1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* What version of GCC is being used. 0 means GCC is not being used */ 64 #ifdef __GNUC__ 65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 66 #else 67 # define GCC_VERSION 0 68 #endif 69 70 /* Needed for various definitions... */ 71 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 72 # define _GNU_SOURCE 73 #endif 74 75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 76 # define _BSD_SOURCE 77 #endif 78 79 /* 80 ** For MinGW, check to see if we can include the header file containing its 81 ** version information, among other things. Normally, this internal MinGW 82 ** header file would [only] be included automatically by other MinGW header 83 ** files; however, the contained version information is now required by this 84 ** header file to work around binary compatibility issues (see below) and 85 ** this is the only known way to reliably obtain it. This entire #if block 86 ** would be completely unnecessary if there was any other way of detecting 87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 88 ** some MinGW-specific macros). When compiling for MinGW, either the 89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 90 ** defined; otherwise, detection of conditions specific to MinGW will be 91 ** disabled. 92 */ 93 #if defined(_HAVE_MINGW_H) 94 # include "mingw.h" 95 #elif defined(_HAVE__MINGW_H) 96 # include "_mingw.h" 97 #endif 98 99 /* 100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 101 ** define is required to maintain binary compatibility with the MSVC runtime 102 ** library in use (e.g. for Windows XP). 103 */ 104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 105 defined(_WIN32) && !defined(_WIN64) && \ 106 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 107 defined(__MSVCRT__) 108 # define _USE_32BIT_TIME_T 109 #endif 110 111 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 112 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 113 ** MinGW. 114 */ 115 #include "sqlite3.h" 116 117 /* 118 ** Include the configuration header output by 'configure' if we're using the 119 ** autoconf-based build 120 */ 121 #ifdef _HAVE_SQLITE_CONFIG_H 122 #include "config.h" 123 #endif 124 125 #include "sqliteLimit.h" 126 127 /* Disable nuisance warnings on Borland compilers */ 128 #if defined(__BORLANDC__) 129 #pragma warn -rch /* unreachable code */ 130 #pragma warn -ccc /* Condition is always true or false */ 131 #pragma warn -aus /* Assigned value is never used */ 132 #pragma warn -csu /* Comparing signed and unsigned */ 133 #pragma warn -spa /* Suspicious pointer arithmetic */ 134 #endif 135 136 /* 137 ** Include standard header files as necessary 138 */ 139 #ifdef HAVE_STDINT_H 140 #include <stdint.h> 141 #endif 142 #ifdef HAVE_INTTYPES_H 143 #include <inttypes.h> 144 #endif 145 146 /* 147 ** The following macros are used to cast pointers to integers and 148 ** integers to pointers. The way you do this varies from one compiler 149 ** to the next, so we have developed the following set of #if statements 150 ** to generate appropriate macros for a wide range of compilers. 151 ** 152 ** The correct "ANSI" way to do this is to use the intptr_t type. 153 ** Unfortunately, that typedef is not available on all compilers, or 154 ** if it is available, it requires an #include of specific headers 155 ** that vary from one machine to the next. 156 ** 157 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 158 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 159 ** So we have to define the macros in different ways depending on the 160 ** compiler. 161 */ 162 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 163 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 164 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 165 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 166 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 167 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 168 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 169 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 170 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 171 #else /* Generates a warning - but it always works */ 172 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 173 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 174 #endif 175 176 /* 177 ** A macro to hint to the compiler that a function should not be 178 ** inlined. 179 */ 180 #if defined(__GNUC__) 181 # define SQLITE_NOINLINE __attribute__((noinline)) 182 #elif defined(_MSC_VER) && _MSC_VER>=1310 183 # define SQLITE_NOINLINE __declspec(noinline) 184 #else 185 # define SQLITE_NOINLINE 186 #endif 187 188 /* 189 ** Make sure that the compiler intrinsics we desire are enabled when 190 ** compiling with an appropriate version of MSVC. 191 */ 192 #if defined(_MSC_VER) && _MSC_VER>=1300 193 # include <intrin.h> 194 # pragma intrinsic(_byteswap_ushort) 195 # pragma intrinsic(_byteswap_ulong) 196 #endif 197 198 /* 199 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 200 ** 0 means mutexes are permanently disable and the library is never 201 ** threadsafe. 1 means the library is serialized which is the highest 202 ** level of threadsafety. 2 means the library is multithreaded - multiple 203 ** threads can use SQLite as long as no two threads try to use the same 204 ** database connection at the same time. 205 ** 206 ** Older versions of SQLite used an optional THREADSAFE macro. 207 ** We support that for legacy. 208 */ 209 #if !defined(SQLITE_THREADSAFE) 210 # if defined(THREADSAFE) 211 # define SQLITE_THREADSAFE THREADSAFE 212 # else 213 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 214 # endif 215 #endif 216 217 /* 218 ** Powersafe overwrite is on by default. But can be turned off using 219 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 220 */ 221 #ifndef SQLITE_POWERSAFE_OVERWRITE 222 # define SQLITE_POWERSAFE_OVERWRITE 1 223 #endif 224 225 /* 226 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 227 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 228 ** which case memory allocation statistics are disabled by default. 229 */ 230 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 231 # define SQLITE_DEFAULT_MEMSTATUS 1 232 #endif 233 234 /* 235 ** Exactly one of the following macros must be defined in order to 236 ** specify which memory allocation subsystem to use. 237 ** 238 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 239 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 240 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 241 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 242 ** 243 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 244 ** assert() macro is enabled, each call into the Win32 native heap subsystem 245 ** will cause HeapValidate to be called. If heap validation should fail, an 246 ** assertion will be triggered. 247 ** 248 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 249 ** the default. 250 */ 251 #if defined(SQLITE_SYSTEM_MALLOC) \ 252 + defined(SQLITE_WIN32_MALLOC) \ 253 + defined(SQLITE_ZERO_MALLOC) \ 254 + defined(SQLITE_MEMDEBUG)>1 255 # error "Two or more of the following compile-time configuration options\ 256 are defined but at most one is allowed:\ 257 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 258 SQLITE_ZERO_MALLOC" 259 #endif 260 #if defined(SQLITE_SYSTEM_MALLOC) \ 261 + defined(SQLITE_WIN32_MALLOC) \ 262 + defined(SQLITE_ZERO_MALLOC) \ 263 + defined(SQLITE_MEMDEBUG)==0 264 # define SQLITE_SYSTEM_MALLOC 1 265 #endif 266 267 /* 268 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 269 ** sizes of memory allocations below this value where possible. 270 */ 271 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 272 # define SQLITE_MALLOC_SOFT_LIMIT 1024 273 #endif 274 275 /* 276 ** We need to define _XOPEN_SOURCE as follows in order to enable 277 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 278 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 279 ** it. 280 */ 281 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 282 # define _XOPEN_SOURCE 600 283 #endif 284 285 /* 286 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 287 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 288 ** make it true by defining or undefining NDEBUG. 289 ** 290 ** Setting NDEBUG makes the code smaller and faster by disabling the 291 ** assert() statements in the code. So we want the default action 292 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 293 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 294 ** feature. 295 */ 296 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 297 # define NDEBUG 1 298 #endif 299 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 300 # undef NDEBUG 301 #endif 302 303 /* 304 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 305 */ 306 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 307 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 308 #endif 309 310 /* 311 ** The testcase() macro is used to aid in coverage testing. When 312 ** doing coverage testing, the condition inside the argument to 313 ** testcase() must be evaluated both true and false in order to 314 ** get full branch coverage. The testcase() macro is inserted 315 ** to help ensure adequate test coverage in places where simple 316 ** condition/decision coverage is inadequate. For example, testcase() 317 ** can be used to make sure boundary values are tested. For 318 ** bitmask tests, testcase() can be used to make sure each bit 319 ** is significant and used at least once. On switch statements 320 ** where multiple cases go to the same block of code, testcase() 321 ** can insure that all cases are evaluated. 322 ** 323 */ 324 #ifdef SQLITE_COVERAGE_TEST 325 void sqlite3Coverage(int); 326 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 327 #else 328 # define testcase(X) 329 #endif 330 331 /* 332 ** The TESTONLY macro is used to enclose variable declarations or 333 ** other bits of code that are needed to support the arguments 334 ** within testcase() and assert() macros. 335 */ 336 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 337 # define TESTONLY(X) X 338 #else 339 # define TESTONLY(X) 340 #endif 341 342 /* 343 ** Sometimes we need a small amount of code such as a variable initialization 344 ** to setup for a later assert() statement. We do not want this code to 345 ** appear when assert() is disabled. The following macro is therefore 346 ** used to contain that setup code. The "VVA" acronym stands for 347 ** "Verification, Validation, and Accreditation". In other words, the 348 ** code within VVA_ONLY() will only run during verification processes. 349 */ 350 #ifndef NDEBUG 351 # define VVA_ONLY(X) X 352 #else 353 # define VVA_ONLY(X) 354 #endif 355 356 /* 357 ** The ALWAYS and NEVER macros surround boolean expressions which 358 ** are intended to always be true or false, respectively. Such 359 ** expressions could be omitted from the code completely. But they 360 ** are included in a few cases in order to enhance the resilience 361 ** of SQLite to unexpected behavior - to make the code "self-healing" 362 ** or "ductile" rather than being "brittle" and crashing at the first 363 ** hint of unplanned behavior. 364 ** 365 ** In other words, ALWAYS and NEVER are added for defensive code. 366 ** 367 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 368 ** be true and false so that the unreachable code they specify will 369 ** not be counted as untested code. 370 */ 371 #if defined(SQLITE_COVERAGE_TEST) 372 # define ALWAYS(X) (1) 373 # define NEVER(X) (0) 374 #elif !defined(NDEBUG) 375 # define ALWAYS(X) ((X)?1:(assert(0),0)) 376 # define NEVER(X) ((X)?(assert(0),1):0) 377 #else 378 # define ALWAYS(X) (X) 379 # define NEVER(X) (X) 380 #endif 381 382 /* 383 ** Declarations used for tracing the operating system interfaces. 384 */ 385 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 386 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 387 extern int sqlite3OSTrace; 388 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 389 # define SQLITE_HAVE_OS_TRACE 390 #else 391 # define OSTRACE(X) 392 # undef SQLITE_HAVE_OS_TRACE 393 #endif 394 395 /* 396 ** Is the sqlite3ErrName() function needed in the build? Currently, 397 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 398 ** OSTRACE is enabled), and by several "test*.c" files (which are 399 ** compiled using SQLITE_TEST). 400 */ 401 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 402 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 403 # define SQLITE_NEED_ERR_NAME 404 #else 405 # undef SQLITE_NEED_ERR_NAME 406 #endif 407 408 /* 409 ** Return true (non-zero) if the input is an integer that is too large 410 ** to fit in 32-bits. This macro is used inside of various testcase() 411 ** macros to verify that we have tested SQLite for large-file support. 412 */ 413 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 414 415 /* 416 ** The macro unlikely() is a hint that surrounds a boolean 417 ** expression that is usually false. Macro likely() surrounds 418 ** a boolean expression that is usually true. These hints could, 419 ** in theory, be used by the compiler to generate better code, but 420 ** currently they are just comments for human readers. 421 */ 422 #define likely(X) (X) 423 #define unlikely(X) (X) 424 425 #include "hash.h" 426 #include "parse.h" 427 #include <stdio.h> 428 #include <stdlib.h> 429 #include <string.h> 430 #include <assert.h> 431 #include <stddef.h> 432 433 /* 434 ** If compiling for a processor that lacks floating point support, 435 ** substitute integer for floating-point 436 */ 437 #ifdef SQLITE_OMIT_FLOATING_POINT 438 # define double sqlite_int64 439 # define float sqlite_int64 440 # define LONGDOUBLE_TYPE sqlite_int64 441 # ifndef SQLITE_BIG_DBL 442 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 443 # endif 444 # define SQLITE_OMIT_DATETIME_FUNCS 1 445 # define SQLITE_OMIT_TRACE 1 446 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 447 # undef SQLITE_HAVE_ISNAN 448 #endif 449 #ifndef SQLITE_BIG_DBL 450 # define SQLITE_BIG_DBL (1e99) 451 #endif 452 453 /* 454 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 455 ** afterward. Having this macro allows us to cause the C compiler 456 ** to omit code used by TEMP tables without messy #ifndef statements. 457 */ 458 #ifdef SQLITE_OMIT_TEMPDB 459 #define OMIT_TEMPDB 1 460 #else 461 #define OMIT_TEMPDB 0 462 #endif 463 464 /* 465 ** The "file format" number is an integer that is incremented whenever 466 ** the VDBE-level file format changes. The following macros define the 467 ** the default file format for new databases and the maximum file format 468 ** that the library can read. 469 */ 470 #define SQLITE_MAX_FILE_FORMAT 4 471 #ifndef SQLITE_DEFAULT_FILE_FORMAT 472 # define SQLITE_DEFAULT_FILE_FORMAT 4 473 #endif 474 475 /* 476 ** Determine whether triggers are recursive by default. This can be 477 ** changed at run-time using a pragma. 478 */ 479 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 480 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 481 #endif 482 483 /* 484 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 485 ** on the command-line 486 */ 487 #ifndef SQLITE_TEMP_STORE 488 # define SQLITE_TEMP_STORE 1 489 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 490 #endif 491 492 /* 493 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 494 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 495 ** to zero. 496 */ 497 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 498 # undef SQLITE_MAX_WORKER_THREADS 499 # define SQLITE_MAX_WORKER_THREADS 0 500 #endif 501 #ifndef SQLITE_MAX_WORKER_THREADS 502 # define SQLITE_MAX_WORKER_THREADS 8 503 #endif 504 #ifndef SQLITE_DEFAULT_WORKER_THREADS 505 # define SQLITE_DEFAULT_WORKER_THREADS 0 506 #endif 507 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 508 # undef SQLITE_MAX_WORKER_THREADS 509 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 510 #endif 511 512 513 /* 514 ** GCC does not define the offsetof() macro so we'll have to do it 515 ** ourselves. 516 */ 517 #ifndef offsetof 518 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 519 #endif 520 521 /* 522 ** Macros to compute minimum and maximum of two numbers. 523 */ 524 #define MIN(A,B) ((A)<(B)?(A):(B)) 525 #define MAX(A,B) ((A)>(B)?(A):(B)) 526 527 /* 528 ** Swap two objects of type TYPE. 529 */ 530 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 531 532 /* 533 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 534 ** not, there are still machines out there that use EBCDIC.) 535 */ 536 #if 'A' == '\301' 537 # define SQLITE_EBCDIC 1 538 #else 539 # define SQLITE_ASCII 1 540 #endif 541 542 /* 543 ** Integers of known sizes. These typedefs might change for architectures 544 ** where the sizes very. Preprocessor macros are available so that the 545 ** types can be conveniently redefined at compile-type. Like this: 546 ** 547 ** cc '-DUINTPTR_TYPE=long long int' ... 548 */ 549 #ifndef UINT32_TYPE 550 # ifdef HAVE_UINT32_T 551 # define UINT32_TYPE uint32_t 552 # else 553 # define UINT32_TYPE unsigned int 554 # endif 555 #endif 556 #ifndef UINT16_TYPE 557 # ifdef HAVE_UINT16_T 558 # define UINT16_TYPE uint16_t 559 # else 560 # define UINT16_TYPE unsigned short int 561 # endif 562 #endif 563 #ifndef INT16_TYPE 564 # ifdef HAVE_INT16_T 565 # define INT16_TYPE int16_t 566 # else 567 # define INT16_TYPE short int 568 # endif 569 #endif 570 #ifndef UINT8_TYPE 571 # ifdef HAVE_UINT8_T 572 # define UINT8_TYPE uint8_t 573 # else 574 # define UINT8_TYPE unsigned char 575 # endif 576 #endif 577 #ifndef INT8_TYPE 578 # ifdef HAVE_INT8_T 579 # define INT8_TYPE int8_t 580 # else 581 # define INT8_TYPE signed char 582 # endif 583 #endif 584 #ifndef LONGDOUBLE_TYPE 585 # define LONGDOUBLE_TYPE long double 586 #endif 587 typedef sqlite_int64 i64; /* 8-byte signed integer */ 588 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 589 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 590 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 591 typedef INT16_TYPE i16; /* 2-byte signed integer */ 592 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 593 typedef INT8_TYPE i8; /* 1-byte signed integer */ 594 595 /* 596 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 597 ** that can be stored in a u32 without loss of data. The value 598 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 599 ** have to specify the value in the less intuitive manner shown: 600 */ 601 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 602 603 /* 604 ** The datatype used to store estimates of the number of rows in a 605 ** table or index. This is an unsigned integer type. For 99.9% of 606 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 607 ** can be used at compile-time if desired. 608 */ 609 #ifdef SQLITE_64BIT_STATS 610 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 611 #else 612 typedef u32 tRowcnt; /* 32-bit is the default */ 613 #endif 614 615 /* 616 ** Estimated quantities used for query planning are stored as 16-bit 617 ** logarithms. For quantity X, the value stored is 10*log2(X). This 618 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 619 ** But the allowed values are "grainy". Not every value is representable. 620 ** For example, quantities 16 and 17 are both represented by a LogEst 621 ** of 40. However, since LogEst quantities are suppose to be estimates, 622 ** not exact values, this imprecision is not a problem. 623 ** 624 ** "LogEst" is short for "Logarithmic Estimate". 625 ** 626 ** Examples: 627 ** 1 -> 0 20 -> 43 10000 -> 132 628 ** 2 -> 10 25 -> 46 25000 -> 146 629 ** 3 -> 16 100 -> 66 1000000 -> 199 630 ** 4 -> 20 1000 -> 99 1048576 -> 200 631 ** 10 -> 33 1024 -> 100 4294967296 -> 320 632 ** 633 ** The LogEst can be negative to indicate fractional values. 634 ** Examples: 635 ** 636 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 637 */ 638 typedef INT16_TYPE LogEst; 639 640 /* 641 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 642 */ 643 #ifndef SQLITE_PTRSIZE 644 # if defined(__SIZEOF_POINTER__) 645 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 646 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 647 defined(_M_ARM) || defined(__arm__) || defined(__x86) 648 # define SQLITE_PTRSIZE 4 649 # else 650 # define SQLITE_PTRSIZE 8 651 # endif 652 #endif 653 654 /* 655 ** Macros to determine whether the machine is big or little endian, 656 ** and whether or not that determination is run-time or compile-time. 657 ** 658 ** For best performance, an attempt is made to guess at the byte-order 659 ** using C-preprocessor macros. If that is unsuccessful, or if 660 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 661 ** at run-time. 662 */ 663 #ifdef SQLITE_AMALGAMATION 664 const int sqlite3one = 1; 665 #else 666 extern const int sqlite3one; 667 #endif 668 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 669 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 670 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 671 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 672 # define SQLITE_BYTEORDER 1234 673 # define SQLITE_BIGENDIAN 0 674 # define SQLITE_LITTLEENDIAN 1 675 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 676 #endif 677 #if (defined(sparc) || defined(__ppc__)) \ 678 && !defined(SQLITE_RUNTIME_BYTEORDER) 679 # define SQLITE_BYTEORDER 4321 680 # define SQLITE_BIGENDIAN 1 681 # define SQLITE_LITTLEENDIAN 0 682 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 683 #endif 684 #if !defined(SQLITE_BYTEORDER) 685 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 686 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 687 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 688 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 689 #endif 690 691 /* 692 ** Constants for the largest and smallest possible 64-bit signed integers. 693 ** These macros are designed to work correctly on both 32-bit and 64-bit 694 ** compilers. 695 */ 696 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 697 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 698 699 /* 700 ** Round up a number to the next larger multiple of 8. This is used 701 ** to force 8-byte alignment on 64-bit architectures. 702 */ 703 #define ROUND8(x) (((x)+7)&~7) 704 705 /* 706 ** Round down to the nearest multiple of 8 707 */ 708 #define ROUNDDOWN8(x) ((x)&~7) 709 710 /* 711 ** Assert that the pointer X is aligned to an 8-byte boundary. This 712 ** macro is used only within assert() to verify that the code gets 713 ** all alignment restrictions correct. 714 ** 715 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 716 ** underlying malloc() implementation might return us 4-byte aligned 717 ** pointers. In that case, only verify 4-byte alignment. 718 */ 719 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 720 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 721 #else 722 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 723 #endif 724 725 /* 726 ** Disable MMAP on platforms where it is known to not work 727 */ 728 #if defined(__OpenBSD__) || defined(__QNXNTO__) 729 # undef SQLITE_MAX_MMAP_SIZE 730 # define SQLITE_MAX_MMAP_SIZE 0 731 #endif 732 733 /* 734 ** Default maximum size of memory used by memory-mapped I/O in the VFS 735 */ 736 #ifdef __APPLE__ 737 # include <TargetConditionals.h> 738 # if TARGET_OS_IPHONE 739 # undef SQLITE_MAX_MMAP_SIZE 740 # define SQLITE_MAX_MMAP_SIZE 0 741 # endif 742 #endif 743 #ifndef SQLITE_MAX_MMAP_SIZE 744 # if defined(__linux__) \ 745 || defined(_WIN32) \ 746 || (defined(__APPLE__) && defined(__MACH__)) \ 747 || defined(__sun) 748 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 749 # else 750 # define SQLITE_MAX_MMAP_SIZE 0 751 # endif 752 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 753 #endif 754 755 /* 756 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 757 ** default MMAP_SIZE is specified at compile-time, make sure that it does 758 ** not exceed the maximum mmap size. 759 */ 760 #ifndef SQLITE_DEFAULT_MMAP_SIZE 761 # define SQLITE_DEFAULT_MMAP_SIZE 0 762 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 763 #endif 764 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 765 # undef SQLITE_DEFAULT_MMAP_SIZE 766 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 767 #endif 768 769 /* 770 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 771 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 772 ** define SQLITE_ENABLE_STAT3_OR_STAT4 773 */ 774 #ifdef SQLITE_ENABLE_STAT4 775 # undef SQLITE_ENABLE_STAT3 776 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 777 #elif SQLITE_ENABLE_STAT3 778 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 779 #elif SQLITE_ENABLE_STAT3_OR_STAT4 780 # undef SQLITE_ENABLE_STAT3_OR_STAT4 781 #endif 782 783 /* 784 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 785 ** the Select query generator tracing logic is turned on. 786 */ 787 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 788 # define SELECTTRACE_ENABLED 1 789 #else 790 # define SELECTTRACE_ENABLED 0 791 #endif 792 793 /* 794 ** An instance of the following structure is used to store the busy-handler 795 ** callback for a given sqlite handle. 796 ** 797 ** The sqlite.busyHandler member of the sqlite struct contains the busy 798 ** callback for the database handle. Each pager opened via the sqlite 799 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 800 ** callback is currently invoked only from within pager.c. 801 */ 802 typedef struct BusyHandler BusyHandler; 803 struct BusyHandler { 804 int (*xFunc)(void *,int); /* The busy callback */ 805 void *pArg; /* First arg to busy callback */ 806 int nBusy; /* Incremented with each busy call */ 807 }; 808 809 /* 810 ** Name of the master database table. The master database table 811 ** is a special table that holds the names and attributes of all 812 ** user tables and indices. 813 */ 814 #define MASTER_NAME "sqlite_master" 815 #define TEMP_MASTER_NAME "sqlite_temp_master" 816 817 /* 818 ** The root-page of the master database table. 819 */ 820 #define MASTER_ROOT 1 821 822 /* 823 ** The name of the schema table. 824 */ 825 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 826 827 /* 828 ** A convenience macro that returns the number of elements in 829 ** an array. 830 */ 831 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 832 833 /* 834 ** Determine if the argument is a power of two 835 */ 836 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 837 838 /* 839 ** The following value as a destructor means to use sqlite3DbFree(). 840 ** The sqlite3DbFree() routine requires two parameters instead of the 841 ** one parameter that destructors normally want. So we have to introduce 842 ** this magic value that the code knows to handle differently. Any 843 ** pointer will work here as long as it is distinct from SQLITE_STATIC 844 ** and SQLITE_TRANSIENT. 845 */ 846 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 847 848 /* 849 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 850 ** not support Writable Static Data (WSD) such as global and static variables. 851 ** All variables must either be on the stack or dynamically allocated from 852 ** the heap. When WSD is unsupported, the variable declarations scattered 853 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 854 ** macro is used for this purpose. And instead of referencing the variable 855 ** directly, we use its constant as a key to lookup the run-time allocated 856 ** buffer that holds real variable. The constant is also the initializer 857 ** for the run-time allocated buffer. 858 ** 859 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 860 ** macros become no-ops and have zero performance impact. 861 */ 862 #ifdef SQLITE_OMIT_WSD 863 #define SQLITE_WSD const 864 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 865 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 866 int sqlite3_wsd_init(int N, int J); 867 void *sqlite3_wsd_find(void *K, int L); 868 #else 869 #define SQLITE_WSD 870 #define GLOBAL(t,v) v 871 #define sqlite3GlobalConfig sqlite3Config 872 #endif 873 874 /* 875 ** The following macros are used to suppress compiler warnings and to 876 ** make it clear to human readers when a function parameter is deliberately 877 ** left unused within the body of a function. This usually happens when 878 ** a function is called via a function pointer. For example the 879 ** implementation of an SQL aggregate step callback may not use the 880 ** parameter indicating the number of arguments passed to the aggregate, 881 ** if it knows that this is enforced elsewhere. 882 ** 883 ** When a function parameter is not used at all within the body of a function, 884 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 885 ** However, these macros may also be used to suppress warnings related to 886 ** parameters that may or may not be used depending on compilation options. 887 ** For example those parameters only used in assert() statements. In these 888 ** cases the parameters are named as per the usual conventions. 889 */ 890 #define UNUSED_PARAMETER(x) (void)(x) 891 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 892 893 /* 894 ** Forward references to structures 895 */ 896 typedef struct AggInfo AggInfo; 897 typedef struct AuthContext AuthContext; 898 typedef struct AutoincInfo AutoincInfo; 899 typedef struct Bitvec Bitvec; 900 typedef struct CollSeq CollSeq; 901 typedef struct Column Column; 902 typedef struct Db Db; 903 typedef struct Schema Schema; 904 typedef struct Expr Expr; 905 typedef struct ExprList ExprList; 906 typedef struct ExprSpan ExprSpan; 907 typedef struct FKey FKey; 908 typedef struct FuncDestructor FuncDestructor; 909 typedef struct FuncDef FuncDef; 910 typedef struct FuncDefHash FuncDefHash; 911 typedef struct IdList IdList; 912 typedef struct Index Index; 913 typedef struct IndexSample IndexSample; 914 typedef struct KeyClass KeyClass; 915 typedef struct KeyInfo KeyInfo; 916 typedef struct Lookaside Lookaside; 917 typedef struct LookasideSlot LookasideSlot; 918 typedef struct Module Module; 919 typedef struct NameContext NameContext; 920 typedef struct Parse Parse; 921 typedef struct PrintfArguments PrintfArguments; 922 typedef struct RowSet RowSet; 923 typedef struct Savepoint Savepoint; 924 typedef struct Select Select; 925 typedef struct SQLiteThread SQLiteThread; 926 typedef struct SelectDest SelectDest; 927 typedef struct SrcList SrcList; 928 typedef struct StrAccum StrAccum; 929 typedef struct Table Table; 930 typedef struct TableLock TableLock; 931 typedef struct Token Token; 932 typedef struct TreeView TreeView; 933 typedef struct Trigger Trigger; 934 typedef struct TriggerPrg TriggerPrg; 935 typedef struct TriggerStep TriggerStep; 936 typedef struct UnpackedRecord UnpackedRecord; 937 typedef struct VTable VTable; 938 typedef struct VtabCtx VtabCtx; 939 typedef struct Walker Walker; 940 typedef struct WhereInfo WhereInfo; 941 typedef struct With With; 942 943 /* 944 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 945 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 946 ** pointer types (i.e. FuncDef) defined above. 947 */ 948 #include "btree.h" 949 #include "vdbe.h" 950 #include "pager.h" 951 #include "pcache.h" 952 953 #include "os.h" 954 #include "mutex.h" 955 956 957 /* 958 ** Each database file to be accessed by the system is an instance 959 ** of the following structure. There are normally two of these structures 960 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 961 ** aDb[1] is the database file used to hold temporary tables. Additional 962 ** databases may be attached. 963 */ 964 struct Db { 965 char *zName; /* Name of this database */ 966 Btree *pBt; /* The B*Tree structure for this database file */ 967 u8 safety_level; /* How aggressive at syncing data to disk */ 968 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 969 }; 970 971 /* 972 ** An instance of the following structure stores a database schema. 973 ** 974 ** Most Schema objects are associated with a Btree. The exception is 975 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 976 ** In shared cache mode, a single Schema object can be shared by multiple 977 ** Btrees that refer to the same underlying BtShared object. 978 ** 979 ** Schema objects are automatically deallocated when the last Btree that 980 ** references them is destroyed. The TEMP Schema is manually freed by 981 ** sqlite3_close(). 982 * 983 ** A thread must be holding a mutex on the corresponding Btree in order 984 ** to access Schema content. This implies that the thread must also be 985 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 986 ** For a TEMP Schema, only the connection mutex is required. 987 */ 988 struct Schema { 989 int schema_cookie; /* Database schema version number for this file */ 990 int iGeneration; /* Generation counter. Incremented with each change */ 991 Hash tblHash; /* All tables indexed by name */ 992 Hash idxHash; /* All (named) indices indexed by name */ 993 Hash trigHash; /* All triggers indexed by name */ 994 Hash fkeyHash; /* All foreign keys by referenced table name */ 995 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 996 u8 file_format; /* Schema format version for this file */ 997 u8 enc; /* Text encoding used by this database */ 998 u16 schemaFlags; /* Flags associated with this schema */ 999 int cache_size; /* Number of pages to use in the cache */ 1000 }; 1001 1002 /* 1003 ** These macros can be used to test, set, or clear bits in the 1004 ** Db.pSchema->flags field. 1005 */ 1006 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1007 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1008 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1009 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1010 1011 /* 1012 ** Allowed values for the DB.pSchema->flags field. 1013 ** 1014 ** The DB_SchemaLoaded flag is set after the database schema has been 1015 ** read into internal hash tables. 1016 ** 1017 ** DB_UnresetViews means that one or more views have column names that 1018 ** have been filled out. If the schema changes, these column names might 1019 ** changes and so the view will need to be reset. 1020 */ 1021 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1022 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1023 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1024 1025 /* 1026 ** The number of different kinds of things that can be limited 1027 ** using the sqlite3_limit() interface. 1028 */ 1029 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1030 1031 /* 1032 ** Lookaside malloc is a set of fixed-size buffers that can be used 1033 ** to satisfy small transient memory allocation requests for objects 1034 ** associated with a particular database connection. The use of 1035 ** lookaside malloc provides a significant performance enhancement 1036 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1037 ** SQL statements. 1038 ** 1039 ** The Lookaside structure holds configuration information about the 1040 ** lookaside malloc subsystem. Each available memory allocation in 1041 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1042 ** objects. 1043 ** 1044 ** Lookaside allocations are only allowed for objects that are associated 1045 ** with a particular database connection. Hence, schema information cannot 1046 ** be stored in lookaside because in shared cache mode the schema information 1047 ** is shared by multiple database connections. Therefore, while parsing 1048 ** schema information, the Lookaside.bEnabled flag is cleared so that 1049 ** lookaside allocations are not used to construct the schema objects. 1050 */ 1051 struct Lookaside { 1052 u16 sz; /* Size of each buffer in bytes */ 1053 u8 bEnabled; /* False to disable new lookaside allocations */ 1054 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1055 int nOut; /* Number of buffers currently checked out */ 1056 int mxOut; /* Highwater mark for nOut */ 1057 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1058 LookasideSlot *pFree; /* List of available buffers */ 1059 void *pStart; /* First byte of available memory space */ 1060 void *pEnd; /* First byte past end of available space */ 1061 }; 1062 struct LookasideSlot { 1063 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1064 }; 1065 1066 /* 1067 ** A hash table for function definitions. 1068 ** 1069 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1070 ** Collisions are on the FuncDef.pHash chain. 1071 */ 1072 struct FuncDefHash { 1073 FuncDef *a[23]; /* Hash table for functions */ 1074 }; 1075 1076 #ifdef SQLITE_USER_AUTHENTICATION 1077 /* 1078 ** Information held in the "sqlite3" database connection object and used 1079 ** to manage user authentication. 1080 */ 1081 typedef struct sqlite3_userauth sqlite3_userauth; 1082 struct sqlite3_userauth { 1083 u8 authLevel; /* Current authentication level */ 1084 int nAuthPW; /* Size of the zAuthPW in bytes */ 1085 char *zAuthPW; /* Password used to authenticate */ 1086 char *zAuthUser; /* User name used to authenticate */ 1087 }; 1088 1089 /* Allowed values for sqlite3_userauth.authLevel */ 1090 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1091 #define UAUTH_Fail 1 /* User authentication failed */ 1092 #define UAUTH_User 2 /* Authenticated as a normal user */ 1093 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1094 1095 /* Functions used only by user authorization logic */ 1096 int sqlite3UserAuthTable(const char*); 1097 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1098 void sqlite3UserAuthInit(sqlite3*); 1099 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1100 1101 #endif /* SQLITE_USER_AUTHENTICATION */ 1102 1103 /* 1104 ** typedef for the authorization callback function. 1105 */ 1106 #ifdef SQLITE_USER_AUTHENTICATION 1107 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1108 const char*, const char*); 1109 #else 1110 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1111 const char*); 1112 #endif 1113 1114 1115 /* 1116 ** Each database connection is an instance of the following structure. 1117 */ 1118 struct sqlite3 { 1119 sqlite3_vfs *pVfs; /* OS Interface */ 1120 struct Vdbe *pVdbe; /* List of active virtual machines */ 1121 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1122 sqlite3_mutex *mutex; /* Connection mutex */ 1123 Db *aDb; /* All backends */ 1124 int nDb; /* Number of backends currently in use */ 1125 int flags; /* Miscellaneous flags. See below */ 1126 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1127 i64 szMmap; /* Default mmap_size setting */ 1128 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1129 int errCode; /* Most recent error code (SQLITE_*) */ 1130 int errMask; /* & result codes with this before returning */ 1131 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1132 u8 enc; /* Text encoding */ 1133 u8 autoCommit; /* The auto-commit flag. */ 1134 u8 temp_store; /* 1: file 2: memory 0: default */ 1135 u8 mallocFailed; /* True if we have seen a malloc failure */ 1136 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1137 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1138 u8 suppressErr; /* Do not issue error messages if true */ 1139 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1140 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1141 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1142 u32 magic; /* Magic number for detect library misuse */ 1143 int nChange; /* Value returned by sqlite3_changes() */ 1144 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1145 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1146 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1147 struct sqlite3InitInfo { /* Information used during initialization */ 1148 int newTnum; /* Rootpage of table being initialized */ 1149 u8 iDb; /* Which db file is being initialized */ 1150 u8 busy; /* TRUE if currently initializing */ 1151 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1152 u8 imposterTable; /* Building an imposter table */ 1153 } init; 1154 int nVdbeActive; /* Number of VDBEs currently running */ 1155 int nVdbeRead; /* Number of active VDBEs that read or write */ 1156 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1157 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1158 int nVDestroy; /* Number of active OP_VDestroy operations */ 1159 int nExtension; /* Number of loaded extensions */ 1160 void **aExtension; /* Array of shared library handles */ 1161 void (*xTrace)(void*,const char*); /* Trace function */ 1162 void *pTraceArg; /* Argument to the trace function */ 1163 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1164 void *pProfileArg; /* Argument to profile function */ 1165 void *pCommitArg; /* Argument to xCommitCallback() */ 1166 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1167 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1168 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1169 void *pUpdateArg; 1170 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1171 #ifndef SQLITE_OMIT_WAL 1172 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1173 void *pWalArg; 1174 #endif 1175 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1176 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1177 void *pCollNeededArg; 1178 sqlite3_value *pErr; /* Most recent error message */ 1179 union { 1180 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1181 double notUsed1; /* Spacer */ 1182 } u1; 1183 Lookaside lookaside; /* Lookaside malloc configuration */ 1184 #ifndef SQLITE_OMIT_AUTHORIZATION 1185 sqlite3_xauth xAuth; /* Access authorization function */ 1186 void *pAuthArg; /* 1st argument to the access auth function */ 1187 #endif 1188 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1189 int (*xProgress)(void *); /* The progress callback */ 1190 void *pProgressArg; /* Argument to the progress callback */ 1191 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1192 #endif 1193 #ifndef SQLITE_OMIT_VIRTUALTABLE 1194 int nVTrans; /* Allocated size of aVTrans */ 1195 Hash aModule; /* populated by sqlite3_create_module() */ 1196 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1197 VTable **aVTrans; /* Virtual tables with open transactions */ 1198 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1199 #endif 1200 FuncDefHash aFunc; /* Hash table of connection functions */ 1201 Hash aCollSeq; /* All collating sequences */ 1202 BusyHandler busyHandler; /* Busy callback */ 1203 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1204 Savepoint *pSavepoint; /* List of active savepoints */ 1205 int busyTimeout; /* Busy handler timeout, in msec */ 1206 int nSavepoint; /* Number of non-transaction savepoints */ 1207 int nStatement; /* Number of nested statement-transactions */ 1208 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1209 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1210 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1211 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1212 /* The following variables are all protected by the STATIC_MASTER 1213 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1214 ** 1215 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1216 ** unlock so that it can proceed. 1217 ** 1218 ** When X.pBlockingConnection==Y, that means that something that X tried 1219 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1220 ** held by Y. 1221 */ 1222 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1223 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1224 void *pUnlockArg; /* Argument to xUnlockNotify */ 1225 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1226 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1227 #endif 1228 #ifdef SQLITE_USER_AUTHENTICATION 1229 sqlite3_userauth auth; /* User authentication information */ 1230 #endif 1231 }; 1232 1233 /* 1234 ** A macro to discover the encoding of a database. 1235 */ 1236 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1237 #define ENC(db) ((db)->enc) 1238 1239 /* 1240 ** Possible values for the sqlite3.flags. 1241 */ 1242 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1243 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1244 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1245 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1246 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1247 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1248 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1249 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1250 /* DELETE, or UPDATE and return */ 1251 /* the count using a callback. */ 1252 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1253 /* result set is empty */ 1254 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1255 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1256 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1257 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1258 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1259 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1260 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1261 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1262 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1263 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1264 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1265 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1266 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1267 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1268 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1269 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1270 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1271 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1272 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1273 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1274 1275 1276 /* 1277 ** Bits of the sqlite3.dbOptFlags field that are used by the 1278 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1279 ** selectively disable various optimizations. 1280 */ 1281 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1282 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1283 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1284 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1285 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1286 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1287 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1288 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1289 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1290 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1291 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1292 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1293 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1294 1295 /* 1296 ** Macros for testing whether or not optimizations are enabled or disabled. 1297 */ 1298 #ifndef SQLITE_OMIT_BUILTIN_TEST 1299 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1300 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1301 #else 1302 #define OptimizationDisabled(db, mask) 0 1303 #define OptimizationEnabled(db, mask) 1 1304 #endif 1305 1306 /* 1307 ** Return true if it OK to factor constant expressions into the initialization 1308 ** code. The argument is a Parse object for the code generator. 1309 */ 1310 #define ConstFactorOk(P) ((P)->okConstFactor) 1311 1312 /* 1313 ** Possible values for the sqlite.magic field. 1314 ** The numbers are obtained at random and have no special meaning, other 1315 ** than being distinct from one another. 1316 */ 1317 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1318 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1319 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1320 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1321 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1322 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1323 1324 /* 1325 ** Each SQL function is defined by an instance of the following 1326 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1327 ** hash table. When multiple functions have the same name, the hash table 1328 ** points to a linked list of these structures. 1329 */ 1330 struct FuncDef { 1331 i16 nArg; /* Number of arguments. -1 means unlimited */ 1332 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1333 void *pUserData; /* User data parameter */ 1334 FuncDef *pNext; /* Next function with same name */ 1335 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1336 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1337 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1338 char *zName; /* SQL name of the function. */ 1339 FuncDef *pHash; /* Next with a different name but the same hash */ 1340 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1341 }; 1342 1343 /* 1344 ** This structure encapsulates a user-function destructor callback (as 1345 ** configured using create_function_v2()) and a reference counter. When 1346 ** create_function_v2() is called to create a function with a destructor, 1347 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1348 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1349 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1350 ** member of each of the new FuncDef objects is set to point to the allocated 1351 ** FuncDestructor. 1352 ** 1353 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1354 ** count on this object is decremented. When it reaches 0, the destructor 1355 ** is invoked and the FuncDestructor structure freed. 1356 */ 1357 struct FuncDestructor { 1358 int nRef; 1359 void (*xDestroy)(void *); 1360 void *pUserData; 1361 }; 1362 1363 /* 1364 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1365 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1366 ** are assert() statements in the code to verify this. 1367 */ 1368 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1369 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1370 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1371 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1372 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1373 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1374 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1375 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1376 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1377 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1378 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1379 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1380 1381 /* 1382 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1383 ** used to create the initializers for the FuncDef structures. 1384 ** 1385 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1386 ** Used to create a scalar function definition of a function zName 1387 ** implemented by C function xFunc that accepts nArg arguments. The 1388 ** value passed as iArg is cast to a (void*) and made available 1389 ** as the user-data (sqlite3_user_data()) for the function. If 1390 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1391 ** 1392 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1393 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1394 ** 1395 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1396 ** Used to create an aggregate function definition implemented by 1397 ** the C functions xStep and xFinal. The first four parameters 1398 ** are interpreted in the same way as the first 4 parameters to 1399 ** FUNCTION(). 1400 ** 1401 ** LIKEFUNC(zName, nArg, pArg, flags) 1402 ** Used to create a scalar function definition of a function zName 1403 ** that accepts nArg arguments and is implemented by a call to C 1404 ** function likeFunc. Argument pArg is cast to a (void *) and made 1405 ** available as the function user-data (sqlite3_user_data()). The 1406 ** FuncDef.flags variable is set to the value passed as the flags 1407 ** parameter. 1408 */ 1409 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1410 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1411 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1412 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1413 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1414 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1415 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1416 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1417 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1418 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1419 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1420 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1421 #define LIKEFUNC(zName, nArg, arg, flags) \ 1422 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1423 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1424 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1425 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1426 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1427 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1428 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1429 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1430 1431 /* 1432 ** All current savepoints are stored in a linked list starting at 1433 ** sqlite3.pSavepoint. The first element in the list is the most recently 1434 ** opened savepoint. Savepoints are added to the list by the vdbe 1435 ** OP_Savepoint instruction. 1436 */ 1437 struct Savepoint { 1438 char *zName; /* Savepoint name (nul-terminated) */ 1439 i64 nDeferredCons; /* Number of deferred fk violations */ 1440 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1441 Savepoint *pNext; /* Parent savepoint (if any) */ 1442 }; 1443 1444 /* 1445 ** The following are used as the second parameter to sqlite3Savepoint(), 1446 ** and as the P1 argument to the OP_Savepoint instruction. 1447 */ 1448 #define SAVEPOINT_BEGIN 0 1449 #define SAVEPOINT_RELEASE 1 1450 #define SAVEPOINT_ROLLBACK 2 1451 1452 1453 /* 1454 ** Each SQLite module (virtual table definition) is defined by an 1455 ** instance of the following structure, stored in the sqlite3.aModule 1456 ** hash table. 1457 */ 1458 struct Module { 1459 const sqlite3_module *pModule; /* Callback pointers */ 1460 const char *zName; /* Name passed to create_module() */ 1461 void *pAux; /* pAux passed to create_module() */ 1462 void (*xDestroy)(void *); /* Module destructor function */ 1463 }; 1464 1465 /* 1466 ** information about each column of an SQL table is held in an instance 1467 ** of this structure. 1468 */ 1469 struct Column { 1470 char *zName; /* Name of this column */ 1471 Expr *pDflt; /* Default value of this column */ 1472 char *zDflt; /* Original text of the default value */ 1473 char *zType; /* Data type for this column */ 1474 char *zColl; /* Collating sequence. If NULL, use the default */ 1475 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1476 char affinity; /* One of the SQLITE_AFF_... values */ 1477 u8 szEst; /* Estimated size of this column. INT==1 */ 1478 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1479 }; 1480 1481 /* Allowed values for Column.colFlags: 1482 */ 1483 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1484 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1485 1486 /* 1487 ** A "Collating Sequence" is defined by an instance of the following 1488 ** structure. Conceptually, a collating sequence consists of a name and 1489 ** a comparison routine that defines the order of that sequence. 1490 ** 1491 ** If CollSeq.xCmp is NULL, it means that the 1492 ** collating sequence is undefined. Indices built on an undefined 1493 ** collating sequence may not be read or written. 1494 */ 1495 struct CollSeq { 1496 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1497 u8 enc; /* Text encoding handled by xCmp() */ 1498 void *pUser; /* First argument to xCmp() */ 1499 int (*xCmp)(void*,int, const void*, int, const void*); 1500 void (*xDel)(void*); /* Destructor for pUser */ 1501 }; 1502 1503 /* 1504 ** A sort order can be either ASC or DESC. 1505 */ 1506 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1507 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1508 1509 /* 1510 ** Column affinity types. 1511 ** 1512 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1513 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1514 ** the speed a little by numbering the values consecutively. 1515 ** 1516 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1517 ** when multiple affinity types are concatenated into a string and 1518 ** used as the P4 operand, they will be more readable. 1519 ** 1520 ** Note also that the numeric types are grouped together so that testing 1521 ** for a numeric type is a single comparison. And the BLOB type is first. 1522 */ 1523 #define SQLITE_AFF_BLOB 'A' 1524 #define SQLITE_AFF_TEXT 'B' 1525 #define SQLITE_AFF_NUMERIC 'C' 1526 #define SQLITE_AFF_INTEGER 'D' 1527 #define SQLITE_AFF_REAL 'E' 1528 1529 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1530 1531 /* 1532 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1533 ** affinity value. 1534 */ 1535 #define SQLITE_AFF_MASK 0x47 1536 1537 /* 1538 ** Additional bit values that can be ORed with an affinity without 1539 ** changing the affinity. 1540 ** 1541 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1542 ** It causes an assert() to fire if either operand to a comparison 1543 ** operator is NULL. It is added to certain comparison operators to 1544 ** prove that the operands are always NOT NULL. 1545 */ 1546 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1547 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1548 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1549 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1550 1551 /* 1552 ** An object of this type is created for each virtual table present in 1553 ** the database schema. 1554 ** 1555 ** If the database schema is shared, then there is one instance of this 1556 ** structure for each database connection (sqlite3*) that uses the shared 1557 ** schema. This is because each database connection requires its own unique 1558 ** instance of the sqlite3_vtab* handle used to access the virtual table 1559 ** implementation. sqlite3_vtab* handles can not be shared between 1560 ** database connections, even when the rest of the in-memory database 1561 ** schema is shared, as the implementation often stores the database 1562 ** connection handle passed to it via the xConnect() or xCreate() method 1563 ** during initialization internally. This database connection handle may 1564 ** then be used by the virtual table implementation to access real tables 1565 ** within the database. So that they appear as part of the callers 1566 ** transaction, these accesses need to be made via the same database 1567 ** connection as that used to execute SQL operations on the virtual table. 1568 ** 1569 ** All VTable objects that correspond to a single table in a shared 1570 ** database schema are initially stored in a linked-list pointed to by 1571 ** the Table.pVTable member variable of the corresponding Table object. 1572 ** When an sqlite3_prepare() operation is required to access the virtual 1573 ** table, it searches the list for the VTable that corresponds to the 1574 ** database connection doing the preparing so as to use the correct 1575 ** sqlite3_vtab* handle in the compiled query. 1576 ** 1577 ** When an in-memory Table object is deleted (for example when the 1578 ** schema is being reloaded for some reason), the VTable objects are not 1579 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1580 ** immediately. Instead, they are moved from the Table.pVTable list to 1581 ** another linked list headed by the sqlite3.pDisconnect member of the 1582 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1583 ** next time a statement is prepared using said sqlite3*. This is done 1584 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1585 ** Refer to comments above function sqlite3VtabUnlockList() for an 1586 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1587 ** list without holding the corresponding sqlite3.mutex mutex. 1588 ** 1589 ** The memory for objects of this type is always allocated by 1590 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1591 ** the first argument. 1592 */ 1593 struct VTable { 1594 sqlite3 *db; /* Database connection associated with this table */ 1595 Module *pMod; /* Pointer to module implementation */ 1596 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1597 int nRef; /* Number of pointers to this structure */ 1598 u8 bConstraint; /* True if constraints are supported */ 1599 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1600 VTable *pNext; /* Next in linked list (see above) */ 1601 }; 1602 1603 /* 1604 ** The schema for each SQL table and view is represented in memory 1605 ** by an instance of the following structure. 1606 */ 1607 struct Table { 1608 char *zName; /* Name of the table or view */ 1609 Column *aCol; /* Information about each column */ 1610 Index *pIndex; /* List of SQL indexes on this table. */ 1611 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1612 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1613 char *zColAff; /* String defining the affinity of each column */ 1614 #ifndef SQLITE_OMIT_CHECK 1615 ExprList *pCheck; /* All CHECK constraints */ 1616 #endif 1617 int tnum; /* Root BTree page for this table */ 1618 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1619 i16 nCol; /* Number of columns in this table */ 1620 u16 nRef; /* Number of pointers to this Table */ 1621 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1622 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1623 #ifdef SQLITE_ENABLE_COSTMULT 1624 LogEst costMult; /* Cost multiplier for using this table */ 1625 #endif 1626 u8 tabFlags; /* Mask of TF_* values */ 1627 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1628 #ifndef SQLITE_OMIT_ALTERTABLE 1629 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1630 #endif 1631 #ifndef SQLITE_OMIT_VIRTUALTABLE 1632 int nModuleArg; /* Number of arguments to the module */ 1633 char **azModuleArg; /* Text of all module args. [0] is module name */ 1634 VTable *pVTable; /* List of VTable objects. */ 1635 #endif 1636 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1637 Schema *pSchema; /* Schema that contains this table */ 1638 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1639 }; 1640 1641 /* 1642 ** Allowed values for Table.tabFlags. 1643 ** 1644 ** TF_OOOHidden applies to virtual tables that have hidden columns that are 1645 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1646 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1647 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1648 ** special handling during INSERT processing. 1649 */ 1650 #define TF_Readonly 0x01 /* Read-only system table */ 1651 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1652 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1653 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1654 #define TF_Virtual 0x10 /* Is a virtual table */ 1655 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1656 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1657 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1658 1659 1660 /* 1661 ** Test to see whether or not a table is a virtual table. This is 1662 ** done as a macro so that it will be optimized out when virtual 1663 ** table support is omitted from the build. 1664 */ 1665 #ifndef SQLITE_OMIT_VIRTUALTABLE 1666 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1667 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1668 #else 1669 # define IsVirtual(X) 0 1670 # define IsHiddenColumn(X) 0 1671 #endif 1672 1673 /* Does the table have a rowid */ 1674 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1675 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1676 1677 /* 1678 ** Each foreign key constraint is an instance of the following structure. 1679 ** 1680 ** A foreign key is associated with two tables. The "from" table is 1681 ** the table that contains the REFERENCES clause that creates the foreign 1682 ** key. The "to" table is the table that is named in the REFERENCES clause. 1683 ** Consider this example: 1684 ** 1685 ** CREATE TABLE ex1( 1686 ** a INTEGER PRIMARY KEY, 1687 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1688 ** ); 1689 ** 1690 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1691 ** Equivalent names: 1692 ** 1693 ** from-table == child-table 1694 ** to-table == parent-table 1695 ** 1696 ** Each REFERENCES clause generates an instance of the following structure 1697 ** which is attached to the from-table. The to-table need not exist when 1698 ** the from-table is created. The existence of the to-table is not checked. 1699 ** 1700 ** The list of all parents for child Table X is held at X.pFKey. 1701 ** 1702 ** A list of all children for a table named Z (which might not even exist) 1703 ** is held in Schema.fkeyHash with a hash key of Z. 1704 */ 1705 struct FKey { 1706 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1707 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1708 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1709 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1710 FKey *pPrevTo; /* Previous with the same zTo */ 1711 int nCol; /* Number of columns in this key */ 1712 /* EV: R-30323-21917 */ 1713 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1714 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1715 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1716 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1717 int iFrom; /* Index of column in pFrom */ 1718 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1719 } aCol[1]; /* One entry for each of nCol columns */ 1720 }; 1721 1722 /* 1723 ** SQLite supports many different ways to resolve a constraint 1724 ** error. ROLLBACK processing means that a constraint violation 1725 ** causes the operation in process to fail and for the current transaction 1726 ** to be rolled back. ABORT processing means the operation in process 1727 ** fails and any prior changes from that one operation are backed out, 1728 ** but the transaction is not rolled back. FAIL processing means that 1729 ** the operation in progress stops and returns an error code. But prior 1730 ** changes due to the same operation are not backed out and no rollback 1731 ** occurs. IGNORE means that the particular row that caused the constraint 1732 ** error is not inserted or updated. Processing continues and no error 1733 ** is returned. REPLACE means that preexisting database rows that caused 1734 ** a UNIQUE constraint violation are removed so that the new insert or 1735 ** update can proceed. Processing continues and no error is reported. 1736 ** 1737 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1738 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1739 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1740 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1741 ** referenced table row is propagated into the row that holds the 1742 ** foreign key. 1743 ** 1744 ** The following symbolic values are used to record which type 1745 ** of action to take. 1746 */ 1747 #define OE_None 0 /* There is no constraint to check */ 1748 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1749 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1750 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1751 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1752 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1753 1754 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1755 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1756 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1757 #define OE_Cascade 9 /* Cascade the changes */ 1758 1759 #define OE_Default 10 /* Do whatever the default action is */ 1760 1761 1762 /* 1763 ** An instance of the following structure is passed as the first 1764 ** argument to sqlite3VdbeKeyCompare and is used to control the 1765 ** comparison of the two index keys. 1766 ** 1767 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1768 ** are nField slots for the columns of an index then one extra slot 1769 ** for the rowid at the end. 1770 */ 1771 struct KeyInfo { 1772 u32 nRef; /* Number of references to this KeyInfo object */ 1773 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1774 u16 nField; /* Number of key columns in the index */ 1775 u16 nXField; /* Number of columns beyond the key columns */ 1776 sqlite3 *db; /* The database connection */ 1777 u8 *aSortOrder; /* Sort order for each column. */ 1778 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1779 }; 1780 1781 /* 1782 ** An instance of the following structure holds information about a 1783 ** single index record that has already been parsed out into individual 1784 ** values. 1785 ** 1786 ** A record is an object that contains one or more fields of data. 1787 ** Records are used to store the content of a table row and to store 1788 ** the key of an index. A blob encoding of a record is created by 1789 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1790 ** OP_Column opcode. 1791 ** 1792 ** This structure holds a record that has already been disassembled 1793 ** into its constituent fields. 1794 ** 1795 ** The r1 and r2 member variables are only used by the optimized comparison 1796 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1797 */ 1798 struct UnpackedRecord { 1799 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1800 u16 nField; /* Number of entries in apMem[] */ 1801 i8 default_rc; /* Comparison result if keys are equal */ 1802 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1803 Mem *aMem; /* Values */ 1804 int r1; /* Value to return if (lhs > rhs) */ 1805 int r2; /* Value to return if (rhs < lhs) */ 1806 }; 1807 1808 1809 /* 1810 ** Each SQL index is represented in memory by an 1811 ** instance of the following structure. 1812 ** 1813 ** The columns of the table that are to be indexed are described 1814 ** by the aiColumn[] field of this structure. For example, suppose 1815 ** we have the following table and index: 1816 ** 1817 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1818 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1819 ** 1820 ** In the Table structure describing Ex1, nCol==3 because there are 1821 ** three columns in the table. In the Index structure describing 1822 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1823 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1824 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1825 ** The second column to be indexed (c1) has an index of 0 in 1826 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1827 ** 1828 ** The Index.onError field determines whether or not the indexed columns 1829 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1830 ** it means this is not a unique index. Otherwise it is a unique index 1831 ** and the value of Index.onError indicate the which conflict resolution 1832 ** algorithm to employ whenever an attempt is made to insert a non-unique 1833 ** element. 1834 ** 1835 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 1836 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 1837 ** table as part of parsing an existing database schema), transient instances 1838 ** of this structure may be created. In this case the Index.tnum variable is 1839 ** used to store the address of a VDBE instruction, not a database page 1840 ** number (it cannot - the database page is not allocated until the VDBE 1841 ** program is executed). See convertToWithoutRowidTable() for details. 1842 */ 1843 struct Index { 1844 char *zName; /* Name of this index */ 1845 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1846 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1847 Table *pTable; /* The SQL table being indexed */ 1848 char *zColAff; /* String defining the affinity of each column */ 1849 Index *pNext; /* The next index associated with the same table */ 1850 Schema *pSchema; /* Schema containing this index */ 1851 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1852 char **azColl; /* Array of collation sequence names for index */ 1853 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1854 int tnum; /* DB Page containing root of this index */ 1855 LogEst szIdxRow; /* Estimated average row size in bytes */ 1856 u16 nKeyCol; /* Number of columns forming the key */ 1857 u16 nColumn; /* Number of columns stored in the index */ 1858 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1859 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1860 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1861 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1862 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1863 unsigned isCovering:1; /* True if this is a covering index */ 1864 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1865 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1866 int nSample; /* Number of elements in aSample[] */ 1867 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1868 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1869 IndexSample *aSample; /* Samples of the left-most key */ 1870 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1871 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1872 #endif 1873 }; 1874 1875 /* 1876 ** Allowed values for Index.idxType 1877 */ 1878 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1879 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1880 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1881 1882 /* Return true if index X is a PRIMARY KEY index */ 1883 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1884 1885 /* Return true if index X is a UNIQUE index */ 1886 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1887 1888 /* 1889 ** Each sample stored in the sqlite_stat3 table is represented in memory 1890 ** using a structure of this type. See documentation at the top of the 1891 ** analyze.c source file for additional information. 1892 */ 1893 struct IndexSample { 1894 void *p; /* Pointer to sampled record */ 1895 int n; /* Size of record in bytes */ 1896 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1897 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1898 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1899 }; 1900 1901 /* 1902 ** Each token coming out of the lexer is an instance of 1903 ** this structure. Tokens are also used as part of an expression. 1904 ** 1905 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1906 ** may contain random values. Do not make any assumptions about Token.dyn 1907 ** and Token.n when Token.z==0. 1908 */ 1909 struct Token { 1910 const char *z; /* Text of the token. Not NULL-terminated! */ 1911 unsigned int n; /* Number of characters in this token */ 1912 }; 1913 1914 /* 1915 ** An instance of this structure contains information needed to generate 1916 ** code for a SELECT that contains aggregate functions. 1917 ** 1918 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1919 ** pointer to this structure. The Expr.iColumn field is the index in 1920 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1921 ** code for that node. 1922 ** 1923 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1924 ** original Select structure that describes the SELECT statement. These 1925 ** fields do not need to be freed when deallocating the AggInfo structure. 1926 */ 1927 struct AggInfo { 1928 u8 directMode; /* Direct rendering mode means take data directly 1929 ** from source tables rather than from accumulators */ 1930 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1931 ** than the source table */ 1932 int sortingIdx; /* Cursor number of the sorting index */ 1933 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1934 int nSortingColumn; /* Number of columns in the sorting index */ 1935 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1936 ExprList *pGroupBy; /* The group by clause */ 1937 struct AggInfo_col { /* For each column used in source tables */ 1938 Table *pTab; /* Source table */ 1939 int iTable; /* Cursor number of the source table */ 1940 int iColumn; /* Column number within the source table */ 1941 int iSorterColumn; /* Column number in the sorting index */ 1942 int iMem; /* Memory location that acts as accumulator */ 1943 Expr *pExpr; /* The original expression */ 1944 } *aCol; 1945 int nColumn; /* Number of used entries in aCol[] */ 1946 int nAccumulator; /* Number of columns that show through to the output. 1947 ** Additional columns are used only as parameters to 1948 ** aggregate functions */ 1949 struct AggInfo_func { /* For each aggregate function */ 1950 Expr *pExpr; /* Expression encoding the function */ 1951 FuncDef *pFunc; /* The aggregate function implementation */ 1952 int iMem; /* Memory location that acts as accumulator */ 1953 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1954 } *aFunc; 1955 int nFunc; /* Number of entries in aFunc[] */ 1956 }; 1957 1958 /* 1959 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1960 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1961 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1962 ** it uses less memory in the Expr object, which is a big memory user 1963 ** in systems with lots of prepared statements. And few applications 1964 ** need more than about 10 or 20 variables. But some extreme users want 1965 ** to have prepared statements with over 32767 variables, and for them 1966 ** the option is available (at compile-time). 1967 */ 1968 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1969 typedef i16 ynVar; 1970 #else 1971 typedef int ynVar; 1972 #endif 1973 1974 /* 1975 ** Each node of an expression in the parse tree is an instance 1976 ** of this structure. 1977 ** 1978 ** Expr.op is the opcode. The integer parser token codes are reused 1979 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1980 ** code representing the ">=" operator. This same integer code is reused 1981 ** to represent the greater-than-or-equal-to operator in the expression 1982 ** tree. 1983 ** 1984 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1985 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1986 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1987 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1988 ** then Expr.token contains the name of the function. 1989 ** 1990 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1991 ** binary operator. Either or both may be NULL. 1992 ** 1993 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1994 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1995 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1996 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1997 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1998 ** valid. 1999 ** 2000 ** An expression of the form ID or ID.ID refers to a column in a table. 2001 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2002 ** the integer cursor number of a VDBE cursor pointing to that table and 2003 ** Expr.iColumn is the column number for the specific column. If the 2004 ** expression is used as a result in an aggregate SELECT, then the 2005 ** value is also stored in the Expr.iAgg column in the aggregate so that 2006 ** it can be accessed after all aggregates are computed. 2007 ** 2008 ** If the expression is an unbound variable marker (a question mark 2009 ** character '?' in the original SQL) then the Expr.iTable holds the index 2010 ** number for that variable. 2011 ** 2012 ** If the expression is a subquery then Expr.iColumn holds an integer 2013 ** register number containing the result of the subquery. If the 2014 ** subquery gives a constant result, then iTable is -1. If the subquery 2015 ** gives a different answer at different times during statement processing 2016 ** then iTable is the address of a subroutine that computes the subquery. 2017 ** 2018 ** If the Expr is of type OP_Column, and the table it is selecting from 2019 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2020 ** corresponding table definition. 2021 ** 2022 ** ALLOCATION NOTES: 2023 ** 2024 ** Expr objects can use a lot of memory space in database schema. To 2025 ** help reduce memory requirements, sometimes an Expr object will be 2026 ** truncated. And to reduce the number of memory allocations, sometimes 2027 ** two or more Expr objects will be stored in a single memory allocation, 2028 ** together with Expr.zToken strings. 2029 ** 2030 ** If the EP_Reduced and EP_TokenOnly flags are set when 2031 ** an Expr object is truncated. When EP_Reduced is set, then all 2032 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2033 ** are contained within the same memory allocation. Note, however, that 2034 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2035 ** allocated, regardless of whether or not EP_Reduced is set. 2036 */ 2037 struct Expr { 2038 u8 op; /* Operation performed by this node */ 2039 char affinity; /* The affinity of the column or 0 if not a column */ 2040 u32 flags; /* Various flags. EP_* See below */ 2041 union { 2042 char *zToken; /* Token value. Zero terminated and dequoted */ 2043 int iValue; /* Non-negative integer value if EP_IntValue */ 2044 } u; 2045 2046 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2047 ** space is allocated for the fields below this point. An attempt to 2048 ** access them will result in a segfault or malfunction. 2049 *********************************************************************/ 2050 2051 Expr *pLeft; /* Left subnode */ 2052 Expr *pRight; /* Right subnode */ 2053 union { 2054 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2055 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2056 } x; 2057 2058 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2059 ** space is allocated for the fields below this point. An attempt to 2060 ** access them will result in a segfault or malfunction. 2061 *********************************************************************/ 2062 2063 #if SQLITE_MAX_EXPR_DEPTH>0 2064 int nHeight; /* Height of the tree headed by this node */ 2065 #endif 2066 int iTable; /* TK_COLUMN: cursor number of table holding column 2067 ** TK_REGISTER: register number 2068 ** TK_TRIGGER: 1 -> new, 0 -> old 2069 ** EP_Unlikely: 134217728 times likelihood */ 2070 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2071 ** TK_VARIABLE: variable number (always >= 1). */ 2072 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2073 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2074 u8 op2; /* TK_REGISTER: original value of Expr.op 2075 ** TK_COLUMN: the value of p5 for OP_Column 2076 ** TK_AGG_FUNCTION: nesting depth */ 2077 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2078 Table *pTab; /* Table for TK_COLUMN expressions. */ 2079 }; 2080 2081 /* 2082 ** The following are the meanings of bits in the Expr.flags field. 2083 */ 2084 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2085 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2086 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2087 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2088 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2089 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2090 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2091 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2092 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2093 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2094 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2095 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2096 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2097 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2098 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2099 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2100 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2101 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2102 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2103 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */ 2104 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2105 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2106 2107 /* 2108 ** Combinations of two or more EP_* flags 2109 */ 2110 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2111 2112 /* 2113 ** These macros can be used to test, set, or clear bits in the 2114 ** Expr.flags field. 2115 */ 2116 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2117 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2118 #define ExprSetProperty(E,P) (E)->flags|=(P) 2119 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2120 2121 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2122 ** and Accreditation only. It works like ExprSetProperty() during VVA 2123 ** processes but is a no-op for delivery. 2124 */ 2125 #ifdef SQLITE_DEBUG 2126 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2127 #else 2128 # define ExprSetVVAProperty(E,P) 2129 #endif 2130 2131 /* 2132 ** Macros to determine the number of bytes required by a normal Expr 2133 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2134 ** and an Expr struct with the EP_TokenOnly flag set. 2135 */ 2136 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2137 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2138 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2139 2140 /* 2141 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2142 ** above sqlite3ExprDup() for details. 2143 */ 2144 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2145 2146 /* 2147 ** A list of expressions. Each expression may optionally have a 2148 ** name. An expr/name combination can be used in several ways, such 2149 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2150 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2151 ** also be used as the argument to a function, in which case the a.zName 2152 ** field is not used. 2153 ** 2154 ** By default the Expr.zSpan field holds a human-readable description of 2155 ** the expression that is used in the generation of error messages and 2156 ** column labels. In this case, Expr.zSpan is typically the text of a 2157 ** column expression as it exists in a SELECT statement. However, if 2158 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2159 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2160 ** form is used for name resolution with nested FROM clauses. 2161 */ 2162 struct ExprList { 2163 int nExpr; /* Number of expressions on the list */ 2164 struct ExprList_item { /* For each expression in the list */ 2165 Expr *pExpr; /* The list of expressions */ 2166 char *zName; /* Token associated with this expression */ 2167 char *zSpan; /* Original text of the expression */ 2168 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2169 unsigned done :1; /* A flag to indicate when processing is finished */ 2170 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2171 unsigned reusable :1; /* Constant expression is reusable */ 2172 union { 2173 struct { 2174 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2175 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2176 } x; 2177 int iConstExprReg; /* Register in which Expr value is cached */ 2178 } u; 2179 } *a; /* Alloc a power of two greater or equal to nExpr */ 2180 }; 2181 2182 /* 2183 ** An instance of this structure is used by the parser to record both 2184 ** the parse tree for an expression and the span of input text for an 2185 ** expression. 2186 */ 2187 struct ExprSpan { 2188 Expr *pExpr; /* The expression parse tree */ 2189 const char *zStart; /* First character of input text */ 2190 const char *zEnd; /* One character past the end of input text */ 2191 }; 2192 2193 /* 2194 ** An instance of this structure can hold a simple list of identifiers, 2195 ** such as the list "a,b,c" in the following statements: 2196 ** 2197 ** INSERT INTO t(a,b,c) VALUES ...; 2198 ** CREATE INDEX idx ON t(a,b,c); 2199 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2200 ** 2201 ** The IdList.a.idx field is used when the IdList represents the list of 2202 ** column names after a table name in an INSERT statement. In the statement 2203 ** 2204 ** INSERT INTO t(a,b,c) ... 2205 ** 2206 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2207 */ 2208 struct IdList { 2209 struct IdList_item { 2210 char *zName; /* Name of the identifier */ 2211 int idx; /* Index in some Table.aCol[] of a column named zName */ 2212 } *a; 2213 int nId; /* Number of identifiers on the list */ 2214 }; 2215 2216 /* 2217 ** The bitmask datatype defined below is used for various optimizations. 2218 ** 2219 ** Changing this from a 64-bit to a 32-bit type limits the number of 2220 ** tables in a join to 32 instead of 64. But it also reduces the size 2221 ** of the library by 738 bytes on ix86. 2222 */ 2223 typedef u64 Bitmask; 2224 2225 /* 2226 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2227 */ 2228 #define BMS ((int)(sizeof(Bitmask)*8)) 2229 2230 /* 2231 ** A bit in a Bitmask 2232 */ 2233 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2234 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2235 2236 /* 2237 ** The following structure describes the FROM clause of a SELECT statement. 2238 ** Each table or subquery in the FROM clause is a separate element of 2239 ** the SrcList.a[] array. 2240 ** 2241 ** With the addition of multiple database support, the following structure 2242 ** can also be used to describe a particular table such as the table that 2243 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2244 ** such a table must be a simple name: ID. But in SQLite, the table can 2245 ** now be identified by a database name, a dot, then the table name: ID.ID. 2246 ** 2247 ** The jointype starts out showing the join type between the current table 2248 ** and the next table on the list. The parser builds the list this way. 2249 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2250 ** jointype expresses the join between the table and the previous table. 2251 ** 2252 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2253 ** contains more than 63 columns and the 64-th or later column is used. 2254 */ 2255 struct SrcList { 2256 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2257 u32 nAlloc; /* Number of entries allocated in a[] below */ 2258 struct SrcList_item { 2259 Schema *pSchema; /* Schema to which this item is fixed */ 2260 char *zDatabase; /* Name of database holding this table */ 2261 char *zName; /* Name of the table */ 2262 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2263 Table *pTab; /* An SQL table corresponding to zName */ 2264 Select *pSelect; /* A SELECT statement used in place of a table name */ 2265 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2266 int regReturn; /* Register holding return address of addrFillSub */ 2267 int regResult; /* Registers holding results of a co-routine */ 2268 u8 jointype; /* Type of join between this able and the previous */ 2269 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2270 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2271 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2272 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2273 #ifndef SQLITE_OMIT_EXPLAIN 2274 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2275 #endif 2276 int iCursor; /* The VDBE cursor number used to access this table */ 2277 Expr *pOn; /* The ON clause of a join */ 2278 IdList *pUsing; /* The USING clause of a join */ 2279 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2280 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2281 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2282 } a[1]; /* One entry for each identifier on the list */ 2283 }; 2284 2285 /* 2286 ** Permitted values of the SrcList.a.jointype field 2287 */ 2288 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2289 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2290 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2291 #define JT_LEFT 0x0008 /* Left outer join */ 2292 #define JT_RIGHT 0x0010 /* Right outer join */ 2293 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2294 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2295 2296 2297 /* 2298 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2299 ** and the WhereInfo.wctrlFlags member. 2300 */ 2301 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2302 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2303 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2304 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2305 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2306 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2307 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2308 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2309 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2310 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2311 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2312 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2313 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2314 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2315 2316 /* Allowed return values from sqlite3WhereIsDistinct() 2317 */ 2318 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2319 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2320 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2321 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2322 2323 /* 2324 ** A NameContext defines a context in which to resolve table and column 2325 ** names. The context consists of a list of tables (the pSrcList) field and 2326 ** a list of named expression (pEList). The named expression list may 2327 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2328 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2329 ** pEList corresponds to the result set of a SELECT and is NULL for 2330 ** other statements. 2331 ** 2332 ** NameContexts can be nested. When resolving names, the inner-most 2333 ** context is searched first. If no match is found, the next outer 2334 ** context is checked. If there is still no match, the next context 2335 ** is checked. This process continues until either a match is found 2336 ** or all contexts are check. When a match is found, the nRef member of 2337 ** the context containing the match is incremented. 2338 ** 2339 ** Each subquery gets a new NameContext. The pNext field points to the 2340 ** NameContext in the parent query. Thus the process of scanning the 2341 ** NameContext list corresponds to searching through successively outer 2342 ** subqueries looking for a match. 2343 */ 2344 struct NameContext { 2345 Parse *pParse; /* The parser */ 2346 SrcList *pSrcList; /* One or more tables used to resolve names */ 2347 ExprList *pEList; /* Optional list of result-set columns */ 2348 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2349 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2350 int nRef; /* Number of names resolved by this context */ 2351 int nErr; /* Number of errors encountered while resolving names */ 2352 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2353 }; 2354 2355 /* 2356 ** Allowed values for the NameContext, ncFlags field. 2357 ** 2358 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2359 ** SQLITE_FUNC_MINMAX. 2360 ** 2361 */ 2362 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2363 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2364 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2365 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2366 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2367 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2368 2369 /* 2370 ** An instance of the following structure contains all information 2371 ** needed to generate code for a single SELECT statement. 2372 ** 2373 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2374 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2375 ** limit and nOffset to the value of the offset (or 0 if there is not 2376 ** offset). But later on, nLimit and nOffset become the memory locations 2377 ** in the VDBE that record the limit and offset counters. 2378 ** 2379 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2380 ** These addresses must be stored so that we can go back and fill in 2381 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2382 ** the number of columns in P2 can be computed at the same time 2383 ** as the OP_OpenEphm instruction is coded because not 2384 ** enough information about the compound query is known at that point. 2385 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2386 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2387 ** sequences for the ORDER BY clause. 2388 */ 2389 struct Select { 2390 ExprList *pEList; /* The fields of the result */ 2391 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2392 u16 selFlags; /* Various SF_* values */ 2393 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2394 #if SELECTTRACE_ENABLED 2395 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2396 #endif 2397 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2398 u64 nSelectRow; /* Estimated number of result rows */ 2399 SrcList *pSrc; /* The FROM clause */ 2400 Expr *pWhere; /* The WHERE clause */ 2401 ExprList *pGroupBy; /* The GROUP BY clause */ 2402 Expr *pHaving; /* The HAVING clause */ 2403 ExprList *pOrderBy; /* The ORDER BY clause */ 2404 Select *pPrior; /* Prior select in a compound select statement */ 2405 Select *pNext; /* Next select to the left in a compound */ 2406 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2407 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2408 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2409 }; 2410 2411 /* 2412 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2413 ** "Select Flag". 2414 */ 2415 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2416 #define SF_All 0x0002 /* Includes the ALL keyword */ 2417 #define SF_Resolved 0x0004 /* Identifiers have been resolved */ 2418 #define SF_Aggregate 0x0008 /* Contains aggregate functions */ 2419 #define SF_UsesEphemeral 0x0010 /* Uses the OpenEphemeral opcode */ 2420 #define SF_Expanded 0x0020 /* sqlite3SelectExpand() called on this */ 2421 #define SF_HasTypeInfo 0x0040 /* FROM subqueries have Table metadata */ 2422 #define SF_Compound 0x0080 /* Part of a compound query */ 2423 #define SF_Values 0x0100 /* Synthesized from VALUES clause */ 2424 #define SF_MultiValue 0x0200 /* Single VALUES term with multiple rows */ 2425 #define SF_NestedFrom 0x0400 /* Part of a parenthesized FROM clause */ 2426 #define SF_MaybeConvert 0x0800 /* Need convertCompoundSelectToSubquery() */ 2427 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2428 #define SF_Recursive 0x2000 /* The recursive part of a recursive CTE */ 2429 #define SF_Converted 0x4000 /* By convertCompoundSelectToSubquery() */ 2430 2431 2432 /* 2433 ** The results of a SELECT can be distributed in several ways, as defined 2434 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2435 ** Type". 2436 ** 2437 ** SRT_Union Store results as a key in a temporary index 2438 ** identified by pDest->iSDParm. 2439 ** 2440 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2441 ** 2442 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2443 ** set is not empty. 2444 ** 2445 ** SRT_Discard Throw the results away. This is used by SELECT 2446 ** statements within triggers whose only purpose is 2447 ** the side-effects of functions. 2448 ** 2449 ** All of the above are free to ignore their ORDER BY clause. Those that 2450 ** follow must honor the ORDER BY clause. 2451 ** 2452 ** SRT_Output Generate a row of output (using the OP_ResultRow 2453 ** opcode) for each row in the result set. 2454 ** 2455 ** SRT_Mem Only valid if the result is a single column. 2456 ** Store the first column of the first result row 2457 ** in register pDest->iSDParm then abandon the rest 2458 ** of the query. This destination implies "LIMIT 1". 2459 ** 2460 ** SRT_Set The result must be a single column. Store each 2461 ** row of result as the key in table pDest->iSDParm. 2462 ** Apply the affinity pDest->affSdst before storing 2463 ** results. Used to implement "IN (SELECT ...)". 2464 ** 2465 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2466 ** the result there. The cursor is left open after 2467 ** returning. This is like SRT_Table except that 2468 ** this destination uses OP_OpenEphemeral to create 2469 ** the table first. 2470 ** 2471 ** SRT_Coroutine Generate a co-routine that returns a new row of 2472 ** results each time it is invoked. The entry point 2473 ** of the co-routine is stored in register pDest->iSDParm 2474 ** and the result row is stored in pDest->nDest registers 2475 ** starting with pDest->iSdst. 2476 ** 2477 ** SRT_Table Store results in temporary table pDest->iSDParm. 2478 ** SRT_Fifo This is like SRT_EphemTab except that the table 2479 ** is assumed to already be open. SRT_Fifo has 2480 ** the additional property of being able to ignore 2481 ** the ORDER BY clause. 2482 ** 2483 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2484 ** But also use temporary table pDest->iSDParm+1 as 2485 ** a record of all prior results and ignore any duplicate 2486 ** rows. Name means: "Distinct Fifo". 2487 ** 2488 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2489 ** an index). Append a sequence number so that all entries 2490 ** are distinct. 2491 ** 2492 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2493 ** the same record has never been stored before. The 2494 ** index at pDest->iSDParm+1 hold all prior stores. 2495 */ 2496 #define SRT_Union 1 /* Store result as keys in an index */ 2497 #define SRT_Except 2 /* Remove result from a UNION index */ 2498 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2499 #define SRT_Discard 4 /* Do not save the results anywhere */ 2500 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2501 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2502 #define SRT_Queue 7 /* Store result in an queue */ 2503 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2504 2505 /* The ORDER BY clause is ignored for all of the above */ 2506 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2507 2508 #define SRT_Output 9 /* Output each row of result */ 2509 #define SRT_Mem 10 /* Store result in a memory cell */ 2510 #define SRT_Set 11 /* Store results as keys in an index */ 2511 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2512 #define SRT_Coroutine 13 /* Generate a single row of result */ 2513 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2514 2515 /* 2516 ** An instance of this object describes where to put of the results of 2517 ** a SELECT statement. 2518 */ 2519 struct SelectDest { 2520 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2521 char affSdst; /* Affinity used when eDest==SRT_Set */ 2522 int iSDParm; /* A parameter used by the eDest disposal method */ 2523 int iSdst; /* Base register where results are written */ 2524 int nSdst; /* Number of registers allocated */ 2525 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2526 }; 2527 2528 /* 2529 ** During code generation of statements that do inserts into AUTOINCREMENT 2530 ** tables, the following information is attached to the Table.u.autoInc.p 2531 ** pointer of each autoincrement table to record some side information that 2532 ** the code generator needs. We have to keep per-table autoincrement 2533 ** information in case inserts are down within triggers. Triggers do not 2534 ** normally coordinate their activities, but we do need to coordinate the 2535 ** loading and saving of autoincrement information. 2536 */ 2537 struct AutoincInfo { 2538 AutoincInfo *pNext; /* Next info block in a list of them all */ 2539 Table *pTab; /* Table this info block refers to */ 2540 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2541 int regCtr; /* Memory register holding the rowid counter */ 2542 }; 2543 2544 /* 2545 ** Size of the column cache 2546 */ 2547 #ifndef SQLITE_N_COLCACHE 2548 # define SQLITE_N_COLCACHE 10 2549 #endif 2550 2551 /* 2552 ** At least one instance of the following structure is created for each 2553 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2554 ** statement. All such objects are stored in the linked list headed at 2555 ** Parse.pTriggerPrg and deleted once statement compilation has been 2556 ** completed. 2557 ** 2558 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2559 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2560 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2561 ** The Parse.pTriggerPrg list never contains two entries with the same 2562 ** values for both pTrigger and orconf. 2563 ** 2564 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2565 ** accessed (or set to 0 for triggers fired as a result of INSERT 2566 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2567 ** a mask of new.* columns used by the program. 2568 */ 2569 struct TriggerPrg { 2570 Trigger *pTrigger; /* Trigger this program was coded from */ 2571 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2572 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2573 int orconf; /* Default ON CONFLICT policy */ 2574 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2575 }; 2576 2577 /* 2578 ** The yDbMask datatype for the bitmask of all attached databases. 2579 */ 2580 #if SQLITE_MAX_ATTACHED>30 2581 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2582 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2583 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2584 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2585 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2586 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2587 #else 2588 typedef unsigned int yDbMask; 2589 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2590 # define DbMaskZero(M) (M)=0 2591 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2592 # define DbMaskAllZero(M) (M)==0 2593 # define DbMaskNonZero(M) (M)!=0 2594 #endif 2595 2596 /* 2597 ** An SQL parser context. A copy of this structure is passed through 2598 ** the parser and down into all the parser action routine in order to 2599 ** carry around information that is global to the entire parse. 2600 ** 2601 ** The structure is divided into two parts. When the parser and code 2602 ** generate call themselves recursively, the first part of the structure 2603 ** is constant but the second part is reset at the beginning and end of 2604 ** each recursion. 2605 ** 2606 ** The nTableLock and aTableLock variables are only used if the shared-cache 2607 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2608 ** used to store the set of table-locks required by the statement being 2609 ** compiled. Function sqlite3TableLock() is used to add entries to the 2610 ** list. 2611 */ 2612 struct Parse { 2613 sqlite3 *db; /* The main database structure */ 2614 char *zErrMsg; /* An error message */ 2615 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2616 int rc; /* Return code from execution */ 2617 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2618 u8 checkSchema; /* Causes schema cookie check after an error */ 2619 u8 nested; /* Number of nested calls to the parser/code generator */ 2620 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2621 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2622 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2623 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2624 u8 okConstFactor; /* OK to factor out constants */ 2625 int aTempReg[8]; /* Holding area for temporary registers */ 2626 int nRangeReg; /* Size of the temporary register block */ 2627 int iRangeReg; /* First register in temporary register block */ 2628 int nErr; /* Number of errors seen */ 2629 int nTab; /* Number of previously allocated VDBE cursors */ 2630 int nMem; /* Number of memory cells used so far */ 2631 int nSet; /* Number of sets used so far */ 2632 int nOnce; /* Number of OP_Once instructions so far */ 2633 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2634 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2635 int ckBase; /* Base register of data during check constraints */ 2636 int iPartIdxTab; /* Table corresponding to a partial index */ 2637 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2638 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2639 int nLabel; /* Number of labels used */ 2640 int *aLabel; /* Space to hold the labels */ 2641 struct yColCache { 2642 int iTable; /* Table cursor number */ 2643 i16 iColumn; /* Table column number */ 2644 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2645 int iLevel; /* Nesting level */ 2646 int iReg; /* Reg with value of this column. 0 means none. */ 2647 int lru; /* Least recently used entry has the smallest value */ 2648 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2649 ExprList *pConstExpr;/* Constant expressions */ 2650 Token constraintName;/* Name of the constraint currently being parsed */ 2651 yDbMask writeMask; /* Start a write transaction on these databases */ 2652 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2653 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2654 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2655 int regRoot; /* Register holding root page number for new objects */ 2656 int nMaxArg; /* Max args passed to user function by sub-program */ 2657 #if SELECTTRACE_ENABLED 2658 int nSelect; /* Number of SELECT statements seen */ 2659 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2660 #endif 2661 #ifndef SQLITE_OMIT_SHARED_CACHE 2662 int nTableLock; /* Number of locks in aTableLock */ 2663 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2664 #endif 2665 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2666 2667 /* Information used while coding trigger programs. */ 2668 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2669 Table *pTriggerTab; /* Table triggers are being coded for */ 2670 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2671 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2672 u32 oldmask; /* Mask of old.* columns referenced */ 2673 u32 newmask; /* Mask of new.* columns referenced */ 2674 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2675 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2676 u8 disableTriggers; /* True to disable triggers */ 2677 2678 /************************************************************************ 2679 ** Above is constant between recursions. Below is reset before and after 2680 ** each recursion. The boundary between these two regions is determined 2681 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2682 ** in the recursive region. 2683 ************************************************************************/ 2684 2685 int nVar; /* Number of '?' variables seen in the SQL so far */ 2686 int nzVar; /* Number of available slots in azVar[] */ 2687 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2688 u8 bFreeWith; /* True if pWith should be freed with parser */ 2689 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2690 #ifndef SQLITE_OMIT_VIRTUALTABLE 2691 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2692 int nVtabLock; /* Number of virtual tables to lock */ 2693 #endif 2694 int nAlias; /* Number of aliased result set columns */ 2695 int nHeight; /* Expression tree height of current sub-select */ 2696 #ifndef SQLITE_OMIT_EXPLAIN 2697 int iSelectId; /* ID of current select for EXPLAIN output */ 2698 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2699 #endif 2700 char **azVar; /* Pointers to names of parameters */ 2701 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2702 const char *zTail; /* All SQL text past the last semicolon parsed */ 2703 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2704 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2705 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2706 Token sNameToken; /* Token with unqualified schema object name */ 2707 Token sLastToken; /* The last token parsed */ 2708 #ifndef SQLITE_OMIT_VIRTUALTABLE 2709 Token sArg; /* Complete text of a module argument */ 2710 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2711 #endif 2712 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2713 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2714 With *pWith; /* Current WITH clause, or NULL */ 2715 }; 2716 2717 /* 2718 ** Return true if currently inside an sqlite3_declare_vtab() call. 2719 */ 2720 #ifdef SQLITE_OMIT_VIRTUALTABLE 2721 #define IN_DECLARE_VTAB 0 2722 #else 2723 #define IN_DECLARE_VTAB (pParse->declareVtab) 2724 #endif 2725 2726 /* 2727 ** An instance of the following structure can be declared on a stack and used 2728 ** to save the Parse.zAuthContext value so that it can be restored later. 2729 */ 2730 struct AuthContext { 2731 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2732 Parse *pParse; /* The Parse structure */ 2733 }; 2734 2735 /* 2736 ** Bitfield flags for P5 value in various opcodes. 2737 */ 2738 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2739 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2740 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2741 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2742 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2743 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2744 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2745 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2746 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2747 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2748 #define OPFLAG_P2ISREG 0x04 /* P2 to OP_Open** is a register number */ 2749 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2750 2751 /* 2752 * Each trigger present in the database schema is stored as an instance of 2753 * struct Trigger. 2754 * 2755 * Pointers to instances of struct Trigger are stored in two ways. 2756 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2757 * database). This allows Trigger structures to be retrieved by name. 2758 * 2. All triggers associated with a single table form a linked list, using the 2759 * pNext member of struct Trigger. A pointer to the first element of the 2760 * linked list is stored as the "pTrigger" member of the associated 2761 * struct Table. 2762 * 2763 * The "step_list" member points to the first element of a linked list 2764 * containing the SQL statements specified as the trigger program. 2765 */ 2766 struct Trigger { 2767 char *zName; /* The name of the trigger */ 2768 char *table; /* The table or view to which the trigger applies */ 2769 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2770 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2771 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2772 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2773 the <column-list> is stored here */ 2774 Schema *pSchema; /* Schema containing the trigger */ 2775 Schema *pTabSchema; /* Schema containing the table */ 2776 TriggerStep *step_list; /* Link list of trigger program steps */ 2777 Trigger *pNext; /* Next trigger associated with the table */ 2778 }; 2779 2780 /* 2781 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2782 ** determine which. 2783 ** 2784 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2785 ** In that cases, the constants below can be ORed together. 2786 */ 2787 #define TRIGGER_BEFORE 1 2788 #define TRIGGER_AFTER 2 2789 2790 /* 2791 * An instance of struct TriggerStep is used to store a single SQL statement 2792 * that is a part of a trigger-program. 2793 * 2794 * Instances of struct TriggerStep are stored in a singly linked list (linked 2795 * using the "pNext" member) referenced by the "step_list" member of the 2796 * associated struct Trigger instance. The first element of the linked list is 2797 * the first step of the trigger-program. 2798 * 2799 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2800 * "SELECT" statement. The meanings of the other members is determined by the 2801 * value of "op" as follows: 2802 * 2803 * (op == TK_INSERT) 2804 * orconf -> stores the ON CONFLICT algorithm 2805 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2806 * this stores a pointer to the SELECT statement. Otherwise NULL. 2807 * zTarget -> Dequoted name of the table to insert into. 2808 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2809 * this stores values to be inserted. Otherwise NULL. 2810 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2811 * statement, then this stores the column-names to be 2812 * inserted into. 2813 * 2814 * (op == TK_DELETE) 2815 * zTarget -> Dequoted name of the table to delete from. 2816 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2817 * Otherwise NULL. 2818 * 2819 * (op == TK_UPDATE) 2820 * zTarget -> Dequoted name of the table to update. 2821 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2822 * Otherwise NULL. 2823 * pExprList -> A list of the columns to update and the expressions to update 2824 * them to. See sqlite3Update() documentation of "pChanges" 2825 * argument. 2826 * 2827 */ 2828 struct TriggerStep { 2829 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2830 u8 orconf; /* OE_Rollback etc. */ 2831 Trigger *pTrig; /* The trigger that this step is a part of */ 2832 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2833 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2834 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2835 ExprList *pExprList; /* SET clause for UPDATE. */ 2836 IdList *pIdList; /* Column names for INSERT */ 2837 TriggerStep *pNext; /* Next in the link-list */ 2838 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2839 }; 2840 2841 /* 2842 ** The following structure contains information used by the sqliteFix... 2843 ** routines as they walk the parse tree to make database references 2844 ** explicit. 2845 */ 2846 typedef struct DbFixer DbFixer; 2847 struct DbFixer { 2848 Parse *pParse; /* The parsing context. Error messages written here */ 2849 Schema *pSchema; /* Fix items to this schema */ 2850 int bVarOnly; /* Check for variable references only */ 2851 const char *zDb; /* Make sure all objects are contained in this database */ 2852 const char *zType; /* Type of the container - used for error messages */ 2853 const Token *pName; /* Name of the container - used for error messages */ 2854 }; 2855 2856 /* 2857 ** An objected used to accumulate the text of a string where we 2858 ** do not necessarily know how big the string will be in the end. 2859 */ 2860 struct StrAccum { 2861 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2862 char *zBase; /* A base allocation. Not from malloc. */ 2863 char *zText; /* The string collected so far */ 2864 int nChar; /* Length of the string so far */ 2865 int nAlloc; /* Amount of space allocated in zText */ 2866 int mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 2867 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2868 }; 2869 #define STRACCUM_NOMEM 1 2870 #define STRACCUM_TOOBIG 2 2871 2872 /* 2873 ** A pointer to this structure is used to communicate information 2874 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2875 */ 2876 typedef struct { 2877 sqlite3 *db; /* The database being initialized */ 2878 char **pzErrMsg; /* Error message stored here */ 2879 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2880 int rc; /* Result code stored here */ 2881 } InitData; 2882 2883 /* 2884 ** Structure containing global configuration data for the SQLite library. 2885 ** 2886 ** This structure also contains some state information. 2887 */ 2888 struct Sqlite3Config { 2889 int bMemstat; /* True to enable memory status */ 2890 int bCoreMutex; /* True to enable core mutexing */ 2891 int bFullMutex; /* True to enable full mutexing */ 2892 int bOpenUri; /* True to interpret filenames as URIs */ 2893 int bUseCis; /* Use covering indices for full-scans */ 2894 int mxStrlen; /* Maximum string length */ 2895 int neverCorrupt; /* Database is always well-formed */ 2896 int szLookaside; /* Default lookaside buffer size */ 2897 int nLookaside; /* Default lookaside buffer count */ 2898 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2899 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2900 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2901 void *pHeap; /* Heap storage space */ 2902 int nHeap; /* Size of pHeap[] */ 2903 int mnReq, mxReq; /* Min and max heap requests sizes */ 2904 sqlite3_int64 szMmap; /* mmap() space per open file */ 2905 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2906 void *pScratch; /* Scratch memory */ 2907 int szScratch; /* Size of each scratch buffer */ 2908 int nScratch; /* Number of scratch buffers */ 2909 void *pPage; /* Page cache memory */ 2910 int szPage; /* Size of each page in pPage[] */ 2911 int nPage; /* Number of pages in pPage[] */ 2912 int mxParserStack; /* maximum depth of the parser stack */ 2913 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2914 u32 szPma; /* Maximum Sorter PMA size */ 2915 /* The above might be initialized to non-zero. The following need to always 2916 ** initially be zero, however. */ 2917 int isInit; /* True after initialization has finished */ 2918 int inProgress; /* True while initialization in progress */ 2919 int isMutexInit; /* True after mutexes are initialized */ 2920 int isMallocInit; /* True after malloc is initialized */ 2921 int isPCacheInit; /* True after malloc is initialized */ 2922 int nRefInitMutex; /* Number of users of pInitMutex */ 2923 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2924 void (*xLog)(void*,int,const char*); /* Function for logging */ 2925 void *pLogArg; /* First argument to xLog() */ 2926 #ifdef SQLITE_ENABLE_SQLLOG 2927 void(*xSqllog)(void*,sqlite3*,const char*, int); 2928 void *pSqllogArg; 2929 #endif 2930 #ifdef SQLITE_VDBE_COVERAGE 2931 /* The following callback (if not NULL) is invoked on every VDBE branch 2932 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2933 */ 2934 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2935 void *pVdbeBranchArg; /* 1st argument */ 2936 #endif 2937 #ifndef SQLITE_OMIT_BUILTIN_TEST 2938 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2939 #endif 2940 int bLocaltimeFault; /* True to fail localtime() calls */ 2941 }; 2942 2943 /* 2944 ** This macro is used inside of assert() statements to indicate that 2945 ** the assert is only valid on a well-formed database. Instead of: 2946 ** 2947 ** assert( X ); 2948 ** 2949 ** One writes: 2950 ** 2951 ** assert( X || CORRUPT_DB ); 2952 ** 2953 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2954 ** that the database is definitely corrupt, only that it might be corrupt. 2955 ** For most test cases, CORRUPT_DB is set to false using a special 2956 ** sqlite3_test_control(). This enables assert() statements to prove 2957 ** things that are always true for well-formed databases. 2958 */ 2959 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2960 2961 /* 2962 ** Context pointer passed down through the tree-walk. 2963 */ 2964 struct Walker { 2965 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2966 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2967 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2968 Parse *pParse; /* Parser context. */ 2969 int walkerDepth; /* Number of subqueries */ 2970 u8 eCode; /* A small processing code */ 2971 union { /* Extra data for callback */ 2972 NameContext *pNC; /* Naming context */ 2973 int n; /* A counter */ 2974 int iCur; /* A cursor number */ 2975 SrcList *pSrcList; /* FROM clause */ 2976 struct SrcCount *pSrcCount; /* Counting column references */ 2977 } u; 2978 }; 2979 2980 /* Forward declarations */ 2981 int sqlite3WalkExpr(Walker*, Expr*); 2982 int sqlite3WalkExprList(Walker*, ExprList*); 2983 int sqlite3WalkSelect(Walker*, Select*); 2984 int sqlite3WalkSelectExpr(Walker*, Select*); 2985 int sqlite3WalkSelectFrom(Walker*, Select*); 2986 2987 /* 2988 ** Return code from the parse-tree walking primitives and their 2989 ** callbacks. 2990 */ 2991 #define WRC_Continue 0 /* Continue down into children */ 2992 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2993 #define WRC_Abort 2 /* Abandon the tree walk */ 2994 2995 /* 2996 ** An instance of this structure represents a set of one or more CTEs 2997 ** (common table expressions) created by a single WITH clause. 2998 */ 2999 struct With { 3000 int nCte; /* Number of CTEs in the WITH clause */ 3001 With *pOuter; /* Containing WITH clause, or NULL */ 3002 struct Cte { /* For each CTE in the WITH clause.... */ 3003 char *zName; /* Name of this CTE */ 3004 ExprList *pCols; /* List of explicit column names, or NULL */ 3005 Select *pSelect; /* The definition of this CTE */ 3006 const char *zErr; /* Error message for circular references */ 3007 } a[1]; 3008 }; 3009 3010 #ifdef SQLITE_DEBUG 3011 /* 3012 ** An instance of the TreeView object is used for printing the content of 3013 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3014 */ 3015 struct TreeView { 3016 int iLevel; /* Which level of the tree we are on */ 3017 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3018 }; 3019 #endif /* SQLITE_DEBUG */ 3020 3021 /* 3022 ** Assuming zIn points to the first byte of a UTF-8 character, 3023 ** advance zIn to point to the first byte of the next UTF-8 character. 3024 */ 3025 #define SQLITE_SKIP_UTF8(zIn) { \ 3026 if( (*(zIn++))>=0xc0 ){ \ 3027 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3028 } \ 3029 } 3030 3031 /* 3032 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3033 ** the same name but without the _BKPT suffix. These macros invoke 3034 ** routines that report the line-number on which the error originated 3035 ** using sqlite3_log(). The routines also provide a convenient place 3036 ** to set a debugger breakpoint. 3037 */ 3038 int sqlite3CorruptError(int); 3039 int sqlite3MisuseError(int); 3040 int sqlite3CantopenError(int); 3041 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3042 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3043 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3044 3045 3046 /* 3047 ** FTS4 is really an extension for FTS3. It is enabled using the 3048 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3049 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3050 */ 3051 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3052 # define SQLITE_ENABLE_FTS3 1 3053 #endif 3054 3055 /* 3056 ** The ctype.h header is needed for non-ASCII systems. It is also 3057 ** needed by FTS3 when FTS3 is included in the amalgamation. 3058 */ 3059 #if !defined(SQLITE_ASCII) || \ 3060 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3061 # include <ctype.h> 3062 #endif 3063 3064 /* 3065 ** The following macros mimic the standard library functions toupper(), 3066 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3067 ** sqlite versions only work for ASCII characters, regardless of locale. 3068 */ 3069 #ifdef SQLITE_ASCII 3070 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3071 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3072 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3073 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3074 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3075 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3076 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3077 #else 3078 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3079 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3080 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3081 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3082 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3083 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3084 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3085 #endif 3086 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3087 int sqlite3IsIdChar(u8); 3088 #endif 3089 3090 /* 3091 ** Internal function prototypes 3092 */ 3093 #define sqlite3StrICmp sqlite3_stricmp 3094 int sqlite3Strlen30(const char*); 3095 #define sqlite3StrNICmp sqlite3_strnicmp 3096 3097 int sqlite3MallocInit(void); 3098 void sqlite3MallocEnd(void); 3099 void *sqlite3Malloc(u64); 3100 void *sqlite3MallocZero(u64); 3101 void *sqlite3DbMallocZero(sqlite3*, u64); 3102 void *sqlite3DbMallocRaw(sqlite3*, u64); 3103 char *sqlite3DbStrDup(sqlite3*,const char*); 3104 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3105 void *sqlite3Realloc(void*, u64); 3106 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3107 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3108 void sqlite3DbFree(sqlite3*, void*); 3109 int sqlite3MallocSize(void*); 3110 int sqlite3DbMallocSize(sqlite3*, void*); 3111 void *sqlite3ScratchMalloc(int); 3112 void sqlite3ScratchFree(void*); 3113 void *sqlite3PageMalloc(int); 3114 void sqlite3PageFree(void*); 3115 void sqlite3MemSetDefault(void); 3116 #ifndef SQLITE_OMIT_BUILTIN_TEST 3117 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3118 #endif 3119 int sqlite3HeapNearlyFull(void); 3120 3121 /* 3122 ** On systems with ample stack space and that support alloca(), make 3123 ** use of alloca() to obtain space for large automatic objects. By default, 3124 ** obtain space from malloc(). 3125 ** 3126 ** The alloca() routine never returns NULL. This will cause code paths 3127 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3128 */ 3129 #ifdef SQLITE_USE_ALLOCA 3130 # define sqlite3StackAllocRaw(D,N) alloca(N) 3131 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3132 # define sqlite3StackFree(D,P) 3133 #else 3134 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3135 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3136 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3137 #endif 3138 3139 #ifdef SQLITE_ENABLE_MEMSYS3 3140 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3141 #endif 3142 #ifdef SQLITE_ENABLE_MEMSYS5 3143 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3144 #endif 3145 3146 3147 #ifndef SQLITE_MUTEX_OMIT 3148 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3149 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3150 sqlite3_mutex *sqlite3MutexAlloc(int); 3151 int sqlite3MutexInit(void); 3152 int sqlite3MutexEnd(void); 3153 #endif 3154 3155 sqlite3_int64 sqlite3StatusValue(int); 3156 void sqlite3StatusUp(int, int); 3157 void sqlite3StatusDown(int, int); 3158 void sqlite3StatusSet(int, int); 3159 3160 /* Access to mutexes used by sqlite3_status() */ 3161 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3162 sqlite3_mutex *sqlite3MallocMutex(void); 3163 3164 #ifndef SQLITE_OMIT_FLOATING_POINT 3165 int sqlite3IsNaN(double); 3166 #else 3167 # define sqlite3IsNaN(X) 0 3168 #endif 3169 3170 /* 3171 ** An instance of the following structure holds information about SQL 3172 ** functions arguments that are the parameters to the printf() function. 3173 */ 3174 struct PrintfArguments { 3175 int nArg; /* Total number of arguments */ 3176 int nUsed; /* Number of arguments used so far */ 3177 sqlite3_value **apArg; /* The argument values */ 3178 }; 3179 3180 #define SQLITE_PRINTF_INTERNAL 0x01 3181 #define SQLITE_PRINTF_SQLFUNC 0x02 3182 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3183 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3184 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3185 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3186 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3187 void sqlite3DebugPrintf(const char*, ...); 3188 #endif 3189 #if defined(SQLITE_TEST) 3190 void *sqlite3TestTextToPtr(const char*); 3191 #endif 3192 3193 #if defined(SQLITE_DEBUG) 3194 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3195 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3196 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3197 #endif 3198 3199 3200 void sqlite3SetString(char **, sqlite3*, const char*); 3201 void sqlite3ErrorMsg(Parse*, const char*, ...); 3202 int sqlite3Dequote(char*); 3203 int sqlite3KeywordCode(const unsigned char*, int); 3204 int sqlite3RunParser(Parse*, const char*, char **); 3205 void sqlite3FinishCoding(Parse*); 3206 int sqlite3GetTempReg(Parse*); 3207 void sqlite3ReleaseTempReg(Parse*,int); 3208 int sqlite3GetTempRange(Parse*,int); 3209 void sqlite3ReleaseTempRange(Parse*,int,int); 3210 void sqlite3ClearTempRegCache(Parse*); 3211 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3212 Expr *sqlite3Expr(sqlite3*,int,const char*); 3213 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3214 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3215 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3216 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3217 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3218 void sqlite3ExprDelete(sqlite3*, Expr*); 3219 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3220 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3221 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3222 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3223 u32 sqlite3ExprListFlags(const ExprList*); 3224 int sqlite3Init(sqlite3*, char**); 3225 int sqlite3InitCallback(void*, int, char**, char**); 3226 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3227 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3228 void sqlite3ResetOneSchema(sqlite3*,int); 3229 void sqlite3CollapseDatabaseArray(sqlite3*); 3230 void sqlite3BeginParse(Parse*,int); 3231 void sqlite3CommitInternalChanges(sqlite3*); 3232 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3233 void sqlite3OpenMasterTable(Parse *, int); 3234 Index *sqlite3PrimaryKeyIndex(Table*); 3235 i16 sqlite3ColumnOfIndex(Index*, i16); 3236 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3237 void sqlite3AddColumn(Parse*,Token*); 3238 void sqlite3AddNotNull(Parse*, int); 3239 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3240 void sqlite3AddCheckConstraint(Parse*, Expr*); 3241 void sqlite3AddColumnType(Parse*,Token*); 3242 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3243 void sqlite3AddCollateType(Parse*, Token*); 3244 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3245 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3246 sqlite3_vfs**,char**,char **); 3247 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3248 int sqlite3CodeOnce(Parse *); 3249 3250 #ifdef SQLITE_OMIT_BUILTIN_TEST 3251 # define sqlite3FaultSim(X) SQLITE_OK 3252 #else 3253 int sqlite3FaultSim(int); 3254 #endif 3255 3256 Bitvec *sqlite3BitvecCreate(u32); 3257 int sqlite3BitvecTest(Bitvec*, u32); 3258 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3259 int sqlite3BitvecSet(Bitvec*, u32); 3260 void sqlite3BitvecClear(Bitvec*, u32, void*); 3261 void sqlite3BitvecDestroy(Bitvec*); 3262 u32 sqlite3BitvecSize(Bitvec*); 3263 #ifndef SQLITE_OMIT_BUILTIN_TEST 3264 int sqlite3BitvecBuiltinTest(int,int*); 3265 #endif 3266 3267 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3268 void sqlite3RowSetClear(RowSet*); 3269 void sqlite3RowSetInsert(RowSet*, i64); 3270 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3271 int sqlite3RowSetNext(RowSet*, i64*); 3272 3273 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3274 3275 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3276 int sqlite3ViewGetColumnNames(Parse*,Table*); 3277 #else 3278 # define sqlite3ViewGetColumnNames(A,B) 0 3279 #endif 3280 3281 #if SQLITE_MAX_ATTACHED>30 3282 int sqlite3DbMaskAllZero(yDbMask); 3283 #endif 3284 void sqlite3DropTable(Parse*, SrcList*, int, int); 3285 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3286 void sqlite3DeleteTable(sqlite3*, Table*); 3287 #ifndef SQLITE_OMIT_AUTOINCREMENT 3288 void sqlite3AutoincrementBegin(Parse *pParse); 3289 void sqlite3AutoincrementEnd(Parse *pParse); 3290 #else 3291 # define sqlite3AutoincrementBegin(X) 3292 # define sqlite3AutoincrementEnd(X) 3293 #endif 3294 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3295 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3296 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3297 int sqlite3IdListIndex(IdList*,const char*); 3298 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3299 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3300 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3301 Token*, Select*, Expr*, IdList*); 3302 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3303 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3304 void sqlite3SrcListShiftJoinType(SrcList*); 3305 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3306 void sqlite3IdListDelete(sqlite3*, IdList*); 3307 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3308 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3309 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3310 Expr*, int, int); 3311 void sqlite3DropIndex(Parse*, SrcList*, int); 3312 int sqlite3Select(Parse*, Select*, SelectDest*); 3313 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3314 Expr*,ExprList*,u16,Expr*,Expr*); 3315 void sqlite3SelectDelete(sqlite3*, Select*); 3316 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3317 int sqlite3IsReadOnly(Parse*, Table*, int); 3318 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3319 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3320 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3321 #endif 3322 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3323 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3324 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3325 void sqlite3WhereEnd(WhereInfo*); 3326 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3327 int sqlite3WhereIsDistinct(WhereInfo*); 3328 int sqlite3WhereIsOrdered(WhereInfo*); 3329 int sqlite3WhereIsSorted(WhereInfo*); 3330 int sqlite3WhereContinueLabel(WhereInfo*); 3331 int sqlite3WhereBreakLabel(WhereInfo*); 3332 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3333 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3334 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3335 void sqlite3ExprCodeMove(Parse*, int, int, int); 3336 void sqlite3ExprCacheStore(Parse*, int, int, int); 3337 void sqlite3ExprCachePush(Parse*); 3338 void sqlite3ExprCachePop(Parse*); 3339 void sqlite3ExprCacheRemove(Parse*, int, int); 3340 void sqlite3ExprCacheClear(Parse*); 3341 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3342 void sqlite3ExprCode(Parse*, Expr*, int); 3343 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3344 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3345 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3346 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3347 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3348 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3349 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3350 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3351 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3352 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3353 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3354 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3355 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3356 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3357 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3358 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3359 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3360 void sqlite3Vacuum(Parse*); 3361 int sqlite3RunVacuum(char**, sqlite3*); 3362 char *sqlite3NameFromToken(sqlite3*, Token*); 3363 int sqlite3ExprCompare(Expr*, Expr*, int); 3364 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3365 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3366 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3367 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3368 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3369 Vdbe *sqlite3GetVdbe(Parse*); 3370 #ifndef SQLITE_OMIT_BUILTIN_TEST 3371 void sqlite3PrngSaveState(void); 3372 void sqlite3PrngRestoreState(void); 3373 #endif 3374 void sqlite3RollbackAll(sqlite3*,int); 3375 void sqlite3CodeVerifySchema(Parse*, int); 3376 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3377 void sqlite3BeginTransaction(Parse*, int); 3378 void sqlite3CommitTransaction(Parse*); 3379 void sqlite3RollbackTransaction(Parse*); 3380 void sqlite3Savepoint(Parse*, int, Token*); 3381 void sqlite3CloseSavepoints(sqlite3 *); 3382 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3383 int sqlite3ExprIsConstant(Expr*); 3384 int sqlite3ExprIsConstantNotJoin(Expr*); 3385 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3386 int sqlite3ExprIsTableConstant(Expr*,int); 3387 int sqlite3ExprIsInteger(Expr*, int*); 3388 int sqlite3ExprCanBeNull(const Expr*); 3389 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3390 int sqlite3IsRowid(const char*); 3391 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3392 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3393 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3394 void sqlite3ResolvePartIdxLabel(Parse*,int); 3395 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3396 u8,u8,int,int*); 3397 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3398 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3399 void sqlite3BeginWriteOperation(Parse*, int, int); 3400 void sqlite3MultiWrite(Parse*); 3401 void sqlite3MayAbort(Parse*); 3402 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3403 void sqlite3UniqueConstraint(Parse*, int, Index*); 3404 void sqlite3RowidConstraint(Parse*, int, Table*); 3405 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3406 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3407 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3408 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3409 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3410 #if SELECTTRACE_ENABLED 3411 void sqlite3SelectSetName(Select*,const char*); 3412 #else 3413 # define sqlite3SelectSetName(A,B) 3414 #endif 3415 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3416 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3417 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3418 void sqlite3RegisterDateTimeFunctions(void); 3419 void sqlite3RegisterGlobalFunctions(void); 3420 int sqlite3SafetyCheckOk(sqlite3*); 3421 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3422 void sqlite3ChangeCookie(Parse*, int); 3423 3424 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3425 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3426 #endif 3427 3428 #ifndef SQLITE_OMIT_TRIGGER 3429 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3430 Expr*,int, int); 3431 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3432 void sqlite3DropTrigger(Parse*, SrcList*, int); 3433 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3434 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3435 Trigger *sqlite3TriggerList(Parse *, Table *); 3436 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3437 int, int, int); 3438 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3439 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3440 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3441 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3442 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3443 Select*,u8); 3444 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3445 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3446 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3447 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3448 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3449 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3450 #else 3451 # define sqlite3TriggersExist(B,C,D,E,F) 0 3452 # define sqlite3DeleteTrigger(A,B) 3453 # define sqlite3DropTriggerPtr(A,B) 3454 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3455 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3456 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3457 # define sqlite3TriggerList(X, Y) 0 3458 # define sqlite3ParseToplevel(p) p 3459 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3460 #endif 3461 3462 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3463 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3464 void sqlite3DeferForeignKey(Parse*, int); 3465 #ifndef SQLITE_OMIT_AUTHORIZATION 3466 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3467 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3468 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3469 void sqlite3AuthContextPop(AuthContext*); 3470 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3471 #else 3472 # define sqlite3AuthRead(a,b,c,d) 3473 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3474 # define sqlite3AuthContextPush(a,b,c) 3475 # define sqlite3AuthContextPop(a) ((void)(a)) 3476 #endif 3477 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3478 void sqlite3Detach(Parse*, Expr*); 3479 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3480 int sqlite3FixSrcList(DbFixer*, SrcList*); 3481 int sqlite3FixSelect(DbFixer*, Select*); 3482 int sqlite3FixExpr(DbFixer*, Expr*); 3483 int sqlite3FixExprList(DbFixer*, ExprList*); 3484 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3485 int sqlite3AtoF(const char *z, double*, int, u8); 3486 int sqlite3GetInt32(const char *, int*); 3487 int sqlite3Atoi(const char*); 3488 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3489 int sqlite3Utf8CharLen(const char *pData, int nByte); 3490 u32 sqlite3Utf8Read(const u8**); 3491 LogEst sqlite3LogEst(u64); 3492 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3493 #ifndef SQLITE_OMIT_VIRTUALTABLE 3494 LogEst sqlite3LogEstFromDouble(double); 3495 #endif 3496 u64 sqlite3LogEstToInt(LogEst); 3497 3498 /* 3499 ** Routines to read and write variable-length integers. These used to 3500 ** be defined locally, but now we use the varint routines in the util.c 3501 ** file. 3502 */ 3503 int sqlite3PutVarint(unsigned char*, u64); 3504 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3505 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3506 int sqlite3VarintLen(u64 v); 3507 3508 /* 3509 ** The common case is for a varint to be a single byte. They following 3510 ** macros handle the common case without a procedure call, but then call 3511 ** the procedure for larger varints. 3512 */ 3513 #define getVarint32(A,B) \ 3514 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3515 #define putVarint32(A,B) \ 3516 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3517 sqlite3PutVarint((A),(B))) 3518 #define getVarint sqlite3GetVarint 3519 #define putVarint sqlite3PutVarint 3520 3521 3522 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3523 void sqlite3TableAffinity(Vdbe*, Table*, int); 3524 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3525 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3526 char sqlite3ExprAffinity(Expr *pExpr); 3527 int sqlite3Atoi64(const char*, i64*, int, u8); 3528 int sqlite3DecOrHexToI64(const char*, i64*); 3529 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3530 void sqlite3Error(sqlite3*,int); 3531 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3532 u8 sqlite3HexToInt(int h); 3533 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3534 3535 #if defined(SQLITE_NEED_ERR_NAME) 3536 const char *sqlite3ErrName(int); 3537 #endif 3538 3539 const char *sqlite3ErrStr(int); 3540 int sqlite3ReadSchema(Parse *pParse); 3541 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3542 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3543 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3544 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3545 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3546 Expr *sqlite3ExprSkipCollate(Expr*); 3547 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3548 int sqlite3CheckObjectName(Parse *, const char *); 3549 void sqlite3VdbeSetChanges(sqlite3 *, int); 3550 int sqlite3AddInt64(i64*,i64); 3551 int sqlite3SubInt64(i64*,i64); 3552 int sqlite3MulInt64(i64*,i64); 3553 int sqlite3AbsInt32(int); 3554 #ifdef SQLITE_ENABLE_8_3_NAMES 3555 void sqlite3FileSuffix3(const char*, char*); 3556 #else 3557 # define sqlite3FileSuffix3(X,Y) 3558 #endif 3559 u8 sqlite3GetBoolean(const char *z,u8); 3560 3561 const void *sqlite3ValueText(sqlite3_value*, u8); 3562 int sqlite3ValueBytes(sqlite3_value*, u8); 3563 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3564 void(*)(void*)); 3565 void sqlite3ValueSetNull(sqlite3_value*); 3566 void sqlite3ValueFree(sqlite3_value*); 3567 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3568 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3569 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3570 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3571 #ifndef SQLITE_AMALGAMATION 3572 extern const unsigned char sqlite3OpcodeProperty[]; 3573 extern const unsigned char sqlite3UpperToLower[]; 3574 extern const unsigned char sqlite3CtypeMap[]; 3575 extern const Token sqlite3IntTokens[]; 3576 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3577 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3578 #ifndef SQLITE_OMIT_WSD 3579 extern int sqlite3PendingByte; 3580 #endif 3581 #endif 3582 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3583 void sqlite3Reindex(Parse*, Token*, Token*); 3584 void sqlite3AlterFunctions(void); 3585 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3586 int sqlite3GetToken(const unsigned char *, int *); 3587 void sqlite3NestedParse(Parse*, const char*, ...); 3588 void sqlite3ExpirePreparedStatements(sqlite3*); 3589 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3590 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3591 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3592 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3593 int sqlite3ResolveExprNames(NameContext*, Expr*); 3594 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3595 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3596 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3597 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3598 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3599 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3600 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3601 char sqlite3AffinityType(const char*, u8*); 3602 void sqlite3Analyze(Parse*, Token*, Token*); 3603 int sqlite3InvokeBusyHandler(BusyHandler*); 3604 int sqlite3FindDb(sqlite3*, Token*); 3605 int sqlite3FindDbName(sqlite3 *, const char *); 3606 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3607 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3608 void sqlite3DefaultRowEst(Index*); 3609 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3610 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3611 void sqlite3MinimumFileFormat(Parse*, int, int); 3612 void sqlite3SchemaClear(void *); 3613 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3614 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3615 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3616 void sqlite3KeyInfoUnref(KeyInfo*); 3617 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3618 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3619 #ifdef SQLITE_DEBUG 3620 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3621 #endif 3622 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3623 void (*)(sqlite3_context*,int,sqlite3_value **), 3624 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3625 FuncDestructor *pDestructor 3626 ); 3627 int sqlite3ApiExit(sqlite3 *db, int); 3628 int sqlite3OpenTempDatabase(Parse *); 3629 3630 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3631 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3632 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3633 void sqlite3AppendChar(StrAccum*,int,char); 3634 char *sqlite3StrAccumFinish(StrAccum*); 3635 void sqlite3StrAccumReset(StrAccum*); 3636 void sqlite3SelectDestInit(SelectDest*,int,int); 3637 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3638 3639 void sqlite3BackupRestart(sqlite3_backup *); 3640 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3641 3642 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3643 void sqlite3AnalyzeFunctions(void); 3644 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3645 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3646 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3647 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3648 #endif 3649 3650 /* 3651 ** The interface to the LEMON-generated parser 3652 */ 3653 void *sqlite3ParserAlloc(void*(*)(u64)); 3654 void sqlite3ParserFree(void*, void(*)(void*)); 3655 void sqlite3Parser(void*, int, Token, Parse*); 3656 #ifdef YYTRACKMAXSTACKDEPTH 3657 int sqlite3ParserStackPeak(void*); 3658 #endif 3659 3660 void sqlite3AutoLoadExtensions(sqlite3*); 3661 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3662 void sqlite3CloseExtensions(sqlite3*); 3663 #else 3664 # define sqlite3CloseExtensions(X) 3665 #endif 3666 3667 #ifndef SQLITE_OMIT_SHARED_CACHE 3668 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3669 #else 3670 #define sqlite3TableLock(v,w,x,y,z) 3671 #endif 3672 3673 #ifdef SQLITE_TEST 3674 int sqlite3Utf8To8(unsigned char*); 3675 #endif 3676 3677 #ifdef SQLITE_OMIT_VIRTUALTABLE 3678 # define sqlite3VtabClear(Y) 3679 # define sqlite3VtabSync(X,Y) SQLITE_OK 3680 # define sqlite3VtabRollback(X) 3681 # define sqlite3VtabCommit(X) 3682 # define sqlite3VtabInSync(db) 0 3683 # define sqlite3VtabLock(X) 3684 # define sqlite3VtabUnlock(X) 3685 # define sqlite3VtabUnlockList(X) 3686 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3687 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3688 #else 3689 void sqlite3VtabClear(sqlite3 *db, Table*); 3690 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3691 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3692 int sqlite3VtabRollback(sqlite3 *db); 3693 int sqlite3VtabCommit(sqlite3 *db); 3694 void sqlite3VtabLock(VTable *); 3695 void sqlite3VtabUnlock(VTable *); 3696 void sqlite3VtabUnlockList(sqlite3*); 3697 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3698 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3699 VTable *sqlite3GetVTable(sqlite3*, Table*); 3700 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3701 #endif 3702 void sqlite3VtabMakeWritable(Parse*,Table*); 3703 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3704 void sqlite3VtabFinishParse(Parse*, Token*); 3705 void sqlite3VtabArgInit(Parse*); 3706 void sqlite3VtabArgExtend(Parse*, Token*); 3707 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3708 int sqlite3VtabCallConnect(Parse*, Table*); 3709 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3710 int sqlite3VtabBegin(sqlite3 *, VTable *); 3711 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3712 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3713 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3714 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3715 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3716 void sqlite3ParserReset(Parse*); 3717 int sqlite3Reprepare(Vdbe*); 3718 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3719 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3720 int sqlite3TempInMemory(const sqlite3*); 3721 const char *sqlite3JournalModename(int); 3722 #ifndef SQLITE_OMIT_WAL 3723 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3724 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3725 #endif 3726 #ifndef SQLITE_OMIT_CTE 3727 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3728 void sqlite3WithDelete(sqlite3*,With*); 3729 void sqlite3WithPush(Parse*, With*, u8); 3730 #else 3731 #define sqlite3WithPush(x,y,z) 3732 #define sqlite3WithDelete(x,y) 3733 #endif 3734 3735 /* Declarations for functions in fkey.c. All of these are replaced by 3736 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3737 ** key functionality is available. If OMIT_TRIGGER is defined but 3738 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3739 ** this case foreign keys are parsed, but no other functionality is 3740 ** provided (enforcement of FK constraints requires the triggers sub-system). 3741 */ 3742 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3743 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3744 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3745 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3746 int sqlite3FkRequired(Parse*, Table*, int*, int); 3747 u32 sqlite3FkOldmask(Parse*, Table*); 3748 FKey *sqlite3FkReferences(Table *); 3749 #else 3750 #define sqlite3FkActions(a,b,c,d,e,f) 3751 #define sqlite3FkCheck(a,b,c,d,e,f) 3752 #define sqlite3FkDropTable(a,b,c) 3753 #define sqlite3FkOldmask(a,b) 0 3754 #define sqlite3FkRequired(a,b,c,d) 0 3755 #endif 3756 #ifndef SQLITE_OMIT_FOREIGN_KEY 3757 void sqlite3FkDelete(sqlite3 *, Table*); 3758 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3759 #else 3760 #define sqlite3FkDelete(a,b) 3761 #define sqlite3FkLocateIndex(a,b,c,d,e) 3762 #endif 3763 3764 3765 /* 3766 ** Available fault injectors. Should be numbered beginning with 0. 3767 */ 3768 #define SQLITE_FAULTINJECTOR_MALLOC 0 3769 #define SQLITE_FAULTINJECTOR_COUNT 1 3770 3771 /* 3772 ** The interface to the code in fault.c used for identifying "benign" 3773 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3774 ** is not defined. 3775 */ 3776 #ifndef SQLITE_OMIT_BUILTIN_TEST 3777 void sqlite3BeginBenignMalloc(void); 3778 void sqlite3EndBenignMalloc(void); 3779 #else 3780 #define sqlite3BeginBenignMalloc() 3781 #define sqlite3EndBenignMalloc() 3782 #endif 3783 3784 /* 3785 ** Allowed return values from sqlite3FindInIndex() 3786 */ 3787 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3788 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3789 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3790 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3791 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3792 /* 3793 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3794 */ 3795 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3796 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3797 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3798 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3799 3800 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3801 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3802 int sqlite3JournalSize(sqlite3_vfs *); 3803 int sqlite3JournalCreate(sqlite3_file *); 3804 int sqlite3JournalExists(sqlite3_file *p); 3805 #else 3806 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3807 #define sqlite3JournalExists(p) 1 3808 #endif 3809 3810 void sqlite3MemJournalOpen(sqlite3_file *); 3811 int sqlite3MemJournalSize(void); 3812 int sqlite3IsMemJournal(sqlite3_file *); 3813 3814 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3815 #if SQLITE_MAX_EXPR_DEPTH>0 3816 int sqlite3SelectExprHeight(Select *); 3817 int sqlite3ExprCheckHeight(Parse*, int); 3818 #else 3819 #define sqlite3SelectExprHeight(x) 0 3820 #define sqlite3ExprCheckHeight(x,y) 3821 #endif 3822 3823 u32 sqlite3Get4byte(const u8*); 3824 void sqlite3Put4byte(u8*, u32); 3825 3826 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3827 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3828 void sqlite3ConnectionUnlocked(sqlite3 *db); 3829 void sqlite3ConnectionClosed(sqlite3 *db); 3830 #else 3831 #define sqlite3ConnectionBlocked(x,y) 3832 #define sqlite3ConnectionUnlocked(x) 3833 #define sqlite3ConnectionClosed(x) 3834 #endif 3835 3836 #ifdef SQLITE_DEBUG 3837 void sqlite3ParserTrace(FILE*, char *); 3838 #endif 3839 3840 /* 3841 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3842 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3843 ** print I/O tracing messages. 3844 */ 3845 #ifdef SQLITE_ENABLE_IOTRACE 3846 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3847 void sqlite3VdbeIOTraceSql(Vdbe*); 3848 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3849 #else 3850 # define IOTRACE(A) 3851 # define sqlite3VdbeIOTraceSql(X) 3852 #endif 3853 3854 /* 3855 ** These routines are available for the mem2.c debugging memory allocator 3856 ** only. They are used to verify that different "types" of memory 3857 ** allocations are properly tracked by the system. 3858 ** 3859 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3860 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3861 ** a single bit set. 3862 ** 3863 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3864 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3865 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3866 ** 3867 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3868 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3869 ** 3870 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3871 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3872 ** it might have been allocated by lookaside, except the allocation was 3873 ** too large or lookaside was already full. It is important to verify 3874 ** that allocations that might have been satisfied by lookaside are not 3875 ** passed back to non-lookaside free() routines. Asserts such as the 3876 ** example above are placed on the non-lookaside free() routines to verify 3877 ** this constraint. 3878 ** 3879 ** All of this is no-op for a production build. It only comes into 3880 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3881 */ 3882 #ifdef SQLITE_MEMDEBUG 3883 void sqlite3MemdebugSetType(void*,u8); 3884 int sqlite3MemdebugHasType(void*,u8); 3885 int sqlite3MemdebugNoType(void*,u8); 3886 #else 3887 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3888 # define sqlite3MemdebugHasType(X,Y) 1 3889 # define sqlite3MemdebugNoType(X,Y) 1 3890 #endif 3891 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3892 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3893 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3894 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3895 3896 /* 3897 ** Threading interface 3898 */ 3899 #if SQLITE_MAX_WORKER_THREADS>0 3900 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3901 int sqlite3ThreadJoin(SQLiteThread*, void**); 3902 #endif 3903 3904 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 3905 int sqlite3DbstatRegister(sqlite3*); 3906 #endif 3907 3908 #endif /* _SQLITEINT_H_ */ 3909