xref: /sqlite-3.40.0/src/sqliteInt.h (revision 44723ce0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** Include the header file used to customize the compiler options for MSVC.
20 ** This should be done first so that it can successfully prevent spurious
21 ** compiler warnings due to subsequent content in this file and other files
22 ** that are included by this file.
23 */
24 #include "msvc.h"
25 
26 /*
27 ** Special setup for VxWorks
28 */
29 #include "vxworks.h"
30 
31 /*
32 ** These #defines should enable >2GB file support on POSIX if the
33 ** underlying operating system supports it.  If the OS lacks
34 ** large file support, or if the OS is windows, these should be no-ops.
35 **
36 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
37 ** system #includes.  Hence, this block of code must be the very first
38 ** code in all source files.
39 **
40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
41 ** on the compiler command line.  This is necessary if you are compiling
42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
43 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
44 ** without this option, LFS is enable.  But LFS does not exist in the kernel
45 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
46 ** portability you should omit LFS.
47 **
48 ** The previous paragraph was written in 2005.  (This paragraph is written
49 ** on 2008-11-28.) These days, all Linux kernels support large files, so
50 ** you should probably leave LFS enabled.  But some embedded platforms might
51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
52 **
53 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
54 */
55 #ifndef SQLITE_DISABLE_LFS
56 # define _LARGE_FILE       1
57 # ifndef _FILE_OFFSET_BITS
58 #   define _FILE_OFFSET_BITS 64
59 # endif
60 # define _LARGEFILE_SOURCE 1
61 #endif
62 
63 /* Needed for various definitions... */
64 #if defined(__GNUC__) && !defined(_GNU_SOURCE)
65 # define _GNU_SOURCE
66 #endif
67 
68 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
69 # define _BSD_SOURCE
70 #endif
71 
72 /*
73 ** For MinGW, check to see if we can include the header file containing its
74 ** version information, among other things.  Normally, this internal MinGW
75 ** header file would [only] be included automatically by other MinGW header
76 ** files; however, the contained version information is now required by this
77 ** header file to work around binary compatibility issues (see below) and
78 ** this is the only known way to reliably obtain it.  This entire #if block
79 ** would be completely unnecessary if there was any other way of detecting
80 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
81 ** some MinGW-specific macros).  When compiling for MinGW, either the
82 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
83 ** defined; otherwise, detection of conditions specific to MinGW will be
84 ** disabled.
85 */
86 #if defined(_HAVE_MINGW_H)
87 # include "mingw.h"
88 #elif defined(_HAVE__MINGW_H)
89 # include "_mingw.h"
90 #endif
91 
92 /*
93 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
94 ** define is required to maintain binary compatibility with the MSVC runtime
95 ** library in use (e.g. for Windows XP).
96 */
97 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
98     defined(_WIN32) && !defined(_WIN64) && \
99     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
100     defined(__MSVCRT__)
101 # define _USE_32BIT_TIME_T
102 #endif
103 
104 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
105 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
106 ** MinGW.
107 */
108 #include "sqlite3.h"
109 
110 /*
111 ** Include the configuration header output by 'configure' if we're using the
112 ** autoconf-based build
113 */
114 #ifdef _HAVE_SQLITE_CONFIG_H
115 #include "config.h"
116 #endif
117 
118 #include "sqliteLimit.h"
119 
120 /* Disable nuisance warnings on Borland compilers */
121 #if defined(__BORLANDC__)
122 #pragma warn -rch /* unreachable code */
123 #pragma warn -ccc /* Condition is always true or false */
124 #pragma warn -aus /* Assigned value is never used */
125 #pragma warn -csu /* Comparing signed and unsigned */
126 #pragma warn -spa /* Suspicious pointer arithmetic */
127 #endif
128 
129 /*
130 ** Include standard header files as necessary
131 */
132 #ifdef HAVE_STDINT_H
133 #include <stdint.h>
134 #endif
135 #ifdef HAVE_INTTYPES_H
136 #include <inttypes.h>
137 #endif
138 
139 /*
140 ** The following macros are used to cast pointers to integers and
141 ** integers to pointers.  The way you do this varies from one compiler
142 ** to the next, so we have developed the following set of #if statements
143 ** to generate appropriate macros for a wide range of compilers.
144 **
145 ** The correct "ANSI" way to do this is to use the intptr_t type.
146 ** Unfortunately, that typedef is not available on all compilers, or
147 ** if it is available, it requires an #include of specific headers
148 ** that vary from one machine to the next.
149 **
150 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
151 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
152 ** So we have to define the macros in different ways depending on the
153 ** compiler.
154 */
155 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
156 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
157 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
158 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
159 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
160 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
161 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
162 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
163 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
164 #else                          /* Generates a warning - but it always works */
165 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
166 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
167 #endif
168 
169 /*
170 ** A macro to hint to the compiler that a function should not be
171 ** inlined.
172 */
173 #if defined(__GNUC__)
174 #  define SQLITE_NOINLINE  __attribute__((noinline))
175 #elif defined(_MSC_VER) && _MSC_VER>=1310
176 #  define SQLITE_NOINLINE  __declspec(noinline)
177 #else
178 #  define SQLITE_NOINLINE
179 #endif
180 
181 /*
182 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
183 ** 0 means mutexes are permanently disable and the library is never
184 ** threadsafe.  1 means the library is serialized which is the highest
185 ** level of threadsafety.  2 means the library is multithreaded - multiple
186 ** threads can use SQLite as long as no two threads try to use the same
187 ** database connection at the same time.
188 **
189 ** Older versions of SQLite used an optional THREADSAFE macro.
190 ** We support that for legacy.
191 */
192 #if !defined(SQLITE_THREADSAFE)
193 # if defined(THREADSAFE)
194 #   define SQLITE_THREADSAFE THREADSAFE
195 # else
196 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
197 # endif
198 #endif
199 
200 /*
201 ** Powersafe overwrite is on by default.  But can be turned off using
202 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
203 */
204 #ifndef SQLITE_POWERSAFE_OVERWRITE
205 # define SQLITE_POWERSAFE_OVERWRITE 1
206 #endif
207 
208 /*
209 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
210 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
211 ** which case memory allocation statistics are disabled by default.
212 */
213 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
214 # define SQLITE_DEFAULT_MEMSTATUS 1
215 #endif
216 
217 /*
218 ** Exactly one of the following macros must be defined in order to
219 ** specify which memory allocation subsystem to use.
220 **
221 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
222 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
223 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
224 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
225 **
226 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
227 ** assert() macro is enabled, each call into the Win32 native heap subsystem
228 ** will cause HeapValidate to be called.  If heap validation should fail, an
229 ** assertion will be triggered.
230 **
231 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
232 ** the default.
233 */
234 #if defined(SQLITE_SYSTEM_MALLOC) \
235   + defined(SQLITE_WIN32_MALLOC) \
236   + defined(SQLITE_ZERO_MALLOC) \
237   + defined(SQLITE_MEMDEBUG)>1
238 # error "Two or more of the following compile-time configuration options\
239  are defined but at most one is allowed:\
240  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
241  SQLITE_ZERO_MALLOC"
242 #endif
243 #if defined(SQLITE_SYSTEM_MALLOC) \
244   + defined(SQLITE_WIN32_MALLOC) \
245   + defined(SQLITE_ZERO_MALLOC) \
246   + defined(SQLITE_MEMDEBUG)==0
247 # define SQLITE_SYSTEM_MALLOC 1
248 #endif
249 
250 /*
251 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
252 ** sizes of memory allocations below this value where possible.
253 */
254 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
255 # define SQLITE_MALLOC_SOFT_LIMIT 1024
256 #endif
257 
258 /*
259 ** We need to define _XOPEN_SOURCE as follows in order to enable
260 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
261 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
262 ** it.
263 */
264 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
265 #  define _XOPEN_SOURCE 600
266 #endif
267 
268 /*
269 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
270 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
271 ** make it true by defining or undefining NDEBUG.
272 **
273 ** Setting NDEBUG makes the code smaller and faster by disabling the
274 ** assert() statements in the code.  So we want the default action
275 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
276 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
277 ** feature.
278 */
279 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
280 # define NDEBUG 1
281 #endif
282 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
283 # undef NDEBUG
284 #endif
285 
286 /*
287 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
288 */
289 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
290 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
291 #endif
292 
293 /*
294 ** The testcase() macro is used to aid in coverage testing.  When
295 ** doing coverage testing, the condition inside the argument to
296 ** testcase() must be evaluated both true and false in order to
297 ** get full branch coverage.  The testcase() macro is inserted
298 ** to help ensure adequate test coverage in places where simple
299 ** condition/decision coverage is inadequate.  For example, testcase()
300 ** can be used to make sure boundary values are tested.  For
301 ** bitmask tests, testcase() can be used to make sure each bit
302 ** is significant and used at least once.  On switch statements
303 ** where multiple cases go to the same block of code, testcase()
304 ** can insure that all cases are evaluated.
305 **
306 */
307 #ifdef SQLITE_COVERAGE_TEST
308   void sqlite3Coverage(int);
309 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
310 #else
311 # define testcase(X)
312 #endif
313 
314 /*
315 ** The TESTONLY macro is used to enclose variable declarations or
316 ** other bits of code that are needed to support the arguments
317 ** within testcase() and assert() macros.
318 */
319 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
320 # define TESTONLY(X)  X
321 #else
322 # define TESTONLY(X)
323 #endif
324 
325 /*
326 ** Sometimes we need a small amount of code such as a variable initialization
327 ** to setup for a later assert() statement.  We do not want this code to
328 ** appear when assert() is disabled.  The following macro is therefore
329 ** used to contain that setup code.  The "VVA" acronym stands for
330 ** "Verification, Validation, and Accreditation".  In other words, the
331 ** code within VVA_ONLY() will only run during verification processes.
332 */
333 #ifndef NDEBUG
334 # define VVA_ONLY(X)  X
335 #else
336 # define VVA_ONLY(X)
337 #endif
338 
339 /*
340 ** The ALWAYS and NEVER macros surround boolean expressions which
341 ** are intended to always be true or false, respectively.  Such
342 ** expressions could be omitted from the code completely.  But they
343 ** are included in a few cases in order to enhance the resilience
344 ** of SQLite to unexpected behavior - to make the code "self-healing"
345 ** or "ductile" rather than being "brittle" and crashing at the first
346 ** hint of unplanned behavior.
347 **
348 ** In other words, ALWAYS and NEVER are added for defensive code.
349 **
350 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
351 ** be true and false so that the unreachable code they specify will
352 ** not be counted as untested code.
353 */
354 #if defined(SQLITE_COVERAGE_TEST)
355 # define ALWAYS(X)      (1)
356 # define NEVER(X)       (0)
357 #elif !defined(NDEBUG)
358 # define ALWAYS(X)      ((X)?1:(assert(0),0))
359 # define NEVER(X)       ((X)?(assert(0),1):0)
360 #else
361 # define ALWAYS(X)      (X)
362 # define NEVER(X)       (X)
363 #endif
364 
365 /*
366 ** Return true (non-zero) if the input is an integer that is too large
367 ** to fit in 32-bits.  This macro is used inside of various testcase()
368 ** macros to verify that we have tested SQLite for large-file support.
369 */
370 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
371 
372 /*
373 ** The macro unlikely() is a hint that surrounds a boolean
374 ** expression that is usually false.  Macro likely() surrounds
375 ** a boolean expression that is usually true.  These hints could,
376 ** in theory, be used by the compiler to generate better code, but
377 ** currently they are just comments for human readers.
378 */
379 #define likely(X)    (X)
380 #define unlikely(X)  (X)
381 
382 #include "hash.h"
383 #include "parse.h"
384 #include <stdio.h>
385 #include <stdlib.h>
386 #include <string.h>
387 #include <assert.h>
388 #include <stddef.h>
389 
390 /*
391 ** If compiling for a processor that lacks floating point support,
392 ** substitute integer for floating-point
393 */
394 #ifdef SQLITE_OMIT_FLOATING_POINT
395 # define double sqlite_int64
396 # define float sqlite_int64
397 # define LONGDOUBLE_TYPE sqlite_int64
398 # ifndef SQLITE_BIG_DBL
399 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
400 # endif
401 # define SQLITE_OMIT_DATETIME_FUNCS 1
402 # define SQLITE_OMIT_TRACE 1
403 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
404 # undef SQLITE_HAVE_ISNAN
405 #endif
406 #ifndef SQLITE_BIG_DBL
407 # define SQLITE_BIG_DBL (1e99)
408 #endif
409 
410 /*
411 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
412 ** afterward. Having this macro allows us to cause the C compiler
413 ** to omit code used by TEMP tables without messy #ifndef statements.
414 */
415 #ifdef SQLITE_OMIT_TEMPDB
416 #define OMIT_TEMPDB 1
417 #else
418 #define OMIT_TEMPDB 0
419 #endif
420 
421 /*
422 ** The "file format" number is an integer that is incremented whenever
423 ** the VDBE-level file format changes.  The following macros define the
424 ** the default file format for new databases and the maximum file format
425 ** that the library can read.
426 */
427 #define SQLITE_MAX_FILE_FORMAT 4
428 #ifndef SQLITE_DEFAULT_FILE_FORMAT
429 # define SQLITE_DEFAULT_FILE_FORMAT 4
430 #endif
431 
432 /*
433 ** Determine whether triggers are recursive by default.  This can be
434 ** changed at run-time using a pragma.
435 */
436 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
437 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
438 #endif
439 
440 /*
441 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
442 ** on the command-line
443 */
444 #ifndef SQLITE_TEMP_STORE
445 # define SQLITE_TEMP_STORE 1
446 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
447 #endif
448 
449 /*
450 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
451 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
452 ** to zero.
453 */
454 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
455 # undef SQLITE_MAX_WORKER_THREADS
456 # define SQLITE_MAX_WORKER_THREADS 0
457 #endif
458 #ifndef SQLITE_MAX_WORKER_THREADS
459 # define SQLITE_MAX_WORKER_THREADS 8
460 #endif
461 #ifndef SQLITE_DEFAULT_WORKER_THREADS
462 # define SQLITE_DEFAULT_WORKER_THREADS 0
463 #endif
464 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
465 # undef SQLITE_MAX_WORKER_THREADS
466 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
467 #endif
468 
469 
470 /*
471 ** GCC does not define the offsetof() macro so we'll have to do it
472 ** ourselves.
473 */
474 #ifndef offsetof
475 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
476 #endif
477 
478 /*
479 ** Macros to compute minimum and maximum of two numbers.
480 */
481 #define MIN(A,B) ((A)<(B)?(A):(B))
482 #define MAX(A,B) ((A)>(B)?(A):(B))
483 
484 /*
485 ** Swap two objects of type TYPE.
486 */
487 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
488 
489 /*
490 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
491 ** not, there are still machines out there that use EBCDIC.)
492 */
493 #if 'A' == '\301'
494 # define SQLITE_EBCDIC 1
495 #else
496 # define SQLITE_ASCII 1
497 #endif
498 
499 /*
500 ** Integers of known sizes.  These typedefs might change for architectures
501 ** where the sizes very.  Preprocessor macros are available so that the
502 ** types can be conveniently redefined at compile-type.  Like this:
503 **
504 **         cc '-DUINTPTR_TYPE=long long int' ...
505 */
506 #ifndef UINT32_TYPE
507 # ifdef HAVE_UINT32_T
508 #  define UINT32_TYPE uint32_t
509 # else
510 #  define UINT32_TYPE unsigned int
511 # endif
512 #endif
513 #ifndef UINT16_TYPE
514 # ifdef HAVE_UINT16_T
515 #  define UINT16_TYPE uint16_t
516 # else
517 #  define UINT16_TYPE unsigned short int
518 # endif
519 #endif
520 #ifndef INT16_TYPE
521 # ifdef HAVE_INT16_T
522 #  define INT16_TYPE int16_t
523 # else
524 #  define INT16_TYPE short int
525 # endif
526 #endif
527 #ifndef UINT8_TYPE
528 # ifdef HAVE_UINT8_T
529 #  define UINT8_TYPE uint8_t
530 # else
531 #  define UINT8_TYPE unsigned char
532 # endif
533 #endif
534 #ifndef INT8_TYPE
535 # ifdef HAVE_INT8_T
536 #  define INT8_TYPE int8_t
537 # else
538 #  define INT8_TYPE signed char
539 # endif
540 #endif
541 #ifndef LONGDOUBLE_TYPE
542 # define LONGDOUBLE_TYPE long double
543 #endif
544 typedef sqlite_int64 i64;          /* 8-byte signed integer */
545 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
546 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
547 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
548 typedef INT16_TYPE i16;            /* 2-byte signed integer */
549 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
550 typedef INT8_TYPE i8;              /* 1-byte signed integer */
551 
552 /*
553 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
554 ** that can be stored in a u32 without loss of data.  The value
555 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
556 ** have to specify the value in the less intuitive manner shown:
557 */
558 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
559 
560 /*
561 ** The datatype used to store estimates of the number of rows in a
562 ** table or index.  This is an unsigned integer type.  For 99.9% of
563 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
564 ** can be used at compile-time if desired.
565 */
566 #ifdef SQLITE_64BIT_STATS
567  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
568 #else
569  typedef u32 tRowcnt;    /* 32-bit is the default */
570 #endif
571 
572 /*
573 ** Estimated quantities used for query planning are stored as 16-bit
574 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
575 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
576 ** But the allowed values are "grainy".  Not every value is representable.
577 ** For example, quantities 16 and 17 are both represented by a LogEst
578 ** of 40.  However, since LogEst quantities are suppose to be estimates,
579 ** not exact values, this imprecision is not a problem.
580 **
581 ** "LogEst" is short for "Logarithmic Estimate".
582 **
583 ** Examples:
584 **      1 -> 0              20 -> 43          10000 -> 132
585 **      2 -> 10             25 -> 46          25000 -> 146
586 **      3 -> 16            100 -> 66        1000000 -> 199
587 **      4 -> 20           1000 -> 99        1048576 -> 200
588 **     10 -> 33           1024 -> 100    4294967296 -> 320
589 **
590 ** The LogEst can be negative to indicate fractional values.
591 ** Examples:
592 **
593 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
594 */
595 typedef INT16_TYPE LogEst;
596 
597 /*
598 ** Macros to determine whether the machine is big or little endian,
599 ** and whether or not that determination is run-time or compile-time.
600 **
601 ** For best performance, an attempt is made to guess at the byte-order
602 ** using C-preprocessor macros.  If that is unsuccessful, or if
603 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
604 ** at run-time.
605 */
606 #ifdef SQLITE_AMALGAMATION
607 const int sqlite3one = 1;
608 #else
609 extern const int sqlite3one;
610 #endif
611 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
612      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
613      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
614      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
615 # define SQLITE_BYTEORDER    1234
616 # define SQLITE_BIGENDIAN    0
617 # define SQLITE_LITTLEENDIAN 1
618 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
619 #endif
620 #if (defined(sparc)    || defined(__ppc__))  \
621     && !defined(SQLITE_RUNTIME_BYTEORDER)
622 # define SQLITE_BYTEORDER    4321
623 # define SQLITE_BIGENDIAN    1
624 # define SQLITE_LITTLEENDIAN 0
625 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
626 #endif
627 #if !defined(SQLITE_BYTEORDER)
628 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
629 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
630 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
631 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
632 #endif
633 
634 /*
635 ** Constants for the largest and smallest possible 64-bit signed integers.
636 ** These macros are designed to work correctly on both 32-bit and 64-bit
637 ** compilers.
638 */
639 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
640 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
641 
642 /*
643 ** Round up a number to the next larger multiple of 8.  This is used
644 ** to force 8-byte alignment on 64-bit architectures.
645 */
646 #define ROUND8(x)     (((x)+7)&~7)
647 
648 /*
649 ** Round down to the nearest multiple of 8
650 */
651 #define ROUNDDOWN8(x) ((x)&~7)
652 
653 /*
654 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
655 ** macro is used only within assert() to verify that the code gets
656 ** all alignment restrictions correct.
657 **
658 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
659 ** underlying malloc() implementation might return us 4-byte aligned
660 ** pointers.  In that case, only verify 4-byte alignment.
661 */
662 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
663 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
664 #else
665 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
666 #endif
667 
668 /*
669 ** Disable MMAP on platforms where it is known to not work
670 */
671 #if defined(__OpenBSD__) || defined(__QNXNTO__)
672 # undef SQLITE_MAX_MMAP_SIZE
673 # define SQLITE_MAX_MMAP_SIZE 0
674 #endif
675 
676 /*
677 ** Default maximum size of memory used by memory-mapped I/O in the VFS
678 */
679 #ifdef __APPLE__
680 # include <TargetConditionals.h>
681 # if TARGET_OS_IPHONE
682 #   undef SQLITE_MAX_MMAP_SIZE
683 #   define SQLITE_MAX_MMAP_SIZE 0
684 # endif
685 #endif
686 #ifndef SQLITE_MAX_MMAP_SIZE
687 # if defined(__linux__) \
688   || defined(_WIN32) \
689   || (defined(__APPLE__) && defined(__MACH__)) \
690   || defined(__sun)
691 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
692 # else
693 #   define SQLITE_MAX_MMAP_SIZE 0
694 # endif
695 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
696 #endif
697 
698 /*
699 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
700 ** default MMAP_SIZE is specified at compile-time, make sure that it does
701 ** not exceed the maximum mmap size.
702 */
703 #ifndef SQLITE_DEFAULT_MMAP_SIZE
704 # define SQLITE_DEFAULT_MMAP_SIZE 0
705 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
706 #endif
707 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
708 # undef SQLITE_DEFAULT_MMAP_SIZE
709 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
710 #endif
711 
712 /*
713 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
714 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
715 ** define SQLITE_ENABLE_STAT3_OR_STAT4
716 */
717 #ifdef SQLITE_ENABLE_STAT4
718 # undef SQLITE_ENABLE_STAT3
719 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
720 #elif SQLITE_ENABLE_STAT3
721 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
722 #elif SQLITE_ENABLE_STAT3_OR_STAT4
723 # undef SQLITE_ENABLE_STAT3_OR_STAT4
724 #endif
725 
726 /*
727 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
728 ** the Select query generator tracing logic is turned on.
729 */
730 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
731 # define SELECTTRACE_ENABLED 1
732 #else
733 # define SELECTTRACE_ENABLED 0
734 #endif
735 
736 /*
737 ** An instance of the following structure is used to store the busy-handler
738 ** callback for a given sqlite handle.
739 **
740 ** The sqlite.busyHandler member of the sqlite struct contains the busy
741 ** callback for the database handle. Each pager opened via the sqlite
742 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
743 ** callback is currently invoked only from within pager.c.
744 */
745 typedef struct BusyHandler BusyHandler;
746 struct BusyHandler {
747   int (*xFunc)(void *,int);  /* The busy callback */
748   void *pArg;                /* First arg to busy callback */
749   int nBusy;                 /* Incremented with each busy call */
750 };
751 
752 /*
753 ** Name of the master database table.  The master database table
754 ** is a special table that holds the names and attributes of all
755 ** user tables and indices.
756 */
757 #define MASTER_NAME       "sqlite_master"
758 #define TEMP_MASTER_NAME  "sqlite_temp_master"
759 
760 /*
761 ** The root-page of the master database table.
762 */
763 #define MASTER_ROOT       1
764 
765 /*
766 ** The name of the schema table.
767 */
768 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
769 
770 /*
771 ** A convenience macro that returns the number of elements in
772 ** an array.
773 */
774 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
775 
776 /*
777 ** Determine if the argument is a power of two
778 */
779 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
780 
781 /*
782 ** The following value as a destructor means to use sqlite3DbFree().
783 ** The sqlite3DbFree() routine requires two parameters instead of the
784 ** one parameter that destructors normally want.  So we have to introduce
785 ** this magic value that the code knows to handle differently.  Any
786 ** pointer will work here as long as it is distinct from SQLITE_STATIC
787 ** and SQLITE_TRANSIENT.
788 */
789 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
790 
791 /*
792 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
793 ** not support Writable Static Data (WSD) such as global and static variables.
794 ** All variables must either be on the stack or dynamically allocated from
795 ** the heap.  When WSD is unsupported, the variable declarations scattered
796 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
797 ** macro is used for this purpose.  And instead of referencing the variable
798 ** directly, we use its constant as a key to lookup the run-time allocated
799 ** buffer that holds real variable.  The constant is also the initializer
800 ** for the run-time allocated buffer.
801 **
802 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
803 ** macros become no-ops and have zero performance impact.
804 */
805 #ifdef SQLITE_OMIT_WSD
806   #define SQLITE_WSD const
807   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
808   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
809   int sqlite3_wsd_init(int N, int J);
810   void *sqlite3_wsd_find(void *K, int L);
811 #else
812   #define SQLITE_WSD
813   #define GLOBAL(t,v) v
814   #define sqlite3GlobalConfig sqlite3Config
815 #endif
816 
817 /*
818 ** The following macros are used to suppress compiler warnings and to
819 ** make it clear to human readers when a function parameter is deliberately
820 ** left unused within the body of a function. This usually happens when
821 ** a function is called via a function pointer. For example the
822 ** implementation of an SQL aggregate step callback may not use the
823 ** parameter indicating the number of arguments passed to the aggregate,
824 ** if it knows that this is enforced elsewhere.
825 **
826 ** When a function parameter is not used at all within the body of a function,
827 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
828 ** However, these macros may also be used to suppress warnings related to
829 ** parameters that may or may not be used depending on compilation options.
830 ** For example those parameters only used in assert() statements. In these
831 ** cases the parameters are named as per the usual conventions.
832 */
833 #define UNUSED_PARAMETER(x) (void)(x)
834 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
835 
836 /*
837 ** Forward references to structures
838 */
839 typedef struct AggInfo AggInfo;
840 typedef struct AuthContext AuthContext;
841 typedef struct AutoincInfo AutoincInfo;
842 typedef struct Bitvec Bitvec;
843 typedef struct CollSeq CollSeq;
844 typedef struct Column Column;
845 typedef struct Db Db;
846 typedef struct Schema Schema;
847 typedef struct Expr Expr;
848 typedef struct ExprList ExprList;
849 typedef struct ExprSpan ExprSpan;
850 typedef struct FKey FKey;
851 typedef struct FuncDestructor FuncDestructor;
852 typedef struct FuncDef FuncDef;
853 typedef struct FuncDefHash FuncDefHash;
854 typedef struct IdList IdList;
855 typedef struct Index Index;
856 typedef struct IndexSample IndexSample;
857 typedef struct KeyClass KeyClass;
858 typedef struct KeyInfo KeyInfo;
859 typedef struct Lookaside Lookaside;
860 typedef struct LookasideSlot LookasideSlot;
861 typedef struct Module Module;
862 typedef struct NameContext NameContext;
863 typedef struct Parse Parse;
864 typedef struct PrintfArguments PrintfArguments;
865 typedef struct RowSet RowSet;
866 typedef struct Savepoint Savepoint;
867 typedef struct Select Select;
868 typedef struct SQLiteThread SQLiteThread;
869 typedef struct SelectDest SelectDest;
870 typedef struct SrcList SrcList;
871 typedef struct StrAccum StrAccum;
872 typedef struct Table Table;
873 typedef struct TableLock TableLock;
874 typedef struct Token Token;
875 typedef struct TreeView TreeView;
876 typedef struct Trigger Trigger;
877 typedef struct TriggerPrg TriggerPrg;
878 typedef struct TriggerStep TriggerStep;
879 typedef struct UnpackedRecord UnpackedRecord;
880 typedef struct VTable VTable;
881 typedef struct VtabCtx VtabCtx;
882 typedef struct Walker Walker;
883 typedef struct WhereInfo WhereInfo;
884 typedef struct With With;
885 
886 /*
887 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
888 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
889 ** pointer types (i.e. FuncDef) defined above.
890 */
891 #include "btree.h"
892 #include "vdbe.h"
893 #include "pager.h"
894 #include "pcache.h"
895 
896 #include "os.h"
897 #include "mutex.h"
898 
899 
900 /*
901 ** Each database file to be accessed by the system is an instance
902 ** of the following structure.  There are normally two of these structures
903 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
904 ** aDb[1] is the database file used to hold temporary tables.  Additional
905 ** databases may be attached.
906 */
907 struct Db {
908   char *zName;         /* Name of this database */
909   Btree *pBt;          /* The B*Tree structure for this database file */
910   u8 safety_level;     /* How aggressive at syncing data to disk */
911   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
912 };
913 
914 /*
915 ** An instance of the following structure stores a database schema.
916 **
917 ** Most Schema objects are associated with a Btree.  The exception is
918 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
919 ** In shared cache mode, a single Schema object can be shared by multiple
920 ** Btrees that refer to the same underlying BtShared object.
921 **
922 ** Schema objects are automatically deallocated when the last Btree that
923 ** references them is destroyed.   The TEMP Schema is manually freed by
924 ** sqlite3_close().
925 *
926 ** A thread must be holding a mutex on the corresponding Btree in order
927 ** to access Schema content.  This implies that the thread must also be
928 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
929 ** For a TEMP Schema, only the connection mutex is required.
930 */
931 struct Schema {
932   int schema_cookie;   /* Database schema version number for this file */
933   int iGeneration;     /* Generation counter.  Incremented with each change */
934   Hash tblHash;        /* All tables indexed by name */
935   Hash idxHash;        /* All (named) indices indexed by name */
936   Hash trigHash;       /* All triggers indexed by name */
937   Hash fkeyHash;       /* All foreign keys by referenced table name */
938   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
939   u8 file_format;      /* Schema format version for this file */
940   u8 enc;              /* Text encoding used by this database */
941   u16 schemaFlags;     /* Flags associated with this schema */
942   int cache_size;      /* Number of pages to use in the cache */
943 };
944 
945 /*
946 ** These macros can be used to test, set, or clear bits in the
947 ** Db.pSchema->flags field.
948 */
949 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
950 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
951 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
952 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
953 
954 /*
955 ** Allowed values for the DB.pSchema->flags field.
956 **
957 ** The DB_SchemaLoaded flag is set after the database schema has been
958 ** read into internal hash tables.
959 **
960 ** DB_UnresetViews means that one or more views have column names that
961 ** have been filled out.  If the schema changes, these column names might
962 ** changes and so the view will need to be reset.
963 */
964 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
965 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
966 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
967 
968 /*
969 ** The number of different kinds of things that can be limited
970 ** using the sqlite3_limit() interface.
971 */
972 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
973 
974 /*
975 ** Lookaside malloc is a set of fixed-size buffers that can be used
976 ** to satisfy small transient memory allocation requests for objects
977 ** associated with a particular database connection.  The use of
978 ** lookaside malloc provides a significant performance enhancement
979 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
980 ** SQL statements.
981 **
982 ** The Lookaside structure holds configuration information about the
983 ** lookaside malloc subsystem.  Each available memory allocation in
984 ** the lookaside subsystem is stored on a linked list of LookasideSlot
985 ** objects.
986 **
987 ** Lookaside allocations are only allowed for objects that are associated
988 ** with a particular database connection.  Hence, schema information cannot
989 ** be stored in lookaside because in shared cache mode the schema information
990 ** is shared by multiple database connections.  Therefore, while parsing
991 ** schema information, the Lookaside.bEnabled flag is cleared so that
992 ** lookaside allocations are not used to construct the schema objects.
993 */
994 struct Lookaside {
995   u16 sz;                 /* Size of each buffer in bytes */
996   u8 bEnabled;            /* False to disable new lookaside allocations */
997   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
998   int nOut;               /* Number of buffers currently checked out */
999   int mxOut;              /* Highwater mark for nOut */
1000   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
1001   LookasideSlot *pFree;   /* List of available buffers */
1002   void *pStart;           /* First byte of available memory space */
1003   void *pEnd;             /* First byte past end of available space */
1004 };
1005 struct LookasideSlot {
1006   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
1007 };
1008 
1009 /*
1010 ** A hash table for function definitions.
1011 **
1012 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
1013 ** Collisions are on the FuncDef.pHash chain.
1014 */
1015 struct FuncDefHash {
1016   FuncDef *a[23];       /* Hash table for functions */
1017 };
1018 
1019 #ifdef SQLITE_USER_AUTHENTICATION
1020 /*
1021 ** Information held in the "sqlite3" database connection object and used
1022 ** to manage user authentication.
1023 */
1024 typedef struct sqlite3_userauth sqlite3_userauth;
1025 struct sqlite3_userauth {
1026   u8 authLevel;                 /* Current authentication level */
1027   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1028   char *zAuthPW;                /* Password used to authenticate */
1029   char *zAuthUser;              /* User name used to authenticate */
1030 };
1031 
1032 /* Allowed values for sqlite3_userauth.authLevel */
1033 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1034 #define UAUTH_Fail        1     /* User authentication failed */
1035 #define UAUTH_User        2     /* Authenticated as a normal user */
1036 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1037 
1038 /* Functions used only by user authorization logic */
1039 int sqlite3UserAuthTable(const char*);
1040 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1041 void sqlite3UserAuthInit(sqlite3*);
1042 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
1043 
1044 #endif /* SQLITE_USER_AUTHENTICATION */
1045 
1046 /*
1047 ** typedef for the authorization callback function.
1048 */
1049 #ifdef SQLITE_USER_AUTHENTICATION
1050   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1051                                const char*, const char*);
1052 #else
1053   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1054                                const char*);
1055 #endif
1056 
1057 
1058 /*
1059 ** Each database connection is an instance of the following structure.
1060 */
1061 struct sqlite3 {
1062   sqlite3_vfs *pVfs;            /* OS Interface */
1063   struct Vdbe *pVdbe;           /* List of active virtual machines */
1064   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1065   sqlite3_mutex *mutex;         /* Connection mutex */
1066   Db *aDb;                      /* All backends */
1067   int nDb;                      /* Number of backends currently in use */
1068   int flags;                    /* Miscellaneous flags. See below */
1069   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1070   i64 szMmap;                   /* Default mmap_size setting */
1071   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1072   int errCode;                  /* Most recent error code (SQLITE_*) */
1073   int errMask;                  /* & result codes with this before returning */
1074   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1075   u8 enc;                       /* Text encoding */
1076   u8 autoCommit;                /* The auto-commit flag. */
1077   u8 temp_store;                /* 1: file 2: memory 0: default */
1078   u8 mallocFailed;              /* True if we have seen a malloc failure */
1079   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1080   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1081   u8 suppressErr;               /* Do not issue error messages if true */
1082   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1083   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1084   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1085   u32 magic;                    /* Magic number for detect library misuse */
1086   int nChange;                  /* Value returned by sqlite3_changes() */
1087   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1088   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1089   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1090   struct sqlite3InitInfo {      /* Information used during initialization */
1091     int newTnum;                /* Rootpage of table being initialized */
1092     u8 iDb;                     /* Which db file is being initialized */
1093     u8 busy;                    /* TRUE if currently initializing */
1094     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1095     u8 imposterTable;           /* Building an imposter table */
1096   } init;
1097   int nVdbeActive;              /* Number of VDBEs currently running */
1098   int nVdbeRead;                /* Number of active VDBEs that read or write */
1099   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1100   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1101   int nExtension;               /* Number of loaded extensions */
1102   void **aExtension;            /* Array of shared library handles */
1103   void (*xTrace)(void*,const char*);        /* Trace function */
1104   void *pTraceArg;                          /* Argument to the trace function */
1105   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1106   void *pProfileArg;                        /* Argument to profile function */
1107   void *pCommitArg;                 /* Argument to xCommitCallback() */
1108   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1109   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1110   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1111   void *pUpdateArg;
1112   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1113 #ifndef SQLITE_OMIT_WAL
1114   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1115   void *pWalArg;
1116 #endif
1117   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1118   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1119   void *pCollNeededArg;
1120   sqlite3_value *pErr;          /* Most recent error message */
1121   union {
1122     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1123     double notUsed1;            /* Spacer */
1124   } u1;
1125   Lookaside lookaside;          /* Lookaside malloc configuration */
1126 #ifndef SQLITE_OMIT_AUTHORIZATION
1127   sqlite3_xauth xAuth;          /* Access authorization function */
1128   void *pAuthArg;               /* 1st argument to the access auth function */
1129 #endif
1130 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1131   int (*xProgress)(void *);     /* The progress callback */
1132   void *pProgressArg;           /* Argument to the progress callback */
1133   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1134 #endif
1135 #ifndef SQLITE_OMIT_VIRTUALTABLE
1136   int nVTrans;                  /* Allocated size of aVTrans */
1137   Hash aModule;                 /* populated by sqlite3_create_module() */
1138   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1139   VTable **aVTrans;             /* Virtual tables with open transactions */
1140   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1141 #endif
1142   FuncDefHash aFunc;            /* Hash table of connection functions */
1143   Hash aCollSeq;                /* All collating sequences */
1144   BusyHandler busyHandler;      /* Busy callback */
1145   Db aDbStatic[2];              /* Static space for the 2 default backends */
1146   Savepoint *pSavepoint;        /* List of active savepoints */
1147   int busyTimeout;              /* Busy handler timeout, in msec */
1148   int nSavepoint;               /* Number of non-transaction savepoints */
1149   int nStatement;               /* Number of nested statement-transactions  */
1150   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1151   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1152   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1153 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1154   /* The following variables are all protected by the STATIC_MASTER
1155   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1156   **
1157   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1158   ** unlock so that it can proceed.
1159   **
1160   ** When X.pBlockingConnection==Y, that means that something that X tried
1161   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1162   ** held by Y.
1163   */
1164   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1165   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1166   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1167   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1168   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1169 #endif
1170 #ifdef SQLITE_USER_AUTHENTICATION
1171   sqlite3_userauth auth;        /* User authentication information */
1172 #endif
1173 };
1174 
1175 /*
1176 ** A macro to discover the encoding of a database.
1177 */
1178 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
1179 #define ENC(db)        ((db)->enc)
1180 
1181 /*
1182 ** Possible values for the sqlite3.flags.
1183 */
1184 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
1185 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
1186 #define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
1187 #define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
1188 #define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
1189 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
1190 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1191 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1192                                           /*   DELETE, or UPDATE and return */
1193                                           /*   the count using a callback. */
1194 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1195                                           /*   result set is empty */
1196 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
1197 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
1198 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
1199 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
1200 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
1201 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
1202 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
1203 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
1204 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
1205 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
1206 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
1207 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
1208 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
1209 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
1210 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
1211 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
1212 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
1213 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
1214 
1215 
1216 /*
1217 ** Bits of the sqlite3.dbOptFlags field that are used by the
1218 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1219 ** selectively disable various optimizations.
1220 */
1221 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1222 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1223 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1224 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1225 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1226 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1227 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1228 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1229 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1230 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1231 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1232 #define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
1233 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1234 
1235 /*
1236 ** Macros for testing whether or not optimizations are enabled or disabled.
1237 */
1238 #ifndef SQLITE_OMIT_BUILTIN_TEST
1239 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1240 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1241 #else
1242 #define OptimizationDisabled(db, mask)  0
1243 #define OptimizationEnabled(db, mask)   1
1244 #endif
1245 
1246 /*
1247 ** Return true if it OK to factor constant expressions into the initialization
1248 ** code. The argument is a Parse object for the code generator.
1249 */
1250 #define ConstFactorOk(P) ((P)->okConstFactor)
1251 
1252 /*
1253 ** Possible values for the sqlite.magic field.
1254 ** The numbers are obtained at random and have no special meaning, other
1255 ** than being distinct from one another.
1256 */
1257 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1258 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1259 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1260 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1261 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1262 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1263 
1264 /*
1265 ** Each SQL function is defined by an instance of the following
1266 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
1267 ** hash table.  When multiple functions have the same name, the hash table
1268 ** points to a linked list of these structures.
1269 */
1270 struct FuncDef {
1271   i16 nArg;            /* Number of arguments.  -1 means unlimited */
1272   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1273   void *pUserData;     /* User data parameter */
1274   FuncDef *pNext;      /* Next function with same name */
1275   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
1276   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
1277   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
1278   char *zName;         /* SQL name of the function. */
1279   FuncDef *pHash;      /* Next with a different name but the same hash */
1280   FuncDestructor *pDestructor;   /* Reference counted destructor function */
1281 };
1282 
1283 /*
1284 ** This structure encapsulates a user-function destructor callback (as
1285 ** configured using create_function_v2()) and a reference counter. When
1286 ** create_function_v2() is called to create a function with a destructor,
1287 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1288 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1289 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1290 ** member of each of the new FuncDef objects is set to point to the allocated
1291 ** FuncDestructor.
1292 **
1293 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1294 ** count on this object is decremented. When it reaches 0, the destructor
1295 ** is invoked and the FuncDestructor structure freed.
1296 */
1297 struct FuncDestructor {
1298   int nRef;
1299   void (*xDestroy)(void *);
1300   void *pUserData;
1301 };
1302 
1303 /*
1304 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1305 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
1306 ** are assert() statements in the code to verify this.
1307 */
1308 #define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1309 #define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
1310 #define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
1311 #define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
1312 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
1313 #define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
1314 #define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
1315 #define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
1316 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
1317 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
1318 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
1319 #define SQLITE_FUNC_MINMAX  0x1000 /* True for min() and max() aggregates */
1320 
1321 /*
1322 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1323 ** used to create the initializers for the FuncDef structures.
1324 **
1325 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1326 **     Used to create a scalar function definition of a function zName
1327 **     implemented by C function xFunc that accepts nArg arguments. The
1328 **     value passed as iArg is cast to a (void*) and made available
1329 **     as the user-data (sqlite3_user_data()) for the function. If
1330 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1331 **
1332 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1333 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1334 **
1335 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1336 **     Used to create an aggregate function definition implemented by
1337 **     the C functions xStep and xFinal. The first four parameters
1338 **     are interpreted in the same way as the first 4 parameters to
1339 **     FUNCTION().
1340 **
1341 **   LIKEFUNC(zName, nArg, pArg, flags)
1342 **     Used to create a scalar function definition of a function zName
1343 **     that accepts nArg arguments and is implemented by a call to C
1344 **     function likeFunc. Argument pArg is cast to a (void *) and made
1345 **     available as the function user-data (sqlite3_user_data()). The
1346 **     FuncDef.flags variable is set to the value passed as the flags
1347 **     parameter.
1348 */
1349 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1350   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1351    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1352 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1353   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1354    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1355 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1356   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1357    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1358 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1359   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1360    pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1361 #define LIKEFUNC(zName, nArg, arg, flags) \
1362   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1363    (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1364 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1365   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1366    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1367 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
1368   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1369    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1370 
1371 /*
1372 ** All current savepoints are stored in a linked list starting at
1373 ** sqlite3.pSavepoint. The first element in the list is the most recently
1374 ** opened savepoint. Savepoints are added to the list by the vdbe
1375 ** OP_Savepoint instruction.
1376 */
1377 struct Savepoint {
1378   char *zName;                        /* Savepoint name (nul-terminated) */
1379   i64 nDeferredCons;                  /* Number of deferred fk violations */
1380   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1381   Savepoint *pNext;                   /* Parent savepoint (if any) */
1382 };
1383 
1384 /*
1385 ** The following are used as the second parameter to sqlite3Savepoint(),
1386 ** and as the P1 argument to the OP_Savepoint instruction.
1387 */
1388 #define SAVEPOINT_BEGIN      0
1389 #define SAVEPOINT_RELEASE    1
1390 #define SAVEPOINT_ROLLBACK   2
1391 
1392 
1393 /*
1394 ** Each SQLite module (virtual table definition) is defined by an
1395 ** instance of the following structure, stored in the sqlite3.aModule
1396 ** hash table.
1397 */
1398 struct Module {
1399   const sqlite3_module *pModule;       /* Callback pointers */
1400   const char *zName;                   /* Name passed to create_module() */
1401   void *pAux;                          /* pAux passed to create_module() */
1402   void (*xDestroy)(void *);            /* Module destructor function */
1403 };
1404 
1405 /*
1406 ** information about each column of an SQL table is held in an instance
1407 ** of this structure.
1408 */
1409 struct Column {
1410   char *zName;     /* Name of this column */
1411   Expr *pDflt;     /* Default value of this column */
1412   char *zDflt;     /* Original text of the default value */
1413   char *zType;     /* Data type for this column */
1414   char *zColl;     /* Collating sequence.  If NULL, use the default */
1415   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1416   char affinity;   /* One of the SQLITE_AFF_... values */
1417   u8 szEst;        /* Estimated size of this column.  INT==1 */
1418   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1419 };
1420 
1421 /* Allowed values for Column.colFlags:
1422 */
1423 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1424 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1425 
1426 /*
1427 ** A "Collating Sequence" is defined by an instance of the following
1428 ** structure. Conceptually, a collating sequence consists of a name and
1429 ** a comparison routine that defines the order of that sequence.
1430 **
1431 ** If CollSeq.xCmp is NULL, it means that the
1432 ** collating sequence is undefined.  Indices built on an undefined
1433 ** collating sequence may not be read or written.
1434 */
1435 struct CollSeq {
1436   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1437   u8 enc;               /* Text encoding handled by xCmp() */
1438   void *pUser;          /* First argument to xCmp() */
1439   int (*xCmp)(void*,int, const void*, int, const void*);
1440   void (*xDel)(void*);  /* Destructor for pUser */
1441 };
1442 
1443 /*
1444 ** A sort order can be either ASC or DESC.
1445 */
1446 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1447 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1448 
1449 /*
1450 ** Column affinity types.
1451 **
1452 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1453 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1454 ** the speed a little by numbering the values consecutively.
1455 **
1456 ** But rather than start with 0 or 1, we begin with 'A'.  That way,
1457 ** when multiple affinity types are concatenated into a string and
1458 ** used as the P4 operand, they will be more readable.
1459 **
1460 ** Note also that the numeric types are grouped together so that testing
1461 ** for a numeric type is a single comparison.  And the NONE type is first.
1462 */
1463 #define SQLITE_AFF_NONE     'A'
1464 #define SQLITE_AFF_TEXT     'B'
1465 #define SQLITE_AFF_NUMERIC  'C'
1466 #define SQLITE_AFF_INTEGER  'D'
1467 #define SQLITE_AFF_REAL     'E'
1468 
1469 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1470 
1471 /*
1472 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1473 ** affinity value.
1474 */
1475 #define SQLITE_AFF_MASK     0x47
1476 
1477 /*
1478 ** Additional bit values that can be ORed with an affinity without
1479 ** changing the affinity.
1480 **
1481 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1482 ** It causes an assert() to fire if either operand to a comparison
1483 ** operator is NULL.  It is added to certain comparison operators to
1484 ** prove that the operands are always NOT NULL.
1485 */
1486 #define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
1487 #define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
1488 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1489 #define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */
1490 
1491 /*
1492 ** An object of this type is created for each virtual table present in
1493 ** the database schema.
1494 **
1495 ** If the database schema is shared, then there is one instance of this
1496 ** structure for each database connection (sqlite3*) that uses the shared
1497 ** schema. This is because each database connection requires its own unique
1498 ** instance of the sqlite3_vtab* handle used to access the virtual table
1499 ** implementation. sqlite3_vtab* handles can not be shared between
1500 ** database connections, even when the rest of the in-memory database
1501 ** schema is shared, as the implementation often stores the database
1502 ** connection handle passed to it via the xConnect() or xCreate() method
1503 ** during initialization internally. This database connection handle may
1504 ** then be used by the virtual table implementation to access real tables
1505 ** within the database. So that they appear as part of the callers
1506 ** transaction, these accesses need to be made via the same database
1507 ** connection as that used to execute SQL operations on the virtual table.
1508 **
1509 ** All VTable objects that correspond to a single table in a shared
1510 ** database schema are initially stored in a linked-list pointed to by
1511 ** the Table.pVTable member variable of the corresponding Table object.
1512 ** When an sqlite3_prepare() operation is required to access the virtual
1513 ** table, it searches the list for the VTable that corresponds to the
1514 ** database connection doing the preparing so as to use the correct
1515 ** sqlite3_vtab* handle in the compiled query.
1516 **
1517 ** When an in-memory Table object is deleted (for example when the
1518 ** schema is being reloaded for some reason), the VTable objects are not
1519 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1520 ** immediately. Instead, they are moved from the Table.pVTable list to
1521 ** another linked list headed by the sqlite3.pDisconnect member of the
1522 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1523 ** next time a statement is prepared using said sqlite3*. This is done
1524 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1525 ** Refer to comments above function sqlite3VtabUnlockList() for an
1526 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1527 ** list without holding the corresponding sqlite3.mutex mutex.
1528 **
1529 ** The memory for objects of this type is always allocated by
1530 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1531 ** the first argument.
1532 */
1533 struct VTable {
1534   sqlite3 *db;              /* Database connection associated with this table */
1535   Module *pMod;             /* Pointer to module implementation */
1536   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1537   int nRef;                 /* Number of pointers to this structure */
1538   u8 bConstraint;           /* True if constraints are supported */
1539   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1540   VTable *pNext;            /* Next in linked list (see above) */
1541 };
1542 
1543 /*
1544 ** Each SQL table is represented in memory by an instance of the
1545 ** following structure.
1546 **
1547 ** Table.zName is the name of the table.  The case of the original
1548 ** CREATE TABLE statement is stored, but case is not significant for
1549 ** comparisons.
1550 **
1551 ** Table.nCol is the number of columns in this table.  Table.aCol is a
1552 ** pointer to an array of Column structures, one for each column.
1553 **
1554 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1555 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1556 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1557 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1558 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1559 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
1560 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1561 **
1562 ** Table.tnum is the page number for the root BTree page of the table in the
1563 ** database file.  If Table.iDb is the index of the database table backend
1564 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1565 ** holds temporary tables and indices.  If TF_Ephemeral is set
1566 ** then the table is stored in a file that is automatically deleted
1567 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
1568 ** refers VDBE cursor number that holds the table open, not to the root
1569 ** page number.  Transient tables are used to hold the results of a
1570 ** sub-query that appears instead of a real table name in the FROM clause
1571 ** of a SELECT statement.
1572 */
1573 struct Table {
1574   char *zName;         /* Name of the table or view */
1575   Column *aCol;        /* Information about each column */
1576   Index *pIndex;       /* List of SQL indexes on this table. */
1577   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1578   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1579   char *zColAff;       /* String defining the affinity of each column */
1580 #ifndef SQLITE_OMIT_CHECK
1581   ExprList *pCheck;    /* All CHECK constraints */
1582 #endif
1583   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1584   int tnum;            /* Root BTree node for this table (see note above) */
1585   i16 iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1586   i16 nCol;            /* Number of columns in this table */
1587   u16 nRef;            /* Number of pointers to this Table */
1588   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1589 #ifdef SQLITE_ENABLE_COSTMULT
1590   LogEst costMult;     /* Cost multiplier for using this table */
1591 #endif
1592   u8 tabFlags;         /* Mask of TF_* values */
1593   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1594 #ifndef SQLITE_OMIT_ALTERTABLE
1595   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1596 #endif
1597 #ifndef SQLITE_OMIT_VIRTUALTABLE
1598   int nModuleArg;      /* Number of arguments to the module */
1599   char **azModuleArg;  /* Text of all module args. [0] is module name */
1600   VTable *pVTable;     /* List of VTable objects. */
1601 #endif
1602   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1603   Schema *pSchema;     /* Schema that contains this table */
1604   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1605 };
1606 
1607 /*
1608 ** Allowed values for Table.tabFlags.
1609 */
1610 #define TF_Readonly        0x01    /* Read-only system table */
1611 #define TF_Ephemeral       0x02    /* An ephemeral table */
1612 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1613 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1614 #define TF_Virtual         0x10    /* Is a virtual table */
1615 #define TF_WithoutRowid    0x20    /* No rowid used. PRIMARY KEY is the key */
1616 
1617 
1618 /*
1619 ** Test to see whether or not a table is a virtual table.  This is
1620 ** done as a macro so that it will be optimized out when virtual
1621 ** table support is omitted from the build.
1622 */
1623 #ifndef SQLITE_OMIT_VIRTUALTABLE
1624 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1625 #  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1626 #else
1627 #  define IsVirtual(X)      0
1628 #  define IsHiddenColumn(X) 0
1629 #endif
1630 
1631 /* Does the table have a rowid */
1632 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1633 
1634 /*
1635 ** Each foreign key constraint is an instance of the following structure.
1636 **
1637 ** A foreign key is associated with two tables.  The "from" table is
1638 ** the table that contains the REFERENCES clause that creates the foreign
1639 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1640 ** Consider this example:
1641 **
1642 **     CREATE TABLE ex1(
1643 **       a INTEGER PRIMARY KEY,
1644 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1645 **     );
1646 **
1647 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1648 ** Equivalent names:
1649 **
1650 **     from-table == child-table
1651 **       to-table == parent-table
1652 **
1653 ** Each REFERENCES clause generates an instance of the following structure
1654 ** which is attached to the from-table.  The to-table need not exist when
1655 ** the from-table is created.  The existence of the to-table is not checked.
1656 **
1657 ** The list of all parents for child Table X is held at X.pFKey.
1658 **
1659 ** A list of all children for a table named Z (which might not even exist)
1660 ** is held in Schema.fkeyHash with a hash key of Z.
1661 */
1662 struct FKey {
1663   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1664   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1665   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1666   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1667   FKey *pPrevTo;    /* Previous with the same zTo */
1668   int nCol;         /* Number of columns in this key */
1669   /* EV: R-30323-21917 */
1670   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1671   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1672   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1673   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1674     int iFrom;            /* Index of column in pFrom */
1675     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
1676   } aCol[1];            /* One entry for each of nCol columns */
1677 };
1678 
1679 /*
1680 ** SQLite supports many different ways to resolve a constraint
1681 ** error.  ROLLBACK processing means that a constraint violation
1682 ** causes the operation in process to fail and for the current transaction
1683 ** to be rolled back.  ABORT processing means the operation in process
1684 ** fails and any prior changes from that one operation are backed out,
1685 ** but the transaction is not rolled back.  FAIL processing means that
1686 ** the operation in progress stops and returns an error code.  But prior
1687 ** changes due to the same operation are not backed out and no rollback
1688 ** occurs.  IGNORE means that the particular row that caused the constraint
1689 ** error is not inserted or updated.  Processing continues and no error
1690 ** is returned.  REPLACE means that preexisting database rows that caused
1691 ** a UNIQUE constraint violation are removed so that the new insert or
1692 ** update can proceed.  Processing continues and no error is reported.
1693 **
1694 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1695 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1696 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1697 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1698 ** referenced table row is propagated into the row that holds the
1699 ** foreign key.
1700 **
1701 ** The following symbolic values are used to record which type
1702 ** of action to take.
1703 */
1704 #define OE_None     0   /* There is no constraint to check */
1705 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1706 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1707 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1708 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1709 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1710 
1711 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1712 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1713 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1714 #define OE_Cascade  9   /* Cascade the changes */
1715 
1716 #define OE_Default  10  /* Do whatever the default action is */
1717 
1718 
1719 /*
1720 ** An instance of the following structure is passed as the first
1721 ** argument to sqlite3VdbeKeyCompare and is used to control the
1722 ** comparison of the two index keys.
1723 **
1724 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
1725 ** are nField slots for the columns of an index then one extra slot
1726 ** for the rowid at the end.
1727 */
1728 struct KeyInfo {
1729   u32 nRef;           /* Number of references to this KeyInfo object */
1730   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1731   u16 nField;         /* Number of key columns in the index */
1732   u16 nXField;        /* Number of columns beyond the key columns */
1733   sqlite3 *db;        /* The database connection */
1734   u8 *aSortOrder;     /* Sort order for each column. */
1735   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1736 };
1737 
1738 /*
1739 ** An instance of the following structure holds information about a
1740 ** single index record that has already been parsed out into individual
1741 ** values.
1742 **
1743 ** A record is an object that contains one or more fields of data.
1744 ** Records are used to store the content of a table row and to store
1745 ** the key of an index.  A blob encoding of a record is created by
1746 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1747 ** OP_Column opcode.
1748 **
1749 ** This structure holds a record that has already been disassembled
1750 ** into its constituent fields.
1751 **
1752 ** The r1 and r2 member variables are only used by the optimized comparison
1753 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
1754 */
1755 struct UnpackedRecord {
1756   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1757   u16 nField;         /* Number of entries in apMem[] */
1758   i8 default_rc;      /* Comparison result if keys are equal */
1759   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
1760   Mem *aMem;          /* Values */
1761   int r1;             /* Value to return if (lhs > rhs) */
1762   int r2;             /* Value to return if (rhs < lhs) */
1763 };
1764 
1765 
1766 /*
1767 ** Each SQL index is represented in memory by an
1768 ** instance of the following structure.
1769 **
1770 ** The columns of the table that are to be indexed are described
1771 ** by the aiColumn[] field of this structure.  For example, suppose
1772 ** we have the following table and index:
1773 **
1774 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1775 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1776 **
1777 ** In the Table structure describing Ex1, nCol==3 because there are
1778 ** three columns in the table.  In the Index structure describing
1779 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1780 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1781 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1782 ** The second column to be indexed (c1) has an index of 0 in
1783 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1784 **
1785 ** The Index.onError field determines whether or not the indexed columns
1786 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1787 ** it means this is not a unique index.  Otherwise it is a unique index
1788 ** and the value of Index.onError indicate the which conflict resolution
1789 ** algorithm to employ whenever an attempt is made to insert a non-unique
1790 ** element.
1791 */
1792 struct Index {
1793   char *zName;             /* Name of this index */
1794   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
1795   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
1796   Table *pTable;           /* The SQL table being indexed */
1797   char *zColAff;           /* String defining the affinity of each column */
1798   Index *pNext;            /* The next index associated with the same table */
1799   Schema *pSchema;         /* Schema containing this index */
1800   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
1801   char **azColl;           /* Array of collation sequence names for index */
1802   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
1803   int tnum;                /* DB Page containing root of this index */
1804   LogEst szIdxRow;         /* Estimated average row size in bytes */
1805   u16 nKeyCol;             /* Number of columns forming the key */
1806   u16 nColumn;             /* Number of columns stored in the index */
1807   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1808   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
1809   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
1810   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
1811   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
1812   unsigned isCovering:1;   /* True if this is a covering index */
1813   unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
1814 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1815   int nSample;             /* Number of elements in aSample[] */
1816   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
1817   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
1818   IndexSample *aSample;    /* Samples of the left-most key */
1819   tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
1820   tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
1821 #endif
1822 };
1823 
1824 /*
1825 ** Allowed values for Index.idxType
1826 */
1827 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
1828 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
1829 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
1830 
1831 /* Return true if index X is a PRIMARY KEY index */
1832 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
1833 
1834 /* Return true if index X is a UNIQUE index */
1835 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
1836 
1837 /*
1838 ** Each sample stored in the sqlite_stat3 table is represented in memory
1839 ** using a structure of this type.  See documentation at the top of the
1840 ** analyze.c source file for additional information.
1841 */
1842 struct IndexSample {
1843   void *p;          /* Pointer to sampled record */
1844   int n;            /* Size of record in bytes */
1845   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
1846   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
1847   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
1848 };
1849 
1850 /*
1851 ** Each token coming out of the lexer is an instance of
1852 ** this structure.  Tokens are also used as part of an expression.
1853 **
1854 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1855 ** may contain random values.  Do not make any assumptions about Token.dyn
1856 ** and Token.n when Token.z==0.
1857 */
1858 struct Token {
1859   const char *z;     /* Text of the token.  Not NULL-terminated! */
1860   unsigned int n;    /* Number of characters in this token */
1861 };
1862 
1863 /*
1864 ** An instance of this structure contains information needed to generate
1865 ** code for a SELECT that contains aggregate functions.
1866 **
1867 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1868 ** pointer to this structure.  The Expr.iColumn field is the index in
1869 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1870 ** code for that node.
1871 **
1872 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1873 ** original Select structure that describes the SELECT statement.  These
1874 ** fields do not need to be freed when deallocating the AggInfo structure.
1875 */
1876 struct AggInfo {
1877   u8 directMode;          /* Direct rendering mode means take data directly
1878                           ** from source tables rather than from accumulators */
1879   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1880                           ** than the source table */
1881   int sortingIdx;         /* Cursor number of the sorting index */
1882   int sortingIdxPTab;     /* Cursor number of pseudo-table */
1883   int nSortingColumn;     /* Number of columns in the sorting index */
1884   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
1885   ExprList *pGroupBy;     /* The group by clause */
1886   struct AggInfo_col {    /* For each column used in source tables */
1887     Table *pTab;             /* Source table */
1888     int iTable;              /* Cursor number of the source table */
1889     int iColumn;             /* Column number within the source table */
1890     int iSorterColumn;       /* Column number in the sorting index */
1891     int iMem;                /* Memory location that acts as accumulator */
1892     Expr *pExpr;             /* The original expression */
1893   } *aCol;
1894   int nColumn;            /* Number of used entries in aCol[] */
1895   int nAccumulator;       /* Number of columns that show through to the output.
1896                           ** Additional columns are used only as parameters to
1897                           ** aggregate functions */
1898   struct AggInfo_func {   /* For each aggregate function */
1899     Expr *pExpr;             /* Expression encoding the function */
1900     FuncDef *pFunc;          /* The aggregate function implementation */
1901     int iMem;                /* Memory location that acts as accumulator */
1902     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1903   } *aFunc;
1904   int nFunc;              /* Number of entries in aFunc[] */
1905 };
1906 
1907 /*
1908 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1909 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1910 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1911 ** it uses less memory in the Expr object, which is a big memory user
1912 ** in systems with lots of prepared statements.  And few applications
1913 ** need more than about 10 or 20 variables.  But some extreme users want
1914 ** to have prepared statements with over 32767 variables, and for them
1915 ** the option is available (at compile-time).
1916 */
1917 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1918 typedef i16 ynVar;
1919 #else
1920 typedef int ynVar;
1921 #endif
1922 
1923 /*
1924 ** Each node of an expression in the parse tree is an instance
1925 ** of this structure.
1926 **
1927 ** Expr.op is the opcode. The integer parser token codes are reused
1928 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1929 ** code representing the ">=" operator. This same integer code is reused
1930 ** to represent the greater-than-or-equal-to operator in the expression
1931 ** tree.
1932 **
1933 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1934 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1935 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1936 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1937 ** then Expr.token contains the name of the function.
1938 **
1939 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1940 ** binary operator. Either or both may be NULL.
1941 **
1942 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1943 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1944 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1945 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1946 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1947 ** valid.
1948 **
1949 ** An expression of the form ID or ID.ID refers to a column in a table.
1950 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1951 ** the integer cursor number of a VDBE cursor pointing to that table and
1952 ** Expr.iColumn is the column number for the specific column.  If the
1953 ** expression is used as a result in an aggregate SELECT, then the
1954 ** value is also stored in the Expr.iAgg column in the aggregate so that
1955 ** it can be accessed after all aggregates are computed.
1956 **
1957 ** If the expression is an unbound variable marker (a question mark
1958 ** character '?' in the original SQL) then the Expr.iTable holds the index
1959 ** number for that variable.
1960 **
1961 ** If the expression is a subquery then Expr.iColumn holds an integer
1962 ** register number containing the result of the subquery.  If the
1963 ** subquery gives a constant result, then iTable is -1.  If the subquery
1964 ** gives a different answer at different times during statement processing
1965 ** then iTable is the address of a subroutine that computes the subquery.
1966 **
1967 ** If the Expr is of type OP_Column, and the table it is selecting from
1968 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1969 ** corresponding table definition.
1970 **
1971 ** ALLOCATION NOTES:
1972 **
1973 ** Expr objects can use a lot of memory space in database schema.  To
1974 ** help reduce memory requirements, sometimes an Expr object will be
1975 ** truncated.  And to reduce the number of memory allocations, sometimes
1976 ** two or more Expr objects will be stored in a single memory allocation,
1977 ** together with Expr.zToken strings.
1978 **
1979 ** If the EP_Reduced and EP_TokenOnly flags are set when
1980 ** an Expr object is truncated.  When EP_Reduced is set, then all
1981 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1982 ** are contained within the same memory allocation.  Note, however, that
1983 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1984 ** allocated, regardless of whether or not EP_Reduced is set.
1985 */
1986 struct Expr {
1987   u8 op;                 /* Operation performed by this node */
1988   char affinity;         /* The affinity of the column or 0 if not a column */
1989   u32 flags;             /* Various flags.  EP_* See below */
1990   union {
1991     char *zToken;          /* Token value. Zero terminated and dequoted */
1992     int iValue;            /* Non-negative integer value if EP_IntValue */
1993   } u;
1994 
1995   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1996   ** space is allocated for the fields below this point. An attempt to
1997   ** access them will result in a segfault or malfunction.
1998   *********************************************************************/
1999 
2000   Expr *pLeft;           /* Left subnode */
2001   Expr *pRight;          /* Right subnode */
2002   union {
2003     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
2004     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
2005   } x;
2006 
2007   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
2008   ** space is allocated for the fields below this point. An attempt to
2009   ** access them will result in a segfault or malfunction.
2010   *********************************************************************/
2011 
2012 #if SQLITE_MAX_EXPR_DEPTH>0
2013   int nHeight;           /* Height of the tree headed by this node */
2014 #endif
2015   int iTable;            /* TK_COLUMN: cursor number of table holding column
2016                          ** TK_REGISTER: register number
2017                          ** TK_TRIGGER: 1 -> new, 0 -> old
2018                          ** EP_Unlikely:  134217728 times likelihood */
2019   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
2020                          ** TK_VARIABLE: variable number (always >= 1). */
2021   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
2022   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
2023   u8 op2;                /* TK_REGISTER: original value of Expr.op
2024                          ** TK_COLUMN: the value of p5 for OP_Column
2025                          ** TK_AGG_FUNCTION: nesting depth */
2026   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
2027   Table *pTab;           /* Table for TK_COLUMN expressions. */
2028 };
2029 
2030 /*
2031 ** The following are the meanings of bits in the Expr.flags field.
2032 */
2033 #define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
2034 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
2035 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
2036 #define EP_Error     0x000008 /* Expression contains one or more errors */
2037 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
2038 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
2039 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
2040 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
2041 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
2042 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
2043 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
2044 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
2045 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
2046 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
2047 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
2048 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2049 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2050 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2051 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2052 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */
2053 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
2054 #define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
2055 
2056 /*
2057 ** Combinations of two or more EP_* flags
2058 */
2059 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */
2060 
2061 /*
2062 ** These macros can be used to test, set, or clear bits in the
2063 ** Expr.flags field.
2064 */
2065 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2066 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2067 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2068 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2069 
2070 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2071 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2072 ** processes but is a no-op for delivery.
2073 */
2074 #ifdef SQLITE_DEBUG
2075 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2076 #else
2077 # define ExprSetVVAProperty(E,P)
2078 #endif
2079 
2080 /*
2081 ** Macros to determine the number of bytes required by a normal Expr
2082 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2083 ** and an Expr struct with the EP_TokenOnly flag set.
2084 */
2085 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2086 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2087 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2088 
2089 /*
2090 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2091 ** above sqlite3ExprDup() for details.
2092 */
2093 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2094 
2095 /*
2096 ** A list of expressions.  Each expression may optionally have a
2097 ** name.  An expr/name combination can be used in several ways, such
2098 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2099 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2100 ** also be used as the argument to a function, in which case the a.zName
2101 ** field is not used.
2102 **
2103 ** By default the Expr.zSpan field holds a human-readable description of
2104 ** the expression that is used in the generation of error messages and
2105 ** column labels.  In this case, Expr.zSpan is typically the text of a
2106 ** column expression as it exists in a SELECT statement.  However, if
2107 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2108 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2109 ** form is used for name resolution with nested FROM clauses.
2110 */
2111 struct ExprList {
2112   int nExpr;             /* Number of expressions on the list */
2113   struct ExprList_item { /* For each expression in the list */
2114     Expr *pExpr;            /* The list of expressions */
2115     char *zName;            /* Token associated with this expression */
2116     char *zSpan;            /* Original text of the expression */
2117     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2118     unsigned done :1;       /* A flag to indicate when processing is finished */
2119     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2120     unsigned reusable :1;   /* Constant expression is reusable */
2121     union {
2122       struct {
2123         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2124         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2125       } x;
2126       int iConstExprReg;      /* Register in which Expr value is cached */
2127     } u;
2128   } *a;                  /* Alloc a power of two greater or equal to nExpr */
2129 };
2130 
2131 /*
2132 ** An instance of this structure is used by the parser to record both
2133 ** the parse tree for an expression and the span of input text for an
2134 ** expression.
2135 */
2136 struct ExprSpan {
2137   Expr *pExpr;          /* The expression parse tree */
2138   const char *zStart;   /* First character of input text */
2139   const char *zEnd;     /* One character past the end of input text */
2140 };
2141 
2142 /*
2143 ** An instance of this structure can hold a simple list of identifiers,
2144 ** such as the list "a,b,c" in the following statements:
2145 **
2146 **      INSERT INTO t(a,b,c) VALUES ...;
2147 **      CREATE INDEX idx ON t(a,b,c);
2148 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2149 **
2150 ** The IdList.a.idx field is used when the IdList represents the list of
2151 ** column names after a table name in an INSERT statement.  In the statement
2152 **
2153 **     INSERT INTO t(a,b,c) ...
2154 **
2155 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2156 */
2157 struct IdList {
2158   struct IdList_item {
2159     char *zName;      /* Name of the identifier */
2160     int idx;          /* Index in some Table.aCol[] of a column named zName */
2161   } *a;
2162   int nId;         /* Number of identifiers on the list */
2163 };
2164 
2165 /*
2166 ** The bitmask datatype defined below is used for various optimizations.
2167 **
2168 ** Changing this from a 64-bit to a 32-bit type limits the number of
2169 ** tables in a join to 32 instead of 64.  But it also reduces the size
2170 ** of the library by 738 bytes on ix86.
2171 */
2172 typedef u64 Bitmask;
2173 
2174 /*
2175 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2176 */
2177 #define BMS  ((int)(sizeof(Bitmask)*8))
2178 
2179 /*
2180 ** A bit in a Bitmask
2181 */
2182 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2183 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2184 
2185 /*
2186 ** The following structure describes the FROM clause of a SELECT statement.
2187 ** Each table or subquery in the FROM clause is a separate element of
2188 ** the SrcList.a[] array.
2189 **
2190 ** With the addition of multiple database support, the following structure
2191 ** can also be used to describe a particular table such as the table that
2192 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2193 ** such a table must be a simple name: ID.  But in SQLite, the table can
2194 ** now be identified by a database name, a dot, then the table name: ID.ID.
2195 **
2196 ** The jointype starts out showing the join type between the current table
2197 ** and the next table on the list.  The parser builds the list this way.
2198 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2199 ** jointype expresses the join between the table and the previous table.
2200 **
2201 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2202 ** contains more than 63 columns and the 64-th or later column is used.
2203 */
2204 struct SrcList {
2205   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2206   u32 nAlloc;      /* Number of entries allocated in a[] below */
2207   struct SrcList_item {
2208     Schema *pSchema;  /* Schema to which this item is fixed */
2209     char *zDatabase;  /* Name of database holding this table */
2210     char *zName;      /* Name of the table */
2211     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2212     Table *pTab;      /* An SQL table corresponding to zName */
2213     Select *pSelect;  /* A SELECT statement used in place of a table name */
2214     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2215     int regReturn;    /* Register holding return address of addrFillSub */
2216     int regResult;    /* Registers holding results of a co-routine */
2217     u8 jointype;      /* Type of join between this able and the previous */
2218     unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2219     unsigned isCorrelated :1;  /* True if sub-query is correlated */
2220     unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2221     unsigned isRecursive :1;   /* True for recursive reference in WITH */
2222 #ifndef SQLITE_OMIT_EXPLAIN
2223     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2224 #endif
2225     int iCursor;      /* The VDBE cursor number used to access this table */
2226     Expr *pOn;        /* The ON clause of a join */
2227     IdList *pUsing;   /* The USING clause of a join */
2228     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2229     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
2230     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
2231   } a[1];             /* One entry for each identifier on the list */
2232 };
2233 
2234 /*
2235 ** Permitted values of the SrcList.a.jointype field
2236 */
2237 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2238 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2239 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2240 #define JT_LEFT      0x0008    /* Left outer join */
2241 #define JT_RIGHT     0x0010    /* Right outer join */
2242 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2243 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2244 
2245 
2246 /*
2247 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2248 ** and the WhereInfo.wctrlFlags member.
2249 */
2250 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2251 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2252 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2253 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2254 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
2255 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
2256 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
2257 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
2258 #define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
2259 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
2260 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
2261 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
2262 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
2263 #define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
2264 
2265 /* Allowed return values from sqlite3WhereIsDistinct()
2266 */
2267 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2268 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2269 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2270 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2271 
2272 /*
2273 ** A NameContext defines a context in which to resolve table and column
2274 ** names.  The context consists of a list of tables (the pSrcList) field and
2275 ** a list of named expression (pEList).  The named expression list may
2276 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2277 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2278 ** pEList corresponds to the result set of a SELECT and is NULL for
2279 ** other statements.
2280 **
2281 ** NameContexts can be nested.  When resolving names, the inner-most
2282 ** context is searched first.  If no match is found, the next outer
2283 ** context is checked.  If there is still no match, the next context
2284 ** is checked.  This process continues until either a match is found
2285 ** or all contexts are check.  When a match is found, the nRef member of
2286 ** the context containing the match is incremented.
2287 **
2288 ** Each subquery gets a new NameContext.  The pNext field points to the
2289 ** NameContext in the parent query.  Thus the process of scanning the
2290 ** NameContext list corresponds to searching through successively outer
2291 ** subqueries looking for a match.
2292 */
2293 struct NameContext {
2294   Parse *pParse;       /* The parser */
2295   SrcList *pSrcList;   /* One or more tables used to resolve names */
2296   ExprList *pEList;    /* Optional list of result-set columns */
2297   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2298   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2299   int nRef;            /* Number of names resolved by this context */
2300   int nErr;            /* Number of errors encountered while resolving names */
2301   u16 ncFlags;         /* Zero or more NC_* flags defined below */
2302 };
2303 
2304 /*
2305 ** Allowed values for the NameContext, ncFlags field.
2306 **
2307 ** Note:  NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
2308 ** SQLITE_FUNC_MINMAX.
2309 **
2310 */
2311 #define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
2312 #define NC_HasAgg    0x0002  /* One or more aggregate functions seen */
2313 #define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
2314 #define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
2315 #define NC_PartIdx   0x0010  /* True if resolving a partial index WHERE */
2316 #define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
2317 
2318 /*
2319 ** An instance of the following structure contains all information
2320 ** needed to generate code for a single SELECT statement.
2321 **
2322 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2323 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2324 ** limit and nOffset to the value of the offset (or 0 if there is not
2325 ** offset).  But later on, nLimit and nOffset become the memory locations
2326 ** in the VDBE that record the limit and offset counters.
2327 **
2328 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2329 ** These addresses must be stored so that we can go back and fill in
2330 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2331 ** the number of columns in P2 can be computed at the same time
2332 ** as the OP_OpenEphm instruction is coded because not
2333 ** enough information about the compound query is known at that point.
2334 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2335 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2336 ** sequences for the ORDER BY clause.
2337 */
2338 struct Select {
2339   ExprList *pEList;      /* The fields of the result */
2340   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2341   u16 selFlags;          /* Various SF_* values */
2342   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2343 #if SELECTTRACE_ENABLED
2344   char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
2345 #endif
2346   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2347   u64 nSelectRow;        /* Estimated number of result rows */
2348   SrcList *pSrc;         /* The FROM clause */
2349   Expr *pWhere;          /* The WHERE clause */
2350   ExprList *pGroupBy;    /* The GROUP BY clause */
2351   Expr *pHaving;         /* The HAVING clause */
2352   ExprList *pOrderBy;    /* The ORDER BY clause */
2353   Select *pPrior;        /* Prior select in a compound select statement */
2354   Select *pNext;         /* Next select to the left in a compound */
2355   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2356   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2357   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2358 };
2359 
2360 /*
2361 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2362 ** "Select Flag".
2363 */
2364 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2365 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
2366 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
2367 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
2368 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
2369 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
2370 #define SF_Compound        0x0040  /* Part of a compound query */
2371 #define SF_Values          0x0080  /* Synthesized from VALUES clause */
2372 #define SF_AllValues       0x0100  /* All terms of compound are VALUES */
2373 #define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
2374 #define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
2375 #define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
2376 #define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
2377 
2378 
2379 /*
2380 ** The results of a SELECT can be distributed in several ways, as defined
2381 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2382 ** Type".
2383 **
2384 **     SRT_Union       Store results as a key in a temporary index
2385 **                     identified by pDest->iSDParm.
2386 **
2387 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2388 **
2389 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2390 **                     set is not empty.
2391 **
2392 **     SRT_Discard     Throw the results away.  This is used by SELECT
2393 **                     statements within triggers whose only purpose is
2394 **                     the side-effects of functions.
2395 **
2396 ** All of the above are free to ignore their ORDER BY clause. Those that
2397 ** follow must honor the ORDER BY clause.
2398 **
2399 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2400 **                     opcode) for each row in the result set.
2401 **
2402 **     SRT_Mem         Only valid if the result is a single column.
2403 **                     Store the first column of the first result row
2404 **                     in register pDest->iSDParm then abandon the rest
2405 **                     of the query.  This destination implies "LIMIT 1".
2406 **
2407 **     SRT_Set         The result must be a single column.  Store each
2408 **                     row of result as the key in table pDest->iSDParm.
2409 **                     Apply the affinity pDest->affSdst before storing
2410 **                     results.  Used to implement "IN (SELECT ...)".
2411 **
2412 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2413 **                     the result there. The cursor is left open after
2414 **                     returning.  This is like SRT_Table except that
2415 **                     this destination uses OP_OpenEphemeral to create
2416 **                     the table first.
2417 **
2418 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2419 **                     results each time it is invoked.  The entry point
2420 **                     of the co-routine is stored in register pDest->iSDParm
2421 **                     and the result row is stored in pDest->nDest registers
2422 **                     starting with pDest->iSdst.
2423 **
2424 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2425 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2426 **                     is assumed to already be open.  SRT_Fifo has
2427 **                     the additional property of being able to ignore
2428 **                     the ORDER BY clause.
2429 **
2430 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2431 **                     But also use temporary table pDest->iSDParm+1 as
2432 **                     a record of all prior results and ignore any duplicate
2433 **                     rows.  Name means:  "Distinct Fifo".
2434 **
2435 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2436 **                     an index).  Append a sequence number so that all entries
2437 **                     are distinct.
2438 **
2439 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2440 **                     the same record has never been stored before.  The
2441 **                     index at pDest->iSDParm+1 hold all prior stores.
2442 */
2443 #define SRT_Union        1  /* Store result as keys in an index */
2444 #define SRT_Except       2  /* Remove result from a UNION index */
2445 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2446 #define SRT_Discard      4  /* Do not save the results anywhere */
2447 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2448 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2449 #define SRT_Queue        7  /* Store result in an queue */
2450 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2451 
2452 /* The ORDER BY clause is ignored for all of the above */
2453 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2454 
2455 #define SRT_Output       9  /* Output each row of result */
2456 #define SRT_Mem         10  /* Store result in a memory cell */
2457 #define SRT_Set         11  /* Store results as keys in an index */
2458 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2459 #define SRT_Coroutine   13  /* Generate a single row of result */
2460 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2461 
2462 /*
2463 ** An instance of this object describes where to put of the results of
2464 ** a SELECT statement.
2465 */
2466 struct SelectDest {
2467   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2468   char affSdst;        /* Affinity used when eDest==SRT_Set */
2469   int iSDParm;         /* A parameter used by the eDest disposal method */
2470   int iSdst;           /* Base register where results are written */
2471   int nSdst;           /* Number of registers allocated */
2472   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2473 };
2474 
2475 /*
2476 ** During code generation of statements that do inserts into AUTOINCREMENT
2477 ** tables, the following information is attached to the Table.u.autoInc.p
2478 ** pointer of each autoincrement table to record some side information that
2479 ** the code generator needs.  We have to keep per-table autoincrement
2480 ** information in case inserts are down within triggers.  Triggers do not
2481 ** normally coordinate their activities, but we do need to coordinate the
2482 ** loading and saving of autoincrement information.
2483 */
2484 struct AutoincInfo {
2485   AutoincInfo *pNext;   /* Next info block in a list of them all */
2486   Table *pTab;          /* Table this info block refers to */
2487   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2488   int regCtr;           /* Memory register holding the rowid counter */
2489 };
2490 
2491 /*
2492 ** Size of the column cache
2493 */
2494 #ifndef SQLITE_N_COLCACHE
2495 # define SQLITE_N_COLCACHE 10
2496 #endif
2497 
2498 /*
2499 ** At least one instance of the following structure is created for each
2500 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2501 ** statement. All such objects are stored in the linked list headed at
2502 ** Parse.pTriggerPrg and deleted once statement compilation has been
2503 ** completed.
2504 **
2505 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2506 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2507 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2508 ** The Parse.pTriggerPrg list never contains two entries with the same
2509 ** values for both pTrigger and orconf.
2510 **
2511 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2512 ** accessed (or set to 0 for triggers fired as a result of INSERT
2513 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2514 ** a mask of new.* columns used by the program.
2515 */
2516 struct TriggerPrg {
2517   Trigger *pTrigger;      /* Trigger this program was coded from */
2518   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2519   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2520   int orconf;             /* Default ON CONFLICT policy */
2521   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2522 };
2523 
2524 /*
2525 ** The yDbMask datatype for the bitmask of all attached databases.
2526 */
2527 #if SQLITE_MAX_ATTACHED>30
2528   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2529 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2530 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2531 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2532 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2533 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2534 #else
2535   typedef unsigned int yDbMask;
2536 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2537 # define DbMaskZero(M)      (M)=0
2538 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2539 # define DbMaskAllZero(M)   (M)==0
2540 # define DbMaskNonZero(M)   (M)!=0
2541 #endif
2542 
2543 /*
2544 ** An SQL parser context.  A copy of this structure is passed through
2545 ** the parser and down into all the parser action routine in order to
2546 ** carry around information that is global to the entire parse.
2547 **
2548 ** The structure is divided into two parts.  When the parser and code
2549 ** generate call themselves recursively, the first part of the structure
2550 ** is constant but the second part is reset at the beginning and end of
2551 ** each recursion.
2552 **
2553 ** The nTableLock and aTableLock variables are only used if the shared-cache
2554 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2555 ** used to store the set of table-locks required by the statement being
2556 ** compiled. Function sqlite3TableLock() is used to add entries to the
2557 ** list.
2558 */
2559 struct Parse {
2560   sqlite3 *db;         /* The main database structure */
2561   char *zErrMsg;       /* An error message */
2562   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2563   int rc;              /* Return code from execution */
2564   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2565   u8 checkSchema;      /* Causes schema cookie check after an error */
2566   u8 nested;           /* Number of nested calls to the parser/code generator */
2567   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2568   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2569   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2570   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2571   u8 okConstFactor;    /* OK to factor out constants */
2572   int aTempReg[8];     /* Holding area for temporary registers */
2573   int nRangeReg;       /* Size of the temporary register block */
2574   int iRangeReg;       /* First register in temporary register block */
2575   int nErr;            /* Number of errors seen */
2576   int nTab;            /* Number of previously allocated VDBE cursors */
2577   int nMem;            /* Number of memory cells used so far */
2578   int nSet;            /* Number of sets used so far */
2579   int nOnce;           /* Number of OP_Once instructions so far */
2580   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2581   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
2582   int ckBase;          /* Base register of data during check constraints */
2583   int iPartIdxTab;     /* Table corresponding to a partial index */
2584   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2585   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2586   int nLabel;          /* Number of labels used */
2587   int *aLabel;         /* Space to hold the labels */
2588   struct yColCache {
2589     int iTable;           /* Table cursor number */
2590     i16 iColumn;          /* Table column number */
2591     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2592     int iLevel;           /* Nesting level */
2593     int iReg;             /* Reg with value of this column. 0 means none. */
2594     int lru;              /* Least recently used entry has the smallest value */
2595   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2596   ExprList *pConstExpr;/* Constant expressions */
2597   Token constraintName;/* Name of the constraint currently being parsed */
2598   yDbMask writeMask;   /* Start a write transaction on these databases */
2599   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2600   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2601   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2602   int regRoot;         /* Register holding root page number for new objects */
2603   int nMaxArg;         /* Max args passed to user function by sub-program */
2604 #if SELECTTRACE_ENABLED
2605   int nSelect;         /* Number of SELECT statements seen */
2606   int nSelectIndent;   /* How far to indent SELECTTRACE() output */
2607 #endif
2608 #ifndef SQLITE_OMIT_SHARED_CACHE
2609   int nTableLock;        /* Number of locks in aTableLock */
2610   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2611 #endif
2612   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2613 
2614   /* Information used while coding trigger programs. */
2615   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2616   Table *pTriggerTab;  /* Table triggers are being coded for */
2617   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
2618   int addrSkipPK;      /* Address of instruction to skip PRIMARY KEY index */
2619   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
2620   u32 oldmask;         /* Mask of old.* columns referenced */
2621   u32 newmask;         /* Mask of new.* columns referenced */
2622   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2623   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2624   u8 disableTriggers;  /* True to disable triggers */
2625 
2626   /************************************************************************
2627   ** Above is constant between recursions.  Below is reset before and after
2628   ** each recursion.  The boundary between these two regions is determined
2629   ** using offsetof(Parse,nVar) so the nVar field must be the first field
2630   ** in the recursive region.
2631   ************************************************************************/
2632 
2633   int nVar;                 /* Number of '?' variables seen in the SQL so far */
2634   int nzVar;                /* Number of available slots in azVar[] */
2635   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
2636   u8 bFreeWith;             /* True if pWith should be freed with parser */
2637   u8 explain;               /* True if the EXPLAIN flag is found on the query */
2638 #ifndef SQLITE_OMIT_VIRTUALTABLE
2639   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
2640   int nVtabLock;            /* Number of virtual tables to lock */
2641 #endif
2642   int nAlias;               /* Number of aliased result set columns */
2643   int nHeight;              /* Expression tree height of current sub-select */
2644 #ifndef SQLITE_OMIT_EXPLAIN
2645   int iSelectId;            /* ID of current select for EXPLAIN output */
2646   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
2647 #endif
2648   char **azVar;             /* Pointers to names of parameters */
2649   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
2650   const char *zTail;        /* All SQL text past the last semicolon parsed */
2651   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
2652   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2653   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2654   Token sNameToken;         /* Token with unqualified schema object name */
2655   Token sLastToken;         /* The last token parsed */
2656 #ifndef SQLITE_OMIT_VIRTUALTABLE
2657   Token sArg;               /* Complete text of a module argument */
2658   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
2659 #endif
2660   Table *pZombieTab;        /* List of Table objects to delete after code gen */
2661   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
2662   With *pWith;              /* Current WITH clause, or NULL */
2663 };
2664 
2665 /*
2666 ** Return true if currently inside an sqlite3_declare_vtab() call.
2667 */
2668 #ifdef SQLITE_OMIT_VIRTUALTABLE
2669   #define IN_DECLARE_VTAB 0
2670 #else
2671   #define IN_DECLARE_VTAB (pParse->declareVtab)
2672 #endif
2673 
2674 /*
2675 ** An instance of the following structure can be declared on a stack and used
2676 ** to save the Parse.zAuthContext value so that it can be restored later.
2677 */
2678 struct AuthContext {
2679   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2680   Parse *pParse;              /* The Parse structure */
2681 };
2682 
2683 /*
2684 ** Bitfield flags for P5 value in various opcodes.
2685 */
2686 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2687 #define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
2688 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2689 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2690 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2691 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2692 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
2693 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
2694 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
2695 #define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
2696 #define OPFLAG_P2ISREG       0x04    /* P2 to OP_Open** is a register number */
2697 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
2698 
2699 /*
2700  * Each trigger present in the database schema is stored as an instance of
2701  * struct Trigger.
2702  *
2703  * Pointers to instances of struct Trigger are stored in two ways.
2704  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2705  *    database). This allows Trigger structures to be retrieved by name.
2706  * 2. All triggers associated with a single table form a linked list, using the
2707  *    pNext member of struct Trigger. A pointer to the first element of the
2708  *    linked list is stored as the "pTrigger" member of the associated
2709  *    struct Table.
2710  *
2711  * The "step_list" member points to the first element of a linked list
2712  * containing the SQL statements specified as the trigger program.
2713  */
2714 struct Trigger {
2715   char *zName;            /* The name of the trigger                        */
2716   char *table;            /* The table or view to which the trigger applies */
2717   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2718   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2719   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2720   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2721                              the <column-list> is stored here */
2722   Schema *pSchema;        /* Schema containing the trigger */
2723   Schema *pTabSchema;     /* Schema containing the table */
2724   TriggerStep *step_list; /* Link list of trigger program steps             */
2725   Trigger *pNext;         /* Next trigger associated with the table */
2726 };
2727 
2728 /*
2729 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2730 ** determine which.
2731 **
2732 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2733 ** In that cases, the constants below can be ORed together.
2734 */
2735 #define TRIGGER_BEFORE  1
2736 #define TRIGGER_AFTER   2
2737 
2738 /*
2739  * An instance of struct TriggerStep is used to store a single SQL statement
2740  * that is a part of a trigger-program.
2741  *
2742  * Instances of struct TriggerStep are stored in a singly linked list (linked
2743  * using the "pNext" member) referenced by the "step_list" member of the
2744  * associated struct Trigger instance. The first element of the linked list is
2745  * the first step of the trigger-program.
2746  *
2747  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2748  * "SELECT" statement. The meanings of the other members is determined by the
2749  * value of "op" as follows:
2750  *
2751  * (op == TK_INSERT)
2752  * orconf    -> stores the ON CONFLICT algorithm
2753  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2754  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2755  * target    -> A token holding the quoted name of the table to insert into.
2756  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2757  *              this stores values to be inserted. Otherwise NULL.
2758  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2759  *              statement, then this stores the column-names to be
2760  *              inserted into.
2761  *
2762  * (op == TK_DELETE)
2763  * target    -> A token holding the quoted name of the table to delete from.
2764  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2765  *              Otherwise NULL.
2766  *
2767  * (op == TK_UPDATE)
2768  * target    -> A token holding the quoted name of the table to update rows of.
2769  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2770  *              Otherwise NULL.
2771  * pExprList -> A list of the columns to update and the expressions to update
2772  *              them to. See sqlite3Update() documentation of "pChanges"
2773  *              argument.
2774  *
2775  */
2776 struct TriggerStep {
2777   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2778   u8 orconf;           /* OE_Rollback etc. */
2779   Trigger *pTrig;      /* The trigger that this step is a part of */
2780   Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2781   Token target;        /* Target table for DELETE, UPDATE, INSERT */
2782   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2783   ExprList *pExprList; /* SET clause for UPDATE. */
2784   IdList *pIdList;     /* Column names for INSERT */
2785   TriggerStep *pNext;  /* Next in the link-list */
2786   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2787 };
2788 
2789 /*
2790 ** The following structure contains information used by the sqliteFix...
2791 ** routines as they walk the parse tree to make database references
2792 ** explicit.
2793 */
2794 typedef struct DbFixer DbFixer;
2795 struct DbFixer {
2796   Parse *pParse;      /* The parsing context.  Error messages written here */
2797   Schema *pSchema;    /* Fix items to this schema */
2798   int bVarOnly;       /* Check for variable references only */
2799   const char *zDb;    /* Make sure all objects are contained in this database */
2800   const char *zType;  /* Type of the container - used for error messages */
2801   const Token *pName; /* Name of the container - used for error messages */
2802 };
2803 
2804 /*
2805 ** An objected used to accumulate the text of a string where we
2806 ** do not necessarily know how big the string will be in the end.
2807 */
2808 struct StrAccum {
2809   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2810   char *zBase;         /* A base allocation.  Not from malloc. */
2811   char *zText;         /* The string collected so far */
2812   int  nChar;          /* Length of the string so far */
2813   int  nAlloc;         /* Amount of space allocated in zText */
2814   int  mxAlloc;        /* Maximum allowed string length */
2815   u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
2816   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
2817 };
2818 #define STRACCUM_NOMEM   1
2819 #define STRACCUM_TOOBIG  2
2820 
2821 /*
2822 ** A pointer to this structure is used to communicate information
2823 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2824 */
2825 typedef struct {
2826   sqlite3 *db;        /* The database being initialized */
2827   char **pzErrMsg;    /* Error message stored here */
2828   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2829   int rc;             /* Result code stored here */
2830 } InitData;
2831 
2832 /*
2833 ** Structure containing global configuration data for the SQLite library.
2834 **
2835 ** This structure also contains some state information.
2836 */
2837 struct Sqlite3Config {
2838   int bMemstat;                     /* True to enable memory status */
2839   int bCoreMutex;                   /* True to enable core mutexing */
2840   int bFullMutex;                   /* True to enable full mutexing */
2841   int bOpenUri;                     /* True to interpret filenames as URIs */
2842   int bUseCis;                      /* Use covering indices for full-scans */
2843   int mxStrlen;                     /* Maximum string length */
2844   int neverCorrupt;                 /* Database is always well-formed */
2845   int szLookaside;                  /* Default lookaside buffer size */
2846   int nLookaside;                   /* Default lookaside buffer count */
2847   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2848   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2849   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
2850   void *pHeap;                      /* Heap storage space */
2851   int nHeap;                        /* Size of pHeap[] */
2852   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2853   sqlite3_int64 szMmap;             /* mmap() space per open file */
2854   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
2855   void *pScratch;                   /* Scratch memory */
2856   int szScratch;                    /* Size of each scratch buffer */
2857   int nScratch;                     /* Number of scratch buffers */
2858   void *pPage;                      /* Page cache memory */
2859   int szPage;                       /* Size of each page in pPage[] */
2860   int nPage;                        /* Number of pages in pPage[] */
2861   int mxParserStack;                /* maximum depth of the parser stack */
2862   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2863   u32 szPma;                        /* Maximum Sorter PMA size */
2864   /* The above might be initialized to non-zero.  The following need to always
2865   ** initially be zero, however. */
2866   int isInit;                       /* True after initialization has finished */
2867   int inProgress;                   /* True while initialization in progress */
2868   int isMutexInit;                  /* True after mutexes are initialized */
2869   int isMallocInit;                 /* True after malloc is initialized */
2870   int isPCacheInit;                 /* True after malloc is initialized */
2871   int nRefInitMutex;                /* Number of users of pInitMutex */
2872   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2873   void (*xLog)(void*,int,const char*); /* Function for logging */
2874   void *pLogArg;                       /* First argument to xLog() */
2875 #ifdef SQLITE_ENABLE_SQLLOG
2876   void(*xSqllog)(void*,sqlite3*,const char*, int);
2877   void *pSqllogArg;
2878 #endif
2879 #ifdef SQLITE_VDBE_COVERAGE
2880   /* The following callback (if not NULL) is invoked on every VDBE branch
2881   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
2882   */
2883   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
2884   void *pVdbeBranchArg;                                     /* 1st argument */
2885 #endif
2886 #ifndef SQLITE_OMIT_BUILTIN_TEST
2887   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
2888 #endif
2889   int bLocaltimeFault;              /* True to fail localtime() calls */
2890 };
2891 
2892 /*
2893 ** This macro is used inside of assert() statements to indicate that
2894 ** the assert is only valid on a well-formed database.  Instead of:
2895 **
2896 **     assert( X );
2897 **
2898 ** One writes:
2899 **
2900 **     assert( X || CORRUPT_DB );
2901 **
2902 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
2903 ** that the database is definitely corrupt, only that it might be corrupt.
2904 ** For most test cases, CORRUPT_DB is set to false using a special
2905 ** sqlite3_test_control().  This enables assert() statements to prove
2906 ** things that are always true for well-formed databases.
2907 */
2908 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
2909 
2910 /*
2911 ** Context pointer passed down through the tree-walk.
2912 */
2913 struct Walker {
2914   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2915   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2916   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
2917   Parse *pParse;                            /* Parser context.  */
2918   int walkerDepth;                          /* Number of subqueries */
2919   u8 eCode;                                 /* A small processing code */
2920   union {                                   /* Extra data for callback */
2921     NameContext *pNC;                          /* Naming context */
2922     int n;                                     /* A counter */
2923     int iCur;                                  /* A cursor number */
2924     SrcList *pSrcList;                         /* FROM clause */
2925     struct SrcCount *pSrcCount;                /* Counting column references */
2926   } u;
2927 };
2928 
2929 /* Forward declarations */
2930 int sqlite3WalkExpr(Walker*, Expr*);
2931 int sqlite3WalkExprList(Walker*, ExprList*);
2932 int sqlite3WalkSelect(Walker*, Select*);
2933 int sqlite3WalkSelectExpr(Walker*, Select*);
2934 int sqlite3WalkSelectFrom(Walker*, Select*);
2935 
2936 /*
2937 ** Return code from the parse-tree walking primitives and their
2938 ** callbacks.
2939 */
2940 #define WRC_Continue    0   /* Continue down into children */
2941 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2942 #define WRC_Abort       2   /* Abandon the tree walk */
2943 
2944 /*
2945 ** An instance of this structure represents a set of one or more CTEs
2946 ** (common table expressions) created by a single WITH clause.
2947 */
2948 struct With {
2949   int nCte;                       /* Number of CTEs in the WITH clause */
2950   With *pOuter;                   /* Containing WITH clause, or NULL */
2951   struct Cte {                    /* For each CTE in the WITH clause.... */
2952     char *zName;                    /* Name of this CTE */
2953     ExprList *pCols;                /* List of explicit column names, or NULL */
2954     Select *pSelect;                /* The definition of this CTE */
2955     const char *zErr;               /* Error message for circular references */
2956   } a[1];
2957 };
2958 
2959 #ifdef SQLITE_DEBUG
2960 /*
2961 ** An instance of the TreeView object is used for printing the content of
2962 ** data structures on sqlite3DebugPrintf() using a tree-like view.
2963 */
2964 struct TreeView {
2965   int iLevel;             /* Which level of the tree we are on */
2966   u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
2967 };
2968 #endif /* SQLITE_DEBUG */
2969 
2970 /*
2971 ** Assuming zIn points to the first byte of a UTF-8 character,
2972 ** advance zIn to point to the first byte of the next UTF-8 character.
2973 */
2974 #define SQLITE_SKIP_UTF8(zIn) {                        \
2975   if( (*(zIn++))>=0xc0 ){                              \
2976     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2977   }                                                    \
2978 }
2979 
2980 /*
2981 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
2982 ** the same name but without the _BKPT suffix.  These macros invoke
2983 ** routines that report the line-number on which the error originated
2984 ** using sqlite3_log().  The routines also provide a convenient place
2985 ** to set a debugger breakpoint.
2986 */
2987 int sqlite3CorruptError(int);
2988 int sqlite3MisuseError(int);
2989 int sqlite3CantopenError(int);
2990 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
2991 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
2992 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
2993 
2994 
2995 /*
2996 ** FTS4 is really an extension for FTS3.  It is enabled using the
2997 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
2998 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
2999 */
3000 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
3001 # define SQLITE_ENABLE_FTS3 1
3002 #endif
3003 
3004 /*
3005 ** The ctype.h header is needed for non-ASCII systems.  It is also
3006 ** needed by FTS3 when FTS3 is included in the amalgamation.
3007 */
3008 #if !defined(SQLITE_ASCII) || \
3009     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
3010 # include <ctype.h>
3011 #endif
3012 
3013 /*
3014 ** The following macros mimic the standard library functions toupper(),
3015 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
3016 ** sqlite versions only work for ASCII characters, regardless of locale.
3017 */
3018 #ifdef SQLITE_ASCII
3019 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
3020 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
3021 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
3022 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
3023 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
3024 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
3025 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
3026 #else
3027 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
3028 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
3029 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
3030 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
3031 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
3032 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
3033 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
3034 #endif
3035 int sqlite3IsIdChar(u8);
3036 
3037 /*
3038 ** Internal function prototypes
3039 */
3040 #define sqlite3StrICmp sqlite3_stricmp
3041 int sqlite3Strlen30(const char*);
3042 #define sqlite3StrNICmp sqlite3_strnicmp
3043 
3044 int sqlite3MallocInit(void);
3045 void sqlite3MallocEnd(void);
3046 void *sqlite3Malloc(u64);
3047 void *sqlite3MallocZero(u64);
3048 void *sqlite3DbMallocZero(sqlite3*, u64);
3049 void *sqlite3DbMallocRaw(sqlite3*, u64);
3050 char *sqlite3DbStrDup(sqlite3*,const char*);
3051 char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
3052 void *sqlite3Realloc(void*, u64);
3053 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
3054 void *sqlite3DbRealloc(sqlite3 *, void *, u64);
3055 void sqlite3DbFree(sqlite3*, void*);
3056 int sqlite3MallocSize(void*);
3057 int sqlite3DbMallocSize(sqlite3*, void*);
3058 void *sqlite3ScratchMalloc(int);
3059 void sqlite3ScratchFree(void*);
3060 void *sqlite3PageMalloc(int);
3061 void sqlite3PageFree(void*);
3062 void sqlite3MemSetDefault(void);
3063 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
3064 int sqlite3HeapNearlyFull(void);
3065 
3066 /*
3067 ** On systems with ample stack space and that support alloca(), make
3068 ** use of alloca() to obtain space for large automatic objects.  By default,
3069 ** obtain space from malloc().
3070 **
3071 ** The alloca() routine never returns NULL.  This will cause code paths
3072 ** that deal with sqlite3StackAlloc() failures to be unreachable.
3073 */
3074 #ifdef SQLITE_USE_ALLOCA
3075 # define sqlite3StackAllocRaw(D,N)   alloca(N)
3076 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
3077 # define sqlite3StackFree(D,P)
3078 #else
3079 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
3080 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
3081 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
3082 #endif
3083 
3084 #ifdef SQLITE_ENABLE_MEMSYS3
3085 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3086 #endif
3087 #ifdef SQLITE_ENABLE_MEMSYS5
3088 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3089 #endif
3090 
3091 
3092 #ifndef SQLITE_MUTEX_OMIT
3093   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3094   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3095   sqlite3_mutex *sqlite3MutexAlloc(int);
3096   int sqlite3MutexInit(void);
3097   int sqlite3MutexEnd(void);
3098 #endif
3099 
3100 int sqlite3StatusValue(int);
3101 void sqlite3StatusAdd(int, int);
3102 void sqlite3StatusSet(int, int);
3103 
3104 #ifndef SQLITE_OMIT_FLOATING_POINT
3105   int sqlite3IsNaN(double);
3106 #else
3107 # define sqlite3IsNaN(X)  0
3108 #endif
3109 
3110 /*
3111 ** An instance of the following structure holds information about SQL
3112 ** functions arguments that are the parameters to the printf() function.
3113 */
3114 struct PrintfArguments {
3115   int nArg;                /* Total number of arguments */
3116   int nUsed;               /* Number of arguments used so far */
3117   sqlite3_value **apArg;   /* The argument values */
3118 };
3119 
3120 #define SQLITE_PRINTF_INTERNAL 0x01
3121 #define SQLITE_PRINTF_SQLFUNC  0x02
3122 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
3123 void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
3124 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3125 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3126 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
3127 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
3128   void sqlite3DebugPrintf(const char*, ...);
3129 #endif
3130 #if defined(SQLITE_TEST)
3131   void *sqlite3TestTextToPtr(const char*);
3132 #endif
3133 
3134 #if defined(SQLITE_DEBUG)
3135   TreeView *sqlite3TreeViewPush(TreeView*,u8);
3136   void sqlite3TreeViewPop(TreeView*);
3137   void sqlite3TreeViewLine(TreeView*, const char*, ...);
3138   void sqlite3TreeViewItem(TreeView*, const char*, u8);
3139   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
3140   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
3141   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
3142 #endif
3143 
3144 
3145 void sqlite3SetString(char **, sqlite3*, const char*, ...);
3146 void sqlite3ErrorMsg(Parse*, const char*, ...);
3147 int sqlite3Dequote(char*);
3148 int sqlite3KeywordCode(const unsigned char*, int);
3149 int sqlite3RunParser(Parse*, const char*, char **);
3150 void sqlite3FinishCoding(Parse*);
3151 int sqlite3GetTempReg(Parse*);
3152 void sqlite3ReleaseTempReg(Parse*,int);
3153 int sqlite3GetTempRange(Parse*,int);
3154 void sqlite3ReleaseTempRange(Parse*,int,int);
3155 void sqlite3ClearTempRegCache(Parse*);
3156 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3157 Expr *sqlite3Expr(sqlite3*,int,const char*);
3158 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3159 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
3160 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3161 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3162 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
3163 void sqlite3ExprDelete(sqlite3*, Expr*);
3164 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3165 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3166 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3167 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3168 u32 sqlite3ExprListFlags(const ExprList*);
3169 int sqlite3Init(sqlite3*, char**);
3170 int sqlite3InitCallback(void*, int, char**, char**);
3171 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3172 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3173 void sqlite3ResetOneSchema(sqlite3*,int);
3174 void sqlite3CollapseDatabaseArray(sqlite3*);
3175 void sqlite3BeginParse(Parse*,int);
3176 void sqlite3CommitInternalChanges(sqlite3*);
3177 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3178 void sqlite3OpenMasterTable(Parse *, int);
3179 Index *sqlite3PrimaryKeyIndex(Table*);
3180 i16 sqlite3ColumnOfIndex(Index*, i16);
3181 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3182 void sqlite3AddColumn(Parse*,Token*);
3183 void sqlite3AddNotNull(Parse*, int);
3184 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3185 void sqlite3AddCheckConstraint(Parse*, Expr*);
3186 void sqlite3AddColumnType(Parse*,Token*);
3187 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3188 void sqlite3AddCollateType(Parse*, Token*);
3189 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3190 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3191                     sqlite3_vfs**,char**,char **);
3192 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3193 int sqlite3CodeOnce(Parse *);
3194 
3195 #ifdef SQLITE_OMIT_BUILTIN_TEST
3196 # define sqlite3FaultSim(X) SQLITE_OK
3197 #else
3198   int sqlite3FaultSim(int);
3199 #endif
3200 
3201 Bitvec *sqlite3BitvecCreate(u32);
3202 int sqlite3BitvecTest(Bitvec*, u32);
3203 int sqlite3BitvecSet(Bitvec*, u32);
3204 void sqlite3BitvecClear(Bitvec*, u32, void*);
3205 void sqlite3BitvecDestroy(Bitvec*);
3206 u32 sqlite3BitvecSize(Bitvec*);
3207 int sqlite3BitvecBuiltinTest(int,int*);
3208 
3209 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3210 void sqlite3RowSetClear(RowSet*);
3211 void sqlite3RowSetInsert(RowSet*, i64);
3212 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3213 int sqlite3RowSetNext(RowSet*, i64*);
3214 
3215 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
3216 
3217 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3218   int sqlite3ViewGetColumnNames(Parse*,Table*);
3219 #else
3220 # define sqlite3ViewGetColumnNames(A,B) 0
3221 #endif
3222 
3223 #if SQLITE_MAX_ATTACHED>30
3224   int sqlite3DbMaskAllZero(yDbMask);
3225 #endif
3226 void sqlite3DropTable(Parse*, SrcList*, int, int);
3227 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3228 void sqlite3DeleteTable(sqlite3*, Table*);
3229 #ifndef SQLITE_OMIT_AUTOINCREMENT
3230   void sqlite3AutoincrementBegin(Parse *pParse);
3231   void sqlite3AutoincrementEnd(Parse *pParse);
3232 #else
3233 # define sqlite3AutoincrementBegin(X)
3234 # define sqlite3AutoincrementEnd(X)
3235 #endif
3236 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3237 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3238 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3239 int sqlite3IdListIndex(IdList*,const char*);
3240 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3241 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3242 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3243                                       Token*, Select*, Expr*, IdList*);
3244 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3245 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3246 void sqlite3SrcListShiftJoinType(SrcList*);
3247 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3248 void sqlite3IdListDelete(sqlite3*, IdList*);
3249 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3250 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3251 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3252                           Expr*, int, int);
3253 void sqlite3DropIndex(Parse*, SrcList*, int);
3254 int sqlite3Select(Parse*, Select*, SelectDest*);
3255 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3256                          Expr*,ExprList*,u16,Expr*,Expr*);
3257 void sqlite3SelectDelete(sqlite3*, Select*);
3258 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3259 int sqlite3IsReadOnly(Parse*, Table*, int);
3260 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3261 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3262 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3263 #endif
3264 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3265 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3266 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3267 void sqlite3WhereEnd(WhereInfo*);
3268 u64 sqlite3WhereOutputRowCount(WhereInfo*);
3269 int sqlite3WhereIsDistinct(WhereInfo*);
3270 int sqlite3WhereIsOrdered(WhereInfo*);
3271 int sqlite3WhereIsSorted(WhereInfo*);
3272 int sqlite3WhereContinueLabel(WhereInfo*);
3273 int sqlite3WhereBreakLabel(WhereInfo*);
3274 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3275 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3276 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3277 void sqlite3ExprCodeMove(Parse*, int, int, int);
3278 void sqlite3ExprCacheStore(Parse*, int, int, int);
3279 void sqlite3ExprCachePush(Parse*);
3280 void sqlite3ExprCachePop(Parse*);
3281 void sqlite3ExprCacheRemove(Parse*, int, int);
3282 void sqlite3ExprCacheClear(Parse*);
3283 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3284 void sqlite3ExprCode(Parse*, Expr*, int);
3285 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3286 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
3287 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3288 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3289 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3290 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
3291 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3292 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3293 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3294 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3295 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3296 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
3297 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
3298 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3299 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3300 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3301 void sqlite3Vacuum(Parse*);
3302 int sqlite3RunVacuum(char**, sqlite3*);
3303 char *sqlite3NameFromToken(sqlite3*, Token*);
3304 int sqlite3ExprCompare(Expr*, Expr*, int);
3305 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3306 int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
3307 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3308 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3309 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3310 Vdbe *sqlite3GetVdbe(Parse*);
3311 void sqlite3PrngSaveState(void);
3312 void sqlite3PrngRestoreState(void);
3313 void sqlite3RollbackAll(sqlite3*,int);
3314 void sqlite3CodeVerifySchema(Parse*, int);
3315 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3316 void sqlite3BeginTransaction(Parse*, int);
3317 void sqlite3CommitTransaction(Parse*);
3318 void sqlite3RollbackTransaction(Parse*);
3319 void sqlite3Savepoint(Parse*, int, Token*);
3320 void sqlite3CloseSavepoints(sqlite3 *);
3321 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3322 int sqlite3ExprIsConstant(Expr*);
3323 int sqlite3ExprIsConstantNotJoin(Expr*);
3324 int sqlite3ExprIsConstantOrFunction(Expr*, u8);
3325 int sqlite3ExprIsTableConstant(Expr*,int);
3326 int sqlite3ExprIsInteger(Expr*, int*);
3327 int sqlite3ExprCanBeNull(const Expr*);
3328 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3329 int sqlite3IsRowid(const char*);
3330 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
3331 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
3332 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3333 void sqlite3ResolvePartIdxLabel(Parse*,int);
3334 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3335                                      u8,u8,int,int*);
3336 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3337 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
3338 void sqlite3BeginWriteOperation(Parse*, int, int);
3339 void sqlite3MultiWrite(Parse*);
3340 void sqlite3MayAbort(Parse*);
3341 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3342 void sqlite3UniqueConstraint(Parse*, int, Index*);
3343 void sqlite3RowidConstraint(Parse*, int, Table*);
3344 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3345 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3346 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3347 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3348 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3349 #if SELECTTRACE_ENABLED
3350 void sqlite3SelectSetName(Select*,const char*);
3351 #else
3352 # define sqlite3SelectSetName(A,B)
3353 #endif
3354 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
3355 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
3356 void sqlite3RegisterBuiltinFunctions(sqlite3*);
3357 void sqlite3RegisterDateTimeFunctions(void);
3358 void sqlite3RegisterGlobalFunctions(void);
3359 int sqlite3SafetyCheckOk(sqlite3*);
3360 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3361 void sqlite3ChangeCookie(Parse*, int);
3362 
3363 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3364 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3365 #endif
3366 
3367 #ifndef SQLITE_OMIT_TRIGGER
3368   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3369                            Expr*,int, int);
3370   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3371   void sqlite3DropTrigger(Parse*, SrcList*, int);
3372   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3373   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3374   Trigger *sqlite3TriggerList(Parse *, Table *);
3375   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3376                             int, int, int);
3377   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3378   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3379   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3380   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3381   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3382                                         Select*,u8);
3383   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3384   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3385   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3386   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3387   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3388 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3389 #else
3390 # define sqlite3TriggersExist(B,C,D,E,F) 0
3391 # define sqlite3DeleteTrigger(A,B)
3392 # define sqlite3DropTriggerPtr(A,B)
3393 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3394 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3395 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3396 # define sqlite3TriggerList(X, Y) 0
3397 # define sqlite3ParseToplevel(p) p
3398 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3399 #endif
3400 
3401 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3402 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3403 void sqlite3DeferForeignKey(Parse*, int);
3404 #ifndef SQLITE_OMIT_AUTHORIZATION
3405   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3406   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3407   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3408   void sqlite3AuthContextPop(AuthContext*);
3409   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3410 #else
3411 # define sqlite3AuthRead(a,b,c,d)
3412 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3413 # define sqlite3AuthContextPush(a,b,c)
3414 # define sqlite3AuthContextPop(a)  ((void)(a))
3415 #endif
3416 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3417 void sqlite3Detach(Parse*, Expr*);
3418 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3419 int sqlite3FixSrcList(DbFixer*, SrcList*);
3420 int sqlite3FixSelect(DbFixer*, Select*);
3421 int sqlite3FixExpr(DbFixer*, Expr*);
3422 int sqlite3FixExprList(DbFixer*, ExprList*);
3423 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3424 int sqlite3AtoF(const char *z, double*, int, u8);
3425 int sqlite3GetInt32(const char *, int*);
3426 int sqlite3Atoi(const char*);
3427 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3428 int sqlite3Utf8CharLen(const char *pData, int nByte);
3429 u32 sqlite3Utf8Read(const u8**);
3430 LogEst sqlite3LogEst(u64);
3431 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3432 #ifndef SQLITE_OMIT_VIRTUALTABLE
3433 LogEst sqlite3LogEstFromDouble(double);
3434 #endif
3435 u64 sqlite3LogEstToInt(LogEst);
3436 
3437 /*
3438 ** Routines to read and write variable-length integers.  These used to
3439 ** be defined locally, but now we use the varint routines in the util.c
3440 ** file.
3441 */
3442 int sqlite3PutVarint(unsigned char*, u64);
3443 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3444 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3445 int sqlite3VarintLen(u64 v);
3446 
3447 /*
3448 ** The common case is for a varint to be a single byte.  They following
3449 ** macros handle the common case without a procedure call, but then call
3450 ** the procedure for larger varints.
3451 */
3452 #define getVarint32(A,B)  \
3453   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3454 #define putVarint32(A,B)  \
3455   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3456   sqlite3PutVarint((A),(B)))
3457 #define getVarint    sqlite3GetVarint
3458 #define putVarint    sqlite3PutVarint
3459 
3460 
3461 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
3462 void sqlite3TableAffinity(Vdbe*, Table*, int);
3463 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3464 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3465 char sqlite3ExprAffinity(Expr *pExpr);
3466 int sqlite3Atoi64(const char*, i64*, int, u8);
3467 int sqlite3DecOrHexToI64(const char*, i64*);
3468 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
3469 void sqlite3Error(sqlite3*,int);
3470 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3471 u8 sqlite3HexToInt(int h);
3472 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
3473 
3474 #if defined(SQLITE_TEST)
3475 const char *sqlite3ErrName(int);
3476 #endif
3477 
3478 const char *sqlite3ErrStr(int);
3479 int sqlite3ReadSchema(Parse *pParse);
3480 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
3481 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
3482 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
3483 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
3484 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
3485 Expr *sqlite3ExprSkipCollate(Expr*);
3486 int sqlite3CheckCollSeq(Parse *, CollSeq *);
3487 int sqlite3CheckObjectName(Parse *, const char *);
3488 void sqlite3VdbeSetChanges(sqlite3 *, int);
3489 int sqlite3AddInt64(i64*,i64);
3490 int sqlite3SubInt64(i64*,i64);
3491 int sqlite3MulInt64(i64*,i64);
3492 int sqlite3AbsInt32(int);
3493 #ifdef SQLITE_ENABLE_8_3_NAMES
3494 void sqlite3FileSuffix3(const char*, char*);
3495 #else
3496 # define sqlite3FileSuffix3(X,Y)
3497 #endif
3498 u8 sqlite3GetBoolean(const char *z,u8);
3499 
3500 const void *sqlite3ValueText(sqlite3_value*, u8);
3501 int sqlite3ValueBytes(sqlite3_value*, u8);
3502 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3503                         void(*)(void*));
3504 void sqlite3ValueSetNull(sqlite3_value*);
3505 void sqlite3ValueFree(sqlite3_value*);
3506 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3507 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3508 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3509 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3510 #ifndef SQLITE_AMALGAMATION
3511 extern const unsigned char sqlite3OpcodeProperty[];
3512 extern const unsigned char sqlite3UpperToLower[];
3513 extern const unsigned char sqlite3CtypeMap[];
3514 extern const Token sqlite3IntTokens[];
3515 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3516 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
3517 #ifndef SQLITE_OMIT_WSD
3518 extern int sqlite3PendingByte;
3519 #endif
3520 #endif
3521 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3522 void sqlite3Reindex(Parse*, Token*, Token*);
3523 void sqlite3AlterFunctions(void);
3524 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3525 int sqlite3GetToken(const unsigned char *, int *);
3526 void sqlite3NestedParse(Parse*, const char*, ...);
3527 void sqlite3ExpirePreparedStatements(sqlite3*);
3528 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3529 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3530 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
3531 int sqlite3ResolveExprNames(NameContext*, Expr*);
3532 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3533 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3534 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3535 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3536 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3537 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3538 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3539 char sqlite3AffinityType(const char*, u8*);
3540 void sqlite3Analyze(Parse*, Token*, Token*);
3541 int sqlite3InvokeBusyHandler(BusyHandler*);
3542 int sqlite3FindDb(sqlite3*, Token*);
3543 int sqlite3FindDbName(sqlite3 *, const char *);
3544 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3545 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3546 void sqlite3DefaultRowEst(Index*);
3547 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3548 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3549 void sqlite3MinimumFileFormat(Parse*, int, int);
3550 void sqlite3SchemaClear(void *);
3551 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3552 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3553 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
3554 void sqlite3KeyInfoUnref(KeyInfo*);
3555 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
3556 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
3557 #ifdef SQLITE_DEBUG
3558 int sqlite3KeyInfoIsWriteable(KeyInfo*);
3559 #endif
3560 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3561   void (*)(sqlite3_context*,int,sqlite3_value **),
3562   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3563   FuncDestructor *pDestructor
3564 );
3565 int sqlite3ApiExit(sqlite3 *db, int);
3566 int sqlite3OpenTempDatabase(Parse *);
3567 
3568 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
3569 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3570 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
3571 void sqlite3AppendChar(StrAccum*,int,char);
3572 char *sqlite3StrAccumFinish(StrAccum*);
3573 void sqlite3StrAccumReset(StrAccum*);
3574 void sqlite3SelectDestInit(SelectDest*,int,int);
3575 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3576 
3577 void sqlite3BackupRestart(sqlite3_backup *);
3578 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3579 
3580 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3581 void sqlite3AnalyzeFunctions(void);
3582 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
3583 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
3584 void sqlite3Stat4ProbeFree(UnpackedRecord*);
3585 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
3586 #endif
3587 
3588 /*
3589 ** The interface to the LEMON-generated parser
3590 */
3591 void *sqlite3ParserAlloc(void*(*)(u64));
3592 void sqlite3ParserFree(void*, void(*)(void*));
3593 void sqlite3Parser(void*, int, Token, Parse*);
3594 #ifdef YYTRACKMAXSTACKDEPTH
3595   int sqlite3ParserStackPeak(void*);
3596 #endif
3597 
3598 void sqlite3AutoLoadExtensions(sqlite3*);
3599 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3600   void sqlite3CloseExtensions(sqlite3*);
3601 #else
3602 # define sqlite3CloseExtensions(X)
3603 #endif
3604 
3605 #ifndef SQLITE_OMIT_SHARED_CACHE
3606   void sqlite3TableLock(Parse *, int, int, u8, const char *);
3607 #else
3608   #define sqlite3TableLock(v,w,x,y,z)
3609 #endif
3610 
3611 #ifdef SQLITE_TEST
3612   int sqlite3Utf8To8(unsigned char*);
3613 #endif
3614 
3615 #ifdef SQLITE_OMIT_VIRTUALTABLE
3616 #  define sqlite3VtabClear(Y)
3617 #  define sqlite3VtabSync(X,Y) SQLITE_OK
3618 #  define sqlite3VtabRollback(X)
3619 #  define sqlite3VtabCommit(X)
3620 #  define sqlite3VtabInSync(db) 0
3621 #  define sqlite3VtabLock(X)
3622 #  define sqlite3VtabUnlock(X)
3623 #  define sqlite3VtabUnlockList(X)
3624 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3625 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
3626 #else
3627    void sqlite3VtabClear(sqlite3 *db, Table*);
3628    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
3629    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
3630    int sqlite3VtabRollback(sqlite3 *db);
3631    int sqlite3VtabCommit(sqlite3 *db);
3632    void sqlite3VtabLock(VTable *);
3633    void sqlite3VtabUnlock(VTable *);
3634    void sqlite3VtabUnlockList(sqlite3*);
3635    int sqlite3VtabSavepoint(sqlite3 *, int, int);
3636    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
3637    VTable *sqlite3GetVTable(sqlite3*, Table*);
3638 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3639 #endif
3640 void sqlite3VtabMakeWritable(Parse*,Table*);
3641 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3642 void sqlite3VtabFinishParse(Parse*, Token*);
3643 void sqlite3VtabArgInit(Parse*);
3644 void sqlite3VtabArgExtend(Parse*, Token*);
3645 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3646 int sqlite3VtabCallConnect(Parse*, Table*);
3647 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3648 int sqlite3VtabBegin(sqlite3 *, VTable *);
3649 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3650 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3651 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
3652 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3653 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3654 void sqlite3ParserReset(Parse*);
3655 int sqlite3Reprepare(Vdbe*);
3656 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3657 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3658 int sqlite3TempInMemory(const sqlite3*);
3659 const char *sqlite3JournalModename(int);
3660 #ifndef SQLITE_OMIT_WAL
3661   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3662   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3663 #endif
3664 #ifndef SQLITE_OMIT_CTE
3665   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
3666   void sqlite3WithDelete(sqlite3*,With*);
3667   void sqlite3WithPush(Parse*, With*, u8);
3668 #else
3669 #define sqlite3WithPush(x,y,z)
3670 #define sqlite3WithDelete(x,y)
3671 #endif
3672 
3673 /* Declarations for functions in fkey.c. All of these are replaced by
3674 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3675 ** key functionality is available. If OMIT_TRIGGER is defined but
3676 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3677 ** this case foreign keys are parsed, but no other functionality is
3678 ** provided (enforcement of FK constraints requires the triggers sub-system).
3679 */
3680 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3681   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
3682   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3683   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
3684   int sqlite3FkRequired(Parse*, Table*, int*, int);
3685   u32 sqlite3FkOldmask(Parse*, Table*);
3686   FKey *sqlite3FkReferences(Table *);
3687 #else
3688   #define sqlite3FkActions(a,b,c,d,e,f)
3689   #define sqlite3FkCheck(a,b,c,d,e,f)
3690   #define sqlite3FkDropTable(a,b,c)
3691   #define sqlite3FkOldmask(a,b)         0
3692   #define sqlite3FkRequired(a,b,c,d)    0
3693 #endif
3694 #ifndef SQLITE_OMIT_FOREIGN_KEY
3695   void sqlite3FkDelete(sqlite3 *, Table*);
3696   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
3697 #else
3698   #define sqlite3FkDelete(a,b)
3699   #define sqlite3FkLocateIndex(a,b,c,d,e)
3700 #endif
3701 
3702 
3703 /*
3704 ** Available fault injectors.  Should be numbered beginning with 0.
3705 */
3706 #define SQLITE_FAULTINJECTOR_MALLOC     0
3707 #define SQLITE_FAULTINJECTOR_COUNT      1
3708 
3709 /*
3710 ** The interface to the code in fault.c used for identifying "benign"
3711 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3712 ** is not defined.
3713 */
3714 #ifndef SQLITE_OMIT_BUILTIN_TEST
3715   void sqlite3BeginBenignMalloc(void);
3716   void sqlite3EndBenignMalloc(void);
3717 #else
3718   #define sqlite3BeginBenignMalloc()
3719   #define sqlite3EndBenignMalloc()
3720 #endif
3721 
3722 /*
3723 ** Allowed return values from sqlite3FindInIndex()
3724 */
3725 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
3726 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
3727 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
3728 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
3729 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
3730 /*
3731 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
3732 */
3733 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
3734 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
3735 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
3736 int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
3737 
3738 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3739   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3740   int sqlite3JournalSize(sqlite3_vfs *);
3741   int sqlite3JournalCreate(sqlite3_file *);
3742   int sqlite3JournalExists(sqlite3_file *p);
3743 #else
3744   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3745   #define sqlite3JournalExists(p) 1
3746 #endif
3747 
3748 void sqlite3MemJournalOpen(sqlite3_file *);
3749 int sqlite3MemJournalSize(void);
3750 int sqlite3IsMemJournal(sqlite3_file *);
3751 
3752 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
3753 #if SQLITE_MAX_EXPR_DEPTH>0
3754   int sqlite3SelectExprHeight(Select *);
3755   int sqlite3ExprCheckHeight(Parse*, int);
3756 #else
3757   #define sqlite3SelectExprHeight(x) 0
3758   #define sqlite3ExprCheckHeight(x,y)
3759 #endif
3760 
3761 u32 sqlite3Get4byte(const u8*);
3762 void sqlite3Put4byte(u8*, u32);
3763 
3764 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3765   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3766   void sqlite3ConnectionUnlocked(sqlite3 *db);
3767   void sqlite3ConnectionClosed(sqlite3 *db);
3768 #else
3769   #define sqlite3ConnectionBlocked(x,y)
3770   #define sqlite3ConnectionUnlocked(x)
3771   #define sqlite3ConnectionClosed(x)
3772 #endif
3773 
3774 #ifdef SQLITE_DEBUG
3775   void sqlite3ParserTrace(FILE*, char *);
3776 #endif
3777 
3778 /*
3779 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3780 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3781 ** print I/O tracing messages.
3782 */
3783 #ifdef SQLITE_ENABLE_IOTRACE
3784 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3785   void sqlite3VdbeIOTraceSql(Vdbe*);
3786 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3787 #else
3788 # define IOTRACE(A)
3789 # define sqlite3VdbeIOTraceSql(X)
3790 #endif
3791 
3792 /*
3793 ** These routines are available for the mem2.c debugging memory allocator
3794 ** only.  They are used to verify that different "types" of memory
3795 ** allocations are properly tracked by the system.
3796 **
3797 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3798 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3799 ** a single bit set.
3800 **
3801 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3802 ** argument match the type set by the previous sqlite3MemdebugSetType().
3803 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3804 **
3805 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3806 ** argument match the type set by the previous sqlite3MemdebugSetType().
3807 **
3808 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3809 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3810 ** it might have been allocated by lookaside, except the allocation was
3811 ** too large or lookaside was already full.  It is important to verify
3812 ** that allocations that might have been satisfied by lookaside are not
3813 ** passed back to non-lookaside free() routines.  Asserts such as the
3814 ** example above are placed on the non-lookaside free() routines to verify
3815 ** this constraint.
3816 **
3817 ** All of this is no-op for a production build.  It only comes into
3818 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3819 */
3820 #ifdef SQLITE_MEMDEBUG
3821   void sqlite3MemdebugSetType(void*,u8);
3822   int sqlite3MemdebugHasType(void*,u8);
3823   int sqlite3MemdebugNoType(void*,u8);
3824 #else
3825 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3826 # define sqlite3MemdebugHasType(X,Y)  1
3827 # define sqlite3MemdebugNoType(X,Y)   1
3828 #endif
3829 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
3830 #define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
3831 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3832 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3833 
3834 /*
3835 ** Threading interface
3836 */
3837 #if SQLITE_MAX_WORKER_THREADS>0
3838 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
3839 int sqlite3ThreadJoin(SQLiteThread*, void**);
3840 #endif
3841 
3842 #endif /* _SQLITEINT_H_ */
3843