1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Make sure that rand_s() is available on Windows systems with MSVC 2005 20 ** or higher. 21 */ 22 #if defined(_MSC_VER) && _MSC_VER>=1400 23 # define _CRT_RAND_S 24 #endif 25 26 /* 27 ** Include the header file used to customize the compiler options for MSVC. 28 ** This should be done first so that it can successfully prevent spurious 29 ** compiler warnings due to subsequent content in this file and other files 30 ** that are included by this file. 31 */ 32 #include "msvc.h" 33 34 /* 35 ** Special setup for VxWorks 36 */ 37 #include "vxworks.h" 38 39 /* 40 ** These #defines should enable >2GB file support on POSIX if the 41 ** underlying operating system supports it. If the OS lacks 42 ** large file support, or if the OS is windows, these should be no-ops. 43 ** 44 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 45 ** system #includes. Hence, this block of code must be the very first 46 ** code in all source files. 47 ** 48 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 49 ** on the compiler command line. This is necessary if you are compiling 50 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 51 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 52 ** without this option, LFS is enable. But LFS does not exist in the kernel 53 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 54 ** portability you should omit LFS. 55 ** 56 ** The previous paragraph was written in 2005. (This paragraph is written 57 ** on 2008-11-28.) These days, all Linux kernels support large files, so 58 ** you should probably leave LFS enabled. But some embedded platforms might 59 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 60 ** 61 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 62 */ 63 #ifndef SQLITE_DISABLE_LFS 64 # define _LARGE_FILE 1 65 # ifndef _FILE_OFFSET_BITS 66 # define _FILE_OFFSET_BITS 64 67 # endif 68 # define _LARGEFILE_SOURCE 1 69 #endif 70 71 /* What version of GCC is being used. 0 means GCC is not being used */ 72 #ifdef __GNUC__ 73 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 74 #else 75 # define GCC_VERSION 0 76 #endif 77 78 /* Needed for various definitions... */ 79 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 80 # define _GNU_SOURCE 81 #endif 82 83 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 84 # define _BSD_SOURCE 85 #endif 86 87 /* 88 ** For MinGW, check to see if we can include the header file containing its 89 ** version information, among other things. Normally, this internal MinGW 90 ** header file would [only] be included automatically by other MinGW header 91 ** files; however, the contained version information is now required by this 92 ** header file to work around binary compatibility issues (see below) and 93 ** this is the only known way to reliably obtain it. This entire #if block 94 ** would be completely unnecessary if there was any other way of detecting 95 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 96 ** some MinGW-specific macros). When compiling for MinGW, either the 97 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 98 ** defined; otherwise, detection of conditions specific to MinGW will be 99 ** disabled. 100 */ 101 #if defined(_HAVE_MINGW_H) 102 # include "mingw.h" 103 #elif defined(_HAVE__MINGW_H) 104 # include "_mingw.h" 105 #endif 106 107 /* 108 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 109 ** define is required to maintain binary compatibility with the MSVC runtime 110 ** library in use (e.g. for Windows XP). 111 */ 112 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 113 defined(_WIN32) && !defined(_WIN64) && \ 114 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 115 defined(__MSVCRT__) 116 # define _USE_32BIT_TIME_T 117 #endif 118 119 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 120 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 121 ** MinGW. 122 */ 123 #include "sqlite3.h" 124 125 /* 126 ** Include the configuration header output by 'configure' if we're using the 127 ** autoconf-based build 128 */ 129 #ifdef _HAVE_SQLITE_CONFIG_H 130 #include "config.h" 131 #endif 132 133 #include "sqliteLimit.h" 134 135 /* Disable nuisance warnings on Borland compilers */ 136 #if defined(__BORLANDC__) 137 #pragma warn -rch /* unreachable code */ 138 #pragma warn -ccc /* Condition is always true or false */ 139 #pragma warn -aus /* Assigned value is never used */ 140 #pragma warn -csu /* Comparing signed and unsigned */ 141 #pragma warn -spa /* Suspicious pointer arithmetic */ 142 #endif 143 144 /* 145 ** Include standard header files as necessary 146 */ 147 #ifdef HAVE_STDINT_H 148 #include <stdint.h> 149 #endif 150 #ifdef HAVE_INTTYPES_H 151 #include <inttypes.h> 152 #endif 153 154 /* 155 ** The following macros are used to cast pointers to integers and 156 ** integers to pointers. The way you do this varies from one compiler 157 ** to the next, so we have developed the following set of #if statements 158 ** to generate appropriate macros for a wide range of compilers. 159 ** 160 ** The correct "ANSI" way to do this is to use the intptr_t type. 161 ** Unfortunately, that typedef is not available on all compilers, or 162 ** if it is available, it requires an #include of specific headers 163 ** that vary from one machine to the next. 164 ** 165 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 166 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 167 ** So we have to define the macros in different ways depending on the 168 ** compiler. 169 */ 170 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 171 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 172 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 173 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 174 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 175 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 176 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 177 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 178 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 179 #else /* Generates a warning - but it always works */ 180 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 181 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 182 #endif 183 184 /* 185 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to 186 ** something between S (inclusive) and E (exclusive). 187 ** 188 ** In other words, S is a buffer and E is a pointer to the first byte after 189 ** the end of buffer S. This macro returns true if P points to something 190 ** contained within the buffer S. 191 */ 192 #if defined(HAVE_STDINT_H) 193 # define SQLITE_WITHIN(P,S,E) \ 194 ((uintptr_t)(P)>=(uintptr_t)(S) && (uintptr_t)(P)<(uintptr_t)(E)) 195 #else 196 # define SQLITE_WITHIN(P,S,E) ((P)>=(S) && (P)<(E)) 197 #endif 198 199 /* 200 ** A macro to hint to the compiler that a function should not be 201 ** inlined. 202 */ 203 #if defined(__GNUC__) 204 # define SQLITE_NOINLINE __attribute__((noinline)) 205 #elif defined(_MSC_VER) && _MSC_VER>=1310 206 # define SQLITE_NOINLINE __declspec(noinline) 207 #else 208 # define SQLITE_NOINLINE 209 #endif 210 211 /* 212 ** Make sure that the compiler intrinsics we desire are enabled when 213 ** compiling with an appropriate version of MSVC unless prevented by 214 ** the SQLITE_DISABLE_INTRINSIC define. 215 */ 216 #if !defined(SQLITE_DISABLE_INTRINSIC) 217 # if defined(_MSC_VER) && _MSC_VER>=1300 218 # if !defined(_WIN32_WCE) 219 # include <intrin.h> 220 # pragma intrinsic(_byteswap_ushort) 221 # pragma intrinsic(_byteswap_ulong) 222 # pragma intrinsic(_ReadWriteBarrier) 223 # else 224 # include <cmnintrin.h> 225 # endif 226 # endif 227 #endif 228 229 /* 230 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 231 ** 0 means mutexes are permanently disable and the library is never 232 ** threadsafe. 1 means the library is serialized which is the highest 233 ** level of threadsafety. 2 means the library is multithreaded - multiple 234 ** threads can use SQLite as long as no two threads try to use the same 235 ** database connection at the same time. 236 ** 237 ** Older versions of SQLite used an optional THREADSAFE macro. 238 ** We support that for legacy. 239 */ 240 #if !defined(SQLITE_THREADSAFE) 241 # if defined(THREADSAFE) 242 # define SQLITE_THREADSAFE THREADSAFE 243 # else 244 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 245 # endif 246 #endif 247 248 /* 249 ** Powersafe overwrite is on by default. But can be turned off using 250 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 251 */ 252 #ifndef SQLITE_POWERSAFE_OVERWRITE 253 # define SQLITE_POWERSAFE_OVERWRITE 1 254 #endif 255 256 /* 257 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 258 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 259 ** which case memory allocation statistics are disabled by default. 260 */ 261 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 262 # define SQLITE_DEFAULT_MEMSTATUS 1 263 #endif 264 265 /* 266 ** Exactly one of the following macros must be defined in order to 267 ** specify which memory allocation subsystem to use. 268 ** 269 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 270 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 271 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 272 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 273 ** 274 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 275 ** assert() macro is enabled, each call into the Win32 native heap subsystem 276 ** will cause HeapValidate to be called. If heap validation should fail, an 277 ** assertion will be triggered. 278 ** 279 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 280 ** the default. 281 */ 282 #if defined(SQLITE_SYSTEM_MALLOC) \ 283 + defined(SQLITE_WIN32_MALLOC) \ 284 + defined(SQLITE_ZERO_MALLOC) \ 285 + defined(SQLITE_MEMDEBUG)>1 286 # error "Two or more of the following compile-time configuration options\ 287 are defined but at most one is allowed:\ 288 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 289 SQLITE_ZERO_MALLOC" 290 #endif 291 #if defined(SQLITE_SYSTEM_MALLOC) \ 292 + defined(SQLITE_WIN32_MALLOC) \ 293 + defined(SQLITE_ZERO_MALLOC) \ 294 + defined(SQLITE_MEMDEBUG)==0 295 # define SQLITE_SYSTEM_MALLOC 1 296 #endif 297 298 /* 299 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 300 ** sizes of memory allocations below this value where possible. 301 */ 302 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 303 # define SQLITE_MALLOC_SOFT_LIMIT 1024 304 #endif 305 306 /* 307 ** We need to define _XOPEN_SOURCE as follows in order to enable 308 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 309 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 310 ** it. 311 */ 312 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 313 # define _XOPEN_SOURCE 600 314 #endif 315 316 /* 317 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 318 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 319 ** make it true by defining or undefining NDEBUG. 320 ** 321 ** Setting NDEBUG makes the code smaller and faster by disabling the 322 ** assert() statements in the code. So we want the default action 323 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 324 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 325 ** feature. 326 */ 327 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 328 # define NDEBUG 1 329 #endif 330 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 331 # undef NDEBUG 332 #endif 333 334 /* 335 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 336 */ 337 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 338 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 339 #endif 340 341 /* 342 ** The testcase() macro is used to aid in coverage testing. When 343 ** doing coverage testing, the condition inside the argument to 344 ** testcase() must be evaluated both true and false in order to 345 ** get full branch coverage. The testcase() macro is inserted 346 ** to help ensure adequate test coverage in places where simple 347 ** condition/decision coverage is inadequate. For example, testcase() 348 ** can be used to make sure boundary values are tested. For 349 ** bitmask tests, testcase() can be used to make sure each bit 350 ** is significant and used at least once. On switch statements 351 ** where multiple cases go to the same block of code, testcase() 352 ** can insure that all cases are evaluated. 353 ** 354 */ 355 #ifdef SQLITE_COVERAGE_TEST 356 void sqlite3Coverage(int); 357 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 358 #else 359 # define testcase(X) 360 #endif 361 362 /* 363 ** The TESTONLY macro is used to enclose variable declarations or 364 ** other bits of code that are needed to support the arguments 365 ** within testcase() and assert() macros. 366 */ 367 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 368 # define TESTONLY(X) X 369 #else 370 # define TESTONLY(X) 371 #endif 372 373 /* 374 ** Sometimes we need a small amount of code such as a variable initialization 375 ** to setup for a later assert() statement. We do not want this code to 376 ** appear when assert() is disabled. The following macro is therefore 377 ** used to contain that setup code. The "VVA" acronym stands for 378 ** "Verification, Validation, and Accreditation". In other words, the 379 ** code within VVA_ONLY() will only run during verification processes. 380 */ 381 #ifndef NDEBUG 382 # define VVA_ONLY(X) X 383 #else 384 # define VVA_ONLY(X) 385 #endif 386 387 /* 388 ** The ALWAYS and NEVER macros surround boolean expressions which 389 ** are intended to always be true or false, respectively. Such 390 ** expressions could be omitted from the code completely. But they 391 ** are included in a few cases in order to enhance the resilience 392 ** of SQLite to unexpected behavior - to make the code "self-healing" 393 ** or "ductile" rather than being "brittle" and crashing at the first 394 ** hint of unplanned behavior. 395 ** 396 ** In other words, ALWAYS and NEVER are added for defensive code. 397 ** 398 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 399 ** be true and false so that the unreachable code they specify will 400 ** not be counted as untested code. 401 */ 402 #if defined(SQLITE_COVERAGE_TEST) 403 # define ALWAYS(X) (1) 404 # define NEVER(X) (0) 405 #elif !defined(NDEBUG) 406 # define ALWAYS(X) ((X)?1:(assert(0),0)) 407 # define NEVER(X) ((X)?(assert(0),1):0) 408 #else 409 # define ALWAYS(X) (X) 410 # define NEVER(X) (X) 411 #endif 412 413 /* 414 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is 415 ** defined. We need to defend against those failures when testing with 416 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches 417 ** during a normal build. The following macro can be used to disable tests 418 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. 419 */ 420 #if defined(SQLITE_TEST_REALLOC_STRESS) 421 # define ONLY_IF_REALLOC_STRESS(X) (X) 422 #elif !defined(NDEBUG) 423 # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) 424 #else 425 # define ONLY_IF_REALLOC_STRESS(X) (0) 426 #endif 427 428 /* 429 ** Declarations used for tracing the operating system interfaces. 430 */ 431 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 432 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 433 extern int sqlite3OSTrace; 434 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 435 # define SQLITE_HAVE_OS_TRACE 436 #else 437 # define OSTRACE(X) 438 # undef SQLITE_HAVE_OS_TRACE 439 #endif 440 441 /* 442 ** Is the sqlite3ErrName() function needed in the build? Currently, 443 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 444 ** OSTRACE is enabled), and by several "test*.c" files (which are 445 ** compiled using SQLITE_TEST). 446 */ 447 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 448 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 449 # define SQLITE_NEED_ERR_NAME 450 #else 451 # undef SQLITE_NEED_ERR_NAME 452 #endif 453 454 /* 455 ** Return true (non-zero) if the input is an integer that is too large 456 ** to fit in 32-bits. This macro is used inside of various testcase() 457 ** macros to verify that we have tested SQLite for large-file support. 458 */ 459 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 460 461 /* 462 ** The macro unlikely() is a hint that surrounds a boolean 463 ** expression that is usually false. Macro likely() surrounds 464 ** a boolean expression that is usually true. These hints could, 465 ** in theory, be used by the compiler to generate better code, but 466 ** currently they are just comments for human readers. 467 */ 468 #define likely(X) (X) 469 #define unlikely(X) (X) 470 471 #include "hash.h" 472 #include "parse.h" 473 #include <stdio.h> 474 #include <stdlib.h> 475 #include <string.h> 476 #include <assert.h> 477 #include <stddef.h> 478 479 /* 480 ** If compiling for a processor that lacks floating point support, 481 ** substitute integer for floating-point 482 */ 483 #ifdef SQLITE_OMIT_FLOATING_POINT 484 # define double sqlite_int64 485 # define float sqlite_int64 486 # define LONGDOUBLE_TYPE sqlite_int64 487 # ifndef SQLITE_BIG_DBL 488 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 489 # endif 490 # define SQLITE_OMIT_DATETIME_FUNCS 1 491 # define SQLITE_OMIT_TRACE 1 492 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 493 # undef SQLITE_HAVE_ISNAN 494 #endif 495 #ifndef SQLITE_BIG_DBL 496 # define SQLITE_BIG_DBL (1e99) 497 #endif 498 499 /* 500 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 501 ** afterward. Having this macro allows us to cause the C compiler 502 ** to omit code used by TEMP tables without messy #ifndef statements. 503 */ 504 #ifdef SQLITE_OMIT_TEMPDB 505 #define OMIT_TEMPDB 1 506 #else 507 #define OMIT_TEMPDB 0 508 #endif 509 510 /* 511 ** The "file format" number is an integer that is incremented whenever 512 ** the VDBE-level file format changes. The following macros define the 513 ** the default file format for new databases and the maximum file format 514 ** that the library can read. 515 */ 516 #define SQLITE_MAX_FILE_FORMAT 4 517 #ifndef SQLITE_DEFAULT_FILE_FORMAT 518 # define SQLITE_DEFAULT_FILE_FORMAT 4 519 #endif 520 521 /* 522 ** Determine whether triggers are recursive by default. This can be 523 ** changed at run-time using a pragma. 524 */ 525 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 526 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 527 #endif 528 529 /* 530 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 531 ** on the command-line 532 */ 533 #ifndef SQLITE_TEMP_STORE 534 # define SQLITE_TEMP_STORE 1 535 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 536 #endif 537 538 /* 539 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 540 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 541 ** to zero. 542 */ 543 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 544 # undef SQLITE_MAX_WORKER_THREADS 545 # define SQLITE_MAX_WORKER_THREADS 0 546 #endif 547 #ifndef SQLITE_MAX_WORKER_THREADS 548 # define SQLITE_MAX_WORKER_THREADS 8 549 #endif 550 #ifndef SQLITE_DEFAULT_WORKER_THREADS 551 # define SQLITE_DEFAULT_WORKER_THREADS 0 552 #endif 553 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 554 # undef SQLITE_MAX_WORKER_THREADS 555 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 556 #endif 557 558 /* 559 ** The default initial allocation for the pagecache when using separate 560 ** pagecaches for each database connection. A positive number is the 561 ** number of pages. A negative number N translations means that a buffer 562 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 563 */ 564 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 565 # define SQLITE_DEFAULT_PCACHE_INITSZ 100 566 #endif 567 568 /* 569 ** GCC does not define the offsetof() macro so we'll have to do it 570 ** ourselves. 571 */ 572 #ifndef offsetof 573 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 574 #endif 575 576 /* 577 ** Macros to compute minimum and maximum of two numbers. 578 */ 579 #define MIN(A,B) ((A)<(B)?(A):(B)) 580 #define MAX(A,B) ((A)>(B)?(A):(B)) 581 582 /* 583 ** Swap two objects of type TYPE. 584 */ 585 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 586 587 /* 588 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 589 ** not, there are still machines out there that use EBCDIC.) 590 */ 591 #if 'A' == '\301' 592 # define SQLITE_EBCDIC 1 593 #else 594 # define SQLITE_ASCII 1 595 #endif 596 597 /* 598 ** Integers of known sizes. These typedefs might change for architectures 599 ** where the sizes very. Preprocessor macros are available so that the 600 ** types can be conveniently redefined at compile-type. Like this: 601 ** 602 ** cc '-DUINTPTR_TYPE=long long int' ... 603 */ 604 #ifndef UINT32_TYPE 605 # ifdef HAVE_UINT32_T 606 # define UINT32_TYPE uint32_t 607 # else 608 # define UINT32_TYPE unsigned int 609 # endif 610 #endif 611 #ifndef UINT16_TYPE 612 # ifdef HAVE_UINT16_T 613 # define UINT16_TYPE uint16_t 614 # else 615 # define UINT16_TYPE unsigned short int 616 # endif 617 #endif 618 #ifndef INT16_TYPE 619 # ifdef HAVE_INT16_T 620 # define INT16_TYPE int16_t 621 # else 622 # define INT16_TYPE short int 623 # endif 624 #endif 625 #ifndef UINT8_TYPE 626 # ifdef HAVE_UINT8_T 627 # define UINT8_TYPE uint8_t 628 # else 629 # define UINT8_TYPE unsigned char 630 # endif 631 #endif 632 #ifndef INT8_TYPE 633 # ifdef HAVE_INT8_T 634 # define INT8_TYPE int8_t 635 # else 636 # define INT8_TYPE signed char 637 # endif 638 #endif 639 #ifndef LONGDOUBLE_TYPE 640 # define LONGDOUBLE_TYPE long double 641 #endif 642 typedef sqlite_int64 i64; /* 8-byte signed integer */ 643 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 644 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 645 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 646 typedef INT16_TYPE i16; /* 2-byte signed integer */ 647 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 648 typedef INT8_TYPE i8; /* 1-byte signed integer */ 649 650 /* 651 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 652 ** that can be stored in a u32 without loss of data. The value 653 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 654 ** have to specify the value in the less intuitive manner shown: 655 */ 656 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 657 658 /* 659 ** The datatype used to store estimates of the number of rows in a 660 ** table or index. This is an unsigned integer type. For 99.9% of 661 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 662 ** can be used at compile-time if desired. 663 */ 664 #ifdef SQLITE_64BIT_STATS 665 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 666 #else 667 typedef u32 tRowcnt; /* 32-bit is the default */ 668 #endif 669 670 /* 671 ** Estimated quantities used for query planning are stored as 16-bit 672 ** logarithms. For quantity X, the value stored is 10*log2(X). This 673 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 674 ** But the allowed values are "grainy". Not every value is representable. 675 ** For example, quantities 16 and 17 are both represented by a LogEst 676 ** of 40. However, since LogEst quantities are suppose to be estimates, 677 ** not exact values, this imprecision is not a problem. 678 ** 679 ** "LogEst" is short for "Logarithmic Estimate". 680 ** 681 ** Examples: 682 ** 1 -> 0 20 -> 43 10000 -> 132 683 ** 2 -> 10 25 -> 46 25000 -> 146 684 ** 3 -> 16 100 -> 66 1000000 -> 199 685 ** 4 -> 20 1000 -> 99 1048576 -> 200 686 ** 10 -> 33 1024 -> 100 4294967296 -> 320 687 ** 688 ** The LogEst can be negative to indicate fractional values. 689 ** Examples: 690 ** 691 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 692 */ 693 typedef INT16_TYPE LogEst; 694 695 /* 696 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 697 */ 698 #ifndef SQLITE_PTRSIZE 699 # if defined(__SIZEOF_POINTER__) 700 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 701 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 702 defined(_M_ARM) || defined(__arm__) || defined(__x86) 703 # define SQLITE_PTRSIZE 4 704 # else 705 # define SQLITE_PTRSIZE 8 706 # endif 707 #endif 708 709 /* 710 ** Macros to determine whether the machine is big or little endian, 711 ** and whether or not that determination is run-time or compile-time. 712 ** 713 ** For best performance, an attempt is made to guess at the byte-order 714 ** using C-preprocessor macros. If that is unsuccessful, or if 715 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 716 ** at run-time. 717 */ 718 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 719 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 720 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 721 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 722 # define SQLITE_BYTEORDER 1234 723 # define SQLITE_BIGENDIAN 0 724 # define SQLITE_LITTLEENDIAN 1 725 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 726 #endif 727 #if (defined(sparc) || defined(__ppc__)) \ 728 && !defined(SQLITE_RUNTIME_BYTEORDER) 729 # define SQLITE_BYTEORDER 4321 730 # define SQLITE_BIGENDIAN 1 731 # define SQLITE_LITTLEENDIAN 0 732 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 733 #endif 734 #if !defined(SQLITE_BYTEORDER) 735 # ifdef SQLITE_AMALGAMATION 736 const int sqlite3one = 1; 737 # else 738 extern const int sqlite3one; 739 # endif 740 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 741 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 742 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 743 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 744 #endif 745 746 /* 747 ** Constants for the largest and smallest possible 64-bit signed integers. 748 ** These macros are designed to work correctly on both 32-bit and 64-bit 749 ** compilers. 750 */ 751 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 752 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 753 754 /* 755 ** Round up a number to the next larger multiple of 8. This is used 756 ** to force 8-byte alignment on 64-bit architectures. 757 */ 758 #define ROUND8(x) (((x)+7)&~7) 759 760 /* 761 ** Round down to the nearest multiple of 8 762 */ 763 #define ROUNDDOWN8(x) ((x)&~7) 764 765 /* 766 ** Assert that the pointer X is aligned to an 8-byte boundary. This 767 ** macro is used only within assert() to verify that the code gets 768 ** all alignment restrictions correct. 769 ** 770 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 771 ** underlying malloc() implementation might return us 4-byte aligned 772 ** pointers. In that case, only verify 4-byte alignment. 773 */ 774 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 775 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 776 #else 777 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 778 #endif 779 780 /* 781 ** Disable MMAP on platforms where it is known to not work 782 */ 783 #if defined(__OpenBSD__) || defined(__QNXNTO__) 784 # undef SQLITE_MAX_MMAP_SIZE 785 # define SQLITE_MAX_MMAP_SIZE 0 786 #endif 787 788 /* 789 ** Default maximum size of memory used by memory-mapped I/O in the VFS 790 */ 791 #ifdef __APPLE__ 792 # include <TargetConditionals.h> 793 #endif 794 #ifndef SQLITE_MAX_MMAP_SIZE 795 # if defined(__linux__) \ 796 || defined(_WIN32) \ 797 || (defined(__APPLE__) && defined(__MACH__)) \ 798 || defined(__sun) \ 799 || defined(__FreeBSD__) \ 800 || defined(__DragonFly__) 801 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 802 # else 803 # define SQLITE_MAX_MMAP_SIZE 0 804 # endif 805 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 806 #endif 807 808 /* 809 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 810 ** default MMAP_SIZE is specified at compile-time, make sure that it does 811 ** not exceed the maximum mmap size. 812 */ 813 #ifndef SQLITE_DEFAULT_MMAP_SIZE 814 # define SQLITE_DEFAULT_MMAP_SIZE 0 815 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 816 #endif 817 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 818 # undef SQLITE_DEFAULT_MMAP_SIZE 819 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 820 #endif 821 822 /* 823 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 824 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 825 ** define SQLITE_ENABLE_STAT3_OR_STAT4 826 */ 827 #ifdef SQLITE_ENABLE_STAT4 828 # undef SQLITE_ENABLE_STAT3 829 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 830 #elif SQLITE_ENABLE_STAT3 831 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 832 #elif SQLITE_ENABLE_STAT3_OR_STAT4 833 # undef SQLITE_ENABLE_STAT3_OR_STAT4 834 #endif 835 836 /* 837 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 838 ** the Select query generator tracing logic is turned on. 839 */ 840 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 841 # define SELECTTRACE_ENABLED 1 842 #else 843 # define SELECTTRACE_ENABLED 0 844 #endif 845 846 /* 847 ** An instance of the following structure is used to store the busy-handler 848 ** callback for a given sqlite handle. 849 ** 850 ** The sqlite.busyHandler member of the sqlite struct contains the busy 851 ** callback for the database handle. Each pager opened via the sqlite 852 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 853 ** callback is currently invoked only from within pager.c. 854 */ 855 typedef struct BusyHandler BusyHandler; 856 struct BusyHandler { 857 int (*xFunc)(void *,int); /* The busy callback */ 858 void *pArg; /* First arg to busy callback */ 859 int nBusy; /* Incremented with each busy call */ 860 }; 861 862 /* 863 ** Name of the master database table. The master database table 864 ** is a special table that holds the names and attributes of all 865 ** user tables and indices. 866 */ 867 #define MASTER_NAME "sqlite_master" 868 #define TEMP_MASTER_NAME "sqlite_temp_master" 869 870 /* 871 ** The root-page of the master database table. 872 */ 873 #define MASTER_ROOT 1 874 875 /* 876 ** The name of the schema table. 877 */ 878 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 879 880 /* 881 ** A convenience macro that returns the number of elements in 882 ** an array. 883 */ 884 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 885 886 /* 887 ** Determine if the argument is a power of two 888 */ 889 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 890 891 /* 892 ** The following value as a destructor means to use sqlite3DbFree(). 893 ** The sqlite3DbFree() routine requires two parameters instead of the 894 ** one parameter that destructors normally want. So we have to introduce 895 ** this magic value that the code knows to handle differently. Any 896 ** pointer will work here as long as it is distinct from SQLITE_STATIC 897 ** and SQLITE_TRANSIENT. 898 */ 899 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 900 901 /* 902 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 903 ** not support Writable Static Data (WSD) such as global and static variables. 904 ** All variables must either be on the stack or dynamically allocated from 905 ** the heap. When WSD is unsupported, the variable declarations scattered 906 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 907 ** macro is used for this purpose. And instead of referencing the variable 908 ** directly, we use its constant as a key to lookup the run-time allocated 909 ** buffer that holds real variable. The constant is also the initializer 910 ** for the run-time allocated buffer. 911 ** 912 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 913 ** macros become no-ops and have zero performance impact. 914 */ 915 #ifdef SQLITE_OMIT_WSD 916 #define SQLITE_WSD const 917 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 918 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 919 int sqlite3_wsd_init(int N, int J); 920 void *sqlite3_wsd_find(void *K, int L); 921 #else 922 #define SQLITE_WSD 923 #define GLOBAL(t,v) v 924 #define sqlite3GlobalConfig sqlite3Config 925 #endif 926 927 /* 928 ** The following macros are used to suppress compiler warnings and to 929 ** make it clear to human readers when a function parameter is deliberately 930 ** left unused within the body of a function. This usually happens when 931 ** a function is called via a function pointer. For example the 932 ** implementation of an SQL aggregate step callback may not use the 933 ** parameter indicating the number of arguments passed to the aggregate, 934 ** if it knows that this is enforced elsewhere. 935 ** 936 ** When a function parameter is not used at all within the body of a function, 937 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 938 ** However, these macros may also be used to suppress warnings related to 939 ** parameters that may or may not be used depending on compilation options. 940 ** For example those parameters only used in assert() statements. In these 941 ** cases the parameters are named as per the usual conventions. 942 */ 943 #define UNUSED_PARAMETER(x) (void)(x) 944 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 945 946 /* 947 ** Forward references to structures 948 */ 949 typedef struct AggInfo AggInfo; 950 typedef struct AuthContext AuthContext; 951 typedef struct AutoincInfo AutoincInfo; 952 typedef struct Bitvec Bitvec; 953 typedef struct CollSeq CollSeq; 954 typedef struct Column Column; 955 typedef struct Db Db; 956 typedef struct Schema Schema; 957 typedef struct Expr Expr; 958 typedef struct ExprList ExprList; 959 typedef struct ExprSpan ExprSpan; 960 typedef struct FKey FKey; 961 typedef struct FuncDestructor FuncDestructor; 962 typedef struct FuncDef FuncDef; 963 typedef struct FuncDefHash FuncDefHash; 964 typedef struct IdList IdList; 965 typedef struct Index Index; 966 typedef struct IndexSample IndexSample; 967 typedef struct KeyClass KeyClass; 968 typedef struct KeyInfo KeyInfo; 969 typedef struct Lookaside Lookaside; 970 typedef struct LookasideSlot LookasideSlot; 971 typedef struct Module Module; 972 typedef struct NameContext NameContext; 973 typedef struct Parse Parse; 974 typedef struct PrintfArguments PrintfArguments; 975 typedef struct RowSet RowSet; 976 typedef struct Savepoint Savepoint; 977 typedef struct Select Select; 978 typedef struct SQLiteThread SQLiteThread; 979 typedef struct SelectDest SelectDest; 980 typedef struct SrcList SrcList; 981 typedef struct StrAccum StrAccum; 982 typedef struct Table Table; 983 typedef struct TableLock TableLock; 984 typedef struct Token Token; 985 typedef struct TreeView TreeView; 986 typedef struct Trigger Trigger; 987 typedef struct TriggerPrg TriggerPrg; 988 typedef struct TriggerStep TriggerStep; 989 typedef struct UnpackedRecord UnpackedRecord; 990 typedef struct VTable VTable; 991 typedef struct VtabCtx VtabCtx; 992 typedef struct Walker Walker; 993 typedef struct WhereInfo WhereInfo; 994 typedef struct With With; 995 996 /* 997 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 998 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 999 ** pointer types (i.e. FuncDef) defined above. 1000 */ 1001 #include "btree.h" 1002 #include "vdbe.h" 1003 #include "pager.h" 1004 #include "pcache.h" 1005 1006 #include "os.h" 1007 #include "mutex.h" 1008 1009 1010 /* 1011 ** Each database file to be accessed by the system is an instance 1012 ** of the following structure. There are normally two of these structures 1013 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 1014 ** aDb[1] is the database file used to hold temporary tables. Additional 1015 ** databases may be attached. 1016 */ 1017 struct Db { 1018 char *zName; /* Name of this database */ 1019 Btree *pBt; /* The B*Tree structure for this database file */ 1020 u8 safety_level; /* How aggressive at syncing data to disk */ 1021 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 1022 }; 1023 1024 /* 1025 ** An instance of the following structure stores a database schema. 1026 ** 1027 ** Most Schema objects are associated with a Btree. The exception is 1028 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 1029 ** In shared cache mode, a single Schema object can be shared by multiple 1030 ** Btrees that refer to the same underlying BtShared object. 1031 ** 1032 ** Schema objects are automatically deallocated when the last Btree that 1033 ** references them is destroyed. The TEMP Schema is manually freed by 1034 ** sqlite3_close(). 1035 * 1036 ** A thread must be holding a mutex on the corresponding Btree in order 1037 ** to access Schema content. This implies that the thread must also be 1038 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1039 ** For a TEMP Schema, only the connection mutex is required. 1040 */ 1041 struct Schema { 1042 int schema_cookie; /* Database schema version number for this file */ 1043 int iGeneration; /* Generation counter. Incremented with each change */ 1044 Hash tblHash; /* All tables indexed by name */ 1045 Hash idxHash; /* All (named) indices indexed by name */ 1046 Hash trigHash; /* All triggers indexed by name */ 1047 Hash fkeyHash; /* All foreign keys by referenced table name */ 1048 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1049 u8 file_format; /* Schema format version for this file */ 1050 u8 enc; /* Text encoding used by this database */ 1051 u16 schemaFlags; /* Flags associated with this schema */ 1052 int cache_size; /* Number of pages to use in the cache */ 1053 }; 1054 1055 /* 1056 ** These macros can be used to test, set, or clear bits in the 1057 ** Db.pSchema->flags field. 1058 */ 1059 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1060 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1061 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1062 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1063 1064 /* 1065 ** Allowed values for the DB.pSchema->flags field. 1066 ** 1067 ** The DB_SchemaLoaded flag is set after the database schema has been 1068 ** read into internal hash tables. 1069 ** 1070 ** DB_UnresetViews means that one or more views have column names that 1071 ** have been filled out. If the schema changes, these column names might 1072 ** changes and so the view will need to be reset. 1073 */ 1074 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1075 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1076 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1077 1078 /* 1079 ** The number of different kinds of things that can be limited 1080 ** using the sqlite3_limit() interface. 1081 */ 1082 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1083 1084 /* 1085 ** Lookaside malloc is a set of fixed-size buffers that can be used 1086 ** to satisfy small transient memory allocation requests for objects 1087 ** associated with a particular database connection. The use of 1088 ** lookaside malloc provides a significant performance enhancement 1089 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1090 ** SQL statements. 1091 ** 1092 ** The Lookaside structure holds configuration information about the 1093 ** lookaside malloc subsystem. Each available memory allocation in 1094 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1095 ** objects. 1096 ** 1097 ** Lookaside allocations are only allowed for objects that are associated 1098 ** with a particular database connection. Hence, schema information cannot 1099 ** be stored in lookaside because in shared cache mode the schema information 1100 ** is shared by multiple database connections. Therefore, while parsing 1101 ** schema information, the Lookaside.bEnabled flag is cleared so that 1102 ** lookaside allocations are not used to construct the schema objects. 1103 */ 1104 struct Lookaside { 1105 u32 bDisable; /* Only operate the lookaside when zero */ 1106 u16 sz; /* Size of each buffer in bytes */ 1107 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1108 int nOut; /* Number of buffers currently checked out */ 1109 int mxOut; /* Highwater mark for nOut */ 1110 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1111 LookasideSlot *pFree; /* List of available buffers */ 1112 void *pStart; /* First byte of available memory space */ 1113 void *pEnd; /* First byte past end of available space */ 1114 }; 1115 struct LookasideSlot { 1116 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1117 }; 1118 1119 /* 1120 ** A hash table for built-in function definitions. (Application-defined 1121 ** functions use a regular table table from hash.h.) 1122 ** 1123 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1124 ** Collisions are on the FuncDef.u.pHash chain. 1125 */ 1126 #define SQLITE_FUNC_HASH_SZ 23 1127 struct FuncDefHash { 1128 FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ 1129 }; 1130 1131 #ifdef SQLITE_USER_AUTHENTICATION 1132 /* 1133 ** Information held in the "sqlite3" database connection object and used 1134 ** to manage user authentication. 1135 */ 1136 typedef struct sqlite3_userauth sqlite3_userauth; 1137 struct sqlite3_userauth { 1138 u8 authLevel; /* Current authentication level */ 1139 int nAuthPW; /* Size of the zAuthPW in bytes */ 1140 char *zAuthPW; /* Password used to authenticate */ 1141 char *zAuthUser; /* User name used to authenticate */ 1142 }; 1143 1144 /* Allowed values for sqlite3_userauth.authLevel */ 1145 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1146 #define UAUTH_Fail 1 /* User authentication failed */ 1147 #define UAUTH_User 2 /* Authenticated as a normal user */ 1148 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1149 1150 /* Functions used only by user authorization logic */ 1151 int sqlite3UserAuthTable(const char*); 1152 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1153 void sqlite3UserAuthInit(sqlite3*); 1154 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1155 1156 #endif /* SQLITE_USER_AUTHENTICATION */ 1157 1158 /* 1159 ** typedef for the authorization callback function. 1160 */ 1161 #ifdef SQLITE_USER_AUTHENTICATION 1162 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1163 const char*, const char*); 1164 #else 1165 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1166 const char*); 1167 #endif 1168 1169 1170 /* 1171 ** Each database connection is an instance of the following structure. 1172 */ 1173 struct sqlite3 { 1174 sqlite3_vfs *pVfs; /* OS Interface */ 1175 struct Vdbe *pVdbe; /* List of active virtual machines */ 1176 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1177 sqlite3_mutex *mutex; /* Connection mutex */ 1178 Db *aDb; /* All backends */ 1179 int nDb; /* Number of backends currently in use */ 1180 int flags; /* Miscellaneous flags. See below */ 1181 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1182 i64 szMmap; /* Default mmap_size setting */ 1183 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1184 int errCode; /* Most recent error code (SQLITE_*) */ 1185 int errMask; /* & result codes with this before returning */ 1186 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1187 u8 enc; /* Text encoding */ 1188 u8 autoCommit; /* The auto-commit flag. */ 1189 u8 temp_store; /* 1: file 2: memory 0: default */ 1190 u8 mallocFailed; /* True if we have seen a malloc failure */ 1191 u8 bBenignMalloc; /* Do not require OOMs if true */ 1192 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1193 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1194 u8 suppressErr; /* Do not issue error messages if true */ 1195 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1196 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1197 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1198 u32 magic; /* Magic number for detect library misuse */ 1199 int nChange; /* Value returned by sqlite3_changes() */ 1200 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1201 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1202 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1203 struct sqlite3InitInfo { /* Information used during initialization */ 1204 int newTnum; /* Rootpage of table being initialized */ 1205 u8 iDb; /* Which db file is being initialized */ 1206 u8 busy; /* TRUE if currently initializing */ 1207 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1208 u8 imposterTable; /* Building an imposter table */ 1209 } init; 1210 int nVdbeActive; /* Number of VDBEs currently running */ 1211 int nVdbeRead; /* Number of active VDBEs that read or write */ 1212 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1213 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1214 int nVDestroy; /* Number of active OP_VDestroy operations */ 1215 int nExtension; /* Number of loaded extensions */ 1216 void **aExtension; /* Array of shared library handles */ 1217 void (*xTrace)(void*,const char*); /* Trace function */ 1218 void *pTraceArg; /* Argument to the trace function */ 1219 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1220 void *pProfileArg; /* Argument to profile function */ 1221 void *pCommitArg; /* Argument to xCommitCallback() */ 1222 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1223 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1224 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1225 void *pUpdateArg; 1226 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1227 #ifndef SQLITE_OMIT_WAL 1228 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1229 void *pWalArg; 1230 #endif 1231 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1232 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1233 void *pCollNeededArg; 1234 sqlite3_value *pErr; /* Most recent error message */ 1235 union { 1236 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1237 double notUsed1; /* Spacer */ 1238 } u1; 1239 Lookaside lookaside; /* Lookaside malloc configuration */ 1240 #ifndef SQLITE_OMIT_AUTHORIZATION 1241 sqlite3_xauth xAuth; /* Access authorization function */ 1242 void *pAuthArg; /* 1st argument to the access auth function */ 1243 #endif 1244 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1245 int (*xProgress)(void *); /* The progress callback */ 1246 void *pProgressArg; /* Argument to the progress callback */ 1247 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1248 #endif 1249 #ifndef SQLITE_OMIT_VIRTUALTABLE 1250 int nVTrans; /* Allocated size of aVTrans */ 1251 Hash aModule; /* populated by sqlite3_create_module() */ 1252 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1253 VTable **aVTrans; /* Virtual tables with open transactions */ 1254 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1255 #endif 1256 Hash aFunc; /* Hash table of connection functions */ 1257 Hash aCollSeq; /* All collating sequences */ 1258 BusyHandler busyHandler; /* Busy callback */ 1259 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1260 Savepoint *pSavepoint; /* List of active savepoints */ 1261 int busyTimeout; /* Busy handler timeout, in msec */ 1262 int nSavepoint; /* Number of non-transaction savepoints */ 1263 int nStatement; /* Number of nested statement-transactions */ 1264 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1265 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1266 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1267 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1268 /* The following variables are all protected by the STATIC_MASTER 1269 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1270 ** 1271 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1272 ** unlock so that it can proceed. 1273 ** 1274 ** When X.pBlockingConnection==Y, that means that something that X tried 1275 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1276 ** held by Y. 1277 */ 1278 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1279 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1280 void *pUnlockArg; /* Argument to xUnlockNotify */ 1281 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1282 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1283 #endif 1284 #ifdef SQLITE_USER_AUTHENTICATION 1285 sqlite3_userauth auth; /* User authentication information */ 1286 #endif 1287 }; 1288 1289 /* 1290 ** A macro to discover the encoding of a database. 1291 */ 1292 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1293 #define ENC(db) ((db)->enc) 1294 1295 /* 1296 ** Possible values for the sqlite3.flags. 1297 */ 1298 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1299 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1300 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 1301 #define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */ 1302 #define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */ 1303 #define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */ 1304 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1305 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1306 /* DELETE, or UPDATE and return */ 1307 /* the count using a callback. */ 1308 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1309 /* result set is empty */ 1310 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1311 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1312 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1313 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1314 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1315 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1316 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1317 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1318 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1319 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1320 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1321 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1322 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1323 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1324 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1325 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1326 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1327 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1328 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1329 #define SQLITE_CellSizeCk 0x10000000 /* Check btree cell sizes on load */ 1330 #define SQLITE_Fts3Tokenizer 0x20000000 /* Enable fts3_tokenizer(2) */ 1331 1332 1333 /* 1334 ** Bits of the sqlite3.dbOptFlags field that are used by the 1335 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1336 ** selectively disable various optimizations. 1337 */ 1338 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1339 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1340 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1341 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1342 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1343 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1344 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1345 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1346 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1347 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1348 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1349 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1350 #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ 1351 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1352 1353 /* 1354 ** Macros for testing whether or not optimizations are enabled or disabled. 1355 */ 1356 #ifndef SQLITE_OMIT_BUILTIN_TEST 1357 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1358 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1359 #else 1360 #define OptimizationDisabled(db, mask) 0 1361 #define OptimizationEnabled(db, mask) 1 1362 #endif 1363 1364 /* 1365 ** Return true if it OK to factor constant expressions into the initialization 1366 ** code. The argument is a Parse object for the code generator. 1367 */ 1368 #define ConstFactorOk(P) ((P)->okConstFactor) 1369 1370 /* 1371 ** Possible values for the sqlite.magic field. 1372 ** The numbers are obtained at random and have no special meaning, other 1373 ** than being distinct from one another. 1374 */ 1375 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1376 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1377 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1378 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1379 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1380 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1381 1382 /* 1383 ** Each SQL function is defined by an instance of the following 1384 ** structure. For global built-in functions (ex: substr(), max(), count()) 1385 ** a pointer to this structure is held in the sqlite3BuiltinFunctions object. 1386 ** For per-connection application-defined functions, a pointer to this 1387 ** structure is held in the db->aHash hash table. 1388 ** 1389 ** The u.pHash field is used by the global built-ins. The u.pDestructor 1390 ** field is used by per-connection app-def functions. 1391 */ 1392 struct FuncDef { 1393 i8 nArg; /* Number of arguments. -1 means unlimited */ 1394 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1395 void *pUserData; /* User data parameter */ 1396 FuncDef *pNext; /* Next function with same name */ 1397 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ 1398 void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ 1399 const char *zName; /* SQL name of the function. */ 1400 union { 1401 FuncDef *pHash; /* Next with a different name but the same hash */ 1402 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1403 } u; 1404 }; 1405 1406 /* 1407 ** This structure encapsulates a user-function destructor callback (as 1408 ** configured using create_function_v2()) and a reference counter. When 1409 ** create_function_v2() is called to create a function with a destructor, 1410 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1411 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1412 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1413 ** member of each of the new FuncDef objects is set to point to the allocated 1414 ** FuncDestructor. 1415 ** 1416 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1417 ** count on this object is decremented. When it reaches 0, the destructor 1418 ** is invoked and the FuncDestructor structure freed. 1419 */ 1420 struct FuncDestructor { 1421 int nRef; 1422 void (*xDestroy)(void *); 1423 void *pUserData; 1424 }; 1425 1426 /* 1427 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1428 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And 1429 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There 1430 ** are assert() statements in the code to verify this. 1431 */ 1432 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1433 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 1434 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 1435 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 1436 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 1437 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 1438 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 1439 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 1440 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 1441 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 1442 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 1443 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1444 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 1445 ** single query - might change over time */ 1446 1447 /* 1448 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1449 ** used to create the initializers for the FuncDef structures. 1450 ** 1451 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1452 ** Used to create a scalar function definition of a function zName 1453 ** implemented by C function xFunc that accepts nArg arguments. The 1454 ** value passed as iArg is cast to a (void*) and made available 1455 ** as the user-data (sqlite3_user_data()) for the function. If 1456 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1457 ** 1458 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1459 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1460 ** 1461 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 1462 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 1463 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 1464 ** and functions like sqlite_version() that can change, but not during 1465 ** a single query. 1466 ** 1467 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1468 ** Used to create an aggregate function definition implemented by 1469 ** the C functions xStep and xFinal. The first four parameters 1470 ** are interpreted in the same way as the first 4 parameters to 1471 ** FUNCTION(). 1472 ** 1473 ** LIKEFUNC(zName, nArg, pArg, flags) 1474 ** Used to create a scalar function definition of a function zName 1475 ** that accepts nArg arguments and is implemented by a call to C 1476 ** function likeFunc. Argument pArg is cast to a (void *) and made 1477 ** available as the function user-data (sqlite3_user_data()). The 1478 ** FuncDef.flags variable is set to the value passed as the flags 1479 ** parameter. 1480 */ 1481 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1482 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1483 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1484 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1485 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1486 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1487 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1488 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1489 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1490 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1491 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1492 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1493 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1494 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1495 pArg, 0, xFunc, 0, #zName, } 1496 #define LIKEFUNC(zName, nArg, arg, flags) \ 1497 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1498 (void *)arg, 0, likeFunc, 0, #zName, {0} } 1499 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1500 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1501 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1502 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1503 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1504 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1505 1506 /* 1507 ** All current savepoints are stored in a linked list starting at 1508 ** sqlite3.pSavepoint. The first element in the list is the most recently 1509 ** opened savepoint. Savepoints are added to the list by the vdbe 1510 ** OP_Savepoint instruction. 1511 */ 1512 struct Savepoint { 1513 char *zName; /* Savepoint name (nul-terminated) */ 1514 i64 nDeferredCons; /* Number of deferred fk violations */ 1515 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1516 Savepoint *pNext; /* Parent savepoint (if any) */ 1517 }; 1518 1519 /* 1520 ** The following are used as the second parameter to sqlite3Savepoint(), 1521 ** and as the P1 argument to the OP_Savepoint instruction. 1522 */ 1523 #define SAVEPOINT_BEGIN 0 1524 #define SAVEPOINT_RELEASE 1 1525 #define SAVEPOINT_ROLLBACK 2 1526 1527 1528 /* 1529 ** Each SQLite module (virtual table definition) is defined by an 1530 ** instance of the following structure, stored in the sqlite3.aModule 1531 ** hash table. 1532 */ 1533 struct Module { 1534 const sqlite3_module *pModule; /* Callback pointers */ 1535 const char *zName; /* Name passed to create_module() */ 1536 void *pAux; /* pAux passed to create_module() */ 1537 void (*xDestroy)(void *); /* Module destructor function */ 1538 Table *pEpoTab; /* Eponymous table for this module */ 1539 }; 1540 1541 /* 1542 ** information about each column of an SQL table is held in an instance 1543 ** of this structure. 1544 */ 1545 struct Column { 1546 char *zName; /* Name of this column */ 1547 Expr *pDflt; /* Default value of this column */ 1548 char *zDflt; /* Original text of the default value */ 1549 char *zType; /* Data type for this column */ 1550 char *zColl; /* Collating sequence. If NULL, use the default */ 1551 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1552 char affinity; /* One of the SQLITE_AFF_... values */ 1553 u8 szEst; /* Estimated size of value in this column. sizeof(INT)==1 */ 1554 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1555 }; 1556 1557 /* Allowed values for Column.colFlags: 1558 */ 1559 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1560 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1561 1562 /* 1563 ** A "Collating Sequence" is defined by an instance of the following 1564 ** structure. Conceptually, a collating sequence consists of a name and 1565 ** a comparison routine that defines the order of that sequence. 1566 ** 1567 ** If CollSeq.xCmp is NULL, it means that the 1568 ** collating sequence is undefined. Indices built on an undefined 1569 ** collating sequence may not be read or written. 1570 */ 1571 struct CollSeq { 1572 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1573 u8 enc; /* Text encoding handled by xCmp() */ 1574 void *pUser; /* First argument to xCmp() */ 1575 int (*xCmp)(void*,int, const void*, int, const void*); 1576 void (*xDel)(void*); /* Destructor for pUser */ 1577 }; 1578 1579 /* 1580 ** A sort order can be either ASC or DESC. 1581 */ 1582 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1583 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1584 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 1585 1586 /* 1587 ** Column affinity types. 1588 ** 1589 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1590 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1591 ** the speed a little by numbering the values consecutively. 1592 ** 1593 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1594 ** when multiple affinity types are concatenated into a string and 1595 ** used as the P4 operand, they will be more readable. 1596 ** 1597 ** Note also that the numeric types are grouped together so that testing 1598 ** for a numeric type is a single comparison. And the BLOB type is first. 1599 */ 1600 #define SQLITE_AFF_BLOB 'A' 1601 #define SQLITE_AFF_TEXT 'B' 1602 #define SQLITE_AFF_NUMERIC 'C' 1603 #define SQLITE_AFF_INTEGER 'D' 1604 #define SQLITE_AFF_REAL 'E' 1605 1606 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1607 1608 /* 1609 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1610 ** affinity value. 1611 */ 1612 #define SQLITE_AFF_MASK 0x47 1613 1614 /* 1615 ** Additional bit values that can be ORed with an affinity without 1616 ** changing the affinity. 1617 ** 1618 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1619 ** It causes an assert() to fire if either operand to a comparison 1620 ** operator is NULL. It is added to certain comparison operators to 1621 ** prove that the operands are always NOT NULL. 1622 */ 1623 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1624 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1625 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1626 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1627 1628 /* 1629 ** An object of this type is created for each virtual table present in 1630 ** the database schema. 1631 ** 1632 ** If the database schema is shared, then there is one instance of this 1633 ** structure for each database connection (sqlite3*) that uses the shared 1634 ** schema. This is because each database connection requires its own unique 1635 ** instance of the sqlite3_vtab* handle used to access the virtual table 1636 ** implementation. sqlite3_vtab* handles can not be shared between 1637 ** database connections, even when the rest of the in-memory database 1638 ** schema is shared, as the implementation often stores the database 1639 ** connection handle passed to it via the xConnect() or xCreate() method 1640 ** during initialization internally. This database connection handle may 1641 ** then be used by the virtual table implementation to access real tables 1642 ** within the database. So that they appear as part of the callers 1643 ** transaction, these accesses need to be made via the same database 1644 ** connection as that used to execute SQL operations on the virtual table. 1645 ** 1646 ** All VTable objects that correspond to a single table in a shared 1647 ** database schema are initially stored in a linked-list pointed to by 1648 ** the Table.pVTable member variable of the corresponding Table object. 1649 ** When an sqlite3_prepare() operation is required to access the virtual 1650 ** table, it searches the list for the VTable that corresponds to the 1651 ** database connection doing the preparing so as to use the correct 1652 ** sqlite3_vtab* handle in the compiled query. 1653 ** 1654 ** When an in-memory Table object is deleted (for example when the 1655 ** schema is being reloaded for some reason), the VTable objects are not 1656 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1657 ** immediately. Instead, they are moved from the Table.pVTable list to 1658 ** another linked list headed by the sqlite3.pDisconnect member of the 1659 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1660 ** next time a statement is prepared using said sqlite3*. This is done 1661 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1662 ** Refer to comments above function sqlite3VtabUnlockList() for an 1663 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1664 ** list without holding the corresponding sqlite3.mutex mutex. 1665 ** 1666 ** The memory for objects of this type is always allocated by 1667 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1668 ** the first argument. 1669 */ 1670 struct VTable { 1671 sqlite3 *db; /* Database connection associated with this table */ 1672 Module *pMod; /* Pointer to module implementation */ 1673 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1674 int nRef; /* Number of pointers to this structure */ 1675 u8 bConstraint; /* True if constraints are supported */ 1676 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1677 VTable *pNext; /* Next in linked list (see above) */ 1678 }; 1679 1680 /* 1681 ** The schema for each SQL table and view is represented in memory 1682 ** by an instance of the following structure. 1683 */ 1684 struct Table { 1685 char *zName; /* Name of the table or view */ 1686 Column *aCol; /* Information about each column */ 1687 Index *pIndex; /* List of SQL indexes on this table. */ 1688 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1689 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1690 char *zColAff; /* String defining the affinity of each column */ 1691 ExprList *pCheck; /* All CHECK constraints */ 1692 /* ... also used as column name list in a VIEW */ 1693 int tnum; /* Root BTree page for this table */ 1694 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1695 i16 nCol; /* Number of columns in this table */ 1696 u16 nRef; /* Number of pointers to this Table */ 1697 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1698 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1699 #ifdef SQLITE_ENABLE_COSTMULT 1700 LogEst costMult; /* Cost multiplier for using this table */ 1701 #endif 1702 u8 tabFlags; /* Mask of TF_* values */ 1703 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1704 #ifndef SQLITE_OMIT_ALTERTABLE 1705 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1706 #endif 1707 #ifndef SQLITE_OMIT_VIRTUALTABLE 1708 int nModuleArg; /* Number of arguments to the module */ 1709 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 1710 VTable *pVTable; /* List of VTable objects. */ 1711 #endif 1712 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1713 Schema *pSchema; /* Schema that contains this table */ 1714 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1715 }; 1716 1717 /* 1718 ** Allowed values for Table.tabFlags. 1719 ** 1720 ** TF_OOOHidden applies to tables or view that have hidden columns that are 1721 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1722 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1723 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1724 ** special handling during INSERT processing. 1725 */ 1726 #define TF_Readonly 0x01 /* Read-only system table */ 1727 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1728 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1729 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1730 #define TF_Virtual 0x10 /* Is a virtual table */ 1731 #define TF_WithoutRowid 0x20 /* No rowid. PRIMARY KEY is the key */ 1732 #define TF_NoVisibleRowid 0x40 /* No user-visible "rowid" column */ 1733 #define TF_OOOHidden 0x80 /* Out-of-Order hidden columns */ 1734 1735 1736 /* 1737 ** Test to see whether or not a table is a virtual table. This is 1738 ** done as a macro so that it will be optimized out when virtual 1739 ** table support is omitted from the build. 1740 */ 1741 #ifndef SQLITE_OMIT_VIRTUALTABLE 1742 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1743 #else 1744 # define IsVirtual(X) 0 1745 #endif 1746 1747 /* 1748 ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() 1749 ** only works for non-virtual tables (ordinary tables and views) and is 1750 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The 1751 ** IsHiddenColumn() macro is general purpose. 1752 */ 1753 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) 1754 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1755 # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1756 #elif !defined(SQLITE_OMIT_VIRTUALTABLE) 1757 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1758 # define IsOrdinaryHiddenColumn(X) 0 1759 #else 1760 # define IsHiddenColumn(X) 0 1761 # define IsOrdinaryHiddenColumn(X) 0 1762 #endif 1763 1764 1765 /* Does the table have a rowid */ 1766 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1767 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1768 1769 /* 1770 ** Each foreign key constraint is an instance of the following structure. 1771 ** 1772 ** A foreign key is associated with two tables. The "from" table is 1773 ** the table that contains the REFERENCES clause that creates the foreign 1774 ** key. The "to" table is the table that is named in the REFERENCES clause. 1775 ** Consider this example: 1776 ** 1777 ** CREATE TABLE ex1( 1778 ** a INTEGER PRIMARY KEY, 1779 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1780 ** ); 1781 ** 1782 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1783 ** Equivalent names: 1784 ** 1785 ** from-table == child-table 1786 ** to-table == parent-table 1787 ** 1788 ** Each REFERENCES clause generates an instance of the following structure 1789 ** which is attached to the from-table. The to-table need not exist when 1790 ** the from-table is created. The existence of the to-table is not checked. 1791 ** 1792 ** The list of all parents for child Table X is held at X.pFKey. 1793 ** 1794 ** A list of all children for a table named Z (which might not even exist) 1795 ** is held in Schema.fkeyHash with a hash key of Z. 1796 */ 1797 struct FKey { 1798 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1799 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1800 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1801 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1802 FKey *pPrevTo; /* Previous with the same zTo */ 1803 int nCol; /* Number of columns in this key */ 1804 /* EV: R-30323-21917 */ 1805 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1806 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1807 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1808 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1809 int iFrom; /* Index of column in pFrom */ 1810 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1811 } aCol[1]; /* One entry for each of nCol columns */ 1812 }; 1813 1814 /* 1815 ** SQLite supports many different ways to resolve a constraint 1816 ** error. ROLLBACK processing means that a constraint violation 1817 ** causes the operation in process to fail and for the current transaction 1818 ** to be rolled back. ABORT processing means the operation in process 1819 ** fails and any prior changes from that one operation are backed out, 1820 ** but the transaction is not rolled back. FAIL processing means that 1821 ** the operation in progress stops and returns an error code. But prior 1822 ** changes due to the same operation are not backed out and no rollback 1823 ** occurs. IGNORE means that the particular row that caused the constraint 1824 ** error is not inserted or updated. Processing continues and no error 1825 ** is returned. REPLACE means that preexisting database rows that caused 1826 ** a UNIQUE constraint violation are removed so that the new insert or 1827 ** update can proceed. Processing continues and no error is reported. 1828 ** 1829 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1830 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1831 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1832 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1833 ** referenced table row is propagated into the row that holds the 1834 ** foreign key. 1835 ** 1836 ** The following symbolic values are used to record which type 1837 ** of action to take. 1838 */ 1839 #define OE_None 0 /* There is no constraint to check */ 1840 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1841 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1842 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1843 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1844 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1845 1846 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1847 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1848 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1849 #define OE_Cascade 9 /* Cascade the changes */ 1850 1851 #define OE_Default 10 /* Do whatever the default action is */ 1852 1853 1854 /* 1855 ** An instance of the following structure is passed as the first 1856 ** argument to sqlite3VdbeKeyCompare and is used to control the 1857 ** comparison of the two index keys. 1858 ** 1859 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1860 ** are nField slots for the columns of an index then one extra slot 1861 ** for the rowid at the end. 1862 */ 1863 struct KeyInfo { 1864 u32 nRef; /* Number of references to this KeyInfo object */ 1865 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1866 u16 nField; /* Number of key columns in the index */ 1867 u16 nXField; /* Number of columns beyond the key columns */ 1868 sqlite3 *db; /* The database connection */ 1869 u8 *aSortOrder; /* Sort order for each column. */ 1870 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1871 }; 1872 1873 /* 1874 ** This object holds a record which has been parsed out into individual 1875 ** fields, for the purposes of doing a comparison. 1876 ** 1877 ** A record is an object that contains one or more fields of data. 1878 ** Records are used to store the content of a table row and to store 1879 ** the key of an index. A blob encoding of a record is created by 1880 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1881 ** OP_Column opcode. 1882 ** 1883 ** An instance of this object serves as a "key" for doing a search on 1884 ** an index b+tree. The goal of the search is to find the entry that 1885 ** is closed to the key described by this object. This object might hold 1886 ** just a prefix of the key. The number of fields is given by 1887 ** pKeyInfo->nField. 1888 ** 1889 ** The r1 and r2 fields are the values to return if this key is less than 1890 ** or greater than a key in the btree, respectively. These are normally 1891 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree 1892 ** is in DESC order. 1893 ** 1894 ** The key comparison functions actually return default_rc when they find 1895 ** an equals comparison. default_rc can be -1, 0, or +1. If there are 1896 ** multiple entries in the b-tree with the same key (when only looking 1897 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 1898 ** cause the search to find the last match, or +1 to cause the search to 1899 ** find the first match. 1900 ** 1901 ** The key comparison functions will set eqSeen to true if they ever 1902 ** get and equal results when comparing this structure to a b-tree record. 1903 ** When default_rc!=0, the search might end up on the record immediately 1904 ** before the first match or immediately after the last match. The 1905 ** eqSeen field will indicate whether or not an exact match exists in the 1906 ** b-tree. 1907 */ 1908 struct UnpackedRecord { 1909 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1910 Mem *aMem; /* Values */ 1911 u16 nField; /* Number of entries in apMem[] */ 1912 i8 default_rc; /* Comparison result if keys are equal */ 1913 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1914 i8 r1; /* Value to return if (lhs > rhs) */ 1915 i8 r2; /* Value to return if (rhs < lhs) */ 1916 u8 eqSeen; /* True if an equality comparison has been seen */ 1917 }; 1918 1919 1920 /* 1921 ** Each SQL index is represented in memory by an 1922 ** instance of the following structure. 1923 ** 1924 ** The columns of the table that are to be indexed are described 1925 ** by the aiColumn[] field of this structure. For example, suppose 1926 ** we have the following table and index: 1927 ** 1928 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1929 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1930 ** 1931 ** In the Table structure describing Ex1, nCol==3 because there are 1932 ** three columns in the table. In the Index structure describing 1933 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1934 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1935 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1936 ** The second column to be indexed (c1) has an index of 0 in 1937 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1938 ** 1939 ** The Index.onError field determines whether or not the indexed columns 1940 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1941 ** it means this is not a unique index. Otherwise it is a unique index 1942 ** and the value of Index.onError indicate the which conflict resolution 1943 ** algorithm to employ whenever an attempt is made to insert a non-unique 1944 ** element. 1945 ** 1946 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 1947 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 1948 ** table as part of parsing an existing database schema), transient instances 1949 ** of this structure may be created. In this case the Index.tnum variable is 1950 ** used to store the address of a VDBE instruction, not a database page 1951 ** number (it cannot - the database page is not allocated until the VDBE 1952 ** program is executed). See convertToWithoutRowidTable() for details. 1953 */ 1954 struct Index { 1955 char *zName; /* Name of this index */ 1956 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1957 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1958 Table *pTable; /* The SQL table being indexed */ 1959 char *zColAff; /* String defining the affinity of each column */ 1960 Index *pNext; /* The next index associated with the same table */ 1961 Schema *pSchema; /* Schema containing this index */ 1962 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1963 const char **azColl; /* Array of collation sequence names for index */ 1964 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1965 ExprList *aColExpr; /* Column expressions */ 1966 int tnum; /* DB Page containing root of this index */ 1967 LogEst szIdxRow; /* Estimated average row size in bytes */ 1968 u16 nKeyCol; /* Number of columns forming the key */ 1969 u16 nColumn; /* Number of columns stored in the index */ 1970 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1971 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1972 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1973 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1974 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1975 unsigned isCovering:1; /* True if this is a covering index */ 1976 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1977 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1978 int nSample; /* Number of elements in aSample[] */ 1979 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1980 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1981 IndexSample *aSample; /* Samples of the left-most key */ 1982 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1983 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1984 #endif 1985 }; 1986 1987 /* 1988 ** Allowed values for Index.idxType 1989 */ 1990 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1991 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1992 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1993 1994 /* Return true if index X is a PRIMARY KEY index */ 1995 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1996 1997 /* Return true if index X is a UNIQUE index */ 1998 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1999 2000 /* The Index.aiColumn[] values are normally positive integer. But 2001 ** there are some negative values that have special meaning: 2002 */ 2003 #define XN_ROWID (-1) /* Indexed column is the rowid */ 2004 #define XN_EXPR (-2) /* Indexed column is an expression */ 2005 2006 /* 2007 ** Each sample stored in the sqlite_stat3 table is represented in memory 2008 ** using a structure of this type. See documentation at the top of the 2009 ** analyze.c source file for additional information. 2010 */ 2011 struct IndexSample { 2012 void *p; /* Pointer to sampled record */ 2013 int n; /* Size of record in bytes */ 2014 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 2015 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 2016 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 2017 }; 2018 2019 /* 2020 ** Each token coming out of the lexer is an instance of 2021 ** this structure. Tokens are also used as part of an expression. 2022 ** 2023 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 2024 ** may contain random values. Do not make any assumptions about Token.dyn 2025 ** and Token.n when Token.z==0. 2026 */ 2027 struct Token { 2028 const char *z; /* Text of the token. Not NULL-terminated! */ 2029 unsigned int n; /* Number of characters in this token */ 2030 }; 2031 2032 /* 2033 ** An instance of this structure contains information needed to generate 2034 ** code for a SELECT that contains aggregate functions. 2035 ** 2036 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 2037 ** pointer to this structure. The Expr.iColumn field is the index in 2038 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 2039 ** code for that node. 2040 ** 2041 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 2042 ** original Select structure that describes the SELECT statement. These 2043 ** fields do not need to be freed when deallocating the AggInfo structure. 2044 */ 2045 struct AggInfo { 2046 u8 directMode; /* Direct rendering mode means take data directly 2047 ** from source tables rather than from accumulators */ 2048 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 2049 ** than the source table */ 2050 int sortingIdx; /* Cursor number of the sorting index */ 2051 int sortingIdxPTab; /* Cursor number of pseudo-table */ 2052 int nSortingColumn; /* Number of columns in the sorting index */ 2053 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 2054 ExprList *pGroupBy; /* The group by clause */ 2055 struct AggInfo_col { /* For each column used in source tables */ 2056 Table *pTab; /* Source table */ 2057 int iTable; /* Cursor number of the source table */ 2058 int iColumn; /* Column number within the source table */ 2059 int iSorterColumn; /* Column number in the sorting index */ 2060 int iMem; /* Memory location that acts as accumulator */ 2061 Expr *pExpr; /* The original expression */ 2062 } *aCol; 2063 int nColumn; /* Number of used entries in aCol[] */ 2064 int nAccumulator; /* Number of columns that show through to the output. 2065 ** Additional columns are used only as parameters to 2066 ** aggregate functions */ 2067 struct AggInfo_func { /* For each aggregate function */ 2068 Expr *pExpr; /* Expression encoding the function */ 2069 FuncDef *pFunc; /* The aggregate function implementation */ 2070 int iMem; /* Memory location that acts as accumulator */ 2071 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 2072 } *aFunc; 2073 int nFunc; /* Number of entries in aFunc[] */ 2074 }; 2075 2076 /* 2077 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 2078 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 2079 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 2080 ** it uses less memory in the Expr object, which is a big memory user 2081 ** in systems with lots of prepared statements. And few applications 2082 ** need more than about 10 or 20 variables. But some extreme users want 2083 ** to have prepared statements with over 32767 variables, and for them 2084 ** the option is available (at compile-time). 2085 */ 2086 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 2087 typedef i16 ynVar; 2088 #else 2089 typedef int ynVar; 2090 #endif 2091 2092 /* 2093 ** Each node of an expression in the parse tree is an instance 2094 ** of this structure. 2095 ** 2096 ** Expr.op is the opcode. The integer parser token codes are reused 2097 ** as opcodes here. For example, the parser defines TK_GE to be an integer 2098 ** code representing the ">=" operator. This same integer code is reused 2099 ** to represent the greater-than-or-equal-to operator in the expression 2100 ** tree. 2101 ** 2102 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2103 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2104 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2105 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2106 ** then Expr.token contains the name of the function. 2107 ** 2108 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2109 ** binary operator. Either or both may be NULL. 2110 ** 2111 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2112 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2113 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2114 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2115 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2116 ** valid. 2117 ** 2118 ** An expression of the form ID or ID.ID refers to a column in a table. 2119 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2120 ** the integer cursor number of a VDBE cursor pointing to that table and 2121 ** Expr.iColumn is the column number for the specific column. If the 2122 ** expression is used as a result in an aggregate SELECT, then the 2123 ** value is also stored in the Expr.iAgg column in the aggregate so that 2124 ** it can be accessed after all aggregates are computed. 2125 ** 2126 ** If the expression is an unbound variable marker (a question mark 2127 ** character '?' in the original SQL) then the Expr.iTable holds the index 2128 ** number for that variable. 2129 ** 2130 ** If the expression is a subquery then Expr.iColumn holds an integer 2131 ** register number containing the result of the subquery. If the 2132 ** subquery gives a constant result, then iTable is -1. If the subquery 2133 ** gives a different answer at different times during statement processing 2134 ** then iTable is the address of a subroutine that computes the subquery. 2135 ** 2136 ** If the Expr is of type OP_Column, and the table it is selecting from 2137 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2138 ** corresponding table definition. 2139 ** 2140 ** ALLOCATION NOTES: 2141 ** 2142 ** Expr objects can use a lot of memory space in database schema. To 2143 ** help reduce memory requirements, sometimes an Expr object will be 2144 ** truncated. And to reduce the number of memory allocations, sometimes 2145 ** two or more Expr objects will be stored in a single memory allocation, 2146 ** together with Expr.zToken strings. 2147 ** 2148 ** If the EP_Reduced and EP_TokenOnly flags are set when 2149 ** an Expr object is truncated. When EP_Reduced is set, then all 2150 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2151 ** are contained within the same memory allocation. Note, however, that 2152 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2153 ** allocated, regardless of whether or not EP_Reduced is set. 2154 */ 2155 struct Expr { 2156 u8 op; /* Operation performed by this node */ 2157 char affinity; /* The affinity of the column or 0 if not a column */ 2158 u32 flags; /* Various flags. EP_* See below */ 2159 union { 2160 char *zToken; /* Token value. Zero terminated and dequoted */ 2161 int iValue; /* Non-negative integer value if EP_IntValue */ 2162 } u; 2163 2164 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2165 ** space is allocated for the fields below this point. An attempt to 2166 ** access them will result in a segfault or malfunction. 2167 *********************************************************************/ 2168 2169 Expr *pLeft; /* Left subnode */ 2170 Expr *pRight; /* Right subnode */ 2171 union { 2172 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2173 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2174 } x; 2175 2176 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2177 ** space is allocated for the fields below this point. An attempt to 2178 ** access them will result in a segfault or malfunction. 2179 *********************************************************************/ 2180 2181 #if SQLITE_MAX_EXPR_DEPTH>0 2182 int nHeight; /* Height of the tree headed by this node */ 2183 #endif 2184 int iTable; /* TK_COLUMN: cursor number of table holding column 2185 ** TK_REGISTER: register number 2186 ** TK_TRIGGER: 1 -> new, 0 -> old 2187 ** EP_Unlikely: 134217728 times likelihood */ 2188 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2189 ** TK_VARIABLE: variable number (always >= 1). */ 2190 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2191 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2192 u8 op2; /* TK_REGISTER: original value of Expr.op 2193 ** TK_COLUMN: the value of p5 for OP_Column 2194 ** TK_AGG_FUNCTION: nesting depth */ 2195 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2196 Table *pTab; /* Table for TK_COLUMN expressions. */ 2197 }; 2198 2199 /* 2200 ** The following are the meanings of bits in the Expr.flags field. 2201 */ 2202 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2203 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2204 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2205 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2206 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2207 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2208 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2209 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2210 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2211 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2212 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2213 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2214 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2215 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2216 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2217 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2218 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2219 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2220 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2221 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 2222 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2223 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2224 #define EP_Alias 0x400000 /* Is an alias for a result set column */ 2225 2226 /* 2227 ** Combinations of two or more EP_* flags 2228 */ 2229 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2230 2231 /* 2232 ** These macros can be used to test, set, or clear bits in the 2233 ** Expr.flags field. 2234 */ 2235 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2236 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2237 #define ExprSetProperty(E,P) (E)->flags|=(P) 2238 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2239 2240 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2241 ** and Accreditation only. It works like ExprSetProperty() during VVA 2242 ** processes but is a no-op for delivery. 2243 */ 2244 #ifdef SQLITE_DEBUG 2245 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2246 #else 2247 # define ExprSetVVAProperty(E,P) 2248 #endif 2249 2250 /* 2251 ** Macros to determine the number of bytes required by a normal Expr 2252 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2253 ** and an Expr struct with the EP_TokenOnly flag set. 2254 */ 2255 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2256 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2257 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2258 2259 /* 2260 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2261 ** above sqlite3ExprDup() for details. 2262 */ 2263 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2264 2265 /* 2266 ** A list of expressions. Each expression may optionally have a 2267 ** name. An expr/name combination can be used in several ways, such 2268 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2269 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2270 ** also be used as the argument to a function, in which case the a.zName 2271 ** field is not used. 2272 ** 2273 ** By default the Expr.zSpan field holds a human-readable description of 2274 ** the expression that is used in the generation of error messages and 2275 ** column labels. In this case, Expr.zSpan is typically the text of a 2276 ** column expression as it exists in a SELECT statement. However, if 2277 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2278 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2279 ** form is used for name resolution with nested FROM clauses. 2280 */ 2281 struct ExprList { 2282 int nExpr; /* Number of expressions on the list */ 2283 struct ExprList_item { /* For each expression in the list */ 2284 Expr *pExpr; /* The list of expressions */ 2285 char *zName; /* Token associated with this expression */ 2286 char *zSpan; /* Original text of the expression */ 2287 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2288 unsigned done :1; /* A flag to indicate when processing is finished */ 2289 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2290 unsigned reusable :1; /* Constant expression is reusable */ 2291 union { 2292 struct { 2293 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2294 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2295 } x; 2296 int iConstExprReg; /* Register in which Expr value is cached */ 2297 } u; 2298 } *a; /* Alloc a power of two greater or equal to nExpr */ 2299 }; 2300 2301 /* 2302 ** An instance of this structure is used by the parser to record both 2303 ** the parse tree for an expression and the span of input text for an 2304 ** expression. 2305 */ 2306 struct ExprSpan { 2307 Expr *pExpr; /* The expression parse tree */ 2308 const char *zStart; /* First character of input text */ 2309 const char *zEnd; /* One character past the end of input text */ 2310 }; 2311 2312 /* 2313 ** An instance of this structure can hold a simple list of identifiers, 2314 ** such as the list "a,b,c" in the following statements: 2315 ** 2316 ** INSERT INTO t(a,b,c) VALUES ...; 2317 ** CREATE INDEX idx ON t(a,b,c); 2318 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2319 ** 2320 ** The IdList.a.idx field is used when the IdList represents the list of 2321 ** column names after a table name in an INSERT statement. In the statement 2322 ** 2323 ** INSERT INTO t(a,b,c) ... 2324 ** 2325 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2326 */ 2327 struct IdList { 2328 struct IdList_item { 2329 char *zName; /* Name of the identifier */ 2330 int idx; /* Index in some Table.aCol[] of a column named zName */ 2331 } *a; 2332 int nId; /* Number of identifiers on the list */ 2333 }; 2334 2335 /* 2336 ** The bitmask datatype defined below is used for various optimizations. 2337 ** 2338 ** Changing this from a 64-bit to a 32-bit type limits the number of 2339 ** tables in a join to 32 instead of 64. But it also reduces the size 2340 ** of the library by 738 bytes on ix86. 2341 */ 2342 #ifdef SQLITE_BITMASK_TYPE 2343 typedef SQLITE_BITMASK_TYPE Bitmask; 2344 #else 2345 typedef u64 Bitmask; 2346 #endif 2347 2348 /* 2349 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2350 */ 2351 #define BMS ((int)(sizeof(Bitmask)*8)) 2352 2353 /* 2354 ** A bit in a Bitmask 2355 */ 2356 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2357 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2358 2359 /* 2360 ** The following structure describes the FROM clause of a SELECT statement. 2361 ** Each table or subquery in the FROM clause is a separate element of 2362 ** the SrcList.a[] array. 2363 ** 2364 ** With the addition of multiple database support, the following structure 2365 ** can also be used to describe a particular table such as the table that 2366 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2367 ** such a table must be a simple name: ID. But in SQLite, the table can 2368 ** now be identified by a database name, a dot, then the table name: ID.ID. 2369 ** 2370 ** The jointype starts out showing the join type between the current table 2371 ** and the next table on the list. The parser builds the list this way. 2372 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2373 ** jointype expresses the join between the table and the previous table. 2374 ** 2375 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2376 ** contains more than 63 columns and the 64-th or later column is used. 2377 */ 2378 struct SrcList { 2379 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2380 u32 nAlloc; /* Number of entries allocated in a[] below */ 2381 struct SrcList_item { 2382 Schema *pSchema; /* Schema to which this item is fixed */ 2383 char *zDatabase; /* Name of database holding this table */ 2384 char *zName; /* Name of the table */ 2385 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2386 Table *pTab; /* An SQL table corresponding to zName */ 2387 Select *pSelect; /* A SELECT statement used in place of a table name */ 2388 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2389 int regReturn; /* Register holding return address of addrFillSub */ 2390 int regResult; /* Registers holding results of a co-routine */ 2391 struct { 2392 u8 jointype; /* Type of join between this able and the previous */ 2393 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2394 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 2395 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 2396 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2397 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2398 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2399 } fg; 2400 #ifndef SQLITE_OMIT_EXPLAIN 2401 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2402 #endif 2403 int iCursor; /* The VDBE cursor number used to access this table */ 2404 Expr *pOn; /* The ON clause of a join */ 2405 IdList *pUsing; /* The USING clause of a join */ 2406 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2407 union { 2408 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2409 ExprList *pFuncArg; /* Arguments to table-valued-function */ 2410 } u1; 2411 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 2412 } a[1]; /* One entry for each identifier on the list */ 2413 }; 2414 2415 /* 2416 ** Permitted values of the SrcList.a.jointype field 2417 */ 2418 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2419 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2420 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2421 #define JT_LEFT 0x0008 /* Left outer join */ 2422 #define JT_RIGHT 0x0010 /* Right outer join */ 2423 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2424 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2425 2426 2427 /* 2428 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2429 ** and the WhereInfo.wctrlFlags member. 2430 */ 2431 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2432 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2433 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2434 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2435 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2436 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2437 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2438 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2439 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2440 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2441 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2442 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2443 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2444 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2445 #define WHERE_ONEPASS_MULTIROW 0x2000 /* ONEPASS is ok with multiple rows */ 2446 #define WHERE_USE_LIMIT 0x4000 /* There is a constant LIMIT clause */ 2447 2448 /* Allowed return values from sqlite3WhereIsDistinct() 2449 */ 2450 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2451 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2452 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2453 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2454 2455 /* 2456 ** A NameContext defines a context in which to resolve table and column 2457 ** names. The context consists of a list of tables (the pSrcList) field and 2458 ** a list of named expression (pEList). The named expression list may 2459 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2460 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2461 ** pEList corresponds to the result set of a SELECT and is NULL for 2462 ** other statements. 2463 ** 2464 ** NameContexts can be nested. When resolving names, the inner-most 2465 ** context is searched first. If no match is found, the next outer 2466 ** context is checked. If there is still no match, the next context 2467 ** is checked. This process continues until either a match is found 2468 ** or all contexts are check. When a match is found, the nRef member of 2469 ** the context containing the match is incremented. 2470 ** 2471 ** Each subquery gets a new NameContext. The pNext field points to the 2472 ** NameContext in the parent query. Thus the process of scanning the 2473 ** NameContext list corresponds to searching through successively outer 2474 ** subqueries looking for a match. 2475 */ 2476 struct NameContext { 2477 Parse *pParse; /* The parser */ 2478 SrcList *pSrcList; /* One or more tables used to resolve names */ 2479 ExprList *pEList; /* Optional list of result-set columns */ 2480 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2481 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2482 int nRef; /* Number of names resolved by this context */ 2483 int nErr; /* Number of errors encountered while resolving names */ 2484 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2485 }; 2486 2487 /* 2488 ** Allowed values for the NameContext, ncFlags field. 2489 ** 2490 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2491 ** SQLITE_FUNC_MINMAX. 2492 ** 2493 */ 2494 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2495 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2496 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2497 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2498 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2499 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 2500 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2501 2502 /* 2503 ** An instance of the following structure contains all information 2504 ** needed to generate code for a single SELECT statement. 2505 ** 2506 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2507 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2508 ** limit and nOffset to the value of the offset (or 0 if there is not 2509 ** offset). But later on, nLimit and nOffset become the memory locations 2510 ** in the VDBE that record the limit and offset counters. 2511 ** 2512 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2513 ** These addresses must be stored so that we can go back and fill in 2514 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2515 ** the number of columns in P2 can be computed at the same time 2516 ** as the OP_OpenEphm instruction is coded because not 2517 ** enough information about the compound query is known at that point. 2518 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2519 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2520 ** sequences for the ORDER BY clause. 2521 */ 2522 struct Select { 2523 ExprList *pEList; /* The fields of the result */ 2524 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2525 LogEst nSelectRow; /* Estimated number of result rows */ 2526 u32 selFlags; /* Various SF_* values */ 2527 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2528 #if SELECTTRACE_ENABLED 2529 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2530 #endif 2531 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2532 SrcList *pSrc; /* The FROM clause */ 2533 Expr *pWhere; /* The WHERE clause */ 2534 ExprList *pGroupBy; /* The GROUP BY clause */ 2535 Expr *pHaving; /* The HAVING clause */ 2536 ExprList *pOrderBy; /* The ORDER BY clause */ 2537 Select *pPrior; /* Prior select in a compound select statement */ 2538 Select *pNext; /* Next select to the left in a compound */ 2539 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2540 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2541 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2542 }; 2543 2544 /* 2545 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2546 ** "Select Flag". 2547 */ 2548 #define SF_Distinct 0x00001 /* Output should be DISTINCT */ 2549 #define SF_All 0x00002 /* Includes the ALL keyword */ 2550 #define SF_Resolved 0x00004 /* Identifiers have been resolved */ 2551 #define SF_Aggregate 0x00008 /* Contains aggregate functions */ 2552 #define SF_UsesEphemeral 0x00010 /* Uses the OpenEphemeral opcode */ 2553 #define SF_Expanded 0x00020 /* sqlite3SelectExpand() called on this */ 2554 #define SF_HasTypeInfo 0x00040 /* FROM subqueries have Table metadata */ 2555 #define SF_Compound 0x00080 /* Part of a compound query */ 2556 #define SF_Values 0x00100 /* Synthesized from VALUES clause */ 2557 #define SF_MultiValue 0x00200 /* Single VALUES term with multiple rows */ 2558 #define SF_NestedFrom 0x00400 /* Part of a parenthesized FROM clause */ 2559 #define SF_MaybeConvert 0x00800 /* Need convertCompoundSelectToSubquery() */ 2560 #define SF_MinMaxAgg 0x01000 /* Aggregate containing min() or max() */ 2561 #define SF_Recursive 0x02000 /* The recursive part of a recursive CTE */ 2562 #define SF_FixedLimit 0x04000 /* nSelectRow set by a constant LIMIT */ 2563 #define SF_Converted 0x08000 /* By convertCompoundSelectToSubquery() */ 2564 #define SF_IncludeHidden 0x10000 /* Include hidden columns in output */ 2565 2566 2567 /* 2568 ** The results of a SELECT can be distributed in several ways, as defined 2569 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2570 ** Type". 2571 ** 2572 ** SRT_Union Store results as a key in a temporary index 2573 ** identified by pDest->iSDParm. 2574 ** 2575 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2576 ** 2577 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2578 ** set is not empty. 2579 ** 2580 ** SRT_Discard Throw the results away. This is used by SELECT 2581 ** statements within triggers whose only purpose is 2582 ** the side-effects of functions. 2583 ** 2584 ** All of the above are free to ignore their ORDER BY clause. Those that 2585 ** follow must honor the ORDER BY clause. 2586 ** 2587 ** SRT_Output Generate a row of output (using the OP_ResultRow 2588 ** opcode) for each row in the result set. 2589 ** 2590 ** SRT_Mem Only valid if the result is a single column. 2591 ** Store the first column of the first result row 2592 ** in register pDest->iSDParm then abandon the rest 2593 ** of the query. This destination implies "LIMIT 1". 2594 ** 2595 ** SRT_Set The result must be a single column. Store each 2596 ** row of result as the key in table pDest->iSDParm. 2597 ** Apply the affinity pDest->affSdst before storing 2598 ** results. Used to implement "IN (SELECT ...)". 2599 ** 2600 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2601 ** the result there. The cursor is left open after 2602 ** returning. This is like SRT_Table except that 2603 ** this destination uses OP_OpenEphemeral to create 2604 ** the table first. 2605 ** 2606 ** SRT_Coroutine Generate a co-routine that returns a new row of 2607 ** results each time it is invoked. The entry point 2608 ** of the co-routine is stored in register pDest->iSDParm 2609 ** and the result row is stored in pDest->nDest registers 2610 ** starting with pDest->iSdst. 2611 ** 2612 ** SRT_Table Store results in temporary table pDest->iSDParm. 2613 ** SRT_Fifo This is like SRT_EphemTab except that the table 2614 ** is assumed to already be open. SRT_Fifo has 2615 ** the additional property of being able to ignore 2616 ** the ORDER BY clause. 2617 ** 2618 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2619 ** But also use temporary table pDest->iSDParm+1 as 2620 ** a record of all prior results and ignore any duplicate 2621 ** rows. Name means: "Distinct Fifo". 2622 ** 2623 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2624 ** an index). Append a sequence number so that all entries 2625 ** are distinct. 2626 ** 2627 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2628 ** the same record has never been stored before. The 2629 ** index at pDest->iSDParm+1 hold all prior stores. 2630 */ 2631 #define SRT_Union 1 /* Store result as keys in an index */ 2632 #define SRT_Except 2 /* Remove result from a UNION index */ 2633 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2634 #define SRT_Discard 4 /* Do not save the results anywhere */ 2635 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2636 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2637 #define SRT_Queue 7 /* Store result in an queue */ 2638 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2639 2640 /* The ORDER BY clause is ignored for all of the above */ 2641 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2642 2643 #define SRT_Output 9 /* Output each row of result */ 2644 #define SRT_Mem 10 /* Store result in a memory cell */ 2645 #define SRT_Set 11 /* Store results as keys in an index */ 2646 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2647 #define SRT_Coroutine 13 /* Generate a single row of result */ 2648 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2649 2650 /* 2651 ** An instance of this object describes where to put of the results of 2652 ** a SELECT statement. 2653 */ 2654 struct SelectDest { 2655 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2656 char affSdst; /* Affinity used when eDest==SRT_Set */ 2657 int iSDParm; /* A parameter used by the eDest disposal method */ 2658 int iSdst; /* Base register where results are written */ 2659 int nSdst; /* Number of registers allocated */ 2660 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2661 }; 2662 2663 /* 2664 ** During code generation of statements that do inserts into AUTOINCREMENT 2665 ** tables, the following information is attached to the Table.u.autoInc.p 2666 ** pointer of each autoincrement table to record some side information that 2667 ** the code generator needs. We have to keep per-table autoincrement 2668 ** information in case inserts are done within triggers. Triggers do not 2669 ** normally coordinate their activities, but we do need to coordinate the 2670 ** loading and saving of autoincrement information. 2671 */ 2672 struct AutoincInfo { 2673 AutoincInfo *pNext; /* Next info block in a list of them all */ 2674 Table *pTab; /* Table this info block refers to */ 2675 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2676 int regCtr; /* Memory register holding the rowid counter */ 2677 }; 2678 2679 /* 2680 ** Size of the column cache 2681 */ 2682 #ifndef SQLITE_N_COLCACHE 2683 # define SQLITE_N_COLCACHE 10 2684 #endif 2685 2686 /* 2687 ** At least one instance of the following structure is created for each 2688 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2689 ** statement. All such objects are stored in the linked list headed at 2690 ** Parse.pTriggerPrg and deleted once statement compilation has been 2691 ** completed. 2692 ** 2693 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2694 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2695 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2696 ** The Parse.pTriggerPrg list never contains two entries with the same 2697 ** values for both pTrigger and orconf. 2698 ** 2699 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2700 ** accessed (or set to 0 for triggers fired as a result of INSERT 2701 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2702 ** a mask of new.* columns used by the program. 2703 */ 2704 struct TriggerPrg { 2705 Trigger *pTrigger; /* Trigger this program was coded from */ 2706 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2707 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2708 int orconf; /* Default ON CONFLICT policy */ 2709 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2710 }; 2711 2712 /* 2713 ** The yDbMask datatype for the bitmask of all attached databases. 2714 */ 2715 #if SQLITE_MAX_ATTACHED>30 2716 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2717 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2718 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2719 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2720 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2721 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2722 #else 2723 typedef unsigned int yDbMask; 2724 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2725 # define DbMaskZero(M) (M)=0 2726 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2727 # define DbMaskAllZero(M) (M)==0 2728 # define DbMaskNonZero(M) (M)!=0 2729 #endif 2730 2731 /* 2732 ** An SQL parser context. A copy of this structure is passed through 2733 ** the parser and down into all the parser action routine in order to 2734 ** carry around information that is global to the entire parse. 2735 ** 2736 ** The structure is divided into two parts. When the parser and code 2737 ** generate call themselves recursively, the first part of the structure 2738 ** is constant but the second part is reset at the beginning and end of 2739 ** each recursion. 2740 ** 2741 ** The nTableLock and aTableLock variables are only used if the shared-cache 2742 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2743 ** used to store the set of table-locks required by the statement being 2744 ** compiled. Function sqlite3TableLock() is used to add entries to the 2745 ** list. 2746 */ 2747 struct Parse { 2748 sqlite3 *db; /* The main database structure */ 2749 char *zErrMsg; /* An error message */ 2750 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2751 int rc; /* Return code from execution */ 2752 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2753 u8 checkSchema; /* Causes schema cookie check after an error */ 2754 u8 nested; /* Number of nested calls to the parser/code generator */ 2755 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2756 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2757 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2758 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2759 u8 okConstFactor; /* OK to factor out constants */ 2760 u8 disableLookaside; /* Number of times lookaside has been disabled */ 2761 int aTempReg[8]; /* Holding area for temporary registers */ 2762 int nRangeReg; /* Size of the temporary register block */ 2763 int iRangeReg; /* First register in temporary register block */ 2764 int nErr; /* Number of errors seen */ 2765 int nTab; /* Number of previously allocated VDBE cursors */ 2766 int nMem; /* Number of memory cells used so far */ 2767 int nSet; /* Number of sets used so far */ 2768 int nOnce; /* Number of OP_Once instructions so far */ 2769 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2770 int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ 2771 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2772 int ckBase; /* Base register of data during check constraints */ 2773 int iSelfTab; /* Table of an index whose exprs are being coded */ 2774 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2775 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2776 int nLabel; /* Number of labels used */ 2777 int *aLabel; /* Space to hold the labels */ 2778 struct yColCache { 2779 int iTable; /* Table cursor number */ 2780 i16 iColumn; /* Table column number */ 2781 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2782 int iLevel; /* Nesting level */ 2783 int iReg; /* Reg with value of this column. 0 means none. */ 2784 int lru; /* Least recently used entry has the smallest value */ 2785 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2786 ExprList *pConstExpr;/* Constant expressions */ 2787 Token constraintName;/* Name of the constraint currently being parsed */ 2788 yDbMask writeMask; /* Start a write transaction on these databases */ 2789 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2790 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2791 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2792 int regRoot; /* Register holding root page number for new objects */ 2793 int nMaxArg; /* Max args passed to user function by sub-program */ 2794 #if SELECTTRACE_ENABLED 2795 int nSelect; /* Number of SELECT statements seen */ 2796 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2797 #endif 2798 #ifndef SQLITE_OMIT_SHARED_CACHE 2799 int nTableLock; /* Number of locks in aTableLock */ 2800 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2801 #endif 2802 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2803 2804 /* Information used while coding trigger programs. */ 2805 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2806 Table *pTriggerTab; /* Table triggers are being coded for */ 2807 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2808 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2809 u32 oldmask; /* Mask of old.* columns referenced */ 2810 u32 newmask; /* Mask of new.* columns referenced */ 2811 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2812 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2813 u8 disableTriggers; /* True to disable triggers */ 2814 2815 /************************************************************************ 2816 ** Above is constant between recursions. Below is reset before and after 2817 ** each recursion. The boundary between these two regions is determined 2818 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2819 ** in the recursive region. 2820 ************************************************************************/ 2821 2822 ynVar nVar; /* Number of '?' variables seen in the SQL so far */ 2823 int nzVar; /* Number of available slots in azVar[] */ 2824 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2825 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2826 #ifndef SQLITE_OMIT_VIRTUALTABLE 2827 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2828 int nVtabLock; /* Number of virtual tables to lock */ 2829 #endif 2830 int nAlias; /* Number of aliased result set columns */ 2831 int nHeight; /* Expression tree height of current sub-select */ 2832 #ifndef SQLITE_OMIT_EXPLAIN 2833 int iSelectId; /* ID of current select for EXPLAIN output */ 2834 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2835 #endif 2836 char **azVar; /* Pointers to names of parameters */ 2837 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2838 const char *zTail; /* All SQL text past the last semicolon parsed */ 2839 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2840 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2841 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2842 Token sNameToken; /* Token with unqualified schema object name */ 2843 Token sLastToken; /* The last token parsed */ 2844 #ifndef SQLITE_OMIT_VIRTUALTABLE 2845 Token sArg; /* Complete text of a module argument */ 2846 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2847 #endif 2848 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2849 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2850 With *pWith; /* Current WITH clause, or NULL */ 2851 With *pWithToFree; /* Free this WITH object at the end of the parse */ 2852 }; 2853 2854 /* 2855 ** Return true if currently inside an sqlite3_declare_vtab() call. 2856 */ 2857 #ifdef SQLITE_OMIT_VIRTUALTABLE 2858 #define IN_DECLARE_VTAB 0 2859 #else 2860 #define IN_DECLARE_VTAB (pParse->declareVtab) 2861 #endif 2862 2863 /* 2864 ** An instance of the following structure can be declared on a stack and used 2865 ** to save the Parse.zAuthContext value so that it can be restored later. 2866 */ 2867 struct AuthContext { 2868 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2869 Parse *pParse; /* The Parse structure */ 2870 }; 2871 2872 /* 2873 ** Bitfield flags for P5 value in various opcodes. 2874 */ 2875 #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ 2876 /* Also used in P2 (not P5) of OP_Delete */ 2877 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2878 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2879 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2880 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2881 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2882 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2883 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2884 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2885 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2886 #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ 2887 #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ 2888 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2889 #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete: keep cursor position */ 2890 #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ 2891 2892 /* 2893 * Each trigger present in the database schema is stored as an instance of 2894 * struct Trigger. 2895 * 2896 * Pointers to instances of struct Trigger are stored in two ways. 2897 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2898 * database). This allows Trigger structures to be retrieved by name. 2899 * 2. All triggers associated with a single table form a linked list, using the 2900 * pNext member of struct Trigger. A pointer to the first element of the 2901 * linked list is stored as the "pTrigger" member of the associated 2902 * struct Table. 2903 * 2904 * The "step_list" member points to the first element of a linked list 2905 * containing the SQL statements specified as the trigger program. 2906 */ 2907 struct Trigger { 2908 char *zName; /* The name of the trigger */ 2909 char *table; /* The table or view to which the trigger applies */ 2910 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2911 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2912 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2913 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2914 the <column-list> is stored here */ 2915 Schema *pSchema; /* Schema containing the trigger */ 2916 Schema *pTabSchema; /* Schema containing the table */ 2917 TriggerStep *step_list; /* Link list of trigger program steps */ 2918 Trigger *pNext; /* Next trigger associated with the table */ 2919 }; 2920 2921 /* 2922 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2923 ** determine which. 2924 ** 2925 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2926 ** In that cases, the constants below can be ORed together. 2927 */ 2928 #define TRIGGER_BEFORE 1 2929 #define TRIGGER_AFTER 2 2930 2931 /* 2932 * An instance of struct TriggerStep is used to store a single SQL statement 2933 * that is a part of a trigger-program. 2934 * 2935 * Instances of struct TriggerStep are stored in a singly linked list (linked 2936 * using the "pNext" member) referenced by the "step_list" member of the 2937 * associated struct Trigger instance. The first element of the linked list is 2938 * the first step of the trigger-program. 2939 * 2940 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2941 * "SELECT" statement. The meanings of the other members is determined by the 2942 * value of "op" as follows: 2943 * 2944 * (op == TK_INSERT) 2945 * orconf -> stores the ON CONFLICT algorithm 2946 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2947 * this stores a pointer to the SELECT statement. Otherwise NULL. 2948 * zTarget -> Dequoted name of the table to insert into. 2949 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2950 * this stores values to be inserted. Otherwise NULL. 2951 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2952 * statement, then this stores the column-names to be 2953 * inserted into. 2954 * 2955 * (op == TK_DELETE) 2956 * zTarget -> Dequoted name of the table to delete from. 2957 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2958 * Otherwise NULL. 2959 * 2960 * (op == TK_UPDATE) 2961 * zTarget -> Dequoted name of the table to update. 2962 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2963 * Otherwise NULL. 2964 * pExprList -> A list of the columns to update and the expressions to update 2965 * them to. See sqlite3Update() documentation of "pChanges" 2966 * argument. 2967 * 2968 */ 2969 struct TriggerStep { 2970 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2971 u8 orconf; /* OE_Rollback etc. */ 2972 Trigger *pTrig; /* The trigger that this step is a part of */ 2973 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2974 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2975 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2976 ExprList *pExprList; /* SET clause for UPDATE. */ 2977 IdList *pIdList; /* Column names for INSERT */ 2978 TriggerStep *pNext; /* Next in the link-list */ 2979 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2980 }; 2981 2982 /* 2983 ** The following structure contains information used by the sqliteFix... 2984 ** routines as they walk the parse tree to make database references 2985 ** explicit. 2986 */ 2987 typedef struct DbFixer DbFixer; 2988 struct DbFixer { 2989 Parse *pParse; /* The parsing context. Error messages written here */ 2990 Schema *pSchema; /* Fix items to this schema */ 2991 int bVarOnly; /* Check for variable references only */ 2992 const char *zDb; /* Make sure all objects are contained in this database */ 2993 const char *zType; /* Type of the container - used for error messages */ 2994 const Token *pName; /* Name of the container - used for error messages */ 2995 }; 2996 2997 /* 2998 ** An objected used to accumulate the text of a string where we 2999 ** do not necessarily know how big the string will be in the end. 3000 */ 3001 struct StrAccum { 3002 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 3003 char *zBase; /* A base allocation. Not from malloc. */ 3004 char *zText; /* The string collected so far */ 3005 u32 nChar; /* Length of the string so far */ 3006 u32 nAlloc; /* Amount of space allocated in zText */ 3007 u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 3008 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 3009 u8 printfFlags; /* SQLITE_PRINTF flags below */ 3010 }; 3011 #define STRACCUM_NOMEM 1 3012 #define STRACCUM_TOOBIG 2 3013 #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ 3014 #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ 3015 #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ 3016 3017 #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) 3018 3019 3020 /* 3021 ** A pointer to this structure is used to communicate information 3022 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 3023 */ 3024 typedef struct { 3025 sqlite3 *db; /* The database being initialized */ 3026 char **pzErrMsg; /* Error message stored here */ 3027 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 3028 int rc; /* Result code stored here */ 3029 } InitData; 3030 3031 /* 3032 ** Structure containing global configuration data for the SQLite library. 3033 ** 3034 ** This structure also contains some state information. 3035 */ 3036 struct Sqlite3Config { 3037 int bMemstat; /* True to enable memory status */ 3038 int bCoreMutex; /* True to enable core mutexing */ 3039 int bFullMutex; /* True to enable full mutexing */ 3040 int bOpenUri; /* True to interpret filenames as URIs */ 3041 int bUseCis; /* Use covering indices for full-scans */ 3042 int mxStrlen; /* Maximum string length */ 3043 int neverCorrupt; /* Database is always well-formed */ 3044 int szLookaside; /* Default lookaside buffer size */ 3045 int nLookaside; /* Default lookaside buffer count */ 3046 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 3047 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 3048 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 3049 void *pHeap; /* Heap storage space */ 3050 int nHeap; /* Size of pHeap[] */ 3051 int mnReq, mxReq; /* Min and max heap requests sizes */ 3052 sqlite3_int64 szMmap; /* mmap() space per open file */ 3053 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 3054 void *pScratch; /* Scratch memory */ 3055 int szScratch; /* Size of each scratch buffer */ 3056 int nScratch; /* Number of scratch buffers */ 3057 void *pPage; /* Page cache memory */ 3058 int szPage; /* Size of each page in pPage[] */ 3059 int nPage; /* Number of pages in pPage[] */ 3060 int mxParserStack; /* maximum depth of the parser stack */ 3061 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 3062 u32 szPma; /* Maximum Sorter PMA size */ 3063 /* The above might be initialized to non-zero. The following need to always 3064 ** initially be zero, however. */ 3065 int isInit; /* True after initialization has finished */ 3066 int inProgress; /* True while initialization in progress */ 3067 int isMutexInit; /* True after mutexes are initialized */ 3068 int isMallocInit; /* True after malloc is initialized */ 3069 int isPCacheInit; /* True after malloc is initialized */ 3070 int nRefInitMutex; /* Number of users of pInitMutex */ 3071 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 3072 void (*xLog)(void*,int,const char*); /* Function for logging */ 3073 void *pLogArg; /* First argument to xLog() */ 3074 #ifdef SQLITE_ENABLE_SQLLOG 3075 void(*xSqllog)(void*,sqlite3*,const char*, int); 3076 void *pSqllogArg; 3077 #endif 3078 #ifdef SQLITE_VDBE_COVERAGE 3079 /* The following callback (if not NULL) is invoked on every VDBE branch 3080 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 3081 */ 3082 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 3083 void *pVdbeBranchArg; /* 1st argument */ 3084 #endif 3085 #ifndef SQLITE_OMIT_BUILTIN_TEST 3086 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 3087 #endif 3088 int bLocaltimeFault; /* True to fail localtime() calls */ 3089 }; 3090 3091 /* 3092 ** This macro is used inside of assert() statements to indicate that 3093 ** the assert is only valid on a well-formed database. Instead of: 3094 ** 3095 ** assert( X ); 3096 ** 3097 ** One writes: 3098 ** 3099 ** assert( X || CORRUPT_DB ); 3100 ** 3101 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 3102 ** that the database is definitely corrupt, only that it might be corrupt. 3103 ** For most test cases, CORRUPT_DB is set to false using a special 3104 ** sqlite3_test_control(). This enables assert() statements to prove 3105 ** things that are always true for well-formed databases. 3106 */ 3107 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 3108 3109 /* 3110 ** Context pointer passed down through the tree-walk. 3111 */ 3112 struct Walker { 3113 Parse *pParse; /* Parser context. */ 3114 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 3115 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 3116 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 3117 int walkerDepth; /* Number of subqueries */ 3118 u8 eCode; /* A small processing code */ 3119 union { /* Extra data for callback */ 3120 NameContext *pNC; /* Naming context */ 3121 int n; /* A counter */ 3122 int iCur; /* A cursor number */ 3123 SrcList *pSrcList; /* FROM clause */ 3124 struct SrcCount *pSrcCount; /* Counting column references */ 3125 struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ 3126 int *aiCol; /* array of column indexes */ 3127 } u; 3128 }; 3129 3130 /* Forward declarations */ 3131 int sqlite3WalkExpr(Walker*, Expr*); 3132 int sqlite3WalkExprList(Walker*, ExprList*); 3133 int sqlite3WalkSelect(Walker*, Select*); 3134 int sqlite3WalkSelectExpr(Walker*, Select*); 3135 int sqlite3WalkSelectFrom(Walker*, Select*); 3136 int sqlite3ExprWalkNoop(Walker*, Expr*); 3137 3138 /* 3139 ** Return code from the parse-tree walking primitives and their 3140 ** callbacks. 3141 */ 3142 #define WRC_Continue 0 /* Continue down into children */ 3143 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3144 #define WRC_Abort 2 /* Abandon the tree walk */ 3145 3146 /* 3147 ** An instance of this structure represents a set of one or more CTEs 3148 ** (common table expressions) created by a single WITH clause. 3149 */ 3150 struct With { 3151 int nCte; /* Number of CTEs in the WITH clause */ 3152 With *pOuter; /* Containing WITH clause, or NULL */ 3153 struct Cte { /* For each CTE in the WITH clause.... */ 3154 char *zName; /* Name of this CTE */ 3155 ExprList *pCols; /* List of explicit column names, or NULL */ 3156 Select *pSelect; /* The definition of this CTE */ 3157 const char *zCteErr; /* Error message for circular references */ 3158 } a[1]; 3159 }; 3160 3161 #ifdef SQLITE_DEBUG 3162 /* 3163 ** An instance of the TreeView object is used for printing the content of 3164 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3165 */ 3166 struct TreeView { 3167 int iLevel; /* Which level of the tree we are on */ 3168 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3169 }; 3170 #endif /* SQLITE_DEBUG */ 3171 3172 /* 3173 ** Assuming zIn points to the first byte of a UTF-8 character, 3174 ** advance zIn to point to the first byte of the next UTF-8 character. 3175 */ 3176 #define SQLITE_SKIP_UTF8(zIn) { \ 3177 if( (*(zIn++))>=0xc0 ){ \ 3178 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3179 } \ 3180 } 3181 3182 /* 3183 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3184 ** the same name but without the _BKPT suffix. These macros invoke 3185 ** routines that report the line-number on which the error originated 3186 ** using sqlite3_log(). The routines also provide a convenient place 3187 ** to set a debugger breakpoint. 3188 */ 3189 int sqlite3CorruptError(int); 3190 int sqlite3MisuseError(int); 3191 int sqlite3CantopenError(int); 3192 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3193 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3194 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3195 #ifdef SQLITE_DEBUG 3196 int sqlite3NomemError(int); 3197 int sqlite3IoerrnomemError(int); 3198 # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__) 3199 # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__) 3200 #else 3201 # define SQLITE_NOMEM_BKPT SQLITE_NOMEM 3202 # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM 3203 #endif 3204 3205 /* 3206 ** FTS3 and FTS4 both require virtual table support 3207 */ 3208 #if defined(SQLITE_OMIT_VIRTUALTABLE) 3209 # undef SQLITE_ENABLE_FTS3 3210 # undef SQLITE_ENABLE_FTS4 3211 #endif 3212 3213 /* 3214 ** FTS4 is really an extension for FTS3. It is enabled using the 3215 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3216 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3217 */ 3218 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3219 # define SQLITE_ENABLE_FTS3 1 3220 #endif 3221 3222 /* 3223 ** The ctype.h header is needed for non-ASCII systems. It is also 3224 ** needed by FTS3 when FTS3 is included in the amalgamation. 3225 */ 3226 #if !defined(SQLITE_ASCII) || \ 3227 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3228 # include <ctype.h> 3229 #endif 3230 3231 /* 3232 ** The following macros mimic the standard library functions toupper(), 3233 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3234 ** sqlite versions only work for ASCII characters, regardless of locale. 3235 */ 3236 #ifdef SQLITE_ASCII 3237 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3238 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3239 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3240 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3241 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3242 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3243 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3244 #else 3245 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3246 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3247 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3248 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3249 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3250 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3251 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3252 #endif 3253 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3254 int sqlite3IsIdChar(u8); 3255 #endif 3256 3257 /* 3258 ** Internal function prototypes 3259 */ 3260 int sqlite3StrICmp(const char*,const char*); 3261 int sqlite3Strlen30(const char*); 3262 #define sqlite3StrNICmp sqlite3_strnicmp 3263 3264 int sqlite3MallocInit(void); 3265 void sqlite3MallocEnd(void); 3266 void *sqlite3Malloc(u64); 3267 void *sqlite3MallocZero(u64); 3268 void *sqlite3DbMallocZero(sqlite3*, u64); 3269 void *sqlite3DbMallocRaw(sqlite3*, u64); 3270 void *sqlite3DbMallocRawNN(sqlite3*, u64); 3271 char *sqlite3DbStrDup(sqlite3*,const char*); 3272 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3273 void *sqlite3Realloc(void*, u64); 3274 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3275 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3276 void sqlite3DbFree(sqlite3*, void*); 3277 int sqlite3MallocSize(void*); 3278 int sqlite3DbMallocSize(sqlite3*, void*); 3279 void *sqlite3ScratchMalloc(int); 3280 void sqlite3ScratchFree(void*); 3281 void *sqlite3PageMalloc(int); 3282 void sqlite3PageFree(void*); 3283 void sqlite3MemSetDefault(void); 3284 #ifndef SQLITE_OMIT_BUILTIN_TEST 3285 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3286 #endif 3287 int sqlite3HeapNearlyFull(void); 3288 3289 /* 3290 ** On systems with ample stack space and that support alloca(), make 3291 ** use of alloca() to obtain space for large automatic objects. By default, 3292 ** obtain space from malloc(). 3293 ** 3294 ** The alloca() routine never returns NULL. This will cause code paths 3295 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3296 */ 3297 #ifdef SQLITE_USE_ALLOCA 3298 # define sqlite3StackAllocRaw(D,N) alloca(N) 3299 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3300 # define sqlite3StackFree(D,P) 3301 #else 3302 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3303 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3304 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3305 #endif 3306 3307 #ifdef SQLITE_ENABLE_MEMSYS3 3308 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3309 #endif 3310 #ifdef SQLITE_ENABLE_MEMSYS5 3311 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3312 #endif 3313 3314 3315 #ifndef SQLITE_MUTEX_OMIT 3316 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3317 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3318 sqlite3_mutex *sqlite3MutexAlloc(int); 3319 int sqlite3MutexInit(void); 3320 int sqlite3MutexEnd(void); 3321 #endif 3322 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) 3323 void sqlite3MemoryBarrier(void); 3324 #else 3325 # define sqlite3MemoryBarrier() 3326 #endif 3327 3328 sqlite3_int64 sqlite3StatusValue(int); 3329 void sqlite3StatusUp(int, int); 3330 void sqlite3StatusDown(int, int); 3331 void sqlite3StatusHighwater(int, int); 3332 3333 /* Access to mutexes used by sqlite3_status() */ 3334 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3335 sqlite3_mutex *sqlite3MallocMutex(void); 3336 3337 #ifndef SQLITE_OMIT_FLOATING_POINT 3338 int sqlite3IsNaN(double); 3339 #else 3340 # define sqlite3IsNaN(X) 0 3341 #endif 3342 3343 /* 3344 ** An instance of the following structure holds information about SQL 3345 ** functions arguments that are the parameters to the printf() function. 3346 */ 3347 struct PrintfArguments { 3348 int nArg; /* Total number of arguments */ 3349 int nUsed; /* Number of arguments used so far */ 3350 sqlite3_value **apArg; /* The argument values */ 3351 }; 3352 3353 void sqlite3VXPrintf(StrAccum*, const char*, va_list); 3354 void sqlite3XPrintf(StrAccum*, const char*, ...); 3355 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3356 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3357 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3358 void sqlite3DebugPrintf(const char*, ...); 3359 #endif 3360 #if defined(SQLITE_TEST) 3361 void *sqlite3TestTextToPtr(const char*); 3362 #endif 3363 3364 #if defined(SQLITE_DEBUG) 3365 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3366 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3367 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3368 void sqlite3TreeViewWith(TreeView*, const With*, u8); 3369 #endif 3370 3371 3372 void sqlite3SetString(char **, sqlite3*, const char*); 3373 void sqlite3ErrorMsg(Parse*, const char*, ...); 3374 int sqlite3Dequote(char*); 3375 void sqlite3TokenInit(Token*,char*); 3376 int sqlite3KeywordCode(const unsigned char*, int); 3377 int sqlite3RunParser(Parse*, const char*, char **); 3378 void sqlite3FinishCoding(Parse*); 3379 int sqlite3GetTempReg(Parse*); 3380 void sqlite3ReleaseTempReg(Parse*,int); 3381 int sqlite3GetTempRange(Parse*,int); 3382 void sqlite3ReleaseTempRange(Parse*,int,int); 3383 void sqlite3ClearTempRegCache(Parse*); 3384 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3385 Expr *sqlite3Expr(sqlite3*,int,const char*); 3386 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3387 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3388 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3389 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3390 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3391 void sqlite3ExprDelete(sqlite3*, Expr*); 3392 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3393 void sqlite3ExprListSetSortOrder(ExprList*,int); 3394 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3395 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3396 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3397 u32 sqlite3ExprListFlags(const ExprList*); 3398 int sqlite3Init(sqlite3*, char**); 3399 int sqlite3InitCallback(void*, int, char**, char**); 3400 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3401 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3402 void sqlite3ResetOneSchema(sqlite3*,int); 3403 void sqlite3CollapseDatabaseArray(sqlite3*); 3404 void sqlite3CommitInternalChanges(sqlite3*); 3405 void sqlite3DeleteColumnNames(sqlite3*,Table*); 3406 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 3407 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3408 void sqlite3OpenMasterTable(Parse *, int); 3409 Index *sqlite3PrimaryKeyIndex(Table*); 3410 i16 sqlite3ColumnOfIndex(Index*, i16); 3411 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3412 #if SQLITE_ENABLE_HIDDEN_COLUMNS 3413 void sqlite3ColumnPropertiesFromName(Table*, Column*); 3414 #else 3415 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ 3416 #endif 3417 void sqlite3AddColumn(Parse*,Token*); 3418 void sqlite3AddNotNull(Parse*, int); 3419 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3420 void sqlite3AddCheckConstraint(Parse*, Expr*); 3421 void sqlite3AddColumnType(Parse*,Token*); 3422 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3423 void sqlite3AddCollateType(Parse*, Token*); 3424 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3425 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3426 sqlite3_vfs**,char**,char **); 3427 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3428 int sqlite3CodeOnce(Parse *); 3429 3430 #ifdef SQLITE_OMIT_BUILTIN_TEST 3431 # define sqlite3FaultSim(X) SQLITE_OK 3432 #else 3433 int sqlite3FaultSim(int); 3434 #endif 3435 3436 Bitvec *sqlite3BitvecCreate(u32); 3437 int sqlite3BitvecTest(Bitvec*, u32); 3438 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3439 int sqlite3BitvecSet(Bitvec*, u32); 3440 void sqlite3BitvecClear(Bitvec*, u32, void*); 3441 void sqlite3BitvecDestroy(Bitvec*); 3442 u32 sqlite3BitvecSize(Bitvec*); 3443 #ifndef SQLITE_OMIT_BUILTIN_TEST 3444 int sqlite3BitvecBuiltinTest(int,int*); 3445 #endif 3446 3447 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3448 void sqlite3RowSetClear(RowSet*); 3449 void sqlite3RowSetInsert(RowSet*, i64); 3450 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3451 int sqlite3RowSetNext(RowSet*, i64*); 3452 3453 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 3454 3455 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3456 int sqlite3ViewGetColumnNames(Parse*,Table*); 3457 #else 3458 # define sqlite3ViewGetColumnNames(A,B) 0 3459 #endif 3460 3461 #if SQLITE_MAX_ATTACHED>30 3462 int sqlite3DbMaskAllZero(yDbMask); 3463 #endif 3464 void sqlite3DropTable(Parse*, SrcList*, int, int); 3465 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3466 void sqlite3DeleteTable(sqlite3*, Table*); 3467 #ifndef SQLITE_OMIT_AUTOINCREMENT 3468 void sqlite3AutoincrementBegin(Parse *pParse); 3469 void sqlite3AutoincrementEnd(Parse *pParse); 3470 #else 3471 # define sqlite3AutoincrementBegin(X) 3472 # define sqlite3AutoincrementEnd(X) 3473 #endif 3474 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3475 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3476 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3477 int sqlite3IdListIndex(IdList*,const char*); 3478 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3479 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3480 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3481 Token*, Select*, Expr*, IdList*); 3482 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3483 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 3484 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3485 void sqlite3SrcListShiftJoinType(SrcList*); 3486 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3487 void sqlite3IdListDelete(sqlite3*, IdList*); 3488 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3489 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3490 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3491 Expr*, int, int); 3492 void sqlite3DropIndex(Parse*, SrcList*, int); 3493 int sqlite3Select(Parse*, Select*, SelectDest*); 3494 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3495 Expr*,ExprList*,u32,Expr*,Expr*); 3496 void sqlite3SelectDelete(sqlite3*, Select*); 3497 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3498 int sqlite3IsReadOnly(Parse*, Table*, int); 3499 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3500 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3501 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3502 #endif 3503 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3504 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3505 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3506 void sqlite3WhereEnd(WhereInfo*); 3507 LogEst sqlite3WhereOutputRowCount(WhereInfo*); 3508 int sqlite3WhereIsDistinct(WhereInfo*); 3509 int sqlite3WhereIsOrdered(WhereInfo*); 3510 int sqlite3WhereIsSorted(WhereInfo*); 3511 int sqlite3WhereContinueLabel(WhereInfo*); 3512 int sqlite3WhereBreakLabel(WhereInfo*); 3513 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3514 #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ 3515 #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ 3516 #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ 3517 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 3518 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3519 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int); 3520 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3521 void sqlite3ExprCodeMove(Parse*, int, int, int); 3522 void sqlite3ExprCacheStore(Parse*, int, int, int); 3523 void sqlite3ExprCachePush(Parse*); 3524 void sqlite3ExprCachePop(Parse*); 3525 void sqlite3ExprCacheRemove(Parse*, int, int); 3526 void sqlite3ExprCacheClear(Parse*); 3527 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3528 void sqlite3ExprCode(Parse*, Expr*, int); 3529 void sqlite3ExprCodeCopy(Parse*, Expr*, int); 3530 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3531 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3532 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3533 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3534 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3535 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 3536 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3537 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3538 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 3539 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3540 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3541 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3542 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3543 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3544 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3545 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3546 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3547 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3548 void sqlite3Vacuum(Parse*); 3549 int sqlite3RunVacuum(char**, sqlite3*); 3550 char *sqlite3NameFromToken(sqlite3*, Token*); 3551 int sqlite3ExprCompare(Expr*, Expr*, int); 3552 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3553 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3554 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3555 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3556 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3557 Vdbe *sqlite3GetVdbe(Parse*); 3558 #ifndef SQLITE_OMIT_BUILTIN_TEST 3559 void sqlite3PrngSaveState(void); 3560 void sqlite3PrngRestoreState(void); 3561 #endif 3562 void sqlite3RollbackAll(sqlite3*,int); 3563 void sqlite3CodeVerifySchema(Parse*, int); 3564 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3565 void sqlite3BeginTransaction(Parse*, int); 3566 void sqlite3CommitTransaction(Parse*); 3567 void sqlite3RollbackTransaction(Parse*); 3568 void sqlite3Savepoint(Parse*, int, Token*); 3569 void sqlite3CloseSavepoints(sqlite3 *); 3570 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3571 int sqlite3ExprIsConstant(Expr*); 3572 int sqlite3ExprIsConstantNotJoin(Expr*); 3573 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3574 int sqlite3ExprIsTableConstant(Expr*,int); 3575 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3576 int sqlite3ExprContainsSubquery(Expr*); 3577 #endif 3578 int sqlite3ExprIsInteger(Expr*, int*); 3579 int sqlite3ExprCanBeNull(const Expr*); 3580 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3581 int sqlite3IsRowid(const char*); 3582 void sqlite3GenerateRowDelete( 3583 Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); 3584 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); 3585 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3586 void sqlite3ResolvePartIdxLabel(Parse*,int); 3587 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3588 u8,u8,int,int*,int*); 3589 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3590 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); 3591 void sqlite3BeginWriteOperation(Parse*, int, int); 3592 void sqlite3MultiWrite(Parse*); 3593 void sqlite3MayAbort(Parse*); 3594 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3595 void sqlite3UniqueConstraint(Parse*, int, Index*); 3596 void sqlite3RowidConstraint(Parse*, int, Table*); 3597 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3598 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3599 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3600 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3601 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3602 #if SELECTTRACE_ENABLED 3603 void sqlite3SelectSetName(Select*,const char*); 3604 #else 3605 # define sqlite3SelectSetName(A,B) 3606 #endif 3607 void sqlite3InsertBuiltinFuncs(FuncDef*,int); 3608 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); 3609 void sqlite3RegisterBuiltinFunctions(void); 3610 void sqlite3RegisterDateTimeFunctions(void); 3611 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); 3612 int sqlite3SafetyCheckOk(sqlite3*); 3613 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3614 void sqlite3ChangeCookie(Parse*, int); 3615 3616 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3617 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3618 #endif 3619 3620 #ifndef SQLITE_OMIT_TRIGGER 3621 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3622 Expr*,int, int); 3623 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3624 void sqlite3DropTrigger(Parse*, SrcList*, int); 3625 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3626 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3627 Trigger *sqlite3TriggerList(Parse *, Table *); 3628 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3629 int, int, int); 3630 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3631 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3632 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3633 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3634 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3635 Select*,u8); 3636 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3637 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3638 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3639 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3640 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3641 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3642 # define sqlite3IsToplevel(p) ((p)->pToplevel==0) 3643 #else 3644 # define sqlite3TriggersExist(B,C,D,E,F) 0 3645 # define sqlite3DeleteTrigger(A,B) 3646 # define sqlite3DropTriggerPtr(A,B) 3647 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3648 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3649 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3650 # define sqlite3TriggerList(X, Y) 0 3651 # define sqlite3ParseToplevel(p) p 3652 # define sqlite3IsToplevel(p) 1 3653 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3654 #endif 3655 3656 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3657 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3658 void sqlite3DeferForeignKey(Parse*, int); 3659 #ifndef SQLITE_OMIT_AUTHORIZATION 3660 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3661 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3662 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3663 void sqlite3AuthContextPop(AuthContext*); 3664 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3665 #else 3666 # define sqlite3AuthRead(a,b,c,d) 3667 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3668 # define sqlite3AuthContextPush(a,b,c) 3669 # define sqlite3AuthContextPop(a) ((void)(a)) 3670 #endif 3671 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3672 void sqlite3Detach(Parse*, Expr*); 3673 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3674 int sqlite3FixSrcList(DbFixer*, SrcList*); 3675 int sqlite3FixSelect(DbFixer*, Select*); 3676 int sqlite3FixExpr(DbFixer*, Expr*); 3677 int sqlite3FixExprList(DbFixer*, ExprList*); 3678 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3679 int sqlite3AtoF(const char *z, double*, int, u8); 3680 int sqlite3GetInt32(const char *, int*); 3681 int sqlite3Atoi(const char*); 3682 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3683 int sqlite3Utf8CharLen(const char *pData, int nByte); 3684 u32 sqlite3Utf8Read(const u8**); 3685 LogEst sqlite3LogEst(u64); 3686 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3687 #ifndef SQLITE_OMIT_VIRTUALTABLE 3688 LogEst sqlite3LogEstFromDouble(double); 3689 #endif 3690 #if defined(SQLITE_ENABLE_STMT_SCANSTAT) || \ 3691 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 3692 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 3693 u64 sqlite3LogEstToInt(LogEst); 3694 #endif 3695 3696 /* 3697 ** Routines to read and write variable-length integers. These used to 3698 ** be defined locally, but now we use the varint routines in the util.c 3699 ** file. 3700 */ 3701 int sqlite3PutVarint(unsigned char*, u64); 3702 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3703 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3704 int sqlite3VarintLen(u64 v); 3705 3706 /* 3707 ** The common case is for a varint to be a single byte. They following 3708 ** macros handle the common case without a procedure call, but then call 3709 ** the procedure for larger varints. 3710 */ 3711 #define getVarint32(A,B) \ 3712 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3713 #define putVarint32(A,B) \ 3714 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3715 sqlite3PutVarint((A),(B))) 3716 #define getVarint sqlite3GetVarint 3717 #define putVarint sqlite3PutVarint 3718 3719 3720 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 3721 void sqlite3TableAffinity(Vdbe*, Table*, int); 3722 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3723 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3724 char sqlite3ExprAffinity(Expr *pExpr); 3725 int sqlite3Atoi64(const char*, i64*, int, u8); 3726 int sqlite3DecOrHexToI64(const char*, i64*); 3727 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3728 void sqlite3Error(sqlite3*,int); 3729 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3730 u8 sqlite3HexToInt(int h); 3731 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3732 3733 #if defined(SQLITE_NEED_ERR_NAME) 3734 const char *sqlite3ErrName(int); 3735 #endif 3736 3737 const char *sqlite3ErrStr(int); 3738 int sqlite3ReadSchema(Parse *pParse); 3739 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3740 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3741 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3742 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3743 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3744 Expr *sqlite3ExprSkipCollate(Expr*); 3745 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3746 int sqlite3CheckObjectName(Parse *, const char *); 3747 void sqlite3VdbeSetChanges(sqlite3 *, int); 3748 int sqlite3AddInt64(i64*,i64); 3749 int sqlite3SubInt64(i64*,i64); 3750 int sqlite3MulInt64(i64*,i64); 3751 int sqlite3AbsInt32(int); 3752 #ifdef SQLITE_ENABLE_8_3_NAMES 3753 void sqlite3FileSuffix3(const char*, char*); 3754 #else 3755 # define sqlite3FileSuffix3(X,Y) 3756 #endif 3757 u8 sqlite3GetBoolean(const char *z,u8); 3758 3759 const void *sqlite3ValueText(sqlite3_value*, u8); 3760 int sqlite3ValueBytes(sqlite3_value*, u8); 3761 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3762 void(*)(void*)); 3763 void sqlite3ValueSetNull(sqlite3_value*); 3764 void sqlite3ValueFree(sqlite3_value*); 3765 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3766 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3767 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3768 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3769 #ifndef SQLITE_AMALGAMATION 3770 extern const unsigned char sqlite3OpcodeProperty[]; 3771 extern const char sqlite3StrBINARY[]; 3772 extern const unsigned char sqlite3UpperToLower[]; 3773 extern const unsigned char sqlite3CtypeMap[]; 3774 extern const Token sqlite3IntTokens[]; 3775 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3776 extern FuncDefHash sqlite3BuiltinFunctions; 3777 #ifndef SQLITE_OMIT_WSD 3778 extern int sqlite3PendingByte; 3779 #endif 3780 #endif 3781 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3782 void sqlite3Reindex(Parse*, Token*, Token*); 3783 void sqlite3AlterFunctions(void); 3784 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3785 int sqlite3GetToken(const unsigned char *, int *); 3786 void sqlite3NestedParse(Parse*, const char*, ...); 3787 void sqlite3ExpirePreparedStatements(sqlite3*); 3788 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3789 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3790 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 3791 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3792 int sqlite3ResolveExprNames(NameContext*, Expr*); 3793 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 3794 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3795 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3796 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3797 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3798 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3799 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3800 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3801 char sqlite3AffinityType(const char*, u8*); 3802 void sqlite3Analyze(Parse*, Token*, Token*); 3803 int sqlite3InvokeBusyHandler(BusyHandler*); 3804 int sqlite3FindDb(sqlite3*, Token*); 3805 int sqlite3FindDbName(sqlite3 *, const char *); 3806 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3807 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3808 void sqlite3DefaultRowEst(Index*); 3809 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3810 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3811 void sqlite3SchemaClear(void *); 3812 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3813 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3814 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3815 void sqlite3KeyInfoUnref(KeyInfo*); 3816 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3817 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3818 #ifdef SQLITE_DEBUG 3819 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3820 #endif 3821 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3822 void (*)(sqlite3_context*,int,sqlite3_value **), 3823 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3824 FuncDestructor *pDestructor 3825 ); 3826 void sqlite3OomFault(sqlite3*); 3827 void sqlite3OomClear(sqlite3*); 3828 int sqlite3ApiExit(sqlite3 *db, int); 3829 int sqlite3OpenTempDatabase(Parse *); 3830 3831 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3832 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3833 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3834 void sqlite3AppendChar(StrAccum*,int,char); 3835 char *sqlite3StrAccumFinish(StrAccum*); 3836 void sqlite3StrAccumReset(StrAccum*); 3837 void sqlite3SelectDestInit(SelectDest*,int,int); 3838 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3839 3840 void sqlite3BackupRestart(sqlite3_backup *); 3841 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3842 3843 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3844 void sqlite3AnalyzeFunctions(void); 3845 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3846 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3847 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3848 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3849 #endif 3850 3851 /* 3852 ** The interface to the LEMON-generated parser 3853 */ 3854 void *sqlite3ParserAlloc(void*(*)(u64)); 3855 void sqlite3ParserFree(void*, void(*)(void*)); 3856 void sqlite3Parser(void*, int, Token, Parse*); 3857 #ifdef YYTRACKMAXSTACKDEPTH 3858 int sqlite3ParserStackPeak(void*); 3859 #endif 3860 3861 void sqlite3AutoLoadExtensions(sqlite3*); 3862 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3863 void sqlite3CloseExtensions(sqlite3*); 3864 #else 3865 # define sqlite3CloseExtensions(X) 3866 #endif 3867 3868 #ifndef SQLITE_OMIT_SHARED_CACHE 3869 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3870 #else 3871 #define sqlite3TableLock(v,w,x,y,z) 3872 #endif 3873 3874 #ifdef SQLITE_TEST 3875 int sqlite3Utf8To8(unsigned char*); 3876 #endif 3877 3878 #ifdef SQLITE_OMIT_VIRTUALTABLE 3879 # define sqlite3VtabClear(Y) 3880 # define sqlite3VtabSync(X,Y) SQLITE_OK 3881 # define sqlite3VtabRollback(X) 3882 # define sqlite3VtabCommit(X) 3883 # define sqlite3VtabInSync(db) 0 3884 # define sqlite3VtabLock(X) 3885 # define sqlite3VtabUnlock(X) 3886 # define sqlite3VtabUnlockList(X) 3887 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3888 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3889 #else 3890 void sqlite3VtabClear(sqlite3 *db, Table*); 3891 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3892 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3893 int sqlite3VtabRollback(sqlite3 *db); 3894 int sqlite3VtabCommit(sqlite3 *db); 3895 void sqlite3VtabLock(VTable *); 3896 void sqlite3VtabUnlock(VTable *); 3897 void sqlite3VtabUnlockList(sqlite3*); 3898 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3899 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3900 VTable *sqlite3GetVTable(sqlite3*, Table*); 3901 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3902 #endif 3903 int sqlite3VtabEponymousTableInit(Parse*,Module*); 3904 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 3905 void sqlite3VtabMakeWritable(Parse*,Table*); 3906 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3907 void sqlite3VtabFinishParse(Parse*, Token*); 3908 void sqlite3VtabArgInit(Parse*); 3909 void sqlite3VtabArgExtend(Parse*, Token*); 3910 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3911 int sqlite3VtabCallConnect(Parse*, Table*); 3912 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3913 int sqlite3VtabBegin(sqlite3 *, VTable *); 3914 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3915 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3916 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3917 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3918 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3919 void sqlite3ParserReset(Parse*); 3920 int sqlite3Reprepare(Vdbe*); 3921 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3922 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3923 int sqlite3TempInMemory(const sqlite3*); 3924 const char *sqlite3JournalModename(int); 3925 #ifndef SQLITE_OMIT_WAL 3926 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3927 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3928 #endif 3929 #ifndef SQLITE_OMIT_CTE 3930 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3931 void sqlite3WithDelete(sqlite3*,With*); 3932 void sqlite3WithPush(Parse*, With*, u8); 3933 #else 3934 #define sqlite3WithPush(x,y,z) 3935 #define sqlite3WithDelete(x,y) 3936 #endif 3937 3938 /* Declarations for functions in fkey.c. All of these are replaced by 3939 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3940 ** key functionality is available. If OMIT_TRIGGER is defined but 3941 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3942 ** this case foreign keys are parsed, but no other functionality is 3943 ** provided (enforcement of FK constraints requires the triggers sub-system). 3944 */ 3945 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3946 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3947 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3948 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3949 int sqlite3FkRequired(Parse*, Table*, int*, int); 3950 u32 sqlite3FkOldmask(Parse*, Table*); 3951 FKey *sqlite3FkReferences(Table *); 3952 #else 3953 #define sqlite3FkActions(a,b,c,d,e,f) 3954 #define sqlite3FkCheck(a,b,c,d,e,f) 3955 #define sqlite3FkDropTable(a,b,c) 3956 #define sqlite3FkOldmask(a,b) 0 3957 #define sqlite3FkRequired(a,b,c,d) 0 3958 #endif 3959 #ifndef SQLITE_OMIT_FOREIGN_KEY 3960 void sqlite3FkDelete(sqlite3 *, Table*); 3961 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3962 #else 3963 #define sqlite3FkDelete(a,b) 3964 #define sqlite3FkLocateIndex(a,b,c,d,e) 3965 #endif 3966 3967 3968 /* 3969 ** Available fault injectors. Should be numbered beginning with 0. 3970 */ 3971 #define SQLITE_FAULTINJECTOR_MALLOC 0 3972 #define SQLITE_FAULTINJECTOR_COUNT 1 3973 3974 /* 3975 ** The interface to the code in fault.c used for identifying "benign" 3976 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3977 ** is not defined. 3978 */ 3979 #ifndef SQLITE_OMIT_BUILTIN_TEST 3980 void sqlite3BeginBenignMalloc(void); 3981 void sqlite3EndBenignMalloc(void); 3982 #else 3983 #define sqlite3BeginBenignMalloc() 3984 #define sqlite3EndBenignMalloc() 3985 #endif 3986 3987 /* 3988 ** Allowed return values from sqlite3FindInIndex() 3989 */ 3990 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3991 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3992 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3993 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3994 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3995 /* 3996 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3997 */ 3998 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3999 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 4000 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 4001 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 4002 4003 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4004 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 4005 int sqlite3JournalSize(sqlite3_vfs *); 4006 int sqlite3JournalCreate(sqlite3_file *); 4007 int sqlite3JournalExists(sqlite3_file *p); 4008 #else 4009 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 4010 #define sqlite3JournalExists(p) 1 4011 #endif 4012 4013 void sqlite3MemJournalOpen(sqlite3_file *); 4014 int sqlite3MemJournalSize(void); 4015 int sqlite3IsMemJournal(sqlite3_file *); 4016 4017 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 4018 #if SQLITE_MAX_EXPR_DEPTH>0 4019 int sqlite3SelectExprHeight(Select *); 4020 int sqlite3ExprCheckHeight(Parse*, int); 4021 #else 4022 #define sqlite3SelectExprHeight(x) 0 4023 #define sqlite3ExprCheckHeight(x,y) 4024 #endif 4025 4026 u32 sqlite3Get4byte(const u8*); 4027 void sqlite3Put4byte(u8*, u32); 4028 4029 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 4030 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 4031 void sqlite3ConnectionUnlocked(sqlite3 *db); 4032 void sqlite3ConnectionClosed(sqlite3 *db); 4033 #else 4034 #define sqlite3ConnectionBlocked(x,y) 4035 #define sqlite3ConnectionUnlocked(x) 4036 #define sqlite3ConnectionClosed(x) 4037 #endif 4038 4039 #ifdef SQLITE_DEBUG 4040 void sqlite3ParserTrace(FILE*, char *); 4041 #endif 4042 4043 /* 4044 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 4045 ** sqlite3IoTrace is a pointer to a printf-like routine used to 4046 ** print I/O tracing messages. 4047 */ 4048 #ifdef SQLITE_ENABLE_IOTRACE 4049 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 4050 void sqlite3VdbeIOTraceSql(Vdbe*); 4051 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 4052 #else 4053 # define IOTRACE(A) 4054 # define sqlite3VdbeIOTraceSql(X) 4055 #endif 4056 4057 /* 4058 ** These routines are available for the mem2.c debugging memory allocator 4059 ** only. They are used to verify that different "types" of memory 4060 ** allocations are properly tracked by the system. 4061 ** 4062 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 4063 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 4064 ** a single bit set. 4065 ** 4066 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 4067 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4068 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 4069 ** 4070 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 4071 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4072 ** 4073 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 4074 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 4075 ** it might have been allocated by lookaside, except the allocation was 4076 ** too large or lookaside was already full. It is important to verify 4077 ** that allocations that might have been satisfied by lookaside are not 4078 ** passed back to non-lookaside free() routines. Asserts such as the 4079 ** example above are placed on the non-lookaside free() routines to verify 4080 ** this constraint. 4081 ** 4082 ** All of this is no-op for a production build. It only comes into 4083 ** play when the SQLITE_MEMDEBUG compile-time option is used. 4084 */ 4085 #ifdef SQLITE_MEMDEBUG 4086 void sqlite3MemdebugSetType(void*,u8); 4087 int sqlite3MemdebugHasType(void*,u8); 4088 int sqlite3MemdebugNoType(void*,u8); 4089 #else 4090 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 4091 # define sqlite3MemdebugHasType(X,Y) 1 4092 # define sqlite3MemdebugNoType(X,Y) 1 4093 #endif 4094 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 4095 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 4096 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 4097 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 4098 4099 /* 4100 ** Threading interface 4101 */ 4102 #if SQLITE_MAX_WORKER_THREADS>0 4103 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 4104 int sqlite3ThreadJoin(SQLiteThread*, void**); 4105 #endif 4106 4107 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 4108 int sqlite3DbstatRegister(sqlite3*); 4109 #endif 4110 4111 #endif /* _SQLITEINT_H_ */ 4112