1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The following macros are used to cast pointers to integers and 81 ** integers to pointers. The way you do this varies from one compiler 82 ** to the next, so we have developed the following set of #if statements 83 ** to generate appropriate macros for a wide range of compilers. 84 ** 85 ** The correct "ANSI" way to do this is to use the intptr_t type. 86 ** Unfortunately, that typedef is not available on all compilers, or 87 ** if it is available, it requires an #include of specific headers 88 ** that vary from one machine to the next. 89 ** 90 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 91 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 92 ** So we have to define the macros in different ways depending on the 93 ** compiler. 94 */ 95 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 96 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 97 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 98 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 99 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 100 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 101 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 104 #else /* Generates a warning - but it always works */ 105 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 106 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 107 #endif 108 109 /* 110 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 111 ** 0 means mutexes are permanently disable and the library is never 112 ** threadsafe. 1 means the library is serialized which is the highest 113 ** level of threadsafety. 2 means the libary is multithreaded - multiple 114 ** threads can use SQLite as long as no two threads try to use the same 115 ** database connection at the same time. 116 ** 117 ** Older versions of SQLite used an optional THREADSAFE macro. 118 ** We support that for legacy. 119 */ 120 #if !defined(SQLITE_THREADSAFE) 121 #if defined(THREADSAFE) 122 # define SQLITE_THREADSAFE THREADSAFE 123 #else 124 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 125 #endif 126 #endif 127 128 /* 129 ** Powersafe overwrite is on by default. But can be turned off using 130 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 131 */ 132 #ifndef SQLITE_POWERSAFE_OVERWRITE 133 # define SQLITE_POWERSAFE_OVERWRITE 1 134 #endif 135 136 /* 137 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 138 ** It determines whether or not the features related to 139 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 140 ** be overridden at runtime using the sqlite3_config() API. 141 */ 142 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 143 # define SQLITE_DEFAULT_MEMSTATUS 1 144 #endif 145 146 /* 147 ** Exactly one of the following macros must be defined in order to 148 ** specify which memory allocation subsystem to use. 149 ** 150 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 151 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 152 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 153 ** 154 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 155 ** assert() macro is enabled, each call into the Win32 native heap subsystem 156 ** will cause HeapValidate to be called. If heap validation should fail, an 157 ** assertion will be triggered. 158 ** 159 ** (Historical note: There used to be several other options, but we've 160 ** pared it down to just these three.) 161 ** 162 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 163 ** the default. 164 */ 165 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)>1 166 # error "At most one of the following compile-time configuration options\ 167 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG" 168 #endif 169 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)==0 170 # define SQLITE_SYSTEM_MALLOC 1 171 #endif 172 173 /* 174 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 175 ** sizes of memory allocations below this value where possible. 176 */ 177 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 178 # define SQLITE_MALLOC_SOFT_LIMIT 1024 179 #endif 180 181 /* 182 ** We need to define _XOPEN_SOURCE as follows in order to enable 183 ** recursive mutexes on most Unix systems. But Mac OS X is different. 184 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 185 ** so it is omitted there. See ticket #2673. 186 ** 187 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 188 ** implemented on some systems. So we avoid defining it at all 189 ** if it is already defined or if it is unneeded because we are 190 ** not doing a threadsafe build. Ticket #2681. 191 ** 192 ** See also ticket #2741. 193 */ 194 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 195 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 196 #endif 197 198 /* 199 ** The TCL headers are only needed when compiling the TCL bindings. 200 */ 201 #if defined(SQLITE_TCL) || defined(TCLSH) 202 # include <tcl.h> 203 #endif 204 205 /* 206 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 207 ** Setting NDEBUG makes the code smaller and run faster. So the following 208 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 209 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 210 ** feature. 211 */ 212 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 213 # define NDEBUG 1 214 #endif 215 216 /* 217 ** The testcase() macro is used to aid in coverage testing. When 218 ** doing coverage testing, the condition inside the argument to 219 ** testcase() must be evaluated both true and false in order to 220 ** get full branch coverage. The testcase() macro is inserted 221 ** to help ensure adequate test coverage in places where simple 222 ** condition/decision coverage is inadequate. For example, testcase() 223 ** can be used to make sure boundary values are tested. For 224 ** bitmask tests, testcase() can be used to make sure each bit 225 ** is significant and used at least once. On switch statements 226 ** where multiple cases go to the same block of code, testcase() 227 ** can insure that all cases are evaluated. 228 ** 229 */ 230 #ifdef SQLITE_COVERAGE_TEST 231 void sqlite3Coverage(int); 232 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 233 #else 234 # define testcase(X) 235 #endif 236 237 /* 238 ** The TESTONLY macro is used to enclose variable declarations or 239 ** other bits of code that are needed to support the arguments 240 ** within testcase() and assert() macros. 241 */ 242 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 243 # define TESTONLY(X) X 244 #else 245 # define TESTONLY(X) 246 #endif 247 248 /* 249 ** Sometimes we need a small amount of code such as a variable initialization 250 ** to setup for a later assert() statement. We do not want this code to 251 ** appear when assert() is disabled. The following macro is therefore 252 ** used to contain that setup code. The "VVA" acronym stands for 253 ** "Verification, Validation, and Accreditation". In other words, the 254 ** code within VVA_ONLY() will only run during verification processes. 255 */ 256 #ifndef NDEBUG 257 # define VVA_ONLY(X) X 258 #else 259 # define VVA_ONLY(X) 260 #endif 261 262 /* 263 ** The ALWAYS and NEVER macros surround boolean expressions which 264 ** are intended to always be true or false, respectively. Such 265 ** expressions could be omitted from the code completely. But they 266 ** are included in a few cases in order to enhance the resilience 267 ** of SQLite to unexpected behavior - to make the code "self-healing" 268 ** or "ductile" rather than being "brittle" and crashing at the first 269 ** hint of unplanned behavior. 270 ** 271 ** In other words, ALWAYS and NEVER are added for defensive code. 272 ** 273 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 274 ** be true and false so that the unreachable code then specify will 275 ** not be counted as untested code. 276 */ 277 #if defined(SQLITE_COVERAGE_TEST) 278 # define ALWAYS(X) (1) 279 # define NEVER(X) (0) 280 #elif !defined(NDEBUG) 281 # define ALWAYS(X) ((X)?1:(assert(0),0)) 282 # define NEVER(X) ((X)?(assert(0),1):0) 283 #else 284 # define ALWAYS(X) (X) 285 # define NEVER(X) (X) 286 #endif 287 288 /* 289 ** Return true (non-zero) if the input is a integer that is too large 290 ** to fit in 32-bits. This macro is used inside of various testcase() 291 ** macros to verify that we have tested SQLite for large-file support. 292 */ 293 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 294 295 /* 296 ** The macro unlikely() is a hint that surrounds a boolean 297 ** expression that is usually false. Macro likely() surrounds 298 ** a boolean expression that is usually true. GCC is able to 299 ** use these hints to generate better code, sometimes. 300 */ 301 #if defined(__GNUC__) && 0 302 # define likely(X) __builtin_expect((X),1) 303 # define unlikely(X) __builtin_expect((X),0) 304 #else 305 # define likely(X) !!(X) 306 # define unlikely(X) !!(X) 307 #endif 308 309 #include "sqlite3.h" 310 #include "hash.h" 311 #include "parse.h" 312 #include <stdio.h> 313 #include <stdlib.h> 314 #include <string.h> 315 #include <assert.h> 316 #include <stddef.h> 317 318 /* 319 ** If compiling for a processor that lacks floating point support, 320 ** substitute integer for floating-point 321 */ 322 #ifdef SQLITE_OMIT_FLOATING_POINT 323 # define double sqlite_int64 324 # define float sqlite_int64 325 # define LONGDOUBLE_TYPE sqlite_int64 326 # ifndef SQLITE_BIG_DBL 327 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 328 # endif 329 # define SQLITE_OMIT_DATETIME_FUNCS 1 330 # define SQLITE_OMIT_TRACE 1 331 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 332 # undef SQLITE_HAVE_ISNAN 333 #endif 334 #ifndef SQLITE_BIG_DBL 335 # define SQLITE_BIG_DBL (1e99) 336 #endif 337 338 /* 339 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 340 ** afterward. Having this macro allows us to cause the C compiler 341 ** to omit code used by TEMP tables without messy #ifndef statements. 342 */ 343 #ifdef SQLITE_OMIT_TEMPDB 344 #define OMIT_TEMPDB 1 345 #else 346 #define OMIT_TEMPDB 0 347 #endif 348 349 /* 350 ** The "file format" number is an integer that is incremented whenever 351 ** the VDBE-level file format changes. The following macros define the 352 ** the default file format for new databases and the maximum file format 353 ** that the library can read. 354 */ 355 #define SQLITE_MAX_FILE_FORMAT 4 356 #ifndef SQLITE_DEFAULT_FILE_FORMAT 357 # define SQLITE_DEFAULT_FILE_FORMAT 4 358 #endif 359 360 /* 361 ** Determine whether triggers are recursive by default. This can be 362 ** changed at run-time using a pragma. 363 */ 364 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 365 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 366 #endif 367 368 /* 369 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 370 ** on the command-line 371 */ 372 #ifndef SQLITE_TEMP_STORE 373 # define SQLITE_TEMP_STORE 1 374 #endif 375 376 /* 377 ** GCC does not define the offsetof() macro so we'll have to do it 378 ** ourselves. 379 */ 380 #ifndef offsetof 381 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 382 #endif 383 384 /* 385 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 386 ** not, there are still machines out there that use EBCDIC.) 387 */ 388 #if 'A' == '\301' 389 # define SQLITE_EBCDIC 1 390 #else 391 # define SQLITE_ASCII 1 392 #endif 393 394 /* 395 ** Integers of known sizes. These typedefs might change for architectures 396 ** where the sizes very. Preprocessor macros are available so that the 397 ** types can be conveniently redefined at compile-type. Like this: 398 ** 399 ** cc '-DUINTPTR_TYPE=long long int' ... 400 */ 401 #ifndef UINT32_TYPE 402 # ifdef HAVE_UINT32_T 403 # define UINT32_TYPE uint32_t 404 # else 405 # define UINT32_TYPE unsigned int 406 # endif 407 #endif 408 #ifndef UINT16_TYPE 409 # ifdef HAVE_UINT16_T 410 # define UINT16_TYPE uint16_t 411 # else 412 # define UINT16_TYPE unsigned short int 413 # endif 414 #endif 415 #ifndef INT16_TYPE 416 # ifdef HAVE_INT16_T 417 # define INT16_TYPE int16_t 418 # else 419 # define INT16_TYPE short int 420 # endif 421 #endif 422 #ifndef UINT8_TYPE 423 # ifdef HAVE_UINT8_T 424 # define UINT8_TYPE uint8_t 425 # else 426 # define UINT8_TYPE unsigned char 427 # endif 428 #endif 429 #ifndef INT8_TYPE 430 # ifdef HAVE_INT8_T 431 # define INT8_TYPE int8_t 432 # else 433 # define INT8_TYPE signed char 434 # endif 435 #endif 436 #ifndef LONGDOUBLE_TYPE 437 # define LONGDOUBLE_TYPE long double 438 #endif 439 typedef sqlite_int64 i64; /* 8-byte signed integer */ 440 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 441 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 442 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 443 typedef INT16_TYPE i16; /* 2-byte signed integer */ 444 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 445 typedef INT8_TYPE i8; /* 1-byte signed integer */ 446 447 /* 448 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 449 ** that can be stored in a u32 without loss of data. The value 450 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 451 ** have to specify the value in the less intuitive manner shown: 452 */ 453 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 454 455 /* 456 ** The datatype used to store estimates of the number of rows in a 457 ** table or index. This is an unsigned integer type. For 99.9% of 458 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 459 ** can be used at compile-time if desired. 460 */ 461 #ifdef SQLITE_64BIT_STATS 462 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 463 #else 464 typedef u32 tRowcnt; /* 32-bit is the default */ 465 #endif 466 467 /* 468 ** Macros to determine whether the machine is big or little endian, 469 ** evaluated at runtime. 470 */ 471 #ifdef SQLITE_AMALGAMATION 472 const int sqlite3one = 1; 473 #else 474 extern const int sqlite3one; 475 #endif 476 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 477 || defined(__x86_64) || defined(__x86_64__) 478 # define SQLITE_BIGENDIAN 0 479 # define SQLITE_LITTLEENDIAN 1 480 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 481 #else 482 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 483 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 484 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 485 #endif 486 487 /* 488 ** Constants for the largest and smallest possible 64-bit signed integers. 489 ** These macros are designed to work correctly on both 32-bit and 64-bit 490 ** compilers. 491 */ 492 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 493 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 494 495 /* 496 ** Round up a number to the next larger multiple of 8. This is used 497 ** to force 8-byte alignment on 64-bit architectures. 498 */ 499 #define ROUND8(x) (((x)+7)&~7) 500 501 /* 502 ** Round down to the nearest multiple of 8 503 */ 504 #define ROUNDDOWN8(x) ((x)&~7) 505 506 /* 507 ** Assert that the pointer X is aligned to an 8-byte boundary. This 508 ** macro is used only within assert() to verify that the code gets 509 ** all alignment restrictions correct. 510 ** 511 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 512 ** underlying malloc() implemention might return us 4-byte aligned 513 ** pointers. In that case, only verify 4-byte alignment. 514 */ 515 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 516 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 517 #else 518 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 519 #endif 520 521 522 /* 523 ** An instance of the following structure is used to store the busy-handler 524 ** callback for a given sqlite handle. 525 ** 526 ** The sqlite.busyHandler member of the sqlite struct contains the busy 527 ** callback for the database handle. Each pager opened via the sqlite 528 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 529 ** callback is currently invoked only from within pager.c. 530 */ 531 typedef struct BusyHandler BusyHandler; 532 struct BusyHandler { 533 int (*xFunc)(void *,int); /* The busy callback */ 534 void *pArg; /* First arg to busy callback */ 535 int nBusy; /* Incremented with each busy call */ 536 }; 537 538 /* 539 ** Name of the master database table. The master database table 540 ** is a special table that holds the names and attributes of all 541 ** user tables and indices. 542 */ 543 #define MASTER_NAME "sqlite_master" 544 #define TEMP_MASTER_NAME "sqlite_temp_master" 545 546 /* 547 ** The root-page of the master database table. 548 */ 549 #define MASTER_ROOT 1 550 551 /* 552 ** The name of the schema table. 553 */ 554 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 555 556 /* 557 ** A convenience macro that returns the number of elements in 558 ** an array. 559 */ 560 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 561 562 /* 563 ** The following value as a destructor means to use sqlite3DbFree(). 564 ** The sqlite3DbFree() routine requires two parameters instead of the 565 ** one parameter that destructors normally want. So we have to introduce 566 ** this magic value that the code knows to handle differently. Any 567 ** pointer will work here as long as it is distinct from SQLITE_STATIC 568 ** and SQLITE_TRANSIENT. 569 */ 570 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 571 572 /* 573 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 574 ** not support Writable Static Data (WSD) such as global and static variables. 575 ** All variables must either be on the stack or dynamically allocated from 576 ** the heap. When WSD is unsupported, the variable declarations scattered 577 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 578 ** macro is used for this purpose. And instead of referencing the variable 579 ** directly, we use its constant as a key to lookup the run-time allocated 580 ** buffer that holds real variable. The constant is also the initializer 581 ** for the run-time allocated buffer. 582 ** 583 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 584 ** macros become no-ops and have zero performance impact. 585 */ 586 #ifdef SQLITE_OMIT_WSD 587 #define SQLITE_WSD const 588 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 589 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 590 int sqlite3_wsd_init(int N, int J); 591 void *sqlite3_wsd_find(void *K, int L); 592 #else 593 #define SQLITE_WSD 594 #define GLOBAL(t,v) v 595 #define sqlite3GlobalConfig sqlite3Config 596 #endif 597 598 /* 599 ** The following macros are used to suppress compiler warnings and to 600 ** make it clear to human readers when a function parameter is deliberately 601 ** left unused within the body of a function. This usually happens when 602 ** a function is called via a function pointer. For example the 603 ** implementation of an SQL aggregate step callback may not use the 604 ** parameter indicating the number of arguments passed to the aggregate, 605 ** if it knows that this is enforced elsewhere. 606 ** 607 ** When a function parameter is not used at all within the body of a function, 608 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 609 ** However, these macros may also be used to suppress warnings related to 610 ** parameters that may or may not be used depending on compilation options. 611 ** For example those parameters only used in assert() statements. In these 612 ** cases the parameters are named as per the usual conventions. 613 */ 614 #define UNUSED_PARAMETER(x) (void)(x) 615 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 616 617 /* 618 ** Forward references to structures 619 */ 620 typedef struct AggInfo AggInfo; 621 typedef struct AuthContext AuthContext; 622 typedef struct AutoincInfo AutoincInfo; 623 typedef struct Bitvec Bitvec; 624 typedef struct CollSeq CollSeq; 625 typedef struct Column Column; 626 typedef struct Db Db; 627 typedef struct Schema Schema; 628 typedef struct Expr Expr; 629 typedef struct ExprList ExprList; 630 typedef struct ExprSpan ExprSpan; 631 typedef struct FKey FKey; 632 typedef struct FuncDestructor FuncDestructor; 633 typedef struct FuncDef FuncDef; 634 typedef struct FuncDefHash FuncDefHash; 635 typedef struct IdList IdList; 636 typedef struct Index Index; 637 typedef struct IndexSample IndexSample; 638 typedef struct KeyClass KeyClass; 639 typedef struct KeyInfo KeyInfo; 640 typedef struct Lookaside Lookaside; 641 typedef struct LookasideSlot LookasideSlot; 642 typedef struct Module Module; 643 typedef struct NameContext NameContext; 644 typedef struct Parse Parse; 645 typedef struct RowSet RowSet; 646 typedef struct Savepoint Savepoint; 647 typedef struct Select Select; 648 typedef struct SrcList SrcList; 649 typedef struct StrAccum StrAccum; 650 typedef struct Table Table; 651 typedef struct TableLock TableLock; 652 typedef struct Token Token; 653 typedef struct Trigger Trigger; 654 typedef struct TriggerPrg TriggerPrg; 655 typedef struct TriggerStep TriggerStep; 656 typedef struct UnpackedRecord UnpackedRecord; 657 typedef struct VTable VTable; 658 typedef struct VtabCtx VtabCtx; 659 typedef struct Walker Walker; 660 typedef struct WherePlan WherePlan; 661 typedef struct WhereInfo WhereInfo; 662 typedef struct WhereLevel WhereLevel; 663 664 /* 665 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 666 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 667 ** pointer types (i.e. FuncDef) defined above. 668 */ 669 #include "btree.h" 670 #include "vdbe.h" 671 #include "pager.h" 672 #include "pcache.h" 673 674 #include "os.h" 675 #include "mutex.h" 676 677 678 /* 679 ** Each database file to be accessed by the system is an instance 680 ** of the following structure. There are normally two of these structures 681 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 682 ** aDb[1] is the database file used to hold temporary tables. Additional 683 ** databases may be attached. 684 */ 685 struct Db { 686 char *zName; /* Name of this database */ 687 Btree *pBt; /* The B*Tree structure for this database file */ 688 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 689 u8 safety_level; /* How aggressive at syncing data to disk */ 690 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 691 }; 692 693 /* 694 ** An instance of the following structure stores a database schema. 695 ** 696 ** Most Schema objects are associated with a Btree. The exception is 697 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 698 ** In shared cache mode, a single Schema object can be shared by multiple 699 ** Btrees that refer to the same underlying BtShared object. 700 ** 701 ** Schema objects are automatically deallocated when the last Btree that 702 ** references them is destroyed. The TEMP Schema is manually freed by 703 ** sqlite3_close(). 704 * 705 ** A thread must be holding a mutex on the corresponding Btree in order 706 ** to access Schema content. This implies that the thread must also be 707 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 708 ** For a TEMP Schema, only the connection mutex is required. 709 */ 710 struct Schema { 711 int schema_cookie; /* Database schema version number for this file */ 712 int iGeneration; /* Generation counter. Incremented with each change */ 713 Hash tblHash; /* All tables indexed by name */ 714 Hash idxHash; /* All (named) indices indexed by name */ 715 Hash trigHash; /* All triggers indexed by name */ 716 Hash fkeyHash; /* All foreign keys by referenced table name */ 717 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 718 u8 file_format; /* Schema format version for this file */ 719 u8 enc; /* Text encoding used by this database */ 720 u16 flags; /* Flags associated with this schema */ 721 int cache_size; /* Number of pages to use in the cache */ 722 }; 723 724 /* 725 ** These macros can be used to test, set, or clear bits in the 726 ** Db.pSchema->flags field. 727 */ 728 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 729 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 730 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 731 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 732 733 /* 734 ** Allowed values for the DB.pSchema->flags field. 735 ** 736 ** The DB_SchemaLoaded flag is set after the database schema has been 737 ** read into internal hash tables. 738 ** 739 ** DB_UnresetViews means that one or more views have column names that 740 ** have been filled out. If the schema changes, these column names might 741 ** changes and so the view will need to be reset. 742 */ 743 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 744 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 745 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 746 747 /* 748 ** The number of different kinds of things that can be limited 749 ** using the sqlite3_limit() interface. 750 */ 751 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 752 753 /* 754 ** Lookaside malloc is a set of fixed-size buffers that can be used 755 ** to satisfy small transient memory allocation requests for objects 756 ** associated with a particular database connection. The use of 757 ** lookaside malloc provides a significant performance enhancement 758 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 759 ** SQL statements. 760 ** 761 ** The Lookaside structure holds configuration information about the 762 ** lookaside malloc subsystem. Each available memory allocation in 763 ** the lookaside subsystem is stored on a linked list of LookasideSlot 764 ** objects. 765 ** 766 ** Lookaside allocations are only allowed for objects that are associated 767 ** with a particular database connection. Hence, schema information cannot 768 ** be stored in lookaside because in shared cache mode the schema information 769 ** is shared by multiple database connections. Therefore, while parsing 770 ** schema information, the Lookaside.bEnabled flag is cleared so that 771 ** lookaside allocations are not used to construct the schema objects. 772 */ 773 struct Lookaside { 774 u16 sz; /* Size of each buffer in bytes */ 775 u8 bEnabled; /* False to disable new lookaside allocations */ 776 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 777 int nOut; /* Number of buffers currently checked out */ 778 int mxOut; /* Highwater mark for nOut */ 779 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 780 LookasideSlot *pFree; /* List of available buffers */ 781 void *pStart; /* First byte of available memory space */ 782 void *pEnd; /* First byte past end of available space */ 783 }; 784 struct LookasideSlot { 785 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 786 }; 787 788 /* 789 ** A hash table for function definitions. 790 ** 791 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 792 ** Collisions are on the FuncDef.pHash chain. 793 */ 794 struct FuncDefHash { 795 FuncDef *a[23]; /* Hash table for functions */ 796 }; 797 798 /* 799 ** Each database connection is an instance of the following structure. 800 ** 801 ** The sqlite.lastRowid records the last insert rowid generated by an 802 ** insert statement. Inserts on views do not affect its value. Each 803 ** trigger has its own context, so that lastRowid can be updated inside 804 ** triggers as usual. The previous value will be restored once the trigger 805 ** exits. Upon entering a before or instead of trigger, lastRowid is no 806 ** longer (since after version 2.8.12) reset to -1. 807 ** 808 ** The sqlite.nChange does not count changes within triggers and keeps no 809 ** context. It is reset at start of sqlite3_exec. 810 ** The sqlite.lsChange represents the number of changes made by the last 811 ** insert, update, or delete statement. It remains constant throughout the 812 ** length of a statement and is then updated by OP_SetCounts. It keeps a 813 ** context stack just like lastRowid so that the count of changes 814 ** within a trigger is not seen outside the trigger. Changes to views do not 815 ** affect the value of lsChange. 816 ** The sqlite.csChange keeps track of the number of current changes (since 817 ** the last statement) and is used to update sqlite_lsChange. 818 ** 819 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 820 ** store the most recent error code and, if applicable, string. The 821 ** internal function sqlite3Error() is used to set these variables 822 ** consistently. 823 */ 824 struct sqlite3 { 825 sqlite3_vfs *pVfs; /* OS Interface */ 826 int nDb; /* Number of backends currently in use */ 827 Db *aDb; /* All backends */ 828 int flags; /* Miscellaneous flags. See below */ 829 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 830 int errCode; /* Most recent error code (SQLITE_*) */ 831 int errMask; /* & result codes with this before returning */ 832 u8 autoCommit; /* The auto-commit flag. */ 833 u8 temp_store; /* 1: file 2: memory 0: default */ 834 u8 mallocFailed; /* True if we have seen a malloc failure */ 835 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 836 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 837 u8 suppressErr; /* Do not issue error messages if true */ 838 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 839 int nextPagesize; /* Pagesize after VACUUM if >0 */ 840 int nTable; /* Number of tables in the database */ 841 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 842 i64 lastRowid; /* ROWID of most recent insert (see above) */ 843 u32 magic; /* Magic number for detect library misuse */ 844 int nChange; /* Value returned by sqlite3_changes() */ 845 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 846 sqlite3_mutex *mutex; /* Connection mutex */ 847 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 848 struct sqlite3InitInfo { /* Information used during initialization */ 849 int iDb; /* When back is being initialized */ 850 int newTnum; /* Rootpage of table being initialized */ 851 u8 busy; /* TRUE if currently initializing */ 852 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 853 } init; 854 int nExtension; /* Number of loaded extensions */ 855 void **aExtension; /* Array of shared library handles */ 856 struct Vdbe *pVdbe; /* List of active virtual machines */ 857 int activeVdbeCnt; /* Number of VDBEs currently executing */ 858 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 859 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 860 void (*xTrace)(void*,const char*); /* Trace function */ 861 void *pTraceArg; /* Argument to the trace function */ 862 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 863 void *pProfileArg; /* Argument to profile function */ 864 void *pCommitArg; /* Argument to xCommitCallback() */ 865 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 866 void *pRollbackArg; /* Argument to xRollbackCallback() */ 867 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 868 void *pUpdateArg; 869 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 870 #ifndef SQLITE_OMIT_WAL 871 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 872 void *pWalArg; 873 #endif 874 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 875 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 876 void *pCollNeededArg; 877 sqlite3_value *pErr; /* Most recent error message */ 878 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 879 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 880 union { 881 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 882 double notUsed1; /* Spacer */ 883 } u1; 884 Lookaside lookaside; /* Lookaside malloc configuration */ 885 #ifndef SQLITE_OMIT_AUTHORIZATION 886 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 887 /* Access authorization function */ 888 void *pAuthArg; /* 1st argument to the access auth function */ 889 #endif 890 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 891 int (*xProgress)(void *); /* The progress callback */ 892 void *pProgressArg; /* Argument to the progress callback */ 893 int nProgressOps; /* Number of opcodes for progress callback */ 894 #endif 895 #ifndef SQLITE_OMIT_VIRTUALTABLE 896 Hash aModule; /* populated by sqlite3_create_module() */ 897 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 898 VTable **aVTrans; /* Virtual tables with open transactions */ 899 int nVTrans; /* Allocated size of aVTrans */ 900 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 901 #endif 902 FuncDefHash aFunc; /* Hash table of connection functions */ 903 Hash aCollSeq; /* All collating sequences */ 904 BusyHandler busyHandler; /* Busy callback */ 905 int busyTimeout; /* Busy handler timeout, in msec */ 906 Db aDbStatic[2]; /* Static space for the 2 default backends */ 907 Savepoint *pSavepoint; /* List of active savepoints */ 908 int nSavepoint; /* Number of non-transaction savepoints */ 909 int nStatement; /* Number of nested statement-transactions */ 910 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 911 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 912 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 913 914 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 915 /* The following variables are all protected by the STATIC_MASTER 916 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 917 ** 918 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 919 ** unlock so that it can proceed. 920 ** 921 ** When X.pBlockingConnection==Y, that means that something that X tried 922 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 923 ** held by Y. 924 */ 925 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 926 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 927 void *pUnlockArg; /* Argument to xUnlockNotify */ 928 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 929 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 930 #endif 931 }; 932 933 /* 934 ** A macro to discover the encoding of a database. 935 */ 936 #define ENC(db) ((db)->aDb[0].pSchema->enc) 937 938 /* 939 ** Possible values for the sqlite3.flags. 940 */ 941 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 942 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 943 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 944 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 945 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 946 /* DELETE, or UPDATE and return */ 947 /* the count using a callback. */ 948 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 949 /* result set is empty */ 950 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 951 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 952 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 953 /* 0x00020000 Unused */ 954 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 955 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 956 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 957 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 958 #define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */ 959 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 960 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 961 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 962 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 963 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 964 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 965 #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ 966 #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */ 967 968 /* 969 ** Bits of the sqlite3.flags field that are used by the 970 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 971 ** These must be the low-order bits of the flags field. 972 */ 973 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 974 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 975 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 976 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 977 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 978 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 979 #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ 980 #define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */ 981 #define SQLITE_DistinctOpt 0x80 /* DISTINCT using indexes */ 982 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 983 984 /* 985 ** Possible values for the sqlite.magic field. 986 ** The numbers are obtained at random and have no special meaning, other 987 ** than being distinct from one another. 988 */ 989 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 990 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 991 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 992 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 993 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 994 995 /* 996 ** Each SQL function is defined by an instance of the following 997 ** structure. A pointer to this structure is stored in the sqlite.aFunc 998 ** hash table. When multiple functions have the same name, the hash table 999 ** points to a linked list of these structures. 1000 */ 1001 struct FuncDef { 1002 i16 nArg; /* Number of arguments. -1 means unlimited */ 1003 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 1004 u8 flags; /* Some combination of SQLITE_FUNC_* */ 1005 void *pUserData; /* User data parameter */ 1006 FuncDef *pNext; /* Next function with same name */ 1007 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1008 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1009 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1010 char *zName; /* SQL name of the function. */ 1011 FuncDef *pHash; /* Next with a different name but the same hash */ 1012 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1013 }; 1014 1015 /* 1016 ** This structure encapsulates a user-function destructor callback (as 1017 ** configured using create_function_v2()) and a reference counter. When 1018 ** create_function_v2() is called to create a function with a destructor, 1019 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1020 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1021 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1022 ** member of each of the new FuncDef objects is set to point to the allocated 1023 ** FuncDestructor. 1024 ** 1025 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1026 ** count on this object is decremented. When it reaches 0, the destructor 1027 ** is invoked and the FuncDestructor structure freed. 1028 */ 1029 struct FuncDestructor { 1030 int nRef; 1031 void (*xDestroy)(void *); 1032 void *pUserData; 1033 }; 1034 1035 /* 1036 ** Possible values for FuncDef.flags 1037 */ 1038 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1039 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1040 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1041 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1042 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ 1043 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 1044 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ 1045 1046 /* 1047 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1048 ** used to create the initializers for the FuncDef structures. 1049 ** 1050 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1051 ** Used to create a scalar function definition of a function zName 1052 ** implemented by C function xFunc that accepts nArg arguments. The 1053 ** value passed as iArg is cast to a (void*) and made available 1054 ** as the user-data (sqlite3_user_data()) for the function. If 1055 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1056 ** 1057 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1058 ** Used to create an aggregate function definition implemented by 1059 ** the C functions xStep and xFinal. The first four parameters 1060 ** are interpreted in the same way as the first 4 parameters to 1061 ** FUNCTION(). 1062 ** 1063 ** LIKEFUNC(zName, nArg, pArg, flags) 1064 ** Used to create a scalar function definition of a function zName 1065 ** that accepts nArg arguments and is implemented by a call to C 1066 ** function likeFunc. Argument pArg is cast to a (void *) and made 1067 ** available as the function user-data (sqlite3_user_data()). The 1068 ** FuncDef.flags variable is set to the value passed as the flags 1069 ** parameter. 1070 */ 1071 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1072 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1073 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1074 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1075 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1076 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1077 #define LIKEFUNC(zName, nArg, arg, flags) \ 1078 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1079 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1080 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1081 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1082 1083 /* 1084 ** All current savepoints are stored in a linked list starting at 1085 ** sqlite3.pSavepoint. The first element in the list is the most recently 1086 ** opened savepoint. Savepoints are added to the list by the vdbe 1087 ** OP_Savepoint instruction. 1088 */ 1089 struct Savepoint { 1090 char *zName; /* Savepoint name (nul-terminated) */ 1091 i64 nDeferredCons; /* Number of deferred fk violations */ 1092 Savepoint *pNext; /* Parent savepoint (if any) */ 1093 }; 1094 1095 /* 1096 ** The following are used as the second parameter to sqlite3Savepoint(), 1097 ** and as the P1 argument to the OP_Savepoint instruction. 1098 */ 1099 #define SAVEPOINT_BEGIN 0 1100 #define SAVEPOINT_RELEASE 1 1101 #define SAVEPOINT_ROLLBACK 2 1102 1103 1104 /* 1105 ** Each SQLite module (virtual table definition) is defined by an 1106 ** instance of the following structure, stored in the sqlite3.aModule 1107 ** hash table. 1108 */ 1109 struct Module { 1110 const sqlite3_module *pModule; /* Callback pointers */ 1111 const char *zName; /* Name passed to create_module() */ 1112 void *pAux; /* pAux passed to create_module() */ 1113 void (*xDestroy)(void *); /* Module destructor function */ 1114 }; 1115 1116 /* 1117 ** information about each column of an SQL table is held in an instance 1118 ** of this structure. 1119 */ 1120 struct Column { 1121 char *zName; /* Name of this column */ 1122 Expr *pDflt; /* Default value of this column */ 1123 char *zDflt; /* Original text of the default value */ 1124 char *zType; /* Data type for this column */ 1125 char *zColl; /* Collating sequence. If NULL, use the default */ 1126 u8 notNull; /* True if there is a NOT NULL constraint */ 1127 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1128 char affinity; /* One of the SQLITE_AFF_... values */ 1129 #ifndef SQLITE_OMIT_VIRTUALTABLE 1130 u8 isHidden; /* True if this column is 'hidden' */ 1131 #endif 1132 }; 1133 1134 /* 1135 ** A "Collating Sequence" is defined by an instance of the following 1136 ** structure. Conceptually, a collating sequence consists of a name and 1137 ** a comparison routine that defines the order of that sequence. 1138 ** 1139 ** There may two separate implementations of the collation function, one 1140 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1141 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1142 ** native byte order. When a collation sequence is invoked, SQLite selects 1143 ** the version that will require the least expensive encoding 1144 ** translations, if any. 1145 ** 1146 ** The CollSeq.pUser member variable is an extra parameter that passed in 1147 ** as the first argument to the UTF-8 comparison function, xCmp. 1148 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1149 ** xCmp16. 1150 ** 1151 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1152 ** collating sequence is undefined. Indices built on an undefined 1153 ** collating sequence may not be read or written. 1154 */ 1155 struct CollSeq { 1156 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1157 u8 enc; /* Text encoding handled by xCmp() */ 1158 void *pUser; /* First argument to xCmp() */ 1159 int (*xCmp)(void*,int, const void*, int, const void*); 1160 void (*xDel)(void*); /* Destructor for pUser */ 1161 }; 1162 1163 /* 1164 ** A sort order can be either ASC or DESC. 1165 */ 1166 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1167 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1168 1169 /* 1170 ** Column affinity types. 1171 ** 1172 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1173 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1174 ** the speed a little by numbering the values consecutively. 1175 ** 1176 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1177 ** when multiple affinity types are concatenated into a string and 1178 ** used as the P4 operand, they will be more readable. 1179 ** 1180 ** Note also that the numeric types are grouped together so that testing 1181 ** for a numeric type is a single comparison. 1182 */ 1183 #define SQLITE_AFF_TEXT 'a' 1184 #define SQLITE_AFF_NONE 'b' 1185 #define SQLITE_AFF_NUMERIC 'c' 1186 #define SQLITE_AFF_INTEGER 'd' 1187 #define SQLITE_AFF_REAL 'e' 1188 1189 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1190 1191 /* 1192 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1193 ** affinity value. 1194 */ 1195 #define SQLITE_AFF_MASK 0x67 1196 1197 /* 1198 ** Additional bit values that can be ORed with an affinity without 1199 ** changing the affinity. 1200 */ 1201 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1202 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1203 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1204 1205 /* 1206 ** An object of this type is created for each virtual table present in 1207 ** the database schema. 1208 ** 1209 ** If the database schema is shared, then there is one instance of this 1210 ** structure for each database connection (sqlite3*) that uses the shared 1211 ** schema. This is because each database connection requires its own unique 1212 ** instance of the sqlite3_vtab* handle used to access the virtual table 1213 ** implementation. sqlite3_vtab* handles can not be shared between 1214 ** database connections, even when the rest of the in-memory database 1215 ** schema is shared, as the implementation often stores the database 1216 ** connection handle passed to it via the xConnect() or xCreate() method 1217 ** during initialization internally. This database connection handle may 1218 ** then be used by the virtual table implementation to access real tables 1219 ** within the database. So that they appear as part of the callers 1220 ** transaction, these accesses need to be made via the same database 1221 ** connection as that used to execute SQL operations on the virtual table. 1222 ** 1223 ** All VTable objects that correspond to a single table in a shared 1224 ** database schema are initially stored in a linked-list pointed to by 1225 ** the Table.pVTable member variable of the corresponding Table object. 1226 ** When an sqlite3_prepare() operation is required to access the virtual 1227 ** table, it searches the list for the VTable that corresponds to the 1228 ** database connection doing the preparing so as to use the correct 1229 ** sqlite3_vtab* handle in the compiled query. 1230 ** 1231 ** When an in-memory Table object is deleted (for example when the 1232 ** schema is being reloaded for some reason), the VTable objects are not 1233 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1234 ** immediately. Instead, they are moved from the Table.pVTable list to 1235 ** another linked list headed by the sqlite3.pDisconnect member of the 1236 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1237 ** next time a statement is prepared using said sqlite3*. This is done 1238 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1239 ** Refer to comments above function sqlite3VtabUnlockList() for an 1240 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1241 ** list without holding the corresponding sqlite3.mutex mutex. 1242 ** 1243 ** The memory for objects of this type is always allocated by 1244 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1245 ** the first argument. 1246 */ 1247 struct VTable { 1248 sqlite3 *db; /* Database connection associated with this table */ 1249 Module *pMod; /* Pointer to module implementation */ 1250 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1251 int nRef; /* Number of pointers to this structure */ 1252 u8 bConstraint; /* True if constraints are supported */ 1253 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1254 VTable *pNext; /* Next in linked list (see above) */ 1255 }; 1256 1257 /* 1258 ** Each SQL table is represented in memory by an instance of the 1259 ** following structure. 1260 ** 1261 ** Table.zName is the name of the table. The case of the original 1262 ** CREATE TABLE statement is stored, but case is not significant for 1263 ** comparisons. 1264 ** 1265 ** Table.nCol is the number of columns in this table. Table.aCol is a 1266 ** pointer to an array of Column structures, one for each column. 1267 ** 1268 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1269 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1270 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1271 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1272 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1273 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1274 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1275 ** 1276 ** Table.tnum is the page number for the root BTree page of the table in the 1277 ** database file. If Table.iDb is the index of the database table backend 1278 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1279 ** holds temporary tables and indices. If TF_Ephemeral is set 1280 ** then the table is stored in a file that is automatically deleted 1281 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1282 ** refers VDBE cursor number that holds the table open, not to the root 1283 ** page number. Transient tables are used to hold the results of a 1284 ** sub-query that appears instead of a real table name in the FROM clause 1285 ** of a SELECT statement. 1286 */ 1287 struct Table { 1288 char *zName; /* Name of the table or view */ 1289 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1290 int nCol; /* Number of columns in this table */ 1291 Column *aCol; /* Information about each column */ 1292 Index *pIndex; /* List of SQL indexes on this table. */ 1293 int tnum; /* Root BTree node for this table (see note above) */ 1294 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1295 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1296 u16 nRef; /* Number of pointers to this Table */ 1297 u8 tabFlags; /* Mask of TF_* values */ 1298 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1299 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1300 char *zColAff; /* String defining the affinity of each column */ 1301 #ifndef SQLITE_OMIT_CHECK 1302 Expr *pCheck; /* The AND of all CHECK constraints */ 1303 #endif 1304 #ifndef SQLITE_OMIT_ALTERTABLE 1305 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1306 #endif 1307 #ifndef SQLITE_OMIT_VIRTUALTABLE 1308 VTable *pVTable; /* List of VTable objects. */ 1309 int nModuleArg; /* Number of arguments to the module */ 1310 char **azModuleArg; /* Text of all module args. [0] is module name */ 1311 #endif 1312 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1313 Schema *pSchema; /* Schema that contains this table */ 1314 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1315 }; 1316 1317 /* 1318 ** Allowed values for Tabe.tabFlags. 1319 */ 1320 #define TF_Readonly 0x01 /* Read-only system table */ 1321 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1322 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1323 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1324 #define TF_Virtual 0x10 /* Is a virtual table */ 1325 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1326 1327 1328 1329 /* 1330 ** Test to see whether or not a table is a virtual table. This is 1331 ** done as a macro so that it will be optimized out when virtual 1332 ** table support is omitted from the build. 1333 */ 1334 #ifndef SQLITE_OMIT_VIRTUALTABLE 1335 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1336 # define IsHiddenColumn(X) ((X)->isHidden) 1337 #else 1338 # define IsVirtual(X) 0 1339 # define IsHiddenColumn(X) 0 1340 #endif 1341 1342 /* 1343 ** Each foreign key constraint is an instance of the following structure. 1344 ** 1345 ** A foreign key is associated with two tables. The "from" table is 1346 ** the table that contains the REFERENCES clause that creates the foreign 1347 ** key. The "to" table is the table that is named in the REFERENCES clause. 1348 ** Consider this example: 1349 ** 1350 ** CREATE TABLE ex1( 1351 ** a INTEGER PRIMARY KEY, 1352 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1353 ** ); 1354 ** 1355 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1356 ** 1357 ** Each REFERENCES clause generates an instance of the following structure 1358 ** which is attached to the from-table. The to-table need not exist when 1359 ** the from-table is created. The existence of the to-table is not checked. 1360 */ 1361 struct FKey { 1362 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1363 FKey *pNextFrom; /* Next foreign key in pFrom */ 1364 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1365 FKey *pNextTo; /* Next foreign key on table named zTo */ 1366 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1367 int nCol; /* Number of columns in this key */ 1368 /* EV: R-30323-21917 */ 1369 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1370 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1371 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1372 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1373 int iFrom; /* Index of column in pFrom */ 1374 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1375 } aCol[1]; /* One entry for each of nCol column s */ 1376 }; 1377 1378 /* 1379 ** SQLite supports many different ways to resolve a constraint 1380 ** error. ROLLBACK processing means that a constraint violation 1381 ** causes the operation in process to fail and for the current transaction 1382 ** to be rolled back. ABORT processing means the operation in process 1383 ** fails and any prior changes from that one operation are backed out, 1384 ** but the transaction is not rolled back. FAIL processing means that 1385 ** the operation in progress stops and returns an error code. But prior 1386 ** changes due to the same operation are not backed out and no rollback 1387 ** occurs. IGNORE means that the particular row that caused the constraint 1388 ** error is not inserted or updated. Processing continues and no error 1389 ** is returned. REPLACE means that preexisting database rows that caused 1390 ** a UNIQUE constraint violation are removed so that the new insert or 1391 ** update can proceed. Processing continues and no error is reported. 1392 ** 1393 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1394 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1395 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1396 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1397 ** referenced table row is propagated into the row that holds the 1398 ** foreign key. 1399 ** 1400 ** The following symbolic values are used to record which type 1401 ** of action to take. 1402 */ 1403 #define OE_None 0 /* There is no constraint to check */ 1404 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1405 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1406 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1407 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1408 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1409 1410 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1411 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1412 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1413 #define OE_Cascade 9 /* Cascade the changes */ 1414 1415 #define OE_Default 99 /* Do whatever the default action is */ 1416 1417 1418 /* 1419 ** An instance of the following structure is passed as the first 1420 ** argument to sqlite3VdbeKeyCompare and is used to control the 1421 ** comparison of the two index keys. 1422 */ 1423 struct KeyInfo { 1424 sqlite3 *db; /* The database connection */ 1425 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1426 u16 nField; /* Number of entries in aColl[] */ 1427 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1428 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1429 }; 1430 1431 /* 1432 ** An instance of the following structure holds information about a 1433 ** single index record that has already been parsed out into individual 1434 ** values. 1435 ** 1436 ** A record is an object that contains one or more fields of data. 1437 ** Records are used to store the content of a table row and to store 1438 ** the key of an index. A blob encoding of a record is created by 1439 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1440 ** OP_Column opcode. 1441 ** 1442 ** This structure holds a record that has already been disassembled 1443 ** into its constituent fields. 1444 */ 1445 struct UnpackedRecord { 1446 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1447 u16 nField; /* Number of entries in apMem[] */ 1448 u8 flags; /* Boolean settings. UNPACKED_... below */ 1449 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1450 Mem *aMem; /* Values */ 1451 }; 1452 1453 /* 1454 ** Allowed values of UnpackedRecord.flags 1455 */ 1456 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1457 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1458 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1459 1460 /* 1461 ** Each SQL index is represented in memory by an 1462 ** instance of the following structure. 1463 ** 1464 ** The columns of the table that are to be indexed are described 1465 ** by the aiColumn[] field of this structure. For example, suppose 1466 ** we have the following table and index: 1467 ** 1468 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1469 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1470 ** 1471 ** In the Table structure describing Ex1, nCol==3 because there are 1472 ** three columns in the table. In the Index structure describing 1473 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1474 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1475 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1476 ** The second column to be indexed (c1) has an index of 0 in 1477 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1478 ** 1479 ** The Index.onError field determines whether or not the indexed columns 1480 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1481 ** it means this is not a unique index. Otherwise it is a unique index 1482 ** and the value of Index.onError indicate the which conflict resolution 1483 ** algorithm to employ whenever an attempt is made to insert a non-unique 1484 ** element. 1485 */ 1486 struct Index { 1487 char *zName; /* Name of this index */ 1488 int nColumn; /* Number of columns in the table used by this index */ 1489 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1490 tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1491 Table *pTable; /* The SQL table being indexed */ 1492 int tnum; /* Page containing root of this index in database file */ 1493 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1494 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1495 u8 bUnordered; /* Use this index for == or IN queries only */ 1496 char *zColAff; /* String defining the affinity of each column */ 1497 Index *pNext; /* The next index associated with the same table */ 1498 Schema *pSchema; /* Schema containing this index */ 1499 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1500 char **azColl; /* Array of collation sequence names for index */ 1501 #ifdef SQLITE_ENABLE_STAT3 1502 int nSample; /* Number of elements in aSample[] */ 1503 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1504 IndexSample *aSample; /* Samples of the left-most key */ 1505 #endif 1506 }; 1507 1508 /* 1509 ** Each sample stored in the sqlite_stat3 table is represented in memory 1510 ** using a structure of this type. See documentation at the top of the 1511 ** analyze.c source file for additional information. 1512 */ 1513 struct IndexSample { 1514 union { 1515 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1516 double r; /* Value if eType is SQLITE_FLOAT */ 1517 i64 i; /* Value if eType is SQLITE_INTEGER */ 1518 } u; 1519 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1520 int nByte; /* Size in byte of text or blob. */ 1521 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1522 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1523 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1524 }; 1525 1526 /* 1527 ** Each token coming out of the lexer is an instance of 1528 ** this structure. Tokens are also used as part of an expression. 1529 ** 1530 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1531 ** may contain random values. Do not make any assumptions about Token.dyn 1532 ** and Token.n when Token.z==0. 1533 */ 1534 struct Token { 1535 const char *z; /* Text of the token. Not NULL-terminated! */ 1536 unsigned int n; /* Number of characters in this token */ 1537 }; 1538 1539 /* 1540 ** An instance of this structure contains information needed to generate 1541 ** code for a SELECT that contains aggregate functions. 1542 ** 1543 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1544 ** pointer to this structure. The Expr.iColumn field is the index in 1545 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1546 ** code for that node. 1547 ** 1548 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1549 ** original Select structure that describes the SELECT statement. These 1550 ** fields do not need to be freed when deallocating the AggInfo structure. 1551 */ 1552 struct AggInfo { 1553 u8 directMode; /* Direct rendering mode means take data directly 1554 ** from source tables rather than from accumulators */ 1555 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1556 ** than the source table */ 1557 int sortingIdx; /* Cursor number of the sorting index */ 1558 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1559 ExprList *pGroupBy; /* The group by clause */ 1560 int nSortingColumn; /* Number of columns in the sorting index */ 1561 struct AggInfo_col { /* For each column used in source tables */ 1562 Table *pTab; /* Source table */ 1563 int iTable; /* Cursor number of the source table */ 1564 int iColumn; /* Column number within the source table */ 1565 int iSorterColumn; /* Column number in the sorting index */ 1566 int iMem; /* Memory location that acts as accumulator */ 1567 Expr *pExpr; /* The original expression */ 1568 } *aCol; 1569 int nColumn; /* Number of used entries in aCol[] */ 1570 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1571 int nAccumulator; /* Number of columns that show through to the output. 1572 ** Additional columns are used only as parameters to 1573 ** aggregate functions */ 1574 struct AggInfo_func { /* For each aggregate function */ 1575 Expr *pExpr; /* Expression encoding the function */ 1576 FuncDef *pFunc; /* The aggregate function implementation */ 1577 int iMem; /* Memory location that acts as accumulator */ 1578 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1579 } *aFunc; 1580 int nFunc; /* Number of entries in aFunc[] */ 1581 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1582 }; 1583 1584 /* 1585 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1586 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1587 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1588 ** it uses less memory in the Expr object, which is a big memory user 1589 ** in systems with lots of prepared statements. And few applications 1590 ** need more than about 10 or 20 variables. But some extreme users want 1591 ** to have prepared statements with over 32767 variables, and for them 1592 ** the option is available (at compile-time). 1593 */ 1594 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1595 typedef i16 ynVar; 1596 #else 1597 typedef int ynVar; 1598 #endif 1599 1600 /* 1601 ** Each node of an expression in the parse tree is an instance 1602 ** of this structure. 1603 ** 1604 ** Expr.op is the opcode. The integer parser token codes are reused 1605 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1606 ** code representing the ">=" operator. This same integer code is reused 1607 ** to represent the greater-than-or-equal-to operator in the expression 1608 ** tree. 1609 ** 1610 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1611 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1612 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1613 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1614 ** then Expr.token contains the name of the function. 1615 ** 1616 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1617 ** binary operator. Either or both may be NULL. 1618 ** 1619 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1620 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1621 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1622 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1623 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1624 ** valid. 1625 ** 1626 ** An expression of the form ID or ID.ID refers to a column in a table. 1627 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1628 ** the integer cursor number of a VDBE cursor pointing to that table and 1629 ** Expr.iColumn is the column number for the specific column. If the 1630 ** expression is used as a result in an aggregate SELECT, then the 1631 ** value is also stored in the Expr.iAgg column in the aggregate so that 1632 ** it can be accessed after all aggregates are computed. 1633 ** 1634 ** If the expression is an unbound variable marker (a question mark 1635 ** character '?' in the original SQL) then the Expr.iTable holds the index 1636 ** number for that variable. 1637 ** 1638 ** If the expression is a subquery then Expr.iColumn holds an integer 1639 ** register number containing the result of the subquery. If the 1640 ** subquery gives a constant result, then iTable is -1. If the subquery 1641 ** gives a different answer at different times during statement processing 1642 ** then iTable is the address of a subroutine that computes the subquery. 1643 ** 1644 ** If the Expr is of type OP_Column, and the table it is selecting from 1645 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1646 ** corresponding table definition. 1647 ** 1648 ** ALLOCATION NOTES: 1649 ** 1650 ** Expr objects can use a lot of memory space in database schema. To 1651 ** help reduce memory requirements, sometimes an Expr object will be 1652 ** truncated. And to reduce the number of memory allocations, sometimes 1653 ** two or more Expr objects will be stored in a single memory allocation, 1654 ** together with Expr.zToken strings. 1655 ** 1656 ** If the EP_Reduced and EP_TokenOnly flags are set when 1657 ** an Expr object is truncated. When EP_Reduced is set, then all 1658 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1659 ** are contained within the same memory allocation. Note, however, that 1660 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1661 ** allocated, regardless of whether or not EP_Reduced is set. 1662 */ 1663 struct Expr { 1664 u8 op; /* Operation performed by this node */ 1665 char affinity; /* The affinity of the column or 0 if not a column */ 1666 u16 flags; /* Various flags. EP_* See below */ 1667 union { 1668 char *zToken; /* Token value. Zero terminated and dequoted */ 1669 int iValue; /* Non-negative integer value if EP_IntValue */ 1670 } u; 1671 1672 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1673 ** space is allocated for the fields below this point. An attempt to 1674 ** access them will result in a segfault or malfunction. 1675 *********************************************************************/ 1676 1677 Expr *pLeft; /* Left subnode */ 1678 Expr *pRight; /* Right subnode */ 1679 union { 1680 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1681 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1682 } x; 1683 CollSeq *pColl; /* The collation type of the column or 0 */ 1684 1685 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1686 ** space is allocated for the fields below this point. An attempt to 1687 ** access them will result in a segfault or malfunction. 1688 *********************************************************************/ 1689 1690 int iTable; /* TK_COLUMN: cursor number of table holding column 1691 ** TK_REGISTER: register number 1692 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1693 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1694 ** TK_VARIABLE: variable number (always >= 1). */ 1695 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1696 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1697 u8 flags2; /* Second set of flags. EP2_... */ 1698 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1699 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1700 Table *pTab; /* Table for TK_COLUMN expressions. */ 1701 #if SQLITE_MAX_EXPR_DEPTH>0 1702 int nHeight; /* Height of the tree headed by this node */ 1703 #endif 1704 }; 1705 1706 /* 1707 ** The following are the meanings of bits in the Expr.flags field. 1708 */ 1709 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1710 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1711 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1712 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1713 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1714 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1715 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1716 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1717 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1718 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1719 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1720 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1721 #define EP_Hint 0x1000 /* Optimizer hint. Not required for correctness */ 1722 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1723 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1724 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1725 1726 /* 1727 ** The following are the meanings of bits in the Expr.flags2 field. 1728 */ 1729 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1730 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1731 1732 /* 1733 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1734 ** flag on an expression structure. This flag is used for VV&A only. The 1735 ** routine is implemented as a macro that only works when in debugging mode, 1736 ** so as not to burden production code. 1737 */ 1738 #ifdef SQLITE_DEBUG 1739 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1740 #else 1741 # define ExprSetIrreducible(X) 1742 #endif 1743 1744 /* 1745 ** These macros can be used to test, set, or clear bits in the 1746 ** Expr.flags field. 1747 */ 1748 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1749 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1750 #define ExprSetProperty(E,P) (E)->flags|=(P) 1751 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1752 1753 /* 1754 ** Macros to determine the number of bytes required by a normal Expr 1755 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1756 ** and an Expr struct with the EP_TokenOnly flag set. 1757 */ 1758 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1759 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1760 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1761 1762 /* 1763 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1764 ** above sqlite3ExprDup() for details. 1765 */ 1766 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1767 1768 /* 1769 ** A list of expressions. Each expression may optionally have a 1770 ** name. An expr/name combination can be used in several ways, such 1771 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1772 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1773 ** also be used as the argument to a function, in which case the a.zName 1774 ** field is not used. 1775 */ 1776 struct ExprList { 1777 int nExpr; /* Number of expressions on the list */ 1778 int nAlloc; /* Number of entries allocated below */ 1779 int iECursor; /* VDBE Cursor associated with this ExprList */ 1780 struct ExprList_item { 1781 Expr *pExpr; /* The list of expressions */ 1782 char *zName; /* Token associated with this expression */ 1783 char *zSpan; /* Original text of the expression */ 1784 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1785 u8 done; /* A flag to indicate when processing is finished */ 1786 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1787 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1788 } *a; /* One entry for each expression */ 1789 }; 1790 1791 /* 1792 ** An instance of this structure is used by the parser to record both 1793 ** the parse tree for an expression and the span of input text for an 1794 ** expression. 1795 */ 1796 struct ExprSpan { 1797 Expr *pExpr; /* The expression parse tree */ 1798 const char *zStart; /* First character of input text */ 1799 const char *zEnd; /* One character past the end of input text */ 1800 }; 1801 1802 /* 1803 ** An instance of this structure can hold a simple list of identifiers, 1804 ** such as the list "a,b,c" in the following statements: 1805 ** 1806 ** INSERT INTO t(a,b,c) VALUES ...; 1807 ** CREATE INDEX idx ON t(a,b,c); 1808 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1809 ** 1810 ** The IdList.a.idx field is used when the IdList represents the list of 1811 ** column names after a table name in an INSERT statement. In the statement 1812 ** 1813 ** INSERT INTO t(a,b,c) ... 1814 ** 1815 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1816 */ 1817 struct IdList { 1818 struct IdList_item { 1819 char *zName; /* Name of the identifier */ 1820 int idx; /* Index in some Table.aCol[] of a column named zName */ 1821 } *a; 1822 int nId; /* Number of identifiers on the list */ 1823 int nAlloc; /* Number of entries allocated for a[] below */ 1824 }; 1825 1826 /* 1827 ** The bitmask datatype defined below is used for various optimizations. 1828 ** 1829 ** Changing this from a 64-bit to a 32-bit type limits the number of 1830 ** tables in a join to 32 instead of 64. But it also reduces the size 1831 ** of the library by 738 bytes on ix86. 1832 */ 1833 typedef u64 Bitmask; 1834 1835 /* 1836 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1837 */ 1838 #define BMS ((int)(sizeof(Bitmask)*8)) 1839 1840 /* 1841 ** The following structure describes the FROM clause of a SELECT statement. 1842 ** Each table or subquery in the FROM clause is a separate element of 1843 ** the SrcList.a[] array. 1844 ** 1845 ** With the addition of multiple database support, the following structure 1846 ** can also be used to describe a particular table such as the table that 1847 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1848 ** such a table must be a simple name: ID. But in SQLite, the table can 1849 ** now be identified by a database name, a dot, then the table name: ID.ID. 1850 ** 1851 ** The jointype starts out showing the join type between the current table 1852 ** and the next table on the list. The parser builds the list this way. 1853 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1854 ** jointype expresses the join between the table and the previous table. 1855 ** 1856 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1857 ** contains more than 63 columns and the 64-th or later column is used. 1858 */ 1859 struct SrcList { 1860 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1861 i16 nAlloc; /* Number of entries allocated in a[] below */ 1862 struct SrcList_item { 1863 char *zDatabase; /* Name of database holding this table */ 1864 char *zName; /* Name of the table */ 1865 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1866 Table *pTab; /* An SQL table corresponding to zName */ 1867 Select *pSelect; /* A SELECT statement used in place of a table name */ 1868 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1869 int regReturn; /* Register holding return address of addrFillSub */ 1870 u8 jointype; /* Type of join between this able and the previous */ 1871 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1872 u8 isCorrelated; /* True if sub-query is correlated */ 1873 #ifndef SQLITE_OMIT_EXPLAIN 1874 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1875 #endif 1876 int iCursor; /* The VDBE cursor number used to access this table */ 1877 Expr *pOn; /* The ON clause of a join */ 1878 IdList *pUsing; /* The USING clause of a join */ 1879 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1880 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1881 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1882 } a[1]; /* One entry for each identifier on the list */ 1883 }; 1884 1885 /* 1886 ** Permitted values of the SrcList.a.jointype field 1887 */ 1888 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1889 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1890 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1891 #define JT_LEFT 0x0008 /* Left outer join */ 1892 #define JT_RIGHT 0x0010 /* Right outer join */ 1893 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1894 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1895 1896 1897 /* 1898 ** A WherePlan object holds information that describes a lookup 1899 ** strategy. 1900 ** 1901 ** This object is intended to be opaque outside of the where.c module. 1902 ** It is included here only so that that compiler will know how big it 1903 ** is. None of the fields in this object should be used outside of 1904 ** the where.c module. 1905 ** 1906 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1907 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1908 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1909 ** case that more than one of these conditions is true. 1910 */ 1911 struct WherePlan { 1912 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1913 u32 nEq; /* Number of == constraints */ 1914 double nRow; /* Estimated number of rows (for EQP) */ 1915 union { 1916 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1917 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1918 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1919 } u; 1920 }; 1921 1922 /* 1923 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1924 ** structure contains a single instance of this structure. This structure 1925 ** is intended to be private the the where.c module and should not be 1926 ** access or modified by other modules. 1927 ** 1928 ** The pIdxInfo field is used to help pick the best index on a 1929 ** virtual table. The pIdxInfo pointer contains indexing 1930 ** information for the i-th table in the FROM clause before reordering. 1931 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1932 ** All other information in the i-th WhereLevel object for the i-th table 1933 ** after FROM clause ordering. 1934 */ 1935 struct WhereLevel { 1936 WherePlan plan; /* query plan for this element of the FROM clause */ 1937 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1938 int iTabCur; /* The VDBE cursor used to access the table */ 1939 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1940 int addrBrk; /* Jump here to break out of the loop */ 1941 int addrNxt; /* Jump here to start the next IN combination */ 1942 int addrCont; /* Jump here to continue with the next loop cycle */ 1943 int addrFirst; /* First instruction of interior of the loop */ 1944 u8 iFrom; /* Which entry in the FROM clause */ 1945 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1946 int p1, p2; /* Operands of the opcode used to ends the loop */ 1947 union { /* Information that depends on plan.wsFlags */ 1948 struct { 1949 int nIn; /* Number of entries in aInLoop[] */ 1950 struct InLoop { 1951 int iCur; /* The VDBE cursor used by this IN operator */ 1952 int addrInTop; /* Top of the IN loop */ 1953 } *aInLoop; /* Information about each nested IN operator */ 1954 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1955 } u; 1956 1957 /* The following field is really not part of the current level. But 1958 ** we need a place to cache virtual table index information for each 1959 ** virtual table in the FROM clause and the WhereLevel structure is 1960 ** a convenient place since there is one WhereLevel for each FROM clause 1961 ** element. 1962 */ 1963 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1964 }; 1965 1966 /* 1967 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1968 ** and the WhereInfo.wctrlFlags member. 1969 */ 1970 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1971 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1972 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1973 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1974 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1975 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 1976 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 1977 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 1978 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 1979 1980 /* 1981 ** The WHERE clause processing routine has two halves. The 1982 ** first part does the start of the WHERE loop and the second 1983 ** half does the tail of the WHERE loop. An instance of 1984 ** this structure is returned by the first half and passed 1985 ** into the second half to give some continuity. 1986 */ 1987 struct WhereInfo { 1988 Parse *pParse; /* Parsing and code generating context */ 1989 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1990 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1991 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1992 u8 eDistinct; 1993 SrcList *pTabList; /* List of tables in the join */ 1994 int iTop; /* The very beginning of the WHERE loop */ 1995 int iContinue; /* Jump here to continue with next record */ 1996 int iBreak; /* Jump here to break out of the loop */ 1997 int nLevel; /* Number of nested loop */ 1998 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1999 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 2000 double nRowOut; /* Estimated number of output rows */ 2001 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 2002 }; 2003 2004 #define WHERE_DISTINCT_UNIQUE 1 2005 #define WHERE_DISTINCT_ORDERED 2 2006 2007 /* 2008 ** A NameContext defines a context in which to resolve table and column 2009 ** names. The context consists of a list of tables (the pSrcList) field and 2010 ** a list of named expression (pEList). The named expression list may 2011 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2012 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2013 ** pEList corresponds to the result set of a SELECT and is NULL for 2014 ** other statements. 2015 ** 2016 ** NameContexts can be nested. When resolving names, the inner-most 2017 ** context is searched first. If no match is found, the next outer 2018 ** context is checked. If there is still no match, the next context 2019 ** is checked. This process continues until either a match is found 2020 ** or all contexts are check. When a match is found, the nRef member of 2021 ** the context containing the match is incremented. 2022 ** 2023 ** Each subquery gets a new NameContext. The pNext field points to the 2024 ** NameContext in the parent query. Thus the process of scanning the 2025 ** NameContext list corresponds to searching through successively outer 2026 ** subqueries looking for a match. 2027 */ 2028 struct NameContext { 2029 Parse *pParse; /* The parser */ 2030 SrcList *pSrcList; /* One or more tables used to resolve names */ 2031 ExprList *pEList; /* Optional list of named expressions */ 2032 int nRef; /* Number of names resolved by this context */ 2033 int nErr; /* Number of errors encountered while resolving names */ 2034 u8 allowAgg; /* Aggregate functions allowed here */ 2035 u8 hasAgg; /* True if aggregates are seen */ 2036 u8 isCheck; /* True if resolving names in a CHECK constraint */ 2037 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 2038 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2039 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2040 }; 2041 2042 /* 2043 ** An instance of the following structure contains all information 2044 ** needed to generate code for a single SELECT statement. 2045 ** 2046 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2047 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2048 ** limit and nOffset to the value of the offset (or 0 if there is not 2049 ** offset). But later on, nLimit and nOffset become the memory locations 2050 ** in the VDBE that record the limit and offset counters. 2051 ** 2052 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2053 ** These addresses must be stored so that we can go back and fill in 2054 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2055 ** the number of columns in P2 can be computed at the same time 2056 ** as the OP_OpenEphm instruction is coded because not 2057 ** enough information about the compound query is known at that point. 2058 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2059 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 2060 ** sequences for the ORDER BY clause. 2061 */ 2062 struct Select { 2063 ExprList *pEList; /* The fields of the result */ 2064 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2065 char affinity; /* MakeRecord with this affinity for SRT_Set */ 2066 u16 selFlags; /* Various SF_* values */ 2067 SrcList *pSrc; /* The FROM clause */ 2068 Expr *pWhere; /* The WHERE clause */ 2069 ExprList *pGroupBy; /* The GROUP BY clause */ 2070 Expr *pHaving; /* The HAVING clause */ 2071 ExprList *pOrderBy; /* The ORDER BY clause */ 2072 Select *pPrior; /* Prior select in a compound select statement */ 2073 Select *pNext; /* Next select to the left in a compound */ 2074 Select *pRightmost; /* Right-most select in a compound select statement */ 2075 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2076 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2077 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2078 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2079 double nSelectRow; /* Estimated number of result rows */ 2080 }; 2081 2082 /* 2083 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2084 ** "Select Flag". 2085 */ 2086 #define SF_Distinct 0x01 /* Output should be DISTINCT */ 2087 #define SF_Resolved 0x02 /* Identifiers have been resolved */ 2088 #define SF_Aggregate 0x04 /* Contains aggregate functions */ 2089 #define SF_UsesEphemeral 0x08 /* Uses the OpenEphemeral opcode */ 2090 #define SF_Expanded 0x10 /* sqlite3SelectExpand() called on this */ 2091 #define SF_HasTypeInfo 0x20 /* FROM subqueries have Table metadata */ 2092 #define SF_UseSorter 0x40 /* Sort using a sorter */ 2093 2094 2095 /* 2096 ** The results of a select can be distributed in several ways. The 2097 ** "SRT" prefix means "SELECT Result Type". 2098 */ 2099 #define SRT_Union 1 /* Store result as keys in an index */ 2100 #define SRT_Except 2 /* Remove result from a UNION index */ 2101 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2102 #define SRT_Discard 4 /* Do not save the results anywhere */ 2103 2104 /* The ORDER BY clause is ignored for all of the above */ 2105 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2106 2107 #define SRT_Output 5 /* Output each row of result */ 2108 #define SRT_Mem 6 /* Store result in a memory cell */ 2109 #define SRT_Set 7 /* Store results as keys in an index */ 2110 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2111 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2112 #define SRT_Coroutine 10 /* Generate a single row of result */ 2113 2114 /* 2115 ** A structure used to customize the behavior of sqlite3Select(). See 2116 ** comments above sqlite3Select() for details. 2117 */ 2118 typedef struct SelectDest SelectDest; 2119 struct SelectDest { 2120 u8 eDest; /* How to dispose of the results */ 2121 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2122 int iParm; /* A parameter used by the eDest disposal method */ 2123 int iMem; /* Base register where results are written */ 2124 int nMem; /* Number of registers allocated */ 2125 }; 2126 2127 /* 2128 ** During code generation of statements that do inserts into AUTOINCREMENT 2129 ** tables, the following information is attached to the Table.u.autoInc.p 2130 ** pointer of each autoincrement table to record some side information that 2131 ** the code generator needs. We have to keep per-table autoincrement 2132 ** information in case inserts are down within triggers. Triggers do not 2133 ** normally coordinate their activities, but we do need to coordinate the 2134 ** loading and saving of autoincrement information. 2135 */ 2136 struct AutoincInfo { 2137 AutoincInfo *pNext; /* Next info block in a list of them all */ 2138 Table *pTab; /* Table this info block refers to */ 2139 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2140 int regCtr; /* Memory register holding the rowid counter */ 2141 }; 2142 2143 /* 2144 ** Size of the column cache 2145 */ 2146 #ifndef SQLITE_N_COLCACHE 2147 # define SQLITE_N_COLCACHE 10 2148 #endif 2149 2150 /* 2151 ** At least one instance of the following structure is created for each 2152 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2153 ** statement. All such objects are stored in the linked list headed at 2154 ** Parse.pTriggerPrg and deleted once statement compilation has been 2155 ** completed. 2156 ** 2157 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2158 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2159 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2160 ** The Parse.pTriggerPrg list never contains two entries with the same 2161 ** values for both pTrigger and orconf. 2162 ** 2163 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2164 ** accessed (or set to 0 for triggers fired as a result of INSERT 2165 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2166 ** a mask of new.* columns used by the program. 2167 */ 2168 struct TriggerPrg { 2169 Trigger *pTrigger; /* Trigger this program was coded from */ 2170 int orconf; /* Default ON CONFLICT policy */ 2171 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2172 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2173 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2174 }; 2175 2176 /* 2177 ** The yDbMask datatype for the bitmask of all attached databases. 2178 */ 2179 #if SQLITE_MAX_ATTACHED>30 2180 typedef sqlite3_uint64 yDbMask; 2181 #else 2182 typedef unsigned int yDbMask; 2183 #endif 2184 2185 /* 2186 ** An SQL parser context. A copy of this structure is passed through 2187 ** the parser and down into all the parser action routine in order to 2188 ** carry around information that is global to the entire parse. 2189 ** 2190 ** The structure is divided into two parts. When the parser and code 2191 ** generate call themselves recursively, the first part of the structure 2192 ** is constant but the second part is reset at the beginning and end of 2193 ** each recursion. 2194 ** 2195 ** The nTableLock and aTableLock variables are only used if the shared-cache 2196 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2197 ** used to store the set of table-locks required by the statement being 2198 ** compiled. Function sqlite3TableLock() is used to add entries to the 2199 ** list. 2200 */ 2201 struct Parse { 2202 sqlite3 *db; /* The main database structure */ 2203 int rc; /* Return code from execution */ 2204 char *zErrMsg; /* An error message */ 2205 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2206 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2207 u8 checkSchema; /* Causes schema cookie check after an error */ 2208 u8 nested; /* Number of nested calls to the parser/code generator */ 2209 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2210 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2211 int aTempReg[8]; /* Holding area for temporary registers */ 2212 int nRangeReg; /* Size of the temporary register block */ 2213 int iRangeReg; /* First register in temporary register block */ 2214 int nErr; /* Number of errors seen */ 2215 int nTab; /* Number of previously allocated VDBE cursors */ 2216 int nMem; /* Number of memory cells used so far */ 2217 int nSet; /* Number of sets used so far */ 2218 int nOnce; /* Number of OP_Once instructions so far */ 2219 int ckBase; /* Base register of data during check constraints */ 2220 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2221 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2222 u8 nColCache; /* Number of entries in aColCache[] */ 2223 u8 iColCache; /* Next entry in aColCache[] to replace */ 2224 struct yColCache { 2225 int iTable; /* Table cursor number */ 2226 int iColumn; /* Table column number */ 2227 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2228 int iLevel; /* Nesting level */ 2229 int iReg; /* Reg with value of this column. 0 means none. */ 2230 int lru; /* Least recently used entry has the smallest value */ 2231 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2232 yDbMask writeMask; /* Start a write transaction on these databases */ 2233 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2234 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ 2235 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2236 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2237 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2238 #ifndef SQLITE_OMIT_SHARED_CACHE 2239 int nTableLock; /* Number of locks in aTableLock */ 2240 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2241 #endif 2242 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2243 int regRoot; /* Register holding root page number for new objects */ 2244 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2245 int nMaxArg; /* Max args passed to user function by sub-program */ 2246 2247 /* Information used while coding trigger programs. */ 2248 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2249 Table *pTriggerTab; /* Table triggers are being coded for */ 2250 u32 oldmask; /* Mask of old.* columns referenced */ 2251 u32 newmask; /* Mask of new.* columns referenced */ 2252 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2253 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2254 u8 disableTriggers; /* True to disable triggers */ 2255 double nQueryLoop; /* Estimated number of iterations of a query */ 2256 2257 /* Above is constant between recursions. Below is reset before and after 2258 ** each recursion */ 2259 2260 int nVar; /* Number of '?' variables seen in the SQL so far */ 2261 int nzVar; /* Number of available slots in azVar[] */ 2262 char **azVar; /* Pointers to names of parameters */ 2263 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2264 int nAlias; /* Number of aliased result set columns */ 2265 int *aAlias; /* Register used to hold aliased result */ 2266 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2267 Token sNameToken; /* Token with unqualified schema object name */ 2268 Token sLastToken; /* The last token parsed */ 2269 const char *zTail; /* All SQL text past the last semicolon parsed */ 2270 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2271 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2272 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2273 #ifndef SQLITE_OMIT_VIRTUALTABLE 2274 Token sArg; /* Complete text of a module argument */ 2275 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2276 int nVtabLock; /* Number of virtual tables to lock */ 2277 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2278 #endif 2279 int nHeight; /* Expression tree height of current sub-select */ 2280 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2281 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2282 2283 #ifndef SQLITE_OMIT_EXPLAIN 2284 int iSelectId; 2285 int iNextSelectId; 2286 #endif 2287 }; 2288 2289 #ifdef SQLITE_OMIT_VIRTUALTABLE 2290 #define IN_DECLARE_VTAB 0 2291 #else 2292 #define IN_DECLARE_VTAB (pParse->declareVtab) 2293 #endif 2294 2295 /* 2296 ** An instance of the following structure can be declared on a stack and used 2297 ** to save the Parse.zAuthContext value so that it can be restored later. 2298 */ 2299 struct AuthContext { 2300 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2301 Parse *pParse; /* The Parse structure */ 2302 }; 2303 2304 /* 2305 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2306 */ 2307 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2308 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2309 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2310 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2311 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2312 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2313 2314 /* 2315 * Each trigger present in the database schema is stored as an instance of 2316 * struct Trigger. 2317 * 2318 * Pointers to instances of struct Trigger are stored in two ways. 2319 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2320 * database). This allows Trigger structures to be retrieved by name. 2321 * 2. All triggers associated with a single table form a linked list, using the 2322 * pNext member of struct Trigger. A pointer to the first element of the 2323 * linked list is stored as the "pTrigger" member of the associated 2324 * struct Table. 2325 * 2326 * The "step_list" member points to the first element of a linked list 2327 * containing the SQL statements specified as the trigger program. 2328 */ 2329 struct Trigger { 2330 char *zName; /* The name of the trigger */ 2331 char *table; /* The table or view to which the trigger applies */ 2332 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2333 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2334 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2335 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2336 the <column-list> is stored here */ 2337 Schema *pSchema; /* Schema containing the trigger */ 2338 Schema *pTabSchema; /* Schema containing the table */ 2339 TriggerStep *step_list; /* Link list of trigger program steps */ 2340 Trigger *pNext; /* Next trigger associated with the table */ 2341 }; 2342 2343 /* 2344 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2345 ** determine which. 2346 ** 2347 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2348 ** In that cases, the constants below can be ORed together. 2349 */ 2350 #define TRIGGER_BEFORE 1 2351 #define TRIGGER_AFTER 2 2352 2353 /* 2354 * An instance of struct TriggerStep is used to store a single SQL statement 2355 * that is a part of a trigger-program. 2356 * 2357 * Instances of struct TriggerStep are stored in a singly linked list (linked 2358 * using the "pNext" member) referenced by the "step_list" member of the 2359 * associated struct Trigger instance. The first element of the linked list is 2360 * the first step of the trigger-program. 2361 * 2362 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2363 * "SELECT" statement. The meanings of the other members is determined by the 2364 * value of "op" as follows: 2365 * 2366 * (op == TK_INSERT) 2367 * orconf -> stores the ON CONFLICT algorithm 2368 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2369 * this stores a pointer to the SELECT statement. Otherwise NULL. 2370 * target -> A token holding the quoted name of the table to insert into. 2371 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2372 * this stores values to be inserted. Otherwise NULL. 2373 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2374 * statement, then this stores the column-names to be 2375 * inserted into. 2376 * 2377 * (op == TK_DELETE) 2378 * target -> A token holding the quoted name of the table to delete from. 2379 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2380 * Otherwise NULL. 2381 * 2382 * (op == TK_UPDATE) 2383 * target -> A token holding the quoted name of the table to update rows of. 2384 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2385 * Otherwise NULL. 2386 * pExprList -> A list of the columns to update and the expressions to update 2387 * them to. See sqlite3Update() documentation of "pChanges" 2388 * argument. 2389 * 2390 */ 2391 struct TriggerStep { 2392 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2393 u8 orconf; /* OE_Rollback etc. */ 2394 Trigger *pTrig; /* The trigger that this step is a part of */ 2395 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2396 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2397 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2398 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2399 IdList *pIdList; /* Column names for INSERT */ 2400 TriggerStep *pNext; /* Next in the link-list */ 2401 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2402 }; 2403 2404 /* 2405 ** The following structure contains information used by the sqliteFix... 2406 ** routines as they walk the parse tree to make database references 2407 ** explicit. 2408 */ 2409 typedef struct DbFixer DbFixer; 2410 struct DbFixer { 2411 Parse *pParse; /* The parsing context. Error messages written here */ 2412 const char *zDb; /* Make sure all objects are contained in this database */ 2413 const char *zType; /* Type of the container - used for error messages */ 2414 const Token *pName; /* Name of the container - used for error messages */ 2415 }; 2416 2417 /* 2418 ** An objected used to accumulate the text of a string where we 2419 ** do not necessarily know how big the string will be in the end. 2420 */ 2421 struct StrAccum { 2422 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2423 char *zBase; /* A base allocation. Not from malloc. */ 2424 char *zText; /* The string collected so far */ 2425 int nChar; /* Length of the string so far */ 2426 int nAlloc; /* Amount of space allocated in zText */ 2427 int mxAlloc; /* Maximum allowed string length */ 2428 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2429 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2430 u8 tooBig; /* Becomes true if string size exceeds limits */ 2431 }; 2432 2433 /* 2434 ** A pointer to this structure is used to communicate information 2435 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2436 */ 2437 typedef struct { 2438 sqlite3 *db; /* The database being initialized */ 2439 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2440 char **pzErrMsg; /* Error message stored here */ 2441 int rc; /* Result code stored here */ 2442 } InitData; 2443 2444 /* 2445 ** Structure containing global configuration data for the SQLite library. 2446 ** 2447 ** This structure also contains some state information. 2448 */ 2449 struct Sqlite3Config { 2450 int bMemstat; /* True to enable memory status */ 2451 int bCoreMutex; /* True to enable core mutexing */ 2452 int bFullMutex; /* True to enable full mutexing */ 2453 int bOpenUri; /* True to interpret filenames as URIs */ 2454 int mxStrlen; /* Maximum string length */ 2455 int szLookaside; /* Default lookaside buffer size */ 2456 int nLookaside; /* Default lookaside buffer count */ 2457 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2458 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2459 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2460 void *pHeap; /* Heap storage space */ 2461 int nHeap; /* Size of pHeap[] */ 2462 int mnReq, mxReq; /* Min and max heap requests sizes */ 2463 void *pScratch; /* Scratch memory */ 2464 int szScratch; /* Size of each scratch buffer */ 2465 int nScratch; /* Number of scratch buffers */ 2466 void *pPage; /* Page cache memory */ 2467 int szPage; /* Size of each page in pPage[] */ 2468 int nPage; /* Number of pages in pPage[] */ 2469 int mxParserStack; /* maximum depth of the parser stack */ 2470 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2471 /* The above might be initialized to non-zero. The following need to always 2472 ** initially be zero, however. */ 2473 int isInit; /* True after initialization has finished */ 2474 int inProgress; /* True while initialization in progress */ 2475 int isMutexInit; /* True after mutexes are initialized */ 2476 int isMallocInit; /* True after malloc is initialized */ 2477 int isPCacheInit; /* True after malloc is initialized */ 2478 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2479 int nRefInitMutex; /* Number of users of pInitMutex */ 2480 void (*xLog)(void*,int,const char*); /* Function for logging */ 2481 void *pLogArg; /* First argument to xLog() */ 2482 int bLocaltimeFault; /* True to fail localtime() calls */ 2483 }; 2484 2485 /* 2486 ** Context pointer passed down through the tree-walk. 2487 */ 2488 struct Walker { 2489 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2490 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2491 Parse *pParse; /* Parser context. */ 2492 union { /* Extra data for callback */ 2493 NameContext *pNC; /* Naming context */ 2494 int i; /* Integer value */ 2495 } u; 2496 }; 2497 2498 /* Forward declarations */ 2499 int sqlite3WalkExpr(Walker*, Expr*); 2500 int sqlite3WalkExprList(Walker*, ExprList*); 2501 int sqlite3WalkSelect(Walker*, Select*); 2502 int sqlite3WalkSelectExpr(Walker*, Select*); 2503 int sqlite3WalkSelectFrom(Walker*, Select*); 2504 2505 /* 2506 ** Return code from the parse-tree walking primitives and their 2507 ** callbacks. 2508 */ 2509 #define WRC_Continue 0 /* Continue down into children */ 2510 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2511 #define WRC_Abort 2 /* Abandon the tree walk */ 2512 2513 /* 2514 ** Assuming zIn points to the first byte of a UTF-8 character, 2515 ** advance zIn to point to the first byte of the next UTF-8 character. 2516 */ 2517 #define SQLITE_SKIP_UTF8(zIn) { \ 2518 if( (*(zIn++))>=0xc0 ){ \ 2519 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2520 } \ 2521 } 2522 2523 /* 2524 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2525 ** the same name but without the _BKPT suffix. These macros invoke 2526 ** routines that report the line-number on which the error originated 2527 ** using sqlite3_log(). The routines also provide a convenient place 2528 ** to set a debugger breakpoint. 2529 */ 2530 int sqlite3CorruptError(int); 2531 int sqlite3MisuseError(int); 2532 int sqlite3CantopenError(int); 2533 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2534 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2535 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2536 2537 2538 /* 2539 ** FTS4 is really an extension for FTS3. It is enabled using the 2540 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2541 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2542 */ 2543 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2544 # define SQLITE_ENABLE_FTS3 2545 #endif 2546 2547 /* 2548 ** The ctype.h header is needed for non-ASCII systems. It is also 2549 ** needed by FTS3 when FTS3 is included in the amalgamation. 2550 */ 2551 #if !defined(SQLITE_ASCII) || \ 2552 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2553 # include <ctype.h> 2554 #endif 2555 2556 /* 2557 ** The following macros mimic the standard library functions toupper(), 2558 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2559 ** sqlite versions only work for ASCII characters, regardless of locale. 2560 */ 2561 #ifdef SQLITE_ASCII 2562 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2563 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2564 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2565 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2566 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2567 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2568 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2569 #else 2570 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2571 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2572 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2573 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2574 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2575 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2576 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2577 #endif 2578 2579 /* 2580 ** Internal function prototypes 2581 */ 2582 int sqlite3StrICmp(const char *, const char *); 2583 int sqlite3Strlen30(const char*); 2584 #define sqlite3StrNICmp sqlite3_strnicmp 2585 2586 int sqlite3MallocInit(void); 2587 void sqlite3MallocEnd(void); 2588 void *sqlite3Malloc(int); 2589 void *sqlite3MallocZero(int); 2590 void *sqlite3DbMallocZero(sqlite3*, int); 2591 void *sqlite3DbMallocRaw(sqlite3*, int); 2592 char *sqlite3DbStrDup(sqlite3*,const char*); 2593 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2594 void *sqlite3Realloc(void*, int); 2595 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2596 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2597 void sqlite3DbFree(sqlite3*, void*); 2598 int sqlite3MallocSize(void*); 2599 int sqlite3DbMallocSize(sqlite3*, void*); 2600 void *sqlite3ScratchMalloc(int); 2601 void sqlite3ScratchFree(void*); 2602 void *sqlite3PageMalloc(int); 2603 void sqlite3PageFree(void*); 2604 void sqlite3MemSetDefault(void); 2605 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2606 int sqlite3HeapNearlyFull(void); 2607 2608 /* 2609 ** On systems with ample stack space and that support alloca(), make 2610 ** use of alloca() to obtain space for large automatic objects. By default, 2611 ** obtain space from malloc(). 2612 ** 2613 ** The alloca() routine never returns NULL. This will cause code paths 2614 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2615 */ 2616 #ifdef SQLITE_USE_ALLOCA 2617 # define sqlite3StackAllocRaw(D,N) alloca(N) 2618 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2619 # define sqlite3StackFree(D,P) 2620 #else 2621 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2622 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2623 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2624 #endif 2625 2626 #ifdef SQLITE_ENABLE_MEMSYS3 2627 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2628 #endif 2629 #ifdef SQLITE_ENABLE_MEMSYS5 2630 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2631 #endif 2632 2633 2634 #ifndef SQLITE_MUTEX_OMIT 2635 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2636 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2637 sqlite3_mutex *sqlite3MutexAlloc(int); 2638 int sqlite3MutexInit(void); 2639 int sqlite3MutexEnd(void); 2640 #endif 2641 2642 int sqlite3StatusValue(int); 2643 void sqlite3StatusAdd(int, int); 2644 void sqlite3StatusSet(int, int); 2645 2646 #ifndef SQLITE_OMIT_FLOATING_POINT 2647 int sqlite3IsNaN(double); 2648 #else 2649 # define sqlite3IsNaN(X) 0 2650 #endif 2651 2652 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2653 #ifndef SQLITE_OMIT_TRACE 2654 void sqlite3XPrintf(StrAccum*, const char*, ...); 2655 #endif 2656 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2657 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2658 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2659 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2660 void sqlite3DebugPrintf(const char*, ...); 2661 #endif 2662 #if defined(SQLITE_TEST) 2663 void *sqlite3TestTextToPtr(const char*); 2664 #endif 2665 2666 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2667 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2668 void sqlite3ExplainBegin(Vdbe*); 2669 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2670 void sqlite3ExplainNL(Vdbe*); 2671 void sqlite3ExplainPush(Vdbe*); 2672 void sqlite3ExplainPop(Vdbe*); 2673 void sqlite3ExplainFinish(Vdbe*); 2674 void sqlite3ExplainSelect(Vdbe*, Select*); 2675 void sqlite3ExplainExpr(Vdbe*, Expr*); 2676 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2677 const char *sqlite3VdbeExplanation(Vdbe*); 2678 #else 2679 # define sqlite3ExplainBegin(X) 2680 # define sqlite3ExplainSelect(A,B) 2681 # define sqlite3ExplainExpr(A,B) 2682 # define sqlite3ExplainExprList(A,B) 2683 # define sqlite3ExplainFinish(X) 2684 # define sqlite3VdbeExplanation(X) 0 2685 #endif 2686 2687 2688 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2689 void sqlite3ErrorMsg(Parse*, const char*, ...); 2690 int sqlite3Dequote(char*); 2691 int sqlite3KeywordCode(const unsigned char*, int); 2692 int sqlite3RunParser(Parse*, const char*, char **); 2693 void sqlite3FinishCoding(Parse*); 2694 int sqlite3GetTempReg(Parse*); 2695 void sqlite3ReleaseTempReg(Parse*,int); 2696 int sqlite3GetTempRange(Parse*,int); 2697 void sqlite3ReleaseTempRange(Parse*,int,int); 2698 void sqlite3ClearTempRegCache(Parse*); 2699 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2700 Expr *sqlite3Expr(sqlite3*,int,const char*); 2701 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2702 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2703 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2704 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2705 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2706 void sqlite3ExprDelete(sqlite3*, Expr*); 2707 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2708 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2709 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2710 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2711 int sqlite3Init(sqlite3*, char**); 2712 int sqlite3InitCallback(void*, int, char**, char**); 2713 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2714 void sqlite3ResetInternalSchema(sqlite3*, int); 2715 void sqlite3BeginParse(Parse*,int); 2716 void sqlite3CommitInternalChanges(sqlite3*); 2717 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2718 void sqlite3OpenMasterTable(Parse *, int); 2719 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2720 void sqlite3AddColumn(Parse*,Token*); 2721 void sqlite3AddNotNull(Parse*, int); 2722 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2723 void sqlite3AddCheckConstraint(Parse*, Expr*); 2724 void sqlite3AddColumnType(Parse*,Token*); 2725 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2726 void sqlite3AddCollateType(Parse*, Token*); 2727 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2728 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2729 sqlite3_vfs**,char**,char **); 2730 int sqlite3CodeOnce(Parse *); 2731 2732 Bitvec *sqlite3BitvecCreate(u32); 2733 int sqlite3BitvecTest(Bitvec*, u32); 2734 int sqlite3BitvecSet(Bitvec*, u32); 2735 void sqlite3BitvecClear(Bitvec*, u32, void*); 2736 void sqlite3BitvecDestroy(Bitvec*); 2737 u32 sqlite3BitvecSize(Bitvec*); 2738 int sqlite3BitvecBuiltinTest(int,int*); 2739 2740 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2741 void sqlite3RowSetClear(RowSet*); 2742 void sqlite3RowSetInsert(RowSet*, i64); 2743 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2744 int sqlite3RowSetNext(RowSet*, i64*); 2745 2746 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2747 2748 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2749 int sqlite3ViewGetColumnNames(Parse*,Table*); 2750 #else 2751 # define sqlite3ViewGetColumnNames(A,B) 0 2752 #endif 2753 2754 void sqlite3DropTable(Parse*, SrcList*, int, int); 2755 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2756 void sqlite3DeleteTable(sqlite3*, Table*); 2757 #ifndef SQLITE_OMIT_AUTOINCREMENT 2758 void sqlite3AutoincrementBegin(Parse *pParse); 2759 void sqlite3AutoincrementEnd(Parse *pParse); 2760 #else 2761 # define sqlite3AutoincrementBegin(X) 2762 # define sqlite3AutoincrementEnd(X) 2763 #endif 2764 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2765 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2766 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2767 int sqlite3IdListIndex(IdList*,const char*); 2768 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2769 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2770 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2771 Token*, Select*, Expr*, IdList*); 2772 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2773 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2774 void sqlite3SrcListShiftJoinType(SrcList*); 2775 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2776 void sqlite3IdListDelete(sqlite3*, IdList*); 2777 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2778 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2779 Token*, int, int); 2780 void sqlite3DropIndex(Parse*, SrcList*, int); 2781 int sqlite3Select(Parse*, Select*, SelectDest*); 2782 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2783 Expr*,ExprList*,int,Expr*,Expr*); 2784 void sqlite3SelectDelete(sqlite3*, Select*); 2785 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2786 int sqlite3IsReadOnly(Parse*, Table*, int); 2787 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2788 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2789 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2790 #endif 2791 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2792 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2793 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**,ExprList*,u16); 2794 void sqlite3WhereEnd(WhereInfo*); 2795 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); 2796 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2797 void sqlite3ExprCodeMove(Parse*, int, int, int); 2798 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2799 void sqlite3ExprCacheStore(Parse*, int, int, int); 2800 void sqlite3ExprCachePush(Parse*); 2801 void sqlite3ExprCachePop(Parse*, int); 2802 void sqlite3ExprCacheRemove(Parse*, int, int); 2803 void sqlite3ExprCacheClear(Parse*); 2804 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2805 int sqlite3ExprCode(Parse*, Expr*, int); 2806 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2807 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2808 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2809 void sqlite3ExprCodeConstants(Parse*, Expr*); 2810 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2811 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2812 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2813 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2814 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2815 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2816 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2817 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2818 void sqlite3Vacuum(Parse*); 2819 int sqlite3RunVacuum(char**, sqlite3*); 2820 char *sqlite3NameFromToken(sqlite3*, Token*); 2821 int sqlite3ExprCompare(Expr*, Expr*); 2822 int sqlite3ExprListCompare(ExprList*, ExprList*); 2823 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2824 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2825 Vdbe *sqlite3GetVdbe(Parse*); 2826 void sqlite3PrngSaveState(void); 2827 void sqlite3PrngRestoreState(void); 2828 void sqlite3PrngResetState(void); 2829 void sqlite3RollbackAll(sqlite3*); 2830 void sqlite3CodeVerifySchema(Parse*, int); 2831 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2832 void sqlite3BeginTransaction(Parse*, int); 2833 void sqlite3CommitTransaction(Parse*); 2834 void sqlite3RollbackTransaction(Parse*); 2835 void sqlite3Savepoint(Parse*, int, Token*); 2836 void sqlite3CloseSavepoints(sqlite3 *); 2837 int sqlite3ExprIsConstant(Expr*); 2838 int sqlite3ExprIsConstantNotJoin(Expr*); 2839 int sqlite3ExprIsConstantOrFunction(Expr*); 2840 int sqlite3ExprIsInteger(Expr*, int*); 2841 int sqlite3ExprCanBeNull(const Expr*); 2842 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2843 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2844 int sqlite3IsRowid(const char*); 2845 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2846 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2847 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2848 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2849 int*,int,int,int,int,int*); 2850 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2851 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2852 void sqlite3BeginWriteOperation(Parse*, int, int); 2853 void sqlite3MultiWrite(Parse*); 2854 void sqlite3MayAbort(Parse*); 2855 void sqlite3HaltConstraint(Parse*, int, char*, int); 2856 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2857 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2858 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2859 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2860 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2861 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2862 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2863 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2864 void sqlite3RegisterDateTimeFunctions(void); 2865 void sqlite3RegisterGlobalFunctions(void); 2866 int sqlite3SafetyCheckOk(sqlite3*); 2867 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2868 void sqlite3ChangeCookie(Parse*, int); 2869 2870 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2871 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2872 #endif 2873 2874 #ifndef SQLITE_OMIT_TRIGGER 2875 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2876 Expr*,int, int); 2877 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2878 void sqlite3DropTrigger(Parse*, SrcList*, int); 2879 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2880 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2881 Trigger *sqlite3TriggerList(Parse *, Table *); 2882 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2883 int, int, int); 2884 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2885 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2886 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2887 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2888 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2889 ExprList*,Select*,u8); 2890 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2891 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2892 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2893 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2894 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2895 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2896 #else 2897 # define sqlite3TriggersExist(B,C,D,E,F) 0 2898 # define sqlite3DeleteTrigger(A,B) 2899 # define sqlite3DropTriggerPtr(A,B) 2900 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2901 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2902 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2903 # define sqlite3TriggerList(X, Y) 0 2904 # define sqlite3ParseToplevel(p) p 2905 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2906 #endif 2907 2908 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2909 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2910 void sqlite3DeferForeignKey(Parse*, int); 2911 #ifndef SQLITE_OMIT_AUTHORIZATION 2912 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2913 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2914 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2915 void sqlite3AuthContextPop(AuthContext*); 2916 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2917 #else 2918 # define sqlite3AuthRead(a,b,c,d) 2919 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2920 # define sqlite3AuthContextPush(a,b,c) 2921 # define sqlite3AuthContextPop(a) ((void)(a)) 2922 #endif 2923 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2924 void sqlite3Detach(Parse*, Expr*); 2925 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2926 int sqlite3FixSrcList(DbFixer*, SrcList*); 2927 int sqlite3FixSelect(DbFixer*, Select*); 2928 int sqlite3FixExpr(DbFixer*, Expr*); 2929 int sqlite3FixExprList(DbFixer*, ExprList*); 2930 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2931 int sqlite3AtoF(const char *z, double*, int, u8); 2932 int sqlite3GetInt32(const char *, int*); 2933 int sqlite3Atoi(const char*); 2934 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2935 int sqlite3Utf8CharLen(const char *pData, int nByte); 2936 u32 sqlite3Utf8Read(const u8*, const u8**); 2937 2938 /* 2939 ** Routines to read and write variable-length integers. These used to 2940 ** be defined locally, but now we use the varint routines in the util.c 2941 ** file. Code should use the MACRO forms below, as the Varint32 versions 2942 ** are coded to assume the single byte case is already handled (which 2943 ** the MACRO form does). 2944 */ 2945 int sqlite3PutVarint(unsigned char*, u64); 2946 int sqlite3PutVarint32(unsigned char*, u32); 2947 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2948 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2949 int sqlite3VarintLen(u64 v); 2950 2951 /* 2952 ** The header of a record consists of a sequence variable-length integers. 2953 ** These integers are almost always small and are encoded as a single byte. 2954 ** The following macros take advantage this fact to provide a fast encode 2955 ** and decode of the integers in a record header. It is faster for the common 2956 ** case where the integer is a single byte. It is a little slower when the 2957 ** integer is two or more bytes. But overall it is faster. 2958 ** 2959 ** The following expressions are equivalent: 2960 ** 2961 ** x = sqlite3GetVarint32( A, &B ); 2962 ** x = sqlite3PutVarint32( A, B ); 2963 ** 2964 ** x = getVarint32( A, B ); 2965 ** x = putVarint32( A, B ); 2966 ** 2967 */ 2968 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2969 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2970 #define getVarint sqlite3GetVarint 2971 #define putVarint sqlite3PutVarint 2972 2973 2974 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2975 void sqlite3TableAffinityStr(Vdbe *, Table *); 2976 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2977 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2978 char sqlite3ExprAffinity(Expr *pExpr); 2979 int sqlite3Atoi64(const char*, i64*, int, u8); 2980 void sqlite3Error(sqlite3*, int, const char*,...); 2981 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2982 u8 sqlite3HexToInt(int h); 2983 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2984 const char *sqlite3ErrStr(int); 2985 int sqlite3ReadSchema(Parse *pParse); 2986 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2987 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2988 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2989 Expr *sqlite3ExprSetColl(Expr*, CollSeq*); 2990 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); 2991 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2992 int sqlite3CheckObjectName(Parse *, const char *); 2993 void sqlite3VdbeSetChanges(sqlite3 *, int); 2994 int sqlite3AddInt64(i64*,i64); 2995 int sqlite3SubInt64(i64*,i64); 2996 int sqlite3MulInt64(i64*,i64); 2997 int sqlite3AbsInt32(int); 2998 #ifdef SQLITE_ENABLE_8_3_NAMES 2999 void sqlite3FileSuffix3(const char*, char*); 3000 #else 3001 # define sqlite3FileSuffix3(X,Y) 3002 #endif 3003 u8 sqlite3GetBoolean(const char *z); 3004 3005 const void *sqlite3ValueText(sqlite3_value*, u8); 3006 int sqlite3ValueBytes(sqlite3_value*, u8); 3007 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3008 void(*)(void*)); 3009 void sqlite3ValueFree(sqlite3_value*); 3010 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3011 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3012 #ifdef SQLITE_ENABLE_STAT3 3013 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 3014 #endif 3015 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3016 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3017 #ifndef SQLITE_AMALGAMATION 3018 extern const unsigned char sqlite3OpcodeProperty[]; 3019 extern const unsigned char sqlite3UpperToLower[]; 3020 extern const unsigned char sqlite3CtypeMap[]; 3021 extern const Token sqlite3IntTokens[]; 3022 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3023 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3024 #ifndef SQLITE_OMIT_WSD 3025 extern int sqlite3PendingByte; 3026 #endif 3027 #endif 3028 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3029 void sqlite3Reindex(Parse*, Token*, Token*); 3030 void sqlite3AlterFunctions(void); 3031 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3032 int sqlite3GetToken(const unsigned char *, int *); 3033 void sqlite3NestedParse(Parse*, const char*, ...); 3034 void sqlite3ExpirePreparedStatements(sqlite3*); 3035 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3036 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3037 int sqlite3ResolveExprNames(NameContext*, Expr*); 3038 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3039 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3040 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3041 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3042 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3043 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 3044 char sqlite3AffinityType(const char*); 3045 void sqlite3Analyze(Parse*, Token*, Token*); 3046 int sqlite3InvokeBusyHandler(BusyHandler*); 3047 int sqlite3FindDb(sqlite3*, Token*); 3048 int sqlite3FindDbName(sqlite3 *, const char *); 3049 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3050 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3051 void sqlite3DefaultRowEst(Index*); 3052 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3053 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3054 void sqlite3MinimumFileFormat(Parse*, int, int); 3055 void sqlite3SchemaClear(void *); 3056 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3057 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3058 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3059 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3060 void (*)(sqlite3_context*,int,sqlite3_value **), 3061 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3062 FuncDestructor *pDestructor 3063 ); 3064 int sqlite3ApiExit(sqlite3 *db, int); 3065 int sqlite3OpenTempDatabase(Parse *); 3066 3067 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3068 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3069 void sqlite3AppendSpace(StrAccum*,int); 3070 char *sqlite3StrAccumFinish(StrAccum*); 3071 void sqlite3StrAccumReset(StrAccum*); 3072 void sqlite3SelectDestInit(SelectDest*,int,int); 3073 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3074 3075 void sqlite3BackupRestart(sqlite3_backup *); 3076 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3077 3078 /* 3079 ** The interface to the LEMON-generated parser 3080 */ 3081 void *sqlite3ParserAlloc(void*(*)(size_t)); 3082 void sqlite3ParserFree(void*, void(*)(void*)); 3083 void sqlite3Parser(void*, int, Token, Parse*); 3084 #ifdef YYTRACKMAXSTACKDEPTH 3085 int sqlite3ParserStackPeak(void*); 3086 #endif 3087 3088 void sqlite3AutoLoadExtensions(sqlite3*); 3089 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3090 void sqlite3CloseExtensions(sqlite3*); 3091 #else 3092 # define sqlite3CloseExtensions(X) 3093 #endif 3094 3095 #ifndef SQLITE_OMIT_SHARED_CACHE 3096 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3097 #else 3098 #define sqlite3TableLock(v,w,x,y,z) 3099 #endif 3100 3101 #ifdef SQLITE_TEST 3102 int sqlite3Utf8To8(unsigned char*); 3103 #endif 3104 3105 #ifdef SQLITE_OMIT_VIRTUALTABLE 3106 # define sqlite3VtabClear(Y) 3107 # define sqlite3VtabSync(X,Y) SQLITE_OK 3108 # define sqlite3VtabRollback(X) 3109 # define sqlite3VtabCommit(X) 3110 # define sqlite3VtabInSync(db) 0 3111 # define sqlite3VtabLock(X) 3112 # define sqlite3VtabUnlock(X) 3113 # define sqlite3VtabUnlockList(X) 3114 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3115 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3116 #else 3117 void sqlite3VtabClear(sqlite3 *db, Table*); 3118 int sqlite3VtabSync(sqlite3 *db, char **); 3119 int sqlite3VtabRollback(sqlite3 *db); 3120 int sqlite3VtabCommit(sqlite3 *db); 3121 void sqlite3VtabLock(VTable *); 3122 void sqlite3VtabUnlock(VTable *); 3123 void sqlite3VtabUnlockList(sqlite3*); 3124 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3125 VTable *sqlite3GetVTable(sqlite3*, Table*); 3126 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3127 #endif 3128 void sqlite3VtabMakeWritable(Parse*,Table*); 3129 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 3130 void sqlite3VtabFinishParse(Parse*, Token*); 3131 void sqlite3VtabArgInit(Parse*); 3132 void sqlite3VtabArgExtend(Parse*, Token*); 3133 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3134 int sqlite3VtabCallConnect(Parse*, Table*); 3135 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3136 int sqlite3VtabBegin(sqlite3 *, VTable *); 3137 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3138 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3139 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3140 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3141 int sqlite3Reprepare(Vdbe*); 3142 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3143 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3144 int sqlite3TempInMemory(const sqlite3*); 3145 const char *sqlite3JournalModename(int); 3146 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3147 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3148 3149 /* Declarations for functions in fkey.c. All of these are replaced by 3150 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3151 ** key functionality is available. If OMIT_TRIGGER is defined but 3152 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3153 ** this case foreign keys are parsed, but no other functionality is 3154 ** provided (enforcement of FK constraints requires the triggers sub-system). 3155 */ 3156 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3157 void sqlite3FkCheck(Parse*, Table*, int, int); 3158 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3159 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3160 int sqlite3FkRequired(Parse*, Table*, int*, int); 3161 u32 sqlite3FkOldmask(Parse*, Table*); 3162 FKey *sqlite3FkReferences(Table *); 3163 #else 3164 #define sqlite3FkActions(a,b,c,d) 3165 #define sqlite3FkCheck(a,b,c,d) 3166 #define sqlite3FkDropTable(a,b,c) 3167 #define sqlite3FkOldmask(a,b) 0 3168 #define sqlite3FkRequired(a,b,c,d) 0 3169 #endif 3170 #ifndef SQLITE_OMIT_FOREIGN_KEY 3171 void sqlite3FkDelete(sqlite3 *, Table*); 3172 #else 3173 #define sqlite3FkDelete(a,b) 3174 #endif 3175 3176 3177 /* 3178 ** Available fault injectors. Should be numbered beginning with 0. 3179 */ 3180 #define SQLITE_FAULTINJECTOR_MALLOC 0 3181 #define SQLITE_FAULTINJECTOR_COUNT 1 3182 3183 /* 3184 ** The interface to the code in fault.c used for identifying "benign" 3185 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3186 ** is not defined. 3187 */ 3188 #ifndef SQLITE_OMIT_BUILTIN_TEST 3189 void sqlite3BeginBenignMalloc(void); 3190 void sqlite3EndBenignMalloc(void); 3191 #else 3192 #define sqlite3BeginBenignMalloc() 3193 #define sqlite3EndBenignMalloc() 3194 #endif 3195 3196 #define IN_INDEX_ROWID 1 3197 #define IN_INDEX_EPH 2 3198 #define IN_INDEX_INDEX 3 3199 int sqlite3FindInIndex(Parse *, Expr *, int*); 3200 3201 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3202 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3203 int sqlite3JournalSize(sqlite3_vfs *); 3204 int sqlite3JournalCreate(sqlite3_file *); 3205 #else 3206 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3207 #endif 3208 3209 void sqlite3MemJournalOpen(sqlite3_file *); 3210 int sqlite3MemJournalSize(void); 3211 int sqlite3IsMemJournal(sqlite3_file *); 3212 3213 #if SQLITE_MAX_EXPR_DEPTH>0 3214 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3215 int sqlite3SelectExprHeight(Select *); 3216 int sqlite3ExprCheckHeight(Parse*, int); 3217 #else 3218 #define sqlite3ExprSetHeight(x,y) 3219 #define sqlite3SelectExprHeight(x) 0 3220 #define sqlite3ExprCheckHeight(x,y) 3221 #endif 3222 3223 u32 sqlite3Get4byte(const u8*); 3224 void sqlite3Put4byte(u8*, u32); 3225 3226 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3227 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3228 void sqlite3ConnectionUnlocked(sqlite3 *db); 3229 void sqlite3ConnectionClosed(sqlite3 *db); 3230 #else 3231 #define sqlite3ConnectionBlocked(x,y) 3232 #define sqlite3ConnectionUnlocked(x) 3233 #define sqlite3ConnectionClosed(x) 3234 #endif 3235 3236 #ifdef SQLITE_DEBUG 3237 void sqlite3ParserTrace(FILE*, char *); 3238 #endif 3239 3240 /* 3241 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3242 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3243 ** print I/O tracing messages. 3244 */ 3245 #ifdef SQLITE_ENABLE_IOTRACE 3246 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3247 void sqlite3VdbeIOTraceSql(Vdbe*); 3248 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3249 #else 3250 # define IOTRACE(A) 3251 # define sqlite3VdbeIOTraceSql(X) 3252 #endif 3253 3254 /* 3255 ** These routines are available for the mem2.c debugging memory allocator 3256 ** only. They are used to verify that different "types" of memory 3257 ** allocations are properly tracked by the system. 3258 ** 3259 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3260 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3261 ** a single bit set. 3262 ** 3263 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3264 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3265 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3266 ** 3267 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3268 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3269 ** 3270 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3271 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3272 ** it might have been allocated by lookaside, except the allocation was 3273 ** too large or lookaside was already full. It is important to verify 3274 ** that allocations that might have been satisfied by lookaside are not 3275 ** passed back to non-lookaside free() routines. Asserts such as the 3276 ** example above are placed on the non-lookaside free() routines to verify 3277 ** this constraint. 3278 ** 3279 ** All of this is no-op for a production build. It only comes into 3280 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3281 */ 3282 #ifdef SQLITE_MEMDEBUG 3283 void sqlite3MemdebugSetType(void*,u8); 3284 int sqlite3MemdebugHasType(void*,u8); 3285 int sqlite3MemdebugNoType(void*,u8); 3286 #else 3287 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3288 # define sqlite3MemdebugHasType(X,Y) 1 3289 # define sqlite3MemdebugNoType(X,Y) 1 3290 #endif 3291 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3292 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3293 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3294 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3295 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3296 3297 #endif /* _SQLITEINT_H_ */ 3298