1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** Include the header file used to customize the compiler options for MSVC. 20 ** This should be done first so that it can successfully prevent spurious 21 ** compiler warnings due to subsequent content in this file and other files 22 ** that are included by this file. 23 */ 24 #include "msvc.h" 25 26 /* 27 ** Special setup for VxWorks 28 */ 29 #include "vxworks.h" 30 31 /* 32 ** These #defines should enable >2GB file support on POSIX if the 33 ** underlying operating system supports it. If the OS lacks 34 ** large file support, or if the OS is windows, these should be no-ops. 35 ** 36 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 37 ** system #includes. Hence, this block of code must be the very first 38 ** code in all source files. 39 ** 40 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 41 ** on the compiler command line. This is necessary if you are compiling 42 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 43 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 44 ** without this option, LFS is enable. But LFS does not exist in the kernel 45 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 46 ** portability you should omit LFS. 47 ** 48 ** The previous paragraph was written in 2005. (This paragraph is written 49 ** on 2008-11-28.) These days, all Linux kernels support large files, so 50 ** you should probably leave LFS enabled. But some embedded platforms might 51 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 52 ** 53 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 54 */ 55 #ifndef SQLITE_DISABLE_LFS 56 # define _LARGE_FILE 1 57 # ifndef _FILE_OFFSET_BITS 58 # define _FILE_OFFSET_BITS 64 59 # endif 60 # define _LARGEFILE_SOURCE 1 61 #endif 62 63 /* Needed for various definitions... */ 64 #if defined(__GNUC__) && !defined(_GNU_SOURCE) 65 # define _GNU_SOURCE 66 #endif 67 68 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) 69 # define _BSD_SOURCE 70 #endif 71 72 /* 73 ** For MinGW, check to see if we can include the header file containing its 74 ** version information, among other things. Normally, this internal MinGW 75 ** header file would [only] be included automatically by other MinGW header 76 ** files; however, the contained version information is now required by this 77 ** header file to work around binary compatibility issues (see below) and 78 ** this is the only known way to reliably obtain it. This entire #if block 79 ** would be completely unnecessary if there was any other way of detecting 80 ** MinGW via their preprocessor (e.g. if they customized their GCC to define 81 ** some MinGW-specific macros). When compiling for MinGW, either the 82 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be 83 ** defined; otherwise, detection of conditions specific to MinGW will be 84 ** disabled. 85 */ 86 #if defined(_HAVE_MINGW_H) 87 # include "mingw.h" 88 #elif defined(_HAVE__MINGW_H) 89 # include "_mingw.h" 90 #endif 91 92 /* 93 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T 94 ** define is required to maintain binary compatibility with the MSVC runtime 95 ** library in use (e.g. for Windows XP). 96 */ 97 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ 98 defined(_WIN32) && !defined(_WIN64) && \ 99 defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ 100 defined(__MSVCRT__) 101 # define _USE_32BIT_TIME_T 102 #endif 103 104 /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear 105 ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for 106 ** MinGW. 107 */ 108 #include "sqlite3.h" 109 110 /* 111 ** Include the configuration header output by 'configure' if we're using the 112 ** autoconf-based build 113 */ 114 #ifdef _HAVE_SQLITE_CONFIG_H 115 #include "config.h" 116 #endif 117 118 #include "sqliteLimit.h" 119 120 /* Disable nuisance warnings on Borland compilers */ 121 #if defined(__BORLANDC__) 122 #pragma warn -rch /* unreachable code */ 123 #pragma warn -ccc /* Condition is always true or false */ 124 #pragma warn -aus /* Assigned value is never used */ 125 #pragma warn -csu /* Comparing signed and unsigned */ 126 #pragma warn -spa /* Suspicious pointer arithmetic */ 127 #endif 128 129 /* 130 ** Include standard header files as necessary 131 */ 132 #ifdef HAVE_STDINT_H 133 #include <stdint.h> 134 #endif 135 #ifdef HAVE_INTTYPES_H 136 #include <inttypes.h> 137 #endif 138 139 /* 140 ** The following macros are used to cast pointers to integers and 141 ** integers to pointers. The way you do this varies from one compiler 142 ** to the next, so we have developed the following set of #if statements 143 ** to generate appropriate macros for a wide range of compilers. 144 ** 145 ** The correct "ANSI" way to do this is to use the intptr_t type. 146 ** Unfortunately, that typedef is not available on all compilers, or 147 ** if it is available, it requires an #include of specific headers 148 ** that vary from one machine to the next. 149 ** 150 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 151 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 152 ** So we have to define the macros in different ways depending on the 153 ** compiler. 154 */ 155 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 156 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 157 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 158 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 159 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 160 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 161 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 162 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 163 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 164 #else /* Generates a warning - but it always works */ 165 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 166 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 167 #endif 168 169 /* 170 ** A macro to hint to the compiler that a function should not be 171 ** inlined. 172 */ 173 #if defined(__GNUC__) 174 # define SQLITE_NOINLINE __attribute__((noinline)) 175 #elif defined(_MSC_VER) && _MSC_VER>=1310 176 # define SQLITE_NOINLINE __declspec(noinline) 177 #else 178 # define SQLITE_NOINLINE 179 #endif 180 181 /* 182 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 183 ** 0 means mutexes are permanently disable and the library is never 184 ** threadsafe. 1 means the library is serialized which is the highest 185 ** level of threadsafety. 2 means the library is multithreaded - multiple 186 ** threads can use SQLite as long as no two threads try to use the same 187 ** database connection at the same time. 188 ** 189 ** Older versions of SQLite used an optional THREADSAFE macro. 190 ** We support that for legacy. 191 */ 192 #if !defined(SQLITE_THREADSAFE) 193 # if defined(THREADSAFE) 194 # define SQLITE_THREADSAFE THREADSAFE 195 # else 196 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 197 # endif 198 #endif 199 200 /* 201 ** Powersafe overwrite is on by default. But can be turned off using 202 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. 203 */ 204 #ifndef SQLITE_POWERSAFE_OVERWRITE 205 # define SQLITE_POWERSAFE_OVERWRITE 1 206 #endif 207 208 /* 209 ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by 210 ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in 211 ** which case memory allocation statistics are disabled by default. 212 */ 213 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 214 # define SQLITE_DEFAULT_MEMSTATUS 1 215 #endif 216 217 /* 218 ** Exactly one of the following macros must be defined in order to 219 ** specify which memory allocation subsystem to use. 220 ** 221 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 222 ** SQLITE_WIN32_MALLOC // Use Win32 native heap API 223 ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails 224 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 225 ** 226 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the 227 ** assert() macro is enabled, each call into the Win32 native heap subsystem 228 ** will cause HeapValidate to be called. If heap validation should fail, an 229 ** assertion will be triggered. 230 ** 231 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 232 ** the default. 233 */ 234 #if defined(SQLITE_SYSTEM_MALLOC) \ 235 + defined(SQLITE_WIN32_MALLOC) \ 236 + defined(SQLITE_ZERO_MALLOC) \ 237 + defined(SQLITE_MEMDEBUG)>1 238 # error "Two or more of the following compile-time configuration options\ 239 are defined but at most one is allowed:\ 240 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\ 241 SQLITE_ZERO_MALLOC" 242 #endif 243 #if defined(SQLITE_SYSTEM_MALLOC) \ 244 + defined(SQLITE_WIN32_MALLOC) \ 245 + defined(SQLITE_ZERO_MALLOC) \ 246 + defined(SQLITE_MEMDEBUG)==0 247 # define SQLITE_SYSTEM_MALLOC 1 248 #endif 249 250 /* 251 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 252 ** sizes of memory allocations below this value where possible. 253 */ 254 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 255 # define SQLITE_MALLOC_SOFT_LIMIT 1024 256 #endif 257 258 /* 259 ** We need to define _XOPEN_SOURCE as follows in order to enable 260 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD. 261 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit 262 ** it. 263 */ 264 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) 265 # define _XOPEN_SOURCE 600 266 #endif 267 268 /* 269 ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that 270 ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, 271 ** make it true by defining or undefining NDEBUG. 272 ** 273 ** Setting NDEBUG makes the code smaller and faster by disabling the 274 ** assert() statements in the code. So we want the default action 275 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG 276 ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out 277 ** feature. 278 */ 279 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 280 # define NDEBUG 1 281 #endif 282 #if defined(NDEBUG) && defined(SQLITE_DEBUG) 283 # undef NDEBUG 284 #endif 285 286 /* 287 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on. 288 */ 289 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG) 290 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1 291 #endif 292 293 /* 294 ** The testcase() macro is used to aid in coverage testing. When 295 ** doing coverage testing, the condition inside the argument to 296 ** testcase() must be evaluated both true and false in order to 297 ** get full branch coverage. The testcase() macro is inserted 298 ** to help ensure adequate test coverage in places where simple 299 ** condition/decision coverage is inadequate. For example, testcase() 300 ** can be used to make sure boundary values are tested. For 301 ** bitmask tests, testcase() can be used to make sure each bit 302 ** is significant and used at least once. On switch statements 303 ** where multiple cases go to the same block of code, testcase() 304 ** can insure that all cases are evaluated. 305 ** 306 */ 307 #ifdef SQLITE_COVERAGE_TEST 308 void sqlite3Coverage(int); 309 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 310 #else 311 # define testcase(X) 312 #endif 313 314 /* 315 ** The TESTONLY macro is used to enclose variable declarations or 316 ** other bits of code that are needed to support the arguments 317 ** within testcase() and assert() macros. 318 */ 319 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 320 # define TESTONLY(X) X 321 #else 322 # define TESTONLY(X) 323 #endif 324 325 /* 326 ** Sometimes we need a small amount of code such as a variable initialization 327 ** to setup for a later assert() statement. We do not want this code to 328 ** appear when assert() is disabled. The following macro is therefore 329 ** used to contain that setup code. The "VVA" acronym stands for 330 ** "Verification, Validation, and Accreditation". In other words, the 331 ** code within VVA_ONLY() will only run during verification processes. 332 */ 333 #ifndef NDEBUG 334 # define VVA_ONLY(X) X 335 #else 336 # define VVA_ONLY(X) 337 #endif 338 339 /* 340 ** The ALWAYS and NEVER macros surround boolean expressions which 341 ** are intended to always be true or false, respectively. Such 342 ** expressions could be omitted from the code completely. But they 343 ** are included in a few cases in order to enhance the resilience 344 ** of SQLite to unexpected behavior - to make the code "self-healing" 345 ** or "ductile" rather than being "brittle" and crashing at the first 346 ** hint of unplanned behavior. 347 ** 348 ** In other words, ALWAYS and NEVER are added for defensive code. 349 ** 350 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 351 ** be true and false so that the unreachable code they specify will 352 ** not be counted as untested code. 353 */ 354 #if defined(SQLITE_COVERAGE_TEST) 355 # define ALWAYS(X) (1) 356 # define NEVER(X) (0) 357 #elif !defined(NDEBUG) 358 # define ALWAYS(X) ((X)?1:(assert(0),0)) 359 # define NEVER(X) ((X)?(assert(0),1):0) 360 #else 361 # define ALWAYS(X) (X) 362 # define NEVER(X) (X) 363 #endif 364 365 /* 366 ** Declarations used for tracing the operating system interfaces. 367 */ 368 #if defined(SQLITE_FORCE_OS_TRACE) || defined(SQLITE_TEST) || \ 369 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 370 extern int sqlite3OSTrace; 371 # define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X 372 # define SQLITE_HAVE_OS_TRACE 373 #else 374 # define OSTRACE(X) 375 # undef SQLITE_HAVE_OS_TRACE 376 #endif 377 378 /* 379 ** Is the sqlite3ErrName() function needed in the build? Currently, 380 ** it is needed by "mutex_w32.c" (when debugging), "os_win.c" (when 381 ** OSTRACE is enabled), and by several "test*.c" files (which are 382 ** compiled using SQLITE_TEST). 383 */ 384 #if defined(SQLITE_HAVE_OS_TRACE) || defined(SQLITE_TEST) || \ 385 (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) 386 # define SQLITE_NEED_ERR_NAME 387 #else 388 # undef SQLITE_NEED_ERR_NAME 389 #endif 390 391 /* 392 ** Return true (non-zero) if the input is an integer that is too large 393 ** to fit in 32-bits. This macro is used inside of various testcase() 394 ** macros to verify that we have tested SQLite for large-file support. 395 */ 396 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 397 398 /* 399 ** The macro unlikely() is a hint that surrounds a boolean 400 ** expression that is usually false. Macro likely() surrounds 401 ** a boolean expression that is usually true. These hints could, 402 ** in theory, be used by the compiler to generate better code, but 403 ** currently they are just comments for human readers. 404 */ 405 #define likely(X) (X) 406 #define unlikely(X) (X) 407 408 #include "hash.h" 409 #include "parse.h" 410 #include <stdio.h> 411 #include <stdlib.h> 412 #include <string.h> 413 #include <assert.h> 414 #include <stddef.h> 415 416 /* 417 ** If compiling for a processor that lacks floating point support, 418 ** substitute integer for floating-point 419 */ 420 #ifdef SQLITE_OMIT_FLOATING_POINT 421 # define double sqlite_int64 422 # define float sqlite_int64 423 # define LONGDOUBLE_TYPE sqlite_int64 424 # ifndef SQLITE_BIG_DBL 425 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 426 # endif 427 # define SQLITE_OMIT_DATETIME_FUNCS 1 428 # define SQLITE_OMIT_TRACE 1 429 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 430 # undef SQLITE_HAVE_ISNAN 431 #endif 432 #ifndef SQLITE_BIG_DBL 433 # define SQLITE_BIG_DBL (1e99) 434 #endif 435 436 /* 437 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 438 ** afterward. Having this macro allows us to cause the C compiler 439 ** to omit code used by TEMP tables without messy #ifndef statements. 440 */ 441 #ifdef SQLITE_OMIT_TEMPDB 442 #define OMIT_TEMPDB 1 443 #else 444 #define OMIT_TEMPDB 0 445 #endif 446 447 /* 448 ** The "file format" number is an integer that is incremented whenever 449 ** the VDBE-level file format changes. The following macros define the 450 ** the default file format for new databases and the maximum file format 451 ** that the library can read. 452 */ 453 #define SQLITE_MAX_FILE_FORMAT 4 454 #ifndef SQLITE_DEFAULT_FILE_FORMAT 455 # define SQLITE_DEFAULT_FILE_FORMAT 4 456 #endif 457 458 /* 459 ** Determine whether triggers are recursive by default. This can be 460 ** changed at run-time using a pragma. 461 */ 462 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 463 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 464 #endif 465 466 /* 467 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 468 ** on the command-line 469 */ 470 #ifndef SQLITE_TEMP_STORE 471 # define SQLITE_TEMP_STORE 1 472 # define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */ 473 #endif 474 475 /* 476 ** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if 477 ** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it 478 ** to zero. 479 */ 480 #if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0 481 # undef SQLITE_MAX_WORKER_THREADS 482 # define SQLITE_MAX_WORKER_THREADS 0 483 #endif 484 #ifndef SQLITE_MAX_WORKER_THREADS 485 # define SQLITE_MAX_WORKER_THREADS 8 486 #endif 487 #ifndef SQLITE_DEFAULT_WORKER_THREADS 488 # define SQLITE_DEFAULT_WORKER_THREADS 0 489 #endif 490 #if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS 491 # undef SQLITE_MAX_WORKER_THREADS 492 # define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS 493 #endif 494 495 496 /* 497 ** GCC does not define the offsetof() macro so we'll have to do it 498 ** ourselves. 499 */ 500 #ifndef offsetof 501 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 502 #endif 503 504 /* 505 ** Macros to compute minimum and maximum of two numbers. 506 */ 507 #define MIN(A,B) ((A)<(B)?(A):(B)) 508 #define MAX(A,B) ((A)>(B)?(A):(B)) 509 510 /* 511 ** Swap two objects of type TYPE. 512 */ 513 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 514 515 /* 516 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 517 ** not, there are still machines out there that use EBCDIC.) 518 */ 519 #if 'A' == '\301' 520 # define SQLITE_EBCDIC 1 521 #else 522 # define SQLITE_ASCII 1 523 #endif 524 525 /* 526 ** Integers of known sizes. These typedefs might change for architectures 527 ** where the sizes very. Preprocessor macros are available so that the 528 ** types can be conveniently redefined at compile-type. Like this: 529 ** 530 ** cc '-DUINTPTR_TYPE=long long int' ... 531 */ 532 #ifndef UINT32_TYPE 533 # ifdef HAVE_UINT32_T 534 # define UINT32_TYPE uint32_t 535 # else 536 # define UINT32_TYPE unsigned int 537 # endif 538 #endif 539 #ifndef UINT16_TYPE 540 # ifdef HAVE_UINT16_T 541 # define UINT16_TYPE uint16_t 542 # else 543 # define UINT16_TYPE unsigned short int 544 # endif 545 #endif 546 #ifndef INT16_TYPE 547 # ifdef HAVE_INT16_T 548 # define INT16_TYPE int16_t 549 # else 550 # define INT16_TYPE short int 551 # endif 552 #endif 553 #ifndef UINT8_TYPE 554 # ifdef HAVE_UINT8_T 555 # define UINT8_TYPE uint8_t 556 # else 557 # define UINT8_TYPE unsigned char 558 # endif 559 #endif 560 #ifndef INT8_TYPE 561 # ifdef HAVE_INT8_T 562 # define INT8_TYPE int8_t 563 # else 564 # define INT8_TYPE signed char 565 # endif 566 #endif 567 #ifndef LONGDOUBLE_TYPE 568 # define LONGDOUBLE_TYPE long double 569 #endif 570 typedef sqlite_int64 i64; /* 8-byte signed integer */ 571 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 572 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 573 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 574 typedef INT16_TYPE i16; /* 2-byte signed integer */ 575 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 576 typedef INT8_TYPE i8; /* 1-byte signed integer */ 577 578 /* 579 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 580 ** that can be stored in a u32 without loss of data. The value 581 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 582 ** have to specify the value in the less intuitive manner shown: 583 */ 584 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 585 586 /* 587 ** The datatype used to store estimates of the number of rows in a 588 ** table or index. This is an unsigned integer type. For 99.9% of 589 ** the world, a 32-bit integer is sufficient. But a 64-bit integer 590 ** can be used at compile-time if desired. 591 */ 592 #ifdef SQLITE_64BIT_STATS 593 typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */ 594 #else 595 typedef u32 tRowcnt; /* 32-bit is the default */ 596 #endif 597 598 /* 599 ** Estimated quantities used for query planning are stored as 16-bit 600 ** logarithms. For quantity X, the value stored is 10*log2(X). This 601 ** gives a possible range of values of approximately 1.0e986 to 1e-986. 602 ** But the allowed values are "grainy". Not every value is representable. 603 ** For example, quantities 16 and 17 are both represented by a LogEst 604 ** of 40. However, since LogEst quantities are suppose to be estimates, 605 ** not exact values, this imprecision is not a problem. 606 ** 607 ** "LogEst" is short for "Logarithmic Estimate". 608 ** 609 ** Examples: 610 ** 1 -> 0 20 -> 43 10000 -> 132 611 ** 2 -> 10 25 -> 46 25000 -> 146 612 ** 3 -> 16 100 -> 66 1000000 -> 199 613 ** 4 -> 20 1000 -> 99 1048576 -> 200 614 ** 10 -> 33 1024 -> 100 4294967296 -> 320 615 ** 616 ** The LogEst can be negative to indicate fractional values. 617 ** Examples: 618 ** 619 ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 620 */ 621 typedef INT16_TYPE LogEst; 622 623 /* 624 ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer 625 */ 626 #ifndef SQLITE_PTRSIZE 627 # if defined(__SIZEOF_POINTER__) 628 # define SQLITE_PTRSIZE __SIZEOF_POINTER__ 629 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 630 defined(_M_ARM) || defined(__arm__) || defined(__x86) 631 # define SQLITE_PTRSIZE 4 632 # else 633 # define SQLITE_PTRSIZE 8 634 # endif 635 #endif 636 637 /* 638 ** Macros to determine whether the machine is big or little endian, 639 ** and whether or not that determination is run-time or compile-time. 640 ** 641 ** For best performance, an attempt is made to guess at the byte-order 642 ** using C-preprocessor macros. If that is unsuccessful, or if 643 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined 644 ** at run-time. 645 */ 646 #ifdef SQLITE_AMALGAMATION 647 const int sqlite3one = 1; 648 #else 649 extern const int sqlite3one; 650 #endif 651 #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ 652 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 653 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ 654 defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) 655 # define SQLITE_BYTEORDER 1234 656 # define SQLITE_BIGENDIAN 0 657 # define SQLITE_LITTLEENDIAN 1 658 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 659 #endif 660 #if (defined(sparc) || defined(__ppc__)) \ 661 && !defined(SQLITE_RUNTIME_BYTEORDER) 662 # define SQLITE_BYTEORDER 4321 663 # define SQLITE_BIGENDIAN 1 664 # define SQLITE_LITTLEENDIAN 0 665 # define SQLITE_UTF16NATIVE SQLITE_UTF16BE 666 #endif 667 #if !defined(SQLITE_BYTEORDER) 668 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ 669 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 670 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 671 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 672 #endif 673 674 /* 675 ** Constants for the largest and smallest possible 64-bit signed integers. 676 ** These macros are designed to work correctly on both 32-bit and 64-bit 677 ** compilers. 678 */ 679 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 680 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 681 682 /* 683 ** Round up a number to the next larger multiple of 8. This is used 684 ** to force 8-byte alignment on 64-bit architectures. 685 */ 686 #define ROUND8(x) (((x)+7)&~7) 687 688 /* 689 ** Round down to the nearest multiple of 8 690 */ 691 #define ROUNDDOWN8(x) ((x)&~7) 692 693 /* 694 ** Assert that the pointer X is aligned to an 8-byte boundary. This 695 ** macro is used only within assert() to verify that the code gets 696 ** all alignment restrictions correct. 697 ** 698 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 699 ** underlying malloc() implementation might return us 4-byte aligned 700 ** pointers. In that case, only verify 4-byte alignment. 701 */ 702 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 703 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 704 #else 705 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 706 #endif 707 708 /* 709 ** Disable MMAP on platforms where it is known to not work 710 */ 711 #if defined(__OpenBSD__) || defined(__QNXNTO__) 712 # undef SQLITE_MAX_MMAP_SIZE 713 # define SQLITE_MAX_MMAP_SIZE 0 714 #endif 715 716 /* 717 ** Default maximum size of memory used by memory-mapped I/O in the VFS 718 */ 719 #ifdef __APPLE__ 720 # include <TargetConditionals.h> 721 # if TARGET_OS_IPHONE 722 # undef SQLITE_MAX_MMAP_SIZE 723 # define SQLITE_MAX_MMAP_SIZE 0 724 # endif 725 #endif 726 #ifndef SQLITE_MAX_MMAP_SIZE 727 # if defined(__linux__) \ 728 || defined(_WIN32) \ 729 || (defined(__APPLE__) && defined(__MACH__)) \ 730 || defined(__sun) 731 # define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */ 732 # else 733 # define SQLITE_MAX_MMAP_SIZE 0 734 # endif 735 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */ 736 #endif 737 738 /* 739 ** The default MMAP_SIZE is zero on all platforms. Or, even if a larger 740 ** default MMAP_SIZE is specified at compile-time, make sure that it does 741 ** not exceed the maximum mmap size. 742 */ 743 #ifndef SQLITE_DEFAULT_MMAP_SIZE 744 # define SQLITE_DEFAULT_MMAP_SIZE 0 745 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */ 746 #endif 747 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE 748 # undef SQLITE_DEFAULT_MMAP_SIZE 749 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE 750 #endif 751 752 /* 753 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined. 754 ** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also 755 ** define SQLITE_ENABLE_STAT3_OR_STAT4 756 */ 757 #ifdef SQLITE_ENABLE_STAT4 758 # undef SQLITE_ENABLE_STAT3 759 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 760 #elif SQLITE_ENABLE_STAT3 761 # define SQLITE_ENABLE_STAT3_OR_STAT4 1 762 #elif SQLITE_ENABLE_STAT3_OR_STAT4 763 # undef SQLITE_ENABLE_STAT3_OR_STAT4 764 #endif 765 766 /* 767 ** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not 768 ** the Select query generator tracing logic is turned on. 769 */ 770 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE) 771 # define SELECTTRACE_ENABLED 1 772 #else 773 # define SELECTTRACE_ENABLED 0 774 #endif 775 776 /* 777 ** An instance of the following structure is used to store the busy-handler 778 ** callback for a given sqlite handle. 779 ** 780 ** The sqlite.busyHandler member of the sqlite struct contains the busy 781 ** callback for the database handle. Each pager opened via the sqlite 782 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 783 ** callback is currently invoked only from within pager.c. 784 */ 785 typedef struct BusyHandler BusyHandler; 786 struct BusyHandler { 787 int (*xFunc)(void *,int); /* The busy callback */ 788 void *pArg; /* First arg to busy callback */ 789 int nBusy; /* Incremented with each busy call */ 790 }; 791 792 /* 793 ** Name of the master database table. The master database table 794 ** is a special table that holds the names and attributes of all 795 ** user tables and indices. 796 */ 797 #define MASTER_NAME "sqlite_master" 798 #define TEMP_MASTER_NAME "sqlite_temp_master" 799 800 /* 801 ** The root-page of the master database table. 802 */ 803 #define MASTER_ROOT 1 804 805 /* 806 ** The name of the schema table. 807 */ 808 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 809 810 /* 811 ** A convenience macro that returns the number of elements in 812 ** an array. 813 */ 814 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 815 816 /* 817 ** Determine if the argument is a power of two 818 */ 819 #define IsPowerOfTwo(X) (((X)&((X)-1))==0) 820 821 /* 822 ** The following value as a destructor means to use sqlite3DbFree(). 823 ** The sqlite3DbFree() routine requires two parameters instead of the 824 ** one parameter that destructors normally want. So we have to introduce 825 ** this magic value that the code knows to handle differently. Any 826 ** pointer will work here as long as it is distinct from SQLITE_STATIC 827 ** and SQLITE_TRANSIENT. 828 */ 829 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize) 830 831 /* 832 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 833 ** not support Writable Static Data (WSD) such as global and static variables. 834 ** All variables must either be on the stack or dynamically allocated from 835 ** the heap. When WSD is unsupported, the variable declarations scattered 836 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 837 ** macro is used for this purpose. And instead of referencing the variable 838 ** directly, we use its constant as a key to lookup the run-time allocated 839 ** buffer that holds real variable. The constant is also the initializer 840 ** for the run-time allocated buffer. 841 ** 842 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 843 ** macros become no-ops and have zero performance impact. 844 */ 845 #ifdef SQLITE_OMIT_WSD 846 #define SQLITE_WSD const 847 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 848 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 849 int sqlite3_wsd_init(int N, int J); 850 void *sqlite3_wsd_find(void *K, int L); 851 #else 852 #define SQLITE_WSD 853 #define GLOBAL(t,v) v 854 #define sqlite3GlobalConfig sqlite3Config 855 #endif 856 857 /* 858 ** The following macros are used to suppress compiler warnings and to 859 ** make it clear to human readers when a function parameter is deliberately 860 ** left unused within the body of a function. This usually happens when 861 ** a function is called via a function pointer. For example the 862 ** implementation of an SQL aggregate step callback may not use the 863 ** parameter indicating the number of arguments passed to the aggregate, 864 ** if it knows that this is enforced elsewhere. 865 ** 866 ** When a function parameter is not used at all within the body of a function, 867 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 868 ** However, these macros may also be used to suppress warnings related to 869 ** parameters that may or may not be used depending on compilation options. 870 ** For example those parameters only used in assert() statements. In these 871 ** cases the parameters are named as per the usual conventions. 872 */ 873 #define UNUSED_PARAMETER(x) (void)(x) 874 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 875 876 /* 877 ** Forward references to structures 878 */ 879 typedef struct AggInfo AggInfo; 880 typedef struct AuthContext AuthContext; 881 typedef struct AutoincInfo AutoincInfo; 882 typedef struct Bitvec Bitvec; 883 typedef struct CollSeq CollSeq; 884 typedef struct Column Column; 885 typedef struct Db Db; 886 typedef struct Schema Schema; 887 typedef struct Expr Expr; 888 typedef struct ExprList ExprList; 889 typedef struct ExprSpan ExprSpan; 890 typedef struct FKey FKey; 891 typedef struct FuncDestructor FuncDestructor; 892 typedef struct FuncDef FuncDef; 893 typedef struct FuncDefHash FuncDefHash; 894 typedef struct IdList IdList; 895 typedef struct Index Index; 896 typedef struct IndexSample IndexSample; 897 typedef struct KeyClass KeyClass; 898 typedef struct KeyInfo KeyInfo; 899 typedef struct Lookaside Lookaside; 900 typedef struct LookasideSlot LookasideSlot; 901 typedef struct Module Module; 902 typedef struct NameContext NameContext; 903 typedef struct Parse Parse; 904 typedef struct PrintfArguments PrintfArguments; 905 typedef struct RowSet RowSet; 906 typedef struct Savepoint Savepoint; 907 typedef struct Select Select; 908 typedef struct SQLiteThread SQLiteThread; 909 typedef struct SelectDest SelectDest; 910 typedef struct SrcList SrcList; 911 typedef struct StrAccum StrAccum; 912 typedef struct Table Table; 913 typedef struct TableLock TableLock; 914 typedef struct Token Token; 915 typedef struct TreeView TreeView; 916 typedef struct Trigger Trigger; 917 typedef struct TriggerPrg TriggerPrg; 918 typedef struct TriggerStep TriggerStep; 919 typedef struct UnpackedRecord UnpackedRecord; 920 typedef struct VTable VTable; 921 typedef struct VtabCtx VtabCtx; 922 typedef struct Walker Walker; 923 typedef struct WhereInfo WhereInfo; 924 typedef struct With With; 925 926 /* 927 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 928 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 929 ** pointer types (i.e. FuncDef) defined above. 930 */ 931 #include "btree.h" 932 #include "vdbe.h" 933 #include "pager.h" 934 #include "pcache.h" 935 936 #include "os.h" 937 #include "mutex.h" 938 939 940 /* 941 ** Each database file to be accessed by the system is an instance 942 ** of the following structure. There are normally two of these structures 943 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 944 ** aDb[1] is the database file used to hold temporary tables. Additional 945 ** databases may be attached. 946 */ 947 struct Db { 948 char *zName; /* Name of this database */ 949 Btree *pBt; /* The B*Tree structure for this database file */ 950 u8 safety_level; /* How aggressive at syncing data to disk */ 951 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 952 }; 953 954 /* 955 ** An instance of the following structure stores a database schema. 956 ** 957 ** Most Schema objects are associated with a Btree. The exception is 958 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 959 ** In shared cache mode, a single Schema object can be shared by multiple 960 ** Btrees that refer to the same underlying BtShared object. 961 ** 962 ** Schema objects are automatically deallocated when the last Btree that 963 ** references them is destroyed. The TEMP Schema is manually freed by 964 ** sqlite3_close(). 965 * 966 ** A thread must be holding a mutex on the corresponding Btree in order 967 ** to access Schema content. This implies that the thread must also be 968 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 969 ** For a TEMP Schema, only the connection mutex is required. 970 */ 971 struct Schema { 972 int schema_cookie; /* Database schema version number for this file */ 973 int iGeneration; /* Generation counter. Incremented with each change */ 974 Hash tblHash; /* All tables indexed by name */ 975 Hash idxHash; /* All (named) indices indexed by name */ 976 Hash trigHash; /* All triggers indexed by name */ 977 Hash fkeyHash; /* All foreign keys by referenced table name */ 978 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 979 u8 file_format; /* Schema format version for this file */ 980 u8 enc; /* Text encoding used by this database */ 981 u16 schemaFlags; /* Flags associated with this schema */ 982 int cache_size; /* Number of pages to use in the cache */ 983 }; 984 985 /* 986 ** These macros can be used to test, set, or clear bits in the 987 ** Db.pSchema->flags field. 988 */ 989 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) 990 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) 991 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) 992 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) 993 994 /* 995 ** Allowed values for the DB.pSchema->flags field. 996 ** 997 ** The DB_SchemaLoaded flag is set after the database schema has been 998 ** read into internal hash tables. 999 ** 1000 ** DB_UnresetViews means that one or more views have column names that 1001 ** have been filled out. If the schema changes, these column names might 1002 ** changes and so the view will need to be reset. 1003 */ 1004 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 1005 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 1006 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 1007 1008 /* 1009 ** The number of different kinds of things that can be limited 1010 ** using the sqlite3_limit() interface. 1011 */ 1012 #define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1) 1013 1014 /* 1015 ** Lookaside malloc is a set of fixed-size buffers that can be used 1016 ** to satisfy small transient memory allocation requests for objects 1017 ** associated with a particular database connection. The use of 1018 ** lookaside malloc provides a significant performance enhancement 1019 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 1020 ** SQL statements. 1021 ** 1022 ** The Lookaside structure holds configuration information about the 1023 ** lookaside malloc subsystem. Each available memory allocation in 1024 ** the lookaside subsystem is stored on a linked list of LookasideSlot 1025 ** objects. 1026 ** 1027 ** Lookaside allocations are only allowed for objects that are associated 1028 ** with a particular database connection. Hence, schema information cannot 1029 ** be stored in lookaside because in shared cache mode the schema information 1030 ** is shared by multiple database connections. Therefore, while parsing 1031 ** schema information, the Lookaside.bEnabled flag is cleared so that 1032 ** lookaside allocations are not used to construct the schema objects. 1033 */ 1034 struct Lookaside { 1035 u16 sz; /* Size of each buffer in bytes */ 1036 u8 bEnabled; /* False to disable new lookaside allocations */ 1037 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 1038 int nOut; /* Number of buffers currently checked out */ 1039 int mxOut; /* Highwater mark for nOut */ 1040 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 1041 LookasideSlot *pFree; /* List of available buffers */ 1042 void *pStart; /* First byte of available memory space */ 1043 void *pEnd; /* First byte past end of available space */ 1044 }; 1045 struct LookasideSlot { 1046 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 1047 }; 1048 1049 /* 1050 ** A hash table for function definitions. 1051 ** 1052 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 1053 ** Collisions are on the FuncDef.pHash chain. 1054 */ 1055 struct FuncDefHash { 1056 FuncDef *a[23]; /* Hash table for functions */ 1057 }; 1058 1059 #ifdef SQLITE_USER_AUTHENTICATION 1060 /* 1061 ** Information held in the "sqlite3" database connection object and used 1062 ** to manage user authentication. 1063 */ 1064 typedef struct sqlite3_userauth sqlite3_userauth; 1065 struct sqlite3_userauth { 1066 u8 authLevel; /* Current authentication level */ 1067 int nAuthPW; /* Size of the zAuthPW in bytes */ 1068 char *zAuthPW; /* Password used to authenticate */ 1069 char *zAuthUser; /* User name used to authenticate */ 1070 }; 1071 1072 /* Allowed values for sqlite3_userauth.authLevel */ 1073 #define UAUTH_Unknown 0 /* Authentication not yet checked */ 1074 #define UAUTH_Fail 1 /* User authentication failed */ 1075 #define UAUTH_User 2 /* Authenticated as a normal user */ 1076 #define UAUTH_Admin 3 /* Authenticated as an administrator */ 1077 1078 /* Functions used only by user authorization logic */ 1079 int sqlite3UserAuthTable(const char*); 1080 int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); 1081 void sqlite3UserAuthInit(sqlite3*); 1082 void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); 1083 1084 #endif /* SQLITE_USER_AUTHENTICATION */ 1085 1086 /* 1087 ** typedef for the authorization callback function. 1088 */ 1089 #ifdef SQLITE_USER_AUTHENTICATION 1090 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1091 const char*, const char*); 1092 #else 1093 typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, 1094 const char*); 1095 #endif 1096 1097 1098 /* 1099 ** Each database connection is an instance of the following structure. 1100 */ 1101 struct sqlite3 { 1102 sqlite3_vfs *pVfs; /* OS Interface */ 1103 struct Vdbe *pVdbe; /* List of active virtual machines */ 1104 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 1105 sqlite3_mutex *mutex; /* Connection mutex */ 1106 Db *aDb; /* All backends */ 1107 int nDb; /* Number of backends currently in use */ 1108 int flags; /* Miscellaneous flags. See below */ 1109 i64 lastRowid; /* ROWID of most recent insert (see above) */ 1110 i64 szMmap; /* Default mmap_size setting */ 1111 unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 1112 int errCode; /* Most recent error code (SQLITE_*) */ 1113 int errMask; /* & result codes with this before returning */ 1114 u16 dbOptFlags; /* Flags to enable/disable optimizations */ 1115 u8 enc; /* Text encoding */ 1116 u8 autoCommit; /* The auto-commit flag. */ 1117 u8 temp_store; /* 1: file 2: memory 0: default */ 1118 u8 mallocFailed; /* True if we have seen a malloc failure */ 1119 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 1120 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 1121 u8 suppressErr; /* Do not issue error messages if true */ 1122 u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */ 1123 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 1124 int nextPagesize; /* Pagesize after VACUUM if >0 */ 1125 u32 magic; /* Magic number for detect library misuse */ 1126 int nChange; /* Value returned by sqlite3_changes() */ 1127 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 1128 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 1129 int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */ 1130 struct sqlite3InitInfo { /* Information used during initialization */ 1131 int newTnum; /* Rootpage of table being initialized */ 1132 u8 iDb; /* Which db file is being initialized */ 1133 u8 busy; /* TRUE if currently initializing */ 1134 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 1135 u8 imposterTable; /* Building an imposter table */ 1136 } init; 1137 int nVdbeActive; /* Number of VDBEs currently running */ 1138 int nVdbeRead; /* Number of active VDBEs that read or write */ 1139 int nVdbeWrite; /* Number of active VDBEs that read and write */ 1140 int nVdbeExec; /* Number of nested calls to VdbeExec() */ 1141 int nVDestroy; /* Number of active OP_VDestroy operations */ 1142 int nExtension; /* Number of loaded extensions */ 1143 void **aExtension; /* Array of shared library handles */ 1144 void (*xTrace)(void*,const char*); /* Trace function */ 1145 void *pTraceArg; /* Argument to the trace function */ 1146 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 1147 void *pProfileArg; /* Argument to profile function */ 1148 void *pCommitArg; /* Argument to xCommitCallback() */ 1149 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 1150 void *pRollbackArg; /* Argument to xRollbackCallback() */ 1151 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 1152 void *pUpdateArg; 1153 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 1154 #ifndef SQLITE_OMIT_WAL 1155 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 1156 void *pWalArg; 1157 #endif 1158 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 1159 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 1160 void *pCollNeededArg; 1161 sqlite3_value *pErr; /* Most recent error message */ 1162 union { 1163 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 1164 double notUsed1; /* Spacer */ 1165 } u1; 1166 Lookaside lookaside; /* Lookaside malloc configuration */ 1167 #ifndef SQLITE_OMIT_AUTHORIZATION 1168 sqlite3_xauth xAuth; /* Access authorization function */ 1169 void *pAuthArg; /* 1st argument to the access auth function */ 1170 #endif 1171 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1172 int (*xProgress)(void *); /* The progress callback */ 1173 void *pProgressArg; /* Argument to the progress callback */ 1174 unsigned nProgressOps; /* Number of opcodes for progress callback */ 1175 #endif 1176 #ifndef SQLITE_OMIT_VIRTUALTABLE 1177 int nVTrans; /* Allocated size of aVTrans */ 1178 Hash aModule; /* populated by sqlite3_create_module() */ 1179 VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ 1180 VTable **aVTrans; /* Virtual tables with open transactions */ 1181 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 1182 #endif 1183 FuncDefHash aFunc; /* Hash table of connection functions */ 1184 Hash aCollSeq; /* All collating sequences */ 1185 BusyHandler busyHandler; /* Busy callback */ 1186 Db aDbStatic[2]; /* Static space for the 2 default backends */ 1187 Savepoint *pSavepoint; /* List of active savepoints */ 1188 int busyTimeout; /* Busy handler timeout, in msec */ 1189 int nSavepoint; /* Number of non-transaction savepoints */ 1190 int nStatement; /* Number of nested statement-transactions */ 1191 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 1192 i64 nDeferredImmCons; /* Net deferred immediate constraints */ 1193 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 1194 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 1195 /* The following variables are all protected by the STATIC_MASTER 1196 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 1197 ** 1198 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 1199 ** unlock so that it can proceed. 1200 ** 1201 ** When X.pBlockingConnection==Y, that means that something that X tried 1202 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 1203 ** held by Y. 1204 */ 1205 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 1206 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 1207 void *pUnlockArg; /* Argument to xUnlockNotify */ 1208 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 1209 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 1210 #endif 1211 #ifdef SQLITE_USER_AUTHENTICATION 1212 sqlite3_userauth auth; /* User authentication information */ 1213 #endif 1214 }; 1215 1216 /* 1217 ** A macro to discover the encoding of a database. 1218 */ 1219 #define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc) 1220 #define ENC(db) ((db)->enc) 1221 1222 /* 1223 ** Possible values for the sqlite3.flags. 1224 */ 1225 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 1226 #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ 1227 #define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */ 1228 #define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */ 1229 #define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */ 1230 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 1231 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 1232 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 1233 /* DELETE, or UPDATE and return */ 1234 /* the count using a callback. */ 1235 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 1236 /* result set is empty */ 1237 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 1238 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 1239 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 1240 #define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */ 1241 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 1242 #define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */ 1243 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 1244 #define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */ 1245 #define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */ 1246 #define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */ 1247 #define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */ 1248 #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ 1249 #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ 1250 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 1251 #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ 1252 #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ 1253 #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ 1254 #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ 1255 #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ 1256 1257 1258 /* 1259 ** Bits of the sqlite3.dbOptFlags field that are used by the 1260 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to 1261 ** selectively disable various optimizations. 1262 */ 1263 #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ 1264 #define SQLITE_ColumnCache 0x0002 /* Column cache */ 1265 #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ 1266 #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ 1267 /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ 1268 #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ 1269 #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ 1270 #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ 1271 #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ 1272 #define SQLITE_Transitive 0x0200 /* Transitive constraints */ 1273 #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ 1274 #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ 1275 #define SQLITE_AllOpts 0xffff /* All optimizations */ 1276 1277 /* 1278 ** Macros for testing whether or not optimizations are enabled or disabled. 1279 */ 1280 #ifndef SQLITE_OMIT_BUILTIN_TEST 1281 #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) 1282 #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) 1283 #else 1284 #define OptimizationDisabled(db, mask) 0 1285 #define OptimizationEnabled(db, mask) 1 1286 #endif 1287 1288 /* 1289 ** Return true if it OK to factor constant expressions into the initialization 1290 ** code. The argument is a Parse object for the code generator. 1291 */ 1292 #define ConstFactorOk(P) ((P)->okConstFactor) 1293 1294 /* 1295 ** Possible values for the sqlite.magic field. 1296 ** The numbers are obtained at random and have no special meaning, other 1297 ** than being distinct from one another. 1298 */ 1299 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 1300 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 1301 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 1302 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 1303 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 1304 #define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */ 1305 1306 /* 1307 ** Each SQL function is defined by an instance of the following 1308 ** structure. A pointer to this structure is stored in the sqlite.aFunc 1309 ** hash table. When multiple functions have the same name, the hash table 1310 ** points to a linked list of these structures. 1311 */ 1312 struct FuncDef { 1313 i16 nArg; /* Number of arguments. -1 means unlimited */ 1314 u16 funcFlags; /* Some combination of SQLITE_FUNC_* */ 1315 void *pUserData; /* User data parameter */ 1316 FuncDef *pNext; /* Next function with same name */ 1317 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 1318 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 1319 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 1320 char *zName; /* SQL name of the function. */ 1321 FuncDef *pHash; /* Next with a different name but the same hash */ 1322 FuncDestructor *pDestructor; /* Reference counted destructor function */ 1323 }; 1324 1325 /* 1326 ** This structure encapsulates a user-function destructor callback (as 1327 ** configured using create_function_v2()) and a reference counter. When 1328 ** create_function_v2() is called to create a function with a destructor, 1329 ** a single object of this type is allocated. FuncDestructor.nRef is set to 1330 ** the number of FuncDef objects created (either 1 or 3, depending on whether 1331 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 1332 ** member of each of the new FuncDef objects is set to point to the allocated 1333 ** FuncDestructor. 1334 ** 1335 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1336 ** count on this object is decremented. When it reaches 0, the destructor 1337 ** is invoked and the FuncDestructor structure freed. 1338 */ 1339 struct FuncDestructor { 1340 int nRef; 1341 void (*xDestroy)(void *); 1342 void *pUserData; 1343 }; 1344 1345 /* 1346 ** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF 1347 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There 1348 ** are assert() statements in the code to verify this. 1349 */ 1350 #define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ 1351 #define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */ 1352 #define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */ 1353 #define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */ 1354 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ 1355 #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ 1356 #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ 1357 #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ 1358 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ 1359 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ 1360 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ 1361 #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ 1362 1363 /* 1364 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1365 ** used to create the initializers for the FuncDef structures. 1366 ** 1367 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1368 ** Used to create a scalar function definition of a function zName 1369 ** implemented by C function xFunc that accepts nArg arguments. The 1370 ** value passed as iArg is cast to a (void*) and made available 1371 ** as the user-data (sqlite3_user_data()) for the function. If 1372 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1373 ** 1374 ** VFUNCTION(zName, nArg, iArg, bNC, xFunc) 1375 ** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag. 1376 ** 1377 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1378 ** Used to create an aggregate function definition implemented by 1379 ** the C functions xStep and xFinal. The first four parameters 1380 ** are interpreted in the same way as the first 4 parameters to 1381 ** FUNCTION(). 1382 ** 1383 ** LIKEFUNC(zName, nArg, pArg, flags) 1384 ** Used to create a scalar function definition of a function zName 1385 ** that accepts nArg arguments and is implemented by a call to C 1386 ** function likeFunc. Argument pArg is cast to a (void *) and made 1387 ** available as the function user-data (sqlite3_user_data()). The 1388 ** FuncDef.flags variable is set to the value passed as the flags 1389 ** parameter. 1390 */ 1391 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1392 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1393 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1394 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1395 {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1396 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1397 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \ 1398 {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\ 1399 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1400 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1401 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ 1402 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1403 #define LIKEFUNC(zName, nArg, arg, flags) \ 1404 {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ 1405 (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1406 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1407 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ 1408 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1409 #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ 1410 {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ 1411 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1412 1413 /* 1414 ** All current savepoints are stored in a linked list starting at 1415 ** sqlite3.pSavepoint. The first element in the list is the most recently 1416 ** opened savepoint. Savepoints are added to the list by the vdbe 1417 ** OP_Savepoint instruction. 1418 */ 1419 struct Savepoint { 1420 char *zName; /* Savepoint name (nul-terminated) */ 1421 i64 nDeferredCons; /* Number of deferred fk violations */ 1422 i64 nDeferredImmCons; /* Number of deferred imm fk. */ 1423 Savepoint *pNext; /* Parent savepoint (if any) */ 1424 }; 1425 1426 /* 1427 ** The following are used as the second parameter to sqlite3Savepoint(), 1428 ** and as the P1 argument to the OP_Savepoint instruction. 1429 */ 1430 #define SAVEPOINT_BEGIN 0 1431 #define SAVEPOINT_RELEASE 1 1432 #define SAVEPOINT_ROLLBACK 2 1433 1434 1435 /* 1436 ** Each SQLite module (virtual table definition) is defined by an 1437 ** instance of the following structure, stored in the sqlite3.aModule 1438 ** hash table. 1439 */ 1440 struct Module { 1441 const sqlite3_module *pModule; /* Callback pointers */ 1442 const char *zName; /* Name passed to create_module() */ 1443 void *pAux; /* pAux passed to create_module() */ 1444 void (*xDestroy)(void *); /* Module destructor function */ 1445 }; 1446 1447 /* 1448 ** information about each column of an SQL table is held in an instance 1449 ** of this structure. 1450 */ 1451 struct Column { 1452 char *zName; /* Name of this column */ 1453 Expr *pDflt; /* Default value of this column */ 1454 char *zDflt; /* Original text of the default value */ 1455 char *zType; /* Data type for this column */ 1456 char *zColl; /* Collating sequence. If NULL, use the default */ 1457 u8 notNull; /* An OE_ code for handling a NOT NULL constraint */ 1458 char affinity; /* One of the SQLITE_AFF_... values */ 1459 u8 szEst; /* Estimated size of this column. INT==1 */ 1460 u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */ 1461 }; 1462 1463 /* Allowed values for Column.colFlags: 1464 */ 1465 #define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */ 1466 #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ 1467 1468 /* 1469 ** A "Collating Sequence" is defined by an instance of the following 1470 ** structure. Conceptually, a collating sequence consists of a name and 1471 ** a comparison routine that defines the order of that sequence. 1472 ** 1473 ** If CollSeq.xCmp is NULL, it means that the 1474 ** collating sequence is undefined. Indices built on an undefined 1475 ** collating sequence may not be read or written. 1476 */ 1477 struct CollSeq { 1478 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1479 u8 enc; /* Text encoding handled by xCmp() */ 1480 void *pUser; /* First argument to xCmp() */ 1481 int (*xCmp)(void*,int, const void*, int, const void*); 1482 void (*xDel)(void*); /* Destructor for pUser */ 1483 }; 1484 1485 /* 1486 ** A sort order can be either ASC or DESC. 1487 */ 1488 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1489 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1490 1491 /* 1492 ** Column affinity types. 1493 ** 1494 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1495 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1496 ** the speed a little by numbering the values consecutively. 1497 ** 1498 ** But rather than start with 0 or 1, we begin with 'A'. That way, 1499 ** when multiple affinity types are concatenated into a string and 1500 ** used as the P4 operand, they will be more readable. 1501 ** 1502 ** Note also that the numeric types are grouped together so that testing 1503 ** for a numeric type is a single comparison. And the NONE type is first. 1504 */ 1505 #define SQLITE_AFF_NONE 'A' 1506 #define SQLITE_AFF_TEXT 'B' 1507 #define SQLITE_AFF_NUMERIC 'C' 1508 #define SQLITE_AFF_INTEGER 'D' 1509 #define SQLITE_AFF_REAL 'E' 1510 1511 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1512 1513 /* 1514 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1515 ** affinity value. 1516 */ 1517 #define SQLITE_AFF_MASK 0x47 1518 1519 /* 1520 ** Additional bit values that can be ORed with an affinity without 1521 ** changing the affinity. 1522 ** 1523 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. 1524 ** It causes an assert() to fire if either operand to a comparison 1525 ** operator is NULL. It is added to certain comparison operators to 1526 ** prove that the operands are always NOT NULL. 1527 */ 1528 #define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */ 1529 #define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */ 1530 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1531 #define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */ 1532 1533 /* 1534 ** An object of this type is created for each virtual table present in 1535 ** the database schema. 1536 ** 1537 ** If the database schema is shared, then there is one instance of this 1538 ** structure for each database connection (sqlite3*) that uses the shared 1539 ** schema. This is because each database connection requires its own unique 1540 ** instance of the sqlite3_vtab* handle used to access the virtual table 1541 ** implementation. sqlite3_vtab* handles can not be shared between 1542 ** database connections, even when the rest of the in-memory database 1543 ** schema is shared, as the implementation often stores the database 1544 ** connection handle passed to it via the xConnect() or xCreate() method 1545 ** during initialization internally. This database connection handle may 1546 ** then be used by the virtual table implementation to access real tables 1547 ** within the database. So that they appear as part of the callers 1548 ** transaction, these accesses need to be made via the same database 1549 ** connection as that used to execute SQL operations on the virtual table. 1550 ** 1551 ** All VTable objects that correspond to a single table in a shared 1552 ** database schema are initially stored in a linked-list pointed to by 1553 ** the Table.pVTable member variable of the corresponding Table object. 1554 ** When an sqlite3_prepare() operation is required to access the virtual 1555 ** table, it searches the list for the VTable that corresponds to the 1556 ** database connection doing the preparing so as to use the correct 1557 ** sqlite3_vtab* handle in the compiled query. 1558 ** 1559 ** When an in-memory Table object is deleted (for example when the 1560 ** schema is being reloaded for some reason), the VTable objects are not 1561 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1562 ** immediately. Instead, they are moved from the Table.pVTable list to 1563 ** another linked list headed by the sqlite3.pDisconnect member of the 1564 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1565 ** next time a statement is prepared using said sqlite3*. This is done 1566 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1567 ** Refer to comments above function sqlite3VtabUnlockList() for an 1568 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1569 ** list without holding the corresponding sqlite3.mutex mutex. 1570 ** 1571 ** The memory for objects of this type is always allocated by 1572 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1573 ** the first argument. 1574 */ 1575 struct VTable { 1576 sqlite3 *db; /* Database connection associated with this table */ 1577 Module *pMod; /* Pointer to module implementation */ 1578 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1579 int nRef; /* Number of pointers to this structure */ 1580 u8 bConstraint; /* True if constraints are supported */ 1581 int iSavepoint; /* Depth of the SAVEPOINT stack */ 1582 VTable *pNext; /* Next in linked list (see above) */ 1583 }; 1584 1585 /* 1586 ** The schema for each SQL table and view is represented in memory 1587 ** by an instance of the following structure. 1588 */ 1589 struct Table { 1590 char *zName; /* Name of the table or view */ 1591 Column *aCol; /* Information about each column */ 1592 Index *pIndex; /* List of SQL indexes on this table. */ 1593 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1594 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1595 char *zColAff; /* String defining the affinity of each column */ 1596 #ifndef SQLITE_OMIT_CHECK 1597 ExprList *pCheck; /* All CHECK constraints */ 1598 #endif 1599 int tnum; /* Root BTree page for this table */ 1600 i16 iPKey; /* If not negative, use aCol[iPKey] as the rowid */ 1601 i16 nCol; /* Number of columns in this table */ 1602 u16 nRef; /* Number of pointers to this Table */ 1603 LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */ 1604 LogEst szTabRow; /* Estimated size of each table row in bytes */ 1605 #ifdef SQLITE_ENABLE_COSTMULT 1606 LogEst costMult; /* Cost multiplier for using this table */ 1607 #endif 1608 u8 tabFlags; /* Mask of TF_* values */ 1609 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1610 #ifndef SQLITE_OMIT_ALTERTABLE 1611 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1612 #endif 1613 #ifndef SQLITE_OMIT_VIRTUALTABLE 1614 int nModuleArg; /* Number of arguments to the module */ 1615 char **azModuleArg; /* Text of all module args. [0] is module name */ 1616 VTable *pVTable; /* List of VTable objects. */ 1617 #endif 1618 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1619 Schema *pSchema; /* Schema that contains this table */ 1620 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1621 }; 1622 1623 /* 1624 ** Allowed values for Table.tabFlags. 1625 ** 1626 ** TF_OOOHidden applies to virtual tables that have hidden columns that are 1627 ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING 1628 ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, 1629 ** the TF_OOOHidden attribute would apply in this case. Such tables require 1630 ** special handling during INSERT processing. 1631 */ 1632 #define TF_Readonly 0x01 /* Read-only system table */ 1633 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1634 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1635 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1636 #define TF_Virtual 0x10 /* Is a virtual table */ 1637 #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ 1638 #define TF_OOOHidden 0x40 /* Out-of-Order hidden columns */ 1639 1640 1641 /* 1642 ** Test to see whether or not a table is a virtual table. This is 1643 ** done as a macro so that it will be optimized out when virtual 1644 ** table support is omitted from the build. 1645 */ 1646 #ifndef SQLITE_OMIT_VIRTUALTABLE 1647 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1648 # define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0) 1649 #else 1650 # define IsVirtual(X) 0 1651 # define IsHiddenColumn(X) 0 1652 #endif 1653 1654 /* Does the table have a rowid */ 1655 #define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0) 1656 1657 /* 1658 ** Each foreign key constraint is an instance of the following structure. 1659 ** 1660 ** A foreign key is associated with two tables. The "from" table is 1661 ** the table that contains the REFERENCES clause that creates the foreign 1662 ** key. The "to" table is the table that is named in the REFERENCES clause. 1663 ** Consider this example: 1664 ** 1665 ** CREATE TABLE ex1( 1666 ** a INTEGER PRIMARY KEY, 1667 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1668 ** ); 1669 ** 1670 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1671 ** Equivalent names: 1672 ** 1673 ** from-table == child-table 1674 ** to-table == parent-table 1675 ** 1676 ** Each REFERENCES clause generates an instance of the following structure 1677 ** which is attached to the from-table. The to-table need not exist when 1678 ** the from-table is created. The existence of the to-table is not checked. 1679 ** 1680 ** The list of all parents for child Table X is held at X.pFKey. 1681 ** 1682 ** A list of all children for a table named Z (which might not even exist) 1683 ** is held in Schema.fkeyHash with a hash key of Z. 1684 */ 1685 struct FKey { 1686 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1687 FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */ 1688 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1689 FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */ 1690 FKey *pPrevTo; /* Previous with the same zTo */ 1691 int nCol; /* Number of columns in this key */ 1692 /* EV: R-30323-21917 */ 1693 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1694 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1695 Trigger *apTrigger[2];/* Triggers for aAction[] actions */ 1696 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1697 int iFrom; /* Index of column in pFrom */ 1698 char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */ 1699 } aCol[1]; /* One entry for each of nCol columns */ 1700 }; 1701 1702 /* 1703 ** SQLite supports many different ways to resolve a constraint 1704 ** error. ROLLBACK processing means that a constraint violation 1705 ** causes the operation in process to fail and for the current transaction 1706 ** to be rolled back. ABORT processing means the operation in process 1707 ** fails and any prior changes from that one operation are backed out, 1708 ** but the transaction is not rolled back. FAIL processing means that 1709 ** the operation in progress stops and returns an error code. But prior 1710 ** changes due to the same operation are not backed out and no rollback 1711 ** occurs. IGNORE means that the particular row that caused the constraint 1712 ** error is not inserted or updated. Processing continues and no error 1713 ** is returned. REPLACE means that preexisting database rows that caused 1714 ** a UNIQUE constraint violation are removed so that the new insert or 1715 ** update can proceed. Processing continues and no error is reported. 1716 ** 1717 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1718 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1719 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1720 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1721 ** referenced table row is propagated into the row that holds the 1722 ** foreign key. 1723 ** 1724 ** The following symbolic values are used to record which type 1725 ** of action to take. 1726 */ 1727 #define OE_None 0 /* There is no constraint to check */ 1728 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1729 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1730 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1731 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1732 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1733 1734 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1735 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1736 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1737 #define OE_Cascade 9 /* Cascade the changes */ 1738 1739 #define OE_Default 10 /* Do whatever the default action is */ 1740 1741 1742 /* 1743 ** An instance of the following structure is passed as the first 1744 ** argument to sqlite3VdbeKeyCompare and is used to control the 1745 ** comparison of the two index keys. 1746 ** 1747 ** Note that aSortOrder[] and aColl[] have nField+1 slots. There 1748 ** are nField slots for the columns of an index then one extra slot 1749 ** for the rowid at the end. 1750 */ 1751 struct KeyInfo { 1752 u32 nRef; /* Number of references to this KeyInfo object */ 1753 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1754 u16 nField; /* Number of key columns in the index */ 1755 u16 nXField; /* Number of columns beyond the key columns */ 1756 sqlite3 *db; /* The database connection */ 1757 u8 *aSortOrder; /* Sort order for each column. */ 1758 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1759 }; 1760 1761 /* 1762 ** An instance of the following structure holds information about a 1763 ** single index record that has already been parsed out into individual 1764 ** values. 1765 ** 1766 ** A record is an object that contains one or more fields of data. 1767 ** Records are used to store the content of a table row and to store 1768 ** the key of an index. A blob encoding of a record is created by 1769 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1770 ** OP_Column opcode. 1771 ** 1772 ** This structure holds a record that has already been disassembled 1773 ** into its constituent fields. 1774 ** 1775 ** The r1 and r2 member variables are only used by the optimized comparison 1776 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). 1777 */ 1778 struct UnpackedRecord { 1779 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1780 u16 nField; /* Number of entries in apMem[] */ 1781 i8 default_rc; /* Comparison result if keys are equal */ 1782 u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */ 1783 Mem *aMem; /* Values */ 1784 int r1; /* Value to return if (lhs > rhs) */ 1785 int r2; /* Value to return if (rhs < lhs) */ 1786 }; 1787 1788 1789 /* 1790 ** Each SQL index is represented in memory by an 1791 ** instance of the following structure. 1792 ** 1793 ** The columns of the table that are to be indexed are described 1794 ** by the aiColumn[] field of this structure. For example, suppose 1795 ** we have the following table and index: 1796 ** 1797 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1798 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1799 ** 1800 ** In the Table structure describing Ex1, nCol==3 because there are 1801 ** three columns in the table. In the Index structure describing 1802 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1803 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1804 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1805 ** The second column to be indexed (c1) has an index of 0 in 1806 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1807 ** 1808 ** The Index.onError field determines whether or not the indexed columns 1809 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1810 ** it means this is not a unique index. Otherwise it is a unique index 1811 ** and the value of Index.onError indicate the which conflict resolution 1812 ** algorithm to employ whenever an attempt is made to insert a non-unique 1813 ** element. 1814 */ 1815 struct Index { 1816 char *zName; /* Name of this index */ 1817 i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1818 LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */ 1819 Table *pTable; /* The SQL table being indexed */ 1820 char *zColAff; /* String defining the affinity of each column */ 1821 Index *pNext; /* The next index associated with the same table */ 1822 Schema *pSchema; /* Schema containing this index */ 1823 u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ 1824 char **azColl; /* Array of collation sequence names for index */ 1825 Expr *pPartIdxWhere; /* WHERE clause for partial indices */ 1826 int tnum; /* DB Page containing root of this index */ 1827 LogEst szIdxRow; /* Estimated average row size in bytes */ 1828 u16 nKeyCol; /* Number of columns forming the key */ 1829 u16 nColumn; /* Number of columns stored in the index */ 1830 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1831 unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ 1832 unsigned bUnordered:1; /* Use this index for == or IN queries only */ 1833 unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ 1834 unsigned isResized:1; /* True if resizeIndexObject() has been called */ 1835 unsigned isCovering:1; /* True if this is a covering index */ 1836 unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ 1837 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1838 int nSample; /* Number of elements in aSample[] */ 1839 int nSampleCol; /* Size of IndexSample.anEq[] and so on */ 1840 tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ 1841 IndexSample *aSample; /* Samples of the left-most key */ 1842 tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ 1843 tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ 1844 #endif 1845 }; 1846 1847 /* 1848 ** Allowed values for Index.idxType 1849 */ 1850 #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ 1851 #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ 1852 #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ 1853 1854 /* Return true if index X is a PRIMARY KEY index */ 1855 #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) 1856 1857 /* Return true if index X is a UNIQUE index */ 1858 #define IsUniqueIndex(X) ((X)->onError!=OE_None) 1859 1860 /* 1861 ** Each sample stored in the sqlite_stat3 table is represented in memory 1862 ** using a structure of this type. See documentation at the top of the 1863 ** analyze.c source file for additional information. 1864 */ 1865 struct IndexSample { 1866 void *p; /* Pointer to sampled record */ 1867 int n; /* Size of record in bytes */ 1868 tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ 1869 tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ 1870 tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ 1871 }; 1872 1873 /* 1874 ** Each token coming out of the lexer is an instance of 1875 ** this structure. Tokens are also used as part of an expression. 1876 ** 1877 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1878 ** may contain random values. Do not make any assumptions about Token.dyn 1879 ** and Token.n when Token.z==0. 1880 */ 1881 struct Token { 1882 const char *z; /* Text of the token. Not NULL-terminated! */ 1883 unsigned int n; /* Number of characters in this token */ 1884 }; 1885 1886 /* 1887 ** An instance of this structure contains information needed to generate 1888 ** code for a SELECT that contains aggregate functions. 1889 ** 1890 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1891 ** pointer to this structure. The Expr.iColumn field is the index in 1892 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1893 ** code for that node. 1894 ** 1895 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1896 ** original Select structure that describes the SELECT statement. These 1897 ** fields do not need to be freed when deallocating the AggInfo structure. 1898 */ 1899 struct AggInfo { 1900 u8 directMode; /* Direct rendering mode means take data directly 1901 ** from source tables rather than from accumulators */ 1902 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1903 ** than the source table */ 1904 int sortingIdx; /* Cursor number of the sorting index */ 1905 int sortingIdxPTab; /* Cursor number of pseudo-table */ 1906 int nSortingColumn; /* Number of columns in the sorting index */ 1907 int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */ 1908 ExprList *pGroupBy; /* The group by clause */ 1909 struct AggInfo_col { /* For each column used in source tables */ 1910 Table *pTab; /* Source table */ 1911 int iTable; /* Cursor number of the source table */ 1912 int iColumn; /* Column number within the source table */ 1913 int iSorterColumn; /* Column number in the sorting index */ 1914 int iMem; /* Memory location that acts as accumulator */ 1915 Expr *pExpr; /* The original expression */ 1916 } *aCol; 1917 int nColumn; /* Number of used entries in aCol[] */ 1918 int nAccumulator; /* Number of columns that show through to the output. 1919 ** Additional columns are used only as parameters to 1920 ** aggregate functions */ 1921 struct AggInfo_func { /* For each aggregate function */ 1922 Expr *pExpr; /* Expression encoding the function */ 1923 FuncDef *pFunc; /* The aggregate function implementation */ 1924 int iMem; /* Memory location that acts as accumulator */ 1925 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1926 } *aFunc; 1927 int nFunc; /* Number of entries in aFunc[] */ 1928 }; 1929 1930 /* 1931 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1932 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1933 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1934 ** it uses less memory in the Expr object, which is a big memory user 1935 ** in systems with lots of prepared statements. And few applications 1936 ** need more than about 10 or 20 variables. But some extreme users want 1937 ** to have prepared statements with over 32767 variables, and for them 1938 ** the option is available (at compile-time). 1939 */ 1940 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1941 typedef i16 ynVar; 1942 #else 1943 typedef int ynVar; 1944 #endif 1945 1946 /* 1947 ** Each node of an expression in the parse tree is an instance 1948 ** of this structure. 1949 ** 1950 ** Expr.op is the opcode. The integer parser token codes are reused 1951 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1952 ** code representing the ">=" operator. This same integer code is reused 1953 ** to represent the greater-than-or-equal-to operator in the expression 1954 ** tree. 1955 ** 1956 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1957 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1958 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1959 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1960 ** then Expr.token contains the name of the function. 1961 ** 1962 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1963 ** binary operator. Either or both may be NULL. 1964 ** 1965 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1966 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1967 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1968 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1969 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1970 ** valid. 1971 ** 1972 ** An expression of the form ID or ID.ID refers to a column in a table. 1973 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1974 ** the integer cursor number of a VDBE cursor pointing to that table and 1975 ** Expr.iColumn is the column number for the specific column. If the 1976 ** expression is used as a result in an aggregate SELECT, then the 1977 ** value is also stored in the Expr.iAgg column in the aggregate so that 1978 ** it can be accessed after all aggregates are computed. 1979 ** 1980 ** If the expression is an unbound variable marker (a question mark 1981 ** character '?' in the original SQL) then the Expr.iTable holds the index 1982 ** number for that variable. 1983 ** 1984 ** If the expression is a subquery then Expr.iColumn holds an integer 1985 ** register number containing the result of the subquery. If the 1986 ** subquery gives a constant result, then iTable is -1. If the subquery 1987 ** gives a different answer at different times during statement processing 1988 ** then iTable is the address of a subroutine that computes the subquery. 1989 ** 1990 ** If the Expr is of type OP_Column, and the table it is selecting from 1991 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1992 ** corresponding table definition. 1993 ** 1994 ** ALLOCATION NOTES: 1995 ** 1996 ** Expr objects can use a lot of memory space in database schema. To 1997 ** help reduce memory requirements, sometimes an Expr object will be 1998 ** truncated. And to reduce the number of memory allocations, sometimes 1999 ** two or more Expr objects will be stored in a single memory allocation, 2000 ** together with Expr.zToken strings. 2001 ** 2002 ** If the EP_Reduced and EP_TokenOnly flags are set when 2003 ** an Expr object is truncated. When EP_Reduced is set, then all 2004 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 2005 ** are contained within the same memory allocation. Note, however, that 2006 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 2007 ** allocated, regardless of whether or not EP_Reduced is set. 2008 */ 2009 struct Expr { 2010 u8 op; /* Operation performed by this node */ 2011 char affinity; /* The affinity of the column or 0 if not a column */ 2012 u32 flags; /* Various flags. EP_* See below */ 2013 union { 2014 char *zToken; /* Token value. Zero terminated and dequoted */ 2015 int iValue; /* Non-negative integer value if EP_IntValue */ 2016 } u; 2017 2018 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 2019 ** space is allocated for the fields below this point. An attempt to 2020 ** access them will result in a segfault or malfunction. 2021 *********************************************************************/ 2022 2023 Expr *pLeft; /* Left subnode */ 2024 Expr *pRight; /* Right subnode */ 2025 union { 2026 ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */ 2027 Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */ 2028 } x; 2029 2030 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 2031 ** space is allocated for the fields below this point. An attempt to 2032 ** access them will result in a segfault or malfunction. 2033 *********************************************************************/ 2034 2035 #if SQLITE_MAX_EXPR_DEPTH>0 2036 int nHeight; /* Height of the tree headed by this node */ 2037 #endif 2038 int iTable; /* TK_COLUMN: cursor number of table holding column 2039 ** TK_REGISTER: register number 2040 ** TK_TRIGGER: 1 -> new, 0 -> old 2041 ** EP_Unlikely: 134217728 times likelihood */ 2042 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 2043 ** TK_VARIABLE: variable number (always >= 1). */ 2044 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 2045 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 2046 u8 op2; /* TK_REGISTER: original value of Expr.op 2047 ** TK_COLUMN: the value of p5 for OP_Column 2048 ** TK_AGG_FUNCTION: nesting depth */ 2049 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 2050 Table *pTab; /* Table for TK_COLUMN expressions. */ 2051 }; 2052 2053 /* 2054 ** The following are the meanings of bits in the Expr.flags field. 2055 */ 2056 #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ 2057 #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ 2058 #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ 2059 #define EP_Error 0x000008 /* Expression contains one or more errors */ 2060 #define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */ 2061 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */ 2062 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */ 2063 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */ 2064 #define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */ 2065 #define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */ 2066 #define EP_IntValue 0x000400 /* Integer value contained in u.iValue */ 2067 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */ 2068 #define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */ 2069 #define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */ 2070 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */ 2071 #define EP_Static 0x008000 /* Held in memory not obtained from malloc() */ 2072 #define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */ 2073 #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ 2074 #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ 2075 #define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */ 2076 #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ 2077 #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ 2078 2079 /* 2080 ** Combinations of two or more EP_* flags 2081 */ 2082 #define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */ 2083 2084 /* 2085 ** These macros can be used to test, set, or clear bits in the 2086 ** Expr.flags field. 2087 */ 2088 #define ExprHasProperty(E,P) (((E)->flags&(P))!=0) 2089 #define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P)) 2090 #define ExprSetProperty(E,P) (E)->flags|=(P) 2091 #define ExprClearProperty(E,P) (E)->flags&=~(P) 2092 2093 /* The ExprSetVVAProperty() macro is used for Verification, Validation, 2094 ** and Accreditation only. It works like ExprSetProperty() during VVA 2095 ** processes but is a no-op for delivery. 2096 */ 2097 #ifdef SQLITE_DEBUG 2098 # define ExprSetVVAProperty(E,P) (E)->flags|=(P) 2099 #else 2100 # define ExprSetVVAProperty(E,P) 2101 #endif 2102 2103 /* 2104 ** Macros to determine the number of bytes required by a normal Expr 2105 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 2106 ** and an Expr struct with the EP_TokenOnly flag set. 2107 */ 2108 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 2109 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 2110 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 2111 2112 /* 2113 ** Flags passed to the sqlite3ExprDup() function. See the header comment 2114 ** above sqlite3ExprDup() for details. 2115 */ 2116 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 2117 2118 /* 2119 ** A list of expressions. Each expression may optionally have a 2120 ** name. An expr/name combination can be used in several ways, such 2121 ** as the list of "expr AS ID" fields following a "SELECT" or in the 2122 ** list of "ID = expr" items in an UPDATE. A list of expressions can 2123 ** also be used as the argument to a function, in which case the a.zName 2124 ** field is not used. 2125 ** 2126 ** By default the Expr.zSpan field holds a human-readable description of 2127 ** the expression that is used in the generation of error messages and 2128 ** column labels. In this case, Expr.zSpan is typically the text of a 2129 ** column expression as it exists in a SELECT statement. However, if 2130 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name 2131 ** of the result column in the form: DATABASE.TABLE.COLUMN. This later 2132 ** form is used for name resolution with nested FROM clauses. 2133 */ 2134 struct ExprList { 2135 int nExpr; /* Number of expressions on the list */ 2136 struct ExprList_item { /* For each expression in the list */ 2137 Expr *pExpr; /* The list of expressions */ 2138 char *zName; /* Token associated with this expression */ 2139 char *zSpan; /* Original text of the expression */ 2140 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 2141 unsigned done :1; /* A flag to indicate when processing is finished */ 2142 unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */ 2143 unsigned reusable :1; /* Constant expression is reusable */ 2144 union { 2145 struct { 2146 u16 iOrderByCol; /* For ORDER BY, column number in result set */ 2147 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 2148 } x; 2149 int iConstExprReg; /* Register in which Expr value is cached */ 2150 } u; 2151 } *a; /* Alloc a power of two greater or equal to nExpr */ 2152 }; 2153 2154 /* 2155 ** An instance of this structure is used by the parser to record both 2156 ** the parse tree for an expression and the span of input text for an 2157 ** expression. 2158 */ 2159 struct ExprSpan { 2160 Expr *pExpr; /* The expression parse tree */ 2161 const char *zStart; /* First character of input text */ 2162 const char *zEnd; /* One character past the end of input text */ 2163 }; 2164 2165 /* 2166 ** An instance of this structure can hold a simple list of identifiers, 2167 ** such as the list "a,b,c" in the following statements: 2168 ** 2169 ** INSERT INTO t(a,b,c) VALUES ...; 2170 ** CREATE INDEX idx ON t(a,b,c); 2171 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 2172 ** 2173 ** The IdList.a.idx field is used when the IdList represents the list of 2174 ** column names after a table name in an INSERT statement. In the statement 2175 ** 2176 ** INSERT INTO t(a,b,c) ... 2177 ** 2178 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 2179 */ 2180 struct IdList { 2181 struct IdList_item { 2182 char *zName; /* Name of the identifier */ 2183 int idx; /* Index in some Table.aCol[] of a column named zName */ 2184 } *a; 2185 int nId; /* Number of identifiers on the list */ 2186 }; 2187 2188 /* 2189 ** The bitmask datatype defined below is used for various optimizations. 2190 ** 2191 ** Changing this from a 64-bit to a 32-bit type limits the number of 2192 ** tables in a join to 32 instead of 64. But it also reduces the size 2193 ** of the library by 738 bytes on ix86. 2194 */ 2195 typedef u64 Bitmask; 2196 2197 /* 2198 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 2199 */ 2200 #define BMS ((int)(sizeof(Bitmask)*8)) 2201 2202 /* 2203 ** A bit in a Bitmask 2204 */ 2205 #define MASKBIT(n) (((Bitmask)1)<<(n)) 2206 #define MASKBIT32(n) (((unsigned int)1)<<(n)) 2207 2208 /* 2209 ** The following structure describes the FROM clause of a SELECT statement. 2210 ** Each table or subquery in the FROM clause is a separate element of 2211 ** the SrcList.a[] array. 2212 ** 2213 ** With the addition of multiple database support, the following structure 2214 ** can also be used to describe a particular table such as the table that 2215 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 2216 ** such a table must be a simple name: ID. But in SQLite, the table can 2217 ** now be identified by a database name, a dot, then the table name: ID.ID. 2218 ** 2219 ** The jointype starts out showing the join type between the current table 2220 ** and the next table on the list. The parser builds the list this way. 2221 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 2222 ** jointype expresses the join between the table and the previous table. 2223 ** 2224 ** In the colUsed field, the high-order bit (bit 63) is set if the table 2225 ** contains more than 63 columns and the 64-th or later column is used. 2226 */ 2227 struct SrcList { 2228 int nSrc; /* Number of tables or subqueries in the FROM clause */ 2229 u32 nAlloc; /* Number of entries allocated in a[] below */ 2230 struct SrcList_item { 2231 Schema *pSchema; /* Schema to which this item is fixed */ 2232 char *zDatabase; /* Name of database holding this table */ 2233 char *zName; /* Name of the table */ 2234 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 2235 Table *pTab; /* An SQL table corresponding to zName */ 2236 Select *pSelect; /* A SELECT statement used in place of a table name */ 2237 int addrFillSub; /* Address of subroutine to manifest a subquery */ 2238 int regReturn; /* Register holding return address of addrFillSub */ 2239 int regResult; /* Registers holding results of a co-routine */ 2240 u8 jointype; /* Type of join between this able and the previous */ 2241 unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */ 2242 unsigned isCorrelated :1; /* True if sub-query is correlated */ 2243 unsigned viaCoroutine :1; /* Implemented as a co-routine */ 2244 unsigned isRecursive :1; /* True for recursive reference in WITH */ 2245 #ifndef SQLITE_OMIT_EXPLAIN 2246 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 2247 #endif 2248 int iCursor; /* The VDBE cursor number used to access this table */ 2249 Expr *pOn; /* The ON clause of a join */ 2250 IdList *pUsing; /* The USING clause of a join */ 2251 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 2252 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 2253 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 2254 } a[1]; /* One entry for each identifier on the list */ 2255 }; 2256 2257 /* 2258 ** Permitted values of the SrcList.a.jointype field 2259 */ 2260 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 2261 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 2262 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 2263 #define JT_LEFT 0x0008 /* Left outer join */ 2264 #define JT_RIGHT 0x0010 /* Right outer join */ 2265 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 2266 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 2267 2268 2269 /* 2270 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 2271 ** and the WhereInfo.wctrlFlags member. 2272 */ 2273 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 2274 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 2275 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 2276 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 2277 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 2278 #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ 2279 #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ 2280 #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ 2281 #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ 2282 #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ 2283 #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ 2284 #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ 2285 #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ 2286 #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ 2287 2288 /* Allowed return values from sqlite3WhereIsDistinct() 2289 */ 2290 #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ 2291 #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ 2292 #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ 2293 #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ 2294 2295 /* 2296 ** A NameContext defines a context in which to resolve table and column 2297 ** names. The context consists of a list of tables (the pSrcList) field and 2298 ** a list of named expression (pEList). The named expression list may 2299 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 2300 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 2301 ** pEList corresponds to the result set of a SELECT and is NULL for 2302 ** other statements. 2303 ** 2304 ** NameContexts can be nested. When resolving names, the inner-most 2305 ** context is searched first. If no match is found, the next outer 2306 ** context is checked. If there is still no match, the next context 2307 ** is checked. This process continues until either a match is found 2308 ** or all contexts are check. When a match is found, the nRef member of 2309 ** the context containing the match is incremented. 2310 ** 2311 ** Each subquery gets a new NameContext. The pNext field points to the 2312 ** NameContext in the parent query. Thus the process of scanning the 2313 ** NameContext list corresponds to searching through successively outer 2314 ** subqueries looking for a match. 2315 */ 2316 struct NameContext { 2317 Parse *pParse; /* The parser */ 2318 SrcList *pSrcList; /* One or more tables used to resolve names */ 2319 ExprList *pEList; /* Optional list of result-set columns */ 2320 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2321 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2322 int nRef; /* Number of names resolved by this context */ 2323 int nErr; /* Number of errors encountered while resolving names */ 2324 u16 ncFlags; /* Zero or more NC_* flags defined below */ 2325 }; 2326 2327 /* 2328 ** Allowed values for the NameContext, ncFlags field. 2329 ** 2330 ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and 2331 ** SQLITE_FUNC_MINMAX. 2332 ** 2333 */ 2334 #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ 2335 #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ 2336 #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ 2337 #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ 2338 #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ 2339 #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ 2340 2341 /* 2342 ** An instance of the following structure contains all information 2343 ** needed to generate code for a single SELECT statement. 2344 ** 2345 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2346 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2347 ** limit and nOffset to the value of the offset (or 0 if there is not 2348 ** offset). But later on, nLimit and nOffset become the memory locations 2349 ** in the VDBE that record the limit and offset counters. 2350 ** 2351 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2352 ** These addresses must be stored so that we can go back and fill in 2353 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2354 ** the number of columns in P2 can be computed at the same time 2355 ** as the OP_OpenEphm instruction is coded because not 2356 ** enough information about the compound query is known at that point. 2357 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2358 ** for the result set. The KeyInfo for addrOpenEphm[2] contains collating 2359 ** sequences for the ORDER BY clause. 2360 */ 2361 struct Select { 2362 ExprList *pEList; /* The fields of the result */ 2363 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2364 u16 selFlags; /* Various SF_* values */ 2365 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2366 #if SELECTTRACE_ENABLED 2367 char zSelName[12]; /* Symbolic name of this SELECT use for debugging */ 2368 #endif 2369 int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */ 2370 u64 nSelectRow; /* Estimated number of result rows */ 2371 SrcList *pSrc; /* The FROM clause */ 2372 Expr *pWhere; /* The WHERE clause */ 2373 ExprList *pGroupBy; /* The GROUP BY clause */ 2374 Expr *pHaving; /* The HAVING clause */ 2375 ExprList *pOrderBy; /* The ORDER BY clause */ 2376 Select *pPrior; /* Prior select in a compound select statement */ 2377 Select *pNext; /* Next select to the left in a compound */ 2378 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2379 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2380 With *pWith; /* WITH clause attached to this select. Or NULL. */ 2381 }; 2382 2383 /* 2384 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2385 ** "Select Flag". 2386 */ 2387 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2388 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2389 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2390 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2391 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2392 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2393 #define SF_Compound 0x0040 /* Part of a compound query */ 2394 #define SF_Values 0x0080 /* Synthesized from VALUES clause */ 2395 #define SF_MultiValue 0x0100 /* Single VALUES term with multiple rows */ 2396 #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ 2397 #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ 2398 #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ 2399 #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ 2400 #define SF_Converted 0x2000 /* By convertCompoundSelectToSubquery() */ 2401 2402 2403 /* 2404 ** The results of a SELECT can be distributed in several ways, as defined 2405 ** by one of the following macros. The "SRT" prefix means "SELECT Result 2406 ** Type". 2407 ** 2408 ** SRT_Union Store results as a key in a temporary index 2409 ** identified by pDest->iSDParm. 2410 ** 2411 ** SRT_Except Remove results from the temporary index pDest->iSDParm. 2412 ** 2413 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result 2414 ** set is not empty. 2415 ** 2416 ** SRT_Discard Throw the results away. This is used by SELECT 2417 ** statements within triggers whose only purpose is 2418 ** the side-effects of functions. 2419 ** 2420 ** All of the above are free to ignore their ORDER BY clause. Those that 2421 ** follow must honor the ORDER BY clause. 2422 ** 2423 ** SRT_Output Generate a row of output (using the OP_ResultRow 2424 ** opcode) for each row in the result set. 2425 ** 2426 ** SRT_Mem Only valid if the result is a single column. 2427 ** Store the first column of the first result row 2428 ** in register pDest->iSDParm then abandon the rest 2429 ** of the query. This destination implies "LIMIT 1". 2430 ** 2431 ** SRT_Set The result must be a single column. Store each 2432 ** row of result as the key in table pDest->iSDParm. 2433 ** Apply the affinity pDest->affSdst before storing 2434 ** results. Used to implement "IN (SELECT ...)". 2435 ** 2436 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store 2437 ** the result there. The cursor is left open after 2438 ** returning. This is like SRT_Table except that 2439 ** this destination uses OP_OpenEphemeral to create 2440 ** the table first. 2441 ** 2442 ** SRT_Coroutine Generate a co-routine that returns a new row of 2443 ** results each time it is invoked. The entry point 2444 ** of the co-routine is stored in register pDest->iSDParm 2445 ** and the result row is stored in pDest->nDest registers 2446 ** starting with pDest->iSdst. 2447 ** 2448 ** SRT_Table Store results in temporary table pDest->iSDParm. 2449 ** SRT_Fifo This is like SRT_EphemTab except that the table 2450 ** is assumed to already be open. SRT_Fifo has 2451 ** the additional property of being able to ignore 2452 ** the ORDER BY clause. 2453 ** 2454 ** SRT_DistFifo Store results in a temporary table pDest->iSDParm. 2455 ** But also use temporary table pDest->iSDParm+1 as 2456 ** a record of all prior results and ignore any duplicate 2457 ** rows. Name means: "Distinct Fifo". 2458 ** 2459 ** SRT_Queue Store results in priority queue pDest->iSDParm (really 2460 ** an index). Append a sequence number so that all entries 2461 ** are distinct. 2462 ** 2463 ** SRT_DistQueue Store results in priority queue pDest->iSDParm only if 2464 ** the same record has never been stored before. The 2465 ** index at pDest->iSDParm+1 hold all prior stores. 2466 */ 2467 #define SRT_Union 1 /* Store result as keys in an index */ 2468 #define SRT_Except 2 /* Remove result from a UNION index */ 2469 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2470 #define SRT_Discard 4 /* Do not save the results anywhere */ 2471 #define SRT_Fifo 5 /* Store result as data with an automatic rowid */ 2472 #define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */ 2473 #define SRT_Queue 7 /* Store result in an queue */ 2474 #define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */ 2475 2476 /* The ORDER BY clause is ignored for all of the above */ 2477 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue) 2478 2479 #define SRT_Output 9 /* Output each row of result */ 2480 #define SRT_Mem 10 /* Store result in a memory cell */ 2481 #define SRT_Set 11 /* Store results as keys in an index */ 2482 #define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */ 2483 #define SRT_Coroutine 13 /* Generate a single row of result */ 2484 #define SRT_Table 14 /* Store result as data with an automatic rowid */ 2485 2486 /* 2487 ** An instance of this object describes where to put of the results of 2488 ** a SELECT statement. 2489 */ 2490 struct SelectDest { 2491 u8 eDest; /* How to dispose of the results. On of SRT_* above. */ 2492 char affSdst; /* Affinity used when eDest==SRT_Set */ 2493 int iSDParm; /* A parameter used by the eDest disposal method */ 2494 int iSdst; /* Base register where results are written */ 2495 int nSdst; /* Number of registers allocated */ 2496 ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */ 2497 }; 2498 2499 /* 2500 ** During code generation of statements that do inserts into AUTOINCREMENT 2501 ** tables, the following information is attached to the Table.u.autoInc.p 2502 ** pointer of each autoincrement table to record some side information that 2503 ** the code generator needs. We have to keep per-table autoincrement 2504 ** information in case inserts are down within triggers. Triggers do not 2505 ** normally coordinate their activities, but we do need to coordinate the 2506 ** loading and saving of autoincrement information. 2507 */ 2508 struct AutoincInfo { 2509 AutoincInfo *pNext; /* Next info block in a list of them all */ 2510 Table *pTab; /* Table this info block refers to */ 2511 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2512 int regCtr; /* Memory register holding the rowid counter */ 2513 }; 2514 2515 /* 2516 ** Size of the column cache 2517 */ 2518 #ifndef SQLITE_N_COLCACHE 2519 # define SQLITE_N_COLCACHE 10 2520 #endif 2521 2522 /* 2523 ** At least one instance of the following structure is created for each 2524 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2525 ** statement. All such objects are stored in the linked list headed at 2526 ** Parse.pTriggerPrg and deleted once statement compilation has been 2527 ** completed. 2528 ** 2529 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2530 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2531 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2532 ** The Parse.pTriggerPrg list never contains two entries with the same 2533 ** values for both pTrigger and orconf. 2534 ** 2535 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2536 ** accessed (or set to 0 for triggers fired as a result of INSERT 2537 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2538 ** a mask of new.* columns used by the program. 2539 */ 2540 struct TriggerPrg { 2541 Trigger *pTrigger; /* Trigger this program was coded from */ 2542 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2543 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2544 int orconf; /* Default ON CONFLICT policy */ 2545 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2546 }; 2547 2548 /* 2549 ** The yDbMask datatype for the bitmask of all attached databases. 2550 */ 2551 #if SQLITE_MAX_ATTACHED>30 2552 typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8]; 2553 # define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0) 2554 # define DbMaskZero(M) memset((M),0,sizeof(M)) 2555 # define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7)) 2556 # define DbMaskAllZero(M) sqlite3DbMaskAllZero(M) 2557 # define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0) 2558 #else 2559 typedef unsigned int yDbMask; 2560 # define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0) 2561 # define DbMaskZero(M) (M)=0 2562 # define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I)) 2563 # define DbMaskAllZero(M) (M)==0 2564 # define DbMaskNonZero(M) (M)!=0 2565 #endif 2566 2567 /* 2568 ** An SQL parser context. A copy of this structure is passed through 2569 ** the parser and down into all the parser action routine in order to 2570 ** carry around information that is global to the entire parse. 2571 ** 2572 ** The structure is divided into two parts. When the parser and code 2573 ** generate call themselves recursively, the first part of the structure 2574 ** is constant but the second part is reset at the beginning and end of 2575 ** each recursion. 2576 ** 2577 ** The nTableLock and aTableLock variables are only used if the shared-cache 2578 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2579 ** used to store the set of table-locks required by the statement being 2580 ** compiled. Function sqlite3TableLock() is used to add entries to the 2581 ** list. 2582 */ 2583 struct Parse { 2584 sqlite3 *db; /* The main database structure */ 2585 char *zErrMsg; /* An error message */ 2586 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2587 int rc; /* Return code from execution */ 2588 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2589 u8 checkSchema; /* Causes schema cookie check after an error */ 2590 u8 nested; /* Number of nested calls to the parser/code generator */ 2591 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2592 u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ 2593 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2594 u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ 2595 u8 okConstFactor; /* OK to factor out constants */ 2596 int aTempReg[8]; /* Holding area for temporary registers */ 2597 int nRangeReg; /* Size of the temporary register block */ 2598 int iRangeReg; /* First register in temporary register block */ 2599 int nErr; /* Number of errors seen */ 2600 int nTab; /* Number of previously allocated VDBE cursors */ 2601 int nMem; /* Number of memory cells used so far */ 2602 int nSet; /* Number of sets used so far */ 2603 int nOnce; /* Number of OP_Once instructions so far */ 2604 int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */ 2605 int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */ 2606 int ckBase; /* Base register of data during check constraints */ 2607 int iPartIdxTab; /* Table corresponding to a partial index */ 2608 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2609 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2610 int nLabel; /* Number of labels used */ 2611 int *aLabel; /* Space to hold the labels */ 2612 struct yColCache { 2613 int iTable; /* Table cursor number */ 2614 i16 iColumn; /* Table column number */ 2615 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2616 int iLevel; /* Nesting level */ 2617 int iReg; /* Reg with value of this column. 0 means none. */ 2618 int lru; /* Least recently used entry has the smallest value */ 2619 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2620 ExprList *pConstExpr;/* Constant expressions */ 2621 Token constraintName;/* Name of the constraint currently being parsed */ 2622 yDbMask writeMask; /* Start a write transaction on these databases */ 2623 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2624 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2625 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2626 int regRoot; /* Register holding root page number for new objects */ 2627 int nMaxArg; /* Max args passed to user function by sub-program */ 2628 #if SELECTTRACE_ENABLED 2629 int nSelect; /* Number of SELECT statements seen */ 2630 int nSelectIndent; /* How far to indent SELECTTRACE() output */ 2631 #endif 2632 #ifndef SQLITE_OMIT_SHARED_CACHE 2633 int nTableLock; /* Number of locks in aTableLock */ 2634 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2635 #endif 2636 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2637 2638 /* Information used while coding trigger programs. */ 2639 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2640 Table *pTriggerTab; /* Table triggers are being coded for */ 2641 int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */ 2642 int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */ 2643 u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ 2644 u32 oldmask; /* Mask of old.* columns referenced */ 2645 u32 newmask; /* Mask of new.* columns referenced */ 2646 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2647 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2648 u8 disableTriggers; /* True to disable triggers */ 2649 2650 /************************************************************************ 2651 ** Above is constant between recursions. Below is reset before and after 2652 ** each recursion. The boundary between these two regions is determined 2653 ** using offsetof(Parse,nVar) so the nVar field must be the first field 2654 ** in the recursive region. 2655 ************************************************************************/ 2656 2657 int nVar; /* Number of '?' variables seen in the SQL so far */ 2658 int nzVar; /* Number of available slots in azVar[] */ 2659 u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */ 2660 u8 bFreeWith; /* True if pWith should be freed with parser */ 2661 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2662 #ifndef SQLITE_OMIT_VIRTUALTABLE 2663 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2664 int nVtabLock; /* Number of virtual tables to lock */ 2665 #endif 2666 int nAlias; /* Number of aliased result set columns */ 2667 int nHeight; /* Expression tree height of current sub-select */ 2668 #ifndef SQLITE_OMIT_EXPLAIN 2669 int iSelectId; /* ID of current select for EXPLAIN output */ 2670 int iNextSelectId; /* Next available select ID for EXPLAIN output */ 2671 #endif 2672 char **azVar; /* Pointers to names of parameters */ 2673 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2674 const char *zTail; /* All SQL text past the last semicolon parsed */ 2675 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2676 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2677 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2678 Token sNameToken; /* Token with unqualified schema object name */ 2679 Token sLastToken; /* The last token parsed */ 2680 #ifndef SQLITE_OMIT_VIRTUALTABLE 2681 Token sArg; /* Complete text of a module argument */ 2682 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2683 #endif 2684 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2685 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2686 With *pWith; /* Current WITH clause, or NULL */ 2687 }; 2688 2689 /* 2690 ** Return true if currently inside an sqlite3_declare_vtab() call. 2691 */ 2692 #ifdef SQLITE_OMIT_VIRTUALTABLE 2693 #define IN_DECLARE_VTAB 0 2694 #else 2695 #define IN_DECLARE_VTAB (pParse->declareVtab) 2696 #endif 2697 2698 /* 2699 ** An instance of the following structure can be declared on a stack and used 2700 ** to save the Parse.zAuthContext value so that it can be restored later. 2701 */ 2702 struct AuthContext { 2703 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2704 Parse *pParse; /* The Parse structure */ 2705 }; 2706 2707 /* 2708 ** Bitfield flags for P5 value in various opcodes. 2709 */ 2710 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2711 #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ 2712 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2713 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2714 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2715 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2716 #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ 2717 #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ 2718 #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ 2719 #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ 2720 #define OPFLAG_P2ISREG 0x04 /* P2 to OP_Open** is a register number */ 2721 #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ 2722 2723 /* 2724 * Each trigger present in the database schema is stored as an instance of 2725 * struct Trigger. 2726 * 2727 * Pointers to instances of struct Trigger are stored in two ways. 2728 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2729 * database). This allows Trigger structures to be retrieved by name. 2730 * 2. All triggers associated with a single table form a linked list, using the 2731 * pNext member of struct Trigger. A pointer to the first element of the 2732 * linked list is stored as the "pTrigger" member of the associated 2733 * struct Table. 2734 * 2735 * The "step_list" member points to the first element of a linked list 2736 * containing the SQL statements specified as the trigger program. 2737 */ 2738 struct Trigger { 2739 char *zName; /* The name of the trigger */ 2740 char *table; /* The table or view to which the trigger applies */ 2741 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2742 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2743 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2744 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2745 the <column-list> is stored here */ 2746 Schema *pSchema; /* Schema containing the trigger */ 2747 Schema *pTabSchema; /* Schema containing the table */ 2748 TriggerStep *step_list; /* Link list of trigger program steps */ 2749 Trigger *pNext; /* Next trigger associated with the table */ 2750 }; 2751 2752 /* 2753 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2754 ** determine which. 2755 ** 2756 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2757 ** In that cases, the constants below can be ORed together. 2758 */ 2759 #define TRIGGER_BEFORE 1 2760 #define TRIGGER_AFTER 2 2761 2762 /* 2763 * An instance of struct TriggerStep is used to store a single SQL statement 2764 * that is a part of a trigger-program. 2765 * 2766 * Instances of struct TriggerStep are stored in a singly linked list (linked 2767 * using the "pNext" member) referenced by the "step_list" member of the 2768 * associated struct Trigger instance. The first element of the linked list is 2769 * the first step of the trigger-program. 2770 * 2771 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2772 * "SELECT" statement. The meanings of the other members is determined by the 2773 * value of "op" as follows: 2774 * 2775 * (op == TK_INSERT) 2776 * orconf -> stores the ON CONFLICT algorithm 2777 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2778 * this stores a pointer to the SELECT statement. Otherwise NULL. 2779 * zTarget -> Dequoted name of the table to insert into. 2780 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2781 * this stores values to be inserted. Otherwise NULL. 2782 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2783 * statement, then this stores the column-names to be 2784 * inserted into. 2785 * 2786 * (op == TK_DELETE) 2787 * zTarget -> Dequoted name of the table to delete from. 2788 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2789 * Otherwise NULL. 2790 * 2791 * (op == TK_UPDATE) 2792 * zTarget -> Dequoted name of the table to update. 2793 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2794 * Otherwise NULL. 2795 * pExprList -> A list of the columns to update and the expressions to update 2796 * them to. See sqlite3Update() documentation of "pChanges" 2797 * argument. 2798 * 2799 */ 2800 struct TriggerStep { 2801 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2802 u8 orconf; /* OE_Rollback etc. */ 2803 Trigger *pTrig; /* The trigger that this step is a part of */ 2804 Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ 2805 char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ 2806 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2807 ExprList *pExprList; /* SET clause for UPDATE. */ 2808 IdList *pIdList; /* Column names for INSERT */ 2809 TriggerStep *pNext; /* Next in the link-list */ 2810 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2811 }; 2812 2813 /* 2814 ** The following structure contains information used by the sqliteFix... 2815 ** routines as they walk the parse tree to make database references 2816 ** explicit. 2817 */ 2818 typedef struct DbFixer DbFixer; 2819 struct DbFixer { 2820 Parse *pParse; /* The parsing context. Error messages written here */ 2821 Schema *pSchema; /* Fix items to this schema */ 2822 int bVarOnly; /* Check for variable references only */ 2823 const char *zDb; /* Make sure all objects are contained in this database */ 2824 const char *zType; /* Type of the container - used for error messages */ 2825 const Token *pName; /* Name of the container - used for error messages */ 2826 }; 2827 2828 /* 2829 ** An objected used to accumulate the text of a string where we 2830 ** do not necessarily know how big the string will be in the end. 2831 */ 2832 struct StrAccum { 2833 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2834 char *zBase; /* A base allocation. Not from malloc. */ 2835 char *zText; /* The string collected so far */ 2836 int nChar; /* Length of the string so far */ 2837 int nAlloc; /* Amount of space allocated in zText */ 2838 int mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ 2839 u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */ 2840 }; 2841 #define STRACCUM_NOMEM 1 2842 #define STRACCUM_TOOBIG 2 2843 2844 /* 2845 ** A pointer to this structure is used to communicate information 2846 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2847 */ 2848 typedef struct { 2849 sqlite3 *db; /* The database being initialized */ 2850 char **pzErrMsg; /* Error message stored here */ 2851 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2852 int rc; /* Result code stored here */ 2853 } InitData; 2854 2855 /* 2856 ** Structure containing global configuration data for the SQLite library. 2857 ** 2858 ** This structure also contains some state information. 2859 */ 2860 struct Sqlite3Config { 2861 int bMemstat; /* True to enable memory status */ 2862 int bCoreMutex; /* True to enable core mutexing */ 2863 int bFullMutex; /* True to enable full mutexing */ 2864 int bOpenUri; /* True to interpret filenames as URIs */ 2865 int bUseCis; /* Use covering indices for full-scans */ 2866 int mxStrlen; /* Maximum string length */ 2867 int neverCorrupt; /* Database is always well-formed */ 2868 int szLookaside; /* Default lookaside buffer size */ 2869 int nLookaside; /* Default lookaside buffer count */ 2870 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2871 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2872 sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */ 2873 void *pHeap; /* Heap storage space */ 2874 int nHeap; /* Size of pHeap[] */ 2875 int mnReq, mxReq; /* Min and max heap requests sizes */ 2876 sqlite3_int64 szMmap; /* mmap() space per open file */ 2877 sqlite3_int64 mxMmap; /* Maximum value for szMmap */ 2878 void *pScratch; /* Scratch memory */ 2879 int szScratch; /* Size of each scratch buffer */ 2880 int nScratch; /* Number of scratch buffers */ 2881 void *pPage; /* Page cache memory */ 2882 int szPage; /* Size of each page in pPage[] */ 2883 int nPage; /* Number of pages in pPage[] */ 2884 int mxParserStack; /* maximum depth of the parser stack */ 2885 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2886 u32 szPma; /* Maximum Sorter PMA size */ 2887 /* The above might be initialized to non-zero. The following need to always 2888 ** initially be zero, however. */ 2889 int isInit; /* True after initialization has finished */ 2890 int inProgress; /* True while initialization in progress */ 2891 int isMutexInit; /* True after mutexes are initialized */ 2892 int isMallocInit; /* True after malloc is initialized */ 2893 int isPCacheInit; /* True after malloc is initialized */ 2894 int nRefInitMutex; /* Number of users of pInitMutex */ 2895 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2896 void (*xLog)(void*,int,const char*); /* Function for logging */ 2897 void *pLogArg; /* First argument to xLog() */ 2898 #ifdef SQLITE_ENABLE_SQLLOG 2899 void(*xSqllog)(void*,sqlite3*,const char*, int); 2900 void *pSqllogArg; 2901 #endif 2902 #ifdef SQLITE_VDBE_COVERAGE 2903 /* The following callback (if not NULL) is invoked on every VDBE branch 2904 ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. 2905 */ 2906 void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ 2907 void *pVdbeBranchArg; /* 1st argument */ 2908 #endif 2909 #ifndef SQLITE_OMIT_BUILTIN_TEST 2910 int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ 2911 #endif 2912 int bLocaltimeFault; /* True to fail localtime() calls */ 2913 }; 2914 2915 /* 2916 ** This macro is used inside of assert() statements to indicate that 2917 ** the assert is only valid on a well-formed database. Instead of: 2918 ** 2919 ** assert( X ); 2920 ** 2921 ** One writes: 2922 ** 2923 ** assert( X || CORRUPT_DB ); 2924 ** 2925 ** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate 2926 ** that the database is definitely corrupt, only that it might be corrupt. 2927 ** For most test cases, CORRUPT_DB is set to false using a special 2928 ** sqlite3_test_control(). This enables assert() statements to prove 2929 ** things that are always true for well-formed databases. 2930 */ 2931 #define CORRUPT_DB (sqlite3Config.neverCorrupt==0) 2932 2933 /* 2934 ** Context pointer passed down through the tree-walk. 2935 */ 2936 struct Walker { 2937 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2938 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2939 void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ 2940 Parse *pParse; /* Parser context. */ 2941 int walkerDepth; /* Number of subqueries */ 2942 u8 eCode; /* A small processing code */ 2943 union { /* Extra data for callback */ 2944 NameContext *pNC; /* Naming context */ 2945 int n; /* A counter */ 2946 int iCur; /* A cursor number */ 2947 SrcList *pSrcList; /* FROM clause */ 2948 struct SrcCount *pSrcCount; /* Counting column references */ 2949 } u; 2950 }; 2951 2952 /* Forward declarations */ 2953 int sqlite3WalkExpr(Walker*, Expr*); 2954 int sqlite3WalkExprList(Walker*, ExprList*); 2955 int sqlite3WalkSelect(Walker*, Select*); 2956 int sqlite3WalkSelectExpr(Walker*, Select*); 2957 int sqlite3WalkSelectFrom(Walker*, Select*); 2958 2959 /* 2960 ** Return code from the parse-tree walking primitives and their 2961 ** callbacks. 2962 */ 2963 #define WRC_Continue 0 /* Continue down into children */ 2964 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2965 #define WRC_Abort 2 /* Abandon the tree walk */ 2966 2967 /* 2968 ** An instance of this structure represents a set of one or more CTEs 2969 ** (common table expressions) created by a single WITH clause. 2970 */ 2971 struct With { 2972 int nCte; /* Number of CTEs in the WITH clause */ 2973 With *pOuter; /* Containing WITH clause, or NULL */ 2974 struct Cte { /* For each CTE in the WITH clause.... */ 2975 char *zName; /* Name of this CTE */ 2976 ExprList *pCols; /* List of explicit column names, or NULL */ 2977 Select *pSelect; /* The definition of this CTE */ 2978 const char *zErr; /* Error message for circular references */ 2979 } a[1]; 2980 }; 2981 2982 #ifdef SQLITE_DEBUG 2983 /* 2984 ** An instance of the TreeView object is used for printing the content of 2985 ** data structures on sqlite3DebugPrintf() using a tree-like view. 2986 */ 2987 struct TreeView { 2988 int iLevel; /* Which level of the tree we are on */ 2989 u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */ 2990 }; 2991 #endif /* SQLITE_DEBUG */ 2992 2993 /* 2994 ** Assuming zIn points to the first byte of a UTF-8 character, 2995 ** advance zIn to point to the first byte of the next UTF-8 character. 2996 */ 2997 #define SQLITE_SKIP_UTF8(zIn) { \ 2998 if( (*(zIn++))>=0xc0 ){ \ 2999 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 3000 } \ 3001 } 3002 3003 /* 3004 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 3005 ** the same name but without the _BKPT suffix. These macros invoke 3006 ** routines that report the line-number on which the error originated 3007 ** using sqlite3_log(). The routines also provide a convenient place 3008 ** to set a debugger breakpoint. 3009 */ 3010 int sqlite3CorruptError(int); 3011 int sqlite3MisuseError(int); 3012 int sqlite3CantopenError(int); 3013 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 3014 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 3015 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 3016 3017 3018 /* 3019 ** FTS4 is really an extension for FTS3. It is enabled using the 3020 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call 3021 ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. 3022 */ 3023 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 3024 # define SQLITE_ENABLE_FTS3 1 3025 #endif 3026 3027 /* 3028 ** The ctype.h header is needed for non-ASCII systems. It is also 3029 ** needed by FTS3 when FTS3 is included in the amalgamation. 3030 */ 3031 #if !defined(SQLITE_ASCII) || \ 3032 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 3033 # include <ctype.h> 3034 #endif 3035 3036 /* 3037 ** The following macros mimic the standard library functions toupper(), 3038 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 3039 ** sqlite versions only work for ASCII characters, regardless of locale. 3040 */ 3041 #ifdef SQLITE_ASCII 3042 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 3043 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 3044 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 3045 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 3046 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 3047 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 3048 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 3049 #else 3050 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 3051 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 3052 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 3053 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 3054 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 3055 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 3056 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 3057 #endif 3058 int sqlite3IsIdChar(u8); 3059 3060 /* 3061 ** Internal function prototypes 3062 */ 3063 #define sqlite3StrICmp sqlite3_stricmp 3064 int sqlite3Strlen30(const char*); 3065 #define sqlite3StrNICmp sqlite3_strnicmp 3066 3067 int sqlite3MallocInit(void); 3068 void sqlite3MallocEnd(void); 3069 void *sqlite3Malloc(u64); 3070 void *sqlite3MallocZero(u64); 3071 void *sqlite3DbMallocZero(sqlite3*, u64); 3072 void *sqlite3DbMallocRaw(sqlite3*, u64); 3073 char *sqlite3DbStrDup(sqlite3*,const char*); 3074 char *sqlite3DbStrNDup(sqlite3*,const char*, u64); 3075 void *sqlite3Realloc(void*, u64); 3076 void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); 3077 void *sqlite3DbRealloc(sqlite3 *, void *, u64); 3078 void sqlite3DbFree(sqlite3*, void*); 3079 int sqlite3MallocSize(void*); 3080 int sqlite3DbMallocSize(sqlite3*, void*); 3081 void *sqlite3ScratchMalloc(int); 3082 void sqlite3ScratchFree(void*); 3083 void *sqlite3PageMalloc(int); 3084 void sqlite3PageFree(void*); 3085 void sqlite3MemSetDefault(void); 3086 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 3087 int sqlite3HeapNearlyFull(void); 3088 3089 /* 3090 ** On systems with ample stack space and that support alloca(), make 3091 ** use of alloca() to obtain space for large automatic objects. By default, 3092 ** obtain space from malloc(). 3093 ** 3094 ** The alloca() routine never returns NULL. This will cause code paths 3095 ** that deal with sqlite3StackAlloc() failures to be unreachable. 3096 */ 3097 #ifdef SQLITE_USE_ALLOCA 3098 # define sqlite3StackAllocRaw(D,N) alloca(N) 3099 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 3100 # define sqlite3StackFree(D,P) 3101 #else 3102 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 3103 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 3104 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 3105 #endif 3106 3107 #ifdef SQLITE_ENABLE_MEMSYS3 3108 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 3109 #endif 3110 #ifdef SQLITE_ENABLE_MEMSYS5 3111 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 3112 #endif 3113 3114 3115 #ifndef SQLITE_MUTEX_OMIT 3116 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 3117 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 3118 sqlite3_mutex *sqlite3MutexAlloc(int); 3119 int sqlite3MutexInit(void); 3120 int sqlite3MutexEnd(void); 3121 #endif 3122 3123 sqlite3_int64 sqlite3StatusValue(int); 3124 void sqlite3StatusUp(int, int); 3125 void sqlite3StatusDown(int, int); 3126 void sqlite3StatusSet(int, int); 3127 3128 /* Access to mutexes used by sqlite3_status() */ 3129 sqlite3_mutex *sqlite3Pcache1Mutex(void); 3130 sqlite3_mutex *sqlite3MallocMutex(void); 3131 3132 #ifndef SQLITE_OMIT_FLOATING_POINT 3133 int sqlite3IsNaN(double); 3134 #else 3135 # define sqlite3IsNaN(X) 0 3136 #endif 3137 3138 /* 3139 ** An instance of the following structure holds information about SQL 3140 ** functions arguments that are the parameters to the printf() function. 3141 */ 3142 struct PrintfArguments { 3143 int nArg; /* Total number of arguments */ 3144 int nUsed; /* Number of arguments used so far */ 3145 sqlite3_value **apArg; /* The argument values */ 3146 }; 3147 3148 #define SQLITE_PRINTF_INTERNAL 0x01 3149 #define SQLITE_PRINTF_SQLFUNC 0x02 3150 void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list); 3151 void sqlite3XPrintf(StrAccum*, u32, const char*, ...); 3152 char *sqlite3MPrintf(sqlite3*,const char*, ...); 3153 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 3154 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 3155 #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) 3156 void sqlite3DebugPrintf(const char*, ...); 3157 #endif 3158 #if defined(SQLITE_TEST) 3159 void *sqlite3TestTextToPtr(const char*); 3160 #endif 3161 3162 #if defined(SQLITE_DEBUG) 3163 TreeView *sqlite3TreeViewPush(TreeView*,u8); 3164 void sqlite3TreeViewPop(TreeView*); 3165 void sqlite3TreeViewLine(TreeView*, const char*, ...); 3166 void sqlite3TreeViewItem(TreeView*, const char*, u8); 3167 void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); 3168 void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); 3169 void sqlite3TreeViewSelect(TreeView*, const Select*, u8); 3170 #endif 3171 3172 3173 void sqlite3SetString(char **, sqlite3*, const char*, ...); 3174 void sqlite3ErrorMsg(Parse*, const char*, ...); 3175 int sqlite3Dequote(char*); 3176 int sqlite3KeywordCode(const unsigned char*, int); 3177 int sqlite3RunParser(Parse*, const char*, char **); 3178 void sqlite3FinishCoding(Parse*); 3179 int sqlite3GetTempReg(Parse*); 3180 void sqlite3ReleaseTempReg(Parse*,int); 3181 int sqlite3GetTempRange(Parse*,int); 3182 void sqlite3ReleaseTempRange(Parse*,int,int); 3183 void sqlite3ClearTempRegCache(Parse*); 3184 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 3185 Expr *sqlite3Expr(sqlite3*,int,const char*); 3186 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 3187 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 3188 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 3189 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 3190 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 3191 void sqlite3ExprDelete(sqlite3*, Expr*); 3192 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 3193 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 3194 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 3195 void sqlite3ExprListDelete(sqlite3*, ExprList*); 3196 u32 sqlite3ExprListFlags(const ExprList*); 3197 int sqlite3Init(sqlite3*, char**); 3198 int sqlite3InitCallback(void*, int, char**, char**); 3199 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 3200 void sqlite3ResetAllSchemasOfConnection(sqlite3*); 3201 void sqlite3ResetOneSchema(sqlite3*,int); 3202 void sqlite3CollapseDatabaseArray(sqlite3*); 3203 void sqlite3BeginParse(Parse*,int); 3204 void sqlite3CommitInternalChanges(sqlite3*); 3205 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 3206 void sqlite3OpenMasterTable(Parse *, int); 3207 Index *sqlite3PrimaryKeyIndex(Table*); 3208 i16 sqlite3ColumnOfIndex(Index*, i16); 3209 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 3210 void sqlite3AddColumn(Parse*,Token*); 3211 void sqlite3AddNotNull(Parse*, int); 3212 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 3213 void sqlite3AddCheckConstraint(Parse*, Expr*); 3214 void sqlite3AddColumnType(Parse*,Token*); 3215 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 3216 void sqlite3AddCollateType(Parse*, Token*); 3217 void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); 3218 int sqlite3ParseUri(const char*,const char*,unsigned int*, 3219 sqlite3_vfs**,char**,char **); 3220 Btree *sqlite3DbNameToBtree(sqlite3*,const char*); 3221 int sqlite3CodeOnce(Parse *); 3222 3223 #ifdef SQLITE_OMIT_BUILTIN_TEST 3224 # define sqlite3FaultSim(X) SQLITE_OK 3225 #else 3226 int sqlite3FaultSim(int); 3227 #endif 3228 3229 Bitvec *sqlite3BitvecCreate(u32); 3230 int sqlite3BitvecTest(Bitvec*, u32); 3231 int sqlite3BitvecSet(Bitvec*, u32); 3232 void sqlite3BitvecClear(Bitvec*, u32, void*); 3233 void sqlite3BitvecDestroy(Bitvec*); 3234 u32 sqlite3BitvecSize(Bitvec*); 3235 int sqlite3BitvecBuiltinTest(int,int*); 3236 3237 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 3238 void sqlite3RowSetClear(RowSet*); 3239 void sqlite3RowSetInsert(RowSet*, i64); 3240 int sqlite3RowSetTest(RowSet*, int iBatch, i64); 3241 int sqlite3RowSetNext(RowSet*, i64*); 3242 3243 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 3244 3245 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 3246 int sqlite3ViewGetColumnNames(Parse*,Table*); 3247 #else 3248 # define sqlite3ViewGetColumnNames(A,B) 0 3249 #endif 3250 3251 #if SQLITE_MAX_ATTACHED>30 3252 int sqlite3DbMaskAllZero(yDbMask); 3253 #endif 3254 void sqlite3DropTable(Parse*, SrcList*, int, int); 3255 void sqlite3CodeDropTable(Parse*, Table*, int, int); 3256 void sqlite3DeleteTable(sqlite3*, Table*); 3257 #ifndef SQLITE_OMIT_AUTOINCREMENT 3258 void sqlite3AutoincrementBegin(Parse *pParse); 3259 void sqlite3AutoincrementEnd(Parse *pParse); 3260 #else 3261 # define sqlite3AutoincrementBegin(X) 3262 # define sqlite3AutoincrementEnd(X) 3263 #endif 3264 void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); 3265 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); 3266 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 3267 int sqlite3IdListIndex(IdList*,const char*); 3268 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 3269 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 3270 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 3271 Token*, Select*, Expr*, IdList*); 3272 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 3273 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 3274 void sqlite3SrcListShiftJoinType(SrcList*); 3275 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 3276 void sqlite3IdListDelete(sqlite3*, IdList*); 3277 void sqlite3SrcListDelete(sqlite3*, SrcList*); 3278 Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**); 3279 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 3280 Expr*, int, int); 3281 void sqlite3DropIndex(Parse*, SrcList*, int); 3282 int sqlite3Select(Parse*, Select*, SelectDest*); 3283 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 3284 Expr*,ExprList*,u16,Expr*,Expr*); 3285 void sqlite3SelectDelete(sqlite3*, Select*); 3286 Table *sqlite3SrcListLookup(Parse*, SrcList*); 3287 int sqlite3IsReadOnly(Parse*, Table*, int); 3288 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 3289 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 3290 Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); 3291 #endif 3292 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 3293 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 3294 WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); 3295 void sqlite3WhereEnd(WhereInfo*); 3296 u64 sqlite3WhereOutputRowCount(WhereInfo*); 3297 int sqlite3WhereIsDistinct(WhereInfo*); 3298 int sqlite3WhereIsOrdered(WhereInfo*); 3299 int sqlite3WhereIsSorted(WhereInfo*); 3300 int sqlite3WhereContinueLabel(WhereInfo*); 3301 int sqlite3WhereBreakLabel(WhereInfo*); 3302 int sqlite3WhereOkOnePass(WhereInfo*, int*); 3303 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); 3304 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 3305 void sqlite3ExprCodeMove(Parse*, int, int, int); 3306 void sqlite3ExprCacheStore(Parse*, int, int, int); 3307 void sqlite3ExprCachePush(Parse*); 3308 void sqlite3ExprCachePop(Parse*); 3309 void sqlite3ExprCacheRemove(Parse*, int, int); 3310 void sqlite3ExprCacheClear(Parse*); 3311 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 3312 void sqlite3ExprCode(Parse*, Expr*, int); 3313 void sqlite3ExprCodeFactorable(Parse*, Expr*, int); 3314 void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); 3315 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 3316 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 3317 void sqlite3ExprCodeAndCache(Parse*, Expr*, int); 3318 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); 3319 #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ 3320 #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ 3321 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 3322 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 3323 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 3324 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 3325 Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); 3326 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 3327 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 3328 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 3329 void sqlite3Vacuum(Parse*); 3330 int sqlite3RunVacuum(char**, sqlite3*); 3331 char *sqlite3NameFromToken(sqlite3*, Token*); 3332 int sqlite3ExprCompare(Expr*, Expr*, int); 3333 int sqlite3ExprListCompare(ExprList*, ExprList*, int); 3334 int sqlite3ExprImpliesExpr(Expr*, Expr*, int); 3335 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 3336 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 3337 int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); 3338 Vdbe *sqlite3GetVdbe(Parse*); 3339 void sqlite3PrngSaveState(void); 3340 void sqlite3PrngRestoreState(void); 3341 void sqlite3RollbackAll(sqlite3*,int); 3342 void sqlite3CodeVerifySchema(Parse*, int); 3343 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 3344 void sqlite3BeginTransaction(Parse*, int); 3345 void sqlite3CommitTransaction(Parse*); 3346 void sqlite3RollbackTransaction(Parse*); 3347 void sqlite3Savepoint(Parse*, int, Token*); 3348 void sqlite3CloseSavepoints(sqlite3 *); 3349 void sqlite3LeaveMutexAndCloseZombie(sqlite3*); 3350 int sqlite3ExprIsConstant(Expr*); 3351 int sqlite3ExprIsConstantNotJoin(Expr*); 3352 int sqlite3ExprIsConstantOrFunction(Expr*, u8); 3353 int sqlite3ExprIsTableConstant(Expr*,int); 3354 int sqlite3ExprIsInteger(Expr*, int*); 3355 int sqlite3ExprCanBeNull(const Expr*); 3356 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 3357 int sqlite3IsRowid(const char*); 3358 void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); 3359 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); 3360 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); 3361 void sqlite3ResolvePartIdxLabel(Parse*,int); 3362 void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, 3363 u8,u8,int,int*); 3364 void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); 3365 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*); 3366 void sqlite3BeginWriteOperation(Parse*, int, int); 3367 void sqlite3MultiWrite(Parse*); 3368 void sqlite3MayAbort(Parse*); 3369 void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); 3370 void sqlite3UniqueConstraint(Parse*, int, Index*); 3371 void sqlite3RowidConstraint(Parse*, int, Table*); 3372 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 3373 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 3374 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 3375 IdList *sqlite3IdListDup(sqlite3*,IdList*); 3376 Select *sqlite3SelectDup(sqlite3*,Select*,int); 3377 #if SELECTTRACE_ENABLED 3378 void sqlite3SelectSetName(Select*,const char*); 3379 #else 3380 # define sqlite3SelectSetName(A,B) 3381 #endif 3382 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 3383 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8); 3384 void sqlite3RegisterBuiltinFunctions(sqlite3*); 3385 void sqlite3RegisterDateTimeFunctions(void); 3386 void sqlite3RegisterGlobalFunctions(void); 3387 int sqlite3SafetyCheckOk(sqlite3*); 3388 int sqlite3SafetyCheckSickOrOk(sqlite3*); 3389 void sqlite3ChangeCookie(Parse*, int); 3390 3391 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 3392 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 3393 #endif 3394 3395 #ifndef SQLITE_OMIT_TRIGGER 3396 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 3397 Expr*,int, int); 3398 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 3399 void sqlite3DropTrigger(Parse*, SrcList*, int); 3400 void sqlite3DropTriggerPtr(Parse*, Trigger*); 3401 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 3402 Trigger *sqlite3TriggerList(Parse *, Table *); 3403 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 3404 int, int, int); 3405 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 3406 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 3407 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 3408 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 3409 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 3410 Select*,u8); 3411 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 3412 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 3413 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 3414 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 3415 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 3416 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 3417 #else 3418 # define sqlite3TriggersExist(B,C,D,E,F) 0 3419 # define sqlite3DeleteTrigger(A,B) 3420 # define sqlite3DropTriggerPtr(A,B) 3421 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 3422 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 3423 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 3424 # define sqlite3TriggerList(X, Y) 0 3425 # define sqlite3ParseToplevel(p) p 3426 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 3427 #endif 3428 3429 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 3430 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 3431 void sqlite3DeferForeignKey(Parse*, int); 3432 #ifndef SQLITE_OMIT_AUTHORIZATION 3433 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 3434 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 3435 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 3436 void sqlite3AuthContextPop(AuthContext*); 3437 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 3438 #else 3439 # define sqlite3AuthRead(a,b,c,d) 3440 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 3441 # define sqlite3AuthContextPush(a,b,c) 3442 # define sqlite3AuthContextPop(a) ((void)(a)) 3443 #endif 3444 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 3445 void sqlite3Detach(Parse*, Expr*); 3446 void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 3447 int sqlite3FixSrcList(DbFixer*, SrcList*); 3448 int sqlite3FixSelect(DbFixer*, Select*); 3449 int sqlite3FixExpr(DbFixer*, Expr*); 3450 int sqlite3FixExprList(DbFixer*, ExprList*); 3451 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 3452 int sqlite3AtoF(const char *z, double*, int, u8); 3453 int sqlite3GetInt32(const char *, int*); 3454 int sqlite3Atoi(const char*); 3455 int sqlite3Utf16ByteLen(const void *pData, int nChar); 3456 int sqlite3Utf8CharLen(const char *pData, int nByte); 3457 u32 sqlite3Utf8Read(const u8**); 3458 LogEst sqlite3LogEst(u64); 3459 LogEst sqlite3LogEstAdd(LogEst,LogEst); 3460 #ifndef SQLITE_OMIT_VIRTUALTABLE 3461 LogEst sqlite3LogEstFromDouble(double); 3462 #endif 3463 u64 sqlite3LogEstToInt(LogEst); 3464 3465 /* 3466 ** Routines to read and write variable-length integers. These used to 3467 ** be defined locally, but now we use the varint routines in the util.c 3468 ** file. 3469 */ 3470 int sqlite3PutVarint(unsigned char*, u64); 3471 u8 sqlite3GetVarint(const unsigned char *, u64 *); 3472 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 3473 int sqlite3VarintLen(u64 v); 3474 3475 /* 3476 ** The common case is for a varint to be a single byte. They following 3477 ** macros handle the common case without a procedure call, but then call 3478 ** the procedure for larger varints. 3479 */ 3480 #define getVarint32(A,B) \ 3481 (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B))) 3482 #define putVarint32(A,B) \ 3483 (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ 3484 sqlite3PutVarint((A),(B))) 3485 #define getVarint sqlite3GetVarint 3486 #define putVarint sqlite3PutVarint 3487 3488 3489 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 3490 void sqlite3TableAffinity(Vdbe*, Table*, int); 3491 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 3492 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 3493 char sqlite3ExprAffinity(Expr *pExpr); 3494 int sqlite3Atoi64(const char*, i64*, int, u8); 3495 int sqlite3DecOrHexToI64(const char*, i64*); 3496 void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...); 3497 void sqlite3Error(sqlite3*,int); 3498 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 3499 u8 sqlite3HexToInt(int h); 3500 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 3501 3502 #if defined(SQLITE_NEED_ERR_NAME) 3503 const char *sqlite3ErrName(int); 3504 #endif 3505 3506 const char *sqlite3ErrStr(int); 3507 int sqlite3ReadSchema(Parse *pParse); 3508 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 3509 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 3510 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 3511 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); 3512 Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); 3513 Expr *sqlite3ExprSkipCollate(Expr*); 3514 int sqlite3CheckCollSeq(Parse *, CollSeq *); 3515 int sqlite3CheckObjectName(Parse *, const char *); 3516 void sqlite3VdbeSetChanges(sqlite3 *, int); 3517 int sqlite3AddInt64(i64*,i64); 3518 int sqlite3SubInt64(i64*,i64); 3519 int sqlite3MulInt64(i64*,i64); 3520 int sqlite3AbsInt32(int); 3521 #ifdef SQLITE_ENABLE_8_3_NAMES 3522 void sqlite3FileSuffix3(const char*, char*); 3523 #else 3524 # define sqlite3FileSuffix3(X,Y) 3525 #endif 3526 u8 sqlite3GetBoolean(const char *z,u8); 3527 3528 const void *sqlite3ValueText(sqlite3_value*, u8); 3529 int sqlite3ValueBytes(sqlite3_value*, u8); 3530 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 3531 void(*)(void*)); 3532 void sqlite3ValueSetNull(sqlite3_value*); 3533 void sqlite3ValueFree(sqlite3_value*); 3534 sqlite3_value *sqlite3ValueNew(sqlite3 *); 3535 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 3536 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 3537 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 3538 #ifndef SQLITE_AMALGAMATION 3539 extern const unsigned char sqlite3OpcodeProperty[]; 3540 extern const unsigned char sqlite3UpperToLower[]; 3541 extern const unsigned char sqlite3CtypeMap[]; 3542 extern const Token sqlite3IntTokens[]; 3543 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 3544 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 3545 #ifndef SQLITE_OMIT_WSD 3546 extern int sqlite3PendingByte; 3547 #endif 3548 #endif 3549 void sqlite3RootPageMoved(sqlite3*, int, int, int); 3550 void sqlite3Reindex(Parse*, Token*, Token*); 3551 void sqlite3AlterFunctions(void); 3552 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 3553 int sqlite3GetToken(const unsigned char *, int *); 3554 void sqlite3NestedParse(Parse*, const char*, ...); 3555 void sqlite3ExpirePreparedStatements(sqlite3*); 3556 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 3557 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 3558 int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); 3559 int sqlite3ResolveExprNames(NameContext*, Expr*); 3560 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 3561 void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); 3562 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 3563 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 3564 void sqlite3AlterFinishAddColumn(Parse *, Token *); 3565 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 3566 CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); 3567 char sqlite3AffinityType(const char*, u8*); 3568 void sqlite3Analyze(Parse*, Token*, Token*); 3569 int sqlite3InvokeBusyHandler(BusyHandler*); 3570 int sqlite3FindDb(sqlite3*, Token*); 3571 int sqlite3FindDbName(sqlite3 *, const char *); 3572 int sqlite3AnalysisLoad(sqlite3*,int iDB); 3573 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 3574 void sqlite3DefaultRowEst(Index*); 3575 void sqlite3RegisterLikeFunctions(sqlite3*, int); 3576 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 3577 void sqlite3MinimumFileFormat(Parse*, int, int); 3578 void sqlite3SchemaClear(void *); 3579 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3580 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3581 KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int); 3582 void sqlite3KeyInfoUnref(KeyInfo*); 3583 KeyInfo *sqlite3KeyInfoRef(KeyInfo*); 3584 KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*); 3585 #ifdef SQLITE_DEBUG 3586 int sqlite3KeyInfoIsWriteable(KeyInfo*); 3587 #endif 3588 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3589 void (*)(sqlite3_context*,int,sqlite3_value **), 3590 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3591 FuncDestructor *pDestructor 3592 ); 3593 int sqlite3ApiExit(sqlite3 *db, int); 3594 int sqlite3OpenTempDatabase(Parse *); 3595 3596 void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); 3597 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3598 void sqlite3StrAccumAppendAll(StrAccum*,const char*); 3599 void sqlite3AppendChar(StrAccum*,int,char); 3600 char *sqlite3StrAccumFinish(StrAccum*); 3601 void sqlite3StrAccumReset(StrAccum*); 3602 void sqlite3SelectDestInit(SelectDest*,int,int); 3603 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3604 3605 void sqlite3BackupRestart(sqlite3_backup *); 3606 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3607 3608 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3609 void sqlite3AnalyzeFunctions(void); 3610 int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*); 3611 int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**); 3612 void sqlite3Stat4ProbeFree(UnpackedRecord*); 3613 int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); 3614 #endif 3615 3616 /* 3617 ** The interface to the LEMON-generated parser 3618 */ 3619 void *sqlite3ParserAlloc(void*(*)(u64)); 3620 void sqlite3ParserFree(void*, void(*)(void*)); 3621 void sqlite3Parser(void*, int, Token, Parse*); 3622 #ifdef YYTRACKMAXSTACKDEPTH 3623 int sqlite3ParserStackPeak(void*); 3624 #endif 3625 3626 void sqlite3AutoLoadExtensions(sqlite3*); 3627 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3628 void sqlite3CloseExtensions(sqlite3*); 3629 #else 3630 # define sqlite3CloseExtensions(X) 3631 #endif 3632 3633 #ifndef SQLITE_OMIT_SHARED_CACHE 3634 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3635 #else 3636 #define sqlite3TableLock(v,w,x,y,z) 3637 #endif 3638 3639 #ifdef SQLITE_TEST 3640 int sqlite3Utf8To8(unsigned char*); 3641 #endif 3642 3643 #ifdef SQLITE_OMIT_VIRTUALTABLE 3644 # define sqlite3VtabClear(Y) 3645 # define sqlite3VtabSync(X,Y) SQLITE_OK 3646 # define sqlite3VtabRollback(X) 3647 # define sqlite3VtabCommit(X) 3648 # define sqlite3VtabInSync(db) 0 3649 # define sqlite3VtabLock(X) 3650 # define sqlite3VtabUnlock(X) 3651 # define sqlite3VtabUnlockList(X) 3652 # define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK 3653 # define sqlite3GetVTable(X,Y) ((VTable*)0) 3654 #else 3655 void sqlite3VtabClear(sqlite3 *db, Table*); 3656 void sqlite3VtabDisconnect(sqlite3 *db, Table *p); 3657 int sqlite3VtabSync(sqlite3 *db, Vdbe*); 3658 int sqlite3VtabRollback(sqlite3 *db); 3659 int sqlite3VtabCommit(sqlite3 *db); 3660 void sqlite3VtabLock(VTable *); 3661 void sqlite3VtabUnlock(VTable *); 3662 void sqlite3VtabUnlockList(sqlite3*); 3663 int sqlite3VtabSavepoint(sqlite3 *, int, int); 3664 void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*); 3665 VTable *sqlite3GetVTable(sqlite3*, Table*); 3666 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3667 #endif 3668 void sqlite3VtabMakeWritable(Parse*,Table*); 3669 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int); 3670 void sqlite3VtabFinishParse(Parse*, Token*); 3671 void sqlite3VtabArgInit(Parse*); 3672 void sqlite3VtabArgExtend(Parse*, Token*); 3673 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3674 int sqlite3VtabCallConnect(Parse*, Table*); 3675 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3676 int sqlite3VtabBegin(sqlite3 *, VTable *); 3677 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3678 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3679 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); 3680 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3681 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3682 void sqlite3ParserReset(Parse*); 3683 int sqlite3Reprepare(Vdbe*); 3684 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3685 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3686 int sqlite3TempInMemory(const sqlite3*); 3687 const char *sqlite3JournalModename(int); 3688 #ifndef SQLITE_OMIT_WAL 3689 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3690 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3691 #endif 3692 #ifndef SQLITE_OMIT_CTE 3693 With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*); 3694 void sqlite3WithDelete(sqlite3*,With*); 3695 void sqlite3WithPush(Parse*, With*, u8); 3696 #else 3697 #define sqlite3WithPush(x,y,z) 3698 #define sqlite3WithDelete(x,y) 3699 #endif 3700 3701 /* Declarations for functions in fkey.c. All of these are replaced by 3702 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3703 ** key functionality is available. If OMIT_TRIGGER is defined but 3704 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3705 ** this case foreign keys are parsed, but no other functionality is 3706 ** provided (enforcement of FK constraints requires the triggers sub-system). 3707 */ 3708 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3709 void sqlite3FkCheck(Parse*, Table*, int, int, int*, int); 3710 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3711 void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int); 3712 int sqlite3FkRequired(Parse*, Table*, int*, int); 3713 u32 sqlite3FkOldmask(Parse*, Table*); 3714 FKey *sqlite3FkReferences(Table *); 3715 #else 3716 #define sqlite3FkActions(a,b,c,d,e,f) 3717 #define sqlite3FkCheck(a,b,c,d,e,f) 3718 #define sqlite3FkDropTable(a,b,c) 3719 #define sqlite3FkOldmask(a,b) 0 3720 #define sqlite3FkRequired(a,b,c,d) 0 3721 #endif 3722 #ifndef SQLITE_OMIT_FOREIGN_KEY 3723 void sqlite3FkDelete(sqlite3 *, Table*); 3724 int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); 3725 #else 3726 #define sqlite3FkDelete(a,b) 3727 #define sqlite3FkLocateIndex(a,b,c,d,e) 3728 #endif 3729 3730 3731 /* 3732 ** Available fault injectors. Should be numbered beginning with 0. 3733 */ 3734 #define SQLITE_FAULTINJECTOR_MALLOC 0 3735 #define SQLITE_FAULTINJECTOR_COUNT 1 3736 3737 /* 3738 ** The interface to the code in fault.c used for identifying "benign" 3739 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3740 ** is not defined. 3741 */ 3742 #ifndef SQLITE_OMIT_BUILTIN_TEST 3743 void sqlite3BeginBenignMalloc(void); 3744 void sqlite3EndBenignMalloc(void); 3745 #else 3746 #define sqlite3BeginBenignMalloc() 3747 #define sqlite3EndBenignMalloc() 3748 #endif 3749 3750 /* 3751 ** Allowed return values from sqlite3FindInIndex() 3752 */ 3753 #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ 3754 #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ 3755 #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ 3756 #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ 3757 #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ 3758 /* 3759 ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). 3760 */ 3761 #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ 3762 #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ 3763 #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ 3764 int sqlite3FindInIndex(Parse *, Expr *, u32, int*); 3765 3766 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3767 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3768 int sqlite3JournalSize(sqlite3_vfs *); 3769 int sqlite3JournalCreate(sqlite3_file *); 3770 int sqlite3JournalExists(sqlite3_file *p); 3771 #else 3772 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3773 #define sqlite3JournalExists(p) 1 3774 #endif 3775 3776 void sqlite3MemJournalOpen(sqlite3_file *); 3777 int sqlite3MemJournalSize(void); 3778 int sqlite3IsMemJournal(sqlite3_file *); 3779 3780 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p); 3781 #if SQLITE_MAX_EXPR_DEPTH>0 3782 int sqlite3SelectExprHeight(Select *); 3783 int sqlite3ExprCheckHeight(Parse*, int); 3784 #else 3785 #define sqlite3SelectExprHeight(x) 0 3786 #define sqlite3ExprCheckHeight(x,y) 3787 #endif 3788 3789 u32 sqlite3Get4byte(const u8*); 3790 void sqlite3Put4byte(u8*, u32); 3791 3792 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3793 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3794 void sqlite3ConnectionUnlocked(sqlite3 *db); 3795 void sqlite3ConnectionClosed(sqlite3 *db); 3796 #else 3797 #define sqlite3ConnectionBlocked(x,y) 3798 #define sqlite3ConnectionUnlocked(x) 3799 #define sqlite3ConnectionClosed(x) 3800 #endif 3801 3802 #ifdef SQLITE_DEBUG 3803 void sqlite3ParserTrace(FILE*, char *); 3804 #endif 3805 3806 /* 3807 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3808 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3809 ** print I/O tracing messages. 3810 */ 3811 #ifdef SQLITE_ENABLE_IOTRACE 3812 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3813 void sqlite3VdbeIOTraceSql(Vdbe*); 3814 SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); 3815 #else 3816 # define IOTRACE(A) 3817 # define sqlite3VdbeIOTraceSql(X) 3818 #endif 3819 3820 /* 3821 ** These routines are available for the mem2.c debugging memory allocator 3822 ** only. They are used to verify that different "types" of memory 3823 ** allocations are properly tracked by the system. 3824 ** 3825 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3826 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3827 ** a single bit set. 3828 ** 3829 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3830 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3831 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3832 ** 3833 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3834 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3835 ** 3836 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3837 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3838 ** it might have been allocated by lookaside, except the allocation was 3839 ** too large or lookaside was already full. It is important to verify 3840 ** that allocations that might have been satisfied by lookaside are not 3841 ** passed back to non-lookaside free() routines. Asserts such as the 3842 ** example above are placed on the non-lookaside free() routines to verify 3843 ** this constraint. 3844 ** 3845 ** All of this is no-op for a production build. It only comes into 3846 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3847 */ 3848 #ifdef SQLITE_MEMDEBUG 3849 void sqlite3MemdebugSetType(void*,u8); 3850 int sqlite3MemdebugHasType(void*,u8); 3851 int sqlite3MemdebugNoType(void*,u8); 3852 #else 3853 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3854 # define sqlite3MemdebugHasType(X,Y) 1 3855 # define sqlite3MemdebugNoType(X,Y) 1 3856 #endif 3857 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3858 #define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */ 3859 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3860 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3861 3862 /* 3863 ** Threading interface 3864 */ 3865 #if SQLITE_MAX_WORKER_THREADS>0 3866 int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*); 3867 int sqlite3ThreadJoin(SQLiteThread*, void**); 3868 #endif 3869 3870 #if defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST) 3871 int sqlite3DbstatRegister(sqlite3*); 3872 #endif 3873 3874 #endif /* _SQLITEINT_H_ */ 3875