xref: /sqlite-3.40.0/src/sqliteInt.h (revision 3f09beda)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17 
18 /*
19 ** Include the header file used to customize the compiler options for MSVC.
20 ** This should be done first so that it can successfully prevent spurious
21 ** compiler warnings due to subsequent content in this file and other files
22 ** that are included by this file.
23 */
24 #include "msvc.h"
25 
26 /*
27 ** Special setup for VxWorks
28 */
29 #include "vxworks.h"
30 
31 /*
32 ** These #defines should enable >2GB file support on POSIX if the
33 ** underlying operating system supports it.  If the OS lacks
34 ** large file support, or if the OS is windows, these should be no-ops.
35 **
36 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
37 ** system #includes.  Hence, this block of code must be the very first
38 ** code in all source files.
39 **
40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
41 ** on the compiler command line.  This is necessary if you are compiling
42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
43 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
44 ** without this option, LFS is enable.  But LFS does not exist in the kernel
45 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
46 ** portability you should omit LFS.
47 **
48 ** The previous paragraph was written in 2005.  (This paragraph is written
49 ** on 2008-11-28.) These days, all Linux kernels support large files, so
50 ** you should probably leave LFS enabled.  But some embedded platforms might
51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
52 **
53 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
54 */
55 #ifndef SQLITE_DISABLE_LFS
56 # define _LARGE_FILE       1
57 # ifndef _FILE_OFFSET_BITS
58 #   define _FILE_OFFSET_BITS 64
59 # endif
60 # define _LARGEFILE_SOURCE 1
61 #endif
62 
63 /* What version of GCC is being used.  0 means GCC is not being used */
64 #ifdef __GNUC__
65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
66 #else
67 # define GCC_VERSION 0
68 #endif
69 
70 /* Needed for various definitions... */
71 #if defined(__GNUC__) && !defined(_GNU_SOURCE)
72 # define _GNU_SOURCE
73 #endif
74 
75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
76 # define _BSD_SOURCE
77 #endif
78 
79 /*
80 ** For MinGW, check to see if we can include the header file containing its
81 ** version information, among other things.  Normally, this internal MinGW
82 ** header file would [only] be included automatically by other MinGW header
83 ** files; however, the contained version information is now required by this
84 ** header file to work around binary compatibility issues (see below) and
85 ** this is the only known way to reliably obtain it.  This entire #if block
86 ** would be completely unnecessary if there was any other way of detecting
87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
88 ** some MinGW-specific macros).  When compiling for MinGW, either the
89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
90 ** defined; otherwise, detection of conditions specific to MinGW will be
91 ** disabled.
92 */
93 #if defined(_HAVE_MINGW_H)
94 # include "mingw.h"
95 #elif defined(_HAVE__MINGW_H)
96 # include "_mingw.h"
97 #endif
98 
99 /*
100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
101 ** define is required to maintain binary compatibility with the MSVC runtime
102 ** library in use (e.g. for Windows XP).
103 */
104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
105     defined(_WIN32) && !defined(_WIN64) && \
106     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
107     defined(__MSVCRT__)
108 # define _USE_32BIT_TIME_T
109 #endif
110 
111 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
112 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
113 ** MinGW.
114 */
115 #include "sqlite3.h"
116 
117 /*
118 ** Include the configuration header output by 'configure' if we're using the
119 ** autoconf-based build
120 */
121 #ifdef _HAVE_SQLITE_CONFIG_H
122 #include "config.h"
123 #endif
124 
125 #include "sqliteLimit.h"
126 
127 /* Disable nuisance warnings on Borland compilers */
128 #if defined(__BORLANDC__)
129 #pragma warn -rch /* unreachable code */
130 #pragma warn -ccc /* Condition is always true or false */
131 #pragma warn -aus /* Assigned value is never used */
132 #pragma warn -csu /* Comparing signed and unsigned */
133 #pragma warn -spa /* Suspicious pointer arithmetic */
134 #endif
135 
136 /*
137 ** Include standard header files as necessary
138 */
139 #ifdef HAVE_STDINT_H
140 #include <stdint.h>
141 #endif
142 #ifdef HAVE_INTTYPES_H
143 #include <inttypes.h>
144 #endif
145 
146 /*
147 ** The following macros are used to cast pointers to integers and
148 ** integers to pointers.  The way you do this varies from one compiler
149 ** to the next, so we have developed the following set of #if statements
150 ** to generate appropriate macros for a wide range of compilers.
151 **
152 ** The correct "ANSI" way to do this is to use the intptr_t type.
153 ** Unfortunately, that typedef is not available on all compilers, or
154 ** if it is available, it requires an #include of specific headers
155 ** that vary from one machine to the next.
156 **
157 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
158 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
159 ** So we have to define the macros in different ways depending on the
160 ** compiler.
161 */
162 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
163 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
164 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
165 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
166 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
167 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
168 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
169 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
170 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
171 #else                          /* Generates a warning - but it always works */
172 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
173 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
174 #endif
175 
176 /*
177 ** A macro to hint to the compiler that a function should not be
178 ** inlined.
179 */
180 #if defined(__GNUC__)
181 #  define SQLITE_NOINLINE  __attribute__((noinline))
182 #elif defined(_MSC_VER) && _MSC_VER>=1310
183 #  define SQLITE_NOINLINE  __declspec(noinline)
184 #else
185 #  define SQLITE_NOINLINE
186 #endif
187 
188 /*
189 ** Make sure that the compiler intrinsics we desire are enabled when
190 ** compiling with an appropriate version of MSVC.
191 */
192 #if defined(_MSC_VER) && _MSC_VER>=1300
193 #  include <intrin.h>
194 #  pragma intrinsic(_byteswap_ushort)
195 #  pragma intrinsic(_byteswap_ulong)
196 #endif
197 
198 /*
199 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
200 ** 0 means mutexes are permanently disable and the library is never
201 ** threadsafe.  1 means the library is serialized which is the highest
202 ** level of threadsafety.  2 means the library is multithreaded - multiple
203 ** threads can use SQLite as long as no two threads try to use the same
204 ** database connection at the same time.
205 **
206 ** Older versions of SQLite used an optional THREADSAFE macro.
207 ** We support that for legacy.
208 */
209 #if !defined(SQLITE_THREADSAFE)
210 # if defined(THREADSAFE)
211 #   define SQLITE_THREADSAFE THREADSAFE
212 # else
213 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
214 # endif
215 #endif
216 
217 /*
218 ** Powersafe overwrite is on by default.  But can be turned off using
219 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
220 */
221 #ifndef SQLITE_POWERSAFE_OVERWRITE
222 # define SQLITE_POWERSAFE_OVERWRITE 1
223 #endif
224 
225 /*
226 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
227 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
228 ** which case memory allocation statistics are disabled by default.
229 */
230 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
231 # define SQLITE_DEFAULT_MEMSTATUS 1
232 #endif
233 
234 /*
235 ** Exactly one of the following macros must be defined in order to
236 ** specify which memory allocation subsystem to use.
237 **
238 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
239 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
240 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
241 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
242 **
243 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
244 ** assert() macro is enabled, each call into the Win32 native heap subsystem
245 ** will cause HeapValidate to be called.  If heap validation should fail, an
246 ** assertion will be triggered.
247 **
248 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
249 ** the default.
250 */
251 #if defined(SQLITE_SYSTEM_MALLOC) \
252   + defined(SQLITE_WIN32_MALLOC) \
253   + defined(SQLITE_ZERO_MALLOC) \
254   + defined(SQLITE_MEMDEBUG)>1
255 # error "Two or more of the following compile-time configuration options\
256  are defined but at most one is allowed:\
257  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
258  SQLITE_ZERO_MALLOC"
259 #endif
260 #if defined(SQLITE_SYSTEM_MALLOC) \
261   + defined(SQLITE_WIN32_MALLOC) \
262   + defined(SQLITE_ZERO_MALLOC) \
263   + defined(SQLITE_MEMDEBUG)==0
264 # define SQLITE_SYSTEM_MALLOC 1
265 #endif
266 
267 /*
268 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
269 ** sizes of memory allocations below this value where possible.
270 */
271 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
272 # define SQLITE_MALLOC_SOFT_LIMIT 1024
273 #endif
274 
275 /*
276 ** We need to define _XOPEN_SOURCE as follows in order to enable
277 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
278 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
279 ** it.
280 */
281 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
282 #  define _XOPEN_SOURCE 600
283 #endif
284 
285 /*
286 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
287 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
288 ** make it true by defining or undefining NDEBUG.
289 **
290 ** Setting NDEBUG makes the code smaller and faster by disabling the
291 ** assert() statements in the code.  So we want the default action
292 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
293 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
294 ** feature.
295 */
296 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
297 # define NDEBUG 1
298 #endif
299 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
300 # undef NDEBUG
301 #endif
302 
303 /*
304 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
305 */
306 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
307 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
308 #endif
309 
310 /*
311 ** The testcase() macro is used to aid in coverage testing.  When
312 ** doing coverage testing, the condition inside the argument to
313 ** testcase() must be evaluated both true and false in order to
314 ** get full branch coverage.  The testcase() macro is inserted
315 ** to help ensure adequate test coverage in places where simple
316 ** condition/decision coverage is inadequate.  For example, testcase()
317 ** can be used to make sure boundary values are tested.  For
318 ** bitmask tests, testcase() can be used to make sure each bit
319 ** is significant and used at least once.  On switch statements
320 ** where multiple cases go to the same block of code, testcase()
321 ** can insure that all cases are evaluated.
322 **
323 */
324 #ifdef SQLITE_COVERAGE_TEST
325   void sqlite3Coverage(int);
326 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
327 #else
328 # define testcase(X)
329 #endif
330 
331 /*
332 ** The TESTONLY macro is used to enclose variable declarations or
333 ** other bits of code that are needed to support the arguments
334 ** within testcase() and assert() macros.
335 */
336 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
337 # define TESTONLY(X)  X
338 #else
339 # define TESTONLY(X)
340 #endif
341 
342 /*
343 ** Sometimes we need a small amount of code such as a variable initialization
344 ** to setup for a later assert() statement.  We do not want this code to
345 ** appear when assert() is disabled.  The following macro is therefore
346 ** used to contain that setup code.  The "VVA" acronym stands for
347 ** "Verification, Validation, and Accreditation".  In other words, the
348 ** code within VVA_ONLY() will only run during verification processes.
349 */
350 #ifndef NDEBUG
351 # define VVA_ONLY(X)  X
352 #else
353 # define VVA_ONLY(X)
354 #endif
355 
356 /*
357 ** The ALWAYS and NEVER macros surround boolean expressions which
358 ** are intended to always be true or false, respectively.  Such
359 ** expressions could be omitted from the code completely.  But they
360 ** are included in a few cases in order to enhance the resilience
361 ** of SQLite to unexpected behavior - to make the code "self-healing"
362 ** or "ductile" rather than being "brittle" and crashing at the first
363 ** hint of unplanned behavior.
364 **
365 ** In other words, ALWAYS and NEVER are added for defensive code.
366 **
367 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
368 ** be true and false so that the unreachable code they specify will
369 ** not be counted as untested code.
370 */
371 #if defined(SQLITE_COVERAGE_TEST)
372 # define ALWAYS(X)      (1)
373 # define NEVER(X)       (0)
374 #elif !defined(NDEBUG)
375 # define ALWAYS(X)      ((X)?1:(assert(0),0))
376 # define NEVER(X)       ((X)?(assert(0),1):0)
377 #else
378 # define ALWAYS(X)      (X)
379 # define NEVER(X)       (X)
380 #endif
381 
382 /*
383 ** Declarations used for tracing the operating system interfaces.
384 */
385 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
386     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
387   extern int sqlite3OSTrace;
388 # define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
389 # define SQLITE_HAVE_OS_TRACE
390 #else
391 # define OSTRACE(X)
392 # undef  SQLITE_HAVE_OS_TRACE
393 #endif
394 
395 /*
396 ** Is the sqlite3ErrName() function needed in the build?  Currently,
397 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when
398 ** OSTRACE is enabled), and by several "test*.c" files (which are
399 ** compiled using SQLITE_TEST).
400 */
401 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \
402     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
403 # define SQLITE_NEED_ERR_NAME
404 #else
405 # undef  SQLITE_NEED_ERR_NAME
406 #endif
407 
408 /*
409 ** Return true (non-zero) if the input is an integer that is too large
410 ** to fit in 32-bits.  This macro is used inside of various testcase()
411 ** macros to verify that we have tested SQLite for large-file support.
412 */
413 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
414 
415 /*
416 ** The macro unlikely() is a hint that surrounds a boolean
417 ** expression that is usually false.  Macro likely() surrounds
418 ** a boolean expression that is usually true.  These hints could,
419 ** in theory, be used by the compiler to generate better code, but
420 ** currently they are just comments for human readers.
421 */
422 #define likely(X)    (X)
423 #define unlikely(X)  (X)
424 
425 #include "hash.h"
426 #include "parse.h"
427 #include <stdio.h>
428 #include <stdlib.h>
429 #include <string.h>
430 #include <assert.h>
431 #include <stddef.h>
432 
433 /*
434 ** If compiling for a processor that lacks floating point support,
435 ** substitute integer for floating-point
436 */
437 #ifdef SQLITE_OMIT_FLOATING_POINT
438 # define double sqlite_int64
439 # define float sqlite_int64
440 # define LONGDOUBLE_TYPE sqlite_int64
441 # ifndef SQLITE_BIG_DBL
442 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
443 # endif
444 # define SQLITE_OMIT_DATETIME_FUNCS 1
445 # define SQLITE_OMIT_TRACE 1
446 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
447 # undef SQLITE_HAVE_ISNAN
448 #endif
449 #ifndef SQLITE_BIG_DBL
450 # define SQLITE_BIG_DBL (1e99)
451 #endif
452 
453 /*
454 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
455 ** afterward. Having this macro allows us to cause the C compiler
456 ** to omit code used by TEMP tables without messy #ifndef statements.
457 */
458 #ifdef SQLITE_OMIT_TEMPDB
459 #define OMIT_TEMPDB 1
460 #else
461 #define OMIT_TEMPDB 0
462 #endif
463 
464 /*
465 ** The "file format" number is an integer that is incremented whenever
466 ** the VDBE-level file format changes.  The following macros define the
467 ** the default file format for new databases and the maximum file format
468 ** that the library can read.
469 */
470 #define SQLITE_MAX_FILE_FORMAT 4
471 #ifndef SQLITE_DEFAULT_FILE_FORMAT
472 # define SQLITE_DEFAULT_FILE_FORMAT 4
473 #endif
474 
475 /*
476 ** Determine whether triggers are recursive by default.  This can be
477 ** changed at run-time using a pragma.
478 */
479 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
480 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
481 #endif
482 
483 /*
484 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
485 ** on the command-line
486 */
487 #ifndef SQLITE_TEMP_STORE
488 # define SQLITE_TEMP_STORE 1
489 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
490 #endif
491 
492 /*
493 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
494 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
495 ** to zero.
496 */
497 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
498 # undef SQLITE_MAX_WORKER_THREADS
499 # define SQLITE_MAX_WORKER_THREADS 0
500 #endif
501 #ifndef SQLITE_MAX_WORKER_THREADS
502 # define SQLITE_MAX_WORKER_THREADS 8
503 #endif
504 #ifndef SQLITE_DEFAULT_WORKER_THREADS
505 # define SQLITE_DEFAULT_WORKER_THREADS 0
506 #endif
507 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
508 # undef SQLITE_MAX_WORKER_THREADS
509 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
510 #endif
511 
512 
513 /*
514 ** GCC does not define the offsetof() macro so we'll have to do it
515 ** ourselves.
516 */
517 #ifndef offsetof
518 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
519 #endif
520 
521 /*
522 ** Macros to compute minimum and maximum of two numbers.
523 */
524 #define MIN(A,B) ((A)<(B)?(A):(B))
525 #define MAX(A,B) ((A)>(B)?(A):(B))
526 
527 /*
528 ** Swap two objects of type TYPE.
529 */
530 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
531 
532 /*
533 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
534 ** not, there are still machines out there that use EBCDIC.)
535 */
536 #if 'A' == '\301'
537 # define SQLITE_EBCDIC 1
538 #else
539 # define SQLITE_ASCII 1
540 #endif
541 
542 /*
543 ** Integers of known sizes.  These typedefs might change for architectures
544 ** where the sizes very.  Preprocessor macros are available so that the
545 ** types can be conveniently redefined at compile-type.  Like this:
546 **
547 **         cc '-DUINTPTR_TYPE=long long int' ...
548 */
549 #ifndef UINT32_TYPE
550 # ifdef HAVE_UINT32_T
551 #  define UINT32_TYPE uint32_t
552 # else
553 #  define UINT32_TYPE unsigned int
554 # endif
555 #endif
556 #ifndef UINT16_TYPE
557 # ifdef HAVE_UINT16_T
558 #  define UINT16_TYPE uint16_t
559 # else
560 #  define UINT16_TYPE unsigned short int
561 # endif
562 #endif
563 #ifndef INT16_TYPE
564 # ifdef HAVE_INT16_T
565 #  define INT16_TYPE int16_t
566 # else
567 #  define INT16_TYPE short int
568 # endif
569 #endif
570 #ifndef UINT8_TYPE
571 # ifdef HAVE_UINT8_T
572 #  define UINT8_TYPE uint8_t
573 # else
574 #  define UINT8_TYPE unsigned char
575 # endif
576 #endif
577 #ifndef INT8_TYPE
578 # ifdef HAVE_INT8_T
579 #  define INT8_TYPE int8_t
580 # else
581 #  define INT8_TYPE signed char
582 # endif
583 #endif
584 #ifndef LONGDOUBLE_TYPE
585 # define LONGDOUBLE_TYPE long double
586 #endif
587 typedef sqlite_int64 i64;          /* 8-byte signed integer */
588 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
589 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
590 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
591 typedef INT16_TYPE i16;            /* 2-byte signed integer */
592 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
593 typedef INT8_TYPE i8;              /* 1-byte signed integer */
594 
595 /*
596 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
597 ** that can be stored in a u32 without loss of data.  The value
598 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
599 ** have to specify the value in the less intuitive manner shown:
600 */
601 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
602 
603 /*
604 ** The datatype used to store estimates of the number of rows in a
605 ** table or index.  This is an unsigned integer type.  For 99.9% of
606 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
607 ** can be used at compile-time if desired.
608 */
609 #ifdef SQLITE_64BIT_STATS
610  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
611 #else
612  typedef u32 tRowcnt;    /* 32-bit is the default */
613 #endif
614 
615 /*
616 ** Estimated quantities used for query planning are stored as 16-bit
617 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
618 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
619 ** But the allowed values are "grainy".  Not every value is representable.
620 ** For example, quantities 16 and 17 are both represented by a LogEst
621 ** of 40.  However, since LogEst quantities are suppose to be estimates,
622 ** not exact values, this imprecision is not a problem.
623 **
624 ** "LogEst" is short for "Logarithmic Estimate".
625 **
626 ** Examples:
627 **      1 -> 0              20 -> 43          10000 -> 132
628 **      2 -> 10             25 -> 46          25000 -> 146
629 **      3 -> 16            100 -> 66        1000000 -> 199
630 **      4 -> 20           1000 -> 99        1048576 -> 200
631 **     10 -> 33           1024 -> 100    4294967296 -> 320
632 **
633 ** The LogEst can be negative to indicate fractional values.
634 ** Examples:
635 **
636 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
637 */
638 typedef INT16_TYPE LogEst;
639 
640 /*
641 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
642 */
643 #ifndef SQLITE_PTRSIZE
644 # if defined(__SIZEOF_POINTER__)
645 #   define SQLITE_PTRSIZE __SIZEOF_POINTER__
646 # elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
647        defined(_M_ARM)   || defined(__arm__)    || defined(__x86)
648 #   define SQLITE_PTRSIZE 4
649 # else
650 #   define SQLITE_PTRSIZE 8
651 # endif
652 #endif
653 
654 /*
655 ** Macros to determine whether the machine is big or little endian,
656 ** and whether or not that determination is run-time or compile-time.
657 **
658 ** For best performance, an attempt is made to guess at the byte-order
659 ** using C-preprocessor macros.  If that is unsuccessful, or if
660 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
661 ** at run-time.
662 */
663 #ifdef SQLITE_AMALGAMATION
664 const int sqlite3one = 1;
665 #else
666 extern const int sqlite3one;
667 #endif
668 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
669      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
670      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
671      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
672 # define SQLITE_BYTEORDER    1234
673 # define SQLITE_BIGENDIAN    0
674 # define SQLITE_LITTLEENDIAN 1
675 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
676 #endif
677 #if (defined(sparc)    || defined(__ppc__))  \
678     && !defined(SQLITE_RUNTIME_BYTEORDER)
679 # define SQLITE_BYTEORDER    4321
680 # define SQLITE_BIGENDIAN    1
681 # define SQLITE_LITTLEENDIAN 0
682 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
683 #endif
684 #if !defined(SQLITE_BYTEORDER)
685 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
686 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
687 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
688 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
689 #endif
690 
691 /*
692 ** Constants for the largest and smallest possible 64-bit signed integers.
693 ** These macros are designed to work correctly on both 32-bit and 64-bit
694 ** compilers.
695 */
696 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
697 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
698 
699 /*
700 ** Round up a number to the next larger multiple of 8.  This is used
701 ** to force 8-byte alignment on 64-bit architectures.
702 */
703 #define ROUND8(x)     (((x)+7)&~7)
704 
705 /*
706 ** Round down to the nearest multiple of 8
707 */
708 #define ROUNDDOWN8(x) ((x)&~7)
709 
710 /*
711 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
712 ** macro is used only within assert() to verify that the code gets
713 ** all alignment restrictions correct.
714 **
715 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
716 ** underlying malloc() implementation might return us 4-byte aligned
717 ** pointers.  In that case, only verify 4-byte alignment.
718 */
719 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
720 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
721 #else
722 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
723 #endif
724 
725 /*
726 ** Disable MMAP on platforms where it is known to not work
727 */
728 #if defined(__OpenBSD__) || defined(__QNXNTO__)
729 # undef SQLITE_MAX_MMAP_SIZE
730 # define SQLITE_MAX_MMAP_SIZE 0
731 #endif
732 
733 /*
734 ** Default maximum size of memory used by memory-mapped I/O in the VFS
735 */
736 #ifdef __APPLE__
737 # include <TargetConditionals.h>
738 # if TARGET_OS_IPHONE
739 #   undef SQLITE_MAX_MMAP_SIZE
740 #   define SQLITE_MAX_MMAP_SIZE 0
741 # endif
742 #endif
743 #ifndef SQLITE_MAX_MMAP_SIZE
744 # if defined(__linux__) \
745   || defined(_WIN32) \
746   || (defined(__APPLE__) && defined(__MACH__)) \
747   || defined(__sun)
748 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
749 # else
750 #   define SQLITE_MAX_MMAP_SIZE 0
751 # endif
752 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
753 #endif
754 
755 /*
756 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
757 ** default MMAP_SIZE is specified at compile-time, make sure that it does
758 ** not exceed the maximum mmap size.
759 */
760 #ifndef SQLITE_DEFAULT_MMAP_SIZE
761 # define SQLITE_DEFAULT_MMAP_SIZE 0
762 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
763 #endif
764 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
765 # undef SQLITE_DEFAULT_MMAP_SIZE
766 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
767 #endif
768 
769 /*
770 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
771 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
772 ** define SQLITE_ENABLE_STAT3_OR_STAT4
773 */
774 #ifdef SQLITE_ENABLE_STAT4
775 # undef SQLITE_ENABLE_STAT3
776 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
777 #elif SQLITE_ENABLE_STAT3
778 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
779 #elif SQLITE_ENABLE_STAT3_OR_STAT4
780 # undef SQLITE_ENABLE_STAT3_OR_STAT4
781 #endif
782 
783 /*
784 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
785 ** the Select query generator tracing logic is turned on.
786 */
787 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
788 # define SELECTTRACE_ENABLED 1
789 #else
790 # define SELECTTRACE_ENABLED 0
791 #endif
792 
793 /*
794 ** An instance of the following structure is used to store the busy-handler
795 ** callback for a given sqlite handle.
796 **
797 ** The sqlite.busyHandler member of the sqlite struct contains the busy
798 ** callback for the database handle. Each pager opened via the sqlite
799 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
800 ** callback is currently invoked only from within pager.c.
801 */
802 typedef struct BusyHandler BusyHandler;
803 struct BusyHandler {
804   int (*xFunc)(void *,int);  /* The busy callback */
805   void *pArg;                /* First arg to busy callback */
806   int nBusy;                 /* Incremented with each busy call */
807 };
808 
809 /*
810 ** Name of the master database table.  The master database table
811 ** is a special table that holds the names and attributes of all
812 ** user tables and indices.
813 */
814 #define MASTER_NAME       "sqlite_master"
815 #define TEMP_MASTER_NAME  "sqlite_temp_master"
816 
817 /*
818 ** The root-page of the master database table.
819 */
820 #define MASTER_ROOT       1
821 
822 /*
823 ** The name of the schema table.
824 */
825 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
826 
827 /*
828 ** A convenience macro that returns the number of elements in
829 ** an array.
830 */
831 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
832 
833 /*
834 ** Determine if the argument is a power of two
835 */
836 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
837 
838 /*
839 ** The following value as a destructor means to use sqlite3DbFree().
840 ** The sqlite3DbFree() routine requires two parameters instead of the
841 ** one parameter that destructors normally want.  So we have to introduce
842 ** this magic value that the code knows to handle differently.  Any
843 ** pointer will work here as long as it is distinct from SQLITE_STATIC
844 ** and SQLITE_TRANSIENT.
845 */
846 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
847 
848 /*
849 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
850 ** not support Writable Static Data (WSD) such as global and static variables.
851 ** All variables must either be on the stack or dynamically allocated from
852 ** the heap.  When WSD is unsupported, the variable declarations scattered
853 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
854 ** macro is used for this purpose.  And instead of referencing the variable
855 ** directly, we use its constant as a key to lookup the run-time allocated
856 ** buffer that holds real variable.  The constant is also the initializer
857 ** for the run-time allocated buffer.
858 **
859 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
860 ** macros become no-ops and have zero performance impact.
861 */
862 #ifdef SQLITE_OMIT_WSD
863   #define SQLITE_WSD const
864   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
865   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
866   int sqlite3_wsd_init(int N, int J);
867   void *sqlite3_wsd_find(void *K, int L);
868 #else
869   #define SQLITE_WSD
870   #define GLOBAL(t,v) v
871   #define sqlite3GlobalConfig sqlite3Config
872 #endif
873 
874 /*
875 ** The following macros are used to suppress compiler warnings and to
876 ** make it clear to human readers when a function parameter is deliberately
877 ** left unused within the body of a function. This usually happens when
878 ** a function is called via a function pointer. For example the
879 ** implementation of an SQL aggregate step callback may not use the
880 ** parameter indicating the number of arguments passed to the aggregate,
881 ** if it knows that this is enforced elsewhere.
882 **
883 ** When a function parameter is not used at all within the body of a function,
884 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
885 ** However, these macros may also be used to suppress warnings related to
886 ** parameters that may or may not be used depending on compilation options.
887 ** For example those parameters only used in assert() statements. In these
888 ** cases the parameters are named as per the usual conventions.
889 */
890 #define UNUSED_PARAMETER(x) (void)(x)
891 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
892 
893 /*
894 ** Forward references to structures
895 */
896 typedef struct AggInfo AggInfo;
897 typedef struct AuthContext AuthContext;
898 typedef struct AutoincInfo AutoincInfo;
899 typedef struct Bitvec Bitvec;
900 typedef struct CollSeq CollSeq;
901 typedef struct Column Column;
902 typedef struct Db Db;
903 typedef struct Schema Schema;
904 typedef struct Expr Expr;
905 typedef struct ExprList ExprList;
906 typedef struct ExprSpan ExprSpan;
907 typedef struct FKey FKey;
908 typedef struct FuncDestructor FuncDestructor;
909 typedef struct FuncDef FuncDef;
910 typedef struct FuncDefHash FuncDefHash;
911 typedef struct IdList IdList;
912 typedef struct Index Index;
913 typedef struct IndexSample IndexSample;
914 typedef struct KeyClass KeyClass;
915 typedef struct KeyInfo KeyInfo;
916 typedef struct Lookaside Lookaside;
917 typedef struct LookasideSlot LookasideSlot;
918 typedef struct Module Module;
919 typedef struct NameContext NameContext;
920 typedef struct Parse Parse;
921 typedef struct PrintfArguments PrintfArguments;
922 typedef struct RowSet RowSet;
923 typedef struct Savepoint Savepoint;
924 typedef struct Select Select;
925 typedef struct SQLiteThread SQLiteThread;
926 typedef struct SelectDest SelectDest;
927 typedef struct SrcList SrcList;
928 typedef struct StrAccum StrAccum;
929 typedef struct Table Table;
930 typedef struct TableLock TableLock;
931 typedef struct Token Token;
932 typedef struct TreeView TreeView;
933 typedef struct Trigger Trigger;
934 typedef struct TriggerPrg TriggerPrg;
935 typedef struct TriggerStep TriggerStep;
936 typedef struct UnpackedRecord UnpackedRecord;
937 typedef struct VTable VTable;
938 typedef struct VtabCtx VtabCtx;
939 typedef struct Walker Walker;
940 typedef struct WhereInfo WhereInfo;
941 typedef struct With With;
942 
943 /*
944 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
945 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
946 ** pointer types (i.e. FuncDef) defined above.
947 */
948 #include "btree.h"
949 #include "vdbe.h"
950 #include "pager.h"
951 #include "pcache.h"
952 
953 #include "os.h"
954 #include "mutex.h"
955 
956 
957 /*
958 ** Each database file to be accessed by the system is an instance
959 ** of the following structure.  There are normally two of these structures
960 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
961 ** aDb[1] is the database file used to hold temporary tables.  Additional
962 ** databases may be attached.
963 */
964 struct Db {
965   char *zName;         /* Name of this database */
966   Btree *pBt;          /* The B*Tree structure for this database file */
967   u8 safety_level;     /* How aggressive at syncing data to disk */
968   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
969 };
970 
971 /*
972 ** An instance of the following structure stores a database schema.
973 **
974 ** Most Schema objects are associated with a Btree.  The exception is
975 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
976 ** In shared cache mode, a single Schema object can be shared by multiple
977 ** Btrees that refer to the same underlying BtShared object.
978 **
979 ** Schema objects are automatically deallocated when the last Btree that
980 ** references them is destroyed.   The TEMP Schema is manually freed by
981 ** sqlite3_close().
982 *
983 ** A thread must be holding a mutex on the corresponding Btree in order
984 ** to access Schema content.  This implies that the thread must also be
985 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
986 ** For a TEMP Schema, only the connection mutex is required.
987 */
988 struct Schema {
989   int schema_cookie;   /* Database schema version number for this file */
990   int iGeneration;     /* Generation counter.  Incremented with each change */
991   Hash tblHash;        /* All tables indexed by name */
992   Hash idxHash;        /* All (named) indices indexed by name */
993   Hash trigHash;       /* All triggers indexed by name */
994   Hash fkeyHash;       /* All foreign keys by referenced table name */
995   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
996   u8 file_format;      /* Schema format version for this file */
997   u8 enc;              /* Text encoding used by this database */
998   u16 schemaFlags;     /* Flags associated with this schema */
999   int cache_size;      /* Number of pages to use in the cache */
1000 };
1001 
1002 /*
1003 ** These macros can be used to test, set, or clear bits in the
1004 ** Db.pSchema->flags field.
1005 */
1006 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
1007 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
1008 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
1009 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
1010 
1011 /*
1012 ** Allowed values for the DB.pSchema->flags field.
1013 **
1014 ** The DB_SchemaLoaded flag is set after the database schema has been
1015 ** read into internal hash tables.
1016 **
1017 ** DB_UnresetViews means that one or more views have column names that
1018 ** have been filled out.  If the schema changes, these column names might
1019 ** changes and so the view will need to be reset.
1020 */
1021 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
1022 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
1023 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
1024 
1025 /*
1026 ** The number of different kinds of things that can be limited
1027 ** using the sqlite3_limit() interface.
1028 */
1029 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
1030 
1031 /*
1032 ** Lookaside malloc is a set of fixed-size buffers that can be used
1033 ** to satisfy small transient memory allocation requests for objects
1034 ** associated with a particular database connection.  The use of
1035 ** lookaside malloc provides a significant performance enhancement
1036 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
1037 ** SQL statements.
1038 **
1039 ** The Lookaside structure holds configuration information about the
1040 ** lookaside malloc subsystem.  Each available memory allocation in
1041 ** the lookaside subsystem is stored on a linked list of LookasideSlot
1042 ** objects.
1043 **
1044 ** Lookaside allocations are only allowed for objects that are associated
1045 ** with a particular database connection.  Hence, schema information cannot
1046 ** be stored in lookaside because in shared cache mode the schema information
1047 ** is shared by multiple database connections.  Therefore, while parsing
1048 ** schema information, the Lookaside.bEnabled flag is cleared so that
1049 ** lookaside allocations are not used to construct the schema objects.
1050 */
1051 struct Lookaside {
1052   u16 sz;                 /* Size of each buffer in bytes */
1053   u8 bEnabled;            /* False to disable new lookaside allocations */
1054   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
1055   int nOut;               /* Number of buffers currently checked out */
1056   int mxOut;              /* Highwater mark for nOut */
1057   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
1058   LookasideSlot *pFree;   /* List of available buffers */
1059   void *pStart;           /* First byte of available memory space */
1060   void *pEnd;             /* First byte past end of available space */
1061 };
1062 struct LookasideSlot {
1063   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
1064 };
1065 
1066 /*
1067 ** A hash table for function definitions.
1068 **
1069 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
1070 ** Collisions are on the FuncDef.pHash chain.
1071 */
1072 struct FuncDefHash {
1073   FuncDef *a[23];       /* Hash table for functions */
1074 };
1075 
1076 #ifdef SQLITE_USER_AUTHENTICATION
1077 /*
1078 ** Information held in the "sqlite3" database connection object and used
1079 ** to manage user authentication.
1080 */
1081 typedef struct sqlite3_userauth sqlite3_userauth;
1082 struct sqlite3_userauth {
1083   u8 authLevel;                 /* Current authentication level */
1084   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1085   char *zAuthPW;                /* Password used to authenticate */
1086   char *zAuthUser;              /* User name used to authenticate */
1087 };
1088 
1089 /* Allowed values for sqlite3_userauth.authLevel */
1090 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1091 #define UAUTH_Fail        1     /* User authentication failed */
1092 #define UAUTH_User        2     /* Authenticated as a normal user */
1093 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1094 
1095 /* Functions used only by user authorization logic */
1096 int sqlite3UserAuthTable(const char*);
1097 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1098 void sqlite3UserAuthInit(sqlite3*);
1099 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
1100 
1101 #endif /* SQLITE_USER_AUTHENTICATION */
1102 
1103 /*
1104 ** typedef for the authorization callback function.
1105 */
1106 #ifdef SQLITE_USER_AUTHENTICATION
1107   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1108                                const char*, const char*);
1109 #else
1110   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1111                                const char*);
1112 #endif
1113 
1114 
1115 /*
1116 ** Each database connection is an instance of the following structure.
1117 */
1118 struct sqlite3 {
1119   sqlite3_vfs *pVfs;            /* OS Interface */
1120   struct Vdbe *pVdbe;           /* List of active virtual machines */
1121   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1122   sqlite3_mutex *mutex;         /* Connection mutex */
1123   Db *aDb;                      /* All backends */
1124   int nDb;                      /* Number of backends currently in use */
1125   int flags;                    /* Miscellaneous flags. See below */
1126   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1127   i64 szMmap;                   /* Default mmap_size setting */
1128   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1129   int errCode;                  /* Most recent error code (SQLITE_*) */
1130   int errMask;                  /* & result codes with this before returning */
1131   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1132   u8 enc;                       /* Text encoding */
1133   u8 autoCommit;                /* The auto-commit flag. */
1134   u8 temp_store;                /* 1: file 2: memory 0: default */
1135   u8 mallocFailed;              /* True if we have seen a malloc failure */
1136   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1137   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1138   u8 suppressErr;               /* Do not issue error messages if true */
1139   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1140   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1141   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1142   u32 magic;                    /* Magic number for detect library misuse */
1143   int nChange;                  /* Value returned by sqlite3_changes() */
1144   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1145   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1146   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1147   struct sqlite3InitInfo {      /* Information used during initialization */
1148     int newTnum;                /* Rootpage of table being initialized */
1149     u8 iDb;                     /* Which db file is being initialized */
1150     u8 busy;                    /* TRUE if currently initializing */
1151     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1152     u8 imposterTable;           /* Building an imposter table */
1153   } init;
1154   int nVdbeActive;              /* Number of VDBEs currently running */
1155   int nVdbeRead;                /* Number of active VDBEs that read or write */
1156   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1157   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1158   int nVDestroy;                /* Number of active OP_VDestroy operations */
1159   int nExtension;               /* Number of loaded extensions */
1160   void **aExtension;            /* Array of shared library handles */
1161   void (*xTrace)(void*,const char*);        /* Trace function */
1162   void *pTraceArg;                          /* Argument to the trace function */
1163   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1164   void *pProfileArg;                        /* Argument to profile function */
1165   void *pCommitArg;                 /* Argument to xCommitCallback() */
1166   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1167   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1168   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1169   void *pUpdateArg;
1170   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1171 #ifndef SQLITE_OMIT_WAL
1172   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1173   void *pWalArg;
1174 #endif
1175   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1176   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1177   void *pCollNeededArg;
1178   sqlite3_value *pErr;          /* Most recent error message */
1179   union {
1180     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1181     double notUsed1;            /* Spacer */
1182   } u1;
1183   Lookaside lookaside;          /* Lookaside malloc configuration */
1184 #ifndef SQLITE_OMIT_AUTHORIZATION
1185   sqlite3_xauth xAuth;          /* Access authorization function */
1186   void *pAuthArg;               /* 1st argument to the access auth function */
1187 #endif
1188 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1189   int (*xProgress)(void *);     /* The progress callback */
1190   void *pProgressArg;           /* Argument to the progress callback */
1191   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1192 #endif
1193 #ifndef SQLITE_OMIT_VIRTUALTABLE
1194   int nVTrans;                  /* Allocated size of aVTrans */
1195   Hash aModule;                 /* populated by sqlite3_create_module() */
1196   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1197   VTable **aVTrans;             /* Virtual tables with open transactions */
1198   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1199 #endif
1200   FuncDefHash aFunc;            /* Hash table of connection functions */
1201   Hash aCollSeq;                /* All collating sequences */
1202   BusyHandler busyHandler;      /* Busy callback */
1203   Db aDbStatic[2];              /* Static space for the 2 default backends */
1204   Savepoint *pSavepoint;        /* List of active savepoints */
1205   int busyTimeout;              /* Busy handler timeout, in msec */
1206   int nSavepoint;               /* Number of non-transaction savepoints */
1207   int nStatement;               /* Number of nested statement-transactions  */
1208   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1209   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1210   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1211 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1212   /* The following variables are all protected by the STATIC_MASTER
1213   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1214   **
1215   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1216   ** unlock so that it can proceed.
1217   **
1218   ** When X.pBlockingConnection==Y, that means that something that X tried
1219   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1220   ** held by Y.
1221   */
1222   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1223   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1224   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1225   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1226   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1227 #endif
1228 #ifdef SQLITE_USER_AUTHENTICATION
1229   sqlite3_userauth auth;        /* User authentication information */
1230 #endif
1231 };
1232 
1233 /*
1234 ** A macro to discover the encoding of a database.
1235 */
1236 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
1237 #define ENC(db)        ((db)->enc)
1238 
1239 /*
1240 ** Possible values for the sqlite3.flags.
1241 */
1242 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
1243 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
1244 #define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
1245 #define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
1246 #define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
1247 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
1248 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1249 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1250                                           /*   DELETE, or UPDATE and return */
1251                                           /*   the count using a callback. */
1252 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1253                                           /*   result set is empty */
1254 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
1255 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
1256 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
1257 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
1258 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
1259 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
1260 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
1261 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
1262 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
1263 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
1264 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
1265 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
1266 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
1267 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
1268 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
1269 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
1270 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
1271 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
1272 #define SQLITE_Vacuum         0x08000000  /* Currently in a VACUUM */
1273 #define SQLITE_CellSizeCk     0x10000000  /* Check btree cell sizes on load */
1274 
1275 
1276 /*
1277 ** Bits of the sqlite3.dbOptFlags field that are used by the
1278 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1279 ** selectively disable various optimizations.
1280 */
1281 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1282 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1283 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1284 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1285 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1286 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1287 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1288 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1289 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1290 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1291 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1292 #define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
1293 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1294 
1295 /*
1296 ** Macros for testing whether or not optimizations are enabled or disabled.
1297 */
1298 #ifndef SQLITE_OMIT_BUILTIN_TEST
1299 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1300 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1301 #else
1302 #define OptimizationDisabled(db, mask)  0
1303 #define OptimizationEnabled(db, mask)   1
1304 #endif
1305 
1306 /*
1307 ** Return true if it OK to factor constant expressions into the initialization
1308 ** code. The argument is a Parse object for the code generator.
1309 */
1310 #define ConstFactorOk(P) ((P)->okConstFactor)
1311 
1312 /*
1313 ** Possible values for the sqlite.magic field.
1314 ** The numbers are obtained at random and have no special meaning, other
1315 ** than being distinct from one another.
1316 */
1317 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1318 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1319 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1320 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1321 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1322 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1323 
1324 /*
1325 ** Each SQL function is defined by an instance of the following
1326 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
1327 ** hash table.  When multiple functions have the same name, the hash table
1328 ** points to a linked list of these structures.
1329 */
1330 struct FuncDef {
1331   i16 nArg;            /* Number of arguments.  -1 means unlimited */
1332   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1333   void *pUserData;     /* User data parameter */
1334   FuncDef *pNext;      /* Next function with same name */
1335   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
1336   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
1337   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
1338   char *zName;         /* SQL name of the function. */
1339   FuncDef *pHash;      /* Next with a different name but the same hash */
1340   FuncDestructor *pDestructor;   /* Reference counted destructor function */
1341 };
1342 
1343 /*
1344 ** This structure encapsulates a user-function destructor callback (as
1345 ** configured using create_function_v2()) and a reference counter. When
1346 ** create_function_v2() is called to create a function with a destructor,
1347 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1348 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1349 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1350 ** member of each of the new FuncDef objects is set to point to the allocated
1351 ** FuncDestructor.
1352 **
1353 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1354 ** count on this object is decremented. When it reaches 0, the destructor
1355 ** is invoked and the FuncDestructor structure freed.
1356 */
1357 struct FuncDestructor {
1358   int nRef;
1359   void (*xDestroy)(void *);
1360   void *pUserData;
1361 };
1362 
1363 /*
1364 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1365 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
1366 ** are assert() statements in the code to verify this.
1367 */
1368 #define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1369 #define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
1370 #define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
1371 #define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
1372 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
1373 #define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
1374 #define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
1375 #define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
1376 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
1377 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
1378 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
1379 #define SQLITE_FUNC_MINMAX  0x1000 /* True for min() and max() aggregates */
1380 
1381 /*
1382 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1383 ** used to create the initializers for the FuncDef structures.
1384 **
1385 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1386 **     Used to create a scalar function definition of a function zName
1387 **     implemented by C function xFunc that accepts nArg arguments. The
1388 **     value passed as iArg is cast to a (void*) and made available
1389 **     as the user-data (sqlite3_user_data()) for the function. If
1390 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1391 **
1392 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1393 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1394 **
1395 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1396 **     Used to create an aggregate function definition implemented by
1397 **     the C functions xStep and xFinal. The first four parameters
1398 **     are interpreted in the same way as the first 4 parameters to
1399 **     FUNCTION().
1400 **
1401 **   LIKEFUNC(zName, nArg, pArg, flags)
1402 **     Used to create a scalar function definition of a function zName
1403 **     that accepts nArg arguments and is implemented by a call to C
1404 **     function likeFunc. Argument pArg is cast to a (void *) and made
1405 **     available as the function user-data (sqlite3_user_data()). The
1406 **     FuncDef.flags variable is set to the value passed as the flags
1407 **     parameter.
1408 */
1409 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1410   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1411    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1412 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1413   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1414    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1415 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1416   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1417    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
1418 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1419   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1420    pArg, 0, xFunc, 0, 0, #zName, 0, 0}
1421 #define LIKEFUNC(zName, nArg, arg, flags) \
1422   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1423    (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
1424 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1425   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1426    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1427 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
1428   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1429    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
1430 
1431 /*
1432 ** All current savepoints are stored in a linked list starting at
1433 ** sqlite3.pSavepoint. The first element in the list is the most recently
1434 ** opened savepoint. Savepoints are added to the list by the vdbe
1435 ** OP_Savepoint instruction.
1436 */
1437 struct Savepoint {
1438   char *zName;                        /* Savepoint name (nul-terminated) */
1439   i64 nDeferredCons;                  /* Number of deferred fk violations */
1440   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1441   Savepoint *pNext;                   /* Parent savepoint (if any) */
1442 };
1443 
1444 /*
1445 ** The following are used as the second parameter to sqlite3Savepoint(),
1446 ** and as the P1 argument to the OP_Savepoint instruction.
1447 */
1448 #define SAVEPOINT_BEGIN      0
1449 #define SAVEPOINT_RELEASE    1
1450 #define SAVEPOINT_ROLLBACK   2
1451 
1452 
1453 /*
1454 ** Each SQLite module (virtual table definition) is defined by an
1455 ** instance of the following structure, stored in the sqlite3.aModule
1456 ** hash table.
1457 */
1458 struct Module {
1459   const sqlite3_module *pModule;       /* Callback pointers */
1460   const char *zName;                   /* Name passed to create_module() */
1461   void *pAux;                          /* pAux passed to create_module() */
1462   void (*xDestroy)(void *);            /* Module destructor function */
1463 };
1464 
1465 /*
1466 ** information about each column of an SQL table is held in an instance
1467 ** of this structure.
1468 */
1469 struct Column {
1470   char *zName;     /* Name of this column */
1471   Expr *pDflt;     /* Default value of this column */
1472   char *zDflt;     /* Original text of the default value */
1473   char *zType;     /* Data type for this column */
1474   char *zColl;     /* Collating sequence.  If NULL, use the default */
1475   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1476   char affinity;   /* One of the SQLITE_AFF_... values */
1477   u8 szEst;        /* Estimated size of this column.  INT==1 */
1478   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1479 };
1480 
1481 /* Allowed values for Column.colFlags:
1482 */
1483 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1484 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1485 
1486 /*
1487 ** A "Collating Sequence" is defined by an instance of the following
1488 ** structure. Conceptually, a collating sequence consists of a name and
1489 ** a comparison routine that defines the order of that sequence.
1490 **
1491 ** If CollSeq.xCmp is NULL, it means that the
1492 ** collating sequence is undefined.  Indices built on an undefined
1493 ** collating sequence may not be read or written.
1494 */
1495 struct CollSeq {
1496   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1497   u8 enc;               /* Text encoding handled by xCmp() */
1498   void *pUser;          /* First argument to xCmp() */
1499   int (*xCmp)(void*,int, const void*, int, const void*);
1500   void (*xDel)(void*);  /* Destructor for pUser */
1501 };
1502 
1503 /*
1504 ** A sort order can be either ASC or DESC.
1505 */
1506 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1507 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1508 
1509 /*
1510 ** Column affinity types.
1511 **
1512 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1513 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1514 ** the speed a little by numbering the values consecutively.
1515 **
1516 ** But rather than start with 0 or 1, we begin with 'A'.  That way,
1517 ** when multiple affinity types are concatenated into a string and
1518 ** used as the P4 operand, they will be more readable.
1519 **
1520 ** Note also that the numeric types are grouped together so that testing
1521 ** for a numeric type is a single comparison.  And the BLOB type is first.
1522 */
1523 #define SQLITE_AFF_BLOB     'A'
1524 #define SQLITE_AFF_TEXT     'B'
1525 #define SQLITE_AFF_NUMERIC  'C'
1526 #define SQLITE_AFF_INTEGER  'D'
1527 #define SQLITE_AFF_REAL     'E'
1528 
1529 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1530 
1531 /*
1532 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1533 ** affinity value.
1534 */
1535 #define SQLITE_AFF_MASK     0x47
1536 
1537 /*
1538 ** Additional bit values that can be ORed with an affinity without
1539 ** changing the affinity.
1540 **
1541 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1542 ** It causes an assert() to fire if either operand to a comparison
1543 ** operator is NULL.  It is added to certain comparison operators to
1544 ** prove that the operands are always NOT NULL.
1545 */
1546 #define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
1547 #define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
1548 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1549 #define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */
1550 
1551 /*
1552 ** An object of this type is created for each virtual table present in
1553 ** the database schema.
1554 **
1555 ** If the database schema is shared, then there is one instance of this
1556 ** structure for each database connection (sqlite3*) that uses the shared
1557 ** schema. This is because each database connection requires its own unique
1558 ** instance of the sqlite3_vtab* handle used to access the virtual table
1559 ** implementation. sqlite3_vtab* handles can not be shared between
1560 ** database connections, even when the rest of the in-memory database
1561 ** schema is shared, as the implementation often stores the database
1562 ** connection handle passed to it via the xConnect() or xCreate() method
1563 ** during initialization internally. This database connection handle may
1564 ** then be used by the virtual table implementation to access real tables
1565 ** within the database. So that they appear as part of the callers
1566 ** transaction, these accesses need to be made via the same database
1567 ** connection as that used to execute SQL operations on the virtual table.
1568 **
1569 ** All VTable objects that correspond to a single table in a shared
1570 ** database schema are initially stored in a linked-list pointed to by
1571 ** the Table.pVTable member variable of the corresponding Table object.
1572 ** When an sqlite3_prepare() operation is required to access the virtual
1573 ** table, it searches the list for the VTable that corresponds to the
1574 ** database connection doing the preparing so as to use the correct
1575 ** sqlite3_vtab* handle in the compiled query.
1576 **
1577 ** When an in-memory Table object is deleted (for example when the
1578 ** schema is being reloaded for some reason), the VTable objects are not
1579 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1580 ** immediately. Instead, they are moved from the Table.pVTable list to
1581 ** another linked list headed by the sqlite3.pDisconnect member of the
1582 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1583 ** next time a statement is prepared using said sqlite3*. This is done
1584 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1585 ** Refer to comments above function sqlite3VtabUnlockList() for an
1586 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1587 ** list without holding the corresponding sqlite3.mutex mutex.
1588 **
1589 ** The memory for objects of this type is always allocated by
1590 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1591 ** the first argument.
1592 */
1593 struct VTable {
1594   sqlite3 *db;              /* Database connection associated with this table */
1595   Module *pMod;             /* Pointer to module implementation */
1596   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1597   int nRef;                 /* Number of pointers to this structure */
1598   u8 bConstraint;           /* True if constraints are supported */
1599   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1600   VTable *pNext;            /* Next in linked list (see above) */
1601 };
1602 
1603 /*
1604 ** The schema for each SQL table and view is represented in memory
1605 ** by an instance of the following structure.
1606 */
1607 struct Table {
1608   char *zName;         /* Name of the table or view */
1609   Column *aCol;        /* Information about each column */
1610   Index *pIndex;       /* List of SQL indexes on this table. */
1611   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1612   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1613   char *zColAff;       /* String defining the affinity of each column */
1614 #ifndef SQLITE_OMIT_CHECK
1615   ExprList *pCheck;    /* All CHECK constraints */
1616 #endif
1617   int tnum;            /* Root BTree page for this table */
1618   i16 iPKey;           /* If not negative, use aCol[iPKey] as the rowid */
1619   i16 nCol;            /* Number of columns in this table */
1620   u16 nRef;            /* Number of pointers to this Table */
1621   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1622   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1623 #ifdef SQLITE_ENABLE_COSTMULT
1624   LogEst costMult;     /* Cost multiplier for using this table */
1625 #endif
1626   u8 tabFlags;         /* Mask of TF_* values */
1627   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1628 #ifndef SQLITE_OMIT_ALTERTABLE
1629   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1630 #endif
1631 #ifndef SQLITE_OMIT_VIRTUALTABLE
1632   int nModuleArg;      /* Number of arguments to the module */
1633   char **azModuleArg;  /* Text of all module args. [0] is module name */
1634   VTable *pVTable;     /* List of VTable objects. */
1635 #endif
1636   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1637   Schema *pSchema;     /* Schema that contains this table */
1638   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1639 };
1640 
1641 /*
1642 ** Allowed values for Table.tabFlags.
1643 **
1644 ** TF_OOOHidden applies to virtual tables that have hidden columns that are
1645 ** followed by non-hidden columns.  Example:  "CREATE VIRTUAL TABLE x USING
1646 ** vtab1(a HIDDEN, b);".  Since "b" is a non-hidden column but "a" is hidden,
1647 ** the TF_OOOHidden attribute would apply in this case.  Such tables require
1648 ** special handling during INSERT processing.
1649 */
1650 #define TF_Readonly        0x01    /* Read-only system table */
1651 #define TF_Ephemeral       0x02    /* An ephemeral table */
1652 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1653 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1654 #define TF_Virtual         0x10    /* Is a virtual table */
1655 #define TF_WithoutRowid    0x20    /* No rowid.  PRIMARY KEY is the key */
1656 #define TF_NoVisibleRowid  0x40    /* No user-visible "rowid" column */
1657 #define TF_OOOHidden       0x80    /* Out-of-Order hidden columns */
1658 
1659 
1660 /*
1661 ** Test to see whether or not a table is a virtual table.  This is
1662 ** done as a macro so that it will be optimized out when virtual
1663 ** table support is omitted from the build.
1664 */
1665 #ifndef SQLITE_OMIT_VIRTUALTABLE
1666 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1667 #  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1668 #else
1669 #  define IsVirtual(X)      0
1670 #  define IsHiddenColumn(X) 0
1671 #endif
1672 
1673 /* Does the table have a rowid */
1674 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1675 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)
1676 
1677 /*
1678 ** Each foreign key constraint is an instance of the following structure.
1679 **
1680 ** A foreign key is associated with two tables.  The "from" table is
1681 ** the table that contains the REFERENCES clause that creates the foreign
1682 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1683 ** Consider this example:
1684 **
1685 **     CREATE TABLE ex1(
1686 **       a INTEGER PRIMARY KEY,
1687 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1688 **     );
1689 **
1690 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1691 ** Equivalent names:
1692 **
1693 **     from-table == child-table
1694 **       to-table == parent-table
1695 **
1696 ** Each REFERENCES clause generates an instance of the following structure
1697 ** which is attached to the from-table.  The to-table need not exist when
1698 ** the from-table is created.  The existence of the to-table is not checked.
1699 **
1700 ** The list of all parents for child Table X is held at X.pFKey.
1701 **
1702 ** A list of all children for a table named Z (which might not even exist)
1703 ** is held in Schema.fkeyHash with a hash key of Z.
1704 */
1705 struct FKey {
1706   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1707   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1708   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1709   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1710   FKey *pPrevTo;    /* Previous with the same zTo */
1711   int nCol;         /* Number of columns in this key */
1712   /* EV: R-30323-21917 */
1713   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1714   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1715   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1716   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1717     int iFrom;            /* Index of column in pFrom */
1718     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
1719   } aCol[1];            /* One entry for each of nCol columns */
1720 };
1721 
1722 /*
1723 ** SQLite supports many different ways to resolve a constraint
1724 ** error.  ROLLBACK processing means that a constraint violation
1725 ** causes the operation in process to fail and for the current transaction
1726 ** to be rolled back.  ABORT processing means the operation in process
1727 ** fails and any prior changes from that one operation are backed out,
1728 ** but the transaction is not rolled back.  FAIL processing means that
1729 ** the operation in progress stops and returns an error code.  But prior
1730 ** changes due to the same operation are not backed out and no rollback
1731 ** occurs.  IGNORE means that the particular row that caused the constraint
1732 ** error is not inserted or updated.  Processing continues and no error
1733 ** is returned.  REPLACE means that preexisting database rows that caused
1734 ** a UNIQUE constraint violation are removed so that the new insert or
1735 ** update can proceed.  Processing continues and no error is reported.
1736 **
1737 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1738 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1739 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1740 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1741 ** referenced table row is propagated into the row that holds the
1742 ** foreign key.
1743 **
1744 ** The following symbolic values are used to record which type
1745 ** of action to take.
1746 */
1747 #define OE_None     0   /* There is no constraint to check */
1748 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1749 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1750 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1751 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1752 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1753 
1754 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1755 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1756 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1757 #define OE_Cascade  9   /* Cascade the changes */
1758 
1759 #define OE_Default  10  /* Do whatever the default action is */
1760 
1761 
1762 /*
1763 ** An instance of the following structure is passed as the first
1764 ** argument to sqlite3VdbeKeyCompare and is used to control the
1765 ** comparison of the two index keys.
1766 **
1767 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
1768 ** are nField slots for the columns of an index then one extra slot
1769 ** for the rowid at the end.
1770 */
1771 struct KeyInfo {
1772   u32 nRef;           /* Number of references to this KeyInfo object */
1773   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
1774   u16 nField;         /* Number of key columns in the index */
1775   u16 nXField;        /* Number of columns beyond the key columns */
1776   sqlite3 *db;        /* The database connection */
1777   u8 *aSortOrder;     /* Sort order for each column. */
1778   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1779 };
1780 
1781 /*
1782 ** An instance of the following structure holds information about a
1783 ** single index record that has already been parsed out into individual
1784 ** values.
1785 **
1786 ** A record is an object that contains one or more fields of data.
1787 ** Records are used to store the content of a table row and to store
1788 ** the key of an index.  A blob encoding of a record is created by
1789 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1790 ** OP_Column opcode.
1791 **
1792 ** This structure holds a record that has already been disassembled
1793 ** into its constituent fields.
1794 **
1795 ** The r1 and r2 member variables are only used by the optimized comparison
1796 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
1797 */
1798 struct UnpackedRecord {
1799   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1800   u16 nField;         /* Number of entries in apMem[] */
1801   i8 default_rc;      /* Comparison result if keys are equal */
1802   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
1803   Mem *aMem;          /* Values */
1804   int r1;             /* Value to return if (lhs > rhs) */
1805   int r2;             /* Value to return if (rhs < lhs) */
1806 };
1807 
1808 
1809 /*
1810 ** Each SQL index is represented in memory by an
1811 ** instance of the following structure.
1812 **
1813 ** The columns of the table that are to be indexed are described
1814 ** by the aiColumn[] field of this structure.  For example, suppose
1815 ** we have the following table and index:
1816 **
1817 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1818 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1819 **
1820 ** In the Table structure describing Ex1, nCol==3 because there are
1821 ** three columns in the table.  In the Index structure describing
1822 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1823 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1824 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1825 ** The second column to be indexed (c1) has an index of 0 in
1826 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1827 **
1828 ** The Index.onError field determines whether or not the indexed columns
1829 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1830 ** it means this is not a unique index.  Otherwise it is a unique index
1831 ** and the value of Index.onError indicate the which conflict resolution
1832 ** algorithm to employ whenever an attempt is made to insert a non-unique
1833 ** element.
1834 **
1835 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to
1836 ** generate VDBE code (as opposed to parsing one read from an sqlite_master
1837 ** table as part of parsing an existing database schema), transient instances
1838 ** of this structure may be created. In this case the Index.tnum variable is
1839 ** used to store the address of a VDBE instruction, not a database page
1840 ** number (it cannot - the database page is not allocated until the VDBE
1841 ** program is executed). See convertToWithoutRowidTable() for details.
1842 */
1843 struct Index {
1844   char *zName;             /* Name of this index */
1845   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
1846   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
1847   Table *pTable;           /* The SQL table being indexed */
1848   char *zColAff;           /* String defining the affinity of each column */
1849   Index *pNext;            /* The next index associated with the same table */
1850   Schema *pSchema;         /* Schema containing this index */
1851   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
1852   char **azColl;           /* Array of collation sequence names for index */
1853   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
1854   int tnum;                /* DB Page containing root of this index */
1855   LogEst szIdxRow;         /* Estimated average row size in bytes */
1856   u16 nKeyCol;             /* Number of columns forming the key */
1857   u16 nColumn;             /* Number of columns stored in the index */
1858   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1859   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
1860   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
1861   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
1862   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
1863   unsigned isCovering:1;   /* True if this is a covering index */
1864   unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
1865 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1866   int nSample;             /* Number of elements in aSample[] */
1867   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
1868   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
1869   IndexSample *aSample;    /* Samples of the left-most key */
1870   tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
1871   tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
1872 #endif
1873 };
1874 
1875 /*
1876 ** Allowed values for Index.idxType
1877 */
1878 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
1879 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
1880 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
1881 
1882 /* Return true if index X is a PRIMARY KEY index */
1883 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
1884 
1885 /* Return true if index X is a UNIQUE index */
1886 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
1887 
1888 /*
1889 ** Each sample stored in the sqlite_stat3 table is represented in memory
1890 ** using a structure of this type.  See documentation at the top of the
1891 ** analyze.c source file for additional information.
1892 */
1893 struct IndexSample {
1894   void *p;          /* Pointer to sampled record */
1895   int n;            /* Size of record in bytes */
1896   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
1897   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
1898   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
1899 };
1900 
1901 /*
1902 ** Each token coming out of the lexer is an instance of
1903 ** this structure.  Tokens are also used as part of an expression.
1904 **
1905 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1906 ** may contain random values.  Do not make any assumptions about Token.dyn
1907 ** and Token.n when Token.z==0.
1908 */
1909 struct Token {
1910   const char *z;     /* Text of the token.  Not NULL-terminated! */
1911   unsigned int n;    /* Number of characters in this token */
1912 };
1913 
1914 /*
1915 ** An instance of this structure contains information needed to generate
1916 ** code for a SELECT that contains aggregate functions.
1917 **
1918 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1919 ** pointer to this structure.  The Expr.iColumn field is the index in
1920 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1921 ** code for that node.
1922 **
1923 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1924 ** original Select structure that describes the SELECT statement.  These
1925 ** fields do not need to be freed when deallocating the AggInfo structure.
1926 */
1927 struct AggInfo {
1928   u8 directMode;          /* Direct rendering mode means take data directly
1929                           ** from source tables rather than from accumulators */
1930   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1931                           ** than the source table */
1932   int sortingIdx;         /* Cursor number of the sorting index */
1933   int sortingIdxPTab;     /* Cursor number of pseudo-table */
1934   int nSortingColumn;     /* Number of columns in the sorting index */
1935   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
1936   ExprList *pGroupBy;     /* The group by clause */
1937   struct AggInfo_col {    /* For each column used in source tables */
1938     Table *pTab;             /* Source table */
1939     int iTable;              /* Cursor number of the source table */
1940     int iColumn;             /* Column number within the source table */
1941     int iSorterColumn;       /* Column number in the sorting index */
1942     int iMem;                /* Memory location that acts as accumulator */
1943     Expr *pExpr;             /* The original expression */
1944   } *aCol;
1945   int nColumn;            /* Number of used entries in aCol[] */
1946   int nAccumulator;       /* Number of columns that show through to the output.
1947                           ** Additional columns are used only as parameters to
1948                           ** aggregate functions */
1949   struct AggInfo_func {   /* For each aggregate function */
1950     Expr *pExpr;             /* Expression encoding the function */
1951     FuncDef *pFunc;          /* The aggregate function implementation */
1952     int iMem;                /* Memory location that acts as accumulator */
1953     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1954   } *aFunc;
1955   int nFunc;              /* Number of entries in aFunc[] */
1956 };
1957 
1958 /*
1959 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
1960 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
1961 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
1962 ** it uses less memory in the Expr object, which is a big memory user
1963 ** in systems with lots of prepared statements.  And few applications
1964 ** need more than about 10 or 20 variables.  But some extreme users want
1965 ** to have prepared statements with over 32767 variables, and for them
1966 ** the option is available (at compile-time).
1967 */
1968 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
1969 typedef i16 ynVar;
1970 #else
1971 typedef int ynVar;
1972 #endif
1973 
1974 /*
1975 ** Each node of an expression in the parse tree is an instance
1976 ** of this structure.
1977 **
1978 ** Expr.op is the opcode. The integer parser token codes are reused
1979 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1980 ** code representing the ">=" operator. This same integer code is reused
1981 ** to represent the greater-than-or-equal-to operator in the expression
1982 ** tree.
1983 **
1984 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1985 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1986 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1987 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1988 ** then Expr.token contains the name of the function.
1989 **
1990 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1991 ** binary operator. Either or both may be NULL.
1992 **
1993 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1994 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1995 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1996 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1997 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1998 ** valid.
1999 **
2000 ** An expression of the form ID or ID.ID refers to a column in a table.
2001 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
2002 ** the integer cursor number of a VDBE cursor pointing to that table and
2003 ** Expr.iColumn is the column number for the specific column.  If the
2004 ** expression is used as a result in an aggregate SELECT, then the
2005 ** value is also stored in the Expr.iAgg column in the aggregate so that
2006 ** it can be accessed after all aggregates are computed.
2007 **
2008 ** If the expression is an unbound variable marker (a question mark
2009 ** character '?' in the original SQL) then the Expr.iTable holds the index
2010 ** number for that variable.
2011 **
2012 ** If the expression is a subquery then Expr.iColumn holds an integer
2013 ** register number containing the result of the subquery.  If the
2014 ** subquery gives a constant result, then iTable is -1.  If the subquery
2015 ** gives a different answer at different times during statement processing
2016 ** then iTable is the address of a subroutine that computes the subquery.
2017 **
2018 ** If the Expr is of type OP_Column, and the table it is selecting from
2019 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
2020 ** corresponding table definition.
2021 **
2022 ** ALLOCATION NOTES:
2023 **
2024 ** Expr objects can use a lot of memory space in database schema.  To
2025 ** help reduce memory requirements, sometimes an Expr object will be
2026 ** truncated.  And to reduce the number of memory allocations, sometimes
2027 ** two or more Expr objects will be stored in a single memory allocation,
2028 ** together with Expr.zToken strings.
2029 **
2030 ** If the EP_Reduced and EP_TokenOnly flags are set when
2031 ** an Expr object is truncated.  When EP_Reduced is set, then all
2032 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
2033 ** are contained within the same memory allocation.  Note, however, that
2034 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
2035 ** allocated, regardless of whether or not EP_Reduced is set.
2036 */
2037 struct Expr {
2038   u8 op;                 /* Operation performed by this node */
2039   char affinity;         /* The affinity of the column or 0 if not a column */
2040   u32 flags;             /* Various flags.  EP_* See below */
2041   union {
2042     char *zToken;          /* Token value. Zero terminated and dequoted */
2043     int iValue;            /* Non-negative integer value if EP_IntValue */
2044   } u;
2045 
2046   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
2047   ** space is allocated for the fields below this point. An attempt to
2048   ** access them will result in a segfault or malfunction.
2049   *********************************************************************/
2050 
2051   Expr *pLeft;           /* Left subnode */
2052   Expr *pRight;          /* Right subnode */
2053   union {
2054     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
2055     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
2056   } x;
2057 
2058   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
2059   ** space is allocated for the fields below this point. An attempt to
2060   ** access them will result in a segfault or malfunction.
2061   *********************************************************************/
2062 
2063 #if SQLITE_MAX_EXPR_DEPTH>0
2064   int nHeight;           /* Height of the tree headed by this node */
2065 #endif
2066   int iTable;            /* TK_COLUMN: cursor number of table holding column
2067                          ** TK_REGISTER: register number
2068                          ** TK_TRIGGER: 1 -> new, 0 -> old
2069                          ** EP_Unlikely:  134217728 times likelihood */
2070   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
2071                          ** TK_VARIABLE: variable number (always >= 1). */
2072   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
2073   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
2074   u8 op2;                /* TK_REGISTER: original value of Expr.op
2075                          ** TK_COLUMN: the value of p5 for OP_Column
2076                          ** TK_AGG_FUNCTION: nesting depth */
2077   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
2078   Table *pTab;           /* Table for TK_COLUMN expressions. */
2079 };
2080 
2081 /*
2082 ** The following are the meanings of bits in the Expr.flags field.
2083 */
2084 #define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
2085 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
2086 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
2087 #define EP_Error     0x000008 /* Expression contains one or more errors */
2088 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
2089 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
2090 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
2091 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
2092 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
2093 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
2094 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
2095 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
2096 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
2097 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
2098 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
2099 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2100 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2101 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2102 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2103 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */
2104 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
2105 #define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
2106 
2107 /*
2108 ** Combinations of two or more EP_* flags
2109 */
2110 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */
2111 
2112 /*
2113 ** These macros can be used to test, set, or clear bits in the
2114 ** Expr.flags field.
2115 */
2116 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2117 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2118 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2119 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2120 
2121 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2122 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2123 ** processes but is a no-op for delivery.
2124 */
2125 #ifdef SQLITE_DEBUG
2126 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2127 #else
2128 # define ExprSetVVAProperty(E,P)
2129 #endif
2130 
2131 /*
2132 ** Macros to determine the number of bytes required by a normal Expr
2133 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2134 ** and an Expr struct with the EP_TokenOnly flag set.
2135 */
2136 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2137 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2138 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2139 
2140 /*
2141 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2142 ** above sqlite3ExprDup() for details.
2143 */
2144 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2145 
2146 /*
2147 ** A list of expressions.  Each expression may optionally have a
2148 ** name.  An expr/name combination can be used in several ways, such
2149 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2150 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2151 ** also be used as the argument to a function, in which case the a.zName
2152 ** field is not used.
2153 **
2154 ** By default the Expr.zSpan field holds a human-readable description of
2155 ** the expression that is used in the generation of error messages and
2156 ** column labels.  In this case, Expr.zSpan is typically the text of a
2157 ** column expression as it exists in a SELECT statement.  However, if
2158 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2159 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2160 ** form is used for name resolution with nested FROM clauses.
2161 */
2162 struct ExprList {
2163   int nExpr;             /* Number of expressions on the list */
2164   struct ExprList_item { /* For each expression in the list */
2165     Expr *pExpr;            /* The list of expressions */
2166     char *zName;            /* Token associated with this expression */
2167     char *zSpan;            /* Original text of the expression */
2168     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2169     unsigned done :1;       /* A flag to indicate when processing is finished */
2170     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2171     unsigned reusable :1;   /* Constant expression is reusable */
2172     union {
2173       struct {
2174         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2175         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2176       } x;
2177       int iConstExprReg;      /* Register in which Expr value is cached */
2178     } u;
2179   } *a;                  /* Alloc a power of two greater or equal to nExpr */
2180 };
2181 
2182 /*
2183 ** An instance of this structure is used by the parser to record both
2184 ** the parse tree for an expression and the span of input text for an
2185 ** expression.
2186 */
2187 struct ExprSpan {
2188   Expr *pExpr;          /* The expression parse tree */
2189   const char *zStart;   /* First character of input text */
2190   const char *zEnd;     /* One character past the end of input text */
2191 };
2192 
2193 /*
2194 ** An instance of this structure can hold a simple list of identifiers,
2195 ** such as the list "a,b,c" in the following statements:
2196 **
2197 **      INSERT INTO t(a,b,c) VALUES ...;
2198 **      CREATE INDEX idx ON t(a,b,c);
2199 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2200 **
2201 ** The IdList.a.idx field is used when the IdList represents the list of
2202 ** column names after a table name in an INSERT statement.  In the statement
2203 **
2204 **     INSERT INTO t(a,b,c) ...
2205 **
2206 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2207 */
2208 struct IdList {
2209   struct IdList_item {
2210     char *zName;      /* Name of the identifier */
2211     int idx;          /* Index in some Table.aCol[] of a column named zName */
2212   } *a;
2213   int nId;         /* Number of identifiers on the list */
2214 };
2215 
2216 /*
2217 ** The bitmask datatype defined below is used for various optimizations.
2218 **
2219 ** Changing this from a 64-bit to a 32-bit type limits the number of
2220 ** tables in a join to 32 instead of 64.  But it also reduces the size
2221 ** of the library by 738 bytes on ix86.
2222 */
2223 typedef u64 Bitmask;
2224 
2225 /*
2226 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2227 */
2228 #define BMS  ((int)(sizeof(Bitmask)*8))
2229 
2230 /*
2231 ** A bit in a Bitmask
2232 */
2233 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2234 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2235 
2236 /*
2237 ** The following structure describes the FROM clause of a SELECT statement.
2238 ** Each table or subquery in the FROM clause is a separate element of
2239 ** the SrcList.a[] array.
2240 **
2241 ** With the addition of multiple database support, the following structure
2242 ** can also be used to describe a particular table such as the table that
2243 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2244 ** such a table must be a simple name: ID.  But in SQLite, the table can
2245 ** now be identified by a database name, a dot, then the table name: ID.ID.
2246 **
2247 ** The jointype starts out showing the join type between the current table
2248 ** and the next table on the list.  The parser builds the list this way.
2249 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2250 ** jointype expresses the join between the table and the previous table.
2251 **
2252 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2253 ** contains more than 63 columns and the 64-th or later column is used.
2254 */
2255 struct SrcList {
2256   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2257   u32 nAlloc;      /* Number of entries allocated in a[] below */
2258   struct SrcList_item {
2259     Schema *pSchema;  /* Schema to which this item is fixed */
2260     char *zDatabase;  /* Name of database holding this table */
2261     char *zName;      /* Name of the table */
2262     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2263     Table *pTab;      /* An SQL table corresponding to zName */
2264     Select *pSelect;  /* A SELECT statement used in place of a table name */
2265     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2266     int regReturn;    /* Register holding return address of addrFillSub */
2267     int regResult;    /* Registers holding results of a co-routine */
2268     u8 jointype;      /* Type of join between this able and the previous */
2269     unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2270     unsigned isCorrelated :1;  /* True if sub-query is correlated */
2271     unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2272     unsigned isRecursive :1;   /* True for recursive reference in WITH */
2273 #ifndef SQLITE_OMIT_EXPLAIN
2274     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2275 #endif
2276     int iCursor;      /* The VDBE cursor number used to access this table */
2277     Expr *pOn;        /* The ON clause of a join */
2278     IdList *pUsing;   /* The USING clause of a join */
2279     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2280     char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */
2281     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
2282   } a[1];             /* One entry for each identifier on the list */
2283 };
2284 
2285 /*
2286 ** Permitted values of the SrcList.a.jointype field
2287 */
2288 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2289 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2290 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2291 #define JT_LEFT      0x0008    /* Left outer join */
2292 #define JT_RIGHT     0x0010    /* Right outer join */
2293 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2294 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2295 
2296 
2297 /*
2298 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2299 ** and the WhereInfo.wctrlFlags member.
2300 */
2301 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2302 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2303 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2304 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2305 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
2306 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
2307 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
2308 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
2309 #define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
2310 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
2311 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
2312 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
2313 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
2314 #define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
2315 
2316 /* Allowed return values from sqlite3WhereIsDistinct()
2317 */
2318 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2319 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2320 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2321 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2322 
2323 /*
2324 ** A NameContext defines a context in which to resolve table and column
2325 ** names.  The context consists of a list of tables (the pSrcList) field and
2326 ** a list of named expression (pEList).  The named expression list may
2327 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2328 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2329 ** pEList corresponds to the result set of a SELECT and is NULL for
2330 ** other statements.
2331 **
2332 ** NameContexts can be nested.  When resolving names, the inner-most
2333 ** context is searched first.  If no match is found, the next outer
2334 ** context is checked.  If there is still no match, the next context
2335 ** is checked.  This process continues until either a match is found
2336 ** or all contexts are check.  When a match is found, the nRef member of
2337 ** the context containing the match is incremented.
2338 **
2339 ** Each subquery gets a new NameContext.  The pNext field points to the
2340 ** NameContext in the parent query.  Thus the process of scanning the
2341 ** NameContext list corresponds to searching through successively outer
2342 ** subqueries looking for a match.
2343 */
2344 struct NameContext {
2345   Parse *pParse;       /* The parser */
2346   SrcList *pSrcList;   /* One or more tables used to resolve names */
2347   ExprList *pEList;    /* Optional list of result-set columns */
2348   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2349   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2350   int nRef;            /* Number of names resolved by this context */
2351   int nErr;            /* Number of errors encountered while resolving names */
2352   u16 ncFlags;         /* Zero or more NC_* flags defined below */
2353 };
2354 
2355 /*
2356 ** Allowed values for the NameContext, ncFlags field.
2357 **
2358 ** Note:  NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
2359 ** SQLITE_FUNC_MINMAX.
2360 **
2361 */
2362 #define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
2363 #define NC_HasAgg    0x0002  /* One or more aggregate functions seen */
2364 #define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
2365 #define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
2366 #define NC_PartIdx   0x0010  /* True if resolving a partial index WHERE */
2367 #define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
2368 
2369 /*
2370 ** An instance of the following structure contains all information
2371 ** needed to generate code for a single SELECT statement.
2372 **
2373 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2374 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2375 ** limit and nOffset to the value of the offset (or 0 if there is not
2376 ** offset).  But later on, nLimit and nOffset become the memory locations
2377 ** in the VDBE that record the limit and offset counters.
2378 **
2379 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2380 ** These addresses must be stored so that we can go back and fill in
2381 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2382 ** the number of columns in P2 can be computed at the same time
2383 ** as the OP_OpenEphm instruction is coded because not
2384 ** enough information about the compound query is known at that point.
2385 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2386 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2387 ** sequences for the ORDER BY clause.
2388 */
2389 struct Select {
2390   ExprList *pEList;      /* The fields of the result */
2391   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2392   u16 selFlags;          /* Various SF_* values */
2393   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2394 #if SELECTTRACE_ENABLED
2395   char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
2396 #endif
2397   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2398   u64 nSelectRow;        /* Estimated number of result rows */
2399   SrcList *pSrc;         /* The FROM clause */
2400   Expr *pWhere;          /* The WHERE clause */
2401   ExprList *pGroupBy;    /* The GROUP BY clause */
2402   Expr *pHaving;         /* The HAVING clause */
2403   ExprList *pOrderBy;    /* The ORDER BY clause */
2404   Select *pPrior;        /* Prior select in a compound select statement */
2405   Select *pNext;         /* Next select to the left in a compound */
2406   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2407   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2408   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2409 };
2410 
2411 /*
2412 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2413 ** "Select Flag".
2414 */
2415 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
2416 #define SF_All             0x0002  /* Includes the ALL keyword */
2417 #define SF_Resolved        0x0004  /* Identifiers have been resolved */
2418 #define SF_Aggregate       0x0008  /* Contains aggregate functions */
2419 #define SF_UsesEphemeral   0x0010  /* Uses the OpenEphemeral opcode */
2420 #define SF_Expanded        0x0020  /* sqlite3SelectExpand() called on this */
2421 #define SF_HasTypeInfo     0x0040  /* FROM subqueries have Table metadata */
2422 #define SF_Compound        0x0080  /* Part of a compound query */
2423 #define SF_Values          0x0100  /* Synthesized from VALUES clause */
2424 #define SF_MultiValue      0x0200  /* Single VALUES term with multiple rows */
2425 #define SF_NestedFrom      0x0400  /* Part of a parenthesized FROM clause */
2426 #define SF_MaybeConvert    0x0800  /* Need convertCompoundSelectToSubquery() */
2427 #define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
2428 #define SF_Recursive       0x2000  /* The recursive part of a recursive CTE */
2429 #define SF_Converted       0x4000  /* By convertCompoundSelectToSubquery() */
2430 
2431 
2432 /*
2433 ** The results of a SELECT can be distributed in several ways, as defined
2434 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2435 ** Type".
2436 **
2437 **     SRT_Union       Store results as a key in a temporary index
2438 **                     identified by pDest->iSDParm.
2439 **
2440 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2441 **
2442 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2443 **                     set is not empty.
2444 **
2445 **     SRT_Discard     Throw the results away.  This is used by SELECT
2446 **                     statements within triggers whose only purpose is
2447 **                     the side-effects of functions.
2448 **
2449 ** All of the above are free to ignore their ORDER BY clause. Those that
2450 ** follow must honor the ORDER BY clause.
2451 **
2452 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2453 **                     opcode) for each row in the result set.
2454 **
2455 **     SRT_Mem         Only valid if the result is a single column.
2456 **                     Store the first column of the first result row
2457 **                     in register pDest->iSDParm then abandon the rest
2458 **                     of the query.  This destination implies "LIMIT 1".
2459 **
2460 **     SRT_Set         The result must be a single column.  Store each
2461 **                     row of result as the key in table pDest->iSDParm.
2462 **                     Apply the affinity pDest->affSdst before storing
2463 **                     results.  Used to implement "IN (SELECT ...)".
2464 **
2465 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2466 **                     the result there. The cursor is left open after
2467 **                     returning.  This is like SRT_Table except that
2468 **                     this destination uses OP_OpenEphemeral to create
2469 **                     the table first.
2470 **
2471 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2472 **                     results each time it is invoked.  The entry point
2473 **                     of the co-routine is stored in register pDest->iSDParm
2474 **                     and the result row is stored in pDest->nDest registers
2475 **                     starting with pDest->iSdst.
2476 **
2477 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2478 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2479 **                     is assumed to already be open.  SRT_Fifo has
2480 **                     the additional property of being able to ignore
2481 **                     the ORDER BY clause.
2482 **
2483 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2484 **                     But also use temporary table pDest->iSDParm+1 as
2485 **                     a record of all prior results and ignore any duplicate
2486 **                     rows.  Name means:  "Distinct Fifo".
2487 **
2488 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2489 **                     an index).  Append a sequence number so that all entries
2490 **                     are distinct.
2491 **
2492 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2493 **                     the same record has never been stored before.  The
2494 **                     index at pDest->iSDParm+1 hold all prior stores.
2495 */
2496 #define SRT_Union        1  /* Store result as keys in an index */
2497 #define SRT_Except       2  /* Remove result from a UNION index */
2498 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2499 #define SRT_Discard      4  /* Do not save the results anywhere */
2500 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2501 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2502 #define SRT_Queue        7  /* Store result in an queue */
2503 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2504 
2505 /* The ORDER BY clause is ignored for all of the above */
2506 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2507 
2508 #define SRT_Output       9  /* Output each row of result */
2509 #define SRT_Mem         10  /* Store result in a memory cell */
2510 #define SRT_Set         11  /* Store results as keys in an index */
2511 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2512 #define SRT_Coroutine   13  /* Generate a single row of result */
2513 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2514 
2515 /*
2516 ** An instance of this object describes where to put of the results of
2517 ** a SELECT statement.
2518 */
2519 struct SelectDest {
2520   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2521   char affSdst;        /* Affinity used when eDest==SRT_Set */
2522   int iSDParm;         /* A parameter used by the eDest disposal method */
2523   int iSdst;           /* Base register where results are written */
2524   int nSdst;           /* Number of registers allocated */
2525   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2526 };
2527 
2528 /*
2529 ** During code generation of statements that do inserts into AUTOINCREMENT
2530 ** tables, the following information is attached to the Table.u.autoInc.p
2531 ** pointer of each autoincrement table to record some side information that
2532 ** the code generator needs.  We have to keep per-table autoincrement
2533 ** information in case inserts are down within triggers.  Triggers do not
2534 ** normally coordinate their activities, but we do need to coordinate the
2535 ** loading and saving of autoincrement information.
2536 */
2537 struct AutoincInfo {
2538   AutoincInfo *pNext;   /* Next info block in a list of them all */
2539   Table *pTab;          /* Table this info block refers to */
2540   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2541   int regCtr;           /* Memory register holding the rowid counter */
2542 };
2543 
2544 /*
2545 ** Size of the column cache
2546 */
2547 #ifndef SQLITE_N_COLCACHE
2548 # define SQLITE_N_COLCACHE 10
2549 #endif
2550 
2551 /*
2552 ** At least one instance of the following structure is created for each
2553 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2554 ** statement. All such objects are stored in the linked list headed at
2555 ** Parse.pTriggerPrg and deleted once statement compilation has been
2556 ** completed.
2557 **
2558 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2559 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2560 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2561 ** The Parse.pTriggerPrg list never contains two entries with the same
2562 ** values for both pTrigger and orconf.
2563 **
2564 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2565 ** accessed (or set to 0 for triggers fired as a result of INSERT
2566 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2567 ** a mask of new.* columns used by the program.
2568 */
2569 struct TriggerPrg {
2570   Trigger *pTrigger;      /* Trigger this program was coded from */
2571   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2572   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2573   int orconf;             /* Default ON CONFLICT policy */
2574   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2575 };
2576 
2577 /*
2578 ** The yDbMask datatype for the bitmask of all attached databases.
2579 */
2580 #if SQLITE_MAX_ATTACHED>30
2581   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2582 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2583 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2584 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2585 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2586 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2587 #else
2588   typedef unsigned int yDbMask;
2589 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2590 # define DbMaskZero(M)      (M)=0
2591 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2592 # define DbMaskAllZero(M)   (M)==0
2593 # define DbMaskNonZero(M)   (M)!=0
2594 #endif
2595 
2596 /*
2597 ** An SQL parser context.  A copy of this structure is passed through
2598 ** the parser and down into all the parser action routine in order to
2599 ** carry around information that is global to the entire parse.
2600 **
2601 ** The structure is divided into two parts.  When the parser and code
2602 ** generate call themselves recursively, the first part of the structure
2603 ** is constant but the second part is reset at the beginning and end of
2604 ** each recursion.
2605 **
2606 ** The nTableLock and aTableLock variables are only used if the shared-cache
2607 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2608 ** used to store the set of table-locks required by the statement being
2609 ** compiled. Function sqlite3TableLock() is used to add entries to the
2610 ** list.
2611 */
2612 struct Parse {
2613   sqlite3 *db;         /* The main database structure */
2614   char *zErrMsg;       /* An error message */
2615   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2616   int rc;              /* Return code from execution */
2617   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2618   u8 checkSchema;      /* Causes schema cookie check after an error */
2619   u8 nested;           /* Number of nested calls to the parser/code generator */
2620   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2621   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2622   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2623   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2624   u8 okConstFactor;    /* OK to factor out constants */
2625   int aTempReg[8];     /* Holding area for temporary registers */
2626   int nRangeReg;       /* Size of the temporary register block */
2627   int iRangeReg;       /* First register in temporary register block */
2628   int nErr;            /* Number of errors seen */
2629   int nTab;            /* Number of previously allocated VDBE cursors */
2630   int nMem;            /* Number of memory cells used so far */
2631   int nSet;            /* Number of sets used so far */
2632   int nOnce;           /* Number of OP_Once instructions so far */
2633   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2634   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
2635   int ckBase;          /* Base register of data during check constraints */
2636   int iPartIdxTab;     /* Table corresponding to a partial index */
2637   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2638   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2639   int nLabel;          /* Number of labels used */
2640   int *aLabel;         /* Space to hold the labels */
2641   struct yColCache {
2642     int iTable;           /* Table cursor number */
2643     i16 iColumn;          /* Table column number */
2644     u8 tempReg;           /* iReg is a temp register that needs to be freed */
2645     int iLevel;           /* Nesting level */
2646     int iReg;             /* Reg with value of this column. 0 means none. */
2647     int lru;              /* Least recently used entry has the smallest value */
2648   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
2649   ExprList *pConstExpr;/* Constant expressions */
2650   Token constraintName;/* Name of the constraint currently being parsed */
2651   yDbMask writeMask;   /* Start a write transaction on these databases */
2652   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2653   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
2654   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2655   int regRoot;         /* Register holding root page number for new objects */
2656   int nMaxArg;         /* Max args passed to user function by sub-program */
2657 #if SELECTTRACE_ENABLED
2658   int nSelect;         /* Number of SELECT statements seen */
2659   int nSelectIndent;   /* How far to indent SELECTTRACE() output */
2660 #endif
2661 #ifndef SQLITE_OMIT_SHARED_CACHE
2662   int nTableLock;        /* Number of locks in aTableLock */
2663   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2664 #endif
2665   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2666 
2667   /* Information used while coding trigger programs. */
2668   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
2669   Table *pTriggerTab;  /* Table triggers are being coded for */
2670   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
2671   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
2672   u32 oldmask;         /* Mask of old.* columns referenced */
2673   u32 newmask;         /* Mask of new.* columns referenced */
2674   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
2675   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
2676   u8 disableTriggers;  /* True to disable triggers */
2677 
2678   /************************************************************************
2679   ** Above is constant between recursions.  Below is reset before and after
2680   ** each recursion.  The boundary between these two regions is determined
2681   ** using offsetof(Parse,nVar) so the nVar field must be the first field
2682   ** in the recursive region.
2683   ************************************************************************/
2684 
2685   int nVar;                 /* Number of '?' variables seen in the SQL so far */
2686   int nzVar;                /* Number of available slots in azVar[] */
2687   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
2688   u8 bFreeWith;             /* True if pWith should be freed with parser */
2689   u8 explain;               /* True if the EXPLAIN flag is found on the query */
2690 #ifndef SQLITE_OMIT_VIRTUALTABLE
2691   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
2692   int nVtabLock;            /* Number of virtual tables to lock */
2693 #endif
2694   int nAlias;               /* Number of aliased result set columns */
2695   int nHeight;              /* Expression tree height of current sub-select */
2696 #ifndef SQLITE_OMIT_EXPLAIN
2697   int iSelectId;            /* ID of current select for EXPLAIN output */
2698   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
2699 #endif
2700   char **azVar;             /* Pointers to names of parameters */
2701   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
2702   const char *zTail;        /* All SQL text past the last semicolon parsed */
2703   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
2704   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
2705   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2706   Token sNameToken;         /* Token with unqualified schema object name */
2707   Token sLastToken;         /* The last token parsed */
2708 #ifndef SQLITE_OMIT_VIRTUALTABLE
2709   Token sArg;               /* Complete text of a module argument */
2710   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
2711 #endif
2712   Table *pZombieTab;        /* List of Table objects to delete after code gen */
2713   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
2714   With *pWith;              /* Current WITH clause, or NULL */
2715 };
2716 
2717 /*
2718 ** Return true if currently inside an sqlite3_declare_vtab() call.
2719 */
2720 #ifdef SQLITE_OMIT_VIRTUALTABLE
2721   #define IN_DECLARE_VTAB 0
2722 #else
2723   #define IN_DECLARE_VTAB (pParse->declareVtab)
2724 #endif
2725 
2726 /*
2727 ** An instance of the following structure can be declared on a stack and used
2728 ** to save the Parse.zAuthContext value so that it can be restored later.
2729 */
2730 struct AuthContext {
2731   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2732   Parse *pParse;              /* The Parse structure */
2733 };
2734 
2735 /*
2736 ** Bitfield flags for P5 value in various opcodes.
2737 */
2738 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
2739 #define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
2740 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
2741 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
2742 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
2743 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
2744 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
2745 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
2746 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
2747 #define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
2748 #define OPFLAG_P2ISREG       0x04    /* P2 to OP_Open** is a register number */
2749 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
2750 
2751 /*
2752  * Each trigger present in the database schema is stored as an instance of
2753  * struct Trigger.
2754  *
2755  * Pointers to instances of struct Trigger are stored in two ways.
2756  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2757  *    database). This allows Trigger structures to be retrieved by name.
2758  * 2. All triggers associated with a single table form a linked list, using the
2759  *    pNext member of struct Trigger. A pointer to the first element of the
2760  *    linked list is stored as the "pTrigger" member of the associated
2761  *    struct Table.
2762  *
2763  * The "step_list" member points to the first element of a linked list
2764  * containing the SQL statements specified as the trigger program.
2765  */
2766 struct Trigger {
2767   char *zName;            /* The name of the trigger                        */
2768   char *table;            /* The table or view to which the trigger applies */
2769   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2770   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2771   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2772   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2773                              the <column-list> is stored here */
2774   Schema *pSchema;        /* Schema containing the trigger */
2775   Schema *pTabSchema;     /* Schema containing the table */
2776   TriggerStep *step_list; /* Link list of trigger program steps             */
2777   Trigger *pNext;         /* Next trigger associated with the table */
2778 };
2779 
2780 /*
2781 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2782 ** determine which.
2783 **
2784 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2785 ** In that cases, the constants below can be ORed together.
2786 */
2787 #define TRIGGER_BEFORE  1
2788 #define TRIGGER_AFTER   2
2789 
2790 /*
2791  * An instance of struct TriggerStep is used to store a single SQL statement
2792  * that is a part of a trigger-program.
2793  *
2794  * Instances of struct TriggerStep are stored in a singly linked list (linked
2795  * using the "pNext" member) referenced by the "step_list" member of the
2796  * associated struct Trigger instance. The first element of the linked list is
2797  * the first step of the trigger-program.
2798  *
2799  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2800  * "SELECT" statement. The meanings of the other members is determined by the
2801  * value of "op" as follows:
2802  *
2803  * (op == TK_INSERT)
2804  * orconf    -> stores the ON CONFLICT algorithm
2805  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2806  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2807  * zTarget   -> Dequoted name of the table to insert into.
2808  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2809  *              this stores values to be inserted. Otherwise NULL.
2810  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2811  *              statement, then this stores the column-names to be
2812  *              inserted into.
2813  *
2814  * (op == TK_DELETE)
2815  * zTarget   -> Dequoted name of the table to delete from.
2816  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2817  *              Otherwise NULL.
2818  *
2819  * (op == TK_UPDATE)
2820  * zTarget   -> Dequoted name of the table to update.
2821  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2822  *              Otherwise NULL.
2823  * pExprList -> A list of the columns to update and the expressions to update
2824  *              them to. See sqlite3Update() documentation of "pChanges"
2825  *              argument.
2826  *
2827  */
2828 struct TriggerStep {
2829   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2830   u8 orconf;           /* OE_Rollback etc. */
2831   Trigger *pTrig;      /* The trigger that this step is a part of */
2832   Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
2833   char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
2834   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
2835   ExprList *pExprList; /* SET clause for UPDATE. */
2836   IdList *pIdList;     /* Column names for INSERT */
2837   TriggerStep *pNext;  /* Next in the link-list */
2838   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2839 };
2840 
2841 /*
2842 ** The following structure contains information used by the sqliteFix...
2843 ** routines as they walk the parse tree to make database references
2844 ** explicit.
2845 */
2846 typedef struct DbFixer DbFixer;
2847 struct DbFixer {
2848   Parse *pParse;      /* The parsing context.  Error messages written here */
2849   Schema *pSchema;    /* Fix items to this schema */
2850   int bVarOnly;       /* Check for variable references only */
2851   const char *zDb;    /* Make sure all objects are contained in this database */
2852   const char *zType;  /* Type of the container - used for error messages */
2853   const Token *pName; /* Name of the container - used for error messages */
2854 };
2855 
2856 /*
2857 ** An objected used to accumulate the text of a string where we
2858 ** do not necessarily know how big the string will be in the end.
2859 */
2860 struct StrAccum {
2861   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2862   char *zBase;         /* A base allocation.  Not from malloc. */
2863   char *zText;         /* The string collected so far */
2864   int  nChar;          /* Length of the string so far */
2865   int  nAlloc;         /* Amount of space allocated in zText */
2866   int  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
2867   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
2868 };
2869 #define STRACCUM_NOMEM   1
2870 #define STRACCUM_TOOBIG  2
2871 
2872 /*
2873 ** A pointer to this structure is used to communicate information
2874 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2875 */
2876 typedef struct {
2877   sqlite3 *db;        /* The database being initialized */
2878   char **pzErrMsg;    /* Error message stored here */
2879   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2880   int rc;             /* Result code stored here */
2881 } InitData;
2882 
2883 /*
2884 ** Structure containing global configuration data for the SQLite library.
2885 **
2886 ** This structure also contains some state information.
2887 */
2888 struct Sqlite3Config {
2889   int bMemstat;                     /* True to enable memory status */
2890   int bCoreMutex;                   /* True to enable core mutexing */
2891   int bFullMutex;                   /* True to enable full mutexing */
2892   int bOpenUri;                     /* True to interpret filenames as URIs */
2893   int bUseCis;                      /* Use covering indices for full-scans */
2894   int mxStrlen;                     /* Maximum string length */
2895   int neverCorrupt;                 /* Database is always well-formed */
2896   int szLookaside;                  /* Default lookaside buffer size */
2897   int nLookaside;                   /* Default lookaside buffer count */
2898   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2899   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2900   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
2901   void *pHeap;                      /* Heap storage space */
2902   int nHeap;                        /* Size of pHeap[] */
2903   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2904   sqlite3_int64 szMmap;             /* mmap() space per open file */
2905   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
2906   void *pScratch;                   /* Scratch memory */
2907   int szScratch;                    /* Size of each scratch buffer */
2908   int nScratch;                     /* Number of scratch buffers */
2909   void *pPage;                      /* Page cache memory */
2910   int szPage;                       /* Size of each page in pPage[] */
2911   int nPage;                        /* Number of pages in pPage[] */
2912   int mxParserStack;                /* maximum depth of the parser stack */
2913   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2914   u32 szPma;                        /* Maximum Sorter PMA size */
2915   /* The above might be initialized to non-zero.  The following need to always
2916   ** initially be zero, however. */
2917   int isInit;                       /* True after initialization has finished */
2918   int inProgress;                   /* True while initialization in progress */
2919   int isMutexInit;                  /* True after mutexes are initialized */
2920   int isMallocInit;                 /* True after malloc is initialized */
2921   int isPCacheInit;                 /* True after malloc is initialized */
2922   int nRefInitMutex;                /* Number of users of pInitMutex */
2923   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2924   void (*xLog)(void*,int,const char*); /* Function for logging */
2925   void *pLogArg;                       /* First argument to xLog() */
2926 #ifdef SQLITE_ENABLE_SQLLOG
2927   void(*xSqllog)(void*,sqlite3*,const char*, int);
2928   void *pSqllogArg;
2929 #endif
2930 #ifdef SQLITE_VDBE_COVERAGE
2931   /* The following callback (if not NULL) is invoked on every VDBE branch
2932   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
2933   */
2934   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
2935   void *pVdbeBranchArg;                                     /* 1st argument */
2936 #endif
2937 #ifndef SQLITE_OMIT_BUILTIN_TEST
2938   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
2939 #endif
2940   int bLocaltimeFault;              /* True to fail localtime() calls */
2941 };
2942 
2943 /*
2944 ** This macro is used inside of assert() statements to indicate that
2945 ** the assert is only valid on a well-formed database.  Instead of:
2946 **
2947 **     assert( X );
2948 **
2949 ** One writes:
2950 **
2951 **     assert( X || CORRUPT_DB );
2952 **
2953 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
2954 ** that the database is definitely corrupt, only that it might be corrupt.
2955 ** For most test cases, CORRUPT_DB is set to false using a special
2956 ** sqlite3_test_control().  This enables assert() statements to prove
2957 ** things that are always true for well-formed databases.
2958 */
2959 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
2960 
2961 /*
2962 ** Context pointer passed down through the tree-walk.
2963 */
2964 struct Walker {
2965   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2966   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2967   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
2968   Parse *pParse;                            /* Parser context.  */
2969   int walkerDepth;                          /* Number of subqueries */
2970   u8 eCode;                                 /* A small processing code */
2971   union {                                   /* Extra data for callback */
2972     NameContext *pNC;                          /* Naming context */
2973     int n;                                     /* A counter */
2974     int iCur;                                  /* A cursor number */
2975     SrcList *pSrcList;                         /* FROM clause */
2976     struct SrcCount *pSrcCount;                /* Counting column references */
2977   } u;
2978 };
2979 
2980 /* Forward declarations */
2981 int sqlite3WalkExpr(Walker*, Expr*);
2982 int sqlite3WalkExprList(Walker*, ExprList*);
2983 int sqlite3WalkSelect(Walker*, Select*);
2984 int sqlite3WalkSelectExpr(Walker*, Select*);
2985 int sqlite3WalkSelectFrom(Walker*, Select*);
2986 
2987 /*
2988 ** Return code from the parse-tree walking primitives and their
2989 ** callbacks.
2990 */
2991 #define WRC_Continue    0   /* Continue down into children */
2992 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2993 #define WRC_Abort       2   /* Abandon the tree walk */
2994 
2995 /*
2996 ** An instance of this structure represents a set of one or more CTEs
2997 ** (common table expressions) created by a single WITH clause.
2998 */
2999 struct With {
3000   int nCte;                       /* Number of CTEs in the WITH clause */
3001   With *pOuter;                   /* Containing WITH clause, or NULL */
3002   struct Cte {                    /* For each CTE in the WITH clause.... */
3003     char *zName;                    /* Name of this CTE */
3004     ExprList *pCols;                /* List of explicit column names, or NULL */
3005     Select *pSelect;                /* The definition of this CTE */
3006     const char *zErr;               /* Error message for circular references */
3007   } a[1];
3008 };
3009 
3010 #ifdef SQLITE_DEBUG
3011 /*
3012 ** An instance of the TreeView object is used for printing the content of
3013 ** data structures on sqlite3DebugPrintf() using a tree-like view.
3014 */
3015 struct TreeView {
3016   int iLevel;             /* Which level of the tree we are on */
3017   u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
3018 };
3019 #endif /* SQLITE_DEBUG */
3020 
3021 /*
3022 ** Assuming zIn points to the first byte of a UTF-8 character,
3023 ** advance zIn to point to the first byte of the next UTF-8 character.
3024 */
3025 #define SQLITE_SKIP_UTF8(zIn) {                        \
3026   if( (*(zIn++))>=0xc0 ){                              \
3027     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
3028   }                                                    \
3029 }
3030 
3031 /*
3032 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
3033 ** the same name but without the _BKPT suffix.  These macros invoke
3034 ** routines that report the line-number on which the error originated
3035 ** using sqlite3_log().  The routines also provide a convenient place
3036 ** to set a debugger breakpoint.
3037 */
3038 int sqlite3CorruptError(int);
3039 int sqlite3MisuseError(int);
3040 int sqlite3CantopenError(int);
3041 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
3042 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
3043 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
3044 
3045 
3046 /*
3047 ** FTS4 is really an extension for FTS3.  It is enabled using the
3048 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
3049 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
3050 */
3051 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
3052 # define SQLITE_ENABLE_FTS3 1
3053 #endif
3054 
3055 /*
3056 ** The ctype.h header is needed for non-ASCII systems.  It is also
3057 ** needed by FTS3 when FTS3 is included in the amalgamation.
3058 */
3059 #if !defined(SQLITE_ASCII) || \
3060     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
3061 # include <ctype.h>
3062 #endif
3063 
3064 /*
3065 ** The following macros mimic the standard library functions toupper(),
3066 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
3067 ** sqlite versions only work for ASCII characters, regardless of locale.
3068 */
3069 #ifdef SQLITE_ASCII
3070 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
3071 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
3072 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
3073 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
3074 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
3075 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
3076 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
3077 #else
3078 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
3079 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
3080 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
3081 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
3082 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
3083 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
3084 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
3085 #endif
3086 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
3087 int sqlite3IsIdChar(u8);
3088 #endif
3089 
3090 /*
3091 ** Internal function prototypes
3092 */
3093 #define sqlite3StrICmp sqlite3_stricmp
3094 int sqlite3Strlen30(const char*);
3095 #define sqlite3StrNICmp sqlite3_strnicmp
3096 
3097 int sqlite3MallocInit(void);
3098 void sqlite3MallocEnd(void);
3099 void *sqlite3Malloc(u64);
3100 void *sqlite3MallocZero(u64);
3101 void *sqlite3DbMallocZero(sqlite3*, u64);
3102 void *sqlite3DbMallocRaw(sqlite3*, u64);
3103 char *sqlite3DbStrDup(sqlite3*,const char*);
3104 char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
3105 void *sqlite3Realloc(void*, u64);
3106 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
3107 void *sqlite3DbRealloc(sqlite3 *, void *, u64);
3108 void sqlite3DbFree(sqlite3*, void*);
3109 int sqlite3MallocSize(void*);
3110 int sqlite3DbMallocSize(sqlite3*, void*);
3111 void *sqlite3ScratchMalloc(int);
3112 void sqlite3ScratchFree(void*);
3113 void *sqlite3PageMalloc(int);
3114 void sqlite3PageFree(void*);
3115 void sqlite3MemSetDefault(void);
3116 #ifndef SQLITE_OMIT_BUILTIN_TEST
3117 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
3118 #endif
3119 int sqlite3HeapNearlyFull(void);
3120 
3121 /*
3122 ** On systems with ample stack space and that support alloca(), make
3123 ** use of alloca() to obtain space for large automatic objects.  By default,
3124 ** obtain space from malloc().
3125 **
3126 ** The alloca() routine never returns NULL.  This will cause code paths
3127 ** that deal with sqlite3StackAlloc() failures to be unreachable.
3128 */
3129 #ifdef SQLITE_USE_ALLOCA
3130 # define sqlite3StackAllocRaw(D,N)   alloca(N)
3131 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
3132 # define sqlite3StackFree(D,P)
3133 #else
3134 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
3135 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
3136 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
3137 #endif
3138 
3139 #ifdef SQLITE_ENABLE_MEMSYS3
3140 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3141 #endif
3142 #ifdef SQLITE_ENABLE_MEMSYS5
3143 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3144 #endif
3145 
3146 
3147 #ifndef SQLITE_MUTEX_OMIT
3148   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3149   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3150   sqlite3_mutex *sqlite3MutexAlloc(int);
3151   int sqlite3MutexInit(void);
3152   int sqlite3MutexEnd(void);
3153 #endif
3154 
3155 sqlite3_int64 sqlite3StatusValue(int);
3156 void sqlite3StatusUp(int, int);
3157 void sqlite3StatusDown(int, int);
3158 void sqlite3StatusSet(int, int);
3159 
3160 /* Access to mutexes used by sqlite3_status() */
3161 sqlite3_mutex *sqlite3Pcache1Mutex(void);
3162 sqlite3_mutex *sqlite3MallocMutex(void);
3163 
3164 #ifndef SQLITE_OMIT_FLOATING_POINT
3165   int sqlite3IsNaN(double);
3166 #else
3167 # define sqlite3IsNaN(X)  0
3168 #endif
3169 
3170 /*
3171 ** An instance of the following structure holds information about SQL
3172 ** functions arguments that are the parameters to the printf() function.
3173 */
3174 struct PrintfArguments {
3175   int nArg;                /* Total number of arguments */
3176   int nUsed;               /* Number of arguments used so far */
3177   sqlite3_value **apArg;   /* The argument values */
3178 };
3179 
3180 #define SQLITE_PRINTF_INTERNAL 0x01
3181 #define SQLITE_PRINTF_SQLFUNC  0x02
3182 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
3183 void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
3184 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3185 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3186 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3187   void sqlite3DebugPrintf(const char*, ...);
3188 #endif
3189 #if defined(SQLITE_TEST)
3190   void *sqlite3TestTextToPtr(const char*);
3191 #endif
3192 
3193 #if defined(SQLITE_DEBUG)
3194   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
3195   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
3196   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
3197 #endif
3198 
3199 
3200 void sqlite3SetString(char **, sqlite3*, const char*);
3201 void sqlite3ErrorMsg(Parse*, const char*, ...);
3202 int sqlite3Dequote(char*);
3203 int sqlite3KeywordCode(const unsigned char*, int);
3204 int sqlite3RunParser(Parse*, const char*, char **);
3205 void sqlite3FinishCoding(Parse*);
3206 int sqlite3GetTempReg(Parse*);
3207 void sqlite3ReleaseTempReg(Parse*,int);
3208 int sqlite3GetTempRange(Parse*,int);
3209 void sqlite3ReleaseTempRange(Parse*,int,int);
3210 void sqlite3ClearTempRegCache(Parse*);
3211 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3212 Expr *sqlite3Expr(sqlite3*,int,const char*);
3213 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3214 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
3215 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3216 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3217 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
3218 void sqlite3ExprDelete(sqlite3*, Expr*);
3219 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3220 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3221 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3222 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3223 u32 sqlite3ExprListFlags(const ExprList*);
3224 int sqlite3Init(sqlite3*, char**);
3225 int sqlite3InitCallback(void*, int, char**, char**);
3226 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3227 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3228 void sqlite3ResetOneSchema(sqlite3*,int);
3229 void sqlite3CollapseDatabaseArray(sqlite3*);
3230 void sqlite3BeginParse(Parse*,int);
3231 void sqlite3CommitInternalChanges(sqlite3*);
3232 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3233 void sqlite3OpenMasterTable(Parse *, int);
3234 Index *sqlite3PrimaryKeyIndex(Table*);
3235 i16 sqlite3ColumnOfIndex(Index*, i16);
3236 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3237 void sqlite3AddColumn(Parse*,Token*);
3238 void sqlite3AddNotNull(Parse*, int);
3239 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3240 void sqlite3AddCheckConstraint(Parse*, Expr*);
3241 void sqlite3AddColumnType(Parse*,Token*);
3242 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3243 void sqlite3AddCollateType(Parse*, Token*);
3244 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3245 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3246                     sqlite3_vfs**,char**,char **);
3247 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3248 int sqlite3CodeOnce(Parse *);
3249 
3250 #ifdef SQLITE_OMIT_BUILTIN_TEST
3251 # define sqlite3FaultSim(X) SQLITE_OK
3252 #else
3253   int sqlite3FaultSim(int);
3254 #endif
3255 
3256 Bitvec *sqlite3BitvecCreate(u32);
3257 int sqlite3BitvecTest(Bitvec*, u32);
3258 int sqlite3BitvecTestNotNull(Bitvec*, u32);
3259 int sqlite3BitvecSet(Bitvec*, u32);
3260 void sqlite3BitvecClear(Bitvec*, u32, void*);
3261 void sqlite3BitvecDestroy(Bitvec*);
3262 u32 sqlite3BitvecSize(Bitvec*);
3263 #ifndef SQLITE_OMIT_BUILTIN_TEST
3264 int sqlite3BitvecBuiltinTest(int,int*);
3265 #endif
3266 
3267 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3268 void sqlite3RowSetClear(RowSet*);
3269 void sqlite3RowSetInsert(RowSet*, i64);
3270 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3271 int sqlite3RowSetNext(RowSet*, i64*);
3272 
3273 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
3274 
3275 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3276   int sqlite3ViewGetColumnNames(Parse*,Table*);
3277 #else
3278 # define sqlite3ViewGetColumnNames(A,B) 0
3279 #endif
3280 
3281 #if SQLITE_MAX_ATTACHED>30
3282   int sqlite3DbMaskAllZero(yDbMask);
3283 #endif
3284 void sqlite3DropTable(Parse*, SrcList*, int, int);
3285 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3286 void sqlite3DeleteTable(sqlite3*, Table*);
3287 #ifndef SQLITE_OMIT_AUTOINCREMENT
3288   void sqlite3AutoincrementBegin(Parse *pParse);
3289   void sqlite3AutoincrementEnd(Parse *pParse);
3290 #else
3291 # define sqlite3AutoincrementBegin(X)
3292 # define sqlite3AutoincrementEnd(X)
3293 #endif
3294 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3295 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3296 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3297 int sqlite3IdListIndex(IdList*,const char*);
3298 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3299 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3300 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3301                                       Token*, Select*, Expr*, IdList*);
3302 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3303 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3304 void sqlite3SrcListShiftJoinType(SrcList*);
3305 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3306 void sqlite3IdListDelete(sqlite3*, IdList*);
3307 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3308 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3309 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3310                           Expr*, int, int);
3311 void sqlite3DropIndex(Parse*, SrcList*, int);
3312 int sqlite3Select(Parse*, Select*, SelectDest*);
3313 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3314                          Expr*,ExprList*,u16,Expr*,Expr*);
3315 void sqlite3SelectDelete(sqlite3*, Select*);
3316 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3317 int sqlite3IsReadOnly(Parse*, Table*, int);
3318 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3319 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3320 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3321 #endif
3322 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3323 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3324 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3325 void sqlite3WhereEnd(WhereInfo*);
3326 u64 sqlite3WhereOutputRowCount(WhereInfo*);
3327 int sqlite3WhereIsDistinct(WhereInfo*);
3328 int sqlite3WhereIsOrdered(WhereInfo*);
3329 int sqlite3WhereIsSorted(WhereInfo*);
3330 int sqlite3WhereContinueLabel(WhereInfo*);
3331 int sqlite3WhereBreakLabel(WhereInfo*);
3332 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3333 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3334 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3335 void sqlite3ExprCodeMove(Parse*, int, int, int);
3336 void sqlite3ExprCacheStore(Parse*, int, int, int);
3337 void sqlite3ExprCachePush(Parse*);
3338 void sqlite3ExprCachePop(Parse*);
3339 void sqlite3ExprCacheRemove(Parse*, int, int);
3340 void sqlite3ExprCacheClear(Parse*);
3341 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3342 void sqlite3ExprCode(Parse*, Expr*, int);
3343 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3344 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
3345 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3346 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3347 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3348 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
3349 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3350 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3351 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3352 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3353 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int);
3354 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3355 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
3356 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
3357 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3358 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3359 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3360 void sqlite3Vacuum(Parse*);
3361 int sqlite3RunVacuum(char**, sqlite3*);
3362 char *sqlite3NameFromToken(sqlite3*, Token*);
3363 int sqlite3ExprCompare(Expr*, Expr*, int);
3364 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3365 int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
3366 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3367 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3368 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3369 Vdbe *sqlite3GetVdbe(Parse*);
3370 #ifndef SQLITE_OMIT_BUILTIN_TEST
3371 void sqlite3PrngSaveState(void);
3372 void sqlite3PrngRestoreState(void);
3373 #endif
3374 void sqlite3RollbackAll(sqlite3*,int);
3375 void sqlite3CodeVerifySchema(Parse*, int);
3376 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3377 void sqlite3BeginTransaction(Parse*, int);
3378 void sqlite3CommitTransaction(Parse*);
3379 void sqlite3RollbackTransaction(Parse*);
3380 void sqlite3Savepoint(Parse*, int, Token*);
3381 void sqlite3CloseSavepoints(sqlite3 *);
3382 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3383 int sqlite3ExprIsConstant(Expr*);
3384 int sqlite3ExprIsConstantNotJoin(Expr*);
3385 int sqlite3ExprIsConstantOrFunction(Expr*, u8);
3386 int sqlite3ExprIsTableConstant(Expr*,int);
3387 int sqlite3ExprIsInteger(Expr*, int*);
3388 int sqlite3ExprCanBeNull(const Expr*);
3389 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3390 int sqlite3IsRowid(const char*);
3391 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
3392 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
3393 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3394 void sqlite3ResolvePartIdxLabel(Parse*,int);
3395 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3396                                      u8,u8,int,int*);
3397 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3398 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
3399 void sqlite3BeginWriteOperation(Parse*, int, int);
3400 void sqlite3MultiWrite(Parse*);
3401 void sqlite3MayAbort(Parse*);
3402 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3403 void sqlite3UniqueConstraint(Parse*, int, Index*);
3404 void sqlite3RowidConstraint(Parse*, int, Table*);
3405 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3406 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3407 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3408 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3409 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3410 #if SELECTTRACE_ENABLED
3411 void sqlite3SelectSetName(Select*,const char*);
3412 #else
3413 # define sqlite3SelectSetName(A,B)
3414 #endif
3415 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
3416 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
3417 void sqlite3RegisterBuiltinFunctions(sqlite3*);
3418 void sqlite3RegisterDateTimeFunctions(void);
3419 void sqlite3RegisterGlobalFunctions(void);
3420 int sqlite3SafetyCheckOk(sqlite3*);
3421 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3422 void sqlite3ChangeCookie(Parse*, int);
3423 
3424 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3425 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3426 #endif
3427 
3428 #ifndef SQLITE_OMIT_TRIGGER
3429   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3430                            Expr*,int, int);
3431   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3432   void sqlite3DropTrigger(Parse*, SrcList*, int);
3433   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3434   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3435   Trigger *sqlite3TriggerList(Parse *, Table *);
3436   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3437                             int, int, int);
3438   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3439   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3440   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3441   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3442   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3443                                         Select*,u8);
3444   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3445   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3446   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3447   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3448   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3449 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3450 #else
3451 # define sqlite3TriggersExist(B,C,D,E,F) 0
3452 # define sqlite3DeleteTrigger(A,B)
3453 # define sqlite3DropTriggerPtr(A,B)
3454 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3455 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3456 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3457 # define sqlite3TriggerList(X, Y) 0
3458 # define sqlite3ParseToplevel(p) p
3459 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3460 #endif
3461 
3462 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3463 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3464 void sqlite3DeferForeignKey(Parse*, int);
3465 #ifndef SQLITE_OMIT_AUTHORIZATION
3466   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3467   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3468   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3469   void sqlite3AuthContextPop(AuthContext*);
3470   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3471 #else
3472 # define sqlite3AuthRead(a,b,c,d)
3473 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3474 # define sqlite3AuthContextPush(a,b,c)
3475 # define sqlite3AuthContextPop(a)  ((void)(a))
3476 #endif
3477 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3478 void sqlite3Detach(Parse*, Expr*);
3479 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3480 int sqlite3FixSrcList(DbFixer*, SrcList*);
3481 int sqlite3FixSelect(DbFixer*, Select*);
3482 int sqlite3FixExpr(DbFixer*, Expr*);
3483 int sqlite3FixExprList(DbFixer*, ExprList*);
3484 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3485 int sqlite3AtoF(const char *z, double*, int, u8);
3486 int sqlite3GetInt32(const char *, int*);
3487 int sqlite3Atoi(const char*);
3488 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3489 int sqlite3Utf8CharLen(const char *pData, int nByte);
3490 u32 sqlite3Utf8Read(const u8**);
3491 LogEst sqlite3LogEst(u64);
3492 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3493 #ifndef SQLITE_OMIT_VIRTUALTABLE
3494 LogEst sqlite3LogEstFromDouble(double);
3495 #endif
3496 u64 sqlite3LogEstToInt(LogEst);
3497 
3498 /*
3499 ** Routines to read and write variable-length integers.  These used to
3500 ** be defined locally, but now we use the varint routines in the util.c
3501 ** file.
3502 */
3503 int sqlite3PutVarint(unsigned char*, u64);
3504 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3505 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3506 int sqlite3VarintLen(u64 v);
3507 
3508 /*
3509 ** The common case is for a varint to be a single byte.  They following
3510 ** macros handle the common case without a procedure call, but then call
3511 ** the procedure for larger varints.
3512 */
3513 #define getVarint32(A,B)  \
3514   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3515 #define putVarint32(A,B)  \
3516   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3517   sqlite3PutVarint((A),(B)))
3518 #define getVarint    sqlite3GetVarint
3519 #define putVarint    sqlite3PutVarint
3520 
3521 
3522 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
3523 void sqlite3TableAffinity(Vdbe*, Table*, int);
3524 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3525 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3526 char sqlite3ExprAffinity(Expr *pExpr);
3527 int sqlite3Atoi64(const char*, i64*, int, u8);
3528 int sqlite3DecOrHexToI64(const char*, i64*);
3529 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
3530 void sqlite3Error(sqlite3*,int);
3531 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
3532 u8 sqlite3HexToInt(int h);
3533 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
3534 
3535 #if defined(SQLITE_NEED_ERR_NAME)
3536 const char *sqlite3ErrName(int);
3537 #endif
3538 
3539 const char *sqlite3ErrStr(int);
3540 int sqlite3ReadSchema(Parse *pParse);
3541 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
3542 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
3543 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
3544 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
3545 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
3546 Expr *sqlite3ExprSkipCollate(Expr*);
3547 int sqlite3CheckCollSeq(Parse *, CollSeq *);
3548 int sqlite3CheckObjectName(Parse *, const char *);
3549 void sqlite3VdbeSetChanges(sqlite3 *, int);
3550 int sqlite3AddInt64(i64*,i64);
3551 int sqlite3SubInt64(i64*,i64);
3552 int sqlite3MulInt64(i64*,i64);
3553 int sqlite3AbsInt32(int);
3554 #ifdef SQLITE_ENABLE_8_3_NAMES
3555 void sqlite3FileSuffix3(const char*, char*);
3556 #else
3557 # define sqlite3FileSuffix3(X,Y)
3558 #endif
3559 u8 sqlite3GetBoolean(const char *z,u8);
3560 
3561 const void *sqlite3ValueText(sqlite3_value*, u8);
3562 int sqlite3ValueBytes(sqlite3_value*, u8);
3563 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
3564                         void(*)(void*));
3565 void sqlite3ValueSetNull(sqlite3_value*);
3566 void sqlite3ValueFree(sqlite3_value*);
3567 sqlite3_value *sqlite3ValueNew(sqlite3 *);
3568 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
3569 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
3570 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
3571 #ifndef SQLITE_AMALGAMATION
3572 extern const unsigned char sqlite3OpcodeProperty[];
3573 extern const unsigned char sqlite3UpperToLower[];
3574 extern const unsigned char sqlite3CtypeMap[];
3575 extern const Token sqlite3IntTokens[];
3576 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
3577 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
3578 #ifndef SQLITE_OMIT_WSD
3579 extern int sqlite3PendingByte;
3580 #endif
3581 #endif
3582 void sqlite3RootPageMoved(sqlite3*, int, int, int);
3583 void sqlite3Reindex(Parse*, Token*, Token*);
3584 void sqlite3AlterFunctions(void);
3585 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
3586 int sqlite3GetToken(const unsigned char *, int *);
3587 void sqlite3NestedParse(Parse*, const char*, ...);
3588 void sqlite3ExpirePreparedStatements(sqlite3*);
3589 int sqlite3CodeSubselect(Parse *, Expr *, int, int);
3590 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
3591 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
3592 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
3593 int sqlite3ResolveExprNames(NameContext*, Expr*);
3594 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
3595 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
3596 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
3597 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
3598 void sqlite3AlterFinishAddColumn(Parse *, Token *);
3599 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
3600 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
3601 char sqlite3AffinityType(const char*, u8*);
3602 void sqlite3Analyze(Parse*, Token*, Token*);
3603 int sqlite3InvokeBusyHandler(BusyHandler*);
3604 int sqlite3FindDb(sqlite3*, Token*);
3605 int sqlite3FindDbName(sqlite3 *, const char *);
3606 int sqlite3AnalysisLoad(sqlite3*,int iDB);
3607 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
3608 void sqlite3DefaultRowEst(Index*);
3609 void sqlite3RegisterLikeFunctions(sqlite3*, int);
3610 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
3611 void sqlite3MinimumFileFormat(Parse*, int, int);
3612 void sqlite3SchemaClear(void *);
3613 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
3614 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
3615 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
3616 void sqlite3KeyInfoUnref(KeyInfo*);
3617 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
3618 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
3619 #ifdef SQLITE_DEBUG
3620 int sqlite3KeyInfoIsWriteable(KeyInfo*);
3621 #endif
3622 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
3623   void (*)(sqlite3_context*,int,sqlite3_value **),
3624   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
3625   FuncDestructor *pDestructor
3626 );
3627 int sqlite3ApiExit(sqlite3 *db, int);
3628 int sqlite3OpenTempDatabase(Parse *);
3629 
3630 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
3631 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
3632 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
3633 void sqlite3AppendChar(StrAccum*,int,char);
3634 char *sqlite3StrAccumFinish(StrAccum*);
3635 void sqlite3StrAccumReset(StrAccum*);
3636 void sqlite3SelectDestInit(SelectDest*,int,int);
3637 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
3638 
3639 void sqlite3BackupRestart(sqlite3_backup *);
3640 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
3641 
3642 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3643 void sqlite3AnalyzeFunctions(void);
3644 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
3645 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
3646 void sqlite3Stat4ProbeFree(UnpackedRecord*);
3647 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
3648 #endif
3649 
3650 /*
3651 ** The interface to the LEMON-generated parser
3652 */
3653 void *sqlite3ParserAlloc(void*(*)(u64));
3654 void sqlite3ParserFree(void*, void(*)(void*));
3655 void sqlite3Parser(void*, int, Token, Parse*);
3656 #ifdef YYTRACKMAXSTACKDEPTH
3657   int sqlite3ParserStackPeak(void*);
3658 #endif
3659 
3660 void sqlite3AutoLoadExtensions(sqlite3*);
3661 #ifndef SQLITE_OMIT_LOAD_EXTENSION
3662   void sqlite3CloseExtensions(sqlite3*);
3663 #else
3664 # define sqlite3CloseExtensions(X)
3665 #endif
3666 
3667 #ifndef SQLITE_OMIT_SHARED_CACHE
3668   void sqlite3TableLock(Parse *, int, int, u8, const char *);
3669 #else
3670   #define sqlite3TableLock(v,w,x,y,z)
3671 #endif
3672 
3673 #ifdef SQLITE_TEST
3674   int sqlite3Utf8To8(unsigned char*);
3675 #endif
3676 
3677 #ifdef SQLITE_OMIT_VIRTUALTABLE
3678 #  define sqlite3VtabClear(Y)
3679 #  define sqlite3VtabSync(X,Y) SQLITE_OK
3680 #  define sqlite3VtabRollback(X)
3681 #  define sqlite3VtabCommit(X)
3682 #  define sqlite3VtabInSync(db) 0
3683 #  define sqlite3VtabLock(X)
3684 #  define sqlite3VtabUnlock(X)
3685 #  define sqlite3VtabUnlockList(X)
3686 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
3687 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
3688 #else
3689    void sqlite3VtabClear(sqlite3 *db, Table*);
3690    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
3691    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
3692    int sqlite3VtabRollback(sqlite3 *db);
3693    int sqlite3VtabCommit(sqlite3 *db);
3694    void sqlite3VtabLock(VTable *);
3695    void sqlite3VtabUnlock(VTable *);
3696    void sqlite3VtabUnlockList(sqlite3*);
3697    int sqlite3VtabSavepoint(sqlite3 *, int, int);
3698    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
3699    VTable *sqlite3GetVTable(sqlite3*, Table*);
3700 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
3701 #endif
3702 void sqlite3VtabMakeWritable(Parse*,Table*);
3703 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
3704 void sqlite3VtabFinishParse(Parse*, Token*);
3705 void sqlite3VtabArgInit(Parse*);
3706 void sqlite3VtabArgExtend(Parse*, Token*);
3707 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
3708 int sqlite3VtabCallConnect(Parse*, Table*);
3709 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
3710 int sqlite3VtabBegin(sqlite3 *, VTable *);
3711 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
3712 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
3713 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
3714 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
3715 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
3716 void sqlite3ParserReset(Parse*);
3717 int sqlite3Reprepare(Vdbe*);
3718 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
3719 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
3720 int sqlite3TempInMemory(const sqlite3*);
3721 const char *sqlite3JournalModename(int);
3722 #ifndef SQLITE_OMIT_WAL
3723   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
3724   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
3725 #endif
3726 #ifndef SQLITE_OMIT_CTE
3727   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
3728   void sqlite3WithDelete(sqlite3*,With*);
3729   void sqlite3WithPush(Parse*, With*, u8);
3730 #else
3731 #define sqlite3WithPush(x,y,z)
3732 #define sqlite3WithDelete(x,y)
3733 #endif
3734 
3735 /* Declarations for functions in fkey.c. All of these are replaced by
3736 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
3737 ** key functionality is available. If OMIT_TRIGGER is defined but
3738 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
3739 ** this case foreign keys are parsed, but no other functionality is
3740 ** provided (enforcement of FK constraints requires the triggers sub-system).
3741 */
3742 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
3743   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
3744   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
3745   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
3746   int sqlite3FkRequired(Parse*, Table*, int*, int);
3747   u32 sqlite3FkOldmask(Parse*, Table*);
3748   FKey *sqlite3FkReferences(Table *);
3749 #else
3750   #define sqlite3FkActions(a,b,c,d,e,f)
3751   #define sqlite3FkCheck(a,b,c,d,e,f)
3752   #define sqlite3FkDropTable(a,b,c)
3753   #define sqlite3FkOldmask(a,b)         0
3754   #define sqlite3FkRequired(a,b,c,d)    0
3755 #endif
3756 #ifndef SQLITE_OMIT_FOREIGN_KEY
3757   void sqlite3FkDelete(sqlite3 *, Table*);
3758   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
3759 #else
3760   #define sqlite3FkDelete(a,b)
3761   #define sqlite3FkLocateIndex(a,b,c,d,e)
3762 #endif
3763 
3764 
3765 /*
3766 ** Available fault injectors.  Should be numbered beginning with 0.
3767 */
3768 #define SQLITE_FAULTINJECTOR_MALLOC     0
3769 #define SQLITE_FAULTINJECTOR_COUNT      1
3770 
3771 /*
3772 ** The interface to the code in fault.c used for identifying "benign"
3773 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
3774 ** is not defined.
3775 */
3776 #ifndef SQLITE_OMIT_BUILTIN_TEST
3777   void sqlite3BeginBenignMalloc(void);
3778   void sqlite3EndBenignMalloc(void);
3779 #else
3780   #define sqlite3BeginBenignMalloc()
3781   #define sqlite3EndBenignMalloc()
3782 #endif
3783 
3784 /*
3785 ** Allowed return values from sqlite3FindInIndex()
3786 */
3787 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
3788 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
3789 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
3790 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
3791 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
3792 /*
3793 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
3794 */
3795 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
3796 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
3797 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
3798 int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
3799 
3800 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3801   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
3802   int sqlite3JournalSize(sqlite3_vfs *);
3803   int sqlite3JournalCreate(sqlite3_file *);
3804   int sqlite3JournalExists(sqlite3_file *p);
3805 #else
3806   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
3807   #define sqlite3JournalExists(p) 1
3808 #endif
3809 
3810 void sqlite3MemJournalOpen(sqlite3_file *);
3811 int sqlite3MemJournalSize(void);
3812 int sqlite3IsMemJournal(sqlite3_file *);
3813 
3814 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
3815 #if SQLITE_MAX_EXPR_DEPTH>0
3816   int sqlite3SelectExprHeight(Select *);
3817   int sqlite3ExprCheckHeight(Parse*, int);
3818 #else
3819   #define sqlite3SelectExprHeight(x) 0
3820   #define sqlite3ExprCheckHeight(x,y)
3821 #endif
3822 
3823 u32 sqlite3Get4byte(const u8*);
3824 void sqlite3Put4byte(u8*, u32);
3825 
3826 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
3827   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
3828   void sqlite3ConnectionUnlocked(sqlite3 *db);
3829   void sqlite3ConnectionClosed(sqlite3 *db);
3830 #else
3831   #define sqlite3ConnectionBlocked(x,y)
3832   #define sqlite3ConnectionUnlocked(x)
3833   #define sqlite3ConnectionClosed(x)
3834 #endif
3835 
3836 #ifdef SQLITE_DEBUG
3837   void sqlite3ParserTrace(FILE*, char *);
3838 #endif
3839 
3840 /*
3841 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3842 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3843 ** print I/O tracing messages.
3844 */
3845 #ifdef SQLITE_ENABLE_IOTRACE
3846 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3847   void sqlite3VdbeIOTraceSql(Vdbe*);
3848 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
3849 #else
3850 # define IOTRACE(A)
3851 # define sqlite3VdbeIOTraceSql(X)
3852 #endif
3853 
3854 /*
3855 ** These routines are available for the mem2.c debugging memory allocator
3856 ** only.  They are used to verify that different "types" of memory
3857 ** allocations are properly tracked by the system.
3858 **
3859 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
3860 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
3861 ** a single bit set.
3862 **
3863 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
3864 ** argument match the type set by the previous sqlite3MemdebugSetType().
3865 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
3866 **
3867 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
3868 ** argument match the type set by the previous sqlite3MemdebugSetType().
3869 **
3870 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
3871 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
3872 ** it might have been allocated by lookaside, except the allocation was
3873 ** too large or lookaside was already full.  It is important to verify
3874 ** that allocations that might have been satisfied by lookaside are not
3875 ** passed back to non-lookaside free() routines.  Asserts such as the
3876 ** example above are placed on the non-lookaside free() routines to verify
3877 ** this constraint.
3878 **
3879 ** All of this is no-op for a production build.  It only comes into
3880 ** play when the SQLITE_MEMDEBUG compile-time option is used.
3881 */
3882 #ifdef SQLITE_MEMDEBUG
3883   void sqlite3MemdebugSetType(void*,u8);
3884   int sqlite3MemdebugHasType(void*,u8);
3885   int sqlite3MemdebugNoType(void*,u8);
3886 #else
3887 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
3888 # define sqlite3MemdebugHasType(X,Y)  1
3889 # define sqlite3MemdebugNoType(X,Y)   1
3890 #endif
3891 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
3892 #define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
3893 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
3894 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
3895 
3896 /*
3897 ** Threading interface
3898 */
3899 #if SQLITE_MAX_WORKER_THREADS>0
3900 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
3901 int sqlite3ThreadJoin(SQLiteThread*, void**);
3902 #endif
3903 
3904 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
3905 int sqlite3DbstatRegister(sqlite3*);
3906 #endif
3907 
3908 #endif /* _SQLITEINT_H_ */
3909