1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The number of samples of an index that SQLite takes in order to 81 ** construct a histogram of the table content when running ANALYZE 82 ** and with SQLITE_ENABLE_STAT2 83 */ 84 #define SQLITE_INDEX_SAMPLES 10 85 86 /* 87 ** The following macros are used to cast pointers to integers and 88 ** integers to pointers. The way you do this varies from one compiler 89 ** to the next, so we have developed the following set of #if statements 90 ** to generate appropriate macros for a wide range of compilers. 91 ** 92 ** The correct "ANSI" way to do this is to use the intptr_t type. 93 ** Unfortunately, that typedef is not available on all compilers, or 94 ** if it is available, it requires an #include of specific headers 95 ** that vary from one machine to the next. 96 ** 97 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 98 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 99 ** So we have to define the macros in different ways depending on the 100 ** compiler. 101 */ 102 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 104 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 105 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 107 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 108 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 111 #else /* Generates a warning - but it always works */ 112 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 113 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 114 #endif 115 116 /* 117 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. 118 ** Older versions of SQLite used an optional THREADSAFE macro. 119 ** We support that for legacy 120 */ 121 #if !defined(SQLITE_THREADSAFE) 122 #if defined(THREADSAFE) 123 # define SQLITE_THREADSAFE THREADSAFE 124 #else 125 # define SQLITE_THREADSAFE 1 126 #endif 127 #endif 128 129 /* 130 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 131 ** It determines whether or not the features related to 132 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 133 ** be overridden at runtime using the sqlite3_config() API. 134 */ 135 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 136 # define SQLITE_DEFAULT_MEMSTATUS 1 137 #endif 138 139 /* 140 ** Exactly one of the following macros must be defined in order to 141 ** specify which memory allocation subsystem to use. 142 ** 143 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 144 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 145 ** 146 ** (Historical note: There used to be several other options, but we've 147 ** pared it down to just these two.) 148 ** 149 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 150 ** the default. 151 */ 152 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1 153 # error "At most one of the following compile-time configuration options\ 154 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG" 155 #endif 156 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0 157 # define SQLITE_SYSTEM_MALLOC 1 158 #endif 159 160 /* 161 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 162 ** sizes of memory allocations below this value where possible. 163 */ 164 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 165 # define SQLITE_MALLOC_SOFT_LIMIT 1024 166 #endif 167 168 /* 169 ** We need to define _XOPEN_SOURCE as follows in order to enable 170 ** recursive mutexes on most Unix systems. But Mac OS X is different. 171 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 172 ** so it is omitted there. See ticket #2673. 173 ** 174 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 175 ** implemented on some systems. So we avoid defining it at all 176 ** if it is already defined or if it is unneeded because we are 177 ** not doing a threadsafe build. Ticket #2681. 178 ** 179 ** See also ticket #2741. 180 */ 181 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 182 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 183 #endif 184 185 /* 186 ** The TCL headers are only needed when compiling the TCL bindings. 187 */ 188 #if defined(SQLITE_TCL) || defined(TCLSH) 189 # include <tcl.h> 190 #endif 191 192 /* 193 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 194 ** Setting NDEBUG makes the code smaller and run faster. So the following 195 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 196 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 197 ** feature. 198 */ 199 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 200 # define NDEBUG 1 201 #endif 202 203 /* 204 ** The testcase() macro is used to aid in coverage testing. When 205 ** doing coverage testing, the condition inside the argument to 206 ** testcase() must be evaluated both true and false in order to 207 ** get full branch coverage. The testcase() macro is inserted 208 ** to help ensure adequate test coverage in places where simple 209 ** condition/decision coverage is inadequate. For example, testcase() 210 ** can be used to make sure boundary values are tested. For 211 ** bitmask tests, testcase() can be used to make sure each bit 212 ** is significant and used at least once. On switch statements 213 ** where multiple cases go to the same block of code, testcase() 214 ** can insure that all cases are evaluated. 215 ** 216 */ 217 #ifdef SQLITE_COVERAGE_TEST 218 void sqlite3Coverage(int); 219 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 220 #else 221 # define testcase(X) 222 #endif 223 224 /* 225 ** The TESTONLY macro is used to enclose variable declarations or 226 ** other bits of code that are needed to support the arguments 227 ** within testcase() and assert() macros. 228 */ 229 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 230 # define TESTONLY(X) X 231 #else 232 # define TESTONLY(X) 233 #endif 234 235 /* 236 ** Sometimes we need a small amount of code such as a variable initialization 237 ** to setup for a later assert() statement. We do not want this code to 238 ** appear when assert() is disabled. The following macro is therefore 239 ** used to contain that setup code. The "VVA" acronym stands for 240 ** "Verification, Validation, and Accreditation". In other words, the 241 ** code within VVA_ONLY() will only run during verification processes. 242 */ 243 #ifndef NDEBUG 244 # define VVA_ONLY(X) X 245 #else 246 # define VVA_ONLY(X) 247 #endif 248 249 /* 250 ** The ALWAYS and NEVER macros surround boolean expressions which 251 ** are intended to always be true or false, respectively. Such 252 ** expressions could be omitted from the code completely. But they 253 ** are included in a few cases in order to enhance the resilience 254 ** of SQLite to unexpected behavior - to make the code "self-healing" 255 ** or "ductile" rather than being "brittle" and crashing at the first 256 ** hint of unplanned behavior. 257 ** 258 ** In other words, ALWAYS and NEVER are added for defensive code. 259 ** 260 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 261 ** be true and false so that the unreachable code then specify will 262 ** not be counted as untested code. 263 */ 264 #if defined(SQLITE_COVERAGE_TEST) 265 # define ALWAYS(X) (1) 266 # define NEVER(X) (0) 267 #elif !defined(NDEBUG) 268 # define ALWAYS(X) ((X)?1:(assert(0),0)) 269 # define NEVER(X) ((X)?(assert(0),1):0) 270 #else 271 # define ALWAYS(X) (X) 272 # define NEVER(X) (X) 273 #endif 274 275 /* 276 ** Return true (non-zero) if the input is a integer that is too large 277 ** to fit in 32-bits. This macro is used inside of various testcase() 278 ** macros to verify that we have tested SQLite for large-file support. 279 */ 280 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 281 282 /* 283 ** The macro unlikely() is a hint that surrounds a boolean 284 ** expression that is usually false. Macro likely() surrounds 285 ** a boolean expression that is usually true. GCC is able to 286 ** use these hints to generate better code, sometimes. 287 */ 288 #if defined(__GNUC__) && 0 289 # define likely(X) __builtin_expect((X),1) 290 # define unlikely(X) __builtin_expect((X),0) 291 #else 292 # define likely(X) !!(X) 293 # define unlikely(X) !!(X) 294 #endif 295 296 #include "sqlite3.h" 297 #include "hash.h" 298 #include "parse.h" 299 #include <stdio.h> 300 #include <stdlib.h> 301 #include <string.h> 302 #include <assert.h> 303 #include <stddef.h> 304 305 /* 306 ** If compiling for a processor that lacks floating point support, 307 ** substitute integer for floating-point 308 */ 309 #ifdef SQLITE_OMIT_FLOATING_POINT 310 # define double sqlite_int64 311 # define float sqlite_int64 312 # define LONGDOUBLE_TYPE sqlite_int64 313 # ifndef SQLITE_BIG_DBL 314 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 315 # endif 316 # define SQLITE_OMIT_DATETIME_FUNCS 1 317 # define SQLITE_OMIT_TRACE 1 318 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 319 # undef SQLITE_HAVE_ISNAN 320 #endif 321 #ifndef SQLITE_BIG_DBL 322 # define SQLITE_BIG_DBL (1e99) 323 #endif 324 325 /* 326 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 327 ** afterward. Having this macro allows us to cause the C compiler 328 ** to omit code used by TEMP tables without messy #ifndef statements. 329 */ 330 #ifdef SQLITE_OMIT_TEMPDB 331 #define OMIT_TEMPDB 1 332 #else 333 #define OMIT_TEMPDB 0 334 #endif 335 336 /* 337 ** The "file format" number is an integer that is incremented whenever 338 ** the VDBE-level file format changes. The following macros define the 339 ** the default file format for new databases and the maximum file format 340 ** that the library can read. 341 */ 342 #define SQLITE_MAX_FILE_FORMAT 4 343 #ifndef SQLITE_DEFAULT_FILE_FORMAT 344 # define SQLITE_DEFAULT_FILE_FORMAT 1 345 #endif 346 347 /* 348 ** Determine whether triggers are recursive by default. This can be 349 ** changed at run-time using a pragma. 350 */ 351 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 352 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 353 #endif 354 355 /* 356 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 357 ** on the command-line 358 */ 359 #ifndef SQLITE_TEMP_STORE 360 # define SQLITE_TEMP_STORE 1 361 #endif 362 363 /* 364 ** GCC does not define the offsetof() macro so we'll have to do it 365 ** ourselves. 366 */ 367 #ifndef offsetof 368 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 369 #endif 370 371 /* 372 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 373 ** not, there are still machines out there that use EBCDIC.) 374 */ 375 #if 'A' == '\301' 376 # define SQLITE_EBCDIC 1 377 #else 378 # define SQLITE_ASCII 1 379 #endif 380 381 /* 382 ** Integers of known sizes. These typedefs might change for architectures 383 ** where the sizes very. Preprocessor macros are available so that the 384 ** types can be conveniently redefined at compile-type. Like this: 385 ** 386 ** cc '-DUINTPTR_TYPE=long long int' ... 387 */ 388 #ifndef UINT32_TYPE 389 # ifdef HAVE_UINT32_T 390 # define UINT32_TYPE uint32_t 391 # else 392 # define UINT32_TYPE unsigned int 393 # endif 394 #endif 395 #ifndef UINT16_TYPE 396 # ifdef HAVE_UINT16_T 397 # define UINT16_TYPE uint16_t 398 # else 399 # define UINT16_TYPE unsigned short int 400 # endif 401 #endif 402 #ifndef INT16_TYPE 403 # ifdef HAVE_INT16_T 404 # define INT16_TYPE int16_t 405 # else 406 # define INT16_TYPE short int 407 # endif 408 #endif 409 #ifndef UINT8_TYPE 410 # ifdef HAVE_UINT8_T 411 # define UINT8_TYPE uint8_t 412 # else 413 # define UINT8_TYPE unsigned char 414 # endif 415 #endif 416 #ifndef INT8_TYPE 417 # ifdef HAVE_INT8_T 418 # define INT8_TYPE int8_t 419 # else 420 # define INT8_TYPE signed char 421 # endif 422 #endif 423 #ifndef LONGDOUBLE_TYPE 424 # define LONGDOUBLE_TYPE long double 425 #endif 426 typedef sqlite_int64 i64; /* 8-byte signed integer */ 427 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 428 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 429 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 430 typedef INT16_TYPE i16; /* 2-byte signed integer */ 431 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 432 typedef INT8_TYPE i8; /* 1-byte signed integer */ 433 434 /* 435 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 436 ** that can be stored in a u32 without loss of data. The value 437 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 438 ** have to specify the value in the less intuitive manner shown: 439 */ 440 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 441 442 /* 443 ** Macros to determine whether the machine is big or little endian, 444 ** evaluated at runtime. 445 */ 446 #ifdef SQLITE_AMALGAMATION 447 const int sqlite3one = 1; 448 #else 449 extern const int sqlite3one; 450 #endif 451 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 452 || defined(__x86_64) || defined(__x86_64__) 453 # define SQLITE_BIGENDIAN 0 454 # define SQLITE_LITTLEENDIAN 1 455 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 456 #else 457 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 458 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 459 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 460 #endif 461 462 /* 463 ** Constants for the largest and smallest possible 64-bit signed integers. 464 ** These macros are designed to work correctly on both 32-bit and 64-bit 465 ** compilers. 466 */ 467 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 468 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 469 470 /* 471 ** Round up a number to the next larger multiple of 8. This is used 472 ** to force 8-byte alignment on 64-bit architectures. 473 */ 474 #define ROUND8(x) (((x)+7)&~7) 475 476 /* 477 ** Round down to the nearest multiple of 8 478 */ 479 #define ROUNDDOWN8(x) ((x)&~7) 480 481 /* 482 ** Assert that the pointer X is aligned to an 8-byte boundary. This 483 ** macro is used only within assert() to verify that the code gets 484 ** all alignment restrictions correct. 485 ** 486 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 487 ** underlying malloc() implemention might return us 4-byte aligned 488 ** pointers. In that case, only verify 4-byte alignment. 489 */ 490 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 491 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 492 #else 493 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 494 #endif 495 496 497 /* 498 ** An instance of the following structure is used to store the busy-handler 499 ** callback for a given sqlite handle. 500 ** 501 ** The sqlite.busyHandler member of the sqlite struct contains the busy 502 ** callback for the database handle. Each pager opened via the sqlite 503 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 504 ** callback is currently invoked only from within pager.c. 505 */ 506 typedef struct BusyHandler BusyHandler; 507 struct BusyHandler { 508 int (*xFunc)(void *,int); /* The busy callback */ 509 void *pArg; /* First arg to busy callback */ 510 int nBusy; /* Incremented with each busy call */ 511 }; 512 513 /* 514 ** Name of the master database table. The master database table 515 ** is a special table that holds the names and attributes of all 516 ** user tables and indices. 517 */ 518 #define MASTER_NAME "sqlite_master" 519 #define TEMP_MASTER_NAME "sqlite_temp_master" 520 521 /* 522 ** The root-page of the master database table. 523 */ 524 #define MASTER_ROOT 1 525 526 /* 527 ** The name of the schema table. 528 */ 529 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 530 531 /* 532 ** A convenience macro that returns the number of elements in 533 ** an array. 534 */ 535 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 536 537 /* 538 ** The following value as a destructor means to use sqlite3DbFree(). 539 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 540 */ 541 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 542 543 /* 544 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 545 ** not support Writable Static Data (WSD) such as global and static variables. 546 ** All variables must either be on the stack or dynamically allocated from 547 ** the heap. When WSD is unsupported, the variable declarations scattered 548 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 549 ** macro is used for this purpose. And instead of referencing the variable 550 ** directly, we use its constant as a key to lookup the run-time allocated 551 ** buffer that holds real variable. The constant is also the initializer 552 ** for the run-time allocated buffer. 553 ** 554 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 555 ** macros become no-ops and have zero performance impact. 556 */ 557 #ifdef SQLITE_OMIT_WSD 558 #define SQLITE_WSD const 559 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 560 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 561 int sqlite3_wsd_init(int N, int J); 562 void *sqlite3_wsd_find(void *K, int L); 563 #else 564 #define SQLITE_WSD 565 #define GLOBAL(t,v) v 566 #define sqlite3GlobalConfig sqlite3Config 567 #endif 568 569 /* 570 ** The following macros are used to suppress compiler warnings and to 571 ** make it clear to human readers when a function parameter is deliberately 572 ** left unused within the body of a function. This usually happens when 573 ** a function is called via a function pointer. For example the 574 ** implementation of an SQL aggregate step callback may not use the 575 ** parameter indicating the number of arguments passed to the aggregate, 576 ** if it knows that this is enforced elsewhere. 577 ** 578 ** When a function parameter is not used at all within the body of a function, 579 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 580 ** However, these macros may also be used to suppress warnings related to 581 ** parameters that may or may not be used depending on compilation options. 582 ** For example those parameters only used in assert() statements. In these 583 ** cases the parameters are named as per the usual conventions. 584 */ 585 #define UNUSED_PARAMETER(x) (void)(x) 586 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 587 588 /* 589 ** Forward references to structures 590 */ 591 typedef struct AggInfo AggInfo; 592 typedef struct AuthContext AuthContext; 593 typedef struct AutoincInfo AutoincInfo; 594 typedef struct Bitvec Bitvec; 595 typedef struct CollSeq CollSeq; 596 typedef struct Column Column; 597 typedef struct Db Db; 598 typedef struct Schema Schema; 599 typedef struct Expr Expr; 600 typedef struct ExprList ExprList; 601 typedef struct ExprSpan ExprSpan; 602 typedef struct FKey FKey; 603 typedef struct FuncDestructor FuncDestructor; 604 typedef struct FuncDef FuncDef; 605 typedef struct FuncDefHash FuncDefHash; 606 typedef struct IdList IdList; 607 typedef struct Index Index; 608 typedef struct IndexSample IndexSample; 609 typedef struct KeyClass KeyClass; 610 typedef struct KeyInfo KeyInfo; 611 typedef struct Lookaside Lookaside; 612 typedef struct LookasideSlot LookasideSlot; 613 typedef struct Module Module; 614 typedef struct NameContext NameContext; 615 typedef struct Parse Parse; 616 typedef struct RowSet RowSet; 617 typedef struct Savepoint Savepoint; 618 typedef struct Select Select; 619 typedef struct SrcList SrcList; 620 typedef struct StrAccum StrAccum; 621 typedef struct Table Table; 622 typedef struct TableLock TableLock; 623 typedef struct Token Token; 624 typedef struct Trigger Trigger; 625 typedef struct TriggerPrg TriggerPrg; 626 typedef struct TriggerStep TriggerStep; 627 typedef struct UnpackedRecord UnpackedRecord; 628 typedef struct VTable VTable; 629 typedef struct Walker Walker; 630 typedef struct WherePlan WherePlan; 631 typedef struct WhereInfo WhereInfo; 632 typedef struct WhereLevel WhereLevel; 633 634 /* 635 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 636 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 637 ** pointer types (i.e. FuncDef) defined above. 638 */ 639 #include "btree.h" 640 #include "vdbe.h" 641 #include "pager.h" 642 #include "pcache.h" 643 644 #include "os.h" 645 #include "mutex.h" 646 647 648 /* 649 ** Each database file to be accessed by the system is an instance 650 ** of the following structure. There are normally two of these structures 651 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 652 ** aDb[1] is the database file used to hold temporary tables. Additional 653 ** databases may be attached. 654 */ 655 struct Db { 656 char *zName; /* Name of this database */ 657 Btree *pBt; /* The B*Tree structure for this database file */ 658 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 659 u8 safety_level; /* How aggressive at syncing data to disk */ 660 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 661 }; 662 663 /* 664 ** An instance of the following structure stores a database schema. 665 */ 666 struct Schema { 667 int schema_cookie; /* Database schema version number for this file */ 668 Hash tblHash; /* All tables indexed by name */ 669 Hash idxHash; /* All (named) indices indexed by name */ 670 Hash trigHash; /* All triggers indexed by name */ 671 Hash fkeyHash; /* All foreign keys by referenced table name */ 672 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 673 u8 file_format; /* Schema format version for this file */ 674 u8 enc; /* Text encoding used by this database */ 675 u16 flags; /* Flags associated with this schema */ 676 int cache_size; /* Number of pages to use in the cache */ 677 }; 678 679 /* 680 ** These macros can be used to test, set, or clear bits in the 681 ** Db.pSchema->flags field. 682 */ 683 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 684 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 685 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 686 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 687 688 /* 689 ** Allowed values for the DB.pSchema->flags field. 690 ** 691 ** The DB_SchemaLoaded flag is set after the database schema has been 692 ** read into internal hash tables. 693 ** 694 ** DB_UnresetViews means that one or more views have column names that 695 ** have been filled out. If the schema changes, these column names might 696 ** changes and so the view will need to be reset. 697 */ 698 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 699 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 700 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 701 702 /* 703 ** The number of different kinds of things that can be limited 704 ** using the sqlite3_limit() interface. 705 */ 706 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 707 708 /* 709 ** Lookaside malloc is a set of fixed-size buffers that can be used 710 ** to satisfy small transient memory allocation requests for objects 711 ** associated with a particular database connection. The use of 712 ** lookaside malloc provides a significant performance enhancement 713 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 714 ** SQL statements. 715 ** 716 ** The Lookaside structure holds configuration information about the 717 ** lookaside malloc subsystem. Each available memory allocation in 718 ** the lookaside subsystem is stored on a linked list of LookasideSlot 719 ** objects. 720 ** 721 ** Lookaside allocations are only allowed for objects that are associated 722 ** with a particular database connection. Hence, schema information cannot 723 ** be stored in lookaside because in shared cache mode the schema information 724 ** is shared by multiple database connections. Therefore, while parsing 725 ** schema information, the Lookaside.bEnabled flag is cleared so that 726 ** lookaside allocations are not used to construct the schema objects. 727 */ 728 struct Lookaside { 729 u16 sz; /* Size of each buffer in bytes */ 730 u8 bEnabled; /* False to disable new lookaside allocations */ 731 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 732 int nOut; /* Number of buffers currently checked out */ 733 int mxOut; /* Highwater mark for nOut */ 734 LookasideSlot *pFree; /* List of available buffers */ 735 void *pStart; /* First byte of available memory space */ 736 void *pEnd; /* First byte past end of available space */ 737 }; 738 struct LookasideSlot { 739 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 740 }; 741 742 /* 743 ** A hash table for function definitions. 744 ** 745 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 746 ** Collisions are on the FuncDef.pHash chain. 747 */ 748 struct FuncDefHash { 749 FuncDef *a[23]; /* Hash table for functions */ 750 }; 751 752 /* 753 ** Each database connection is an instance of the following structure. 754 ** 755 ** The sqlite.lastRowid records the last insert rowid generated by an 756 ** insert statement. Inserts on views do not affect its value. Each 757 ** trigger has its own context, so that lastRowid can be updated inside 758 ** triggers as usual. The previous value will be restored once the trigger 759 ** exits. Upon entering a before or instead of trigger, lastRowid is no 760 ** longer (since after version 2.8.12) reset to -1. 761 ** 762 ** The sqlite.nChange does not count changes within triggers and keeps no 763 ** context. It is reset at start of sqlite3_exec. 764 ** The sqlite.lsChange represents the number of changes made by the last 765 ** insert, update, or delete statement. It remains constant throughout the 766 ** length of a statement and is then updated by OP_SetCounts. It keeps a 767 ** context stack just like lastRowid so that the count of changes 768 ** within a trigger is not seen outside the trigger. Changes to views do not 769 ** affect the value of lsChange. 770 ** The sqlite.csChange keeps track of the number of current changes (since 771 ** the last statement) and is used to update sqlite_lsChange. 772 ** 773 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 774 ** store the most recent error code and, if applicable, string. The 775 ** internal function sqlite3Error() is used to set these variables 776 ** consistently. 777 */ 778 struct sqlite3 { 779 sqlite3_vfs *pVfs; /* OS Interface */ 780 int nDb; /* Number of backends currently in use */ 781 Db *aDb; /* All backends */ 782 int flags; /* Miscellaneous flags. See below */ 783 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 784 int errCode; /* Most recent error code (SQLITE_*) */ 785 int errMask; /* & result codes with this before returning */ 786 u8 autoCommit; /* The auto-commit flag. */ 787 u8 temp_store; /* 1: file 2: memory 0: default */ 788 u8 mallocFailed; /* True if we have seen a malloc failure */ 789 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 790 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 791 u8 suppressErr; /* Do not issue error messages if true */ 792 int nextPagesize; /* Pagesize after VACUUM if >0 */ 793 int nTable; /* Number of tables in the database */ 794 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 795 i64 lastRowid; /* ROWID of most recent insert (see above) */ 796 u32 magic; /* Magic number for detect library misuse */ 797 int nChange; /* Value returned by sqlite3_changes() */ 798 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 799 sqlite3_mutex *mutex; /* Connection mutex */ 800 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 801 struct sqlite3InitInfo { /* Information used during initialization */ 802 int iDb; /* When back is being initialized */ 803 int newTnum; /* Rootpage of table being initialized */ 804 u8 busy; /* TRUE if currently initializing */ 805 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 806 } init; 807 int nExtension; /* Number of loaded extensions */ 808 void **aExtension; /* Array of shared library handles */ 809 struct Vdbe *pVdbe; /* List of active virtual machines */ 810 int activeVdbeCnt; /* Number of VDBEs currently executing */ 811 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 812 void (*xTrace)(void*,const char*); /* Trace function */ 813 void *pTraceArg; /* Argument to the trace function */ 814 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 815 void *pProfileArg; /* Argument to profile function */ 816 void *pCommitArg; /* Argument to xCommitCallback() */ 817 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 818 void *pRollbackArg; /* Argument to xRollbackCallback() */ 819 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 820 void *pUpdateArg; 821 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 822 #ifndef SQLITE_OMIT_WAL 823 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 824 void *pWalArg; 825 #endif 826 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 827 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 828 void *pCollNeededArg; 829 sqlite3_value *pErr; /* Most recent error message */ 830 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 831 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 832 union { 833 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 834 double notUsed1; /* Spacer */ 835 } u1; 836 Lookaside lookaside; /* Lookaside malloc configuration */ 837 #ifndef SQLITE_OMIT_AUTHORIZATION 838 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 839 /* Access authorization function */ 840 void *pAuthArg; /* 1st argument to the access auth function */ 841 #endif 842 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 843 int (*xProgress)(void *); /* The progress callback */ 844 void *pProgressArg; /* Argument to the progress callback */ 845 int nProgressOps; /* Number of opcodes for progress callback */ 846 #endif 847 #ifndef SQLITE_OMIT_VIRTUALTABLE 848 Hash aModule; /* populated by sqlite3_create_module() */ 849 Table *pVTab; /* vtab with active Connect/Create method */ 850 VTable **aVTrans; /* Virtual tables with open transactions */ 851 int nVTrans; /* Allocated size of aVTrans */ 852 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 853 #endif 854 FuncDefHash aFunc; /* Hash table of connection functions */ 855 Hash aCollSeq; /* All collating sequences */ 856 BusyHandler busyHandler; /* Busy callback */ 857 int busyTimeout; /* Busy handler timeout, in msec */ 858 Db aDbStatic[2]; /* Static space for the 2 default backends */ 859 Savepoint *pSavepoint; /* List of active savepoints */ 860 int nSavepoint; /* Number of non-transaction savepoints */ 861 int nStatement; /* Number of nested statement-transactions */ 862 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 863 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 864 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 865 866 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 867 /* The following variables are all protected by the STATIC_MASTER 868 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 869 ** 870 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 871 ** unlock so that it can proceed. 872 ** 873 ** When X.pBlockingConnection==Y, that means that something that X tried 874 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 875 ** held by Y. 876 */ 877 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 878 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 879 void *pUnlockArg; /* Argument to xUnlockNotify */ 880 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 881 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 882 #endif 883 }; 884 885 /* 886 ** A macro to discover the encoding of a database. 887 */ 888 #define ENC(db) ((db)->aDb[0].pSchema->enc) 889 890 /* 891 ** Possible values for the sqlite3.flags. 892 */ 893 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 894 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 895 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 896 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 897 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 898 /* DELETE, or UPDATE and return */ 899 /* the count using a callback. */ 900 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 901 /* result set is empty */ 902 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 903 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 904 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 905 #define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when 906 ** accessing read-only databases */ 907 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 908 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 909 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 910 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 911 #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ 912 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 913 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 914 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 915 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 916 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 917 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 918 919 /* 920 ** Bits of the sqlite3.flags field that are used by the 921 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 922 ** These must be the low-order bits of the flags field. 923 */ 924 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 925 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 926 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 927 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 928 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 929 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 930 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 931 932 /* 933 ** Possible values for the sqlite.magic field. 934 ** The numbers are obtained at random and have no special meaning, other 935 ** than being distinct from one another. 936 */ 937 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 938 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 939 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 940 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 941 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 942 943 /* 944 ** Each SQL function is defined by an instance of the following 945 ** structure. A pointer to this structure is stored in the sqlite.aFunc 946 ** hash table. When multiple functions have the same name, the hash table 947 ** points to a linked list of these structures. 948 */ 949 struct FuncDef { 950 i16 nArg; /* Number of arguments. -1 means unlimited */ 951 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 952 u8 flags; /* Some combination of SQLITE_FUNC_* */ 953 void *pUserData; /* User data parameter */ 954 FuncDef *pNext; /* Next function with same name */ 955 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 956 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 957 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 958 char *zName; /* SQL name of the function. */ 959 FuncDef *pHash; /* Next with a different name but the same hash */ 960 FuncDestructor *pDestructor; /* Reference counted destructor function */ 961 }; 962 963 /* 964 ** This structure encapsulates a user-function destructor callback (as 965 ** configured using create_function_v2()) and a reference counter. When 966 ** create_function_v2() is called to create a function with a destructor, 967 ** a single object of this type is allocated. FuncDestructor.nRef is set to 968 ** the number of FuncDef objects created (either 1 or 3, depending on whether 969 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 970 ** member of each of the new FuncDef objects is set to point to the allocated 971 ** FuncDestructor. 972 ** 973 ** Thereafter, when one of the FuncDef objects is deleted, the reference 974 ** count on this object is decremented. When it reaches 0, the destructor 975 ** is invoked and the FuncDestructor structure freed. 976 */ 977 struct FuncDestructor { 978 int nRef; 979 void (*xDestroy)(void *); 980 void *pUserData; 981 }; 982 983 /* 984 ** Possible values for FuncDef.flags 985 */ 986 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 987 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 988 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 989 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 990 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ 991 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 992 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ 993 994 /* 995 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 996 ** used to create the initializers for the FuncDef structures. 997 ** 998 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 999 ** Used to create a scalar function definition of a function zName 1000 ** implemented by C function xFunc that accepts nArg arguments. The 1001 ** value passed as iArg is cast to a (void*) and made available 1002 ** as the user-data (sqlite3_user_data()) for the function. If 1003 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1004 ** 1005 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1006 ** Used to create an aggregate function definition implemented by 1007 ** the C functions xStep and xFinal. The first four parameters 1008 ** are interpreted in the same way as the first 4 parameters to 1009 ** FUNCTION(). 1010 ** 1011 ** LIKEFUNC(zName, nArg, pArg, flags) 1012 ** Used to create a scalar function definition of a function zName 1013 ** that accepts nArg arguments and is implemented by a call to C 1014 ** function likeFunc. Argument pArg is cast to a (void *) and made 1015 ** available as the function user-data (sqlite3_user_data()). The 1016 ** FuncDef.flags variable is set to the value passed as the flags 1017 ** parameter. 1018 */ 1019 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1020 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1021 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0} 1022 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1023 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1024 pArg, 0, xFunc, 0, 0, #zName, 0} 1025 #define LIKEFUNC(zName, nArg, arg, flags) \ 1026 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0} 1027 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1028 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1029 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0} 1030 1031 /* 1032 ** All current savepoints are stored in a linked list starting at 1033 ** sqlite3.pSavepoint. The first element in the list is the most recently 1034 ** opened savepoint. Savepoints are added to the list by the vdbe 1035 ** OP_Savepoint instruction. 1036 */ 1037 struct Savepoint { 1038 char *zName; /* Savepoint name (nul-terminated) */ 1039 i64 nDeferredCons; /* Number of deferred fk violations */ 1040 Savepoint *pNext; /* Parent savepoint (if any) */ 1041 }; 1042 1043 /* 1044 ** The following are used as the second parameter to sqlite3Savepoint(), 1045 ** and as the P1 argument to the OP_Savepoint instruction. 1046 */ 1047 #define SAVEPOINT_BEGIN 0 1048 #define SAVEPOINT_RELEASE 1 1049 #define SAVEPOINT_ROLLBACK 2 1050 1051 1052 /* 1053 ** Each SQLite module (virtual table definition) is defined by an 1054 ** instance of the following structure, stored in the sqlite3.aModule 1055 ** hash table. 1056 */ 1057 struct Module { 1058 const sqlite3_module *pModule; /* Callback pointers */ 1059 const char *zName; /* Name passed to create_module() */ 1060 void *pAux; /* pAux passed to create_module() */ 1061 void (*xDestroy)(void *); /* Module destructor function */ 1062 }; 1063 1064 /* 1065 ** information about each column of an SQL table is held in an instance 1066 ** of this structure. 1067 */ 1068 struct Column { 1069 char *zName; /* Name of this column */ 1070 Expr *pDflt; /* Default value of this column */ 1071 char *zDflt; /* Original text of the default value */ 1072 char *zType; /* Data type for this column */ 1073 char *zColl; /* Collating sequence. If NULL, use the default */ 1074 u8 notNull; /* True if there is a NOT NULL constraint */ 1075 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1076 char affinity; /* One of the SQLITE_AFF_... values */ 1077 #ifndef SQLITE_OMIT_VIRTUALTABLE 1078 u8 isHidden; /* True if this column is 'hidden' */ 1079 #endif 1080 }; 1081 1082 /* 1083 ** A "Collating Sequence" is defined by an instance of the following 1084 ** structure. Conceptually, a collating sequence consists of a name and 1085 ** a comparison routine that defines the order of that sequence. 1086 ** 1087 ** There may two separate implementations of the collation function, one 1088 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1089 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1090 ** native byte order. When a collation sequence is invoked, SQLite selects 1091 ** the version that will require the least expensive encoding 1092 ** translations, if any. 1093 ** 1094 ** The CollSeq.pUser member variable is an extra parameter that passed in 1095 ** as the first argument to the UTF-8 comparison function, xCmp. 1096 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1097 ** xCmp16. 1098 ** 1099 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1100 ** collating sequence is undefined. Indices built on an undefined 1101 ** collating sequence may not be read or written. 1102 */ 1103 struct CollSeq { 1104 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1105 u8 enc; /* Text encoding handled by xCmp() */ 1106 u8 type; /* One of the SQLITE_COLL_... values below */ 1107 void *pUser; /* First argument to xCmp() */ 1108 int (*xCmp)(void*,int, const void*, int, const void*); 1109 void (*xDel)(void*); /* Destructor for pUser */ 1110 }; 1111 1112 /* 1113 ** Allowed values of CollSeq.type: 1114 */ 1115 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 1116 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 1117 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 1118 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 1119 1120 /* 1121 ** A sort order can be either ASC or DESC. 1122 */ 1123 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1124 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1125 1126 /* 1127 ** Column affinity types. 1128 ** 1129 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1130 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1131 ** the speed a little by numbering the values consecutively. 1132 ** 1133 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1134 ** when multiple affinity types are concatenated into a string and 1135 ** used as the P4 operand, they will be more readable. 1136 ** 1137 ** Note also that the numeric types are grouped together so that testing 1138 ** for a numeric type is a single comparison. 1139 */ 1140 #define SQLITE_AFF_TEXT 'a' 1141 #define SQLITE_AFF_NONE 'b' 1142 #define SQLITE_AFF_NUMERIC 'c' 1143 #define SQLITE_AFF_INTEGER 'd' 1144 #define SQLITE_AFF_REAL 'e' 1145 1146 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1147 1148 /* 1149 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1150 ** affinity value. 1151 */ 1152 #define SQLITE_AFF_MASK 0x67 1153 1154 /* 1155 ** Additional bit values that can be ORed with an affinity without 1156 ** changing the affinity. 1157 */ 1158 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1159 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1160 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1161 1162 /* 1163 ** An object of this type is created for each virtual table present in 1164 ** the database schema. 1165 ** 1166 ** If the database schema is shared, then there is one instance of this 1167 ** structure for each database connection (sqlite3*) that uses the shared 1168 ** schema. This is because each database connection requires its own unique 1169 ** instance of the sqlite3_vtab* handle used to access the virtual table 1170 ** implementation. sqlite3_vtab* handles can not be shared between 1171 ** database connections, even when the rest of the in-memory database 1172 ** schema is shared, as the implementation often stores the database 1173 ** connection handle passed to it via the xConnect() or xCreate() method 1174 ** during initialization internally. This database connection handle may 1175 ** then used by the virtual table implementation to access real tables 1176 ** within the database. So that they appear as part of the callers 1177 ** transaction, these accesses need to be made via the same database 1178 ** connection as that used to execute SQL operations on the virtual table. 1179 ** 1180 ** All VTable objects that correspond to a single table in a shared 1181 ** database schema are initially stored in a linked-list pointed to by 1182 ** the Table.pVTable member variable of the corresponding Table object. 1183 ** When an sqlite3_prepare() operation is required to access the virtual 1184 ** table, it searches the list for the VTable that corresponds to the 1185 ** database connection doing the preparing so as to use the correct 1186 ** sqlite3_vtab* handle in the compiled query. 1187 ** 1188 ** When an in-memory Table object is deleted (for example when the 1189 ** schema is being reloaded for some reason), the VTable objects are not 1190 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1191 ** immediately. Instead, they are moved from the Table.pVTable list to 1192 ** another linked list headed by the sqlite3.pDisconnect member of the 1193 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1194 ** next time a statement is prepared using said sqlite3*. This is done 1195 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1196 ** Refer to comments above function sqlite3VtabUnlockList() for an 1197 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1198 ** list without holding the corresponding sqlite3.mutex mutex. 1199 ** 1200 ** The memory for objects of this type is always allocated by 1201 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1202 ** the first argument. 1203 */ 1204 struct VTable { 1205 sqlite3 *db; /* Database connection associated with this table */ 1206 Module *pMod; /* Pointer to module implementation */ 1207 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1208 int nRef; /* Number of pointers to this structure */ 1209 VTable *pNext; /* Next in linked list (see above) */ 1210 }; 1211 1212 /* 1213 ** Each SQL table is represented in memory by an instance of the 1214 ** following structure. 1215 ** 1216 ** Table.zName is the name of the table. The case of the original 1217 ** CREATE TABLE statement is stored, but case is not significant for 1218 ** comparisons. 1219 ** 1220 ** Table.nCol is the number of columns in this table. Table.aCol is a 1221 ** pointer to an array of Column structures, one for each column. 1222 ** 1223 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1224 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1225 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1226 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1227 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1228 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1229 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1230 ** 1231 ** Table.tnum is the page number for the root BTree page of the table in the 1232 ** database file. If Table.iDb is the index of the database table backend 1233 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1234 ** holds temporary tables and indices. If TF_Ephemeral is set 1235 ** then the table is stored in a file that is automatically deleted 1236 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1237 ** refers VDBE cursor number that holds the table open, not to the root 1238 ** page number. Transient tables are used to hold the results of a 1239 ** sub-query that appears instead of a real table name in the FROM clause 1240 ** of a SELECT statement. 1241 */ 1242 struct Table { 1243 char *zName; /* Name of the table or view */ 1244 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1245 int nCol; /* Number of columns in this table */ 1246 Column *aCol; /* Information about each column */ 1247 Index *pIndex; /* List of SQL indexes on this table. */ 1248 int tnum; /* Root BTree node for this table (see note above) */ 1249 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1250 u16 nRef; /* Number of pointers to this Table */ 1251 u8 tabFlags; /* Mask of TF_* values */ 1252 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1253 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1254 char *zColAff; /* String defining the affinity of each column */ 1255 #ifndef SQLITE_OMIT_CHECK 1256 Expr *pCheck; /* The AND of all CHECK constraints */ 1257 #endif 1258 #ifndef SQLITE_OMIT_ALTERTABLE 1259 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1260 #endif 1261 #ifndef SQLITE_OMIT_VIRTUALTABLE 1262 VTable *pVTable; /* List of VTable objects. */ 1263 int nModuleArg; /* Number of arguments to the module */ 1264 char **azModuleArg; /* Text of all module args. [0] is module name */ 1265 #endif 1266 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1267 Schema *pSchema; /* Schema that contains this table */ 1268 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1269 }; 1270 1271 /* 1272 ** Allowed values for Tabe.tabFlags. 1273 */ 1274 #define TF_Readonly 0x01 /* Read-only system table */ 1275 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1276 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1277 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1278 #define TF_Virtual 0x10 /* Is a virtual table */ 1279 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1280 1281 1282 1283 /* 1284 ** Test to see whether or not a table is a virtual table. This is 1285 ** done as a macro so that it will be optimized out when virtual 1286 ** table support is omitted from the build. 1287 */ 1288 #ifndef SQLITE_OMIT_VIRTUALTABLE 1289 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1290 # define IsHiddenColumn(X) ((X)->isHidden) 1291 #else 1292 # define IsVirtual(X) 0 1293 # define IsHiddenColumn(X) 0 1294 #endif 1295 1296 /* 1297 ** Each foreign key constraint is an instance of the following structure. 1298 ** 1299 ** A foreign key is associated with two tables. The "from" table is 1300 ** the table that contains the REFERENCES clause that creates the foreign 1301 ** key. The "to" table is the table that is named in the REFERENCES clause. 1302 ** Consider this example: 1303 ** 1304 ** CREATE TABLE ex1( 1305 ** a INTEGER PRIMARY KEY, 1306 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1307 ** ); 1308 ** 1309 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1310 ** 1311 ** Each REFERENCES clause generates an instance of the following structure 1312 ** which is attached to the from-table. The to-table need not exist when 1313 ** the from-table is created. The existence of the to-table is not checked. 1314 */ 1315 struct FKey { 1316 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1317 FKey *pNextFrom; /* Next foreign key in pFrom */ 1318 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1319 FKey *pNextTo; /* Next foreign key on table named zTo */ 1320 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1321 int nCol; /* Number of columns in this key */ 1322 /* EV: R-30323-21917 */ 1323 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1324 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1325 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1326 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1327 int iFrom; /* Index of column in pFrom */ 1328 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1329 } aCol[1]; /* One entry for each of nCol column s */ 1330 }; 1331 1332 /* 1333 ** SQLite supports many different ways to resolve a constraint 1334 ** error. ROLLBACK processing means that a constraint violation 1335 ** causes the operation in process to fail and for the current transaction 1336 ** to be rolled back. ABORT processing means the operation in process 1337 ** fails and any prior changes from that one operation are backed out, 1338 ** but the transaction is not rolled back. FAIL processing means that 1339 ** the operation in progress stops and returns an error code. But prior 1340 ** changes due to the same operation are not backed out and no rollback 1341 ** occurs. IGNORE means that the particular row that caused the constraint 1342 ** error is not inserted or updated. Processing continues and no error 1343 ** is returned. REPLACE means that preexisting database rows that caused 1344 ** a UNIQUE constraint violation are removed so that the new insert or 1345 ** update can proceed. Processing continues and no error is reported. 1346 ** 1347 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1348 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1349 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1350 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1351 ** referenced table row is propagated into the row that holds the 1352 ** foreign key. 1353 ** 1354 ** The following symbolic values are used to record which type 1355 ** of action to take. 1356 */ 1357 #define OE_None 0 /* There is no constraint to check */ 1358 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1359 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1360 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1361 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1362 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1363 1364 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1365 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1366 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1367 #define OE_Cascade 9 /* Cascade the changes */ 1368 1369 #define OE_Default 99 /* Do whatever the default action is */ 1370 1371 1372 /* 1373 ** An instance of the following structure is passed as the first 1374 ** argument to sqlite3VdbeKeyCompare and is used to control the 1375 ** comparison of the two index keys. 1376 */ 1377 struct KeyInfo { 1378 sqlite3 *db; /* The database connection */ 1379 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1380 u16 nField; /* Number of entries in aColl[] */ 1381 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1382 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1383 }; 1384 1385 /* 1386 ** An instance of the following structure holds information about a 1387 ** single index record that has already been parsed out into individual 1388 ** values. 1389 ** 1390 ** A record is an object that contains one or more fields of data. 1391 ** Records are used to store the content of a table row and to store 1392 ** the key of an index. A blob encoding of a record is created by 1393 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1394 ** OP_Column opcode. 1395 ** 1396 ** This structure holds a record that has already been disassembled 1397 ** into its constituent fields. 1398 */ 1399 struct UnpackedRecord { 1400 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1401 u16 nField; /* Number of entries in apMem[] */ 1402 u16 flags; /* Boolean settings. UNPACKED_... below */ 1403 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1404 Mem *aMem; /* Values */ 1405 }; 1406 1407 /* 1408 ** Allowed values of UnpackedRecord.flags 1409 */ 1410 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 1411 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 1412 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 1413 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 1414 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 1415 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ 1416 1417 /* 1418 ** Each SQL index is represented in memory by an 1419 ** instance of the following structure. 1420 ** 1421 ** The columns of the table that are to be indexed are described 1422 ** by the aiColumn[] field of this structure. For example, suppose 1423 ** we have the following table and index: 1424 ** 1425 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1426 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1427 ** 1428 ** In the Table structure describing Ex1, nCol==3 because there are 1429 ** three columns in the table. In the Index structure describing 1430 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1431 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1432 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1433 ** The second column to be indexed (c1) has an index of 0 in 1434 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1435 ** 1436 ** The Index.onError field determines whether or not the indexed columns 1437 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1438 ** it means this is not a unique index. Otherwise it is a unique index 1439 ** and the value of Index.onError indicate the which conflict resolution 1440 ** algorithm to employ whenever an attempt is made to insert a non-unique 1441 ** element. 1442 */ 1443 struct Index { 1444 char *zName; /* Name of this index */ 1445 int nColumn; /* Number of columns in the table used by this index */ 1446 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1447 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1448 Table *pTable; /* The SQL table being indexed */ 1449 int tnum; /* Page containing root of this index in database file */ 1450 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1451 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1452 char *zColAff; /* String defining the affinity of each column */ 1453 Index *pNext; /* The next index associated with the same table */ 1454 Schema *pSchema; /* Schema containing this index */ 1455 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1456 char **azColl; /* Array of collation sequence names for index */ 1457 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ 1458 }; 1459 1460 /* 1461 ** Each sample stored in the sqlite_stat2 table is represented in memory 1462 ** using a structure of this type. 1463 */ 1464 struct IndexSample { 1465 union { 1466 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1467 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ 1468 } u; 1469 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1470 u8 nByte; /* Size in byte of text or blob. */ 1471 }; 1472 1473 /* 1474 ** Each token coming out of the lexer is an instance of 1475 ** this structure. Tokens are also used as part of an expression. 1476 ** 1477 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1478 ** may contain random values. Do not make any assumptions about Token.dyn 1479 ** and Token.n when Token.z==0. 1480 */ 1481 struct Token { 1482 const char *z; /* Text of the token. Not NULL-terminated! */ 1483 unsigned int n; /* Number of characters in this token */ 1484 }; 1485 1486 /* 1487 ** An instance of this structure contains information needed to generate 1488 ** code for a SELECT that contains aggregate functions. 1489 ** 1490 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1491 ** pointer to this structure. The Expr.iColumn field is the index in 1492 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1493 ** code for that node. 1494 ** 1495 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1496 ** original Select structure that describes the SELECT statement. These 1497 ** fields do not need to be freed when deallocating the AggInfo structure. 1498 */ 1499 struct AggInfo { 1500 u8 directMode; /* Direct rendering mode means take data directly 1501 ** from source tables rather than from accumulators */ 1502 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1503 ** than the source table */ 1504 int sortingIdx; /* Cursor number of the sorting index */ 1505 ExprList *pGroupBy; /* The group by clause */ 1506 int nSortingColumn; /* Number of columns in the sorting index */ 1507 struct AggInfo_col { /* For each column used in source tables */ 1508 Table *pTab; /* Source table */ 1509 int iTable; /* Cursor number of the source table */ 1510 int iColumn; /* Column number within the source table */ 1511 int iSorterColumn; /* Column number in the sorting index */ 1512 int iMem; /* Memory location that acts as accumulator */ 1513 Expr *pExpr; /* The original expression */ 1514 } *aCol; 1515 int nColumn; /* Number of used entries in aCol[] */ 1516 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1517 int nAccumulator; /* Number of columns that show through to the output. 1518 ** Additional columns are used only as parameters to 1519 ** aggregate functions */ 1520 struct AggInfo_func { /* For each aggregate function */ 1521 Expr *pExpr; /* Expression encoding the function */ 1522 FuncDef *pFunc; /* The aggregate function implementation */ 1523 int iMem; /* Memory location that acts as accumulator */ 1524 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1525 } *aFunc; 1526 int nFunc; /* Number of entries in aFunc[] */ 1527 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1528 }; 1529 1530 /* 1531 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1532 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1533 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1534 ** it uses less memory in the Expr object, which is a big memory user 1535 ** in systems with lots of prepared statements. And few applications 1536 ** need more than about 10 or 20 variables. But some extreme users want 1537 ** to have prepared statements with over 32767 variables, and for them 1538 ** the option is available (at compile-time). 1539 */ 1540 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1541 typedef i16 ynVar; 1542 #else 1543 typedef int ynVar; 1544 #endif 1545 1546 /* 1547 ** Each node of an expression in the parse tree is an instance 1548 ** of this structure. 1549 ** 1550 ** Expr.op is the opcode. The integer parser token codes are reused 1551 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1552 ** code representing the ">=" operator. This same integer code is reused 1553 ** to represent the greater-than-or-equal-to operator in the expression 1554 ** tree. 1555 ** 1556 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1557 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1558 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1559 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1560 ** then Expr.token contains the name of the function. 1561 ** 1562 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1563 ** binary operator. Either or both may be NULL. 1564 ** 1565 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1566 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1567 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1568 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1569 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1570 ** valid. 1571 ** 1572 ** An expression of the form ID or ID.ID refers to a column in a table. 1573 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1574 ** the integer cursor number of a VDBE cursor pointing to that table and 1575 ** Expr.iColumn is the column number for the specific column. If the 1576 ** expression is used as a result in an aggregate SELECT, then the 1577 ** value is also stored in the Expr.iAgg column in the aggregate so that 1578 ** it can be accessed after all aggregates are computed. 1579 ** 1580 ** If the expression is an unbound variable marker (a question mark 1581 ** character '?' in the original SQL) then the Expr.iTable holds the index 1582 ** number for that variable. 1583 ** 1584 ** If the expression is a subquery then Expr.iColumn holds an integer 1585 ** register number containing the result of the subquery. If the 1586 ** subquery gives a constant result, then iTable is -1. If the subquery 1587 ** gives a different answer at different times during statement processing 1588 ** then iTable is the address of a subroutine that computes the subquery. 1589 ** 1590 ** If the Expr is of type OP_Column, and the table it is selecting from 1591 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1592 ** corresponding table definition. 1593 ** 1594 ** ALLOCATION NOTES: 1595 ** 1596 ** Expr objects can use a lot of memory space in database schema. To 1597 ** help reduce memory requirements, sometimes an Expr object will be 1598 ** truncated. And to reduce the number of memory allocations, sometimes 1599 ** two or more Expr objects will be stored in a single memory allocation, 1600 ** together with Expr.zToken strings. 1601 ** 1602 ** If the EP_Reduced and EP_TokenOnly flags are set when 1603 ** an Expr object is truncated. When EP_Reduced is set, then all 1604 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1605 ** are contained within the same memory allocation. Note, however, that 1606 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1607 ** allocated, regardless of whether or not EP_Reduced is set. 1608 */ 1609 struct Expr { 1610 u8 op; /* Operation performed by this node */ 1611 char affinity; /* The affinity of the column or 0 if not a column */ 1612 u16 flags; /* Various flags. EP_* See below */ 1613 union { 1614 char *zToken; /* Token value. Zero terminated and dequoted */ 1615 int iValue; /* Integer value if EP_IntValue */ 1616 } u; 1617 1618 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1619 ** space is allocated for the fields below this point. An attempt to 1620 ** access them will result in a segfault or malfunction. 1621 *********************************************************************/ 1622 1623 Expr *pLeft; /* Left subnode */ 1624 Expr *pRight; /* Right subnode */ 1625 union { 1626 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1627 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1628 } x; 1629 CollSeq *pColl; /* The collation type of the column or 0 */ 1630 1631 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1632 ** space is allocated for the fields below this point. An attempt to 1633 ** access them will result in a segfault or malfunction. 1634 *********************************************************************/ 1635 1636 int iTable; /* TK_COLUMN: cursor number of table holding column 1637 ** TK_REGISTER: register number 1638 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1639 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1640 ** TK_VARIABLE: variable number (always >= 1). */ 1641 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1642 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1643 u8 flags2; /* Second set of flags. EP2_... */ 1644 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1645 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1646 Table *pTab; /* Table for TK_COLUMN expressions. */ 1647 #if SQLITE_MAX_EXPR_DEPTH>0 1648 int nHeight; /* Height of the tree headed by this node */ 1649 #endif 1650 }; 1651 1652 /* 1653 ** The following are the meanings of bits in the Expr.flags field. 1654 */ 1655 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1656 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1657 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1658 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1659 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1660 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1661 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1662 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1663 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1664 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1665 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1666 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1667 1668 #define EP_Reduced 0x1000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1669 #define EP_TokenOnly 0x2000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1670 #define EP_Static 0x4000 /* Held in memory not obtained from malloc() */ 1671 1672 /* 1673 ** The following are the meanings of bits in the Expr.flags2 field. 1674 */ 1675 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1676 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1677 1678 /* 1679 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1680 ** flag on an expression structure. This flag is used for VV&A only. The 1681 ** routine is implemented as a macro that only works when in debugging mode, 1682 ** so as not to burden production code. 1683 */ 1684 #ifdef SQLITE_DEBUG 1685 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1686 #else 1687 # define ExprSetIrreducible(X) 1688 #endif 1689 1690 /* 1691 ** These macros can be used to test, set, or clear bits in the 1692 ** Expr.flags field. 1693 */ 1694 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1695 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1696 #define ExprSetProperty(E,P) (E)->flags|=(P) 1697 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1698 1699 /* 1700 ** Macros to determine the number of bytes required by a normal Expr 1701 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1702 ** and an Expr struct with the EP_TokenOnly flag set. 1703 */ 1704 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1705 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1706 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1707 1708 /* 1709 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1710 ** above sqlite3ExprDup() for details. 1711 */ 1712 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1713 1714 /* 1715 ** A list of expressions. Each expression may optionally have a 1716 ** name. An expr/name combination can be used in several ways, such 1717 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1718 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1719 ** also be used as the argument to a function, in which case the a.zName 1720 ** field is not used. 1721 */ 1722 struct ExprList { 1723 int nExpr; /* Number of expressions on the list */ 1724 int nAlloc; /* Number of entries allocated below */ 1725 int iECursor; /* VDBE Cursor associated with this ExprList */ 1726 struct ExprList_item { 1727 Expr *pExpr; /* The list of expressions */ 1728 char *zName; /* Token associated with this expression */ 1729 char *zSpan; /* Original text of the expression */ 1730 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1731 u8 done; /* A flag to indicate when processing is finished */ 1732 u16 iCol; /* For ORDER BY, column number in result set */ 1733 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1734 } *a; /* One entry for each expression */ 1735 }; 1736 1737 /* 1738 ** An instance of this structure is used by the parser to record both 1739 ** the parse tree for an expression and the span of input text for an 1740 ** expression. 1741 */ 1742 struct ExprSpan { 1743 Expr *pExpr; /* The expression parse tree */ 1744 const char *zStart; /* First character of input text */ 1745 const char *zEnd; /* One character past the end of input text */ 1746 }; 1747 1748 /* 1749 ** An instance of this structure can hold a simple list of identifiers, 1750 ** such as the list "a,b,c" in the following statements: 1751 ** 1752 ** INSERT INTO t(a,b,c) VALUES ...; 1753 ** CREATE INDEX idx ON t(a,b,c); 1754 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1755 ** 1756 ** The IdList.a.idx field is used when the IdList represents the list of 1757 ** column names after a table name in an INSERT statement. In the statement 1758 ** 1759 ** INSERT INTO t(a,b,c) ... 1760 ** 1761 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1762 */ 1763 struct IdList { 1764 struct IdList_item { 1765 char *zName; /* Name of the identifier */ 1766 int idx; /* Index in some Table.aCol[] of a column named zName */ 1767 } *a; 1768 int nId; /* Number of identifiers on the list */ 1769 int nAlloc; /* Number of entries allocated for a[] below */ 1770 }; 1771 1772 /* 1773 ** The bitmask datatype defined below is used for various optimizations. 1774 ** 1775 ** Changing this from a 64-bit to a 32-bit type limits the number of 1776 ** tables in a join to 32 instead of 64. But it also reduces the size 1777 ** of the library by 738 bytes on ix86. 1778 */ 1779 typedef u64 Bitmask; 1780 1781 /* 1782 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1783 */ 1784 #define BMS ((int)(sizeof(Bitmask)*8)) 1785 1786 /* 1787 ** The following structure describes the FROM clause of a SELECT statement. 1788 ** Each table or subquery in the FROM clause is a separate element of 1789 ** the SrcList.a[] array. 1790 ** 1791 ** With the addition of multiple database support, the following structure 1792 ** can also be used to describe a particular table such as the table that 1793 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1794 ** such a table must be a simple name: ID. But in SQLite, the table can 1795 ** now be identified by a database name, a dot, then the table name: ID.ID. 1796 ** 1797 ** The jointype starts out showing the join type between the current table 1798 ** and the next table on the list. The parser builds the list this way. 1799 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1800 ** jointype expresses the join between the table and the previous table. 1801 ** 1802 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1803 ** contains more than 63 columns and the 64-th or later column is used. 1804 */ 1805 struct SrcList { 1806 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1807 i16 nAlloc; /* Number of entries allocated in a[] below */ 1808 struct SrcList_item { 1809 char *zDatabase; /* Name of database holding this table */ 1810 char *zName; /* Name of the table */ 1811 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1812 Table *pTab; /* An SQL table corresponding to zName */ 1813 Select *pSelect; /* A SELECT statement used in place of a table name */ 1814 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1815 u8 jointype; /* Type of join between this able and the previous */ 1816 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1817 int iCursor; /* The VDBE cursor number used to access this table */ 1818 Expr *pOn; /* The ON clause of a join */ 1819 IdList *pUsing; /* The USING clause of a join */ 1820 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1821 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1822 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1823 } a[1]; /* One entry for each identifier on the list */ 1824 }; 1825 1826 /* 1827 ** Permitted values of the SrcList.a.jointype field 1828 */ 1829 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1830 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1831 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1832 #define JT_LEFT 0x0008 /* Left outer join */ 1833 #define JT_RIGHT 0x0010 /* Right outer join */ 1834 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1835 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1836 1837 1838 /* 1839 ** A WherePlan object holds information that describes a lookup 1840 ** strategy. 1841 ** 1842 ** This object is intended to be opaque outside of the where.c module. 1843 ** It is included here only so that that compiler will know how big it 1844 ** is. None of the fields in this object should be used outside of 1845 ** the where.c module. 1846 ** 1847 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1848 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1849 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1850 ** case that more than one of these conditions is true. 1851 */ 1852 struct WherePlan { 1853 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1854 u32 nEq; /* Number of == constraints */ 1855 union { 1856 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1857 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1858 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1859 } u; 1860 }; 1861 1862 /* 1863 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1864 ** structure contains a single instance of this structure. This structure 1865 ** is intended to be private the the where.c module and should not be 1866 ** access or modified by other modules. 1867 ** 1868 ** The pIdxInfo field is used to help pick the best index on a 1869 ** virtual table. The pIdxInfo pointer contains indexing 1870 ** information for the i-th table in the FROM clause before reordering. 1871 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1872 ** All other information in the i-th WhereLevel object for the i-th table 1873 ** after FROM clause ordering. 1874 */ 1875 struct WhereLevel { 1876 WherePlan plan; /* query plan for this element of the FROM clause */ 1877 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1878 int iTabCur; /* The VDBE cursor used to access the table */ 1879 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1880 int addrBrk; /* Jump here to break out of the loop */ 1881 int addrNxt; /* Jump here to start the next IN combination */ 1882 int addrCont; /* Jump here to continue with the next loop cycle */ 1883 int addrFirst; /* First instruction of interior of the loop */ 1884 u8 iFrom; /* Which entry in the FROM clause */ 1885 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1886 int p1, p2; /* Operands of the opcode used to ends the loop */ 1887 union { /* Information that depends on plan.wsFlags */ 1888 struct { 1889 int nIn; /* Number of entries in aInLoop[] */ 1890 struct InLoop { 1891 int iCur; /* The VDBE cursor used by this IN operator */ 1892 int addrInTop; /* Top of the IN loop */ 1893 } *aInLoop; /* Information about each nested IN operator */ 1894 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1895 } u; 1896 1897 /* The following field is really not part of the current level. But 1898 ** we need a place to cache virtual table index information for each 1899 ** virtual table in the FROM clause and the WhereLevel structure is 1900 ** a convenient place since there is one WhereLevel for each FROM clause 1901 ** element. 1902 */ 1903 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1904 }; 1905 1906 /* 1907 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1908 ** and the WhereInfo.wctrlFlags member. 1909 */ 1910 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1911 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1912 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1913 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1914 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1915 #define WHERE_OMIT_OPEN 0x0010 /* Table cursors are already open */ 1916 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */ 1917 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */ 1918 #define WHERE_ONETABLE_ONLY 0x0080 /* Only code the 1st table in pTabList */ 1919 1920 /* 1921 ** The WHERE clause processing routine has two halves. The 1922 ** first part does the start of the WHERE loop and the second 1923 ** half does the tail of the WHERE loop. An instance of 1924 ** this structure is returned by the first half and passed 1925 ** into the second half to give some continuity. 1926 */ 1927 struct WhereInfo { 1928 Parse *pParse; /* Parsing and code generating context */ 1929 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1930 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1931 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1932 SrcList *pTabList; /* List of tables in the join */ 1933 int iTop; /* The very beginning of the WHERE loop */ 1934 int iContinue; /* Jump here to continue with next record */ 1935 int iBreak; /* Jump here to break out of the loop */ 1936 int nLevel; /* Number of nested loop */ 1937 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1938 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 1939 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1940 }; 1941 1942 /* 1943 ** A NameContext defines a context in which to resolve table and column 1944 ** names. The context consists of a list of tables (the pSrcList) field and 1945 ** a list of named expression (pEList). The named expression list may 1946 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1947 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1948 ** pEList corresponds to the result set of a SELECT and is NULL for 1949 ** other statements. 1950 ** 1951 ** NameContexts can be nested. When resolving names, the inner-most 1952 ** context is searched first. If no match is found, the next outer 1953 ** context is checked. If there is still no match, the next context 1954 ** is checked. This process continues until either a match is found 1955 ** or all contexts are check. When a match is found, the nRef member of 1956 ** the context containing the match is incremented. 1957 ** 1958 ** Each subquery gets a new NameContext. The pNext field points to the 1959 ** NameContext in the parent query. Thus the process of scanning the 1960 ** NameContext list corresponds to searching through successively outer 1961 ** subqueries looking for a match. 1962 */ 1963 struct NameContext { 1964 Parse *pParse; /* The parser */ 1965 SrcList *pSrcList; /* One or more tables used to resolve names */ 1966 ExprList *pEList; /* Optional list of named expressions */ 1967 int nRef; /* Number of names resolved by this context */ 1968 int nErr; /* Number of errors encountered while resolving names */ 1969 u8 allowAgg; /* Aggregate functions allowed here */ 1970 u8 hasAgg; /* True if aggregates are seen */ 1971 u8 isCheck; /* True if resolving names in a CHECK constraint */ 1972 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 1973 AggInfo *pAggInfo; /* Information about aggregates at this level */ 1974 NameContext *pNext; /* Next outer name context. NULL for outermost */ 1975 }; 1976 1977 /* 1978 ** An instance of the following structure contains all information 1979 ** needed to generate code for a single SELECT statement. 1980 ** 1981 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 1982 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 1983 ** limit and nOffset to the value of the offset (or 0 if there is not 1984 ** offset). But later on, nLimit and nOffset become the memory locations 1985 ** in the VDBE that record the limit and offset counters. 1986 ** 1987 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 1988 ** These addresses must be stored so that we can go back and fill in 1989 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 1990 ** the number of columns in P2 can be computed at the same time 1991 ** as the OP_OpenEphm instruction is coded because not 1992 ** enough information about the compound query is known at that point. 1993 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 1994 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 1995 ** sequences for the ORDER BY clause. 1996 */ 1997 struct Select { 1998 ExprList *pEList; /* The fields of the result */ 1999 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2000 char affinity; /* MakeRecord with this affinity for SRT_Set */ 2001 u16 selFlags; /* Various SF_* values */ 2002 SrcList *pSrc; /* The FROM clause */ 2003 Expr *pWhere; /* The WHERE clause */ 2004 ExprList *pGroupBy; /* The GROUP BY clause */ 2005 Expr *pHaving; /* The HAVING clause */ 2006 ExprList *pOrderBy; /* The ORDER BY clause */ 2007 Select *pPrior; /* Prior select in a compound select statement */ 2008 Select *pNext; /* Next select to the left in a compound */ 2009 Select *pRightmost; /* Right-most select in a compound select statement */ 2010 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2011 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2012 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2013 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2014 }; 2015 2016 /* 2017 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2018 ** "Select Flag". 2019 */ 2020 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2021 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2022 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2023 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2024 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2025 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2026 2027 2028 /* 2029 ** The results of a select can be distributed in several ways. The 2030 ** "SRT" prefix means "SELECT Result Type". 2031 */ 2032 #define SRT_Union 1 /* Store result as keys in an index */ 2033 #define SRT_Except 2 /* Remove result from a UNION index */ 2034 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2035 #define SRT_Discard 4 /* Do not save the results anywhere */ 2036 2037 /* The ORDER BY clause is ignored for all of the above */ 2038 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2039 2040 #define SRT_Output 5 /* Output each row of result */ 2041 #define SRT_Mem 6 /* Store result in a memory cell */ 2042 #define SRT_Set 7 /* Store results as keys in an index */ 2043 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2044 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2045 #define SRT_Coroutine 10 /* Generate a single row of result */ 2046 2047 /* 2048 ** A structure used to customize the behavior of sqlite3Select(). See 2049 ** comments above sqlite3Select() for details. 2050 */ 2051 typedef struct SelectDest SelectDest; 2052 struct SelectDest { 2053 u8 eDest; /* How to dispose of the results */ 2054 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2055 int iParm; /* A parameter used by the eDest disposal method */ 2056 int iMem; /* Base register where results are written */ 2057 int nMem; /* Number of registers allocated */ 2058 }; 2059 2060 /* 2061 ** During code generation of statements that do inserts into AUTOINCREMENT 2062 ** tables, the following information is attached to the Table.u.autoInc.p 2063 ** pointer of each autoincrement table to record some side information that 2064 ** the code generator needs. We have to keep per-table autoincrement 2065 ** information in case inserts are down within triggers. Triggers do not 2066 ** normally coordinate their activities, but we do need to coordinate the 2067 ** loading and saving of autoincrement information. 2068 */ 2069 struct AutoincInfo { 2070 AutoincInfo *pNext; /* Next info block in a list of them all */ 2071 Table *pTab; /* Table this info block refers to */ 2072 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2073 int regCtr; /* Memory register holding the rowid counter */ 2074 }; 2075 2076 /* 2077 ** Size of the column cache 2078 */ 2079 #ifndef SQLITE_N_COLCACHE 2080 # define SQLITE_N_COLCACHE 10 2081 #endif 2082 2083 /* 2084 ** At least one instance of the following structure is created for each 2085 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2086 ** statement. All such objects are stored in the linked list headed at 2087 ** Parse.pTriggerPrg and deleted once statement compilation has been 2088 ** completed. 2089 ** 2090 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2091 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2092 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2093 ** The Parse.pTriggerPrg list never contains two entries with the same 2094 ** values for both pTrigger and orconf. 2095 ** 2096 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2097 ** accessed (or set to 0 for triggers fired as a result of INSERT 2098 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2099 ** a mask of new.* columns used by the program. 2100 */ 2101 struct TriggerPrg { 2102 Trigger *pTrigger; /* Trigger this program was coded from */ 2103 int orconf; /* Default ON CONFLICT policy */ 2104 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2105 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2106 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2107 }; 2108 2109 /* 2110 ** An SQL parser context. A copy of this structure is passed through 2111 ** the parser and down into all the parser action routine in order to 2112 ** carry around information that is global to the entire parse. 2113 ** 2114 ** The structure is divided into two parts. When the parser and code 2115 ** generate call themselves recursively, the first part of the structure 2116 ** is constant but the second part is reset at the beginning and end of 2117 ** each recursion. 2118 ** 2119 ** The nTableLock and aTableLock variables are only used if the shared-cache 2120 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2121 ** used to store the set of table-locks required by the statement being 2122 ** compiled. Function sqlite3TableLock() is used to add entries to the 2123 ** list. 2124 */ 2125 struct Parse { 2126 sqlite3 *db; /* The main database structure */ 2127 int rc; /* Return code from execution */ 2128 char *zErrMsg; /* An error message */ 2129 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2130 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2131 u8 nameClash; /* A permanent table name clashes with temp table name */ 2132 u8 checkSchema; /* Causes schema cookie check after an error */ 2133 u8 nested; /* Number of nested calls to the parser/code generator */ 2134 u8 parseError; /* True after a parsing error. Ticket #1794 */ 2135 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2136 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2137 int aTempReg[8]; /* Holding area for temporary registers */ 2138 int nRangeReg; /* Size of the temporary register block */ 2139 int iRangeReg; /* First register in temporary register block */ 2140 int nErr; /* Number of errors seen */ 2141 int nTab; /* Number of previously allocated VDBE cursors */ 2142 int nMem; /* Number of memory cells used so far */ 2143 int nSet; /* Number of sets used so far */ 2144 int ckBase; /* Base register of data during check constraints */ 2145 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2146 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2147 u8 nColCache; /* Number of entries in the column cache */ 2148 u8 iColCache; /* Next entry of the cache to replace */ 2149 struct yColCache { 2150 int iTable; /* Table cursor number */ 2151 int iColumn; /* Table column number */ 2152 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2153 int iLevel; /* Nesting level */ 2154 int iReg; /* Reg with value of this column. 0 means none. */ 2155 int lru; /* Least recently used entry has the smallest value */ 2156 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2157 u32 writeMask; /* Start a write transaction on these databases */ 2158 u32 cookieMask; /* Bitmask of schema verified databases */ 2159 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ 2160 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2161 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2162 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2163 #ifndef SQLITE_OMIT_SHARED_CACHE 2164 int nTableLock; /* Number of locks in aTableLock */ 2165 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2166 #endif 2167 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2168 int regRoot; /* Register holding root page number for new objects */ 2169 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2170 int nMaxArg; /* Max args passed to user function by sub-program */ 2171 2172 /* Information used while coding trigger programs. */ 2173 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2174 Table *pTriggerTab; /* Table triggers are being coded for */ 2175 u32 oldmask; /* Mask of old.* columns referenced */ 2176 u32 newmask; /* Mask of new.* columns referenced */ 2177 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2178 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2179 u8 disableTriggers; /* True to disable triggers */ 2180 double nQueryLoop; /* Estimated number of iterations of a query */ 2181 2182 /* Above is constant between recursions. Below is reset before and after 2183 ** each recursion */ 2184 2185 int nVar; /* Number of '?' variables seen in the SQL so far */ 2186 int nVarExpr; /* Number of used slots in apVarExpr[] */ 2187 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 2188 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 2189 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2190 int nAlias; /* Number of aliased result set columns */ 2191 int nAliasAlloc; /* Number of allocated slots for aAlias[] */ 2192 int *aAlias; /* Register used to hold aliased result */ 2193 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2194 Token sNameToken; /* Token with unqualified schema object name */ 2195 Token sLastToken; /* The last token parsed */ 2196 const char *zTail; /* All SQL text past the last semicolon parsed */ 2197 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2198 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2199 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2200 #ifndef SQLITE_OMIT_VIRTUALTABLE 2201 Token sArg; /* Complete text of a module argument */ 2202 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2203 int nVtabLock; /* Number of virtual tables to lock */ 2204 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2205 #endif 2206 int nHeight; /* Expression tree height of current sub-select */ 2207 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2208 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2209 }; 2210 2211 #ifdef SQLITE_OMIT_VIRTUALTABLE 2212 #define IN_DECLARE_VTAB 0 2213 #else 2214 #define IN_DECLARE_VTAB (pParse->declareVtab) 2215 #endif 2216 2217 /* 2218 ** An instance of the following structure can be declared on a stack and used 2219 ** to save the Parse.zAuthContext value so that it can be restored later. 2220 */ 2221 struct AuthContext { 2222 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2223 Parse *pParse; /* The Parse structure */ 2224 }; 2225 2226 /* 2227 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2228 */ 2229 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2230 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2231 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2232 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2233 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2234 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2235 2236 /* 2237 * Each trigger present in the database schema is stored as an instance of 2238 * struct Trigger. 2239 * 2240 * Pointers to instances of struct Trigger are stored in two ways. 2241 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2242 * database). This allows Trigger structures to be retrieved by name. 2243 * 2. All triggers associated with a single table form a linked list, using the 2244 * pNext member of struct Trigger. A pointer to the first element of the 2245 * linked list is stored as the "pTrigger" member of the associated 2246 * struct Table. 2247 * 2248 * The "step_list" member points to the first element of a linked list 2249 * containing the SQL statements specified as the trigger program. 2250 */ 2251 struct Trigger { 2252 char *zName; /* The name of the trigger */ 2253 char *table; /* The table or view to which the trigger applies */ 2254 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2255 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2256 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2257 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2258 the <column-list> is stored here */ 2259 Schema *pSchema; /* Schema containing the trigger */ 2260 Schema *pTabSchema; /* Schema containing the table */ 2261 TriggerStep *step_list; /* Link list of trigger program steps */ 2262 Trigger *pNext; /* Next trigger associated with the table */ 2263 }; 2264 2265 /* 2266 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2267 ** determine which. 2268 ** 2269 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2270 ** In that cases, the constants below can be ORed together. 2271 */ 2272 #define TRIGGER_BEFORE 1 2273 #define TRIGGER_AFTER 2 2274 2275 /* 2276 * An instance of struct TriggerStep is used to store a single SQL statement 2277 * that is a part of a trigger-program. 2278 * 2279 * Instances of struct TriggerStep are stored in a singly linked list (linked 2280 * using the "pNext" member) referenced by the "step_list" member of the 2281 * associated struct Trigger instance. The first element of the linked list is 2282 * the first step of the trigger-program. 2283 * 2284 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2285 * "SELECT" statement. The meanings of the other members is determined by the 2286 * value of "op" as follows: 2287 * 2288 * (op == TK_INSERT) 2289 * orconf -> stores the ON CONFLICT algorithm 2290 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2291 * this stores a pointer to the SELECT statement. Otherwise NULL. 2292 * target -> A token holding the quoted name of the table to insert into. 2293 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2294 * this stores values to be inserted. Otherwise NULL. 2295 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2296 * statement, then this stores the column-names to be 2297 * inserted into. 2298 * 2299 * (op == TK_DELETE) 2300 * target -> A token holding the quoted name of the table to delete from. 2301 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2302 * Otherwise NULL. 2303 * 2304 * (op == TK_UPDATE) 2305 * target -> A token holding the quoted name of the table to update rows of. 2306 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2307 * Otherwise NULL. 2308 * pExprList -> A list of the columns to update and the expressions to update 2309 * them to. See sqlite3Update() documentation of "pChanges" 2310 * argument. 2311 * 2312 */ 2313 struct TriggerStep { 2314 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2315 u8 orconf; /* OE_Rollback etc. */ 2316 Trigger *pTrig; /* The trigger that this step is a part of */ 2317 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2318 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2319 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2320 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2321 IdList *pIdList; /* Column names for INSERT */ 2322 TriggerStep *pNext; /* Next in the link-list */ 2323 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2324 }; 2325 2326 /* 2327 ** The following structure contains information used by the sqliteFix... 2328 ** routines as they walk the parse tree to make database references 2329 ** explicit. 2330 */ 2331 typedef struct DbFixer DbFixer; 2332 struct DbFixer { 2333 Parse *pParse; /* The parsing context. Error messages written here */ 2334 const char *zDb; /* Make sure all objects are contained in this database */ 2335 const char *zType; /* Type of the container - used for error messages */ 2336 const Token *pName; /* Name of the container - used for error messages */ 2337 }; 2338 2339 /* 2340 ** An objected used to accumulate the text of a string where we 2341 ** do not necessarily know how big the string will be in the end. 2342 */ 2343 struct StrAccum { 2344 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2345 char *zBase; /* A base allocation. Not from malloc. */ 2346 char *zText; /* The string collected so far */ 2347 int nChar; /* Length of the string so far */ 2348 int nAlloc; /* Amount of space allocated in zText */ 2349 int mxAlloc; /* Maximum allowed string length */ 2350 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2351 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2352 u8 tooBig; /* Becomes true if string size exceeds limits */ 2353 }; 2354 2355 /* 2356 ** A pointer to this structure is used to communicate information 2357 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2358 */ 2359 typedef struct { 2360 sqlite3 *db; /* The database being initialized */ 2361 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2362 char **pzErrMsg; /* Error message stored here */ 2363 int rc; /* Result code stored here */ 2364 } InitData; 2365 2366 /* 2367 ** Structure containing global configuration data for the SQLite library. 2368 ** 2369 ** This structure also contains some state information. 2370 */ 2371 struct Sqlite3Config { 2372 int bMemstat; /* True to enable memory status */ 2373 int bCoreMutex; /* True to enable core mutexing */ 2374 int bFullMutex; /* True to enable full mutexing */ 2375 int mxStrlen; /* Maximum string length */ 2376 int szLookaside; /* Default lookaside buffer size */ 2377 int nLookaside; /* Default lookaside buffer count */ 2378 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2379 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2380 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */ 2381 void *pHeap; /* Heap storage space */ 2382 int nHeap; /* Size of pHeap[] */ 2383 int mnReq, mxReq; /* Min and max heap requests sizes */ 2384 void *pScratch; /* Scratch memory */ 2385 int szScratch; /* Size of each scratch buffer */ 2386 int nScratch; /* Number of scratch buffers */ 2387 void *pPage; /* Page cache memory */ 2388 int szPage; /* Size of each page in pPage[] */ 2389 int nPage; /* Number of pages in pPage[] */ 2390 int mxParserStack; /* maximum depth of the parser stack */ 2391 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2392 /* The above might be initialized to non-zero. The following need to always 2393 ** initially be zero, however. */ 2394 int isInit; /* True after initialization has finished */ 2395 int inProgress; /* True while initialization in progress */ 2396 int isMutexInit; /* True after mutexes are initialized */ 2397 int isMallocInit; /* True after malloc is initialized */ 2398 int isPCacheInit; /* True after malloc is initialized */ 2399 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2400 int nRefInitMutex; /* Number of users of pInitMutex */ 2401 void (*xLog)(void*,int,const char*); /* Function for logging */ 2402 void *pLogArg; /* First argument to xLog() */ 2403 }; 2404 2405 /* 2406 ** Context pointer passed down through the tree-walk. 2407 */ 2408 struct Walker { 2409 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2410 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2411 Parse *pParse; /* Parser context. */ 2412 union { /* Extra data for callback */ 2413 NameContext *pNC; /* Naming context */ 2414 int i; /* Integer value */ 2415 } u; 2416 }; 2417 2418 /* Forward declarations */ 2419 int sqlite3WalkExpr(Walker*, Expr*); 2420 int sqlite3WalkExprList(Walker*, ExprList*); 2421 int sqlite3WalkSelect(Walker*, Select*); 2422 int sqlite3WalkSelectExpr(Walker*, Select*); 2423 int sqlite3WalkSelectFrom(Walker*, Select*); 2424 2425 /* 2426 ** Return code from the parse-tree walking primitives and their 2427 ** callbacks. 2428 */ 2429 #define WRC_Continue 0 /* Continue down into children */ 2430 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2431 #define WRC_Abort 2 /* Abandon the tree walk */ 2432 2433 /* 2434 ** Assuming zIn points to the first byte of a UTF-8 character, 2435 ** advance zIn to point to the first byte of the next UTF-8 character. 2436 */ 2437 #define SQLITE_SKIP_UTF8(zIn) { \ 2438 if( (*(zIn++))>=0xc0 ){ \ 2439 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2440 } \ 2441 } 2442 2443 /* 2444 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2445 ** the same name but without the _BKPT suffix. These macros invoke 2446 ** routines that report the line-number on which the error originated 2447 ** using sqlite3_log(). The routines also provide a convenient place 2448 ** to set a debugger breakpoint. 2449 */ 2450 int sqlite3CorruptError(int); 2451 int sqlite3MisuseError(int); 2452 int sqlite3CantopenError(int); 2453 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2454 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2455 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2456 2457 2458 /* 2459 ** FTS4 is really an extension for FTS3. It is enabled using the 2460 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2461 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2462 */ 2463 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2464 # define SQLITE_ENABLE_FTS3 2465 #endif 2466 2467 /* 2468 ** The ctype.h header is needed for non-ASCII systems. It is also 2469 ** needed by FTS3 when FTS3 is included in the amalgamation. 2470 */ 2471 #if !defined(SQLITE_ASCII) || \ 2472 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2473 # include <ctype.h> 2474 #endif 2475 2476 /* 2477 ** The following macros mimic the standard library functions toupper(), 2478 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2479 ** sqlite versions only work for ASCII characters, regardless of locale. 2480 */ 2481 #ifdef SQLITE_ASCII 2482 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2483 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2484 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2485 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2486 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2487 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2488 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2489 #else 2490 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2491 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2492 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2493 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2494 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2495 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2496 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2497 #endif 2498 2499 /* 2500 ** Internal function prototypes 2501 */ 2502 int sqlite3StrICmp(const char *, const char *); 2503 int sqlite3IsNumber(const char*, int*, u8); 2504 int sqlite3Strlen30(const char*); 2505 #define sqlite3StrNICmp sqlite3_strnicmp 2506 2507 int sqlite3MallocInit(void); 2508 void sqlite3MallocEnd(void); 2509 void *sqlite3Malloc(int); 2510 void *sqlite3MallocZero(int); 2511 void *sqlite3DbMallocZero(sqlite3*, int); 2512 void *sqlite3DbMallocRaw(sqlite3*, int); 2513 char *sqlite3DbStrDup(sqlite3*,const char*); 2514 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2515 void *sqlite3Realloc(void*, int); 2516 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2517 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2518 void sqlite3DbFree(sqlite3*, void*); 2519 int sqlite3MallocSize(void*); 2520 int sqlite3DbMallocSize(sqlite3*, void*); 2521 void *sqlite3ScratchMalloc(int); 2522 void sqlite3ScratchFree(void*); 2523 void *sqlite3PageMalloc(int); 2524 void sqlite3PageFree(void*); 2525 void sqlite3MemSetDefault(void); 2526 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2527 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64); 2528 int sqlite3HeapNearlyFull(void); 2529 2530 /* 2531 ** On systems with ample stack space and that support alloca(), make 2532 ** use of alloca() to obtain space for large automatic objects. By default, 2533 ** obtain space from malloc(). 2534 ** 2535 ** The alloca() routine never returns NULL. This will cause code paths 2536 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2537 */ 2538 #ifdef SQLITE_USE_ALLOCA 2539 # define sqlite3StackAllocRaw(D,N) alloca(N) 2540 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2541 # define sqlite3StackFree(D,P) 2542 #else 2543 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2544 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2545 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2546 #endif 2547 2548 #ifdef SQLITE_ENABLE_MEMSYS3 2549 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2550 #endif 2551 #ifdef SQLITE_ENABLE_MEMSYS5 2552 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2553 #endif 2554 2555 2556 #ifndef SQLITE_MUTEX_OMIT 2557 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2558 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2559 sqlite3_mutex *sqlite3MutexAlloc(int); 2560 int sqlite3MutexInit(void); 2561 int sqlite3MutexEnd(void); 2562 #endif 2563 2564 int sqlite3StatusValue(int); 2565 void sqlite3StatusAdd(int, int); 2566 void sqlite3StatusSet(int, int); 2567 2568 #ifndef SQLITE_OMIT_FLOATING_POINT 2569 int sqlite3IsNaN(double); 2570 #else 2571 # define sqlite3IsNaN(X) 0 2572 #endif 2573 2574 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2575 #ifndef SQLITE_OMIT_TRACE 2576 void sqlite3XPrintf(StrAccum*, const char*, ...); 2577 #endif 2578 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2579 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2580 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2581 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2582 void sqlite3DebugPrintf(const char*, ...); 2583 #endif 2584 #if defined(SQLITE_TEST) 2585 void *sqlite3TestTextToPtr(const char*); 2586 #endif 2587 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2588 void sqlite3ErrorMsg(Parse*, const char*, ...); 2589 int sqlite3Dequote(char*); 2590 int sqlite3KeywordCode(const unsigned char*, int); 2591 int sqlite3RunParser(Parse*, const char*, char **); 2592 void sqlite3FinishCoding(Parse*); 2593 int sqlite3GetTempReg(Parse*); 2594 void sqlite3ReleaseTempReg(Parse*,int); 2595 int sqlite3GetTempRange(Parse*,int); 2596 void sqlite3ReleaseTempRange(Parse*,int,int); 2597 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2598 Expr *sqlite3Expr(sqlite3*,int,const char*); 2599 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2600 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2601 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2602 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2603 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2604 void sqlite3ExprDelete(sqlite3*, Expr*); 2605 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2606 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2607 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2608 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2609 int sqlite3Init(sqlite3*, char**); 2610 int sqlite3InitCallback(void*, int, char**, char**); 2611 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2612 void sqlite3ResetInternalSchema(sqlite3*, int); 2613 void sqlite3BeginParse(Parse*,int); 2614 void sqlite3CommitInternalChanges(sqlite3*); 2615 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2616 void sqlite3OpenMasterTable(Parse *, int); 2617 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2618 void sqlite3AddColumn(Parse*,Token*); 2619 void sqlite3AddNotNull(Parse*, int); 2620 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2621 void sqlite3AddCheckConstraint(Parse*, Expr*); 2622 void sqlite3AddColumnType(Parse*,Token*); 2623 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2624 void sqlite3AddCollateType(Parse*, Token*); 2625 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2626 2627 Bitvec *sqlite3BitvecCreate(u32); 2628 int sqlite3BitvecTest(Bitvec*, u32); 2629 int sqlite3BitvecSet(Bitvec*, u32); 2630 void sqlite3BitvecClear(Bitvec*, u32, void*); 2631 void sqlite3BitvecDestroy(Bitvec*); 2632 u32 sqlite3BitvecSize(Bitvec*); 2633 int sqlite3BitvecBuiltinTest(int,int*); 2634 2635 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2636 void sqlite3RowSetClear(RowSet*); 2637 void sqlite3RowSetInsert(RowSet*, i64); 2638 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2639 int sqlite3RowSetNext(RowSet*, i64*); 2640 2641 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2642 2643 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2644 int sqlite3ViewGetColumnNames(Parse*,Table*); 2645 #else 2646 # define sqlite3ViewGetColumnNames(A,B) 0 2647 #endif 2648 2649 void sqlite3DropTable(Parse*, SrcList*, int, int); 2650 void sqlite3DeleteTable(sqlite3*, Table*); 2651 #ifndef SQLITE_OMIT_AUTOINCREMENT 2652 void sqlite3AutoincrementBegin(Parse *pParse); 2653 void sqlite3AutoincrementEnd(Parse *pParse); 2654 #else 2655 # define sqlite3AutoincrementBegin(X) 2656 # define sqlite3AutoincrementEnd(X) 2657 #endif 2658 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2659 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2660 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2661 int sqlite3IdListIndex(IdList*,const char*); 2662 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2663 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2664 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2665 Token*, Select*, Expr*, IdList*); 2666 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2667 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2668 void sqlite3SrcListShiftJoinType(SrcList*); 2669 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2670 void sqlite3IdListDelete(sqlite3*, IdList*); 2671 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2672 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2673 Token*, int, int); 2674 void sqlite3DropIndex(Parse*, SrcList*, int); 2675 int sqlite3Select(Parse*, Select*, SelectDest*); 2676 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2677 Expr*,ExprList*,int,Expr*,Expr*); 2678 void sqlite3SelectDelete(sqlite3*, Select*); 2679 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2680 int sqlite3IsReadOnly(Parse*, Table*, int); 2681 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2682 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2683 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2684 #endif 2685 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2686 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2687 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); 2688 void sqlite3WhereEnd(WhereInfo*); 2689 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); 2690 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2691 void sqlite3ExprCodeMove(Parse*, int, int, int); 2692 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2693 void sqlite3ExprCacheStore(Parse*, int, int, int); 2694 void sqlite3ExprCachePush(Parse*); 2695 void sqlite3ExprCachePop(Parse*, int); 2696 void sqlite3ExprCacheRemove(Parse*, int, int); 2697 void sqlite3ExprCacheClear(Parse*); 2698 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2699 void sqlite3ExprHardCopy(Parse*,int,int); 2700 int sqlite3ExprCode(Parse*, Expr*, int); 2701 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2702 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2703 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2704 void sqlite3ExprCodeConstants(Parse*, Expr*); 2705 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2706 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2707 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2708 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2709 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2710 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2711 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2712 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2713 void sqlite3Vacuum(Parse*); 2714 int sqlite3RunVacuum(char**, sqlite3*); 2715 char *sqlite3NameFromToken(sqlite3*, Token*); 2716 int sqlite3ExprCompare(Expr*, Expr*); 2717 int sqlite3ExprListCompare(ExprList*, ExprList*); 2718 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2719 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2720 Vdbe *sqlite3GetVdbe(Parse*); 2721 void sqlite3PrngSaveState(void); 2722 void sqlite3PrngRestoreState(void); 2723 void sqlite3PrngResetState(void); 2724 void sqlite3RollbackAll(sqlite3*); 2725 void sqlite3CodeVerifySchema(Parse*, int); 2726 void sqlite3BeginTransaction(Parse*, int); 2727 void sqlite3CommitTransaction(Parse*); 2728 void sqlite3RollbackTransaction(Parse*); 2729 void sqlite3Savepoint(Parse*, int, Token*); 2730 void sqlite3CloseSavepoints(sqlite3 *); 2731 int sqlite3ExprIsConstant(Expr*); 2732 int sqlite3ExprIsConstantNotJoin(Expr*); 2733 int sqlite3ExprIsConstantOrFunction(Expr*); 2734 int sqlite3ExprIsInteger(Expr*, int*); 2735 int sqlite3ExprCanBeNull(const Expr*); 2736 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2737 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2738 int sqlite3IsRowid(const char*); 2739 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2740 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2741 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2742 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2743 int*,int,int,int,int,int*); 2744 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2745 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2746 void sqlite3BeginWriteOperation(Parse*, int, int); 2747 void sqlite3MultiWrite(Parse*); 2748 void sqlite3MayAbort(Parse*); 2749 void sqlite3HaltConstraint(Parse*, int, char*, int); 2750 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2751 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2752 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2753 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2754 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2755 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2756 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2757 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2758 void sqlite3RegisterDateTimeFunctions(void); 2759 void sqlite3RegisterGlobalFunctions(void); 2760 int sqlite3SafetyCheckOk(sqlite3*); 2761 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2762 void sqlite3ChangeCookie(Parse*, int); 2763 2764 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2765 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2766 #endif 2767 2768 #ifndef SQLITE_OMIT_TRIGGER 2769 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2770 Expr*,int, int); 2771 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2772 void sqlite3DropTrigger(Parse*, SrcList*, int); 2773 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2774 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2775 Trigger *sqlite3TriggerList(Parse *, Table *); 2776 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2777 int, int, int); 2778 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2779 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2780 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2781 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2782 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2783 ExprList*,Select*,u8); 2784 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2785 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2786 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2787 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2788 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2789 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2790 #else 2791 # define sqlite3TriggersExist(B,C,D,E,F) 0 2792 # define sqlite3DeleteTrigger(A,B) 2793 # define sqlite3DropTriggerPtr(A,B) 2794 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2795 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2796 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2797 # define sqlite3TriggerList(X, Y) 0 2798 # define sqlite3ParseToplevel(p) p 2799 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2800 #endif 2801 2802 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2803 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2804 void sqlite3DeferForeignKey(Parse*, int); 2805 #ifndef SQLITE_OMIT_AUTHORIZATION 2806 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2807 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2808 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2809 void sqlite3AuthContextPop(AuthContext*); 2810 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2811 #else 2812 # define sqlite3AuthRead(a,b,c,d) 2813 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2814 # define sqlite3AuthContextPush(a,b,c) 2815 # define sqlite3AuthContextPop(a) ((void)(a)) 2816 #endif 2817 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2818 void sqlite3Detach(Parse*, Expr*); 2819 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2820 int sqlite3FixSrcList(DbFixer*, SrcList*); 2821 int sqlite3FixSelect(DbFixer*, Select*); 2822 int sqlite3FixExpr(DbFixer*, Expr*); 2823 int sqlite3FixExprList(DbFixer*, ExprList*); 2824 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2825 int sqlite3AtoF(const char *z, double*); 2826 int sqlite3GetInt32(const char *, int*); 2827 int sqlite3FitsIn64Bits(const char *, int); 2828 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2829 int sqlite3Utf8CharLen(const char *pData, int nByte); 2830 int sqlite3Utf8Read(const u8*, const u8**); 2831 2832 /* 2833 ** Routines to read and write variable-length integers. These used to 2834 ** be defined locally, but now we use the varint routines in the util.c 2835 ** file. Code should use the MACRO forms below, as the Varint32 versions 2836 ** are coded to assume the single byte case is already handled (which 2837 ** the MACRO form does). 2838 */ 2839 int sqlite3PutVarint(unsigned char*, u64); 2840 int sqlite3PutVarint32(unsigned char*, u32); 2841 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2842 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2843 int sqlite3VarintLen(u64 v); 2844 2845 /* 2846 ** The header of a record consists of a sequence variable-length integers. 2847 ** These integers are almost always small and are encoded as a single byte. 2848 ** The following macros take advantage this fact to provide a fast encode 2849 ** and decode of the integers in a record header. It is faster for the common 2850 ** case where the integer is a single byte. It is a little slower when the 2851 ** integer is two or more bytes. But overall it is faster. 2852 ** 2853 ** The following expressions are equivalent: 2854 ** 2855 ** x = sqlite3GetVarint32( A, &B ); 2856 ** x = sqlite3PutVarint32( A, B ); 2857 ** 2858 ** x = getVarint32( A, B ); 2859 ** x = putVarint32( A, B ); 2860 ** 2861 */ 2862 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2863 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2864 #define getVarint sqlite3GetVarint 2865 #define putVarint sqlite3PutVarint 2866 2867 2868 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2869 void sqlite3TableAffinityStr(Vdbe *, Table *); 2870 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2871 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2872 char sqlite3ExprAffinity(Expr *pExpr); 2873 int sqlite3Atoi64(const char*, i64*); 2874 void sqlite3Error(sqlite3*, int, const char*,...); 2875 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2876 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2877 const char *sqlite3ErrStr(int); 2878 int sqlite3ReadSchema(Parse *pParse); 2879 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2880 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2881 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2882 Expr *sqlite3ExprSetColl(Expr*, CollSeq*); 2883 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); 2884 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2885 int sqlite3CheckObjectName(Parse *, const char *); 2886 void sqlite3VdbeSetChanges(sqlite3 *, int); 2887 2888 const void *sqlite3ValueText(sqlite3_value*, u8); 2889 int sqlite3ValueBytes(sqlite3_value*, u8); 2890 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2891 void(*)(void*)); 2892 void sqlite3ValueFree(sqlite3_value*); 2893 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2894 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 2895 #ifdef SQLITE_ENABLE_STAT2 2896 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 2897 #endif 2898 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2899 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2900 #ifndef SQLITE_AMALGAMATION 2901 extern const unsigned char sqlite3OpcodeProperty[]; 2902 extern const unsigned char sqlite3UpperToLower[]; 2903 extern const unsigned char sqlite3CtypeMap[]; 2904 extern const Token sqlite3IntTokens[]; 2905 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2906 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2907 #ifndef SQLITE_OMIT_WSD 2908 extern int sqlite3PendingByte; 2909 #endif 2910 #endif 2911 void sqlite3RootPageMoved(Db*, int, int); 2912 void sqlite3Reindex(Parse*, Token*, Token*); 2913 void sqlite3AlterFunctions(void); 2914 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2915 int sqlite3GetToken(const unsigned char *, int *); 2916 void sqlite3NestedParse(Parse*, const char*, ...); 2917 void sqlite3ExpirePreparedStatements(sqlite3*); 2918 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 2919 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 2920 int sqlite3ResolveExprNames(NameContext*, Expr*); 2921 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 2922 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 2923 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 2924 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2925 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2926 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 2927 char sqlite3AffinityType(const char*); 2928 void sqlite3Analyze(Parse*, Token*, Token*); 2929 int sqlite3InvokeBusyHandler(BusyHandler*); 2930 int sqlite3FindDb(sqlite3*, Token*); 2931 int sqlite3FindDbName(sqlite3 *, const char *); 2932 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2933 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 2934 void sqlite3DefaultRowEst(Index*); 2935 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2936 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2937 void sqlite3MinimumFileFormat(Parse*, int, int); 2938 void sqlite3SchemaFree(void *); 2939 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 2940 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 2941 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 2942 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 2943 void (*)(sqlite3_context*,int,sqlite3_value **), 2944 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 2945 FuncDestructor *pDestructor 2946 ); 2947 int sqlite3ApiExit(sqlite3 *db, int); 2948 int sqlite3OpenTempDatabase(Parse *); 2949 2950 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 2951 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 2952 char *sqlite3StrAccumFinish(StrAccum*); 2953 void sqlite3StrAccumReset(StrAccum*); 2954 void sqlite3SelectDestInit(SelectDest*,int,int); 2955 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 2956 2957 void sqlite3BackupRestart(sqlite3_backup *); 2958 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 2959 2960 /* 2961 ** The interface to the LEMON-generated parser 2962 */ 2963 void *sqlite3ParserAlloc(void*(*)(size_t)); 2964 void sqlite3ParserFree(void*, void(*)(void*)); 2965 void sqlite3Parser(void*, int, Token, Parse*); 2966 #ifdef YYTRACKMAXSTACKDEPTH 2967 int sqlite3ParserStackPeak(void*); 2968 #endif 2969 2970 void sqlite3AutoLoadExtensions(sqlite3*); 2971 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2972 void sqlite3CloseExtensions(sqlite3*); 2973 #else 2974 # define sqlite3CloseExtensions(X) 2975 #endif 2976 2977 #ifndef SQLITE_OMIT_SHARED_CACHE 2978 void sqlite3TableLock(Parse *, int, int, u8, const char *); 2979 #else 2980 #define sqlite3TableLock(v,w,x,y,z) 2981 #endif 2982 2983 #ifdef SQLITE_TEST 2984 int sqlite3Utf8To8(unsigned char*); 2985 #endif 2986 2987 #ifdef SQLITE_OMIT_VIRTUALTABLE 2988 # define sqlite3VtabClear(Y) 2989 # define sqlite3VtabSync(X,Y) SQLITE_OK 2990 # define sqlite3VtabRollback(X) 2991 # define sqlite3VtabCommit(X) 2992 # define sqlite3VtabInSync(db) 0 2993 # define sqlite3VtabLock(X) 2994 # define sqlite3VtabUnlock(X) 2995 # define sqlite3VtabUnlockList(X) 2996 #else 2997 void sqlite3VtabClear(sqlite3 *db, Table*); 2998 int sqlite3VtabSync(sqlite3 *db, char **); 2999 int sqlite3VtabRollback(sqlite3 *db); 3000 int sqlite3VtabCommit(sqlite3 *db); 3001 void sqlite3VtabLock(VTable *); 3002 void sqlite3VtabUnlock(VTable *); 3003 void sqlite3VtabUnlockList(sqlite3*); 3004 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3005 #endif 3006 void sqlite3VtabMakeWritable(Parse*,Table*); 3007 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 3008 void sqlite3VtabFinishParse(Parse*, Token*); 3009 void sqlite3VtabArgInit(Parse*); 3010 void sqlite3VtabArgExtend(Parse*, Token*); 3011 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3012 int sqlite3VtabCallConnect(Parse*, Table*); 3013 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3014 int sqlite3VtabBegin(sqlite3 *, VTable *); 3015 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3016 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3017 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3018 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3019 int sqlite3Reprepare(Vdbe*); 3020 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3021 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3022 int sqlite3TempInMemory(const sqlite3*); 3023 VTable *sqlite3GetVTable(sqlite3*, Table*); 3024 const char *sqlite3JournalModename(int); 3025 int sqlite3Checkpoint(sqlite3*, int); 3026 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3027 3028 /* Declarations for functions in fkey.c. All of these are replaced by 3029 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3030 ** key functionality is available. If OMIT_TRIGGER is defined but 3031 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3032 ** this case foreign keys are parsed, but no other functionality is 3033 ** provided (enforcement of FK constraints requires the triggers sub-system). 3034 */ 3035 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3036 void sqlite3FkCheck(Parse*, Table*, int, int); 3037 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3038 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3039 int sqlite3FkRequired(Parse*, Table*, int*, int); 3040 u32 sqlite3FkOldmask(Parse*, Table*); 3041 FKey *sqlite3FkReferences(Table *); 3042 #else 3043 #define sqlite3FkActions(a,b,c,d) 3044 #define sqlite3FkCheck(a,b,c,d) 3045 #define sqlite3FkDropTable(a,b,c) 3046 #define sqlite3FkOldmask(a,b) 0 3047 #define sqlite3FkRequired(a,b,c,d) 0 3048 #endif 3049 #ifndef SQLITE_OMIT_FOREIGN_KEY 3050 void sqlite3FkDelete(sqlite3 *, Table*); 3051 #else 3052 #define sqlite3FkDelete(a,b) 3053 #endif 3054 3055 3056 /* 3057 ** Available fault injectors. Should be numbered beginning with 0. 3058 */ 3059 #define SQLITE_FAULTINJECTOR_MALLOC 0 3060 #define SQLITE_FAULTINJECTOR_COUNT 1 3061 3062 /* 3063 ** The interface to the code in fault.c used for identifying "benign" 3064 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3065 ** is not defined. 3066 */ 3067 #ifndef SQLITE_OMIT_BUILTIN_TEST 3068 void sqlite3BeginBenignMalloc(void); 3069 void sqlite3EndBenignMalloc(void); 3070 #else 3071 #define sqlite3BeginBenignMalloc() 3072 #define sqlite3EndBenignMalloc() 3073 #endif 3074 3075 #define IN_INDEX_ROWID 1 3076 #define IN_INDEX_EPH 2 3077 #define IN_INDEX_INDEX 3 3078 int sqlite3FindInIndex(Parse *, Expr *, int*); 3079 3080 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3081 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3082 int sqlite3JournalSize(sqlite3_vfs *); 3083 int sqlite3JournalCreate(sqlite3_file *); 3084 #else 3085 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3086 #endif 3087 3088 void sqlite3MemJournalOpen(sqlite3_file *); 3089 int sqlite3MemJournalSize(void); 3090 int sqlite3IsMemJournal(sqlite3_file *); 3091 3092 #if SQLITE_MAX_EXPR_DEPTH>0 3093 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3094 int sqlite3SelectExprHeight(Select *); 3095 int sqlite3ExprCheckHeight(Parse*, int); 3096 #else 3097 #define sqlite3ExprSetHeight(x,y) 3098 #define sqlite3SelectExprHeight(x) 0 3099 #define sqlite3ExprCheckHeight(x,y) 3100 #endif 3101 3102 u32 sqlite3Get4byte(const u8*); 3103 void sqlite3Put4byte(u8*, u32); 3104 3105 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3106 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3107 void sqlite3ConnectionUnlocked(sqlite3 *db); 3108 void sqlite3ConnectionClosed(sqlite3 *db); 3109 #else 3110 #define sqlite3ConnectionBlocked(x,y) 3111 #define sqlite3ConnectionUnlocked(x) 3112 #define sqlite3ConnectionClosed(x) 3113 #endif 3114 3115 #ifdef SQLITE_DEBUG 3116 void sqlite3ParserTrace(FILE*, char *); 3117 #endif 3118 3119 /* 3120 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3121 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3122 ** print I/O tracing messages. 3123 */ 3124 #ifdef SQLITE_ENABLE_IOTRACE 3125 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3126 void sqlite3VdbeIOTraceSql(Vdbe*); 3127 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3128 #else 3129 # define IOTRACE(A) 3130 # define sqlite3VdbeIOTraceSql(X) 3131 #endif 3132 3133 /* 3134 ** These routines are available for the mem2.c debugging memory allocator 3135 ** only. They are used to verify that different "types" of memory 3136 ** allocations are properly tracked by the system. 3137 ** 3138 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3139 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3140 ** a single bit set. 3141 ** 3142 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3143 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3144 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3145 ** 3146 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3147 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3148 ** 3149 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3150 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3151 ** it might have been allocated by lookaside, except the allocation was 3152 ** too large or lookaside was already full. It is important to verify 3153 ** that allocations that might have been satisfied by lookaside are not 3154 ** passed back to non-lookaside free() routines. Asserts such as the 3155 ** example above are placed on the non-lookaside free() routines to verify 3156 ** this constraint. 3157 ** 3158 ** All of this is no-op for a production build. It only comes into 3159 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3160 */ 3161 #ifdef SQLITE_MEMDEBUG 3162 void sqlite3MemdebugSetType(void*,u8); 3163 int sqlite3MemdebugHasType(void*,u8); 3164 int sqlite3MemdebugNoType(void*,u8); 3165 #else 3166 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3167 # define sqlite3MemdebugHasType(X,Y) 1 3168 # define sqlite3MemdebugNoType(X,Y) 1 3169 #endif 3170 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3171 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3172 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3173 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3174 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3175 3176 #endif /* _SQLITEINT_H_ */ 3177