1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef SQLITEINT_H 16 #define SQLITEINT_H 17 18 /* Special Comments: 19 ** 20 ** Some comments have special meaning to the tools that measure test 21 ** coverage: 22 ** 23 ** NO_TEST - The branches on this line are not 24 ** measured by branch coverage. This is 25 ** used on lines of code that actually 26 ** implement parts of coverage testing. 27 ** 28 ** OPTIMIZATION-IF-TRUE - This branch is allowed to alway be false 29 ** and the correct answer is still obtained, 30 ** though perhaps more slowly. 31 ** 32 ** OPTIMIZATION-IF-FALSE - This branch is allowed to alway be true 33 ** and the correct answer is still obtained, 34 ** though perhaps more slowly. 35 ** 36 ** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread 37 ** that would be harmless and undetectable 38 ** if it did occur. 39 ** 40 ** In all cases, the special comment must be enclosed in the usual 41 ** slash-asterisk...asterisk-slash comment marks, with no spaces between the 42 ** asterisks and the comment text. 43 */ 44 45 /* 46 ** Make sure the Tcl calling convention macro is defined. This macro is 47 ** only used by test code and Tcl integration code. 48 */ 49 #ifndef SQLITE_TCLAPI 50 # define SQLITE_TCLAPI 51 #endif 52 53 /* 54 ** Make sure that rand_s() is available on Windows systems with MSVC 2005 55 ** or higher. 56 */ 57 #if defined(_MSC_VER) && _MSC_VER>=1400 58 # define _CRT_RAND_S 59 #endif 60 61 /* 62 ** Include the header file used to customize the compiler options for MSVC. 63 ** This should be done first so that it can successfully prevent spurious 64 ** compiler warnings due to subsequent content in this file and other files 65 ** that are included by this file. 66 */ 67 #include "msvc.h" 68 69 /* 70 ** Special setup for VxWorks 71 */ 72 #include "vxworks.h" 73 74 /* 75 ** These #defines should enable >2GB file support on POSIX if the 76 ** underlying operating system supports it. If the OS lacks 77 ** large file support, or if the OS is windows, these should be no-ops. 78 ** 79 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 80 ** system #includes. Hence, this block of code must be the very first 81 ** code in all source files. 82 ** 83 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 84 ** on the compiler command line. This is necessary if you are compiling 85 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 86 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 87 ** without this option, LFS is enable. But LFS does not exist in the kernel 88 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 89 ** portability you should omit LFS. 90 ** 91 ** The previous paragraph was written in 2005. (This paragraph is written 92 ** on 2008-11-28.) These days, all Linux kernels support large files, so 93 ** you should probably leave LFS enabled. But some embedded platforms might 94 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 95 ** 96 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 97 */ 98 #ifndef SQLITE_DISABLE_LFS 99 # define _LARGE_FILE 1 100 # ifndef _FILE_OFFSET_BITS 101 # define _FILE_OFFSET_BITS 64 102 # endif 103 # define _LARGEFILE_SOURCE 1 104 #endif 105 106 /* The GCC_VERSION and MSVC_VERSION macros are used to 107 ** conditionally include optimizations for each of these compilers. A 108 ** value of 0 means that compiler is not being used. The 109 ** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific 110 ** optimizations, and hence set all compiler macros to 0 111 ** 112 ** There was once also a CLANG_VERSION macro. However, we learn that the 113 ** version numbers in clang are for "marketing" only and are inconsistent 114 ** and unreliable. Fortunately, all versions of clang also recognize the 115 ** gcc version numbers and have reasonable settings for gcc version numbers, 116 ** so the GCC_VERSION macro will be set to a correct non-zero value even 117 ** when compiling with clang. 118 */ 119 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) 120 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) 121 #else 122 # define GCC_VERSION 0 123 #endif 124 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) 125 # define MSVC_VERSION _MSC_VER 126 #else 127 # define MSVC_VERSION 0 128 #endif 129 130 /* Needed for various definitions... */ 131 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 132 # define _GNU_SOURCE 133 #endif 134 135 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 136 # define _BSD_SOURCE 137 #endif 138 139 /* 140 ** For MinGW, check to see if we can include the header file containing its 141 ** version information, among other things. Normally, this internal MinGW 142 ** header file would [only] be included automatically by other MinGW header 143 ** files; however, the contained version information is now required by this 144 ** header file to work around binary compatibility issues (see below) and 145 ** this is the only known way to reliably obtain it. This entire #if block 146 ** would be completely unnecessary if there was any other way of detecting 147 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 148 ** some MinGW-specific macros). When compiling for MinGW, either the 149 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 150 ** defined; otherwise, detection of conditions specific to MinGW will be 151 ** disabled. 152 */ 153 #if defined(_HAVE_MINGW_H) 154 # include "mingw.h" 155 #elif defined(_HAVE__MINGW_H) 156 # include "_mingw.h" 157 #endif 158 159 /* 160 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 161 ** define is required to maintain binary compatibility with the MSVC runtime 162 ** library in use (e.g. for Windows XP). 163 */ 164 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 165 defined(_WIN32) && !defined(_WIN64) && \ 166 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 167 defined(__MSVCRT__) 168 # define _USE_32BIT_TIME_T 169 #endif 170 171 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 172 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 173 ** MinGW. 174 */ 175 #include "sqlite3.h" 176 177 /* 178 ** Include the configuration header output by 'configure' if we're using the 179 ** autoconf-based build 180 */ 181 #if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H) 182 #include "config.h" 183 #define SQLITECONFIG_H 1 184 #endif 185 186 #include "sqliteLimit.h" 187 188 /* Disable nuisance warnings on Borland compilers */ 189 #if defined(__BORLANDC__) 190 #pragma warn -rch /* unreachable code */ 191 #pragma warn -ccc /* Condition is always true or false */ 192 #pragma warn -aus /* Assigned value is never used */ 193 #pragma warn -csu /* Comparing signed and unsigned */ 194 #pragma warn -spa /* Suspicious pointer arithmetic */ 195 #endif 196 197 /* 198 ** Include standard header files as necessary 199 */ 200 #ifdef HAVE_STDINT_H 201 #include <stdint.h> 202 #endif 203 #ifdef HAVE_INTTYPES_H 204 #include <inttypes.h> 205 #endif 206 207 /* 208 ** The following macros are used to cast pointers to integers and 209 ** integers to pointers. The way you do this varies from one compiler 210 ** to the next, so we have developed the following set of #if statements 211 ** to generate appropriate macros for a wide range of compilers. 212 ** 213 ** The correct "ANSI" way to do this is to use the intptr_t type. 214 ** Unfortunately, that typedef is not available on all compilers, or 215 ** if it is available, it requires an #include of specific headers 216 ** that vary from one machine to the next. 217 ** 218 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 219 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 220 ** So we have to define the macros in different ways depending on the 221 ** compiler. 222 */ 223 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 224 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 225 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 226 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 227 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 228 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 229 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 230 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 231 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 232 #else /* Generates a warning - but it always works */ 233 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 234 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 235 #endif 236 237 /* 238 ** A macro to hint to the compiler that a function should not be 239 ** inlined. 240 */ 241 #if defined(__GNUC__) 242 # define SQLITE_NOINLINE __attribute__((noinline)) 243 #elif defined(_MSC_VER) && _MSC_VER>=1310 244 # define SQLITE_NOINLINE __declspec(noinline) 245 #else 246 # define SQLITE_NOINLINE 247 #endif 248 249 /* 250 ** Make sure that the compiler intrinsics we desire are enabled when 251 ** compiling with an appropriate version of MSVC unless prevented by 252 ** the SQLITE_DISABLE_INTRINSIC define. 253 */ 254 #if !defined(SQLITE_DISABLE_INTRINSIC) 255 # if defined(_MSC_VER) && _MSC_VER>=1400 256 # if !defined(_WIN32_WCE) 257 # include <intrin.h> 258 # pragma intrinsic(_byteswap_ushort) 259 # pragma intrinsic(_byteswap_ulong) 260 # pragma intrinsic(_byteswap_uint64) 261 # pragma intrinsic(_ReadWriteBarrier) 262 # else 263 # include <cmnintrin.h> 264 # endif 265 # endif 266 #endif 267 268 /* 269 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 270 ** 0 means mutexes are permanently disable and the library is never 271 ** threadsafe. 1 means the library is serialized which is the highest 272 ** level of threadsafety. 2 means the library is multithreaded - multiple 273 ** threads can use SQLite as long as no two threads try to use the same 274 ** database connection at the same time. 275 ** 276 ** Older versions of SQLite used an optional THREADSAFE macro. 277 ** We support that for legacy. 278 ** 279 ** To ensure that the correct value of "THREADSAFE" is reported when querying 280 ** for compile-time options at runtime (e.g. "PRAGMA compile_options"), this 281 ** logic is partially replicated in ctime.c. If it is updated here, it should 282 ** also be updated there. 283 */ 284 #if !defined(SQLITE_THREADSAFE) 285 # if defined(THREADSAFE) 286 # define SQLITE_THREADSAFE THREADSAFE 287 # else 288 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 289 # endif 290 #endif 291 292 /* 293 ** Powersafe overwrite is on by default. But can be turned off using 294 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 295 */ 296 #ifndef SQLITE_POWERSAFE_OVERWRITE 297 # define SQLITE_POWERSAFE_OVERWRITE 1 298 #endif 299 300 /* 301 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 302 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 303 ** which case memory allocation statistics are disabled by default. 304 */ 305 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 306 # define SQLITE_DEFAULT_MEMSTATUS 1 307 #endif 308 309 /* 310 ** Exactly one of the following macros must be defined in order to 311 ** specify which memory allocation subsystem to use. 312 ** 313 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 314 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 315 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 316 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 317 ** 318 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 319 ** assert() macro is enabled, each call into the Win32 native heap subsystem 320 ** will cause HeapValidate to be called. If heap validation should fail, an 321 ** assertion will be triggered. 322 ** 323 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 324 ** the default. 325 */ 326 #if defined(SQLITE_SYSTEM_MALLOC) \ 327 + defined(SQLITE_WIN32_MALLOC) \ 328 + defined(SQLITE_ZERO_MALLOC) \ 329 + defined(SQLITE_MEMDEBUG)>1 330 # error "Two or more of the following compile-time configuration options\ 331 are defined but at most one is allowed:\ 332 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 333 SQLITE_ZERO_MALLOC" 334 #endif 335 #if defined(SQLITE_SYSTEM_MALLOC) \ 336 + defined(SQLITE_WIN32_MALLOC) \ 337 + defined(SQLITE_ZERO_MALLOC) \ 338 + defined(SQLITE_MEMDEBUG)==0 339 # define SQLITE_SYSTEM_MALLOC 1 340 #endif 341 342 /* 343 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 344 ** sizes of memory allocations below this value where possible. 345 */ 346 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 347 # define SQLITE_MALLOC_SOFT_LIMIT 1024 348 #endif 349 350 /* 351 ** We need to define _XOPEN_SOURCE as follows in order to enable 352 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 353 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 354 ** it. 355 */ 356 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 357 # define _XOPEN_SOURCE 600 358 #endif 359 360 /* 361 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 362 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 363 ** make it true by defining or undefining NDEBUG. 364 ** 365 ** Setting NDEBUG makes the code smaller and faster by disabling the 366 ** assert() statements in the code. So we want the default action 367 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 368 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 369 ** feature. 370 */ 371 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 372 # define NDEBUG 1 373 #endif 374 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 375 # undef NDEBUG 376 #endif 377 378 /* 379 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 380 */ 381 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 382 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 383 #endif 384 385 /* 386 ** The testcase() macro is used to aid in coverage testing. When 387 ** doing coverage testing, the condition inside the argument to 388 ** testcase() must be evaluated both true and false in order to 389 ** get full branch coverage. The testcase() macro is inserted 390 ** to help ensure adequate test coverage in places where simple 391 ** condition/decision coverage is inadequate. For example, testcase() 392 ** can be used to make sure boundary values are tested. For 393 ** bitmask tests, testcase() can be used to make sure each bit 394 ** is significant and used at least once. On switch statements 395 ** where multiple cases go to the same block of code, testcase() 396 ** can insure that all cases are evaluated. 397 ** 398 */ 399 #ifdef SQLITE_COVERAGE_TEST 400 void sqlite3Coverage(int); 401 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 402 #else 403 # define testcase(X) 404 #endif 405 406 /* 407 ** The TESTONLY macro is used to enclose variable declarations or 408 ** other bits of code that are needed to support the arguments 409 ** within testcase() and assert() macros. 410 */ 411 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 412 # define TESTONLY(X) X 413 #else 414 # define TESTONLY(X) 415 #endif 416 417 /* 418 ** Sometimes we need a small amount of code such as a variable initialization 419 ** to setup for a later assert() statement. We do not want this code to 420 ** appear when assert() is disabled. The following macro is therefore 421 ** used to contain that setup code. The "VVA" acronym stands for 422 ** "Verification, Validation, and Accreditation". In other words, the 423 ** code within VVA_ONLY() will only run during verification processes. 424 */ 425 #ifndef NDEBUG 426 # define VVA_ONLY(X) X 427 #else 428 # define VVA_ONLY(X) 429 #endif 430 431 /* 432 ** The ALWAYS and NEVER macros surround boolean expressions which 433 ** are intended to always be true or false, respectively. Such 434 ** expressions could be omitted from the code completely. But they 435 ** are included in a few cases in order to enhance the resilience 436 ** of SQLite to unexpected behavior - to make the code "self-healing" 437 ** or "ductile" rather than being "brittle" and crashing at the first 438 ** hint of unplanned behavior. 439 ** 440 ** In other words, ALWAYS and NEVER are added for defensive code. 441 ** 442 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 443 ** be true and false so that the unreachable code they specify will 444 ** not be counted as untested code. 445 */ 446 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) 447 # define ALWAYS(X) (1) 448 # define NEVER(X) (0) 449 #elif !defined(NDEBUG) 450 # define ALWAYS(X) ((X)?1:(assert(0),0)) 451 # define NEVER(X) ((X)?(assert(0),1):0) 452 #else 453 # define ALWAYS(X) (X) 454 # define NEVER(X) (X) 455 #endif 456 457 /* 458 ** Some malloc failures are only possible if SQLITE_TEST_REALLOC_STRESS is 459 ** defined. We need to defend against those failures when testing with 460 ** SQLITE_TEST_REALLOC_STRESS, but we don't want the unreachable branches 461 ** during a normal build. The following macro can be used to disable tests 462 ** that are always false except when SQLITE_TEST_REALLOC_STRESS is set. 463 */ 464 #if defined(SQLITE_TEST_REALLOC_STRESS) 465 # define ONLY_IF_REALLOC_STRESS(X) (X) 466 #elif !defined(NDEBUG) 467 # define ONLY_IF_REALLOC_STRESS(X) ((X)?(assert(0),1):0) 468 #else 469 # define ONLY_IF_REALLOC_STRESS(X) (0) 470 #endif 471 472 /* 473 ** Declarations used for tracing the operating system interfaces. 474 */ 475 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 476 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 477 extern int sqlite3OSTrace; 478 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 479 # define SQLITE_HAVE_OS_TRACE 480 #else 481 # define OSTRACE(X) 482 # undef SQLITE_HAVE_OS_TRACE 483 #endif 484 485 /* 486 ** Is the sqlite3ErrName() function needed in the build? Currently, 487 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 488 ** OSTRACE is enabled), and by several "test*.c" files (which are 489 ** compiled using SQLITE_TEST). 490 */ 491 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 492 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 493 # define SQLITE_NEED_ERR_NAME 494 #else 495 # undef SQLITE_NEED_ERR_NAME 496 #endif 497 498 /* 499 ** SQLITE_ENABLE_EXPLAIN_COMMENTS is incompatible with SQLITE_OMIT_EXPLAIN 500 */ 501 #ifdef SQLITE_OMIT_EXPLAIN 502 # undef SQLITE_ENABLE_EXPLAIN_COMMENTS 503 #endif 504 505 /* 506 ** Return true (non-zero) if the input is an integer that is too large 507 ** to fit in 32-bits. This macro is used inside of various testcase() 508 ** macros to verify that we have tested SQLite for large-file support. 509 */ 510 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 511 512 /* 513 ** The macro unlikely() is a hint that surrounds a boolean 514 ** expression that is usually false. Macro likely() surrounds 515 ** a boolean expression that is usually true. These hints could, 516 ** in theory, be used by the compiler to generate better code, but 517 ** currently they are just comments for human readers. 518 */ 519 #define likely(X) (X) 520 #define unlikely(X) (X) 521 522 #include "hash.h" 523 #include "parse.h" 524 #include <stdio.h> 525 #include <stdlib.h> 526 #include <string.h> 527 #include <assert.h> 528 #include <stddef.h> 529 530 /* 531 ** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY. 532 ** This allows better measurements of where memcpy() is used when running 533 ** cachegrind. But this macro version of memcpy() is very slow so it 534 ** should not be used in production. This is a performance measurement 535 ** hack only. 536 */ 537 #ifdef SQLITE_INLINE_MEMCPY 538 # define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\ 539 int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);} 540 #endif 541 542 /* 543 ** If compiling for a processor that lacks floating point support, 544 ** substitute integer for floating-point 545 */ 546 #ifdef SQLITE_OMIT_FLOATING_POINT 547 # define double sqlite_int64 548 # define float sqlite_int64 549 # define LONGDOUBLE_TYPE sqlite_int64 550 # ifndef SQLITE_BIG_DBL 551 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 552 # endif 553 # define SQLITE_OMIT_DATETIME_FUNCS 1 554 # define SQLITE_OMIT_TRACE 1 555 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 556 # undef SQLITE_HAVE_ISNAN 557 #endif 558 #ifndef SQLITE_BIG_DBL 559 # define SQLITE_BIG_DBL (1e99) 560 #endif 561 562 /* 563 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 564 ** afterward. Having this macro allows us to cause the C compiler 565 ** to omit code used by TEMP tables without messy #ifndef statements. 566 */ 567 #ifdef SQLITE_OMIT_TEMPDB 568 #define OMIT_TEMPDB 1 569 #else 570 #define OMIT_TEMPDB 0 571 #endif 572 573 /* 574 ** The "file format" number is an integer that is incremented whenever 575 ** the VDBE-level file format changes. The following macros define the 576 ** the default file format for new databases and the maximum file format 577 ** that the library can read. 578 */ 579 #define SQLITE_MAX_FILE_FORMAT 4 580 #ifndef SQLITE_DEFAULT_FILE_FORMAT 581 # define SQLITE_DEFAULT_FILE_FORMAT 4 582 #endif 583 584 /* 585 ** Determine whether triggers are recursive by default. This can be 586 ** changed at run-time using a pragma. 587 */ 588 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 589 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 590 #endif 591 592 /* 593 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 594 ** on the command-line 595 */ 596 #ifndef SQLITE_TEMP_STORE 597 # define SQLITE_TEMP_STORE 1 598 #endif 599 600 /* 601 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 602 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 603 ** to zero. 604 */ 605 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 606 # undef SQLITE_MAX_WORKER_THREADS 607 # define SQLITE_MAX_WORKER_THREADS 0 608 #endif 609 #ifndef SQLITE_MAX_WORKER_THREADS 610 # define SQLITE_MAX_WORKER_THREADS 8 611 #endif 612 #ifndef SQLITE_DEFAULT_WORKER_THREADS 613 # define SQLITE_DEFAULT_WORKER_THREADS 0 614 #endif 615 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 616 # undef SQLITE_MAX_WORKER_THREADS 617 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 618 #endif 619 620 /* 621 ** The default initial allocation for the pagecache when using separate 622 ** pagecaches for each database connection. A positive number is the 623 ** number of pages. A negative number N translations means that a buffer 624 ** of -1024*N bytes is allocated and used for as many pages as it will hold. 625 ** 626 ** The default value of "20" was choosen to minimize the run-time of the 627 ** speedtest1 test program with options: --shrink-memory --reprepare 628 */ 629 #ifndef SQLITE_DEFAULT_PCACHE_INITSZ 630 # define SQLITE_DEFAULT_PCACHE_INITSZ 20 631 #endif 632 633 /* 634 ** The compile-time options SQLITE_MMAP_READWRITE and 635 ** SQLITE_ENABLE_BATCH_ATOMIC_WRITE are not compatible with one another. 636 ** You must choose one or the other (or neither) but not both. 637 */ 638 #if defined(SQLITE_MMAP_READWRITE) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 639 #error Cannot use both SQLITE_MMAP_READWRITE and SQLITE_ENABLE_BATCH_ATOMIC_WRITE 640 #endif 641 642 /* 643 ** GCC does not define the offsetof() macro so we'll have to do it 644 ** ourselves. 645 */ 646 #ifndef offsetof 647 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 648 #endif 649 650 /* 651 ** Macros to compute minimum and maximum of two numbers. 652 */ 653 #ifndef MIN 654 # define MIN(A,B) ((A)<(B)?(A):(B)) 655 #endif 656 #ifndef MAX 657 # define MAX(A,B) ((A)>(B)?(A):(B)) 658 #endif 659 660 /* 661 ** Swap two objects of type TYPE. 662 */ 663 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 664 665 /* 666 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 667 ** not, there are still machines out there that use EBCDIC.) 668 */ 669 #if 'A' == '\301' 670 # define SQLITE_EBCDIC 1 671 #else 672 # define SQLITE_ASCII 1 673 #endif 674 675 /* 676 ** Integers of known sizes. These typedefs might change for architectures 677 ** where the sizes very. Preprocessor macros are available so that the 678 ** types can be conveniently redefined at compile-type. Like this: 679 ** 680 ** cc '-DUINTPTR_TYPE=long long int' ... 681 */ 682 #ifndef UINT32_TYPE 683 # ifdef HAVE_UINT32_T 684 # define UINT32_TYPE uint32_t 685 # else 686 # define UINT32_TYPE unsigned int 687 # endif 688 #endif 689 #ifndef UINT16_TYPE 690 # ifdef HAVE_UINT16_T 691 # define UINT16_TYPE uint16_t 692 # else 693 # define UINT16_TYPE unsigned short int 694 # endif 695 #endif 696 #ifndef INT16_TYPE 697 # ifdef HAVE_INT16_T 698 # define INT16_TYPE int16_t 699 # else 700 # define INT16_TYPE short int 701 # endif 702 #endif 703 #ifndef UINT8_TYPE 704 # ifdef HAVE_UINT8_T 705 # define UINT8_TYPE uint8_t 706 # else 707 # define UINT8_TYPE unsigned char 708 # endif 709 #endif 710 #ifndef INT8_TYPE 711 # ifdef HAVE_INT8_T 712 # define INT8_TYPE int8_t 713 # else 714 # define INT8_TYPE signed char 715 # endif 716 #endif 717 #ifndef LONGDOUBLE_TYPE 718 # define LONGDOUBLE_TYPE long double 719 #endif 720 typedef sqlite_int64 i64; /* 8-byte signed integer */ 721 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 722 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 723 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 724 typedef INT16_TYPE i16; /* 2-byte signed integer */ 725 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 726 typedef INT8_TYPE i8; /* 1-byte signed integer */ 727 728 /* 729 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 730 ** that can be stored in a u32 without loss of data. The value 731 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 732 ** have to specify the value in the less intuitive manner shown: 733 */ 734 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 735 736 /* 737 ** The datatype used to store estimates of the number of rows in a 738 ** table or index. This is an unsigned integer type. For 99.9% of 739 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 740 ** can be used at compile-time if desired. 741 */ 742 #ifdef SQLITE_64BIT_STATS 743 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 744 #else 745 typedef u32 tRowcnt; /* 32-bit is the default */ 746 #endif 747 748 /* 749 ** Estimated quantities used for query planning are stored as 16-bit 750 ** logarithms. For quantity X, the value stored is 10*log2(X). This 751 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 752 ** But the allowed values are "grainy". Not every value is representable. 753 ** For example, quantities 16 and 17 are both represented by a LogEst 754 ** of 40. However, since LogEst quantities are suppose to be estimates, 755 ** not exact values, this imprecision is not a problem. 756 ** 757 ** "LogEst" is short for "Logarithmic Estimate". 758 ** 759 ** Examples: 760 ** 1 -> 0 20 -> 43 10000 -> 132 761 ** 2 -> 10 25 -> 46 25000 -> 146 762 ** 3 -> 16 100 -> 66 1000000 -> 199 763 ** 4 -> 20 1000 -> 99 1048576 -> 200 764 ** 10 -> 33 1024 -> 100 4294967296 -> 320 765 ** 766 ** The LogEst can be negative to indicate fractional values. 767 ** Examples: 768 ** 769 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 770 */ 771 typedef INT16_TYPE LogEst; 772 773 /* 774 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 775 */ 776 #ifndef SQLITE_PTRSIZE 777 # if defined(__SIZEOF_POINTER__) 778 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 779 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 780 defined(_M_ARM) || defined(__arm__) || defined(__x86) 781 # define SQLITE_PTRSIZE 4 782 # else 783 # define SQLITE_PTRSIZE 8 784 # endif 785 #endif 786 787 /* The uptr type is an unsigned integer large enough to hold a pointer 788 */ 789 #if defined(HAVE_STDINT_H) 790 typedef uintptr_t uptr; 791 #elif SQLITE_PTRSIZE==4 792 typedef u32 uptr; 793 #else 794 typedef u64 uptr; 795 #endif 796 797 /* 798 ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to 799 ** something between S (inclusive) and E (exclusive). 800 ** 801 ** In other words, S is a buffer and E is a pointer to the first byte after 802 ** the end of buffer S. This macro returns true if P points to something 803 ** contained within the buffer S. 804 */ 805 #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E))) 806 807 808 /* 809 ** Macros to determine whether the machine is big or little endian, 810 ** and whether or not that determination is run-time or compile-time. 811 ** 812 ** For best performance, an attempt is made to guess at the byte-order 813 ** using C-preprocessor macros. If that is unsuccessful, or if 814 ** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined 815 ** at run-time. 816 */ 817 #ifndef SQLITE_BYTEORDER 818 # if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 819 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 820 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 821 defined(__arm__) 822 # define SQLITE_BYTEORDER 1234 823 # elif defined(sparc) || defined(__ppc__) 824 # define SQLITE_BYTEORDER 4321 825 # else 826 # define SQLITE_BYTEORDER 0 827 # endif 828 #endif 829 #if SQLITE_BYTEORDER==4321 830 # define SQLITE_BIGENDIAN 1 831 # define SQLITE_LITTLEENDIAN 0 832 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 833 #elif SQLITE_BYTEORDER==1234 834 # define SQLITE_BIGENDIAN 0 835 # define SQLITE_LITTLEENDIAN 1 836 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 837 #else 838 # ifdef SQLITE_AMALGAMATION 839 const int sqlite3one = 1; 840 # else 841 extern const int sqlite3one; 842 # endif 843 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 844 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 845 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 846 #endif 847 848 /* 849 ** Constants for the largest and smallest possible 64-bit signed integers. 850 ** These macros are designed to work correctly on both 32-bit and 64-bit 851 ** compilers. 852 */ 853 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 854 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 855 856 /* 857 ** Round up a number to the next larger multiple of 8. This is used 858 ** to force 8-byte alignment on 64-bit architectures. 859 */ 860 #define ROUND8(x) (((x)+7)&~7) 861 862 /* 863 ** Round down to the nearest multiple of 8 864 */ 865 #define ROUNDDOWN8(x) ((x)&~7) 866 867 /* 868 ** Assert that the pointer X is aligned to an 8-byte boundary. This 869 ** macro is used only within assert() to verify that the code gets 870 ** all alignment restrictions correct. 871 ** 872 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 873 ** underlying malloc() implementation might return us 4-byte aligned 874 ** pointers. In that case, only verify 4-byte alignment. 875 */ 876 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 877 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 878 #else 879 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 880 #endif 881 882 /* 883 ** Disable MMAP on platforms where it is known to not work 884 */ 885 #if defined(__OpenBSD__) || defined(__QNXNTO__) 886 # undef SQLITE_MAX_MMAP_SIZE 887 # define SQLITE_MAX_MMAP_SIZE 0 888 #endif 889 890 /* 891 ** Default maximum size of memory used by memory-mapped I/O in the VFS 892 */ 893 #ifdef __APPLE__ 894 # include <TargetConditionals.h> 895 #endif 896 #ifndef SQLITE_MAX_MMAP_SIZE 897 # if defined(__linux__) \ 898 || defined(_WIN32) \ 899 || (defined(__APPLE__) && defined(__MACH__)) \ 900 || defined(__sun) \ 901 || defined(__FreeBSD__) \ 902 || defined(__DragonFly__) 903 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 904 # else 905 # define SQLITE_MAX_MMAP_SIZE 0 906 # endif 907 #endif 908 909 /* 910 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 911 ** default MMAP_SIZE is specified at compile-time, make sure that it does 912 ** not exceed the maximum mmap size. 913 */ 914 #ifndef SQLITE_DEFAULT_MMAP_SIZE 915 # define SQLITE_DEFAULT_MMAP_SIZE 0 916 #endif 917 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 918 # undef SQLITE_DEFAULT_MMAP_SIZE 919 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 920 #endif 921 922 /* 923 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 924 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 925 ** define SQLITE_ENABLE_STAT3_OR_STAT4 926 */ 927 #ifdef SQLITE_ENABLE_STAT4 928 # undef SQLITE_ENABLE_STAT3 929 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 930 #elif SQLITE_ENABLE_STAT3 931 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 932 #elif SQLITE_ENABLE_STAT3_OR_STAT4 933 # undef SQLITE_ENABLE_STAT3_OR_STAT4 934 #endif 935 936 /* 937 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 938 ** the Select query generator tracing logic is turned on. 939 */ 940 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 941 # define SELECTTRACE_ENABLED 1 942 #else 943 # define SELECTTRACE_ENABLED 0 944 #endif 945 946 /* 947 ** An instance of the following structure is used to store the busy-handler 948 ** callback for a given sqlite handle. 949 ** 950 ** The sqlite.busyHandler member of the sqlite struct contains the busy 951 ** callback for the database handle. Each pager opened via the sqlite 952 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 953 ** callback is currently invoked only from within pager.c. 954 */ 955 typedef struct BusyHandler BusyHandler; 956 struct BusyHandler { 957 int (*xFunc)(void *,int); /* The busy callback */ 958 void *pArg; /* First arg to busy callback */ 959 int nBusy; /* Incremented with each busy call */ 960 }; 961 962 /* 963 ** Name of the master database table. The master database table 964 ** is a special table that holds the names and attributes of all 965 ** user tables and indices. 966 */ 967 #define MASTER_NAME "sqlite_master" 968 #define TEMP_MASTER_NAME "sqlite_temp_master" 969 970 /* 971 ** The root-page of the master database table. 972 */ 973 #define MASTER_ROOT 1 974 975 /* 976 ** The name of the schema table. 977 */ 978 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 979 980 /* 981 ** A convenience macro that returns the number of elements in 982 ** an array. 983 */ 984 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 985 986 /* 987 ** Determine if the argument is a power of two 988 */ 989 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 990 991 /* 992 ** The following value as a destructor means to use sqlite3DbFree(). 993 ** The sqlite3DbFree() routine requires two parameters instead of the 994 ** one parameter that destructors normally want. So we have to introduce 995 ** this magic value that the code knows to handle differently. Any 996 ** pointer will work here as long as it is distinct from SQLITE_STATIC 997 ** and SQLITE_TRANSIENT. 998 */ 999 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 1000 1001 /* 1002 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 1003 ** not support Writable Static Data (WSD) such as global and static variables. 1004 ** All variables must either be on the stack or dynamically allocated from 1005 ** the heap. When WSD is unsupported, the variable declarations scattered 1006 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 1007 ** macro is used for this purpose. And instead of referencing the variable 1008 ** directly, we use its constant as a key to lookup the run-time allocated 1009 ** buffer that holds real variable. The constant is also the initializer 1010 ** for the run-time allocated buffer. 1011 ** 1012 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 1013 ** macros become no-ops and have zero performance impact. 1014 */ 1015 #ifdef SQLITE_OMIT_WSD 1016 #define SQLITE_WSD const 1017 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 1018 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 1019 int sqlite3_wsd_init(int N, int J); 1020 void *sqlite3_wsd_find(void *K, int L); 1021 #else 1022 #define SQLITE_WSD 1023 #define GLOBAL(t,v) v 1024 #define sqlite3GlobalConfig sqlite3Config 1025 #endif 1026 1027 /* 1028 ** The following macros are used to suppress compiler warnings and to 1029 ** make it clear to human readers when a function parameter is deliberately 1030 ** left unused within the body of a function. This usually happens when 1031 ** a function is called via a function pointer. For example the 1032 ** implementation of an SQL aggregate step callback may not use the 1033 ** parameter indicating the number of arguments passed to the aggregate, 1034 ** if it knows that this is enforced elsewhere. 1035 ** 1036 ** When a function parameter is not used at all within the body of a function, 1037 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 1038 ** However, these macros may also be used to suppress warnings related to 1039 ** parameters that may or may not be used depending on compilation options. 1040 ** For example those parameters only used in assert() statements. In these 1041 ** cases the parameters are named as per the usual conventions. 1042 */ 1043 #define UNUSED_PARAMETER(x) (void)(x) 1044 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 1045 1046 /* 1047 ** Forward references to structures 1048 */ 1049 typedef struct AggInfo AggInfo; 1050 typedef struct AuthContext AuthContext; 1051 typedef struct AutoincInfo AutoincInfo; 1052 typedef struct Bitvec Bitvec; 1053 typedef struct CollSeq CollSeq; 1054 typedef struct Column Column; 1055 typedef struct Db Db; 1056 typedef struct Schema Schema; 1057 typedef struct Expr Expr; 1058 typedef struct ExprList ExprList; 1059 typedef struct ExprSpan ExprSpan; 1060 typedef struct FKey FKey; 1061 typedef struct FuncDestructor FuncDestructor; 1062 typedef struct FuncDef FuncDef; 1063 typedef struct FuncDefHash FuncDefHash; 1064 typedef struct IdList IdList; 1065 typedef struct Index Index; 1066 typedef struct IndexSample IndexSample; 1067 typedef struct KeyClass KeyClass; 1068 typedef struct KeyInfo KeyInfo; 1069 typedef struct Lookaside Lookaside; 1070 typedef struct LookasideSlot LookasideSlot; 1071 typedef struct Module Module; 1072 typedef struct NameContext NameContext; 1073 typedef struct Parse Parse; 1074 typedef struct PreUpdate PreUpdate; 1075 typedef struct PrintfArguments PrintfArguments; 1076 typedef struct RowSet RowSet; 1077 typedef struct Savepoint Savepoint; 1078 typedef struct Select Select; 1079 typedef struct SQLiteThread SQLiteThread; 1080 typedef struct SelectDest SelectDest; 1081 typedef struct SrcList SrcList; 1082 typedef struct StrAccum StrAccum; 1083 typedef struct Table Table; 1084 typedef struct TableLock TableLock; 1085 typedef struct Token Token; 1086 typedef struct TreeView TreeView; 1087 typedef struct Trigger Trigger; 1088 typedef struct TriggerPrg TriggerPrg; 1089 typedef struct TriggerStep TriggerStep; 1090 typedef struct UnpackedRecord UnpackedRecord; 1091 typedef struct VTable VTable; 1092 typedef struct VtabCtx VtabCtx; 1093 typedef struct Walker Walker; 1094 typedef struct WhereInfo WhereInfo; 1095 typedef struct With With; 1096 1097 /* A VList object records a mapping between parameters/variables/wildcards 1098 ** in the SQL statement (such as $abc, @pqr, or :xyz) and the integer 1099 ** variable number associated with that parameter. See the format description 1100 ** on the sqlite3VListAdd() routine for more information. A VList is really 1101 ** just an array of integers. 1102 */ 1103 typedef int VList; 1104 1105 /* 1106 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 1107 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 1108 ** pointer types (i.e. FuncDef) defined above. 1109 */ 1110 #include "btree.h" 1111 #include "vdbe.h" 1112 #include "pager.h" 1113 #include "pcache.h" 1114 #include "os.h" 1115 #include "mutex.h" 1116 1117 /* The SQLITE_EXTRA_DURABLE compile-time option used to set the default 1118 ** synchronous setting to EXTRA. It is no longer supported. 1119 */ 1120 #ifdef SQLITE_EXTRA_DURABLE 1121 # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE 1122 # define SQLITE_DEFAULT_SYNCHRONOUS 3 1123 #endif 1124 1125 /* 1126 ** Default synchronous levels. 1127 ** 1128 ** Note that (for historcal reasons) the PAGER_SYNCHRONOUS_* macros differ 1129 ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1. 1130 ** 1131 ** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS 1132 ** OFF 1 0 1133 ** NORMAL 2 1 1134 ** FULL 3 2 1135 ** EXTRA 4 3 1136 ** 1137 ** The "PRAGMA synchronous" statement also uses the zero-based numbers. 1138 ** In other words, the zero-based numbers are used for all external interfaces 1139 ** and the one-based values are used internally. 1140 */ 1141 #ifndef SQLITE_DEFAULT_SYNCHRONOUS 1142 # define SQLITE_DEFAULT_SYNCHRONOUS 2 1143 #endif 1144 #ifndef SQLITE_DEFAULT_WAL_SYNCHRONOUS 1145 # define SQLITE_DEFAULT_WAL_SYNCHRONOUS SQLITE_DEFAULT_SYNCHRONOUS 1146 #endif 1147 1148 /* 1149 ** Each database file to be accessed by the system is an instance 1150 ** of the following structure. There are normally two of these structures 1151 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 1152 ** aDb[1] is the database file used to hold temporary tables. Additional 1153 ** databases may be attached. 1154 */ 1155 struct Db { 1156 char *zDbSName; /* Name of this database. (schema name, not filename) */ 1157 Btree *pBt; /* The B*Tree structure for this database file */ 1158 u8 safety_level; /* How aggressive at syncing data to disk */ 1159 u8 bSyncSet; /* True if "PRAGMA synchronous=N" has been run */ 1160 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 1161 }; 1162 1163 /* 1164 ** An instance of the following structure stores a database schema. 1165 ** 1166 ** Most Schema objects are associated with a Btree. The exception is 1167 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 1168 ** In shared cache mode, a single Schema object can be shared by multiple 1169 ** Btrees that refer to the same underlying BtShared object. 1170 ** 1171 ** Schema objects are automatically deallocated when the last Btree that 1172 ** references them is destroyed. The TEMP Schema is manually freed by 1173 ** sqlite3_close(). 1174 * 1175 ** A thread must be holding a mutex on the corresponding Btree in order 1176 ** to access Schema content. This implies that the thread must also be 1177 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 1178 ** For a TEMP Schema, only the connection mutex is required. 1179 */ 1180 struct Schema { 1181 int schema_cookie; /* Database schema version number for this file */ 1182 int iGeneration; /* Generation counter. Incremented with each change */ 1183 Hash tblHash; /* All tables indexed by name */ 1184 Hash idxHash; /* All (named) indices indexed by name */ 1185 Hash trigHash; /* All triggers indexed by name */ 1186 Hash fkeyHash; /* All foreign keys by referenced table name */ 1187 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 1188 u8 file_format; /* Schema format version for this file */ 1189 u8 enc; /* Text encoding used by this database */ 1190 u16 schemaFlags; /* Flags associated with this schema */ 1191 int cache_size; /* Number of pages to use in the cache */ 1192 }; 1193 1194 /* 1195 ** These macros can be used to test, set, or clear bits in the 1196 ** Db.pSchema->flags field. 1197 */ 1198 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 1199 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 1200 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 1201 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 1202 1203 /* 1204 ** Allowed values for the DB.pSchema->flags field. 1205 ** 1206 ** The DB_SchemaLoaded flag is set after the database schema has been 1207 ** read into internal hash tables. 1208 ** 1209 ** DB_UnresetViews means that one or more views have column names that 1210 ** have been filled out. If the schema changes, these column names might 1211 ** changes and so the view will need to be reset. 1212 */ 1213 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1214 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1215 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1216 1217 /* 1218 ** The number of different kinds of things that can be limited 1219 ** using the sqlite3_limit() interface. 1220 */ 1221 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1222 1223 /* 1224 ** Lookaside malloc is a set of fixed-size buffers that can be used 1225 ** to satisfy small transient memory allocation requests for objects 1226 ** associated with a particular database connection. The use of 1227 ** lookaside malloc provides a significant performance enhancement 1228 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1229 ** SQL statements. 1230 ** 1231 ** The Lookaside structure holds configuration information about the 1232 ** lookaside malloc subsystem. Each available memory allocation in 1233 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1234 ** objects. 1235 ** 1236 ** Lookaside allocations are only allowed for objects that are associated 1237 ** with a particular database connection. Hence, schema information cannot 1238 ** be stored in lookaside because in shared cache mode the schema information 1239 ** is shared by multiple database connections. Therefore, while parsing 1240 ** schema information, the Lookaside.bEnabled flag is cleared so that 1241 ** lookaside allocations are not used to construct the schema objects. 1242 */ 1243 struct Lookaside { 1244 u32 bDisable; /* Only operate the lookaside when zero */ 1245 u16 sz; /* Size of each buffer in bytes */ 1246 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1247 int nOut; /* Number of buffers currently checked out */ 1248 int mxOut; /* Highwater mark for nOut */ 1249 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1250 LookasideSlot *pFree; /* List of available buffers */ 1251 void *pStart; /* First byte of available memory space */ 1252 void *pEnd; /* First byte past end of available space */ 1253 }; 1254 struct LookasideSlot { 1255 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1256 }; 1257 1258 /* 1259 ** A hash table for built-in function definitions. (Application-defined 1260 ** functions use a regular table table from hash.h.) 1261 ** 1262 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1263 ** Collisions are on the FuncDef.u.pHash chain. 1264 */ 1265 #define SQLITE_FUNC_HASH_SZ 23 1266 struct FuncDefHash { 1267 FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ 1268 }; 1269 1270 #ifdef SQLITE_USER_AUTHENTICATION 1271 /* 1272 ** Information held in the "sqlite3" database connection object and used 1273 ** to manage user authentication. 1274 */ 1275 typedef struct sqlite3_userauth sqlite3_userauth; 1276 struct sqlite3_userauth { 1277 u8 authLevel; /* Current authentication level */ 1278 int nAuthPW; /* Size of the zAuthPW in bytes */ 1279 char *zAuthPW; /* Password used to authenticate */ 1280 char *zAuthUser; /* User name used to authenticate */ 1281 }; 1282 1283 /* Allowed values for sqlite3_userauth.authLevel */ 1284 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1285 #define UAUTH_Fail 1 /* User authentication failed */ 1286 #define UAUTH_User 2 /* Authenticated as a normal user */ 1287 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1288 1289 /* Functions used only by user authorization logic */ 1290 int sqlite3UserAuthTable(const char*); 1291 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1292 void sqlite3UserAuthInit(sqlite3*); 1293 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1294 1295 #endif /* SQLITE_USER_AUTHENTICATION */ 1296 1297 /* 1298 ** typedef for the authorization callback function. 1299 */ 1300 #ifdef SQLITE_USER_AUTHENTICATION 1301 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1302 const char*, const char*); 1303 #else 1304 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1305 const char*); 1306 #endif 1307 1308 #ifndef SQLITE_OMIT_DEPRECATED 1309 /* This is an extra SQLITE_TRACE macro that indicates "legacy" tracing 1310 ** in the style of sqlite3_trace() 1311 */ 1312 #define SQLITE_TRACE_LEGACY 0x80 1313 #else 1314 #define SQLITE_TRACE_LEGACY 0 1315 #endif /* SQLITE_OMIT_DEPRECATED */ 1316 1317 1318 /* 1319 ** Each database connection is an instance of the following structure. 1320 */ 1321 struct sqlite3 { 1322 sqlite3_vfs *pVfs; /* OS Interface */ 1323 struct Vdbe *pVdbe; /* List of active virtual machines */ 1324 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1325 sqlite3_mutex *mutex; /* Connection mutex */ 1326 Db *aDb; /* All backends */ 1327 int nDb; /* Number of backends currently in use */ 1328 u32 mDbFlags; /* flags recording internal state */ 1329 u32 flags; /* flags settable by pragmas. See below */ 1330 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1331 i64 szMmap; /* Default mmap_size setting */ 1332 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1333 int errCode; /* Most recent error code (SQLITE_*) */ 1334 int errMask; /* & result codes with this before returning */ 1335 int iSysErrno; /* Errno value from last system error */ 1336 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1337 u8 enc; /* Text encoding */ 1338 u8 autoCommit; /* The auto-commit flag. */ 1339 u8 temp_store; /* 1: file 2: memory 0: default */ 1340 u8 mallocFailed; /* True if we have seen a malloc failure */ 1341 u8 bBenignMalloc; /* Do not require OOMs if true */ 1342 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1343 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1344 u8 suppressErr; /* Do not issue error messages if true */ 1345 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1346 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1347 u8 mTrace; /* zero or more SQLITE_TRACE flags */ 1348 u8 skipBtreeMutex; /* True if no shared-cache backends */ 1349 u8 nSqlExec; /* Number of pending OP_SqlExec opcodes */ 1350 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1351 u32 magic; /* Magic number for detect library misuse */ 1352 int nChange; /* Value returned by sqlite3_changes() */ 1353 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1354 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1355 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1356 struct sqlite3InitInfo { /* Information used during initialization */ 1357 int newTnum; /* Rootpage of table being initialized */ 1358 u8 iDb; /* Which db file is being initialized */ 1359 u8 busy; /* TRUE if currently initializing */ 1360 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1361 u8 imposterTable; /* Building an imposter table */ 1362 } init; 1363 int nVdbeActive; /* Number of VDBEs currently running */ 1364 int nVdbeRead; /* Number of active VDBEs that read or write */ 1365 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1366 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1367 int nVDestroy; /* Number of active OP_VDestroy operations */ 1368 int nExtension; /* Number of loaded extensions */ 1369 void **aExtension; /* Array of shared library handles */ 1370 int (*xTrace)(u32,void*,void*,void*); /* Trace function */ 1371 void *pTraceArg; /* Argument to the trace function */ 1372 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1373 void *pProfileArg; /* Argument to profile function */ 1374 void *pCommitArg; /* Argument to xCommitCallback() */ 1375 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1376 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1377 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1378 void *pUpdateArg; 1379 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1380 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1381 void *pPreUpdateArg; /* First argument to xPreUpdateCallback */ 1382 void (*xPreUpdateCallback)( /* Registered using sqlite3_preupdate_hook() */ 1383 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64 1384 ); 1385 PreUpdate *pPreUpdate; /* Context for active pre-update callback */ 1386 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1387 #ifndef SQLITE_OMIT_WAL 1388 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1389 void *pWalArg; 1390 #endif 1391 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1392 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1393 void *pCollNeededArg; 1394 sqlite3_value *pErr; /* Most recent error message */ 1395 union { 1396 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1397 double notUsed1; /* Spacer */ 1398 } u1; 1399 Lookaside lookaside; /* Lookaside malloc configuration */ 1400 #ifndef SQLITE_OMIT_AUTHORIZATION 1401 sqlite3_xauth xAuth; /* Access authorization function */ 1402 void *pAuthArg; /* 1st argument to the access auth function */ 1403 #endif 1404 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1405 int (*xProgress)(void *); /* The progress callback */ 1406 void *pProgressArg; /* Argument to the progress callback */ 1407 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1408 #endif 1409 #ifndef SQLITE_OMIT_VIRTUALTABLE 1410 int nVTrans; /* Allocated size of aVTrans */ 1411 Hash aModule; /* populated by sqlite3_create_module() */ 1412 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1413 VTable **aVTrans; /* Virtual tables with open transactions */ 1414 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1415 #endif 1416 Hash aFunc; /* Hash table of connection functions */ 1417 Hash aCollSeq; /* All collating sequences */ 1418 BusyHandler busyHandler; /* Busy callback */ 1419 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1420 Savepoint *pSavepoint; /* List of active savepoints */ 1421 int busyTimeout; /* Busy handler timeout, in msec */ 1422 int nSavepoint; /* Number of non-transaction savepoints */ 1423 int nStatement; /* Number of nested statement-transactions */ 1424 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1425 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1426 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1427 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1428 /* The following variables are all protected by the STATIC_MASTER 1429 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1430 ** 1431 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1432 ** unlock so that it can proceed. 1433 ** 1434 ** When X.pBlockingConnection==Y, that means that something that X tried 1435 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1436 ** held by Y. 1437 */ 1438 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1439 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1440 void *pUnlockArg; /* Argument to xUnlockNotify */ 1441 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1442 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1443 #endif 1444 #ifdef SQLITE_USER_AUTHENTICATION 1445 sqlite3_userauth auth; /* User authentication information */ 1446 #endif 1447 }; 1448 1449 /* 1450 ** A macro to discover the encoding of a database. 1451 */ 1452 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1453 #define ENC(db) ((db)->enc) 1454 1455 /* 1456 ** Possible values for the sqlite3.flags. 1457 ** 1458 ** Value constraints (enforced via assert()): 1459 ** SQLITE_FullFSync == PAGER_FULLFSYNC 1460 ** SQLITE_CkptFullFSync == PAGER_CKPT_FULLFSYNC 1461 ** SQLITE_CacheSpill == PAGER_CACHE_SPILL 1462 */ 1463 #define SQLITE_WriteSchema 0x00000001 /* OK to update SQLITE_MASTER */ 1464 #define SQLITE_LegacyFileFmt 0x00000002 /* Create new databases in format 1 */ 1465 #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ 1466 #define SQLITE_FullFSync 0x00000008 /* Use full fsync on the backend */ 1467 #define SQLITE_CkptFullFSync 0x00000010 /* Use full fsync for checkpoint */ 1468 #define SQLITE_CacheSpill 0x00000020 /* OK to spill pager cache */ 1469 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1470 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1471 /* DELETE, or UPDATE and return */ 1472 /* the count using a callback. */ 1473 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1474 /* result set is empty */ 1475 #define SQLITE_IgnoreChecks 0x00000200 /* Do not enforce check constraints */ 1476 #define SQLITE_ReadUncommit 0x00000400 /* READ UNCOMMITTED in shared-cache */ 1477 #define SQLITE_NoCkptOnClose 0x00000800 /* No checkpoint on close()/DETACH */ 1478 #define SQLITE_ReverseOrder 0x00001000 /* Reverse unordered SELECTs */ 1479 #define SQLITE_RecTriggers 0x00002000 /* Enable recursive triggers */ 1480 #define SQLITE_ForeignKeys 0x00004000 /* Enforce foreign key constraints */ 1481 #define SQLITE_AutoIndex 0x00008000 /* Enable automatic indexes */ 1482 #define SQLITE_LoadExtension 0x00010000 /* Enable load_extension */ 1483 #define SQLITE_LoadExtFunc 0x00020000 /* Enable load_extension() SQL func */ 1484 #define SQLITE_EnableTrigger 0x00040000 /* True to enable triggers */ 1485 #define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */ 1486 #define SQLITE_QueryOnly 0x00100000 /* Disable database changes */ 1487 #define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */ 1488 #define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */ 1489 #define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee */ 1490 /* Flags used only if debugging */ 1491 #ifdef SQLITE_DEBUG 1492 #define SQLITE_SqlTrace 0x08000000 /* Debug print SQL as it executes */ 1493 #define SQLITE_VdbeListing 0x10000000 /* Debug listings of VDBE programs */ 1494 #define SQLITE_VdbeTrace 0x20000000 /* True to trace VDBE execution */ 1495 #define SQLITE_VdbeAddopTrace 0x40000000 /* Trace sqlite3VdbeAddOp() calls */ 1496 #define SQLITE_VdbeEQP 0x80000000 /* Debug EXPLAIN QUERY PLAN */ 1497 #endif 1498 1499 /* 1500 ** Allowed values for sqlite3.mDbFlags 1501 */ 1502 #define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */ 1503 #define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */ 1504 #define DBFLAG_Vacuum 0x0004 /* Currently in a VACUUM */ 1505 1506 /* 1507 ** Bits of the sqlite3.dbOptFlags field that are used by the 1508 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1509 ** selectively disable various optimizations. 1510 */ 1511 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1512 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1513 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1514 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1515 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1516 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1517 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1518 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1519 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1520 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1521 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1522 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1523 #define SQLITE_CountOfView 0x1000 /* The count-of-view optimization */ 1524 #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ 1525 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1526 1527 /* 1528 ** Macros for testing whether or not optimizations are enabled or disabled. 1529 */ 1530 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1531 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1532 1533 /* 1534 ** Return true if it OK to factor constant expressions into the initialization 1535 ** code. The argument is a Parse object for the code generator. 1536 */ 1537 #define ConstFactorOk(P) ((P)->okConstFactor) 1538 1539 /* 1540 ** Possible values for the sqlite.magic field. 1541 ** The numbers are obtained at random and have no special meaning, other 1542 ** than being distinct from one another. 1543 */ 1544 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1545 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1546 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1547 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1548 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1549 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1550 1551 /* 1552 ** Each SQL function is defined by an instance of the following 1553 ** structure. For global built-in functions (ex: substr(), max(), count()) 1554 ** a pointer to this structure is held in the sqlite3BuiltinFunctions object. 1555 ** For per-connection application-defined functions, a pointer to this 1556 ** structure is held in the db->aHash hash table. 1557 ** 1558 ** The u.pHash field is used by the global built-ins. The u.pDestructor 1559 ** field is used by per-connection app-def functions. 1560 */ 1561 struct FuncDef { 1562 i8 nArg; /* Number of arguments. -1 means unlimited */ 1563 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1564 void *pUserData; /* User data parameter */ 1565 FuncDef *pNext; /* Next function with same name */ 1566 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**); /* func or agg-step */ 1567 void (*xFinalize)(sqlite3_context*); /* Agg finalizer */ 1568 const char *zName; /* SQL name of the function. */ 1569 union { 1570 FuncDef *pHash; /* Next with a different name but the same hash */ 1571 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1572 } u; 1573 }; 1574 1575 /* 1576 ** This structure encapsulates a user-function destructor callback (as 1577 ** configured using create_function_v2()) and a reference counter. When 1578 ** create_function_v2() is called to create a function with a destructor, 1579 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1580 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1581 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1582 ** member of each of the new FuncDef objects is set to point to the allocated 1583 ** FuncDestructor. 1584 ** 1585 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1586 ** count on this object is decremented. When it reaches 0, the destructor 1587 ** is invoked and the FuncDestructor structure freed. 1588 */ 1589 struct FuncDestructor { 1590 int nRef; 1591 void (*xDestroy)(void *); 1592 void *pUserData; 1593 }; 1594 1595 /* 1596 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1597 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. And 1598 ** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC. There 1599 ** are assert() statements in the code to verify this. 1600 ** 1601 ** Value constraints (enforced via assert()): 1602 ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg 1603 ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG 1604 ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG 1605 ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API 1606 ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API 1607 */ 1608 #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1609 #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ 1610 #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ 1611 #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ 1612 #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ 1613 #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ 1614 #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ 1615 #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ 1616 #define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */ 1617 #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ 1618 #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ 1619 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1620 #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a 1621 ** single query - might change over time */ 1622 #define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */ 1623 1624 /* 1625 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1626 ** used to create the initializers for the FuncDef structures. 1627 ** 1628 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1629 ** Used to create a scalar function definition of a function zName 1630 ** implemented by C function xFunc that accepts nArg arguments. The 1631 ** value passed as iArg is cast to a (void*) and made available 1632 ** as the user-data (sqlite3_user_data()) for the function. If 1633 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1634 ** 1635 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1636 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1637 ** 1638 ** DFUNCTION(zName, nArg, iArg, bNC, xFunc) 1639 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag and 1640 ** adds the SQLITE_FUNC_SLOCHNG flag. Used for date & time functions 1641 ** and functions like sqlite_version() that can change, but not during 1642 ** a single query. The iArg is ignored. The user-data is always set 1643 ** to a NULL pointer. The bNC parameter is not used. 1644 ** 1645 ** PURE_DATE(zName, nArg, iArg, bNC, xFunc) 1646 ** Used for "pure" date/time functions, this macro is like DFUNCTION 1647 ** except that it does set the SQLITE_FUNC_CONSTANT flags. iArg is 1648 ** ignored and the user-data for these functions is set to an 1649 ** arbitrary non-NULL pointer. The bNC parameter is not used. 1650 ** 1651 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1652 ** Used to create an aggregate function definition implemented by 1653 ** the C functions xStep and xFinal. The first four parameters 1654 ** are interpreted in the same way as the first 4 parameters to 1655 ** FUNCTION(). 1656 ** 1657 ** LIKEFUNC(zName, nArg, pArg, flags) 1658 ** Used to create a scalar function definition of a function zName 1659 ** that accepts nArg arguments and is implemented by a call to C 1660 ** function likeFunc. Argument pArg is cast to a (void *) and made 1661 ** available as the function user-data (sqlite3_user_data()). The 1662 ** FuncDef.flags variable is set to the value passed as the flags 1663 ** parameter. 1664 */ 1665 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1666 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1667 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1668 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1669 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1670 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1671 #define DFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1672 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8, \ 1673 0, 0, xFunc, 0, #zName, {0} } 1674 #define PURE_DATE(zName, nArg, iArg, bNC, xFunc) \ 1675 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \ 1676 (void*)&sqlite3Config, 0, xFunc, 0, #zName, {0} } 1677 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1678 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1679 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, #zName, {0} } 1680 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1681 {nArg, SQLITE_FUNC_SLOCHNG|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1682 pArg, 0, xFunc, 0, #zName, } 1683 #define LIKEFUNC(zName, nArg, arg, flags) \ 1684 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1685 (void *)arg, 0, likeFunc, 0, #zName, {0} } 1686 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1687 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1688 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1689 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1690 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1691 SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,#zName, {0}} 1692 1693 /* 1694 ** All current savepoints are stored in a linked list starting at 1695 ** sqlite3.pSavepoint. The first element in the list is the most recently 1696 ** opened savepoint. Savepoints are added to the list by the vdbe 1697 ** OP_Savepoint instruction. 1698 */ 1699 struct Savepoint { 1700 char *zName; /* Savepoint name (nul-terminated) */ 1701 i64 nDeferredCons; /* Number of deferred fk violations */ 1702 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1703 Savepoint *pNext; /* Parent savepoint (if any) */ 1704 }; 1705 1706 /* 1707 ** The following are used as the second parameter to sqlite3Savepoint(), 1708 ** and as the P1 argument to the OP_Savepoint instruction. 1709 */ 1710 #define SAVEPOINT_BEGIN 0 1711 #define SAVEPOINT_RELEASE 1 1712 #define SAVEPOINT_ROLLBACK 2 1713 1714 1715 /* 1716 ** Each SQLite module (virtual table definition) is defined by an 1717 ** instance of the following structure, stored in the sqlite3.aModule 1718 ** hash table. 1719 */ 1720 struct Module { 1721 const sqlite3_module *pModule; /* Callback pointers */ 1722 const char *zName; /* Name passed to create_module() */ 1723 void *pAux; /* pAux passed to create_module() */ 1724 void (*xDestroy)(void *); /* Module destructor function */ 1725 Table *pEpoTab; /* Eponymous table for this module */ 1726 }; 1727 1728 /* 1729 ** information about each column of an SQL table is held in an instance 1730 ** of this structure. 1731 */ 1732 struct Column { 1733 char *zName; /* Name of this column, \000, then the type */ 1734 Expr *pDflt; /* Default value of this column */ 1735 char *zColl; /* Collating sequence. If NULL, use the default */ 1736 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1737 char affinity; /* One of the SQLITE_AFF_... values */ 1738 u8 szEst; /* Estimated size of value in this column. sizeof(INT)==1 */ 1739 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1740 }; 1741 1742 /* Allowed values for Column.colFlags: 1743 */ 1744 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1745 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1746 #define COLFLAG_HASTYPE 0x0004 /* Type name follows column name */ 1747 1748 /* 1749 ** A "Collating Sequence" is defined by an instance of the following 1750 ** structure. Conceptually, a collating sequence consists of a name and 1751 ** a comparison routine that defines the order of that sequence. 1752 ** 1753 ** If CollSeq.xCmp is NULL, it means that the 1754 ** collating sequence is undefined. Indices built on an undefined 1755 ** collating sequence may not be read or written. 1756 */ 1757 struct CollSeq { 1758 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1759 u8 enc; /* Text encoding handled by xCmp() */ 1760 void *pUser; /* First argument to xCmp() */ 1761 int (*xCmp)(void*,int, const void*, int, const void*); 1762 void (*xDel)(void*); /* Destructor for pUser */ 1763 }; 1764 1765 /* 1766 ** A sort order can be either ASC or DESC. 1767 */ 1768 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1769 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1770 #define SQLITE_SO_UNDEFINED -1 /* No sort order specified */ 1771 1772 /* 1773 ** Column affinity types. 1774 ** 1775 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1776 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1777 ** the speed a little by numbering the values consecutively. 1778 ** 1779 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1780 ** when multiple affinity types are concatenated into a string and 1781 ** used as the P4 operand, they will be more readable. 1782 ** 1783 ** Note also that the numeric types are grouped together so that testing 1784 ** for a numeric type is a single comparison. And the BLOB type is first. 1785 */ 1786 #define SQLITE_AFF_BLOB 'A' 1787 #define SQLITE_AFF_TEXT 'B' 1788 #define SQLITE_AFF_NUMERIC 'C' 1789 #define SQLITE_AFF_INTEGER 'D' 1790 #define SQLITE_AFF_REAL 'E' 1791 1792 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1793 1794 /* 1795 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1796 ** affinity value. 1797 */ 1798 #define SQLITE_AFF_MASK 0x47 1799 1800 /* 1801 ** Additional bit values that can be ORed with an affinity without 1802 ** changing the affinity. 1803 ** 1804 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1805 ** It causes an assert() to fire if either operand to a comparison 1806 ** operator is NULL. It is added to certain comparison operators to 1807 ** prove that the operands are always NOT NULL. 1808 */ 1809 #define SQLITE_KEEPNULL 0x08 /* Used by vector == or <> */ 1810 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1811 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1812 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1813 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1814 1815 /* 1816 ** An object of this type is created for each virtual table present in 1817 ** the database schema. 1818 ** 1819 ** If the database schema is shared, then there is one instance of this 1820 ** structure for each database connection (sqlite3*) that uses the shared 1821 ** schema. This is because each database connection requires its own unique 1822 ** instance of the sqlite3_vtab* handle used to access the virtual table 1823 ** implementation. sqlite3_vtab* handles can not be shared between 1824 ** database connections, even when the rest of the in-memory database 1825 ** schema is shared, as the implementation often stores the database 1826 ** connection handle passed to it via the xConnect() or xCreate() method 1827 ** during initialization internally. This database connection handle may 1828 ** then be used by the virtual table implementation to access real tables 1829 ** within the database. So that they appear as part of the callers 1830 ** transaction, these accesses need to be made via the same database 1831 ** connection as that used to execute SQL operations on the virtual table. 1832 ** 1833 ** All VTable objects that correspond to a single table in a shared 1834 ** database schema are initially stored in a linked-list pointed to by 1835 ** the Table.pVTable member variable of the corresponding Table object. 1836 ** When an sqlite3_prepare() operation is required to access the virtual 1837 ** table, it searches the list for the VTable that corresponds to the 1838 ** database connection doing the preparing so as to use the correct 1839 ** sqlite3_vtab* handle in the compiled query. 1840 ** 1841 ** When an in-memory Table object is deleted (for example when the 1842 ** schema is being reloaded for some reason), the VTable objects are not 1843 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1844 ** immediately. Instead, they are moved from the Table.pVTable list to 1845 ** another linked list headed by the sqlite3.pDisconnect member of the 1846 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1847 ** next time a statement is prepared using said sqlite3*. This is done 1848 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1849 ** Refer to comments above function sqlite3VtabUnlockList() for an 1850 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1851 ** list without holding the corresponding sqlite3.mutex mutex. 1852 ** 1853 ** The memory for objects of this type is always allocated by 1854 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1855 ** the first argument. 1856 */ 1857 struct VTable { 1858 sqlite3 *db; /* Database connection associated with this table */ 1859 Module *pMod; /* Pointer to module implementation */ 1860 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1861 int nRef; /* Number of pointers to this structure */ 1862 u8 bConstraint; /* True if constraints are supported */ 1863 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1864 VTable *pNext; /* Next in linked list (see above) */ 1865 }; 1866 1867 /* 1868 ** The schema for each SQL table and view is represented in memory 1869 ** by an instance of the following structure. 1870 */ 1871 struct Table { 1872 char *zName; /* Name of the table or view */ 1873 Column *aCol; /* Information about each column */ 1874 Index *pIndex; /* List of SQL indexes on this table. */ 1875 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1876 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1877 char *zColAff; /* String defining the affinity of each column */ 1878 ExprList *pCheck; /* All CHECK constraints */ 1879 /* ... also used as column name list in a VIEW */ 1880 int tnum; /* Root BTree page for this table */ 1881 u32 nTabRef; /* Number of pointers to this Table */ 1882 u32 tabFlags; /* Mask of TF_* values */ 1883 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1884 i16 nCol; /* Number of columns in this table */ 1885 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1886 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1887 #ifdef SQLITE_ENABLE_COSTMULT 1888 LogEst costMult; /* Cost multiplier for using this table */ 1889 #endif 1890 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1891 #ifndef SQLITE_OMIT_ALTERTABLE 1892 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1893 #endif 1894 #ifndef SQLITE_OMIT_VIRTUALTABLE 1895 int nModuleArg; /* Number of arguments to the module */ 1896 char **azModuleArg; /* 0: module 1: schema 2: vtab name 3...: args */ 1897 VTable *pVTable; /* List of VTable objects. */ 1898 #endif 1899 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1900 Schema *pSchema; /* Schema that contains this table */ 1901 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1902 }; 1903 1904 /* 1905 ** Allowed values for Table.tabFlags. 1906 ** 1907 ** TF_OOOHidden applies to tables or view that have hidden columns that are 1908 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1909 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1910 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1911 ** special handling during INSERT processing. 1912 */ 1913 #define TF_Readonly 0x0001 /* Read-only system table */ 1914 #define TF_Ephemeral 0x0002 /* An ephemeral table */ 1915 #define TF_HasPrimaryKey 0x0004 /* Table has a primary key */ 1916 #define TF_Autoincrement 0x0008 /* Integer primary key is autoincrement */ 1917 #define TF_HasStat1 0x0010 /* nRowLogEst set from sqlite_stat1 */ 1918 #define TF_WithoutRowid 0x0020 /* No rowid. PRIMARY KEY is the key */ 1919 #define TF_NoVisibleRowid 0x0040 /* No user-visible "rowid" column */ 1920 #define TF_OOOHidden 0x0080 /* Out-of-Order hidden columns */ 1921 #define TF_StatsUsed 0x0100 /* Query planner decisions affected by 1922 ** Index.aiRowLogEst[] values */ 1923 #define TF_HasNotNull 0x0200 /* Contains NOT NULL constraints */ 1924 1925 /* 1926 ** Test to see whether or not a table is a virtual table. This is 1927 ** done as a macro so that it will be optimized out when virtual 1928 ** table support is omitted from the build. 1929 */ 1930 #ifndef SQLITE_OMIT_VIRTUALTABLE 1931 # define IsVirtual(X) ((X)->nModuleArg) 1932 #else 1933 # define IsVirtual(X) 0 1934 #endif 1935 1936 /* 1937 ** Macros to determine if a column is hidden. IsOrdinaryHiddenColumn() 1938 ** only works for non-virtual tables (ordinary tables and views) and is 1939 ** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined. The 1940 ** IsHiddenColumn() macro is general purpose. 1941 */ 1942 #if defined(SQLITE_ENABLE_HIDDEN_COLUMNS) 1943 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1944 # define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1945 #elif !defined(SQLITE_OMIT_VIRTUALTABLE) 1946 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1947 # define IsOrdinaryHiddenColumn(X) 0 1948 #else 1949 # define IsHiddenColumn(X) 0 1950 # define IsOrdinaryHiddenColumn(X) 0 1951 #endif 1952 1953 1954 /* Does the table have a rowid */ 1955 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1956 #define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0) 1957 1958 /* 1959 ** Each foreign key constraint is an instance of the following structure. 1960 ** 1961 ** A foreign key is associated with two tables. The "from" table is 1962 ** the table that contains the REFERENCES clause that creates the foreign 1963 ** key. The "to" table is the table that is named in the REFERENCES clause. 1964 ** Consider this example: 1965 ** 1966 ** CREATE TABLE ex1( 1967 ** a INTEGER PRIMARY KEY, 1968 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1969 ** ); 1970 ** 1971 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1972 ** Equivalent names: 1973 ** 1974 ** from-table == child-table 1975 ** to-table == parent-table 1976 ** 1977 ** Each REFERENCES clause generates an instance of the following structure 1978 ** which is attached to the from-table. The to-table need not exist when 1979 ** the from-table is created. The existence of the to-table is not checked. 1980 ** 1981 ** The list of all parents for child Table X is held at X.pFKey. 1982 ** 1983 ** A list of all children for a table named Z (which might not even exist) 1984 ** is held in Schema.fkeyHash with a hash key of Z. 1985 */ 1986 struct FKey { 1987 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1988 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1989 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1990 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1991 FKey *pPrevTo; /* Previous with the same zTo */ 1992 int nCol; /* Number of columns in this key */ 1993 /* EV: R-30323-21917 */ 1994 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1995 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1996 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1997 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1998 int iFrom; /* Index of column in pFrom */ 1999 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 2000 } aCol[1]; /* One entry for each of nCol columns */ 2001 }; 2002 2003 /* 2004 ** SQLite supports many different ways to resolve a constraint 2005 ** error. ROLLBACK processing means that a constraint violation 2006 ** causes the operation in process to fail and for the current transaction 2007 ** to be rolled back. ABORT processing means the operation in process 2008 ** fails and any prior changes from that one operation are backed out, 2009 ** but the transaction is not rolled back. FAIL processing means that 2010 ** the operation in progress stops and returns an error code. But prior 2011 ** changes due to the same operation are not backed out and no rollback 2012 ** occurs. IGNORE means that the particular row that caused the constraint 2013 ** error is not inserted or updated. Processing continues and no error 2014 ** is returned. REPLACE means that preexisting database rows that caused 2015 ** a UNIQUE constraint violation are removed so that the new insert or 2016 ** update can proceed. Processing continues and no error is reported. 2017 ** 2018 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 2019 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 2020 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 2021 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 2022 ** referenced table row is propagated into the row that holds the 2023 ** foreign key. 2024 ** 2025 ** The following symbolic values are used to record which type 2026 ** of action to take. 2027 */ 2028 #define OE_None 0 /* There is no constraint to check */ 2029 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 2030 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 2031 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 2032 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 2033 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 2034 2035 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 2036 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 2037 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 2038 #define OE_Cascade 9 /* Cascade the changes */ 2039 2040 #define OE_Default 10 /* Do whatever the default action is */ 2041 2042 2043 /* 2044 ** An instance of the following structure is passed as the first 2045 ** argument to sqlite3VdbeKeyCompare and is used to control the 2046 ** comparison of the two index keys. 2047 ** 2048 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 2049 ** are nField slots for the columns of an index then one extra slot 2050 ** for the rowid at the end. 2051 */ 2052 struct KeyInfo { 2053 u32 nRef; /* Number of references to this KeyInfo object */ 2054 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 2055 u16 nKeyField; /* Number of key columns in the index */ 2056 u16 nAllField; /* Total columns, including key plus others */ 2057 sqlite3 *db; /* The database connection */ 2058 u8 *aSortOrder; /* Sort order for each column. */ 2059 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 2060 }; 2061 2062 /* 2063 ** This object holds a record which has been parsed out into individual 2064 ** fields, for the purposes of doing a comparison. 2065 ** 2066 ** A record is an object that contains one or more fields of data. 2067 ** Records are used to store the content of a table row and to store 2068 ** the key of an index. A blob encoding of a record is created by 2069 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 2070 ** OP_Column opcode. 2071 ** 2072 ** An instance of this object serves as a "key" for doing a search on 2073 ** an index b+tree. The goal of the search is to find the entry that 2074 ** is closed to the key described by this object. This object might hold 2075 ** just a prefix of the key. The number of fields is given by 2076 ** pKeyInfo->nField. 2077 ** 2078 ** The r1 and r2 fields are the values to return if this key is less than 2079 ** or greater than a key in the btree, respectively. These are normally 2080 ** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree 2081 ** is in DESC order. 2082 ** 2083 ** The key comparison functions actually return default_rc when they find 2084 ** an equals comparison. default_rc can be -1, 0, or +1. If there are 2085 ** multiple entries in the b-tree with the same key (when only looking 2086 ** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 2087 ** cause the search to find the last match, or +1 to cause the search to 2088 ** find the first match. 2089 ** 2090 ** The key comparison functions will set eqSeen to true if they ever 2091 ** get and equal results when comparing this structure to a b-tree record. 2092 ** When default_rc!=0, the search might end up on the record immediately 2093 ** before the first match or immediately after the last match. The 2094 ** eqSeen field will indicate whether or not an exact match exists in the 2095 ** b-tree. 2096 */ 2097 struct UnpackedRecord { 2098 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 2099 Mem *aMem; /* Values */ 2100 u16 nField; /* Number of entries in apMem[] */ 2101 i8 default_rc; /* Comparison result if keys are equal */ 2102 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 2103 i8 r1; /* Value to return if (lhs < rhs) */ 2104 i8 r2; /* Value to return if (lhs > rhs) */ 2105 u8 eqSeen; /* True if an equality comparison has been seen */ 2106 }; 2107 2108 2109 /* 2110 ** Each SQL index is represented in memory by an 2111 ** instance of the following structure. 2112 ** 2113 ** The columns of the table that are to be indexed are described 2114 ** by the aiColumn[] field of this structure. For example, suppose 2115 ** we have the following table and index: 2116 ** 2117 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 2118 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 2119 ** 2120 ** In the Table structure describing Ex1, nCol==3 because there are 2121 ** three columns in the table. In the Index structure describing 2122 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 2123 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 2124 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 2125 ** The second column to be indexed (c1) has an index of 0 in 2126 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 2127 ** 2128 ** The Index.onError field determines whether or not the indexed columns 2129 ** must be unique and what to do if they are not. When Index.onError=OE_None, 2130 ** it means this is not a unique index. Otherwise it is a unique index 2131 ** and the value of Index.onError indicate the which conflict resolution 2132 ** algorithm to employ whenever an attempt is made to insert a non-unique 2133 ** element. 2134 ** 2135 ** While parsing a CREATE TABLE or CREATE INDEX statement in order to 2136 ** generate VDBE code (as opposed to parsing one read from an sqlite_master 2137 ** table as part of parsing an existing database schema), transient instances 2138 ** of this structure may be created. In this case the Index.tnum variable is 2139 ** used to store the address of a VDBE instruction, not a database page 2140 ** number (it cannot - the database page is not allocated until the VDBE 2141 ** program is executed). See convertToWithoutRowidTable() for details. 2142 */ 2143 struct Index { 2144 char *zName; /* Name of this index */ 2145 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 2146 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 2147 Table *pTable; /* The SQL table being indexed */ 2148 char *zColAff; /* String defining the affinity of each column */ 2149 Index *pNext; /* The next index associated with the same table */ 2150 Schema *pSchema; /* Schema containing this index */ 2151 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 2152 const char **azColl; /* Array of collation sequence names for index */ 2153 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 2154 ExprList *aColExpr; /* Column expressions */ 2155 int tnum; /* DB Page containing root of this index */ 2156 LogEst szIdxRow; /* Estimated average row size in bytes */ 2157 u16 nKeyCol; /* Number of columns forming the key */ 2158 u16 nColumn; /* Number of columns stored in the index */ 2159 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2160 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 2161 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 2162 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 2163 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 2164 unsigned isCovering:1; /* True if this is a covering index */ 2165 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 2166 unsigned hasStat1:1; /* aiRowLogEst values come from sqlite_stat1 */ 2167 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2168 int nSample; /* Number of elements in aSample[] */ 2169 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 2170 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 2171 IndexSample *aSample; /* Samples of the left-most key */ 2172 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 2173 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 2174 #endif 2175 }; 2176 2177 /* 2178 ** Allowed values for Index.idxType 2179 */ 2180 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 2181 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 2182 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 2183 2184 /* Return true if index X is a PRIMARY KEY index */ 2185 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2186 2187 /* Return true if index X is a UNIQUE index */ 2188 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 2189 2190 /* The Index.aiColumn[] values are normally positive integer. But 2191 ** there are some negative values that have special meaning: 2192 */ 2193 #define XN_ROWID (-1) /* Indexed column is the rowid */ 2194 #define XN_EXPR (-2) /* Indexed column is an expression */ 2195 2196 /* 2197 ** Each sample stored in the sqlite_stat3 table is represented in memory 2198 ** using a structure of this type. See documentation at the top of the 2199 ** analyze.c source file for additional information. 2200 */ 2201 struct IndexSample { 2202 void *p; /* Pointer to sampled record */ 2203 int n; /* Size of record in bytes */ 2204 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 2205 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 2206 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 2207 }; 2208 2209 /* 2210 ** Each token coming out of the lexer is an instance of 2211 ** this structure. Tokens are also used as part of an expression. 2212 ** 2213 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 2214 ** may contain random values. Do not make any assumptions about Token.dyn 2215 ** and Token.n when Token.z==0. 2216 */ 2217 struct Token { 2218 const char *z; /* Text of the token. Not NULL-terminated! */ 2219 unsigned int n; /* Number of characters in this token */ 2220 }; 2221 2222 /* 2223 ** An instance of this structure contains information needed to generate 2224 ** code for a SELECT that contains aggregate functions. 2225 ** 2226 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 2227 ** pointer to this structure. The Expr.iColumn field is the index in 2228 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 2229 ** code for that node. 2230 ** 2231 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 2232 ** original Select structure that describes the SELECT statement. These 2233 ** fields do not need to be freed when deallocating the AggInfo structure. 2234 */ 2235 struct AggInfo { 2236 u8 directMode; /* Direct rendering mode means take data directly 2237 ** from source tables rather than from accumulators */ 2238 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 2239 ** than the source table */ 2240 int sortingIdx; /* Cursor number of the sorting index */ 2241 int sortingIdxPTab; /* Cursor number of pseudo-table */ 2242 int nSortingColumn; /* Number of columns in the sorting index */ 2243 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 2244 ExprList *pGroupBy; /* The group by clause */ 2245 struct AggInfo_col { /* For each column used in source tables */ 2246 Table *pTab; /* Source table */ 2247 int iTable; /* Cursor number of the source table */ 2248 int iColumn; /* Column number within the source table */ 2249 int iSorterColumn; /* Column number in the sorting index */ 2250 int iMem; /* Memory location that acts as accumulator */ 2251 Expr *pExpr; /* The original expression */ 2252 } *aCol; 2253 int nColumn; /* Number of used entries in aCol[] */ 2254 int nAccumulator; /* Number of columns that show through to the output. 2255 ** Additional columns are used only as parameters to 2256 ** aggregate functions */ 2257 struct AggInfo_func { /* For each aggregate function */ 2258 Expr *pExpr; /* Expression encoding the function */ 2259 FuncDef *pFunc; /* The aggregate function implementation */ 2260 int iMem; /* Memory location that acts as accumulator */ 2261 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 2262 } *aFunc; 2263 int nFunc; /* Number of entries in aFunc[] */ 2264 }; 2265 2266 /* 2267 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 2268 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 2269 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 2270 ** it uses less memory in the Expr object, which is a big memory user 2271 ** in systems with lots of prepared statements. And few applications 2272 ** need more than about 10 or 20 variables. But some extreme users want 2273 ** to have prepared statements with over 32767 variables, and for them 2274 ** the option is available (at compile-time). 2275 */ 2276 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 2277 typedef i16 ynVar; 2278 #else 2279 typedef int ynVar; 2280 #endif 2281 2282 /* 2283 ** Each node of an expression in the parse tree is an instance 2284 ** of this structure. 2285 ** 2286 ** Expr.op is the opcode. The integer parser token codes are reused 2287 ** as opcodes here. For example, the parser defines TK_GE to be an integer 2288 ** code representing the ">=" operator. This same integer code is reused 2289 ** to represent the greater-than-or-equal-to operator in the expression 2290 ** tree. 2291 ** 2292 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 2293 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 2294 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 2295 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 2296 ** then Expr.token contains the name of the function. 2297 ** 2298 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 2299 ** binary operator. Either or both may be NULL. 2300 ** 2301 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 2302 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 2303 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 2304 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 2305 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 2306 ** valid. 2307 ** 2308 ** An expression of the form ID or ID.ID refers to a column in a table. 2309 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 2310 ** the integer cursor number of a VDBE cursor pointing to that table and 2311 ** Expr.iColumn is the column number for the specific column. If the 2312 ** expression is used as a result in an aggregate SELECT, then the 2313 ** value is also stored in the Expr.iAgg column in the aggregate so that 2314 ** it can be accessed after all aggregates are computed. 2315 ** 2316 ** If the expression is an unbound variable marker (a question mark 2317 ** character '?' in the original SQL) then the Expr.iTable holds the index 2318 ** number for that variable. 2319 ** 2320 ** If the expression is a subquery then Expr.iColumn holds an integer 2321 ** register number containing the result of the subquery. If the 2322 ** subquery gives a constant result, then iTable is -1. If the subquery 2323 ** gives a different answer at different times during statement processing 2324 ** then iTable is the address of a subroutine that computes the subquery. 2325 ** 2326 ** If the Expr is of type OP_Column, and the table it is selecting from 2327 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 2328 ** corresponding table definition. 2329 ** 2330 ** ALLOCATION NOTES: 2331 ** 2332 ** Expr objects can use a lot of memory space in database schema. To 2333 ** help reduce memory requirements, sometimes an Expr object will be 2334 ** truncated. And to reduce the number of memory allocations, sometimes 2335 ** two or more Expr objects will be stored in a single memory allocation, 2336 ** together with Expr.zToken strings. 2337 ** 2338 ** If the EP_Reduced and EP_TokenOnly flags are set when 2339 ** an Expr object is truncated. When EP_Reduced is set, then all 2340 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2341 ** are contained within the same memory allocation. Note, however, that 2342 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2343 ** allocated, regardless of whether or not EP_Reduced is set. 2344 */ 2345 struct Expr { 2346 u8 op; /* Operation performed by this node */ 2347 char affinity; /* The affinity of the column or 0 if not a column */ 2348 u32 flags; /* Various flags. EP_* See below */ 2349 union { 2350 char *zToken; /* Token value. Zero terminated and dequoted */ 2351 int iValue; /* Non-negative integer value if EP_IntValue */ 2352 } u; 2353 2354 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2355 ** space is allocated for the fields below this point. An attempt to 2356 ** access them will result in a segfault or malfunction. 2357 *********************************************************************/ 2358 2359 Expr *pLeft; /* Left subnode */ 2360 Expr *pRight; /* Right subnode */ 2361 union { 2362 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2363 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2364 } x; 2365 2366 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2367 ** space is allocated for the fields below this point. An attempt to 2368 ** access them will result in a segfault or malfunction. 2369 *********************************************************************/ 2370 2371 #if SQLITE_MAX_EXPR_DEPTH>0 2372 int nHeight; /* Height of the tree headed by this node */ 2373 #endif 2374 int iTable; /* TK_COLUMN: cursor number of table holding column 2375 ** TK_REGISTER: register number 2376 ** TK_TRIGGER: 1 -> new, 0 -> old 2377 ** EP_Unlikely: 134217728 times likelihood 2378 ** TK_SELECT: 1st register of result vector */ 2379 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2380 ** TK_VARIABLE: variable number (always >= 1). 2381 ** TK_SELECT_COLUMN: column of the result vector */ 2382 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2383 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2384 u8 op2; /* TK_REGISTER: original value of Expr.op 2385 ** TK_COLUMN: the value of p5 for OP_Column 2386 ** TK_AGG_FUNCTION: nesting depth */ 2387 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2388 Table *pTab; /* Table for TK_COLUMN expressions. */ 2389 }; 2390 2391 /* 2392 ** The following are the meanings of bits in the Expr.flags field. 2393 */ 2394 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2395 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2396 /* 0x000004 // available for use */ 2397 /* 0x000008 // available for use */ 2398 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2399 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2400 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2401 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2402 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2403 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2404 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2405 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2406 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2407 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2408 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2409 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2410 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2411 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2412 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2413 #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ 2414 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2415 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2416 #define EP_Alias 0x400000 /* Is an alias for a result set column */ 2417 #define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */ 2418 2419 /* 2420 ** Combinations of two or more EP_* flags 2421 */ 2422 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2423 2424 /* 2425 ** These macros can be used to test, set, or clear bits in the 2426 ** Expr.flags field. 2427 */ 2428 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2429 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2430 #define ExprSetProperty(E,P) (E)->flags|=(P) 2431 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2432 2433 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2434 ** and Accreditation only. It works like ExprSetProperty() during VVA 2435 ** processes but is a no-op for delivery. 2436 */ 2437 #ifdef SQLITE_DEBUG 2438 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2439 #else 2440 # define ExprSetVVAProperty(E,P) 2441 #endif 2442 2443 /* 2444 ** Macros to determine the number of bytes required by a normal Expr 2445 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2446 ** and an Expr struct with the EP_TokenOnly flag set. 2447 */ 2448 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2449 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2450 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2451 2452 /* 2453 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2454 ** above sqlite3ExprDup() for details. 2455 */ 2456 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2457 2458 /* 2459 ** A list of expressions. Each expression may optionally have a 2460 ** name. An expr/name combination can be used in several ways, such 2461 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2462 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2463 ** also be used as the argument to a function, in which case the a.zName 2464 ** field is not used. 2465 ** 2466 ** By default the Expr.zSpan field holds a human-readable description of 2467 ** the expression that is used in the generation of error messages and 2468 ** column labels. In this case, Expr.zSpan is typically the text of a 2469 ** column expression as it exists in a SELECT statement. However, if 2470 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2471 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2472 ** form is used for name resolution with nested FROM clauses. 2473 */ 2474 struct ExprList { 2475 int nExpr; /* Number of expressions on the list */ 2476 int nAlloc; /* Number of a[] slots allocated */ 2477 struct ExprList_item { /* For each expression in the list */ 2478 Expr *pExpr; /* The parse tree for this expression */ 2479 char *zName; /* Token associated with this expression */ 2480 char *zSpan; /* Original text of the expression */ 2481 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2482 unsigned done :1; /* A flag to indicate when processing is finished */ 2483 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2484 unsigned reusable :1; /* Constant expression is reusable */ 2485 union { 2486 struct { 2487 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2488 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2489 } x; 2490 int iConstExprReg; /* Register in which Expr value is cached */ 2491 } u; 2492 } a[1]; /* One slot for each expression in the list */ 2493 }; 2494 2495 /* 2496 ** An instance of this structure is used by the parser to record both 2497 ** the parse tree for an expression and the span of input text for an 2498 ** expression. 2499 */ 2500 struct ExprSpan { 2501 Expr *pExpr; /* The expression parse tree */ 2502 const char *zStart; /* First character of input text */ 2503 const char *zEnd; /* One character past the end of input text */ 2504 }; 2505 2506 /* 2507 ** An instance of this structure can hold a simple list of identifiers, 2508 ** such as the list "a,b,c" in the following statements: 2509 ** 2510 ** INSERT INTO t(a,b,c) VALUES ...; 2511 ** CREATE INDEX idx ON t(a,b,c); 2512 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2513 ** 2514 ** The IdList.a.idx field is used when the IdList represents the list of 2515 ** column names after a table name in an INSERT statement. In the statement 2516 ** 2517 ** INSERT INTO t(a,b,c) ... 2518 ** 2519 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2520 */ 2521 struct IdList { 2522 struct IdList_item { 2523 char *zName; /* Name of the identifier */ 2524 int idx; /* Index in some Table.aCol[] of a column named zName */ 2525 } *a; 2526 int nId; /* Number of identifiers on the list */ 2527 }; 2528 2529 /* 2530 ** The bitmask datatype defined below is used for various optimizations. 2531 ** 2532 ** Changing this from a 64-bit to a 32-bit type limits the number of 2533 ** tables in a join to 32 instead of 64. But it also reduces the size 2534 ** of the library by 738 bytes on ix86. 2535 */ 2536 #ifdef SQLITE_BITMASK_TYPE 2537 typedef SQLITE_BITMASK_TYPE Bitmask; 2538 #else 2539 typedef u64 Bitmask; 2540 #endif 2541 2542 /* 2543 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2544 */ 2545 #define BMS ((int)(sizeof(Bitmask)*8)) 2546 2547 /* 2548 ** A bit in a Bitmask 2549 */ 2550 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2551 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2552 #define ALLBITS ((Bitmask)-1) 2553 2554 /* 2555 ** The following structure describes the FROM clause of a SELECT statement. 2556 ** Each table or subquery in the FROM clause is a separate element of 2557 ** the SrcList.a[] array. 2558 ** 2559 ** With the addition of multiple database support, the following structure 2560 ** can also be used to describe a particular table such as the table that 2561 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2562 ** such a table must be a simple name: ID. But in SQLite, the table can 2563 ** now be identified by a database name, a dot, then the table name: ID.ID. 2564 ** 2565 ** The jointype starts out showing the join type between the current table 2566 ** and the next table on the list. The parser builds the list this way. 2567 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2568 ** jointype expresses the join between the table and the previous table. 2569 ** 2570 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2571 ** contains more than 63 columns and the 64-th or later column is used. 2572 */ 2573 struct SrcList { 2574 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2575 u32 nAlloc; /* Number of entries allocated in a[] below */ 2576 struct SrcList_item { 2577 Schema *pSchema; /* Schema to which this item is fixed */ 2578 char *zDatabase; /* Name of database holding this table */ 2579 char *zName; /* Name of the table */ 2580 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2581 Table *pTab; /* An SQL table corresponding to zName */ 2582 Select *pSelect; /* A SELECT statement used in place of a table name */ 2583 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2584 int regReturn; /* Register holding return address of addrFillSub */ 2585 int regResult; /* Registers holding results of a co-routine */ 2586 struct { 2587 u8 jointype; /* Type of join between this table and the previous */ 2588 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2589 unsigned isIndexedBy :1; /* True if there is an INDEXED BY clause */ 2590 unsigned isTabFunc :1; /* True if table-valued-function syntax */ 2591 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2592 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2593 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2594 } fg; 2595 #ifndef SQLITE_OMIT_EXPLAIN 2596 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2597 #endif 2598 int iCursor; /* The VDBE cursor number used to access this table */ 2599 Expr *pOn; /* The ON clause of a join */ 2600 IdList *pUsing; /* The USING clause of a join */ 2601 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2602 union { 2603 char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ 2604 ExprList *pFuncArg; /* Arguments to table-valued-function */ 2605 } u1; 2606 Index *pIBIndex; /* Index structure corresponding to u1.zIndexedBy */ 2607 } a[1]; /* One entry for each identifier on the list */ 2608 }; 2609 2610 /* 2611 ** Permitted values of the SrcList.a.jointype field 2612 */ 2613 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2614 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2615 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2616 #define JT_LEFT 0x0008 /* Left outer join */ 2617 #define JT_RIGHT 0x0010 /* Right outer join */ 2618 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2619 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2620 2621 2622 /* 2623 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2624 ** and the WhereInfo.wctrlFlags member. 2625 ** 2626 ** Value constraints (enforced via assert()): 2627 ** WHERE_USE_LIMIT == SF_FixedLimit 2628 */ 2629 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2630 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2631 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2632 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2633 #define WHERE_ONEPASS_MULTIROW 0x0008 /* ONEPASS is ok with multiple rows */ 2634 #define WHERE_DUPLICATES_OK 0x0010 /* Ok to return a row more than once */ 2635 #define WHERE_OR_SUBCLAUSE 0x0020 /* Processing a sub-WHERE as part of 2636 ** the OR optimization */ 2637 #define WHERE_GROUPBY 0x0040 /* pOrderBy is really a GROUP BY */ 2638 #define WHERE_DISTINCTBY 0x0080 /* pOrderby is really a DISTINCT clause */ 2639 #define WHERE_WANT_DISTINCT 0x0100 /* All output needs to be distinct */ 2640 #define WHERE_SORTBYGROUP 0x0200 /* Support sqlite3WhereIsSorted() */ 2641 #define WHERE_SEEK_TABLE 0x0400 /* Do not defer seeks on main table */ 2642 #define WHERE_ORDERBY_LIMIT 0x0800 /* ORDERBY+LIMIT on the inner loop */ 2643 #define WHERE_SEEK_UNIQ_TABLE 0x1000 /* Do not defer seeks if unique */ 2644 /* 0x2000 not currently used */ 2645 #define WHERE_USE_LIMIT 0x4000 /* Use the LIMIT in cost estimates */ 2646 /* 0x8000 not currently used */ 2647 2648 /* Allowed return values from sqlite3WhereIsDistinct() 2649 */ 2650 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2651 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2652 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2653 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2654 2655 /* 2656 ** A NameContext defines a context in which to resolve table and column 2657 ** names. The context consists of a list of tables (the pSrcList) field and 2658 ** a list of named expression (pEList). The named expression list may 2659 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2660 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2661 ** pEList corresponds to the result set of a SELECT and is NULL for 2662 ** other statements. 2663 ** 2664 ** NameContexts can be nested. When resolving names, the inner-most 2665 ** context is searched first. If no match is found, the next outer 2666 ** context is checked. If there is still no match, the next context 2667 ** is checked. This process continues until either a match is found 2668 ** or all contexts are check. When a match is found, the nRef member of 2669 ** the context containing the match is incremented. 2670 ** 2671 ** Each subquery gets a new NameContext. The pNext field points to the 2672 ** NameContext in the parent query. Thus the process of scanning the 2673 ** NameContext list corresponds to searching through successively outer 2674 ** subqueries looking for a match. 2675 */ 2676 struct NameContext { 2677 Parse *pParse; /* The parser */ 2678 SrcList *pSrcList; /* One or more tables used to resolve names */ 2679 ExprList *pEList; /* Optional list of result-set columns */ 2680 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2681 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2682 int nRef; /* Number of names resolved by this context */ 2683 int nErr; /* Number of errors encountered while resolving names */ 2684 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2685 }; 2686 2687 /* 2688 ** Allowed values for the NameContext, ncFlags field. 2689 ** 2690 ** Value constraints (all checked via assert()): 2691 ** NC_HasAgg == SF_HasAgg 2692 ** NC_MinMaxAgg == SF_MinMaxAgg == SQLITE_FUNC_MINMAX 2693 ** 2694 */ 2695 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2696 #define NC_PartIdx 0x0002 /* True if resolving a partial index WHERE */ 2697 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2698 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2699 #define NC_HasAgg 0x0010 /* One or more aggregate functions seen */ 2700 #define NC_IdxExpr 0x0020 /* True if resolving columns of CREATE INDEX */ 2701 #define NC_VarSelect 0x0040 /* A correlated subquery has been seen */ 2702 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2703 2704 /* 2705 ** An instance of the following structure contains all information 2706 ** needed to generate code for a single SELECT statement. 2707 ** 2708 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2709 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2710 ** limit and nOffset to the value of the offset (or 0 if there is not 2711 ** offset). But later on, nLimit and nOffset become the memory locations 2712 ** in the VDBE that record the limit and offset counters. 2713 ** 2714 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2715 ** These addresses must be stored so that we can go back and fill in 2716 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2717 ** the number of columns in P2 can be computed at the same time 2718 ** as the OP_OpenEphm instruction is coded because not 2719 ** enough information about the compound query is known at that point. 2720 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2721 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2722 ** sequences for the ORDER BY clause. 2723 */ 2724 struct Select { 2725 ExprList *pEList; /* The fields of the result */ 2726 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2727 LogEst nSelectRow; /* Estimated number of result rows */ 2728 u32 selFlags; /* Various SF_* values */ 2729 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2730 #if SELECTTRACE_ENABLED 2731 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2732 #endif 2733 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2734 SrcList *pSrc; /* The FROM clause */ 2735 Expr *pWhere; /* The WHERE clause */ 2736 ExprList *pGroupBy; /* The GROUP BY clause */ 2737 Expr *pHaving; /* The HAVING clause */ 2738 ExprList *pOrderBy; /* The ORDER BY clause */ 2739 Select *pPrior; /* Prior select in a compound select statement */ 2740 Select *pNext; /* Next select to the left in a compound */ 2741 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2742 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2743 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2744 }; 2745 2746 /* 2747 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2748 ** "Select Flag". 2749 ** 2750 ** Value constraints (all checked via assert()) 2751 ** SF_HasAgg == NC_HasAgg 2752 ** SF_MinMaxAgg == NC_MinMaxAgg == SQLITE_FUNC_MINMAX 2753 ** SF_FixedLimit == WHERE_USE_LIMIT 2754 */ 2755 #define SF_Distinct 0x00001 /* Output should be DISTINCT */ 2756 #define SF_All 0x00002 /* Includes the ALL keyword */ 2757 #define SF_Resolved 0x00004 /* Identifiers have been resolved */ 2758 #define SF_Aggregate 0x00008 /* Contains agg functions or a GROUP BY */ 2759 #define SF_HasAgg 0x00010 /* Contains aggregate functions */ 2760 #define SF_UsesEphemeral 0x00020 /* Uses the OpenEphemeral opcode */ 2761 #define SF_Expanded 0x00040 /* sqlite3SelectExpand() called on this */ 2762 #define SF_HasTypeInfo 0x00080 /* FROM subqueries have Table metadata */ 2763 #define SF_Compound 0x00100 /* Part of a compound query */ 2764 #define SF_Values 0x00200 /* Synthesized from VALUES clause */ 2765 #define SF_MultiValue 0x00400 /* Single VALUES term with multiple rows */ 2766 #define SF_NestedFrom 0x00800 /* Part of a parenthesized FROM clause */ 2767 #define SF_MinMaxAgg 0x01000 /* Aggregate containing min() or max() */ 2768 #define SF_Recursive 0x02000 /* The recursive part of a recursive CTE */ 2769 #define SF_FixedLimit 0x04000 /* nSelectRow set by a constant LIMIT */ 2770 #define SF_MaybeConvert 0x08000 /* Need convertCompoundSelectToSubquery() */ 2771 #define SF_Converted 0x10000 /* By convertCompoundSelectToSubquery() */ 2772 #define SF_IncludeHidden 0x20000 /* Include hidden columns in output */ 2773 2774 2775 /* 2776 ** The results of a SELECT can be distributed in several ways, as defined 2777 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2778 ** Type". 2779 ** 2780 ** SRT_Union Store results as a key in a temporary index 2781 ** identified by pDest->iSDParm. 2782 ** 2783 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2784 ** 2785 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2786 ** set is not empty. 2787 ** 2788 ** SRT_Discard Throw the results away. This is used by SELECT 2789 ** statements within triggers whose only purpose is 2790 ** the side-effects of functions. 2791 ** 2792 ** All of the above are free to ignore their ORDER BY clause. Those that 2793 ** follow must honor the ORDER BY clause. 2794 ** 2795 ** SRT_Output Generate a row of output (using the OP_ResultRow 2796 ** opcode) for each row in the result set. 2797 ** 2798 ** SRT_Mem Only valid if the result is a single column. 2799 ** Store the first column of the first result row 2800 ** in register pDest->iSDParm then abandon the rest 2801 ** of the query. This destination implies "LIMIT 1". 2802 ** 2803 ** SRT_Set The result must be a single column. Store each 2804 ** row of result as the key in table pDest->iSDParm. 2805 ** Apply the affinity pDest->affSdst before storing 2806 ** results. Used to implement "IN (SELECT ...)". 2807 ** 2808 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2809 ** the result there. The cursor is left open after 2810 ** returning. This is like SRT_Table except that 2811 ** this destination uses OP_OpenEphemeral to create 2812 ** the table first. 2813 ** 2814 ** SRT_Coroutine Generate a co-routine that returns a new row of 2815 ** results each time it is invoked. The entry point 2816 ** of the co-routine is stored in register pDest->iSDParm 2817 ** and the result row is stored in pDest->nDest registers 2818 ** starting with pDest->iSdst. 2819 ** 2820 ** SRT_Table Store results in temporary table pDest->iSDParm. 2821 ** SRT_Fifo This is like SRT_EphemTab except that the table 2822 ** is assumed to already be open. SRT_Fifo has 2823 ** the additional property of being able to ignore 2824 ** the ORDER BY clause. 2825 ** 2826 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2827 ** But also use temporary table pDest->iSDParm+1 as 2828 ** a record of all prior results and ignore any duplicate 2829 ** rows. Name means: "Distinct Fifo". 2830 ** 2831 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2832 ** an index). Append a sequence number so that all entries 2833 ** are distinct. 2834 ** 2835 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2836 ** the same record has never been stored before. The 2837 ** index at pDest->iSDParm+1 hold all prior stores. 2838 */ 2839 #define SRT_Union 1 /* Store result as keys in an index */ 2840 #define SRT_Except 2 /* Remove result from a UNION index */ 2841 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2842 #define SRT_Discard 4 /* Do not save the results anywhere */ 2843 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2844 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2845 #define SRT_Queue 7 /* Store result in an queue */ 2846 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2847 2848 /* The ORDER BY clause is ignored for all of the above */ 2849 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2850 2851 #define SRT_Output 9 /* Output each row of result */ 2852 #define SRT_Mem 10 /* Store result in a memory cell */ 2853 #define SRT_Set 11 /* Store results as keys in an index */ 2854 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2855 #define SRT_Coroutine 13 /* Generate a single row of result */ 2856 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2857 2858 /* 2859 ** An instance of this object describes where to put of the results of 2860 ** a SELECT statement. 2861 */ 2862 struct SelectDest { 2863 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2864 int iSDParm; /* A parameter used by the eDest disposal method */ 2865 int iSdst; /* Base register where results are written */ 2866 int nSdst; /* Number of registers allocated */ 2867 char *zAffSdst; /* Affinity used when eDest==SRT_Set */ 2868 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2869 }; 2870 2871 /* 2872 ** During code generation of statements that do inserts into AUTOINCREMENT 2873 ** tables, the following information is attached to the Table.u.autoInc.p 2874 ** pointer of each autoincrement table to record some side information that 2875 ** the code generator needs. We have to keep per-table autoincrement 2876 ** information in case inserts are done within triggers. Triggers do not 2877 ** normally coordinate their activities, but we do need to coordinate the 2878 ** loading and saving of autoincrement information. 2879 */ 2880 struct AutoincInfo { 2881 AutoincInfo *pNext; /* Next info block in a list of them all */ 2882 Table *pTab; /* Table this info block refers to */ 2883 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2884 int regCtr; /* Memory register holding the rowid counter */ 2885 }; 2886 2887 /* 2888 ** Size of the column cache 2889 */ 2890 #ifndef SQLITE_N_COLCACHE 2891 # define SQLITE_N_COLCACHE 10 2892 #endif 2893 2894 /* 2895 ** At least one instance of the following structure is created for each 2896 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2897 ** statement. All such objects are stored in the linked list headed at 2898 ** Parse.pTriggerPrg and deleted once statement compilation has been 2899 ** completed. 2900 ** 2901 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2902 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2903 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2904 ** The Parse.pTriggerPrg list never contains two entries with the same 2905 ** values for both pTrigger and orconf. 2906 ** 2907 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2908 ** accessed (or set to 0 for triggers fired as a result of INSERT 2909 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2910 ** a mask of new.* columns used by the program. 2911 */ 2912 struct TriggerPrg { 2913 Trigger *pTrigger; /* Trigger this program was coded from */ 2914 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2915 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2916 int orconf; /* Default ON CONFLICT policy */ 2917 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2918 }; 2919 2920 /* 2921 ** The yDbMask datatype for the bitmask of all attached databases. 2922 */ 2923 #if SQLITE_MAX_ATTACHED>30 2924 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2925 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2926 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2927 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2928 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2929 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2930 #else 2931 typedef unsigned int yDbMask; 2932 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2933 # define DbMaskZero(M) (M)=0 2934 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2935 # define DbMaskAllZero(M) (M)==0 2936 # define DbMaskNonZero(M) (M)!=0 2937 #endif 2938 2939 /* 2940 ** An SQL parser context. A copy of this structure is passed through 2941 ** the parser and down into all the parser action routine in order to 2942 ** carry around information that is global to the entire parse. 2943 ** 2944 ** The structure is divided into two parts. When the parser and code 2945 ** generate call themselves recursively, the first part of the structure 2946 ** is constant but the second part is reset at the beginning and end of 2947 ** each recursion. 2948 ** 2949 ** The nTableLock and aTableLock variables are only used if the shared-cache 2950 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2951 ** used to store the set of table-locks required by the statement being 2952 ** compiled. Function sqlite3TableLock() is used to add entries to the 2953 ** list. 2954 */ 2955 struct Parse { 2956 sqlite3 *db; /* The main database structure */ 2957 char *zErrMsg; /* An error message */ 2958 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2959 int rc; /* Return code from execution */ 2960 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2961 u8 checkSchema; /* Causes schema cookie check after an error */ 2962 u8 nested; /* Number of nested calls to the parser/code generator */ 2963 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2964 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2965 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2966 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2967 u8 okConstFactor; /* OK to factor out constants */ 2968 u8 disableLookaside; /* Number of times lookaside has been disabled */ 2969 u8 nColCache; /* Number of entries in aColCache[] */ 2970 int nRangeReg; /* Size of the temporary register block */ 2971 int iRangeReg; /* First register in temporary register block */ 2972 int nErr; /* Number of errors seen */ 2973 int nTab; /* Number of previously allocated VDBE cursors */ 2974 int nMem; /* Number of memory cells used so far */ 2975 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2976 int szOpAlloc; /* Bytes of memory space allocated for Vdbe.aOp[] */ 2977 int iSelfTab; /* Table for associated with an index on expr, or negative 2978 ** of the base register during check-constraint eval */ 2979 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2980 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2981 int nLabel; /* Number of labels used */ 2982 int *aLabel; /* Space to hold the labels */ 2983 ExprList *pConstExpr;/* Constant expressions */ 2984 Token constraintName;/* Name of the constraint currently being parsed */ 2985 yDbMask writeMask; /* Start a write transaction on these databases */ 2986 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2987 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2988 int regRoot; /* Register holding root page number for new objects */ 2989 int nMaxArg; /* Max args passed to user function by sub-program */ 2990 #if SELECTTRACE_ENABLED 2991 int nSelect; /* Number of SELECT statements seen */ 2992 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2993 #endif 2994 #ifndef SQLITE_OMIT_SHARED_CACHE 2995 int nTableLock; /* Number of locks in aTableLock */ 2996 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2997 #endif 2998 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2999 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 3000 Table *pTriggerTab; /* Table triggers are being coded for */ 3001 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 3002 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 3003 u32 oldmask; /* Mask of old.* columns referenced */ 3004 u32 newmask; /* Mask of new.* columns referenced */ 3005 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 3006 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 3007 u8 disableTriggers; /* True to disable triggers */ 3008 3009 /************************************************************************** 3010 ** Fields above must be initialized to zero. The fields that follow, 3011 ** down to the beginning of the recursive section, do not need to be 3012 ** initialized as they will be set before being used. The boundary is 3013 ** determined by offsetof(Parse,aColCache). 3014 **************************************************************************/ 3015 3016 struct yColCache { 3017 int iTable; /* Table cursor number */ 3018 i16 iColumn; /* Table column number */ 3019 u8 tempReg; /* iReg is a temp register that needs to be freed */ 3020 int iLevel; /* Nesting level */ 3021 int iReg; /* Reg with value of this column. 0 means none. */ 3022 int lru; /* Least recently used entry has the smallest value */ 3023 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 3024 int aTempReg[8]; /* Holding area for temporary registers */ 3025 Token sNameToken; /* Token with unqualified schema object name */ 3026 3027 /************************************************************************ 3028 ** Above is constant between recursions. Below is reset before and after 3029 ** each recursion. The boundary between these two regions is determined 3030 ** using offsetof(Parse,sLastToken) so the sLastToken field must be the 3031 ** first field in the recursive region. 3032 ************************************************************************/ 3033 3034 Token sLastToken; /* The last token parsed */ 3035 ynVar nVar; /* Number of '?' variables seen in the SQL so far */ 3036 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 3037 u8 explain; /* True if the EXPLAIN flag is found on the query */ 3038 #ifndef SQLITE_OMIT_VIRTUALTABLE 3039 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 3040 int nVtabLock; /* Number of virtual tables to lock */ 3041 #endif 3042 int nHeight; /* Expression tree height of current sub-select */ 3043 #ifndef SQLITE_OMIT_EXPLAIN 3044 int iSelectId; /* ID of current select for EXPLAIN output */ 3045 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 3046 #endif 3047 VList *pVList; /* Mapping between variable names and numbers */ 3048 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 3049 const char *zTail; /* All SQL text past the last semicolon parsed */ 3050 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 3051 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 3052 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 3053 #ifndef SQLITE_OMIT_VIRTUALTABLE 3054 Token sArg; /* Complete text of a module argument */ 3055 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 3056 #endif 3057 Table *pZombieTab; /* List of Table objects to delete after code gen */ 3058 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 3059 With *pWith; /* Current WITH clause, or NULL */ 3060 With *pWithToFree; /* Free this WITH object at the end of the parse */ 3061 }; 3062 3063 /* 3064 ** Sizes and pointers of various parts of the Parse object. 3065 */ 3066 #define PARSE_HDR_SZ offsetof(Parse,aColCache) /* Recursive part w/o aColCache*/ 3067 #define PARSE_RECURSE_SZ offsetof(Parse,sLastToken) /* Recursive part */ 3068 #define PARSE_TAIL_SZ (sizeof(Parse)-PARSE_RECURSE_SZ) /* Non-recursive part */ 3069 #define PARSE_TAIL(X) (((char*)(X))+PARSE_RECURSE_SZ) /* Pointer to tail */ 3070 3071 /* 3072 ** Return true if currently inside an sqlite3_declare_vtab() call. 3073 */ 3074 #ifdef SQLITE_OMIT_VIRTUALTABLE 3075 #define IN_DECLARE_VTAB 0 3076 #else 3077 #define IN_DECLARE_VTAB (pParse->declareVtab) 3078 #endif 3079 3080 /* 3081 ** An instance of the following structure can be declared on a stack and used 3082 ** to save the Parse.zAuthContext value so that it can be restored later. 3083 */ 3084 struct AuthContext { 3085 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 3086 Parse *pParse; /* The Parse structure */ 3087 }; 3088 3089 /* 3090 ** Bitfield flags for P5 value in various opcodes. 3091 ** 3092 ** Value constraints (enforced via assert()): 3093 ** OPFLAG_LENGTHARG == SQLITE_FUNC_LENGTH 3094 ** OPFLAG_TYPEOFARG == SQLITE_FUNC_TYPEOF 3095 ** OPFLAG_BULKCSR == BTREE_BULKLOAD 3096 ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ 3097 ** OPFLAG_FORDELETE == BTREE_FORDELETE 3098 ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION 3099 ** OPFLAG_AUXDELETE == BTREE_AUXDELETE 3100 */ 3101 #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ 3102 /* Also used in P2 (not P5) of OP_Delete */ 3103 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 3104 #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ 3105 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 3106 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 3107 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 3108 #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ 3109 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 3110 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 3111 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 3112 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 3113 #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ 3114 #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ 3115 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 3116 #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */ 3117 #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ 3118 3119 /* 3120 * Each trigger present in the database schema is stored as an instance of 3121 * struct Trigger. 3122 * 3123 * Pointers to instances of struct Trigger are stored in two ways. 3124 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 3125 * database). This allows Trigger structures to be retrieved by name. 3126 * 2. All triggers associated with a single table form a linked list, using the 3127 * pNext member of struct Trigger. A pointer to the first element of the 3128 * linked list is stored as the "pTrigger" member of the associated 3129 * struct Table. 3130 * 3131 * The "step_list" member points to the first element of a linked list 3132 * containing the SQL statements specified as the trigger program. 3133 */ 3134 struct Trigger { 3135 char *zName; /* The name of the trigger */ 3136 char *table; /* The table or view to which the trigger applies */ 3137 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 3138 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 3139 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 3140 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 3141 the <column-list> is stored here */ 3142 Schema *pSchema; /* Schema containing the trigger */ 3143 Schema *pTabSchema; /* Schema containing the table */ 3144 TriggerStep *step_list; /* Link list of trigger program steps */ 3145 Trigger *pNext; /* Next trigger associated with the table */ 3146 }; 3147 3148 /* 3149 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 3150 ** determine which. 3151 ** 3152 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 3153 ** In that cases, the constants below can be ORed together. 3154 */ 3155 #define TRIGGER_BEFORE 1 3156 #define TRIGGER_AFTER 2 3157 3158 /* 3159 * An instance of struct TriggerStep is used to store a single SQL statement 3160 * that is a part of a trigger-program. 3161 * 3162 * Instances of struct TriggerStep are stored in a singly linked list (linked 3163 * using the "pNext" member) referenced by the "step_list" member of the 3164 * associated struct Trigger instance. The first element of the linked list is 3165 * the first step of the trigger-program. 3166 * 3167 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 3168 * "SELECT" statement. The meanings of the other members is determined by the 3169 * value of "op" as follows: 3170 * 3171 * (op == TK_INSERT) 3172 * orconf -> stores the ON CONFLICT algorithm 3173 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 3174 * this stores a pointer to the SELECT statement. Otherwise NULL. 3175 * zTarget -> Dequoted name of the table to insert into. 3176 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 3177 * this stores values to be inserted. Otherwise NULL. 3178 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 3179 * statement, then this stores the column-names to be 3180 * inserted into. 3181 * 3182 * (op == TK_DELETE) 3183 * zTarget -> Dequoted name of the table to delete from. 3184 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 3185 * Otherwise NULL. 3186 * 3187 * (op == TK_UPDATE) 3188 * zTarget -> Dequoted name of the table to update. 3189 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 3190 * Otherwise NULL. 3191 * pExprList -> A list of the columns to update and the expressions to update 3192 * them to. See sqlite3Update() documentation of "pChanges" 3193 * argument. 3194 * 3195 */ 3196 struct TriggerStep { 3197 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 3198 u8 orconf; /* OE_Rollback etc. */ 3199 Trigger *pTrig; /* The trigger that this step is a part of */ 3200 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 3201 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 3202 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 3203 ExprList *pExprList; /* SET clause for UPDATE. */ 3204 IdList *pIdList; /* Column names for INSERT */ 3205 TriggerStep *pNext; /* Next in the link-list */ 3206 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 3207 }; 3208 3209 /* 3210 ** The following structure contains information used by the sqliteFix... 3211 ** routines as they walk the parse tree to make database references 3212 ** explicit. 3213 */ 3214 typedef struct DbFixer DbFixer; 3215 struct DbFixer { 3216 Parse *pParse; /* The parsing context. Error messages written here */ 3217 Schema *pSchema; /* Fix items to this schema */ 3218 int bVarOnly; /* Check for variable references only */ 3219 const char *zDb; /* Make sure all objects are contained in this database */ 3220 const char *zType; /* Type of the container - used for error messages */ 3221 const Token *pName; /* Name of the container - used for error messages */ 3222 }; 3223 3224 /* 3225 ** An objected used to accumulate the text of a string where we 3226 ** do not necessarily know how big the string will be in the end. 3227 */ 3228 struct StrAccum { 3229 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 3230 char *zBase; /* A base allocation. Not from malloc. */ 3231 char *zText; /* The string collected so far */ 3232 u32 nChar; /* Length of the string so far */ 3233 u32 nAlloc; /* Amount of space allocated in zText */ 3234 u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 3235 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 3236 u8 printfFlags; /* SQLITE_PRINTF flags below */ 3237 }; 3238 #define STRACCUM_NOMEM 1 3239 #define STRACCUM_TOOBIG 2 3240 #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ 3241 #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ 3242 #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ 3243 3244 #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) 3245 3246 3247 /* 3248 ** A pointer to this structure is used to communicate information 3249 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 3250 */ 3251 typedef struct { 3252 sqlite3 *db; /* The database being initialized */ 3253 char **pzErrMsg; /* Error message stored here */ 3254 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 3255 int rc; /* Result code stored here */ 3256 } InitData; 3257 3258 /* 3259 ** Structure containing global configuration data for the SQLite library. 3260 ** 3261 ** This structure also contains some state information. 3262 */ 3263 struct Sqlite3Config { 3264 int bMemstat; /* True to enable memory status */ 3265 int bCoreMutex; /* True to enable core mutexing */ 3266 int bFullMutex; /* True to enable full mutexing */ 3267 int bOpenUri; /* True to interpret filenames as URIs */ 3268 int bUseCis; /* Use covering indices for full-scans */ 3269 int mxStrlen; /* Maximum string length */ 3270 int neverCorrupt; /* Database is always well-formed */ 3271 int szLookaside; /* Default lookaside buffer size */ 3272 int nLookaside; /* Default lookaside buffer count */ 3273 int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ 3274 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 3275 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 3276 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 3277 void *pHeap; /* Heap storage space */ 3278 int nHeap; /* Size of pHeap[] */ 3279 int mnReq, mxReq; /* Min and max heap requests sizes */ 3280 sqlite3_int64 szMmap; /* mmap() space per open file */ 3281 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 3282 void *pScratch; /* Scratch memory */ 3283 int szScratch; /* Size of each scratch buffer */ 3284 int nScratch; /* Number of scratch buffers */ 3285 void *pPage; /* Page cache memory */ 3286 int szPage; /* Size of each page in pPage[] */ 3287 int nPage; /* Number of pages in pPage[] */ 3288 int mxParserStack; /* maximum depth of the parser stack */ 3289 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 3290 u32 szPma; /* Maximum Sorter PMA size */ 3291 /* The above might be initialized to non-zero. The following need to always 3292 ** initially be zero, however. */ 3293 int isInit; /* True after initialization has finished */ 3294 int inProgress; /* True while initialization in progress */ 3295 int isMutexInit; /* True after mutexes are initialized */ 3296 int isMallocInit; /* True after malloc is initialized */ 3297 int isPCacheInit; /* True after malloc is initialized */ 3298 int nRefInitMutex; /* Number of users of pInitMutex */ 3299 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 3300 void (*xLog)(void*,int,const char*); /* Function for logging */ 3301 void *pLogArg; /* First argument to xLog() */ 3302 #ifdef SQLITE_ENABLE_SQLLOG 3303 void(*xSqllog)(void*,sqlite3*,const char*, int); 3304 void *pSqllogArg; 3305 #endif 3306 #ifdef SQLITE_VDBE_COVERAGE 3307 /* The following callback (if not NULL) is invoked on every VDBE branch 3308 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 3309 */ 3310 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 3311 void *pVdbeBranchArg; /* 1st argument */ 3312 #endif 3313 #ifndef SQLITE_UNTESTABLE 3314 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 3315 #endif 3316 int bLocaltimeFault; /* True to fail localtime() calls */ 3317 int iOnceResetThreshold; /* When to reset OP_Once counters */ 3318 }; 3319 3320 /* 3321 ** This macro is used inside of assert() statements to indicate that 3322 ** the assert is only valid on a well-formed database. Instead of: 3323 ** 3324 ** assert( X ); 3325 ** 3326 ** One writes: 3327 ** 3328 ** assert( X || CORRUPT_DB ); 3329 ** 3330 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 3331 ** that the database is definitely corrupt, only that it might be corrupt. 3332 ** For most test cases, CORRUPT_DB is set to false using a special 3333 ** sqlite3_test_control(). This enables assert() statements to prove 3334 ** things that are always true for well-formed databases. 3335 */ 3336 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 3337 3338 /* 3339 ** Context pointer passed down through the tree-walk. 3340 */ 3341 struct Walker { 3342 Parse *pParse; /* Parser context. */ 3343 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 3344 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 3345 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 3346 int walkerDepth; /* Number of subqueries */ 3347 u8 eCode; /* A small processing code */ 3348 union { /* Extra data for callback */ 3349 NameContext *pNC; /* Naming context */ 3350 int n; /* A counter */ 3351 int iCur; /* A cursor number */ 3352 SrcList *pSrcList; /* FROM clause */ 3353 struct SrcCount *pSrcCount; /* Counting column references */ 3354 struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ 3355 int *aiCol; /* array of column indexes */ 3356 struct IdxCover *pIdxCover; /* Check for index coverage */ 3357 struct IdxExprTrans *pIdxTrans; /* Convert indexed expr to column */ 3358 ExprList *pGroupBy; /* GROUP BY clause */ 3359 struct HavingToWhereCtx *pHavingCtx; /* HAVING to WHERE clause ctx */ 3360 } u; 3361 }; 3362 3363 /* Forward declarations */ 3364 int sqlite3WalkExpr(Walker*, Expr*); 3365 int sqlite3WalkExprList(Walker*, ExprList*); 3366 int sqlite3WalkSelect(Walker*, Select*); 3367 int sqlite3WalkSelectExpr(Walker*, Select*); 3368 int sqlite3WalkSelectFrom(Walker*, Select*); 3369 int sqlite3ExprWalkNoop(Walker*, Expr*); 3370 int sqlite3SelectWalkNoop(Walker*, Select*); 3371 #ifdef SQLITE_DEBUG 3372 void sqlite3SelectWalkAssert2(Walker*, Select*); 3373 #endif 3374 3375 /* 3376 ** Return code from the parse-tree walking primitives and their 3377 ** callbacks. 3378 */ 3379 #define WRC_Continue 0 /* Continue down into children */ 3380 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 3381 #define WRC_Abort 2 /* Abandon the tree walk */ 3382 3383 /* 3384 ** An instance of this structure represents a set of one or more CTEs 3385 ** (common table expressions) created by a single WITH clause. 3386 */ 3387 struct With { 3388 int nCte; /* Number of CTEs in the WITH clause */ 3389 With *pOuter; /* Containing WITH clause, or NULL */ 3390 struct Cte { /* For each CTE in the WITH clause.... */ 3391 char *zName; /* Name of this CTE */ 3392 ExprList *pCols; /* List of explicit column names, or NULL */ 3393 Select *pSelect; /* The definition of this CTE */ 3394 const char *zCteErr; /* Error message for circular references */ 3395 } a[1]; 3396 }; 3397 3398 #ifdef SQLITE_DEBUG 3399 /* 3400 ** An instance of the TreeView object is used for printing the content of 3401 ** data structures on sqlite3DebugPrintf() using a tree-like view. 3402 */ 3403 struct TreeView { 3404 int iLevel; /* Which level of the tree we are on */ 3405 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 3406 }; 3407 #endif /* SQLITE_DEBUG */ 3408 3409 /* 3410 ** Assuming zIn points to the first byte of a UTF-8 character, 3411 ** advance zIn to point to the first byte of the next UTF-8 character. 3412 */ 3413 #define SQLITE_SKIP_UTF8(zIn) { \ 3414 if( (*(zIn++))>=0xc0 ){ \ 3415 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3416 } \ 3417 } 3418 3419 /* 3420 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3421 ** the same name but without the _BKPT suffix. These macros invoke 3422 ** routines that report the line-number on which the error originated 3423 ** using sqlite3_log(). The routines also provide a convenient place 3424 ** to set a debugger breakpoint. 3425 */ 3426 int sqlite3CorruptError(int); 3427 int sqlite3MisuseError(int); 3428 int sqlite3CantopenError(int); 3429 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3430 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3431 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3432 #ifdef SQLITE_DEBUG 3433 int sqlite3NomemError(int); 3434 int sqlite3IoerrnomemError(int); 3435 int sqlite3CorruptPgnoError(int,Pgno); 3436 # define SQLITE_NOMEM_BKPT sqlite3NomemError(__LINE__) 3437 # define SQLITE_IOERR_NOMEM_BKPT sqlite3IoerrnomemError(__LINE__) 3438 # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptPgnoError(__LINE__,(P)) 3439 #else 3440 # define SQLITE_NOMEM_BKPT SQLITE_NOMEM 3441 # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM 3442 # define SQLITE_CORRUPT_PGNO(P) sqlite3CorruptError(__LINE__) 3443 #endif 3444 3445 /* 3446 ** FTS3 and FTS4 both require virtual table support 3447 */ 3448 #if defined(SQLITE_OMIT_VIRTUALTABLE) 3449 # undef SQLITE_ENABLE_FTS3 3450 # undef SQLITE_ENABLE_FTS4 3451 #endif 3452 3453 /* 3454 ** FTS4 is really an extension for FTS3. It is enabled using the 3455 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3456 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3457 */ 3458 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3459 # define SQLITE_ENABLE_FTS3 1 3460 #endif 3461 3462 /* 3463 ** The ctype.h header is needed for non-ASCII systems. It is also 3464 ** needed by FTS3 when FTS3 is included in the amalgamation. 3465 */ 3466 #if !defined(SQLITE_ASCII) || \ 3467 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3468 # include <ctype.h> 3469 #endif 3470 3471 /* 3472 ** The following macros mimic the standard library functions toupper(), 3473 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3474 ** sqlite versions only work for ASCII characters, regardless of locale. 3475 */ 3476 #ifdef SQLITE_ASCII 3477 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3478 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3479 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3480 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3481 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3482 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3483 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3484 # define sqlite3Isquote(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x80) 3485 #else 3486 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3487 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3488 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3489 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3490 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3491 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3492 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3493 # define sqlite3Isquote(x) ((x)=='"'||(x)=='\''||(x)=='['||(x)=='`') 3494 #endif 3495 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 3496 int sqlite3IsIdChar(u8); 3497 #endif 3498 3499 /* 3500 ** Internal function prototypes 3501 */ 3502 int sqlite3StrICmp(const char*,const char*); 3503 int sqlite3Strlen30(const char*); 3504 char *sqlite3ColumnType(Column*,char*); 3505 #define sqlite3StrNICmp sqlite3_strnicmp 3506 3507 int sqlite3MallocInit(void); 3508 void sqlite3MallocEnd(void); 3509 void *sqlite3Malloc(u64); 3510 void *sqlite3MallocZero(u64); 3511 void *sqlite3DbMallocZero(sqlite3*, u64); 3512 void *sqlite3DbMallocRaw(sqlite3*, u64); 3513 void *sqlite3DbMallocRawNN(sqlite3*, u64); 3514 char *sqlite3DbStrDup(sqlite3*,const char*); 3515 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3516 void *sqlite3Realloc(void*, u64); 3517 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3518 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3519 void sqlite3DbFree(sqlite3*, void*); 3520 void sqlite3DbFreeNN(sqlite3*, void*); 3521 int sqlite3MallocSize(void*); 3522 int sqlite3DbMallocSize(sqlite3*, void*); 3523 void *sqlite3ScratchMalloc(int); 3524 void sqlite3ScratchFree(void*); 3525 void *sqlite3PageMalloc(int); 3526 void sqlite3PageFree(void*); 3527 void sqlite3MemSetDefault(void); 3528 #ifndef SQLITE_UNTESTABLE 3529 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3530 #endif 3531 int sqlite3HeapNearlyFull(void); 3532 3533 /* 3534 ** On systems with ample stack space and that support alloca(), make 3535 ** use of alloca() to obtain space for large automatic objects. By default, 3536 ** obtain space from malloc(). 3537 ** 3538 ** The alloca() routine never returns NULL. This will cause code paths 3539 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3540 */ 3541 #ifdef SQLITE_USE_ALLOCA 3542 # define sqlite3StackAllocRaw(D,N) alloca(N) 3543 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3544 # define sqlite3StackFree(D,P) 3545 #else 3546 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3547 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3548 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3549 #endif 3550 3551 /* Do not allow both MEMSYS5 and MEMSYS3 to be defined together. If they 3552 ** are, disable MEMSYS3 3553 */ 3554 #ifdef SQLITE_ENABLE_MEMSYS5 3555 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3556 #undef SQLITE_ENABLE_MEMSYS3 3557 #endif 3558 #ifdef SQLITE_ENABLE_MEMSYS3 3559 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3560 #endif 3561 3562 3563 #ifndef SQLITE_MUTEX_OMIT 3564 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3565 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3566 sqlite3_mutex *sqlite3MutexAlloc(int); 3567 int sqlite3MutexInit(void); 3568 int sqlite3MutexEnd(void); 3569 #endif 3570 #if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP) 3571 void sqlite3MemoryBarrier(void); 3572 #else 3573 # define sqlite3MemoryBarrier() 3574 #endif 3575 3576 sqlite3_int64 sqlite3StatusValue(int); 3577 void sqlite3StatusUp(int, int); 3578 void sqlite3StatusDown(int, int); 3579 void sqlite3StatusHighwater(int, int); 3580 3581 /* Access to mutexes used by sqlite3_status() */ 3582 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3583 sqlite3_mutex *sqlite3MallocMutex(void); 3584 3585 #ifndef SQLITE_OMIT_FLOATING_POINT 3586 int sqlite3IsNaN(double); 3587 #else 3588 # define sqlite3IsNaN(X) 0 3589 #endif 3590 3591 /* 3592 ** An instance of the following structure holds information about SQL 3593 ** functions arguments that are the parameters to the printf() function. 3594 */ 3595 struct PrintfArguments { 3596 int nArg; /* Total number of arguments */ 3597 int nUsed; /* Number of arguments used so far */ 3598 sqlite3_value **apArg; /* The argument values */ 3599 }; 3600 3601 void sqlite3VXPrintf(StrAccum*, const char*, va_list); 3602 void sqlite3XPrintf(StrAccum*, const char*, ...); 3603 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3604 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3605 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3606 void sqlite3DebugPrintf(const char*, ...); 3607 #endif 3608 #if defined(SQLITE_TEST) 3609 void *sqlite3TestTextToPtr(const char*); 3610 #endif 3611 3612 #if defined(SQLITE_DEBUG) 3613 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3614 void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*); 3615 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3616 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3617 void sqlite3TreeViewWith(TreeView*, const With*, u8); 3618 #endif 3619 3620 3621 void sqlite3SetString(char **, sqlite3*, const char*); 3622 void sqlite3ErrorMsg(Parse*, const char*, ...); 3623 void sqlite3Dequote(char*); 3624 void sqlite3TokenInit(Token*,char*); 3625 int sqlite3KeywordCode(const unsigned char*, int); 3626 int sqlite3RunParser(Parse*, const char*, char **); 3627 void sqlite3FinishCoding(Parse*); 3628 int sqlite3GetTempReg(Parse*); 3629 void sqlite3ReleaseTempReg(Parse*,int); 3630 int sqlite3GetTempRange(Parse*,int); 3631 void sqlite3ReleaseTempRange(Parse*,int,int); 3632 void sqlite3ClearTempRegCache(Parse*); 3633 #ifdef SQLITE_DEBUG 3634 int sqlite3NoTempsInRange(Parse*,int,int); 3635 #endif 3636 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3637 Expr *sqlite3Expr(sqlite3*,int,const char*); 3638 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3639 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*); 3640 void sqlite3PExprAddSelect(Parse*, Expr*, Select*); 3641 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3642 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3643 void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32); 3644 void sqlite3ExprDelete(sqlite3*, Expr*); 3645 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3646 ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*); 3647 void sqlite3ExprListSetSortOrder(ExprList*,int); 3648 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3649 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3650 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3651 u32 sqlite3ExprListFlags(const ExprList*); 3652 int sqlite3Init(sqlite3*, char**); 3653 int sqlite3InitCallback(void*, int, char**, char**); 3654 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3655 #ifndef SQLITE_OMIT_VIRTUALTABLE 3656 Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName); 3657 #endif 3658 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3659 void sqlite3ResetOneSchema(sqlite3*,int); 3660 void sqlite3CollapseDatabaseArray(sqlite3*); 3661 void sqlite3CommitInternalChanges(sqlite3*); 3662 void sqlite3DeleteColumnNames(sqlite3*,Table*); 3663 int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**); 3664 void sqlite3SelectAddColumnTypeAndCollation(Parse*,Table*,Select*); 3665 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3666 void sqlite3OpenMasterTable(Parse *, int); 3667 Index *sqlite3PrimaryKeyIndex(Table*); 3668 i16 sqlite3ColumnOfIndex(Index*, i16); 3669 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3670 #if SQLITE_ENABLE_HIDDEN_COLUMNS 3671 void sqlite3ColumnPropertiesFromName(Table*, Column*); 3672 #else 3673 # define sqlite3ColumnPropertiesFromName(T,C) /* no-op */ 3674 #endif 3675 void sqlite3AddColumn(Parse*,Token*,Token*); 3676 void sqlite3AddNotNull(Parse*, int); 3677 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3678 void sqlite3AddCheckConstraint(Parse*, Expr*); 3679 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3680 void sqlite3AddCollateType(Parse*, Token*); 3681 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3682 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3683 sqlite3_vfs**,char**,char **); 3684 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3685 3686 #ifdef SQLITE_UNTESTABLE 3687 # define sqlite3FaultSim(X) SQLITE_OK 3688 #else 3689 int sqlite3FaultSim(int); 3690 #endif 3691 3692 Bitvec *sqlite3BitvecCreate(u32); 3693 int sqlite3BitvecTest(Bitvec*, u32); 3694 int sqlite3BitvecTestNotNull(Bitvec*, u32); 3695 int sqlite3BitvecSet(Bitvec*, u32); 3696 void sqlite3BitvecClear(Bitvec*, u32, void*); 3697 void sqlite3BitvecDestroy(Bitvec*); 3698 u32 sqlite3BitvecSize(Bitvec*); 3699 #ifndef SQLITE_UNTESTABLE 3700 int sqlite3BitvecBuiltinTest(int,int*); 3701 #endif 3702 3703 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3704 void sqlite3RowSetClear(RowSet*); 3705 void sqlite3RowSetInsert(RowSet*, i64); 3706 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3707 int sqlite3RowSetNext(RowSet*, i64*); 3708 3709 void sqlite3CreateView(Parse*,Token*,Token*,Token*,ExprList*,Select*,int,int); 3710 3711 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3712 int sqlite3ViewGetColumnNames(Parse*,Table*); 3713 #else 3714 # define sqlite3ViewGetColumnNames(A,B) 0 3715 #endif 3716 3717 #if SQLITE_MAX_ATTACHED>30 3718 int sqlite3DbMaskAllZero(yDbMask); 3719 #endif 3720 void sqlite3DropTable(Parse*, SrcList*, int, int); 3721 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3722 void sqlite3DeleteTable(sqlite3*, Table*); 3723 #ifndef SQLITE_OMIT_AUTOINCREMENT 3724 void sqlite3AutoincrementBegin(Parse *pParse); 3725 void sqlite3AutoincrementEnd(Parse *pParse); 3726 #else 3727 # define sqlite3AutoincrementBegin(X) 3728 # define sqlite3AutoincrementEnd(X) 3729 #endif 3730 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3731 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3732 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3733 int sqlite3IdListIndex(IdList*,const char*); 3734 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3735 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3736 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3737 Token*, Select*, Expr*, IdList*); 3738 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3739 void sqlite3SrcListFuncArgs(Parse*, SrcList*, ExprList*); 3740 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3741 void sqlite3SrcListShiftJoinType(SrcList*); 3742 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3743 void sqlite3IdListDelete(sqlite3*, IdList*); 3744 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3745 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3746 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3747 Expr*, int, int, u8); 3748 void sqlite3DropIndex(Parse*, SrcList*, int); 3749 int sqlite3Select(Parse*, Select*, SelectDest*); 3750 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3751 Expr*,ExprList*,u32,Expr*,Expr*); 3752 void sqlite3SelectDelete(sqlite3*, Select*); 3753 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3754 int sqlite3IsReadOnly(Parse*, Table*, int); 3755 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3756 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3757 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3758 #endif 3759 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3760 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3761 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3762 void sqlite3WhereEnd(WhereInfo*); 3763 LogEst sqlite3WhereOutputRowCount(WhereInfo*); 3764 int sqlite3WhereIsDistinct(WhereInfo*); 3765 int sqlite3WhereIsOrdered(WhereInfo*); 3766 int sqlite3WhereOrderedInnerLoop(WhereInfo*); 3767 int sqlite3WhereIsSorted(WhereInfo*); 3768 int sqlite3WhereContinueLabel(WhereInfo*); 3769 int sqlite3WhereBreakLabel(WhereInfo*); 3770 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3771 #define ONEPASS_OFF 0 /* Use of ONEPASS not allowed */ 3772 #define ONEPASS_SINGLE 1 /* ONEPASS valid for a single row update */ 3773 #define ONEPASS_MULTI 2 /* ONEPASS is valid for multiple rows */ 3774 void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int); 3775 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3776 void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int); 3777 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3778 void sqlite3ExprCodeMove(Parse*, int, int, int); 3779 void sqlite3ExprCacheStore(Parse*, int, int, int); 3780 void sqlite3ExprCachePush(Parse*); 3781 void sqlite3ExprCachePop(Parse*); 3782 void sqlite3ExprCacheRemove(Parse*, int, int); 3783 void sqlite3ExprCacheClear(Parse*); 3784 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3785 void sqlite3ExprCode(Parse*, Expr*, int); 3786 void sqlite3ExprCodeCopy(Parse*, Expr*, int); 3787 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3788 int sqlite3ExprCodeAtInit(Parse*, Expr*, int); 3789 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3790 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3791 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3792 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8); 3793 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3794 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3795 #define SQLITE_ECEL_REF 0x04 /* Use ExprList.u.x.iOrderByCol */ 3796 #define SQLITE_ECEL_OMITREF 0x08 /* Omit if ExprList.u.x.iOrderByCol */ 3797 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3798 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3799 void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); 3800 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3801 #define LOCATE_VIEW 0x01 3802 #define LOCATE_NOERR 0x02 3803 Table *sqlite3LocateTable(Parse*,u32 flags,const char*, const char*); 3804 Table *sqlite3LocateTableItem(Parse*,u32 flags,struct SrcList_item *); 3805 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3806 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3807 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3808 void sqlite3Vacuum(Parse*,Token*); 3809 int sqlite3RunVacuum(char**, sqlite3*, int); 3810 char *sqlite3NameFromToken(sqlite3*, Token*); 3811 int sqlite3ExprCompare(Parse*,Expr*, Expr*, int); 3812 int sqlite3ExprCompareSkip(Expr*, Expr*, int); 3813 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3814 int sqlite3ExprImpliesExpr(Parse*,Expr*, Expr*, int); 3815 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3816 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3817 int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); 3818 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3819 Vdbe *sqlite3GetVdbe(Parse*); 3820 #ifndef SQLITE_UNTESTABLE 3821 void sqlite3PrngSaveState(void); 3822 void sqlite3PrngRestoreState(void); 3823 #endif 3824 void sqlite3RollbackAll(sqlite3*,int); 3825 void sqlite3CodeVerifySchema(Parse*, int); 3826 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3827 void sqlite3BeginTransaction(Parse*, int); 3828 void sqlite3EndTransaction(Parse*,int); 3829 void sqlite3Savepoint(Parse*, int, Token*); 3830 void sqlite3CloseSavepoints(sqlite3 *); 3831 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3832 int sqlite3ExprIsConstant(Expr*); 3833 int sqlite3ExprIsConstantNotJoin(Expr*); 3834 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3835 int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*); 3836 int sqlite3ExprIsTableConstant(Expr*,int); 3837 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3838 int sqlite3ExprContainsSubquery(Expr*); 3839 #endif 3840 int sqlite3ExprIsInteger(Expr*, int*); 3841 int sqlite3ExprCanBeNull(const Expr*); 3842 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3843 int sqlite3IsRowid(const char*); 3844 void sqlite3GenerateRowDelete( 3845 Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); 3846 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); 3847 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3848 void sqlite3ResolvePartIdxLabel(Parse*,int); 3849 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3850 u8,u8,int,int*,int*); 3851 #ifdef SQLITE_ENABLE_NULL_TRIM 3852 void sqlite3SetMakeRecordP5(Vdbe*,Table*); 3853 #else 3854 # define sqlite3SetMakeRecordP5(A,B) 3855 #endif 3856 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3857 int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); 3858 void sqlite3BeginWriteOperation(Parse*, int, int); 3859 void sqlite3MultiWrite(Parse*); 3860 void sqlite3MayAbort(Parse*); 3861 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3862 void sqlite3UniqueConstraint(Parse*, int, Index*); 3863 void sqlite3RowidConstraint(Parse*, int, Table*); 3864 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3865 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3866 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3867 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3868 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3869 #if SELECTTRACE_ENABLED 3870 void sqlite3SelectSetName(Select*,const char*); 3871 #else 3872 # define sqlite3SelectSetName(A,B) 3873 #endif 3874 void sqlite3InsertBuiltinFuncs(FuncDef*,int); 3875 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); 3876 void sqlite3RegisterBuiltinFunctions(void); 3877 void sqlite3RegisterDateTimeFunctions(void); 3878 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); 3879 int sqlite3SafetyCheckOk(sqlite3*); 3880 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3881 void sqlite3ChangeCookie(Parse*, int); 3882 3883 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3884 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3885 #endif 3886 3887 #ifndef SQLITE_OMIT_TRIGGER 3888 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3889 Expr*,int, int); 3890 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3891 void sqlite3DropTrigger(Parse*, SrcList*, int); 3892 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3893 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3894 Trigger *sqlite3TriggerList(Parse *, Table *); 3895 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3896 int, int, int); 3897 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3898 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3899 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3900 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3901 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3902 Select*,u8); 3903 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3904 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3905 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3906 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3907 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3908 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3909 # define sqlite3IsToplevel(p) ((p)->pToplevel==0) 3910 #else 3911 # define sqlite3TriggersExist(B,C,D,E,F) 0 3912 # define sqlite3DeleteTrigger(A,B) 3913 # define sqlite3DropTriggerPtr(A,B) 3914 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3915 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3916 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3917 # define sqlite3TriggerList(X, Y) 0 3918 # define sqlite3ParseToplevel(p) p 3919 # define sqlite3IsToplevel(p) 1 3920 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3921 #endif 3922 3923 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3924 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3925 void sqlite3DeferForeignKey(Parse*, int); 3926 #ifndef SQLITE_OMIT_AUTHORIZATION 3927 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3928 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3929 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3930 void sqlite3AuthContextPop(AuthContext*); 3931 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3932 #else 3933 # define sqlite3AuthRead(a,b,c,d) 3934 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3935 # define sqlite3AuthContextPush(a,b,c) 3936 # define sqlite3AuthContextPop(a) ((void)(a)) 3937 #endif 3938 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3939 void sqlite3Detach(Parse*, Expr*); 3940 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3941 int sqlite3FixSrcList(DbFixer*, SrcList*); 3942 int sqlite3FixSelect(DbFixer*, Select*); 3943 int sqlite3FixExpr(DbFixer*, Expr*); 3944 int sqlite3FixExprList(DbFixer*, ExprList*); 3945 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3946 int sqlite3AtoF(const char *z, double*, int, u8); 3947 int sqlite3GetInt32(const char *, int*); 3948 int sqlite3Atoi(const char*); 3949 #ifndef SQLITE_OMIT_UTF16 3950 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3951 #endif 3952 int sqlite3Utf8CharLen(const char *pData, int nByte); 3953 u32 sqlite3Utf8Read(const u8**); 3954 LogEst sqlite3LogEst(u64); 3955 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3956 #ifndef SQLITE_OMIT_VIRTUALTABLE 3957 LogEst sqlite3LogEstFromDouble(double); 3958 #endif 3959 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 3960 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 3961 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 3962 u64 sqlite3LogEstToInt(LogEst); 3963 #endif 3964 VList *sqlite3VListAdd(sqlite3*,VList*,const char*,int,int); 3965 const char *sqlite3VListNumToName(VList*,int); 3966 int sqlite3VListNameToNum(VList*,const char*,int); 3967 3968 /* 3969 ** Routines to read and write variable-length integers. These used to 3970 ** be defined locally, but now we use the varint routines in the util.c 3971 ** file. 3972 */ 3973 int sqlite3PutVarint(unsigned char*, u64); 3974 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3975 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3976 int sqlite3VarintLen(u64 v); 3977 3978 /* 3979 ** The common case is for a varint to be a single byte. They following 3980 ** macros handle the common case without a procedure call, but then call 3981 ** the procedure for larger varints. 3982 */ 3983 #define getVarint32(A,B) \ 3984 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3985 #define putVarint32(A,B) \ 3986 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3987 sqlite3PutVarint((A),(B))) 3988 #define getVarint sqlite3GetVarint 3989 #define putVarint sqlite3PutVarint 3990 3991 3992 const char *sqlite3IndexAffinityStr(sqlite3*, Index*); 3993 void sqlite3TableAffinity(Vdbe*, Table*, int); 3994 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3995 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3996 char sqlite3TableColumnAffinity(Table*,int); 3997 char sqlite3ExprAffinity(Expr *pExpr); 3998 int sqlite3Atoi64(const char*, i64*, int, u8); 3999 int sqlite3DecOrHexToI64(const char*, i64*); 4000 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 4001 void sqlite3Error(sqlite3*,int); 4002 void sqlite3SystemError(sqlite3*,int); 4003 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 4004 u8 sqlite3HexToInt(int h); 4005 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 4006 4007 #if defined(SQLITE_NEED_ERR_NAME) 4008 const char *sqlite3ErrName(int); 4009 #endif 4010 4011 const char *sqlite3ErrStr(int); 4012 int sqlite3ReadSchema(Parse *pParse); 4013 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 4014 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 4015 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 4016 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 4017 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 4018 Expr *sqlite3ExprSkipCollate(Expr*); 4019 int sqlite3CheckCollSeq(Parse *, CollSeq *); 4020 int sqlite3CheckObjectName(Parse *, const char *); 4021 void sqlite3VdbeSetChanges(sqlite3 *, int); 4022 int sqlite3AddInt64(i64*,i64); 4023 int sqlite3SubInt64(i64*,i64); 4024 int sqlite3MulInt64(i64*,i64); 4025 int sqlite3AbsInt32(int); 4026 #ifdef SQLITE_ENABLE_8_3_NAMES 4027 void sqlite3FileSuffix3(const char*, char*); 4028 #else 4029 # define sqlite3FileSuffix3(X,Y) 4030 #endif 4031 u8 sqlite3GetBoolean(const char *z,u8); 4032 4033 const void *sqlite3ValueText(sqlite3_value*, u8); 4034 int sqlite3ValueBytes(sqlite3_value*, u8); 4035 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 4036 void(*)(void*)); 4037 void sqlite3ValueSetNull(sqlite3_value*); 4038 void sqlite3ValueFree(sqlite3_value*); 4039 sqlite3_value *sqlite3ValueNew(sqlite3 *); 4040 #ifndef SQLITE_OMIT_UTF16 4041 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 4042 #endif 4043 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 4044 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 4045 #ifndef SQLITE_AMALGAMATION 4046 extern const unsigned char sqlite3OpcodeProperty[]; 4047 extern const char sqlite3StrBINARY[]; 4048 extern const unsigned char sqlite3UpperToLower[]; 4049 extern const unsigned char sqlite3CtypeMap[]; 4050 extern const Token sqlite3IntTokens[]; 4051 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 4052 extern FuncDefHash sqlite3BuiltinFunctions; 4053 #ifndef SQLITE_OMIT_WSD 4054 extern int sqlite3PendingByte; 4055 #endif 4056 #endif 4057 void sqlite3RootPageMoved(sqlite3*, int, int, int); 4058 void sqlite3Reindex(Parse*, Token*, Token*); 4059 void sqlite3AlterFunctions(void); 4060 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 4061 int sqlite3GetToken(const unsigned char *, int *); 4062 void sqlite3NestedParse(Parse*, const char*, ...); 4063 void sqlite3ExpirePreparedStatements(sqlite3*); 4064 int sqlite3CodeSubselect(Parse*, Expr *, int, int); 4065 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 4066 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); 4067 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 4068 int sqlite3ResolveExprNames(NameContext*, Expr*); 4069 int sqlite3ResolveExprListNames(NameContext*, ExprList*); 4070 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 4071 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 4072 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 4073 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 4074 void sqlite3AlterFinishAddColumn(Parse *, Token *); 4075 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 4076 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 4077 char sqlite3AffinityType(const char*, u8*); 4078 void sqlite3Analyze(Parse*, Token*, Token*); 4079 int sqlite3InvokeBusyHandler(BusyHandler*); 4080 int sqlite3FindDb(sqlite3*, Token*); 4081 int sqlite3FindDbName(sqlite3 *, const char *); 4082 int sqlite3AnalysisLoad(sqlite3*,int iDB); 4083 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 4084 void sqlite3DefaultRowEst(Index*); 4085 void sqlite3RegisterLikeFunctions(sqlite3*, int); 4086 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 4087 void sqlite3SchemaClear(void *); 4088 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 4089 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 4090 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 4091 void sqlite3KeyInfoUnref(KeyInfo*); 4092 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 4093 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 4094 #ifdef SQLITE_DEBUG 4095 int sqlite3KeyInfoIsWriteable(KeyInfo*); 4096 #endif 4097 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 4098 void (*)(sqlite3_context*,int,sqlite3_value **), 4099 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 4100 FuncDestructor *pDestructor 4101 ); 4102 void sqlite3OomFault(sqlite3*); 4103 void sqlite3OomClear(sqlite3*); 4104 int sqlite3ApiExit(sqlite3 *db, int); 4105 int sqlite3OpenTempDatabase(Parse *); 4106 4107 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 4108 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 4109 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 4110 void sqlite3AppendChar(StrAccum*,int,char); 4111 char *sqlite3StrAccumFinish(StrAccum*); 4112 void sqlite3StrAccumReset(StrAccum*); 4113 void sqlite3SelectDestInit(SelectDest*,int,int); 4114 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 4115 4116 void sqlite3BackupRestart(sqlite3_backup *); 4117 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 4118 4119 #ifndef SQLITE_OMIT_SUBQUERY 4120 int sqlite3ExprCheckIN(Parse*, Expr*); 4121 #else 4122 # define sqlite3ExprCheckIN(x,y) SQLITE_OK 4123 #endif 4124 4125 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4126 void sqlite3AnalyzeFunctions(void); 4127 int sqlite3Stat4ProbeSetValue( 4128 Parse*,Index*,UnpackedRecord**,Expr*,int,int,int*); 4129 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 4130 void sqlite3Stat4ProbeFree(UnpackedRecord*); 4131 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 4132 char sqlite3IndexColumnAffinity(sqlite3*, Index*, int); 4133 #endif 4134 4135 /* 4136 ** The interface to the LEMON-generated parser 4137 */ 4138 #ifndef SQLITE_AMALGAMATION 4139 void *sqlite3ParserAlloc(void*(*)(u64)); 4140 void sqlite3ParserFree(void*, void(*)(void*)); 4141 #endif 4142 void sqlite3Parser(void*, int, Token, Parse*); 4143 #ifdef YYTRACKMAXSTACKDEPTH 4144 int sqlite3ParserStackPeak(void*); 4145 #endif 4146 4147 void sqlite3AutoLoadExtensions(sqlite3*); 4148 #ifndef SQLITE_OMIT_LOAD_EXTENSION 4149 void sqlite3CloseExtensions(sqlite3*); 4150 #else 4151 # define sqlite3CloseExtensions(X) 4152 #endif 4153 4154 #ifndef SQLITE_OMIT_SHARED_CACHE 4155 void sqlite3TableLock(Parse *, int, int, u8, const char *); 4156 #else 4157 #define sqlite3TableLock(v,w,x,y,z) 4158 #endif 4159 4160 #ifdef SQLITE_TEST 4161 int sqlite3Utf8To8(unsigned char*); 4162 #endif 4163 4164 #ifdef SQLITE_OMIT_VIRTUALTABLE 4165 # define sqlite3VtabClear(Y) 4166 # define sqlite3VtabSync(X,Y) SQLITE_OK 4167 # define sqlite3VtabRollback(X) 4168 # define sqlite3VtabCommit(X) 4169 # define sqlite3VtabInSync(db) 0 4170 # define sqlite3VtabLock(X) 4171 # define sqlite3VtabUnlock(X) 4172 # define sqlite3VtabUnlockList(X) 4173 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 4174 # define sqlite3GetVTable(X,Y) ((VTable*)0) 4175 #else 4176 void sqlite3VtabClear(sqlite3 *db, Table*); 4177 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 4178 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 4179 int sqlite3VtabRollback(sqlite3 *db); 4180 int sqlite3VtabCommit(sqlite3 *db); 4181 void sqlite3VtabLock(VTable *); 4182 void sqlite3VtabUnlock(VTable *); 4183 void sqlite3VtabUnlockList(sqlite3*); 4184 int sqlite3VtabSavepoint(sqlite3 *, int, int); 4185 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 4186 VTable *sqlite3GetVTable(sqlite3*, Table*); 4187 Module *sqlite3VtabCreateModule( 4188 sqlite3*, 4189 const char*, 4190 const sqlite3_module*, 4191 void*, 4192 void(*)(void*) 4193 ); 4194 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 4195 #endif 4196 int sqlite3VtabEponymousTableInit(Parse*,Module*); 4197 void sqlite3VtabEponymousTableClear(sqlite3*,Module*); 4198 void sqlite3VtabMakeWritable(Parse*,Table*); 4199 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 4200 void sqlite3VtabFinishParse(Parse*, Token*); 4201 void sqlite3VtabArgInit(Parse*); 4202 void sqlite3VtabArgExtend(Parse*, Token*); 4203 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 4204 int sqlite3VtabCallConnect(Parse*, Table*); 4205 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 4206 int sqlite3VtabBegin(sqlite3 *, VTable *); 4207 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 4208 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 4209 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 4210 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 4211 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 4212 void sqlite3ParserReset(Parse*); 4213 int sqlite3Reprepare(Vdbe*); 4214 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 4215 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 4216 int sqlite3TempInMemory(const sqlite3*); 4217 const char *sqlite3JournalModename(int); 4218 #ifndef SQLITE_OMIT_WAL 4219 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 4220 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 4221 #endif 4222 #ifndef SQLITE_OMIT_CTE 4223 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 4224 void sqlite3WithDelete(sqlite3*,With*); 4225 void sqlite3WithPush(Parse*, With*, u8); 4226 #else 4227 #define sqlite3WithPush(x,y,z) 4228 #define sqlite3WithDelete(x,y) 4229 #endif 4230 4231 /* Declarations for functions in fkey.c. All of these are replaced by 4232 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 4233 ** key functionality is available. If OMIT_TRIGGER is defined but 4234 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 4235 ** this case foreign keys are parsed, but no other functionality is 4236 ** provided (enforcement of FK constraints requires the triggers sub-system). 4237 */ 4238 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 4239 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 4240 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 4241 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 4242 int sqlite3FkRequired(Parse*, Table*, int*, int); 4243 u32 sqlite3FkOldmask(Parse*, Table*); 4244 FKey *sqlite3FkReferences(Table *); 4245 #else 4246 #define sqlite3FkActions(a,b,c,d,e,f) 4247 #define sqlite3FkCheck(a,b,c,d,e,f) 4248 #define sqlite3FkDropTable(a,b,c) 4249 #define sqlite3FkOldmask(a,b) 0 4250 #define sqlite3FkRequired(a,b,c,d) 0 4251 #define sqlite3FkReferences(a) 0 4252 #endif 4253 #ifndef SQLITE_OMIT_FOREIGN_KEY 4254 void sqlite3FkDelete(sqlite3 *, Table*); 4255 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 4256 #else 4257 #define sqlite3FkDelete(a,b) 4258 #define sqlite3FkLocateIndex(a,b,c,d,e) 4259 #endif 4260 4261 4262 /* 4263 ** Available fault injectors. Should be numbered beginning with 0. 4264 */ 4265 #define SQLITE_FAULTINJECTOR_MALLOC 0 4266 #define SQLITE_FAULTINJECTOR_COUNT 1 4267 4268 /* 4269 ** The interface to the code in fault.c used for identifying "benign" 4270 ** malloc failures. This is only present if SQLITE_UNTESTABLE 4271 ** is not defined. 4272 */ 4273 #ifndef SQLITE_UNTESTABLE 4274 void sqlite3BeginBenignMalloc(void); 4275 void sqlite3EndBenignMalloc(void); 4276 #else 4277 #define sqlite3BeginBenignMalloc() 4278 #define sqlite3EndBenignMalloc() 4279 #endif 4280 4281 /* 4282 ** Allowed return values from sqlite3FindInIndex() 4283 */ 4284 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 4285 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 4286 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 4287 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 4288 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 4289 /* 4290 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 4291 */ 4292 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 4293 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 4294 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 4295 int sqlite3FindInIndex(Parse *, Expr *, u32, int*, int*); 4296 4297 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 4298 int sqlite3JournalSize(sqlite3_vfs *); 4299 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 4300 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 4301 int sqlite3JournalCreate(sqlite3_file *); 4302 #endif 4303 4304 int sqlite3JournalIsInMemory(sqlite3_file *p); 4305 void sqlite3MemJournalOpen(sqlite3_file *); 4306 4307 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 4308 #if SQLITE_MAX_EXPR_DEPTH>0 4309 int sqlite3SelectExprHeight(Select *); 4310 int sqlite3ExprCheckHeight(Parse*, int); 4311 #else 4312 #define sqlite3SelectExprHeight(x) 0 4313 #define sqlite3ExprCheckHeight(x,y) 4314 #endif 4315 4316 u32 sqlite3Get4byte(const u8*); 4317 void sqlite3Put4byte(u8*, u32); 4318 4319 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 4320 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 4321 void sqlite3ConnectionUnlocked(sqlite3 *db); 4322 void sqlite3ConnectionClosed(sqlite3 *db); 4323 #else 4324 #define sqlite3ConnectionBlocked(x,y) 4325 #define sqlite3ConnectionUnlocked(x) 4326 #define sqlite3ConnectionClosed(x) 4327 #endif 4328 4329 #ifdef SQLITE_DEBUG 4330 void sqlite3ParserTrace(FILE*, char *); 4331 #endif 4332 4333 /* 4334 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 4335 ** sqlite3IoTrace is a pointer to a printf-like routine used to 4336 ** print I/O tracing messages. 4337 */ 4338 #ifdef SQLITE_ENABLE_IOTRACE 4339 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 4340 void sqlite3VdbeIOTraceSql(Vdbe*); 4341 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 4342 #else 4343 # define IOTRACE(A) 4344 # define sqlite3VdbeIOTraceSql(X) 4345 #endif 4346 4347 /* 4348 ** These routines are available for the mem2.c debugging memory allocator 4349 ** only. They are used to verify that different "types" of memory 4350 ** allocations are properly tracked by the system. 4351 ** 4352 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 4353 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 4354 ** a single bit set. 4355 ** 4356 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 4357 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4358 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 4359 ** 4360 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 4361 ** argument match the type set by the previous sqlite3MemdebugSetType(). 4362 ** 4363 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 4364 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 4365 ** it might have been allocated by lookaside, except the allocation was 4366 ** too large or lookaside was already full. It is important to verify 4367 ** that allocations that might have been satisfied by lookaside are not 4368 ** passed back to non-lookaside free() routines. Asserts such as the 4369 ** example above are placed on the non-lookaside free() routines to verify 4370 ** this constraint. 4371 ** 4372 ** All of this is no-op for a production build. It only comes into 4373 ** play when the SQLITE_MEMDEBUG compile-time option is used. 4374 */ 4375 #ifdef SQLITE_MEMDEBUG 4376 void sqlite3MemdebugSetType(void*,u8); 4377 int sqlite3MemdebugHasType(void*,u8); 4378 int sqlite3MemdebugNoType(void*,u8); 4379 #else 4380 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 4381 # define sqlite3MemdebugHasType(X,Y) 1 4382 # define sqlite3MemdebugNoType(X,Y) 1 4383 #endif 4384 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 4385 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 4386 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 4387 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 4388 4389 /* 4390 ** Threading interface 4391 */ 4392 #if SQLITE_MAX_WORKER_THREADS>0 4393 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 4394 int sqlite3ThreadJoin(SQLiteThread*, void**); 4395 #endif 4396 4397 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 4398 int sqlite3DbstatRegister(sqlite3*); 4399 #endif 4400 4401 int sqlite3ExprVectorSize(Expr *pExpr); 4402 int sqlite3ExprIsVector(Expr *pExpr); 4403 Expr *sqlite3VectorFieldSubexpr(Expr*, int); 4404 Expr *sqlite3ExprForVectorField(Parse*,Expr*,int); 4405 void sqlite3VectorErrorMsg(Parse*, Expr*); 4406 4407 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 4408 const char **sqlite3CompileOptions(int *pnOpt); 4409 #endif 4410 4411 #endif /* SQLITEINT_H */ 4412