1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* What version of GCC is being used. 0 means GCC is not being used */ 64 #ifdef __GNUC__ 65 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 66 #else 67 # define GCC_VERSION 0 68 #endif 69 70 /* Needed for various definitions... */ 71 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 72 # define _GNU_SOURCE 73 #endif 74 75 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 76 # define _BSD_SOURCE 77 #endif 78 79 /* 80 ** For MinGW, check to see if we can include the header file containing its 81 ** version information, among other things. Normally, this internal MinGW 82 ** header file would [only] be included automatically by other MinGW header 83 ** files; however, the contained version information is now required by this 84 ** header file to work around binary compatibility issues (see below) and 85 ** this is the only known way to reliably obtain it. This entire #if block 86 ** would be completely unnecessary if there was any other way of detecting 87 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 88 ** some MinGW-specific macros). When compiling for MinGW, either the 89 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 90 ** defined; otherwise, detection of conditions specific to MinGW will be 91 ** disabled. 92 */ 93 #if defined(_HAVE_MINGW_H) 94 # include "mingw.h" 95 #elif defined(_HAVE__MINGW_H) 96 # include "_mingw.h" 97 #endif 98 99 /* 100 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 101 ** define is required to maintain binary compatibility with the MSVC runtime 102 ** library in use (e.g. for Windows XP). 103 */ 104 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 105 defined(_WIN32) && !defined(_WIN64) && \ 106 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 107 defined(__MSVCRT__) 108 # define _USE_32BIT_TIME_T 109 #endif 110 111 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 112 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 113 ** MinGW. 114 */ 115 #include "sqlite3.h" 116 117 /* 118 ** Include the configuration header output by 'configure' if we're using the 119 ** autoconf-based build 120 */ 121 #ifdef _HAVE_SQLITE_CONFIG_H 122 #include "config.h" 123 #endif 124 125 #include "sqliteLimit.h" 126 127 /* Disable nuisance warnings on Borland compilers */ 128 #if defined(__BORLANDC__) 129 #pragma warn -rch /* unreachable code */ 130 #pragma warn -ccc /* Condition is always true or false */ 131 #pragma warn -aus /* Assigned value is never used */ 132 #pragma warn -csu /* Comparing signed and unsigned */ 133 #pragma warn -spa /* Suspicious pointer arithmetic */ 134 #endif 135 136 /* 137 ** Include standard header files as necessary 138 */ 139 #ifdef HAVE_STDINT_H 140 #include <stdint.h> 141 #endif 142 #ifdef HAVE_INTTYPES_H 143 #include <inttypes.h> 144 #endif 145 146 /* 147 ** The following macros are used to cast pointers to integers and 148 ** integers to pointers. The way you do this varies from one compiler 149 ** to the next, so we have developed the following set of #if statements 150 ** to generate appropriate macros for a wide range of compilers. 151 ** 152 ** The correct "ANSI" way to do this is to use the intptr_t type. 153 ** Unfortunately, that typedef is not available on all compilers, or 154 ** if it is available, it requires an #include of specific headers 155 ** that vary from one machine to the next. 156 ** 157 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 158 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 159 ** So we have to define the macros in different ways depending on the 160 ** compiler. 161 */ 162 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 163 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 164 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 165 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 166 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 167 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 168 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 169 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 170 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 171 #else /* Generates a warning - but it always works */ 172 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 173 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 174 #endif 175 176 /* 177 ** A macro to hint to the compiler that a function should not be 178 ** inlined. 179 */ 180 #if defined(__GNUC__) 181 # define SQLITE_NOINLINE __attribute__((noinline)) 182 #elif defined(_MSC_VER) && _MSC_VER>=1310 183 # define SQLITE_NOINLINE __declspec(noinline) 184 #else 185 # define SQLITE_NOINLINE 186 #endif 187 188 /* 189 ** Make sure that the compiler intrinsics we desire are enabled when 190 ** compiling with an appropriate version of MSVC. 191 */ 192 #if defined(_MSC_VER) && _MSC_VER>=1300 193 # include <intrin.h> 194 # pragma intrinsic(_byteswap_ushort) 195 # pragma intrinsic(_byteswap_ulong) 196 #endif 197 198 /* 199 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 200 ** 0 means mutexes are permanently disable and the library is never 201 ** threadsafe. 1 means the library is serialized which is the highest 202 ** level of threadsafety. 2 means the library is multithreaded - multiple 203 ** threads can use SQLite as long as no two threads try to use the same 204 ** database connection at the same time. 205 ** 206 ** Older versions of SQLite used an optional THREADSAFE macro. 207 ** We support that for legacy. 208 */ 209 #if !defined(SQLITE_THREADSAFE) 210 # if defined(THREADSAFE) 211 # define SQLITE_THREADSAFE THREADSAFE 212 # else 213 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 214 # endif 215 #endif 216 217 /* 218 ** Powersafe overwrite is on by default. But can be turned off using 219 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 220 */ 221 #ifndef SQLITE_POWERSAFE_OVERWRITE 222 # define SQLITE_POWERSAFE_OVERWRITE 1 223 #endif 224 225 /* 226 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 227 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 228 ** which case memory allocation statistics are disabled by default. 229 */ 230 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 231 # define SQLITE_DEFAULT_MEMSTATUS 1 232 #endif 233 234 /* 235 ** Exactly one of the following macros must be defined in order to 236 ** specify which memory allocation subsystem to use. 237 ** 238 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 239 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 240 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 241 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 242 ** 243 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 244 ** assert() macro is enabled, each call into the Win32 native heap subsystem 245 ** will cause HeapValidate to be called. If heap validation should fail, an 246 ** assertion will be triggered. 247 ** 248 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 249 ** the default. 250 */ 251 #if defined(SQLITE_SYSTEM_MALLOC) \ 252 + defined(SQLITE_WIN32_MALLOC) \ 253 + defined(SQLITE_ZERO_MALLOC) \ 254 + defined(SQLITE_MEMDEBUG)>1 255 # error "Two or more of the following compile-time configuration options\ 256 are defined but at most one is allowed:\ 257 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 258 SQLITE_ZERO_MALLOC" 259 #endif 260 #if defined(SQLITE_SYSTEM_MALLOC) \ 261 + defined(SQLITE_WIN32_MALLOC) \ 262 + defined(SQLITE_ZERO_MALLOC) \ 263 + defined(SQLITE_MEMDEBUG)==0 264 # define SQLITE_SYSTEM_MALLOC 1 265 #endif 266 267 /* 268 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 269 ** sizes of memory allocations below this value where possible. 270 */ 271 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 272 # define SQLITE_MALLOC_SOFT_LIMIT 1024 273 #endif 274 275 /* 276 ** We need to define _XOPEN_SOURCE as follows in order to enable 277 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 278 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 279 ** it. 280 */ 281 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 282 # define _XOPEN_SOURCE 600 283 #endif 284 285 /* 286 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 287 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 288 ** make it true by defining or undefining NDEBUG. 289 ** 290 ** Setting NDEBUG makes the code smaller and faster by disabling the 291 ** assert() statements in the code. So we want the default action 292 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 293 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 294 ** feature. 295 */ 296 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 297 # define NDEBUG 1 298 #endif 299 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 300 # undef NDEBUG 301 #endif 302 303 /* 304 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 305 */ 306 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 307 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 308 #endif 309 310 /* 311 ** The testcase() macro is used to aid in coverage testing. When 312 ** doing coverage testing, the condition inside the argument to 313 ** testcase() must be evaluated both true and false in order to 314 ** get full branch coverage. The testcase() macro is inserted 315 ** to help ensure adequate test coverage in places where simple 316 ** condition/decision coverage is inadequate. For example, testcase() 317 ** can be used to make sure boundary values are tested. For 318 ** bitmask tests, testcase() can be used to make sure each bit 319 ** is significant and used at least once. On switch statements 320 ** where multiple cases go to the same block of code, testcase() 321 ** can insure that all cases are evaluated. 322 ** 323 */ 324 #ifdef SQLITE_COVERAGE_TEST 325 void sqlite3Coverage(int); 326 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 327 #else 328 # define testcase(X) 329 #endif 330 331 /* 332 ** The TESTONLY macro is used to enclose variable declarations or 333 ** other bits of code that are needed to support the arguments 334 ** within testcase() and assert() macros. 335 */ 336 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 337 # define TESTONLY(X) X 338 #else 339 # define TESTONLY(X) 340 #endif 341 342 /* 343 ** Sometimes we need a small amount of code such as a variable initialization 344 ** to setup for a later assert() statement. We do not want this code to 345 ** appear when assert() is disabled. The following macro is therefore 346 ** used to contain that setup code. The "VVA" acronym stands for 347 ** "Verification, Validation, and Accreditation". In other words, the 348 ** code within VVA_ONLY() will only run during verification processes. 349 */ 350 #ifndef NDEBUG 351 # define VVA_ONLY(X) X 352 #else 353 # define VVA_ONLY(X) 354 #endif 355 356 /* 357 ** The ALWAYS and NEVER macros surround boolean expressions which 358 ** are intended to always be true or false, respectively. Such 359 ** expressions could be omitted from the code completely. But they 360 ** are included in a few cases in order to enhance the resilience 361 ** of SQLite to unexpected behavior - to make the code "self-healing" 362 ** or "ductile" rather than being "brittle" and crashing at the first 363 ** hint of unplanned behavior. 364 ** 365 ** In other words, ALWAYS and NEVER are added for defensive code. 366 ** 367 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 368 ** be true and false so that the unreachable code they specify will 369 ** not be counted as untested code. 370 */ 371 #if defined(SQLITE_COVERAGE_TEST) 372 # define ALWAYS(X) (1) 373 # define NEVER(X) (0) 374 #elif !defined(NDEBUG) 375 # define ALWAYS(X) ((X)?1:(assert(0),0)) 376 # define NEVER(X) ((X)?(assert(0),1):0) 377 #else 378 # define ALWAYS(X) (X) 379 # define NEVER(X) (X) 380 #endif 381 382 /* 383 ** Declarations used for tracing the operating system interfaces. 384 */ 385 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 386 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 387 extern int sqlite3OSTrace; 388 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 389 # define SQLITE_HAVE_OS_TRACE 390 #else 391 # define OSTRACE(X) 392 # undef SQLITE_HAVE_OS_TRACE 393 #endif 394 395 /* 396 ** Is the sqlite3ErrName() function needed in the build? Currently, 397 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 398 ** OSTRACE is enabled), and by several "test*.c" files (which are 399 ** compiled using SQLITE_TEST). 400 */ 401 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 402 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 403 # define SQLITE_NEED_ERR_NAME 404 #else 405 # undef SQLITE_NEED_ERR_NAME 406 #endif 407 408 /* 409 ** Return true (non-zero) if the input is an integer that is too large 410 ** to fit in 32-bits. This macro is used inside of various testcase() 411 ** macros to verify that we have tested SQLite for large-file support. 412 */ 413 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 414 415 /* 416 ** The macro unlikely() is a hint that surrounds a boolean 417 ** expression that is usually false. Macro likely() surrounds 418 ** a boolean expression that is usually true. These hints could, 419 ** in theory, be used by the compiler to generate better code, but 420 ** currently they are just comments for human readers. 421 */ 422 #define likely(X) (X) 423 #define unlikely(X) (X) 424 425 #include "hash.h" 426 #include "parse.h" 427 #include <stdio.h> 428 #include <stdlib.h> 429 #include <string.h> 430 #include <assert.h> 431 #include <stddef.h> 432 433 /* 434 ** If compiling for a processor that lacks floating point support, 435 ** substitute integer for floating-point 436 */ 437 #ifdef SQLITE_OMIT_FLOATING_POINT 438 # define double sqlite_int64 439 # define float sqlite_int64 440 # define LONGDOUBLE_TYPE sqlite_int64 441 # ifndef SQLITE_BIG_DBL 442 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 443 # endif 444 # define SQLITE_OMIT_DATETIME_FUNCS 1 445 # define SQLITE_OMIT_TRACE 1 446 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 447 # undef SQLITE_HAVE_ISNAN 448 #endif 449 #ifndef SQLITE_BIG_DBL 450 # define SQLITE_BIG_DBL (1e99) 451 #endif 452 453 /* 454 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 455 ** afterward. Having this macro allows us to cause the C compiler 456 ** to omit code used by TEMP tables without messy #ifndef statements. 457 */ 458 #ifdef SQLITE_OMIT_TEMPDB 459 #define OMIT_TEMPDB 1 460 #else 461 #define OMIT_TEMPDB 0 462 #endif 463 464 /* 465 ** The "file format" number is an integer that is incremented whenever 466 ** the VDBE-level file format changes. The following macros define the 467 ** the default file format for new databases and the maximum file format 468 ** that the library can read. 469 */ 470 #define SQLITE_MAX_FILE_FORMAT 4 471 #ifndef SQLITE_DEFAULT_FILE_FORMAT 472 # define SQLITE_DEFAULT_FILE_FORMAT 4 473 #endif 474 475 /* 476 ** Determine whether triggers are recursive by default. This can be 477 ** changed at run-time using a pragma. 478 */ 479 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 480 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 481 #endif 482 483 /* 484 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 485 ** on the command-line 486 */ 487 #ifndef SQLITE_TEMP_STORE 488 # define SQLITE_TEMP_STORE 1 489 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 490 #endif 491 492 /* 493 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 494 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 495 ** to zero. 496 */ 497 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 498 # undef SQLITE_MAX_WORKER_THREADS 499 # define SQLITE_MAX_WORKER_THREADS 0 500 #endif 501 #ifndef SQLITE_MAX_WORKER_THREADS 502 # define SQLITE_MAX_WORKER_THREADS 8 503 #endif 504 #ifndef SQLITE_DEFAULT_WORKER_THREADS 505 # define SQLITE_DEFAULT_WORKER_THREADS 0 506 #endif 507 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 508 # undef SQLITE_MAX_WORKER_THREADS 509 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 510 #endif 511 512 /* 513 ** The default initial allocation for the pagecache when using separate 514 ** pagecaches for each database connection. A positive number is the 515 ** number of pages. A negative number N translations means that a buffer 516 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 517 */ 518 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 519 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 520 #endif 521 522 523 /* 524 ** GCC does not define the offsetof() macro so we'll have to do it 525 ** ourselves. 526 */ 527 #ifndef offsetof 528 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 529 #endif 530 531 /* 532 ** Macros to compute minimum and maximum of two numbers. 533 */ 534 #define MIN(A,B) ((A)<(B)?(A):(B)) 535 #define MAX(A,B) ((A)>(B)?(A):(B)) 536 537 /* 538 ** Swap two objects of type TYPE. 539 */ 540 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 541 542 /* 543 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 544 ** not, there are still machines out there that use EBCDIC.) 545 */ 546 #if 'A' == '\301' 547 # define SQLITE_EBCDIC 1 548 #else 549 # define SQLITE_ASCII 1 550 #endif 551 552 /* 553 ** Integers of known sizes. These typedefs might change for architectures 554 ** where the sizes very. Preprocessor macros are available so that the 555 ** types can be conveniently redefined at compile-type. Like this: 556 ** 557 ** cc '-DUINTPTR_TYPE=long long int' ... 558 */ 559 #ifndef UINT32_TYPE 560 # ifdef HAVE_UINT32_T 561 # define UINT32_TYPE uint32_t 562 # else 563 # define UINT32_TYPE unsigned int 564 # endif 565 #endif 566 #ifndef UINT16_TYPE 567 # ifdef HAVE_UINT16_T 568 # define UINT16_TYPE uint16_t 569 # else 570 # define UINT16_TYPE unsigned short int 571 # endif 572 #endif 573 #ifndef INT16_TYPE 574 # ifdef HAVE_INT16_T 575 # define INT16_TYPE int16_t 576 # else 577 # define INT16_TYPE short int 578 # endif 579 #endif 580 #ifndef UINT8_TYPE 581 # ifdef HAVE_UINT8_T 582 # define UINT8_TYPE uint8_t 583 # else 584 # define UINT8_TYPE unsigned char 585 # endif 586 #endif 587 #ifndef INT8_TYPE 588 # ifdef HAVE_INT8_T 589 # define INT8_TYPE int8_t 590 # else 591 # define INT8_TYPE signed char 592 # endif 593 #endif 594 #ifndef LONGDOUBLE_TYPE 595 # define LONGDOUBLE_TYPE long double 596 #endif 597 typedef sqlite_int64 i64; /* 8-byte signed integer */ 598 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 599 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 600 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 601 typedef INT16_TYPE i16; /* 2-byte signed integer */ 602 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 603 typedef INT8_TYPE i8; /* 1-byte signed integer */ 604 605 /* 606 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 607 ** that can be stored in a u32 without loss of data. The value 608 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 609 ** have to specify the value in the less intuitive manner shown: 610 */ 611 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 612 613 /* 614 ** The datatype used to store estimates of the number of rows in a 615 ** table or index. This is an unsigned integer type. For 99.9% of 616 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 617 ** can be used at compile-time if desired. 618 */ 619 #ifdef SQLITE_64BIT_STATS 620 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 621 #else 622 typedef u32 tRowcnt; /* 32-bit is the default */ 623 #endif 624 625 /* 626 ** Estimated quantities used for query planning are stored as 16-bit 627 ** logarithms. For quantity X, the value stored is 10*log2(X). This 628 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 629 ** But the allowed values are "grainy". Not every value is representable. 630 ** For example, quantities 16 and 17 are both represented by a LogEst 631 ** of 40. However, since LogEst quantities are suppose to be estimates, 632 ** not exact values, this imprecision is not a problem. 633 ** 634 ** "LogEst" is short for "Logarithmic Estimate". 635 ** 636 ** Examples: 637 ** 1 -> 0 20 -> 43 10000 -> 132 638 ** 2 -> 10 25 -> 46 25000 -> 146 639 ** 3 -> 16 100 -> 66 1000000 -> 199 640 ** 4 -> 20 1000 -> 99 1048576 -> 200 641 ** 10 -> 33 1024 -> 100 4294967296 -> 320 642 ** 643 ** The LogEst can be negative to indicate fractional values. 644 ** Examples: 645 ** 646 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 647 */ 648 typedef INT16_TYPE LogEst; 649 650 /* 651 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 652 */ 653 #ifndef SQLITE_PTRSIZE 654 # if defined(__SIZEOF_POINTER__) 655 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 656 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 657 defined(_M_ARM) || defined(__arm__) || defined(__x86) 658 # define SQLITE_PTRSIZE 4 659 # else 660 # define SQLITE_PTRSIZE 8 661 # endif 662 #endif 663 664 /* 665 ** Macros to determine whether the machine is big or little endian, 666 ** and whether or not that determination is run-time or compile-time. 667 ** 668 ** For best performance, an attempt is made to guess at the byte-order 669 ** using C-preprocessor macros. If that is unsuccessful, or if 670 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 671 ** at run-time. 672 */ 673 #ifdef SQLITE_AMALGAMATION 674 const int sqlite3one = 1; 675 #else 676 extern const int sqlite3one; 677 #endif 678 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 679 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 680 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 681 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 682 # define SQLITE_BYTEORDER 1234 683 # define SQLITE_BIGENDIAN 0 684 # define SQLITE_LITTLEENDIAN 1 685 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 686 #endif 687 #if (defined(sparc) || defined(__ppc__)) \ 688 && !defined(SQLITE_RUNTIME_BYTEORDER) 689 # define SQLITE_BYTEORDER 4321 690 # define SQLITE_BIGENDIAN 1 691 # define SQLITE_LITTLEENDIAN 0 692 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 693 #endif 694 #if !defined(SQLITE_BYTEORDER) 695 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 696 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 697 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 698 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 699 #endif 700 701 /* 702 ** Constants for the largest and smallest possible 64-bit signed integers. 703 ** These macros are designed to work correctly on both 32-bit and 64-bit 704 ** compilers. 705 */ 706 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 707 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 708 709 /* 710 ** Round up a number to the next larger multiple of 8. This is used 711 ** to force 8-byte alignment on 64-bit architectures. 712 */ 713 #define ROUND8(x) (((x)+7)&~7) 714 715 /* 716 ** Round down to the nearest multiple of 8 717 */ 718 #define ROUNDDOWN8(x) ((x)&~7) 719 720 /* 721 ** Assert that the pointer X is aligned to an 8-byte boundary. This 722 ** macro is used only within assert() to verify that the code gets 723 ** all alignment restrictions correct. 724 ** 725 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 726 ** underlying malloc() implementation might return us 4-byte aligned 727 ** pointers. In that case, only verify 4-byte alignment. 728 */ 729 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 730 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 731 #else 732 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 733 #endif 734 735 /* 736 ** Disable MMAP on platforms where it is known to not work 737 */ 738 #if defined(__OpenBSD__) || defined(__QNXNTO__) 739 # undef SQLITE_MAX_MMAP_SIZE 740 # define SQLITE_MAX_MMAP_SIZE 0 741 #endif 742 743 /* 744 ** Default maximum size of memory used by memory-mapped I/O in the VFS 745 */ 746 #ifdef __APPLE__ 747 # include <TargetConditionals.h> 748 # if TARGET_OS_IPHONE 749 # undef SQLITE_MAX_MMAP_SIZE 750 # define SQLITE_MAX_MMAP_SIZE 0 751 # endif 752 #endif 753 #ifndef SQLITE_MAX_MMAP_SIZE 754 # if defined(__linux__) \ 755 || defined(_WIN32) \ 756 || (defined(__APPLE__) && defined(__MACH__)) \ 757 || defined(__sun) 758 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 759 # else 760 # define SQLITE_MAX_MMAP_SIZE 0 761 # endif 762 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 763 #endif 764 765 /* 766 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 767 ** default MMAP_SIZE is specified at compile-time, make sure that it does 768 ** not exceed the maximum mmap size. 769 */ 770 #ifndef SQLITE_DEFAULT_MMAP_SIZE 771 # define SQLITE_DEFAULT_MMAP_SIZE 0 772 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 773 #endif 774 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 775 # undef SQLITE_DEFAULT_MMAP_SIZE 776 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 777 #endif 778 779 /* 780 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 781 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 782 ** define SQLITE_ENABLE_STAT3_OR_STAT4 783 */ 784 #ifdef SQLITE_ENABLE_STAT4 785 # undef SQLITE_ENABLE_STAT3 786 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 787 #elif SQLITE_ENABLE_STAT3 788 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 789 #elif SQLITE_ENABLE_STAT3_OR_STAT4 790 # undef SQLITE_ENABLE_STAT3_OR_STAT4 791 #endif 792 793 /* 794 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 795 ** the Select query generator tracing logic is turned on. 796 */ 797 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 798 # define SELECTTRACE_ENABLED 1 799 #else 800 # define SELECTTRACE_ENABLED 0 801 #endif 802 803 /* 804 ** An instance of the following structure is used to store the busy-handler 805 ** callback for a given sqlite handle. 806 ** 807 ** The sqlite.busyHandler member of the sqlite struct contains the busy 808 ** callback for the database handle. Each pager opened via the sqlite 809 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 810 ** callback is currently invoked only from within pager.c. 811 */ 812 typedef struct BusyHandler BusyHandler; 813 struct BusyHandler { 814 int (*xFunc)(void *,int); /* The busy callback */ 815 void *pArg; /* First arg to busy callback */ 816 int nBusy; /* Incremented with each busy call */ 817 }; 818 819 /* 820 ** Name of the master database table. The master database table 821 ** is a special table that holds the names and attributes of all 822 ** user tables and indices. 823 */ 824 #define MASTER_NAME "sqlite_master" 825 #define TEMP_MASTER_NAME "sqlite_temp_master" 826 827 /* 828 ** The root-page of the master database table. 829 */ 830 #define MASTER_ROOT 1 831 832 /* 833 ** The name of the schema table. 834 */ 835 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 836 837 /* 838 ** A convenience macro that returns the number of elements in 839 ** an array. 840 */ 841 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 842 843 /* 844 ** Determine if the argument is a power of two 845 */ 846 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 847 848 /* 849 ** The following value as a destructor means to use sqlite3DbFree(). 850 ** The sqlite3DbFree() routine requires two parameters instead of the 851 ** one parameter that destructors normally want. So we have to introduce 852 ** this magic value that the code knows to handle differently. Any 853 ** pointer will work here as long as it is distinct from SQLITE_STATIC 854 ** and SQLITE_TRANSIENT. 855 */ 856 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 857 858 /* 859 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 860 ** not support Writable Static Data (WSD) such as global and static variables. 861 ** All variables must either be on the stack or dynamically allocated from 862 ** the heap. When WSD is unsupported, the variable declarations scattered 863 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 864 ** macro is used for this purpose. And instead of referencing the variable 865 ** directly, we use its constant as a key to lookup the run-time allocated 866 ** buffer that holds real variable. The constant is also the initializer 867 ** for the run-time allocated buffer. 868 ** 869 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 870 ** macros become no-ops and have zero performance impact. 871 */ 872 #ifdef SQLITE_OMIT_WSD 873 #define SQLITE_WSD const 874 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 875 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 876 int sqlite3_wsd_init(int N, int J); 877 void *sqlite3_wsd_find(void *K, int L); 878 #else 879 #define SQLITE_WSD 880 #define GLOBAL(t,v) v 881 #define sqlite3GlobalConfig sqlite3Config 882 #endif 883 884 /* 885 ** The following macros are used to suppress compiler warnings and to 886 ** make it clear to human readers when a function parameter is deliberately 887 ** left unused within the body of a function. This usually happens when 888 ** a function is called via a function pointer. For example the 889 ** implementation of an SQL aggregate step callback may not use the 890 ** parameter indicating the number of arguments passed to the aggregate, 891 ** if it knows that this is enforced elsewhere. 892 ** 893 ** When a function parameter is not used at all within the body of a function, 894 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 895 ** However, these macros may also be used to suppress warnings related to 896 ** parameters that may or may not be used depending on compilation options. 897 ** For example those parameters only used in assert() statements. In these 898 ** cases the parameters are named as per the usual conventions. 899 */ 900 #define UNUSED_PARAMETER(x) (void)(x) 901 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 902 903 /* 904 ** Forward references to structures 905 */ 906 typedef struct AggInfo AggInfo; 907 typedef struct AuthContext AuthContext; 908 typedef struct AutoincInfo AutoincInfo; 909 typedef struct Bitvec Bitvec; 910 typedef struct CollSeq CollSeq; 911 typedef struct Column Column; 912 typedef struct Db Db; 913 typedef struct Schema Schema; 914 typedef struct Expr Expr; 915 typedef struct ExprList ExprList; 916 typedef struct ExprSpan ExprSpan; 917 typedef struct FKey FKey; 918 typedef struct FuncDestructor FuncDestructor; 919 typedef struct FuncDef FuncDef; 920 typedef struct FuncDefHash FuncDefHash; 921 typedef struct IdList IdList; 922 typedef struct Index Index; 923 typedef struct IndexSample IndexSample; 924 typedef struct KeyClass KeyClass; 925 typedef struct KeyInfo KeyInfo; 926 typedef struct Lookaside Lookaside; 927 typedef struct LookasideSlot LookasideSlot; 928 typedef struct Module Module; 929 typedef struct NameContext NameContext; 930 typedef struct Parse Parse; 931 typedef struct PrintfArguments PrintfArguments; 932 typedef struct RowSet RowSet; 933 typedef struct Savepoint Savepoint; 934 typedef struct Select Select; 935 typedef struct SQLiteThread SQLiteThread; 936 typedef struct SelectDest SelectDest; 937 typedef struct SrcList SrcList; 938 typedef struct StrAccum StrAccum; 939 typedef struct Table Table; 940 typedef struct TableLock TableLock; 941 typedef struct Token Token; 942 typedef struct TreeView TreeView; 943 typedef struct Trigger Trigger; 944 typedef struct TriggerPrg TriggerPrg; 945 typedef struct TriggerStep TriggerStep; 946 typedef struct UnpackedRecord UnpackedRecord; 947 typedef struct VTable VTable; 948 typedef struct VtabCtx VtabCtx; 949 typedef struct Walker Walker; 950 typedef struct WhereInfo WhereInfo; 951 typedef struct With With; 952 953 /* 954 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 955 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 956 ** pointer types (i.e. FuncDef) defined above. 957 */ 958 #include "btree.h" 959 #include "vdbe.h" 960 #include "pager.h" 961 #include "pcache.h" 962 963 #include "os.h" 964 #include "mutex.h" 965 966 967 /* 968 ** Each database file to be accessed by the system is an instance 969 ** of the following structure. There are normally two of these structures 970 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 971 ** aDb[1] is the database file used to hold temporary tables. Additional 972 ** databases may be attached. 973 */ 974 struct Db { 975 char *zName; /* Name of this database */ 976 Btree *pBt; /* The B*Tree structure for this database file */ 977 u8 safety_level; /* How aggressive at syncing data to disk */ 978 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 979 }; 980 981 /* 982 ** An instance of the following structure stores a database schema. 983 ** 984 ** Most Schema objects are associated with a Btree. The exception is 985 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 986 ** In shared cache mode, a single Schema object can be shared by multiple 987 ** Btrees that refer to the same underlying BtShared object. 988 ** 989 ** Schema objects are automatically deallocated when the last Btree that 990 ** references them is destroyed. The TEMP Schema is manually freed by 991 ** sqlite3_close(). 992 * 993 ** A thread must be holding a mutex on the corresponding Btree in order 994 ** to access Schema content. This implies that the thread must also be 995 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 996 ** For a TEMP Schema, only the connection mutex is required. 997 */ 998 struct Schema { 999 int schema_cookie; /* Database schema version number for this file */ 1000 int iGeneration; /* Generation counter. Incremented with each change */ 1001 Hash tblHash; /* All tables indexed by name */ 1002 Hash idxHash; /* All (named) indices indexed by name */ 1003 Hash trigHash; /* All triggers indexed by name */ 1004 Hash fkeyHash; /* All foreign keys by referenced table name */ 1005 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1006 u8 file_format; /* Schema format version for this file */ 1007 u8 enc; /* Text encoding used by this database */ 1008 u16 schemaFlags; /* Flags associated with this schema */ 1009 int cache_size; /* Number of pages to use in the cache */ 1010 }; 1011 1012 /* 1013 ** These macros can be used to test, set, or clear bits in the 1014 ** Db.pSchema->flags field. 1015 */ 1016 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1017 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1018 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1019 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1020 1021 /* 1022 ** Allowed values for the DB.pSchema->flags field. 1023 ** 1024 ** The DB_SchemaLoaded flag is set after the database schema has been 1025 ** read into internal hash tables. 1026 ** 1027 ** DB_UnresetViews means that one or more views have column names that 1028 ** have been filled out. If the schema changes, these column names might 1029 ** changes and so the view will need to be reset. 1030 */ 1031 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1032 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1033 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1034 1035 /* 1036 ** The number of different kinds of things that can be limited 1037 ** using the sqlite3_limit() interface. 1038 */ 1039 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1040 1041 /* 1042 ** Lookaside malloc is a set of fixed-size buffers that can be used 1043 ** to satisfy small transient memory allocation requests for objects 1044 ** associated with a particular database connection. The use of 1045 ** lookaside malloc provides a significant performance enhancement 1046 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1047 ** SQL statements. 1048 ** 1049 ** The Lookaside structure holds configuration information about the 1050 ** lookaside malloc subsystem. Each available memory allocation in 1051 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1052 ** objects. 1053 ** 1054 ** Lookaside allocations are only allowed for objects that are associated 1055 ** with a particular database connection. Hence, schema information cannot 1056 ** be stored in lookaside because in shared cache mode the schema information 1057 ** is shared by multiple database connections. Therefore, while parsing 1058 ** schema information, the Lookaside.bEnabled flag is cleared so that 1059 ** lookaside allocations are not used to construct the schema objects. 1060 */ 1061 struct Lookaside { 1062 u16 sz; /* Size of each buffer in bytes */ 1063 u8 bEnabled; /* False to disable new lookaside allocations */ 1064 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1065 int nOut; /* Number of buffers currently checked out */ 1066 int mxOut; /* Highwater mark for nOut */ 1067 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1068 LookasideSlot *pFree; /* List of available buffers */ 1069 void *pStart; /* First byte of available memory space */ 1070 void *pEnd; /* First byte past end of available space */ 1071 }; 1072 struct LookasideSlot { 1073 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1074 }; 1075 1076 /* 1077 ** A hash table for function definitions. 1078 ** 1079 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1080 ** Collisions are on the FuncDef.pHash chain. 1081 */ 1082 struct FuncDefHash { 1083 FuncDef *a[23]; /* Hash table for functions */ 1084 }; 1085 1086 #ifdef SQLITE_USER_AUTHENTICATION 1087 /* 1088 ** Information held in the "sqlite3" database connection object and used 1089 ** to manage user authentication. 1090 */ 1091 typedef struct sqlite3_userauth sqlite3_userauth; 1092 struct sqlite3_userauth { 1093 u8 authLevel; /* Current authentication level */ 1094 int nAuthPW; /* Size of the zAuthPW in bytes */ 1095 char *zAuthPW; /* Password used to authenticate */ 1096 char *zAuthUser; /* User name used to authenticate */ 1097 }; 1098 1099 /* Allowed values for sqlite3_userauth.authLevel */ 1100 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1101 #define UAUTH_Fail 1 /* User authentication failed */ 1102 #define UAUTH_User 2 /* Authenticated as a normal user */ 1103 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1104 1105 /* Functions used only by user authorization logic */ 1106 int sqlite3UserAuthTable(const char*); 1107 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1108 void sqlite3UserAuthInit(sqlite3*); 1109 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1110 1111 #endif /* SQLITE_USER_AUTHENTICATION */ 1112 1113 /* 1114 ** typedef for the authorization callback function. 1115 */ 1116 #ifdef SQLITE_USER_AUTHENTICATION 1117 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1118 const char*, const char*); 1119 #else 1120 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1121 const char*); 1122 #endif 1123 1124 1125 /* 1126 ** Each database connection is an instance of the following structure. 1127 */ 1128 struct sqlite3 { 1129 sqlite3_vfs *pVfs; /* OS Interface */ 1130 struct Vdbe *pVdbe; /* List of active virtual machines */ 1131 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1132 sqlite3_mutex *mutex; /* Connection mutex */ 1133 Db *aDb; /* All backends */ 1134 int nDb; /* Number of backends currently in use */ 1135 int flags; /* Miscellaneous flags. See below */ 1136 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1137 i64 szMmap; /* Default mmap_size setting */ 1138 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1139 int errCode; /* Most recent error code (SQLITE_*) */ 1140 int errMask; /* & result codes with this before returning */ 1141 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1142 u8 enc; /* Text encoding */ 1143 u8 autoCommit; /* The auto-commit flag. */ 1144 u8 temp_store; /* 1: file 2: memory 0: default */ 1145 u8 mallocFailed; /* True if we have seen a malloc failure */ 1146 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1147 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1148 u8 suppressErr; /* Do not issue error messages if true */ 1149 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1150 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1151 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1152 u32 magic; /* Magic number for detect library misuse */ 1153 int nChange; /* Value returned by sqlite3_changes() */ 1154 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1155 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1156 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1157 struct sqlite3InitInfo { /* Information used during initialization */ 1158 int newTnum; /* Rootpage of table being initialized */ 1159 u8 iDb; /* Which db file is being initialized */ 1160 u8 busy; /* TRUE if currently initializing */ 1161 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1162 u8 imposterTable; /* Building an imposter table */ 1163 } init; 1164 int nVdbeActive; /* Number of VDBEs currently running */ 1165 int nVdbeRead; /* Number of active VDBEs that read or write */ 1166 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1167 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1168 int nVDestroy; /* Number of active OP_VDestroy operations */ 1169 int nExtension; /* Number of loaded extensions */ 1170 void **aExtension; /* Array of shared library handles */ 1171 void (*xTrace)(void*,const char*); /* Trace function */ 1172 void *pTraceArg; /* Argument to the trace function */ 1173 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1174 void *pProfileArg; /* Argument to profile function */ 1175 void *pCommitArg; /* Argument to xCommitCallback() */ 1176 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1177 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1178 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1179 void *pUpdateArg; 1180 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1181 #ifndef SQLITE_OMIT_WAL 1182 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1183 void *pWalArg; 1184 #endif 1185 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1186 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1187 void *pCollNeededArg; 1188 sqlite3_value *pErr; /* Most recent error message */ 1189 union { 1190 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1191 double notUsed1; /* Spacer */ 1192 } u1; 1193 Lookaside lookaside; /* Lookaside malloc configuration */ 1194 #ifndef SQLITE_OMIT_AUTHORIZATION 1195 sqlite3_xauth xAuth; /* Access authorization function */ 1196 void *pAuthArg; /* 1st argument to the access auth function */ 1197 #endif 1198 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1199 int (*xProgress)(void *); /* The progress callback */ 1200 void *pProgressArg; /* Argument to the progress callback */ 1201 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1202 #endif 1203 #ifndef SQLITE_OMIT_VIRTUALTABLE 1204 int nVTrans; /* Allocated size of aVTrans */ 1205 Hash aModule; /* populated by sqlite3_create_module() */ 1206 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1207 VTable **aVTrans; /* Virtual tables with open transactions */ 1208 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1209 #endif 1210 FuncDefHash aFunc; /* Hash table of connection functions */ 1211 Hash aCollSeq; /* All collating sequences */ 1212 BusyHandler busyHandler; /* Busy callback */ 1213 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1214 Savepoint *pSavepoint; /* List of active savepoints */ 1215 int busyTimeout; /* Busy handler timeout, in msec */ 1216 int nSavepoint; /* Number of non-transaction savepoints */ 1217 int nStatement; /* Number of nested statement-transactions */ 1218 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1219 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1220 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1221 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1222 /* The following variables are all protected by the STATIC_MASTER 1223 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1224 ** 1225 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1226 ** unlock so that it can proceed. 1227 ** 1228 ** When X.pBlockingConnection==Y, that means that something that X tried 1229 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1230 ** held by Y. 1231 */ 1232 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1233 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1234 void *pUnlockArg; /* Argument to xUnlockNotify */ 1235 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1236 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1237 #endif 1238 #ifdef SQLITE_USER_AUTHENTICATION 1239 sqlite3_userauth auth; /* User authentication information */ 1240 #endif 1241 }; 1242 1243 /* 1244 ** A macro to discover the encoding of a database. 1245 */ 1246 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1247 #define ENC(db) ((db)->enc) 1248 1249 /* 1250 ** Possible values for the sqlite3.flags. 1251 */ 1252 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1253 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1254 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1255 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1256 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1257 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1258 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1259 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1260 /* DELETE, or UPDATE and return */ 1261 /* the count using a callback. */ 1262 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1263 /* result set is empty */ 1264 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1265 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1266 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1267 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1268 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1269 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1270 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1271 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1272 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1273 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1274 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1275 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1276 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1277 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1278 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1279 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1280 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1281 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1282 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1283 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1284 1285 1286 /* 1287 ** Bits of the sqlite3.dbOptFlags field that are used by the 1288 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1289 ** selectively disable various optimizations. 1290 */ 1291 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1292 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1293 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1294 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1295 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1296 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1297 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1298 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1299 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1300 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1301 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1302 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1303 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1304 1305 /* 1306 ** Macros for testing whether or not optimizations are enabled or disabled. 1307 */ 1308 #ifndef SQLITE_OMIT_BUILTIN_TEST 1309 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1310 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1311 #else 1312 #define OptimizationDisabled(db, mask) 0 1313 #define OptimizationEnabled(db, mask) 1 1314 #endif 1315 1316 /* 1317 ** Return true if it OK to factor constant expressions into the initialization 1318 ** code. The argument is a Parse object for the code generator. 1319 */ 1320 #define ConstFactorOk(P) ((P)->okConstFactor) 1321 1322 /* 1323 ** Possible values for the sqlite.magic field. 1324 ** The numbers are obtained at random and have no special meaning, other 1325 ** than being distinct from one another. 1326 */ 1327 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1328 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1329 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1330 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1331 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1332 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1333 1334 /* 1335 ** Each SQL function is defined by an instance of the following 1336 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1337 ** hash table. When multiple functions have the same name, the hash table 1338 ** points to a linked list of these structures. 1339 */ 1340 struct FuncDef { 1341 i16 nArg; /* Number of arguments. -1 means unlimited */ 1342 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1343 void *pUserData; /* User data parameter */ 1344 FuncDef *pNext; /* Next function with same name */ 1345 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1346 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1347 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1348 char *zName; /* SQL name of the function. */ 1349 FuncDef *pHash; /* Next with a different name but the same hash */ 1350 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1351 }; 1352 1353 /* 1354 ** This structure encapsulates a user-function destructor callback (as 1355 ** configured using create_function_v2()) and a reference counter. When 1356 ** create_function_v2() is called to create a function with a destructor, 1357 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1358 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1359 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1360 ** member of each of the new FuncDef objects is set to point to the allocated 1361 ** FuncDestructor. 1362 ** 1363 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1364 ** count on this object is decremented. When it reaches 0, the destructor 1365 ** is invoked and the FuncDestructor structure freed. 1366 */ 1367 struct FuncDestructor { 1368 int nRef; 1369 void (*xDestroy)(void *); 1370 void *pUserData; 1371 }; 1372 1373 /* 1374 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1375 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1376 ** are assert() statements in the code to verify this. 1377 */ 1378 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1379 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1380 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1381 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1382 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1383 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1384 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1385 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1386 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1387 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1388 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1389 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1390 1391 /* 1392 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1393 ** used to create the initializers for the FuncDef structures. 1394 ** 1395 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1396 ** Used to create a scalar function definition of a function zName 1397 ** implemented by C function xFunc that accepts nArg arguments. The 1398 ** value passed as iArg is cast to a (void*) and made available 1399 ** as the user-data (sqlite3_user_data()) for the function. If 1400 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1401 ** 1402 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1403 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1404 ** 1405 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1406 ** Used to create an aggregate function definition implemented by 1407 ** the C functions xStep and xFinal. The first four parameters 1408 ** are interpreted in the same way as the first 4 parameters to 1409 ** FUNCTION(). 1410 ** 1411 ** LIKEFUNC(zName, nArg, pArg, flags) 1412 ** Used to create a scalar function definition of a function zName 1413 ** that accepts nArg arguments and is implemented by a call to C 1414 ** function likeFunc. Argument pArg is cast to a (void *) and made 1415 ** available as the function user-data (sqlite3_user_data()). The 1416 ** FuncDef.flags variable is set to the value passed as the flags 1417 ** parameter. 1418 */ 1419 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1420 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1421 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1422 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1423 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1424 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1425 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1426 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1427 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1428 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1429 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1430 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1431 #define LIKEFUNC(zName, nArg, arg, flags) \ 1432 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1433 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1434 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1435 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1436 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1437 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1438 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1439 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1440 1441 /* 1442 ** All current savepoints are stored in a linked list starting at 1443 ** sqlite3.pSavepoint. The first element in the list is the most recently 1444 ** opened savepoint. Savepoints are added to the list by the vdbe 1445 ** OP_Savepoint instruction. 1446 */ 1447 struct Savepoint { 1448 char *zName; /* Savepoint name (nul-terminated) */ 1449 i64 nDeferredCons; /* Number of deferred fk violations */ 1450 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1451 Savepoint *pNext; /* Parent savepoint (if any) */ 1452 }; 1453 1454 /* 1455 ** The following are used as the second parameter to sqlite3Savepoint(), 1456 ** and as the P1 argument to the OP_Savepoint instruction. 1457 */ 1458 #define SAVEPOINT_BEGIN 0 1459 #define SAVEPOINT_RELEASE 1 1460 #define SAVEPOINT_ROLLBACK 2 1461 1462 1463 /* 1464 ** Each SQLite module (virtual table definition) is defined by an 1465 ** instance of the following structure, stored in the sqlite3.aModule 1466 ** hash table. 1467 */ 1468 struct Module { 1469 const sqlite3_module *pModule; /* Callback pointers */ 1470 const char *zName; /* Name passed to create_module() */ 1471 void *pAux; /* pAux passed to create_module() */ 1472 void (*xDestroy)(void *); /* Module destructor function */ 1473 }; 1474 1475 /* 1476 ** information about each column of an SQL table is held in an instance 1477 ** of this structure. 1478 */ 1479 struct Column { 1480 char *zName; /* Name of this column */ 1481 Expr *pDflt; /* Default value of this column */ 1482 char *zDflt; /* Original text of the default value */ 1483 char *zType; /* Data type for this column */ 1484 char *zColl; /* Collating sequence. If NULL, use the default */ 1485 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1486 char affinity; /* One of the SQLITE_AFF_... values */ 1487 u8 szEst; /* Estimated size of this column. INT==1 */ 1488 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1489 }; 1490 1491 /* Allowed values for Column.colFlags: 1492 */ 1493 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1494 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1495 1496 /* 1497 ** A "Collating Sequence" is defined by an instance of the following 1498 ** structure. Conceptually, a collating sequence consists of a name and 1499 ** a comparison routine that defines the order of that sequence. 1500 ** 1501 ** If CollSeq.xCmp is NULL, it means that the 1502 ** collating sequence is undefined. Indices built on an undefined 1503 ** collating sequence may not be read or written. 1504 */ 1505 struct CollSeq { 1506 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1507 u8 enc; /* Text encoding handled by xCmp() */ 1508 void *pUser; /* First argument to xCmp() */ 1509 int (*xCmp)(void*,int, const void*, int, const void*); 1510 void (*xDel)(void*); /* Destructor for pUser */ 1511 }; 1512 1513 /* 1514 ** A sort order can be either ASC or DESC. 1515 */ 1516 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1517 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1518 1519 /* 1520 ** Column affinity types. 1521 ** 1522 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1523 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1524 ** the speed a little by numbering the values consecutively. 1525 ** 1526 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1527 ** when multiple affinity types are concatenated into a string and 1528 ** used as the P4 operand, they will be more readable. 1529 ** 1530 ** Note also that the numeric types are grouped together so that testing 1531 ** for a numeric type is a single comparison. And the BLOB type is first. 1532 */ 1533 #define SQLITE_AFF_BLOB 'A' 1534 #define SQLITE_AFF_TEXT 'B' 1535 #define SQLITE_AFF_NUMERIC 'C' 1536 #define SQLITE_AFF_INTEGER 'D' 1537 #define SQLITE_AFF_REAL 'E' 1538 1539 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1540 1541 /* 1542 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1543 ** affinity value. 1544 */ 1545 #define SQLITE_AFF_MASK 0x47 1546 1547 /* 1548 ** Additional bit values that can be ORed with an affinity without 1549 ** changing the affinity. 1550 ** 1551 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1552 ** It causes an assert() to fire if either operand to a comparison 1553 ** operator is NULL. It is added to certain comparison operators to 1554 ** prove that the operands are always NOT NULL. 1555 */ 1556 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1557 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1558 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1559 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1560 1561 /* 1562 ** An object of this type is created for each virtual table present in 1563 ** the database schema. 1564 ** 1565 ** If the database schema is shared, then there is one instance of this 1566 ** structure for each database connection (sqlite3*) that uses the shared 1567 ** schema. This is because each database connection requires its own unique 1568 ** instance of the sqlite3_vtab* handle used to access the virtual table 1569 ** implementation. sqlite3_vtab* handles can not be shared between 1570 ** database connections, even when the rest of the in-memory database 1571 ** schema is shared, as the implementation often stores the database 1572 ** connection handle passed to it via the xConnect() or xCreate() method 1573 ** during initialization internally. This database connection handle may 1574 ** then be used by the virtual table implementation to access real tables 1575 ** within the database. So that they appear as part of the callers 1576 ** transaction, these accesses need to be made via the same database 1577 ** connection as that used to execute SQL operations on the virtual table. 1578 ** 1579 ** All VTable objects that correspond to a single table in a shared 1580 ** database schema are initially stored in a linked-list pointed to by 1581 ** the Table.pVTable member variable of the corresponding Table object. 1582 ** When an sqlite3_prepare() operation is required to access the virtual 1583 ** table, it searches the list for the VTable that corresponds to the 1584 ** database connection doing the preparing so as to use the correct 1585 ** sqlite3_vtab* handle in the compiled query. 1586 ** 1587 ** When an in-memory Table object is deleted (for example when the 1588 ** schema is being reloaded for some reason), the VTable objects are not 1589 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1590 ** immediately. Instead, they are moved from the Table.pVTable list to 1591 ** another linked list headed by the sqlite3.pDisconnect member of the 1592 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1593 ** next time a statement is prepared using said sqlite3*. This is done 1594 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1595 ** Refer to comments above function sqlite3VtabUnlockList() for an 1596 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1597 ** list without holding the corresponding sqlite3.mutex mutex. 1598 ** 1599 ** The memory for objects of this type is always allocated by 1600 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1601 ** the first argument. 1602 */ 1603 struct VTable { 1604 sqlite3 *db; /* Database connection associated with this table */ 1605 Module *pMod; /* Pointer to module implementation */ 1606 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1607 int nRef; /* Number of pointers to this structure */ 1608 u8 bConstraint; /* True if constraints are supported */ 1609 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1610 VTable *pNext; /* Next in linked list (see above) */ 1611 }; 1612 1613 /* 1614 ** The schema for each SQL table and view is represented in memory 1615 ** by an instance of the following structure. 1616 */ 1617 struct Table { 1618 char *zName; /* Name of the table or view */ 1619 Column *aCol; /* Information about each column */ 1620 Index *pIndex; /* List of SQL indexes on this table. */ 1621 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1622 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1623 char *zColAff; /* String defining the affinity of each column */ 1624 #ifndef SQLITE_OMIT_CHECK 1625 ExprList *pCheck; /* All CHECK constraints */ 1626 #endif 1627 int tnum; /* Root BTree page for this table */ 1628 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1629 i16 nCol; /* Number of columns in this table */ 1630 u16 nRef; /* Number of pointers to this Table */ 1631 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1632 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1633 #ifdef SQLITE_ENABLE_COSTMULT 1634 LogEst costMult; /* Cost multiplier for using this table */ 1635 #endif 1636 u8 tabFlags; /* Mask of TF_* values */ 1637 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1638 #ifndef SQLITE_OMIT_ALTERTABLE 1639 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1640 #endif 1641 #ifndef SQLITE_OMIT_VIRTUALTABLE 1642 int nModuleArg; /* Number of arguments to the module */ 1643 char **azModuleArg; /* Text of all module args. [0] is module name */ 1644 VTable *pVTable; /* List of VTable objects. */ 1645 #endif 1646 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1647 Schema *pSchema; /* Schema that contains this table */ 1648 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1649 }; 1650 1651 /* 1652 ** Allowed values for Table.tabFlags. 1653 ** 1654 ** TF_OOOHidden applies to virtual tables that have hidden columns that are 1655 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1656 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1657 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1658 ** special handling during INSERT processing. 1659 */ 1660 #define TF_Readonly 0x01 /* Read-only system table */ 1661 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1662 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1663 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1664 #define TF_Virtual 0x10 /* Is a virtual table */ 1665 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1666 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1667 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1668 1669 1670 /* 1671 ** Test to see whether or not a table is a virtual table. This is 1672 ** done as a macro so that it will be optimized out when virtual 1673 ** table support is omitted from the build. 1674 */ 1675 #ifndef SQLITE_OMIT_VIRTUALTABLE 1676 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1677 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1678 #else 1679 # define IsVirtual(X) 0 1680 # define IsHiddenColumn(X) 0 1681 #endif 1682 1683 /* Does the table have a rowid */ 1684 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1685 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1686 1687 /* 1688 ** Each foreign key constraint is an instance of the following structure. 1689 ** 1690 ** A foreign key is associated with two tables. The "from" table is 1691 ** the table that contains the REFERENCES clause that creates the foreign 1692 ** key. The "to" table is the table that is named in the REFERENCES clause. 1693 ** Consider this example: 1694 ** 1695 ** CREATE TABLE ex1( 1696 ** a INTEGER PRIMARY KEY, 1697 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1698 ** ); 1699 ** 1700 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1701 ** Equivalent names: 1702 ** 1703 ** from-table == child-table 1704 ** to-table == parent-table 1705 ** 1706 ** Each REFERENCES clause generates an instance of the following structure 1707 ** which is attached to the from-table. The to-table need not exist when 1708 ** the from-table is created. The existence of the to-table is not checked. 1709 ** 1710 ** The list of all parents for child Table X is held at X.pFKey. 1711 ** 1712 ** A list of all children for a table named Z (which might not even exist) 1713 ** is held in Schema.fkeyHash with a hash key of Z. 1714 */ 1715 struct FKey { 1716 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1717 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1718 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1719 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1720 FKey *pPrevTo; /* Previous with the same zTo */ 1721 int nCol; /* Number of columns in this key */ 1722 /* EV: R-30323-21917 */ 1723 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1724 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1725 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1726 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1727 int iFrom; /* Index of column in pFrom */ 1728 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1729 } aCol[1]; /* One entry for each of nCol columns */ 1730 }; 1731 1732 /* 1733 ** SQLite supports many different ways to resolve a constraint 1734 ** error. ROLLBACK processing means that a constraint violation 1735 ** causes the operation in process to fail and for the current transaction 1736 ** to be rolled back. ABORT processing means the operation in process 1737 ** fails and any prior changes from that one operation are backed out, 1738 ** but the transaction is not rolled back. FAIL processing means that 1739 ** the operation in progress stops and returns an error code. But prior 1740 ** changes due to the same operation are not backed out and no rollback 1741 ** occurs. IGNORE means that the particular row that caused the constraint 1742 ** error is not inserted or updated. Processing continues and no error 1743 ** is returned. REPLACE means that preexisting database rows that caused 1744 ** a UNIQUE constraint violation are removed so that the new insert or 1745 ** update can proceed. Processing continues and no error is reported. 1746 ** 1747 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1748 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1749 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1750 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1751 ** referenced table row is propagated into the row that holds the 1752 ** foreign key. 1753 ** 1754 ** The following symbolic values are used to record which type 1755 ** of action to take. 1756 */ 1757 #define OE_None 0 /* There is no constraint to check */ 1758 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1759 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1760 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1761 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1762 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1763 1764 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1765 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1766 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1767 #define OE_Cascade 9 /* Cascade the changes */ 1768 1769 #define OE_Default 10 /* Do whatever the default action is */ 1770 1771 1772 /* 1773 ** An instance of the following structure is passed as the first 1774 ** argument to sqlite3VdbeKeyCompare and is used to control the 1775 ** comparison of the two index keys. 1776 ** 1777 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1778 ** are nField slots for the columns of an index then one extra slot 1779 ** for the rowid at the end. 1780 */ 1781 struct KeyInfo { 1782 u32 nRef; /* Number of references to this KeyInfo object */ 1783 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1784 u16 nField; /* Number of key columns in the index */ 1785 u16 nXField; /* Number of columns beyond the key columns */ 1786 sqlite3 *db; /* The database connection */ 1787 u8 *aSortOrder; /* Sort order for each column. */ 1788 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1789 }; 1790 1791 /* 1792 ** An instance of the following structure holds information about a 1793 ** single index record that has already been parsed out into individual 1794 ** values. 1795 ** 1796 ** A record is an object that contains one or more fields of data. 1797 ** Records are used to store the content of a table row and to store 1798 ** the key of an index. A blob encoding of a record is created by 1799 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1800 ** OP_Column opcode. 1801 ** 1802 ** This structure holds a record that has already been disassembled 1803 ** into its constituent fields. 1804 ** 1805 ** The r1 and r2 member variables are only used by the optimized comparison 1806 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1807 */ 1808 struct UnpackedRecord { 1809 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1810 u16 nField; /* Number of entries in apMem[] */ 1811 i8 default_rc; /* Comparison result if keys are equal */ 1812 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1813 Mem *aMem; /* Values */ 1814 int r1; /* Value to return if (lhs > rhs) */ 1815 int r2; /* Value to return if (rhs < lhs) */ 1816 }; 1817 1818 1819 /* 1820 ** Each SQL index is represented in memory by an 1821 ** instance of the following structure. 1822 ** 1823 ** The columns of the table that are to be indexed are described 1824 ** by the aiColumn[] field of this structure. For example, suppose 1825 ** we have the following table and index: 1826 ** 1827 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1828 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1829 ** 1830 ** In the Table structure describing Ex1, nCol==3 because there are 1831 ** three columns in the table. In the Index structure describing 1832 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1833 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1834 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1835 ** The second column to be indexed (c1) has an index of 0 in 1836 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1837 ** 1838 ** The Index.onError field determines whether or not the indexed columns 1839 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1840 ** it means this is not a unique index. Otherwise it is a unique index 1841 ** and the value of Index.onError indicate the which conflict resolution 1842 ** algorithm to employ whenever an attempt is made to insert a non-unique 1843 ** element. 1844 ** 1845 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 1846 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 1847 ** table as part of parsing an existing database schema), transient instances 1848 ** of this structure may be created. In this case the Index.tnum variable is 1849 ** used to store the address of a VDBE instruction, not a database page 1850 ** number (it cannot - the database page is not allocated until the VDBE 1851 ** program is executed). See convertToWithoutRowidTable() for details. 1852 */ 1853 struct Index { 1854 char *zName; /* Name of this index */ 1855 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1856 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1857 Table *pTable; /* The SQL table being indexed */ 1858 char *zColAff; /* String defining the affinity of each column */ 1859 Index *pNext; /* The next index associated with the same table */ 1860 Schema *pSchema; /* Schema containing this index */ 1861 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1862 char **azColl; /* Array of collation sequence names for index */ 1863 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1864 int tnum; /* DB Page containing root of this index */ 1865 LogEst szIdxRow; /* Estimated average row size in bytes */ 1866 u16 nKeyCol; /* Number of columns forming the key */ 1867 u16 nColumn; /* Number of columns stored in the index */ 1868 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1869 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1870 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1871 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1872 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1873 unsigned isCovering:1; /* True if this is a covering index */ 1874 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1875 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1876 int nSample; /* Number of elements in aSample[] */ 1877 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1878 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1879 IndexSample *aSample; /* Samples of the left-most key */ 1880 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1881 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1882 #endif 1883 }; 1884 1885 /* 1886 ** Allowed values for Index.idxType 1887 */ 1888 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1889 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1890 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1891 1892 /* Return true if index X is a PRIMARY KEY index */ 1893 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1894 1895 /* Return true if index X is a UNIQUE index */ 1896 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1897 1898 /* 1899 ** Each sample stored in the sqlite_stat3 table is represented in memory 1900 ** using a structure of this type. See documentation at the top of the 1901 ** analyze.c source file for additional information. 1902 */ 1903 struct IndexSample { 1904 void *p; /* Pointer to sampled record */ 1905 int n; /* Size of record in bytes */ 1906 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1907 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1908 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1909 }; 1910 1911 /* 1912 ** Each token coming out of the lexer is an instance of 1913 ** this structure. Tokens are also used as part of an expression. 1914 ** 1915 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1916 ** may contain random values. Do not make any assumptions about Token.dyn 1917 ** and Token.n when Token.z==0. 1918 */ 1919 struct Token { 1920 const char *z; /* Text of the token. Not NULL-terminated! */ 1921 unsigned int n; /* Number of characters in this token */ 1922 }; 1923 1924 /* 1925 ** An instance of this structure contains information needed to generate 1926 ** code for a SELECT that contains aggregate functions. 1927 ** 1928 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1929 ** pointer to this structure. The Expr.iColumn field is the index in 1930 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1931 ** code for that node. 1932 ** 1933 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1934 ** original Select structure that describes the SELECT statement. These 1935 ** fields do not need to be freed when deallocating the AggInfo structure. 1936 */ 1937 struct AggInfo { 1938 u8 directMode; /* Direct rendering mode means take data directly 1939 ** from source tables rather than from accumulators */ 1940 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1941 ** than the source table */ 1942 int sortingIdx; /* Cursor number of the sorting index */ 1943 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1944 int nSortingColumn; /* Number of columns in the sorting index */ 1945 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1946 ExprList *pGroupBy; /* The group by clause */ 1947 struct AggInfo_col { /* For each column used in source tables */ 1948 Table *pTab; /* Source table */ 1949 int iTable; /* Cursor number of the source table */ 1950 int iColumn; /* Column number within the source table */ 1951 int iSorterColumn; /* Column number in the sorting index */ 1952 int iMem; /* Memory location that acts as accumulator */ 1953 Expr *pExpr; /* The original expression */ 1954 } *aCol; 1955 int nColumn; /* Number of used entries in aCol[] */ 1956 int nAccumulator; /* Number of columns that show through to the output. 1957 ** Additional columns are used only as parameters to 1958 ** aggregate functions */ 1959 struct AggInfo_func { /* For each aggregate function */ 1960 Expr *pExpr; /* Expression encoding the function */ 1961 FuncDef *pFunc; /* The aggregate function implementation */ 1962 int iMem; /* Memory location that acts as accumulator */ 1963 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1964 } *aFunc; 1965 int nFunc; /* Number of entries in aFunc[] */ 1966 }; 1967 1968 /* 1969 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1970 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1971 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1972 ** it uses less memory in the Expr object, which is a big memory user 1973 ** in systems with lots of prepared statements. And few applications 1974 ** need more than about 10 or 20 variables. But some extreme users want 1975 ** to have prepared statements with over 32767 variables, and for them 1976 ** the option is available (at compile-time). 1977 */ 1978 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1979 typedef i16 ynVar; 1980 #else 1981 typedef int ynVar; 1982 #endif 1983 1984 /* 1985 ** Each node of an expression in the parse tree is an instance 1986 ** of this structure. 1987 ** 1988 ** Expr.op is the opcode. The integer parser token codes are reused 1989 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1990 ** code representing the ">=" operator. This same integer code is reused 1991 ** to represent the greater-than-or-equal-to operator in the expression 1992 ** tree. 1993 ** 1994 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1995 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1996 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1997 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1998 ** then Expr.token contains the name of the function. 1999 ** 2000 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2001 ** binary operator. Either or both may be NULL. 2002 ** 2003 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2004 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2005 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2006 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2007 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2008 ** valid. 2009 ** 2010 ** An expression of the form ID or ID.ID refers to a column in a table. 2011 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2012 ** the integer cursor number of a VDBE cursor pointing to that table and 2013 ** Expr.iColumn is the column number for the specific column. If the 2014 ** expression is used as a result in an aggregate SELECT, then the 2015 ** value is also stored in the Expr.iAgg column in the aggregate so that 2016 ** it can be accessed after all aggregates are computed. 2017 ** 2018 ** If the expression is an unbound variable marker (a question mark 2019 ** character '?' in the original SQL) then the Expr.iTable holds the index 2020 ** number for that variable. 2021 ** 2022 ** If the expression is a subquery then Expr.iColumn holds an integer 2023 ** register number containing the result of the subquery. If the 2024 ** subquery gives a constant result, then iTable is -1. If the subquery 2025 ** gives a different answer at different times during statement processing 2026 ** then iTable is the address of a subroutine that computes the subquery. 2027 ** 2028 ** If the Expr is of type OP_Column, and the table it is selecting from 2029 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2030 ** corresponding table definition. 2031 ** 2032 ** ALLOCATION NOTES: 2033 ** 2034 ** Expr objects can use a lot of memory space in database schema. To 2035 ** help reduce memory requirements, sometimes an Expr object will be 2036 ** truncated. And to reduce the number of memory allocations, sometimes 2037 ** two or more Expr objects will be stored in a single memory allocation, 2038 ** together with Expr.zToken strings. 2039 ** 2040 ** If the EP_Reduced and EP_TokenOnly flags are set when 2041 ** an Expr object is truncated. When EP_Reduced is set, then all 2042 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2043 ** are contained within the same memory allocation. Note, however, that 2044 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2045 ** allocated, regardless of whether or not EP_Reduced is set. 2046 */ 2047 struct Expr { 2048 u8 op; /* Operation performed by this node */ 2049 char affinity; /* The affinity of the column or 0 if not a column */ 2050 u32 flags; /* Various flags. EP_* See below */ 2051 union { 2052 char *zToken; /* Token value. Zero terminated and dequoted */ 2053 int iValue; /* Non-negative integer value if EP_IntValue */ 2054 } u; 2055 2056 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2057 ** space is allocated for the fields below this point. An attempt to 2058 ** access them will result in a segfault or malfunction. 2059 *********************************************************************/ 2060 2061 Expr *pLeft; /* Left subnode */ 2062 Expr *pRight; /* Right subnode */ 2063 union { 2064 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2065 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2066 } x; 2067 2068 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2069 ** space is allocated for the fields below this point. An attempt to 2070 ** access them will result in a segfault or malfunction. 2071 *********************************************************************/ 2072 2073 #if SQLITE_MAX_EXPR_DEPTH>0 2074 int nHeight; /* Height of the tree headed by this node */ 2075 #endif 2076 int iTable; /* TK_COLUMN: cursor number of table holding column 2077 ** TK_REGISTER: register number 2078 ** TK_TRIGGER: 1 -> new, 0 -> old 2079 ** EP_Unlikely: 134217728 times likelihood */ 2080 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2081 ** TK_VARIABLE: variable number (always >= 1). */ 2082 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2083 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2084 u8 op2; /* TK_REGISTER: original value of Expr.op 2085 ** TK_COLUMN: the value of p5 for OP_Column 2086 ** TK_AGG_FUNCTION: nesting depth */ 2087 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2088 Table *pTab; /* Table for TK_COLUMN expressions. */ 2089 }; 2090 2091 /* 2092 ** The following are the meanings of bits in the Expr.flags field. 2093 */ 2094 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2095 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2096 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2097 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2098 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2099 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2100 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2101 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2102 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2103 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2104 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2105 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2106 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2107 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2108 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2109 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2110 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2111 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2112 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2113 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */ 2114 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2115 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2116 2117 /* 2118 ** Combinations of two or more EP_* flags 2119 */ 2120 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2121 2122 /* 2123 ** These macros can be used to test, set, or clear bits in the 2124 ** Expr.flags field. 2125 */ 2126 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2127 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2128 #define ExprSetProperty(E,P) (E)->flags|=(P) 2129 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2130 2131 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2132 ** and Accreditation only. It works like ExprSetProperty() during VVA 2133 ** processes but is a no-op for delivery. 2134 */ 2135 #ifdef SQLITE_DEBUG 2136 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2137 #else 2138 # define ExprSetVVAProperty(E,P) 2139 #endif 2140 2141 /* 2142 ** Macros to determine the number of bytes required by a normal Expr 2143 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2144 ** and an Expr struct with the EP_TokenOnly flag set. 2145 */ 2146 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2147 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2148 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2149 2150 /* 2151 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2152 ** above sqlite3ExprDup() for details. 2153 */ 2154 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2155 2156 /* 2157 ** A list of expressions. Each expression may optionally have a 2158 ** name. An expr/name combination can be used in several ways, such 2159 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2160 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2161 ** also be used as the argument to a function, in which case the a.zName 2162 ** field is not used. 2163 ** 2164 ** By default the Expr.zSpan field holds a human-readable description of 2165 ** the expression that is used in the generation of error messages and 2166 ** column labels. In this case, Expr.zSpan is typically the text of a 2167 ** column expression as it exists in a SELECT statement. However, if 2168 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2169 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2170 ** form is used for name resolution with nested FROM clauses. 2171 */ 2172 struct ExprList { 2173 int nExpr; /* Number of expressions on the list */ 2174 struct ExprList_item { /* For each expression in the list */ 2175 Expr *pExpr; /* The list of expressions */ 2176 char *zName; /* Token associated with this expression */ 2177 char *zSpan; /* Original text of the expression */ 2178 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2179 unsigned done :1; /* A flag to indicate when processing is finished */ 2180 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2181 unsigned reusable :1; /* Constant expression is reusable */ 2182 union { 2183 struct { 2184 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2185 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2186 } x; 2187 int iConstExprReg; /* Register in which Expr value is cached */ 2188 } u; 2189 } *a; /* Alloc a power of two greater or equal to nExpr */ 2190 }; 2191 2192 /* 2193 ** An instance of this structure is used by the parser to record both 2194 ** the parse tree for an expression and the span of input text for an 2195 ** expression. 2196 */ 2197 struct ExprSpan { 2198 Expr *pExpr; /* The expression parse tree */ 2199 const char *zStart; /* First character of input text */ 2200 const char *zEnd; /* One character past the end of input text */ 2201 }; 2202 2203 /* 2204 ** An instance of this structure can hold a simple list of identifiers, 2205 ** such as the list "a,b,c" in the following statements: 2206 ** 2207 ** INSERT INTO t(a,b,c) VALUES ...; 2208 ** CREATE INDEX idx ON t(a,b,c); 2209 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2210 ** 2211 ** The IdList.a.idx field is used when the IdList represents the list of 2212 ** column names after a table name in an INSERT statement. In the statement 2213 ** 2214 ** INSERT INTO t(a,b,c) ... 2215 ** 2216 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2217 */ 2218 struct IdList { 2219 struct IdList_item { 2220 char *zName; /* Name of the identifier */ 2221 int idx; /* Index in some Table.aCol[] of a column named zName */ 2222 } *a; 2223 int nId; /* Number of identifiers on the list */ 2224 }; 2225 2226 /* 2227 ** The bitmask datatype defined below is used for various optimizations. 2228 ** 2229 ** Changing this from a 64-bit to a 32-bit type limits the number of 2230 ** tables in a join to 32 instead of 64. But it also reduces the size 2231 ** of the library by 738 bytes on ix86. 2232 */ 2233 typedef u64 Bitmask; 2234 2235 /* 2236 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2237 */ 2238 #define BMS ((int)(sizeof(Bitmask)*8)) 2239 2240 /* 2241 ** A bit in a Bitmask 2242 */ 2243 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2244 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2245 2246 /* 2247 ** The following structure describes the FROM clause of a SELECT statement. 2248 ** Each table or subquery in the FROM clause is a separate element of 2249 ** the SrcList.a[] array. 2250 ** 2251 ** With the addition of multiple database support, the following structure 2252 ** can also be used to describe a particular table such as the table that 2253 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2254 ** such a table must be a simple name: ID. But in SQLite, the table can 2255 ** now be identified by a database name, a dot, then the table name: ID.ID. 2256 ** 2257 ** The jointype starts out showing the join type between the current table 2258 ** and the next table on the list. The parser builds the list this way. 2259 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2260 ** jointype expresses the join between the table and the previous table. 2261 ** 2262 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2263 ** contains more than 63 columns and the 64-th or later column is used. 2264 */ 2265 struct SrcList { 2266 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2267 u32 nAlloc; /* Number of entries allocated in a[] below */ 2268 struct SrcList_item { 2269 Schema *pSchema; /* Schema to which this item is fixed */ 2270 char *zDatabase; /* Name of database holding this table */ 2271 char *zName; /* Name of the table */ 2272 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2273 Table *pTab; /* An SQL table corresponding to zName */ 2274 Select *pSelect; /* A SELECT statement used in place of a table name */ 2275 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2276 int regReturn; /* Register holding return address of addrFillSub */ 2277 int regResult; /* Registers holding results of a co-routine */ 2278 u8 jointype; /* Type of join between this able and the previous */ 2279 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2280 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2281 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2282 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2283 #ifndef SQLITE_OMIT_EXPLAIN 2284 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2285 #endif 2286 int iCursor; /* The VDBE cursor number used to access this table */ 2287 Expr *pOn; /* The ON clause of a join */ 2288 IdList *pUsing; /* The USING clause of a join */ 2289 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2290 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2291 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2292 } a[1]; /* One entry for each identifier on the list */ 2293 }; 2294 2295 /* 2296 ** Permitted values of the SrcList.a.jointype field 2297 */ 2298 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2299 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2300 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2301 #define JT_LEFT 0x0008 /* Left outer join */ 2302 #define JT_RIGHT 0x0010 /* Right outer join */ 2303 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2304 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2305 2306 2307 /* 2308 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2309 ** and the WhereInfo.wctrlFlags member. 2310 */ 2311 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2312 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2313 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2314 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2315 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2316 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2317 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2318 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2319 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2320 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2321 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2322 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2323 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2324 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2325 2326 /* Allowed return values from sqlite3WhereIsDistinct() 2327 */ 2328 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2329 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2330 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2331 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2332 2333 /* 2334 ** A NameContext defines a context in which to resolve table and column 2335 ** names. The context consists of a list of tables (the pSrcList) field and 2336 ** a list of named expression (pEList). The named expression list may 2337 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2338 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2339 ** pEList corresponds to the result set of a SELECT and is NULL for 2340 ** other statements. 2341 ** 2342 ** NameContexts can be nested. When resolving names, the inner-most 2343 ** context is searched first. If no match is found, the next outer 2344 ** context is checked. If there is still no match, the next context 2345 ** is checked. This process continues until either a match is found 2346 ** or all contexts are check. When a match is found, the nRef member of 2347 ** the context containing the match is incremented. 2348 ** 2349 ** Each subquery gets a new NameContext. The pNext field points to the 2350 ** NameContext in the parent query. Thus the process of scanning the 2351 ** NameContext list corresponds to searching through successively outer 2352 ** subqueries looking for a match. 2353 */ 2354 struct NameContext { 2355 Parse *pParse; /* The parser */ 2356 SrcList *pSrcList; /* One or more tables used to resolve names */ 2357 ExprList *pEList; /* Optional list of result-set columns */ 2358 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2359 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2360 int nRef; /* Number of names resolved by this context */ 2361 int nErr; /* Number of errors encountered while resolving names */ 2362 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2363 }; 2364 2365 /* 2366 ** Allowed values for the NameContext, ncFlags field. 2367 ** 2368 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2369 ** SQLITE_FUNC_MINMAX. 2370 ** 2371 */ 2372 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2373 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2374 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2375 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2376 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2377 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2378 2379 /* 2380 ** An instance of the following structure contains all information 2381 ** needed to generate code for a single SELECT statement. 2382 ** 2383 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2384 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2385 ** limit and nOffset to the value of the offset (or 0 if there is not 2386 ** offset). But later on, nLimit and nOffset become the memory locations 2387 ** in the VDBE that record the limit and offset counters. 2388 ** 2389 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2390 ** These addresses must be stored so that we can go back and fill in 2391 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2392 ** the number of columns in P2 can be computed at the same time 2393 ** as the OP_OpenEphm instruction is coded because not 2394 ** enough information about the compound query is known at that point. 2395 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2396 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2397 ** sequences for the ORDER BY clause. 2398 */ 2399 struct Select { 2400 ExprList *pEList; /* The fields of the result */ 2401 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2402 u16 selFlags; /* Various SF_* values */ 2403 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2404 #if SELECTTRACE_ENABLED 2405 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2406 #endif 2407 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2408 u64 nSelectRow; /* Estimated number of result rows */ 2409 SrcList *pSrc; /* The FROM clause */ 2410 Expr *pWhere; /* The WHERE clause */ 2411 ExprList *pGroupBy; /* The GROUP BY clause */ 2412 Expr *pHaving; /* The HAVING clause */ 2413 ExprList *pOrderBy; /* The ORDER BY clause */ 2414 Select *pPrior; /* Prior select in a compound select statement */ 2415 Select *pNext; /* Next select to the left in a compound */ 2416 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2417 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2418 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2419 }; 2420 2421 /* 2422 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2423 ** "Select Flag". 2424 */ 2425 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2426 #define SF_All 0x0002 /* Includes the ALL keyword */ 2427 #define SF_Resolved 0x0004 /* Identifiers have been resolved */ 2428 #define SF_Aggregate 0x0008 /* Contains aggregate functions */ 2429 #define SF_UsesEphemeral 0x0010 /* Uses the OpenEphemeral opcode */ 2430 #define SF_Expanded 0x0020 /* sqlite3SelectExpand() called on this */ 2431 #define SF_HasTypeInfo 0x0040 /* FROM subqueries have Table metadata */ 2432 #define SF_Compound 0x0080 /* Part of a compound query */ 2433 #define SF_Values 0x0100 /* Synthesized from VALUES clause */ 2434 #define SF_MultiValue 0x0200 /* Single VALUES term with multiple rows */ 2435 #define SF_NestedFrom 0x0400 /* Part of a parenthesized FROM clause */ 2436 #define SF_MaybeConvert 0x0800 /* Need convertCompoundSelectToSubquery() */ 2437 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2438 #define SF_Recursive 0x2000 /* The recursive part of a recursive CTE */ 2439 #define SF_Converted 0x4000 /* By convertCompoundSelectToSubquery() */ 2440 2441 2442 /* 2443 ** The results of a SELECT can be distributed in several ways, as defined 2444 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2445 ** Type". 2446 ** 2447 ** SRT_Union Store results as a key in a temporary index 2448 ** identified by pDest->iSDParm. 2449 ** 2450 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2451 ** 2452 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2453 ** set is not empty. 2454 ** 2455 ** SRT_Discard Throw the results away. This is used by SELECT 2456 ** statements within triggers whose only purpose is 2457 ** the side-effects of functions. 2458 ** 2459 ** All of the above are free to ignore their ORDER BY clause. Those that 2460 ** follow must honor the ORDER BY clause. 2461 ** 2462 ** SRT_Output Generate a row of output (using the OP_ResultRow 2463 ** opcode) for each row in the result set. 2464 ** 2465 ** SRT_Mem Only valid if the result is a single column. 2466 ** Store the first column of the first result row 2467 ** in register pDest->iSDParm then abandon the rest 2468 ** of the query. This destination implies "LIMIT 1". 2469 ** 2470 ** SRT_Set The result must be a single column. Store each 2471 ** row of result as the key in table pDest->iSDParm. 2472 ** Apply the affinity pDest->affSdst before storing 2473 ** results. Used to implement "IN (SELECT ...)". 2474 ** 2475 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2476 ** the result there. The cursor is left open after 2477 ** returning. This is like SRT_Table except that 2478 ** this destination uses OP_OpenEphemeral to create 2479 ** the table first. 2480 ** 2481 ** SRT_Coroutine Generate a co-routine that returns a new row of 2482 ** results each time it is invoked. The entry point 2483 ** of the co-routine is stored in register pDest->iSDParm 2484 ** and the result row is stored in pDest->nDest registers 2485 ** starting with pDest->iSdst. 2486 ** 2487 ** SRT_Table Store results in temporary table pDest->iSDParm. 2488 ** SRT_Fifo This is like SRT_EphemTab except that the table 2489 ** is assumed to already be open. SRT_Fifo has 2490 ** the additional property of being able to ignore 2491 ** the ORDER BY clause. 2492 ** 2493 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2494 ** But also use temporary table pDest->iSDParm+1 as 2495 ** a record of all prior results and ignore any duplicate 2496 ** rows. Name means: "Distinct Fifo". 2497 ** 2498 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2499 ** an index). Append a sequence number so that all entries 2500 ** are distinct. 2501 ** 2502 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2503 ** the same record has never been stored before. The 2504 ** index at pDest->iSDParm+1 hold all prior stores. 2505 */ 2506 #define SRT_Union 1 /* Store result as keys in an index */ 2507 #define SRT_Except 2 /* Remove result from a UNION index */ 2508 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2509 #define SRT_Discard 4 /* Do not save the results anywhere */ 2510 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2511 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2512 #define SRT_Queue 7 /* Store result in an queue */ 2513 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2514 2515 /* The ORDER BY clause is ignored for all of the above */ 2516 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2517 2518 #define SRT_Output 9 /* Output each row of result */ 2519 #define SRT_Mem 10 /* Store result in a memory cell */ 2520 #define SRT_Set 11 /* Store results as keys in an index */ 2521 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2522 #define SRT_Coroutine 13 /* Generate a single row of result */ 2523 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2524 2525 /* 2526 ** An instance of this object describes where to put of the results of 2527 ** a SELECT statement. 2528 */ 2529 struct SelectDest { 2530 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2531 char affSdst; /* Affinity used when eDest==SRT_Set */ 2532 int iSDParm; /* A parameter used by the eDest disposal method */ 2533 int iSdst; /* Base register where results are written */ 2534 int nSdst; /* Number of registers allocated */ 2535 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2536 }; 2537 2538 /* 2539 ** During code generation of statements that do inserts into AUTOINCREMENT 2540 ** tables, the following information is attached to the Table.u.autoInc.p 2541 ** pointer of each autoincrement table to record some side information that 2542 ** the code generator needs. We have to keep per-table autoincrement 2543 ** information in case inserts are down within triggers. Triggers do not 2544 ** normally coordinate their activities, but we do need to coordinate the 2545 ** loading and saving of autoincrement information. 2546 */ 2547 struct AutoincInfo { 2548 AutoincInfo *pNext; /* Next info block in a list of them all */ 2549 Table *pTab; /* Table this info block refers to */ 2550 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2551 int regCtr; /* Memory register holding the rowid counter */ 2552 }; 2553 2554 /* 2555 ** Size of the column cache 2556 */ 2557 #ifndef SQLITE_N_COLCACHE 2558 # define SQLITE_N_COLCACHE 10 2559 #endif 2560 2561 /* 2562 ** At least one instance of the following structure is created for each 2563 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2564 ** statement. All such objects are stored in the linked list headed at 2565 ** Parse.pTriggerPrg and deleted once statement compilation has been 2566 ** completed. 2567 ** 2568 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2569 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2570 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2571 ** The Parse.pTriggerPrg list never contains two entries with the same 2572 ** values for both pTrigger and orconf. 2573 ** 2574 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2575 ** accessed (or set to 0 for triggers fired as a result of INSERT 2576 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2577 ** a mask of new.* columns used by the program. 2578 */ 2579 struct TriggerPrg { 2580 Trigger *pTrigger; /* Trigger this program was coded from */ 2581 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2582 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2583 int orconf; /* Default ON CONFLICT policy */ 2584 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2585 }; 2586 2587 /* 2588 ** The yDbMask datatype for the bitmask of all attached databases. 2589 */ 2590 #if SQLITE_MAX_ATTACHED>30 2591 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2592 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2593 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2594 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2595 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2596 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2597 #else 2598 typedef unsigned int yDbMask; 2599 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2600 # define DbMaskZero(M) (M)=0 2601 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2602 # define DbMaskAllZero(M) (M)==0 2603 # define DbMaskNonZero(M) (M)!=0 2604 #endif 2605 2606 /* 2607 ** An SQL parser context. A copy of this structure is passed through 2608 ** the parser and down into all the parser action routine in order to 2609 ** carry around information that is global to the entire parse. 2610 ** 2611 ** The structure is divided into two parts. When the parser and code 2612 ** generate call themselves recursively, the first part of the structure 2613 ** is constant but the second part is reset at the beginning and end of 2614 ** each recursion. 2615 ** 2616 ** The nTableLock and aTableLock variables are only used if the shared-cache 2617 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2618 ** used to store the set of table-locks required by the statement being 2619 ** compiled. Function sqlite3TableLock() is used to add entries to the 2620 ** list. 2621 */ 2622 struct Parse { 2623 sqlite3 *db; /* The main database structure */ 2624 char *zErrMsg; /* An error message */ 2625 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2626 int rc; /* Return code from execution */ 2627 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2628 u8 checkSchema; /* Causes schema cookie check after an error */ 2629 u8 nested; /* Number of nested calls to the parser/code generator */ 2630 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2631 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2632 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2633 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2634 u8 okConstFactor; /* OK to factor out constants */ 2635 int aTempReg[8]; /* Holding area for temporary registers */ 2636 int nRangeReg; /* Size of the temporary register block */ 2637 int iRangeReg; /* First register in temporary register block */ 2638 int nErr; /* Number of errors seen */ 2639 int nTab; /* Number of previously allocated VDBE cursors */ 2640 int nMem; /* Number of memory cells used so far */ 2641 int nSet; /* Number of sets used so far */ 2642 int nOnce; /* Number of OP_Once instructions so far */ 2643 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2644 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2645 int ckBase; /* Base register of data during check constraints */ 2646 int iPartIdxTab; /* Table corresponding to a partial index */ 2647 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2648 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2649 int nLabel; /* Number of labels used */ 2650 int *aLabel; /* Space to hold the labels */ 2651 struct yColCache { 2652 int iTable; /* Table cursor number */ 2653 i16 iColumn; /* Table column number */ 2654 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2655 int iLevel; /* Nesting level */ 2656 int iReg; /* Reg with value of this column. 0 means none. */ 2657 int lru; /* Least recently used entry has the smallest value */ 2658 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2659 ExprList *pConstExpr;/* Constant expressions */ 2660 Token constraintName;/* Name of the constraint currently being parsed */ 2661 yDbMask writeMask; /* Start a write transaction on these databases */ 2662 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2663 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2664 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2665 int regRoot; /* Register holding root page number for new objects */ 2666 int nMaxArg; /* Max args passed to user function by sub-program */ 2667 #if SELECTTRACE_ENABLED 2668 int nSelect; /* Number of SELECT statements seen */ 2669 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2670 #endif 2671 #ifndef SQLITE_OMIT_SHARED_CACHE 2672 int nTableLock; /* Number of locks in aTableLock */ 2673 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2674 #endif 2675 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2676 2677 /* Information used while coding trigger programs. */ 2678 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2679 Table *pTriggerTab; /* Table triggers are being coded for */ 2680 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2681 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2682 u32 oldmask; /* Mask of old.* columns referenced */ 2683 u32 newmask; /* Mask of new.* columns referenced */ 2684 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2685 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2686 u8 disableTriggers; /* True to disable triggers */ 2687 2688 /************************************************************************ 2689 ** Above is constant between recursions. Below is reset before and after 2690 ** each recursion. The boundary between these two regions is determined 2691 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2692 ** in the recursive region. 2693 ************************************************************************/ 2694 2695 int nVar; /* Number of '?' variables seen in the SQL so far */ 2696 int nzVar; /* Number of available slots in azVar[] */ 2697 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2698 u8 bFreeWith; /* True if pWith should be freed with parser */ 2699 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2700 #ifndef SQLITE_OMIT_VIRTUALTABLE 2701 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2702 int nVtabLock; /* Number of virtual tables to lock */ 2703 #endif 2704 int nAlias; /* Number of aliased result set columns */ 2705 int nHeight; /* Expression tree height of current sub-select */ 2706 #ifndef SQLITE_OMIT_EXPLAIN 2707 int iSelectId; /* ID of current select for EXPLAIN output */ 2708 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2709 #endif 2710 char **azVar; /* Pointers to names of parameters */ 2711 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2712 const char *zTail; /* All SQL text past the last semicolon parsed */ 2713 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2714 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2715 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2716 Token sNameToken; /* Token with unqualified schema object name */ 2717 Token sLastToken; /* The last token parsed */ 2718 #ifndef SQLITE_OMIT_VIRTUALTABLE 2719 Token sArg; /* Complete text of a module argument */ 2720 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2721 #endif 2722 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2723 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2724 With *pWith; /* Current WITH clause, or NULL */ 2725 }; 2726 2727 /* 2728 ** Return true if currently inside an sqlite3_declare_vtab() call. 2729 */ 2730 #ifdef SQLITE_OMIT_VIRTUALTABLE 2731 #define IN_DECLARE_VTAB 0 2732 #else 2733 #define IN_DECLARE_VTAB (pParse->declareVtab) 2734 #endif 2735 2736 /* 2737 ** An instance of the following structure can be declared on a stack and used 2738 ** to save the Parse.zAuthContext value so that it can be restored later. 2739 */ 2740 struct AuthContext { 2741 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2742 Parse *pParse; /* The Parse structure */ 2743 }; 2744 2745 /* 2746 ** Bitfield flags for P5 value in various opcodes. 2747 */ 2748 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2749 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2750 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2751 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2752 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2753 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2754 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2755 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2756 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2757 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2758 #define OPFLAG_P2ISREG 0x04 /* P2 to OP_Open** is a register number */ 2759 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2760 2761 /* 2762 * Each trigger present in the database schema is stored as an instance of 2763 * struct Trigger. 2764 * 2765 * Pointers to instances of struct Trigger are stored in two ways. 2766 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2767 * database). This allows Trigger structures to be retrieved by name. 2768 * 2. All triggers associated with a single table form a linked list, using the 2769 * pNext member of struct Trigger. A pointer to the first element of the 2770 * linked list is stored as the "pTrigger" member of the associated 2771 * struct Table. 2772 * 2773 * The "step_list" member points to the first element of a linked list 2774 * containing the SQL statements specified as the trigger program. 2775 */ 2776 struct Trigger { 2777 char *zName; /* The name of the trigger */ 2778 char *table; /* The table or view to which the trigger applies */ 2779 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2780 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2781 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2782 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2783 the <column-list> is stored here */ 2784 Schema *pSchema; /* Schema containing the trigger */ 2785 Schema *pTabSchema; /* Schema containing the table */ 2786 TriggerStep *step_list; /* Link list of trigger program steps */ 2787 Trigger *pNext; /* Next trigger associated with the table */ 2788 }; 2789 2790 /* 2791 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2792 ** determine which. 2793 ** 2794 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2795 ** In that cases, the constants below can be ORed together. 2796 */ 2797 #define TRIGGER_BEFORE 1 2798 #define TRIGGER_AFTER 2 2799 2800 /* 2801 * An instance of struct TriggerStep is used to store a single SQL statement 2802 * that is a part of a trigger-program. 2803 * 2804 * Instances of struct TriggerStep are stored in a singly linked list (linked 2805 * using the "pNext" member) referenced by the "step_list" member of the 2806 * associated struct Trigger instance. The first element of the linked list is 2807 * the first step of the trigger-program. 2808 * 2809 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2810 * "SELECT" statement. The meanings of the other members is determined by the 2811 * value of "op" as follows: 2812 * 2813 * (op == TK_INSERT) 2814 * orconf -> stores the ON CONFLICT algorithm 2815 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2816 * this stores a pointer to the SELECT statement. Otherwise NULL. 2817 * zTarget -> Dequoted name of the table to insert into. 2818 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2819 * this stores values to be inserted. Otherwise NULL. 2820 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2821 * statement, then this stores the column-names to be 2822 * inserted into. 2823 * 2824 * (op == TK_DELETE) 2825 * zTarget -> Dequoted name of the table to delete from. 2826 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2827 * Otherwise NULL. 2828 * 2829 * (op == TK_UPDATE) 2830 * zTarget -> Dequoted name of the table to update. 2831 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2832 * Otherwise NULL. 2833 * pExprList -> A list of the columns to update and the expressions to update 2834 * them to. See sqlite3Update() documentation of "pChanges" 2835 * argument. 2836 * 2837 */ 2838 struct TriggerStep { 2839 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2840 u8 orconf; /* OE_Rollback etc. */ 2841 Trigger *pTrig; /* The trigger that this step is a part of */ 2842 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2843 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2844 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2845 ExprList *pExprList; /* SET clause for UPDATE. */ 2846 IdList *pIdList; /* Column names for INSERT */ 2847 TriggerStep *pNext; /* Next in the link-list */ 2848 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2849 }; 2850 2851 /* 2852 ** The following structure contains information used by the sqliteFix... 2853 ** routines as they walk the parse tree to make database references 2854 ** explicit. 2855 */ 2856 typedef struct DbFixer DbFixer; 2857 struct DbFixer { 2858 Parse *pParse; /* The parsing context. Error messages written here */ 2859 Schema *pSchema; /* Fix items to this schema */ 2860 int bVarOnly; /* Check for variable references only */ 2861 const char *zDb; /* Make sure all objects are contained in this database */ 2862 const char *zType; /* Type of the container - used for error messages */ 2863 const Token *pName; /* Name of the container - used for error messages */ 2864 }; 2865 2866 /* 2867 ** An objected used to accumulate the text of a string where we 2868 ** do not necessarily know how big the string will be in the end. 2869 */ 2870 struct StrAccum { 2871 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2872 char *zBase; /* A base allocation. Not from malloc. */ 2873 char *zText; /* The string collected so far */ 2874 int nChar; /* Length of the string so far */ 2875 int nAlloc; /* Amount of space allocated in zText */ 2876 int mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 2877 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2878 }; 2879 #define STRACCUM_NOMEM 1 2880 #define STRACCUM_TOOBIG 2 2881 2882 /* 2883 ** A pointer to this structure is used to communicate information 2884 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2885 */ 2886 typedef struct { 2887 sqlite3 *db; /* The database being initialized */ 2888 char **pzErrMsg; /* Error message stored here */ 2889 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2890 int rc; /* Result code stored here */ 2891 } InitData; 2892 2893 /* 2894 ** Structure containing global configuration data for the SQLite library. 2895 ** 2896 ** This structure also contains some state information. 2897 */ 2898 struct Sqlite3Config { 2899 int bMemstat; /* True to enable memory status */ 2900 int bCoreMutex; /* True to enable core mutexing */ 2901 int bFullMutex; /* True to enable full mutexing */ 2902 int bOpenUri; /* True to interpret filenames as URIs */ 2903 int bUseCis; /* Use covering indices for full-scans */ 2904 int mxStrlen; /* Maximum string length */ 2905 int neverCorrupt; /* Database is always well-formed */ 2906 int szLookaside; /* Default lookaside buffer size */ 2907 int nLookaside; /* Default lookaside buffer count */ 2908 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2909 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2910 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2911 void *pHeap; /* Heap storage space */ 2912 int nHeap; /* Size of pHeap[] */ 2913 int mnReq, mxReq; /* Min and max heap requests sizes */ 2914 sqlite3_int64 szMmap; /* mmap() space per open file */ 2915 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2916 void *pScratch; /* Scratch memory */ 2917 int szScratch; /* Size of each scratch buffer */ 2918 int nScratch; /* Number of scratch buffers */ 2919 void *pPage; /* Page cache memory */ 2920 int szPage; /* Size of each page in pPage[] */ 2921 int nPage; /* Number of pages in pPage[] */ 2922 int mxParserStack; /* maximum depth of the parser stack */ 2923 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2924 u32 szPma; /* Maximum Sorter PMA size */ 2925 /* The above might be initialized to non-zero. The following need to always 2926 ** initially be zero, however. */ 2927 int isInit; /* True after initialization has finished */ 2928 int inProgress; /* True while initialization in progress */ 2929 int isMutexInit; /* True after mutexes are initialized */ 2930 int isMallocInit; /* True after malloc is initialized */ 2931 int isPCacheInit; /* True after malloc is initialized */ 2932 int nRefInitMutex; /* Number of users of pInitMutex */ 2933 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2934 void (*xLog)(void*,int,const char*); /* Function for logging */ 2935 void *pLogArg; /* First argument to xLog() */ 2936 #ifdef SQLITE_ENABLE_SQLLOG 2937 void(*xSqllog)(void*,sqlite3*,const char*, int); 2938 void *pSqllogArg; 2939 #endif 2940 #ifdef SQLITE_VDBE_COVERAGE 2941 /* The following callback (if not NULL) is invoked on every VDBE branch 2942 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2943 */ 2944 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2945 void *pVdbeBranchArg; /* 1st argument */ 2946 #endif 2947 #ifndef SQLITE_OMIT_BUILTIN_TEST 2948 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2949 #endif 2950 int bLocaltimeFault; /* True to fail localtime() calls */ 2951 }; 2952 2953 /* 2954 ** This macro is used inside of assert() statements to indicate that 2955 ** the assert is only valid on a well-formed database. Instead of: 2956 ** 2957 ** assert( X ); 2958 ** 2959 ** One writes: 2960 ** 2961 ** assert( X || CORRUPT_DB ); 2962 ** 2963 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2964 ** that the database is definitely corrupt, only that it might be corrupt. 2965 ** For most test cases, CORRUPT_DB is set to false using a special 2966 ** sqlite3_test_control(). This enables assert() statements to prove 2967 ** things that are always true for well-formed databases. 2968 */ 2969 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2970 2971 /* 2972 ** Context pointer passed down through the tree-walk. 2973 */ 2974 struct Walker { 2975 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2976 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2977 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2978 Parse *pParse; /* Parser context. */ 2979 int walkerDepth; /* Number of subqueries */ 2980 u8 eCode; /* A small processing code */ 2981 union { /* Extra data for callback */ 2982 NameContext *pNC; /* Naming context */ 2983 int n; /* A counter */ 2984 int iCur; /* A cursor number */ 2985 SrcList *pSrcList; /* FROM clause */ 2986 struct SrcCount *pSrcCount; /* Counting column references */ 2987 } u; 2988 }; 2989 2990 /* Forward declarations */ 2991 int sqlite3WalkExpr(Walker*, Expr*); 2992 int sqlite3WalkExprList(Walker*, ExprList*); 2993 int sqlite3WalkSelect(Walker*, Select*); 2994 int sqlite3WalkSelectExpr(Walker*, Select*); 2995 int sqlite3WalkSelectFrom(Walker*, Select*); 2996 2997 /* 2998 ** Return code from the parse-tree walking primitives and their 2999 ** callbacks. 3000 */ 3001 #define WRC_Continue 0 /* Continue down into children */ 3002 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3003 #define WRC_Abort 2 /* Abandon the tree walk */ 3004 3005 /* 3006 ** An instance of this structure represents a set of one or more CTEs 3007 ** (common table expressions) created by a single WITH clause. 3008 */ 3009 struct With { 3010 int nCte; /* Number of CTEs in the WITH clause */ 3011 With *pOuter; /* Containing WITH clause, or NULL */ 3012 struct Cte { /* For each CTE in the WITH clause.... */ 3013 char *zName; /* Name of this CTE */ 3014 ExprList *pCols; /* List of explicit column names, or NULL */ 3015 Select *pSelect; /* The definition of this CTE */ 3016 const char *zErr; /* Error message for circular references */ 3017 } a[1]; 3018 }; 3019 3020 #ifdef SQLITE_DEBUG 3021 /* 3022 ** An instance of the TreeView object is used for printing the content of 3023 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3024 */ 3025 struct TreeView { 3026 int iLevel; /* Which level of the tree we are on */ 3027 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3028 }; 3029 #endif /* SQLITE_DEBUG */ 3030 3031 /* 3032 ** Assuming zIn points to the first byte of a UTF-8 character, 3033 ** advance zIn to point to the first byte of the next UTF-8 character. 3034 */ 3035 #define SQLITE_SKIP_UTF8(zIn) { \ 3036 if( (*(zIn++))>=0xc0 ){ \ 3037 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3038 } \ 3039 } 3040 3041 /* 3042 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3043 ** the same name but without the _BKPT suffix. These macros invoke 3044 ** routines that report the line-number on which the error originated 3045 ** using sqlite3_log(). The routines also provide a convenient place 3046 ** to set a debugger breakpoint. 3047 */ 3048 int sqlite3CorruptError(int); 3049 int sqlite3MisuseError(int); 3050 int sqlite3CantopenError(int); 3051 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3052 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3053 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3054 3055 3056 /* 3057 ** FTS4 is really an extension for FTS3. It is enabled using the 3058 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3059 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3060 */ 3061 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3062 # define SQLITE_ENABLE_FTS3 1 3063 #endif 3064 3065 /* 3066 ** The ctype.h header is needed for non-ASCII systems. It is also 3067 ** needed by FTS3 when FTS3 is included in the amalgamation. 3068 */ 3069 #if !defined(SQLITE_ASCII) || \ 3070 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3071 # include <ctype.h> 3072 #endif 3073 3074 /* 3075 ** The following macros mimic the standard library functions toupper(), 3076 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3077 ** sqlite versions only work for ASCII characters, regardless of locale. 3078 */ 3079 #ifdef SQLITE_ASCII 3080 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3081 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3082 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3083 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3084 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3085 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3086 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3087 #else 3088 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3089 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3090 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3091 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3092 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3093 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3094 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3095 #endif 3096 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3097 int sqlite3IsIdChar(u8); 3098 #endif 3099 3100 /* 3101 ** Internal function prototypes 3102 */ 3103 #define sqlite3StrICmp sqlite3_stricmp 3104 int sqlite3Strlen30(const char*); 3105 #define sqlite3StrNICmp sqlite3_strnicmp 3106 3107 int sqlite3MallocInit(void); 3108 void sqlite3MallocEnd(void); 3109 void *sqlite3Malloc(u64); 3110 void *sqlite3MallocZero(u64); 3111 void *sqlite3DbMallocZero(sqlite3*, u64); 3112 void *sqlite3DbMallocRaw(sqlite3*, u64); 3113 char *sqlite3DbStrDup(sqlite3*,const char*); 3114 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3115 void *sqlite3Realloc(void*, u64); 3116 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3117 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3118 void sqlite3DbFree(sqlite3*, void*); 3119 int sqlite3MallocSize(void*); 3120 int sqlite3DbMallocSize(sqlite3*, void*); 3121 void *sqlite3ScratchMalloc(int); 3122 void sqlite3ScratchFree(void*); 3123 void *sqlite3PageMalloc(int); 3124 void sqlite3PageFree(void*); 3125 void sqlite3MemSetDefault(void); 3126 #ifndef SQLITE_OMIT_BUILTIN_TEST 3127 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3128 #endif 3129 int sqlite3HeapNearlyFull(void); 3130 3131 /* 3132 ** On systems with ample stack space and that support alloca(), make 3133 ** use of alloca() to obtain space for large automatic objects. By default, 3134 ** obtain space from malloc(). 3135 ** 3136 ** The alloca() routine never returns NULL. This will cause code paths 3137 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3138 */ 3139 #ifdef SQLITE_USE_ALLOCA 3140 # define sqlite3StackAllocRaw(D,N) alloca(N) 3141 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3142 # define sqlite3StackFree(D,P) 3143 #else 3144 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3145 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3146 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3147 #endif 3148 3149 #ifdef SQLITE_ENABLE_MEMSYS3 3150 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3151 #endif 3152 #ifdef SQLITE_ENABLE_MEMSYS5 3153 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3154 #endif 3155 3156 3157 #ifndef SQLITE_MUTEX_OMIT 3158 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3159 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3160 sqlite3_mutex *sqlite3MutexAlloc(int); 3161 int sqlite3MutexInit(void); 3162 int sqlite3MutexEnd(void); 3163 #endif 3164 3165 sqlite3_int64 sqlite3StatusValue(int); 3166 void sqlite3StatusUp(int, int); 3167 void sqlite3StatusDown(int, int); 3168 void sqlite3StatusSet(int, int); 3169 3170 /* Access to mutexes used by sqlite3_status() */ 3171 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3172 sqlite3_mutex *sqlite3MallocMutex(void); 3173 3174 #ifndef SQLITE_OMIT_FLOATING_POINT 3175 int sqlite3IsNaN(double); 3176 #else 3177 # define sqlite3IsNaN(X) 0 3178 #endif 3179 3180 /* 3181 ** An instance of the following structure holds information about SQL 3182 ** functions arguments that are the parameters to the printf() function. 3183 */ 3184 struct PrintfArguments { 3185 int nArg; /* Total number of arguments */ 3186 int nUsed; /* Number of arguments used so far */ 3187 sqlite3_value **apArg; /* The argument values */ 3188 }; 3189 3190 #define SQLITE_PRINTF_INTERNAL 0x01 3191 #define SQLITE_PRINTF_SQLFUNC 0x02 3192 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3193 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3194 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3195 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3196 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3197 void sqlite3DebugPrintf(const char*, ...); 3198 #endif 3199 #if defined(SQLITE_TEST) 3200 void *sqlite3TestTextToPtr(const char*); 3201 #endif 3202 3203 #if defined(SQLITE_DEBUG) 3204 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3205 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3206 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3207 #endif 3208 3209 3210 void sqlite3SetString(char **, sqlite3*, const char*); 3211 void sqlite3ErrorMsg(Parse*, const char*, ...); 3212 int sqlite3Dequote(char*); 3213 int sqlite3KeywordCode(const unsigned char*, int); 3214 int sqlite3RunParser(Parse*, const char*, char **); 3215 void sqlite3FinishCoding(Parse*); 3216 int sqlite3GetTempReg(Parse*); 3217 void sqlite3ReleaseTempReg(Parse*,int); 3218 int sqlite3GetTempRange(Parse*,int); 3219 void sqlite3ReleaseTempRange(Parse*,int,int); 3220 void sqlite3ClearTempRegCache(Parse*); 3221 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3222 Expr *sqlite3Expr(sqlite3*,int,const char*); 3223 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3224 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3225 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3226 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3227 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3228 void sqlite3ExprDelete(sqlite3*, Expr*); 3229 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3230 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3231 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3232 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3233 u32 sqlite3ExprListFlags(const ExprList*); 3234 int sqlite3Init(sqlite3*, char**); 3235 int sqlite3InitCallback(void*, int, char**, char**); 3236 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3237 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3238 void sqlite3ResetOneSchema(sqlite3*,int); 3239 void sqlite3CollapseDatabaseArray(sqlite3*); 3240 void sqlite3BeginParse(Parse*,int); 3241 void sqlite3CommitInternalChanges(sqlite3*); 3242 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3243 void sqlite3OpenMasterTable(Parse *, int); 3244 Index *sqlite3PrimaryKeyIndex(Table*); 3245 i16 sqlite3ColumnOfIndex(Index*, i16); 3246 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3247 void sqlite3AddColumn(Parse*,Token*); 3248 void sqlite3AddNotNull(Parse*, int); 3249 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3250 void sqlite3AddCheckConstraint(Parse*, Expr*); 3251 void sqlite3AddColumnType(Parse*,Token*); 3252 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3253 void sqlite3AddCollateType(Parse*, Token*); 3254 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3255 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3256 sqlite3_vfs**,char**,char **); 3257 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3258 int sqlite3CodeOnce(Parse *); 3259 3260 #ifdef SQLITE_OMIT_BUILTIN_TEST 3261 # define sqlite3FaultSim(X) SQLITE_OK 3262 #else 3263 int sqlite3FaultSim(int); 3264 #endif 3265 3266 Bitvec *sqlite3BitvecCreate(u32); 3267 int sqlite3BitvecTest(Bitvec*, u32); 3268 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3269 int sqlite3BitvecSet(Bitvec*, u32); 3270 void sqlite3BitvecClear(Bitvec*, u32, void*); 3271 void sqlite3BitvecDestroy(Bitvec*); 3272 u32 sqlite3BitvecSize(Bitvec*); 3273 #ifndef SQLITE_OMIT_BUILTIN_TEST 3274 int sqlite3BitvecBuiltinTest(int,int*); 3275 #endif 3276 3277 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3278 void sqlite3RowSetClear(RowSet*); 3279 void sqlite3RowSetInsert(RowSet*, i64); 3280 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3281 int sqlite3RowSetNext(RowSet*, i64*); 3282 3283 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3284 3285 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3286 int sqlite3ViewGetColumnNames(Parse*,Table*); 3287 #else 3288 # define sqlite3ViewGetColumnNames(A,B) 0 3289 #endif 3290 3291 #if SQLITE_MAX_ATTACHED>30 3292 int sqlite3DbMaskAllZero(yDbMask); 3293 #endif 3294 void sqlite3DropTable(Parse*, SrcList*, int, int); 3295 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3296 void sqlite3DeleteTable(sqlite3*, Table*); 3297 #ifndef SQLITE_OMIT_AUTOINCREMENT 3298 void sqlite3AutoincrementBegin(Parse *pParse); 3299 void sqlite3AutoincrementEnd(Parse *pParse); 3300 #else 3301 # define sqlite3AutoincrementBegin(X) 3302 # define sqlite3AutoincrementEnd(X) 3303 #endif 3304 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3305 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3306 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3307 int sqlite3IdListIndex(IdList*,const char*); 3308 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3309 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3310 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3311 Token*, Select*, Expr*, IdList*); 3312 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3313 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3314 void sqlite3SrcListShiftJoinType(SrcList*); 3315 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3316 void sqlite3IdListDelete(sqlite3*, IdList*); 3317 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3318 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3319 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3320 Expr*, int, int); 3321 void sqlite3DropIndex(Parse*, SrcList*, int); 3322 int sqlite3Select(Parse*, Select*, SelectDest*); 3323 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3324 Expr*,ExprList*,u16,Expr*,Expr*); 3325 void sqlite3SelectDelete(sqlite3*, Select*); 3326 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3327 int sqlite3IsReadOnly(Parse*, Table*, int); 3328 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3329 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3330 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3331 #endif 3332 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3333 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3334 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3335 void sqlite3WhereEnd(WhereInfo*); 3336 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3337 int sqlite3WhereIsDistinct(WhereInfo*); 3338 int sqlite3WhereIsOrdered(WhereInfo*); 3339 int sqlite3WhereIsSorted(WhereInfo*); 3340 int sqlite3WhereContinueLabel(WhereInfo*); 3341 int sqlite3WhereBreakLabel(WhereInfo*); 3342 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3343 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3344 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3345 void sqlite3ExprCodeMove(Parse*, int, int, int); 3346 void sqlite3ExprCacheStore(Parse*, int, int, int); 3347 void sqlite3ExprCachePush(Parse*); 3348 void sqlite3ExprCachePop(Parse*); 3349 void sqlite3ExprCacheRemove(Parse*, int, int); 3350 void sqlite3ExprCacheClear(Parse*); 3351 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3352 void sqlite3ExprCode(Parse*, Expr*, int); 3353 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3354 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3355 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3356 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3357 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3358 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3359 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3360 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3361 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3362 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3363 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3364 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3365 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3366 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3367 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3368 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3369 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3370 void sqlite3Vacuum(Parse*); 3371 int sqlite3RunVacuum(char**, sqlite3*); 3372 char *sqlite3NameFromToken(sqlite3*, Token*); 3373 int sqlite3ExprCompare(Expr*, Expr*, int); 3374 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3375 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3376 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3377 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3378 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3379 Vdbe *sqlite3GetVdbe(Parse*); 3380 #ifndef SQLITE_OMIT_BUILTIN_TEST 3381 void sqlite3PrngSaveState(void); 3382 void sqlite3PrngRestoreState(void); 3383 #endif 3384 void sqlite3RollbackAll(sqlite3*,int); 3385 void sqlite3CodeVerifySchema(Parse*, int); 3386 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3387 void sqlite3BeginTransaction(Parse*, int); 3388 void sqlite3CommitTransaction(Parse*); 3389 void sqlite3RollbackTransaction(Parse*); 3390 void sqlite3Savepoint(Parse*, int, Token*); 3391 void sqlite3CloseSavepoints(sqlite3 *); 3392 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3393 int sqlite3ExprIsConstant(Expr*); 3394 int sqlite3ExprIsConstantNotJoin(Expr*); 3395 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3396 int sqlite3ExprIsTableConstant(Expr*,int); 3397 int sqlite3ExprIsInteger(Expr*, int*); 3398 int sqlite3ExprCanBeNull(const Expr*); 3399 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3400 int sqlite3IsRowid(const char*); 3401 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3402 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3403 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3404 void sqlite3ResolvePartIdxLabel(Parse*,int); 3405 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3406 u8,u8,int,int*); 3407 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3408 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3409 void sqlite3BeginWriteOperation(Parse*, int, int); 3410 void sqlite3MultiWrite(Parse*); 3411 void sqlite3MayAbort(Parse*); 3412 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3413 void sqlite3UniqueConstraint(Parse*, int, Index*); 3414 void sqlite3RowidConstraint(Parse*, int, Table*); 3415 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3416 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3417 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3418 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3419 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3420 #if SELECTTRACE_ENABLED 3421 void sqlite3SelectSetName(Select*,const char*); 3422 #else 3423 # define sqlite3SelectSetName(A,B) 3424 #endif 3425 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3426 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3427 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3428 void sqlite3RegisterDateTimeFunctions(void); 3429 void sqlite3RegisterGlobalFunctions(void); 3430 int sqlite3SafetyCheckOk(sqlite3*); 3431 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3432 void sqlite3ChangeCookie(Parse*, int); 3433 3434 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3435 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3436 #endif 3437 3438 #ifndef SQLITE_OMIT_TRIGGER 3439 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3440 Expr*,int, int); 3441 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3442 void sqlite3DropTrigger(Parse*, SrcList*, int); 3443 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3444 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3445 Trigger *sqlite3TriggerList(Parse *, Table *); 3446 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3447 int, int, int); 3448 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3449 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3450 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3451 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3452 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3453 Select*,u8); 3454 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3455 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3456 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3457 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3458 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3459 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3460 #else 3461 # define sqlite3TriggersExist(B,C,D,E,F) 0 3462 # define sqlite3DeleteTrigger(A,B) 3463 # define sqlite3DropTriggerPtr(A,B) 3464 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3465 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3466 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3467 # define sqlite3TriggerList(X, Y) 0 3468 # define sqlite3ParseToplevel(p) p 3469 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3470 #endif 3471 3472 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3473 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3474 void sqlite3DeferForeignKey(Parse*, int); 3475 #ifndef SQLITE_OMIT_AUTHORIZATION 3476 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3477 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3478 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3479 void sqlite3AuthContextPop(AuthContext*); 3480 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3481 #else 3482 # define sqlite3AuthRead(a,b,c,d) 3483 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3484 # define sqlite3AuthContextPush(a,b,c) 3485 # define sqlite3AuthContextPop(a) ((void)(a)) 3486 #endif 3487 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3488 void sqlite3Detach(Parse*, Expr*); 3489 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3490 int sqlite3FixSrcList(DbFixer*, SrcList*); 3491 int sqlite3FixSelect(DbFixer*, Select*); 3492 int sqlite3FixExpr(DbFixer*, Expr*); 3493 int sqlite3FixExprList(DbFixer*, ExprList*); 3494 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3495 int sqlite3AtoF(const char *z, double*, int, u8); 3496 int sqlite3GetInt32(const char *, int*); 3497 int sqlite3Atoi(const char*); 3498 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3499 int sqlite3Utf8CharLen(const char *pData, int nByte); 3500 u32 sqlite3Utf8Read(const u8**); 3501 LogEst sqlite3LogEst(u64); 3502 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3503 #ifndef SQLITE_OMIT_VIRTUALTABLE 3504 LogEst sqlite3LogEstFromDouble(double); 3505 #endif 3506 u64 sqlite3LogEstToInt(LogEst); 3507 3508 /* 3509 ** Routines to read and write variable-length integers. These used to 3510 ** be defined locally, but now we use the varint routines in the util.c 3511 ** file. 3512 */ 3513 int sqlite3PutVarint(unsigned char*, u64); 3514 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3515 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3516 int sqlite3VarintLen(u64 v); 3517 3518 /* 3519 ** The common case is for a varint to be a single byte. They following 3520 ** macros handle the common case without a procedure call, but then call 3521 ** the procedure for larger varints. 3522 */ 3523 #define getVarint32(A,B) \ 3524 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3525 #define putVarint32(A,B) \ 3526 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3527 sqlite3PutVarint((A),(B))) 3528 #define getVarint sqlite3GetVarint 3529 #define putVarint sqlite3PutVarint 3530 3531 3532 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3533 void sqlite3TableAffinity(Vdbe*, Table*, int); 3534 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3535 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3536 char sqlite3ExprAffinity(Expr *pExpr); 3537 int sqlite3Atoi64(const char*, i64*, int, u8); 3538 int sqlite3DecOrHexToI64(const char*, i64*); 3539 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3540 void sqlite3Error(sqlite3*,int); 3541 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3542 u8 sqlite3HexToInt(int h); 3543 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3544 3545 #if defined(SQLITE_NEED_ERR_NAME) 3546 const char *sqlite3ErrName(int); 3547 #endif 3548 3549 const char *sqlite3ErrStr(int); 3550 int sqlite3ReadSchema(Parse *pParse); 3551 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3552 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3553 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3554 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3555 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3556 Expr *sqlite3ExprSkipCollate(Expr*); 3557 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3558 int sqlite3CheckObjectName(Parse *, const char *); 3559 void sqlite3VdbeSetChanges(sqlite3 *, int); 3560 int sqlite3AddInt64(i64*,i64); 3561 int sqlite3SubInt64(i64*,i64); 3562 int sqlite3MulInt64(i64*,i64); 3563 int sqlite3AbsInt32(int); 3564 #ifdef SQLITE_ENABLE_8_3_NAMES 3565 void sqlite3FileSuffix3(const char*, char*); 3566 #else 3567 # define sqlite3FileSuffix3(X,Y) 3568 #endif 3569 u8 sqlite3GetBoolean(const char *z,u8); 3570 3571 const void *sqlite3ValueText(sqlite3_value*, u8); 3572 int sqlite3ValueBytes(sqlite3_value*, u8); 3573 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3574 void(*)(void*)); 3575 void sqlite3ValueSetNull(sqlite3_value*); 3576 void sqlite3ValueFree(sqlite3_value*); 3577 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3578 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3579 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3580 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3581 #ifndef SQLITE_AMALGAMATION 3582 extern const unsigned char sqlite3OpcodeProperty[]; 3583 extern const unsigned char sqlite3UpperToLower[]; 3584 extern const unsigned char sqlite3CtypeMap[]; 3585 extern const Token sqlite3IntTokens[]; 3586 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3587 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3588 #ifndef SQLITE_OMIT_WSD 3589 extern int sqlite3PendingByte; 3590 #endif 3591 #endif 3592 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3593 void sqlite3Reindex(Parse*, Token*, Token*); 3594 void sqlite3AlterFunctions(void); 3595 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3596 int sqlite3GetToken(const unsigned char *, int *); 3597 void sqlite3NestedParse(Parse*, const char*, ...); 3598 void sqlite3ExpirePreparedStatements(sqlite3*); 3599 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3600 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3601 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3602 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3603 int sqlite3ResolveExprNames(NameContext*, Expr*); 3604 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3605 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3606 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3607 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3608 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3609 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3610 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3611 char sqlite3AffinityType(const char*, u8*); 3612 void sqlite3Analyze(Parse*, Token*, Token*); 3613 int sqlite3InvokeBusyHandler(BusyHandler*); 3614 int sqlite3FindDb(sqlite3*, Token*); 3615 int sqlite3FindDbName(sqlite3 *, const char *); 3616 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3617 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3618 void sqlite3DefaultRowEst(Index*); 3619 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3620 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3621 void sqlite3MinimumFileFormat(Parse*, int, int); 3622 void sqlite3SchemaClear(void *); 3623 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3624 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3625 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3626 void sqlite3KeyInfoUnref(KeyInfo*); 3627 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3628 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3629 #ifdef SQLITE_DEBUG 3630 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3631 #endif 3632 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3633 void (*)(sqlite3_context*,int,sqlite3_value **), 3634 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3635 FuncDestructor *pDestructor 3636 ); 3637 int sqlite3ApiExit(sqlite3 *db, int); 3638 int sqlite3OpenTempDatabase(Parse *); 3639 3640 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3641 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3642 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3643 void sqlite3AppendChar(StrAccum*,int,char); 3644 char *sqlite3StrAccumFinish(StrAccum*); 3645 void sqlite3StrAccumReset(StrAccum*); 3646 void sqlite3SelectDestInit(SelectDest*,int,int); 3647 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3648 3649 void sqlite3BackupRestart(sqlite3_backup *); 3650 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3651 3652 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3653 void sqlite3AnalyzeFunctions(void); 3654 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3655 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3656 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3657 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3658 #endif 3659 3660 /* 3661 ** The interface to the LEMON-generated parser 3662 */ 3663 void *sqlite3ParserAlloc(void*(*)(u64)); 3664 void sqlite3ParserFree(void*, void(*)(void*)); 3665 void sqlite3Parser(void*, int, Token, Parse*); 3666 #ifdef YYTRACKMAXSTACKDEPTH 3667 int sqlite3ParserStackPeak(void*); 3668 #endif 3669 3670 void sqlite3AutoLoadExtensions(sqlite3*); 3671 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3672 void sqlite3CloseExtensions(sqlite3*); 3673 #else 3674 # define sqlite3CloseExtensions(X) 3675 #endif 3676 3677 #ifndef SQLITE_OMIT_SHARED_CACHE 3678 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3679 #else 3680 #define sqlite3TableLock(v,w,x,y,z) 3681 #endif 3682 3683 #ifdef SQLITE_TEST 3684 int sqlite3Utf8To8(unsigned char*); 3685 #endif 3686 3687 #ifdef SQLITE_OMIT_VIRTUALTABLE 3688 # define sqlite3VtabClear(Y) 3689 # define sqlite3VtabSync(X,Y) SQLITE_OK 3690 # define sqlite3VtabRollback(X) 3691 # define sqlite3VtabCommit(X) 3692 # define sqlite3VtabInSync(db) 0 3693 # define sqlite3VtabLock(X) 3694 # define sqlite3VtabUnlock(X) 3695 # define sqlite3VtabUnlockList(X) 3696 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3697 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3698 #else 3699 void sqlite3VtabClear(sqlite3 *db, Table*); 3700 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3701 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3702 int sqlite3VtabRollback(sqlite3 *db); 3703 int sqlite3VtabCommit(sqlite3 *db); 3704 void sqlite3VtabLock(VTable *); 3705 void sqlite3VtabUnlock(VTable *); 3706 void sqlite3VtabUnlockList(sqlite3*); 3707 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3708 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3709 VTable *sqlite3GetVTable(sqlite3*, Table*); 3710 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3711 #endif 3712 void sqlite3VtabMakeWritable(Parse*,Table*); 3713 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3714 void sqlite3VtabFinishParse(Parse*, Token*); 3715 void sqlite3VtabArgInit(Parse*); 3716 void sqlite3VtabArgExtend(Parse*, Token*); 3717 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3718 int sqlite3VtabCallConnect(Parse*, Table*); 3719 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3720 int sqlite3VtabBegin(sqlite3 *, VTable *); 3721 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3722 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3723 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3724 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3725 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3726 void sqlite3ParserReset(Parse*); 3727 int sqlite3Reprepare(Vdbe*); 3728 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3729 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3730 int sqlite3TempInMemory(const sqlite3*); 3731 const char *sqlite3JournalModename(int); 3732 #ifndef SQLITE_OMIT_WAL 3733 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3734 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3735 #endif 3736 #ifndef SQLITE_OMIT_CTE 3737 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3738 void sqlite3WithDelete(sqlite3*,With*); 3739 void sqlite3WithPush(Parse*, With*, u8); 3740 #else 3741 #define sqlite3WithPush(x,y,z) 3742 #define sqlite3WithDelete(x,y) 3743 #endif 3744 3745 /* Declarations for functions in fkey.c. All of these are replaced by 3746 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3747 ** key functionality is available. If OMIT_TRIGGER is defined but 3748 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3749 ** this case foreign keys are parsed, but no other functionality is 3750 ** provided (enforcement of FK constraints requires the triggers sub-system). 3751 */ 3752 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3753 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3754 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3755 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3756 int sqlite3FkRequired(Parse*, Table*, int*, int); 3757 u32 sqlite3FkOldmask(Parse*, Table*); 3758 FKey *sqlite3FkReferences(Table *); 3759 #else 3760 #define sqlite3FkActions(a,b,c,d,e,f) 3761 #define sqlite3FkCheck(a,b,c,d,e,f) 3762 #define sqlite3FkDropTable(a,b,c) 3763 #define sqlite3FkOldmask(a,b) 0 3764 #define sqlite3FkRequired(a,b,c,d) 0 3765 #endif 3766 #ifndef SQLITE_OMIT_FOREIGN_KEY 3767 void sqlite3FkDelete(sqlite3 *, Table*); 3768 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3769 #else 3770 #define sqlite3FkDelete(a,b) 3771 #define sqlite3FkLocateIndex(a,b,c,d,e) 3772 #endif 3773 3774 3775 /* 3776 ** Available fault injectors. Should be numbered beginning with 0. 3777 */ 3778 #define SQLITE_FAULTINJECTOR_MALLOC 0 3779 #define SQLITE_FAULTINJECTOR_COUNT 1 3780 3781 /* 3782 ** The interface to the code in fault.c used for identifying "benign" 3783 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3784 ** is not defined. 3785 */ 3786 #ifndef SQLITE_OMIT_BUILTIN_TEST 3787 void sqlite3BeginBenignMalloc(void); 3788 void sqlite3EndBenignMalloc(void); 3789 #else 3790 #define sqlite3BeginBenignMalloc() 3791 #define sqlite3EndBenignMalloc() 3792 #endif 3793 3794 /* 3795 ** Allowed return values from sqlite3FindInIndex() 3796 */ 3797 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3798 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3799 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3800 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3801 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3802 /* 3803 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3804 */ 3805 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3806 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3807 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3808 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3809 3810 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3811 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3812 int sqlite3JournalSize(sqlite3_vfs *); 3813 int sqlite3JournalCreate(sqlite3_file *); 3814 int sqlite3JournalExists(sqlite3_file *p); 3815 #else 3816 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3817 #define sqlite3JournalExists(p) 1 3818 #endif 3819 3820 void sqlite3MemJournalOpen(sqlite3_file *); 3821 int sqlite3MemJournalSize(void); 3822 int sqlite3IsMemJournal(sqlite3_file *); 3823 3824 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3825 #if SQLITE_MAX_EXPR_DEPTH>0 3826 int sqlite3SelectExprHeight(Select *); 3827 int sqlite3ExprCheckHeight(Parse*, int); 3828 #else 3829 #define sqlite3SelectExprHeight(x) 0 3830 #define sqlite3ExprCheckHeight(x,y) 3831 #endif 3832 3833 u32 sqlite3Get4byte(const u8*); 3834 void sqlite3Put4byte(u8*, u32); 3835 3836 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3837 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3838 void sqlite3ConnectionUnlocked(sqlite3 *db); 3839 void sqlite3ConnectionClosed(sqlite3 *db); 3840 #else 3841 #define sqlite3ConnectionBlocked(x,y) 3842 #define sqlite3ConnectionUnlocked(x) 3843 #define sqlite3ConnectionClosed(x) 3844 #endif 3845 3846 #ifdef SQLITE_DEBUG 3847 void sqlite3ParserTrace(FILE*, char *); 3848 #endif 3849 3850 /* 3851 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3852 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3853 ** print I/O tracing messages. 3854 */ 3855 #ifdef SQLITE_ENABLE_IOTRACE 3856 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3857 void sqlite3VdbeIOTraceSql(Vdbe*); 3858 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3859 #else 3860 # define IOTRACE(A) 3861 # define sqlite3VdbeIOTraceSql(X) 3862 #endif 3863 3864 /* 3865 ** These routines are available for the mem2.c debugging memory allocator 3866 ** only. They are used to verify that different "types" of memory 3867 ** allocations are properly tracked by the system. 3868 ** 3869 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3870 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3871 ** a single bit set. 3872 ** 3873 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3874 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3875 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3876 ** 3877 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3878 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3879 ** 3880 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3881 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3882 ** it might have been allocated by lookaside, except the allocation was 3883 ** too large or lookaside was already full. It is important to verify 3884 ** that allocations that might have been satisfied by lookaside are not 3885 ** passed back to non-lookaside free() routines. Asserts such as the 3886 ** example above are placed on the non-lookaside free() routines to verify 3887 ** this constraint. 3888 ** 3889 ** All of this is no-op for a production build. It only comes into 3890 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3891 */ 3892 #ifdef SQLITE_MEMDEBUG 3893 void sqlite3MemdebugSetType(void*,u8); 3894 int sqlite3MemdebugHasType(void*,u8); 3895 int sqlite3MemdebugNoType(void*,u8); 3896 #else 3897 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3898 # define sqlite3MemdebugHasType(X,Y) 1 3899 # define sqlite3MemdebugNoType(X,Y) 1 3900 #endif 3901 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3902 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3903 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3904 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3905 3906 /* 3907 ** Threading interface 3908 */ 3909 #if SQLITE_MAX_WORKER_THREADS>0 3910 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3911 int sqlite3ThreadJoin(SQLiteThread*, void**); 3912 #endif 3913 3914 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 3915 int sqlite3DbstatRegister(sqlite3*); 3916 #endif 3917 3918 #endif /* _SQLITEINT_H_ */ 3919