1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 #define SQLITE_INDEX_SAMPLES 10 80 81 /* 82 ** This macro is used to "hide" some ugliness in casting an int 83 ** value to a ptr value under the MSVC 64-bit compiler. Casting 84 ** non 64-bit values to ptr types results in a "hard" error with 85 ** the MSVC 64-bit compiler which this attempts to avoid. 86 ** 87 ** A simple compiler pragma or casting sequence could not be found 88 ** to correct this in all situations, so this macro was introduced. 89 ** 90 ** It could be argued that the intptr_t type could be used in this 91 ** case, but that type is not available on all compilers, or 92 ** requires the #include of specific headers which differs between 93 ** platforms. 94 ** 95 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 96 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 97 ** So we have to define the macros in different ways depending on the 98 ** compiler. 99 */ 100 #if defined(__GNUC__) 101 # if defined(HAVE_STDINT_H) 102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 104 # else 105 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 106 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 107 # endif 108 #else 109 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 110 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 111 #endif 112 113 114 /* 115 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 116 ** Older versions of SQLite used an optional THREADSAFE macro. 117 ** We support that for legacy 118 */ 119 #if !defined(SQLITE_THREADSAFE) 120 #if defined(THREADSAFE) 121 # define SQLITE_THREADSAFE THREADSAFE 122 #else 123 # define SQLITE_THREADSAFE 1 124 #endif 125 #endif 126 127 /* 128 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 129 ** It determines whether or not the features related to 130 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 131 ** be overridden at runtime using the sqlite3_config() API. 132 */ 133 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 134 # define SQLITE_DEFAULT_MEMSTATUS 1 135 #endif 136 137 /* 138 ** Exactly one of the following macros must be defined in order to 139 ** specify which memory allocation subsystem to use. 140 ** 141 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 142 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 143 ** SQLITE_MEMORY_SIZE // internal allocator #1 144 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator 145 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator 146 ** 147 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 148 ** the default. 149 */ 150 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 151 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 152 defined(SQLITE_POW2_MEMORY_SIZE)>1 153 # error "At most one of the following compile-time configuration options\ 154 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ 155 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" 156 #endif 157 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ 158 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ 159 defined(SQLITE_POW2_MEMORY_SIZE)==0 160 # define SQLITE_SYSTEM_MALLOC 1 161 #endif 162 163 /* 164 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 165 ** sizes of memory allocations below this value where possible. 166 */ 167 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 168 # define SQLITE_MALLOC_SOFT_LIMIT 1024 169 #endif 170 171 /* 172 ** We need to define _XOPEN_SOURCE as follows in order to enable 173 ** recursive mutexes on most Unix systems. But Mac OS X is different. 174 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 175 ** so it is omitted there. See ticket #2673. 176 ** 177 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 178 ** implemented on some systems. So we avoid defining it at all 179 ** if it is already defined or if it is unneeded because we are 180 ** not doing a threadsafe build. Ticket #2681. 181 ** 182 ** See also ticket #2741. 183 */ 184 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 185 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 186 #endif 187 188 /* 189 ** The TCL headers are only needed when compiling the TCL bindings. 190 */ 191 #if defined(SQLITE_TCL) || defined(TCLSH) 192 # include <tcl.h> 193 #endif 194 195 /* 196 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 197 ** Setting NDEBUG makes the code smaller and run faster. So the following 198 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 199 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 200 ** feature. 201 */ 202 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 203 # define NDEBUG 1 204 #endif 205 206 /* 207 ** The testcase() macro is used to aid in coverage testing. When 208 ** doing coverage testing, the condition inside the argument to 209 ** testcase() must be evaluated both true and false in order to 210 ** get full branch coverage. The testcase() macro is inserted 211 ** to help ensure adequate test coverage in places where simple 212 ** condition/decision coverage is inadequate. For example, testcase() 213 ** can be used to make sure boundary values are tested. For 214 ** bitmask tests, testcase() can be used to make sure each bit 215 ** is significant and used at least once. On switch statements 216 ** where multiple cases go to the same block of code, testcase() 217 ** can insure that all cases are evaluated. 218 ** 219 */ 220 #ifdef SQLITE_COVERAGE_TEST 221 void sqlite3Coverage(int); 222 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 223 #else 224 # define testcase(X) 225 #endif 226 227 /* 228 ** The TESTONLY macro is used to enclose variable declarations or 229 ** other bits of code that are needed to support the arguments 230 ** within testcase() and assert() macros. 231 */ 232 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 233 # define TESTONLY(X) X 234 #else 235 # define TESTONLY(X) 236 #endif 237 238 /* 239 ** Sometimes we need a small amount of code such as a variable initialization 240 ** to setup for a later assert() statement. We do not want this code to 241 ** appear when assert() is disabled. The following macro is therefore 242 ** used to contain that setup code. The "VVA" acronym stands for 243 ** "Verification, Validation, and Accreditation". In other words, the 244 ** code within VVA_ONLY() will only run during verification processes. 245 */ 246 #ifndef NDEBUG 247 # define VVA_ONLY(X) X 248 #else 249 # define VVA_ONLY(X) 250 #endif 251 252 /* 253 ** The ALWAYS and NEVER macros surround boolean expressions which 254 ** are intended to always be true or false, respectively. Such 255 ** expressions could be omitted from the code completely. But they 256 ** are included in a few cases in order to enhance the resilience 257 ** of SQLite to unexpected behavior - to make the code "self-healing" 258 ** or "ductile" rather than being "brittle" and crashing at the first 259 ** hint of unplanned behavior. 260 ** 261 ** In other words, ALWAYS and NEVER are added for defensive code. 262 ** 263 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 264 ** be true and false so that the unreachable code then specify will 265 ** not be counted as untested code. 266 */ 267 #if defined(SQLITE_COVERAGE_TEST) 268 # define ALWAYS(X) (1) 269 # define NEVER(X) (0) 270 #elif !defined(NDEBUG) 271 # define ALWAYS(X) ((X)?1:(assert(0),0)) 272 # define NEVER(X) ((X)?(assert(0),1):0) 273 #else 274 # define ALWAYS(X) (X) 275 # define NEVER(X) (X) 276 #endif 277 278 /* 279 ** The macro unlikely() is a hint that surrounds a boolean 280 ** expression that is usually false. Macro likely() surrounds 281 ** a boolean expression that is usually true. GCC is able to 282 ** use these hints to generate better code, sometimes. 283 */ 284 #if defined(__GNUC__) && 0 285 # define likely(X) __builtin_expect((X),1) 286 # define unlikely(X) __builtin_expect((X),0) 287 #else 288 # define likely(X) !!(X) 289 # define unlikely(X) !!(X) 290 #endif 291 292 #include "sqlite3.h" 293 #include "hash.h" 294 #include "parse.h" 295 #include <stdio.h> 296 #include <stdlib.h> 297 #include <string.h> 298 #include <assert.h> 299 #include <stddef.h> 300 301 /* 302 ** If compiling for a processor that lacks floating point support, 303 ** substitute integer for floating-point 304 */ 305 #ifdef SQLITE_OMIT_FLOATING_POINT 306 # define double sqlite_int64 307 # define LONGDOUBLE_TYPE sqlite_int64 308 # ifndef SQLITE_BIG_DBL 309 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 310 # endif 311 # define SQLITE_OMIT_DATETIME_FUNCS 1 312 # define SQLITE_OMIT_TRACE 1 313 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 314 # undef SQLITE_HAVE_ISNAN 315 #endif 316 #ifndef SQLITE_BIG_DBL 317 # define SQLITE_BIG_DBL (1e99) 318 #endif 319 320 /* 321 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 322 ** afterward. Having this macro allows us to cause the C compiler 323 ** to omit code used by TEMP tables without messy #ifndef statements. 324 */ 325 #ifdef SQLITE_OMIT_TEMPDB 326 #define OMIT_TEMPDB 1 327 #else 328 #define OMIT_TEMPDB 0 329 #endif 330 331 /* 332 ** If the following macro is set to 1, then NULL values are considered 333 ** distinct when determining whether or not two entries are the same 334 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 335 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 336 ** is the way things are suppose to work. 337 ** 338 ** If the following macro is set to 0, the NULLs are indistinct for 339 ** a UNIQUE index. In this mode, you can only have a single NULL entry 340 ** for a column declared UNIQUE. This is the way Informix and SQL Server 341 ** work. 342 */ 343 #define NULL_DISTINCT_FOR_UNIQUE 1 344 345 /* 346 ** The "file format" number is an integer that is incremented whenever 347 ** the VDBE-level file format changes. The following macros define the 348 ** the default file format for new databases and the maximum file format 349 ** that the library can read. 350 */ 351 #define SQLITE_MAX_FILE_FORMAT 4 352 #ifndef SQLITE_DEFAULT_FILE_FORMAT 353 # define SQLITE_DEFAULT_FILE_FORMAT 1 354 #endif 355 356 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 357 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 358 #endif 359 360 /* 361 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 362 ** on the command-line 363 */ 364 #ifndef SQLITE_TEMP_STORE 365 # define SQLITE_TEMP_STORE 1 366 #endif 367 368 /* 369 ** GCC does not define the offsetof() macro so we'll have to do it 370 ** ourselves. 371 */ 372 #ifndef offsetof 373 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 374 #endif 375 376 /* 377 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 378 ** not, there are still machines out there that use EBCDIC.) 379 */ 380 #if 'A' == '\301' 381 # define SQLITE_EBCDIC 1 382 #else 383 # define SQLITE_ASCII 1 384 #endif 385 386 /* 387 ** Integers of known sizes. These typedefs might change for architectures 388 ** where the sizes very. Preprocessor macros are available so that the 389 ** types can be conveniently redefined at compile-type. Like this: 390 ** 391 ** cc '-DUINTPTR_TYPE=long long int' ... 392 */ 393 #ifndef UINT32_TYPE 394 # ifdef HAVE_UINT32_T 395 # define UINT32_TYPE uint32_t 396 # else 397 # define UINT32_TYPE unsigned int 398 # endif 399 #endif 400 #ifndef UINT16_TYPE 401 # ifdef HAVE_UINT16_T 402 # define UINT16_TYPE uint16_t 403 # else 404 # define UINT16_TYPE unsigned short int 405 # endif 406 #endif 407 #ifndef INT16_TYPE 408 # ifdef HAVE_INT16_T 409 # define INT16_TYPE int16_t 410 # else 411 # define INT16_TYPE short int 412 # endif 413 #endif 414 #ifndef UINT8_TYPE 415 # ifdef HAVE_UINT8_T 416 # define UINT8_TYPE uint8_t 417 # else 418 # define UINT8_TYPE unsigned char 419 # endif 420 #endif 421 #ifndef INT8_TYPE 422 # ifdef HAVE_INT8_T 423 # define INT8_TYPE int8_t 424 # else 425 # define INT8_TYPE signed char 426 # endif 427 #endif 428 #ifndef LONGDOUBLE_TYPE 429 # define LONGDOUBLE_TYPE long double 430 #endif 431 typedef sqlite_int64 i64; /* 8-byte signed integer */ 432 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 433 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 434 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 435 typedef INT16_TYPE i16; /* 2-byte signed integer */ 436 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 437 typedef INT8_TYPE i8; /* 1-byte signed integer */ 438 439 /* 440 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 441 ** that can be stored in a u32 without loss of data. The value 442 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 443 ** have to specify the value in the less intuitive manner shown: 444 */ 445 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 446 447 /* 448 ** Macros to determine whether the machine is big or little endian, 449 ** evaluated at runtime. 450 */ 451 #ifdef SQLITE_AMALGAMATION 452 const int sqlite3one = 1; 453 #else 454 extern const int sqlite3one; 455 #endif 456 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 457 || defined(__x86_64) || defined(__x86_64__) 458 # define SQLITE_BIGENDIAN 0 459 # define SQLITE_LITTLEENDIAN 1 460 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 461 #else 462 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 463 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 464 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 465 #endif 466 467 /* 468 ** Constants for the largest and smallest possible 64-bit signed integers. 469 ** These macros are designed to work correctly on both 32-bit and 64-bit 470 ** compilers. 471 */ 472 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 473 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 474 475 /* 476 ** Round up a number to the next larger multiple of 8. This is used 477 ** to force 8-byte alignment on 64-bit architectures. 478 */ 479 #define ROUND8(x) (((x)+7)&~7) 480 481 /* 482 ** Round down to the nearest multiple of 8 483 */ 484 #define ROUNDDOWN8(x) ((x)&~7) 485 486 /* 487 ** Assert that the pointer X is aligned to an 8-byte boundary. 488 */ 489 #define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 490 491 492 /* 493 ** An instance of the following structure is used to store the busy-handler 494 ** callback for a given sqlite handle. 495 ** 496 ** The sqlite.busyHandler member of the sqlite struct contains the busy 497 ** callback for the database handle. Each pager opened via the sqlite 498 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 499 ** callback is currently invoked only from within pager.c. 500 */ 501 typedef struct BusyHandler BusyHandler; 502 struct BusyHandler { 503 int (*xFunc)(void *,int); /* The busy callback */ 504 void *pArg; /* First arg to busy callback */ 505 int nBusy; /* Incremented with each busy call */ 506 }; 507 508 /* 509 ** Name of the master database table. The master database table 510 ** is a special table that holds the names and attributes of all 511 ** user tables and indices. 512 */ 513 #define MASTER_NAME "sqlite_master" 514 #define TEMP_MASTER_NAME "sqlite_temp_master" 515 516 /* 517 ** The root-page of the master database table. 518 */ 519 #define MASTER_ROOT 1 520 521 /* 522 ** The name of the schema table. 523 */ 524 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 525 526 /* 527 ** A convenience macro that returns the number of elements in 528 ** an array. 529 */ 530 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 531 532 /* 533 ** The following value as a destructor means to use sqlite3DbFree(). 534 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 535 */ 536 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 537 538 /* 539 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 540 ** not support Writable Static Data (WSD) such as global and static variables. 541 ** All variables must either be on the stack or dynamically allocated from 542 ** the heap. When WSD is unsupported, the variable declarations scattered 543 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 544 ** macro is used for this purpose. And instead of referencing the variable 545 ** directly, we use its constant as a key to lookup the run-time allocated 546 ** buffer that holds real variable. The constant is also the initializer 547 ** for the run-time allocated buffer. 548 ** 549 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 550 ** macros become no-ops and have zero performance impact. 551 */ 552 #ifdef SQLITE_OMIT_WSD 553 #define SQLITE_WSD const 554 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 555 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 556 int sqlite3_wsd_init(int N, int J); 557 void *sqlite3_wsd_find(void *K, int L); 558 #else 559 #define SQLITE_WSD 560 #define GLOBAL(t,v) v 561 #define sqlite3GlobalConfig sqlite3Config 562 #endif 563 564 /* 565 ** The following macros are used to suppress compiler warnings and to 566 ** make it clear to human readers when a function parameter is deliberately 567 ** left unused within the body of a function. This usually happens when 568 ** a function is called via a function pointer. For example the 569 ** implementation of an SQL aggregate step callback may not use the 570 ** parameter indicating the number of arguments passed to the aggregate, 571 ** if it knows that this is enforced elsewhere. 572 ** 573 ** When a function parameter is not used at all within the body of a function, 574 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 575 ** However, these macros may also be used to suppress warnings related to 576 ** parameters that may or may not be used depending on compilation options. 577 ** For example those parameters only used in assert() statements. In these 578 ** cases the parameters are named as per the usual conventions. 579 */ 580 #define UNUSED_PARAMETER(x) (void)(x) 581 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 582 583 /* 584 ** Forward references to structures 585 */ 586 typedef struct AggInfo AggInfo; 587 typedef struct AuthContext AuthContext; 588 typedef struct AutoincInfo AutoincInfo; 589 typedef struct Bitvec Bitvec; 590 typedef struct RowSet RowSet; 591 typedef struct CollSeq CollSeq; 592 typedef struct Column Column; 593 typedef struct Db Db; 594 typedef struct Schema Schema; 595 typedef struct Expr Expr; 596 typedef struct ExprList ExprList; 597 typedef struct ExprSpan ExprSpan; 598 typedef struct FKey FKey; 599 typedef struct FuncDef FuncDef; 600 typedef struct FuncDefHash FuncDefHash; 601 typedef struct IdList IdList; 602 typedef struct Index Index; 603 typedef struct IndexSample IndexSample; 604 typedef struct KeyClass KeyClass; 605 typedef struct KeyInfo KeyInfo; 606 typedef struct Lookaside Lookaside; 607 typedef struct LookasideSlot LookasideSlot; 608 typedef struct Module Module; 609 typedef struct NameContext NameContext; 610 typedef struct Parse Parse; 611 typedef struct Savepoint Savepoint; 612 typedef struct Select Select; 613 typedef struct SrcList SrcList; 614 typedef struct StrAccum StrAccum; 615 typedef struct Table Table; 616 typedef struct TableLock TableLock; 617 typedef struct Token Token; 618 typedef struct TriggerPrg TriggerPrg; 619 typedef struct TriggerStep TriggerStep; 620 typedef struct Trigger Trigger; 621 typedef struct UnpackedRecord UnpackedRecord; 622 typedef struct VTable VTable; 623 typedef struct Walker Walker; 624 typedef struct WherePlan WherePlan; 625 typedef struct WhereInfo WhereInfo; 626 typedef struct WhereLevel WhereLevel; 627 628 /* 629 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 630 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 631 ** pointer types (i.e. FuncDef) defined above. 632 */ 633 #include "btree.h" 634 #include "vdbe.h" 635 #include "pager.h" 636 #include "pcache.h" 637 638 #include "os.h" 639 #include "mutex.h" 640 641 642 /* 643 ** Each database file to be accessed by the system is an instance 644 ** of the following structure. There are normally two of these structures 645 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 646 ** aDb[1] is the database file used to hold temporary tables. Additional 647 ** databases may be attached. 648 */ 649 struct Db { 650 char *zName; /* Name of this database */ 651 Btree *pBt; /* The B*Tree structure for this database file */ 652 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 653 u8 safety_level; /* How aggressive at syncing data to disk */ 654 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 655 }; 656 657 /* 658 ** An instance of the following structure stores a database schema. 659 ** 660 ** If there are no virtual tables configured in this schema, the 661 ** Schema.db variable is set to NULL. After the first virtual table 662 ** has been added, it is set to point to the database connection 663 ** used to create the connection. Once a virtual table has been 664 ** added to the Schema structure and the Schema.db variable populated, 665 ** only that database connection may use the Schema to prepare 666 ** statements. 667 */ 668 struct Schema { 669 int schema_cookie; /* Database schema version number for this file */ 670 Hash tblHash; /* All tables indexed by name */ 671 Hash idxHash; /* All (named) indices indexed by name */ 672 Hash trigHash; /* All triggers indexed by name */ 673 Hash fkeyHash; /* All foreign keys by referenced table name */ 674 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 675 u8 file_format; /* Schema format version for this file */ 676 u8 enc; /* Text encoding used by this database */ 677 u16 flags; /* Flags associated with this schema */ 678 int cache_size; /* Number of pages to use in the cache */ 679 #ifndef SQLITE_OMIT_VIRTUALTABLE 680 sqlite3 *db; /* "Owner" connection. See comment above */ 681 #endif 682 }; 683 684 /* 685 ** These macros can be used to test, set, or clear bits in the 686 ** Db.flags field. 687 */ 688 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 689 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 690 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 691 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 692 693 /* 694 ** Allowed values for the DB.flags field. 695 ** 696 ** The DB_SchemaLoaded flag is set after the database schema has been 697 ** read into internal hash tables. 698 ** 699 ** DB_UnresetViews means that one or more views have column names that 700 ** have been filled out. If the schema changes, these column names might 701 ** changes and so the view will need to be reset. 702 */ 703 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 704 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 705 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 706 707 /* 708 ** The number of different kinds of things that can be limited 709 ** using the sqlite3_limit() interface. 710 */ 711 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 712 713 /* 714 ** Lookaside malloc is a set of fixed-size buffers that can be used 715 ** to satisfy small transient memory allocation requests for objects 716 ** associated with a particular database connection. The use of 717 ** lookaside malloc provides a significant performance enhancement 718 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 719 ** SQL statements. 720 ** 721 ** The Lookaside structure holds configuration information about the 722 ** lookaside malloc subsystem. Each available memory allocation in 723 ** the lookaside subsystem is stored on a linked list of LookasideSlot 724 ** objects. 725 ** 726 ** Lookaside allocations are only allowed for objects that are associated 727 ** with a particular database connection. Hence, schema information cannot 728 ** be stored in lookaside because in shared cache mode the schema information 729 ** is shared by multiple database connections. Therefore, while parsing 730 ** schema information, the Lookaside.bEnabled flag is cleared so that 731 ** lookaside allocations are not used to construct the schema objects. 732 */ 733 struct Lookaside { 734 u16 sz; /* Size of each buffer in bytes */ 735 u8 bEnabled; /* False to disable new lookaside allocations */ 736 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 737 int nOut; /* Number of buffers currently checked out */ 738 int mxOut; /* Highwater mark for nOut */ 739 LookasideSlot *pFree; /* List of available buffers */ 740 void *pStart; /* First byte of available memory space */ 741 void *pEnd; /* First byte past end of available space */ 742 }; 743 struct LookasideSlot { 744 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 745 }; 746 747 /* 748 ** A hash table for function definitions. 749 ** 750 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 751 ** Collisions are on the FuncDef.pHash chain. 752 */ 753 struct FuncDefHash { 754 FuncDef *a[23]; /* Hash table for functions */ 755 }; 756 757 /* 758 ** Each database is an instance of the following structure. 759 ** 760 ** The sqlite.lastRowid records the last insert rowid generated by an 761 ** insert statement. Inserts on views do not affect its value. Each 762 ** trigger has its own context, so that lastRowid can be updated inside 763 ** triggers as usual. The previous value will be restored once the trigger 764 ** exits. Upon entering a before or instead of trigger, lastRowid is no 765 ** longer (since after version 2.8.12) reset to -1. 766 ** 767 ** The sqlite.nChange does not count changes within triggers and keeps no 768 ** context. It is reset at start of sqlite3_exec. 769 ** The sqlite.lsChange represents the number of changes made by the last 770 ** insert, update, or delete statement. It remains constant throughout the 771 ** length of a statement and is then updated by OP_SetCounts. It keeps a 772 ** context stack just like lastRowid so that the count of changes 773 ** within a trigger is not seen outside the trigger. Changes to views do not 774 ** affect the value of lsChange. 775 ** The sqlite.csChange keeps track of the number of current changes (since 776 ** the last statement) and is used to update sqlite_lsChange. 777 ** 778 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 779 ** store the most recent error code and, if applicable, string. The 780 ** internal function sqlite3Error() is used to set these variables 781 ** consistently. 782 */ 783 struct sqlite3 { 784 sqlite3_vfs *pVfs; /* OS Interface */ 785 int nDb; /* Number of backends currently in use */ 786 Db *aDb; /* All backends */ 787 int flags; /* Miscellaneous flags. See below */ 788 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 789 int errCode; /* Most recent error code (SQLITE_*) */ 790 int errMask; /* & result codes with this before returning */ 791 u8 autoCommit; /* The auto-commit flag. */ 792 u8 temp_store; /* 1: file 2: memory 0: default */ 793 u8 mallocFailed; /* True if we have seen a malloc failure */ 794 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 795 u8 dfltJournalMode; /* Default journal mode for attached dbs */ 796 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 797 int nextPagesize; /* Pagesize after VACUUM if >0 */ 798 int nTable; /* Number of tables in the database */ 799 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 800 i64 lastRowid; /* ROWID of most recent insert (see above) */ 801 u32 magic; /* Magic number for detect library misuse */ 802 int nChange; /* Value returned by sqlite3_changes() */ 803 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 804 sqlite3_mutex *mutex; /* Connection mutex */ 805 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 806 struct sqlite3InitInfo { /* Information used during initialization */ 807 int iDb; /* When back is being initialized */ 808 int newTnum; /* Rootpage of table being initialized */ 809 u8 busy; /* TRUE if currently initializing */ 810 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 811 } init; 812 int nExtension; /* Number of loaded extensions */ 813 void **aExtension; /* Array of shared library handles */ 814 struct Vdbe *pVdbe; /* List of active virtual machines */ 815 int activeVdbeCnt; /* Number of VDBEs currently executing */ 816 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 817 void (*xTrace)(void*,const char*); /* Trace function */ 818 void *pTraceArg; /* Argument to the trace function */ 819 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 820 void *pProfileArg; /* Argument to profile function */ 821 void *pCommitArg; /* Argument to xCommitCallback() */ 822 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 823 void *pRollbackArg; /* Argument to xRollbackCallback() */ 824 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 825 void *pUpdateArg; 826 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 827 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 828 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 829 void *pCollNeededArg; 830 sqlite3_value *pErr; /* Most recent error message */ 831 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 832 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 833 union { 834 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 835 double notUsed1; /* Spacer */ 836 } u1; 837 Lookaside lookaside; /* Lookaside malloc configuration */ 838 #ifndef SQLITE_OMIT_AUTHORIZATION 839 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 840 /* Access authorization function */ 841 void *pAuthArg; /* 1st argument to the access auth function */ 842 #endif 843 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 844 int (*xProgress)(void *); /* The progress callback */ 845 void *pProgressArg; /* Argument to the progress callback */ 846 int nProgressOps; /* Number of opcodes for progress callback */ 847 #endif 848 #ifndef SQLITE_OMIT_VIRTUALTABLE 849 Hash aModule; /* populated by sqlite3_create_module() */ 850 Table *pVTab; /* vtab with active Connect/Create method */ 851 VTable **aVTrans; /* Virtual tables with open transactions */ 852 int nVTrans; /* Allocated size of aVTrans */ 853 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 854 #endif 855 FuncDefHash aFunc; /* Hash table of connection functions */ 856 Hash aCollSeq; /* All collating sequences */ 857 BusyHandler busyHandler; /* Busy callback */ 858 int busyTimeout; /* Busy handler timeout, in msec */ 859 Db aDbStatic[2]; /* Static space for the 2 default backends */ 860 Savepoint *pSavepoint; /* List of active savepoints */ 861 int nSavepoint; /* Number of non-transaction savepoints */ 862 int nStatement; /* Number of nested statement-transactions */ 863 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 864 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 865 866 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 867 /* The following variables are all protected by the STATIC_MASTER 868 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 869 ** 870 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 871 ** unlock so that it can proceed. 872 ** 873 ** When X.pBlockingConnection==Y, that means that something that X tried 874 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 875 ** held by Y. 876 */ 877 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 878 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 879 void *pUnlockArg; /* Argument to xUnlockNotify */ 880 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 881 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 882 #endif 883 }; 884 885 /* 886 ** A macro to discover the encoding of a database. 887 */ 888 #define ENC(db) ((db)->aDb[0].pSchema->enc) 889 890 /* 891 ** Possible values for the sqlite.flags and or Db.flags fields. 892 ** 893 ** On sqlite.flags, the SQLITE_InTrans value means that we have 894 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 895 ** transaction is active on that particular database file. 896 */ 897 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 898 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 899 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 900 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 901 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 902 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 903 /* DELETE, or UPDATE and return */ 904 /* the count using a callback. */ 905 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 906 /* result set is empty */ 907 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ 908 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ 909 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ 910 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when 911 ** accessing read-only databases */ 912 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ 913 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ 914 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ 915 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ 916 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ 917 918 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ 919 #define SQLITE_ReverseOrder 0x00100000 /* Reverse unordered SELECTs */ 920 #define SQLITE_RecTriggers 0x00200000 /* Enable recursive triggers */ 921 #define SQLITE_ForeignKeys 0x00400000 /* Enforce foreign key constraints */ 922 923 /* 924 ** Possible values for the sqlite.magic field. 925 ** The numbers are obtained at random and have no special meaning, other 926 ** than being distinct from one another. 927 */ 928 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 929 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 930 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 931 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 932 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 933 934 /* 935 ** Each SQL function is defined by an instance of the following 936 ** structure. A pointer to this structure is stored in the sqlite.aFunc 937 ** hash table. When multiple functions have the same name, the hash table 938 ** points to a linked list of these structures. 939 */ 940 struct FuncDef { 941 i16 nArg; /* Number of arguments. -1 means unlimited */ 942 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 943 u8 flags; /* Some combination of SQLITE_FUNC_* */ 944 void *pUserData; /* User data parameter */ 945 FuncDef *pNext; /* Next function with same name */ 946 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 947 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 948 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 949 char *zName; /* SQL name of the function. */ 950 FuncDef *pHash; /* Next with a different name but the same hash */ 951 }; 952 953 /* 954 ** Possible values for FuncDef.flags 955 */ 956 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 957 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 958 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 959 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 960 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ 961 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 962 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ 963 964 /* 965 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 966 ** used to create the initializers for the FuncDef structures. 967 ** 968 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 969 ** Used to create a scalar function definition of a function zName 970 ** implemented by C function xFunc that accepts nArg arguments. The 971 ** value passed as iArg is cast to a (void*) and made available 972 ** as the user-data (sqlite3_user_data()) for the function. If 973 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 974 ** 975 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 976 ** Used to create an aggregate function definition implemented by 977 ** the C functions xStep and xFinal. The first four parameters 978 ** are interpreted in the same way as the first 4 parameters to 979 ** FUNCTION(). 980 ** 981 ** LIKEFUNC(zName, nArg, pArg, flags) 982 ** Used to create a scalar function definition of a function zName 983 ** that accepts nArg arguments and is implemented by a call to C 984 ** function likeFunc. Argument pArg is cast to a (void *) and made 985 ** available as the function user-data (sqlite3_user_data()). The 986 ** FuncDef.flags variable is set to the value passed as the flags 987 ** parameter. 988 */ 989 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 990 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 991 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0} 992 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 993 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 994 pArg, 0, xFunc, 0, 0, #zName, 0} 995 #define LIKEFUNC(zName, nArg, arg, flags) \ 996 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0} 997 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 998 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 999 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0} 1000 1001 /* 1002 ** All current savepoints are stored in a linked list starting at 1003 ** sqlite3.pSavepoint. The first element in the list is the most recently 1004 ** opened savepoint. Savepoints are added to the list by the vdbe 1005 ** OP_Savepoint instruction. 1006 */ 1007 struct Savepoint { 1008 char *zName; /* Savepoint name (nul-terminated) */ 1009 i64 nDeferredCons; /* Number of deferred fk violations */ 1010 Savepoint *pNext; /* Parent savepoint (if any) */ 1011 }; 1012 1013 /* 1014 ** The following are used as the second parameter to sqlite3Savepoint(), 1015 ** and as the P1 argument to the OP_Savepoint instruction. 1016 */ 1017 #define SAVEPOINT_BEGIN 0 1018 #define SAVEPOINT_RELEASE 1 1019 #define SAVEPOINT_ROLLBACK 2 1020 1021 1022 /* 1023 ** Each SQLite module (virtual table definition) is defined by an 1024 ** instance of the following structure, stored in the sqlite3.aModule 1025 ** hash table. 1026 */ 1027 struct Module { 1028 const sqlite3_module *pModule; /* Callback pointers */ 1029 const char *zName; /* Name passed to create_module() */ 1030 void *pAux; /* pAux passed to create_module() */ 1031 void (*xDestroy)(void *); /* Module destructor function */ 1032 }; 1033 1034 /* 1035 ** information about each column of an SQL table is held in an instance 1036 ** of this structure. 1037 */ 1038 struct Column { 1039 char *zName; /* Name of this column */ 1040 Expr *pDflt; /* Default value of this column */ 1041 char *zDflt; /* Original text of the default value */ 1042 char *zType; /* Data type for this column */ 1043 char *zColl; /* Collating sequence. If NULL, use the default */ 1044 u8 notNull; /* True if there is a NOT NULL constraint */ 1045 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1046 char affinity; /* One of the SQLITE_AFF_... values */ 1047 #ifndef SQLITE_OMIT_VIRTUALTABLE 1048 u8 isHidden; /* True if this column is 'hidden' */ 1049 #endif 1050 }; 1051 1052 /* 1053 ** A "Collating Sequence" is defined by an instance of the following 1054 ** structure. Conceptually, a collating sequence consists of a name and 1055 ** a comparison routine that defines the order of that sequence. 1056 ** 1057 ** There may two separate implementations of the collation function, one 1058 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1059 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1060 ** native byte order. When a collation sequence is invoked, SQLite selects 1061 ** the version that will require the least expensive encoding 1062 ** translations, if any. 1063 ** 1064 ** The CollSeq.pUser member variable is an extra parameter that passed in 1065 ** as the first argument to the UTF-8 comparison function, xCmp. 1066 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1067 ** xCmp16. 1068 ** 1069 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1070 ** collating sequence is undefined. Indices built on an undefined 1071 ** collating sequence may not be read or written. 1072 */ 1073 struct CollSeq { 1074 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1075 u8 enc; /* Text encoding handled by xCmp() */ 1076 u8 type; /* One of the SQLITE_COLL_... values below */ 1077 void *pUser; /* First argument to xCmp() */ 1078 int (*xCmp)(void*,int, const void*, int, const void*); 1079 void (*xDel)(void*); /* Destructor for pUser */ 1080 }; 1081 1082 /* 1083 ** Allowed values of CollSeq.type: 1084 */ 1085 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 1086 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 1087 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 1088 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 1089 1090 /* 1091 ** A sort order can be either ASC or DESC. 1092 */ 1093 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1094 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1095 1096 /* 1097 ** Column affinity types. 1098 ** 1099 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1100 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1101 ** the speed a little by numbering the values consecutively. 1102 ** 1103 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1104 ** when multiple affinity types are concatenated into a string and 1105 ** used as the P4 operand, they will be more readable. 1106 ** 1107 ** Note also that the numeric types are grouped together so that testing 1108 ** for a numeric type is a single comparison. 1109 */ 1110 #define SQLITE_AFF_TEXT 'a' 1111 #define SQLITE_AFF_NONE 'b' 1112 #define SQLITE_AFF_NUMERIC 'c' 1113 #define SQLITE_AFF_INTEGER 'd' 1114 #define SQLITE_AFF_REAL 'e' 1115 1116 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1117 1118 /* 1119 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1120 ** affinity value. 1121 */ 1122 #define SQLITE_AFF_MASK 0x67 1123 1124 /* 1125 ** Additional bit values that can be ORed with an affinity without 1126 ** changing the affinity. 1127 */ 1128 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1129 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1130 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1131 1132 /* 1133 ** An object of this type is created for each virtual table present in 1134 ** the database schema. 1135 ** 1136 ** If the database schema is shared, then there is one instance of this 1137 ** structure for each database connection (sqlite3*) that uses the shared 1138 ** schema. This is because each database connection requires its own unique 1139 ** instance of the sqlite3_vtab* handle used to access the virtual table 1140 ** implementation. sqlite3_vtab* handles can not be shared between 1141 ** database connections, even when the rest of the in-memory database 1142 ** schema is shared, as the implementation often stores the database 1143 ** connection handle passed to it via the xConnect() or xCreate() method 1144 ** during initialization internally. This database connection handle may 1145 ** then used by the virtual table implementation to access real tables 1146 ** within the database. So that they appear as part of the callers 1147 ** transaction, these accesses need to be made via the same database 1148 ** connection as that used to execute SQL operations on the virtual table. 1149 ** 1150 ** All VTable objects that correspond to a single table in a shared 1151 ** database schema are initially stored in a linked-list pointed to by 1152 ** the Table.pVTable member variable of the corresponding Table object. 1153 ** When an sqlite3_prepare() operation is required to access the virtual 1154 ** table, it searches the list for the VTable that corresponds to the 1155 ** database connection doing the preparing so as to use the correct 1156 ** sqlite3_vtab* handle in the compiled query. 1157 ** 1158 ** When an in-memory Table object is deleted (for example when the 1159 ** schema is being reloaded for some reason), the VTable objects are not 1160 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1161 ** immediately. Instead, they are moved from the Table.pVTable list to 1162 ** another linked list headed by the sqlite3.pDisconnect member of the 1163 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1164 ** next time a statement is prepared using said sqlite3*. This is done 1165 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1166 ** Refer to comments above function sqlite3VtabUnlockList() for an 1167 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1168 ** list without holding the corresponding sqlite3.mutex mutex. 1169 ** 1170 ** The memory for objects of this type is always allocated by 1171 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1172 ** the first argument. 1173 */ 1174 struct VTable { 1175 sqlite3 *db; /* Database connection associated with this table */ 1176 Module *pMod; /* Pointer to module implementation */ 1177 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1178 int nRef; /* Number of pointers to this structure */ 1179 VTable *pNext; /* Next in linked list (see above) */ 1180 }; 1181 1182 /* 1183 ** Each SQL table is represented in memory by an instance of the 1184 ** following structure. 1185 ** 1186 ** Table.zName is the name of the table. The case of the original 1187 ** CREATE TABLE statement is stored, but case is not significant for 1188 ** comparisons. 1189 ** 1190 ** Table.nCol is the number of columns in this table. Table.aCol is a 1191 ** pointer to an array of Column structures, one for each column. 1192 ** 1193 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1194 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1195 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1196 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1197 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1198 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1199 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1200 ** 1201 ** Table.tnum is the page number for the root BTree page of the table in the 1202 ** database file. If Table.iDb is the index of the database table backend 1203 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1204 ** holds temporary tables and indices. If TF_Ephemeral is set 1205 ** then the table is stored in a file that is automatically deleted 1206 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1207 ** refers VDBE cursor number that holds the table open, not to the root 1208 ** page number. Transient tables are used to hold the results of a 1209 ** sub-query that appears instead of a real table name in the FROM clause 1210 ** of a SELECT statement. 1211 */ 1212 struct Table { 1213 sqlite3 *dbMem; /* DB connection used for lookaside allocations. */ 1214 char *zName; /* Name of the table or view */ 1215 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1216 int nCol; /* Number of columns in this table */ 1217 Column *aCol; /* Information about each column */ 1218 Index *pIndex; /* List of SQL indexes on this table. */ 1219 int tnum; /* Root BTree node for this table (see note above) */ 1220 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1221 u16 nRef; /* Number of pointers to this Table */ 1222 u8 tabFlags; /* Mask of TF_* values */ 1223 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1224 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1225 char *zColAff; /* String defining the affinity of each column */ 1226 #ifndef SQLITE_OMIT_CHECK 1227 Expr *pCheck; /* The AND of all CHECK constraints */ 1228 #endif 1229 #ifndef SQLITE_OMIT_ALTERTABLE 1230 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1231 #endif 1232 #ifndef SQLITE_OMIT_VIRTUALTABLE 1233 VTable *pVTable; /* List of VTable objects. */ 1234 int nModuleArg; /* Number of arguments to the module */ 1235 char **azModuleArg; /* Text of all module args. [0] is module name */ 1236 #endif 1237 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1238 Schema *pSchema; /* Schema that contains this table */ 1239 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1240 }; 1241 1242 /* 1243 ** Allowed values for Tabe.tabFlags. 1244 */ 1245 #define TF_Readonly 0x01 /* Read-only system table */ 1246 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1247 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1248 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1249 #define TF_Virtual 0x10 /* Is a virtual table */ 1250 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1251 1252 1253 1254 /* 1255 ** Test to see whether or not a table is a virtual table. This is 1256 ** done as a macro so that it will be optimized out when virtual 1257 ** table support is omitted from the build. 1258 */ 1259 #ifndef SQLITE_OMIT_VIRTUALTABLE 1260 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1261 # define IsHiddenColumn(X) ((X)->isHidden) 1262 #else 1263 # define IsVirtual(X) 0 1264 # define IsHiddenColumn(X) 0 1265 #endif 1266 1267 /* 1268 ** Each foreign key constraint is an instance of the following structure. 1269 ** 1270 ** A foreign key is associated with two tables. The "from" table is 1271 ** the table that contains the REFERENCES clause that creates the foreign 1272 ** key. The "to" table is the table that is named in the REFERENCES clause. 1273 ** Consider this example: 1274 ** 1275 ** CREATE TABLE ex1( 1276 ** a INTEGER PRIMARY KEY, 1277 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1278 ** ); 1279 ** 1280 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1281 ** 1282 ** Each REFERENCES clause generates an instance of the following structure 1283 ** which is attached to the from-table. The to-table need not exist when 1284 ** the from-table is created. The existence of the to-table is not checked. 1285 */ 1286 struct FKey { 1287 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1288 FKey *pNextFrom; /* Next foreign key in pFrom */ 1289 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1290 FKey *pNextTo; /* Next foreign key on table named zTo */ 1291 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1292 int nCol; /* Number of columns in this key */ 1293 /* EV: R-30323-21917 */ 1294 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1295 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1296 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1297 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1298 int iFrom; /* Index of column in pFrom */ 1299 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1300 } aCol[1]; /* One entry for each of nCol column s */ 1301 }; 1302 1303 /* 1304 ** SQLite supports many different ways to resolve a constraint 1305 ** error. ROLLBACK processing means that a constraint violation 1306 ** causes the operation in process to fail and for the current transaction 1307 ** to be rolled back. ABORT processing means the operation in process 1308 ** fails and any prior changes from that one operation are backed out, 1309 ** but the transaction is not rolled back. FAIL processing means that 1310 ** the operation in progress stops and returns an error code. But prior 1311 ** changes due to the same operation are not backed out and no rollback 1312 ** occurs. IGNORE means that the particular row that caused the constraint 1313 ** error is not inserted or updated. Processing continues and no error 1314 ** is returned. REPLACE means that preexisting database rows that caused 1315 ** a UNIQUE constraint violation are removed so that the new insert or 1316 ** update can proceed. Processing continues and no error is reported. 1317 ** 1318 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1319 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1320 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1321 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1322 ** referenced table row is propagated into the row that holds the 1323 ** foreign key. 1324 ** 1325 ** The following symbolic values are used to record which type 1326 ** of action to take. 1327 */ 1328 #define OE_None 0 /* There is no constraint to check */ 1329 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1330 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1331 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1332 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1333 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1334 1335 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1336 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1337 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1338 #define OE_Cascade 9 /* Cascade the changes */ 1339 1340 #define OE_Default 99 /* Do whatever the default action is */ 1341 1342 1343 /* 1344 ** An instance of the following structure is passed as the first 1345 ** argument to sqlite3VdbeKeyCompare and is used to control the 1346 ** comparison of the two index keys. 1347 */ 1348 struct KeyInfo { 1349 sqlite3 *db; /* The database connection */ 1350 u8 enc; /* Text encoding - one of the TEXT_Utf* values */ 1351 u16 nField; /* Number of entries in aColl[] */ 1352 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ 1353 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1354 }; 1355 1356 /* 1357 ** An instance of the following structure holds information about a 1358 ** single index record that has already been parsed out into individual 1359 ** values. 1360 ** 1361 ** A record is an object that contains one or more fields of data. 1362 ** Records are used to store the content of a table row and to store 1363 ** the key of an index. A blob encoding of a record is created by 1364 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1365 ** OP_Column opcode. 1366 ** 1367 ** This structure holds a record that has already been disassembled 1368 ** into its constituent fields. 1369 */ 1370 struct UnpackedRecord { 1371 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1372 u16 nField; /* Number of entries in apMem[] */ 1373 u16 flags; /* Boolean settings. UNPACKED_... below */ 1374 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1375 Mem *aMem; /* Values */ 1376 }; 1377 1378 /* 1379 ** Allowed values of UnpackedRecord.flags 1380 */ 1381 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 1382 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 1383 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 1384 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 1385 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 1386 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ 1387 1388 /* 1389 ** Each SQL index is represented in memory by an 1390 ** instance of the following structure. 1391 ** 1392 ** The columns of the table that are to be indexed are described 1393 ** by the aiColumn[] field of this structure. For example, suppose 1394 ** we have the following table and index: 1395 ** 1396 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1397 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1398 ** 1399 ** In the Table structure describing Ex1, nCol==3 because there are 1400 ** three columns in the table. In the Index structure describing 1401 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1402 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1403 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1404 ** The second column to be indexed (c1) has an index of 0 in 1405 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1406 ** 1407 ** The Index.onError field determines whether or not the indexed columns 1408 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1409 ** it means this is not a unique index. Otherwise it is a unique index 1410 ** and the value of Index.onError indicate the which conflict resolution 1411 ** algorithm to employ whenever an attempt is made to insert a non-unique 1412 ** element. 1413 */ 1414 struct Index { 1415 char *zName; /* Name of this index */ 1416 int nColumn; /* Number of columns in the table used by this index */ 1417 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1418 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1419 Table *pTable; /* The SQL table being indexed */ 1420 int tnum; /* Page containing root of this index in database file */ 1421 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1422 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1423 char *zColAff; /* String defining the affinity of each column */ 1424 Index *pNext; /* The next index associated with the same table */ 1425 Schema *pSchema; /* Schema containing this index */ 1426 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1427 char **azColl; /* Array of collation sequence names for index */ 1428 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ 1429 }; 1430 1431 /* 1432 ** Each sample stored in the sqlite_stat2 table is represented in memory 1433 ** using a structure of this type. 1434 */ 1435 struct IndexSample { 1436 union { 1437 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1438 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ 1439 } u; 1440 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1441 u8 nByte; /* Size in byte of text or blob. */ 1442 }; 1443 1444 /* 1445 ** Each token coming out of the lexer is an instance of 1446 ** this structure. Tokens are also used as part of an expression. 1447 ** 1448 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1449 ** may contain random values. Do not make any assumptions about Token.dyn 1450 ** and Token.n when Token.z==0. 1451 */ 1452 struct Token { 1453 const char *z; /* Text of the token. Not NULL-terminated! */ 1454 unsigned int n; /* Number of characters in this token */ 1455 }; 1456 1457 /* 1458 ** An instance of this structure contains information needed to generate 1459 ** code for a SELECT that contains aggregate functions. 1460 ** 1461 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1462 ** pointer to this structure. The Expr.iColumn field is the index in 1463 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1464 ** code for that node. 1465 ** 1466 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1467 ** original Select structure that describes the SELECT statement. These 1468 ** fields do not need to be freed when deallocating the AggInfo structure. 1469 */ 1470 struct AggInfo { 1471 u8 directMode; /* Direct rendering mode means take data directly 1472 ** from source tables rather than from accumulators */ 1473 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1474 ** than the source table */ 1475 int sortingIdx; /* Cursor number of the sorting index */ 1476 ExprList *pGroupBy; /* The group by clause */ 1477 int nSortingColumn; /* Number of columns in the sorting index */ 1478 struct AggInfo_col { /* For each column used in source tables */ 1479 Table *pTab; /* Source table */ 1480 int iTable; /* Cursor number of the source table */ 1481 int iColumn; /* Column number within the source table */ 1482 int iSorterColumn; /* Column number in the sorting index */ 1483 int iMem; /* Memory location that acts as accumulator */ 1484 Expr *pExpr; /* The original expression */ 1485 } *aCol; 1486 int nColumn; /* Number of used entries in aCol[] */ 1487 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1488 int nAccumulator; /* Number of columns that show through to the output. 1489 ** Additional columns are used only as parameters to 1490 ** aggregate functions */ 1491 struct AggInfo_func { /* For each aggregate function */ 1492 Expr *pExpr; /* Expression encoding the function */ 1493 FuncDef *pFunc; /* The aggregate function implementation */ 1494 int iMem; /* Memory location that acts as accumulator */ 1495 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1496 } *aFunc; 1497 int nFunc; /* Number of entries in aFunc[] */ 1498 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1499 }; 1500 1501 /* 1502 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1503 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1504 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1505 ** it uses less memory in the Expr object, which is a big memory user 1506 ** in systems with lots of prepared statements. And few applications 1507 ** need more than about 10 or 20 variables. But some extreme users want 1508 ** to have prepared statements with over 32767 variables, and for them 1509 ** the option is available (at compile-time). 1510 */ 1511 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1512 typedef i16 ynVar; 1513 #else 1514 typedef int ynVar; 1515 #endif 1516 1517 /* 1518 ** Each node of an expression in the parse tree is an instance 1519 ** of this structure. 1520 ** 1521 ** Expr.op is the opcode. The integer parser token codes are reused 1522 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1523 ** code representing the ">=" operator. This same integer code is reused 1524 ** to represent the greater-than-or-equal-to operator in the expression 1525 ** tree. 1526 ** 1527 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1528 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1529 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1530 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1531 ** then Expr.token contains the name of the function. 1532 ** 1533 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1534 ** binary operator. Either or both may be NULL. 1535 ** 1536 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1537 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1538 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1539 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1540 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1541 ** valid. 1542 ** 1543 ** An expression of the form ID or ID.ID refers to a column in a table. 1544 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1545 ** the integer cursor number of a VDBE cursor pointing to that table and 1546 ** Expr.iColumn is the column number for the specific column. If the 1547 ** expression is used as a result in an aggregate SELECT, then the 1548 ** value is also stored in the Expr.iAgg column in the aggregate so that 1549 ** it can be accessed after all aggregates are computed. 1550 ** 1551 ** If the expression is an unbound variable marker (a question mark 1552 ** character '?' in the original SQL) then the Expr.iTable holds the index 1553 ** number for that variable. 1554 ** 1555 ** If the expression is a subquery then Expr.iColumn holds an integer 1556 ** register number containing the result of the subquery. If the 1557 ** subquery gives a constant result, then iTable is -1. If the subquery 1558 ** gives a different answer at different times during statement processing 1559 ** then iTable is the address of a subroutine that computes the subquery. 1560 ** 1561 ** If the Expr is of type OP_Column, and the table it is selecting from 1562 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1563 ** corresponding table definition. 1564 ** 1565 ** ALLOCATION NOTES: 1566 ** 1567 ** Expr objects can use a lot of memory space in database schema. To 1568 ** help reduce memory requirements, sometimes an Expr object will be 1569 ** truncated. And to reduce the number of memory allocations, sometimes 1570 ** two or more Expr objects will be stored in a single memory allocation, 1571 ** together with Expr.zToken strings. 1572 ** 1573 ** If the EP_Reduced and EP_TokenOnly flags are set when 1574 ** an Expr object is truncated. When EP_Reduced is set, then all 1575 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1576 ** are contained within the same memory allocation. Note, however, that 1577 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1578 ** allocated, regardless of whether or not EP_Reduced is set. 1579 */ 1580 struct Expr { 1581 u8 op; /* Operation performed by this node */ 1582 char affinity; /* The affinity of the column or 0 if not a column */ 1583 u16 flags; /* Various flags. EP_* See below */ 1584 union { 1585 char *zToken; /* Token value. Zero terminated and dequoted */ 1586 int iValue; /* Integer value if EP_IntValue */ 1587 } u; 1588 1589 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1590 ** space is allocated for the fields below this point. An attempt to 1591 ** access them will result in a segfault or malfunction. 1592 *********************************************************************/ 1593 1594 Expr *pLeft; /* Left subnode */ 1595 Expr *pRight; /* Right subnode */ 1596 union { 1597 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1598 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1599 } x; 1600 CollSeq *pColl; /* The collation type of the column or 0 */ 1601 1602 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1603 ** space is allocated for the fields below this point. An attempt to 1604 ** access them will result in a segfault or malfunction. 1605 *********************************************************************/ 1606 1607 int iTable; /* TK_COLUMN: cursor number of table holding column 1608 ** TK_REGISTER: register number 1609 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1610 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1611 ** TK_VARIABLE: variable number (always >= 1). */ 1612 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1613 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1614 u8 flags2; /* Second set of flags. EP2_... */ 1615 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1616 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1617 Table *pTab; /* Table for TK_COLUMN expressions. */ 1618 #if SQLITE_MAX_EXPR_DEPTH>0 1619 int nHeight; /* Height of the tree headed by this node */ 1620 #endif 1621 }; 1622 1623 /* 1624 ** The following are the meanings of bits in the Expr.flags field. 1625 */ 1626 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1627 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1628 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1629 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1630 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1631 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1632 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1633 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1634 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1635 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */ 1636 #define EP_FixedDest 0x0400 /* Result needed in a specific register */ 1637 #define EP_IntValue 0x0800 /* Integer value contained in u.iValue */ 1638 #define EP_xIsSelect 0x1000 /* x.pSelect is valid (otherwise x.pList is) */ 1639 1640 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1641 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1642 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ 1643 1644 /* 1645 ** The following are the meanings of bits in the Expr.flags2 field. 1646 */ 1647 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1648 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1649 1650 /* 1651 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1652 ** flag on an expression structure. This flag is used for VV&A only. The 1653 ** routine is implemented as a macro that only works when in debugging mode, 1654 ** so as not to burden production code. 1655 */ 1656 #ifdef SQLITE_DEBUG 1657 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1658 #else 1659 # define ExprSetIrreducible(X) 1660 #endif 1661 1662 /* 1663 ** These macros can be used to test, set, or clear bits in the 1664 ** Expr.flags field. 1665 */ 1666 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1667 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1668 #define ExprSetProperty(E,P) (E)->flags|=(P) 1669 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1670 1671 /* 1672 ** Macros to determine the number of bytes required by a normal Expr 1673 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1674 ** and an Expr struct with the EP_TokenOnly flag set. 1675 */ 1676 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1677 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1678 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1679 1680 /* 1681 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1682 ** above sqlite3ExprDup() for details. 1683 */ 1684 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1685 1686 /* 1687 ** A list of expressions. Each expression may optionally have a 1688 ** name. An expr/name combination can be used in several ways, such 1689 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1690 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1691 ** also be used as the argument to a function, in which case the a.zName 1692 ** field is not used. 1693 */ 1694 struct ExprList { 1695 int nExpr; /* Number of expressions on the list */ 1696 int nAlloc; /* Number of entries allocated below */ 1697 int iECursor; /* VDBE Cursor associated with this ExprList */ 1698 struct ExprList_item { 1699 Expr *pExpr; /* The list of expressions */ 1700 char *zName; /* Token associated with this expression */ 1701 char *zSpan; /* Original text of the expression */ 1702 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1703 u8 done; /* A flag to indicate when processing is finished */ 1704 u16 iCol; /* For ORDER BY, column number in result set */ 1705 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1706 } *a; /* One entry for each expression */ 1707 }; 1708 1709 /* 1710 ** An instance of this structure is used by the parser to record both 1711 ** the parse tree for an expression and the span of input text for an 1712 ** expression. 1713 */ 1714 struct ExprSpan { 1715 Expr *pExpr; /* The expression parse tree */ 1716 const char *zStart; /* First character of input text */ 1717 const char *zEnd; /* One character past the end of input text */ 1718 }; 1719 1720 /* 1721 ** An instance of this structure can hold a simple list of identifiers, 1722 ** such as the list "a,b,c" in the following statements: 1723 ** 1724 ** INSERT INTO t(a,b,c) VALUES ...; 1725 ** CREATE INDEX idx ON t(a,b,c); 1726 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1727 ** 1728 ** The IdList.a.idx field is used when the IdList represents the list of 1729 ** column names after a table name in an INSERT statement. In the statement 1730 ** 1731 ** INSERT INTO t(a,b,c) ... 1732 ** 1733 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1734 */ 1735 struct IdList { 1736 struct IdList_item { 1737 char *zName; /* Name of the identifier */ 1738 int idx; /* Index in some Table.aCol[] of a column named zName */ 1739 } *a; 1740 int nId; /* Number of identifiers on the list */ 1741 int nAlloc; /* Number of entries allocated for a[] below */ 1742 }; 1743 1744 /* 1745 ** The bitmask datatype defined below is used for various optimizations. 1746 ** 1747 ** Changing this from a 64-bit to a 32-bit type limits the number of 1748 ** tables in a join to 32 instead of 64. But it also reduces the size 1749 ** of the library by 738 bytes on ix86. 1750 */ 1751 typedef u64 Bitmask; 1752 1753 /* 1754 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1755 */ 1756 #define BMS ((int)(sizeof(Bitmask)*8)) 1757 1758 /* 1759 ** The following structure describes the FROM clause of a SELECT statement. 1760 ** Each table or subquery in the FROM clause is a separate element of 1761 ** the SrcList.a[] array. 1762 ** 1763 ** With the addition of multiple database support, the following structure 1764 ** can also be used to describe a particular table such as the table that 1765 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1766 ** such a table must be a simple name: ID. But in SQLite, the table can 1767 ** now be identified by a database name, a dot, then the table name: ID.ID. 1768 ** 1769 ** The jointype starts out showing the join type between the current table 1770 ** and the next table on the list. The parser builds the list this way. 1771 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1772 ** jointype expresses the join between the table and the previous table. 1773 */ 1774 struct SrcList { 1775 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1776 i16 nAlloc; /* Number of entries allocated in a[] below */ 1777 struct SrcList_item { 1778 char *zDatabase; /* Name of database holding this table */ 1779 char *zName; /* Name of the table */ 1780 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1781 Table *pTab; /* An SQL table corresponding to zName */ 1782 Select *pSelect; /* A SELECT statement used in place of a table name */ 1783 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1784 u8 jointype; /* Type of join between this able and the previous */ 1785 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1786 int iCursor; /* The VDBE cursor number used to access this table */ 1787 Expr *pOn; /* The ON clause of a join */ 1788 IdList *pUsing; /* The USING clause of a join */ 1789 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1790 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1791 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1792 } a[1]; /* One entry for each identifier on the list */ 1793 }; 1794 1795 /* 1796 ** Permitted values of the SrcList.a.jointype field 1797 */ 1798 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1799 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1800 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1801 #define JT_LEFT 0x0008 /* Left outer join */ 1802 #define JT_RIGHT 0x0010 /* Right outer join */ 1803 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1804 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1805 1806 1807 /* 1808 ** A WherePlan object holds information that describes a lookup 1809 ** strategy. 1810 ** 1811 ** This object is intended to be opaque outside of the where.c module. 1812 ** It is included here only so that that compiler will know how big it 1813 ** is. None of the fields in this object should be used outside of 1814 ** the where.c module. 1815 ** 1816 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1817 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1818 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1819 ** case that more than one of these conditions is true. 1820 */ 1821 struct WherePlan { 1822 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1823 u32 nEq; /* Number of == constraints */ 1824 union { 1825 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1826 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1827 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1828 } u; 1829 }; 1830 1831 /* 1832 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1833 ** structure contains a single instance of this structure. This structure 1834 ** is intended to be private the the where.c module and should not be 1835 ** access or modified by other modules. 1836 ** 1837 ** The pIdxInfo field is used to help pick the best index on a 1838 ** virtual table. The pIdxInfo pointer contains indexing 1839 ** information for the i-th table in the FROM clause before reordering. 1840 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1841 ** All other information in the i-th WhereLevel object for the i-th table 1842 ** after FROM clause ordering. 1843 */ 1844 struct WhereLevel { 1845 WherePlan plan; /* query plan for this element of the FROM clause */ 1846 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1847 int iTabCur; /* The VDBE cursor used to access the table */ 1848 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1849 int addrBrk; /* Jump here to break out of the loop */ 1850 int addrNxt; /* Jump here to start the next IN combination */ 1851 int addrCont; /* Jump here to continue with the next loop cycle */ 1852 int addrFirst; /* First instruction of interior of the loop */ 1853 u8 iFrom; /* Which entry in the FROM clause */ 1854 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1855 int p1, p2; /* Operands of the opcode used to ends the loop */ 1856 union { /* Information that depends on plan.wsFlags */ 1857 struct { 1858 int nIn; /* Number of entries in aInLoop[] */ 1859 struct InLoop { 1860 int iCur; /* The VDBE cursor used by this IN operator */ 1861 int addrInTop; /* Top of the IN loop */ 1862 } *aInLoop; /* Information about each nested IN operator */ 1863 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1864 } u; 1865 1866 /* The following field is really not part of the current level. But 1867 ** we need a place to cache virtual table index information for each 1868 ** virtual table in the FROM clause and the WhereLevel structure is 1869 ** a convenient place since there is one WhereLevel for each FROM clause 1870 ** element. 1871 */ 1872 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1873 }; 1874 1875 /* 1876 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1877 ** and the WhereInfo.wctrlFlags member. 1878 */ 1879 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1880 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1881 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1882 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1883 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1884 #define WHERE_OMIT_OPEN 0x0010 /* Table cursor are already open */ 1885 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */ 1886 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */ 1887 1888 /* 1889 ** The WHERE clause processing routine has two halves. The 1890 ** first part does the start of the WHERE loop and the second 1891 ** half does the tail of the WHERE loop. An instance of 1892 ** this structure is returned by the first half and passed 1893 ** into the second half to give some continuity. 1894 */ 1895 struct WhereInfo { 1896 Parse *pParse; /* Parsing and code generating context */ 1897 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1898 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1899 SrcList *pTabList; /* List of tables in the join */ 1900 int iTop; /* The very beginning of the WHERE loop */ 1901 int iContinue; /* Jump here to continue with next record */ 1902 int iBreak; /* Jump here to break out of the loop */ 1903 int nLevel; /* Number of nested loop */ 1904 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1905 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1906 }; 1907 1908 /* 1909 ** A NameContext defines a context in which to resolve table and column 1910 ** names. The context consists of a list of tables (the pSrcList) field and 1911 ** a list of named expression (pEList). The named expression list may 1912 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1913 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1914 ** pEList corresponds to the result set of a SELECT and is NULL for 1915 ** other statements. 1916 ** 1917 ** NameContexts can be nested. When resolving names, the inner-most 1918 ** context is searched first. If no match is found, the next outer 1919 ** context is checked. If there is still no match, the next context 1920 ** is checked. This process continues until either a match is found 1921 ** or all contexts are check. When a match is found, the nRef member of 1922 ** the context containing the match is incremented. 1923 ** 1924 ** Each subquery gets a new NameContext. The pNext field points to the 1925 ** NameContext in the parent query. Thus the process of scanning the 1926 ** NameContext list corresponds to searching through successively outer 1927 ** subqueries looking for a match. 1928 */ 1929 struct NameContext { 1930 Parse *pParse; /* The parser */ 1931 SrcList *pSrcList; /* One or more tables used to resolve names */ 1932 ExprList *pEList; /* Optional list of named expressions */ 1933 int nRef; /* Number of names resolved by this context */ 1934 int nErr; /* Number of errors encountered while resolving names */ 1935 u8 allowAgg; /* Aggregate functions allowed here */ 1936 u8 hasAgg; /* True if aggregates are seen */ 1937 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1938 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1939 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1940 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1941 }; 1942 1943 /* 1944 ** An instance of the following structure contains all information 1945 ** needed to generate code for a single SELECT statement. 1946 ** 1947 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1948 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1949 ** limit and nOffset to the value of the offset (or 0 if there is not 1950 ** offset). But later on, nLimit and nOffset become the memory locations 1951 ** in the VDBE that record the limit and offset counters. 1952 ** 1953 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1954 ** These addresses must be stored so that we can go back and fill in 1955 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1956 ** the number of columns in P2 can be computed at the same time 1957 ** as the OP_OpenEphm instruction is coded because not 1958 ** enough information about the compound query is known at that point. 1959 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1960 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1961 ** sequences for the ORDER BY clause. 1962 */ 1963 struct Select { 1964 ExprList *pEList; /* The fields of the result */ 1965 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 1966 char affinity; /* MakeRecord with this affinity for SRT_Set */ 1967 u16 selFlags; /* Various SF_* values */ 1968 SrcList *pSrc; /* The FROM clause */ 1969 Expr *pWhere; /* The WHERE clause */ 1970 ExprList *pGroupBy; /* The GROUP BY clause */ 1971 Expr *pHaving; /* The HAVING clause */ 1972 ExprList *pOrderBy; /* The ORDER BY clause */ 1973 Select *pPrior; /* Prior select in a compound select statement */ 1974 Select *pNext; /* Next select to the left in a compound */ 1975 Select *pRightmost; /* Right-most select in a compound select statement */ 1976 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 1977 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 1978 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 1979 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 1980 }; 1981 1982 /* 1983 ** Allowed values for Select.selFlags. The "SF" prefix stands for 1984 ** "Select Flag". 1985 */ 1986 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 1987 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 1988 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 1989 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 1990 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 1991 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 1992 1993 1994 /* 1995 ** The results of a select can be distributed in several ways. The 1996 ** "SRT" prefix means "SELECT Result Type". 1997 */ 1998 #define SRT_Union 1 /* Store result as keys in an index */ 1999 #define SRT_Except 2 /* Remove result from a UNION index */ 2000 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2001 #define SRT_Discard 4 /* Do not save the results anywhere */ 2002 2003 /* The ORDER BY clause is ignored for all of the above */ 2004 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2005 2006 #define SRT_Output 5 /* Output each row of result */ 2007 #define SRT_Mem 6 /* Store result in a memory cell */ 2008 #define SRT_Set 7 /* Store results as keys in an index */ 2009 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2010 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2011 #define SRT_Coroutine 10 /* Generate a single row of result */ 2012 2013 /* 2014 ** A structure used to customize the behavior of sqlite3Select(). See 2015 ** comments above sqlite3Select() for details. 2016 */ 2017 typedef struct SelectDest SelectDest; 2018 struct SelectDest { 2019 u8 eDest; /* How to dispose of the results */ 2020 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2021 int iParm; /* A parameter used by the eDest disposal method */ 2022 int iMem; /* Base register where results are written */ 2023 int nMem; /* Number of registers allocated */ 2024 }; 2025 2026 /* 2027 ** During code generation of statements that do inserts into AUTOINCREMENT 2028 ** tables, the following information is attached to the Table.u.autoInc.p 2029 ** pointer of each autoincrement table to record some side information that 2030 ** the code generator needs. We have to keep per-table autoincrement 2031 ** information in case inserts are down within triggers. Triggers do not 2032 ** normally coordinate their activities, but we do need to coordinate the 2033 ** loading and saving of autoincrement information. 2034 */ 2035 struct AutoincInfo { 2036 AutoincInfo *pNext; /* Next info block in a list of them all */ 2037 Table *pTab; /* Table this info block refers to */ 2038 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2039 int regCtr; /* Memory register holding the rowid counter */ 2040 }; 2041 2042 /* 2043 ** Size of the column cache 2044 */ 2045 #ifndef SQLITE_N_COLCACHE 2046 # define SQLITE_N_COLCACHE 10 2047 #endif 2048 2049 /* 2050 ** At least one instance of the following structure is created for each 2051 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2052 ** statement. All such objects are stored in the linked list headed at 2053 ** Parse.pTriggerPrg and deleted once statement compilation has been 2054 ** completed. 2055 ** 2056 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2057 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2058 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2059 ** The Parse.pTriggerPrg list never contains two entries with the same 2060 ** values for both pTrigger and orconf. 2061 ** 2062 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2063 ** accessed (or set to 0 for triggers fired as a result of INSERT 2064 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2065 ** a mask of new.* columns used by the program. 2066 */ 2067 struct TriggerPrg { 2068 Trigger *pTrigger; /* Trigger this program was coded from */ 2069 int orconf; /* Default ON CONFLICT policy */ 2070 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2071 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2072 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2073 }; 2074 2075 /* 2076 ** An SQL parser context. A copy of this structure is passed through 2077 ** the parser and down into all the parser action routine in order to 2078 ** carry around information that is global to the entire parse. 2079 ** 2080 ** The structure is divided into two parts. When the parser and code 2081 ** generate call themselves recursively, the first part of the structure 2082 ** is constant but the second part is reset at the beginning and end of 2083 ** each recursion. 2084 ** 2085 ** The nTableLock and aTableLock variables are only used if the shared-cache 2086 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2087 ** used to store the set of table-locks required by the statement being 2088 ** compiled. Function sqlite3TableLock() is used to add entries to the 2089 ** list. 2090 */ 2091 struct Parse { 2092 sqlite3 *db; /* The main database structure */ 2093 int rc; /* Return code from execution */ 2094 char *zErrMsg; /* An error message */ 2095 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2096 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2097 u8 nameClash; /* A permanent table name clashes with temp table name */ 2098 u8 checkSchema; /* Causes schema cookie check after an error */ 2099 u8 nested; /* Number of nested calls to the parser/code generator */ 2100 u8 parseError; /* True after a parsing error. Ticket #1794 */ 2101 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2102 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2103 int aTempReg[8]; /* Holding area for temporary registers */ 2104 int nRangeReg; /* Size of the temporary register block */ 2105 int iRangeReg; /* First register in temporary register block */ 2106 int nErr; /* Number of errors seen */ 2107 int nTab; /* Number of previously allocated VDBE cursors */ 2108 int nMem; /* Number of memory cells used so far */ 2109 int nSet; /* Number of sets used so far */ 2110 int ckBase; /* Base register of data during check constraints */ 2111 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2112 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2113 u8 nColCache; /* Number of entries in the column cache */ 2114 u8 iColCache; /* Next entry of the cache to replace */ 2115 struct yColCache { 2116 int iTable; /* Table cursor number */ 2117 int iColumn; /* Table column number */ 2118 u8 affChange; /* True if this register has had an affinity change */ 2119 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2120 int iLevel; /* Nesting level */ 2121 int iReg; /* Reg with value of this column. 0 means none. */ 2122 int lru; /* Least recently used entry has the smallest value */ 2123 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2124 u32 writeMask; /* Start a write transaction on these databases */ 2125 u32 cookieMask; /* Bitmask of schema verified databases */ 2126 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ 2127 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2128 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2129 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2130 #ifndef SQLITE_OMIT_SHARED_CACHE 2131 int nTableLock; /* Number of locks in aTableLock */ 2132 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2133 #endif 2134 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2135 int regRoot; /* Register holding root page number for new objects */ 2136 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2137 int nMaxArg; /* Max args passed to user function by sub-program */ 2138 2139 /* Information used while coding trigger programs. */ 2140 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2141 Table *pTriggerTab; /* Table triggers are being coded for */ 2142 u32 oldmask; /* Mask of old.* columns referenced */ 2143 u32 newmask; /* Mask of new.* columns referenced */ 2144 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2145 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2146 u8 disableTriggers; /* True to disable triggers */ 2147 2148 /* Above is constant between recursions. Below is reset before and after 2149 ** each recursion */ 2150 2151 int nVar; /* Number of '?' variables seen in the SQL so far */ 2152 int nVarExpr; /* Number of used slots in apVarExpr[] */ 2153 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 2154 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 2155 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2156 int nAlias; /* Number of aliased result set columns */ 2157 int nAliasAlloc; /* Number of allocated slots for aAlias[] */ 2158 int *aAlias; /* Register used to hold aliased result */ 2159 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2160 Token sNameToken; /* Token with unqualified schema object name */ 2161 Token sLastToken; /* The last token parsed */ 2162 const char *zTail; /* All SQL text past the last semicolon parsed */ 2163 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2164 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2165 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2166 #ifndef SQLITE_OMIT_VIRTUALTABLE 2167 Token sArg; /* Complete text of a module argument */ 2168 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2169 int nVtabLock; /* Number of virtual tables to lock */ 2170 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2171 #endif 2172 int nHeight; /* Expression tree height of current sub-select */ 2173 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2174 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2175 }; 2176 2177 #ifdef SQLITE_OMIT_VIRTUALTABLE 2178 #define IN_DECLARE_VTAB 0 2179 #else 2180 #define IN_DECLARE_VTAB (pParse->declareVtab) 2181 #endif 2182 2183 /* 2184 ** An instance of the following structure can be declared on a stack and used 2185 ** to save the Parse.zAuthContext value so that it can be restored later. 2186 */ 2187 struct AuthContext { 2188 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2189 Parse *pParse; /* The Parse structure */ 2190 }; 2191 2192 /* 2193 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2194 */ 2195 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2196 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2197 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2198 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2199 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2200 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2201 2202 /* 2203 * Each trigger present in the database schema is stored as an instance of 2204 * struct Trigger. 2205 * 2206 * Pointers to instances of struct Trigger are stored in two ways. 2207 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2208 * database). This allows Trigger structures to be retrieved by name. 2209 * 2. All triggers associated with a single table form a linked list, using the 2210 * pNext member of struct Trigger. A pointer to the first element of the 2211 * linked list is stored as the "pTrigger" member of the associated 2212 * struct Table. 2213 * 2214 * The "step_list" member points to the first element of a linked list 2215 * containing the SQL statements specified as the trigger program. 2216 */ 2217 struct Trigger { 2218 char *zName; /* The name of the trigger */ 2219 char *table; /* The table or view to which the trigger applies */ 2220 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2221 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2222 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2223 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2224 the <column-list> is stored here */ 2225 Schema *pSchema; /* Schema containing the trigger */ 2226 Schema *pTabSchema; /* Schema containing the table */ 2227 TriggerStep *step_list; /* Link list of trigger program steps */ 2228 Trigger *pNext; /* Next trigger associated with the table */ 2229 }; 2230 2231 /* 2232 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2233 ** determine which. 2234 ** 2235 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2236 ** In that cases, the constants below can be ORed together. 2237 */ 2238 #define TRIGGER_BEFORE 1 2239 #define TRIGGER_AFTER 2 2240 2241 /* 2242 * An instance of struct TriggerStep is used to store a single SQL statement 2243 * that is a part of a trigger-program. 2244 * 2245 * Instances of struct TriggerStep are stored in a singly linked list (linked 2246 * using the "pNext" member) referenced by the "step_list" member of the 2247 * associated struct Trigger instance. The first element of the linked list is 2248 * the first step of the trigger-program. 2249 * 2250 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2251 * "SELECT" statement. The meanings of the other members is determined by the 2252 * value of "op" as follows: 2253 * 2254 * (op == TK_INSERT) 2255 * orconf -> stores the ON CONFLICT algorithm 2256 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2257 * this stores a pointer to the SELECT statement. Otherwise NULL. 2258 * target -> A token holding the quoted name of the table to insert into. 2259 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2260 * this stores values to be inserted. Otherwise NULL. 2261 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2262 * statement, then this stores the column-names to be 2263 * inserted into. 2264 * 2265 * (op == TK_DELETE) 2266 * target -> A token holding the quoted name of the table to delete from. 2267 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2268 * Otherwise NULL. 2269 * 2270 * (op == TK_UPDATE) 2271 * target -> A token holding the quoted name of the table to update rows of. 2272 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2273 * Otherwise NULL. 2274 * pExprList -> A list of the columns to update and the expressions to update 2275 * them to. See sqlite3Update() documentation of "pChanges" 2276 * argument. 2277 * 2278 */ 2279 struct TriggerStep { 2280 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2281 u8 orconf; /* OE_Rollback etc. */ 2282 Trigger *pTrig; /* The trigger that this step is a part of */ 2283 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2284 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2285 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2286 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2287 IdList *pIdList; /* Column names for INSERT */ 2288 TriggerStep *pNext; /* Next in the link-list */ 2289 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2290 }; 2291 2292 /* 2293 ** The following structure contains information used by the sqliteFix... 2294 ** routines as they walk the parse tree to make database references 2295 ** explicit. 2296 */ 2297 typedef struct DbFixer DbFixer; 2298 struct DbFixer { 2299 Parse *pParse; /* The parsing context. Error messages written here */ 2300 const char *zDb; /* Make sure all objects are contained in this database */ 2301 const char *zType; /* Type of the container - used for error messages */ 2302 const Token *pName; /* Name of the container - used for error messages */ 2303 }; 2304 2305 /* 2306 ** An objected used to accumulate the text of a string where we 2307 ** do not necessarily know how big the string will be in the end. 2308 */ 2309 struct StrAccum { 2310 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2311 char *zBase; /* A base allocation. Not from malloc. */ 2312 char *zText; /* The string collected so far */ 2313 int nChar; /* Length of the string so far */ 2314 int nAlloc; /* Amount of space allocated in zText */ 2315 int mxAlloc; /* Maximum allowed string length */ 2316 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2317 u8 useMalloc; /* True if zText is enlargeable using realloc */ 2318 u8 tooBig; /* Becomes true if string size exceeds limits */ 2319 }; 2320 2321 /* 2322 ** A pointer to this structure is used to communicate information 2323 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2324 */ 2325 typedef struct { 2326 sqlite3 *db; /* The database being initialized */ 2327 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2328 char **pzErrMsg; /* Error message stored here */ 2329 int rc; /* Result code stored here */ 2330 } InitData; 2331 2332 /* 2333 ** Structure containing global configuration data for the SQLite library. 2334 ** 2335 ** This structure also contains some state information. 2336 */ 2337 struct Sqlite3Config { 2338 int bMemstat; /* True to enable memory status */ 2339 int bCoreMutex; /* True to enable core mutexing */ 2340 int bFullMutex; /* True to enable full mutexing */ 2341 int mxStrlen; /* Maximum string length */ 2342 int szLookaside; /* Default lookaside buffer size */ 2343 int nLookaside; /* Default lookaside buffer count */ 2344 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2345 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2346 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */ 2347 void *pHeap; /* Heap storage space */ 2348 int nHeap; /* Size of pHeap[] */ 2349 int mnReq, mxReq; /* Min and max heap requests sizes */ 2350 void *pScratch; /* Scratch memory */ 2351 int szScratch; /* Size of each scratch buffer */ 2352 int nScratch; /* Number of scratch buffers */ 2353 void *pPage; /* Page cache memory */ 2354 int szPage; /* Size of each page in pPage[] */ 2355 int nPage; /* Number of pages in pPage[] */ 2356 int mxParserStack; /* maximum depth of the parser stack */ 2357 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2358 /* The above might be initialized to non-zero. The following need to always 2359 ** initially be zero, however. */ 2360 int isInit; /* True after initialization has finished */ 2361 int inProgress; /* True while initialization in progress */ 2362 int isMutexInit; /* True after mutexes are initialized */ 2363 int isMallocInit; /* True after malloc is initialized */ 2364 int isPCacheInit; /* True after malloc is initialized */ 2365 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2366 int nRefInitMutex; /* Number of users of pInitMutex */ 2367 }; 2368 2369 /* 2370 ** Context pointer passed down through the tree-walk. 2371 */ 2372 struct Walker { 2373 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2374 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2375 Parse *pParse; /* Parser context. */ 2376 union { /* Extra data for callback */ 2377 NameContext *pNC; /* Naming context */ 2378 int i; /* Integer value */ 2379 } u; 2380 }; 2381 2382 /* Forward declarations */ 2383 int sqlite3WalkExpr(Walker*, Expr*); 2384 int sqlite3WalkExprList(Walker*, ExprList*); 2385 int sqlite3WalkSelect(Walker*, Select*); 2386 int sqlite3WalkSelectExpr(Walker*, Select*); 2387 int sqlite3WalkSelectFrom(Walker*, Select*); 2388 2389 /* 2390 ** Return code from the parse-tree walking primitives and their 2391 ** callbacks. 2392 */ 2393 #define WRC_Continue 0 /* Continue down into children */ 2394 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2395 #define WRC_Abort 2 /* Abandon the tree walk */ 2396 2397 /* 2398 ** Assuming zIn points to the first byte of a UTF-8 character, 2399 ** advance zIn to point to the first byte of the next UTF-8 character. 2400 */ 2401 #define SQLITE_SKIP_UTF8(zIn) { \ 2402 if( (*(zIn++))>=0xc0 ){ \ 2403 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2404 } \ 2405 } 2406 2407 /* 2408 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production 2409 ** builds) or a function call (for debugging). If it is a function call, 2410 ** it allows the operator to set a breakpoint at the spot where database 2411 ** corruption is first detected. 2412 */ 2413 #ifdef SQLITE_DEBUG 2414 int sqlite3Corrupt(void); 2415 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt() 2416 #else 2417 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT 2418 #endif 2419 2420 /* 2421 ** The ctype.h header is needed for non-ASCII systems. It is also 2422 ** needed by FTS3 when FTS3 is included in the amalgamation. 2423 */ 2424 #if !defined(SQLITE_ASCII) || \ 2425 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2426 # include <ctype.h> 2427 #endif 2428 2429 /* 2430 ** The following macros mimic the standard library functions toupper(), 2431 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2432 ** sqlite versions only work for ASCII characters, regardless of locale. 2433 */ 2434 #ifdef SQLITE_ASCII 2435 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2436 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2437 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2438 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2439 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2440 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2441 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2442 #else 2443 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2444 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2445 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2446 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2447 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2448 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2449 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2450 #endif 2451 2452 /* 2453 ** Internal function prototypes 2454 */ 2455 int sqlite3StrICmp(const char *, const char *); 2456 int sqlite3IsNumber(const char*, int*, u8); 2457 int sqlite3Strlen30(const char*); 2458 #define sqlite3StrNICmp sqlite3_strnicmp 2459 2460 int sqlite3MallocInit(void); 2461 void sqlite3MallocEnd(void); 2462 void *sqlite3Malloc(int); 2463 void *sqlite3MallocZero(int); 2464 void *sqlite3DbMallocZero(sqlite3*, int); 2465 void *sqlite3DbMallocRaw(sqlite3*, int); 2466 char *sqlite3DbStrDup(sqlite3*,const char*); 2467 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2468 void *sqlite3Realloc(void*, int); 2469 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2470 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2471 void sqlite3DbFree(sqlite3*, void*); 2472 int sqlite3MallocSize(void*); 2473 int sqlite3DbMallocSize(sqlite3*, void*); 2474 void *sqlite3ScratchMalloc(int); 2475 void sqlite3ScratchFree(void*); 2476 void *sqlite3PageMalloc(int); 2477 void sqlite3PageFree(void*); 2478 void sqlite3MemSetDefault(void); 2479 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2480 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64); 2481 2482 /* 2483 ** On systems with ample stack space and that support alloca(), make 2484 ** use of alloca() to obtain space for large automatic objects. By default, 2485 ** obtain space from malloc(). 2486 ** 2487 ** The alloca() routine never returns NULL. This will cause code paths 2488 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2489 */ 2490 #ifdef SQLITE_USE_ALLOCA 2491 # define sqlite3StackAllocRaw(D,N) alloca(N) 2492 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2493 # define sqlite3StackFree(D,P) 2494 #else 2495 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2496 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2497 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2498 #endif 2499 2500 #ifdef SQLITE_ENABLE_MEMSYS3 2501 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2502 #endif 2503 #ifdef SQLITE_ENABLE_MEMSYS5 2504 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2505 #endif 2506 2507 2508 #ifndef SQLITE_MUTEX_OMIT 2509 sqlite3_mutex_methods *sqlite3DefaultMutex(void); 2510 sqlite3_mutex *sqlite3MutexAlloc(int); 2511 int sqlite3MutexInit(void); 2512 int sqlite3MutexEnd(void); 2513 #endif 2514 2515 int sqlite3StatusValue(int); 2516 void sqlite3StatusAdd(int, int); 2517 void sqlite3StatusSet(int, int); 2518 2519 int sqlite3IsNaN(double); 2520 2521 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2522 #ifndef SQLITE_OMIT_TRACE 2523 void sqlite3XPrintf(StrAccum*, const char*, ...); 2524 #endif 2525 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2526 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2527 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2528 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2529 void sqlite3DebugPrintf(const char*, ...); 2530 #endif 2531 #if defined(SQLITE_TEST) 2532 void *sqlite3TestTextToPtr(const char*); 2533 #endif 2534 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2535 void sqlite3ErrorMsg(Parse*, const char*, ...); 2536 void sqlite3ErrorClear(Parse*); 2537 int sqlite3Dequote(char*); 2538 int sqlite3KeywordCode(const unsigned char*, int); 2539 int sqlite3RunParser(Parse*, const char*, char **); 2540 void sqlite3FinishCoding(Parse*); 2541 int sqlite3GetTempReg(Parse*); 2542 void sqlite3ReleaseTempReg(Parse*,int); 2543 int sqlite3GetTempRange(Parse*,int); 2544 void sqlite3ReleaseTempRange(Parse*,int,int); 2545 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2546 Expr *sqlite3Expr(sqlite3*,int,const char*); 2547 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2548 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2549 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2550 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2551 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2552 void sqlite3ExprDelete(sqlite3*, Expr*); 2553 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2554 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2555 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2556 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2557 int sqlite3Init(sqlite3*, char**); 2558 int sqlite3InitCallback(void*, int, char**, char**); 2559 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2560 void sqlite3ResetInternalSchema(sqlite3*, int); 2561 void sqlite3BeginParse(Parse*,int); 2562 void sqlite3CommitInternalChanges(sqlite3*); 2563 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2564 void sqlite3OpenMasterTable(Parse *, int); 2565 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2566 void sqlite3AddColumn(Parse*,Token*); 2567 void sqlite3AddNotNull(Parse*, int); 2568 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2569 void sqlite3AddCheckConstraint(Parse*, Expr*); 2570 void sqlite3AddColumnType(Parse*,Token*); 2571 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2572 void sqlite3AddCollateType(Parse*, Token*); 2573 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2574 2575 Bitvec *sqlite3BitvecCreate(u32); 2576 int sqlite3BitvecTest(Bitvec*, u32); 2577 int sqlite3BitvecSet(Bitvec*, u32); 2578 void sqlite3BitvecClear(Bitvec*, u32, void*); 2579 void sqlite3BitvecDestroy(Bitvec*); 2580 u32 sqlite3BitvecSize(Bitvec*); 2581 int sqlite3BitvecBuiltinTest(int,int*); 2582 2583 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2584 void sqlite3RowSetClear(RowSet*); 2585 void sqlite3RowSetInsert(RowSet*, i64); 2586 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2587 int sqlite3RowSetNext(RowSet*, i64*); 2588 2589 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2590 2591 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2592 int sqlite3ViewGetColumnNames(Parse*,Table*); 2593 #else 2594 # define sqlite3ViewGetColumnNames(A,B) 0 2595 #endif 2596 2597 void sqlite3DropTable(Parse*, SrcList*, int, int); 2598 void sqlite3DeleteTable(Table*); 2599 #ifndef SQLITE_OMIT_AUTOINCREMENT 2600 void sqlite3AutoincrementBegin(Parse *pParse); 2601 void sqlite3AutoincrementEnd(Parse *pParse); 2602 #else 2603 # define sqlite3AutoincrementBegin(X) 2604 # define sqlite3AutoincrementEnd(X) 2605 #endif 2606 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2607 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2608 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2609 int sqlite3IdListIndex(IdList*,const char*); 2610 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2611 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2612 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2613 Token*, Select*, Expr*, IdList*); 2614 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2615 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2616 void sqlite3SrcListShiftJoinType(SrcList*); 2617 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2618 void sqlite3IdListDelete(sqlite3*, IdList*); 2619 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2620 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2621 Token*, int, int); 2622 void sqlite3DropIndex(Parse*, SrcList*, int); 2623 int sqlite3Select(Parse*, Select*, SelectDest*); 2624 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2625 Expr*,ExprList*,int,Expr*,Expr*); 2626 void sqlite3SelectDelete(sqlite3*, Select*); 2627 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2628 int sqlite3IsReadOnly(Parse*, Table*, int); 2629 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2630 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2631 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2632 #endif 2633 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2634 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2635 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); 2636 void sqlite3WhereEnd(WhereInfo*); 2637 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int); 2638 void sqlite3ExprCodeMove(Parse*, int, int, int); 2639 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2640 void sqlite3ExprCacheStore(Parse*, int, int, int); 2641 void sqlite3ExprCachePush(Parse*); 2642 void sqlite3ExprCachePop(Parse*, int); 2643 void sqlite3ExprCacheRemove(Parse*, int); 2644 void sqlite3ExprCacheClear(Parse*); 2645 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2646 void sqlite3ExprHardCopy(Parse*,int,int); 2647 int sqlite3ExprCode(Parse*, Expr*, int); 2648 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2649 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2650 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2651 void sqlite3ExprCodeConstants(Parse*, Expr*); 2652 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2653 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2654 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2655 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2656 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2657 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2658 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2659 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2660 void sqlite3Vacuum(Parse*); 2661 int sqlite3RunVacuum(char**, sqlite3*); 2662 char *sqlite3NameFromToken(sqlite3*, Token*); 2663 int sqlite3ExprCompare(Expr*, Expr*); 2664 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2665 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2666 Vdbe *sqlite3GetVdbe(Parse*); 2667 void sqlite3PrngSaveState(void); 2668 void sqlite3PrngRestoreState(void); 2669 void sqlite3PrngResetState(void); 2670 void sqlite3RollbackAll(sqlite3*); 2671 void sqlite3CodeVerifySchema(Parse*, int); 2672 void sqlite3BeginTransaction(Parse*, int); 2673 void sqlite3CommitTransaction(Parse*); 2674 void sqlite3RollbackTransaction(Parse*); 2675 void sqlite3Savepoint(Parse*, int, Token*); 2676 void sqlite3CloseSavepoints(sqlite3 *); 2677 int sqlite3ExprIsConstant(Expr*); 2678 int sqlite3ExprIsConstantNotJoin(Expr*); 2679 int sqlite3ExprIsConstantOrFunction(Expr*); 2680 int sqlite3ExprIsInteger(Expr*, int*); 2681 int sqlite3ExprCanBeNull(const Expr*); 2682 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2683 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2684 int sqlite3IsRowid(const char*); 2685 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2686 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2687 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2688 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2689 int*,int,int,int,int,int*); 2690 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2691 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2692 void sqlite3BeginWriteOperation(Parse*, int, int); 2693 void sqlite3MultiWrite(Parse*); 2694 void sqlite3MayAbort(Parse*); 2695 void sqlite3HaltConstraint(Parse*, int, char*, int); 2696 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2697 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2698 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2699 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2700 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2701 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2702 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2703 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2704 void sqlite3RegisterDateTimeFunctions(void); 2705 void sqlite3RegisterGlobalFunctions(void); 2706 #ifdef SQLITE_DEBUG 2707 int sqlite3SafetyOn(sqlite3*); 2708 int sqlite3SafetyOff(sqlite3*); 2709 #else 2710 # define sqlite3SafetyOn(A) 0 2711 # define sqlite3SafetyOff(A) 0 2712 #endif 2713 int sqlite3SafetyCheckOk(sqlite3*); 2714 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2715 void sqlite3ChangeCookie(Parse*, int); 2716 2717 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2718 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2719 #endif 2720 2721 #ifndef SQLITE_OMIT_TRIGGER 2722 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2723 Expr*,int, int); 2724 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2725 void sqlite3DropTrigger(Parse*, SrcList*, int); 2726 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2727 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2728 Trigger *sqlite3TriggerList(Parse *, Table *); 2729 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2730 int, int, int); 2731 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2732 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2733 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2734 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2735 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2736 ExprList*,Select*,u8); 2737 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2738 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2739 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2740 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2741 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2742 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2743 #else 2744 # define sqlite3TriggersExist(B,C,D,E,F) 0 2745 # define sqlite3DeleteTrigger(A,B) 2746 # define sqlite3DropTriggerPtr(A,B) 2747 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2748 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2749 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2750 # define sqlite3TriggerList(X, Y) 0 2751 # define sqlite3ParseToplevel(p) p 2752 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2753 #endif 2754 2755 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2756 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2757 void sqlite3DeferForeignKey(Parse*, int); 2758 #ifndef SQLITE_OMIT_AUTHORIZATION 2759 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2760 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2761 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2762 void sqlite3AuthContextPop(AuthContext*); 2763 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2764 #else 2765 # define sqlite3AuthRead(a,b,c,d) 2766 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2767 # define sqlite3AuthContextPush(a,b,c) 2768 # define sqlite3AuthContextPop(a) ((void)(a)) 2769 #endif 2770 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2771 void sqlite3Detach(Parse*, Expr*); 2772 int sqlite3BtreeFactory(sqlite3 *db, const char *zFilename, 2773 int omitJournal, int nCache, int flags, Btree **ppBtree); 2774 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2775 int sqlite3FixSrcList(DbFixer*, SrcList*); 2776 int sqlite3FixSelect(DbFixer*, Select*); 2777 int sqlite3FixExpr(DbFixer*, Expr*); 2778 int sqlite3FixExprList(DbFixer*, ExprList*); 2779 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2780 int sqlite3AtoF(const char *z, double*); 2781 int sqlite3GetInt32(const char *, int*); 2782 int sqlite3FitsIn64Bits(const char *, int); 2783 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2784 int sqlite3Utf8CharLen(const char *pData, int nByte); 2785 int sqlite3Utf8Read(const u8*, const u8**); 2786 2787 /* 2788 ** Routines to read and write variable-length integers. These used to 2789 ** be defined locally, but now we use the varint routines in the util.c 2790 ** file. Code should use the MACRO forms below, as the Varint32 versions 2791 ** are coded to assume the single byte case is already handled (which 2792 ** the MACRO form does). 2793 */ 2794 int sqlite3PutVarint(unsigned char*, u64); 2795 int sqlite3PutVarint32(unsigned char*, u32); 2796 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2797 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2798 int sqlite3VarintLen(u64 v); 2799 2800 /* 2801 ** The header of a record consists of a sequence variable-length integers. 2802 ** These integers are almost always small and are encoded as a single byte. 2803 ** The following macros take advantage this fact to provide a fast encode 2804 ** and decode of the integers in a record header. It is faster for the common 2805 ** case where the integer is a single byte. It is a little slower when the 2806 ** integer is two or more bytes. But overall it is faster. 2807 ** 2808 ** The following expressions are equivalent: 2809 ** 2810 ** x = sqlite3GetVarint32( A, &B ); 2811 ** x = sqlite3PutVarint32( A, B ); 2812 ** 2813 ** x = getVarint32( A, B ); 2814 ** x = putVarint32( A, B ); 2815 ** 2816 */ 2817 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2818 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2819 #define getVarint sqlite3GetVarint 2820 #define putVarint sqlite3PutVarint 2821 2822 2823 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2824 void sqlite3TableAffinityStr(Vdbe *, Table *); 2825 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2826 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2827 char sqlite3ExprAffinity(Expr *pExpr); 2828 int sqlite3Atoi64(const char*, i64*); 2829 void sqlite3Error(sqlite3*, int, const char*,...); 2830 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2831 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2832 const char *sqlite3ErrStr(int); 2833 int sqlite3ReadSchema(Parse *pParse); 2834 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2835 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2836 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2837 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); 2838 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2839 int sqlite3CheckObjectName(Parse *, const char *); 2840 void sqlite3VdbeSetChanges(sqlite3 *, int); 2841 2842 const void *sqlite3ValueText(sqlite3_value*, u8); 2843 int sqlite3ValueBytes(sqlite3_value*, u8); 2844 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2845 void(*)(void*)); 2846 void sqlite3ValueFree(sqlite3_value*); 2847 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2848 char *sqlite3Utf16to8(sqlite3 *, const void*, int); 2849 #ifdef SQLITE_ENABLE_STAT2 2850 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 2851 #endif 2852 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2853 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2854 #ifndef SQLITE_AMALGAMATION 2855 extern const unsigned char sqlite3OpcodeProperty[]; 2856 extern const unsigned char sqlite3UpperToLower[]; 2857 extern const unsigned char sqlite3CtypeMap[]; 2858 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2859 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2860 extern int sqlite3PendingByte; 2861 #endif 2862 void sqlite3RootPageMoved(Db*, int, int); 2863 void sqlite3Reindex(Parse*, Token*, Token*); 2864 void sqlite3AlterFunctions(sqlite3*); 2865 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2866 int sqlite3GetToken(const unsigned char *, int *); 2867 void sqlite3NestedParse(Parse*, const char*, ...); 2868 void sqlite3ExpirePreparedStatements(sqlite3*); 2869 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 2870 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 2871 int sqlite3ResolveExprNames(NameContext*, Expr*); 2872 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 2873 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 2874 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 2875 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2876 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2877 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 2878 char sqlite3AffinityType(const char*); 2879 void sqlite3Analyze(Parse*, Token*, Token*); 2880 int sqlite3InvokeBusyHandler(BusyHandler*); 2881 int sqlite3FindDb(sqlite3*, Token*); 2882 int sqlite3FindDbName(sqlite3 *, const char *); 2883 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2884 void sqlite3DeleteIndexSamples(Index*); 2885 void sqlite3DefaultRowEst(Index*); 2886 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2887 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2888 void sqlite3MinimumFileFormat(Parse*, int, int); 2889 void sqlite3SchemaFree(void *); 2890 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2891 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2892 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2893 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2894 void (*)(sqlite3_context*,int,sqlite3_value **), 2895 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); 2896 int sqlite3ApiExit(sqlite3 *db, int); 2897 int sqlite3OpenTempDatabase(Parse *); 2898 2899 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2900 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2901 char *sqlite3StrAccumFinish(StrAccum*); 2902 void sqlite3StrAccumReset(StrAccum*); 2903 void sqlite3SelectDestInit(SelectDest*,int,int); 2904 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 2905 2906 void sqlite3BackupRestart(sqlite3_backup *); 2907 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 2908 2909 /* 2910 ** The interface to the LEMON-generated parser 2911 */ 2912 void *sqlite3ParserAlloc(void*(*)(size_t)); 2913 void sqlite3ParserFree(void*, void(*)(void*)); 2914 void sqlite3Parser(void*, int, Token, Parse*); 2915 #ifdef YYTRACKMAXSTACKDEPTH 2916 int sqlite3ParserStackPeak(void*); 2917 #endif 2918 2919 void sqlite3AutoLoadExtensions(sqlite3*); 2920 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2921 void sqlite3CloseExtensions(sqlite3*); 2922 #else 2923 # define sqlite3CloseExtensions(X) 2924 #endif 2925 2926 #ifndef SQLITE_OMIT_SHARED_CACHE 2927 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2928 #else 2929 #define sqlite3TableLock(v,w,x,y,z) 2930 #endif 2931 2932 #ifdef SQLITE_TEST 2933 int sqlite3Utf8To8(unsigned char*); 2934 #endif 2935 2936 #ifdef SQLITE_OMIT_VIRTUALTABLE 2937 # define sqlite3VtabClear(Y) 2938 # define sqlite3VtabSync(X,Y) SQLITE_OK 2939 # define sqlite3VtabRollback(X) 2940 # define sqlite3VtabCommit(X) 2941 # define sqlite3VtabInSync(db) 0 2942 # define sqlite3VtabLock(X) 2943 # define sqlite3VtabUnlock(X) 2944 # define sqlite3VtabUnlockList(X) 2945 #else 2946 void sqlite3VtabClear(Table*); 2947 int sqlite3VtabSync(sqlite3 *db, char **); 2948 int sqlite3VtabRollback(sqlite3 *db); 2949 int sqlite3VtabCommit(sqlite3 *db); 2950 void sqlite3VtabLock(VTable *); 2951 void sqlite3VtabUnlock(VTable *); 2952 void sqlite3VtabUnlockList(sqlite3*); 2953 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 2954 #endif 2955 void sqlite3VtabMakeWritable(Parse*,Table*); 2956 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 2957 void sqlite3VtabFinishParse(Parse*, Token*); 2958 void sqlite3VtabArgInit(Parse*); 2959 void sqlite3VtabArgExtend(Parse*, Token*); 2960 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 2961 int sqlite3VtabCallConnect(Parse*, Table*); 2962 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 2963 int sqlite3VtabBegin(sqlite3 *, VTable *); 2964 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 2965 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 2966 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 2967 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 2968 int sqlite3Reprepare(Vdbe*); 2969 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 2970 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 2971 int sqlite3TempInMemory(const sqlite3*); 2972 VTable *sqlite3GetVTable(sqlite3*, Table*); 2973 2974 /* Declarations for functions in fkey.c. All of these are replaced by 2975 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 2976 ** key functionality is available. If OMIT_TRIGGER is defined but 2977 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 2978 ** this case foreign keys are parsed, but no other functionality is 2979 ** provided (enforcement of FK constraints requires the triggers sub-system). 2980 */ 2981 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 2982 void sqlite3FkCheck(Parse*, Table*, int, int); 2983 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 2984 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 2985 int sqlite3FkRequired(Parse*, Table*, int*, int); 2986 u32 sqlite3FkOldmask(Parse*, Table*); 2987 FKey *sqlite3FkReferences(Table *); 2988 #else 2989 #define sqlite3FkActions(a,b,c,d) 2990 #define sqlite3FkCheck(a,b,c,d) 2991 #define sqlite3FkDropTable(a,b,c) 2992 #define sqlite3FkOldmask(a,b) 0 2993 #define sqlite3FkRequired(a,b,c,d) 0 2994 #endif 2995 #ifndef SQLITE_OMIT_FOREIGN_KEY 2996 void sqlite3FkDelete(Table*); 2997 #else 2998 #define sqlite3FkDelete(a) 2999 #endif 3000 3001 3002 /* 3003 ** Available fault injectors. Should be numbered beginning with 0. 3004 */ 3005 #define SQLITE_FAULTINJECTOR_MALLOC 0 3006 #define SQLITE_FAULTINJECTOR_COUNT 1 3007 3008 /* 3009 ** The interface to the code in fault.c used for identifying "benign" 3010 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3011 ** is not defined. 3012 */ 3013 #ifndef SQLITE_OMIT_BUILTIN_TEST 3014 void sqlite3BeginBenignMalloc(void); 3015 void sqlite3EndBenignMalloc(void); 3016 #else 3017 #define sqlite3BeginBenignMalloc() 3018 #define sqlite3EndBenignMalloc() 3019 #endif 3020 3021 #define IN_INDEX_ROWID 1 3022 #define IN_INDEX_EPH 2 3023 #define IN_INDEX_INDEX 3 3024 int sqlite3FindInIndex(Parse *, Expr *, int*); 3025 3026 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3027 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3028 int sqlite3JournalSize(sqlite3_vfs *); 3029 int sqlite3JournalCreate(sqlite3_file *); 3030 #else 3031 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3032 #endif 3033 3034 void sqlite3MemJournalOpen(sqlite3_file *); 3035 int sqlite3MemJournalSize(void); 3036 int sqlite3IsMemJournal(sqlite3_file *); 3037 3038 #if SQLITE_MAX_EXPR_DEPTH>0 3039 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3040 int sqlite3SelectExprHeight(Select *); 3041 int sqlite3ExprCheckHeight(Parse*, int); 3042 #else 3043 #define sqlite3ExprSetHeight(x,y) 3044 #define sqlite3SelectExprHeight(x) 0 3045 #define sqlite3ExprCheckHeight(x,y) 3046 #endif 3047 3048 u32 sqlite3Get4byte(const u8*); 3049 void sqlite3Put4byte(u8*, u32); 3050 3051 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3052 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3053 void sqlite3ConnectionUnlocked(sqlite3 *db); 3054 void sqlite3ConnectionClosed(sqlite3 *db); 3055 #else 3056 #define sqlite3ConnectionBlocked(x,y) 3057 #define sqlite3ConnectionUnlocked(x) 3058 #define sqlite3ConnectionClosed(x) 3059 #endif 3060 3061 #ifdef SQLITE_DEBUG 3062 void sqlite3ParserTrace(FILE*, char *); 3063 #endif 3064 3065 /* 3066 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3067 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3068 ** print I/O tracing messages. 3069 */ 3070 #ifdef SQLITE_ENABLE_IOTRACE 3071 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3072 void sqlite3VdbeIOTraceSql(Vdbe*); 3073 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3074 #else 3075 # define IOTRACE(A) 3076 # define sqlite3VdbeIOTraceSql(X) 3077 #endif 3078 3079 #endif 3080