xref: /sqlite-3.40.0/src/sqliteInt.h (revision 1ed93e90)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 ** @(#) $Id: sqliteInt.h,v 1.875 2009/05/20 02:40:46 drh Exp $
15 */
16 #ifndef _SQLITEINT_H_
17 #define _SQLITEINT_H_
18 
19 /*
20 ** Include the configuration header output by 'configure' if we're using the
21 ** autoconf-based build
22 */
23 #ifdef _HAVE_SQLITE_CONFIG_H
24 #include "config.h"
25 #endif
26 
27 #include "sqliteLimit.h"
28 
29 /* Disable nuisance warnings on Borland compilers */
30 #if defined(__BORLANDC__)
31 #pragma warn -rch /* unreachable code */
32 #pragma warn -ccc /* Condition is always true or false */
33 #pragma warn -aus /* Assigned value is never used */
34 #pragma warn -csu /* Comparing signed and unsigned */
35 #pragma warn -spa /* Suspicious pointer arithmetic */
36 #endif
37 
38 /* Needed for various definitions... */
39 #ifndef _GNU_SOURCE
40 # define _GNU_SOURCE
41 #endif
42 
43 /*
44 ** Include standard header files as necessary
45 */
46 #ifdef HAVE_STDINT_H
47 #include <stdint.h>
48 #endif
49 #ifdef HAVE_INTTYPES_H
50 #include <inttypes.h>
51 #endif
52 
53 /*
54 ** This macro is used to "hide" some ugliness in casting an int
55 ** value to a ptr value under the MSVC 64-bit compiler.   Casting
56 ** non 64-bit values to ptr types results in a "hard" error with
57 ** the MSVC 64-bit compiler which this attempts to avoid.
58 **
59 ** A simple compiler pragma or casting sequence could not be found
60 ** to correct this in all situations, so this macro was introduced.
61 **
62 ** It could be argued that the intptr_t type could be used in this
63 ** case, but that type is not available on all compilers, or
64 ** requires the #include of specific headers which differs between
65 ** platforms.
66 **
67 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
68 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
69 ** So we have to define the macros in different ways depending on the
70 ** compiler.
71 */
72 #if defined(__GNUC__)
73 # if defined(HAVE_STDINT_H)
74 #   define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
75 #   define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
76 # else
77 #   define SQLITE_INT_TO_PTR(X)  ((void*)(X))
78 #   define SQLITE_PTR_TO_INT(X)  ((int)(X))
79 # endif
80 #else
81 # define SQLITE_INT_TO_PTR(X)   ((void*)&((char*)0)[X])
82 # define SQLITE_PTR_TO_INT(X)   ((int)(((char*)X)-(char*)0))
83 #endif
84 
85 /*
86 ** These #defines should enable >2GB file support on POSIX if the
87 ** underlying operating system supports it.  If the OS lacks
88 ** large file support, or if the OS is windows, these should be no-ops.
89 **
90 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
91 ** system #includes.  Hence, this block of code must be the very first
92 ** code in all source files.
93 **
94 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
95 ** on the compiler command line.  This is necessary if you are compiling
96 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
97 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
98 ** without this option, LFS is enable.  But LFS does not exist in the kernel
99 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
100 ** portability you should omit LFS.
101 **
102 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
103 */
104 #ifndef SQLITE_DISABLE_LFS
105 # define _LARGE_FILE       1
106 # ifndef _FILE_OFFSET_BITS
107 #   define _FILE_OFFSET_BITS 64
108 # endif
109 # define _LARGEFILE_SOURCE 1
110 #endif
111 
112 
113 /*
114 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
115 ** Older versions of SQLite used an optional THREADSAFE macro.
116 ** We support that for legacy
117 */
118 #if !defined(SQLITE_THREADSAFE)
119 #if defined(THREADSAFE)
120 # define SQLITE_THREADSAFE THREADSAFE
121 #else
122 # define SQLITE_THREADSAFE 1
123 #endif
124 #endif
125 
126 /*
127 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
128 ** It determines whether or not the features related to
129 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
130 ** be overridden at runtime using the sqlite3_config() API.
131 */
132 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
133 # define SQLITE_DEFAULT_MEMSTATUS 1
134 #endif
135 
136 /*
137 ** Exactly one of the following macros must be defined in order to
138 ** specify which memory allocation subsystem to use.
139 **
140 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
141 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
142 **     SQLITE_MEMORY_SIZE            // internal allocator #1
143 **     SQLITE_MMAP_HEAP_SIZE         // internal mmap() allocator
144 **     SQLITE_POW2_MEMORY_SIZE       // internal power-of-two allocator
145 **
146 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
147 ** the default.
148 */
149 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
150     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
151     defined(SQLITE_POW2_MEMORY_SIZE)>1
152 # error "At most one of the following compile-time configuration options\
153  is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
154  SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
155 #endif
156 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
157     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
158     defined(SQLITE_POW2_MEMORY_SIZE)==0
159 # define SQLITE_SYSTEM_MALLOC 1
160 #endif
161 
162 /*
163 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
164 ** sizes of memory allocations below this value where possible.
165 */
166 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
167 # define SQLITE_MALLOC_SOFT_LIMIT 1024
168 #endif
169 
170 /*
171 ** We need to define _XOPEN_SOURCE as follows in order to enable
172 ** recursive mutexes on most Unix systems.  But Mac OS X is different.
173 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
174 ** so it is omitted there.  See ticket #2673.
175 **
176 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
177 ** implemented on some systems.  So we avoid defining it at all
178 ** if it is already defined or if it is unneeded because we are
179 ** not doing a threadsafe build.  Ticket #2681.
180 **
181 ** See also ticket #2741.
182 */
183 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
184 #  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
185 #endif
186 
187 /*
188 ** The TCL headers are only needed when compiling the TCL bindings.
189 */
190 #if defined(SQLITE_TCL) || defined(TCLSH)
191 # include <tcl.h>
192 #endif
193 
194 /*
195 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
196 ** Setting NDEBUG makes the code smaller and run faster.  So the following
197 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
198 ** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
199 ** feature.
200 */
201 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
202 # define NDEBUG 1
203 #endif
204 
205 /*
206 ** The testcase() macro is used to aid in coverage testing.  When
207 ** doing coverage testing, the condition inside the argument to
208 ** testcase() must be evaluated both true and false in order to
209 ** get full branch coverage.  The testcase() macro is inserted
210 ** to help ensure adequate test coverage in places where simple
211 ** condition/decision coverage is inadequate.  For example, testcase()
212 ** can be used to make sure boundary values are tested.  For
213 ** bitmask tests, testcase() can be used to make sure each bit
214 ** is significant and used at least once.  On switch statements
215 ** where multiple cases go to the same block of code, testcase()
216 ** can insure that all cases are evaluated.
217 **
218 */
219 #ifdef SQLITE_COVERAGE_TEST
220   void sqlite3Coverage(int);
221 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
222 #else
223 # define testcase(X)
224 #endif
225 
226 /*
227 ** The TESTONLY macro is used to enclose variable declarations or
228 ** other bits of code that are needed to support the arguments
229 ** within testcase() and assert() macros.
230 */
231 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
232 # define TESTONLY(X)  X
233 #else
234 # define TESTONLY(X)
235 #endif
236 
237 /*
238 ** Sometimes we need a small amount of code such as a variable initialization
239 ** to setup for a later assert() statement.  We do not want this code to
240 ** appear when assert() is disabled.  The following macro is therefore
241 ** used to contain that setup code.  The "VVA" acronym stands for
242 ** "Verification, Validation, and Accreditation".  In other words, the
243 ** code within VVA_ONLY() will only run during verification processes.
244 */
245 #ifndef NDEBUG
246 # define VVA_ONLY(X)  X
247 #else
248 # define VVA_ONLY(X)
249 #endif
250 
251 /*
252 ** The ALWAYS and NEVER macros surround boolean expressions which
253 ** are intended to always be true or false, respectively.  Such
254 ** expressions could be omitted from the code completely.  But they
255 ** are included in a few cases in order to enhance the resilience
256 ** of SQLite to unexpected behavior - to make the code "self-healing"
257 ** or "ductile" rather than being "brittle" and crashing at the first
258 ** hint of unplanned behavior.
259 **
260 ** In other words, ALWAYS and NEVER are added for defensive code.
261 **
262 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
263 ** be true and false so that the unreachable code then specify will
264 ** not be counted as untested code.
265 */
266 #if defined(SQLITE_COVERAGE_TEST)
267 # define ALWAYS(X)      (1)
268 # define NEVER(X)       (0)
269 #elif !defined(NDEBUG)
270   int sqlite3Assert(void);
271 # define ALWAYS(X)      ((X)?1:sqlite3Assert())
272 # define NEVER(X)       ((X)?sqlite3Assert():0)
273 #else
274 # define ALWAYS(X)      (X)
275 # define NEVER(X)       (X)
276 #endif
277 
278 /*
279 ** The macro unlikely() is a hint that surrounds a boolean
280 ** expression that is usually false.  Macro likely() surrounds
281 ** a boolean expression that is usually true.  GCC is able to
282 ** use these hints to generate better code, sometimes.
283 */
284 #if defined(__GNUC__) && 0
285 # define likely(X)    __builtin_expect((X),1)
286 # define unlikely(X)  __builtin_expect((X),0)
287 #else
288 # define likely(X)    !!(X)
289 # define unlikely(X)  !!(X)
290 #endif
291 
292 #include "sqlite3.h"
293 #include "hash.h"
294 #include "parse.h"
295 #include <stdio.h>
296 #include <stdlib.h>
297 #include <string.h>
298 #include <assert.h>
299 #include <stddef.h>
300 
301 /*
302 ** If compiling for a processor that lacks floating point support,
303 ** substitute integer for floating-point
304 */
305 #ifdef SQLITE_OMIT_FLOATING_POINT
306 # define double sqlite_int64
307 # define LONGDOUBLE_TYPE sqlite_int64
308 # ifndef SQLITE_BIG_DBL
309 #   define SQLITE_BIG_DBL (0x7fffffffffffffff)
310 # endif
311 # define SQLITE_OMIT_DATETIME_FUNCS 1
312 # define SQLITE_OMIT_TRACE 1
313 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
314 #endif
315 #ifndef SQLITE_BIG_DBL
316 # define SQLITE_BIG_DBL (1e99)
317 #endif
318 
319 /*
320 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
321 ** afterward. Having this macro allows us to cause the C compiler
322 ** to omit code used by TEMP tables without messy #ifndef statements.
323 */
324 #ifdef SQLITE_OMIT_TEMPDB
325 #define OMIT_TEMPDB 1
326 #else
327 #define OMIT_TEMPDB 0
328 #endif
329 
330 /*
331 ** If the following macro is set to 1, then NULL values are considered
332 ** distinct when determining whether or not two entries are the same
333 ** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
334 ** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
335 ** is the way things are suppose to work.
336 **
337 ** If the following macro is set to 0, the NULLs are indistinct for
338 ** a UNIQUE index.  In this mode, you can only have a single NULL entry
339 ** for a column declared UNIQUE.  This is the way Informix and SQL Server
340 ** work.
341 */
342 #define NULL_DISTINCT_FOR_UNIQUE 1
343 
344 /*
345 ** The "file format" number is an integer that is incremented whenever
346 ** the VDBE-level file format changes.  The following macros define the
347 ** the default file format for new databases and the maximum file format
348 ** that the library can read.
349 */
350 #define SQLITE_MAX_FILE_FORMAT 4
351 #ifndef SQLITE_DEFAULT_FILE_FORMAT
352 # define SQLITE_DEFAULT_FILE_FORMAT 1
353 #endif
354 
355 /*
356 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
357 ** on the command-line
358 */
359 #ifndef SQLITE_TEMP_STORE
360 # define SQLITE_TEMP_STORE 1
361 #endif
362 
363 /*
364 ** GCC does not define the offsetof() macro so we'll have to do it
365 ** ourselves.
366 */
367 #ifndef offsetof
368 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
369 #endif
370 
371 /*
372 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
373 ** not, there are still machines out there that use EBCDIC.)
374 */
375 #if 'A' == '\301'
376 # define SQLITE_EBCDIC 1
377 #else
378 # define SQLITE_ASCII 1
379 #endif
380 
381 /*
382 ** Integers of known sizes.  These typedefs might change for architectures
383 ** where the sizes very.  Preprocessor macros are available so that the
384 ** types can be conveniently redefined at compile-type.  Like this:
385 **
386 **         cc '-DUINTPTR_TYPE=long long int' ...
387 */
388 #ifndef UINT32_TYPE
389 # ifdef HAVE_UINT32_T
390 #  define UINT32_TYPE uint32_t
391 # else
392 #  define UINT32_TYPE unsigned int
393 # endif
394 #endif
395 #ifndef UINT16_TYPE
396 # ifdef HAVE_UINT16_T
397 #  define UINT16_TYPE uint16_t
398 # else
399 #  define UINT16_TYPE unsigned short int
400 # endif
401 #endif
402 #ifndef INT16_TYPE
403 # ifdef HAVE_INT16_T
404 #  define INT16_TYPE int16_t
405 # else
406 #  define INT16_TYPE short int
407 # endif
408 #endif
409 #ifndef UINT8_TYPE
410 # ifdef HAVE_UINT8_T
411 #  define UINT8_TYPE uint8_t
412 # else
413 #  define UINT8_TYPE unsigned char
414 # endif
415 #endif
416 #ifndef INT8_TYPE
417 # ifdef HAVE_INT8_T
418 #  define INT8_TYPE int8_t
419 # else
420 #  define INT8_TYPE signed char
421 # endif
422 #endif
423 #ifndef LONGDOUBLE_TYPE
424 # define LONGDOUBLE_TYPE long double
425 #endif
426 typedef sqlite_int64 i64;          /* 8-byte signed integer */
427 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
428 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
429 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
430 typedef INT16_TYPE i16;            /* 2-byte signed integer */
431 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
432 typedef INT8_TYPE i8;              /* 1-byte signed integer */
433 
434 /*
435 ** Macros to determine whether the machine is big or little endian,
436 ** evaluated at runtime.
437 */
438 #ifdef SQLITE_AMALGAMATION
439 const int sqlite3one = 1;
440 #else
441 extern const int sqlite3one;
442 #endif
443 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\
444                              || defined(__x86_64) || defined(__x86_64__)
445 # define SQLITE_BIGENDIAN    0
446 # define SQLITE_LITTLEENDIAN 1
447 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
448 #else
449 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
450 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
451 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
452 #endif
453 
454 /*
455 ** Constants for the largest and smallest possible 64-bit signed integers.
456 ** These macros are designed to work correctly on both 32-bit and 64-bit
457 ** compilers.
458 */
459 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
460 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
461 
462 /*
463 ** Round up a number to the next larger multiple of 8.  This is used
464 ** to force 8-byte alignment on 64-bit architectures.
465 */
466 #define ROUND8(x)     (((x)+7)&~7)
467 
468 /*
469 ** Round down to the nearest multiple of 8
470 */
471 #define ROUNDDOWN8(x) ((x)&~7)
472 
473 /*
474 ** Assert that the pointer X is aligned to an 8-byte boundary.
475 */
476 #define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
477 
478 /*
479 ** An instance of the following structure is used to store the busy-handler
480 ** callback for a given sqlite handle.
481 **
482 ** The sqlite.busyHandler member of the sqlite struct contains the busy
483 ** callback for the database handle. Each pager opened via the sqlite
484 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
485 ** callback is currently invoked only from within pager.c.
486 */
487 typedef struct BusyHandler BusyHandler;
488 struct BusyHandler {
489   int (*xFunc)(void *,int);  /* The busy callback */
490   void *pArg;                /* First arg to busy callback */
491   int nBusy;                 /* Incremented with each busy call */
492 };
493 
494 /*
495 ** Name of the master database table.  The master database table
496 ** is a special table that holds the names and attributes of all
497 ** user tables and indices.
498 */
499 #define MASTER_NAME       "sqlite_master"
500 #define TEMP_MASTER_NAME  "sqlite_temp_master"
501 
502 /*
503 ** The root-page of the master database table.
504 */
505 #define MASTER_ROOT       1
506 
507 /*
508 ** The name of the schema table.
509 */
510 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
511 
512 /*
513 ** A convenience macro that returns the number of elements in
514 ** an array.
515 */
516 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
517 
518 /*
519 ** The following value as a destructor means to use sqlite3DbFree().
520 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
521 */
522 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3DbFree)
523 
524 /*
525 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
526 ** not support Writable Static Data (WSD) such as global and static variables.
527 ** All variables must either be on the stack or dynamically allocated from
528 ** the heap.  When WSD is unsupported, the variable declarations scattered
529 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
530 ** macro is used for this purpose.  And instead of referencing the variable
531 ** directly, we use its constant as a key to lookup the run-time allocated
532 ** buffer that holds real variable.  The constant is also the initializer
533 ** for the run-time allocated buffer.
534 **
535 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
536 ** macros become no-ops and have zero performance impact.
537 */
538 #ifdef SQLITE_OMIT_WSD
539   #define SQLITE_WSD const
540   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
541   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
542   int sqlite3_wsd_init(int N, int J);
543   void *sqlite3_wsd_find(void *K, int L);
544 #else
545   #define SQLITE_WSD
546   #define GLOBAL(t,v) v
547   #define sqlite3GlobalConfig sqlite3Config
548 #endif
549 
550 /*
551 ** The following macros are used to suppress compiler warnings and to
552 ** make it clear to human readers when a function parameter is deliberately
553 ** left unused within the body of a function. This usually happens when
554 ** a function is called via a function pointer. For example the
555 ** implementation of an SQL aggregate step callback may not use the
556 ** parameter indicating the number of arguments passed to the aggregate,
557 ** if it knows that this is enforced elsewhere.
558 **
559 ** When a function parameter is not used at all within the body of a function,
560 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
561 ** However, these macros may also be used to suppress warnings related to
562 ** parameters that may or may not be used depending on compilation options.
563 ** For example those parameters only used in assert() statements. In these
564 ** cases the parameters are named as per the usual conventions.
565 */
566 #define UNUSED_PARAMETER(x) (void)(x)
567 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
568 
569 /*
570 ** Forward references to structures
571 */
572 typedef struct AggInfo AggInfo;
573 typedef struct AuthContext AuthContext;
574 typedef struct Bitvec Bitvec;
575 typedef struct RowSet RowSet;
576 typedef struct CollSeq CollSeq;
577 typedef struct Column Column;
578 typedef struct Db Db;
579 typedef struct Schema Schema;
580 typedef struct Expr Expr;
581 typedef struct ExprList ExprList;
582 typedef struct FKey FKey;
583 typedef struct FuncDef FuncDef;
584 typedef struct FuncDefHash FuncDefHash;
585 typedef struct IdList IdList;
586 typedef struct Index Index;
587 typedef struct KeyClass KeyClass;
588 typedef struct KeyInfo KeyInfo;
589 typedef struct Lookaside Lookaside;
590 typedef struct LookasideSlot LookasideSlot;
591 typedef struct Module Module;
592 typedef struct NameContext NameContext;
593 typedef struct Parse Parse;
594 typedef struct Savepoint Savepoint;
595 typedef struct Select Select;
596 typedef struct SrcList SrcList;
597 typedef struct StrAccum StrAccum;
598 typedef struct Table Table;
599 typedef struct TableLock TableLock;
600 typedef struct Token Token;
601 typedef struct TriggerStack TriggerStack;
602 typedef struct TriggerStep TriggerStep;
603 typedef struct Trigger Trigger;
604 typedef struct UnpackedRecord UnpackedRecord;
605 typedef struct Walker Walker;
606 typedef struct WherePlan WherePlan;
607 typedef struct WhereInfo WhereInfo;
608 typedef struct WhereLevel WhereLevel;
609 
610 /*
611 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
612 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
613 ** pointer types (i.e. FuncDef) defined above.
614 */
615 #include "btree.h"
616 #include "vdbe.h"
617 #include "pager.h"
618 #include "pcache.h"
619 
620 #include "os.h"
621 #include "mutex.h"
622 
623 
624 /*
625 ** Each database file to be accessed by the system is an instance
626 ** of the following structure.  There are normally two of these structures
627 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
628 ** aDb[1] is the database file used to hold temporary tables.  Additional
629 ** databases may be attached.
630 */
631 struct Db {
632   char *zName;         /* Name of this database */
633   Btree *pBt;          /* The B*Tree structure for this database file */
634   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
635   u8 safety_level;     /* How aggressive at syncing data to disk */
636   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
637 };
638 
639 /*
640 ** An instance of the following structure stores a database schema.
641 **
642 ** If there are no virtual tables configured in this schema, the
643 ** Schema.db variable is set to NULL. After the first virtual table
644 ** has been added, it is set to point to the database connection
645 ** used to create the connection. Once a virtual table has been
646 ** added to the Schema structure and the Schema.db variable populated,
647 ** only that database connection may use the Schema to prepare
648 ** statements.
649 */
650 struct Schema {
651   int schema_cookie;   /* Database schema version number for this file */
652   Hash tblHash;        /* All tables indexed by name */
653   Hash idxHash;        /* All (named) indices indexed by name */
654   Hash trigHash;       /* All triggers indexed by name */
655   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
656   u8 file_format;      /* Schema format version for this file */
657   u8 enc;              /* Text encoding used by this database */
658   u16 flags;           /* Flags associated with this schema */
659   int cache_size;      /* Number of pages to use in the cache */
660 #ifndef SQLITE_OMIT_VIRTUALTABLE
661   sqlite3 *db;         /* "Owner" connection. See comment above */
662 #endif
663 };
664 
665 /*
666 ** These macros can be used to test, set, or clear bits in the
667 ** Db.flags field.
668 */
669 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
670 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
671 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
672 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
673 
674 /*
675 ** Allowed values for the DB.flags field.
676 **
677 ** The DB_SchemaLoaded flag is set after the database schema has been
678 ** read into internal hash tables.
679 **
680 ** DB_UnresetViews means that one or more views have column names that
681 ** have been filled out.  If the schema changes, these column names might
682 ** changes and so the view will need to be reset.
683 */
684 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
685 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
686 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
687 
688 /*
689 ** The number of different kinds of things that can be limited
690 ** using the sqlite3_limit() interface.
691 */
692 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
693 
694 /*
695 ** Lookaside malloc is a set of fixed-size buffers that can be used
696 ** to satisfy small transient memory allocation requests for objects
697 ** associated with a particular database connection.  The use of
698 ** lookaside malloc provides a significant performance enhancement
699 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
700 ** SQL statements.
701 **
702 ** The Lookaside structure holds configuration information about the
703 ** lookaside malloc subsystem.  Each available memory allocation in
704 ** the lookaside subsystem is stored on a linked list of LookasideSlot
705 ** objects.
706 **
707 ** Lookaside allocations are only allowed for objects that are associated
708 ** with a particular database connection.  Hence, schema information cannot
709 ** be stored in lookaside because in shared cache mode the schema information
710 ** is shared by multiple database connections.  Therefore, while parsing
711 ** schema information, the Lookaside.bEnabled flag is cleared so that
712 ** lookaside allocations are not used to construct the schema objects.
713 */
714 struct Lookaside {
715   u16 sz;                 /* Size of each buffer in bytes */
716   u8 bEnabled;            /* False to disable new lookaside allocations */
717   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
718   int nOut;               /* Number of buffers currently checked out */
719   int mxOut;              /* Highwater mark for nOut */
720   LookasideSlot *pFree;   /* List of available buffers */
721   void *pStart;           /* First byte of available memory space */
722   void *pEnd;             /* First byte past end of available space */
723 };
724 struct LookasideSlot {
725   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
726 };
727 
728 /*
729 ** A hash table for function definitions.
730 **
731 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
732 ** Collisions are on the FuncDef.pHash chain.
733 */
734 struct FuncDefHash {
735   FuncDef *a[23];       /* Hash table for functions */
736 };
737 
738 /*
739 ** Each database is an instance of the following structure.
740 **
741 ** The sqlite.lastRowid records the last insert rowid generated by an
742 ** insert statement.  Inserts on views do not affect its value.  Each
743 ** trigger has its own context, so that lastRowid can be updated inside
744 ** triggers as usual.  The previous value will be restored once the trigger
745 ** exits.  Upon entering a before or instead of trigger, lastRowid is no
746 ** longer (since after version 2.8.12) reset to -1.
747 **
748 ** The sqlite.nChange does not count changes within triggers and keeps no
749 ** context.  It is reset at start of sqlite3_exec.
750 ** The sqlite.lsChange represents the number of changes made by the last
751 ** insert, update, or delete statement.  It remains constant throughout the
752 ** length of a statement and is then updated by OP_SetCounts.  It keeps a
753 ** context stack just like lastRowid so that the count of changes
754 ** within a trigger is not seen outside the trigger.  Changes to views do not
755 ** affect the value of lsChange.
756 ** The sqlite.csChange keeps track of the number of current changes (since
757 ** the last statement) and is used to update sqlite_lsChange.
758 **
759 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
760 ** store the most recent error code and, if applicable, string. The
761 ** internal function sqlite3Error() is used to set these variables
762 ** consistently.
763 */
764 struct sqlite3 {
765   sqlite3_vfs *pVfs;            /* OS Interface */
766   int nDb;                      /* Number of backends currently in use */
767   Db *aDb;                      /* All backends */
768   int flags;                    /* Miscellaneous flags. See below */
769   int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
770   int errCode;                  /* Most recent error code (SQLITE_*) */
771   int errMask;                  /* & result codes with this before returning */
772   u8 autoCommit;                /* The auto-commit flag. */
773   u8 temp_store;                /* 1: file 2: memory 0: default */
774   u8 mallocFailed;              /* True if we have seen a malloc failure */
775   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
776   u8 dfltJournalMode;           /* Default journal mode for attached dbs */
777   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
778   int nextPagesize;             /* Pagesize after VACUUM if >0 */
779   int nTable;                   /* Number of tables in the database */
780   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
781   i64 lastRowid;                /* ROWID of most recent insert (see above) */
782   i64 priorNewRowid;            /* Last randomly generated ROWID */
783   u32 magic;                    /* Magic number for detect library misuse */
784   int nChange;                  /* Value returned by sqlite3_changes() */
785   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
786   sqlite3_mutex *mutex;         /* Connection mutex */
787   int aLimit[SQLITE_N_LIMIT];   /* Limits */
788   struct sqlite3InitInfo {      /* Information used during initialization */
789     int iDb;                    /* When back is being initialized */
790     int newTnum;                /* Rootpage of table being initialized */
791     u8 busy;                    /* TRUE if currently initializing */
792   } init;
793   int nExtension;               /* Number of loaded extensions */
794   void **aExtension;            /* Array of shared library handles */
795   struct Vdbe *pVdbe;           /* List of active virtual machines */
796   int activeVdbeCnt;            /* Number of VDBEs currently executing */
797   int writeVdbeCnt;             /* Number of active VDBEs that are writing */
798   void (*xTrace)(void*,const char*);        /* Trace function */
799   void *pTraceArg;                          /* Argument to the trace function */
800   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
801   void *pProfileArg;                        /* Argument to profile function */
802   void *pCommitArg;                 /* Argument to xCommitCallback() */
803   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
804   void *pRollbackArg;               /* Argument to xRollbackCallback() */
805   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
806   void *pUpdateArg;
807   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
808   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
809   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
810   void *pCollNeededArg;
811   sqlite3_value *pErr;          /* Most recent error message */
812   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
813   char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
814   union {
815     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
816     double notUsed1;            /* Spacer */
817   } u1;
818   Lookaside lookaside;          /* Lookaside malloc configuration */
819 #ifndef SQLITE_OMIT_AUTHORIZATION
820   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
821                                 /* Access authorization function */
822   void *pAuthArg;               /* 1st argument to the access auth function */
823 #endif
824 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
825   int (*xProgress)(void *);     /* The progress callback */
826   void *pProgressArg;           /* Argument to the progress callback */
827   int nProgressOps;             /* Number of opcodes for progress callback */
828 #endif
829 #ifndef SQLITE_OMIT_VIRTUALTABLE
830   Hash aModule;                 /* populated by sqlite3_create_module() */
831   Table *pVTab;                 /* vtab with active Connect/Create method */
832   sqlite3_vtab **aVTrans;       /* Virtual tables with open transactions */
833   int nVTrans;                  /* Allocated size of aVTrans */
834 #endif
835   FuncDefHash aFunc;            /* Hash table of connection functions */
836   Hash aCollSeq;                /* All collating sequences */
837   BusyHandler busyHandler;      /* Busy callback */
838   int busyTimeout;              /* Busy handler timeout, in msec */
839   Db aDbStatic[2];              /* Static space for the 2 default backends */
840 #ifdef SQLITE_SSE
841   sqlite3_stmt *pFetch;         /* Used by SSE to fetch stored statements */
842 #endif
843   Savepoint *pSavepoint;        /* List of active savepoints */
844   int nSavepoint;               /* Number of non-transaction savepoints */
845   int nStatement;               /* Number of nested statement-transactions  */
846   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
847 
848 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
849   /* The following variables are all protected by the STATIC_MASTER
850   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
851   **
852   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
853   ** unlock so that it can proceed.
854   **
855   ** When X.pBlockingConnection==Y, that means that something that X tried
856   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
857   ** held by Y.
858   */
859   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
860   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
861   void *pUnlockArg;                     /* Argument to xUnlockNotify */
862   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
863   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
864 #endif
865 };
866 
867 /*
868 ** A macro to discover the encoding of a database.
869 */
870 #define ENC(db) ((db)->aDb[0].pSchema->enc)
871 
872 /*
873 ** Possible values for the sqlite.flags and or Db.flags fields.
874 **
875 ** On sqlite.flags, the SQLITE_InTrans value means that we have
876 ** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
877 ** transaction is active on that particular database file.
878 */
879 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
880 #define SQLITE_InTrans        0x00000008  /* True if in a transaction */
881 #define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
882 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
883 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
884 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
885                                           /*   DELETE, or UPDATE and return */
886                                           /*   the count using a callback. */
887 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
888                                           /*   result set is empty */
889 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
890 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
891 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
892 #define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when
893                                           ** accessing read-only databases */
894 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
895 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
896 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
897 #define SQLITE_FullFSync      0x00010000  /* Use full fsync on the backend */
898 #define SQLITE_LoadExtension  0x00020000  /* Enable load_extension */
899 
900 #define SQLITE_RecoveryMode   0x00040000  /* Ignore schema errors */
901 #define SQLITE_SharedCache    0x00080000  /* Cache sharing is enabled */
902 #define SQLITE_CommitBusy     0x00200000  /* In the process of committing */
903 #define SQLITE_ReverseOrder   0x00400000  /* Reverse unordered SELECTs */
904 
905 /*
906 ** Possible values for the sqlite.magic field.
907 ** The numbers are obtained at random and have no special meaning, other
908 ** than being distinct from one another.
909 */
910 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
911 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
912 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
913 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
914 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
915 
916 /*
917 ** Each SQL function is defined by an instance of the following
918 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
919 ** hash table.  When multiple functions have the same name, the hash table
920 ** points to a linked list of these structures.
921 */
922 struct FuncDef {
923   i16 nArg;            /* Number of arguments.  -1 means unlimited */
924   u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
925   u8 flags;            /* Some combination of SQLITE_FUNC_* */
926   void *pUserData;     /* User data parameter */
927   FuncDef *pNext;      /* Next function with same name */
928   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
929   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
930   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
931   char *zName;         /* SQL name of the function. */
932   FuncDef *pHash;      /* Next with a different name but the same hash */
933 };
934 
935 /*
936 ** Possible values for FuncDef.flags
937 */
938 #define SQLITE_FUNC_LIKE     0x01 /* Candidate for the LIKE optimization */
939 #define SQLITE_FUNC_CASE     0x02 /* Case-sensitive LIKE-type function */
940 #define SQLITE_FUNC_EPHEM    0x04 /* Ephemeral.  Delete with VDBE */
941 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
942 #define SQLITE_FUNC_PRIVATE  0x10 /* Allowed for internal use only */
943 #define SQLITE_FUNC_COUNT    0x20 /* Built-in count(*) aggregate */
944 
945 /*
946 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
947 ** used to create the initializers for the FuncDef structures.
948 **
949 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
950 **     Used to create a scalar function definition of a function zName
951 **     implemented by C function xFunc that accepts nArg arguments. The
952 **     value passed as iArg is cast to a (void*) and made available
953 **     as the user-data (sqlite3_user_data()) for the function. If
954 **     argument bNC is true, then the FuncDef.needCollate flag is set.
955 **
956 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
957 **     Used to create an aggregate function definition implemented by
958 **     the C functions xStep and xFinal. The first four parameters
959 **     are interpreted in the same way as the first 4 parameters to
960 **     FUNCTION().
961 **
962 **   LIKEFUNC(zName, nArg, pArg, flags)
963 **     Used to create a scalar function definition of a function zName
964 **     that accepts nArg arguments and is implemented by a call to C
965 **     function likeFunc. Argument pArg is cast to a (void *) and made
966 **     available as the function user-data (sqlite3_user_data()). The
967 **     FuncDef.flags variable is set to the value passed as the flags
968 **     parameter.
969 */
970 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
971   {nArg, SQLITE_UTF8, bNC*8, SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0}
972 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
973   {nArg, SQLITE_UTF8, bNC*8, pArg, 0, xFunc, 0, 0, #zName, 0}
974 #define LIKEFUNC(zName, nArg, arg, flags) \
975   {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0}
976 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
977   {nArg, SQLITE_UTF8, nc*8, SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0}
978 
979 /*
980 ** All current savepoints are stored in a linked list starting at
981 ** sqlite3.pSavepoint. The first element in the list is the most recently
982 ** opened savepoint. Savepoints are added to the list by the vdbe
983 ** OP_Savepoint instruction.
984 */
985 struct Savepoint {
986   char *zName;                        /* Savepoint name (nul-terminated) */
987   Savepoint *pNext;                   /* Parent savepoint (if any) */
988 };
989 
990 /*
991 ** The following are used as the second parameter to sqlite3Savepoint(),
992 ** and as the P1 argument to the OP_Savepoint instruction.
993 */
994 #define SAVEPOINT_BEGIN      0
995 #define SAVEPOINT_RELEASE    1
996 #define SAVEPOINT_ROLLBACK   2
997 
998 
999 /*
1000 ** Each SQLite module (virtual table definition) is defined by an
1001 ** instance of the following structure, stored in the sqlite3.aModule
1002 ** hash table.
1003 */
1004 struct Module {
1005   const sqlite3_module *pModule;       /* Callback pointers */
1006   const char *zName;                   /* Name passed to create_module() */
1007   void *pAux;                          /* pAux passed to create_module() */
1008   void (*xDestroy)(void *);            /* Module destructor function */
1009 };
1010 
1011 /*
1012 ** information about each column of an SQL table is held in an instance
1013 ** of this structure.
1014 */
1015 struct Column {
1016   char *zName;     /* Name of this column */
1017   Expr *pDflt;     /* Default value of this column */
1018   char *zType;     /* Data type for this column */
1019   char *zColl;     /* Collating sequence.  If NULL, use the default */
1020   u8 notNull;      /* True if there is a NOT NULL constraint */
1021   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
1022   char affinity;   /* One of the SQLITE_AFF_... values */
1023 #ifndef SQLITE_OMIT_VIRTUALTABLE
1024   u8 isHidden;     /* True if this column is 'hidden' */
1025 #endif
1026 };
1027 
1028 /*
1029 ** A "Collating Sequence" is defined by an instance of the following
1030 ** structure. Conceptually, a collating sequence consists of a name and
1031 ** a comparison routine that defines the order of that sequence.
1032 **
1033 ** There may two separate implementations of the collation function, one
1034 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
1035 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
1036 ** native byte order. When a collation sequence is invoked, SQLite selects
1037 ** the version that will require the least expensive encoding
1038 ** translations, if any.
1039 **
1040 ** The CollSeq.pUser member variable is an extra parameter that passed in
1041 ** as the first argument to the UTF-8 comparison function, xCmp.
1042 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
1043 ** xCmp16.
1044 **
1045 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
1046 ** collating sequence is undefined.  Indices built on an undefined
1047 ** collating sequence may not be read or written.
1048 */
1049 struct CollSeq {
1050   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
1051   u8 enc;               /* Text encoding handled by xCmp() */
1052   u8 type;              /* One of the SQLITE_COLL_... values below */
1053   void *pUser;          /* First argument to xCmp() */
1054   int (*xCmp)(void*,int, const void*, int, const void*);
1055   void (*xDel)(void*);  /* Destructor for pUser */
1056 };
1057 
1058 /*
1059 ** Allowed values of CollSeq.type:
1060 */
1061 #define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
1062 #define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
1063 #define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
1064 #define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
1065 
1066 /*
1067 ** A sort order can be either ASC or DESC.
1068 */
1069 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
1070 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
1071 
1072 /*
1073 ** Column affinity types.
1074 **
1075 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1076 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
1077 ** the speed a little by numbering the values consecutively.
1078 **
1079 ** But rather than start with 0 or 1, we begin with 'a'.  That way,
1080 ** when multiple affinity types are concatenated into a string and
1081 ** used as the P4 operand, they will be more readable.
1082 **
1083 ** Note also that the numeric types are grouped together so that testing
1084 ** for a numeric type is a single comparison.
1085 */
1086 #define SQLITE_AFF_TEXT     'a'
1087 #define SQLITE_AFF_NONE     'b'
1088 #define SQLITE_AFF_NUMERIC  'c'
1089 #define SQLITE_AFF_INTEGER  'd'
1090 #define SQLITE_AFF_REAL     'e'
1091 
1092 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
1093 
1094 /*
1095 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1096 ** affinity value.
1097 */
1098 #define SQLITE_AFF_MASK     0x67
1099 
1100 /*
1101 ** Additional bit values that can be ORed with an affinity without
1102 ** changing the affinity.
1103 */
1104 #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
1105 #define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
1106 
1107 /*
1108 ** Each SQL table is represented in memory by an instance of the
1109 ** following structure.
1110 **
1111 ** Table.zName is the name of the table.  The case of the original
1112 ** CREATE TABLE statement is stored, but case is not significant for
1113 ** comparisons.
1114 **
1115 ** Table.nCol is the number of columns in this table.  Table.aCol is a
1116 ** pointer to an array of Column structures, one for each column.
1117 **
1118 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1119 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
1120 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1121 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
1122 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
1123 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
1124 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1125 **
1126 ** Table.tnum is the page number for the root BTree page of the table in the
1127 ** database file.  If Table.iDb is the index of the database table backend
1128 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
1129 ** holds temporary tables and indices.  If TF_Ephemeral is set
1130 ** then the table is stored in a file that is automatically deleted
1131 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
1132 ** refers VDBE cursor number that holds the table open, not to the root
1133 ** page number.  Transient tables are used to hold the results of a
1134 ** sub-query that appears instead of a real table name in the FROM clause
1135 ** of a SELECT statement.
1136 */
1137 struct Table {
1138   sqlite3 *dbMem;      /* DB connection used for lookaside allocations. */
1139   char *zName;         /* Name of the table or view */
1140   int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
1141   int nCol;            /* Number of columns in this table */
1142   Column *aCol;        /* Information about each column */
1143   Index *pIndex;       /* List of SQL indexes on this table. */
1144   int tnum;            /* Root BTree node for this table (see note above) */
1145   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
1146   u16 nRef;            /* Number of pointers to this Table */
1147   u8 tabFlags;         /* Mask of TF_* values */
1148   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
1149   FKey *pFKey;         /* Linked list of all foreign keys in this table */
1150   char *zColAff;       /* String defining the affinity of each column */
1151 #ifndef SQLITE_OMIT_CHECK
1152   Expr *pCheck;        /* The AND of all CHECK constraints */
1153 #endif
1154 #ifndef SQLITE_OMIT_ALTERTABLE
1155   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
1156 #endif
1157 #ifndef SQLITE_OMIT_VIRTUALTABLE
1158   Module *pMod;        /* Pointer to the implementation of the module */
1159   sqlite3_vtab *pVtab; /* Pointer to the module instance */
1160   int nModuleArg;      /* Number of arguments to the module */
1161   char **azModuleArg;  /* Text of all module args. [0] is module name */
1162 #endif
1163   Trigger *pTrigger;   /* List of triggers stored in pSchema */
1164   Schema *pSchema;     /* Schema that contains this table */
1165   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
1166 };
1167 
1168 /*
1169 ** Allowed values for Tabe.tabFlags.
1170 */
1171 #define TF_Readonly        0x01    /* Read-only system table */
1172 #define TF_Ephemeral       0x02    /* An ephemeral table */
1173 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
1174 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
1175 #define TF_Virtual         0x10    /* Is a virtual table */
1176 #define TF_NeedMetadata    0x20    /* aCol[].zType and aCol[].pColl missing */
1177 
1178 
1179 
1180 /*
1181 ** Test to see whether or not a table is a virtual table.  This is
1182 ** done as a macro so that it will be optimized out when virtual
1183 ** table support is omitted from the build.
1184 */
1185 #ifndef SQLITE_OMIT_VIRTUALTABLE
1186 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
1187 #  define IsHiddenColumn(X) ((X)->isHidden)
1188 #else
1189 #  define IsVirtual(X)      0
1190 #  define IsHiddenColumn(X) 0
1191 #endif
1192 
1193 /*
1194 ** Each foreign key constraint is an instance of the following structure.
1195 **
1196 ** A foreign key is associated with two tables.  The "from" table is
1197 ** the table that contains the REFERENCES clause that creates the foreign
1198 ** key.  The "to" table is the table that is named in the REFERENCES clause.
1199 ** Consider this example:
1200 **
1201 **     CREATE TABLE ex1(
1202 **       a INTEGER PRIMARY KEY,
1203 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1204 **     );
1205 **
1206 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1207 **
1208 ** Each REFERENCES clause generates an instance of the following structure
1209 ** which is attached to the from-table.  The to-table need not exist when
1210 ** the from-table is created.  The existence of the to-table is not checked.
1211 */
1212 struct FKey {
1213   Table *pFrom;     /* The table that contains the REFERENCES clause */
1214   FKey *pNextFrom;  /* Next foreign key in pFrom */
1215   char *zTo;        /* Name of table that the key points to */
1216   int nCol;         /* Number of columns in this key */
1217   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
1218   u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
1219   u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
1220   u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
1221   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
1222     int iFrom;         /* Index of column in pFrom */
1223     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
1224   } aCol[1];        /* One entry for each of nCol column s */
1225 };
1226 
1227 /*
1228 ** SQLite supports many different ways to resolve a constraint
1229 ** error.  ROLLBACK processing means that a constraint violation
1230 ** causes the operation in process to fail and for the current transaction
1231 ** to be rolled back.  ABORT processing means the operation in process
1232 ** fails and any prior changes from that one operation are backed out,
1233 ** but the transaction is not rolled back.  FAIL processing means that
1234 ** the operation in progress stops and returns an error code.  But prior
1235 ** changes due to the same operation are not backed out and no rollback
1236 ** occurs.  IGNORE means that the particular row that caused the constraint
1237 ** error is not inserted or updated.  Processing continues and no error
1238 ** is returned.  REPLACE means that preexisting database rows that caused
1239 ** a UNIQUE constraint violation are removed so that the new insert or
1240 ** update can proceed.  Processing continues and no error is reported.
1241 **
1242 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1243 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1244 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
1245 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
1246 ** referenced table row is propagated into the row that holds the
1247 ** foreign key.
1248 **
1249 ** The following symbolic values are used to record which type
1250 ** of action to take.
1251 */
1252 #define OE_None     0   /* There is no constraint to check */
1253 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
1254 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
1255 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
1256 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
1257 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
1258 
1259 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1260 #define OE_SetNull  7   /* Set the foreign key value to NULL */
1261 #define OE_SetDflt  8   /* Set the foreign key value to its default */
1262 #define OE_Cascade  9   /* Cascade the changes */
1263 
1264 #define OE_Default  99  /* Do whatever the default action is */
1265 
1266 
1267 /*
1268 ** An instance of the following structure is passed as the first
1269 ** argument to sqlite3VdbeKeyCompare and is used to control the
1270 ** comparison of the two index keys.
1271 */
1272 struct KeyInfo {
1273   sqlite3 *db;        /* The database connection */
1274   u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
1275   u16 nField;         /* Number of entries in aColl[] */
1276   u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
1277   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
1278 };
1279 
1280 /*
1281 ** An instance of the following structure holds information about a
1282 ** single index record that has already been parsed out into individual
1283 ** values.
1284 **
1285 ** A record is an object that contains one or more fields of data.
1286 ** Records are used to store the content of a table row and to store
1287 ** the key of an index.  A blob encoding of a record is created by
1288 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1289 ** OP_Column opcode.
1290 **
1291 ** This structure holds a record that has already been disassembled
1292 ** into its constituent fields.
1293 */
1294 struct UnpackedRecord {
1295   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
1296   u16 nField;         /* Number of entries in apMem[] */
1297   u16 flags;          /* Boolean settings.  UNPACKED_... below */
1298   i64 rowid;          /* Used by UNPACKED_PREFIX_SEARCH */
1299   Mem *aMem;          /* Values */
1300 };
1301 
1302 /*
1303 ** Allowed values of UnpackedRecord.flags
1304 */
1305 #define UNPACKED_NEED_FREE     0x0001  /* Memory is from sqlite3Malloc() */
1306 #define UNPACKED_NEED_DESTROY  0x0002  /* apMem[]s should all be destroyed */
1307 #define UNPACKED_IGNORE_ROWID  0x0004  /* Ignore trailing rowid on key1 */
1308 #define UNPACKED_INCRKEY       0x0008  /* Make this key an epsilon larger */
1309 #define UNPACKED_PREFIX_MATCH  0x0010  /* A prefix match is considered OK */
1310 #define UNPACKED_PREFIX_SEARCH 0x0020  /* A prefix match is considered OK */
1311 
1312 /*
1313 ** Each SQL index is represented in memory by an
1314 ** instance of the following structure.
1315 **
1316 ** The columns of the table that are to be indexed are described
1317 ** by the aiColumn[] field of this structure.  For example, suppose
1318 ** we have the following table and index:
1319 **
1320 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1321 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
1322 **
1323 ** In the Table structure describing Ex1, nCol==3 because there are
1324 ** three columns in the table.  In the Index structure describing
1325 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1326 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
1327 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1328 ** The second column to be indexed (c1) has an index of 0 in
1329 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1330 **
1331 ** The Index.onError field determines whether or not the indexed columns
1332 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
1333 ** it means this is not a unique index.  Otherwise it is a unique index
1334 ** and the value of Index.onError indicate the which conflict resolution
1335 ** algorithm to employ whenever an attempt is made to insert a non-unique
1336 ** element.
1337 */
1338 struct Index {
1339   char *zName;     /* Name of this index */
1340   int nColumn;     /* Number of columns in the table used by this index */
1341   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
1342   unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1343   Table *pTable;   /* The SQL table being indexed */
1344   int tnum;        /* Page containing root of this index in database file */
1345   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1346   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
1347   char *zColAff;   /* String defining the affinity of each column */
1348   Index *pNext;    /* The next index associated with the same table */
1349   Schema *pSchema; /* Schema containing this index */
1350   u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
1351   char **azColl;   /* Array of collation sequence names for index */
1352 };
1353 
1354 /*
1355 ** Each token coming out of the lexer is an instance of
1356 ** this structure.  Tokens are also used as part of an expression.
1357 **
1358 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1359 ** may contain random values.  Do not make any assumptions about Token.dyn
1360 ** and Token.n when Token.z==0.
1361 */
1362 struct Token {
1363   const unsigned char *z; /* Text of the token.  Not NULL-terminated! */
1364   unsigned dyn    : 1;    /* True for malloced memory, false for static */
1365   unsigned quoted : 1;    /* True if token still has its quotes */
1366   unsigned n      : 30;   /* Number of characters in this token */
1367 };
1368 
1369 /*
1370 ** An instance of this structure contains information needed to generate
1371 ** code for a SELECT that contains aggregate functions.
1372 **
1373 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1374 ** pointer to this structure.  The Expr.iColumn field is the index in
1375 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1376 ** code for that node.
1377 **
1378 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1379 ** original Select structure that describes the SELECT statement.  These
1380 ** fields do not need to be freed when deallocating the AggInfo structure.
1381 */
1382 struct AggInfo {
1383   u8 directMode;          /* Direct rendering mode means take data directly
1384                           ** from source tables rather than from accumulators */
1385   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
1386                           ** than the source table */
1387   int sortingIdx;         /* Cursor number of the sorting index */
1388   ExprList *pGroupBy;     /* The group by clause */
1389   int nSortingColumn;     /* Number of columns in the sorting index */
1390   struct AggInfo_col {    /* For each column used in source tables */
1391     Table *pTab;             /* Source table */
1392     int iTable;              /* Cursor number of the source table */
1393     int iColumn;             /* Column number within the source table */
1394     int iSorterColumn;       /* Column number in the sorting index */
1395     int iMem;                /* Memory location that acts as accumulator */
1396     Expr *pExpr;             /* The original expression */
1397   } *aCol;
1398   int nColumn;            /* Number of used entries in aCol[] */
1399   int nColumnAlloc;       /* Number of slots allocated for aCol[] */
1400   int nAccumulator;       /* Number of columns that show through to the output.
1401                           ** Additional columns are used only as parameters to
1402                           ** aggregate functions */
1403   struct AggInfo_func {   /* For each aggregate function */
1404     Expr *pExpr;             /* Expression encoding the function */
1405     FuncDef *pFunc;          /* The aggregate function implementation */
1406     int iMem;                /* Memory location that acts as accumulator */
1407     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
1408   } *aFunc;
1409   int nFunc;              /* Number of entries in aFunc[] */
1410   int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
1411 };
1412 
1413 /*
1414 ** Each node of an expression in the parse tree is an instance
1415 ** of this structure.
1416 **
1417 ** Expr.op is the opcode. The integer parser token codes are reused
1418 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1419 ** code representing the ">=" operator. This same integer code is reused
1420 ** to represent the greater-than-or-equal-to operator in the expression
1421 ** tree.
1422 **
1423 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1424 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1425 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1426 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1427 ** then Expr.token contains the name of the function.
1428 **
1429 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1430 ** binary operator. Either or both may be NULL.
1431 **
1432 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1433 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1434 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1435 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1436 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1437 ** valid.
1438 **
1439 ** An expression of the form ID or ID.ID refers to a column in a table.
1440 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1441 ** the integer cursor number of a VDBE cursor pointing to that table and
1442 ** Expr.iColumn is the column number for the specific column.  If the
1443 ** expression is used as a result in an aggregate SELECT, then the
1444 ** value is also stored in the Expr.iAgg column in the aggregate so that
1445 ** it can be accessed after all aggregates are computed.
1446 **
1447 ** If the expression is an unbound variable marker (a question mark
1448 ** character '?' in the original SQL) then the Expr.iTable holds the index
1449 ** number for that variable.
1450 **
1451 ** If the expression is a subquery then Expr.iColumn holds an integer
1452 ** register number containing the result of the subquery.  If the
1453 ** subquery gives a constant result, then iTable is -1.  If the subquery
1454 ** gives a different answer at different times during statement processing
1455 ** then iTable is the address of a subroutine that computes the subquery.
1456 **
1457 ** If the Expr is of type OP_Column, and the table it is selecting from
1458 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1459 ** corresponding table definition.
1460 **
1461 ** ALLOCATION NOTES:
1462 **
1463 ** Expr objects can use a lot of memory space in database schema.  To
1464 ** help reduce memory requirements, sometimes an Expr object will be
1465 ** truncated.  And to reduce the number of memory allocations, sometimes
1466 ** two or more Expr objects will be stored in a single memory allocation,
1467 ** together with Expr.token and/or Expr.span strings.
1468 **
1469 ** If the EP_Reduced, EP_SpanToken, and EP_TokenOnly flags are set when
1470 ** an Expr object is truncated.  When EP_Reduced is set, then all
1471 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1472 ** are contained within the same memory allocation.  Note, however, that
1473 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1474 ** allocated, regardless of whether or not EP_Reduced is set.
1475 */
1476 struct Expr {
1477   u8 op;                 /* Operation performed by this node */
1478   char affinity;         /* The affinity of the column or 0 if not a column */
1479   VVA_ONLY(u8 vvaFlags;) /* Flags used for VV&A only.  EVVA_* below. */
1480   u16 flags;             /* Various flags.  EP_* See below */
1481   Token token;           /* An operand token */
1482 
1483   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1484   ** space is allocated for the fields below this point. An attempt to
1485   ** access them will result in a segfault or malfunction.
1486   *********************************************************************/
1487 
1488   Token span;            /* Complete text of the expression */
1489 
1490   /* If the EP_SpanToken flag is set in the Expr.flags mask, then no
1491   ** space is allocated for the fields below this point. An attempt to
1492   ** access them will result in a segfault or malfunction.
1493   *********************************************************************/
1494 
1495   Expr *pLeft;           /* Left subnode */
1496   Expr *pRight;          /* Right subnode */
1497   union {
1498     ExprList *pList;     /* Function arguments or in "<expr> IN (<expr-list)" */
1499     Select *pSelect;     /* Used for sub-selects and "<expr> IN (<select>)" */
1500   } x;
1501   CollSeq *pColl;        /* The collation type of the column or 0 */
1502 
1503   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1504   ** space is allocated for the fields below this point. An attempt to
1505   ** access them will result in a segfault or malfunction.
1506   *********************************************************************/
1507 
1508   int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
1509                          ** iColumn-th field of the iTable-th table. */
1510   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1511   int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1512   int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
1513   Table *pTab;           /* Table for TK_COLUMN expressions. */
1514 #if SQLITE_MAX_EXPR_DEPTH>0
1515   int nHeight;           /* Height of the tree headed by this node */
1516 #endif
1517 };
1518 
1519 /*
1520 ** The following are the meanings of bits in the Expr.flags field.
1521 */
1522 #define EP_FromJoin   0x0001  /* Originated in ON or USING clause of a join */
1523 #define EP_Agg        0x0002  /* Contains one or more aggregate functions */
1524 #define EP_Resolved   0x0004  /* IDs have been resolved to COLUMNs */
1525 #define EP_Error      0x0008  /* Expression contains one or more errors */
1526 #define EP_Distinct   0x0010  /* Aggregate function with DISTINCT keyword */
1527 #define EP_VarSelect  0x0020  /* pSelect is correlated, not constant */
1528 #define EP_DblQuoted  0x0040  /* token.z was originally in "..." */
1529 #define EP_InfixFunc  0x0080  /* True for an infix function: LIKE, GLOB, etc */
1530 #define EP_ExpCollate 0x0100  /* Collating sequence specified explicitly */
1531 #define EP_AnyAff     0x0200  /* Can take a cached column of any affinity */
1532 #define EP_FixedDest  0x0400  /* Result needed in a specific register */
1533 #define EP_IntValue   0x0800  /* Integer value contained in iTable */
1534 #define EP_xIsSelect  0x1000  /* x.pSelect is valid (otherwise x.pList is) */
1535 
1536 #define EP_Reduced    0x2000  /* Expr struct is EXPR_REDUCEDSIZE bytes only */
1537 #define EP_TokenOnly  0x4000  /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
1538 #define EP_SpanToken  0x8000  /* Expr size is EXPR_SPANTOKENSIZE bytes */
1539 
1540 /*
1541 ** The following are the meanings of bits in the Expr.vvaFlags field.
1542 ** This information is only used when SQLite is compiled with
1543 ** SQLITE_DEBUG defined.
1544 */
1545 #ifndef NDEBUG
1546 #define EVVA_ReadOnlyToken  0x01  /* Expr.token.z is read-only */
1547 #endif
1548 
1549 /*
1550 ** These macros can be used to test, set, or clear bits in the
1551 ** Expr.flags field.
1552 */
1553 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
1554 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
1555 #define ExprSetProperty(E,P)     (E)->flags|=(P)
1556 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
1557 
1558 /*
1559 ** Macros to determine the number of bytes required by a normal Expr
1560 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
1561 ** and an Expr struct with the EP_TokenOnly flag set.
1562 */
1563 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
1564 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
1565 #define EXPR_SPANTOKENSIZE      offsetof(Expr,pLeft)   /* Fewer features */
1566 #define EXPR_TOKENONLYSIZE      offsetof(Expr,span)    /* Smallest possible */
1567 
1568 /*
1569 ** Flags passed to the sqlite3ExprDup() function. See the header comment
1570 ** above sqlite3ExprDup() for details.
1571 */
1572 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
1573 #define EXPRDUP_SPAN           0x0002  /* Make a copy of Expr.span */
1574 
1575 /*
1576 ** A list of expressions.  Each expression may optionally have a
1577 ** name.  An expr/name combination can be used in several ways, such
1578 ** as the list of "expr AS ID" fields following a "SELECT" or in the
1579 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
1580 ** also be used as the argument to a function, in which case the a.zName
1581 ** field is not used.
1582 */
1583 struct ExprList {
1584   int nExpr;             /* Number of expressions on the list */
1585   int nAlloc;            /* Number of entries allocated below */
1586   int iECursor;          /* VDBE Cursor associated with this ExprList */
1587   struct ExprList_item {
1588     Expr *pExpr;           /* The list of expressions */
1589     char *zName;           /* Token associated with this expression */
1590     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
1591     u8 done;               /* A flag to indicate when processing is finished */
1592     u16 iCol;              /* For ORDER BY, column number in result set */
1593     u16 iAlias;            /* Index into Parse.aAlias[] for zName */
1594   } *a;                  /* One entry for each expression */
1595 };
1596 
1597 /*
1598 ** An instance of this structure can hold a simple list of identifiers,
1599 ** such as the list "a,b,c" in the following statements:
1600 **
1601 **      INSERT INTO t(a,b,c) VALUES ...;
1602 **      CREATE INDEX idx ON t(a,b,c);
1603 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1604 **
1605 ** The IdList.a.idx field is used when the IdList represents the list of
1606 ** column names after a table name in an INSERT statement.  In the statement
1607 **
1608 **     INSERT INTO t(a,b,c) ...
1609 **
1610 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1611 */
1612 struct IdList {
1613   struct IdList_item {
1614     char *zName;      /* Name of the identifier */
1615     int idx;          /* Index in some Table.aCol[] of a column named zName */
1616   } *a;
1617   int nId;         /* Number of identifiers on the list */
1618   int nAlloc;      /* Number of entries allocated for a[] below */
1619 };
1620 
1621 /*
1622 ** The bitmask datatype defined below is used for various optimizations.
1623 **
1624 ** Changing this from a 64-bit to a 32-bit type limits the number of
1625 ** tables in a join to 32 instead of 64.  But it also reduces the size
1626 ** of the library by 738 bytes on ix86.
1627 */
1628 typedef u64 Bitmask;
1629 
1630 /*
1631 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
1632 */
1633 #define BMS  ((int)(sizeof(Bitmask)*8))
1634 
1635 /*
1636 ** The following structure describes the FROM clause of a SELECT statement.
1637 ** Each table or subquery in the FROM clause is a separate element of
1638 ** the SrcList.a[] array.
1639 **
1640 ** With the addition of multiple database support, the following structure
1641 ** can also be used to describe a particular table such as the table that
1642 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
1643 ** such a table must be a simple name: ID.  But in SQLite, the table can
1644 ** now be identified by a database name, a dot, then the table name: ID.ID.
1645 **
1646 ** The jointype starts out showing the join type between the current table
1647 ** and the next table on the list.  The parser builds the list this way.
1648 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1649 ** jointype expresses the join between the table and the previous table.
1650 */
1651 struct SrcList {
1652   i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
1653   i16 nAlloc;      /* Number of entries allocated in a[] below */
1654   struct SrcList_item {
1655     char *zDatabase;  /* Name of database holding this table */
1656     char *zName;      /* Name of the table */
1657     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
1658     Table *pTab;      /* An SQL table corresponding to zName */
1659     Select *pSelect;  /* A SELECT statement used in place of a table name */
1660     u8 isPopulated;   /* Temporary table associated with SELECT is populated */
1661     u8 jointype;      /* Type of join between this able and the previous */
1662     u8 notIndexed;    /* True if there is a NOT INDEXED clause */
1663     int iCursor;      /* The VDBE cursor number used to access this table */
1664     Expr *pOn;        /* The ON clause of a join */
1665     IdList *pUsing;   /* The USING clause of a join */
1666     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
1667     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
1668     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
1669   } a[1];             /* One entry for each identifier on the list */
1670 };
1671 
1672 /*
1673 ** Permitted values of the SrcList.a.jointype field
1674 */
1675 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
1676 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
1677 #define JT_NATURAL   0x0004    /* True for a "natural" join */
1678 #define JT_LEFT      0x0008    /* Left outer join */
1679 #define JT_RIGHT     0x0010    /* Right outer join */
1680 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
1681 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
1682 
1683 
1684 /*
1685 ** A WherePlan object holds information that describes a lookup
1686 ** strategy.
1687 **
1688 ** This object is intended to be opaque outside of the where.c module.
1689 ** It is included here only so that that compiler will know how big it
1690 ** is.  None of the fields in this object should be used outside of
1691 ** the where.c module.
1692 **
1693 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
1694 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true.  And pVtabIdx
1695 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true.  It is never the
1696 ** case that more than one of these conditions is true.
1697 */
1698 struct WherePlan {
1699   u32 wsFlags;                   /* WHERE_* flags that describe the strategy */
1700   u32 nEq;                       /* Number of == constraints */
1701   union {
1702     Index *pIdx;                   /* Index when WHERE_INDEXED is true */
1703     struct WhereTerm *pTerm;       /* WHERE clause term for OR-search */
1704     sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
1705   } u;
1706 };
1707 
1708 /*
1709 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1710 ** structure contains a single instance of this structure.  This structure
1711 ** is intended to be private the the where.c module and should not be
1712 ** access or modified by other modules.
1713 **
1714 ** The pIdxInfo field is used to help pick the best index on a
1715 ** virtual table.  The pIdxInfo pointer contains indexing
1716 ** information for the i-th table in the FROM clause before reordering.
1717 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1718 ** All other information in the i-th WhereLevel object for the i-th table
1719 ** after FROM clause ordering.
1720 */
1721 struct WhereLevel {
1722   WherePlan plan;       /* query plan for this element of the FROM clause */
1723   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
1724   int iTabCur;          /* The VDBE cursor used to access the table */
1725   int iIdxCur;          /* The VDBE cursor used to access pIdx */
1726   int addrBrk;          /* Jump here to break out of the loop */
1727   int addrNxt;          /* Jump here to start the next IN combination */
1728   int addrCont;         /* Jump here to continue with the next loop cycle */
1729   int addrFirst;        /* First instruction of interior of the loop */
1730   u8 iFrom;             /* Which entry in the FROM clause */
1731   u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
1732   int p1, p2;           /* Operands of the opcode used to ends the loop */
1733   union {               /* Information that depends on plan.wsFlags */
1734     struct {
1735       int nIn;              /* Number of entries in aInLoop[] */
1736       struct InLoop {
1737         int iCur;              /* The VDBE cursor used by this IN operator */
1738         int addrInTop;         /* Top of the IN loop */
1739       } *aInLoop;           /* Information about each nested IN operator */
1740     } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
1741   } u;
1742 
1743   /* The following field is really not part of the current level.  But
1744   ** we need a place to cache virtual table index information for each
1745   ** virtual table in the FROM clause and the WhereLevel structure is
1746   ** a convenient place since there is one WhereLevel for each FROM clause
1747   ** element.
1748   */
1749   sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
1750 };
1751 
1752 /*
1753 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
1754 ** and the WhereInfo.wctrlFlags member.
1755 */
1756 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
1757 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
1758 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
1759 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
1760 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
1761 #define WHERE_OMIT_OPEN        0x0010 /* Table cursor are already open */
1762 #define WHERE_OMIT_CLOSE       0x0020 /* Omit close of table & index cursors */
1763 #define WHERE_FORCE_TABLE      0x0040 /* Do not use an index-only search */
1764 
1765 /*
1766 ** The WHERE clause processing routine has two halves.  The
1767 ** first part does the start of the WHERE loop and the second
1768 ** half does the tail of the WHERE loop.  An instance of
1769 ** this structure is returned by the first half and passed
1770 ** into the second half to give some continuity.
1771 */
1772 struct WhereInfo {
1773   Parse *pParse;       /* Parsing and code generating context */
1774   u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
1775   u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
1776   SrcList *pTabList;             /* List of tables in the join */
1777   int iTop;                      /* The very beginning of the WHERE loop */
1778   int iContinue;                 /* Jump here to continue with next record */
1779   int iBreak;                    /* Jump here to break out of the loop */
1780   int nLevel;                    /* Number of nested loop */
1781   struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
1782   WhereLevel a[1];               /* Information about each nest loop in WHERE */
1783 };
1784 
1785 /*
1786 ** A NameContext defines a context in which to resolve table and column
1787 ** names.  The context consists of a list of tables (the pSrcList) field and
1788 ** a list of named expression (pEList).  The named expression list may
1789 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
1790 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
1791 ** pEList corresponds to the result set of a SELECT and is NULL for
1792 ** other statements.
1793 **
1794 ** NameContexts can be nested.  When resolving names, the inner-most
1795 ** context is searched first.  If no match is found, the next outer
1796 ** context is checked.  If there is still no match, the next context
1797 ** is checked.  This process continues until either a match is found
1798 ** or all contexts are check.  When a match is found, the nRef member of
1799 ** the context containing the match is incremented.
1800 **
1801 ** Each subquery gets a new NameContext.  The pNext field points to the
1802 ** NameContext in the parent query.  Thus the process of scanning the
1803 ** NameContext list corresponds to searching through successively outer
1804 ** subqueries looking for a match.
1805 */
1806 struct NameContext {
1807   Parse *pParse;       /* The parser */
1808   SrcList *pSrcList;   /* One or more tables used to resolve names */
1809   ExprList *pEList;    /* Optional list of named expressions */
1810   int nRef;            /* Number of names resolved by this context */
1811   int nErr;            /* Number of errors encountered while resolving names */
1812   u8 allowAgg;         /* Aggregate functions allowed here */
1813   u8 hasAgg;           /* True if aggregates are seen */
1814   u8 isCheck;          /* True if resolving names in a CHECK constraint */
1815   int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
1816   AggInfo *pAggInfo;   /* Information about aggregates at this level */
1817   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
1818 };
1819 
1820 /*
1821 ** An instance of the following structure contains all information
1822 ** needed to generate code for a single SELECT statement.
1823 **
1824 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
1825 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
1826 ** limit and nOffset to the value of the offset (or 0 if there is not
1827 ** offset).  But later on, nLimit and nOffset become the memory locations
1828 ** in the VDBE that record the limit and offset counters.
1829 **
1830 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
1831 ** These addresses must be stored so that we can go back and fill in
1832 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
1833 ** the number of columns in P2 can be computed at the same time
1834 ** as the OP_OpenEphm instruction is coded because not
1835 ** enough information about the compound query is known at that point.
1836 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
1837 ** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
1838 ** sequences for the ORDER BY clause.
1839 */
1840 struct Select {
1841   ExprList *pEList;      /* The fields of the result */
1842   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
1843   char affinity;         /* MakeRecord with this affinity for SRT_Set */
1844   u16 selFlags;          /* Various SF_* values */
1845   SrcList *pSrc;         /* The FROM clause */
1846   Expr *pWhere;          /* The WHERE clause */
1847   ExprList *pGroupBy;    /* The GROUP BY clause */
1848   Expr *pHaving;         /* The HAVING clause */
1849   ExprList *pOrderBy;    /* The ORDER BY clause */
1850   Select *pPrior;        /* Prior select in a compound select statement */
1851   Select *pNext;         /* Next select to the left in a compound */
1852   Select *pRightmost;    /* Right-most select in a compound select statement */
1853   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
1854   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
1855   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
1856   int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
1857 };
1858 
1859 /*
1860 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
1861 ** "Select Flag".
1862 */
1863 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
1864 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
1865 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
1866 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
1867 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
1868 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
1869 
1870 
1871 /*
1872 ** The results of a select can be distributed in several ways.  The
1873 ** "SRT" prefix means "SELECT Result Type".
1874 */
1875 #define SRT_Union        1  /* Store result as keys in an index */
1876 #define SRT_Except       2  /* Remove result from a UNION index */
1877 #define SRT_Exists       3  /* Store 1 if the result is not empty */
1878 #define SRT_Discard      4  /* Do not save the results anywhere */
1879 
1880 /* The ORDER BY clause is ignored for all of the above */
1881 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
1882 
1883 #define SRT_Output       5  /* Output each row of result */
1884 #define SRT_Mem          6  /* Store result in a memory cell */
1885 #define SRT_Set          7  /* Store results as keys in an index */
1886 #define SRT_Table        8  /* Store result as data with an automatic rowid */
1887 #define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
1888 #define SRT_Coroutine   10  /* Generate a single row of result */
1889 
1890 /*
1891 ** A structure used to customize the behavior of sqlite3Select(). See
1892 ** comments above sqlite3Select() for details.
1893 */
1894 typedef struct SelectDest SelectDest;
1895 struct SelectDest {
1896   u8 eDest;         /* How to dispose of the results */
1897   u8 affinity;      /* Affinity used when eDest==SRT_Set */
1898   int iParm;        /* A parameter used by the eDest disposal method */
1899   int iMem;         /* Base register where results are written */
1900   int nMem;         /* Number of registers allocated */
1901 };
1902 
1903 /*
1904 ** Size of the column cache
1905 */
1906 #ifndef SQLITE_N_COLCACHE
1907 # define SQLITE_N_COLCACHE 10
1908 #endif
1909 
1910 /*
1911 ** An SQL parser context.  A copy of this structure is passed through
1912 ** the parser and down into all the parser action routine in order to
1913 ** carry around information that is global to the entire parse.
1914 **
1915 ** The structure is divided into two parts.  When the parser and code
1916 ** generate call themselves recursively, the first part of the structure
1917 ** is constant but the second part is reset at the beginning and end of
1918 ** each recursion.
1919 **
1920 ** The nTableLock and aTableLock variables are only used if the shared-cache
1921 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
1922 ** used to store the set of table-locks required by the statement being
1923 ** compiled. Function sqlite3TableLock() is used to add entries to the
1924 ** list.
1925 */
1926 struct Parse {
1927   sqlite3 *db;         /* The main database structure */
1928   int rc;              /* Return code from execution */
1929   char *zErrMsg;       /* An error message */
1930   Vdbe *pVdbe;         /* An engine for executing database bytecode */
1931   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
1932   u8 nameClash;        /* A permanent table name clashes with temp table name */
1933   u8 checkSchema;      /* Causes schema cookie check after an error */
1934   u8 nested;           /* Number of nested calls to the parser/code generator */
1935   u8 parseError;       /* True after a parsing error.  Ticket #1794 */
1936   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
1937   u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
1938   int aTempReg[8];     /* Holding area for temporary registers */
1939   int nRangeReg;       /* Size of the temporary register block */
1940   int iRangeReg;       /* First register in temporary register block */
1941   int nErr;            /* Number of errors seen */
1942   int nTab;            /* Number of previously allocated VDBE cursors */
1943   int nMem;            /* Number of memory cells used so far */
1944   int nSet;            /* Number of sets used so far */
1945   int ckBase;          /* Base register of data during check constraints */
1946   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
1947   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
1948   u8 nColCache;        /* Number of entries in the column cache */
1949   u8 iColCache;        /* Next entry of the cache to replace */
1950   struct yColCache {
1951     int iTable;           /* Table cursor number */
1952     int iColumn;          /* Table column number */
1953     u8 affChange;         /* True if this register has had an affinity change */
1954     u8 tempReg;           /* iReg is a temp register that needs to be freed */
1955     int iLevel;           /* Nesting level */
1956     int iReg;             /* Reg with value of this column. 0 means none. */
1957     int lru;              /* Least recently used entry has the smallest value */
1958   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
1959   u32 writeMask;       /* Start a write transaction on these databases */
1960   u32 cookieMask;      /* Bitmask of schema verified databases */
1961   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
1962   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
1963 #ifndef SQLITE_OMIT_SHARED_CACHE
1964   int nTableLock;        /* Number of locks in aTableLock */
1965   TableLock *aTableLock; /* Required table locks for shared-cache mode */
1966 #endif
1967   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
1968   int regRoot;         /* Register holding root page number for new objects */
1969 
1970   /* Above is constant between recursions.  Below is reset before and after
1971   ** each recursion */
1972 
1973   int nVar;            /* Number of '?' variables seen in the SQL so far */
1974   int nVarExpr;        /* Number of used slots in apVarExpr[] */
1975   int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
1976   Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
1977   int nAlias;          /* Number of aliased result set columns */
1978   int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
1979   int *aAlias;         /* Register used to hold aliased result */
1980   u8 explain;          /* True if the EXPLAIN flag is found on the query */
1981   Token sErrToken;     /* The token at which the error occurred */
1982   Token sNameToken;    /* Token with unqualified schema object name */
1983   Token sLastToken;    /* The last token parsed */
1984   const char *zSql;    /* All SQL text */
1985   const char *zTail;   /* All SQL text past the last semicolon parsed */
1986   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
1987   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
1988   TriggerStack *trigStack;  /* Trigger actions being coded */
1989   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
1990 #ifndef SQLITE_OMIT_VIRTUALTABLE
1991   Token sArg;                /* Complete text of a module argument */
1992   u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
1993   int nVtabLock;             /* Number of virtual tables to lock */
1994   Table **apVtabLock;        /* Pointer to virtual tables needing locking */
1995 #endif
1996   int nHeight;            /* Expression tree height of current sub-select */
1997   Table *pZombieTab;      /* List of Table objects to delete after code gen */
1998 };
1999 
2000 #ifdef SQLITE_OMIT_VIRTUALTABLE
2001   #define IN_DECLARE_VTAB 0
2002 #else
2003   #define IN_DECLARE_VTAB (pParse->declareVtab)
2004 #endif
2005 
2006 /*
2007 ** An instance of the following structure can be declared on a stack and used
2008 ** to save the Parse.zAuthContext value so that it can be restored later.
2009 */
2010 struct AuthContext {
2011   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
2012   Parse *pParse;              /* The Parse structure */
2013 };
2014 
2015 /*
2016 ** Bitfield flags for P5 value in OP_Insert and OP_Delete
2017 */
2018 #define OPFLAG_NCHANGE    1    /* Set to update db->nChange */
2019 #define OPFLAG_LASTROWID  2    /* Set to update db->lastRowid */
2020 #define OPFLAG_ISUPDATE   4    /* This OP_Insert is an sql UPDATE */
2021 #define OPFLAG_APPEND     8    /* This is likely to be an append */
2022 #define OPFLAG_USESEEKRESULT 16    /* Try to avoid a seek in BtreeInsert() */
2023 
2024 /*
2025  * Each trigger present in the database schema is stored as an instance of
2026  * struct Trigger.
2027  *
2028  * Pointers to instances of struct Trigger are stored in two ways.
2029  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2030  *    database). This allows Trigger structures to be retrieved by name.
2031  * 2. All triggers associated with a single table form a linked list, using the
2032  *    pNext member of struct Trigger. A pointer to the first element of the
2033  *    linked list is stored as the "pTrigger" member of the associated
2034  *    struct Table.
2035  *
2036  * The "step_list" member points to the first element of a linked list
2037  * containing the SQL statements specified as the trigger program.
2038  */
2039 struct Trigger {
2040   char *name;             /* The name of the trigger                        */
2041   char *table;            /* The table or view to which the trigger applies */
2042   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
2043   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2044   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
2045   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
2046                              the <column-list> is stored here */
2047   Token nameToken;        /* Token containing zName. Use during parsing only */
2048   Schema *pSchema;        /* Schema containing the trigger */
2049   Schema *pTabSchema;     /* Schema containing the table */
2050   TriggerStep *step_list; /* Link list of trigger program steps             */
2051   Trigger *pNext;         /* Next trigger associated with the table */
2052 };
2053 
2054 /*
2055 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
2056 ** determine which.
2057 **
2058 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2059 ** In that cases, the constants below can be ORed together.
2060 */
2061 #define TRIGGER_BEFORE  1
2062 #define TRIGGER_AFTER   2
2063 
2064 /*
2065  * An instance of struct TriggerStep is used to store a single SQL statement
2066  * that is a part of a trigger-program.
2067  *
2068  * Instances of struct TriggerStep are stored in a singly linked list (linked
2069  * using the "pNext" member) referenced by the "step_list" member of the
2070  * associated struct Trigger instance. The first element of the linked list is
2071  * the first step of the trigger-program.
2072  *
2073  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2074  * "SELECT" statement. The meanings of the other members is determined by the
2075  * value of "op" as follows:
2076  *
2077  * (op == TK_INSERT)
2078  * orconf    -> stores the ON CONFLICT algorithm
2079  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
2080  *              this stores a pointer to the SELECT statement. Otherwise NULL.
2081  * target    -> A token holding the name of the table to insert into.
2082  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2083  *              this stores values to be inserted. Otherwise NULL.
2084  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2085  *              statement, then this stores the column-names to be
2086  *              inserted into.
2087  *
2088  * (op == TK_DELETE)
2089  * target    -> A token holding the name of the table to delete from.
2090  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
2091  *              Otherwise NULL.
2092  *
2093  * (op == TK_UPDATE)
2094  * target    -> A token holding the name of the table to update rows of.
2095  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
2096  *              Otherwise NULL.
2097  * pExprList -> A list of the columns to update and the expressions to update
2098  *              them to. See sqlite3Update() documentation of "pChanges"
2099  *              argument.
2100  *
2101  */
2102 struct TriggerStep {
2103   int op;              /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2104   int orconf;          /* OE_Rollback etc. */
2105   Trigger *pTrig;      /* The trigger that this step is a part of */
2106 
2107   Select *pSelect;     /* Valid for SELECT and sometimes
2108                           INSERT steps (when pExprList == 0) */
2109   Token target;        /* Valid for DELETE, UPDATE, INSERT steps */
2110   Expr *pWhere;        /* Valid for DELETE, UPDATE steps */
2111   ExprList *pExprList; /* Valid for UPDATE statements and sometimes
2112                            INSERT steps (when pSelect == 0)         */
2113   IdList *pIdList;     /* Valid for INSERT statements only */
2114   TriggerStep *pNext;  /* Next in the link-list */
2115   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
2116 };
2117 
2118 /*
2119  * An instance of struct TriggerStack stores information required during code
2120  * generation of a single trigger program. While the trigger program is being
2121  * coded, its associated TriggerStack instance is pointed to by the
2122  * "pTriggerStack" member of the Parse structure.
2123  *
2124  * The pTab member points to the table that triggers are being coded on. The
2125  * newIdx member contains the index of the vdbe cursor that points at the temp
2126  * table that stores the new.* references. If new.* references are not valid
2127  * for the trigger being coded (for example an ON DELETE trigger), then newIdx
2128  * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
2129  *
2130  * The ON CONFLICT policy to be used for the trigger program steps is stored
2131  * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
2132  * specified for individual triggers steps is used.
2133  *
2134  * struct TriggerStack has a "pNext" member, to allow linked lists to be
2135  * constructed. When coding nested triggers (triggers fired by other triggers)
2136  * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
2137  * pointer. Once the nested trigger has been coded, the pNext value is restored
2138  * to the pTriggerStack member of the Parse stucture and coding of the parent
2139  * trigger continues.
2140  *
2141  * Before a nested trigger is coded, the linked list pointed to by the
2142  * pTriggerStack is scanned to ensure that the trigger is not about to be coded
2143  * recursively. If this condition is detected, the nested trigger is not coded.
2144  */
2145 struct TriggerStack {
2146   Table *pTab;         /* Table that triggers are currently being coded on */
2147   int newIdx;          /* Index of vdbe cursor to "new" temp table */
2148   int oldIdx;          /* Index of vdbe cursor to "old" temp table */
2149   u32 newColMask;
2150   u32 oldColMask;
2151   int orconf;          /* Current orconf policy */
2152   int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
2153   Trigger *pTrigger;   /* The trigger currently being coded */
2154   TriggerStack *pNext; /* Next trigger down on the trigger stack */
2155 };
2156 
2157 /*
2158 ** The following structure contains information used by the sqliteFix...
2159 ** routines as they walk the parse tree to make database references
2160 ** explicit.
2161 */
2162 typedef struct DbFixer DbFixer;
2163 struct DbFixer {
2164   Parse *pParse;      /* The parsing context.  Error messages written here */
2165   const char *zDb;    /* Make sure all objects are contained in this database */
2166   const char *zType;  /* Type of the container - used for error messages */
2167   const Token *pName; /* Name of the container - used for error messages */
2168 };
2169 
2170 /*
2171 ** An objected used to accumulate the text of a string where we
2172 ** do not necessarily know how big the string will be in the end.
2173 */
2174 struct StrAccum {
2175   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
2176   char *zBase;         /* A base allocation.  Not from malloc. */
2177   char *zText;         /* The string collected so far */
2178   int  nChar;          /* Length of the string so far */
2179   int  nAlloc;         /* Amount of space allocated in zText */
2180   int  mxAlloc;        /* Maximum allowed string length */
2181   u8   mallocFailed;   /* Becomes true if any memory allocation fails */
2182   u8   useMalloc;      /* True if zText is enlargeable using realloc */
2183   u8   tooBig;         /* Becomes true if string size exceeds limits */
2184 };
2185 
2186 /*
2187 ** A pointer to this structure is used to communicate information
2188 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2189 */
2190 typedef struct {
2191   sqlite3 *db;        /* The database being initialized */
2192   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
2193   char **pzErrMsg;    /* Error message stored here */
2194   int rc;             /* Result code stored here */
2195 } InitData;
2196 
2197 /*
2198 ** Structure containing global configuration data for the SQLite library.
2199 **
2200 ** This structure also contains some state information.
2201 */
2202 struct Sqlite3Config {
2203   int bMemstat;                     /* True to enable memory status */
2204   int bCoreMutex;                   /* True to enable core mutexing */
2205   int bFullMutex;                   /* True to enable full mutexing */
2206   int mxStrlen;                     /* Maximum string length */
2207   int szLookaside;                  /* Default lookaside buffer size */
2208   int nLookaside;                   /* Default lookaside buffer count */
2209   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
2210   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
2211   sqlite3_pcache_methods pcache;    /* Low-level page-cache interface */
2212   void *pHeap;                      /* Heap storage space */
2213   int nHeap;                        /* Size of pHeap[] */
2214   int mnReq, mxReq;                 /* Min and max heap requests sizes */
2215   void *pScratch;                   /* Scratch memory */
2216   int szScratch;                    /* Size of each scratch buffer */
2217   int nScratch;                     /* Number of scratch buffers */
2218   void *pPage;                      /* Page cache memory */
2219   int szPage;                       /* Size of each page in pPage[] */
2220   int nPage;                        /* Number of pages in pPage[] */
2221   int mxParserStack;                /* maximum depth of the parser stack */
2222   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
2223   /* The above might be initialized to non-zero.  The following need to always
2224   ** initially be zero, however. */
2225   int isInit;                       /* True after initialization has finished */
2226   int inProgress;                   /* True while initialization in progress */
2227   int isMallocInit;                 /* True after malloc is initialized */
2228   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
2229   int nRefInitMutex;                /* Number of users of pInitMutex */
2230 };
2231 
2232 /*
2233 ** Context pointer passed down through the tree-walk.
2234 */
2235 struct Walker {
2236   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
2237   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
2238   Parse *pParse;                            /* Parser context.  */
2239   union {                                   /* Extra data for callback */
2240     NameContext *pNC;                          /* Naming context */
2241     int i;                                     /* Integer value */
2242   } u;
2243 };
2244 
2245 /* Forward declarations */
2246 int sqlite3WalkExpr(Walker*, Expr*);
2247 int sqlite3WalkExprList(Walker*, ExprList*);
2248 int sqlite3WalkSelect(Walker*, Select*);
2249 int sqlite3WalkSelectExpr(Walker*, Select*);
2250 int sqlite3WalkSelectFrom(Walker*, Select*);
2251 
2252 /*
2253 ** Return code from the parse-tree walking primitives and their
2254 ** callbacks.
2255 */
2256 #define WRC_Continue    0   /* Continue down into children */
2257 #define WRC_Prune       1   /* Omit children but continue walking siblings */
2258 #define WRC_Abort       2   /* Abandon the tree walk */
2259 
2260 /*
2261 ** Assuming zIn points to the first byte of a UTF-8 character,
2262 ** advance zIn to point to the first byte of the next UTF-8 character.
2263 */
2264 #define SQLITE_SKIP_UTF8(zIn) {                        \
2265   if( (*(zIn++))>=0xc0 ){                              \
2266     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
2267   }                                                    \
2268 }
2269 
2270 /*
2271 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
2272 ** builds) or a function call (for debugging).  If it is a function call,
2273 ** it allows the operator to set a breakpoint at the spot where database
2274 ** corruption is first detected.
2275 */
2276 #ifdef SQLITE_DEBUG
2277   int sqlite3Corrupt(void);
2278 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
2279 #else
2280 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
2281 #endif
2282 
2283 /*
2284 ** The ctype.h header is needed for non-ASCII systems.  It is also
2285 ** needed by FTS3 when FTS3 is included in the amalgamation.
2286 */
2287 #if !defined(SQLITE_ASCII) || \
2288     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2289 # include <ctype.h>
2290 #endif
2291 
2292 /*
2293 ** The following macros mimic the standard library functions toupper(),
2294 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2295 ** sqlite versions only work for ASCII characters, regardless of locale.
2296 */
2297 #ifdef SQLITE_ASCII
2298 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2299 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2300 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2301 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2302 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2303 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2304 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
2305 #else
2306 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
2307 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
2308 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
2309 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
2310 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
2311 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
2312 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
2313 #endif
2314 
2315 /*
2316 ** Internal function prototypes
2317 */
2318 int sqlite3StrICmp(const char *, const char *);
2319 int sqlite3StrNICmp(const char *, const char *, int);
2320 int sqlite3IsNumber(const char*, int*, u8);
2321 int sqlite3Strlen30(const char*);
2322 
2323 int sqlite3MallocInit(void);
2324 void sqlite3MallocEnd(void);
2325 void *sqlite3Malloc(int);
2326 void *sqlite3MallocZero(int);
2327 void *sqlite3DbMallocZero(sqlite3*, int);
2328 void *sqlite3DbMallocRaw(sqlite3*, int);
2329 char *sqlite3DbStrDup(sqlite3*,const char*);
2330 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2331 void *sqlite3Realloc(void*, int);
2332 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2333 void *sqlite3DbRealloc(sqlite3 *, void *, int);
2334 void sqlite3DbFree(sqlite3*, void*);
2335 int sqlite3MallocSize(void*);
2336 int sqlite3DbMallocSize(sqlite3*, void*);
2337 void *sqlite3ScratchMalloc(int);
2338 void sqlite3ScratchFree(void*);
2339 void *sqlite3PageMalloc(int);
2340 void sqlite3PageFree(void*);
2341 void sqlite3MemSetDefault(void);
2342 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2343 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64);
2344 
2345 #ifdef SQLITE_ENABLE_MEMSYS3
2346 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
2347 #endif
2348 #ifdef SQLITE_ENABLE_MEMSYS5
2349 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
2350 #endif
2351 
2352 
2353 #ifndef SQLITE_MUTEX_OMIT
2354   sqlite3_mutex_methods *sqlite3DefaultMutex(void);
2355   sqlite3_mutex *sqlite3MutexAlloc(int);
2356   int sqlite3MutexInit(void);
2357   int sqlite3MutexEnd(void);
2358 #endif
2359 
2360 int sqlite3StatusValue(int);
2361 void sqlite3StatusAdd(int, int);
2362 void sqlite3StatusSet(int, int);
2363 
2364 int sqlite3IsNaN(double);
2365 
2366 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
2367 char *sqlite3MPrintf(sqlite3*,const char*, ...);
2368 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
2369 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
2370 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
2371   void sqlite3DebugPrintf(const char*, ...);
2372 #endif
2373 #if defined(SQLITE_TEST)
2374   void *sqlite3TestTextToPtr(const char*);
2375 #endif
2376 void sqlite3SetString(char **, sqlite3*, const char*, ...);
2377 void sqlite3ErrorMsg(Parse*, const char*, ...);
2378 void sqlite3ErrorClear(Parse*);
2379 int sqlite3Dequote(char*);
2380 int sqlite3KeywordCode(const unsigned char*, int);
2381 int sqlite3RunParser(Parse*, const char*, char **);
2382 void sqlite3FinishCoding(Parse*);
2383 int sqlite3GetTempReg(Parse*);
2384 void sqlite3ReleaseTempReg(Parse*,int);
2385 int sqlite3GetTempRange(Parse*,int);
2386 void sqlite3ReleaseTempRange(Parse*,int,int);
2387 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
2388 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
2389 Expr *sqlite3RegisterExpr(Parse*,Token*);
2390 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
2391 void sqlite3ExprSpan(Expr*,Token*,Token*);
2392 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
2393 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
2394 void sqlite3ExprClear(sqlite3*, Expr*);
2395 void sqlite3ExprDelete(sqlite3*, Expr*);
2396 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
2397 void sqlite3ExprListDelete(sqlite3*, ExprList*);
2398 int sqlite3Init(sqlite3*, char**);
2399 int sqlite3InitCallback(void*, int, char**, char**);
2400 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
2401 void sqlite3ResetInternalSchema(sqlite3*, int);
2402 void sqlite3BeginParse(Parse*,int);
2403 void sqlite3CommitInternalChanges(sqlite3*);
2404 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
2405 void sqlite3OpenMasterTable(Parse *, int);
2406 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
2407 void sqlite3AddColumn(Parse*,Token*);
2408 void sqlite3AddNotNull(Parse*, int);
2409 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
2410 void sqlite3AddCheckConstraint(Parse*, Expr*);
2411 void sqlite3AddColumnType(Parse*,Token*);
2412 void sqlite3AddDefaultValue(Parse*,Expr*);
2413 void sqlite3AddCollateType(Parse*, Token*);
2414 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
2415 
2416 Bitvec *sqlite3BitvecCreate(u32);
2417 int sqlite3BitvecTest(Bitvec*, u32);
2418 int sqlite3BitvecSet(Bitvec*, u32);
2419 void sqlite3BitvecClear(Bitvec*, u32);
2420 void sqlite3BitvecDestroy(Bitvec*);
2421 u32 sqlite3BitvecSize(Bitvec*);
2422 int sqlite3BitvecBuiltinTest(int,int*);
2423 
2424 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
2425 void sqlite3RowSetClear(RowSet*);
2426 void sqlite3RowSetInsert(RowSet*, i64);
2427 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
2428 int sqlite3RowSetNext(RowSet*, i64*);
2429 
2430 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
2431 
2432 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2433   int sqlite3ViewGetColumnNames(Parse*,Table*);
2434 #else
2435 # define sqlite3ViewGetColumnNames(A,B) 0
2436 #endif
2437 
2438 void sqlite3DropTable(Parse*, SrcList*, int, int);
2439 void sqlite3DeleteTable(Table*);
2440 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
2441 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
2442 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
2443 int sqlite3IdListIndex(IdList*,const char*);
2444 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
2445 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
2446 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
2447                                       Token*, Select*, Expr*, IdList*);
2448 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
2449 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
2450 void sqlite3SrcListShiftJoinType(SrcList*);
2451 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
2452 void sqlite3IdListDelete(sqlite3*, IdList*);
2453 void sqlite3SrcListDelete(sqlite3*, SrcList*);
2454 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
2455                         Token*, int, int);
2456 void sqlite3DropIndex(Parse*, SrcList*, int);
2457 int sqlite3Select(Parse*, Select*, SelectDest*);
2458 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
2459                          Expr*,ExprList*,int,Expr*,Expr*);
2460 void sqlite3SelectDelete(sqlite3*, Select*);
2461 Table *sqlite3SrcListLookup(Parse*, SrcList*);
2462 int sqlite3IsReadOnly(Parse*, Table*, int);
2463 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
2464 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
2465 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
2466 #endif
2467 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2468 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
2469 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
2470 void sqlite3WhereEnd(WhereInfo*);
2471 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
2472 void sqlite3ExprCodeMove(Parse*, int, int, int);
2473 void sqlite3ExprCodeCopy(Parse*, int, int, int);
2474 void sqlite3ExprCacheStore(Parse*, int, int, int);
2475 void sqlite3ExprCachePush(Parse*);
2476 void sqlite3ExprCachePop(Parse*, int);
2477 void sqlite3ExprCacheRemove(Parse*, int);
2478 void sqlite3ExprCacheClear(Parse*);
2479 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2480 void sqlite3ExprHardCopy(Parse*,int,int);
2481 int sqlite3ExprCode(Parse*, Expr*, int);
2482 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2483 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2484 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2485 void sqlite3ExprCodeConstants(Parse*, Expr*);
2486 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2487 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2488 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2489 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2490 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2491 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2492 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2493 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2494 void sqlite3Vacuum(Parse*);
2495 int sqlite3RunVacuum(char**, sqlite3*);
2496 char *sqlite3NameFromToken(sqlite3*, Token*);
2497 int sqlite3ExprCompare(Expr*, Expr*);
2498 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2499 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2500 Vdbe *sqlite3GetVdbe(Parse*);
2501 Expr *sqlite3CreateIdExpr(Parse *, const char*);
2502 void sqlite3PrngSaveState(void);
2503 void sqlite3PrngRestoreState(void);
2504 void sqlite3PrngResetState(void);
2505 void sqlite3RollbackAll(sqlite3*);
2506 void sqlite3CodeVerifySchema(Parse*, int);
2507 void sqlite3BeginTransaction(Parse*, int);
2508 void sqlite3CommitTransaction(Parse*);
2509 void sqlite3RollbackTransaction(Parse*);
2510 void sqlite3Savepoint(Parse*, int, Token*);
2511 void sqlite3CloseSavepoints(sqlite3 *);
2512 int sqlite3ExprIsConstant(Expr*);
2513 int sqlite3ExprIsConstantNotJoin(Expr*);
2514 int sqlite3ExprIsConstantOrFunction(Expr*);
2515 int sqlite3ExprIsInteger(Expr*, int*);
2516 int sqlite3IsRowid(const char*);
2517 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
2518 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2519 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2520 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2521                                      int*,int,int,int,int,int*);
2522 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int,int,int);
2523 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2524 void sqlite3BeginWriteOperation(Parse*, int, int);
2525 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
2526 void sqlite3TokenCopy(sqlite3*,Token*,const Token*);
2527 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
2528 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
2529 IdList *sqlite3IdListDup(sqlite3*,IdList*);
2530 Select *sqlite3SelectDup(sqlite3*,Select*,int);
2531 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
2532 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
2533 void sqlite3RegisterBuiltinFunctions(sqlite3*);
2534 void sqlite3RegisterDateTimeFunctions(void);
2535 void sqlite3RegisterGlobalFunctions(void);
2536 #ifdef SQLITE_DEBUG
2537   int sqlite3SafetyOn(sqlite3*);
2538   int sqlite3SafetyOff(sqlite3*);
2539 #else
2540 # define sqlite3SafetyOn(A) 0
2541 # define sqlite3SafetyOff(A) 0
2542 #endif
2543 int sqlite3SafetyCheckOk(sqlite3*);
2544 int sqlite3SafetyCheckSickOrOk(sqlite3*);
2545 void sqlite3ChangeCookie(Parse*, int);
2546 
2547 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
2548 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
2549 #endif
2550 
2551 #ifndef SQLITE_OMIT_TRIGGER
2552   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2553                            Expr*,int, int);
2554   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2555   void sqlite3DropTrigger(Parse*, SrcList*, int);
2556   void sqlite3DropTriggerPtr(Parse*, Trigger*);
2557   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
2558   Trigger *sqlite3TriggerList(Parse *, Table *);
2559   int sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
2560                             int, int, int, int, u32*, u32*);
2561   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2562   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2563   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2564   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2565                                         ExprList*,Select*,int);
2566   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
2567   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2568   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2569   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2570 #else
2571 # define sqlite3TriggersExist(B,C,D,E,F) 0
2572 # define sqlite3DeleteTrigger(A,B)
2573 # define sqlite3DropTriggerPtr(A,B)
2574 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2575 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K,L) 0
2576 # define sqlite3TriggerList(X, Y) 0
2577 #endif
2578 
2579 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2580 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2581 void sqlite3DeferForeignKey(Parse*, int);
2582 #ifndef SQLITE_OMIT_AUTHORIZATION
2583   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2584   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2585   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2586   void sqlite3AuthContextPop(AuthContext*);
2587 #else
2588 # define sqlite3AuthRead(a,b,c,d)
2589 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
2590 # define sqlite3AuthContextPush(a,b,c)
2591 # define sqlite3AuthContextPop(a)  ((void)(a))
2592 #endif
2593 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2594 void sqlite3Detach(Parse*, Expr*);
2595 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
2596                        int omitJournal, int nCache, int flags, Btree **ppBtree);
2597 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2598 int sqlite3FixSrcList(DbFixer*, SrcList*);
2599 int sqlite3FixSelect(DbFixer*, Select*);
2600 int sqlite3FixExpr(DbFixer*, Expr*);
2601 int sqlite3FixExprList(DbFixer*, ExprList*);
2602 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2603 int sqlite3AtoF(const char *z, double*);
2604 int sqlite3GetInt32(const char *, int*);
2605 int sqlite3FitsIn64Bits(const char *, int);
2606 int sqlite3Utf16ByteLen(const void *pData, int nChar);
2607 int sqlite3Utf8CharLen(const char *pData, int nByte);
2608 int sqlite3Utf8Read(const u8*, const u8**);
2609 
2610 /*
2611 ** Routines to read and write variable-length integers.  These used to
2612 ** be defined locally, but now we use the varint routines in the util.c
2613 ** file.  Code should use the MACRO forms below, as the Varint32 versions
2614 ** are coded to assume the single byte case is already handled (which
2615 ** the MACRO form does).
2616 */
2617 int sqlite3PutVarint(unsigned char*, u64);
2618 int sqlite3PutVarint32(unsigned char*, u32);
2619 u8 sqlite3GetVarint(const unsigned char *, u64 *);
2620 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
2621 int sqlite3VarintLen(u64 v);
2622 
2623 /*
2624 ** The header of a record consists of a sequence variable-length integers.
2625 ** These integers are almost always small and are encoded as a single byte.
2626 ** The following macros take advantage this fact to provide a fast encode
2627 ** and decode of the integers in a record header.  It is faster for the common
2628 ** case where the integer is a single byte.  It is a little slower when the
2629 ** integer is two or more bytes.  But overall it is faster.
2630 **
2631 ** The following expressions are equivalent:
2632 **
2633 **     x = sqlite3GetVarint32( A, &B );
2634 **     x = sqlite3PutVarint32( A, B );
2635 **
2636 **     x = getVarint32( A, B );
2637 **     x = putVarint32( A, B );
2638 **
2639 */
2640 #define getVarint32(A,B)  (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
2641 #define putVarint32(A,B)  (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
2642 #define getVarint    sqlite3GetVarint
2643 #define putVarint    sqlite3PutVarint
2644 
2645 
2646 void sqlite3IndexAffinityStr(Vdbe *, Index *);
2647 void sqlite3TableAffinityStr(Vdbe *, Table *);
2648 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2649 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2650 char sqlite3ExprAffinity(Expr *pExpr);
2651 int sqlite3Atoi64(const char*, i64*);
2652 void sqlite3Error(sqlite3*, int, const char*,...);
2653 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2654 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2655 const char *sqlite3ErrStr(int);
2656 int sqlite3ReadSchema(Parse *pParse);
2657 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
2658 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
2659 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2660 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
2661 int sqlite3CheckCollSeq(Parse *, CollSeq *);
2662 int sqlite3CheckObjectName(Parse *, const char *);
2663 void sqlite3VdbeSetChanges(sqlite3 *, int);
2664 
2665 const void *sqlite3ValueText(sqlite3_value*, u8);
2666 int sqlite3ValueBytes(sqlite3_value*, u8);
2667 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
2668                         void(*)(void*));
2669 void sqlite3ValueFree(sqlite3_value*);
2670 sqlite3_value *sqlite3ValueNew(sqlite3 *);
2671 char *sqlite3Utf16to8(sqlite3 *, const void*, int);
2672 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
2673 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
2674 #ifndef SQLITE_AMALGAMATION
2675 extern const unsigned char sqlite3UpperToLower[];
2676 extern const unsigned char sqlite3CtypeMap[];
2677 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
2678 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
2679 extern int sqlite3PendingByte;
2680 #endif
2681 void sqlite3RootPageMoved(Db*, int, int);
2682 void sqlite3Reindex(Parse*, Token*, Token*);
2683 void sqlite3AlterFunctions(sqlite3*);
2684 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
2685 int sqlite3GetToken(const unsigned char *, int *);
2686 void sqlite3NestedParse(Parse*, const char*, ...);
2687 void sqlite3ExpirePreparedStatements(sqlite3*);
2688 void sqlite3CodeSubselect(Parse *, Expr *, int, int);
2689 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
2690 int sqlite3ResolveExprNames(NameContext*, Expr*);
2691 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
2692 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
2693 void sqlite3ColumnDefault(Vdbe *, Table *, int);
2694 void sqlite3AlterFinishAddColumn(Parse *, Token *);
2695 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
2696 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char*);
2697 char sqlite3AffinityType(const Token*);
2698 void sqlite3Analyze(Parse*, Token*, Token*);
2699 int sqlite3InvokeBusyHandler(BusyHandler*);
2700 int sqlite3FindDb(sqlite3*, Token*);
2701 int sqlite3FindDbName(sqlite3 *, const char *);
2702 int sqlite3AnalysisLoad(sqlite3*,int iDB);
2703 void sqlite3DefaultRowEst(Index*);
2704 void sqlite3RegisterLikeFunctions(sqlite3*, int);
2705 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
2706 void sqlite3MinimumFileFormat(Parse*, int, int);
2707 void sqlite3SchemaFree(void *);
2708 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
2709 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
2710 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
2711 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
2712   void (*)(sqlite3_context*,int,sqlite3_value **),
2713   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
2714 int sqlite3ApiExit(sqlite3 *db, int);
2715 int sqlite3OpenTempDatabase(Parse *);
2716 
2717 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
2718 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
2719 char *sqlite3StrAccumFinish(StrAccum*);
2720 void sqlite3StrAccumReset(StrAccum*);
2721 void sqlite3SelectDestInit(SelectDest*,int,int);
2722 
2723 void sqlite3BackupRestart(sqlite3_backup *);
2724 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
2725 
2726 /*
2727 ** The interface to the LEMON-generated parser
2728 */
2729 void *sqlite3ParserAlloc(void*(*)(size_t));
2730 void sqlite3ParserFree(void*, void(*)(void*));
2731 void sqlite3Parser(void*, int, Token, Parse*);
2732 #ifdef YYTRACKMAXSTACKDEPTH
2733   int sqlite3ParserStackPeak(void*);
2734 #endif
2735 
2736 void sqlite3AutoLoadExtensions(sqlite3*);
2737 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2738   void sqlite3CloseExtensions(sqlite3*);
2739 #else
2740 # define sqlite3CloseExtensions(X)
2741 #endif
2742 
2743 #ifndef SQLITE_OMIT_SHARED_CACHE
2744   void sqlite3TableLock(Parse *, int, int, u8, const char *);
2745 #else
2746   #define sqlite3TableLock(v,w,x,y,z)
2747 #endif
2748 
2749 #ifdef SQLITE_TEST
2750   int sqlite3Utf8To8(unsigned char*);
2751 #endif
2752 
2753 #ifdef SQLITE_OMIT_VIRTUALTABLE
2754 #  define sqlite3VtabClear(X)
2755 #  define sqlite3VtabSync(X,Y) SQLITE_OK
2756 #  define sqlite3VtabRollback(X)
2757 #  define sqlite3VtabCommit(X)
2758 #  define sqlite3VtabInSync(db) 0
2759 #else
2760    void sqlite3VtabClear(Table*);
2761    int sqlite3VtabSync(sqlite3 *db, char **);
2762    int sqlite3VtabRollback(sqlite3 *db);
2763    int sqlite3VtabCommit(sqlite3 *db);
2764 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
2765 #endif
2766 void sqlite3VtabMakeWritable(Parse*,Table*);
2767 void sqlite3VtabLock(sqlite3_vtab*);
2768 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
2769 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
2770 void sqlite3VtabFinishParse(Parse*, Token*);
2771 void sqlite3VtabArgInit(Parse*);
2772 void sqlite3VtabArgExtend(Parse*, Token*);
2773 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
2774 int sqlite3VtabCallConnect(Parse*, Table*);
2775 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
2776 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
2777 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
2778 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
2779 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
2780 int sqlite3Reprepare(Vdbe*);
2781 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
2782 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
2783 int sqlite3TempInMemory(const sqlite3*);
2784 
2785 
2786 
2787 /*
2788 ** Available fault injectors.  Should be numbered beginning with 0.
2789 */
2790 #define SQLITE_FAULTINJECTOR_MALLOC     0
2791 #define SQLITE_FAULTINJECTOR_COUNT      1
2792 
2793 /*
2794 ** The interface to the code in fault.c used for identifying "benign"
2795 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
2796 ** is not defined.
2797 */
2798 #ifndef SQLITE_OMIT_BUILTIN_TEST
2799   void sqlite3BeginBenignMalloc(void);
2800   void sqlite3EndBenignMalloc(void);
2801 #else
2802   #define sqlite3BeginBenignMalloc()
2803   #define sqlite3EndBenignMalloc()
2804 #endif
2805 
2806 #define IN_INDEX_ROWID           1
2807 #define IN_INDEX_EPH             2
2808 #define IN_INDEX_INDEX           3
2809 int sqlite3FindInIndex(Parse *, Expr *, int*);
2810 
2811 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
2812   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
2813   int sqlite3JournalSize(sqlite3_vfs *);
2814   int sqlite3JournalCreate(sqlite3_file *);
2815 #else
2816   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
2817 #endif
2818 
2819 void sqlite3MemJournalOpen(sqlite3_file *);
2820 int sqlite3MemJournalSize(void);
2821 int sqlite3IsMemJournal(sqlite3_file *);
2822 
2823 #if SQLITE_MAX_EXPR_DEPTH>0
2824   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
2825   int sqlite3SelectExprHeight(Select *);
2826   int sqlite3ExprCheckHeight(Parse*, int);
2827 #else
2828   #define sqlite3ExprSetHeight(x,y)
2829   #define sqlite3SelectExprHeight(x) 0
2830   #define sqlite3ExprCheckHeight(x,y)
2831 #endif
2832 
2833 u32 sqlite3Get4byte(const u8*);
2834 void sqlite3Put4byte(u8*, u32);
2835 
2836 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
2837   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
2838   void sqlite3ConnectionUnlocked(sqlite3 *db);
2839   void sqlite3ConnectionClosed(sqlite3 *db);
2840 #else
2841   #define sqlite3ConnectionBlocked(x,y)
2842   #define sqlite3ConnectionUnlocked(x)
2843   #define sqlite3ConnectionClosed(x)
2844 #endif
2845 
2846 
2847 #ifdef SQLITE_SSE
2848 #include "sseInt.h"
2849 #endif
2850 
2851 #ifdef SQLITE_DEBUG
2852   void sqlite3ParserTrace(FILE*, char *);
2853 #endif
2854 
2855 /*
2856 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
2857 ** sqlite3IoTrace is a pointer to a printf-like routine used to
2858 ** print I/O tracing messages.
2859 */
2860 #ifdef SQLITE_ENABLE_IOTRACE
2861 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
2862   void sqlite3VdbeIOTraceSql(Vdbe*);
2863 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
2864 #else
2865 # define IOTRACE(A)
2866 # define sqlite3VdbeIOTraceSql(X)
2867 #endif
2868 
2869 #endif
2870