xref: /sqlite-3.40.0/src/sqliteInt.h (revision 2e27d28f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef SQLITEINT_H
16 #define SQLITEINT_H
17 
18 /* Special Comments:
19 **
20 ** Some comments have special meaning to the tools that measure test
21 ** coverage:
22 **
23 **    NO_TEST                     - The branches on this line are not
24 **                                  measured by branch coverage.  This is
25 **                                  used on lines of code that actually
26 **                                  implement parts of coverage testing.
27 **
28 **    OPTIMIZATION-IF-TRUE        - This branch is allowed to alway be false
29 **                                  and the correct answer is still obtained,
30 **                                  though perhaps more slowly.
31 **
32 **    OPTIMIZATION-IF-FALSE       - This branch is allowed to alway be true
33 **                                  and the correct answer is still obtained,
34 **                                  though perhaps more slowly.
35 **
36 **    PREVENTS-HARMLESS-OVERREAD  - This branch prevents a buffer overread
37 **                                  that would be harmless and undetectable
38 **                                  if it did occur.
39 **
40 ** In all cases, the special comment must be enclosed in the usual
41 ** slash-asterisk...asterisk-slash comment marks, with no spaces between the
42 ** asterisks and the comment text.
43 */
44 
45 /*
46 ** Make sure the Tcl calling convention macro is defined.  This macro is
47 ** only used by test code and Tcl integration code.
48 */
49 #ifndef SQLITE_TCLAPI
50 #  define SQLITE_TCLAPI
51 #endif
52 
53 /*
54 ** Make sure that rand_s() is available on Windows systems with MSVC 2005
55 ** or higher.
56 */
57 #if defined(_MSC_VER) && _MSC_VER>=1400
58 #  define _CRT_RAND_S
59 #endif
60 
61 /*
62 ** Include the header file used to customize the compiler options for MSVC.
63 ** This should be done first so that it can successfully prevent spurious
64 ** compiler warnings due to subsequent content in this file and other files
65 ** that are included by this file.
66 */
67 #include "msvc.h"
68 
69 /*
70 ** Special setup for VxWorks
71 */
72 #include "vxworks.h"
73 
74 /*
75 ** These #defines should enable >2GB file support on POSIX if the
76 ** underlying operating system supports it.  If the OS lacks
77 ** large file support, or if the OS is windows, these should be no-ops.
78 **
79 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
80 ** system #includes.  Hence, this block of code must be the very first
81 ** code in all source files.
82 **
83 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
84 ** on the compiler command line.  This is necessary if you are compiling
85 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
86 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
87 ** without this option, LFS is enable.  But LFS does not exist in the kernel
88 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
89 ** portability you should omit LFS.
90 **
91 ** The previous paragraph was written in 2005.  (This paragraph is written
92 ** on 2008-11-28.) These days, all Linux kernels support large files, so
93 ** you should probably leave LFS enabled.  But some embedded platforms might
94 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
95 **
96 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
97 */
98 #ifndef SQLITE_DISABLE_LFS
99 # define _LARGE_FILE       1
100 # ifndef _FILE_OFFSET_BITS
101 #   define _FILE_OFFSET_BITS 64
102 # endif
103 # define _LARGEFILE_SOURCE 1
104 #endif
105 
106 /* The GCC_VERSION and MSVC_VERSION macros are used to
107 ** conditionally include optimizations for each of these compilers.  A
108 ** value of 0 means that compiler is not being used.  The
109 ** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific
110 ** optimizations, and hence set all compiler macros to 0
111 **
112 ** There was once also a CLANG_VERSION macro.  However, we learn that the
113 ** version numbers in clang are for "marketing" only and are inconsistent
114 ** and unreliable.  Fortunately, all versions of clang also recognize the
115 ** gcc version numbers and have reasonable settings for gcc version numbers,
116 ** so the GCC_VERSION macro will be set to a correct non-zero value even
117 ** when compiling with clang.
118 */
119 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
120 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
121 #else
122 # define GCC_VERSION 0
123 #endif
124 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
125 # define MSVC_VERSION _MSC_VER
126 #else
127 # define MSVC_VERSION 0
128 #endif
129 
130 /* Needed for various definitions... */
131 #if defined(__GNUC__) && !defined(_GNU_SOURCE)
132 # define _GNU_SOURCE
133 #endif
134 
135 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
136 # define _BSD_SOURCE
137 #endif
138 
139 /*
140 ** For MinGW, check to see if we can include the header file containing its
141 ** version information, among other things.  Normally, this internal MinGW
142 ** header file would [only] be included automatically by other MinGW header
143 ** files; however, the contained version information is now required by this
144 ** header file to work around binary compatibility issues (see below) and
145 ** this is the only known way to reliably obtain it.  This entire #if block
146 ** would be completely unnecessary if there was any other way of detecting
147 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
148 ** some MinGW-specific macros).  When compiling for MinGW, either the
149 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
150 ** defined; otherwise, detection of conditions specific to MinGW will be
151 ** disabled.
152 */
153 #if defined(_HAVE_MINGW_H)
154 # include "mingw.h"
155 #elif defined(_HAVE__MINGW_H)
156 # include "_mingw.h"
157 #endif
158 
159 /*
160 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
161 ** define is required to maintain binary compatibility with the MSVC runtime
162 ** library in use (e.g. for Windows XP).
163 */
164 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
165     defined(_WIN32) && !defined(_WIN64) && \
166     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
167     defined(__MSVCRT__)
168 # define _USE_32BIT_TIME_T
169 #endif
170 
171 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
172 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
173 ** MinGW.
174 */
175 #include "sqlite3.h"
176 
177 /*
178 ** Include the configuration header output by 'configure' if we're using the
179 ** autoconf-based build
180 */
181 #if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H)
182 #include "config.h"
183 #define SQLITECONFIG_H 1
184 #endif
185 
186 #include "sqliteLimit.h"
187 
188 /* Disable nuisance warnings on Borland compilers */
189 #if defined(__BORLANDC__)
190 #pragma warn -rch /* unreachable code */
191 #pragma warn -ccc /* Condition is always true or false */
192 #pragma warn -aus /* Assigned value is never used */
193 #pragma warn -csu /* Comparing signed and unsigned */
194 #pragma warn -spa /* Suspicious pointer arithmetic */
195 #endif
196 
197 /*
198 ** Include standard header files as necessary
199 */
200 #ifdef HAVE_STDINT_H
201 #include <stdint.h>
202 #endif
203 #ifdef HAVE_INTTYPES_H
204 #include <inttypes.h>
205 #endif
206 
207 /*
208 ** The following macros are used to cast pointers to integers and
209 ** integers to pointers.  The way you do this varies from one compiler
210 ** to the next, so we have developed the following set of #if statements
211 ** to generate appropriate macros for a wide range of compilers.
212 **
213 ** The correct "ANSI" way to do this is to use the intptr_t type.
214 ** Unfortunately, that typedef is not available on all compilers, or
215 ** if it is available, it requires an #include of specific headers
216 ** that vary from one machine to the next.
217 **
218 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
219 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
220 ** So we have to define the macros in different ways depending on the
221 ** compiler.
222 */
223 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
224 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
225 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
226 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
227 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
228 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
229 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
230 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
231 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
232 #else                          /* Generates a warning - but it always works */
233 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
234 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
235 #endif
236 
237 /*
238 ** A macro to hint to the compiler that a function should not be
239 ** inlined.
240 */
241 #if defined(__GNUC__)
242 #  define SQLITE_NOINLINE  __attribute__((noinline))
243 #elif defined(_MSC_VER) && _MSC_VER>=1310
244 #  define SQLITE_NOINLINE  __declspec(noinline)
245 #else
246 #  define SQLITE_NOINLINE
247 #endif
248 
249 /*
250 ** Make sure that the compiler intrinsics we desire are enabled when
251 ** compiling with an appropriate version of MSVC unless prevented by
252 ** the SQLITE_DISABLE_INTRINSIC define.
253 */
254 #if !defined(SQLITE_DISABLE_INTRINSIC)
255 #  if defined(_MSC_VER) && _MSC_VER>=1400
256 #    if !defined(_WIN32_WCE)
257 #      include <intrin.h>
258 #      pragma intrinsic(_byteswap_ushort)
259 #      pragma intrinsic(_byteswap_ulong)
260 #      pragma intrinsic(_byteswap_uint64)
261 #      pragma intrinsic(_ReadWriteBarrier)
262 #    else
263 #      include <cmnintrin.h>
264 #    endif
265 #  endif
266 #endif
267 
268 /*
269 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
270 ** 0 means mutexes are permanently disable and the library is never
271 ** threadsafe.  1 means the library is serialized which is the highest
272 ** level of threadsafety.  2 means the library is multithreaded - multiple
273 ** threads can use SQLite as long as no two threads try to use the same
274 ** database connection at the same time.
275 **
276 ** Older versions of SQLite used an optional THREADSAFE macro.
277 ** We support that for legacy.
278 **
279 ** To ensure that the correct value of "THREADSAFE" is reported when querying
280 ** for compile-time options at runtime (e.g. "PRAGMA compile_options"), this
281 ** logic is partially replicated in ctime.c. If it is updated here, it should
282 ** also be updated there.
283 */
284 #if !defined(SQLITE_THREADSAFE)
285 # if defined(THREADSAFE)
286 #   define SQLITE_THREADSAFE THREADSAFE
287 # else
288 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
289 # endif
290 #endif
291 
292 /*
293 ** Powersafe overwrite is on by default.  But can be turned off using
294 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
295 */
296 #ifndef SQLITE_POWERSAFE_OVERWRITE
297 # define SQLITE_POWERSAFE_OVERWRITE 1
298 #endif
299 
300 /*
301 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
302 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
303 ** which case memory allocation statistics are disabled by default.
304 */
305 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
306 # define SQLITE_DEFAULT_MEMSTATUS 1
307 #endif
308 
309 /*
310 ** Exactly one of the following macros must be defined in order to
311 ** specify which memory allocation subsystem to use.
312 **
313 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
314 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
315 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
316 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
317 **
318 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
319 ** assert() macro is enabled, each call into the Win32 native heap subsystem
320 ** will cause HeapValidate to be called.  If heap validation should fail, an
321 ** assertion will be triggered.
322 **
323 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
324 ** the default.
325 */
326 #if defined(SQLITE_SYSTEM_MALLOC) \
327   + defined(SQLITE_WIN32_MALLOC) \
328   + defined(SQLITE_ZERO_MALLOC) \
329   + defined(SQLITE_MEMDEBUG)>1
330 # error "Two or more of the following compile-time configuration options\
331  are defined but at most one is allowed:\
332  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
333  SQLITE_ZERO_MALLOC"
334 #endif
335 #if defined(SQLITE_SYSTEM_MALLOC) \
336   + defined(SQLITE_WIN32_MALLOC) \
337   + defined(SQLITE_ZERO_MALLOC) \
338   + defined(SQLITE_MEMDEBUG)==0
339 # define SQLITE_SYSTEM_MALLOC 1
340 #endif
341 
342 /*
343 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
344 ** sizes of memory allocations below this value where possible.
345 */
346 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
347 # define SQLITE_MALLOC_SOFT_LIMIT 1024
348 #endif
349 
350 /*
351 ** We need to define _XOPEN_SOURCE as follows in order to enable
352 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
353 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
354 ** it.
355 */
356 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
357 #  define _XOPEN_SOURCE 600
358 #endif
359 
360 /*
361 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
362 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
363 ** make it true by defining or undefining NDEBUG.
364 **
365 ** Setting NDEBUG makes the code smaller and faster by disabling the
366 ** assert() statements in the code.  So we want the default action
367 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
368 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
369 ** feature.
370 */
371 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
372 # define NDEBUG 1
373 #endif
374 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
375 # undef NDEBUG
376 #endif
377 
378 /*
379 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
380 */
381 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
382 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
383 #endif
384 
385 /*
386 ** The testcase() macro is used to aid in coverage testing.  When
387 ** doing coverage testing, the condition inside the argument to
388 ** testcase() must be evaluated both true and false in order to
389 ** get full branch coverage.  The testcase() macro is inserted
390 ** to help ensure adequate test coverage in places where simple
391 ** condition/decision coverage is inadequate.  For example, testcase()
392 ** can be used to make sure boundary values are tested.  For
393 ** bitmask tests, testcase() can be used to make sure each bit
394 ** is significant and used at least once.  On switch statements
395 ** where multiple cases go to the same block of code, testcase()
396 ** can insure that all cases are evaluated.
397 **
398 */
399 #ifdef SQLITE_COVERAGE_TEST
400   void sqlite3Coverage(int);
401 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
402 #else
403 # define testcase(X)
404 #endif
405 
406 /*
407 ** The TESTONLY macro is used to enclose variable declarations or
408 ** other bits of code that are needed to support the arguments
409 ** within testcase() and assert() macros.
410 */
411 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
412 # define TESTONLY(X)  X
413 #else
414 # define TESTONLY(X)
415 #endif
416 
417 /*
418 ** Sometimes we need a small amount of code such as a variable initialization
419 ** to setup for a later assert() statement.  We do not want this code to
420 ** appear when assert() is disabled.  The following macro is therefore
421 ** used to contain that setup code.  The "VVA" acronym stands for
422 ** "Verification, Validation, and Accreditation".  In other words, the
423 ** code within VVA_ONLY() will only run during verification processes.
424 */
425 #ifndef NDEBUG
426 # define VVA_ONLY(X)  X
427 #else
428 # define VVA_ONLY(X)
429 #endif
430 
431 /*
432 ** The ALWAYS and NEVER macros surround boolean expressions which
433 ** are intended to always be true or false, respectively.  Such
434 ** expressions could be omitted from the code completely.  But they
435 ** are included in a few cases in order to enhance the resilience
436 ** of SQLite to unexpected behavior - to make the code "self-healing"
437 ** or "ductile" rather than being "brittle" and crashing at the first
438 ** hint of unplanned behavior.
439 **
440 ** In other words, ALWAYS and NEVER are added for defensive code.
441 **
442 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
443 ** be true and false so that the unreachable code they specify will
444 ** not be counted as untested code.
445 */
446 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
447 # define ALWAYS(X)      (1)
448 # define NEVER(X)       (0)
449 #elif !defined(NDEBUG)
450 # define ALWAYS(X)      ((X)?1:(assert(0),0))
451 # define NEVER(X)       ((X)?(assert(0),1):0)
452 #else
453 # define ALWAYS(X)      (X)
454 # define NEVER(X)       (X)
455 #endif
456 
457 /*
458 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is
459 ** defined.  We need to defend against those failures when testing with
460 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches
461 ** during a normal build.  The following macro can be used to disable tests
462 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set.
463 */
464 #if defined(SQLITE_TEST_REALLOC_STRESS)
465 # define ONLY_IF_REALLOC_STRESS(X)  (X)
466 #elif !defined(NDEBUG)
467 # define ONLY_IF_REALLOC_STRESS(X)  ((X)?(assert(0),1):0)
468 #else
469 # define ONLY_IF_REALLOC_STRESS(X)  (0)
470 #endif
471 
472 /*
473 ** Declarations used for tracing the operating system interfaces.
474 */
475 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \
476     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
477   extern int sqlite3OSTrace;
478 # define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
479 # define SQLITE_HAVE_OS_TRACE
480 #else
481 # define OSTRACE(X)
482 # undef  SQLITE_HAVE_OS_TRACE
483 #endif
484 
485 /*
486 ** Is the sqlite3ErrName() function needed in the build?  Currently,
487 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when
488 ** OSTRACE is enabled), and by several "test*.c" files (which are
489 ** compiled using SQLITE_TEST).
490 */
491 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \
492     (defined(SQLITE_DEBUG) && SQLITE_OS_WIN)
493 # define SQLITE_NEED_ERR_NAME
494 #else
495 # undef  SQLITE_NEED_ERR_NAME
496 #endif
497 
498 /*
499 ** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN
500 */
501 #ifdef SQLITE_OMIT_EXPLAIN
502 # undef SQLITE_ENABLE_EXPLAIN_COMMENTS
503 #endif
504 
505 /*
506 ** Return true (non-zero) if the input is an integer that is too large
507 ** to fit in 32-bits.  This macro is used inside of various testcase()
508 ** macros to verify that we have tested SQLite for large-file support.
509 */
510 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
511 
512 /*
513 ** The macro unlikely() is a hint that surrounds a boolean
514 ** expression that is usually false.  Macro likely() surrounds
515 ** a boolean expression that is usually true.  These hints could,
516 ** in theory, be used by the compiler to generate better code, but
517 ** currently they are just comments for human readers.
518 */
519 #define likely(X)    (X)
520 #define unlikely(X)  (X)
521 
522 #include "hash.h"
523 #include "parse.h"
524 #include <stdio.h>
525 #include <stdlib.h>
526 #include <string.h>
527 #include <assert.h>
528 #include <stddef.h>
529 
530 /*
531 ** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY.
532 ** This allows better measurements of where memcpy() is used when running
533 ** cachegrind.  But this macro version of memcpy() is very slow so it
534 ** should not be used in production.  This is a performance measurement
535 ** hack only.
536 */
537 #ifdef SQLITE_INLINE_MEMCPY
538 # define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\
539                         int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);}
540 #endif
541 
542 /*
543 ** If compiling for a processor that lacks floating point support,
544 ** substitute integer for floating-point
545 */
546 #ifdef SQLITE_OMIT_FLOATING_POINT
547 # define double sqlite_int64
548 # define float sqlite_int64
549 # define LONGDOUBLE_TYPE sqlite_int64
550 # ifndef SQLITE_BIG_DBL
551 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
552 # endif
553 # define SQLITE_OMIT_DATETIME_FUNCS 1
554 # define SQLITE_OMIT_TRACE 1
555 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
556 # undef SQLITE_HAVE_ISNAN
557 #endif
558 #ifndef SQLITE_BIG_DBL
559 # define SQLITE_BIG_DBL (1e99)
560 #endif
561 
562 /*
563 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
564 ** afterward. Having this macro allows us to cause the C compiler
565 ** to omit code used by TEMP tables without messy #ifndef statements.
566 */
567 #ifdef SQLITE_OMIT_TEMPDB
568 #define OMIT_TEMPDB 1
569 #else
570 #define OMIT_TEMPDB 0
571 #endif
572 
573 /*
574 ** The "file format" number is an integer that is incremented whenever
575 ** the VDBE-level file format changes.  The following macros define the
576 ** the default file format for new databases and the maximum file format
577 ** that the library can read.
578 */
579 #define SQLITE_MAX_FILE_FORMAT 4
580 #ifndef SQLITE_DEFAULT_FILE_FORMAT
581 # define SQLITE_DEFAULT_FILE_FORMAT 4
582 #endif
583 
584 /*
585 ** Determine whether triggers are recursive by default.  This can be
586 ** changed at run-time using a pragma.
587 */
588 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
589 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
590 #endif
591 
592 /*
593 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
594 ** on the command-line
595 */
596 #ifndef SQLITE_TEMP_STORE
597 # define SQLITE_TEMP_STORE 1
598 #endif
599 
600 /*
601 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
602 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
603 ** to zero.
604 */
605 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
606 # undef SQLITE_MAX_WORKER_THREADS
607 # define SQLITE_MAX_WORKER_THREADS 0
608 #endif
609 #ifndef SQLITE_MAX_WORKER_THREADS
610 # define SQLITE_MAX_WORKER_THREADS 8
611 #endif
612 #ifndef SQLITE_DEFAULT_WORKER_THREADS
613 # define SQLITE_DEFAULT_WORKER_THREADS 0
614 #endif
615 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
616 # undef SQLITE_MAX_WORKER_THREADS
617 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
618 #endif
619 
620 /*
621 ** The default initial allocation for the pagecache when using separate
622 ** pagecaches for each database connection.  A positive number is the
623 ** number of pages.  A negative number N translations means that a buffer
624 ** of -1024*N bytes is allocated and used for as many pages as it will hold.
625 **
626 ** The default value of "20" was choosen to minimize the run-time of the
627 ** speedtest1 test program with options: --shrink-memory --reprepare
628 */
629 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ
630 # define SQLITE_DEFAULT_PCACHE_INITSZ 20
631 #endif
632 
633 /*
634 ** The compile-time options SQLITE_MMAP_READWRITE and
635 ** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another.
636 ** You must choose one or the other (or neither) but not both.
637 */
638 #if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
639 #error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE
640 #endif
641 
642 /*
643 ** GCC does not define the offsetof() macro so we'll have to do it
644 ** ourselves.
645 */
646 #ifndef offsetof
647 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
648 #endif
649 
650 /*
651 ** Macros to compute minimum and maximum of two numbers.
652 */
653 #ifndef MIN
654 # define MIN(A,B) ((A)<(B)?(A):(B))
655 #endif
656 #ifndef MAX
657 # define MAX(A,B) ((A)>(B)?(A):(B))
658 #endif
659 
660 /*
661 ** Swap two objects of type TYPE.
662 */
663 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
664 
665 /*
666 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
667 ** not, there are still machines out there that use EBCDIC.)
668 */
669 #if 'A' == '\301'
670 # define SQLITE_EBCDIC 1
671 #else
672 # define SQLITE_ASCII 1
673 #endif
674 
675 /*
676 ** Integers of known sizes.  These typedefs might change for architectures
677 ** where the sizes very.  Preprocessor macros are available so that the
678 ** types can be conveniently redefined at compile-type.  Like this:
679 **
680 **         cc '-DUINTPTR_TYPE=long long int' ...
681 */
682 #ifndef UINT32_TYPE
683 # ifdef HAVE_UINT32_T
684 #  define UINT32_TYPE uint32_t
685 # else
686 #  define UINT32_TYPE unsigned int
687 # endif
688 #endif
689 #ifndef UINT16_TYPE
690 # ifdef HAVE_UINT16_T
691 #  define UINT16_TYPE uint16_t
692 # else
693 #  define UINT16_TYPE unsigned short int
694 # endif
695 #endif
696 #ifndef INT16_TYPE
697 # ifdef HAVE_INT16_T
698 #  define INT16_TYPE int16_t
699 # else
700 #  define INT16_TYPE short int
701 # endif
702 #endif
703 #ifndef UINT8_TYPE
704 # ifdef HAVE_UINT8_T
705 #  define UINT8_TYPE uint8_t
706 # else
707 #  define UINT8_TYPE unsigned char
708 # endif
709 #endif
710 #ifndef INT8_TYPE
711 # ifdef HAVE_INT8_T
712 #  define INT8_TYPE int8_t
713 # else
714 #  define INT8_TYPE signed char
715 # endif
716 #endif
717 #ifndef LONGDOUBLE_TYPE
718 # define LONGDOUBLE_TYPE long double
719 #endif
720 typedef sqlite_int64 i64;          /* 8-byte signed integer */
721 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
722 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
723 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
724 typedef INT16_TYPE i16;            /* 2-byte signed integer */
725 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
726 typedef INT8_TYPE i8;              /* 1-byte signed integer */
727 
728 /*
729 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
730 ** that can be stored in a u32 without loss of data.  The value
731 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
732 ** have to specify the value in the less intuitive manner shown:
733 */
734 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
735 
736 /*
737 ** The datatype used to store estimates of the number of rows in a
738 ** table or index.  This is an unsigned integer type.  For 99.9% of
739 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
740 ** can be used at compile-time if desired.
741 */
742 #ifdef SQLITE_64BIT_STATS
743  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
744 #else
745  typedef u32 tRowcnt;    /* 32-bit is the default */
746 #endif
747 
748 /*
749 ** Estimated quantities used for query planning are stored as 16-bit
750 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
751 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
752 ** But the allowed values are "grainy".  Not every value is representable.
753 ** For example, quantities 16 and 17 are both represented by a LogEst
754 ** of 40.  However, since LogEst quantities are suppose to be estimates,
755 ** not exact values, this imprecision is not a problem.
756 **
757 ** "LogEst" is short for "Logarithmic Estimate".
758 **
759 ** Examples:
760 **      1 -> 0              20 -> 43          10000 -> 132
761 **      2 -> 10             25 -> 46          25000 -> 146
762 **      3 -> 16            100 -> 66        1000000 -> 199
763 **      4 -> 20           1000 -> 99        1048576 -> 200
764 **     10 -> 33           1024 -> 100    4294967296 -> 320
765 **
766 ** The LogEst can be negative to indicate fractional values.
767 ** Examples:
768 **
769 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
770 */
771 typedef INT16_TYPE LogEst;
772 
773 /*
774 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
775 */
776 #ifndef SQLITE_PTRSIZE
777 # if defined(__SIZEOF_POINTER__)
778 #   define SQLITE_PTRSIZE __SIZEOF_POINTER__
779 # elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
780        defined(_M_ARM)   || defined(__arm__)    || defined(__x86)
781 #   define SQLITE_PTRSIZE 4
782 # else
783 #   define SQLITE_PTRSIZE 8
784 # endif
785 #endif
786 
787 /* The uptr type is an unsigned integer large enough to hold a pointer
788 */
789 #if defined(HAVE_STDINT_H)
790   typedef uintptr_t uptr;
791 #elif SQLITE_PTRSIZE==4
792   typedef u32 uptr;
793 #else
794   typedef u64 uptr;
795 #endif
796 
797 /*
798 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to
799 ** something between S (inclusive) and E (exclusive).
800 **
801 ** In other words, S is a buffer and E is a pointer to the first byte after
802 ** the end of buffer S.  This macro returns true if P points to something
803 ** contained within the buffer S.
804 */
805 #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E)))
806 
807 
808 /*
809 ** Macros to determine whether the machine is big or little endian,
810 ** and whether or not that determination is run-time or compile-time.
811 **
812 ** For best performance, an attempt is made to guess at the byte-order
813 ** using C-preprocessor macros.  If that is unsuccessful, or if
814 ** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined
815 ** at run-time.
816 */
817 #ifndef SQLITE_BYTEORDER
818 # if defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
819      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
820      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
821      defined(__arm__)
822 #   define SQLITE_BYTEORDER    1234
823 # elif defined(sparc)    || defined(__ppc__)
824 #   define SQLITE_BYTEORDER    4321
825 # else
826 #   define SQLITE_BYTEORDER 0
827 # endif
828 #endif
829 #if SQLITE_BYTEORDER==4321
830 # define SQLITE_BIGENDIAN    1
831 # define SQLITE_LITTLEENDIAN 0
832 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
833 #elif SQLITE_BYTEORDER==1234
834 # define SQLITE_BIGENDIAN    0
835 # define SQLITE_LITTLEENDIAN 1
836 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
837 #else
838 # ifdef SQLITE_AMALGAMATION
839   const int sqlite3one = 1;
840 # else
841   extern const int sqlite3one;
842 # endif
843 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
844 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
845 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
846 #endif
847 
848 /*
849 ** Constants for the largest and smallest possible 64-bit signed integers.
850 ** These macros are designed to work correctly on both 32-bit and 64-bit
851 ** compilers.
852 */
853 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
854 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
855 
856 /*
857 ** Round up a number to the next larger multiple of 8.  This is used
858 ** to force 8-byte alignment on 64-bit architectures.
859 */
860 #define ROUND8(x)     (((x)+7)&~7)
861 
862 /*
863 ** Round down to the nearest multiple of 8
864 */
865 #define ROUNDDOWN8(x) ((x)&~7)
866 
867 /*
868 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
869 ** macro is used only within assert() to verify that the code gets
870 ** all alignment restrictions correct.
871 **
872 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
873 ** underlying malloc() implementation might return us 4-byte aligned
874 ** pointers.  In that case, only verify 4-byte alignment.
875 */
876 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
877 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
878 #else
879 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
880 #endif
881 
882 /*
883 ** Disable MMAP on platforms where it is known to not work
884 */
885 #if defined(__OpenBSD__) || defined(__QNXNTO__)
886 # undef SQLITE_MAX_MMAP_SIZE
887 # define SQLITE_MAX_MMAP_SIZE 0
888 #endif
889 
890 /*
891 ** Default maximum size of memory used by memory-mapped I/O in the VFS
892 */
893 #ifdef __APPLE__
894 # include <TargetConditionals.h>
895 #endif
896 #ifndef SQLITE_MAX_MMAP_SIZE
897 # if defined(__linux__) \
898   || defined(_WIN32) \
899   || (defined(__APPLE__) && defined(__MACH__)) \
900   || defined(__sun) \
901   || defined(__FreeBSD__) \
902   || defined(__DragonFly__)
903 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
904 # else
905 #   define SQLITE_MAX_MMAP_SIZE 0
906 # endif
907 #endif
908 
909 /*
910 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
911 ** default MMAP_SIZE is specified at compile-time, make sure that it does
912 ** not exceed the maximum mmap size.
913 */
914 #ifndef SQLITE_DEFAULT_MMAP_SIZE
915 # define SQLITE_DEFAULT_MMAP_SIZE 0
916 #endif
917 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
918 # undef SQLITE_DEFAULT_MMAP_SIZE
919 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
920 #endif
921 
922 /*
923 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
924 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
925 ** define SQLITE_ENABLE_STAT3_OR_STAT4
926 */
927 #ifdef SQLITE_ENABLE_STAT4
928 # undef SQLITE_ENABLE_STAT3
929 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
930 #elif SQLITE_ENABLE_STAT3
931 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
932 #elif SQLITE_ENABLE_STAT3_OR_STAT4
933 # undef SQLITE_ENABLE_STAT3_OR_STAT4
934 #endif
935 
936 /*
937 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
938 ** the Select query generator tracing logic is turned on.
939 */
940 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
941 # define SELECTTRACE_ENABLED 1
942 #else
943 # define SELECTTRACE_ENABLED 0
944 #endif
945 
946 /*
947 ** An instance of the following structure is used to store the busy-handler
948 ** callback for a given sqlite handle.
949 **
950 ** The sqlite.busyHandler member of the sqlite struct contains the busy
951 ** callback for the database handle. Each pager opened via the sqlite
952 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
953 ** callback is currently invoked only from within pager.c.
954 */
955 typedef struct BusyHandler BusyHandler;
956 struct BusyHandler {
957   int (*xFunc)(void *,int);  /* The busy callback */
958   void *pArg;                /* First arg to busy callback */
959   int nBusy;                 /* Incremented with each busy call */
960 };
961 
962 /*
963 ** Name of the master database table.  The master database table
964 ** is a special table that holds the names and attributes of all
965 ** user tables and indices.
966 */
967 #define MASTER_NAME       "sqlite_master"
968 #define TEMP_MASTER_NAME  "sqlite_temp_master"
969 
970 /*
971 ** The root-page of the master database table.
972 */
973 #define MASTER_ROOT       1
974 
975 /*
976 ** The name of the schema table.
977 */
978 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
979 
980 /*
981 ** A convenience macro that returns the number of elements in
982 ** an array.
983 */
984 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
985 
986 /*
987 ** Determine if the argument is a power of two
988 */
989 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
990 
991 /*
992 ** The following value as a destructor means to use sqlite3DbFree().
993 ** The sqlite3DbFree() routine requires two parameters instead of the
994 ** one parameter that destructors normally want.  So we have to introduce
995 ** this magic value that the code knows to handle differently.  Any
996 ** pointer will work here as long as it is distinct from SQLITE_STATIC
997 ** and SQLITE_TRANSIENT.
998 */
999 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
1000 
1001 /*
1002 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
1003 ** not support Writable Static Data (WSD) such as global and static variables.
1004 ** All variables must either be on the stack or dynamically allocated from
1005 ** the heap.  When WSD is unsupported, the variable declarations scattered
1006 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
1007 ** macro is used for this purpose.  And instead of referencing the variable
1008 ** directly, we use its constant as a key to lookup the run-time allocated
1009 ** buffer that holds real variable.  The constant is also the initializer
1010 ** for the run-time allocated buffer.
1011 **
1012 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
1013 ** macros become no-ops and have zero performance impact.
1014 */
1015 #ifdef SQLITE_OMIT_WSD
1016   #define SQLITE_WSD const
1017   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
1018   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
1019   int sqlite3_wsd_init(int N, int J);
1020   void *sqlite3_wsd_find(void *K, int L);
1021 #else
1022   #define SQLITE_WSD
1023   #define GLOBAL(t,v) v
1024   #define sqlite3GlobalConfig sqlite3Config
1025 #endif
1026 
1027 /*
1028 ** The following macros are used to suppress compiler warnings and to
1029 ** make it clear to human readers when a function parameter is deliberately
1030 ** left unused within the body of a function. This usually happens when
1031 ** a function is called via a function pointer. For example the
1032 ** implementation of an SQL aggregate step callback may not use the
1033 ** parameter indicating the number of arguments passed to the aggregate,
1034 ** if it knows that this is enforced elsewhere.
1035 **
1036 ** When a function parameter is not used at all within the body of a function,
1037 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
1038 ** However, these macros may also be used to suppress warnings related to
1039 ** parameters that may or may not be used depending on compilation options.
1040 ** For example those parameters only used in assert() statements. In these
1041 ** cases the parameters are named as per the usual conventions.
1042 */
1043 #define UNUSED_PARAMETER(x) (void)(x)
1044 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
1045 
1046 /*
1047 ** Forward references to structures
1048 */
1049 typedef struct AggInfo AggInfo;
1050 typedef struct AuthContext AuthContext;
1051 typedef struct AutoincInfo AutoincInfo;
1052 typedef struct Bitvec Bitvec;
1053 typedef struct CollSeq CollSeq;
1054 typedef struct Column Column;
1055 typedef struct Db Db;
1056 typedef struct Schema Schema;
1057 typedef struct Expr Expr;
1058 typedef struct ExprList ExprList;
1059 typedef struct ExprSpan ExprSpan;
1060 typedef struct FKey FKey;
1061 typedef struct FuncDestructor FuncDestructor;
1062 typedef struct FuncDef FuncDef;
1063 typedef struct FuncDefHash FuncDefHash;
1064 typedef struct IdList IdList;
1065 typedef struct Index Index;
1066 typedef struct IndexSample IndexSample;
1067 typedef struct KeyClass KeyClass;
1068 typedef struct KeyInfo KeyInfo;
1069 typedef struct Lookaside Lookaside;
1070 typedef struct LookasideSlot LookasideSlot;
1071 typedef struct Module Module;
1072 typedef struct NameContext NameContext;
1073 typedef struct Parse Parse;
1074 typedef struct PreUpdate PreUpdate;
1075 typedef struct PrintfArguments PrintfArguments;
1076 typedef struct RowSet RowSet;
1077 typedef struct Savepoint Savepoint;
1078 typedef struct Select Select;
1079 typedef struct SQLiteThread SQLiteThread;
1080 typedef struct SelectDest SelectDest;
1081 typedef struct SrcList SrcList;
1082 typedef struct StrAccum StrAccum;
1083 typedef struct Table Table;
1084 typedef struct TableLock TableLock;
1085 typedef struct Token Token;
1086 typedef struct TreeView TreeView;
1087 typedef struct Trigger Trigger;
1088 typedef struct TriggerPrg TriggerPrg;
1089 typedef struct TriggerStep TriggerStep;
1090 typedef struct UnpackedRecord UnpackedRecord;
1091 typedef struct VTable VTable;
1092 typedef struct VtabCtx VtabCtx;
1093 typedef struct Walker Walker;
1094 typedef struct WhereInfo WhereInfo;
1095 typedef struct With With;
1096 
1097 /* A VList object records a mapping between parameters/variables/wildcards
1098 ** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer
1099 ** variable number associated with that parameter.  See the format description
1100 ** on the sqlite3VListAdd() routine for more information.  A VList is really
1101 ** just an array of integers.
1102 */
1103 typedef int VList;
1104 
1105 /*
1106 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
1107 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
1108 ** pointer types (i.e. FuncDef) defined above.
1109 */
1110 #include "btree.h"
1111 #include "vdbe.h"
1112 #include "pager.h"
1113 #include "pcache.h"
1114 #include "os.h"
1115 #include "mutex.h"
1116 
1117 /* The SQLITE_EXTRA_DURABLE compile-time option used to set the default
1118 ** synchronous setting to EXTRA.  It is no longer supported.
1119 */
1120 #ifdef SQLITE_EXTRA_DURABLE
1121 # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE
1122 # define SQLITE_DEFAULT_SYNCHRONOUS 3
1123 #endif
1124 
1125 /*
1126 ** Default synchronous levels.
1127 **
1128 ** Note that (for historcal reasons) the PAGER_SYNCHRONOUS_* macros differ
1129 ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1.
1130 **
1131 **           PAGER_SYNCHRONOUS       DEFAULT_SYNCHRONOUS
1132 **   OFF           1                         0
1133 **   NORMAL        2                         1
1134 **   FULL          3                         2
1135 **   EXTRA         4                         3
1136 **
1137 ** The "PRAGMA synchronous" statement also uses the zero-based numbers.
1138 ** In other words, the zero-based numbers are used for all external interfaces
1139 ** and the one-based values are used internally.
1140 */
1141 #ifndef SQLITE_DEFAULT_SYNCHRONOUS
1142 # define SQLITE_DEFAULT_SYNCHRONOUS 2
1143 #endif
1144 #ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS
1145 # define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS
1146 #endif
1147 
1148 /*
1149 ** Each database file to be accessed by the system is an instance
1150 ** of the following structure.  There are normally two of these structures
1151 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
1152 ** aDb[1] is the database file used to hold temporary tables.  Additional
1153 ** databases may be attached.
1154 */
1155 struct Db {
1156   char *zDbSName;      /* Name of this database. (schema name, not filename) */
1157   Btree *pBt;          /* The B*Tree structure for this database file */
1158   u8 safety_level;     /* How aggressive at syncing data to disk */
1159   u8 bSyncSet;         /* True if "PRAGMA synchronous=N" has been run */
1160   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
1161 };
1162 
1163 /*
1164 ** An instance of the following structure stores a database schema.
1165 **
1166 ** Most Schema objects are associated with a Btree.  The exception is
1167 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
1168 ** In shared cache mode, a single Schema object can be shared by multiple
1169 ** Btrees that refer to the same underlying BtShared object.
1170 **
1171 ** Schema objects are automatically deallocated when the last Btree that
1172 ** references them is destroyed.   The TEMP Schema is manually freed by
1173 ** sqlite3_close().
1174 *
1175 ** A thread must be holding a mutex on the corresponding Btree in order
1176 ** to access Schema content.  This implies that the thread must also be
1177 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
1178 ** For a TEMP Schema, only the connection mutex is required.
1179 */
1180 struct Schema {
1181   int schema_cookie;   /* Database schema version number for this file */
1182   int iGeneration;     /* Generation counter.  Incremented with each change */
1183   Hash tblHash;        /* All tables indexed by name */
1184   Hash idxHash;        /* All (named) indices indexed by name */
1185   Hash trigHash;       /* All triggers indexed by name */
1186   Hash fkeyHash;       /* All foreign keys by referenced table name */
1187   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
1188   u8 file_format;      /* Schema format version for this file */
1189   u8 enc;              /* Text encoding used by this database */
1190   u16 schemaFlags;     /* Flags associated with this schema */
1191   int cache_size;      /* Number of pages to use in the cache */
1192 };
1193 
1194 /*
1195 ** These macros can be used to test, set, or clear bits in the
1196 ** Db.pSchema->flags field.
1197 */
1198 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
1199 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
1200 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->schemaFlags|=(P)
1201 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->schemaFlags&=~(P)
1202 
1203 /*
1204 ** Allowed values for the DB.pSchema->flags field.
1205 **
1206 ** The DB_SchemaLoaded flag is set after the database schema has been
1207 ** read into internal hash tables.
1208 **
1209 ** DB_UnresetViews means that one or more views have column names that
1210 ** have been filled out.  If the schema changes, these column names might
1211 ** changes and so the view will need to be reset.
1212 */
1213 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
1214 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
1215 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
1216 
1217 /*
1218 ** The number of different kinds of things that can be limited
1219 ** using the sqlite3_limit() interface.
1220 */
1221 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
1222 
1223 /*
1224 ** Lookaside malloc is a set of fixed-size buffers that can be used
1225 ** to satisfy small transient memory allocation requests for objects
1226 ** associated with a particular database connection.  The use of
1227 ** lookaside malloc provides a significant performance enhancement
1228 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
1229 ** SQL statements.
1230 **
1231 ** The Lookaside structure holds configuration information about the
1232 ** lookaside malloc subsystem.  Each available memory allocation in
1233 ** the lookaside subsystem is stored on a linked list of LookasideSlot
1234 ** objects.
1235 **
1236 ** Lookaside allocations are only allowed for objects that are associated
1237 ** with a particular database connection.  Hence, schema information cannot
1238 ** be stored in lookaside because in shared cache mode the schema information
1239 ** is shared by multiple database connections.  Therefore, while parsing
1240 ** schema information, the Lookaside.bEnabled flag is cleared so that
1241 ** lookaside allocations are not used to construct the schema objects.
1242 */
1243 struct Lookaside {
1244   u32 bDisable;           /* Only operate the lookaside when zero */
1245   u16 sz;                 /* Size of each buffer in bytes */
1246   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
1247   int nOut;               /* Number of buffers currently checked out */
1248   int mxOut;              /* Highwater mark for nOut */
1249   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
1250   LookasideSlot *pFree;   /* List of available buffers */
1251   void *pStart;           /* First byte of available memory space */
1252   void *pEnd;             /* First byte past end of available space */
1253 };
1254 struct LookasideSlot {
1255   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
1256 };
1257 
1258 /*
1259 ** A hash table for built-in function definitions.  (Application-defined
1260 ** functions use a regular table table from hash.h.)
1261 **
1262 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
1263 ** Collisions are on the FuncDef.u.pHash chain.
1264 */
1265 #define SQLITE_FUNC_HASH_SZ 23
1266 struct FuncDefHash {
1267   FuncDef *a[SQLITE_FUNC_HASH_SZ];       /* Hash table for functions */
1268 };
1269 
1270 #ifdef SQLITE_USER_AUTHENTICATION
1271 /*
1272 ** Information held in the "sqlite3" database connection object and used
1273 ** to manage user authentication.
1274 */
1275 typedef struct sqlite3_userauth sqlite3_userauth;
1276 struct sqlite3_userauth {
1277   u8 authLevel;                 /* Current authentication level */
1278   int nAuthPW;                  /* Size of the zAuthPW in bytes */
1279   char *zAuthPW;                /* Password used to authenticate */
1280   char *zAuthUser;              /* User name used to authenticate */
1281 };
1282 
1283 /* Allowed values for sqlite3_userauth.authLevel */
1284 #define UAUTH_Unknown     0     /* Authentication not yet checked */
1285 #define UAUTH_Fail        1     /* User authentication failed */
1286 #define UAUTH_User        2     /* Authenticated as a normal user */
1287 #define UAUTH_Admin       3     /* Authenticated as an administrator */
1288 
1289 /* Functions used only by user authorization logic */
1290 int sqlite3UserAuthTable(const char*);
1291 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
1292 void sqlite3UserAuthInit(sqlite3*);
1293 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
1294 
1295 #endif /* SQLITE_USER_AUTHENTICATION */
1296 
1297 /*
1298 ** typedef for the authorization callback function.
1299 */
1300 #ifdef SQLITE_USER_AUTHENTICATION
1301   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1302                                const char*, const char*);
1303 #else
1304   typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
1305                                const char*);
1306 #endif
1307 
1308 #ifndef SQLITE_OMIT_DEPRECATED
1309 /* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing
1310 ** in the style of sqlite3_trace()
1311 */
1312 #define SQLITE_TRACE_LEGACY  0x80
1313 #else
1314 #define SQLITE_TRACE_LEGACY  0
1315 #endif /* SQLITE_OMIT_DEPRECATED */
1316 
1317 
1318 /*
1319 ** Each database connection is an instance of the following structure.
1320 */
1321 struct sqlite3 {
1322   sqlite3_vfs *pVfs;            /* OS Interface */
1323   struct Vdbe *pVdbe;           /* List of active virtual machines */
1324   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
1325   sqlite3_mutex *mutex;         /* Connection mutex */
1326   Db *aDb;                      /* All backends */
1327   int nDb;                      /* Number of backends currently in use */
1328   u32 mDbFlags;                 /* flags recording internal state */
1329   u32 flags;                    /* flags settable by pragmas. See below */
1330   i64 lastRowid;                /* ROWID of most recent insert (see above) */
1331   i64 szMmap;                   /* Default mmap_size setting */
1332   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
1333   int errCode;                  /* Most recent error code (SQLITE_*) */
1334   int errMask;                  /* & result codes with this before returning */
1335   int iSysErrno;                /* Errno value from last system error */
1336   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
1337   u8 enc;                       /* Text encoding */
1338   u8 autoCommit;                /* The auto-commit flag. */
1339   u8 temp_store;                /* 1: file 2: memory 0: default */
1340   u8 mallocFailed;              /* True if we have seen a malloc failure */
1341   u8 bBenignMalloc;             /* Do not require OOMs if true */
1342   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
1343   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
1344   u8 suppressErr;               /* Do not issue error messages if true */
1345   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
1346   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
1347   u8 mTrace;                    /* zero or more SQLITE_TRACE flags */
1348   u8 skipBtreeMutex;            /* True if no shared-cache backends */
1349   u8 nSqlExec;                  /* Number of pending OP_SqlExec opcodes */
1350   int nextPagesize;             /* Pagesize after VACUUM if >0 */
1351   u32 magic;                    /* Magic number for detect library misuse */
1352   int nChange;                  /* Value returned by sqlite3_changes() */
1353   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
1354   int aLimit[SQLITE_N_LIMIT];   /* Limits */
1355   int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
1356   struct sqlite3InitInfo {      /* Information used during initialization */
1357     int newTnum;                /* Rootpage of table being initialized */
1358     u8 iDb;                     /* Which db file is being initialized */
1359     u8 busy;                    /* TRUE if currently initializing */
1360     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
1361     u8 imposterTable;           /* Building an imposter table */
1362   } init;
1363   int nVdbeActive;              /* Number of VDBEs currently running */
1364   int nVdbeRead;                /* Number of active VDBEs that read or write */
1365   int nVdbeWrite;               /* Number of active VDBEs that read and write */
1366   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
1367   int nVDestroy;                /* Number of active OP_VDestroy operations */
1368   int nExtension;               /* Number of loaded extensions */
1369   void **aExtension;            /* Array of shared library handles */
1370   int (*xTrace)(u32,void*,void*,void*);     /* Trace function */
1371   void *pTraceArg;                          /* Argument to the trace function */
1372   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
1373   void *pProfileArg;                        /* Argument to profile function */
1374   void *pCommitArg;                 /* Argument to xCommitCallback() */
1375   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
1376   void *pRollbackArg;               /* Argument to xRollbackCallback() */
1377   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
1378   void *pUpdateArg;
1379   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
1380 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1381   void *pPreUpdateArg;          /* First argument to xPreUpdateCallback */
1382   void (*xPreUpdateCallback)(   /* Registered using sqlite3_preupdate_hook() */
1383     void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64
1384   );
1385   PreUpdate *pPreUpdate;        /* Context for active pre-update callback */
1386 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1387 #ifndef SQLITE_OMIT_WAL
1388   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
1389   void *pWalArg;
1390 #endif
1391   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
1392   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
1393   void *pCollNeededArg;
1394   sqlite3_value *pErr;          /* Most recent error message */
1395   union {
1396     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
1397     double notUsed1;            /* Spacer */
1398   } u1;
1399   Lookaside lookaside;          /* Lookaside malloc configuration */
1400 #ifndef SQLITE_OMIT_AUTHORIZATION
1401   sqlite3_xauth xAuth;          /* Access authorization function */
1402   void *pAuthArg;               /* 1st argument to the access auth function */
1403 #endif
1404 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1405   int (*xProgress)(void *);     /* The progress callback */
1406   void *pProgressArg;           /* Argument to the progress callback */
1407   unsigned nProgressOps;        /* Number of opcodes for progress callback */
1408 #endif
1409 #ifndef SQLITE_OMIT_VIRTUALTABLE
1410   int nVTrans;                  /* Allocated size of aVTrans */
1411   Hash aModule;                 /* populated by sqlite3_create_module() */
1412   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
1413   VTable **aVTrans;             /* Virtual tables with open transactions */
1414   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
1415 #endif
1416   Hash aFunc;                   /* Hash table of connection functions */
1417   Hash aCollSeq;                /* All collating sequences */
1418   BusyHandler busyHandler;      /* Busy callback */
1419   Db aDbStatic[2];              /* Static space for the 2 default backends */
1420   Savepoint *pSavepoint;        /* List of active savepoints */
1421   int busyTimeout;              /* Busy handler timeout, in msec */
1422   int nSavepoint;               /* Number of non-transaction savepoints */
1423   int nStatement;               /* Number of nested statement-transactions  */
1424   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
1425   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
1426   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
1427 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
1428   /* The following variables are all protected by the STATIC_MASTER
1429   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
1430   **
1431   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
1432   ** unlock so that it can proceed.
1433   **
1434   ** When X.pBlockingConnection==Y, that means that something that X tried
1435   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
1436   ** held by Y.
1437   */
1438   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
1439   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
1440   void *pUnlockArg;                     /* Argument to xUnlockNotify */
1441   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
1442   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
1443 #endif
1444 #ifdef SQLITE_USER_AUTHENTICATION
1445   sqlite3_userauth auth;        /* User authentication information */
1446 #endif
1447 };
1448 
1449 /*
1450 ** A macro to discover the encoding of a database.
1451 */
1452 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
1453 #define ENC(db)        ((db)->enc)
1454 
1455 /*
1456 ** Possible values for the sqlite3.flags.
1457 **
1458 ** Value constraints (enforced via assert()):
1459 **      SQLITE_FullFSync     == PAGER_FULLFSYNC
1460 **      SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC
1461 **      SQLITE_CacheSpill    == PAGER_CACHE_SPILL
1462 */
1463 #define SQLITE_WriteSchema    0x00000001  /* OK to update SQLITE_MASTER */
1464 #define SQLITE_LegacyFileFmt  0x00000002  /* Create new databases in format 1 */
1465 #define SQLITE_FullColNames   0x00000004  /* Show full column names on SELECT */
1466 #define SQLITE_FullFSync      0x00000008  /* Use full fsync on the backend */
1467 #define SQLITE_CkptFullFSync  0x00000010  /* Use full fsync for checkpoint */
1468 #define SQLITE_CacheSpill     0x00000020  /* OK to spill pager cache */
1469 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
1470 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
1471                                           /*   DELETE, or UPDATE and return */
1472                                           /*   the count using a callback. */
1473 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
1474                                           /*   result set is empty */
1475 #define SQLITE_IgnoreChecks   0x00000200  /* Do not enforce check constraints */
1476 #define SQLITE_ReadUncommit   0x00000400  /* READ UNCOMMITTED in shared-cache */
1477 #define SQLITE_NoCkptOnClose  0x00000800  /* No checkpoint on close()/DETACH */
1478 #define SQLITE_ReverseOrder   0x00001000  /* Reverse unordered SELECTs */
1479 #define SQLITE_RecTriggers    0x00002000  /* Enable recursive triggers */
1480 #define SQLITE_ForeignKeys    0x00004000  /* Enforce foreign key constraints  */
1481 #define SQLITE_AutoIndex      0x00008000  /* Enable automatic indexes */
1482 #define SQLITE_LoadExtension  0x00010000  /* Enable load_extension */
1483 #define SQLITE_LoadExtFunc    0x00020000  /* Enable load_extension() SQL func */
1484 #define SQLITE_EnableTrigger  0x00040000  /* True to enable triggers */
1485 #define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
1486 #define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
1487 #define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
1488 #define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
1489 #define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee */
1490 /* Flags used only if debugging */
1491 #ifdef SQLITE_DEBUG
1492 #define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
1493 #define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
1494 #define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
1495 #define SQLITE_VdbeAddopTrace 0x40000000  /* Trace sqlite3VdbeAddOp() calls */
1496 #define SQLITE_VdbeEQP        0x80000000  /* Debug EXPLAIN QUERY PLAN */
1497 #endif
1498 
1499 /*
1500 ** Allowed values for sqlite3.mDbFlags
1501 */
1502 #define DBFLAG_SchemaChange   0x0001  /* Uncommitted Hash table changes */
1503 #define DBFLAG_PreferBuiltin  0x0002  /* Preference to built-in funcs */
1504 #define DBFLAG_Vacuum         0x0004  /* Currently in a VACUUM */
1505 
1506 /*
1507 ** Bits of the sqlite3.dbOptFlags field that are used by the
1508 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
1509 ** selectively disable various optimizations.
1510 */
1511 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
1512 #define SQLITE_ColumnCache    0x0002   /* Column cache */
1513 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
1514 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
1515 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
1516 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
1517 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
1518 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
1519 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
1520 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
1521 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
1522 #define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
1523 #define SQLITE_CountOfView    0x1000   /* The count-of-view optimization */
1524 #define SQLITE_CursorHints    0x2000   /* Add OP_CursorHint opcodes */
1525 #define SQLITE_AllOpts        0xffff   /* All optimizations */
1526 
1527 /*
1528 ** Macros for testing whether or not optimizations are enabled or disabled.
1529 */
1530 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1531 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
1532 
1533 /*
1534 ** Return true if it OK to factor constant expressions into the initialization
1535 ** code. The argument is a Parse object for the code generator.
1536 */
1537 #define ConstFactorOk(P) ((P)->okConstFactor)
1538 
1539 /*
1540 ** Possible values for the sqlite.magic field.
1541 ** The numbers are obtained at random and have no special meaning, other
1542 ** than being distinct from one another.
1543 */
1544 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
1545 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
1546 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
1547 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
1548 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
1549 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
1550 
1551 /*
1552 ** Each SQL function is defined by an instance of the following
1553 ** structure.  For global built-in functions (ex: substr(), max(), count())
1554 ** a pointer to this structure is held in the sqlite3BuiltinFunctions object.
1555 ** For per-connection application-defined functions, a pointer to this
1556 ** structure is held in the db->aHash hash table.
1557 **
1558 ** The u.pHash field is used by the global built-ins.  The u.pDestructor
1559 ** field is used by per-connection app-def functions.
1560 */
1561 struct FuncDef {
1562   i8 nArg;             /* Number of arguments.  -1 means unlimited */
1563   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
1564   void *pUserData;     /* User data parameter */
1565   FuncDef *pNext;      /* Next function with same name */
1566   void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */
1567   void (*xFinalize)(sqlite3_context*);                  /* Agg finalizer */
1568   const char *zName;   /* SQL name of the function. */
1569   union {
1570     FuncDef *pHash;      /* Next with a different name but the same hash */
1571     FuncDestructor *pDestructor;   /* Reference counted destructor function */
1572   } u;
1573 };
1574 
1575 /*
1576 ** This structure encapsulates a user-function destructor callback (as
1577 ** configured using create_function_v2()) and a reference counter. When
1578 ** create_function_v2() is called to create a function with a destructor,
1579 ** a single object of this type is allocated. FuncDestructor.nRef is set to
1580 ** the number of FuncDef objects created (either 1 or 3, depending on whether
1581 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
1582 ** member of each of the new FuncDef objects is set to point to the allocated
1583 ** FuncDestructor.
1584 **
1585 ** Thereafter, when one of the FuncDef objects is deleted, the reference
1586 ** count on this object is decremented. When it reaches 0, the destructor
1587 ** is invoked and the FuncDestructor structure freed.
1588 */
1589 struct FuncDestructor {
1590   int nRef;
1591   void (*xDestroy)(void *);
1592   void *pUserData;
1593 };
1594 
1595 /*
1596 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
1597 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  And
1598 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC.  There
1599 ** are assert() statements in the code to verify this.
1600 **
1601 ** Value constraints (enforced via assert()):
1602 **     SQLITE_FUNC_MINMAX    ==  NC_MinMaxAgg      == SF_MinMaxAgg
1603 **     SQLITE_FUNC_LENGTH    ==  OPFLAG_LENGTHARG
1604 **     SQLITE_FUNC_TYPEOF    ==  OPFLAG_TYPEOFARG
1605 **     SQLITE_FUNC_CONSTANT  ==  SQLITE_DETERMINISTIC from the API
1606 **     SQLITE_FUNC_ENCMASK   depends on SQLITE_UTF* macros in the API
1607 */
1608 #define SQLITE_FUNC_ENCMASK  0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
1609 #define SQLITE_FUNC_LIKE     0x0004 /* Candidate for the LIKE optimization */
1610 #define SQLITE_FUNC_CASE     0x0008 /* Case-sensitive LIKE-type function */
1611 #define SQLITE_FUNC_EPHEM    0x0010 /* Ephemeral.  Delete with VDBE */
1612 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/
1613 #define SQLITE_FUNC_LENGTH   0x0040 /* Built-in length() function */
1614 #define SQLITE_FUNC_TYPEOF   0x0080 /* Built-in typeof() function */
1615 #define SQLITE_FUNC_COUNT    0x0100 /* Built-in count(*) aggregate */
1616 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */
1617 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
1618 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
1619 #define SQLITE_FUNC_MINMAX   0x1000 /* True for min() and max() aggregates */
1620 #define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
1621                                     ** single query - might change over time */
1622 #define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */
1623 
1624 /*
1625 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
1626 ** used to create the initializers for the FuncDef structures.
1627 **
1628 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
1629 **     Used to create a scalar function definition of a function zName
1630 **     implemented by C function xFunc that accepts nArg arguments. The
1631 **     value passed as iArg is cast to a (void*) and made available
1632 **     as the user-data (sqlite3_user_data()) for the function. If
1633 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
1634 **
1635 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
1636 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
1637 **
1638 **   DFUNCTION(zName, nArg, iArg, bNC, xFunc)
1639 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and
1640 **     adds the SQLITE_FUNC_SLOCHNG flag.  Used for date & time functions
1641 **     and functions like sqlite_version() that can change, but not during
1642 **     a single query.  The iArg is ignored.  The user-data is always set
1643 **     to a NULL pointer.  The bNC parameter is not used.
1644 **
1645 **   PURE_DATE(zName, nArg, iArg, bNC, xFunc)
1646 **     Used for "pure" date/time functions, this macro is like DFUNCTION
1647 **     except that it does set the SQLITE_FUNC_CONSTANT flags.  iArg is
1648 **     ignored and the user-data for these functions is set to an
1649 **     arbitrary non-NULL pointer.  The bNC parameter is not used.
1650 **
1651 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
1652 **     Used to create an aggregate function definition implemented by
1653 **     the C functions xStep and xFinal. The first four parameters
1654 **     are interpreted in the same way as the first 4 parameters to
1655 **     FUNCTION().
1656 **
1657 **   LIKEFUNC(zName, nArg, pArg, flags)
1658 **     Used to create a scalar function definition of a function zName
1659 **     that accepts nArg arguments and is implemented by a call to C
1660 **     function likeFunc. Argument pArg is cast to a (void *) and made
1661 **     available as the function user-data (sqlite3_user_data()). The
1662 **     FuncDef.flags variable is set to the value passed as the flags
1663 **     parameter.
1664 */
1665 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
1666   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1667    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} }
1668 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1669   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1670    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} }
1671 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \
1672   {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8, \
1673    0, 0, xFunc, 0, #zName, {0} }
1674 #define PURE_DATE(zName, nArg, iArg, bNC, xFunc) \
1675   {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \
1676    (void*)&sqlite3Config, 0, xFunc, 0, #zName, {0} }
1677 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
1678   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
1679    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} }
1680 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
1681   {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
1682    pArg, 0, xFunc, 0, #zName, }
1683 #define LIKEFUNC(zName, nArg, arg, flags) \
1684   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
1685    (void *)arg, 0, likeFunc, 0, #zName, {0} }
1686 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
1687   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
1688    SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}}
1689 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
1690   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
1691    SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}}
1692 
1693 /*
1694 ** All current savepoints are stored in a linked list starting at
1695 ** sqlite3.pSavepoint. The first element in the list is the most recently
1696 ** opened savepoint. Savepoints are added to the list by the vdbe
1697 ** OP_Savepoint instruction.
1698 */
1699 struct Savepoint {
1700   char *zName;                        /* Savepoint name (nul-terminated) */
1701   i64 nDeferredCons;                  /* Number of deferred fk violations */
1702   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
1703   Savepoint *pNext;                   /* Parent savepoint (if any) */
1704 };
1705 
1706 /*
1707 ** The following are used as the second parameter to sqlite3Savepoint(),
1708 ** and as the P1 argument to the OP_Savepoint instruction.
1709 */
1710 #define SAVEPOINT_BEGIN      0
1711 #define SAVEPOINT_RELEASE    1
1712 #define SAVEPOINT_ROLLBACK   2
1713 
1714 
1715 /*
1716 ** Each SQLite module (virtual table definition) is defined by an
1717 ** instance of the following structure, stored in the sqlite3.aModule
1718 ** hash table.
1719 */
1720 struct Module {
1721   const sqlite3_module *pModule;       /* Callback pointers */
1722   const char *zName;                   /* Name passed to create_module() */
1723   void *pAux;                          /* pAux passed to create_module() */
1724   void (*xDestroy)(void *);            /* Module destructor function */
1725   Table *pEpoTab;                      /* Eponymous table for this module */
1726 };
1727 
1728 /*
1729 ** information about each column of an SQL table is held in an instance
1730 ** of this structure.
1731 */
1732 struct Column {
1733   char *zName;     /* Name of this column, \000, then the type */
1734   Expr *pDflt;     /* Default value of this column */
1735   char *zColl;     /* Collating sequence.  If NULL, use the default */
1736   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
1737   char affinity;   /* One of the SQLITE_AFF_... values */
1738   u8 szEst;        /* Estimated size of value in this column. sizeof(INT)==1 */
1739   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
1740 };
1741 
1742 /* Allowed values for Column.colFlags:
1743 */
1744 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
1745 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
1746 #define COLFLAG_HASTYPE  0x0004    /* Type name follows column name */
1747 
1748 /*
1749 ** A "Collating Sequence" is defined by an instance of the following
1750 ** structure. Conceptually, a collating sequence consists of a name and
1751 ** a comparison routine that defines the order of that sequence.
1752 **
1753 ** If CollSeq.xCmp is NULL, it means that the
1754 ** collating sequence is undefined.  Indices built on an undefined
1755 ** collating sequence may not be read or written.
1756 */
1757 struct CollSeq {
1758   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1759   u8 enc;               /* Text encoding handled by xCmp() */
1760   void *pUser;          /* First argument to xCmp() */
1761   int (*xCmp)(void*,int, const void*, int, const void*);
1762   void (*xDel)(void*);  /* Destructor for pUser */
1763 };
1764 
1765 /*
1766 ** A sort order can be either ASC or DESC.
1767 */
1768 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1769 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1770 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */
1771 
1772 /*
1773 ** Column affinity types.
1774 **
1775 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1776 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1777 ** the speed a little by numbering the values consecutively.
1778 **
1779 ** But rather than start with 0 or 1, we begin with 'A'.  That way,
1780 ** when multiple affinity types are concatenated into a string and
1781 ** used as the P4 operand, they will be more readable.
1782 **
1783 ** Note also that the numeric types are grouped together so that testing
1784 ** for a numeric type is a single comparison.  And the BLOB type is first.
1785 */
1786 #define SQLITE_AFF_BLOB     'A'
1787 #define SQLITE_AFF_TEXT     'B'
1788 #define SQLITE_AFF_NUMERIC  'C'
1789 #define SQLITE_AFF_INTEGER  'D'
1790 #define SQLITE_AFF_REAL     'E'
1791 
1792 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1793 
1794 /*
1795 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1796 ** affinity value.
1797 */
1798 #define SQLITE_AFF_MASK     0x47
1799 
1800 /*
1801 ** Additional bit values that can be ORed with an affinity without
1802 ** changing the affinity.
1803 **
1804 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
1805 ** It causes an assert() to fire if either operand to a comparison
1806 ** operator is NULL.  It is added to certain comparison operators to
1807 ** prove that the operands are always NOT NULL.
1808 */
1809 #define SQLITE_KEEPNULL     0x08  /* Used by vector == or <> */
1810 #define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
1811 #define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
1812 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
1813 #define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */
1814 
1815 /*
1816 ** An object of this type is created for each virtual table present in
1817 ** the database schema.
1818 **
1819 ** If the database schema is shared, then there is one instance of this
1820 ** structure for each database connection (sqlite3*) that uses the shared
1821 ** schema. This is because each database connection requires its own unique
1822 ** instance of the sqlite3_vtab* handle used to access the virtual table
1823 ** implementation. sqlite3_vtab* handles can not be shared between
1824 ** database connections, even when the rest of the in-memory database
1825 ** schema is shared, as the implementation often stores the database
1826 ** connection handle passed to it via the xConnect() or xCreate() method
1827 ** during initialization internally. This database connection handle may
1828 ** then be used by the virtual table implementation to access real tables
1829 ** within the database. So that they appear as part of the callers
1830 ** transaction, these accesses need to be made via the same database
1831 ** connection as that used to execute SQL operations on the virtual table.
1832 **
1833 ** All VTable objects that correspond to a single table in a shared
1834 ** database schema are initially stored in a linked-list pointed to by
1835 ** the Table.pVTable member variable of the corresponding Table object.
1836 ** When an sqlite3_prepare() operation is required to access the virtual
1837 ** table, it searches the list for the VTable that corresponds to the
1838 ** database connection doing the preparing so as to use the correct
1839 ** sqlite3_vtab* handle in the compiled query.
1840 **
1841 ** When an in-memory Table object is deleted (for example when the
1842 ** schema is being reloaded for some reason), the VTable objects are not
1843 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1844 ** immediately. Instead, they are moved from the Table.pVTable list to
1845 ** another linked list headed by the sqlite3.pDisconnect member of the
1846 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1847 ** next time a statement is prepared using said sqlite3*. This is done
1848 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1849 ** Refer to comments above function sqlite3VtabUnlockList() for an
1850 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1851 ** list without holding the corresponding sqlite3.mutex mutex.
1852 **
1853 ** The memory for objects of this type is always allocated by
1854 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1855 ** the first argument.
1856 */
1857 struct VTable {
1858   sqlite3 *db;              /* Database connection associated with this table */
1859   Module *pMod;             /* Pointer to module implementation */
1860   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
1861   int nRef;                 /* Number of pointers to this structure */
1862   u8 bConstraint;           /* True if constraints are supported */
1863   int iSavepoint;           /* Depth of the SAVEPOINT stack */
1864   VTable *pNext;            /* Next in linked list (see above) */
1865 };
1866 
1867 /*
1868 ** The schema for each SQL table and view is represented in memory
1869 ** by an instance of the following structure.
1870 */
1871 struct Table {
1872   char *zName;         /* Name of the table or view */
1873   Column *aCol;        /* Information about each column */
1874   Index *pIndex;       /* List of SQL indexes on this table. */
1875   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1876   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1877   char *zColAff;       /* String defining the affinity of each column */
1878   ExprList *pCheck;    /* All CHECK constraints */
1879                        /*   ... also used as column name list in a VIEW */
1880   int tnum;            /* Root BTree page for this table */
1881   u32 nTabRef;         /* Number of pointers to this Table */
1882   u32 tabFlags;        /* Mask of TF_* values */
1883   i16 iPKey;           /* If not negative, use aCol[iPKey] as the rowid */
1884   i16 nCol;            /* Number of columns in this table */
1885   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
1886   LogEst szTabRow;     /* Estimated size of each table row in bytes */
1887 #ifdef SQLITE_ENABLE_COSTMULT
1888   LogEst costMult;     /* Cost multiplier for using this table */
1889 #endif
1890   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1891 #ifndef SQLITE_OMIT_ALTERTABLE
1892   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1893 #endif
1894 #ifndef SQLITE_OMIT_VIRTUALTABLE
1895   int nModuleArg;      /* Number of arguments to the module */
1896   char **azModuleArg;  /* 0: module 1: schema 2: vtab name 3...: args */
1897   VTable *pVTable;     /* List of VTable objects. */
1898 #endif
1899   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1900   Schema *pSchema;     /* Schema that contains this table */
1901   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1902 };
1903 
1904 /*
1905 ** Allowed values for Table.tabFlags.
1906 **
1907 ** TF_OOOHidden applies to tables or view that have hidden columns that are
1908 ** followed by non-hidden columns.  Example:  "CREATE VIRTUAL TABLE x USING
1909 ** vtab1(a HIDDEN, b);".  Since "b" is a non-hidden column but "a" is hidden,
1910 ** the TF_OOOHidden attribute would apply in this case.  Such tables require
1911 ** special handling during INSERT processing.
1912 */
1913 #define TF_Readonly        0x0001    /* Read-only system table */
1914 #define TF_Ephemeral       0x0002    /* An ephemeral table */
1915 #define TF_HasPrimaryKey   0x0004    /* Table has a primary key */
1916 #define TF_Autoincrement   0x0008    /* Integer primary key is autoincrement */
1917 #define TF_HasStat1        0x0010    /* nRowLogEst set from sqlite_stat1 */
1918 #define TF_WithoutRowid    0x0020    /* No rowid.  PRIMARY KEY is the key */
1919 #define TF_NoVisibleRowid  0x0040    /* No user-visible "rowid" column */
1920 #define TF_OOOHidden       0x0080    /* Out-of-Order hidden columns */
1921 #define TF_StatsUsed       0x0100    /* Query planner decisions affected by
1922                                      ** Index.aiRowLogEst[] values */
1923 #define TF_HasNotNull      0x0200    /* Contains NOT NULL constraints */
1924 
1925 /*
1926 ** Test to see whether or not a table is a virtual table.  This is
1927 ** done as a macro so that it will be optimized out when virtual
1928 ** table support is omitted from the build.
1929 */
1930 #ifndef SQLITE_OMIT_VIRTUALTABLE
1931 #  define IsVirtual(X)      ((X)->nModuleArg)
1932 #else
1933 #  define IsVirtual(X)      0
1934 #endif
1935 
1936 /*
1937 ** Macros to determine if a column is hidden.  IsOrdinaryHiddenColumn()
1938 ** only works for non-virtual tables (ordinary tables and views) and is
1939 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined.  The
1940 ** IsHiddenColumn() macro is general purpose.
1941 */
1942 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS)
1943 #  define IsHiddenColumn(X)         (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1944 #  define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1945 #elif !defined(SQLITE_OMIT_VIRTUALTABLE)
1946 #  define IsHiddenColumn(X)         (((X)->colFlags & COLFLAG_HIDDEN)!=0)
1947 #  define IsOrdinaryHiddenColumn(X) 0
1948 #else
1949 #  define IsHiddenColumn(X)         0
1950 #  define IsOrdinaryHiddenColumn(X) 0
1951 #endif
1952 
1953 
1954 /* Does the table have a rowid */
1955 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
1956 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)
1957 
1958 /*
1959 ** Each foreign key constraint is an instance of the following structure.
1960 **
1961 ** A foreign key is associated with two tables.  The "from" table is
1962 ** the table that contains the REFERENCES clause that creates the foreign
1963 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1964 ** Consider this example:
1965 **
1966 **     CREATE TABLE ex1(
1967 **       a INTEGER PRIMARY KEY,
1968 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1969 **     );
1970 **
1971 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1972 ** Equivalent names:
1973 **
1974 **     from-table == child-table
1975 **       to-table == parent-table
1976 **
1977 ** Each REFERENCES clause generates an instance of the following structure
1978 ** which is attached to the from-table.  The to-table need not exist when
1979 ** the from-table is created.  The existence of the to-table is not checked.
1980 **
1981 ** The list of all parents for child Table X is held at X.pFKey.
1982 **
1983 ** A list of all children for a table named Z (which might not even exist)
1984 ** is held in Schema.fkeyHash with a hash key of Z.
1985 */
1986 struct FKey {
1987   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
1988   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
1989   char *zTo;        /* Name of table that the key points to (aka: Parent) */
1990   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
1991   FKey *pPrevTo;    /* Previous with the same zTo */
1992   int nCol;         /* Number of columns in this key */
1993   /* EV: R-30323-21917 */
1994   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
1995   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
1996   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
1997   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
1998     int iFrom;            /* Index of column in pFrom */
1999     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
2000   } aCol[1];            /* One entry for each of nCol columns */
2001 };
2002 
2003 /*
2004 ** SQLite supports many different ways to resolve a constraint
2005 ** error.  ROLLBACK processing means that a constraint violation
2006 ** causes the operation in process to fail and for the current transaction
2007 ** to be rolled back.  ABORT processing means the operation in process
2008 ** fails and any prior changes from that one operation are backed out,
2009 ** but the transaction is not rolled back.  FAIL processing means that
2010 ** the operation in progress stops and returns an error code.  But prior
2011 ** changes due to the same operation are not backed out and no rollback
2012 ** occurs.  IGNORE means that the particular row that caused the constraint
2013 ** error is not inserted or updated.  Processing continues and no error
2014 ** is returned.  REPLACE means that preexisting database rows that caused
2015 ** a UNIQUE constraint violation are removed so that the new insert or
2016 ** update can proceed.  Processing continues and no error is reported.
2017 **
2018 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
2019 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
2020 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
2021 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
2022 ** referenced table row is propagated into the row that holds the
2023 ** foreign key.
2024 **
2025 ** The following symbolic values are used to record which type
2026 ** of action to take.
2027 */
2028 #define OE_None     0   /* There is no constraint to check */
2029 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
2030 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
2031 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
2032 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
2033 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
2034 
2035 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
2036 #define OE_SetNull  7   /* Set the foreign key value to NULL */
2037 #define OE_SetDflt  8   /* Set the foreign key value to its default */
2038 #define OE_Cascade  9   /* Cascade the changes */
2039 
2040 #define OE_Default  10  /* Do whatever the default action is */
2041 
2042 
2043 /*
2044 ** An instance of the following structure is passed as the first
2045 ** argument to sqlite3VdbeKeyCompare and is used to control the
2046 ** comparison of the two index keys.
2047 **
2048 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
2049 ** are nField slots for the columns of an index then one extra slot
2050 ** for the rowid at the end.
2051 */
2052 struct KeyInfo {
2053   u32 nRef;           /* Number of references to this KeyInfo object */
2054   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
2055   u16 nKeyField;      /* Number of key columns in the index */
2056   u16 nAllField;      /* Total columns, including key plus others */
2057   sqlite3 *db;        /* The database connection */
2058   u8 *aSortOrder;     /* Sort order for each column. */
2059   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
2060 };
2061 
2062 /*
2063 ** This object holds a record which has been parsed out into individual
2064 ** fields, for the purposes of doing a comparison.
2065 **
2066 ** A record is an object that contains one or more fields of data.
2067 ** Records are used to store the content of a table row and to store
2068 ** the key of an index.  A blob encoding of a record is created by
2069 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
2070 ** OP_Column opcode.
2071 **
2072 ** An instance of this object serves as a "key" for doing a search on
2073 ** an index b+tree. The goal of the search is to find the entry that
2074 ** is closed to the key described by this object.  This object might hold
2075 ** just a prefix of the key.  The number of fields is given by
2076 ** pKeyInfo->nField.
2077 **
2078 ** The r1 and r2 fields are the values to return if this key is less than
2079 ** or greater than a key in the btree, respectively.  These are normally
2080 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree
2081 ** is in DESC order.
2082 **
2083 ** The key comparison functions actually return default_rc when they find
2084 ** an equals comparison.  default_rc can be -1, 0, or +1.  If there are
2085 ** multiple entries in the b-tree with the same key (when only looking
2086 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to
2087 ** cause the search to find the last match, or +1 to cause the search to
2088 ** find the first match.
2089 **
2090 ** The key comparison functions will set eqSeen to true if they ever
2091 ** get and equal results when comparing this structure to a b-tree record.
2092 ** When default_rc!=0, the search might end up on the record immediately
2093 ** before the first match or immediately after the last match.  The
2094 ** eqSeen field will indicate whether or not an exact match exists in the
2095 ** b-tree.
2096 */
2097 struct UnpackedRecord {
2098   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
2099   Mem *aMem;          /* Values */
2100   u16 nField;         /* Number of entries in apMem[] */
2101   i8 default_rc;      /* Comparison result if keys are equal */
2102   u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
2103   i8 r1;              /* Value to return if (lhs < rhs) */
2104   i8 r2;              /* Value to return if (lhs > rhs) */
2105   u8 eqSeen;          /* True if an equality comparison has been seen */
2106 };
2107 
2108 
2109 /*
2110 ** Each SQL index is represented in memory by an
2111 ** instance of the following structure.
2112 **
2113 ** The columns of the table that are to be indexed are described
2114 ** by the aiColumn[] field of this structure.  For example, suppose
2115 ** we have the following table and index:
2116 **
2117 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
2118 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
2119 **
2120 ** In the Table structure describing Ex1, nCol==3 because there are
2121 ** three columns in the table.  In the Index structure describing
2122 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
2123 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
2124 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
2125 ** The second column to be indexed (c1) has an index of 0 in
2126 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
2127 **
2128 ** The Index.onError field determines whether or not the indexed columns
2129 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
2130 ** it means this is not a unique index.  Otherwise it is a unique index
2131 ** and the value of Index.onError indicate the which conflict resolution
2132 ** algorithm to employ whenever an attempt is made to insert a non-unique
2133 ** element.
2134 **
2135 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to
2136 ** generate VDBE code (as opposed to parsing one read from an sqlite_master
2137 ** table as part of parsing an existing database schema), transient instances
2138 ** of this structure may be created. In this case the Index.tnum variable is
2139 ** used to store the address of a VDBE instruction, not a database page
2140 ** number (it cannot - the database page is not allocated until the VDBE
2141 ** program is executed). See convertToWithoutRowidTable() for details.
2142 */
2143 struct Index {
2144   char *zName;             /* Name of this index */
2145   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
2146   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
2147   Table *pTable;           /* The SQL table being indexed */
2148   char *zColAff;           /* String defining the affinity of each column */
2149   Index *pNext;            /* The next index associated with the same table */
2150   Schema *pSchema;         /* Schema containing this index */
2151   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
2152   const char **azColl;     /* Array of collation sequence names for index */
2153   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
2154   ExprList *aColExpr;      /* Column expressions */
2155   int tnum;                /* DB Page containing root of this index */
2156   LogEst szIdxRow;         /* Estimated average row size in bytes */
2157   u16 nKeyCol;             /* Number of columns forming the key */
2158   u16 nColumn;             /* Number of columns stored in the index */
2159   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2160   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
2161   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
2162   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
2163   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
2164   unsigned isCovering:1;   /* True if this is a covering index */
2165   unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
2166   unsigned hasStat1:1;     /* aiRowLogEst values come from sqlite_stat1 */
2167 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2168   int nSample;             /* Number of elements in aSample[] */
2169   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
2170   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
2171   IndexSample *aSample;    /* Samples of the left-most key */
2172   tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
2173   tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
2174 #endif
2175 };
2176 
2177 /*
2178 ** Allowed values for Index.idxType
2179 */
2180 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
2181 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
2182 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
2183 
2184 /* Return true if index X is a PRIMARY KEY index */
2185 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2186 
2187 /* Return true if index X is a UNIQUE index */
2188 #define IsUniqueIndex(X)      ((X)->onError!=OE_None)
2189 
2190 /* The Index.aiColumn[] values are normally positive integer.  But
2191 ** there are some negative values that have special meaning:
2192 */
2193 #define XN_ROWID     (-1)     /* Indexed column is the rowid */
2194 #define XN_EXPR      (-2)     /* Indexed column is an expression */
2195 
2196 /*
2197 ** Each sample stored in the sqlite_stat3 table is represented in memory
2198 ** using a structure of this type.  See documentation at the top of the
2199 ** analyze.c source file for additional information.
2200 */
2201 struct IndexSample {
2202   void *p;          /* Pointer to sampled record */
2203   int n;            /* Size of record in bytes */
2204   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
2205   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
2206   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
2207 };
2208 
2209 /*
2210 ** Each token coming out of the lexer is an instance of
2211 ** this structure.  Tokens are also used as part of an expression.
2212 **
2213 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
2214 ** may contain random values.  Do not make any assumptions about Token.dyn
2215 ** and Token.n when Token.z==0.
2216 */
2217 struct Token {
2218   const char *z;     /* Text of the token.  Not NULL-terminated! */
2219   unsigned int n;    /* Number of characters in this token */
2220 };
2221 
2222 /*
2223 ** An instance of this structure contains information needed to generate
2224 ** code for a SELECT that contains aggregate functions.
2225 **
2226 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
2227 ** pointer to this structure.  The Expr.iColumn field is the index in
2228 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
2229 ** code for that node.
2230 **
2231 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
2232 ** original Select structure that describes the SELECT statement.  These
2233 ** fields do not need to be freed when deallocating the AggInfo structure.
2234 */
2235 struct AggInfo {
2236   u8 directMode;          /* Direct rendering mode means take data directly
2237                           ** from source tables rather than from accumulators */
2238   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
2239                           ** than the source table */
2240   int sortingIdx;         /* Cursor number of the sorting index */
2241   int sortingIdxPTab;     /* Cursor number of pseudo-table */
2242   int nSortingColumn;     /* Number of columns in the sorting index */
2243   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
2244   ExprList *pGroupBy;     /* The group by clause */
2245   struct AggInfo_col {    /* For each column used in source tables */
2246     Table *pTab;             /* Source table */
2247     int iTable;              /* Cursor number of the source table */
2248     int iColumn;             /* Column number within the source table */
2249     int iSorterColumn;       /* Column number in the sorting index */
2250     int iMem;                /* Memory location that acts as accumulator */
2251     Expr *pExpr;             /* The original expression */
2252   } *aCol;
2253   int nColumn;            /* Number of used entries in aCol[] */
2254   int nAccumulator;       /* Number of columns that show through to the output.
2255                           ** Additional columns are used only as parameters to
2256                           ** aggregate functions */
2257   struct AggInfo_func {   /* For each aggregate function */
2258     Expr *pExpr;             /* Expression encoding the function */
2259     FuncDef *pFunc;          /* The aggregate function implementation */
2260     int iMem;                /* Memory location that acts as accumulator */
2261     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
2262   } *aFunc;
2263   int nFunc;              /* Number of entries in aFunc[] */
2264 };
2265 
2266 /*
2267 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
2268 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
2269 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
2270 ** it uses less memory in the Expr object, which is a big memory user
2271 ** in systems with lots of prepared statements.  And few applications
2272 ** need more than about 10 or 20 variables.  But some extreme users want
2273 ** to have prepared statements with over 32767 variables, and for them
2274 ** the option is available (at compile-time).
2275 */
2276 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
2277 typedef i16 ynVar;
2278 #else
2279 typedef int ynVar;
2280 #endif
2281 
2282 /*
2283 ** Each node of an expression in the parse tree is an instance
2284 ** of this structure.
2285 **
2286 ** Expr.op is the opcode. The integer parser token codes are reused
2287 ** as opcodes here. For example, the parser defines TK_GE to be an integer
2288 ** code representing the ">=" operator. This same integer code is reused
2289 ** to represent the greater-than-or-equal-to operator in the expression
2290 ** tree.
2291 **
2292 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
2293 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
2294 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
2295 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
2296 ** then Expr.token contains the name of the function.
2297 **
2298 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
2299 ** binary operator. Either or both may be NULL.
2300 **
2301 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
2302 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
2303 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
2304 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
2305 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
2306 ** valid.
2307 **
2308 ** An expression of the form ID or ID.ID refers to a column in a table.
2309 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
2310 ** the integer cursor number of a VDBE cursor pointing to that table and
2311 ** Expr.iColumn is the column number for the specific column.  If the
2312 ** expression is used as a result in an aggregate SELECT, then the
2313 ** value is also stored in the Expr.iAgg column in the aggregate so that
2314 ** it can be accessed after all aggregates are computed.
2315 **
2316 ** If the expression is an unbound variable marker (a question mark
2317 ** character '?' in the original SQL) then the Expr.iTable holds the index
2318 ** number for that variable.
2319 **
2320 ** If the expression is a subquery then Expr.iColumn holds an integer
2321 ** register number containing the result of the subquery.  If the
2322 ** subquery gives a constant result, then iTable is -1.  If the subquery
2323 ** gives a different answer at different times during statement processing
2324 ** then iTable is the address of a subroutine that computes the subquery.
2325 **
2326 ** If the Expr is of type OP_Column, and the table it is selecting from
2327 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
2328 ** corresponding table definition.
2329 **
2330 ** ALLOCATION NOTES:
2331 **
2332 ** Expr objects can use a lot of memory space in database schema.  To
2333 ** help reduce memory requirements, sometimes an Expr object will be
2334 ** truncated.  And to reduce the number of memory allocations, sometimes
2335 ** two or more Expr objects will be stored in a single memory allocation,
2336 ** together with Expr.zToken strings.
2337 **
2338 ** If the EP_Reduced and EP_TokenOnly flags are set when
2339 ** an Expr object is truncated.  When EP_Reduced is set, then all
2340 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
2341 ** are contained within the same memory allocation.  Note, however, that
2342 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
2343 ** allocated, regardless of whether or not EP_Reduced is set.
2344 */
2345 struct Expr {
2346   u8 op;                 /* Operation performed by this node */
2347   char affinity;         /* The affinity of the column or 0 if not a column */
2348   u32 flags;             /* Various flags.  EP_* See below */
2349   union {
2350     char *zToken;          /* Token value. Zero terminated and dequoted */
2351     int iValue;            /* Non-negative integer value if EP_IntValue */
2352   } u;
2353 
2354   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
2355   ** space is allocated for the fields below this point. An attempt to
2356   ** access them will result in a segfault or malfunction.
2357   *********************************************************************/
2358 
2359   Expr *pLeft;           /* Left subnode */
2360   Expr *pRight;          /* Right subnode */
2361   union {
2362     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
2363     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
2364   } x;
2365 
2366   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
2367   ** space is allocated for the fields below this point. An attempt to
2368   ** access them will result in a segfault or malfunction.
2369   *********************************************************************/
2370 
2371 #if SQLITE_MAX_EXPR_DEPTH>0
2372   int nHeight;           /* Height of the tree headed by this node */
2373 #endif
2374   int iTable;            /* TK_COLUMN: cursor number of table holding column
2375                          ** TK_REGISTER: register number
2376                          ** TK_TRIGGER: 1 -> new, 0 -> old
2377                          ** EP_Unlikely:  134217728 times likelihood
2378                          ** TK_SELECT: 1st register of result vector */
2379   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
2380                          ** TK_VARIABLE: variable number (always >= 1).
2381                          ** TK_SELECT_COLUMN: column of the result vector */
2382   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
2383   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
2384   u8 op2;                /* TK_REGISTER: original value of Expr.op
2385                          ** TK_COLUMN: the value of p5 for OP_Column
2386                          ** TK_AGG_FUNCTION: nesting depth */
2387   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
2388   Table *pTab;           /* Table for TK_COLUMN expressions. */
2389 };
2390 
2391 /*
2392 ** The following are the meanings of bits in the Expr.flags field.
2393 */
2394 #define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
2395 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
2396                   /* 0x000004 // available for use */
2397                   /* 0x000008 // available for use */
2398 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
2399 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
2400 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
2401 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
2402 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
2403 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
2404 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
2405 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
2406 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
2407 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
2408 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
2409 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
2410 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
2411 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
2412 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
2413 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
2414 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
2415 #define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
2416 #define EP_Alias     0x400000 /* Is an alias for a result set column */
2417 #define EP_Leaf      0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */
2418 
2419 /*
2420 ** Combinations of two or more EP_* flags
2421 */
2422 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */
2423 
2424 /*
2425 ** These macros can be used to test, set, or clear bits in the
2426 ** Expr.flags field.
2427 */
2428 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
2429 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
2430 #define ExprSetProperty(E,P)     (E)->flags|=(P)
2431 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
2432 
2433 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
2434 ** and Accreditation only.  It works like ExprSetProperty() during VVA
2435 ** processes but is a no-op for delivery.
2436 */
2437 #ifdef SQLITE_DEBUG
2438 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
2439 #else
2440 # define ExprSetVVAProperty(E,P)
2441 #endif
2442 
2443 /*
2444 ** Macros to determine the number of bytes required by a normal Expr
2445 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
2446 ** and an Expr struct with the EP_TokenOnly flag set.
2447 */
2448 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
2449 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
2450 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
2451 
2452 /*
2453 ** Flags passed to the sqlite3ExprDup() function. See the header comment
2454 ** above sqlite3ExprDup() for details.
2455 */
2456 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
2457 
2458 /*
2459 ** A list of expressions.  Each expression may optionally have a
2460 ** name.  An expr/name combination can be used in several ways, such
2461 ** as the list of "expr AS ID" fields following a "SELECT" or in the
2462 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
2463 ** also be used as the argument to a function, in which case the a.zName
2464 ** field is not used.
2465 **
2466 ** By default the Expr.zSpan field holds a human-readable description of
2467 ** the expression that is used in the generation of error messages and
2468 ** column labels.  In this case, Expr.zSpan is typically the text of a
2469 ** column expression as it exists in a SELECT statement.  However, if
2470 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
2471 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
2472 ** form is used for name resolution with nested FROM clauses.
2473 */
2474 struct ExprList {
2475   int nExpr;             /* Number of expressions on the list */
2476   int nAlloc;            /* Number of a[] slots allocated */
2477   struct ExprList_item { /* For each expression in the list */
2478     Expr *pExpr;            /* The parse tree for this expression */
2479     char *zName;            /* Token associated with this expression */
2480     char *zSpan;            /* Original text of the expression */
2481     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
2482     unsigned done :1;       /* A flag to indicate when processing is finished */
2483     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
2484     unsigned reusable :1;   /* Constant expression is reusable */
2485     union {
2486       struct {
2487         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
2488         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
2489       } x;
2490       int iConstExprReg;      /* Register in which Expr value is cached */
2491     } u;
2492   } a[1];                  /* One slot for each expression in the list */
2493 };
2494 
2495 /*
2496 ** An instance of this structure is used by the parser to record both
2497 ** the parse tree for an expression and the span of input text for an
2498 ** expression.
2499 */
2500 struct ExprSpan {
2501   Expr *pExpr;          /* The expression parse tree */
2502   const char *zStart;   /* First character of input text */
2503   const char *zEnd;     /* One character past the end of input text */
2504 };
2505 
2506 /*
2507 ** An instance of this structure can hold a simple list of identifiers,
2508 ** such as the list "a,b,c" in the following statements:
2509 **
2510 **      INSERT INTO t(a,b,c) VALUES ...;
2511 **      CREATE INDEX idx ON t(a,b,c);
2512 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
2513 **
2514 ** The IdList.a.idx field is used when the IdList represents the list of
2515 ** column names after a table name in an INSERT statement.  In the statement
2516 **
2517 **     INSERT INTO t(a,b,c) ...
2518 **
2519 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
2520 */
2521 struct IdList {
2522   struct IdList_item {
2523     char *zName;      /* Name of the identifier */
2524     int idx;          /* Index in some Table.aCol[] of a column named zName */
2525   } *a;
2526   int nId;         /* Number of identifiers on the list */
2527 };
2528 
2529 /*
2530 ** The bitmask datatype defined below is used for various optimizations.
2531 **
2532 ** Changing this from a 64-bit to a 32-bit type limits the number of
2533 ** tables in a join to 32 instead of 64.  But it also reduces the size
2534 ** of the library by 738 bytes on ix86.
2535 */
2536 #ifdef SQLITE_BITMASK_TYPE
2537   typedef SQLITE_BITMASK_TYPE Bitmask;
2538 #else
2539   typedef u64 Bitmask;
2540 #endif
2541 
2542 /*
2543 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
2544 */
2545 #define BMS  ((int)(sizeof(Bitmask)*8))
2546 
2547 /*
2548 ** A bit in a Bitmask
2549 */
2550 #define MASKBIT(n)   (((Bitmask)1)<<(n))
2551 #define MASKBIT32(n) (((unsigned int)1)<<(n))
2552 #define ALLBITS      ((Bitmask)-1)
2553 
2554 /*
2555 ** The following structure describes the FROM clause of a SELECT statement.
2556 ** Each table or subquery in the FROM clause is a separate element of
2557 ** the SrcList.a[] array.
2558 **
2559 ** With the addition of multiple database support, the following structure
2560 ** can also be used to describe a particular table such as the table that
2561 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
2562 ** such a table must be a simple name: ID.  But in SQLite, the table can
2563 ** now be identified by a database name, a dot, then the table name: ID.ID.
2564 **
2565 ** The jointype starts out showing the join type between the current table
2566 ** and the next table on the list.  The parser builds the list this way.
2567 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
2568 ** jointype expresses the join between the table and the previous table.
2569 **
2570 ** In the colUsed field, the high-order bit (bit 63) is set if the table
2571 ** contains more than 63 columns and the 64-th or later column is used.
2572 */
2573 struct SrcList {
2574   int nSrc;        /* Number of tables or subqueries in the FROM clause */
2575   u32 nAlloc;      /* Number of entries allocated in a[] below */
2576   struct SrcList_item {
2577     Schema *pSchema;  /* Schema to which this item is fixed */
2578     char *zDatabase;  /* Name of database holding this table */
2579     char *zName;      /* Name of the table */
2580     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
2581     Table *pTab;      /* An SQL table corresponding to zName */
2582     Select *pSelect;  /* A SELECT statement used in place of a table name */
2583     int addrFillSub;  /* Address of subroutine to manifest a subquery */
2584     int regReturn;    /* Register holding return address of addrFillSub */
2585     int regResult;    /* Registers holding results of a co-routine */
2586     struct {
2587       u8 jointype;      /* Type of join between this table and the previous */
2588       unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
2589       unsigned isIndexedBy :1;   /* True if there is an INDEXED BY clause */
2590       unsigned isTabFunc :1;     /* True if table-valued-function syntax */
2591       unsigned isCorrelated :1;  /* True if sub-query is correlated */
2592       unsigned viaCoroutine :1;  /* Implemented as a co-routine */
2593       unsigned isRecursive :1;   /* True for recursive reference in WITH */
2594     } fg;
2595 #ifndef SQLITE_OMIT_EXPLAIN
2596     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
2597 #endif
2598     int iCursor;      /* The VDBE cursor number used to access this table */
2599     Expr *pOn;        /* The ON clause of a join */
2600     IdList *pUsing;   /* The USING clause of a join */
2601     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
2602     union {
2603       char *zIndexedBy;    /* Identifier from "INDEXED BY <zIndex>" clause */
2604       ExprList *pFuncArg;  /* Arguments to table-valued-function */
2605     } u1;
2606     Index *pIBIndex;  /* Index structure corresponding to u1.zIndexedBy */
2607   } a[1];             /* One entry for each identifier on the list */
2608 };
2609 
2610 /*
2611 ** Permitted values of the SrcList.a.jointype field
2612 */
2613 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
2614 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
2615 #define JT_NATURAL   0x0004    /* True for a "natural" join */
2616 #define JT_LEFT      0x0008    /* Left outer join */
2617 #define JT_RIGHT     0x0010    /* Right outer join */
2618 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
2619 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
2620 
2621 
2622 /*
2623 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
2624 ** and the WhereInfo.wctrlFlags member.
2625 **
2626 ** Value constraints (enforced via assert()):
2627 **     WHERE_USE_LIMIT  == SF_FixedLimit
2628 */
2629 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
2630 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
2631 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
2632 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
2633 #define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */
2634 #define WHERE_DUPLICATES_OK    0x0010 /* Ok to return a row more than once */
2635 #define WHERE_OR_SUBCLAUSE     0x0020 /* Processing a sub-WHERE as part of
2636                                       ** the OR optimization  */
2637 #define WHERE_GROUPBY          0x0040 /* pOrderBy is really a GROUP BY */
2638 #define WHERE_DISTINCTBY       0x0080 /* pOrderby is really a DISTINCT clause */
2639 #define WHERE_WANT_DISTINCT    0x0100 /* All output needs to be distinct */
2640 #define WHERE_SORTBYGROUP      0x0200 /* Support sqlite3WhereIsSorted() */
2641 #define WHERE_SEEK_TABLE       0x0400 /* Do not defer seeks on main table */
2642 #define WHERE_ORDERBY_LIMIT    0x0800 /* ORDERBY+LIMIT on the inner loop */
2643 #define WHERE_SEEK_UNIQ_TABLE  0x1000 /* Do not defer seeks if unique */
2644                         /*     0x2000    not currently used */
2645 #define WHERE_USE_LIMIT        0x4000 /* Use the LIMIT in cost estimates */
2646                         /*     0x8000    not currently used */
2647 
2648 /* Allowed return values from sqlite3WhereIsDistinct()
2649 */
2650 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
2651 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
2652 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
2653 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
2654 
2655 /*
2656 ** A NameContext defines a context in which to resolve table and column
2657 ** names.  The context consists of a list of tables (the pSrcList) field and
2658 ** a list of named expression (pEList).  The named expression list may
2659 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
2660 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
2661 ** pEList corresponds to the result set of a SELECT and is NULL for
2662 ** other statements.
2663 **
2664 ** NameContexts can be nested.  When resolving names, the inner-most
2665 ** context is searched first.  If no match is found, the next outer
2666 ** context is checked.  If there is still no match, the next context
2667 ** is checked.  This process continues until either a match is found
2668 ** or all contexts are check.  When a match is found, the nRef member of
2669 ** the context containing the match is incremented.
2670 **
2671 ** Each subquery gets a new NameContext.  The pNext field points to the
2672 ** NameContext in the parent query.  Thus the process of scanning the
2673 ** NameContext list corresponds to searching through successively outer
2674 ** subqueries looking for a match.
2675 */
2676 struct NameContext {
2677   Parse *pParse;       /* The parser */
2678   SrcList *pSrcList;   /* One or more tables used to resolve names */
2679   ExprList *pEList;    /* Optional list of result-set columns */
2680   AggInfo *pAggInfo;   /* Information about aggregates at this level */
2681   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
2682   int nRef;            /* Number of names resolved by this context */
2683   int nErr;            /* Number of errors encountered while resolving names */
2684   u16 ncFlags;         /* Zero or more NC_* flags defined below */
2685 };
2686 
2687 /*
2688 ** Allowed values for the NameContext, ncFlags field.
2689 **
2690 ** Value constraints (all checked via assert()):
2691 **    NC_HasAgg    == SF_HasAgg
2692 **    NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX
2693 **
2694 */
2695 #define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
2696 #define NC_PartIdx   0x0002  /* True if resolving a partial index WHERE */
2697 #define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
2698 #define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
2699 #define NC_HasAgg    0x0010  /* One or more aggregate functions seen */
2700 #define NC_IdxExpr   0x0020  /* True if resolving columns of CREATE INDEX */
2701 #define NC_VarSelect 0x0040  /* A correlated subquery has been seen */
2702 #define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */
2703 
2704 /*
2705 ** An instance of the following structure contains all information
2706 ** needed to generate code for a single SELECT statement.
2707 **
2708 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
2709 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
2710 ** limit and nOffset to the value of the offset (or 0 if there is not
2711 ** offset).  But later on, nLimit and nOffset become the memory locations
2712 ** in the VDBE that record the limit and offset counters.
2713 **
2714 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
2715 ** These addresses must be stored so that we can go back and fill in
2716 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
2717 ** the number of columns in P2 can be computed at the same time
2718 ** as the OP_OpenEphm instruction is coded because not
2719 ** enough information about the compound query is known at that point.
2720 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
2721 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
2722 ** sequences for the ORDER BY clause.
2723 */
2724 struct Select {
2725   ExprList *pEList;      /* The fields of the result */
2726   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
2727   LogEst nSelectRow;     /* Estimated number of result rows */
2728   u32 selFlags;          /* Various SF_* values */
2729   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
2730 #if SELECTTRACE_ENABLED
2731   char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
2732 #endif
2733   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
2734   SrcList *pSrc;         /* The FROM clause */
2735   Expr *pWhere;          /* The WHERE clause */
2736   ExprList *pGroupBy;    /* The GROUP BY clause */
2737   Expr *pHaving;         /* The HAVING clause */
2738   ExprList *pOrderBy;    /* The ORDER BY clause */
2739   Select *pPrior;        /* Prior select in a compound select statement */
2740   Select *pNext;         /* Next select to the left in a compound */
2741   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
2742   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
2743   With *pWith;           /* WITH clause attached to this select. Or NULL. */
2744 };
2745 
2746 /*
2747 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
2748 ** "Select Flag".
2749 **
2750 ** Value constraints (all checked via assert())
2751 **     SF_HasAgg     == NC_HasAgg
2752 **     SF_MinMaxAgg  == NC_MinMaxAgg     == SQLITE_FUNC_MINMAX
2753 **     SF_FixedLimit == WHERE_USE_LIMIT
2754 */
2755 #define SF_Distinct       0x00001  /* Output should be DISTINCT */
2756 #define SF_All            0x00002  /* Includes the ALL keyword */
2757 #define SF_Resolved       0x00004  /* Identifiers have been resolved */
2758 #define SF_Aggregate      0x00008  /* Contains agg functions or a GROUP BY */
2759 #define SF_HasAgg         0x00010  /* Contains aggregate functions */
2760 #define SF_UsesEphemeral  0x00020  /* Uses the OpenEphemeral opcode */
2761 #define SF_Expanded       0x00040  /* sqlite3SelectExpand() called on this */
2762 #define SF_HasTypeInfo    0x00080  /* FROM subqueries have Table metadata */
2763 #define SF_Compound       0x00100  /* Part of a compound query */
2764 #define SF_Values         0x00200  /* Synthesized from VALUES clause */
2765 #define SF_MultiValue     0x00400  /* Single VALUES term with multiple rows */
2766 #define SF_NestedFrom     0x00800  /* Part of a parenthesized FROM clause */
2767 #define SF_MinMaxAgg      0x01000  /* Aggregate containing min() or max() */
2768 #define SF_Recursive      0x02000  /* The recursive part of a recursive CTE */
2769 #define SF_FixedLimit     0x04000  /* nSelectRow set by a constant LIMIT */
2770 #define SF_MaybeConvert   0x08000  /* Need convertCompoundSelectToSubquery() */
2771 #define SF_Converted      0x10000  /* By convertCompoundSelectToSubquery() */
2772 #define SF_IncludeHidden  0x20000  /* Include hidden columns in output */
2773 
2774 
2775 /*
2776 ** The results of a SELECT can be distributed in several ways, as defined
2777 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
2778 ** Type".
2779 **
2780 **     SRT_Union       Store results as a key in a temporary index
2781 **                     identified by pDest->iSDParm.
2782 **
2783 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
2784 **
2785 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
2786 **                     set is not empty.
2787 **
2788 **     SRT_Discard     Throw the results away.  This is used by SELECT
2789 **                     statements within triggers whose only purpose is
2790 **                     the side-effects of functions.
2791 **
2792 ** All of the above are free to ignore their ORDER BY clause. Those that
2793 ** follow must honor the ORDER BY clause.
2794 **
2795 **     SRT_Output      Generate a row of output (using the OP_ResultRow
2796 **                     opcode) for each row in the result set.
2797 **
2798 **     SRT_Mem         Only valid if the result is a single column.
2799 **                     Store the first column of the first result row
2800 **                     in register pDest->iSDParm then abandon the rest
2801 **                     of the query.  This destination implies "LIMIT 1".
2802 **
2803 **     SRT_Set         The result must be a single column.  Store each
2804 **                     row of result as the key in table pDest->iSDParm.
2805 **                     Apply the affinity pDest->affSdst before storing
2806 **                     results.  Used to implement "IN (SELECT ...)".
2807 **
2808 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
2809 **                     the result there. The cursor is left open after
2810 **                     returning.  This is like SRT_Table except that
2811 **                     this destination uses OP_OpenEphemeral to create
2812 **                     the table first.
2813 **
2814 **     SRT_Coroutine   Generate a co-routine that returns a new row of
2815 **                     results each time it is invoked.  The entry point
2816 **                     of the co-routine is stored in register pDest->iSDParm
2817 **                     and the result row is stored in pDest->nDest registers
2818 **                     starting with pDest->iSdst.
2819 **
2820 **     SRT_Table       Store results in temporary table pDest->iSDParm.
2821 **     SRT_Fifo        This is like SRT_EphemTab except that the table
2822 **                     is assumed to already be open.  SRT_Fifo has
2823 **                     the additional property of being able to ignore
2824 **                     the ORDER BY clause.
2825 **
2826 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
2827 **                     But also use temporary table pDest->iSDParm+1 as
2828 **                     a record of all prior results and ignore any duplicate
2829 **                     rows.  Name means:  "Distinct Fifo".
2830 **
2831 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
2832 **                     an index).  Append a sequence number so that all entries
2833 **                     are distinct.
2834 **
2835 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
2836 **                     the same record has never been stored before.  The
2837 **                     index at pDest->iSDParm+1 hold all prior stores.
2838 */
2839 #define SRT_Union        1  /* Store result as keys in an index */
2840 #define SRT_Except       2  /* Remove result from a UNION index */
2841 #define SRT_Exists       3  /* Store 1 if the result is not empty */
2842 #define SRT_Discard      4  /* Do not save the results anywhere */
2843 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
2844 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
2845 #define SRT_Queue        7  /* Store result in an queue */
2846 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
2847 
2848 /* The ORDER BY clause is ignored for all of the above */
2849 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
2850 
2851 #define SRT_Output       9  /* Output each row of result */
2852 #define SRT_Mem         10  /* Store result in a memory cell */
2853 #define SRT_Set         11  /* Store results as keys in an index */
2854 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
2855 #define SRT_Coroutine   13  /* Generate a single row of result */
2856 #define SRT_Table       14  /* Store result as data with an automatic rowid */
2857 
2858 /*
2859 ** An instance of this object describes where to put of the results of
2860 ** a SELECT statement.
2861 */
2862 struct SelectDest {
2863   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
2864   int iSDParm;         /* A parameter used by the eDest disposal method */
2865   int iSdst;           /* Base register where results are written */
2866   int nSdst;           /* Number of registers allocated */
2867   char *zAffSdst;      /* Affinity used when eDest==SRT_Set */
2868   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
2869 };
2870 
2871 /*
2872 ** During code generation of statements that do inserts into AUTOINCREMENT
2873 ** tables, the following information is attached to the Table.u.autoInc.p
2874 ** pointer of each autoincrement table to record some side information that
2875 ** the code generator needs.  We have to keep per-table autoincrement
2876 ** information in case inserts are done within triggers.  Triggers do not
2877 ** normally coordinate their activities, but we do need to coordinate the
2878 ** loading and saving of autoincrement information.
2879 */
2880 struct AutoincInfo {
2881   AutoincInfo *pNext;   /* Next info block in a list of them all */
2882   Table *pTab;          /* Table this info block refers to */
2883   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
2884   int regCtr;           /* Memory register holding the rowid counter */
2885 };
2886 
2887 /*
2888 ** Size of the column cache
2889 */
2890 #ifndef SQLITE_N_COLCACHE
2891 # define SQLITE_N_COLCACHE 10
2892 #endif
2893 
2894 /*
2895 ** At least one instance of the following structure is created for each
2896 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2897 ** statement. All such objects are stored in the linked list headed at
2898 ** Parse.pTriggerPrg and deleted once statement compilation has been
2899 ** completed.
2900 **
2901 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2902 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2903 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2904 ** The Parse.pTriggerPrg list never contains two entries with the same
2905 ** values for both pTrigger and orconf.
2906 **
2907 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
2908 ** accessed (or set to 0 for triggers fired as a result of INSERT
2909 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
2910 ** a mask of new.* columns used by the program.
2911 */
2912 struct TriggerPrg {
2913   Trigger *pTrigger;      /* Trigger this program was coded from */
2914   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
2915   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
2916   int orconf;             /* Default ON CONFLICT policy */
2917   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
2918 };
2919 
2920 /*
2921 ** The yDbMask datatype for the bitmask of all attached databases.
2922 */
2923 #if SQLITE_MAX_ATTACHED>30
2924   typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
2925 # define DbMaskTest(M,I)    (((M)[(I)/8]&(1<<((I)&7)))!=0)
2926 # define DbMaskZero(M)      memset((M),0,sizeof(M))
2927 # define DbMaskSet(M,I)     (M)[(I)/8]|=(1<<((I)&7))
2928 # define DbMaskAllZero(M)   sqlite3DbMaskAllZero(M)
2929 # define DbMaskNonZero(M)   (sqlite3DbMaskAllZero(M)==0)
2930 #else
2931   typedef unsigned int yDbMask;
2932 # define DbMaskTest(M,I)    (((M)&(((yDbMask)1)<<(I)))!=0)
2933 # define DbMaskZero(M)      (M)=0
2934 # define DbMaskSet(M,I)     (M)|=(((yDbMask)1)<<(I))
2935 # define DbMaskAllZero(M)   (M)==0
2936 # define DbMaskNonZero(M)   (M)!=0
2937 #endif
2938 
2939 /*
2940 ** An SQL parser context.  A copy of this structure is passed through
2941 ** the parser and down into all the parser action routine in order to
2942 ** carry around information that is global to the entire parse.
2943 **
2944 ** The structure is divided into two parts.  When the parser and code
2945 ** generate call themselves recursively, the first part of the structure
2946 ** is constant but the second part is reset at the beginning and end of
2947 ** each recursion.
2948 **
2949 ** The nTableLock and aTableLock variables are only used if the shared-cache
2950 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2951 ** used to store the set of table-locks required by the statement being
2952 ** compiled. Function sqlite3TableLock() is used to add entries to the
2953 ** list.
2954 */
2955 struct Parse {
2956   sqlite3 *db;         /* The main database structure */
2957   char *zErrMsg;       /* An error message */
2958   Vdbe *pVdbe;         /* An engine for executing database bytecode */
2959   int rc;              /* Return code from execution */
2960   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
2961   u8 checkSchema;      /* Causes schema cookie check after an error */
2962   u8 nested;           /* Number of nested calls to the parser/code generator */
2963   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
2964   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
2965   u8 mayAbort;         /* True if statement may throw an ABORT exception */
2966   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
2967   u8 okConstFactor;    /* OK to factor out constants */
2968   u8 disableLookaside; /* Number of times lookaside has been disabled */
2969   u8 nColCache;        /* Number of entries in aColCache[] */
2970   int nRangeReg;       /* Size of the temporary register block */
2971   int iRangeReg;       /* First register in temporary register block */
2972   int nErr;            /* Number of errors seen */
2973   int nTab;            /* Number of previously allocated VDBE cursors */
2974   int nMem;            /* Number of memory cells used so far */
2975   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
2976   int szOpAlloc;       /* Bytes of memory space allocated for Vdbe.aOp[] */
2977   int iSelfTab;        /* Table for associated with an index on expr, or negative
2978                        ** of the base register during check-constraint eval */
2979   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2980   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
2981   int nLabel;          /* Number of labels used */
2982   int *aLabel;         /* Space to hold the labels */
2983   ExprList *pConstExpr;/* Constant expressions */
2984   Token constraintName;/* Name of the constraint currently being parsed */
2985   yDbMask writeMask;   /* Start a write transaction on these databases */
2986   yDbMask cookieMask;  /* Bitmask of schema verified databases */
2987   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
2988   int regRoot;         /* Register holding root page number for new objects */
2989   int nMaxArg;         /* Max args passed to user function by sub-program */
2990 #if SELECTTRACE_ENABLED
2991   int nSelect;         /* Number of SELECT statements seen */
2992   int nSelectIndent;   /* How far to indent SELECTTRACE() output */
2993 #endif
2994 #ifndef SQLITE_OMIT_SHARED_CACHE
2995   int nTableLock;        /* Number of locks in aTableLock */
2996   TableLock *aTableLock; /* Required table locks for shared-cache mode */
2997 #endif
2998   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
2999   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
3000   Table *pTriggerTab;  /* Table triggers are being coded for */
3001   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
3002   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
3003   u32 oldmask;         /* Mask of old.* columns referenced */
3004   u32 newmask;         /* Mask of new.* columns referenced */
3005   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
3006   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
3007   u8 disableTriggers;  /* True to disable triggers */
3008 
3009   /**************************************************************************
3010   ** Fields above must be initialized to zero.  The fields that follow,
3011   ** down to the beginning of the recursive section, do not need to be
3012   ** initialized as they will be set before being used.  The boundary is
3013   ** determined by offsetof(Parse,aColCache).
3014   **************************************************************************/
3015 
3016   struct yColCache {
3017     int iTable;           /* Table cursor number */
3018     i16 iColumn;          /* Table column number */
3019     u8 tempReg;           /* iReg is a temp register that needs to be freed */
3020     int iLevel;           /* Nesting level */
3021     int iReg;             /* Reg with value of this column. 0 means none. */
3022     int lru;              /* Least recently used entry has the smallest value */
3023   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
3024   int aTempReg[8];        /* Holding area for temporary registers */
3025   Token sNameToken;       /* Token with unqualified schema object name */
3026 
3027   /************************************************************************
3028   ** Above is constant between recursions.  Below is reset before and after
3029   ** each recursion.  The boundary between these two regions is determined
3030   ** using offsetof(Parse,sLastToken) so the sLastToken field must be the
3031   ** first field in the recursive region.
3032   ************************************************************************/
3033 
3034   Token sLastToken;       /* The last token parsed */
3035   ynVar nVar;               /* Number of '?' variables seen in the SQL so far */
3036   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
3037   u8 explain;               /* True if the EXPLAIN flag is found on the query */
3038 #ifndef SQLITE_OMIT_VIRTUALTABLE
3039   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
3040   int nVtabLock;            /* Number of virtual tables to lock */
3041 #endif
3042   int nHeight;              /* Expression tree height of current sub-select */
3043 #ifndef SQLITE_OMIT_EXPLAIN
3044   int iSelectId;            /* ID of current select for EXPLAIN output */
3045   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
3046 #endif
3047   VList *pVList;            /* Mapping between variable names and numbers */
3048   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
3049   const char *zTail;        /* All SQL text past the last semicolon parsed */
3050   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
3051   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
3052   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
3053 #ifndef SQLITE_OMIT_VIRTUALTABLE
3054   Token sArg;               /* Complete text of a module argument */
3055   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
3056 #endif
3057   Table *pZombieTab;        /* List of Table objects to delete after code gen */
3058   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
3059   With *pWith;              /* Current WITH clause, or NULL */
3060   With *pWithToFree;        /* Free this WITH object at the end of the parse */
3061 };
3062 
3063 /*
3064 ** Sizes and pointers of various parts of the Parse object.
3065 */
3066 #define PARSE_HDR_SZ offsetof(Parse,aColCache) /* Recursive part w/o aColCache*/
3067 #define PARSE_RECURSE_SZ offsetof(Parse,sLastToken)    /* Recursive part */
3068 #define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */
3069 #define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ)  /* Pointer to tail */
3070 
3071 /*
3072 ** Return true if currently inside an sqlite3_declare_vtab() call.
3073 */
3074 #ifdef SQLITE_OMIT_VIRTUALTABLE
3075   #define IN_DECLARE_VTAB 0
3076 #else
3077   #define IN_DECLARE_VTAB (pParse->declareVtab)
3078 #endif
3079 
3080 /*
3081 ** An instance of the following structure can be declared on a stack and used
3082 ** to save the Parse.zAuthContext value so that it can be restored later.
3083 */
3084 struct AuthContext {
3085   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
3086   Parse *pParse;              /* The Parse structure */
3087 };
3088 
3089 /*
3090 ** Bitfield flags for P5 value in various opcodes.
3091 **
3092 ** Value constraints (enforced via assert()):
3093 **    OPFLAG_LENGTHARG    == SQLITE_FUNC_LENGTH
3094 **    OPFLAG_TYPEOFARG    == SQLITE_FUNC_TYPEOF
3095 **    OPFLAG_BULKCSR      == BTREE_BULKLOAD
3096 **    OPFLAG_SEEKEQ       == BTREE_SEEK_EQ
3097 **    OPFLAG_FORDELETE    == BTREE_FORDELETE
3098 **    OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION
3099 **    OPFLAG_AUXDELETE    == BTREE_AUXDELETE
3100 */
3101 #define OPFLAG_NCHANGE       0x01    /* OP_Insert: Set to update db->nChange */
3102                                      /* Also used in P2 (not P5) of OP_Delete */
3103 #define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
3104 #define OPFLAG_LASTROWID     0x20    /* Set to update db->lastRowid */
3105 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
3106 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
3107 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
3108 #define OPFLAG_ISNOOP        0x40    /* OP_Delete does pre-update-hook only */
3109 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
3110 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
3111 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
3112 #define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
3113 #define OPFLAG_FORDELETE     0x08    /* OP_Open should use BTREE_FORDELETE */
3114 #define OPFLAG_P2ISREG       0x10    /* P2 to OP_Open** is a register number */
3115 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
3116 #define OPFLAG_SAVEPOSITION  0x02    /* OP_Delete/Insert: save cursor pos */
3117 #define OPFLAG_AUXDELETE     0x04    /* OP_Delete: index in a DELETE op */
3118 
3119 /*
3120  * Each trigger present in the database schema is stored as an instance of
3121  * struct Trigger.
3122  *
3123  * Pointers to instances of struct Trigger are stored in two ways.
3124  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
3125  *    database). This allows Trigger structures to be retrieved by name.
3126  * 2. All triggers associated with a single table form a linked list, using the
3127  *    pNext member of struct Trigger. A pointer to the first element of the
3128  *    linked list is stored as the "pTrigger" member of the associated
3129  *    struct Table.
3130  *
3131  * The "step_list" member points to the first element of a linked list
3132  * containing the SQL statements specified as the trigger program.
3133  */
3134 struct Trigger {
3135   char *zName;            /* The name of the trigger                        */
3136   char *table;            /* The table or view to which the trigger applies */
3137   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
3138   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
3139   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
3140   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
3141                              the <column-list> is stored here */
3142   Schema *pSchema;        /* Schema containing the trigger */
3143   Schema *pTabSchema;     /* Schema containing the table */
3144   TriggerStep *step_list; /* Link list of trigger program steps             */
3145   Trigger *pNext;         /* Next trigger associated with the table */
3146 };
3147 
3148 /*
3149 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
3150 ** determine which.
3151 **
3152 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
3153 ** In that cases, the constants below can be ORed together.
3154 */
3155 #define TRIGGER_BEFORE  1
3156 #define TRIGGER_AFTER   2
3157 
3158 /*
3159  * An instance of struct TriggerStep is used to store a single SQL statement
3160  * that is a part of a trigger-program.
3161  *
3162  * Instances of struct TriggerStep are stored in a singly linked list (linked
3163  * using the "pNext" member) referenced by the "step_list" member of the
3164  * associated struct Trigger instance. The first element of the linked list is
3165  * the first step of the trigger-program.
3166  *
3167  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
3168  * "SELECT" statement. The meanings of the other members is determined by the
3169  * value of "op" as follows:
3170  *
3171  * (op == TK_INSERT)
3172  * orconf    -> stores the ON CONFLICT algorithm
3173  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
3174  *              this stores a pointer to the SELECT statement. Otherwise NULL.
3175  * zTarget   -> Dequoted name of the table to insert into.
3176  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
3177  *              this stores values to be inserted. Otherwise NULL.
3178  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
3179  *              statement, then this stores the column-names to be
3180  *              inserted into.
3181  *
3182  * (op == TK_DELETE)
3183  * zTarget   -> Dequoted name of the table to delete from.
3184  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
3185  *              Otherwise NULL.
3186  *
3187  * (op == TK_UPDATE)
3188  * zTarget   -> Dequoted name of the table to update.
3189  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
3190  *              Otherwise NULL.
3191  * pExprList -> A list of the columns to update and the expressions to update
3192  *              them to. See sqlite3Update() documentation of "pChanges"
3193  *              argument.
3194  *
3195  */
3196 struct TriggerStep {
3197   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
3198   u8 orconf;           /* OE_Rollback etc. */
3199   Trigger *pTrig;      /* The trigger that this step is a part of */
3200   Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
3201   char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
3202   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
3203   ExprList *pExprList; /* SET clause for UPDATE. */
3204   IdList *pIdList;     /* Column names for INSERT */
3205   TriggerStep *pNext;  /* Next in the link-list */
3206   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
3207 };
3208 
3209 /*
3210 ** The following structure contains information used by the sqliteFix...
3211 ** routines as they walk the parse tree to make database references
3212 ** explicit.
3213 */
3214 typedef struct DbFixer DbFixer;
3215 struct DbFixer {
3216   Parse *pParse;      /* The parsing context.  Error messages written here */
3217   Schema *pSchema;    /* Fix items to this schema */
3218   int bVarOnly;       /* Check for variable references only */
3219   const char *zDb;    /* Make sure all objects are contained in this database */
3220   const char *zType;  /* Type of the container - used for error messages */
3221   const Token *pName; /* Name of the container - used for error messages */
3222 };
3223 
3224 /*
3225 ** An objected used to accumulate the text of a string where we
3226 ** do not necessarily know how big the string will be in the end.
3227 */
3228 struct StrAccum {
3229   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
3230   char *zBase;         /* A base allocation.  Not from malloc. */
3231   char *zText;         /* The string collected so far */
3232   u32  nChar;          /* Length of the string so far */
3233   u32  nAlloc;         /* Amount of space allocated in zText */
3234   u32  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
3235   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
3236   u8   printfFlags;    /* SQLITE_PRINTF flags below */
3237 };
3238 #define STRACCUM_NOMEM   1
3239 #define STRACCUM_TOOBIG  2
3240 #define SQLITE_PRINTF_INTERNAL 0x01  /* Internal-use-only converters allowed */
3241 #define SQLITE_PRINTF_SQLFUNC  0x02  /* SQL function arguments to VXPrintf */
3242 #define SQLITE_PRINTF_MALLOCED 0x04  /* True if xText is allocated space */
3243 
3244 #define isMalloced(X)  (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)
3245 
3246 
3247 /*
3248 ** A pointer to this structure is used to communicate information
3249 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
3250 */
3251 typedef struct {
3252   sqlite3 *db;        /* The database being initialized */
3253   char **pzErrMsg;    /* Error message stored here */
3254   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
3255   int rc;             /* Result code stored here */
3256 } InitData;
3257 
3258 /*
3259 ** Structure containing global configuration data for the SQLite library.
3260 **
3261 ** This structure also contains some state information.
3262 */
3263 struct Sqlite3Config {
3264   int bMemstat;                     /* True to enable memory status */
3265   int bCoreMutex;                   /* True to enable core mutexing */
3266   int bFullMutex;                   /* True to enable full mutexing */
3267   int bOpenUri;                     /* True to interpret filenames as URIs */
3268   int bUseCis;                      /* Use covering indices for full-scans */
3269   int mxStrlen;                     /* Maximum string length */
3270   int neverCorrupt;                 /* Database is always well-formed */
3271   int szLookaside;                  /* Default lookaside buffer size */
3272   int nLookaside;                   /* Default lookaside buffer count */
3273   int nStmtSpill;                   /* Stmt-journal spill-to-disk threshold */
3274   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
3275   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
3276   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
3277   void *pHeap;                      /* Heap storage space */
3278   int nHeap;                        /* Size of pHeap[] */
3279   int mnReq, mxReq;                 /* Min and max heap requests sizes */
3280   sqlite3_int64 szMmap;             /* mmap() space per open file */
3281   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
3282   void *pScratch;                   /* Scratch memory */
3283   int szScratch;                    /* Size of each scratch buffer */
3284   int nScratch;                     /* Number of scratch buffers */
3285   void *pPage;                      /* Page cache memory */
3286   int szPage;                       /* Size of each page in pPage[] */
3287   int nPage;                        /* Number of pages in pPage[] */
3288   int mxParserStack;                /* maximum depth of the parser stack */
3289   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
3290   u32 szPma;                        /* Maximum Sorter PMA size */
3291   /* The above might be initialized to non-zero.  The following need to always
3292   ** initially be zero, however. */
3293   int isInit;                       /* True after initialization has finished */
3294   int inProgress;                   /* True while initialization in progress */
3295   int isMutexInit;                  /* True after mutexes are initialized */
3296   int isMallocInit;                 /* True after malloc is initialized */
3297   int isPCacheInit;                 /* True after malloc is initialized */
3298   int nRefInitMutex;                /* Number of users of pInitMutex */
3299   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
3300   void (*xLog)(void*,int,const char*); /* Function for logging */
3301   void *pLogArg;                       /* First argument to xLog() */
3302 #ifdef SQLITE_ENABLE_SQLLOG
3303   void(*xSqllog)(void*,sqlite3*,const char*, int);
3304   void *pSqllogArg;
3305 #endif
3306 #ifdef SQLITE_VDBE_COVERAGE
3307   /* The following callback (if not NULL) is invoked on every VDBE branch
3308   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
3309   */
3310   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
3311   void *pVdbeBranchArg;                                     /* 1st argument */
3312 #endif
3313 #ifndef SQLITE_UNTESTABLE
3314   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
3315 #endif
3316   int bLocaltimeFault;              /* True to fail localtime() calls */
3317   int iOnceResetThreshold;          /* When to reset OP_Once counters */
3318 };
3319 
3320 /*
3321 ** This macro is used inside of assert() statements to indicate that
3322 ** the assert is only valid on a well-formed database.  Instead of:
3323 **
3324 **     assert( X );
3325 **
3326 ** One writes:
3327 **
3328 **     assert( X || CORRUPT_DB );
3329 **
3330 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
3331 ** that the database is definitely corrupt, only that it might be corrupt.
3332 ** For most test cases, CORRUPT_DB is set to false using a special
3333 ** sqlite3_test_control().  This enables assert() statements to prove
3334 ** things that are always true for well-formed databases.
3335 */
3336 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
3337 
3338 /*
3339 ** Context pointer passed down through the tree-walk.
3340 */
3341 struct Walker {
3342   Parse *pParse;                            /* Parser context.  */
3343   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
3344   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
3345   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
3346   int walkerDepth;                          /* Number of subqueries */
3347   u8 eCode;                                 /* A small processing code */
3348   union {                                   /* Extra data for callback */
3349     NameContext *pNC;                         /* Naming context */
3350     int n;                                    /* A counter */
3351     int iCur;                                 /* A cursor number */
3352     SrcList *pSrcList;                        /* FROM clause */
3353     struct SrcCount *pSrcCount;               /* Counting column references */
3354     struct CCurHint *pCCurHint;               /* Used by codeCursorHint() */
3355     int *aiCol;                               /* array of column indexes */
3356     struct IdxCover *pIdxCover;               /* Check for index coverage */
3357     struct IdxExprTrans *pIdxTrans;           /* Convert indexed expr to column */
3358     ExprList *pGroupBy;                       /* GROUP BY clause */
3359     struct HavingToWhereCtx *pHavingCtx;      /* HAVING to WHERE clause ctx */
3360   } u;
3361 };
3362 
3363 /* Forward declarations */
3364 int sqlite3WalkExpr(Walker*, Expr*);
3365 int sqlite3WalkExprList(Walker*, ExprList*);
3366 int sqlite3WalkSelect(Walker*, Select*);
3367 int sqlite3WalkSelectExpr(Walker*, Select*);
3368 int sqlite3WalkSelectFrom(Walker*, Select*);
3369 int sqlite3ExprWalkNoop(Walker*, Expr*);
3370 int sqlite3SelectWalkNoop(Walker*, Select*);
3371 #ifdef SQLITE_DEBUG
3372 void sqlite3SelectWalkAssert2(Walker*, Select*);
3373 #endif
3374 
3375 /*
3376 ** Return code from the parse-tree walking primitives and their
3377 ** callbacks.
3378 */
3379 #define WRC_Continue    0   /* Continue down into children */
3380 #define WRC_Prune       1   /* Omit children but continue walking siblings */
3381 #define WRC_Abort       2   /* Abandon the tree walk */
3382 
3383 /*
3384 ** An instance of this structure represents a set of one or more CTEs
3385 ** (common table expressions) created by a single WITH clause.
3386 */
3387 struct With {
3388   int nCte;                       /* Number of CTEs in the WITH clause */
3389   With *pOuter;                   /* Containing WITH clause, or NULL */
3390   struct Cte {                    /* For each CTE in the WITH clause.... */
3391     char *zName;                    /* Name of this CTE */
3392     ExprList *pCols;                /* List of explicit column names, or NULL */
3393     Select *pSelect;                /* The definition of this CTE */
3394     const char *zCteErr;            /* Error message for circular references */
3395   } a[1];
3396 };
3397 
3398 #ifdef SQLITE_DEBUG
3399 /*
3400 ** An instance of the TreeView object is used for printing the content of
3401 ** data structures on sqlite3DebugPrintf() using a tree-like view.
3402 */
3403 struct TreeView {
3404   int iLevel;             /* Which level of the tree we are on */
3405   u8  bLine[100];         /* Draw vertical in column i if bLine[i] is true */
3406 };
3407 #endif /* SQLITE_DEBUG */
3408 
3409 /*
3410 ** Assuming zIn points to the first byte of a UTF-8 character,
3411 ** advance zIn to point to the first byte of the next UTF-8 character.
3412 */
3413 #define SQLITE_SKIP_UTF8(zIn) {                        \
3414   if( (*(zIn++))>=0xc0 ){                              \
3415     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
3416   }                                                    \
3417 }
3418 
3419 /*
3420 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
3421 ** the same name but without the _BKPT suffix.  These macros invoke
3422 ** routines that report the line-number on which the error originated
3423 ** using sqlite3_log().  The routines also provide a convenient place
3424 ** to set a debugger breakpoint.
3425 */
3426 int sqlite3CorruptError(int);
3427 int sqlite3MisuseError(int);
3428 int sqlite3CantopenError(int);
3429 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
3430 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
3431 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
3432 #ifdef SQLITE_DEBUG
3433   int sqlite3NomemError(int);
3434   int sqlite3IoerrnomemError(int);
3435   int sqlite3CorruptPgnoError(int,Pgno);
3436 # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__)
3437 # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__)
3438 # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptPgnoError(__LINE__,(P))
3439 #else
3440 # define SQLITE_NOMEM_BKPT SQLITE_NOMEM
3441 # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM
3442 # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptError(__LINE__)
3443 #endif
3444 
3445 /*
3446 ** FTS3 and FTS4 both require virtual table support
3447 */
3448 #if defined(SQLITE_OMIT_VIRTUALTABLE)
3449 # undef SQLITE_ENABLE_FTS3
3450 # undef SQLITE_ENABLE_FTS4
3451 #endif
3452 
3453 /*
3454 ** FTS4 is really an extension for FTS3.  It is enabled using the
3455 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
3456 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
3457 */
3458 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
3459 # define SQLITE_ENABLE_FTS3 1
3460 #endif
3461 
3462 /*
3463 ** The ctype.h header is needed for non-ASCII systems.  It is also
3464 ** needed by FTS3 when FTS3 is included in the amalgamation.
3465 */
3466 #if !defined(SQLITE_ASCII) || \
3467     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
3468 # include <ctype.h>
3469 #endif
3470 
3471 /*
3472 ** The following macros mimic the standard library functions toupper(),
3473 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
3474 ** sqlite versions only work for ASCII characters, regardless of locale.
3475 */
3476 #ifdef SQLITE_ASCII
3477 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
3478 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
3479 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
3480 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
3481 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
3482 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
3483 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
3484 # define sqlite3Isquote(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x80)
3485 #else
3486 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
3487 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
3488 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
3489 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
3490 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
3491 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
3492 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
3493 # define sqlite3Isquote(x)   ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`')
3494 #endif
3495 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
3496 int sqlite3IsIdChar(u8);
3497 #endif
3498 
3499 /*
3500 ** Internal function prototypes
3501 */
3502 int sqlite3StrICmp(const char*,const char*);
3503 int sqlite3Strlen30(const char*);
3504 char *sqlite3ColumnType(Column*,char*);
3505 #define sqlite3StrNICmp sqlite3_strnicmp
3506 
3507 int sqlite3MallocInit(void);
3508 void sqlite3MallocEnd(void);
3509 void *sqlite3Malloc(u64);
3510 void *sqlite3MallocZero(u64);
3511 void *sqlite3DbMallocZero(sqlite3*, u64);
3512 void *sqlite3DbMallocRaw(sqlite3*, u64);
3513 void *sqlite3DbMallocRawNN(sqlite3*, u64);
3514 char *sqlite3DbStrDup(sqlite3*,const char*);
3515 char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
3516 void *sqlite3Realloc(void*, u64);
3517 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
3518 void *sqlite3DbRealloc(sqlite3 *, void *, u64);
3519 void sqlite3DbFree(sqlite3*, void*);
3520 void sqlite3DbFreeNN(sqlite3*, void*);
3521 int sqlite3MallocSize(void*);
3522 int sqlite3DbMallocSize(sqlite3*, void*);
3523 void *sqlite3ScratchMalloc(int);
3524 void sqlite3ScratchFree(void*);
3525 void *sqlite3PageMalloc(int);
3526 void sqlite3PageFree(void*);
3527 void sqlite3MemSetDefault(void);
3528 #ifndef SQLITE_UNTESTABLE
3529 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
3530 #endif
3531 int sqlite3HeapNearlyFull(void);
3532 
3533 /*
3534 ** On systems with ample stack space and that support alloca(), make
3535 ** use of alloca() to obtain space for large automatic objects.  By default,
3536 ** obtain space from malloc().
3537 **
3538 ** The alloca() routine never returns NULL.  This will cause code paths
3539 ** that deal with sqlite3StackAlloc() failures to be unreachable.
3540 */
3541 #ifdef SQLITE_USE_ALLOCA
3542 # define sqlite3StackAllocRaw(D,N)   alloca(N)
3543 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
3544 # define sqlite3StackFree(D,P)
3545 #else
3546 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
3547 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
3548 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
3549 #endif
3550 
3551 /* Do not allow both MEMSYS5 and MEMSYS3 to be defined together.  If they
3552 ** are, disable MEMSYS3
3553 */
3554 #ifdef SQLITE_ENABLE_MEMSYS5
3555 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
3556 #undef SQLITE_ENABLE_MEMSYS3
3557 #endif
3558 #ifdef SQLITE_ENABLE_MEMSYS3
3559 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
3560 #endif
3561 
3562 
3563 #ifndef SQLITE_MUTEX_OMIT
3564   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
3565   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
3566   sqlite3_mutex *sqlite3MutexAlloc(int);
3567   int sqlite3MutexInit(void);
3568   int sqlite3MutexEnd(void);
3569 #endif
3570 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP)
3571   void sqlite3MemoryBarrier(void);
3572 #else
3573 # define sqlite3MemoryBarrier()
3574 #endif
3575 
3576 sqlite3_int64 sqlite3StatusValue(int);
3577 void sqlite3StatusUp(int, int);
3578 void sqlite3StatusDown(int, int);
3579 void sqlite3StatusHighwater(int, int);
3580 
3581 /* Access to mutexes used by sqlite3_status() */
3582 sqlite3_mutex *sqlite3Pcache1Mutex(void);
3583 sqlite3_mutex *sqlite3MallocMutex(void);
3584 
3585 #ifndef SQLITE_OMIT_FLOATING_POINT
3586   int sqlite3IsNaN(double);
3587 #else
3588 # define sqlite3IsNaN(X)  0
3589 #endif
3590 
3591 /*
3592 ** An instance of the following structure holds information about SQL
3593 ** functions arguments that are the parameters to the printf() function.
3594 */
3595 struct PrintfArguments {
3596   int nArg;                /* Total number of arguments */
3597   int nUsed;               /* Number of arguments used so far */
3598   sqlite3_value **apArg;   /* The argument values */
3599 };
3600 
3601 void sqlite3VXPrintf(StrAccum*, const char*, va_list);
3602 void sqlite3XPrintf(StrAccum*, const char*, ...);
3603 char *sqlite3MPrintf(sqlite3*,const char*, ...);
3604 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
3605 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
3606   void sqlite3DebugPrintf(const char*, ...);
3607 #endif
3608 #if defined(SQLITE_TEST)
3609   void *sqlite3TestTextToPtr(const char*);
3610 #endif
3611 
3612 #if defined(SQLITE_DEBUG)
3613   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
3614   void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*);
3615   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
3616   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
3617   void sqlite3TreeViewWith(TreeView*, const With*, u8);
3618 #endif
3619 
3620 
3621 void sqlite3SetString(char **, sqlite3*, const char*);
3622 void sqlite3ErrorMsg(Parse*, const char*, ...);
3623 void sqlite3Dequote(char*);
3624 void sqlite3TokenInit(Token*,char*);
3625 int sqlite3KeywordCode(const unsigned char*, int);
3626 int sqlite3RunParser(Parse*, const char*, char **);
3627 void sqlite3FinishCoding(Parse*);
3628 int sqlite3GetTempReg(Parse*);
3629 void sqlite3ReleaseTempReg(Parse*,int);
3630 int sqlite3GetTempRange(Parse*,int);
3631 void sqlite3ReleaseTempRange(Parse*,int,int);
3632 void sqlite3ClearTempRegCache(Parse*);
3633 #ifdef SQLITE_DEBUG
3634 int sqlite3NoTempsInRange(Parse*,int,int);
3635 #endif
3636 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
3637 Expr *sqlite3Expr(sqlite3*,int,const char*);
3638 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
3639 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*);
3640 void sqlite3PExprAddSelect(Parse*, Expr*, Select*);
3641 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
3642 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
3643 void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32);
3644 void sqlite3ExprDelete(sqlite3*, Expr*);
3645 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
3646 ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*);
3647 void sqlite3ExprListSetSortOrder(ExprList*,int);
3648 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
3649 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
3650 void sqlite3ExprListDelete(sqlite3*, ExprList*);
3651 u32 sqlite3ExprListFlags(const ExprList*);
3652 int sqlite3Init(sqlite3*, char**);
3653 int sqlite3InitCallback(void*, int, char**, char**);
3654 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
3655 #ifndef SQLITE_OMIT_VIRTUALTABLE
3656 Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName);
3657 #endif
3658 void sqlite3ResetAllSchemasOfConnection(sqlite3*);
3659 void sqlite3ResetOneSchema(sqlite3*,int);
3660 void sqlite3CollapseDatabaseArray(sqlite3*);
3661 void sqlite3CommitInternalChanges(sqlite3*);
3662 void sqlite3DeleteColumnNames(sqlite3*,Table*);
3663 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
3664 void sqlite3SelectAddColumnTypeAndCollation(Parse*,Table*,Select*);
3665 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
3666 void sqlite3OpenMasterTable(Parse *, int);
3667 Index *sqlite3PrimaryKeyIndex(Table*);
3668 i16 sqlite3ColumnOfIndex(Index*, i16);
3669 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
3670 #if SQLITE_ENABLE_HIDDEN_COLUMNS
3671   void sqlite3ColumnPropertiesFromName(Table*, Column*);
3672 #else
3673 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */
3674 #endif
3675 void sqlite3AddColumn(Parse*,Token*,Token*);
3676 void sqlite3AddNotNull(Parse*, int);
3677 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
3678 void sqlite3AddCheckConstraint(Parse*, Expr*);
3679 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
3680 void sqlite3AddCollateType(Parse*, Token*);
3681 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
3682 int sqlite3ParseUri(const char*,const char*,unsigned int*,
3683                     sqlite3_vfs**,char**,char **);
3684 Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
3685 
3686 #ifdef SQLITE_UNTESTABLE
3687 # define sqlite3FaultSim(X) SQLITE_OK
3688 #else
3689   int sqlite3FaultSim(int);
3690 #endif
3691 
3692 Bitvec *sqlite3BitvecCreate(u32);
3693 int sqlite3BitvecTest(Bitvec*, u32);
3694 int sqlite3BitvecTestNotNull(Bitvec*, u32);
3695 int sqlite3BitvecSet(Bitvec*, u32);
3696 void sqlite3BitvecClear(Bitvec*, u32, void*);
3697 void sqlite3BitvecDestroy(Bitvec*);
3698 u32 sqlite3BitvecSize(Bitvec*);
3699 #ifndef SQLITE_UNTESTABLE
3700 int sqlite3BitvecBuiltinTest(int,int*);
3701 #endif
3702 
3703 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
3704 void sqlite3RowSetClear(RowSet*);
3705 void sqlite3RowSetInsert(RowSet*, i64);
3706 int sqlite3RowSetTest(RowSet*, int iBatch, i64);
3707 int sqlite3RowSetNext(RowSet*, i64*);
3708 
3709 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int);
3710 
3711 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3712   int sqlite3ViewGetColumnNames(Parse*,Table*);
3713 #else
3714 # define sqlite3ViewGetColumnNames(A,B) 0
3715 #endif
3716 
3717 #if SQLITE_MAX_ATTACHED>30
3718   int sqlite3DbMaskAllZero(yDbMask);
3719 #endif
3720 void sqlite3DropTable(Parse*, SrcList*, int, int);
3721 void sqlite3CodeDropTable(Parse*, Table*, int, int);
3722 void sqlite3DeleteTable(sqlite3*, Table*);
3723 #ifndef SQLITE_OMIT_AUTOINCREMENT
3724   void sqlite3AutoincrementBegin(Parse *pParse);
3725   void sqlite3AutoincrementEnd(Parse *pParse);
3726 #else
3727 # define sqlite3AutoincrementBegin(X)
3728 # define sqlite3AutoincrementEnd(X)
3729 #endif
3730 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
3731 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
3732 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
3733 int sqlite3IdListIndex(IdList*,const char*);
3734 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
3735 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
3736 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
3737                                       Token*, Select*, Expr*, IdList*);
3738 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
3739 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*);
3740 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
3741 void sqlite3SrcListShiftJoinType(SrcList*);
3742 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
3743 void sqlite3IdListDelete(sqlite3*, IdList*);
3744 void sqlite3SrcListDelete(sqlite3*, SrcList*);
3745 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
3746 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
3747                           Expr*, int, int, u8);
3748 void sqlite3DropIndex(Parse*, SrcList*, int);
3749 int sqlite3Select(Parse*, Select*, SelectDest*);
3750 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
3751                          Expr*,ExprList*,u32,Expr*,Expr*);
3752 void sqlite3SelectDelete(sqlite3*, Select*);
3753 Table *sqlite3SrcListLookup(Parse*, SrcList*);
3754 int sqlite3IsReadOnly(Parse*, Table*, int);
3755 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
3756 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
3757 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
3758 #endif
3759 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
3760 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
3761 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
3762 void sqlite3WhereEnd(WhereInfo*);
3763 LogEst sqlite3WhereOutputRowCount(WhereInfo*);
3764 int sqlite3WhereIsDistinct(WhereInfo*);
3765 int sqlite3WhereIsOrdered(WhereInfo*);
3766 int sqlite3WhereOrderedInnerLoop(WhereInfo*);
3767 int sqlite3WhereIsSorted(WhereInfo*);
3768 int sqlite3WhereContinueLabel(WhereInfo*);
3769 int sqlite3WhereBreakLabel(WhereInfo*);
3770 int sqlite3WhereOkOnePass(WhereInfo*, int*);
3771 #define ONEPASS_OFF      0        /* Use of ONEPASS not allowed */
3772 #define ONEPASS_SINGLE   1        /* ONEPASS valid for a single row update */
3773 #define ONEPASS_MULTI    2        /* ONEPASS is valid for multiple rows */
3774 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
3775 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
3776 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int);
3777 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
3778 void sqlite3ExprCodeMove(Parse*, int, int, int);
3779 void sqlite3ExprCacheStore(Parse*, int, int, int);
3780 void sqlite3ExprCachePush(Parse*);
3781 void sqlite3ExprCachePop(Parse*);
3782 void sqlite3ExprCacheRemove(Parse*, int, int);
3783 void sqlite3ExprCacheClear(Parse*);
3784 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
3785 void sqlite3ExprCode(Parse*, Expr*, int);
3786 void sqlite3ExprCodeCopy(Parse*, Expr*, int);
3787 void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
3788 int sqlite3ExprCodeAtInit(Parse*, Expr*, int);
3789 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
3790 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
3791 void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
3792 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
3793 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
3794 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
3795 #define SQLITE_ECEL_REF      0x04  /* Use ExprList.u.x.iOrderByCol */
3796 #define SQLITE_ECEL_OMITREF  0x08  /* Omit if ExprList.u.x.iOrderByCol */
3797 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
3798 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
3799 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int);
3800 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
3801 #define LOCATE_VIEW    0x01
3802 #define LOCATE_NOERR   0x02
3803 Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*);
3804 Table *sqlite3LocateTableItem(Parse*,u32 flags,struct SrcList_item *);
3805 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
3806 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
3807 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
3808 void sqlite3Vacuum(Parse*,Token*);
3809 int sqlite3RunVacuum(char**, sqlite3*, int);
3810 char *sqlite3NameFromToken(sqlite3*, Token*);
3811 int sqlite3ExprCompare(Parse*,Expr*, Expr*, int);
3812 int sqlite3ExprCompareSkip(Expr*, Expr*, int);
3813 int sqlite3ExprListCompare(ExprList*, ExprList*, int);
3814 int sqlite3ExprImpliesExpr(Parse*,Expr*, Expr*, int);
3815 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
3816 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
3817 int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx);
3818 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
3819 Vdbe *sqlite3GetVdbe(Parse*);
3820 #ifndef SQLITE_UNTESTABLE
3821 void sqlite3PrngSaveState(void);
3822 void sqlite3PrngRestoreState(void);
3823 #endif
3824 void sqlite3RollbackAll(sqlite3*,int);
3825 void sqlite3CodeVerifySchema(Parse*, int);
3826 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
3827 void sqlite3BeginTransaction(Parse*, int);
3828 void sqlite3EndTransaction(Parse*,int);
3829 void sqlite3Savepoint(Parse*, int, Token*);
3830 void sqlite3CloseSavepoints(sqlite3 *);
3831 void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
3832 int sqlite3ExprIsConstant(Expr*);
3833 int sqlite3ExprIsConstantNotJoin(Expr*);
3834 int sqlite3ExprIsConstantOrFunction(Expr*, u8);
3835 int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*);
3836 int sqlite3ExprIsTableConstant(Expr*,int);
3837 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3838 int sqlite3ExprContainsSubquery(Expr*);
3839 #endif
3840 int sqlite3ExprIsInteger(Expr*, int*);
3841 int sqlite3ExprCanBeNull(const Expr*);
3842 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
3843 int sqlite3IsRowid(const char*);
3844 void sqlite3GenerateRowDelete(
3845     Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
3846 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
3847 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
3848 void sqlite3ResolvePartIdxLabel(Parse*,int);
3849 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
3850                                      u8,u8,int,int*,int*);
3851 #ifdef SQLITE_ENABLE_NULL_TRIM
3852   void sqlite3SetMakeRecordP5(Vdbe*,Table*);
3853 #else
3854 # define sqlite3SetMakeRecordP5(A,B)
3855 #endif
3856 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
3857 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
3858 void sqlite3BeginWriteOperation(Parse*, int, int);
3859 void sqlite3MultiWrite(Parse*);
3860 void sqlite3MayAbort(Parse*);
3861 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
3862 void sqlite3UniqueConstraint(Parse*, int, Index*);
3863 void sqlite3RowidConstraint(Parse*, int, Table*);
3864 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
3865 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
3866 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
3867 IdList *sqlite3IdListDup(sqlite3*,IdList*);
3868 Select *sqlite3SelectDup(sqlite3*,Select*,int);
3869 #if SELECTTRACE_ENABLED
3870 void sqlite3SelectSetName(Select*,const char*);
3871 #else
3872 # define sqlite3SelectSetName(A,B)
3873 #endif
3874 void sqlite3InsertBuiltinFuncs(FuncDef*,int);
3875 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8);
3876 void sqlite3RegisterBuiltinFunctions(void);
3877 void sqlite3RegisterDateTimeFunctions(void);
3878 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*);
3879 int sqlite3SafetyCheckOk(sqlite3*);
3880 int sqlite3SafetyCheckSickOrOk(sqlite3*);
3881 void sqlite3ChangeCookie(Parse*, int);
3882 
3883 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
3884 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
3885 #endif
3886 
3887 #ifndef SQLITE_OMIT_TRIGGER
3888   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
3889                            Expr*,int, int);
3890   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
3891   void sqlite3DropTrigger(Parse*, SrcList*, int);
3892   void sqlite3DropTriggerPtr(Parse*, Trigger*);
3893   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
3894   Trigger *sqlite3TriggerList(Parse *, Table *);
3895   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
3896                             int, int, int);
3897   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
3898   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
3899   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
3900   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
3901   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
3902                                         Select*,u8);
3903   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
3904   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
3905   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
3906   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
3907   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
3908 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
3909 # define sqlite3IsToplevel(p) ((p)->pToplevel==0)
3910 #else
3911 # define sqlite3TriggersExist(B,C,D,E,F) 0
3912 # define sqlite3DeleteTrigger(A,B)
3913 # define sqlite3DropTriggerPtr(A,B)
3914 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
3915 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
3916 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
3917 # define sqlite3TriggerList(X, Y) 0
3918 # define sqlite3ParseToplevel(p) p
3919 # define sqlite3IsToplevel(p) 1
3920 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
3921 #endif
3922 
3923 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
3924 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
3925 void sqlite3DeferForeignKey(Parse*, int);
3926 #ifndef SQLITE_OMIT_AUTHORIZATION
3927   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
3928   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
3929   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
3930   void sqlite3AuthContextPop(AuthContext*);
3931   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
3932 #else
3933 # define sqlite3AuthRead(a,b,c,d)
3934 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
3935 # define sqlite3AuthContextPush(a,b,c)
3936 # define sqlite3AuthContextPop(a)  ((void)(a))
3937 #endif
3938 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
3939 void sqlite3Detach(Parse*, Expr*);
3940 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
3941 int sqlite3FixSrcList(DbFixer*, SrcList*);
3942 int sqlite3FixSelect(DbFixer*, Select*);
3943 int sqlite3FixExpr(DbFixer*, Expr*);
3944 int sqlite3FixExprList(DbFixer*, ExprList*);
3945 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
3946 int sqlite3AtoF(const char *z, double*, int, u8);
3947 int sqlite3GetInt32(const char *, int*);
3948 int sqlite3Atoi(const char*);
3949 #ifndef SQLITE_OMIT_UTF16
3950 int sqlite3Utf16ByteLen(const void *pData, int nChar);
3951 #endif
3952 int sqlite3Utf8CharLen(const char *pData, int nByte);
3953 u32 sqlite3Utf8Read(const u8**);
3954 LogEst sqlite3LogEst(u64);
3955 LogEst sqlite3LogEstAdd(LogEst,LogEst);
3956 #ifndef SQLITE_OMIT_VIRTUALTABLE
3957 LogEst sqlite3LogEstFromDouble(double);
3958 #endif
3959 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
3960     defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
3961     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
3962 u64 sqlite3LogEstToInt(LogEst);
3963 #endif
3964 VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int);
3965 const char *sqlite3VListNumToName(VList*,int);
3966 int sqlite3VListNameToNum(VList*,const char*,int);
3967 
3968 /*
3969 ** Routines to read and write variable-length integers.  These used to
3970 ** be defined locally, but now we use the varint routines in the util.c
3971 ** file.
3972 */
3973 int sqlite3PutVarint(unsigned char*, u64);
3974 u8 sqlite3GetVarint(const unsigned char *, u64 *);
3975 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
3976 int sqlite3VarintLen(u64 v);
3977 
3978 /*
3979 ** The common case is for a varint to be a single byte.  They following
3980 ** macros handle the common case without a procedure call, but then call
3981 ** the procedure for larger varints.
3982 */
3983 #define getVarint32(A,B)  \
3984   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
3985 #define putVarint32(A,B)  \
3986   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
3987   sqlite3PutVarint((A),(B)))
3988 #define getVarint    sqlite3GetVarint
3989 #define putVarint    sqlite3PutVarint
3990 
3991 
3992 const char *sqlite3IndexAffinityStr(sqlite3*, Index*);
3993 void sqlite3TableAffinity(Vdbe*, Table*, int);
3994 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
3995 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
3996 char sqlite3TableColumnAffinity(Table*,int);
3997 char sqlite3ExprAffinity(Expr *pExpr);
3998 int sqlite3Atoi64(const char*, i64*, int, u8);
3999 int sqlite3DecOrHexToI64(const char*, i64*);
4000 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
4001 void sqlite3Error(sqlite3*,int);
4002 void sqlite3SystemError(sqlite3*,int);
4003 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
4004 u8 sqlite3HexToInt(int h);
4005 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
4006 
4007 #if defined(SQLITE_NEED_ERR_NAME)
4008 const char *sqlite3ErrName(int);
4009 #endif
4010 
4011 const char *sqlite3ErrStr(int);
4012 int sqlite3ReadSchema(Parse *pParse);
4013 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
4014 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
4015 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
4016 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
4017 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
4018 Expr *sqlite3ExprSkipCollate(Expr*);
4019 int sqlite3CheckCollSeq(Parse *, CollSeq *);
4020 int sqlite3CheckObjectName(Parse *, const char *);
4021 void sqlite3VdbeSetChanges(sqlite3 *, int);
4022 int sqlite3AddInt64(i64*,i64);
4023 int sqlite3SubInt64(i64*,i64);
4024 int sqlite3MulInt64(i64*,i64);
4025 int sqlite3AbsInt32(int);
4026 #ifdef SQLITE_ENABLE_8_3_NAMES
4027 void sqlite3FileSuffix3(const char*, char*);
4028 #else
4029 # define sqlite3FileSuffix3(X,Y)
4030 #endif
4031 u8 sqlite3GetBoolean(const char *z,u8);
4032 
4033 const void *sqlite3ValueText(sqlite3_value*, u8);
4034 int sqlite3ValueBytes(sqlite3_value*, u8);
4035 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
4036                         void(*)(void*));
4037 void sqlite3ValueSetNull(sqlite3_value*);
4038 void sqlite3ValueFree(sqlite3_value*);
4039 sqlite3_value *sqlite3ValueNew(sqlite3 *);
4040 #ifndef SQLITE_OMIT_UTF16
4041 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
4042 #endif
4043 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
4044 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
4045 #ifndef SQLITE_AMALGAMATION
4046 extern const unsigned char sqlite3OpcodeProperty[];
4047 extern const char sqlite3StrBINARY[];
4048 extern const unsigned char sqlite3UpperToLower[];
4049 extern const unsigned char sqlite3CtypeMap[];
4050 extern const Token sqlite3IntTokens[];
4051 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
4052 extern FuncDefHash sqlite3BuiltinFunctions;
4053 #ifndef SQLITE_OMIT_WSD
4054 extern int sqlite3PendingByte;
4055 #endif
4056 #endif
4057 void sqlite3RootPageMoved(sqlite3*, int, int, int);
4058 void sqlite3Reindex(Parse*, Token*, Token*);
4059 void sqlite3AlterFunctions(void);
4060 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
4061 int sqlite3GetToken(const unsigned char *, int *);
4062 void sqlite3NestedParse(Parse*, const char*, ...);
4063 void sqlite3ExpirePreparedStatements(sqlite3*);
4064 int sqlite3CodeSubselect(Parse*, Expr *, int, int);
4065 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
4066 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
4067 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
4068 int sqlite3ResolveExprNames(NameContext*, Expr*);
4069 int sqlite3ResolveExprListNames(NameContext*, ExprList*);
4070 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
4071 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
4072 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
4073 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
4074 void sqlite3AlterFinishAddColumn(Parse *, Token *);
4075 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
4076 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
4077 char sqlite3AffinityType(const char*, u8*);
4078 void sqlite3Analyze(Parse*, Token*, Token*);
4079 int sqlite3InvokeBusyHandler(BusyHandler*);
4080 int sqlite3FindDb(sqlite3*, Token*);
4081 int sqlite3FindDbName(sqlite3 *, const char *);
4082 int sqlite3AnalysisLoad(sqlite3*,int iDB);
4083 void sqlite3DeleteIndexSamples(sqlite3*,Index*);
4084 void sqlite3DefaultRowEst(Index*);
4085 void sqlite3RegisterLikeFunctions(sqlite3*, int);
4086 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
4087 void sqlite3SchemaClear(void *);
4088 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
4089 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
4090 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
4091 void sqlite3KeyInfoUnref(KeyInfo*);
4092 KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
4093 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
4094 #ifdef SQLITE_DEBUG
4095 int sqlite3KeyInfoIsWriteable(KeyInfo*);
4096 #endif
4097 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
4098   void (*)(sqlite3_context*,int,sqlite3_value **),
4099   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
4100   FuncDestructor *pDestructor
4101 );
4102 void sqlite3OomFault(sqlite3*);
4103 void sqlite3OomClear(sqlite3*);
4104 int sqlite3ApiExit(sqlite3 *db, int);
4105 int sqlite3OpenTempDatabase(Parse *);
4106 
4107 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
4108 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
4109 void sqlite3StrAccumAppendAll(StrAccum*,const char*);
4110 void sqlite3AppendChar(StrAccum*,int,char);
4111 char *sqlite3StrAccumFinish(StrAccum*);
4112 void sqlite3StrAccumReset(StrAccum*);
4113 void sqlite3SelectDestInit(SelectDest*,int,int);
4114 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
4115 
4116 void sqlite3BackupRestart(sqlite3_backup *);
4117 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
4118 
4119 #ifndef SQLITE_OMIT_SUBQUERY
4120 int sqlite3ExprCheckIN(Parse*, Expr*);
4121 #else
4122 # define sqlite3ExprCheckIN(x,y) SQLITE_OK
4123 #endif
4124 
4125 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4126 void sqlite3AnalyzeFunctions(void);
4127 int sqlite3Stat4ProbeSetValue(
4128     Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*);
4129 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
4130 void sqlite3Stat4ProbeFree(UnpackedRecord*);
4131 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
4132 char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
4133 #endif
4134 
4135 /*
4136 ** The interface to the LEMON-generated parser
4137 */
4138 #ifndef SQLITE_AMALGAMATION
4139   void *sqlite3ParserAlloc(void*(*)(u64));
4140   void sqlite3ParserFree(void*, void(*)(void*));
4141 #endif
4142 void sqlite3Parser(void*, int, Token, Parse*);
4143 #ifdef YYTRACKMAXSTACKDEPTH
4144   int sqlite3ParserStackPeak(void*);
4145 #endif
4146 
4147 void sqlite3AutoLoadExtensions(sqlite3*);
4148 #ifndef SQLITE_OMIT_LOAD_EXTENSION
4149   void sqlite3CloseExtensions(sqlite3*);
4150 #else
4151 # define sqlite3CloseExtensions(X)
4152 #endif
4153 
4154 #ifndef SQLITE_OMIT_SHARED_CACHE
4155   void sqlite3TableLock(Parse *, int, int, u8, const char *);
4156 #else
4157   #define sqlite3TableLock(v,w,x,y,z)
4158 #endif
4159 
4160 #ifdef SQLITE_TEST
4161   int sqlite3Utf8To8(unsigned char*);
4162 #endif
4163 
4164 #ifdef SQLITE_OMIT_VIRTUALTABLE
4165 #  define sqlite3VtabClear(Y)
4166 #  define sqlite3VtabSync(X,Y) SQLITE_OK
4167 #  define sqlite3VtabRollback(X)
4168 #  define sqlite3VtabCommit(X)
4169 #  define sqlite3VtabInSync(db) 0
4170 #  define sqlite3VtabLock(X)
4171 #  define sqlite3VtabUnlock(X)
4172 #  define sqlite3VtabUnlockList(X)
4173 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
4174 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
4175 #else
4176    void sqlite3VtabClear(sqlite3 *db, Table*);
4177    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
4178    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
4179    int sqlite3VtabRollback(sqlite3 *db);
4180    int sqlite3VtabCommit(sqlite3 *db);
4181    void sqlite3VtabLock(VTable *);
4182    void sqlite3VtabUnlock(VTable *);
4183    void sqlite3VtabUnlockList(sqlite3*);
4184    int sqlite3VtabSavepoint(sqlite3 *, int, int);
4185    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
4186    VTable *sqlite3GetVTable(sqlite3*, Table*);
4187    Module *sqlite3VtabCreateModule(
4188      sqlite3*,
4189      const char*,
4190      const sqlite3_module*,
4191      void*,
4192      void(*)(void*)
4193    );
4194 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
4195 #endif
4196 int sqlite3VtabEponymousTableInit(Parse*,Module*);
4197 void sqlite3VtabEponymousTableClear(sqlite3*,Module*);
4198 void sqlite3VtabMakeWritable(Parse*,Table*);
4199 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
4200 void sqlite3VtabFinishParse(Parse*, Token*);
4201 void sqlite3VtabArgInit(Parse*);
4202 void sqlite3VtabArgExtend(Parse*, Token*);
4203 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
4204 int sqlite3VtabCallConnect(Parse*, Table*);
4205 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
4206 int sqlite3VtabBegin(sqlite3 *, VTable *);
4207 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
4208 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
4209 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
4210 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
4211 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
4212 void sqlite3ParserReset(Parse*);
4213 int sqlite3Reprepare(Vdbe*);
4214 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
4215 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
4216 int sqlite3TempInMemory(const sqlite3*);
4217 const char *sqlite3JournalModename(int);
4218 #ifndef SQLITE_OMIT_WAL
4219   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
4220   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
4221 #endif
4222 #ifndef SQLITE_OMIT_CTE
4223   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
4224   void sqlite3WithDelete(sqlite3*,With*);
4225   void sqlite3WithPush(Parse*, With*, u8);
4226 #else
4227 #define sqlite3WithPush(x,y,z)
4228 #define sqlite3WithDelete(x,y)
4229 #endif
4230 
4231 /* Declarations for functions in fkey.c. All of these are replaced by
4232 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
4233 ** key functionality is available. If OMIT_TRIGGER is defined but
4234 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
4235 ** this case foreign keys are parsed, but no other functionality is
4236 ** provided (enforcement of FK constraints requires the triggers sub-system).
4237 */
4238 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
4239   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
4240   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
4241   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
4242   int sqlite3FkRequired(Parse*, Table*, int*, int);
4243   u32 sqlite3FkOldmask(Parse*, Table*);
4244   FKey *sqlite3FkReferences(Table *);
4245 #else
4246   #define sqlite3FkActions(a,b,c,d,e,f)
4247   #define sqlite3FkCheck(a,b,c,d,e,f)
4248   #define sqlite3FkDropTable(a,b,c)
4249   #define sqlite3FkOldmask(a,b)         0
4250   #define sqlite3FkRequired(a,b,c,d)    0
4251   #define sqlite3FkReferences(a)        0
4252 #endif
4253 #ifndef SQLITE_OMIT_FOREIGN_KEY
4254   void sqlite3FkDelete(sqlite3 *, Table*);
4255   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
4256 #else
4257   #define sqlite3FkDelete(a,b)
4258   #define sqlite3FkLocateIndex(a,b,c,d,e)
4259 #endif
4260 
4261 
4262 /*
4263 ** Available fault injectors.  Should be numbered beginning with 0.
4264 */
4265 #define SQLITE_FAULTINJECTOR_MALLOC     0
4266 #define SQLITE_FAULTINJECTOR_COUNT      1
4267 
4268 /*
4269 ** The interface to the code in fault.c used for identifying "benign"
4270 ** malloc failures. This is only present if SQLITE_UNTESTABLE
4271 ** is not defined.
4272 */
4273 #ifndef SQLITE_UNTESTABLE
4274   void sqlite3BeginBenignMalloc(void);
4275   void sqlite3EndBenignMalloc(void);
4276 #else
4277   #define sqlite3BeginBenignMalloc()
4278   #define sqlite3EndBenignMalloc()
4279 #endif
4280 
4281 /*
4282 ** Allowed return values from sqlite3FindInIndex()
4283 */
4284 #define IN_INDEX_ROWID        1   /* Search the rowid of the table */
4285 #define IN_INDEX_EPH          2   /* Search an ephemeral b-tree */
4286 #define IN_INDEX_INDEX_ASC    3   /* Existing index ASCENDING */
4287 #define IN_INDEX_INDEX_DESC   4   /* Existing index DESCENDING */
4288 #define IN_INDEX_NOOP         5   /* No table available. Use comparisons */
4289 /*
4290 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
4291 */
4292 #define IN_INDEX_NOOP_OK     0x0001  /* OK to return IN_INDEX_NOOP */
4293 #define IN_INDEX_MEMBERSHIP  0x0002  /* IN operator used for membership test */
4294 #define IN_INDEX_LOOP        0x0004  /* IN operator used as a loop */
4295 int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*);
4296 
4297 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
4298 int sqlite3JournalSize(sqlite3_vfs *);
4299 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \
4300  || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
4301   int sqlite3JournalCreate(sqlite3_file *);
4302 #endif
4303 
4304 int sqlite3JournalIsInMemory(sqlite3_file *p);
4305 void sqlite3MemJournalOpen(sqlite3_file *);
4306 
4307 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
4308 #if SQLITE_MAX_EXPR_DEPTH>0
4309   int sqlite3SelectExprHeight(Select *);
4310   int sqlite3ExprCheckHeight(Parse*, int);
4311 #else
4312   #define sqlite3SelectExprHeight(x) 0
4313   #define sqlite3ExprCheckHeight(x,y)
4314 #endif
4315 
4316 u32 sqlite3Get4byte(const u8*);
4317 void sqlite3Put4byte(u8*, u32);
4318 
4319 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
4320   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
4321   void sqlite3ConnectionUnlocked(sqlite3 *db);
4322   void sqlite3ConnectionClosed(sqlite3 *db);
4323 #else
4324   #define sqlite3ConnectionBlocked(x,y)
4325   #define sqlite3ConnectionUnlocked(x)
4326   #define sqlite3ConnectionClosed(x)
4327 #endif
4328 
4329 #ifdef SQLITE_DEBUG
4330   void sqlite3ParserTrace(FILE*, char *);
4331 #endif
4332 
4333 /*
4334 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
4335 ** sqlite3IoTrace is a pointer to a printf-like routine used to
4336 ** print I/O tracing messages.
4337 */
4338 #ifdef SQLITE_ENABLE_IOTRACE
4339 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
4340   void sqlite3VdbeIOTraceSql(Vdbe*);
4341 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
4342 #else
4343 # define IOTRACE(A)
4344 # define sqlite3VdbeIOTraceSql(X)
4345 #endif
4346 
4347 /*
4348 ** These routines are available for the mem2.c debugging memory allocator
4349 ** only.  They are used to verify that different "types" of memory
4350 ** allocations are properly tracked by the system.
4351 **
4352 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
4353 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
4354 ** a single bit set.
4355 **
4356 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
4357 ** argument match the type set by the previous sqlite3MemdebugSetType().
4358 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
4359 **
4360 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
4361 ** argument match the type set by the previous sqlite3MemdebugSetType().
4362 **
4363 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
4364 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
4365 ** it might have been allocated by lookaside, except the allocation was
4366 ** too large or lookaside was already full.  It is important to verify
4367 ** that allocations that might have been satisfied by lookaside are not
4368 ** passed back to non-lookaside free() routines.  Asserts such as the
4369 ** example above are placed on the non-lookaside free() routines to verify
4370 ** this constraint.
4371 **
4372 ** All of this is no-op for a production build.  It only comes into
4373 ** play when the SQLITE_MEMDEBUG compile-time option is used.
4374 */
4375 #ifdef SQLITE_MEMDEBUG
4376   void sqlite3MemdebugSetType(void*,u8);
4377   int sqlite3MemdebugHasType(void*,u8);
4378   int sqlite3MemdebugNoType(void*,u8);
4379 #else
4380 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
4381 # define sqlite3MemdebugHasType(X,Y)  1
4382 # define sqlite3MemdebugNoType(X,Y)   1
4383 #endif
4384 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
4385 #define MEMTYPE_LOOKASIDE  0x02  /* Heap that might have been lookaside */
4386 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
4387 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
4388 
4389 /*
4390 ** Threading interface
4391 */
4392 #if SQLITE_MAX_WORKER_THREADS>0
4393 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
4394 int sqlite3ThreadJoin(SQLiteThread*, void**);
4395 #endif
4396 
4397 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)
4398 int sqlite3DbstatRegister(sqlite3*);
4399 #endif
4400 
4401 int sqlite3ExprVectorSize(Expr *pExpr);
4402 int sqlite3ExprIsVector(Expr *pExpr);
4403 Expr *sqlite3VectorFieldSubexpr(Expr*, int);
4404 Expr *sqlite3ExprForVectorField(Parse*,Expr*,int);
4405 void sqlite3VectorErrorMsg(Parse*, Expr*);
4406 
4407 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
4408 const char **sqlite3CompileOptions(int *pnOpt);
4409 #endif
4410 
4411 #endif /* SQLITEINT_H */
4412