1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 ** @(#) $Id: sqliteInt.h,v 1.742 2008/07/12 14:52:20 drh Exp $ 15 */ 16 #ifndef _SQLITEINT_H_ 17 #define _SQLITEINT_H_ 18 19 /* 20 ** Include the configuration header output by 'configure' if we're using the 21 ** autoconf-based build 22 */ 23 #ifdef _HAVE_SQLITE_CONFIG_H 24 #include "config.h" 25 #endif 26 27 #include "sqliteLimit.h" 28 29 /* Disable nuisance warnings on Borland compilers */ 30 #if defined(__BORLANDC__) 31 #pragma warn -rch /* unreachable code */ 32 #pragma warn -ccc /* Condition is always true or false */ 33 #pragma warn -aus /* Assigned value is never used */ 34 #pragma warn -csu /* Comparing signed and unsigned */ 35 #pragma warn -spa /* Suspicous pointer arithmetic */ 36 #endif 37 38 /* Needed for various definitions... */ 39 #define _GNU_SOURCE 40 41 /* 42 ** Include standard header files as necessary 43 */ 44 #ifdef HAVE_STDINT_H 45 #include <stdint.h> 46 #endif 47 #ifdef HAVE_INTTYPES_H 48 #include <inttypes.h> 49 #endif 50 51 /* 52 ** A macro used to aid in coverage testing. When doing coverage 53 ** testing, the condition inside the argument must be evaluated 54 ** both true and false in order to get full branch coverage. 55 ** This macro can be inserted to ensure adequate test coverage 56 ** in places where simple condition/decision coverage is inadequate. 57 */ 58 #ifdef SQLITE_COVERAGE_TEST 59 void sqlite3Coverage(int); 60 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 61 #else 62 # define testcase(X) 63 #endif 64 65 /* 66 ** The ALWAYS and NEVER macros surround boolean expressions which 67 ** are intended to always be true or false, respectively. Such 68 ** expressions could be omitted from the code completely. But they 69 ** are included in a few cases in order to enhance the resilience 70 ** of SQLite to unexpected behavior - to make the code "self-healing" 71 ** or "ductile" rather than being "brittle" and crashing at the first 72 ** hint of unplanned behavior. 73 ** 74 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 75 ** be true and false so that the unreachable code then specify will 76 ** not be counted as untested code. 77 */ 78 #ifdef SQLITE_COVERAGE_TEST 79 # define ALWAYS(X) (1) 80 # define NEVER(X) (0) 81 #else 82 # define ALWAYS(X) (X) 83 # define NEVER(X) (X) 84 #endif 85 86 /* 87 ** The macro unlikely() is a hint that surrounds a boolean 88 ** expression that is usually false. Macro likely() surrounds 89 ** a boolean expression that is usually true. GCC is able to 90 ** use these hints to generate better code, sometimes. 91 */ 92 #if defined(__GNUC__) && 0 93 # define likely(X) __builtin_expect((X),1) 94 # define unlikely(X) __builtin_expect((X),0) 95 #else 96 # define likely(X) !!(X) 97 # define unlikely(X) !!(X) 98 #endif 99 100 /* 101 * This macro is used to "hide" some ugliness in casting an int 102 * value to a ptr value under the MSVC 64-bit compiler. Casting 103 * non 64-bit values to ptr types results in a "hard" error with 104 * the MSVC 64-bit compiler which this attempts to avoid. 105 * 106 * A simple compiler pragma or casting sequence could not be found 107 * to correct this in all situations, so this macro was introduced. 108 * 109 * It could be argued that the intptr_t type could be used in this 110 * case, but that type is not available on all compilers, or 111 * requires the #include of specific headers which differs between 112 * platforms. 113 */ 114 #define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 115 #define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 116 117 /* 118 ** These #defines should enable >2GB file support on Posix if the 119 ** underlying operating system supports it. If the OS lacks 120 ** large file support, or if the OS is windows, these should be no-ops. 121 ** 122 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 123 ** system #includes. Hence, this block of code must be the very first 124 ** code in all source files. 125 ** 126 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 127 ** on the compiler command line. This is necessary if you are compiling 128 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 129 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 130 ** without this option, LFS is enable. But LFS does not exist in the kernel 131 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 132 ** portability you should omit LFS. 133 ** 134 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. 135 */ 136 #ifndef SQLITE_DISABLE_LFS 137 # define _LARGE_FILE 1 138 # ifndef _FILE_OFFSET_BITS 139 # define _FILE_OFFSET_BITS 64 140 # endif 141 # define _LARGEFILE_SOURCE 1 142 #endif 143 144 145 /* 146 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 147 ** Older versions of SQLite used an optional THREADSAFE macro. 148 ** We support that for legacy 149 */ 150 #if !defined(SQLITE_THREADSAFE) 151 #if defined(THREADSAFE) 152 # define SQLITE_THREADSAFE THREADSAFE 153 #else 154 # define SQLITE_THREADSAFE 1 155 #endif 156 #endif 157 158 /* 159 ** Exactly one of the following macros must be defined in order to 160 ** specify which memory allocation subsystem to use. 161 ** 162 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 163 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 164 ** SQLITE_MEMORY_SIZE // internal allocator #1 165 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator 166 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator 167 ** 168 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 169 ** the default. 170 */ 171 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 172 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 173 defined(SQLITE_POW2_MEMORY_SIZE)>1 174 # error "At most one of the following compile-time configuration options\ 175 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ 176 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" 177 #endif 178 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 179 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 180 defined(SQLITE_POW2_MEMORY_SIZE)==0 181 # define SQLITE_SYSTEM_MALLOC 1 182 #endif 183 184 /* 185 ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the 186 ** sizes of memory allocations below this value where possible. 187 */ 188 #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT) 189 # define SQLITE_MALLOC_SOFT_LIMIT 1024 190 #endif 191 192 /* 193 ** We need to define _XOPEN_SOURCE as follows in order to enable 194 ** recursive mutexes on most unix systems. But Mac OS X is different. 195 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 196 ** so it is omitted there. See ticket #2673. 197 ** 198 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 199 ** implemented on some systems. So we avoid defining it at all 200 ** if it is already defined or if it is unneeded because we are 201 ** not doing a threadsafe build. Ticket #2681. 202 ** 203 ** See also ticket #2741. 204 */ 205 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 206 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 207 #endif 208 209 #if defined(SQLITE_TCL) || defined(TCLSH) 210 # include <tcl.h> 211 #endif 212 213 /* 214 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 215 ** Setting NDEBUG makes the code smaller and run faster. So the following 216 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 217 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 218 ** feature. 219 */ 220 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 221 # define NDEBUG 1 222 #endif 223 224 #include "sqlite3.h" 225 #include "hash.h" 226 #include "parse.h" 227 #include <stdio.h> 228 #include <stdlib.h> 229 #include <string.h> 230 #include <assert.h> 231 #include <stddef.h> 232 233 /* 234 ** If compiling for a processor that lacks floating point support, 235 ** substitute integer for floating-point 236 */ 237 #ifdef SQLITE_OMIT_FLOATING_POINT 238 # define double sqlite_int64 239 # define LONGDOUBLE_TYPE sqlite_int64 240 # ifndef SQLITE_BIG_DBL 241 # define SQLITE_BIG_DBL (0x7fffffffffffffff) 242 # endif 243 # define SQLITE_OMIT_DATETIME_FUNCS 1 244 # define SQLITE_OMIT_TRACE 1 245 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 246 #endif 247 #ifndef SQLITE_BIG_DBL 248 # define SQLITE_BIG_DBL (1e99) 249 #endif 250 251 /* 252 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 253 ** afterward. Having this macro allows us to cause the C compiler 254 ** to omit code used by TEMP tables without messy #ifndef statements. 255 */ 256 #ifdef SQLITE_OMIT_TEMPDB 257 #define OMIT_TEMPDB 1 258 #else 259 #define OMIT_TEMPDB 0 260 #endif 261 262 /* 263 ** If the following macro is set to 1, then NULL values are considered 264 ** distinct when determining whether or not two entries are the same 265 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 266 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 267 ** is the way things are suppose to work. 268 ** 269 ** If the following macro is set to 0, the NULLs are indistinct for 270 ** a UNIQUE index. In this mode, you can only have a single NULL entry 271 ** for a column declared UNIQUE. This is the way Informix and SQL Server 272 ** work. 273 */ 274 #define NULL_DISTINCT_FOR_UNIQUE 1 275 276 /* 277 ** The "file format" number is an integer that is incremented whenever 278 ** the VDBE-level file format changes. The following macros define the 279 ** the default file format for new databases and the maximum file format 280 ** that the library can read. 281 */ 282 #define SQLITE_MAX_FILE_FORMAT 4 283 #ifndef SQLITE_DEFAULT_FILE_FORMAT 284 # define SQLITE_DEFAULT_FILE_FORMAT 1 285 #endif 286 287 /* 288 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 289 ** on the command-line 290 */ 291 #ifndef SQLITE_TEMP_STORE 292 # define SQLITE_TEMP_STORE 1 293 #endif 294 295 /* 296 ** GCC does not define the offsetof() macro so we'll have to do it 297 ** ourselves. 298 */ 299 #ifndef offsetof 300 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 301 #endif 302 303 /* 304 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 305 ** not, there are still machines out there that use EBCDIC.) 306 */ 307 #if 'A' == '\301' 308 # define SQLITE_EBCDIC 1 309 #else 310 # define SQLITE_ASCII 1 311 #endif 312 313 /* 314 ** Integers of known sizes. These typedefs might change for architectures 315 ** where the sizes very. Preprocessor macros are available so that the 316 ** types can be conveniently redefined at compile-type. Like this: 317 ** 318 ** cc '-DUINTPTR_TYPE=long long int' ... 319 */ 320 #ifndef UINT32_TYPE 321 # ifdef HAVE_UINT32_T 322 # define UINT32_TYPE uint32_t 323 # else 324 # define UINT32_TYPE unsigned int 325 # endif 326 #endif 327 #ifndef UINT16_TYPE 328 # ifdef HAVE_UINT16_T 329 # define UINT16_TYPE uint16_t 330 # else 331 # define UINT16_TYPE unsigned short int 332 # endif 333 #endif 334 #ifndef INT16_TYPE 335 # ifdef HAVE_INT16_T 336 # define INT16_TYPE int16_t 337 # else 338 # define INT16_TYPE short int 339 # endif 340 #endif 341 #ifndef UINT8_TYPE 342 # ifdef HAVE_UINT8_T 343 # define UINT8_TYPE uint8_t 344 # else 345 # define UINT8_TYPE unsigned char 346 # endif 347 #endif 348 #ifndef INT8_TYPE 349 # ifdef HAVE_INT8_T 350 # define INT8_TYPE int8_t 351 # else 352 # define INT8_TYPE signed char 353 # endif 354 #endif 355 #ifndef LONGDOUBLE_TYPE 356 # define LONGDOUBLE_TYPE long double 357 #endif 358 typedef sqlite_int64 i64; /* 8-byte signed integer */ 359 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 360 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 361 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 362 typedef INT16_TYPE i16; /* 2-byte signed integer */ 363 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 364 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 365 366 /* 367 ** Macros to determine whether the machine is big or little endian, 368 ** evaluated at runtime. 369 */ 370 #ifdef SQLITE_AMALGAMATION 371 const int sqlite3one; 372 #else 373 extern const int sqlite3one; 374 #endif 375 #if defined(i386) || defined(__i386__) || defined(_M_IX86) 376 # define SQLITE_BIGENDIAN 0 377 # define SQLITE_LITTLEENDIAN 1 378 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 379 #else 380 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 381 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 382 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 383 #endif 384 385 /* 386 ** Constants for the largest and smallest possible 64-bit signed integers. 387 ** These macros are designed to work correctly on both 32-bit and 64-bit 388 ** compilers. 389 */ 390 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 391 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 392 393 /* 394 ** An instance of the following structure is used to store the busy-handler 395 ** callback for a given sqlite handle. 396 ** 397 ** The sqlite.busyHandler member of the sqlite struct contains the busy 398 ** callback for the database handle. Each pager opened via the sqlite 399 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 400 ** callback is currently invoked only from within pager.c. 401 */ 402 typedef struct BusyHandler BusyHandler; 403 struct BusyHandler { 404 int (*xFunc)(void *,int); /* The busy callback */ 405 void *pArg; /* First arg to busy callback */ 406 int nBusy; /* Incremented with each busy call */ 407 }; 408 409 /* 410 ** Name of the master database table. The master database table 411 ** is a special table that holds the names and attributes of all 412 ** user tables and indices. 413 */ 414 #define MASTER_NAME "sqlite_master" 415 #define TEMP_MASTER_NAME "sqlite_temp_master" 416 417 /* 418 ** The root-page of the master database table. 419 */ 420 #define MASTER_ROOT 1 421 422 /* 423 ** The name of the schema table. 424 */ 425 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 426 427 /* 428 ** A convenience macro that returns the number of elements in 429 ** an array. 430 */ 431 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 432 433 /* 434 ** Forward references to structures 435 */ 436 typedef struct AggInfo AggInfo; 437 typedef struct AuthContext AuthContext; 438 typedef struct Bitvec Bitvec; 439 typedef struct CollSeq CollSeq; 440 typedef struct Column Column; 441 typedef struct Db Db; 442 typedef struct Schema Schema; 443 typedef struct Expr Expr; 444 typedef struct ExprList ExprList; 445 typedef struct FKey FKey; 446 typedef struct FuncDef FuncDef; 447 typedef struct IdList IdList; 448 typedef struct Index Index; 449 typedef struct KeyClass KeyClass; 450 typedef struct KeyInfo KeyInfo; 451 typedef struct Module Module; 452 typedef struct NameContext NameContext; 453 typedef struct Parse Parse; 454 typedef struct Select Select; 455 typedef struct SrcList SrcList; 456 typedef struct StrAccum StrAccum; 457 typedef struct Table Table; 458 typedef struct TableLock TableLock; 459 typedef struct Token Token; 460 typedef struct TriggerStack TriggerStack; 461 typedef struct TriggerStep TriggerStep; 462 typedef struct Trigger Trigger; 463 typedef struct WhereInfo WhereInfo; 464 typedef struct WhereLevel WhereLevel; 465 466 /* 467 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 468 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 469 ** pointer types (i.e. FuncDef) defined above. 470 */ 471 #include "btree.h" 472 #include "vdbe.h" 473 #include "pager.h" 474 475 #include "os.h" 476 #include "mutex.h" 477 478 479 /* 480 ** Each database file to be accessed by the system is an instance 481 ** of the following structure. There are normally two of these structures 482 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 483 ** aDb[1] is the database file used to hold temporary tables. Additional 484 ** databases may be attached. 485 */ 486 struct Db { 487 char *zName; /* Name of this database */ 488 Btree *pBt; /* The B*Tree structure for this database file */ 489 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 490 u8 safety_level; /* How aggressive at synching data to disk */ 491 void *pAux; /* Auxiliary data. Usually NULL */ 492 void (*xFreeAux)(void*); /* Routine to free pAux */ 493 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 494 }; 495 496 /* 497 ** An instance of the following structure stores a database schema. 498 ** 499 ** If there are no virtual tables configured in this schema, the 500 ** Schema.db variable is set to NULL. After the first virtual table 501 ** has been added, it is set to point to the database connection 502 ** used to create the connection. Once a virtual table has been 503 ** added to the Schema structure and the Schema.db variable populated, 504 ** only that database connection may use the Schema to prepare 505 ** statements. 506 */ 507 struct Schema { 508 int schema_cookie; /* Database schema version number for this file */ 509 Hash tblHash; /* All tables indexed by name */ 510 Hash idxHash; /* All (named) indices indexed by name */ 511 Hash trigHash; /* All triggers indexed by name */ 512 Hash aFKey; /* Foreign keys indexed by to-table */ 513 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 514 u8 file_format; /* Schema format version for this file */ 515 u8 enc; /* Text encoding used by this database */ 516 u16 flags; /* Flags associated with this schema */ 517 int cache_size; /* Number of pages to use in the cache */ 518 #ifndef SQLITE_OMIT_VIRTUALTABLE 519 sqlite3 *db; /* "Owner" connection. See comment above */ 520 #endif 521 }; 522 523 /* 524 ** These macros can be used to test, set, or clear bits in the 525 ** Db.flags field. 526 */ 527 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 528 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 529 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 530 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 531 532 /* 533 ** Allowed values for the DB.flags field. 534 ** 535 ** The DB_SchemaLoaded flag is set after the database schema has been 536 ** read into internal hash tables. 537 ** 538 ** DB_UnresetViews means that one or more views have column names that 539 ** have been filled out. If the schema changes, these column names might 540 ** changes and so the view will need to be reset. 541 */ 542 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 543 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 544 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 545 546 /* 547 ** The number of different kinds of things that can be limited 548 ** using the sqlite3_limit() interface. 549 */ 550 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) 551 552 /* 553 ** Each database is an instance of the following structure. 554 ** 555 ** The sqlite.lastRowid records the last insert rowid generated by an 556 ** insert statement. Inserts on views do not affect its value. Each 557 ** trigger has its own context, so that lastRowid can be updated inside 558 ** triggers as usual. The previous value will be restored once the trigger 559 ** exits. Upon entering a before or instead of trigger, lastRowid is no 560 ** longer (since after version 2.8.12) reset to -1. 561 ** 562 ** The sqlite.nChange does not count changes within triggers and keeps no 563 ** context. It is reset at start of sqlite3_exec. 564 ** The sqlite.lsChange represents the number of changes made by the last 565 ** insert, update, or delete statement. It remains constant throughout the 566 ** length of a statement and is then updated by OP_SetCounts. It keeps a 567 ** context stack just like lastRowid so that the count of changes 568 ** within a trigger is not seen outside the trigger. Changes to views do not 569 ** affect the value of lsChange. 570 ** The sqlite.csChange keeps track of the number of current changes (since 571 ** the last statement) and is used to update sqlite_lsChange. 572 ** 573 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 574 ** store the most recent error code and, if applicable, string. The 575 ** internal function sqlite3Error() is used to set these variables 576 ** consistently. 577 */ 578 struct sqlite3 { 579 sqlite3_vfs *pVfs; /* OS Interface */ 580 int nDb; /* Number of backends currently in use */ 581 Db *aDb; /* All backends */ 582 int flags; /* Miscellanous flags. See below */ 583 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 584 int errCode; /* Most recent error code (SQLITE_*) */ 585 int errMask; /* & result codes with this before returning */ 586 u8 autoCommit; /* The auto-commit flag. */ 587 u8 temp_store; /* 1: file 2: memory 0: default */ 588 u8 mallocFailed; /* True if we have seen a malloc failure */ 589 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 590 u8 dfltJournalMode; /* Default journal mode for attached dbs */ 591 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 592 int nextPagesize; /* Pagesize after VACUUM if >0 */ 593 int nTable; /* Number of tables in the database */ 594 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 595 i64 lastRowid; /* ROWID of most recent insert (see above) */ 596 i64 priorNewRowid; /* Last randomly generated ROWID */ 597 int magic; /* Magic number for detect library misuse */ 598 int nChange; /* Value returned by sqlite3_changes() */ 599 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 600 sqlite3_mutex *mutex; /* Connection mutex */ 601 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 602 struct sqlite3InitInfo { /* Information used during initialization */ 603 int iDb; /* When back is being initialized */ 604 int newTnum; /* Rootpage of table being initialized */ 605 u8 busy; /* TRUE if currently initializing */ 606 } init; 607 int nExtension; /* Number of loaded extensions */ 608 void **aExtension; /* Array of shared libraray handles */ 609 struct Vdbe *pVdbe; /* List of active virtual machines */ 610 int activeVdbeCnt; /* Number of vdbes currently executing */ 611 void (*xTrace)(void*,const char*); /* Trace function */ 612 void *pTraceArg; /* Argument to the trace function */ 613 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 614 void *pProfileArg; /* Argument to profile function */ 615 void *pCommitArg; /* Argument to xCommitCallback() */ 616 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 617 void *pRollbackArg; /* Argument to xRollbackCallback() */ 618 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 619 void *pUpdateArg; 620 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 621 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 622 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 623 void *pCollNeededArg; 624 sqlite3_value *pErr; /* Most recent error message */ 625 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 626 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 627 union { 628 int isInterrupted; /* True if sqlite3_interrupt has been called */ 629 double notUsed1; /* Spacer */ 630 } u1; 631 #ifndef SQLITE_OMIT_AUTHORIZATION 632 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 633 /* Access authorization function */ 634 void *pAuthArg; /* 1st argument to the access auth function */ 635 #endif 636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 637 int (*xProgress)(void *); /* The progress callback */ 638 void *pProgressArg; /* Argument to the progress callback */ 639 int nProgressOps; /* Number of opcodes for progress callback */ 640 #endif 641 #ifndef SQLITE_OMIT_VIRTUALTABLE 642 Hash aModule; /* populated by sqlite3_create_module() */ 643 Table *pVTab; /* vtab with active Connect/Create method */ 644 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ 645 int nVTrans; /* Allocated size of aVTrans */ 646 #endif 647 Hash aFunc; /* All functions that can be in SQL exprs */ 648 Hash aCollSeq; /* All collating sequences */ 649 BusyHandler busyHandler; /* Busy callback */ 650 int busyTimeout; /* Busy handler timeout, in msec */ 651 Db aDbStatic[2]; /* Static space for the 2 default backends */ 652 #ifdef SQLITE_SSE 653 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ 654 #endif 655 }; 656 657 /* 658 ** A macro to discover the encoding of a database. 659 */ 660 #define ENC(db) ((db)->aDb[0].pSchema->enc) 661 662 /* 663 ** Possible values for the sqlite.flags and or Db.flags fields. 664 ** 665 ** On sqlite.flags, the SQLITE_InTrans value means that we have 666 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 667 ** transaction is active on that particular database file. 668 */ 669 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 670 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 671 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 672 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 673 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 674 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 675 /* DELETE, or UPDATE and return */ 676 /* the count using a callback. */ 677 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 678 /* result set is empty */ 679 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 680 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 681 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 682 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 683 ** accessing read-only databases */ 684 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 685 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 686 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 687 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 688 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 689 690 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 691 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ 692 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ 693 694 /* 695 ** Possible values for the sqlite.magic field. 696 ** The numbers are obtained at random and have no special meaning, other 697 ** than being distinct from one another. 698 */ 699 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 700 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 701 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 702 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 703 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 704 705 /* 706 ** Each SQL function is defined by an instance of the following 707 ** structure. A pointer to this structure is stored in the sqlite.aFunc 708 ** hash table. When multiple functions have the same name, the hash table 709 ** points to a linked list of these structures. 710 */ 711 struct FuncDef { 712 i16 nArg; /* Number of arguments. -1 means unlimited */ 713 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 714 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ 715 u8 flags; /* Some combination of SQLITE_FUNC_* */ 716 void *pUserData; /* User data parameter */ 717 FuncDef *pNext; /* Next function with same name */ 718 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 719 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 720 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ 721 char zName[1]; /* SQL name of the function. MUST BE LAST */ 722 }; 723 724 /* 725 ** Each SQLite module (virtual table definition) is defined by an 726 ** instance of the following structure, stored in the sqlite3.aModule 727 ** hash table. 728 */ 729 struct Module { 730 const sqlite3_module *pModule; /* Callback pointers */ 731 const char *zName; /* Name passed to create_module() */ 732 void *pAux; /* pAux passed to create_module() */ 733 void (*xDestroy)(void *); /* Module destructor function */ 734 }; 735 736 /* 737 ** Possible values for FuncDef.flags 738 */ 739 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 740 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 741 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ 742 743 /* 744 ** information about each column of an SQL table is held in an instance 745 ** of this structure. 746 */ 747 struct Column { 748 char *zName; /* Name of this column */ 749 Expr *pDflt; /* Default value of this column */ 750 char *zType; /* Data type for this column */ 751 char *zColl; /* Collating sequence. If NULL, use the default */ 752 u8 notNull; /* True if there is a NOT NULL constraint */ 753 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 754 char affinity; /* One of the SQLITE_AFF_... values */ 755 #ifndef SQLITE_OMIT_VIRTUALTABLE 756 u8 isHidden; /* True if this column is 'hidden' */ 757 #endif 758 }; 759 760 /* 761 ** A "Collating Sequence" is defined by an instance of the following 762 ** structure. Conceptually, a collating sequence consists of a name and 763 ** a comparison routine that defines the order of that sequence. 764 ** 765 ** There may two seperate implementations of the collation function, one 766 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 767 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 768 ** native byte order. When a collation sequence is invoked, SQLite selects 769 ** the version that will require the least expensive encoding 770 ** translations, if any. 771 ** 772 ** The CollSeq.pUser member variable is an extra parameter that passed in 773 ** as the first argument to the UTF-8 comparison function, xCmp. 774 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 775 ** xCmp16. 776 ** 777 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 778 ** collating sequence is undefined. Indices built on an undefined 779 ** collating sequence may not be read or written. 780 */ 781 struct CollSeq { 782 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 783 u8 enc; /* Text encoding handled by xCmp() */ 784 u8 type; /* One of the SQLITE_COLL_... values below */ 785 void *pUser; /* First argument to xCmp() */ 786 int (*xCmp)(void*,int, const void*, int, const void*); 787 void (*xDel)(void*); /* Destructor for pUser */ 788 }; 789 790 /* 791 ** Allowed values of CollSeq flags: 792 */ 793 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 794 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 795 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 796 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 797 798 /* 799 ** A sort order can be either ASC or DESC. 800 */ 801 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 802 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 803 804 /* 805 ** Column affinity types. 806 ** 807 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 808 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 809 ** the speed a little by number the values consecutively. 810 ** 811 ** But rather than start with 0 or 1, we begin with 'a'. That way, 812 ** when multiple affinity types are concatenated into a string and 813 ** used as the P4 operand, they will be more readable. 814 ** 815 ** Note also that the numeric types are grouped together so that testing 816 ** for a numeric type is a single comparison. 817 */ 818 #define SQLITE_AFF_TEXT 'a' 819 #define SQLITE_AFF_NONE 'b' 820 #define SQLITE_AFF_NUMERIC 'c' 821 #define SQLITE_AFF_INTEGER 'd' 822 #define SQLITE_AFF_REAL 'e' 823 824 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 825 826 /* 827 ** The SQLITE_AFF_MASK values masks off the significant bits of an 828 ** affinity value. 829 */ 830 #define SQLITE_AFF_MASK 0x67 831 832 /* 833 ** Additional bit values that can be ORed with an affinity without 834 ** changing the affinity. 835 */ 836 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 837 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 838 839 /* 840 ** Each SQL table is represented in memory by an instance of the 841 ** following structure. 842 ** 843 ** Table.zName is the name of the table. The case of the original 844 ** CREATE TABLE statement is stored, but case is not significant for 845 ** comparisons. 846 ** 847 ** Table.nCol is the number of columns in this table. Table.aCol is a 848 ** pointer to an array of Column structures, one for each column. 849 ** 850 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 851 ** the column that is that key. Otherwise Table.iPKey is negative. Note 852 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 853 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 854 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 855 ** is generated for each row of the table. Table.hasPrimKey is true if 856 ** the table has any PRIMARY KEY, INTEGER or otherwise. 857 ** 858 ** Table.tnum is the page number for the root BTree page of the table in the 859 ** database file. If Table.iDb is the index of the database table backend 860 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 861 ** holds temporary tables and indices. If Table.isEphem 862 ** is true, then the table is stored in a file that is automatically deleted 863 ** when the VDBE cursor to the table is closed. In this case Table.tnum 864 ** refers VDBE cursor number that holds the table open, not to the root 865 ** page number. Transient tables are used to hold the results of a 866 ** sub-query that appears instead of a real table name in the FROM clause 867 ** of a SELECT statement. 868 */ 869 struct Table { 870 char *zName; /* Name of the table */ 871 int nCol; /* Number of columns in this table */ 872 Column *aCol; /* Information about each column */ 873 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 874 Index *pIndex; /* List of SQL indexes on this table. */ 875 int tnum; /* Root BTree node for this table (see note above) */ 876 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 877 int nRef; /* Number of pointers to this Table */ 878 Trigger *pTrigger; /* List of SQL triggers on this table */ 879 FKey *pFKey; /* Linked list of all foreign keys in this table */ 880 char *zColAff; /* String defining the affinity of each column */ 881 #ifndef SQLITE_OMIT_CHECK 882 Expr *pCheck; /* The AND of all CHECK constraints */ 883 #endif 884 #ifndef SQLITE_OMIT_ALTERTABLE 885 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ 886 #endif 887 u8 readOnly; /* True if this table should not be written by the user */ 888 u8 isEphem; /* True if created using OP_OpenEphermeral */ 889 u8 hasPrimKey; /* True if there exists a primary key */ 890 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 891 u8 autoInc; /* True if the integer primary key is autoincrement */ 892 #ifndef SQLITE_OMIT_VIRTUALTABLE 893 u8 isVirtual; /* True if this is a virtual table */ 894 u8 isCommit; /* True once the CREATE TABLE has been committed */ 895 Module *pMod; /* Pointer to the implementation of the module */ 896 sqlite3_vtab *pVtab; /* Pointer to the module instance */ 897 int nModuleArg; /* Number of arguments to the module */ 898 char **azModuleArg; /* Text of all module args. [0] is module name */ 899 #endif 900 Schema *pSchema; /* Schema that contains this table */ 901 }; 902 903 /* 904 ** Test to see whether or not a table is a virtual table. This is 905 ** done as a macro so that it will be optimized out when virtual 906 ** table support is omitted from the build. 907 */ 908 #ifndef SQLITE_OMIT_VIRTUALTABLE 909 # define IsVirtual(X) ((X)->isVirtual) 910 # define IsHiddenColumn(X) ((X)->isHidden) 911 #else 912 # define IsVirtual(X) 0 913 # define IsHiddenColumn(X) 0 914 #endif 915 916 /* 917 ** Each foreign key constraint is an instance of the following structure. 918 ** 919 ** A foreign key is associated with two tables. The "from" table is 920 ** the table that contains the REFERENCES clause that creates the foreign 921 ** key. The "to" table is the table that is named in the REFERENCES clause. 922 ** Consider this example: 923 ** 924 ** CREATE TABLE ex1( 925 ** a INTEGER PRIMARY KEY, 926 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 927 ** ); 928 ** 929 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 930 ** 931 ** Each REFERENCES clause generates an instance of the following structure 932 ** which is attached to the from-table. The to-table need not exist when 933 ** the from-table is created. The existance of the to-table is not checked 934 ** until an attempt is made to insert data into the from-table. 935 ** 936 ** The sqlite.aFKey hash table stores pointers to this structure 937 ** given the name of a to-table. For each to-table, all foreign keys 938 ** associated with that table are on a linked list using the FKey.pNextTo 939 ** field. 940 */ 941 struct FKey { 942 Table *pFrom; /* The table that constains the REFERENCES clause */ 943 FKey *pNextFrom; /* Next foreign key in pFrom */ 944 char *zTo; /* Name of table that the key points to */ 945 FKey *pNextTo; /* Next foreign key that points to zTo */ 946 int nCol; /* Number of columns in this key */ 947 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 948 int iFrom; /* Index of column in pFrom */ 949 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 950 } *aCol; /* One entry for each of nCol column s */ 951 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 952 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 953 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 954 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 955 }; 956 957 /* 958 ** SQLite supports many different ways to resolve a constraint 959 ** error. ROLLBACK processing means that a constraint violation 960 ** causes the operation in process to fail and for the current transaction 961 ** to be rolled back. ABORT processing means the operation in process 962 ** fails and any prior changes from that one operation are backed out, 963 ** but the transaction is not rolled back. FAIL processing means that 964 ** the operation in progress stops and returns an error code. But prior 965 ** changes due to the same operation are not backed out and no rollback 966 ** occurs. IGNORE means that the particular row that caused the constraint 967 ** error is not inserted or updated. Processing continues and no error 968 ** is returned. REPLACE means that preexisting database rows that caused 969 ** a UNIQUE constraint violation are removed so that the new insert or 970 ** update can proceed. Processing continues and no error is reported. 971 ** 972 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 973 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 974 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 975 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 976 ** referenced table row is propagated into the row that holds the 977 ** foreign key. 978 ** 979 ** The following symbolic values are used to record which type 980 ** of action to take. 981 */ 982 #define OE_None 0 /* There is no constraint to check */ 983 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 984 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 985 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 986 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 987 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 988 989 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 990 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 991 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 992 #define OE_Cascade 9 /* Cascade the changes */ 993 994 #define OE_Default 99 /* Do whatever the default action is */ 995 996 997 /* 998 ** An instance of the following structure is passed as the first 999 ** argument to sqlite3VdbeKeyCompare and is used to control the 1000 ** comparison of the two index keys. 1001 ** 1002 ** If the KeyInfo.incrKey value is true and the comparison would 1003 ** otherwise be equal, then return a result as if the second key 1004 ** were larger. 1005 */ 1006 struct KeyInfo { 1007 sqlite3 *db; /* The database connection */ 1008 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 1009 u8 incrKey; /* Increase 2nd key by epsilon before comparison */ 1010 u8 prefixIsEqual; /* Treat a prefix as equal */ 1011 int nField; /* Number of entries in aColl[] */ 1012 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 1013 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1014 }; 1015 1016 /* 1017 ** Each SQL index is represented in memory by an 1018 ** instance of the following structure. 1019 ** 1020 ** The columns of the table that are to be indexed are described 1021 ** by the aiColumn[] field of this structure. For example, suppose 1022 ** we have the following table and index: 1023 ** 1024 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1025 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1026 ** 1027 ** In the Table structure describing Ex1, nCol==3 because there are 1028 ** three columns in the table. In the Index structure describing 1029 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1030 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1031 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1032 ** The second column to be indexed (c1) has an index of 0 in 1033 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1034 ** 1035 ** The Index.onError field determines whether or not the indexed columns 1036 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1037 ** it means this is not a unique index. Otherwise it is a unique index 1038 ** and the value of Index.onError indicate the which conflict resolution 1039 ** algorithm to employ whenever an attempt is made to insert a non-unique 1040 ** element. 1041 */ 1042 struct Index { 1043 char *zName; /* Name of this index */ 1044 int nColumn; /* Number of columns in the table used by this index */ 1045 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1046 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1047 Table *pTable; /* The SQL table being indexed */ 1048 int tnum; /* Page containing root of this index in database file */ 1049 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1050 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1051 char *zColAff; /* String defining the affinity of each column */ 1052 Index *pNext; /* The next index associated with the same table */ 1053 Schema *pSchema; /* Schema containing this index */ 1054 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1055 char **azColl; /* Array of collation sequence names for index */ 1056 }; 1057 1058 /* 1059 ** Each token coming out of the lexer is an instance of 1060 ** this structure. Tokens are also used as part of an expression. 1061 ** 1062 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1063 ** may contain random values. Do not make any assuptions about Token.dyn 1064 ** and Token.n when Token.z==0. 1065 */ 1066 struct Token { 1067 const unsigned char *z; /* Text of the token. Not NULL-terminated! */ 1068 unsigned dyn : 1; /* True for malloced memory, false for static */ 1069 unsigned n : 31; /* Number of characters in this token */ 1070 }; 1071 1072 /* 1073 ** An instance of this structure contains information needed to generate 1074 ** code for a SELECT that contains aggregate functions. 1075 ** 1076 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1077 ** pointer to this structure. The Expr.iColumn field is the index in 1078 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1079 ** code for that node. 1080 ** 1081 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1082 ** original Select structure that describes the SELECT statement. These 1083 ** fields do not need to be freed when deallocating the AggInfo structure. 1084 */ 1085 struct AggInfo { 1086 u8 directMode; /* Direct rendering mode means take data directly 1087 ** from source tables rather than from accumulators */ 1088 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1089 ** than the source table */ 1090 int sortingIdx; /* Cursor number of the sorting index */ 1091 ExprList *pGroupBy; /* The group by clause */ 1092 int nSortingColumn; /* Number of columns in the sorting index */ 1093 struct AggInfo_col { /* For each column used in source tables */ 1094 Table *pTab; /* Source table */ 1095 int iTable; /* Cursor number of the source table */ 1096 int iColumn; /* Column number within the source table */ 1097 int iSorterColumn; /* Column number in the sorting index */ 1098 int iMem; /* Memory location that acts as accumulator */ 1099 Expr *pExpr; /* The original expression */ 1100 } *aCol; 1101 int nColumn; /* Number of used entries in aCol[] */ 1102 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1103 int nAccumulator; /* Number of columns that show through to the output. 1104 ** Additional columns are used only as parameters to 1105 ** aggregate functions */ 1106 struct AggInfo_func { /* For each aggregate function */ 1107 Expr *pExpr; /* Expression encoding the function */ 1108 FuncDef *pFunc; /* The aggregate function implementation */ 1109 int iMem; /* Memory location that acts as accumulator */ 1110 int iDistinct; /* Ephermeral table used to enforce DISTINCT */ 1111 } *aFunc; 1112 int nFunc; /* Number of entries in aFunc[] */ 1113 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1114 }; 1115 1116 /* 1117 ** Each node of an expression in the parse tree is an instance 1118 ** of this structure. 1119 ** 1120 ** Expr.op is the opcode. The integer parser token codes are reused 1121 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1122 ** code representing the ">=" operator. This same integer code is reused 1123 ** to represent the greater-than-or-equal-to operator in the expression 1124 ** tree. 1125 ** 1126 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 1127 ** of argument if the expression is a function. 1128 ** 1129 ** Expr.token is the operator token for this node. For some expressions 1130 ** that have subexpressions, Expr.token can be the complete text that gave 1131 ** rise to the Expr. In the latter case, the token is marked as being 1132 ** a compound token. 1133 ** 1134 ** An expression of the form ID or ID.ID refers to a column in a table. 1135 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1136 ** the integer cursor number of a VDBE cursor pointing to that table and 1137 ** Expr.iColumn is the column number for the specific column. If the 1138 ** expression is used as a result in an aggregate SELECT, then the 1139 ** value is also stored in the Expr.iAgg column in the aggregate so that 1140 ** it can be accessed after all aggregates are computed. 1141 ** 1142 ** If the expression is a function, the Expr.iTable is an integer code 1143 ** representing which function. If the expression is an unbound variable 1144 ** marker (a question mark character '?' in the original SQL) then the 1145 ** Expr.iTable holds the index number for that variable. 1146 ** 1147 ** If the expression is a subquery then Expr.iColumn holds an integer 1148 ** register number containing the result of the subquery. If the 1149 ** subquery gives a constant result, then iTable is -1. If the subquery 1150 ** gives a different answer at different times during statement processing 1151 ** then iTable is the address of a subroutine that computes the subquery. 1152 ** 1153 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 1154 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 1155 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 1156 ** operand. 1157 ** 1158 ** If the Expr is of type OP_Column, and the table it is selecting from 1159 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1160 ** corresponding table definition. 1161 */ 1162 struct Expr { 1163 u8 op; /* Operation performed by this node */ 1164 char affinity; /* The affinity of the column or 0 if not a column */ 1165 u16 flags; /* Various flags. See below */ 1166 CollSeq *pColl; /* The collation type of the column or 0 */ 1167 Expr *pLeft, *pRight; /* Left and right subnodes */ 1168 ExprList *pList; /* A list of expressions used as function arguments 1169 ** or in "<expr> IN (<expr-list)" */ 1170 Token token; /* An operand token */ 1171 Token span; /* Complete text of the expression */ 1172 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 1173 ** iColumn-th field of the iTable-th table. */ 1174 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1175 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1176 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1177 Select *pSelect; /* When the expression is a sub-select. Also the 1178 ** right side of "<expr> IN (<select>)" */ 1179 Table *pTab; /* Table for OP_Column expressions. */ 1180 #if SQLITE_MAX_EXPR_DEPTH>0 1181 int nHeight; /* Height of the tree headed by this node */ 1182 #endif 1183 }; 1184 1185 /* 1186 ** The following are the meanings of bits in the Expr.flags field. 1187 */ 1188 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1189 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1190 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1191 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1192 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1193 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1194 #define EP_Dequoted 0x0040 /* True if the string has been dequoted */ 1195 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1196 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1197 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */ 1198 #define EP_FixedDest 0x0400 /* Result needed in a specific register */ 1199 #define EP_IntValue 0x0800 /* Integer value contained in iTable */ 1200 /* 1201 ** These macros can be used to test, set, or clear bits in the 1202 ** Expr.flags field. 1203 */ 1204 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1205 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1206 #define ExprSetProperty(E,P) (E)->flags|=(P) 1207 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1208 1209 /* 1210 ** A list of expressions. Each expression may optionally have a 1211 ** name. An expr/name combination can be used in several ways, such 1212 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1213 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1214 ** also be used as the argument to a function, in which case the a.zName 1215 ** field is not used. 1216 */ 1217 struct ExprList { 1218 int nExpr; /* Number of expressions on the list */ 1219 int nAlloc; /* Number of entries allocated below */ 1220 int iECursor; /* VDBE Cursor associated with this ExprList */ 1221 struct ExprList_item { 1222 Expr *pExpr; /* The list of expressions */ 1223 char *zName; /* Token associated with this expression */ 1224 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1225 u8 isAgg; /* True if this is an aggregate like count(*) */ 1226 u8 done; /* A flag to indicate when processing is finished */ 1227 } *a; /* One entry for each expression */ 1228 }; 1229 1230 /* 1231 ** An instance of this structure can hold a simple list of identifiers, 1232 ** such as the list "a,b,c" in the following statements: 1233 ** 1234 ** INSERT INTO t(a,b,c) VALUES ...; 1235 ** CREATE INDEX idx ON t(a,b,c); 1236 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1237 ** 1238 ** The IdList.a.idx field is used when the IdList represents the list of 1239 ** column names after a table name in an INSERT statement. In the statement 1240 ** 1241 ** INSERT INTO t(a,b,c) ... 1242 ** 1243 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1244 */ 1245 struct IdList { 1246 struct IdList_item { 1247 char *zName; /* Name of the identifier */ 1248 int idx; /* Index in some Table.aCol[] of a column named zName */ 1249 } *a; 1250 int nId; /* Number of identifiers on the list */ 1251 int nAlloc; /* Number of entries allocated for a[] below */ 1252 }; 1253 1254 /* 1255 ** The bitmask datatype defined below is used for various optimizations. 1256 ** 1257 ** Changing this from a 64-bit to a 32-bit type limits the number of 1258 ** tables in a join to 32 instead of 64. But it also reduces the size 1259 ** of the library by 738 bytes on ix86. 1260 */ 1261 typedef u64 Bitmask; 1262 1263 /* 1264 ** The following structure describes the FROM clause of a SELECT statement. 1265 ** Each table or subquery in the FROM clause is a separate element of 1266 ** the SrcList.a[] array. 1267 ** 1268 ** With the addition of multiple database support, the following structure 1269 ** can also be used to describe a particular table such as the table that 1270 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1271 ** such a table must be a simple name: ID. But in SQLite, the table can 1272 ** now be identified by a database name, a dot, then the table name: ID.ID. 1273 ** 1274 ** The jointype starts out showing the join type between the current table 1275 ** and the next table on the list. The parser builds the list this way. 1276 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1277 ** jointype expresses the join between the table and the previous table. 1278 */ 1279 struct SrcList { 1280 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1281 i16 nAlloc; /* Number of entries allocated in a[] below */ 1282 struct SrcList_item { 1283 char *zDatabase; /* Name of database holding this table */ 1284 char *zName; /* Name of the table */ 1285 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1286 Table *pTab; /* An SQL table corresponding to zName */ 1287 Select *pSelect; /* A SELECT statement used in place of a table name */ 1288 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1289 u8 jointype; /* Type of join between this able and the previous */ 1290 int iCursor; /* The VDBE cursor number used to access this table */ 1291 Expr *pOn; /* The ON clause of a join */ 1292 IdList *pUsing; /* The USING clause of a join */ 1293 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ 1294 } a[1]; /* One entry for each identifier on the list */ 1295 }; 1296 1297 /* 1298 ** Permitted values of the SrcList.a.jointype field 1299 */ 1300 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1301 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1302 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1303 #define JT_LEFT 0x0008 /* Left outer join */ 1304 #define JT_RIGHT 0x0010 /* Right outer join */ 1305 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1306 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1307 1308 /* 1309 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1310 ** structure contains a single instance of this structure. This structure 1311 ** is intended to be private the the where.c module and should not be 1312 ** access or modified by other modules. 1313 ** 1314 ** The pIdxInfo and pBestIdx fields are used to help pick the best 1315 ** index on a virtual table. The pIdxInfo pointer contains indexing 1316 ** information for the i-th table in the FROM clause before reordering. 1317 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1318 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after 1319 ** FROM clause ordering. This is a little confusing so I will repeat 1320 ** it in different words. WhereInfo.a[i].pIdxInfo is index information 1321 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the 1322 ** index information for the i-th loop of the join. pBestInfo is always 1323 ** either NULL or a copy of some pIdxInfo. So for cleanup it is 1324 ** sufficient to free all of the pIdxInfo pointers. 1325 ** 1326 */ 1327 struct WhereLevel { 1328 int iFrom; /* Which entry in the FROM clause */ 1329 int flags; /* Flags associated with this level */ 1330 int iMem; /* First memory cell used by this level */ 1331 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1332 Index *pIdx; /* Index used. NULL if no index */ 1333 int iTabCur; /* The VDBE cursor used to access the table */ 1334 int iIdxCur; /* The VDBE cursor used to acesss pIdx */ 1335 int brk; /* Jump here to break out of the loop */ 1336 int nxt; /* Jump here to start the next IN combination */ 1337 int cont; /* Jump here to continue with the next loop cycle */ 1338 int top; /* First instruction of interior of the loop */ 1339 int op, p1, p2; /* Opcode used to terminate the loop */ 1340 int nEq; /* Number of == or IN constraints on this loop */ 1341 int nIn; /* Number of IN operators constraining this loop */ 1342 struct InLoop { 1343 int iCur; /* The VDBE cursor used by this IN operator */ 1344 int topAddr; /* Top of the IN loop */ 1345 } *aInLoop; /* Information about each nested IN operator */ 1346 sqlite3_index_info *pBestIdx; /* Index information for this level */ 1347 1348 /* The following field is really not part of the current level. But 1349 ** we need a place to cache index information for each table in the 1350 ** FROM clause and the WhereLevel structure is a convenient place. 1351 */ 1352 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1353 }; 1354 1355 /* 1356 ** Flags appropriate for the wflags parameter of sqlite3WhereBegin(). 1357 */ 1358 #define WHERE_ORDERBY_NORMAL 0 /* No-op */ 1359 #define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */ 1360 #define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */ 1361 #define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */ 1362 1363 /* 1364 ** The WHERE clause processing routine has two halves. The 1365 ** first part does the start of the WHERE loop and the second 1366 ** half does the tail of the WHERE loop. An instance of 1367 ** this structure is returned by the first half and passed 1368 ** into the second half to give some continuity. 1369 */ 1370 struct WhereInfo { 1371 Parse *pParse; /* Parsing and code generating context */ 1372 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1373 SrcList *pTabList; /* List of tables in the join */ 1374 int iTop; /* The very beginning of the WHERE loop */ 1375 int iContinue; /* Jump here to continue with next record */ 1376 int iBreak; /* Jump here to break out of the loop */ 1377 int nLevel; /* Number of nested loop */ 1378 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ 1379 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 1380 }; 1381 1382 /* 1383 ** A NameContext defines a context in which to resolve table and column 1384 ** names. The context consists of a list of tables (the pSrcList) field and 1385 ** a list of named expression (pEList). The named expression list may 1386 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1387 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1388 ** pEList corresponds to the result set of a SELECT and is NULL for 1389 ** other statements. 1390 ** 1391 ** NameContexts can be nested. When resolving names, the inner-most 1392 ** context is searched first. If no match is found, the next outer 1393 ** context is checked. If there is still no match, the next context 1394 ** is checked. This process continues until either a match is found 1395 ** or all contexts are check. When a match is found, the nRef member of 1396 ** the context containing the match is incremented. 1397 ** 1398 ** Each subquery gets a new NameContext. The pNext field points to the 1399 ** NameContext in the parent query. Thus the process of scanning the 1400 ** NameContext list corresponds to searching through successively outer 1401 ** subqueries looking for a match. 1402 */ 1403 struct NameContext { 1404 Parse *pParse; /* The parser */ 1405 SrcList *pSrcList; /* One or more tables used to resolve names */ 1406 ExprList *pEList; /* Optional list of named expressions */ 1407 int nRef; /* Number of names resolved by this context */ 1408 int nErr; /* Number of errors encountered while resolving names */ 1409 u8 allowAgg; /* Aggregate functions allowed here */ 1410 u8 hasAgg; /* True if aggregates are seen */ 1411 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1412 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1413 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1414 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1415 }; 1416 1417 /* 1418 ** An instance of the following structure contains all information 1419 ** needed to generate code for a single SELECT statement. 1420 ** 1421 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1422 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1423 ** limit and nOffset to the value of the offset (or 0 if there is not 1424 ** offset). But later on, nLimit and nOffset become the memory locations 1425 ** in the VDBE that record the limit and offset counters. 1426 ** 1427 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1428 ** These addresses must be stored so that we can go back and fill in 1429 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1430 ** the number of columns in P2 can be computed at the same time 1431 ** as the OP_OpenEphm instruction is coded because not 1432 ** enough information about the compound query is known at that point. 1433 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1434 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1435 ** sequences for the ORDER BY clause. 1436 */ 1437 struct Select { 1438 ExprList *pEList; /* The fields of the result */ 1439 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1440 u8 isDistinct; /* True if the DISTINCT keyword is present */ 1441 u8 isResolved; /* True once sqlite3SelectResolve() has run. */ 1442 u8 isAgg; /* True if this is an aggregate query */ 1443 u8 usesEphm; /* True if uses an OpenEphemeral opcode */ 1444 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ 1445 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1446 SrcList *pSrc; /* The FROM clause */ 1447 Expr *pWhere; /* The WHERE clause */ 1448 ExprList *pGroupBy; /* The GROUP BY clause */ 1449 Expr *pHaving; /* The HAVING clause */ 1450 ExprList *pOrderBy; /* The ORDER BY clause */ 1451 Select *pPrior; /* Prior select in a compound select statement */ 1452 Select *pNext; /* Next select to the left in a compound */ 1453 Select *pRightmost; /* Right-most select in a compound select statement */ 1454 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1455 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1456 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1457 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1458 }; 1459 1460 /* 1461 ** The results of a select can be distributed in several ways. 1462 */ 1463 #define SRT_Union 1 /* Store result as keys in an index */ 1464 #define SRT_Except 2 /* Remove result from a UNION index */ 1465 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 1466 #define SRT_Discard 4 /* Do not save the results anywhere */ 1467 1468 /* The ORDER BY clause is ignored for all of the above */ 1469 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 1470 1471 #define SRT_Callback 5 /* Invoke a callback with each row of result */ 1472 #define SRT_Mem 6 /* Store result in a memory cell */ 1473 #define SRT_Set 7 /* Store results as keys in an index */ 1474 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 1475 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 1476 #define SRT_Coroutine 10 /* Generate a single row of result */ 1477 1478 /* 1479 ** A structure used to customize the behaviour of sqlite3Select(). See 1480 ** comments above sqlite3Select() for details. 1481 */ 1482 typedef struct SelectDest SelectDest; 1483 struct SelectDest { 1484 u8 eDest; /* How to dispose of the results */ 1485 u8 affinity; /* Affinity used when eDest==SRT_Set */ 1486 int iParm; /* A parameter used by the eDest disposal method */ 1487 int iMem; /* Base register where results are written */ 1488 int nMem; /* Number of registers allocated */ 1489 }; 1490 1491 /* 1492 ** An SQL parser context. A copy of this structure is passed through 1493 ** the parser and down into all the parser action routine in order to 1494 ** carry around information that is global to the entire parse. 1495 ** 1496 ** The structure is divided into two parts. When the parser and code 1497 ** generate call themselves recursively, the first part of the structure 1498 ** is constant but the second part is reset at the beginning and end of 1499 ** each recursion. 1500 ** 1501 ** The nTableLock and aTableLock variables are only used if the shared-cache 1502 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 1503 ** used to store the set of table-locks required by the statement being 1504 ** compiled. Function sqlite3TableLock() is used to add entries to the 1505 ** list. 1506 */ 1507 struct Parse { 1508 sqlite3 *db; /* The main database structure */ 1509 int rc; /* Return code from execution */ 1510 char *zErrMsg; /* An error message */ 1511 Vdbe *pVdbe; /* An engine for executing database bytecode */ 1512 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 1513 u8 nameClash; /* A permanent table name clashes with temp table name */ 1514 u8 checkSchema; /* Causes schema cookie check after an error */ 1515 u8 nested; /* Number of nested calls to the parser/code generator */ 1516 u8 parseError; /* True after a parsing error. Ticket #1794 */ 1517 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 1518 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 1519 int aTempReg[8]; /* Holding area for temporary registers */ 1520 int nRangeReg; /* Size of the temporary register block */ 1521 int iRangeReg; /* First register in temporary register block */ 1522 int nErr; /* Number of errors seen */ 1523 int nTab; /* Number of previously allocated VDBE cursors */ 1524 int nMem; /* Number of memory cells used so far */ 1525 int nSet; /* Number of sets used so far */ 1526 int ckBase; /* Base register of data during check constraints */ 1527 int disableColCache; /* True to disable adding to column cache */ 1528 int nColCache; /* Number of entries in the column cache */ 1529 int iColCache; /* Next entry of the cache to replace */ 1530 struct yColCache { 1531 int iTable; /* Table cursor number */ 1532 int iColumn; /* Table column number */ 1533 char affChange; /* True if this register has had an affinity change */ 1534 int iReg; /* Register holding value of this column */ 1535 } aColCache[10]; /* One for each valid column cache entry */ 1536 u32 writeMask; /* Start a write transaction on these databases */ 1537 u32 cookieMask; /* Bitmask of schema verified databases */ 1538 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 1539 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 1540 #ifndef SQLITE_OMIT_SHARED_CACHE 1541 int nTableLock; /* Number of locks in aTableLock */ 1542 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 1543 #endif 1544 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 1545 int regRoot; /* Register holding root page number for new objects */ 1546 1547 /* Above is constant between recursions. Below is reset before and after 1548 ** each recursion */ 1549 1550 int nVar; /* Number of '?' variables seen in the SQL so far */ 1551 int nVarExpr; /* Number of used slots in apVarExpr[] */ 1552 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 1553 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 1554 u8 explain; /* True if the EXPLAIN flag is found on the query */ 1555 Token sErrToken; /* The token at which the error occurred */ 1556 Token sNameToken; /* Token with unqualified schema object name */ 1557 Token sLastToken; /* The last token parsed */ 1558 const char *zSql; /* All SQL text */ 1559 const char *zTail; /* All SQL text past the last semicolon parsed */ 1560 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 1561 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 1562 TriggerStack *trigStack; /* Trigger actions being coded */ 1563 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 1564 #ifndef SQLITE_OMIT_VIRTUALTABLE 1565 Token sArg; /* Complete text of a module argument */ 1566 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 1567 int nVtabLock; /* Number of virtual tables to lock */ 1568 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 1569 #endif 1570 int nHeight; /* Expression tree height of current sub-select */ 1571 }; 1572 1573 #ifdef SQLITE_OMIT_VIRTUALTABLE 1574 #define IN_DECLARE_VTAB 0 1575 #else 1576 #define IN_DECLARE_VTAB (pParse->declareVtab) 1577 #endif 1578 1579 /* 1580 ** An instance of the following structure can be declared on a stack and used 1581 ** to save the Parse.zAuthContext value so that it can be restored later. 1582 */ 1583 struct AuthContext { 1584 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 1585 Parse *pParse; /* The Parse structure */ 1586 }; 1587 1588 /* 1589 ** Bitfield flags for P2 value in OP_Insert and OP_Delete 1590 */ 1591 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 1592 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 1593 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ 1594 #define OPFLAG_APPEND 8 /* This is likely to be an append */ 1595 1596 /* 1597 * Each trigger present in the database schema is stored as an instance of 1598 * struct Trigger. 1599 * 1600 * Pointers to instances of struct Trigger are stored in two ways. 1601 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 1602 * database). This allows Trigger structures to be retrieved by name. 1603 * 2. All triggers associated with a single table form a linked list, using the 1604 * pNext member of struct Trigger. A pointer to the first element of the 1605 * linked list is stored as the "pTrigger" member of the associated 1606 * struct Table. 1607 * 1608 * The "step_list" member points to the first element of a linked list 1609 * containing the SQL statements specified as the trigger program. 1610 */ 1611 struct Trigger { 1612 char *name; /* The name of the trigger */ 1613 char *table; /* The table or view to which the trigger applies */ 1614 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 1615 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 1616 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 1617 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 1618 the <column-list> is stored here */ 1619 Token nameToken; /* Token containing zName. Use during parsing only */ 1620 Schema *pSchema; /* Schema containing the trigger */ 1621 Schema *pTabSchema; /* Schema containing the table */ 1622 TriggerStep *step_list; /* Link list of trigger program steps */ 1623 Trigger *pNext; /* Next trigger associated with the table */ 1624 }; 1625 1626 /* 1627 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 1628 ** determine which. 1629 ** 1630 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 1631 ** In that cases, the constants below can be ORed together. 1632 */ 1633 #define TRIGGER_BEFORE 1 1634 #define TRIGGER_AFTER 2 1635 1636 /* 1637 * An instance of struct TriggerStep is used to store a single SQL statement 1638 * that is a part of a trigger-program. 1639 * 1640 * Instances of struct TriggerStep are stored in a singly linked list (linked 1641 * using the "pNext" member) referenced by the "step_list" member of the 1642 * associated struct Trigger instance. The first element of the linked list is 1643 * the first step of the trigger-program. 1644 * 1645 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 1646 * "SELECT" statement. The meanings of the other members is determined by the 1647 * value of "op" as follows: 1648 * 1649 * (op == TK_INSERT) 1650 * orconf -> stores the ON CONFLICT algorithm 1651 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1652 * this stores a pointer to the SELECT statement. Otherwise NULL. 1653 * target -> A token holding the name of the table to insert into. 1654 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1655 * this stores values to be inserted. Otherwise NULL. 1656 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1657 * statement, then this stores the column-names to be 1658 * inserted into. 1659 * 1660 * (op == TK_DELETE) 1661 * target -> A token holding the name of the table to delete from. 1662 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1663 * Otherwise NULL. 1664 * 1665 * (op == TK_UPDATE) 1666 * target -> A token holding the name of the table to update rows of. 1667 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1668 * Otherwise NULL. 1669 * pExprList -> A list of the columns to update and the expressions to update 1670 * them to. See sqlite3Update() documentation of "pChanges" 1671 * argument. 1672 * 1673 */ 1674 struct TriggerStep { 1675 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1676 int orconf; /* OE_Rollback etc. */ 1677 Trigger *pTrig; /* The trigger that this step is a part of */ 1678 1679 Select *pSelect; /* Valid for SELECT and sometimes 1680 INSERT steps (when pExprList == 0) */ 1681 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1682 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1683 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1684 INSERT steps (when pSelect == 0) */ 1685 IdList *pIdList; /* Valid for INSERT statements only */ 1686 TriggerStep *pNext; /* Next in the link-list */ 1687 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 1688 }; 1689 1690 /* 1691 * An instance of struct TriggerStack stores information required during code 1692 * generation of a single trigger program. While the trigger program is being 1693 * coded, its associated TriggerStack instance is pointed to by the 1694 * "pTriggerStack" member of the Parse structure. 1695 * 1696 * The pTab member points to the table that triggers are being coded on. The 1697 * newIdx member contains the index of the vdbe cursor that points at the temp 1698 * table that stores the new.* references. If new.* references are not valid 1699 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1700 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1701 * 1702 * The ON CONFLICT policy to be used for the trigger program steps is stored 1703 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1704 * specified for individual triggers steps is used. 1705 * 1706 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1707 * constructed. When coding nested triggers (triggers fired by other triggers) 1708 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1709 * pointer. Once the nested trigger has been coded, the pNext value is restored 1710 * to the pTriggerStack member of the Parse stucture and coding of the parent 1711 * trigger continues. 1712 * 1713 * Before a nested trigger is coded, the linked list pointed to by the 1714 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1715 * recursively. If this condition is detected, the nested trigger is not coded. 1716 */ 1717 struct TriggerStack { 1718 Table *pTab; /* Table that triggers are currently being coded on */ 1719 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1720 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1721 u32 newColMask; 1722 u32 oldColMask; 1723 int orconf; /* Current orconf policy */ 1724 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1725 Trigger *pTrigger; /* The trigger currently being coded */ 1726 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1727 }; 1728 1729 /* 1730 ** The following structure contains information used by the sqliteFix... 1731 ** routines as they walk the parse tree to make database references 1732 ** explicit. 1733 */ 1734 typedef struct DbFixer DbFixer; 1735 struct DbFixer { 1736 Parse *pParse; /* The parsing context. Error messages written here */ 1737 const char *zDb; /* Make sure all objects are contained in this database */ 1738 const char *zType; /* Type of the container - used for error messages */ 1739 const Token *pName; /* Name of the container - used for error messages */ 1740 }; 1741 1742 /* 1743 ** An objected used to accumulate the text of a string where we 1744 ** do not necessarily know how big the string will be in the end. 1745 */ 1746 struct StrAccum { 1747 char *zBase; /* A base allocation. Not from malloc. */ 1748 char *zText; /* The string collected so far */ 1749 int nChar; /* Length of the string so far */ 1750 int nAlloc; /* Amount of space allocated in zText */ 1751 int mxAlloc; /* Maximum allowed string length */ 1752 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 1753 u8 useMalloc; /* True if zText is enlargable using realloc */ 1754 u8 tooBig; /* Becomes true if string size exceeds limits */ 1755 }; 1756 1757 /* 1758 ** A pointer to this structure is used to communicate information 1759 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 1760 */ 1761 typedef struct { 1762 sqlite3 *db; /* The database being initialized */ 1763 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 1764 char **pzErrMsg; /* Error message stored here */ 1765 int rc; /* Result code stored here */ 1766 } InitData; 1767 1768 /* 1769 ** Structure containing global configuration data for the SQLite library. 1770 ** 1771 ** This structure also contains some state information. 1772 */ 1773 struct Sqlite3Config { 1774 int bMemstat; /* True to enable memory status */ 1775 int bCoreMutex; /* True to enable core mutexing */ 1776 int bFullMutex; /* True to enable full mutexing */ 1777 int mxStrlen; /* Maximum string length */ 1778 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 1779 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 1780 void *pHeap; /* Heap storage space */ 1781 int nHeap; /* Size of pHeap[] */ 1782 int mnReq, mxReq; /* Min and max heap requests sizes */ 1783 void *pScratch; /* Scratch memory */ 1784 int szScratch; /* Size of each scratch buffer */ 1785 int nScratch; /* Number of scratch buffers */ 1786 void *pPage; /* Page cache memory */ 1787 int szPage; /* Size of each page in pPage[] */ 1788 int nPage; /* Number of pages in pPage[] */ 1789 int isInit; /* True after initialization has finished */ 1790 int isMallocInit; /* True after malloc is initialized */ 1791 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 1792 }; 1793 1794 /* 1795 ** Assuming zIn points to the first byte of a UTF-8 character, 1796 ** advance zIn to point to the first byte of the next UTF-8 character. 1797 */ 1798 #define SQLITE_SKIP_UTF8(zIn) { \ 1799 if( (*(zIn++))>=0xc0 ){ \ 1800 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 1801 } \ 1802 } 1803 1804 /* 1805 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 1806 ** builds) or a function call (for debugging). If it is a function call, 1807 ** it allows the operator to set a breakpoint at the spot where database 1808 ** corruption is first detected. 1809 */ 1810 #ifdef SQLITE_DEBUG 1811 int sqlite3Corrupt(void); 1812 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 1813 #else 1814 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 1815 #endif 1816 1817 /* 1818 ** Internal function prototypes 1819 */ 1820 int sqlite3StrICmp(const char *, const char *); 1821 int sqlite3StrNICmp(const char *, const char *, int); 1822 int sqlite3IsNumber(const char*, int*, u8); 1823 int sqlite3Strlen(sqlite3*, const char*); 1824 1825 int sqlite3MallocInit(void); 1826 void sqlite3MallocEnd(void); 1827 void *sqlite3Malloc(int); 1828 void *sqlite3MallocZero(int); 1829 void *sqlite3DbMallocZero(sqlite3*, int); 1830 void *sqlite3DbMallocRaw(sqlite3*, int); 1831 char *sqlite3StrDup(const char*); 1832 char *sqlite3StrNDup(const char*, int); 1833 char *sqlite3DbStrDup(sqlite3*,const char*); 1834 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 1835 void *sqlite3Realloc(void*, int); 1836 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 1837 void *sqlite3DbRealloc(sqlite3 *, void *, int); 1838 int sqlite3MallocSize(void *); 1839 void *sqlite3ScratchMalloc(int); 1840 void sqlite3ScratchFree(void*); 1841 void *sqlite3PageMalloc(int); 1842 void sqlite3PageFree(void*); 1843 void sqlite3MemSetDefault(void); 1844 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 1845 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 1846 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 1847 1848 #ifndef SQLITE_MUTEX_NOOP 1849 sqlite3_mutex_methods *sqlite3DefaultMutex(void); 1850 sqlite3_mutex *sqlite3MutexAlloc(int); 1851 int sqlite3MutexInit(void); 1852 int sqlite3MutexEnd(void); 1853 #endif 1854 1855 void sqlite3StatusReset(void); 1856 int sqlite3StatusValue(int); 1857 void sqlite3StatusAdd(int, int); 1858 void sqlite3StatusSet(int, int); 1859 1860 int sqlite3IsNaN(double); 1861 1862 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 1863 char *sqlite3MPrintf(sqlite3*,const char*, ...); 1864 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 1865 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 1866 void sqlite3DebugPrintf(const char*, ...); 1867 #endif 1868 #if defined(SQLITE_TEST) 1869 void *sqlite3TestTextToPtr(const char*); 1870 #endif 1871 void sqlite3SetString(char **, sqlite3*, const char*, ...); 1872 void sqlite3ErrorMsg(Parse*, const char*, ...); 1873 void sqlite3ErrorClear(Parse*); 1874 void sqlite3Dequote(char*); 1875 void sqlite3DequoteExpr(sqlite3*, Expr*); 1876 int sqlite3KeywordCode(const unsigned char*, int); 1877 int sqlite3RunParser(Parse*, const char*, char **); 1878 void sqlite3FinishCoding(Parse*); 1879 int sqlite3GetTempReg(Parse*); 1880 void sqlite3ReleaseTempReg(Parse*,int); 1881 int sqlite3GetTempRange(Parse*,int); 1882 void sqlite3ReleaseTempRange(Parse*,int,int); 1883 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); 1884 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 1885 Expr *sqlite3RegisterExpr(Parse*,Token*); 1886 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 1887 void sqlite3ExprSpan(Expr*,Token*,Token*); 1888 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 1889 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 1890 void sqlite3ExprDelete(Expr*); 1891 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); 1892 void sqlite3ExprListDelete(ExprList*); 1893 int sqlite3Init(sqlite3*, char**); 1894 int sqlite3InitCallback(void*, int, char**, char**); 1895 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 1896 void sqlite3ResetInternalSchema(sqlite3*, int); 1897 void sqlite3BeginParse(Parse*,int); 1898 void sqlite3CommitInternalChanges(sqlite3*); 1899 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); 1900 void sqlite3OpenMasterTable(Parse *, int); 1901 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 1902 void sqlite3AddColumn(Parse*,Token*); 1903 void sqlite3AddNotNull(Parse*, int); 1904 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 1905 void sqlite3AddCheckConstraint(Parse*, Expr*); 1906 void sqlite3AddColumnType(Parse*,Token*); 1907 void sqlite3AddDefaultValue(Parse*,Expr*); 1908 void sqlite3AddCollateType(Parse*, Token*); 1909 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 1910 1911 Bitvec *sqlite3BitvecCreate(u32); 1912 int sqlite3BitvecTest(Bitvec*, u32); 1913 int sqlite3BitvecSet(Bitvec*, u32); 1914 void sqlite3BitvecClear(Bitvec*, u32); 1915 void sqlite3BitvecDestroy(Bitvec*); 1916 int sqlite3BitvecBuiltinTest(int,int*); 1917 1918 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 1919 1920 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1921 int sqlite3ViewGetColumnNames(Parse*,Table*); 1922 #else 1923 # define sqlite3ViewGetColumnNames(A,B) 0 1924 #endif 1925 1926 void sqlite3DropTable(Parse*, SrcList*, int, int); 1927 void sqlite3DeleteTable(Table*); 1928 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1929 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 1930 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 1931 int sqlite3IdListIndex(IdList*,const char*); 1932 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 1933 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, 1934 Select*, Expr*, IdList*); 1935 void sqlite3SrcListShiftJoinType(SrcList*); 1936 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 1937 void sqlite3IdListDelete(IdList*); 1938 void sqlite3SrcListDelete(SrcList*); 1939 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 1940 Token*, int, int); 1941 void sqlite3DropIndex(Parse*, SrcList*, int); 1942 int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*); 1943 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 1944 Expr*,ExprList*,int,Expr*,Expr*); 1945 void sqlite3SelectDelete(Select*); 1946 Table *sqlite3SrcListLookup(Parse*, SrcList*); 1947 int sqlite3IsReadOnly(Parse*, Table*, int); 1948 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 1949 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 1950 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 1951 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8); 1952 void sqlite3WhereEnd(WhereInfo*); 1953 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int); 1954 void sqlite3ExprCodeMove(Parse*, int, int, int); 1955 void sqlite3ExprCodeCopy(Parse*, int, int, int); 1956 void sqlite3ExprClearColumnCache(Parse*, int); 1957 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 1958 int sqlite3ExprWritableRegister(Parse*,int,int); 1959 void sqlite3ExprHardCopy(Parse*,int,int); 1960 int sqlite3ExprCode(Parse*, Expr*, int); 1961 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 1962 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 1963 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 1964 void sqlite3ExprCodeConstants(Parse*, Expr*); 1965 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 1966 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 1967 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 1968 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 1969 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 1970 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 1971 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 1972 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 1973 void sqlite3Vacuum(Parse*); 1974 int sqlite3RunVacuum(char**, sqlite3*); 1975 char *sqlite3NameFromToken(sqlite3*, Token*); 1976 int sqlite3ExprCompare(Expr*, Expr*); 1977 int sqlite3ExprResolveNames(NameContext *, Expr *); 1978 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 1979 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 1980 Vdbe *sqlite3GetVdbe(Parse*); 1981 Expr *sqlite3CreateIdExpr(Parse *, const char*); 1982 void sqlite3PrngSaveState(void); 1983 void sqlite3PrngRestoreState(void); 1984 void sqlite3PrngResetState(void); 1985 void sqlite3RollbackAll(sqlite3*); 1986 void sqlite3CodeVerifySchema(Parse*, int); 1987 void sqlite3BeginTransaction(Parse*, int); 1988 void sqlite3CommitTransaction(Parse*); 1989 void sqlite3RollbackTransaction(Parse*); 1990 int sqlite3ExprIsConstant(Expr*); 1991 int sqlite3ExprIsConstantNotJoin(Expr*); 1992 int sqlite3ExprIsConstantOrFunction(Expr*); 1993 int sqlite3ExprIsInteger(Expr*, int*); 1994 int sqlite3IsRowid(const char*); 1995 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int); 1996 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 1997 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 1998 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 1999 int*,int,int,int,int); 2000 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int); 2001 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2002 void sqlite3BeginWriteOperation(Parse*, int, int); 2003 Expr *sqlite3ExprDup(sqlite3*,Expr*); 2004 void sqlite3TokenCopy(sqlite3*,Token*, Token*); 2005 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); 2006 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); 2007 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2008 Select *sqlite3SelectDup(sqlite3*,Select*); 2009 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2010 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2011 void sqlite3RegisterDateTimeFunctions(sqlite3*); 2012 #ifdef SQLITE_DEBUG 2013 int sqlite3SafetyOn(sqlite3*); 2014 int sqlite3SafetyOff(sqlite3*); 2015 #else 2016 # define sqlite3SafetyOn(A) 0 2017 # define sqlite3SafetyOff(A) 0 2018 #endif 2019 int sqlite3SafetyCheckOk(sqlite3*); 2020 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2021 void sqlite3ChangeCookie(Parse*, int); 2022 void sqlite3MaterializeView(Parse*, Select*, Expr*, int); 2023 2024 #ifndef SQLITE_OMIT_TRIGGER 2025 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2026 Expr*,int, int); 2027 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2028 void sqlite3DropTrigger(Parse*, SrcList*, int); 2029 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2030 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); 2031 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 2032 int, int, u32*, u32*); 2033 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2034 void sqlite3DeleteTriggerStep(TriggerStep*); 2035 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2036 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2037 ExprList*,Select*,int); 2038 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); 2039 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2040 void sqlite3DeleteTrigger(Trigger*); 2041 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2042 #else 2043 # define sqlite3TriggersExist(A,B,C,D,E,F) 0 2044 # define sqlite3DeleteTrigger(A) 2045 # define sqlite3DropTriggerPtr(A,B) 2046 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2047 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0 2048 #endif 2049 2050 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2051 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2052 void sqlite3DeferForeignKey(Parse*, int); 2053 #ifndef SQLITE_OMIT_AUTHORIZATION 2054 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2055 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2056 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2057 void sqlite3AuthContextPop(AuthContext*); 2058 #else 2059 # define sqlite3AuthRead(a,b,c,d) 2060 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2061 # define sqlite3AuthContextPush(a,b,c) 2062 # define sqlite3AuthContextPop(a) ((void)(a)) 2063 #endif 2064 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2065 void sqlite3Detach(Parse*, Expr*); 2066 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, 2067 int omitJournal, int nCache, int flags, Btree **ppBtree); 2068 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2069 int sqlite3FixSrcList(DbFixer*, SrcList*); 2070 int sqlite3FixSelect(DbFixer*, Select*); 2071 int sqlite3FixExpr(DbFixer*, Expr*); 2072 int sqlite3FixExprList(DbFixer*, ExprList*); 2073 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2074 int sqlite3AtoF(const char *z, double*); 2075 char *sqlite3_snprintf(int,char*,const char*,...); 2076 int sqlite3GetInt32(const char *, int*); 2077 int sqlite3FitsIn64Bits(const char *, int); 2078 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2079 int sqlite3Utf8CharLen(const char *pData, int nByte); 2080 int sqlite3Utf8Read(const u8*, const u8*, const u8**); 2081 2082 /* 2083 ** Routines to read and write variable-length integers. These used to 2084 ** be defined locally, but now we use the varint routines in the util.c 2085 ** file. Code should use the MACRO forms below, as the Varint32 versions 2086 ** are coded to assume the single byte case is already handled (which 2087 ** the MACRO form does). 2088 */ 2089 int sqlite3PutVarint(unsigned char*, u64); 2090 int sqlite3PutVarint32(unsigned char*, u32); 2091 int sqlite3GetVarint(const unsigned char *, u64 *); 2092 int sqlite3GetVarint32(const unsigned char *, u32 *); 2093 int sqlite3VarintLen(u64 v); 2094 2095 /* 2096 ** The header of a record consists of a sequence variable-length integers. 2097 ** These integers are almost always small and are encoded as a single byte. 2098 ** The following macros take advantage this fact to provide a fast encode 2099 ** and decode of the integers in a record header. It is faster for the common 2100 ** case where the integer is a single byte. It is a little slower when the 2101 ** integer is two or more bytes. But overall it is faster. 2102 ** 2103 ** The following expressions are equivalent: 2104 ** 2105 ** x = sqlite3GetVarint32( A, &B ); 2106 ** x = sqlite3PutVarint32( A, B ); 2107 ** 2108 ** x = getVarint32( A, B ); 2109 ** x = putVarint32( A, B ); 2110 ** 2111 */ 2112 #define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B))) 2113 #define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2114 #define getVarint sqlite3GetVarint 2115 #define putVarint sqlite3PutVarint 2116 2117 2118 void sqlite3IndexAffinityStr(Vdbe *, Index *); 2119 void sqlite3TableAffinityStr(Vdbe *, Table *); 2120 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2121 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2122 char sqlite3ExprAffinity(Expr *pExpr); 2123 int sqlite3Atoi64(const char*, i64*); 2124 void sqlite3Error(sqlite3*, int, const char*,...); 2125 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2126 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2127 const char *sqlite3ErrStr(int); 2128 int sqlite3ReadSchema(Parse *pParse); 2129 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); 2130 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); 2131 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2132 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 2133 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2134 int sqlite3CheckObjectName(Parse *, const char *); 2135 void sqlite3VdbeSetChanges(sqlite3 *, int); 2136 2137 const void *sqlite3ValueText(sqlite3_value*, u8); 2138 int sqlite3ValueBytes(sqlite3_value*, u8); 2139 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2140 void(*)(void*)); 2141 void sqlite3ValueFree(sqlite3_value*); 2142 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2143 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 2144 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2145 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2146 #ifndef SQLITE_AMALGAMATION 2147 extern const unsigned char sqlite3UpperToLower[]; 2148 extern struct Sqlite3Config sqlite3Config; 2149 #endif 2150 void sqlite3RootPageMoved(Db*, int, int); 2151 void sqlite3Reindex(Parse*, Token*, Token*); 2152 void sqlite3AlterFunctions(sqlite3*); 2153 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2154 int sqlite3GetToken(const unsigned char *, int *); 2155 void sqlite3NestedParse(Parse*, const char*, ...); 2156 void sqlite3ExpirePreparedStatements(sqlite3*); 2157 void sqlite3CodeSubselect(Parse *, Expr *, int); 2158 int sqlite3SelectResolve(Parse *, Select *, NameContext *); 2159 void sqlite3ColumnDefault(Vdbe *, Table *, int); 2160 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2161 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2162 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); 2163 char sqlite3AffinityType(const Token*); 2164 void sqlite3Analyze(Parse*, Token*, Token*); 2165 int sqlite3InvokeBusyHandler(BusyHandler*); 2166 int sqlite3FindDb(sqlite3*, Token*); 2167 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2168 void sqlite3DefaultRowEst(Index*); 2169 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2170 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2171 void sqlite3AttachFunctions(sqlite3 *); 2172 void sqlite3MinimumFileFormat(Parse*, int, int); 2173 void sqlite3SchemaFree(void *); 2174 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2175 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2176 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2177 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2178 void (*)(sqlite3_context*,int,sqlite3_value **), 2179 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 2180 int sqlite3ApiExit(sqlite3 *db, int); 2181 int sqlite3OpenTempDatabase(Parse *); 2182 2183 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2184 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2185 char *sqlite3StrAccumFinish(StrAccum*); 2186 void sqlite3StrAccumReset(StrAccum*); 2187 void sqlite3SelectDestInit(SelectDest*,int,int); 2188 2189 /* 2190 ** The interface to the LEMON-generated parser 2191 */ 2192 void *sqlite3ParserAlloc(void*(*)(size_t)); 2193 void sqlite3ParserFree(void*, void(*)(void*)); 2194 void sqlite3Parser(void*, int, Token, Parse*); 2195 2196 int sqlite3AutoLoadExtensions(sqlite3*); 2197 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2198 void sqlite3CloseExtensions(sqlite3*); 2199 #else 2200 # define sqlite3CloseExtensions(X) 2201 #endif 2202 2203 #ifndef SQLITE_OMIT_SHARED_CACHE 2204 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2205 #else 2206 #define sqlite3TableLock(v,w,x,y,z) 2207 #endif 2208 2209 #ifdef SQLITE_TEST 2210 int sqlite3Utf8To8(unsigned char*); 2211 #endif 2212 2213 #ifdef SQLITE_OMIT_VIRTUALTABLE 2214 # define sqlite3VtabClear(X) 2215 # define sqlite3VtabSync(X,Y) (Y) 2216 # define sqlite3VtabRollback(X) 2217 # define sqlite3VtabCommit(X) 2218 #else 2219 void sqlite3VtabClear(Table*); 2220 int sqlite3VtabSync(sqlite3 *db, int rc); 2221 int sqlite3VtabRollback(sqlite3 *db); 2222 int sqlite3VtabCommit(sqlite3 *db); 2223 #endif 2224 void sqlite3VtabMakeWritable(Parse*,Table*); 2225 void sqlite3VtabLock(sqlite3_vtab*); 2226 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); 2227 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 2228 void sqlite3VtabFinishParse(Parse*, Token*); 2229 void sqlite3VtabArgInit(Parse*); 2230 void sqlite3VtabArgExtend(Parse*, Token*); 2231 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 2232 int sqlite3VtabCallConnect(Parse*, Table*); 2233 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 2234 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); 2235 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 2236 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 2237 int sqlite3Reprepare(Vdbe*); 2238 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 2239 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 2240 2241 2242 /* 2243 ** Available fault injectors. Should be numbered beginning with 0. 2244 */ 2245 #define SQLITE_FAULTINJECTOR_MALLOC 0 2246 #define SQLITE_FAULTINJECTOR_COUNT 1 2247 2248 /* 2249 ** The interface to the code in fault.c used for identifying "benign" 2250 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 2251 ** is not defined. 2252 */ 2253 #ifndef SQLITE_OMIT_BUILTIN_TEST 2254 void sqlite3BeginBenignMalloc(void); 2255 void sqlite3EndBenignMalloc(void); 2256 #else 2257 #define sqlite3BeginBenignMalloc() 2258 #define sqlite3EndBenignMalloc() 2259 #endif 2260 2261 #define IN_INDEX_ROWID 1 2262 #define IN_INDEX_EPH 2 2263 #define IN_INDEX_INDEX 3 2264 int sqlite3FindInIndex(Parse *, Expr *, int*); 2265 2266 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 2267 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 2268 int sqlite3JournalSize(sqlite3_vfs *); 2269 int sqlite3JournalCreate(sqlite3_file *); 2270 #else 2271 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 2272 #endif 2273 2274 #if SQLITE_MAX_EXPR_DEPTH>0 2275 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 2276 int sqlite3SelectExprHeight(Select *); 2277 #else 2278 #define sqlite3ExprSetHeight(x,y) 2279 #define sqlite3SelectExprHeight(x) 0 2280 #endif 2281 2282 u32 sqlite3Get4byte(const u8*); 2283 void sqlite3Put4byte(u8*, u32); 2284 2285 #ifdef SQLITE_SSE 2286 #include "sseInt.h" 2287 #endif 2288 2289 #ifdef SQLITE_DEBUG 2290 void sqlite3ParserTrace(FILE*, char *); 2291 #endif 2292 2293 /* 2294 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 2295 ** sqlite3IoTrace is a pointer to a printf-like routine used to 2296 ** print I/O tracing messages. 2297 */ 2298 #ifdef SQLITE_ENABLE_IOTRACE 2299 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 2300 void sqlite3VdbeIOTraceSql(Vdbe*); 2301 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 2302 #else 2303 # define IOTRACE(A) 2304 # define sqlite3VdbeIOTraceSql(X) 2305 #endif 2306 2307 #endif 2308