1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The following macros are used to cast pointers to integers and 81 ** integers to pointers. The way you do this varies from one compiler 82 ** to the next, so we have developed the following set of #if statements 83 ** to generate appropriate macros for a wide range of compilers. 84 ** 85 ** The correct "ANSI" way to do this is to use the intptr_t type. 86 ** Unfortunately, that typedef is not available on all compilers, or 87 ** if it is available, it requires an #include of specific headers 88 ** that vary from one machine to the next. 89 ** 90 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 91 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 92 ** So we have to define the macros in different ways depending on the 93 ** compiler. 94 */ 95 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 96 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 97 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 98 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 99 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 100 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 101 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 104 #else /* Generates a warning - but it always works */ 105 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 106 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 107 #endif 108 109 /* 110 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 111 ** 0 means mutexes are permanently disable and the library is never 112 ** threadsafe. 1 means the library is serialized which is the highest 113 ** level of threadsafety. 2 means the libary is multithreaded - multiple 114 ** threads can use SQLite as long as no two threads try to use the same 115 ** database connection at the same time. 116 ** 117 ** Older versions of SQLite used an optional THREADSAFE macro. 118 ** We support that for legacy. 119 */ 120 #if !defined(SQLITE_THREADSAFE) 121 #if defined(THREADSAFE) 122 # define SQLITE_THREADSAFE THREADSAFE 123 #else 124 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 125 #endif 126 #endif 127 128 /* 129 ** Powersafe overwrite is on by default. But can be turned off using 130 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 131 */ 132 #ifndef SQLITE_POWERSAFE_OVERWRITE 133 # define SQLITE_POWERSAFE_OVERWRITE 1 134 #endif 135 136 /* 137 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 138 ** It determines whether or not the features related to 139 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 140 ** be overridden at runtime using the sqlite3_config() API. 141 */ 142 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 143 # define SQLITE_DEFAULT_MEMSTATUS 1 144 #endif 145 146 /* 147 ** Exactly one of the following macros must be defined in order to 148 ** specify which memory allocation subsystem to use. 149 ** 150 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 151 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 152 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 153 ** 154 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 155 ** assert() macro is enabled, each call into the Win32 native heap subsystem 156 ** will cause HeapValidate to be called. If heap validation should fail, an 157 ** assertion will be triggered. 158 ** 159 ** (Historical note: There used to be several other options, but we've 160 ** pared it down to just these three.) 161 ** 162 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 163 ** the default. 164 */ 165 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)>1 166 # error "At most one of the following compile-time configuration options\ 167 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG" 168 #endif 169 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)==0 170 # define SQLITE_SYSTEM_MALLOC 1 171 #endif 172 173 /* 174 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 175 ** sizes of memory allocations below this value where possible. 176 */ 177 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 178 # define SQLITE_MALLOC_SOFT_LIMIT 1024 179 #endif 180 181 /* 182 ** We need to define _XOPEN_SOURCE as follows in order to enable 183 ** recursive mutexes on most Unix systems. But Mac OS X is different. 184 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 185 ** so it is omitted there. See ticket #2673. 186 ** 187 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 188 ** implemented on some systems. So we avoid defining it at all 189 ** if it is already defined or if it is unneeded because we are 190 ** not doing a threadsafe build. Ticket #2681. 191 ** 192 ** See also ticket #2741. 193 */ 194 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 195 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 196 #endif 197 198 /* 199 ** The TCL headers are only needed when compiling the TCL bindings. 200 */ 201 #if defined(SQLITE_TCL) || defined(TCLSH) 202 # include <tcl.h> 203 #endif 204 205 /* 206 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 207 ** Setting NDEBUG makes the code smaller and run faster. So the following 208 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 209 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 210 ** feature. 211 */ 212 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 213 # define NDEBUG 1 214 #endif 215 216 /* 217 ** The testcase() macro is used to aid in coverage testing. When 218 ** doing coverage testing, the condition inside the argument to 219 ** testcase() must be evaluated both true and false in order to 220 ** get full branch coverage. The testcase() macro is inserted 221 ** to help ensure adequate test coverage in places where simple 222 ** condition/decision coverage is inadequate. For example, testcase() 223 ** can be used to make sure boundary values are tested. For 224 ** bitmask tests, testcase() can be used to make sure each bit 225 ** is significant and used at least once. On switch statements 226 ** where multiple cases go to the same block of code, testcase() 227 ** can insure that all cases are evaluated. 228 ** 229 */ 230 #ifdef SQLITE_COVERAGE_TEST 231 void sqlite3Coverage(int); 232 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 233 #else 234 # define testcase(X) 235 #endif 236 237 /* 238 ** The TESTONLY macro is used to enclose variable declarations or 239 ** other bits of code that are needed to support the arguments 240 ** within testcase() and assert() macros. 241 */ 242 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 243 # define TESTONLY(X) X 244 #else 245 # define TESTONLY(X) 246 #endif 247 248 /* 249 ** Sometimes we need a small amount of code such as a variable initialization 250 ** to setup for a later assert() statement. We do not want this code to 251 ** appear when assert() is disabled. The following macro is therefore 252 ** used to contain that setup code. The "VVA" acronym stands for 253 ** "Verification, Validation, and Accreditation". In other words, the 254 ** code within VVA_ONLY() will only run during verification processes. 255 */ 256 #ifndef NDEBUG 257 # define VVA_ONLY(X) X 258 #else 259 # define VVA_ONLY(X) 260 #endif 261 262 /* 263 ** The ALWAYS and NEVER macros surround boolean expressions which 264 ** are intended to always be true or false, respectively. Such 265 ** expressions could be omitted from the code completely. But they 266 ** are included in a few cases in order to enhance the resilience 267 ** of SQLite to unexpected behavior - to make the code "self-healing" 268 ** or "ductile" rather than being "brittle" and crashing at the first 269 ** hint of unplanned behavior. 270 ** 271 ** In other words, ALWAYS and NEVER are added for defensive code. 272 ** 273 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 274 ** be true and false so that the unreachable code then specify will 275 ** not be counted as untested code. 276 */ 277 #if defined(SQLITE_COVERAGE_TEST) 278 # define ALWAYS(X) (1) 279 # define NEVER(X) (0) 280 #elif !defined(NDEBUG) 281 # define ALWAYS(X) ((X)?1:(assert(0),0)) 282 # define NEVER(X) ((X)?(assert(0),1):0) 283 #else 284 # define ALWAYS(X) (X) 285 # define NEVER(X) (X) 286 #endif 287 288 /* 289 ** Return true (non-zero) if the input is a integer that is too large 290 ** to fit in 32-bits. This macro is used inside of various testcase() 291 ** macros to verify that we have tested SQLite for large-file support. 292 */ 293 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 294 295 /* 296 ** The macro unlikely() is a hint that surrounds a boolean 297 ** expression that is usually false. Macro likely() surrounds 298 ** a boolean expression that is usually true. GCC is able to 299 ** use these hints to generate better code, sometimes. 300 */ 301 #if defined(__GNUC__) && 0 302 # define likely(X) __builtin_expect((X),1) 303 # define unlikely(X) __builtin_expect((X),0) 304 #else 305 # define likely(X) !!(X) 306 # define unlikely(X) !!(X) 307 #endif 308 309 #include "sqlite3.h" 310 #include "hash.h" 311 #include "parse.h" 312 #include <stdio.h> 313 #include <stdlib.h> 314 #include <string.h> 315 #include <assert.h> 316 #include <stddef.h> 317 318 /* 319 ** If compiling for a processor that lacks floating point support, 320 ** substitute integer for floating-point 321 */ 322 #ifdef SQLITE_OMIT_FLOATING_POINT 323 # define double sqlite_int64 324 # define float sqlite_int64 325 # define LONGDOUBLE_TYPE sqlite_int64 326 # ifndef SQLITE_BIG_DBL 327 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 328 # endif 329 # define SQLITE_OMIT_DATETIME_FUNCS 1 330 # define SQLITE_OMIT_TRACE 1 331 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 332 # undef SQLITE_HAVE_ISNAN 333 #endif 334 #ifndef SQLITE_BIG_DBL 335 # define SQLITE_BIG_DBL (1e99) 336 #endif 337 338 /* 339 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 340 ** afterward. Having this macro allows us to cause the C compiler 341 ** to omit code used by TEMP tables without messy #ifndef statements. 342 */ 343 #ifdef SQLITE_OMIT_TEMPDB 344 #define OMIT_TEMPDB 1 345 #else 346 #define OMIT_TEMPDB 0 347 #endif 348 349 /* 350 ** The "file format" number is an integer that is incremented whenever 351 ** the VDBE-level file format changes. The following macros define the 352 ** the default file format for new databases and the maximum file format 353 ** that the library can read. 354 */ 355 #define SQLITE_MAX_FILE_FORMAT 4 356 #ifndef SQLITE_DEFAULT_FILE_FORMAT 357 # define SQLITE_DEFAULT_FILE_FORMAT 4 358 #endif 359 360 /* 361 ** Determine whether triggers are recursive by default. This can be 362 ** changed at run-time using a pragma. 363 */ 364 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 365 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 366 #endif 367 368 /* 369 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 370 ** on the command-line 371 */ 372 #ifndef SQLITE_TEMP_STORE 373 # define SQLITE_TEMP_STORE 1 374 #endif 375 376 /* 377 ** GCC does not define the offsetof() macro so we'll have to do it 378 ** ourselves. 379 */ 380 #ifndef offsetof 381 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 382 #endif 383 384 /* 385 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 386 ** not, there are still machines out there that use EBCDIC.) 387 */ 388 #if 'A' == '\301' 389 # define SQLITE_EBCDIC 1 390 #else 391 # define SQLITE_ASCII 1 392 #endif 393 394 /* 395 ** Integers of known sizes. These typedefs might change for architectures 396 ** where the sizes very. Preprocessor macros are available so that the 397 ** types can be conveniently redefined at compile-type. Like this: 398 ** 399 ** cc '-DUINTPTR_TYPE=long long int' ... 400 */ 401 #ifndef UINT32_TYPE 402 # ifdef HAVE_UINT32_T 403 # define UINT32_TYPE uint32_t 404 # else 405 # define UINT32_TYPE unsigned int 406 # endif 407 #endif 408 #ifndef UINT16_TYPE 409 # ifdef HAVE_UINT16_T 410 # define UINT16_TYPE uint16_t 411 # else 412 # define UINT16_TYPE unsigned short int 413 # endif 414 #endif 415 #ifndef INT16_TYPE 416 # ifdef HAVE_INT16_T 417 # define INT16_TYPE int16_t 418 # else 419 # define INT16_TYPE short int 420 # endif 421 #endif 422 #ifndef UINT8_TYPE 423 # ifdef HAVE_UINT8_T 424 # define UINT8_TYPE uint8_t 425 # else 426 # define UINT8_TYPE unsigned char 427 # endif 428 #endif 429 #ifndef INT8_TYPE 430 # ifdef HAVE_INT8_T 431 # define INT8_TYPE int8_t 432 # else 433 # define INT8_TYPE signed char 434 # endif 435 #endif 436 #ifndef LONGDOUBLE_TYPE 437 # define LONGDOUBLE_TYPE long double 438 #endif 439 typedef sqlite_int64 i64; /* 8-byte signed integer */ 440 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 441 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 442 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 443 typedef INT16_TYPE i16; /* 2-byte signed integer */ 444 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 445 typedef INT8_TYPE i8; /* 1-byte signed integer */ 446 447 /* 448 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 449 ** that can be stored in a u32 without loss of data. The value 450 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 451 ** have to specify the value in the less intuitive manner shown: 452 */ 453 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 454 455 /* 456 ** The datatype used to store estimates of the number of rows in a 457 ** table or index. This is an unsigned integer type. For 99.9% of 458 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 459 ** can be used at compile-time if desired. 460 */ 461 #ifdef SQLITE_64BIT_STATS 462 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 463 #else 464 typedef u32 tRowcnt; /* 32-bit is the default */ 465 #endif 466 467 /* 468 ** Macros to determine whether the machine is big or little endian, 469 ** evaluated at runtime. 470 */ 471 #ifdef SQLITE_AMALGAMATION 472 const int sqlite3one = 1; 473 #else 474 extern const int sqlite3one; 475 #endif 476 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 477 || defined(__x86_64) || defined(__x86_64__) 478 # define SQLITE_BIGENDIAN 0 479 # define SQLITE_LITTLEENDIAN 1 480 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 481 #else 482 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 483 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 484 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 485 #endif 486 487 /* 488 ** Constants for the largest and smallest possible 64-bit signed integers. 489 ** These macros are designed to work correctly on both 32-bit and 64-bit 490 ** compilers. 491 */ 492 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 493 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 494 495 /* 496 ** Round up a number to the next larger multiple of 8. This is used 497 ** to force 8-byte alignment on 64-bit architectures. 498 */ 499 #define ROUND8(x) (((x)+7)&~7) 500 501 /* 502 ** Round down to the nearest multiple of 8 503 */ 504 #define ROUNDDOWN8(x) ((x)&~7) 505 506 /* 507 ** Assert that the pointer X is aligned to an 8-byte boundary. This 508 ** macro is used only within assert() to verify that the code gets 509 ** all alignment restrictions correct. 510 ** 511 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 512 ** underlying malloc() implemention might return us 4-byte aligned 513 ** pointers. In that case, only verify 4-byte alignment. 514 */ 515 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 516 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 517 #else 518 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 519 #endif 520 521 522 /* 523 ** An instance of the following structure is used to store the busy-handler 524 ** callback for a given sqlite handle. 525 ** 526 ** The sqlite.busyHandler member of the sqlite struct contains the busy 527 ** callback for the database handle. Each pager opened via the sqlite 528 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 529 ** callback is currently invoked only from within pager.c. 530 */ 531 typedef struct BusyHandler BusyHandler; 532 struct BusyHandler { 533 int (*xFunc)(void *,int); /* The busy callback */ 534 void *pArg; /* First arg to busy callback */ 535 int nBusy; /* Incremented with each busy call */ 536 }; 537 538 /* 539 ** Name of the master database table. The master database table 540 ** is a special table that holds the names and attributes of all 541 ** user tables and indices. 542 */ 543 #define MASTER_NAME "sqlite_master" 544 #define TEMP_MASTER_NAME "sqlite_temp_master" 545 546 /* 547 ** The root-page of the master database table. 548 */ 549 #define MASTER_ROOT 1 550 551 /* 552 ** The name of the schema table. 553 */ 554 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 555 556 /* 557 ** A convenience macro that returns the number of elements in 558 ** an array. 559 */ 560 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 561 562 /* 563 ** The following value as a destructor means to use sqlite3DbFree(). 564 ** The sqlite3DbFree() routine requires two parameters instead of the 565 ** one parameter that destructors normally want. So we have to introduce 566 ** this magic value that the code knows to handle differently. Any 567 ** pointer will work here as long as it is distinct from SQLITE_STATIC 568 ** and SQLITE_TRANSIENT. 569 */ 570 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 571 572 /* 573 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 574 ** not support Writable Static Data (WSD) such as global and static variables. 575 ** All variables must either be on the stack or dynamically allocated from 576 ** the heap. When WSD is unsupported, the variable declarations scattered 577 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 578 ** macro is used for this purpose. And instead of referencing the variable 579 ** directly, we use its constant as a key to lookup the run-time allocated 580 ** buffer that holds real variable. The constant is also the initializer 581 ** for the run-time allocated buffer. 582 ** 583 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 584 ** macros become no-ops and have zero performance impact. 585 */ 586 #ifdef SQLITE_OMIT_WSD 587 #define SQLITE_WSD const 588 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 589 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 590 int sqlite3_wsd_init(int N, int J); 591 void *sqlite3_wsd_find(void *K, int L); 592 #else 593 #define SQLITE_WSD 594 #define GLOBAL(t,v) v 595 #define sqlite3GlobalConfig sqlite3Config 596 #endif 597 598 /* 599 ** The following macros are used to suppress compiler warnings and to 600 ** make it clear to human readers when a function parameter is deliberately 601 ** left unused within the body of a function. This usually happens when 602 ** a function is called via a function pointer. For example the 603 ** implementation of an SQL aggregate step callback may not use the 604 ** parameter indicating the number of arguments passed to the aggregate, 605 ** if it knows that this is enforced elsewhere. 606 ** 607 ** When a function parameter is not used at all within the body of a function, 608 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 609 ** However, these macros may also be used to suppress warnings related to 610 ** parameters that may or may not be used depending on compilation options. 611 ** For example those parameters only used in assert() statements. In these 612 ** cases the parameters are named as per the usual conventions. 613 */ 614 #define UNUSED_PARAMETER(x) (void)(x) 615 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 616 617 /* 618 ** Forward references to structures 619 */ 620 typedef struct AggInfo AggInfo; 621 typedef struct AuthContext AuthContext; 622 typedef struct AutoincInfo AutoincInfo; 623 typedef struct Bitvec Bitvec; 624 typedef struct CollSeq CollSeq; 625 typedef struct Column Column; 626 typedef struct Db Db; 627 typedef struct Schema Schema; 628 typedef struct Expr Expr; 629 typedef struct ExprList ExprList; 630 typedef struct ExprSpan ExprSpan; 631 typedef struct FKey FKey; 632 typedef struct FuncDestructor FuncDestructor; 633 typedef struct FuncDef FuncDef; 634 typedef struct FuncDefHash FuncDefHash; 635 typedef struct IdList IdList; 636 typedef struct Index Index; 637 typedef struct IndexSample IndexSample; 638 typedef struct KeyClass KeyClass; 639 typedef struct KeyInfo KeyInfo; 640 typedef struct Lookaside Lookaside; 641 typedef struct LookasideSlot LookasideSlot; 642 typedef struct Module Module; 643 typedef struct NameContext NameContext; 644 typedef struct Parse Parse; 645 typedef struct RowSet RowSet; 646 typedef struct Savepoint Savepoint; 647 typedef struct Select Select; 648 typedef struct SrcList SrcList; 649 typedef struct StrAccum StrAccum; 650 typedef struct Table Table; 651 typedef struct TableLock TableLock; 652 typedef struct Token Token; 653 typedef struct Trigger Trigger; 654 typedef struct TriggerPrg TriggerPrg; 655 typedef struct TriggerStep TriggerStep; 656 typedef struct UnpackedRecord UnpackedRecord; 657 typedef struct VTable VTable; 658 typedef struct VtabCtx VtabCtx; 659 typedef struct Walker Walker; 660 typedef struct WherePlan WherePlan; 661 typedef struct WhereInfo WhereInfo; 662 typedef struct WhereLevel WhereLevel; 663 664 /* 665 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 666 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 667 ** pointer types (i.e. FuncDef) defined above. 668 */ 669 #include "btree.h" 670 #include "vdbe.h" 671 #include "pager.h" 672 #include "pcache.h" 673 674 #include "os.h" 675 #include "mutex.h" 676 677 678 /* 679 ** Each database file to be accessed by the system is an instance 680 ** of the following structure. There are normally two of these structures 681 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 682 ** aDb[1] is the database file used to hold temporary tables. Additional 683 ** databases may be attached. 684 */ 685 struct Db { 686 char *zName; /* Name of this database */ 687 Btree *pBt; /* The B*Tree structure for this database file */ 688 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 689 u8 safety_level; /* How aggressive at syncing data to disk */ 690 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 691 }; 692 693 /* 694 ** An instance of the following structure stores a database schema. 695 ** 696 ** Most Schema objects are associated with a Btree. The exception is 697 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 698 ** In shared cache mode, a single Schema object can be shared by multiple 699 ** Btrees that refer to the same underlying BtShared object. 700 ** 701 ** Schema objects are automatically deallocated when the last Btree that 702 ** references them is destroyed. The TEMP Schema is manually freed by 703 ** sqlite3_close(). 704 * 705 ** A thread must be holding a mutex on the corresponding Btree in order 706 ** to access Schema content. This implies that the thread must also be 707 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 708 ** For a TEMP Schema, only the connection mutex is required. 709 */ 710 struct Schema { 711 int schema_cookie; /* Database schema version number for this file */ 712 int iGeneration; /* Generation counter. Incremented with each change */ 713 Hash tblHash; /* All tables indexed by name */ 714 Hash idxHash; /* All (named) indices indexed by name */ 715 Hash trigHash; /* All triggers indexed by name */ 716 Hash fkeyHash; /* All foreign keys by referenced table name */ 717 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 718 u8 file_format; /* Schema format version for this file */ 719 u8 enc; /* Text encoding used by this database */ 720 u16 flags; /* Flags associated with this schema */ 721 int cache_size; /* Number of pages to use in the cache */ 722 }; 723 724 /* 725 ** These macros can be used to test, set, or clear bits in the 726 ** Db.pSchema->flags field. 727 */ 728 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 729 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 730 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 731 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 732 733 /* 734 ** Allowed values for the DB.pSchema->flags field. 735 ** 736 ** The DB_SchemaLoaded flag is set after the database schema has been 737 ** read into internal hash tables. 738 ** 739 ** DB_UnresetViews means that one or more views have column names that 740 ** have been filled out. If the schema changes, these column names might 741 ** changes and so the view will need to be reset. 742 */ 743 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 744 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 745 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 746 747 /* 748 ** The number of different kinds of things that can be limited 749 ** using the sqlite3_limit() interface. 750 */ 751 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 752 753 /* 754 ** Lookaside malloc is a set of fixed-size buffers that can be used 755 ** to satisfy small transient memory allocation requests for objects 756 ** associated with a particular database connection. The use of 757 ** lookaside malloc provides a significant performance enhancement 758 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 759 ** SQL statements. 760 ** 761 ** The Lookaside structure holds configuration information about the 762 ** lookaside malloc subsystem. Each available memory allocation in 763 ** the lookaside subsystem is stored on a linked list of LookasideSlot 764 ** objects. 765 ** 766 ** Lookaside allocations are only allowed for objects that are associated 767 ** with a particular database connection. Hence, schema information cannot 768 ** be stored in lookaside because in shared cache mode the schema information 769 ** is shared by multiple database connections. Therefore, while parsing 770 ** schema information, the Lookaside.bEnabled flag is cleared so that 771 ** lookaside allocations are not used to construct the schema objects. 772 */ 773 struct Lookaside { 774 u16 sz; /* Size of each buffer in bytes */ 775 u8 bEnabled; /* False to disable new lookaside allocations */ 776 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 777 int nOut; /* Number of buffers currently checked out */ 778 int mxOut; /* Highwater mark for nOut */ 779 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 780 LookasideSlot *pFree; /* List of available buffers */ 781 void *pStart; /* First byte of available memory space */ 782 void *pEnd; /* First byte past end of available space */ 783 }; 784 struct LookasideSlot { 785 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 786 }; 787 788 /* 789 ** A hash table for function definitions. 790 ** 791 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 792 ** Collisions are on the FuncDef.pHash chain. 793 */ 794 struct FuncDefHash { 795 FuncDef *a[23]; /* Hash table for functions */ 796 }; 797 798 /* 799 ** Each database connection is an instance of the following structure. 800 */ 801 struct sqlite3 { 802 sqlite3_vfs *pVfs; /* OS Interface */ 803 struct Vdbe *pVdbe; /* List of active virtual machines */ 804 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 805 sqlite3_mutex *mutex; /* Connection mutex */ 806 Db *aDb; /* All backends */ 807 int nDb; /* Number of backends currently in use */ 808 int flags; /* Miscellaneous flags. See below */ 809 i64 lastRowid; /* ROWID of most recent insert (see above) */ 810 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 811 int errCode; /* Most recent error code (SQLITE_*) */ 812 int errMask; /* & result codes with this before returning */ 813 u8 autoCommit; /* The auto-commit flag. */ 814 u8 temp_store; /* 1: file 2: memory 0: default */ 815 u8 mallocFailed; /* True if we have seen a malloc failure */ 816 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 817 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 818 u8 suppressErr; /* Do not issue error messages if true */ 819 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 820 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 821 int nextPagesize; /* Pagesize after VACUUM if >0 */ 822 u32 magic; /* Magic number for detect library misuse */ 823 int nChange; /* Value returned by sqlite3_changes() */ 824 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 825 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 826 struct sqlite3InitInfo { /* Information used during initialization */ 827 int newTnum; /* Rootpage of table being initialized */ 828 u8 iDb; /* Which db file is being initialized */ 829 u8 busy; /* TRUE if currently initializing */ 830 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 831 } init; 832 int activeVdbeCnt; /* Number of VDBEs currently executing */ 833 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 834 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 835 int nExtension; /* Number of loaded extensions */ 836 void **aExtension; /* Array of shared library handles */ 837 void (*xTrace)(void*,const char*); /* Trace function */ 838 void *pTraceArg; /* Argument to the trace function */ 839 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 840 void *pProfileArg; /* Argument to profile function */ 841 void *pCommitArg; /* Argument to xCommitCallback() */ 842 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 843 void *pRollbackArg; /* Argument to xRollbackCallback() */ 844 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 845 void *pUpdateArg; 846 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 847 #ifndef SQLITE_OMIT_WAL 848 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 849 void *pWalArg; 850 #endif 851 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 852 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 853 void *pCollNeededArg; 854 sqlite3_value *pErr; /* Most recent error message */ 855 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 856 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 857 union { 858 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 859 double notUsed1; /* Spacer */ 860 } u1; 861 Lookaside lookaside; /* Lookaside malloc configuration */ 862 #ifndef SQLITE_OMIT_AUTHORIZATION 863 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 864 /* Access authorization function */ 865 void *pAuthArg; /* 1st argument to the access auth function */ 866 #endif 867 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 868 int (*xProgress)(void *); /* The progress callback */ 869 void *pProgressArg; /* Argument to the progress callback */ 870 int nProgressOps; /* Number of opcodes for progress callback */ 871 #endif 872 #ifndef SQLITE_OMIT_VIRTUALTABLE 873 int nVTrans; /* Allocated size of aVTrans */ 874 Hash aModule; /* populated by sqlite3_create_module() */ 875 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 876 VTable **aVTrans; /* Virtual tables with open transactions */ 877 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 878 #endif 879 FuncDefHash aFunc; /* Hash table of connection functions */ 880 Hash aCollSeq; /* All collating sequences */ 881 BusyHandler busyHandler; /* Busy callback */ 882 Db aDbStatic[2]; /* Static space for the 2 default backends */ 883 Savepoint *pSavepoint; /* List of active savepoints */ 884 int busyTimeout; /* Busy handler timeout, in msec */ 885 int nSavepoint; /* Number of non-transaction savepoints */ 886 int nStatement; /* Number of nested statement-transactions */ 887 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 888 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 889 890 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 891 /* The following variables are all protected by the STATIC_MASTER 892 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 893 ** 894 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 895 ** unlock so that it can proceed. 896 ** 897 ** When X.pBlockingConnection==Y, that means that something that X tried 898 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 899 ** held by Y. 900 */ 901 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 902 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 903 void *pUnlockArg; /* Argument to xUnlockNotify */ 904 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 905 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 906 #endif 907 }; 908 909 /* 910 ** A macro to discover the encoding of a database. 911 */ 912 #define ENC(db) ((db)->aDb[0].pSchema->enc) 913 914 /* 915 ** Possible values for the sqlite3.flags. 916 */ 917 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 918 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 919 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 920 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 921 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 922 /* DELETE, or UPDATE and return */ 923 /* the count using a callback. */ 924 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 925 /* result set is empty */ 926 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 927 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 928 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 929 /* 0x00020000 Unused */ 930 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 931 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 932 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 933 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 934 #define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */ 935 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 936 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 937 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 938 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 939 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 940 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 941 #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ 942 #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */ 943 944 /* 945 ** Bits of the sqlite3.flags field that are used by the 946 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 947 ** These must be the low-order bits of the flags field. 948 */ 949 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 950 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 951 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 952 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 953 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 954 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 955 #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ 956 #define SQLITE_IdxRealAsInt 0x80 /* Store REAL as INT in indices */ 957 #define SQLITE_DistinctOpt 0x80 /* DISTINCT using indexes */ 958 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 959 960 /* 961 ** Possible values for the sqlite.magic field. 962 ** The numbers are obtained at random and have no special meaning, other 963 ** than being distinct from one another. 964 */ 965 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 966 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 967 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 968 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 969 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 970 971 /* 972 ** Each SQL function is defined by an instance of the following 973 ** structure. A pointer to this structure is stored in the sqlite.aFunc 974 ** hash table. When multiple functions have the same name, the hash table 975 ** points to a linked list of these structures. 976 */ 977 struct FuncDef { 978 i16 nArg; /* Number of arguments. -1 means unlimited */ 979 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 980 u8 flags; /* Some combination of SQLITE_FUNC_* */ 981 void *pUserData; /* User data parameter */ 982 FuncDef *pNext; /* Next function with same name */ 983 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 984 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 985 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 986 char *zName; /* SQL name of the function. */ 987 FuncDef *pHash; /* Next with a different name but the same hash */ 988 FuncDestructor *pDestructor; /* Reference counted destructor function */ 989 }; 990 991 /* 992 ** This structure encapsulates a user-function destructor callback (as 993 ** configured using create_function_v2()) and a reference counter. When 994 ** create_function_v2() is called to create a function with a destructor, 995 ** a single object of this type is allocated. FuncDestructor.nRef is set to 996 ** the number of FuncDef objects created (either 1 or 3, depending on whether 997 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 998 ** member of each of the new FuncDef objects is set to point to the allocated 999 ** FuncDestructor. 1000 ** 1001 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1002 ** count on this object is decremented. When it reaches 0, the destructor 1003 ** is invoked and the FuncDestructor structure freed. 1004 */ 1005 struct FuncDestructor { 1006 int nRef; 1007 void (*xDestroy)(void *); 1008 void *pUserData; 1009 }; 1010 1011 /* 1012 ** Possible values for FuncDef.flags 1013 */ 1014 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1015 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1016 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1017 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1018 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 1019 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ 1020 1021 /* 1022 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1023 ** used to create the initializers for the FuncDef structures. 1024 ** 1025 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1026 ** Used to create a scalar function definition of a function zName 1027 ** implemented by C function xFunc that accepts nArg arguments. The 1028 ** value passed as iArg is cast to a (void*) and made available 1029 ** as the user-data (sqlite3_user_data()) for the function. If 1030 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1031 ** 1032 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1033 ** Used to create an aggregate function definition implemented by 1034 ** the C functions xStep and xFinal. The first four parameters 1035 ** are interpreted in the same way as the first 4 parameters to 1036 ** FUNCTION(). 1037 ** 1038 ** LIKEFUNC(zName, nArg, pArg, flags) 1039 ** Used to create a scalar function definition of a function zName 1040 ** that accepts nArg arguments and is implemented by a call to C 1041 ** function likeFunc. Argument pArg is cast to a (void *) and made 1042 ** available as the function user-data (sqlite3_user_data()). The 1043 ** FuncDef.flags variable is set to the value passed as the flags 1044 ** parameter. 1045 */ 1046 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1047 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1048 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1049 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1050 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1051 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1052 #define LIKEFUNC(zName, nArg, arg, flags) \ 1053 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1054 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1055 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1056 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1057 1058 /* 1059 ** All current savepoints are stored in a linked list starting at 1060 ** sqlite3.pSavepoint. The first element in the list is the most recently 1061 ** opened savepoint. Savepoints are added to the list by the vdbe 1062 ** OP_Savepoint instruction. 1063 */ 1064 struct Savepoint { 1065 char *zName; /* Savepoint name (nul-terminated) */ 1066 i64 nDeferredCons; /* Number of deferred fk violations */ 1067 Savepoint *pNext; /* Parent savepoint (if any) */ 1068 }; 1069 1070 /* 1071 ** The following are used as the second parameter to sqlite3Savepoint(), 1072 ** and as the P1 argument to the OP_Savepoint instruction. 1073 */ 1074 #define SAVEPOINT_BEGIN 0 1075 #define SAVEPOINT_RELEASE 1 1076 #define SAVEPOINT_ROLLBACK 2 1077 1078 1079 /* 1080 ** Each SQLite module (virtual table definition) is defined by an 1081 ** instance of the following structure, stored in the sqlite3.aModule 1082 ** hash table. 1083 */ 1084 struct Module { 1085 const sqlite3_module *pModule; /* Callback pointers */ 1086 const char *zName; /* Name passed to create_module() */ 1087 void *pAux; /* pAux passed to create_module() */ 1088 void (*xDestroy)(void *); /* Module destructor function */ 1089 }; 1090 1091 /* 1092 ** information about each column of an SQL table is held in an instance 1093 ** of this structure. 1094 */ 1095 struct Column { 1096 char *zName; /* Name of this column */ 1097 Expr *pDflt; /* Default value of this column */ 1098 char *zDflt; /* Original text of the default value */ 1099 char *zType; /* Data type for this column */ 1100 char *zColl; /* Collating sequence. If NULL, use the default */ 1101 u8 notNull; /* True if there is a NOT NULL constraint */ 1102 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1103 char affinity; /* One of the SQLITE_AFF_... values */ 1104 #ifndef SQLITE_OMIT_VIRTUALTABLE 1105 u8 isHidden; /* True if this column is 'hidden' */ 1106 #endif 1107 }; 1108 1109 /* 1110 ** A "Collating Sequence" is defined by an instance of the following 1111 ** structure. Conceptually, a collating sequence consists of a name and 1112 ** a comparison routine that defines the order of that sequence. 1113 ** 1114 ** There may two separate implementations of the collation function, one 1115 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1116 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1117 ** native byte order. When a collation sequence is invoked, SQLite selects 1118 ** the version that will require the least expensive encoding 1119 ** translations, if any. 1120 ** 1121 ** The CollSeq.pUser member variable is an extra parameter that passed in 1122 ** as the first argument to the UTF-8 comparison function, xCmp. 1123 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1124 ** xCmp16. 1125 ** 1126 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1127 ** collating sequence is undefined. Indices built on an undefined 1128 ** collating sequence may not be read or written. 1129 */ 1130 struct CollSeq { 1131 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1132 u8 enc; /* Text encoding handled by xCmp() */ 1133 void *pUser; /* First argument to xCmp() */ 1134 int (*xCmp)(void*,int, const void*, int, const void*); 1135 void (*xDel)(void*); /* Destructor for pUser */ 1136 }; 1137 1138 /* 1139 ** A sort order can be either ASC or DESC. 1140 */ 1141 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1142 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1143 1144 /* 1145 ** Column affinity types. 1146 ** 1147 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1148 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1149 ** the speed a little by numbering the values consecutively. 1150 ** 1151 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1152 ** when multiple affinity types are concatenated into a string and 1153 ** used as the P4 operand, they will be more readable. 1154 ** 1155 ** Note also that the numeric types are grouped together so that testing 1156 ** for a numeric type is a single comparison. 1157 */ 1158 #define SQLITE_AFF_TEXT 'a' 1159 #define SQLITE_AFF_NONE 'b' 1160 #define SQLITE_AFF_NUMERIC 'c' 1161 #define SQLITE_AFF_INTEGER 'd' 1162 #define SQLITE_AFF_REAL 'e' 1163 1164 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1165 1166 /* 1167 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1168 ** affinity value. 1169 */ 1170 #define SQLITE_AFF_MASK 0x67 1171 1172 /* 1173 ** Additional bit values that can be ORed with an affinity without 1174 ** changing the affinity. 1175 */ 1176 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1177 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1178 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1179 1180 /* 1181 ** An object of this type is created for each virtual table present in 1182 ** the database schema. 1183 ** 1184 ** If the database schema is shared, then there is one instance of this 1185 ** structure for each database connection (sqlite3*) that uses the shared 1186 ** schema. This is because each database connection requires its own unique 1187 ** instance of the sqlite3_vtab* handle used to access the virtual table 1188 ** implementation. sqlite3_vtab* handles can not be shared between 1189 ** database connections, even when the rest of the in-memory database 1190 ** schema is shared, as the implementation often stores the database 1191 ** connection handle passed to it via the xConnect() or xCreate() method 1192 ** during initialization internally. This database connection handle may 1193 ** then be used by the virtual table implementation to access real tables 1194 ** within the database. So that they appear as part of the callers 1195 ** transaction, these accesses need to be made via the same database 1196 ** connection as that used to execute SQL operations on the virtual table. 1197 ** 1198 ** All VTable objects that correspond to a single table in a shared 1199 ** database schema are initially stored in a linked-list pointed to by 1200 ** the Table.pVTable member variable of the corresponding Table object. 1201 ** When an sqlite3_prepare() operation is required to access the virtual 1202 ** table, it searches the list for the VTable that corresponds to the 1203 ** database connection doing the preparing so as to use the correct 1204 ** sqlite3_vtab* handle in the compiled query. 1205 ** 1206 ** When an in-memory Table object is deleted (for example when the 1207 ** schema is being reloaded for some reason), the VTable objects are not 1208 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1209 ** immediately. Instead, they are moved from the Table.pVTable list to 1210 ** another linked list headed by the sqlite3.pDisconnect member of the 1211 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1212 ** next time a statement is prepared using said sqlite3*. This is done 1213 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1214 ** Refer to comments above function sqlite3VtabUnlockList() for an 1215 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1216 ** list without holding the corresponding sqlite3.mutex mutex. 1217 ** 1218 ** The memory for objects of this type is always allocated by 1219 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1220 ** the first argument. 1221 */ 1222 struct VTable { 1223 sqlite3 *db; /* Database connection associated with this table */ 1224 Module *pMod; /* Pointer to module implementation */ 1225 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1226 int nRef; /* Number of pointers to this structure */ 1227 u8 bConstraint; /* True if constraints are supported */ 1228 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1229 VTable *pNext; /* Next in linked list (see above) */ 1230 }; 1231 1232 /* 1233 ** Each SQL table is represented in memory by an instance of the 1234 ** following structure. 1235 ** 1236 ** Table.zName is the name of the table. The case of the original 1237 ** CREATE TABLE statement is stored, but case is not significant for 1238 ** comparisons. 1239 ** 1240 ** Table.nCol is the number of columns in this table. Table.aCol is a 1241 ** pointer to an array of Column structures, one for each column. 1242 ** 1243 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1244 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1245 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1246 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1247 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1248 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1249 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1250 ** 1251 ** Table.tnum is the page number for the root BTree page of the table in the 1252 ** database file. If Table.iDb is the index of the database table backend 1253 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1254 ** holds temporary tables and indices. If TF_Ephemeral is set 1255 ** then the table is stored in a file that is automatically deleted 1256 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1257 ** refers VDBE cursor number that holds the table open, not to the root 1258 ** page number. Transient tables are used to hold the results of a 1259 ** sub-query that appears instead of a real table name in the FROM clause 1260 ** of a SELECT statement. 1261 */ 1262 struct Table { 1263 char *zName; /* Name of the table or view */ 1264 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1265 int nCol; /* Number of columns in this table */ 1266 Column *aCol; /* Information about each column */ 1267 Index *pIndex; /* List of SQL indexes on this table. */ 1268 int tnum; /* Root BTree node for this table (see note above) */ 1269 tRowcnt nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1270 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1271 u16 nRef; /* Number of pointers to this Table */ 1272 u8 tabFlags; /* Mask of TF_* values */ 1273 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1274 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1275 char *zColAff; /* String defining the affinity of each column */ 1276 #ifndef SQLITE_OMIT_CHECK 1277 Expr *pCheck; /* The AND of all CHECK constraints */ 1278 #endif 1279 #ifndef SQLITE_OMIT_ALTERTABLE 1280 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1281 #endif 1282 #ifndef SQLITE_OMIT_VIRTUALTABLE 1283 VTable *pVTable; /* List of VTable objects. */ 1284 int nModuleArg; /* Number of arguments to the module */ 1285 char **azModuleArg; /* Text of all module args. [0] is module name */ 1286 #endif 1287 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1288 Schema *pSchema; /* Schema that contains this table */ 1289 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1290 }; 1291 1292 /* 1293 ** Allowed values for Tabe.tabFlags. 1294 */ 1295 #define TF_Readonly 0x01 /* Read-only system table */ 1296 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1297 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1298 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1299 #define TF_Virtual 0x10 /* Is a virtual table */ 1300 1301 1302 /* 1303 ** Test to see whether or not a table is a virtual table. This is 1304 ** done as a macro so that it will be optimized out when virtual 1305 ** table support is omitted from the build. 1306 */ 1307 #ifndef SQLITE_OMIT_VIRTUALTABLE 1308 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1309 # define IsHiddenColumn(X) ((X)->isHidden) 1310 #else 1311 # define IsVirtual(X) 0 1312 # define IsHiddenColumn(X) 0 1313 #endif 1314 1315 /* 1316 ** Each foreign key constraint is an instance of the following structure. 1317 ** 1318 ** A foreign key is associated with two tables. The "from" table is 1319 ** the table that contains the REFERENCES clause that creates the foreign 1320 ** key. The "to" table is the table that is named in the REFERENCES clause. 1321 ** Consider this example: 1322 ** 1323 ** CREATE TABLE ex1( 1324 ** a INTEGER PRIMARY KEY, 1325 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1326 ** ); 1327 ** 1328 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1329 ** 1330 ** Each REFERENCES clause generates an instance of the following structure 1331 ** which is attached to the from-table. The to-table need not exist when 1332 ** the from-table is created. The existence of the to-table is not checked. 1333 */ 1334 struct FKey { 1335 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1336 FKey *pNextFrom; /* Next foreign key in pFrom */ 1337 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1338 FKey *pNextTo; /* Next foreign key on table named zTo */ 1339 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1340 int nCol; /* Number of columns in this key */ 1341 /* EV: R-30323-21917 */ 1342 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1343 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1344 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1345 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1346 int iFrom; /* Index of column in pFrom */ 1347 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1348 } aCol[1]; /* One entry for each of nCol column s */ 1349 }; 1350 1351 /* 1352 ** SQLite supports many different ways to resolve a constraint 1353 ** error. ROLLBACK processing means that a constraint violation 1354 ** causes the operation in process to fail and for the current transaction 1355 ** to be rolled back. ABORT processing means the operation in process 1356 ** fails and any prior changes from that one operation are backed out, 1357 ** but the transaction is not rolled back. FAIL processing means that 1358 ** the operation in progress stops and returns an error code. But prior 1359 ** changes due to the same operation are not backed out and no rollback 1360 ** occurs. IGNORE means that the particular row that caused the constraint 1361 ** error is not inserted or updated. Processing continues and no error 1362 ** is returned. REPLACE means that preexisting database rows that caused 1363 ** a UNIQUE constraint violation are removed so that the new insert or 1364 ** update can proceed. Processing continues and no error is reported. 1365 ** 1366 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1367 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1368 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1369 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1370 ** referenced table row is propagated into the row that holds the 1371 ** foreign key. 1372 ** 1373 ** The following symbolic values are used to record which type 1374 ** of action to take. 1375 */ 1376 #define OE_None 0 /* There is no constraint to check */ 1377 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1378 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1379 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1380 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1381 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1382 1383 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1384 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1385 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1386 #define OE_Cascade 9 /* Cascade the changes */ 1387 1388 #define OE_Default 99 /* Do whatever the default action is */ 1389 1390 1391 /* 1392 ** An instance of the following structure is passed as the first 1393 ** argument to sqlite3VdbeKeyCompare and is used to control the 1394 ** comparison of the two index keys. 1395 */ 1396 struct KeyInfo { 1397 sqlite3 *db; /* The database connection */ 1398 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1399 u16 nField; /* Number of entries in aColl[] */ 1400 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1401 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1402 }; 1403 1404 /* 1405 ** An instance of the following structure holds information about a 1406 ** single index record that has already been parsed out into individual 1407 ** values. 1408 ** 1409 ** A record is an object that contains one or more fields of data. 1410 ** Records are used to store the content of a table row and to store 1411 ** the key of an index. A blob encoding of a record is created by 1412 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1413 ** OP_Column opcode. 1414 ** 1415 ** This structure holds a record that has already been disassembled 1416 ** into its constituent fields. 1417 */ 1418 struct UnpackedRecord { 1419 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1420 u16 nField; /* Number of entries in apMem[] */ 1421 u8 flags; /* Boolean settings. UNPACKED_... below */ 1422 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1423 Mem *aMem; /* Values */ 1424 }; 1425 1426 /* 1427 ** Allowed values of UnpackedRecord.flags 1428 */ 1429 #define UNPACKED_INCRKEY 0x01 /* Make this key an epsilon larger */ 1430 #define UNPACKED_PREFIX_MATCH 0x02 /* A prefix match is considered OK */ 1431 #define UNPACKED_PREFIX_SEARCH 0x04 /* Ignore final (rowid) field */ 1432 1433 /* 1434 ** Each SQL index is represented in memory by an 1435 ** instance of the following structure. 1436 ** 1437 ** The columns of the table that are to be indexed are described 1438 ** by the aiColumn[] field of this structure. For example, suppose 1439 ** we have the following table and index: 1440 ** 1441 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1442 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1443 ** 1444 ** In the Table structure describing Ex1, nCol==3 because there are 1445 ** three columns in the table. In the Index structure describing 1446 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1447 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1448 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1449 ** The second column to be indexed (c1) has an index of 0 in 1450 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1451 ** 1452 ** The Index.onError field determines whether or not the indexed columns 1453 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1454 ** it means this is not a unique index. Otherwise it is a unique index 1455 ** and the value of Index.onError indicate the which conflict resolution 1456 ** algorithm to employ whenever an attempt is made to insert a non-unique 1457 ** element. 1458 */ 1459 struct Index { 1460 char *zName; /* Name of this index */ 1461 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1462 tRowcnt *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1463 Table *pTable; /* The SQL table being indexed */ 1464 char *zColAff; /* String defining the affinity of each column */ 1465 Index *pNext; /* The next index associated with the same table */ 1466 Schema *pSchema; /* Schema containing this index */ 1467 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1468 char **azColl; /* Array of collation sequence names for index */ 1469 int nColumn; /* Number of columns in the table used by this index */ 1470 int tnum; /* Page containing root of this index in database file */ 1471 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1472 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1473 u8 bUnordered; /* Use this index for == or IN queries only */ 1474 #ifdef SQLITE_ENABLE_STAT3 1475 int nSample; /* Number of elements in aSample[] */ 1476 tRowcnt avgEq; /* Average nEq value for key values not in aSample */ 1477 IndexSample *aSample; /* Samples of the left-most key */ 1478 #endif 1479 }; 1480 1481 /* 1482 ** Each sample stored in the sqlite_stat3 table is represented in memory 1483 ** using a structure of this type. See documentation at the top of the 1484 ** analyze.c source file for additional information. 1485 */ 1486 struct IndexSample { 1487 union { 1488 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1489 double r; /* Value if eType is SQLITE_FLOAT */ 1490 i64 i; /* Value if eType is SQLITE_INTEGER */ 1491 } u; 1492 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1493 int nByte; /* Size in byte of text or blob. */ 1494 tRowcnt nEq; /* Est. number of rows where the key equals this sample */ 1495 tRowcnt nLt; /* Est. number of rows where key is less than this sample */ 1496 tRowcnt nDLt; /* Est. number of distinct keys less than this sample */ 1497 }; 1498 1499 /* 1500 ** Each token coming out of the lexer is an instance of 1501 ** this structure. Tokens are also used as part of an expression. 1502 ** 1503 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1504 ** may contain random values. Do not make any assumptions about Token.dyn 1505 ** and Token.n when Token.z==0. 1506 */ 1507 struct Token { 1508 const char *z; /* Text of the token. Not NULL-terminated! */ 1509 unsigned int n; /* Number of characters in this token */ 1510 }; 1511 1512 /* 1513 ** An instance of this structure contains information needed to generate 1514 ** code for a SELECT that contains aggregate functions. 1515 ** 1516 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1517 ** pointer to this structure. The Expr.iColumn field is the index in 1518 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1519 ** code for that node. 1520 ** 1521 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1522 ** original Select structure that describes the SELECT statement. These 1523 ** fields do not need to be freed when deallocating the AggInfo structure. 1524 */ 1525 struct AggInfo { 1526 u8 directMode; /* Direct rendering mode means take data directly 1527 ** from source tables rather than from accumulators */ 1528 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1529 ** than the source table */ 1530 int sortingIdx; /* Cursor number of the sorting index */ 1531 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1532 int nSortingColumn; /* Number of columns in the sorting index */ 1533 ExprList *pGroupBy; /* The group by clause */ 1534 struct AggInfo_col { /* For each column used in source tables */ 1535 Table *pTab; /* Source table */ 1536 int iTable; /* Cursor number of the source table */ 1537 int iColumn; /* Column number within the source table */ 1538 int iSorterColumn; /* Column number in the sorting index */ 1539 int iMem; /* Memory location that acts as accumulator */ 1540 Expr *pExpr; /* The original expression */ 1541 } *aCol; 1542 int nColumn; /* Number of used entries in aCol[] */ 1543 int nAccumulator; /* Number of columns that show through to the output. 1544 ** Additional columns are used only as parameters to 1545 ** aggregate functions */ 1546 struct AggInfo_func { /* For each aggregate function */ 1547 Expr *pExpr; /* Expression encoding the function */ 1548 FuncDef *pFunc; /* The aggregate function implementation */ 1549 int iMem; /* Memory location that acts as accumulator */ 1550 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1551 } *aFunc; 1552 int nFunc; /* Number of entries in aFunc[] */ 1553 }; 1554 1555 /* 1556 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1557 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1558 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1559 ** it uses less memory in the Expr object, which is a big memory user 1560 ** in systems with lots of prepared statements. And few applications 1561 ** need more than about 10 or 20 variables. But some extreme users want 1562 ** to have prepared statements with over 32767 variables, and for them 1563 ** the option is available (at compile-time). 1564 */ 1565 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1566 typedef i16 ynVar; 1567 #else 1568 typedef int ynVar; 1569 #endif 1570 1571 /* 1572 ** Each node of an expression in the parse tree is an instance 1573 ** of this structure. 1574 ** 1575 ** Expr.op is the opcode. The integer parser token codes are reused 1576 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1577 ** code representing the ">=" operator. This same integer code is reused 1578 ** to represent the greater-than-or-equal-to operator in the expression 1579 ** tree. 1580 ** 1581 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1582 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1583 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1584 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1585 ** then Expr.token contains the name of the function. 1586 ** 1587 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1588 ** binary operator. Either or both may be NULL. 1589 ** 1590 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1591 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1592 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1593 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1594 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1595 ** valid. 1596 ** 1597 ** An expression of the form ID or ID.ID refers to a column in a table. 1598 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1599 ** the integer cursor number of a VDBE cursor pointing to that table and 1600 ** Expr.iColumn is the column number for the specific column. If the 1601 ** expression is used as a result in an aggregate SELECT, then the 1602 ** value is also stored in the Expr.iAgg column in the aggregate so that 1603 ** it can be accessed after all aggregates are computed. 1604 ** 1605 ** If the expression is an unbound variable marker (a question mark 1606 ** character '?' in the original SQL) then the Expr.iTable holds the index 1607 ** number for that variable. 1608 ** 1609 ** If the expression is a subquery then Expr.iColumn holds an integer 1610 ** register number containing the result of the subquery. If the 1611 ** subquery gives a constant result, then iTable is -1. If the subquery 1612 ** gives a different answer at different times during statement processing 1613 ** then iTable is the address of a subroutine that computes the subquery. 1614 ** 1615 ** If the Expr is of type OP_Column, and the table it is selecting from 1616 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1617 ** corresponding table definition. 1618 ** 1619 ** ALLOCATION NOTES: 1620 ** 1621 ** Expr objects can use a lot of memory space in database schema. To 1622 ** help reduce memory requirements, sometimes an Expr object will be 1623 ** truncated. And to reduce the number of memory allocations, sometimes 1624 ** two or more Expr objects will be stored in a single memory allocation, 1625 ** together with Expr.zToken strings. 1626 ** 1627 ** If the EP_Reduced and EP_TokenOnly flags are set when 1628 ** an Expr object is truncated. When EP_Reduced is set, then all 1629 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1630 ** are contained within the same memory allocation. Note, however, that 1631 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1632 ** allocated, regardless of whether or not EP_Reduced is set. 1633 */ 1634 struct Expr { 1635 u8 op; /* Operation performed by this node */ 1636 char affinity; /* The affinity of the column or 0 if not a column */ 1637 u16 flags; /* Various flags. EP_* See below */ 1638 union { 1639 char *zToken; /* Token value. Zero terminated and dequoted */ 1640 int iValue; /* Non-negative integer value if EP_IntValue */ 1641 } u; 1642 1643 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1644 ** space is allocated for the fields below this point. An attempt to 1645 ** access them will result in a segfault or malfunction. 1646 *********************************************************************/ 1647 1648 Expr *pLeft; /* Left subnode */ 1649 Expr *pRight; /* Right subnode */ 1650 union { 1651 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1652 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1653 } x; 1654 CollSeq *pColl; /* The collation type of the column or 0 */ 1655 1656 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1657 ** space is allocated for the fields below this point. An attempt to 1658 ** access them will result in a segfault or malfunction. 1659 *********************************************************************/ 1660 1661 int iTable; /* TK_COLUMN: cursor number of table holding column 1662 ** TK_REGISTER: register number 1663 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1664 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1665 ** TK_VARIABLE: variable number (always >= 1). */ 1666 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1667 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1668 u8 flags2; /* Second set of flags. EP2_... */ 1669 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1670 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1671 Table *pTab; /* Table for TK_COLUMN expressions. */ 1672 #if SQLITE_MAX_EXPR_DEPTH>0 1673 int nHeight; /* Height of the tree headed by this node */ 1674 #endif 1675 }; 1676 1677 /* 1678 ** The following are the meanings of bits in the Expr.flags field. 1679 */ 1680 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1681 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1682 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1683 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1684 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1685 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1686 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1687 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1688 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1689 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1690 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1691 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1692 #define EP_Hint 0x1000 /* Optimizer hint. Not required for correctness */ 1693 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1694 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1695 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1696 1697 /* 1698 ** The following are the meanings of bits in the Expr.flags2 field. 1699 */ 1700 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1701 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1702 1703 /* 1704 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1705 ** flag on an expression structure. This flag is used for VV&A only. The 1706 ** routine is implemented as a macro that only works when in debugging mode, 1707 ** so as not to burden production code. 1708 */ 1709 #ifdef SQLITE_DEBUG 1710 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1711 #else 1712 # define ExprSetIrreducible(X) 1713 #endif 1714 1715 /* 1716 ** These macros can be used to test, set, or clear bits in the 1717 ** Expr.flags field. 1718 */ 1719 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1720 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1721 #define ExprSetProperty(E,P) (E)->flags|=(P) 1722 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1723 1724 /* 1725 ** Macros to determine the number of bytes required by a normal Expr 1726 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1727 ** and an Expr struct with the EP_TokenOnly flag set. 1728 */ 1729 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1730 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1731 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1732 1733 /* 1734 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1735 ** above sqlite3ExprDup() for details. 1736 */ 1737 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1738 1739 /* 1740 ** A list of expressions. Each expression may optionally have a 1741 ** name. An expr/name combination can be used in several ways, such 1742 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1743 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1744 ** also be used as the argument to a function, in which case the a.zName 1745 ** field is not used. 1746 */ 1747 struct ExprList { 1748 int nExpr; /* Number of expressions on the list */ 1749 int iECursor; /* VDBE Cursor associated with this ExprList */ 1750 struct ExprList_item { /* For each expression in the list */ 1751 Expr *pExpr; /* The list of expressions */ 1752 char *zName; /* Token associated with this expression */ 1753 char *zSpan; /* Original text of the expression */ 1754 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1755 u8 done; /* A flag to indicate when processing is finished */ 1756 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 1757 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1758 } *a; /* Alloc a power of two greater or equal to nExpr */ 1759 }; 1760 1761 /* 1762 ** An instance of this structure is used by the parser to record both 1763 ** the parse tree for an expression and the span of input text for an 1764 ** expression. 1765 */ 1766 struct ExprSpan { 1767 Expr *pExpr; /* The expression parse tree */ 1768 const char *zStart; /* First character of input text */ 1769 const char *zEnd; /* One character past the end of input text */ 1770 }; 1771 1772 /* 1773 ** An instance of this structure can hold a simple list of identifiers, 1774 ** such as the list "a,b,c" in the following statements: 1775 ** 1776 ** INSERT INTO t(a,b,c) VALUES ...; 1777 ** CREATE INDEX idx ON t(a,b,c); 1778 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1779 ** 1780 ** The IdList.a.idx field is used when the IdList represents the list of 1781 ** column names after a table name in an INSERT statement. In the statement 1782 ** 1783 ** INSERT INTO t(a,b,c) ... 1784 ** 1785 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1786 */ 1787 struct IdList { 1788 struct IdList_item { 1789 char *zName; /* Name of the identifier */ 1790 int idx; /* Index in some Table.aCol[] of a column named zName */ 1791 } *a; 1792 int nId; /* Number of identifiers on the list */ 1793 }; 1794 1795 /* 1796 ** The bitmask datatype defined below is used for various optimizations. 1797 ** 1798 ** Changing this from a 64-bit to a 32-bit type limits the number of 1799 ** tables in a join to 32 instead of 64. But it also reduces the size 1800 ** of the library by 738 bytes on ix86. 1801 */ 1802 typedef u64 Bitmask; 1803 1804 /* 1805 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1806 */ 1807 #define BMS ((int)(sizeof(Bitmask)*8)) 1808 1809 /* 1810 ** The following structure describes the FROM clause of a SELECT statement. 1811 ** Each table or subquery in the FROM clause is a separate element of 1812 ** the SrcList.a[] array. 1813 ** 1814 ** With the addition of multiple database support, the following structure 1815 ** can also be used to describe a particular table such as the table that 1816 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1817 ** such a table must be a simple name: ID. But in SQLite, the table can 1818 ** now be identified by a database name, a dot, then the table name: ID.ID. 1819 ** 1820 ** The jointype starts out showing the join type between the current table 1821 ** and the next table on the list. The parser builds the list this way. 1822 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1823 ** jointype expresses the join between the table and the previous table. 1824 ** 1825 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1826 ** contains more than 63 columns and the 64-th or later column is used. 1827 */ 1828 struct SrcList { 1829 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1830 i16 nAlloc; /* Number of entries allocated in a[] below */ 1831 struct SrcList_item { 1832 char *zDatabase; /* Name of database holding this table */ 1833 char *zName; /* Name of the table */ 1834 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1835 Table *pTab; /* An SQL table corresponding to zName */ 1836 Select *pSelect; /* A SELECT statement used in place of a table name */ 1837 int addrFillSub; /* Address of subroutine to manifest a subquery */ 1838 int regReturn; /* Register holding return address of addrFillSub */ 1839 u8 jointype; /* Type of join between this able and the previous */ 1840 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1841 u8 isCorrelated; /* True if sub-query is correlated */ 1842 #ifndef SQLITE_OMIT_EXPLAIN 1843 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1844 #endif 1845 int iCursor; /* The VDBE cursor number used to access this table */ 1846 Expr *pOn; /* The ON clause of a join */ 1847 IdList *pUsing; /* The USING clause of a join */ 1848 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1849 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1850 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1851 } a[1]; /* One entry for each identifier on the list */ 1852 }; 1853 1854 /* 1855 ** Permitted values of the SrcList.a.jointype field 1856 */ 1857 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1858 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1859 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1860 #define JT_LEFT 0x0008 /* Left outer join */ 1861 #define JT_RIGHT 0x0010 /* Right outer join */ 1862 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1863 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1864 1865 1866 /* 1867 ** A WherePlan object holds information that describes a lookup 1868 ** strategy. 1869 ** 1870 ** This object is intended to be opaque outside of the where.c module. 1871 ** It is included here only so that that compiler will know how big it 1872 ** is. None of the fields in this object should be used outside of 1873 ** the where.c module. 1874 ** 1875 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1876 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1877 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1878 ** case that more than one of these conditions is true. 1879 */ 1880 struct WherePlan { 1881 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1882 u32 nEq; /* Number of == constraints */ 1883 double nRow; /* Estimated number of rows (for EQP) */ 1884 union { 1885 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1886 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1887 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1888 } u; 1889 }; 1890 1891 /* 1892 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1893 ** structure contains a single instance of this structure. This structure 1894 ** is intended to be private the the where.c module and should not be 1895 ** access or modified by other modules. 1896 ** 1897 ** The pIdxInfo field is used to help pick the best index on a 1898 ** virtual table. The pIdxInfo pointer contains indexing 1899 ** information for the i-th table in the FROM clause before reordering. 1900 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1901 ** All other information in the i-th WhereLevel object for the i-th table 1902 ** after FROM clause ordering. 1903 */ 1904 struct WhereLevel { 1905 WherePlan plan; /* query plan for this element of the FROM clause */ 1906 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1907 int iTabCur; /* The VDBE cursor used to access the table */ 1908 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1909 int addrBrk; /* Jump here to break out of the loop */ 1910 int addrNxt; /* Jump here to start the next IN combination */ 1911 int addrCont; /* Jump here to continue with the next loop cycle */ 1912 int addrFirst; /* First instruction of interior of the loop */ 1913 u8 iFrom; /* Which entry in the FROM clause */ 1914 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1915 int p1, p2; /* Operands of the opcode used to ends the loop */ 1916 union { /* Information that depends on plan.wsFlags */ 1917 struct { 1918 int nIn; /* Number of entries in aInLoop[] */ 1919 struct InLoop { 1920 int iCur; /* The VDBE cursor used by this IN operator */ 1921 int addrInTop; /* Top of the IN loop */ 1922 } *aInLoop; /* Information about each nested IN operator */ 1923 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1924 } u; 1925 1926 /* The following field is really not part of the current level. But 1927 ** we need a place to cache virtual table index information for each 1928 ** virtual table in the FROM clause and the WhereLevel structure is 1929 ** a convenient place since there is one WhereLevel for each FROM clause 1930 ** element. 1931 */ 1932 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1933 }; 1934 1935 /* 1936 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1937 ** and the WhereInfo.wctrlFlags member. 1938 */ 1939 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1940 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1941 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1942 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1943 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1944 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 1945 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 1946 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 1947 #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ 1948 1949 /* 1950 ** The WHERE clause processing routine has two halves. The 1951 ** first part does the start of the WHERE loop and the second 1952 ** half does the tail of the WHERE loop. An instance of 1953 ** this structure is returned by the first half and passed 1954 ** into the second half to give some continuity. 1955 */ 1956 struct WhereInfo { 1957 Parse *pParse; /* Parsing and code generating context */ 1958 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1959 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1960 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1961 u8 eDistinct; 1962 SrcList *pTabList; /* List of tables in the join */ 1963 int iTop; /* The very beginning of the WHERE loop */ 1964 int iContinue; /* Jump here to continue with next record */ 1965 int iBreak; /* Jump here to break out of the loop */ 1966 int nLevel; /* Number of nested loop */ 1967 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1968 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 1969 double nRowOut; /* Estimated number of output rows */ 1970 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1971 }; 1972 1973 #define WHERE_DISTINCT_UNIQUE 1 1974 #define WHERE_DISTINCT_ORDERED 2 1975 1976 /* 1977 ** A NameContext defines a context in which to resolve table and column 1978 ** names. The context consists of a list of tables (the pSrcList) field and 1979 ** a list of named expression (pEList). The named expression list may 1980 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1981 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1982 ** pEList corresponds to the result set of a SELECT and is NULL for 1983 ** other statements. 1984 ** 1985 ** NameContexts can be nested. When resolving names, the inner-most 1986 ** context is searched first. If no match is found, the next outer 1987 ** context is checked. If there is still no match, the next context 1988 ** is checked. This process continues until either a match is found 1989 ** or all contexts are check. When a match is found, the nRef member of 1990 ** the context containing the match is incremented. 1991 ** 1992 ** Each subquery gets a new NameContext. The pNext field points to the 1993 ** NameContext in the parent query. Thus the process of scanning the 1994 ** NameContext list corresponds to searching through successively outer 1995 ** subqueries looking for a match. 1996 */ 1997 struct NameContext { 1998 Parse *pParse; /* The parser */ 1999 SrcList *pSrcList; /* One or more tables used to resolve names */ 2000 ExprList *pEList; /* Optional list of named expressions */ 2001 int nRef; /* Number of names resolved by this context */ 2002 int nErr; /* Number of errors encountered while resolving names */ 2003 u8 allowAgg; /* Aggregate functions allowed here */ 2004 u8 hasAgg; /* True if aggregates are seen */ 2005 u8 isCheck; /* True if resolving names in a CHECK constraint */ 2006 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 2007 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2008 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2009 }; 2010 2011 /* 2012 ** An instance of the following structure contains all information 2013 ** needed to generate code for a single SELECT statement. 2014 ** 2015 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2016 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2017 ** limit and nOffset to the value of the offset (or 0 if there is not 2018 ** offset). But later on, nLimit and nOffset become the memory locations 2019 ** in the VDBE that record the limit and offset counters. 2020 ** 2021 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2022 ** These addresses must be stored so that we can go back and fill in 2023 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2024 ** the number of columns in P2 can be computed at the same time 2025 ** as the OP_OpenEphm instruction is coded because not 2026 ** enough information about the compound query is known at that point. 2027 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2028 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 2029 ** sequences for the ORDER BY clause. 2030 */ 2031 struct Select { 2032 ExprList *pEList; /* The fields of the result */ 2033 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2034 char affinity; /* MakeRecord with this affinity for SRT_Set */ 2035 u16 selFlags; /* Various SF_* values */ 2036 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2037 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2038 double nSelectRow; /* Estimated number of result rows */ 2039 SrcList *pSrc; /* The FROM clause */ 2040 Expr *pWhere; /* The WHERE clause */ 2041 ExprList *pGroupBy; /* The GROUP BY clause */ 2042 Expr *pHaving; /* The HAVING clause */ 2043 ExprList *pOrderBy; /* The ORDER BY clause */ 2044 Select *pPrior; /* Prior select in a compound select statement */ 2045 Select *pNext; /* Next select to the left in a compound */ 2046 Select *pRightmost; /* Right-most select in a compound select statement */ 2047 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2048 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2049 }; 2050 2051 /* 2052 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2053 ** "Select Flag". 2054 */ 2055 #define SF_Distinct 0x01 /* Output should be DISTINCT */ 2056 #define SF_Resolved 0x02 /* Identifiers have been resolved */ 2057 #define SF_Aggregate 0x04 /* Contains aggregate functions */ 2058 #define SF_UsesEphemeral 0x08 /* Uses the OpenEphemeral opcode */ 2059 #define SF_Expanded 0x10 /* sqlite3SelectExpand() called on this */ 2060 #define SF_HasTypeInfo 0x20 /* FROM subqueries have Table metadata */ 2061 #define SF_UseSorter 0x40 /* Sort using a sorter */ 2062 #define SF_Values 0x80 /* Synthesized from VALUES clause */ 2063 2064 2065 /* 2066 ** The results of a select can be distributed in several ways. The 2067 ** "SRT" prefix means "SELECT Result Type". 2068 */ 2069 #define SRT_Union 1 /* Store result as keys in an index */ 2070 #define SRT_Except 2 /* Remove result from a UNION index */ 2071 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2072 #define SRT_Discard 4 /* Do not save the results anywhere */ 2073 2074 /* The ORDER BY clause is ignored for all of the above */ 2075 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2076 2077 #define SRT_Output 5 /* Output each row of result */ 2078 #define SRT_Mem 6 /* Store result in a memory cell */ 2079 #define SRT_Set 7 /* Store results as keys in an index */ 2080 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2081 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2082 #define SRT_Coroutine 10 /* Generate a single row of result */ 2083 2084 /* 2085 ** A structure used to customize the behavior of sqlite3Select(). See 2086 ** comments above sqlite3Select() for details. 2087 */ 2088 typedef struct SelectDest SelectDest; 2089 struct SelectDest { 2090 u8 eDest; /* How to dispose of the results */ 2091 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2092 int iParm; /* A parameter used by the eDest disposal method */ 2093 int iMem; /* Base register where results are written */ 2094 int nMem; /* Number of registers allocated */ 2095 }; 2096 2097 /* 2098 ** During code generation of statements that do inserts into AUTOINCREMENT 2099 ** tables, the following information is attached to the Table.u.autoInc.p 2100 ** pointer of each autoincrement table to record some side information that 2101 ** the code generator needs. We have to keep per-table autoincrement 2102 ** information in case inserts are down within triggers. Triggers do not 2103 ** normally coordinate their activities, but we do need to coordinate the 2104 ** loading and saving of autoincrement information. 2105 */ 2106 struct AutoincInfo { 2107 AutoincInfo *pNext; /* Next info block in a list of them all */ 2108 Table *pTab; /* Table this info block refers to */ 2109 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2110 int regCtr; /* Memory register holding the rowid counter */ 2111 }; 2112 2113 /* 2114 ** Size of the column cache 2115 */ 2116 #ifndef SQLITE_N_COLCACHE 2117 # define SQLITE_N_COLCACHE 10 2118 #endif 2119 2120 /* 2121 ** At least one instance of the following structure is created for each 2122 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2123 ** statement. All such objects are stored in the linked list headed at 2124 ** Parse.pTriggerPrg and deleted once statement compilation has been 2125 ** completed. 2126 ** 2127 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2128 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2129 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2130 ** The Parse.pTriggerPrg list never contains two entries with the same 2131 ** values for both pTrigger and orconf. 2132 ** 2133 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2134 ** accessed (or set to 0 for triggers fired as a result of INSERT 2135 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2136 ** a mask of new.* columns used by the program. 2137 */ 2138 struct TriggerPrg { 2139 Trigger *pTrigger; /* Trigger this program was coded from */ 2140 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2141 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2142 int orconf; /* Default ON CONFLICT policy */ 2143 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2144 }; 2145 2146 /* 2147 ** The yDbMask datatype for the bitmask of all attached databases. 2148 */ 2149 #if SQLITE_MAX_ATTACHED>30 2150 typedef sqlite3_uint64 yDbMask; 2151 #else 2152 typedef unsigned int yDbMask; 2153 #endif 2154 2155 /* 2156 ** An SQL parser context. A copy of this structure is passed through 2157 ** the parser and down into all the parser action routine in order to 2158 ** carry around information that is global to the entire parse. 2159 ** 2160 ** The structure is divided into two parts. When the parser and code 2161 ** generate call themselves recursively, the first part of the structure 2162 ** is constant but the second part is reset at the beginning and end of 2163 ** each recursion. 2164 ** 2165 ** The nTableLock and aTableLock variables are only used if the shared-cache 2166 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2167 ** used to store the set of table-locks required by the statement being 2168 ** compiled. Function sqlite3TableLock() is used to add entries to the 2169 ** list. 2170 */ 2171 struct Parse { 2172 sqlite3 *db; /* The main database structure */ 2173 char *zErrMsg; /* An error message */ 2174 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2175 int rc; /* Return code from execution */ 2176 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2177 u8 checkSchema; /* Causes schema cookie check after an error */ 2178 u8 nested; /* Number of nested calls to the parser/code generator */ 2179 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2180 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2181 u8 nColCache; /* Number of entries in aColCache[] */ 2182 u8 iColCache; /* Next entry in aColCache[] to replace */ 2183 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2184 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2185 int aTempReg[8]; /* Holding area for temporary registers */ 2186 int nRangeReg; /* Size of the temporary register block */ 2187 int iRangeReg; /* First register in temporary register block */ 2188 int nErr; /* Number of errors seen */ 2189 int nTab; /* Number of previously allocated VDBE cursors */ 2190 int nMem; /* Number of memory cells used so far */ 2191 int nSet; /* Number of sets used so far */ 2192 int nOnce; /* Number of OP_Once instructions so far */ 2193 int ckBase; /* Base register of data during check constraints */ 2194 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2195 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2196 struct yColCache { 2197 int iTable; /* Table cursor number */ 2198 int iColumn; /* Table column number */ 2199 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2200 int iLevel; /* Nesting level */ 2201 int iReg; /* Reg with value of this column. 0 means none. */ 2202 int lru; /* Least recently used entry has the smallest value */ 2203 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2204 yDbMask writeMask; /* Start a write transaction on these databases */ 2205 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2206 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2207 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2208 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2209 int regRoot; /* Register holding root page number for new objects */ 2210 int nMaxArg; /* Max args passed to user function by sub-program */ 2211 #ifndef SQLITE_OMIT_SHARED_CACHE 2212 int nTableLock; /* Number of locks in aTableLock */ 2213 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2214 #endif 2215 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2216 2217 /* Information used while coding trigger programs. */ 2218 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2219 Table *pTriggerTab; /* Table triggers are being coded for */ 2220 double nQueryLoop; /* Estimated number of iterations of a query */ 2221 u32 oldmask; /* Mask of old.* columns referenced */ 2222 u32 newmask; /* Mask of new.* columns referenced */ 2223 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2224 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2225 u8 disableTriggers; /* True to disable triggers */ 2226 2227 /* Above is constant between recursions. Below is reset before and after 2228 ** each recursion */ 2229 2230 int nVar; /* Number of '?' variables seen in the SQL so far */ 2231 int nzVar; /* Number of available slots in azVar[] */ 2232 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2233 #ifndef SQLITE_OMIT_VIRTUALTABLE 2234 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2235 int nVtabLock; /* Number of virtual tables to lock */ 2236 #endif 2237 int nAlias; /* Number of aliased result set columns */ 2238 int nHeight; /* Expression tree height of current sub-select */ 2239 #ifndef SQLITE_OMIT_EXPLAIN 2240 int iSelectId; /* ID of current select for EXPLAIN output */ 2241 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2242 #endif 2243 char **azVar; /* Pointers to names of parameters */ 2244 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2245 int *aAlias; /* Register used to hold aliased result */ 2246 const char *zTail; /* All SQL text past the last semicolon parsed */ 2247 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2248 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2249 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2250 Token sNameToken; /* Token with unqualified schema object name */ 2251 Token sLastToken; /* The last token parsed */ 2252 #ifndef SQLITE_OMIT_VIRTUALTABLE 2253 Token sArg; /* Complete text of a module argument */ 2254 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2255 #endif 2256 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2257 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2258 }; 2259 2260 /* 2261 ** Return true if currently inside an sqlite3_declare_vtab() call. 2262 */ 2263 #ifdef SQLITE_OMIT_VIRTUALTABLE 2264 #define IN_DECLARE_VTAB 0 2265 #else 2266 #define IN_DECLARE_VTAB (pParse->declareVtab) 2267 #endif 2268 2269 /* 2270 ** An instance of the following structure can be declared on a stack and used 2271 ** to save the Parse.zAuthContext value so that it can be restored later. 2272 */ 2273 struct AuthContext { 2274 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2275 Parse *pParse; /* The Parse structure */ 2276 }; 2277 2278 /* 2279 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2280 */ 2281 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2282 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2283 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2284 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2285 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2286 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2287 2288 /* 2289 * Each trigger present in the database schema is stored as an instance of 2290 * struct Trigger. 2291 * 2292 * Pointers to instances of struct Trigger are stored in two ways. 2293 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2294 * database). This allows Trigger structures to be retrieved by name. 2295 * 2. All triggers associated with a single table form a linked list, using the 2296 * pNext member of struct Trigger. A pointer to the first element of the 2297 * linked list is stored as the "pTrigger" member of the associated 2298 * struct Table. 2299 * 2300 * The "step_list" member points to the first element of a linked list 2301 * containing the SQL statements specified as the trigger program. 2302 */ 2303 struct Trigger { 2304 char *zName; /* The name of the trigger */ 2305 char *table; /* The table or view to which the trigger applies */ 2306 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2307 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2308 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2309 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2310 the <column-list> is stored here */ 2311 Schema *pSchema; /* Schema containing the trigger */ 2312 Schema *pTabSchema; /* Schema containing the table */ 2313 TriggerStep *step_list; /* Link list of trigger program steps */ 2314 Trigger *pNext; /* Next trigger associated with the table */ 2315 }; 2316 2317 /* 2318 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2319 ** determine which. 2320 ** 2321 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2322 ** In that cases, the constants below can be ORed together. 2323 */ 2324 #define TRIGGER_BEFORE 1 2325 #define TRIGGER_AFTER 2 2326 2327 /* 2328 * An instance of struct TriggerStep is used to store a single SQL statement 2329 * that is a part of a trigger-program. 2330 * 2331 * Instances of struct TriggerStep are stored in a singly linked list (linked 2332 * using the "pNext" member) referenced by the "step_list" member of the 2333 * associated struct Trigger instance. The first element of the linked list is 2334 * the first step of the trigger-program. 2335 * 2336 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2337 * "SELECT" statement. The meanings of the other members is determined by the 2338 * value of "op" as follows: 2339 * 2340 * (op == TK_INSERT) 2341 * orconf -> stores the ON CONFLICT algorithm 2342 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2343 * this stores a pointer to the SELECT statement. Otherwise NULL. 2344 * target -> A token holding the quoted name of the table to insert into. 2345 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2346 * this stores values to be inserted. Otherwise NULL. 2347 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2348 * statement, then this stores the column-names to be 2349 * inserted into. 2350 * 2351 * (op == TK_DELETE) 2352 * target -> A token holding the quoted name of the table to delete from. 2353 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2354 * Otherwise NULL. 2355 * 2356 * (op == TK_UPDATE) 2357 * target -> A token holding the quoted name of the table to update rows of. 2358 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2359 * Otherwise NULL. 2360 * pExprList -> A list of the columns to update and the expressions to update 2361 * them to. See sqlite3Update() documentation of "pChanges" 2362 * argument. 2363 * 2364 */ 2365 struct TriggerStep { 2366 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2367 u8 orconf; /* OE_Rollback etc. */ 2368 Trigger *pTrig; /* The trigger that this step is a part of */ 2369 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2370 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2371 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2372 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2373 IdList *pIdList; /* Column names for INSERT */ 2374 TriggerStep *pNext; /* Next in the link-list */ 2375 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2376 }; 2377 2378 /* 2379 ** The following structure contains information used by the sqliteFix... 2380 ** routines as they walk the parse tree to make database references 2381 ** explicit. 2382 */ 2383 typedef struct DbFixer DbFixer; 2384 struct DbFixer { 2385 Parse *pParse; /* The parsing context. Error messages written here */ 2386 const char *zDb; /* Make sure all objects are contained in this database */ 2387 const char *zType; /* Type of the container - used for error messages */ 2388 const Token *pName; /* Name of the container - used for error messages */ 2389 }; 2390 2391 /* 2392 ** An objected used to accumulate the text of a string where we 2393 ** do not necessarily know how big the string will be in the end. 2394 */ 2395 struct StrAccum { 2396 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2397 char *zBase; /* A base allocation. Not from malloc. */ 2398 char *zText; /* The string collected so far */ 2399 int nChar; /* Length of the string so far */ 2400 int nAlloc; /* Amount of space allocated in zText */ 2401 int mxAlloc; /* Maximum allowed string length */ 2402 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2403 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2404 u8 tooBig; /* Becomes true if string size exceeds limits */ 2405 }; 2406 2407 /* 2408 ** A pointer to this structure is used to communicate information 2409 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2410 */ 2411 typedef struct { 2412 sqlite3 *db; /* The database being initialized */ 2413 char **pzErrMsg; /* Error message stored here */ 2414 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2415 int rc; /* Result code stored here */ 2416 } InitData; 2417 2418 /* 2419 ** Structure containing global configuration data for the SQLite library. 2420 ** 2421 ** This structure also contains some state information. 2422 */ 2423 struct Sqlite3Config { 2424 int bMemstat; /* True to enable memory status */ 2425 int bCoreMutex; /* True to enable core mutexing */ 2426 int bFullMutex; /* True to enable full mutexing */ 2427 int bOpenUri; /* True to interpret filenames as URIs */ 2428 int mxStrlen; /* Maximum string length */ 2429 int szLookaside; /* Default lookaside buffer size */ 2430 int nLookaside; /* Default lookaside buffer count */ 2431 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2432 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2433 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2434 void *pHeap; /* Heap storage space */ 2435 int nHeap; /* Size of pHeap[] */ 2436 int mnReq, mxReq; /* Min and max heap requests sizes */ 2437 void *pScratch; /* Scratch memory */ 2438 int szScratch; /* Size of each scratch buffer */ 2439 int nScratch; /* Number of scratch buffers */ 2440 void *pPage; /* Page cache memory */ 2441 int szPage; /* Size of each page in pPage[] */ 2442 int nPage; /* Number of pages in pPage[] */ 2443 int mxParserStack; /* maximum depth of the parser stack */ 2444 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2445 /* The above might be initialized to non-zero. The following need to always 2446 ** initially be zero, however. */ 2447 int isInit; /* True after initialization has finished */ 2448 int inProgress; /* True while initialization in progress */ 2449 int isMutexInit; /* True after mutexes are initialized */ 2450 int isMallocInit; /* True after malloc is initialized */ 2451 int isPCacheInit; /* True after malloc is initialized */ 2452 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2453 int nRefInitMutex; /* Number of users of pInitMutex */ 2454 void (*xLog)(void*,int,const char*); /* Function for logging */ 2455 void *pLogArg; /* First argument to xLog() */ 2456 int bLocaltimeFault; /* True to fail localtime() calls */ 2457 }; 2458 2459 /* 2460 ** Context pointer passed down through the tree-walk. 2461 */ 2462 struct Walker { 2463 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2464 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2465 Parse *pParse; /* Parser context. */ 2466 union { /* Extra data for callback */ 2467 NameContext *pNC; /* Naming context */ 2468 int i; /* Integer value */ 2469 } u; 2470 }; 2471 2472 /* Forward declarations */ 2473 int sqlite3WalkExpr(Walker*, Expr*); 2474 int sqlite3WalkExprList(Walker*, ExprList*); 2475 int sqlite3WalkSelect(Walker*, Select*); 2476 int sqlite3WalkSelectExpr(Walker*, Select*); 2477 int sqlite3WalkSelectFrom(Walker*, Select*); 2478 2479 /* 2480 ** Return code from the parse-tree walking primitives and their 2481 ** callbacks. 2482 */ 2483 #define WRC_Continue 0 /* Continue down into children */ 2484 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2485 #define WRC_Abort 2 /* Abandon the tree walk */ 2486 2487 /* 2488 ** Assuming zIn points to the first byte of a UTF-8 character, 2489 ** advance zIn to point to the first byte of the next UTF-8 character. 2490 */ 2491 #define SQLITE_SKIP_UTF8(zIn) { \ 2492 if( (*(zIn++))>=0xc0 ){ \ 2493 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2494 } \ 2495 } 2496 2497 /* 2498 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2499 ** the same name but without the _BKPT suffix. These macros invoke 2500 ** routines that report the line-number on which the error originated 2501 ** using sqlite3_log(). The routines also provide a convenient place 2502 ** to set a debugger breakpoint. 2503 */ 2504 int sqlite3CorruptError(int); 2505 int sqlite3MisuseError(int); 2506 int sqlite3CantopenError(int); 2507 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2508 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2509 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2510 2511 2512 /* 2513 ** FTS4 is really an extension for FTS3. It is enabled using the 2514 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2515 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2516 */ 2517 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2518 # define SQLITE_ENABLE_FTS3 2519 #endif 2520 2521 /* 2522 ** The ctype.h header is needed for non-ASCII systems. It is also 2523 ** needed by FTS3 when FTS3 is included in the amalgamation. 2524 */ 2525 #if !defined(SQLITE_ASCII) || \ 2526 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2527 # include <ctype.h> 2528 #endif 2529 2530 /* 2531 ** The following macros mimic the standard library functions toupper(), 2532 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2533 ** sqlite versions only work for ASCII characters, regardless of locale. 2534 */ 2535 #ifdef SQLITE_ASCII 2536 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2537 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2538 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2539 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2540 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2541 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2542 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2543 #else 2544 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2545 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2546 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2547 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2548 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2549 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2550 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2551 #endif 2552 2553 /* 2554 ** Internal function prototypes 2555 */ 2556 #define sqlite3StrICmp sqlite3_stricmp 2557 int sqlite3Strlen30(const char*); 2558 #define sqlite3StrNICmp sqlite3_strnicmp 2559 2560 int sqlite3MallocInit(void); 2561 void sqlite3MallocEnd(void); 2562 void *sqlite3Malloc(int); 2563 void *sqlite3MallocZero(int); 2564 void *sqlite3DbMallocZero(sqlite3*, int); 2565 void *sqlite3DbMallocRaw(sqlite3*, int); 2566 char *sqlite3DbStrDup(sqlite3*,const char*); 2567 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2568 void *sqlite3Realloc(void*, int); 2569 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2570 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2571 void sqlite3DbFree(sqlite3*, void*); 2572 int sqlite3MallocSize(void*); 2573 int sqlite3DbMallocSize(sqlite3*, void*); 2574 void *sqlite3ScratchMalloc(int); 2575 void sqlite3ScratchFree(void*); 2576 void *sqlite3PageMalloc(int); 2577 void sqlite3PageFree(void*); 2578 void sqlite3MemSetDefault(void); 2579 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2580 int sqlite3HeapNearlyFull(void); 2581 2582 /* 2583 ** On systems with ample stack space and that support alloca(), make 2584 ** use of alloca() to obtain space for large automatic objects. By default, 2585 ** obtain space from malloc(). 2586 ** 2587 ** The alloca() routine never returns NULL. This will cause code paths 2588 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2589 */ 2590 #ifdef SQLITE_USE_ALLOCA 2591 # define sqlite3StackAllocRaw(D,N) alloca(N) 2592 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2593 # define sqlite3StackFree(D,P) 2594 #else 2595 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2596 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2597 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2598 #endif 2599 2600 #ifdef SQLITE_ENABLE_MEMSYS3 2601 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2602 #endif 2603 #ifdef SQLITE_ENABLE_MEMSYS5 2604 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2605 #endif 2606 2607 2608 #ifndef SQLITE_MUTEX_OMIT 2609 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2610 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2611 sqlite3_mutex *sqlite3MutexAlloc(int); 2612 int sqlite3MutexInit(void); 2613 int sqlite3MutexEnd(void); 2614 #endif 2615 2616 int sqlite3StatusValue(int); 2617 void sqlite3StatusAdd(int, int); 2618 void sqlite3StatusSet(int, int); 2619 2620 #ifndef SQLITE_OMIT_FLOATING_POINT 2621 int sqlite3IsNaN(double); 2622 #else 2623 # define sqlite3IsNaN(X) 0 2624 #endif 2625 2626 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2627 #ifndef SQLITE_OMIT_TRACE 2628 void sqlite3XPrintf(StrAccum*, const char*, ...); 2629 #endif 2630 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2631 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2632 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2633 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2634 void sqlite3DebugPrintf(const char*, ...); 2635 #endif 2636 #if defined(SQLITE_TEST) 2637 void *sqlite3TestTextToPtr(const char*); 2638 #endif 2639 2640 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */ 2641 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2642 void sqlite3ExplainBegin(Vdbe*); 2643 void sqlite3ExplainPrintf(Vdbe*, const char*, ...); 2644 void sqlite3ExplainNL(Vdbe*); 2645 void sqlite3ExplainPush(Vdbe*); 2646 void sqlite3ExplainPop(Vdbe*); 2647 void sqlite3ExplainFinish(Vdbe*); 2648 void sqlite3ExplainSelect(Vdbe*, Select*); 2649 void sqlite3ExplainExpr(Vdbe*, Expr*); 2650 void sqlite3ExplainExprList(Vdbe*, ExprList*); 2651 const char *sqlite3VdbeExplanation(Vdbe*); 2652 #else 2653 # define sqlite3ExplainBegin(X) 2654 # define sqlite3ExplainSelect(A,B) 2655 # define sqlite3ExplainExpr(A,B) 2656 # define sqlite3ExplainExprList(A,B) 2657 # define sqlite3ExplainFinish(X) 2658 # define sqlite3VdbeExplanation(X) 0 2659 #endif 2660 2661 2662 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2663 void sqlite3ErrorMsg(Parse*, const char*, ...); 2664 int sqlite3Dequote(char*); 2665 int sqlite3KeywordCode(const unsigned char*, int); 2666 int sqlite3RunParser(Parse*, const char*, char **); 2667 void sqlite3FinishCoding(Parse*); 2668 int sqlite3GetTempReg(Parse*); 2669 void sqlite3ReleaseTempReg(Parse*,int); 2670 int sqlite3GetTempRange(Parse*,int); 2671 void sqlite3ReleaseTempRange(Parse*,int,int); 2672 void sqlite3ClearTempRegCache(Parse*); 2673 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2674 Expr *sqlite3Expr(sqlite3*,int,const char*); 2675 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2676 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2677 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2678 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2679 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2680 void sqlite3ExprDelete(sqlite3*, Expr*); 2681 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2682 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2683 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2684 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2685 int sqlite3Init(sqlite3*, char**); 2686 int sqlite3InitCallback(void*, int, char**, char**); 2687 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2688 void sqlite3ResetInternalSchema(sqlite3*, int); 2689 void sqlite3BeginParse(Parse*,int); 2690 void sqlite3CommitInternalChanges(sqlite3*); 2691 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2692 void sqlite3OpenMasterTable(Parse *, int); 2693 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2694 void sqlite3AddColumn(Parse*,Token*); 2695 void sqlite3AddNotNull(Parse*, int); 2696 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2697 void sqlite3AddCheckConstraint(Parse*, Expr*); 2698 void sqlite3AddColumnType(Parse*,Token*); 2699 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2700 void sqlite3AddCollateType(Parse*, Token*); 2701 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2702 int sqlite3ParseUri(const char*,const char*,unsigned int*, 2703 sqlite3_vfs**,char**,char **); 2704 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 2705 int sqlite3CodeOnce(Parse *); 2706 2707 Bitvec *sqlite3BitvecCreate(u32); 2708 int sqlite3BitvecTest(Bitvec*, u32); 2709 int sqlite3BitvecSet(Bitvec*, u32); 2710 void sqlite3BitvecClear(Bitvec*, u32, void*); 2711 void sqlite3BitvecDestroy(Bitvec*); 2712 u32 sqlite3BitvecSize(Bitvec*); 2713 int sqlite3BitvecBuiltinTest(int,int*); 2714 2715 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2716 void sqlite3RowSetClear(RowSet*); 2717 void sqlite3RowSetInsert(RowSet*, i64); 2718 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2719 int sqlite3RowSetNext(RowSet*, i64*); 2720 2721 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2722 2723 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2724 int sqlite3ViewGetColumnNames(Parse*,Table*); 2725 #else 2726 # define sqlite3ViewGetColumnNames(A,B) 0 2727 #endif 2728 2729 void sqlite3DropTable(Parse*, SrcList*, int, int); 2730 void sqlite3CodeDropTable(Parse*, Table*, int, int); 2731 void sqlite3DeleteTable(sqlite3*, Table*); 2732 #ifndef SQLITE_OMIT_AUTOINCREMENT 2733 void sqlite3AutoincrementBegin(Parse *pParse); 2734 void sqlite3AutoincrementEnd(Parse *pParse); 2735 #else 2736 # define sqlite3AutoincrementBegin(X) 2737 # define sqlite3AutoincrementEnd(X) 2738 #endif 2739 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2740 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 2741 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2742 int sqlite3IdListIndex(IdList*,const char*); 2743 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2744 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2745 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2746 Token*, Select*, Expr*, IdList*); 2747 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2748 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2749 void sqlite3SrcListShiftJoinType(SrcList*); 2750 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2751 void sqlite3IdListDelete(sqlite3*, IdList*); 2752 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2753 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2754 Token*, int, int); 2755 void sqlite3DropIndex(Parse*, SrcList*, int); 2756 int sqlite3Select(Parse*, Select*, SelectDest*); 2757 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2758 Expr*,ExprList*,int,Expr*,Expr*); 2759 void sqlite3SelectDelete(sqlite3*, Select*); 2760 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2761 int sqlite3IsReadOnly(Parse*, Table*, int); 2762 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2763 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2764 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2765 #endif 2766 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2767 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2768 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**,ExprList*,u16); 2769 void sqlite3WhereEnd(WhereInfo*); 2770 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); 2771 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2772 void sqlite3ExprCodeMove(Parse*, int, int, int); 2773 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2774 void sqlite3ExprCacheStore(Parse*, int, int, int); 2775 void sqlite3ExprCachePush(Parse*); 2776 void sqlite3ExprCachePop(Parse*, int); 2777 void sqlite3ExprCacheRemove(Parse*, int, int); 2778 void sqlite3ExprCacheClear(Parse*); 2779 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2780 int sqlite3ExprCode(Parse*, Expr*, int); 2781 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2782 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2783 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2784 void sqlite3ExprCodeConstants(Parse*, Expr*); 2785 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2786 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2787 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2788 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2789 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2790 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2791 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2792 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2793 void sqlite3Vacuum(Parse*); 2794 int sqlite3RunVacuum(char**, sqlite3*); 2795 char *sqlite3NameFromToken(sqlite3*, Token*); 2796 int sqlite3ExprCompare(Expr*, Expr*); 2797 int sqlite3ExprListCompare(ExprList*, ExprList*); 2798 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2799 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2800 Vdbe *sqlite3GetVdbe(Parse*); 2801 void sqlite3PrngSaveState(void); 2802 void sqlite3PrngRestoreState(void); 2803 void sqlite3PrngResetState(void); 2804 void sqlite3RollbackAll(sqlite3*,int); 2805 void sqlite3CodeVerifySchema(Parse*, int); 2806 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2807 void sqlite3BeginTransaction(Parse*, int); 2808 void sqlite3CommitTransaction(Parse*); 2809 void sqlite3RollbackTransaction(Parse*); 2810 void sqlite3Savepoint(Parse*, int, Token*); 2811 void sqlite3CloseSavepoints(sqlite3 *); 2812 int sqlite3ExprIsConstant(Expr*); 2813 int sqlite3ExprIsConstantNotJoin(Expr*); 2814 int sqlite3ExprIsConstantOrFunction(Expr*); 2815 int sqlite3ExprIsInteger(Expr*, int*); 2816 int sqlite3ExprCanBeNull(const Expr*); 2817 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2818 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2819 int sqlite3IsRowid(const char*); 2820 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2821 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2822 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2823 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2824 int*,int,int,int,int,int*); 2825 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2826 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2827 void sqlite3BeginWriteOperation(Parse*, int, int); 2828 void sqlite3MultiWrite(Parse*); 2829 void sqlite3MayAbort(Parse*); 2830 void sqlite3HaltConstraint(Parse*, int, char*, int); 2831 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2832 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2833 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2834 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2835 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2836 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2837 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2838 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2839 void sqlite3RegisterDateTimeFunctions(void); 2840 void sqlite3RegisterGlobalFunctions(void); 2841 int sqlite3SafetyCheckOk(sqlite3*); 2842 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2843 void sqlite3ChangeCookie(Parse*, int); 2844 2845 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2846 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2847 #endif 2848 2849 #ifndef SQLITE_OMIT_TRIGGER 2850 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2851 Expr*,int, int); 2852 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2853 void sqlite3DropTrigger(Parse*, SrcList*, int); 2854 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2855 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2856 Trigger *sqlite3TriggerList(Parse *, Table *); 2857 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2858 int, int, int); 2859 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2860 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2861 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2862 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2863 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2864 ExprList*,Select*,u8); 2865 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2866 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2867 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2868 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2869 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2870 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2871 #else 2872 # define sqlite3TriggersExist(B,C,D,E,F) 0 2873 # define sqlite3DeleteTrigger(A,B) 2874 # define sqlite3DropTriggerPtr(A,B) 2875 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2876 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2877 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2878 # define sqlite3TriggerList(X, Y) 0 2879 # define sqlite3ParseToplevel(p) p 2880 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2881 #endif 2882 2883 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2884 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2885 void sqlite3DeferForeignKey(Parse*, int); 2886 #ifndef SQLITE_OMIT_AUTHORIZATION 2887 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2888 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2889 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2890 void sqlite3AuthContextPop(AuthContext*); 2891 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2892 #else 2893 # define sqlite3AuthRead(a,b,c,d) 2894 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2895 # define sqlite3AuthContextPush(a,b,c) 2896 # define sqlite3AuthContextPop(a) ((void)(a)) 2897 #endif 2898 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2899 void sqlite3Detach(Parse*, Expr*); 2900 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2901 int sqlite3FixSrcList(DbFixer*, SrcList*); 2902 int sqlite3FixSelect(DbFixer*, Select*); 2903 int sqlite3FixExpr(DbFixer*, Expr*); 2904 int sqlite3FixExprList(DbFixer*, ExprList*); 2905 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2906 int sqlite3AtoF(const char *z, double*, int, u8); 2907 int sqlite3GetInt32(const char *, int*); 2908 int sqlite3Atoi(const char*); 2909 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2910 int sqlite3Utf8CharLen(const char *pData, int nByte); 2911 u32 sqlite3Utf8Read(const u8*, const u8**); 2912 2913 /* 2914 ** Routines to read and write variable-length integers. These used to 2915 ** be defined locally, but now we use the varint routines in the util.c 2916 ** file. Code should use the MACRO forms below, as the Varint32 versions 2917 ** are coded to assume the single byte case is already handled (which 2918 ** the MACRO form does). 2919 */ 2920 int sqlite3PutVarint(unsigned char*, u64); 2921 int sqlite3PutVarint32(unsigned char*, u32); 2922 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2923 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2924 int sqlite3VarintLen(u64 v); 2925 2926 /* 2927 ** The header of a record consists of a sequence variable-length integers. 2928 ** These integers are almost always small and are encoded as a single byte. 2929 ** The following macros take advantage this fact to provide a fast encode 2930 ** and decode of the integers in a record header. It is faster for the common 2931 ** case where the integer is a single byte. It is a little slower when the 2932 ** integer is two or more bytes. But overall it is faster. 2933 ** 2934 ** The following expressions are equivalent: 2935 ** 2936 ** x = sqlite3GetVarint32( A, &B ); 2937 ** x = sqlite3PutVarint32( A, B ); 2938 ** 2939 ** x = getVarint32( A, B ); 2940 ** x = putVarint32( A, B ); 2941 ** 2942 */ 2943 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2944 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2945 #define getVarint sqlite3GetVarint 2946 #define putVarint sqlite3PutVarint 2947 2948 2949 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2950 void sqlite3TableAffinityStr(Vdbe *, Table *); 2951 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2952 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2953 char sqlite3ExprAffinity(Expr *pExpr); 2954 int sqlite3Atoi64(const char*, i64*, int, u8); 2955 void sqlite3Error(sqlite3*, int, const char*,...); 2956 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2957 u8 sqlite3HexToInt(int h); 2958 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2959 const char *sqlite3ErrStr(int); 2960 int sqlite3ReadSchema(Parse *pParse); 2961 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2962 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2963 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2964 Expr *sqlite3ExprSetColl(Expr*, CollSeq*); 2965 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); 2966 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2967 int sqlite3CheckObjectName(Parse *, const char *); 2968 void sqlite3VdbeSetChanges(sqlite3 *, int); 2969 int sqlite3AddInt64(i64*,i64); 2970 int sqlite3SubInt64(i64*,i64); 2971 int sqlite3MulInt64(i64*,i64); 2972 int sqlite3AbsInt32(int); 2973 #ifdef SQLITE_ENABLE_8_3_NAMES 2974 void sqlite3FileSuffix3(const char*, char*); 2975 #else 2976 # define sqlite3FileSuffix3(X,Y) 2977 #endif 2978 u8 sqlite3GetBoolean(const char *z,int); 2979 2980 const void *sqlite3ValueText(sqlite3_value*, u8); 2981 int sqlite3ValueBytes(sqlite3_value*, u8); 2982 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2983 void(*)(void*)); 2984 void sqlite3ValueFree(sqlite3_value*); 2985 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2986 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 2987 #ifdef SQLITE_ENABLE_STAT3 2988 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 2989 #endif 2990 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2991 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2992 #ifndef SQLITE_AMALGAMATION 2993 extern const unsigned char sqlite3OpcodeProperty[]; 2994 extern const unsigned char sqlite3UpperToLower[]; 2995 extern const unsigned char sqlite3CtypeMap[]; 2996 extern const Token sqlite3IntTokens[]; 2997 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2998 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2999 #ifndef SQLITE_OMIT_WSD 3000 extern int sqlite3PendingByte; 3001 #endif 3002 #endif 3003 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3004 void sqlite3Reindex(Parse*, Token*, Token*); 3005 void sqlite3AlterFunctions(void); 3006 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3007 int sqlite3GetToken(const unsigned char *, int *); 3008 void sqlite3NestedParse(Parse*, const char*, ...); 3009 void sqlite3ExpirePreparedStatements(sqlite3*); 3010 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3011 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3012 int sqlite3ResolveExprNames(NameContext*, Expr*); 3013 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3014 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3015 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3016 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3017 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3018 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 3019 char sqlite3AffinityType(const char*); 3020 void sqlite3Analyze(Parse*, Token*, Token*); 3021 int sqlite3InvokeBusyHandler(BusyHandler*); 3022 int sqlite3FindDb(sqlite3*, Token*); 3023 int sqlite3FindDbName(sqlite3 *, const char *); 3024 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3025 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3026 void sqlite3DefaultRowEst(Index*); 3027 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3028 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3029 void sqlite3MinimumFileFormat(Parse*, int, int); 3030 void sqlite3SchemaClear(void *); 3031 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3032 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3033 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3034 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3035 void (*)(sqlite3_context*,int,sqlite3_value **), 3036 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3037 FuncDestructor *pDestructor 3038 ); 3039 int sqlite3ApiExit(sqlite3 *db, int); 3040 int sqlite3OpenTempDatabase(Parse *); 3041 3042 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3043 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3044 void sqlite3AppendSpace(StrAccum*,int); 3045 char *sqlite3StrAccumFinish(StrAccum*); 3046 void sqlite3StrAccumReset(StrAccum*); 3047 void sqlite3SelectDestInit(SelectDest*,int,int); 3048 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3049 3050 void sqlite3BackupRestart(sqlite3_backup *); 3051 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3052 3053 /* 3054 ** The interface to the LEMON-generated parser 3055 */ 3056 void *sqlite3ParserAlloc(void*(*)(size_t)); 3057 void sqlite3ParserFree(void*, void(*)(void*)); 3058 void sqlite3Parser(void*, int, Token, Parse*); 3059 #ifdef YYTRACKMAXSTACKDEPTH 3060 int sqlite3ParserStackPeak(void*); 3061 #endif 3062 3063 void sqlite3AutoLoadExtensions(sqlite3*); 3064 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3065 void sqlite3CloseExtensions(sqlite3*); 3066 #else 3067 # define sqlite3CloseExtensions(X) 3068 #endif 3069 3070 #ifndef SQLITE_OMIT_SHARED_CACHE 3071 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3072 #else 3073 #define sqlite3TableLock(v,w,x,y,z) 3074 #endif 3075 3076 #ifdef SQLITE_TEST 3077 int sqlite3Utf8To8(unsigned char*); 3078 #endif 3079 3080 #ifdef SQLITE_OMIT_VIRTUALTABLE 3081 # define sqlite3VtabClear(Y) 3082 # define sqlite3VtabSync(X,Y) SQLITE_OK 3083 # define sqlite3VtabRollback(X) 3084 # define sqlite3VtabCommit(X) 3085 # define sqlite3VtabInSync(db) 0 3086 # define sqlite3VtabLock(X) 3087 # define sqlite3VtabUnlock(X) 3088 # define sqlite3VtabUnlockList(X) 3089 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3090 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3091 #else 3092 void sqlite3VtabClear(sqlite3 *db, Table*); 3093 int sqlite3VtabSync(sqlite3 *db, char **); 3094 int sqlite3VtabRollback(sqlite3 *db); 3095 int sqlite3VtabCommit(sqlite3 *db); 3096 void sqlite3VtabLock(VTable *); 3097 void sqlite3VtabUnlock(VTable *); 3098 void sqlite3VtabUnlockList(sqlite3*); 3099 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3100 VTable *sqlite3GetVTable(sqlite3*, Table*); 3101 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3102 #endif 3103 void sqlite3VtabMakeWritable(Parse*,Table*); 3104 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3105 void sqlite3VtabFinishParse(Parse*, Token*); 3106 void sqlite3VtabArgInit(Parse*); 3107 void sqlite3VtabArgExtend(Parse*, Token*); 3108 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3109 int sqlite3VtabCallConnect(Parse*, Table*); 3110 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3111 int sqlite3VtabBegin(sqlite3 *, VTable *); 3112 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3113 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3114 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3115 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3116 int sqlite3Reprepare(Vdbe*); 3117 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3118 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3119 int sqlite3TempInMemory(const sqlite3*); 3120 const char *sqlite3JournalModename(int); 3121 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3122 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3123 3124 /* Declarations for functions in fkey.c. All of these are replaced by 3125 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3126 ** key functionality is available. If OMIT_TRIGGER is defined but 3127 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3128 ** this case foreign keys are parsed, but no other functionality is 3129 ** provided (enforcement of FK constraints requires the triggers sub-system). 3130 */ 3131 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3132 void sqlite3FkCheck(Parse*, Table*, int, int); 3133 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3134 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3135 int sqlite3FkRequired(Parse*, Table*, int*, int); 3136 u32 sqlite3FkOldmask(Parse*, Table*); 3137 FKey *sqlite3FkReferences(Table *); 3138 #else 3139 #define sqlite3FkActions(a,b,c,d) 3140 #define sqlite3FkCheck(a,b,c,d) 3141 #define sqlite3FkDropTable(a,b,c) 3142 #define sqlite3FkOldmask(a,b) 0 3143 #define sqlite3FkRequired(a,b,c,d) 0 3144 #endif 3145 #ifndef SQLITE_OMIT_FOREIGN_KEY 3146 void sqlite3FkDelete(sqlite3 *, Table*); 3147 #else 3148 #define sqlite3FkDelete(a,b) 3149 #endif 3150 3151 3152 /* 3153 ** Available fault injectors. Should be numbered beginning with 0. 3154 */ 3155 #define SQLITE_FAULTINJECTOR_MALLOC 0 3156 #define SQLITE_FAULTINJECTOR_COUNT 1 3157 3158 /* 3159 ** The interface to the code in fault.c used for identifying "benign" 3160 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3161 ** is not defined. 3162 */ 3163 #ifndef SQLITE_OMIT_BUILTIN_TEST 3164 void sqlite3BeginBenignMalloc(void); 3165 void sqlite3EndBenignMalloc(void); 3166 #else 3167 #define sqlite3BeginBenignMalloc() 3168 #define sqlite3EndBenignMalloc() 3169 #endif 3170 3171 #define IN_INDEX_ROWID 1 3172 #define IN_INDEX_EPH 2 3173 #define IN_INDEX_INDEX 3 3174 int sqlite3FindInIndex(Parse *, Expr *, int*); 3175 3176 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3177 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3178 int sqlite3JournalSize(sqlite3_vfs *); 3179 int sqlite3JournalCreate(sqlite3_file *); 3180 #else 3181 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3182 #endif 3183 3184 void sqlite3MemJournalOpen(sqlite3_file *); 3185 int sqlite3MemJournalSize(void); 3186 int sqlite3IsMemJournal(sqlite3_file *); 3187 3188 #if SQLITE_MAX_EXPR_DEPTH>0 3189 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3190 int sqlite3SelectExprHeight(Select *); 3191 int sqlite3ExprCheckHeight(Parse*, int); 3192 #else 3193 #define sqlite3ExprSetHeight(x,y) 3194 #define sqlite3SelectExprHeight(x) 0 3195 #define sqlite3ExprCheckHeight(x,y) 3196 #endif 3197 3198 u32 sqlite3Get4byte(const u8*); 3199 void sqlite3Put4byte(u8*, u32); 3200 3201 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3202 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3203 void sqlite3ConnectionUnlocked(sqlite3 *db); 3204 void sqlite3ConnectionClosed(sqlite3 *db); 3205 #else 3206 #define sqlite3ConnectionBlocked(x,y) 3207 #define sqlite3ConnectionUnlocked(x) 3208 #define sqlite3ConnectionClosed(x) 3209 #endif 3210 3211 #ifdef SQLITE_DEBUG 3212 void sqlite3ParserTrace(FILE*, char *); 3213 #endif 3214 3215 /* 3216 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3217 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3218 ** print I/O tracing messages. 3219 */ 3220 #ifdef SQLITE_ENABLE_IOTRACE 3221 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3222 void sqlite3VdbeIOTraceSql(Vdbe*); 3223 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3224 #else 3225 # define IOTRACE(A) 3226 # define sqlite3VdbeIOTraceSql(X) 3227 #endif 3228 3229 /* 3230 ** These routines are available for the mem2.c debugging memory allocator 3231 ** only. They are used to verify that different "types" of memory 3232 ** allocations are properly tracked by the system. 3233 ** 3234 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3235 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3236 ** a single bit set. 3237 ** 3238 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3239 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3240 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3241 ** 3242 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3243 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3244 ** 3245 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3246 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3247 ** it might have been allocated by lookaside, except the allocation was 3248 ** too large or lookaside was already full. It is important to verify 3249 ** that allocations that might have been satisfied by lookaside are not 3250 ** passed back to non-lookaside free() routines. Asserts such as the 3251 ** example above are placed on the non-lookaside free() routines to verify 3252 ** this constraint. 3253 ** 3254 ** All of this is no-op for a production build. It only comes into 3255 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3256 */ 3257 #ifdef SQLITE_MEMDEBUG 3258 void sqlite3MemdebugSetType(void*,u8); 3259 int sqlite3MemdebugHasType(void*,u8); 3260 int sqlite3MemdebugNoType(void*,u8); 3261 #else 3262 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3263 # define sqlite3MemdebugHasType(X,Y) 1 3264 # define sqlite3MemdebugNoType(X,Y) 1 3265 #endif 3266 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3267 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3268 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3269 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3270 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3271 3272 #endif /* _SQLITEINT_H_ */ 3273