2357 /* 2358 * Each trigger present in the database schema is stored as an instance of 2359 * struct Trigger. 2360 * 2361 * Pointers to instances of struct Trigger are stored in two ways. 2362 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2363 * database). This allows Trigger structures to be retrieved by name. 2364 * 2. All triggers associated with a single table form a linked list, using the 2365 * pNext member of struct Trigger. A pointer to the first element of the 2366 * linked list is stored as the "pTrigger" member of the associated 2367 * struct Table. 2368 * 2369 * The "step_list" member points to the first element of a linked list 2370 * containing the SQL statements specified as the trigger program. 2371 */ 2372 struct Trigger { 2373 char *zName; /* The name of the trigger */ 2374 char *table; /* The table or view to which the trigger applies */ 2375 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2376 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2377 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2378 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2379 the <column-list> is stored here */ 2380 Schema *pSchema; /* Schema containing the trigger */ 2381 Schema *pTabSchema; /* Schema containing the table */ 2382 TriggerStep *step_list; /* Link list of trigger program steps */ 2383 Trigger *pNext; /* Next trigger associated with the table */ 2384 }; 2385 2386 /* 2387 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2388 ** determine which. 2389 ** 2390 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2391 ** In that cases, the constants below can be ORed together. 2392 */ 2393 #define TRIGGER_BEFORE 1 2394 #define TRIGGER_AFTER 2 2395 2396 /* 2397 * An instance of struct TriggerStep is used to store a single SQL statement 2398 * that is a part of a trigger-program. 2399 * 2400 * Instances of struct TriggerStep are stored in a singly linked list (linked 2401 * using the "pNext" member) referenced by the "step_list" member of the 2402 * associated struct Trigger instance. The first element of the linked list is 2403 * the first step of the trigger-program. 2404 * 2405 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2406 * "SELECT" statement. The meanings of the other members is determined by the 2407 * value of "op" as follows: 2408 * 2409 * (op == TK_INSERT) 2410 * orconf -> stores the ON CONFLICT algorithm 2411 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2412 * this stores a pointer to the SELECT statement. Otherwise NULL. 2413 * target -> A token holding the quoted name of the table to insert into. 2414 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2415 * this stores values to be inserted. Otherwise NULL. 2416 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2417 * statement, then this stores the column-names to be 2418 * inserted into. 2419 * 2420 * (op == TK_DELETE) 2421 * target -> A token holding the quoted name of the table to delete from. 2422 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2423 * Otherwise NULL. 2424 * 2425 * (op == TK_UPDATE) 2426 * target -> A token holding the quoted name of the table to update rows of. 2427 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2428 * Otherwise NULL. 2429 * pExprList -> A list of the columns to update and the expressions to update 2430 * them to. See sqlite3Update() documentation of "pChanges" 2431 * argument. 2432 * 2433 */ 2434 struct TriggerStep { 2435 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2436 u8 orconf; /* OE_Rollback etc. */ 2437 Trigger *pTrig; /* The trigger that this step is a part of */ 2438 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2439 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2440 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2441 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2442 IdList *pIdList; /* Column names for INSERT */ 2443 TriggerStep *pNext; /* Next in the link-list */ 2444 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2445 }; 2446 2447 /* 2448 ** The following structure contains information used by the sqliteFix... 2449 ** routines as they walk the parse tree to make database references 2450 ** explicit. 2451 */ 2452 typedef struct DbFixer DbFixer; 2453 struct DbFixer { 2454 Parse *pParse; /* The parsing context. Error messages written here */ 2455 Schema *pSchema; /* Fix items to this schema */ 2456 const char *zDb; /* Make sure all objects are contained in this database */ 2457 const char *zType; /* Type of the container - used for error messages */ 2458 const Token *pName; /* Name of the container - used for error messages */ 2459 }; 2460 2461 /* 2462 ** An objected used to accumulate the text of a string where we 2463 ** do not necessarily know how big the string will be in the end. 2464 */ 2465 struct StrAccum { 2466 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2467 char *zBase; /* A base allocation. Not from malloc. */ 2468 char *zText; /* The string collected so far */ 2469 int nChar; /* Length of the string so far */ 2470 int nAlloc; /* Amount of space allocated in zText */ 2471 int mxAlloc; /* Maximum allowed string length */ 2472 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2473 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2474 u8 tooBig; /* Becomes true if string size exceeds limits */ 2475 }; 2476 2477 /* 2478 ** A pointer to this structure is used to communicate information 2479 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2480 */ 2481 typedef struct { 2482 sqlite3 *db; /* The database being initialized */ 2483 char **pzErrMsg; /* Error message stored here */ 2484 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2485 int rc; /* Result code stored here */ 2486 } InitData; 2487 2488 /* 2489 ** Structure containing global configuration data for the SQLite library. 2490 ** 2491 ** This structure also contains some state information. 2492 */ 2493 struct Sqlite3Config { 2494 int bMemstat; /* True to enable memory status */ 2495 int bCoreMutex; /* True to enable core mutexing */ 2496 int bFullMutex; /* True to enable full mutexing */ 2497 int bOpenUri; /* True to interpret filenames as URIs */ 2498 int bUseCis; /* Use covering indices for full-scans */ 2499 int mxStrlen; /* Maximum string length */ 2500 int szLookaside; /* Default lookaside buffer size */ 2501 int nLookaside; /* Default lookaside buffer count */ 2502 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2503 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2504 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2505 void *pHeap; /* Heap storage space */ 2506 int nHeap; /* Size of pHeap[] */ 2507 int mnReq, mxReq; /* Min and max heap requests sizes */ 2508 void *pScratch; /* Scratch memory */ 2509 int szScratch; /* Size of each scratch buffer */ 2510 int nScratch; /* Number of scratch buffers */ 2511 void *pPage; /* Page cache memory */ 2512 int szPage; /* Size of each page in pPage[] */ 2513 int nPage; /* Number of pages in pPage[] */ 2514 int mxParserStack; /* maximum depth of the parser stack */ 2515 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2516 /* The above might be initialized to non-zero. The following need to always 2517 ** initially be zero, however. */ 2518 int isInit; /* True after initialization has finished */ 2519 int inProgress; /* True while initialization in progress */ 2520 int isMutexInit; /* True after mutexes are initialized */ 2521 int isMallocInit; /* True after malloc is initialized */ 2522 int isPCacheInit; /* True after malloc is initialized */ 2523 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2524 int nRefInitMutex; /* Number of users of pInitMutex */ 2525 void (*xLog)(void*,int,const char*); /* Function for logging */ 2526 void *pLogArg; /* First argument to xLog() */ 2527 int bLocaltimeFault; /* True to fail localtime() calls */ 2528 #ifdef SQLITE_ENABLE_SQLLOG 2529 void(*xSqllog)(void*,sqlite3*,const char*, int); 2530 void *pSqllogArg; 2531 #endif 2532 }; 2533 2534 /* 2535 ** Context pointer passed down through the tree-walk. 2536 */ 2537 struct Walker { 2538 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2539 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2540 Parse *pParse; /* Parser context. */ 2541 int walkerDepth; /* Number of subqueries */ 2542 union { /* Extra data for callback */ 2543 NameContext *pNC; /* Naming context */ 2544 int i; /* Integer value */ 2545 SrcList *pSrcList; /* FROM clause */ 2546 struct SrcCount *pSrcCount; /* Counting column references */ 2547 } u; 2548 }; 2549 2550 /* Forward declarations */ 2551 int sqlite3WalkExpr(Walker*, Expr*); 2552 int sqlite3WalkExprList(Walker*, ExprList*); 2553 int sqlite3WalkSelect(Walker*, Select*); 2554 int sqlite3WalkSelectExpr(Walker*, Select*); 2555 int sqlite3WalkSelectFrom(Walker*, Select*); 2556 2557 /* 2558 ** Return code from the parse-tree walking primitives and their 2559 ** callbacks. 2560 */ 2561 #define WRC_Continue 0 /* Continue down into children */ 2562 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2563 #define WRC_Abort 2 /* Abandon the tree walk */ 2564 2565 /* 2566 ** Assuming zIn points to the first byte of a UTF-8 character, 2567 ** advance zIn to point to the first byte of the next UTF-8 character. 2568 */ 2569 #define SQLITE_SKIP_UTF8(zIn) { \ 2570 if( (*(zIn++))>=0xc0 ){ \ 2571 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2572 } \ 2573 } 2574 2575 /* 2576 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2577 ** the same name but without the _BKPT suffix. These macros invoke 2578 ** routines that report the line-number on which the error originated 2579 ** using sqlite3_log(). The routines also provide a convenient place 2580 ** to set a debugger breakpoint. 2581 */ 2582 int sqlite3CorruptError(int); 2583 int sqlite3MisuseError(int); 2584 int sqlite3CantopenError(int); 2585 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2586 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2587 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2588 2589 2590 /* 2591 ** FTS4 is really an extension for FTS3. It is enabled using the 2592 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2593 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2594 */ 2595 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2596 # define SQLITE_ENABLE_FTS3 2597 #endif 2598 2599 /* 2600 ** The ctype.h header is needed for non-ASCII systems. It is also 2601 ** needed by FTS3 when FTS3 is included in the amalgamation. 2602 */ 2603 #if !defined(SQLITE_ASCII) || \ 2604 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2605 # include <ctype.h> 2606 #endif 2607 2608 /* 2609 ** The following macros mimic the standard library functions toupper(), 2610 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2611 ** sqlite versions only work for ASCII characters, regardless of locale. 2612 */ 2613 #ifdef SQLITE_ASCII 2614 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2615 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2616 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2617 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2618 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2619 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2620 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2621 #else 2622 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2623 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2624 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2625 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2626 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2627 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2628 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2629 #endif 2630 2631 /* 2632 ** Internal function prototypes 2633 */ 2634 #define sqlite3StrICmp sqlite3_stricmp 2635 int sqlite3Strlen30(const char*); 2636 #define sqlite3StrNICmp sqlite3_strnicmp 2637 2638 int sqlite3MallocInit(void); 2639 void sqlite3MallocEnd(void); 2640 void *sqlite3Malloc(int); 2641 void *sqlite3MallocZero(int); 2642 void *sqlite3DbMallocZero(sqlite3*, int); 2643 void *sqlite3DbMallocRaw(sqlite3*, int); 2644 char *sqlite3DbStrDup(sqlite3*,const char*); 2645 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2646 void *sqlite3Realloc(void*, int); 2647 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2648 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2649 void sqlite3DbFree(sqlite3*, void*); 2650 int sqlite3MallocSize(void*); 2651 int sqlite3DbMallocSize(sqlite3*, void*); 2652 void *sqlite3ScratchMalloc(int); 2653 void sqlite3ScratchFree(void*); 2654 void *sqlite3PageMalloc(int); 2655 void sqlite3PageFree(void*); 2656 void sqlite3MemSetDefault(void); 2657 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2658 int sqlite3HeapNearlyFull(void); 2659 2660 /* 2661 ** On systems with ample stack space and that support alloca(), make 2662 ** use of alloca() to obtain space for large automatic objects. By default, 2663 ** obtain space from malloc(). 2664 ** 2665 ** The alloca() routine never returns NULL. This will cause code paths 2666 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2667 */ 2668 #ifdef SQLITE_USE_ALLOCA 2669 # define sqlite3StackAllocRaw(D,N) alloca(N) 2670 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2671 # define sqlite3StackFree(D,P) 2672 #else 2673 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2674 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2675 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2676 #endif 2677 2678 #ifdef SQLITE_ENABLE_MEMSYS3 2679 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2680 #endif 2681 #ifdef SQLITE_ENABLE_MEMSYS5 2682 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2683 #endif 2684 2685 2686 #ifndef SQLITE_MUTEX_OMIT 2687 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2688 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2689 sqlite3_mutex *sqlite3MutexAlloc(int); 2690 int sqlite3MutexInit(void); 2691 int sqlite3MutexEnd(void); 2692 #endif 2693 2694 int sqlite3StatusValue(int); 2695 void sqlite3StatusAdd(int, int); 2696 void sqlite3StatusSet(int, int); 2697 2698 #ifndef SQLITE_OMIT_FLOATING_POINT 2699 int sqlite3IsNaN(double); 2700 #else 2701 # define sqlite3IsNaN(X) 0 2702 #endif 2703 2704 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2705 #ifndef SQLITE_OMIT_TRACE 2706 void sqlite3XPrintf(StrAccum*, const char*, ...); 2707 #endif 2708 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2709 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2710 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2711 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2712 void sqlite3DebugPrintf(const char*, ...); 2713 #endif 2714 #if defined(SQLITE_TEST) 2715 void *sqlite3TestTextToPtr(const char*); 2716 #endif 2717 2718 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2719 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2720 void sqlite3ExplainBegin(Vdbe*); 2721 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2722 void sqlite3ExplainNL(Vdbe*); 2723 void sqlite3ExplainPush(Vdbe*); 2724 void sqlite3ExplainPop(Vdbe*); 2725 void sqlite3ExplainFinish(Vdbe*); 2726 void sqlite3ExplainSelect(Vdbe*, Select*); 2727 void sqlite3ExplainExpr(Vdbe*, Expr*); 2728 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2729 const char *sqlite3VdbeExplanation(Vdbe*); 2730 #else 2731 # define sqlite3ExplainBegin(X) 2732 # define sqlite3ExplainSelect(A,B) 2733 # define sqlite3ExplainExpr(A,B) 2734 # define sqlite3ExplainExprList(A,B) 2735 # define sqlite3ExplainFinish(X) 2736 # define sqlite3VdbeExplanation(X) 0 2737 #endif 2738 2739 2740 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2741 void sqlite3ErrorMsg(Parse*, const char*, ...); 2742 int sqlite3Dequote(char*); 2743 int sqlite3KeywordCode(const unsigned char*, int); 2744 int sqlite3RunParser(Parse*, const char*, char **); 2745 void sqlite3FinishCoding(Parse*); 2746 int sqlite3GetTempReg(Parse*); 2747 void sqlite3ReleaseTempReg(Parse*,int); 2748 int sqlite3GetTempRange(Parse*,int); 2749 void sqlite3ReleaseTempRange(Parse*,int,int); 2750 void sqlite3ClearTempRegCache(Parse*); 2751 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2752 Expr *sqlite3Expr(sqlite3*,int,const char*); 2753 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2754 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2755 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2756 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2757 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2758 void sqlite3ExprDelete(sqlite3*, Expr*); 2759 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2760 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2761 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2762 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2763 int sqlite3Init(sqlite3*, char**); 2764 int sqlite3InitCallback(void*, int, char**, char**); 2765 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2766 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 2767 void sqlite3ResetOneSchema(sqlite3*,int); 2768 void sqlite3CollapseDatabaseArray(sqlite3*); 2769 void sqlite3BeginParse(Parse*,int); 2770 void sqlite3CommitInternalChanges(sqlite3*); 2771 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2772 void sqlite3OpenMasterTable(Parse *, int); 2773 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2774 void sqlite3AddColumn(Parse*,Token*); 2775 void sqlite3AddNotNull(Parse*, int); 2776 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2777 void sqlite3AddCheckConstraint(Parse*, Expr*); 2778 void sqlite3AddColumnType(Parse*,Token*); 2779 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2780 void sqlite3AddCollateType(Parse*, Token*); 2781 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2782 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2783 sqlite3_vfs**,char**,char **); 2784 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2785 int sqlite3CodeOnce(Parse *); 2786 2787 Bitvec *sqlite3BitvecCreate(u32); 2788 int sqlite3BitvecTest(Bitvec*, u32); 2789 int sqlite3BitvecSet(Bitvec*, u32); 2790 void sqlite3BitvecClear(Bitvec*, u32, void*); 2791 void sqlite3BitvecDestroy(Bitvec*); 2792 u32 sqlite3BitvecSize(Bitvec*); 2793 int sqlite3BitvecBuiltinTest(int,int*); 2794 2795 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2796 void sqlite3RowSetClear(RowSet*); 2797 void sqlite3RowSetInsert(RowSet*, i64); 2798 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2799 int sqlite3RowSetNext(RowSet*, i64*); 2800 2801 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2802 2803 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2804 int sqlite3ViewGetColumnNames(Parse*,Table*); 2805 #else 2806 # define sqlite3ViewGetColumnNames(A,B) 0 2807 #endif 2808 2809 void sqlite3DropTable(Parse*, SrcList*, int, int); 2810 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2811 void sqlite3DeleteTable(sqlite3*, Table*); 2812 #ifndef SQLITE_OMIT_AUTOINCREMENT 2813 void sqlite3AutoincrementBegin(Parse *pParse); 2814 void sqlite3AutoincrementEnd(Parse *pParse); 2815 #else 2816 # define sqlite3AutoincrementBegin(X) 2817 # define sqlite3AutoincrementEnd(X) 2818 #endif 2819 int sqlite3CodeCoroutine(Parse*, Select*, SelectDest*); 2820 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2821 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2822 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2823 int sqlite3IdListIndex(IdList*,const char*); 2824 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2825 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2826 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2827 Token*, Select*, Expr*, IdList*); 2828 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2829 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2830 void sqlite3SrcListShiftJoinType(SrcList*); 2831 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2832 void sqlite3IdListDelete(sqlite3*, IdList*); 2833 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2834 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2835 Token*, int, int); 2836 void sqlite3DropIndex(Parse*, SrcList*, int); 2837 int sqlite3Select(Parse*, Select*, SelectDest*); 2838 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2839 Expr*,ExprList*,u16,Expr*,Expr*); 2840 void sqlite3SelectDelete(sqlite3*, Select*); 2841 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2842 int sqlite3IsReadOnly(Parse*, Table*, int); 2843 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2844 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2845 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 2846 #endif 2847 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2848 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2849 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 2850 void sqlite3WhereEnd(WhereInfo*); 2851 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 2852 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2853 void sqlite3ExprCodeMove(Parse*, int, int, int); 2854 void sqlite3ExprCacheStore(Parse*, int, int, int); 2855 void sqlite3ExprCachePush(Parse*); 2856 void sqlite3ExprCachePop(Parse*, int); 2857 void sqlite3ExprCacheRemove(Parse*, int, int); 2858 void sqlite3ExprCacheClear(Parse*); 2859 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2860 int sqlite3ExprCode(Parse*, Expr*, int); 2861 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2862 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2863 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2864 void sqlite3ExprCodeConstants(Parse*, Expr*); 2865 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2866 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2867 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2868 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2869 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2870 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 2871 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2872 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2873 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2874 void sqlite3Vacuum(Parse*); 2875 int sqlite3RunVacuum(char**, sqlite3*); 2876 char *sqlite3NameFromToken(sqlite3*, Token*); 2877 int sqlite3ExprCompare(Expr*, Expr*); 2878 int sqlite3ExprListCompare(ExprList*, ExprList*); 2879 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2880 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2881 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 2882 Vdbe *sqlite3GetVdbe(Parse*); 2883 void sqlite3PrngSaveState(void); 2884 void sqlite3PrngRestoreState(void); 2885 void sqlite3PrngResetState(void); 2886 void sqlite3RollbackAll(sqlite3*,int); 2887 void sqlite3CodeVerifySchema(Parse*, int); 2888 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2889 void sqlite3BeginTransaction(Parse*, int); 2890 void sqlite3CommitTransaction(Parse*); 2891 void sqlite3RollbackTransaction(Parse*); 2892 void sqlite3Savepoint(Parse*, int, Token*); 2893 void sqlite3CloseSavepoints(sqlite3 *); 2894 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 2895 int sqlite3ExprIsConstant(Expr*); 2896 int sqlite3ExprIsConstantNotJoin(Expr*); 2897 int sqlite3ExprIsConstantOrFunction(Expr*); 2898 int sqlite3ExprIsInteger(Expr*, int*); 2899 int sqlite3ExprCanBeNull(const Expr*); 2900 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2901 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2902 int sqlite3IsRowid(const char*); 2903 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2904 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2905 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2906 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2907 int*,int,int,int,int,int*); 2908 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2909 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2910 void sqlite3BeginWriteOperation(Parse*, int, int); 2911 void sqlite3MultiWrite(Parse*); 2912 void sqlite3MayAbort(Parse*); 2913 void sqlite3HaltConstraint(Parse*, int, int, char*, int); 2914 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2915 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2916 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2917 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2918 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2919 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2920 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 2921 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2922 void sqlite3RegisterDateTimeFunctions(void); 2923 void sqlite3RegisterGlobalFunctions(void); 2924 int sqlite3SafetyCheckOk(sqlite3*); 2925 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2926 void sqlite3ChangeCookie(Parse*, int); 2927 2928 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2929 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2930 #endif 2931 2932 #ifndef SQLITE_OMIT_TRIGGER 2933 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2934 Expr*,int, int); 2935 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2936 void sqlite3DropTrigger(Parse*, SrcList*, int); 2937 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2938 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2939 Trigger *sqlite3TriggerList(Parse *, Table *); 2940 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2941 int, int, int); 2942 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2943 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2944 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2945 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2946 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2947 ExprList*,Select*,u8); 2948 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2949 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2950 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2951 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2952 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2953 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2954 #else 2955 # define sqlite3TriggersExist(B,C,D,E,F) 0 2956 # define sqlite3DeleteTrigger(A,B) 2957 # define sqlite3DropTriggerPtr(A,B) 2958 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2959 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2960 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2961 # define sqlite3TriggerList(X, Y) 0 2962 # define sqlite3ParseToplevel(p) p 2963 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2964 #endif 2965 2966 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2967 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2968 void sqlite3DeferForeignKey(Parse*, int); 2969 #ifndef SQLITE_OMIT_AUTHORIZATION 2970 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2971 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2972 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2973 void sqlite3AuthContextPop(AuthContext*); 2974 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2975 #else 2976 # define sqlite3AuthRead(a,b,c,d) 2977 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2978 # define sqlite3AuthContextPush(a,b,c) 2979 # define sqlite3AuthContextPop(a) ((void)(a)) 2980 #endif 2981 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2982 void sqlite3Detach(Parse*, Expr*); 2983 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2984 int sqlite3FixSrcList(DbFixer*, SrcList*); 2985 int sqlite3FixSelect(DbFixer*, Select*); 2986 int sqlite3FixExpr(DbFixer*, Expr*); 2987 int sqlite3FixExprList(DbFixer*, ExprList*); 2988 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2989 int sqlite3AtoF(const char *z, double*, int, u8); 2990 int sqlite3GetInt32(const char *, int*); 2991 int sqlite3Atoi(const char*); 2992 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2993 int sqlite3Utf8CharLen(const char *pData, int nByte); 2994 u32 sqlite3Utf8Read(const u8**); 2995 2996 /* 2997 ** Routines to read and write variable-length integers. These used to 2998 ** be defined locally, but now we use the varint routines in the util.c 2999 ** file. Code should use the MACRO forms below, as the Varint32 versions 3000 ** are coded to assume the single byte case is already handled (which 3001 ** the MACRO form does). 3002 */ 3003 int sqlite3PutVarint(unsigned char*, u64); 3004 int sqlite3PutVarint32(unsigned char*, u32); 3005 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3006 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3007 int sqlite3VarintLen(u64 v); 3008 3009 /* 3010 ** The header of a record consists of a sequence variable-length integers. 3011 ** These integers are almost always small and are encoded as a single byte. 3012 ** The following macros take advantage this fact to provide a fast encode 3013 ** and decode of the integers in a record header. It is faster for the common 3014 ** case where the integer is a single byte. It is a little slower when the 3015 ** integer is two or more bytes. But overall it is faster. 3016 ** 3017 ** The following expressions are equivalent: 3018 ** 3019 ** x = sqlite3GetVarint32( A, &B ); 3020 ** x = sqlite3PutVarint32( A, B ); 3021 ** 3022 ** x = getVarint32( A, B ); 3023 ** x = putVarint32( A, B ); 3024 ** 3025 */ 3026 #define getVarint32(A,B) \ 3027 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3028 #define putVarint32(A,B) \ 3029 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3030 sqlite3PutVarint32((A),(B))) 3031 #define getVarint sqlite3GetVarint 3032 #define putVarint sqlite3PutVarint 3033 3034 3035 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3036 void sqlite3TableAffinityStr(Vdbe *, Table *); 3037 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3038 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3039 char sqlite3ExprAffinity(Expr *pExpr); 3040 int sqlite3Atoi64(const char*, i64*, int, u8); 3041 void sqlite3Error(sqlite3*, int, const char*,...); 3042 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3043 u8 sqlite3HexToInt(int h); 3044 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3045 const char *sqlite3ErrStr(int); 3046 int sqlite3ReadSchema(Parse *pParse); 3047 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3048 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3049 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3050 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); 3051 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3052 Expr *sqlite3ExprSkipCollate(Expr*); 3053 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3054 int sqlite3CheckObjectName(Parse *, const char *); 3055 void sqlite3VdbeSetChanges(sqlite3 *, int); 3056 int sqlite3AddInt64(i64*,i64); 3057 int sqlite3SubInt64(i64*,i64); 3058 int sqlite3MulInt64(i64*,i64); 3059 int sqlite3AbsInt32(int); 3060 #ifdef SQLITE_ENABLE_8_3_NAMES 3061 void sqlite3FileSuffix3(const char*, char*); 3062 #else 3063 # define sqlite3FileSuffix3(X,Y) 3064 #endif 3065 u8 sqlite3GetBoolean(const char *z,int); 3066 3067 const void *sqlite3ValueText(sqlite3_value*, u8); 3068 int sqlite3ValueBytes(sqlite3_value*, u8); 3069 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3070 void(*)(void*)); 3071 void sqlite3ValueFree(sqlite3_value*); 3072 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3073 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3074 #ifdef SQLITE_ENABLE_STAT3 3075 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3076 #endif 3077 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3078 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3079 #ifndef SQLITE_AMALGAMATION 3080 extern const unsigned char sqlite3OpcodeProperty[]; 3081 extern const unsigned char sqlite3UpperToLower[]; 3082 extern const unsigned char sqlite3CtypeMap[]; 3083 extern const Token sqlite3IntTokens[]; 3084 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3085 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3086 #ifndef SQLITE_OMIT_WSD 3087 extern int sqlite3PendingByte; 3088 #endif 3089 #endif 3090 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3091 void sqlite3Reindex(Parse*, Token*, Token*); 3092 void sqlite3AlterFunctions(void); 3093 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3094 int sqlite3GetToken(const unsigned char *, int *); 3095 void sqlite3NestedParse(Parse*, const char*, ...); 3096 void sqlite3ExpirePreparedStatements(sqlite3*); 3097 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3098 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3099 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3100 int sqlite3ResolveExprNames(NameContext*, Expr*); 3101 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3102 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3103 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3104 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3105 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3106 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3107 char sqlite3AffinityType(const char*); 3108 void sqlite3Analyze(Parse*, Token*, Token*); 3109 int sqlite3InvokeBusyHandler(BusyHandler*); 3110 int sqlite3FindDb(sqlite3*, Token*); 3111 int sqlite3FindDbName(sqlite3 *, const char *); 3112 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3113 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3114 void sqlite3DefaultRowEst(Index*); 3115 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3116 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3117 void sqlite3MinimumFileFormat(Parse*, int, int); 3118 void sqlite3SchemaClear(void *); 3119 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3120 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3121 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3122 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3123 void (*)(sqlite3_context*,int,sqlite3_value **), 3124 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3125 FuncDestructor *pDestructor 3126 ); 3127 int sqlite3ApiExit(sqlite3 *db, int); 3128 int sqlite3OpenTempDatabase(Parse *); 3129 3130 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3131 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3132 void sqlite3AppendSpace(StrAccum*,int); 3133 char *sqlite3StrAccumFinish(StrAccum*); 3134 void sqlite3StrAccumReset(StrAccum*); 3135 void sqlite3SelectDestInit(SelectDest*,int,int); 3136 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3137 3138 void sqlite3BackupRestart(sqlite3_backup *); 3139 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3140 3141 /* 3142 ** The interface to the LEMON-generated parser 3143 */ 3144 void *sqlite3ParserAlloc(void*(*)(size_t)); 3145 void sqlite3ParserFree(void*, void(*)(void*)); 3146 void sqlite3Parser(void*, int, Token, Parse*); 3147 #ifdef YYTRACKMAXSTACKDEPTH 3148 int sqlite3ParserStackPeak(void*); 3149 #endif 3150 3151 void sqlite3AutoLoadExtensions(sqlite3*); 3152 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3153 void sqlite3CloseExtensions(sqlite3*); 3154 #else 3155 # define sqlite3CloseExtensions(X) 3156 #endif 3157 3158 #ifndef SQLITE_OMIT_SHARED_CACHE 3159 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3160 #else 3161 #define sqlite3TableLock(v,w,x,y,z) 3162 #endif 3163 3164 #ifdef SQLITE_TEST 3165 int sqlite3Utf8To8(unsigned char*); 3166 #endif 3167 3168 #ifdef SQLITE_OMIT_VIRTUALTABLE 3169 # define sqlite3VtabClear(Y) 3170 # define sqlite3VtabSync(X,Y) SQLITE_OK 3171 # define sqlite3VtabRollback(X) 3172 # define sqlite3VtabCommit(X) 3173 # define sqlite3VtabInSync(db) 0 3174 # define sqlite3VtabLock(X) 3175 # define sqlite3VtabUnlock(X) 3176 # define sqlite3VtabUnlockList(X) 3177 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3178 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3179 #else 3180 void sqlite3VtabClear(sqlite3 *db, Table*); 3181 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3182 int sqlite3VtabSync(sqlite3 *db, char **); 3183 int sqlite3VtabRollback(sqlite3 *db); 3184 int sqlite3VtabCommit(sqlite3 *db); 3185 void sqlite3VtabLock(VTable *); 3186 void sqlite3VtabUnlock(VTable *); 3187 void sqlite3VtabUnlockList(sqlite3*); 3188 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3189 VTable *sqlite3GetVTable(sqlite3*, Table*); 3190 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3191 #endif 3192 void sqlite3VtabMakeWritable(Parse*,Table*); 3193 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3194 void sqlite3VtabFinishParse(Parse*, Token*); 3195 void sqlite3VtabArgInit(Parse*); 3196 void sqlite3VtabArgExtend(Parse*, Token*); 3197 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3198 int sqlite3VtabCallConnect(Parse*, Table*); 3199 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3200 int sqlite3VtabBegin(sqlite3 *, VTable *); 3201 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3202 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3203 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3204 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3205 int sqlite3Reprepare(Vdbe*); 3206 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3207 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3208 int sqlite3TempInMemory(const sqlite3*); 3209 const char *sqlite3JournalModename(int); 3210 #ifndef SQLITE_OMIT_WAL 3211 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3212 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3213 #endif 3214 3215 /* Declarations for functions in fkey.c. All of these are replaced by 3216 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3217 ** key functionality is available. If OMIT_TRIGGER is defined but 3218 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3219 ** this case foreign keys are parsed, but no other functionality is 3220 ** provided (enforcement of FK constraints requires the triggers sub-system). 3221 */ 3222 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3223 void sqlite3FkCheck(Parse*, Table*, int, int); 3224 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3225 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3226 int sqlite3FkRequired(Parse*, Table*, int*, int); 3227 u32 sqlite3FkOldmask(Parse*, Table*); 3228 FKey *sqlite3FkReferences(Table *); 3229 #else 3230 #define sqlite3FkActions(a,b,c,d) 3231 #define sqlite3FkCheck(a,b,c,d) 3232 #define sqlite3FkDropTable(a,b,c) 3233 #define sqlite3FkOldmask(a,b) 0 3234 #define sqlite3FkRequired(a,b,c,d) 0 3235 #endif 3236 #ifndef SQLITE_OMIT_FOREIGN_KEY 3237 void sqlite3FkDelete(sqlite3 *, Table*); 3238 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3239 #else 3240 #define sqlite3FkDelete(a,b) 3241 #define sqlite3FkLocateIndex(a,b,c,d,e) 3242 #endif 3243 3244 3245 /* 3246 ** Available fault injectors. Should be numbered beginning with 0. 3247 */ 3248 #define SQLITE_FAULTINJECTOR_MALLOC 0 3249 #define SQLITE_FAULTINJECTOR_COUNT 1 3250 3251 /* 3252 ** The interface to the code in fault.c used for identifying "benign" 3253 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3254 ** is not defined. 3255 */ 3256 #ifndef SQLITE_OMIT_BUILTIN_TEST 3257 void sqlite3BeginBenignMalloc(void); 3258 void sqlite3EndBenignMalloc(void); 3259 #else 3260 #define sqlite3BeginBenignMalloc() 3261 #define sqlite3EndBenignMalloc() 3262 #endif 3263 3264 #define IN_INDEX_ROWID 1 3265 #define IN_INDEX_EPH 2 3266 #define IN_INDEX_INDEX_ASC 3 3267 #define IN_INDEX_INDEX_DESC 4 3268 int sqlite3FindInIndex(Parse *, Expr *, int*); 3269 3270 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3271 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3272 int sqlite3JournalSize(sqlite3_vfs *); 3273 int sqlite3JournalCreate(sqlite3_file *); 3274 int sqlite3JournalExists(sqlite3_file *p); 3275 #else 3276 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3277 #define sqlite3JournalExists(p) 1 3278 #endif 3279 3280 void sqlite3MemJournalOpen(sqlite3_file *); 3281 int sqlite3MemJournalSize(void); 3282 int sqlite3IsMemJournal(sqlite3_file *); 3283 3284 #if SQLITE_MAX_EXPR_DEPTH>0 3285 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3286 int sqlite3SelectExprHeight(Select *); 3287 int sqlite3ExprCheckHeight(Parse*, int); 3288 #else 3289 #define sqlite3ExprSetHeight(x,y) 3290 #define sqlite3SelectExprHeight(x) 0 3291 #define sqlite3ExprCheckHeight(x,y) 3292 #endif 3293 3294 u32 sqlite3Get4byte(const u8*); 3295 void sqlite3Put4byte(u8*, u32); 3296 3297 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3298 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3299 void sqlite3ConnectionUnlocked(sqlite3 *db); 3300 void sqlite3ConnectionClosed(sqlite3 *db); 3301 #else 3302 #define sqlite3ConnectionBlocked(x,y) 3303 #define sqlite3ConnectionUnlocked(x) 3304 #define sqlite3ConnectionClosed(x) 3305 #endif 3306 3307 #ifdef SQLITE_DEBUG 3308 void sqlite3ParserTrace(FILE*, char *); 3309 #endif 3310 3311 /* 3312 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3313 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3314 ** print I/O tracing messages. 3315 */ 3316 #ifdef SQLITE_ENABLE_IOTRACE 3317 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3318 void sqlite3VdbeIOTraceSql(Vdbe*); 3319 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3320 #else 3321 # define IOTRACE(A) 3322 # define sqlite3VdbeIOTraceSql(X) 3323 #endif 3324 3325 /* 3326 ** These routines are available for the mem2.c debugging memory allocator 3327 ** only. They are used to verify that different "types" of memory 3328 ** allocations are properly tracked by the system. 3329 ** 3330 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3331 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3332 ** a single bit set. 3333 ** 3334 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3335 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3336 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3337 ** 3338 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3339 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3340 ** 3341 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3342 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3343 ** it might have been allocated by lookaside, except the allocation was 3344 ** too large or lookaside was already full. It is important to verify 3345 ** that allocations that might have been satisfied by lookaside are not 3346 ** passed back to non-lookaside free() routines. Asserts such as the 3347 ** example above are placed on the non-lookaside free() routines to verify 3348 ** this constraint. 3349 ** 3350 ** All of this is no-op for a production build. It only comes into 3351 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3352 */ 3353 #ifdef SQLITE_MEMDEBUG 3354 void sqlite3MemdebugSetType(void*,u8); 3355 int sqlite3MemdebugHasType(void*,u8); 3356 int sqlite3MemdebugNoType(void*,u8); 3357 #else 3358 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3359 # define sqlite3MemdebugHasType(X,Y) 1 3360 # define sqlite3MemdebugNoType(X,Y) 1 3361 #endif 3362 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3363 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3364 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3365 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3366 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3367 3368 #endif /* _SQLITEINT_H_ */ 3369