xref: /sqlite-3.40.0/src/select.c (revision fd779e2f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   if( pEq && isOuterJoin ){
351     ExprSetProperty(pEq, EP_FromJoin);
352     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
353     ExprSetVVAProperty(pEq, EP_NoReduce);
354     pEq->iRightJoinTable = pE2->iTable;
355   }
356   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
357 }
358 
359 /*
360 ** Set the EP_FromJoin property on all terms of the given expression.
361 ** And set the Expr.iRightJoinTable to iTable for every term in the
362 ** expression.
363 **
364 ** The EP_FromJoin property is used on terms of an expression to tell
365 ** the LEFT OUTER JOIN processing logic that this term is part of the
366 ** join restriction specified in the ON or USING clause and not a part
367 ** of the more general WHERE clause.  These terms are moved over to the
368 ** WHERE clause during join processing but we need to remember that they
369 ** originated in the ON or USING clause.
370 **
371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
372 ** expression depends on table iRightJoinTable even if that table is not
373 ** explicitly mentioned in the expression.  That information is needed
374 ** for cases like this:
375 **
376 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
377 **
378 ** The where clause needs to defer the handling of the t1.x=5
379 ** term until after the t2 loop of the join.  In that way, a
380 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
381 ** defer the handling of t1.x=5, it will be processed immediately
382 ** after the t1 loop and rows with t1.x!=5 will never appear in
383 ** the output, which is incorrect.
384 */
385 void sqlite3SetJoinExpr(Expr *p, int iTable){
386   while( p ){
387     ExprSetProperty(p, EP_FromJoin);
388     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
389     ExprSetVVAProperty(p, EP_NoReduce);
390     p->iRightJoinTable = iTable;
391     if( p->op==TK_FUNCTION && p->x.pList ){
392       int i;
393       for(i=0; i<p->x.pList->nExpr; i++){
394         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
395       }
396     }
397     sqlite3SetJoinExpr(p->pLeft, iTable);
398     p = p->pRight;
399   }
400 }
401 
402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
404 ** an ordinary term that omits the EP_FromJoin mark.
405 **
406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
407 */
408 static void unsetJoinExpr(Expr *p, int iTable){
409   while( p ){
410     if( ExprHasProperty(p, EP_FromJoin)
411      && (iTable<0 || p->iRightJoinTable==iTable) ){
412       ExprClearProperty(p, EP_FromJoin);
413     }
414     if( p->op==TK_COLUMN && p->iTable==iTable ){
415       ExprClearProperty(p, EP_CanBeNull);
416     }
417     if( p->op==TK_FUNCTION && p->x.pList ){
418       int i;
419       for(i=0; i<p->x.pList->nExpr; i++){
420         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
421       }
422     }
423     unsetJoinExpr(p->pLeft, iTable);
424     p = p->pRight;
425   }
426 }
427 
428 /*
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
432 **
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc.  The right-most
435 ** table is the last entry.  The join operator is held in the entry to
436 ** the left.  Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
439 **
440 ** This routine returns the number of errors encountered.
441 */
442 static int sqliteProcessJoin(Parse *pParse, Select *p){
443   SrcList *pSrc;                  /* All tables in the FROM clause */
444   int i, j;                       /* Loop counters */
445   SrcItem *pLeft;                 /* Left table being joined */
446   SrcItem *pRight;                /* Right table being joined */
447 
448   pSrc = p->pSrc;
449   pLeft = &pSrc->a[0];
450   pRight = &pLeft[1];
451   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
452     Table *pRightTab = pRight->pTab;
453     int isOuter;
454 
455     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
456     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 
458     /* When the NATURAL keyword is present, add WHERE clause terms for
459     ** every column that the two tables have in common.
460     */
461     if( pRight->fg.jointype & JT_NATURAL ){
462       if( pRight->pOn || pRight->pUsing ){
463         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
464            "an ON or USING clause", 0);
465         return 1;
466       }
467       for(j=0; j<pRightTab->nCol; j++){
468         char *zName;   /* Name of column in the right table */
469         int iLeft;     /* Matching left table */
470         int iLeftCol;  /* Matching column in the left table */
471 
472         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
473         zName = pRightTab->aCol[j].zCnName;
474         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
475           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
476                 isOuter, &p->pWhere);
477         }
478       }
479     }
480 
481     /* Disallow both ON and USING clauses in the same join
482     */
483     if( pRight->pOn && pRight->pUsing ){
484       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
485         "clauses in the same join");
486       return 1;
487     }
488 
489     /* Add the ON clause to the end of the WHERE clause, connected by
490     ** an AND operator.
491     */
492     if( pRight->pOn ){
493       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
494       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
495       pRight->pOn = 0;
496     }
497 
498     /* Create extra terms on the WHERE clause for each column named
499     ** in the USING clause.  Example: If the two tables to be joined are
500     ** A and B and the USING clause names X, Y, and Z, then add this
501     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
502     ** Report an error if any column mentioned in the USING clause is
503     ** not contained in both tables to be joined.
504     */
505     if( pRight->pUsing ){
506       IdList *pList = pRight->pUsing;
507       for(j=0; j<pList->nId; j++){
508         char *zName;     /* Name of the term in the USING clause */
509         int iLeft;       /* Table on the left with matching column name */
510         int iLeftCol;    /* Column number of matching column on the left */
511         int iRightCol;   /* Column number of matching column on the right */
512 
513         zName = pList->a[j].zName;
514         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
515         if( iRightCol<0
516          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
517         ){
518           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
519             "not present in both tables", zName);
520           return 1;
521         }
522         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
523                      isOuter, &p->pWhere);
524       }
525     }
526   }
527   return 0;
528 }
529 
530 /*
531 ** An instance of this object holds information (beyond pParse and pSelect)
532 ** needed to load the next result row that is to be added to the sorter.
533 */
534 typedef struct RowLoadInfo RowLoadInfo;
535 struct RowLoadInfo {
536   int regResult;               /* Store results in array of registers here */
537   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
539   ExprList *pExtra;            /* Extra columns needed by sorter refs */
540   int regExtraResult;          /* Where to load the extra columns */
541 #endif
542 };
543 
544 /*
545 ** This routine does the work of loading query data into an array of
546 ** registers so that it can be added to the sorter.
547 */
548 static void innerLoopLoadRow(
549   Parse *pParse,             /* Statement under construction */
550   Select *pSelect,           /* The query being coded */
551   RowLoadInfo *pInfo         /* Info needed to complete the row load */
552 ){
553   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
554                           0, pInfo->ecelFlags);
555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
556   if( pInfo->pExtra ){
557     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
558     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
559   }
560 #endif
561 }
562 
563 /*
564 ** Code the OP_MakeRecord instruction that generates the entry to be
565 ** added into the sorter.
566 **
567 ** Return the register in which the result is stored.
568 */
569 static int makeSorterRecord(
570   Parse *pParse,
571   SortCtx *pSort,
572   Select *pSelect,
573   int regBase,
574   int nBase
575 ){
576   int nOBSat = pSort->nOBSat;
577   Vdbe *v = pParse->pVdbe;
578   int regOut = ++pParse->nMem;
579   if( pSort->pDeferredRowLoad ){
580     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
581   }
582   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
583   return regOut;
584 }
585 
586 /*
587 ** Generate code that will push the record in registers regData
588 ** through regData+nData-1 onto the sorter.
589 */
590 static void pushOntoSorter(
591   Parse *pParse,         /* Parser context */
592   SortCtx *pSort,        /* Information about the ORDER BY clause */
593   Select *pSelect,       /* The whole SELECT statement */
594   int regData,           /* First register holding data to be sorted */
595   int regOrigData,       /* First register holding data before packing */
596   int nData,             /* Number of elements in the regData data array */
597   int nPrefixReg         /* No. of reg prior to regData available for use */
598 ){
599   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
600   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
601   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
602   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
603   int regBase;                                     /* Regs for sorter record */
604   int regRecord = 0;                               /* Assembled sorter record */
605   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
606   int op;                            /* Opcode to add sorter record to sorter */
607   int iLimit;                        /* LIMIT counter */
608   int iSkip = 0;                     /* End of the sorter insert loop */
609 
610   assert( bSeq==0 || bSeq==1 );
611 
612   /* Three cases:
613   **   (1) The data to be sorted has already been packed into a Record
614   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
615   **       will be completely unrelated to regOrigData.
616   **   (2) All output columns are included in the sort record.  In that
617   **       case regData==regOrigData.
618   **   (3) Some output columns are omitted from the sort record due to
619   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
620   **       SQLITE_ECEL_OMITREF optimization, or due to the
621   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
622   **       regOrigData is 0 to prevent this routine from trying to copy
623   **       values that might not yet exist.
624   */
625   assert( nData==1 || regData==regOrigData || regOrigData==0 );
626 
627   if( nPrefixReg ){
628     assert( nPrefixReg==nExpr+bSeq );
629     regBase = regData - nPrefixReg;
630   }else{
631     regBase = pParse->nMem + 1;
632     pParse->nMem += nBase;
633   }
634   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
635   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
636   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
637   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
638                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
639   if( bSeq ){
640     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
641   }
642   if( nPrefixReg==0 && nData>0 ){
643     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
644   }
645   if( nOBSat>0 ){
646     int regPrevKey;   /* The first nOBSat columns of the previous row */
647     int addrFirst;    /* Address of the OP_IfNot opcode */
648     int addrJmp;      /* Address of the OP_Jump opcode */
649     VdbeOp *pOp;      /* Opcode that opens the sorter */
650     int nKey;         /* Number of sorting key columns, including OP_Sequence */
651     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
652 
653     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
654     regPrevKey = pParse->nMem+1;
655     pParse->nMem += pSort->nOBSat;
656     nKey = nExpr - pSort->nOBSat + bSeq;
657     if( bSeq ){
658       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
659     }else{
660       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
661     }
662     VdbeCoverage(v);
663     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
664     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
665     if( pParse->db->mallocFailed ) return;
666     pOp->p2 = nKey + nData;
667     pKI = pOp->p4.pKeyInfo;
668     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
669     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
670     testcase( pKI->nAllField > pKI->nKeyField+2 );
671     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
672                                            pKI->nAllField-pKI->nKeyField-1);
673     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
674     addrJmp = sqlite3VdbeCurrentAddr(v);
675     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
676     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
677     pSort->regReturn = ++pParse->nMem;
678     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
679     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
680     if( iLimit ){
681       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
682       VdbeCoverage(v);
683     }
684     sqlite3VdbeJumpHere(v, addrFirst);
685     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
686     sqlite3VdbeJumpHere(v, addrJmp);
687   }
688   if( iLimit ){
689     /* At this point the values for the new sorter entry are stored
690     ** in an array of registers. They need to be composed into a record
691     ** and inserted into the sorter if either (a) there are currently
692     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
693     ** the largest record currently in the sorter. If (b) is true and there
694     ** are already LIMIT+OFFSET items in the sorter, delete the largest
695     ** entry before inserting the new one. This way there are never more
696     ** than LIMIT+OFFSET items in the sorter.
697     **
698     ** If the new record does not need to be inserted into the sorter,
699     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
700     ** value is not zero, then it is a label of where to jump.  Otherwise,
701     ** just bypass the row insert logic.  See the header comment on the
702     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
703     */
704     int iCsr = pSort->iECursor;
705     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
706     VdbeCoverage(v);
707     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
708     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
709                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
710     VdbeCoverage(v);
711     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
712   }
713   if( regRecord==0 ){
714     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
715   }
716   if( pSort->sortFlags & SORTFLAG_UseSorter ){
717     op = OP_SorterInsert;
718   }else{
719     op = OP_IdxInsert;
720   }
721   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
722                        regBase+nOBSat, nBase-nOBSat);
723   if( iSkip ){
724     sqlite3VdbeChangeP2(v, iSkip,
725          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
726   }
727 }
728 
729 /*
730 ** Add code to implement the OFFSET
731 */
732 static void codeOffset(
733   Vdbe *v,          /* Generate code into this VM */
734   int iOffset,      /* Register holding the offset counter */
735   int iContinue     /* Jump here to skip the current record */
736 ){
737   if( iOffset>0 ){
738     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
739     VdbeComment((v, "OFFSET"));
740   }
741 }
742 
743 /*
744 ** Add code that will check to make sure the array of registers starting at
745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
747 ** are available. Which is used depends on the value of parameter eTnctType,
748 ** as follows:
749 **
750 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
751 **     Build an ephemeral table that contains all entries seen before and
752 **     skip entries which have been seen before.
753 **
754 **     Parameter iTab is the cursor number of an ephemeral table that must
755 **     be opened before the VM code generated by this routine is executed.
756 **     The ephemeral cursor table is queried for a record identical to the
757 **     record formed by the current array of registers. If one is found,
758 **     jump to VM address addrRepeat. Otherwise, insert a new record into
759 **     the ephemeral cursor and proceed.
760 **
761 **     The returned value in this case is a copy of parameter iTab.
762 **
763 **   WHERE_DISTINCT_ORDERED:
764 **     In this case rows are being delivered sorted order. The ephermal
765 **     table is not required. Instead, the current set of values
766 **     is compared against previous row. If they match, the new row
767 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
768 **     the VM program proceeds with processing the new row.
769 **
770 **     The returned value in this case is the register number of the first
771 **     in an array of registers used to store the previous result row so that
772 **     it can be compared to the next. The caller must ensure that this
773 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
774 **     will take care of this initialization.)
775 **
776 **   WHERE_DISTINCT_UNIQUE:
777 **     In this case it has already been determined that the rows are distinct.
778 **     No special action is required. The return value is zero.
779 **
780 ** Parameter pEList is the list of expressions used to generated the
781 ** contents of each row. It is used by this routine to determine (a)
782 ** how many elements there are in the array of registers and (b) the
783 ** collation sequences that should be used for the comparisons if
784 ** eTnctType is WHERE_DISTINCT_ORDERED.
785 */
786 static int codeDistinct(
787   Parse *pParse,     /* Parsing and code generating context */
788   int eTnctType,     /* WHERE_DISTINCT_* value */
789   int iTab,          /* A sorting index used to test for distinctness */
790   int addrRepeat,    /* Jump to here if not distinct */
791   ExprList *pEList,  /* Expression for each element */
792   int regElem        /* First element */
793 ){
794   int iRet = 0;
795   int nResultCol = pEList->nExpr;
796   Vdbe *v = pParse->pVdbe;
797 
798   switch( eTnctType ){
799     case WHERE_DISTINCT_ORDERED: {
800       int i;
801       int iJump;              /* Jump destination */
802       int regPrev;            /* Previous row content */
803 
804       /* Allocate space for the previous row */
805       iRet = regPrev = pParse->nMem+1;
806       pParse->nMem += nResultCol;
807 
808       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
809       for(i=0; i<nResultCol; i++){
810         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
811         if( i<nResultCol-1 ){
812           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
813           VdbeCoverage(v);
814         }else{
815           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
816           VdbeCoverage(v);
817          }
818         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
819         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
820       }
821       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
822       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
823       break;
824     }
825 
826     case WHERE_DISTINCT_UNIQUE: {
827       /* nothing to do */
828       break;
829     }
830 
831     default: {
832       int r1 = sqlite3GetTempReg(pParse);
833       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
834       VdbeCoverage(v);
835       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
836       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
837       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
838       sqlite3ReleaseTempReg(pParse, r1);
839       iRet = iTab;
840       break;
841     }
842   }
843 
844   return iRet;
845 }
846 
847 /*
848 ** This routine runs after codeDistinct().  It makes necessary
849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
850 ** routine made use of.  This processing must be done separately since
851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
852 ** laid down.
853 **
854 ** WHERE_DISTINCT_NOOP:
855 ** WHERE_DISTINCT_UNORDERED:
856 **
857 **     No adjustments necessary.  This function is a no-op.
858 **
859 ** WHERE_DISTINCT_UNIQUE:
860 **
861 **     The ephemeral table is not needed.  So change the
862 **     OP_OpenEphemeral opcode into an OP_Noop.
863 **
864 ** WHERE_DISTINCT_ORDERED:
865 **
866 **     The ephemeral table is not needed.  But we do need register
867 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
868 **     into an OP_Null on the iVal register.
869 */
870 static void fixDistinctOpenEph(
871   Parse *pParse,     /* Parsing and code generating context */
872   int eTnctType,     /* WHERE_DISTINCT_* value */
873   int iVal,          /* Value returned by codeDistinct() */
874   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
875 ){
876   if( pParse->nErr==0
877    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
878   ){
879     Vdbe *v = pParse->pVdbe;
880     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
881     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
882       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
883     }
884     if( eTnctType==WHERE_DISTINCT_ORDERED ){
885       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
886       ** bit on the first register of the previous value.  This will cause the
887       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
888       ** the loop even if the first row is all NULLs.  */
889       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
890       pOp->opcode = OP_Null;
891       pOp->p1 = 1;
892       pOp->p2 = iVal;
893     }
894   }
895 }
896 
897 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
898 /*
899 ** This function is called as part of inner-loop generation for a SELECT
900 ** statement with an ORDER BY that is not optimized by an index. It
901 ** determines the expressions, if any, that the sorter-reference
902 ** optimization should be used for. The sorter-reference optimization
903 ** is used for SELECT queries like:
904 **
905 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
906 **
907 ** If the optimization is used for expression "bigblob", then instead of
908 ** storing values read from that column in the sorter records, the PK of
909 ** the row from table t1 is stored instead. Then, as records are extracted from
910 ** the sorter to return to the user, the required value of bigblob is
911 ** retrieved directly from table t1. If the values are very large, this
912 ** can be more efficient than storing them directly in the sorter records.
913 **
914 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
915 ** for which the sorter-reference optimization should be enabled.
916 ** Additionally, the pSort->aDefer[] array is populated with entries
917 ** for all cursors required to evaluate all selected expressions. Finally.
918 ** output variable (*ppExtra) is set to an expression list containing
919 ** expressions for all extra PK values that should be stored in the
920 ** sorter records.
921 */
922 static void selectExprDefer(
923   Parse *pParse,                  /* Leave any error here */
924   SortCtx *pSort,                 /* Sorter context */
925   ExprList *pEList,               /* Expressions destined for sorter */
926   ExprList **ppExtra              /* Expressions to append to sorter record */
927 ){
928   int i;
929   int nDefer = 0;
930   ExprList *pExtra = 0;
931   for(i=0; i<pEList->nExpr; i++){
932     struct ExprList_item *pItem = &pEList->a[i];
933     if( pItem->u.x.iOrderByCol==0 ){
934       Expr *pExpr = pItem->pExpr;
935       Table *pTab = pExpr->y.pTab;
936       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
937        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
938       ){
939         int j;
940         for(j=0; j<nDefer; j++){
941           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
942         }
943         if( j==nDefer ){
944           if( nDefer==ArraySize(pSort->aDefer) ){
945             continue;
946           }else{
947             int nKey = 1;
948             int k;
949             Index *pPk = 0;
950             if( !HasRowid(pTab) ){
951               pPk = sqlite3PrimaryKeyIndex(pTab);
952               nKey = pPk->nKeyCol;
953             }
954             for(k=0; k<nKey; k++){
955               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
956               if( pNew ){
957                 pNew->iTable = pExpr->iTable;
958                 pNew->y.pTab = pExpr->y.pTab;
959                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
960                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
961               }
962             }
963             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
964             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
965             pSort->aDefer[nDefer].nKey = nKey;
966             nDefer++;
967           }
968         }
969         pItem->bSorterRef = 1;
970       }
971     }
972   }
973   pSort->nDefer = (u8)nDefer;
974   *ppExtra = pExtra;
975 }
976 #endif
977 
978 /*
979 ** This routine generates the code for the inside of the inner loop
980 ** of a SELECT.
981 **
982 ** If srcTab is negative, then the p->pEList expressions
983 ** are evaluated in order to get the data for this row.  If srcTab is
984 ** zero or more, then data is pulled from srcTab and p->pEList is used only
985 ** to get the number of columns and the collation sequence for each column.
986 */
987 static void selectInnerLoop(
988   Parse *pParse,          /* The parser context */
989   Select *p,              /* The complete select statement being coded */
990   int srcTab,             /* Pull data from this table if non-negative */
991   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
992   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
993   SelectDest *pDest,      /* How to dispose of the results */
994   int iContinue,          /* Jump here to continue with next row */
995   int iBreak              /* Jump here to break out of the inner loop */
996 ){
997   Vdbe *v = pParse->pVdbe;
998   int i;
999   int hasDistinct;            /* True if the DISTINCT keyword is present */
1000   int eDest = pDest->eDest;   /* How to dispose of results */
1001   int iParm = pDest->iSDParm; /* First argument to disposal method */
1002   int nResultCol;             /* Number of result columns */
1003   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1004   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1005 
1006   /* Usually, regResult is the first cell in an array of memory cells
1007   ** containing the current result row. In this case regOrig is set to the
1008   ** same value. However, if the results are being sent to the sorter, the
1009   ** values for any expressions that are also part of the sort-key are omitted
1010   ** from this array. In this case regOrig is set to zero.  */
1011   int regResult;              /* Start of memory holding current results */
1012   int regOrig;                /* Start of memory holding full result (or 0) */
1013 
1014   assert( v );
1015   assert( p->pEList!=0 );
1016   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1017   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1018   if( pSort==0 && !hasDistinct ){
1019     assert( iContinue!=0 );
1020     codeOffset(v, p->iOffset, iContinue);
1021   }
1022 
1023   /* Pull the requested columns.
1024   */
1025   nResultCol = p->pEList->nExpr;
1026 
1027   if( pDest->iSdst==0 ){
1028     if( pSort ){
1029       nPrefixReg = pSort->pOrderBy->nExpr;
1030       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1031       pParse->nMem += nPrefixReg;
1032     }
1033     pDest->iSdst = pParse->nMem+1;
1034     pParse->nMem += nResultCol;
1035   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1036     /* This is an error condition that can result, for example, when a SELECT
1037     ** on the right-hand side of an INSERT contains more result columns than
1038     ** there are columns in the table on the left.  The error will be caught
1039     ** and reported later.  But we need to make sure enough memory is allocated
1040     ** to avoid other spurious errors in the meantime. */
1041     pParse->nMem += nResultCol;
1042   }
1043   pDest->nSdst = nResultCol;
1044   regOrig = regResult = pDest->iSdst;
1045   if( srcTab>=0 ){
1046     for(i=0; i<nResultCol; i++){
1047       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1048       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1049     }
1050   }else if( eDest!=SRT_Exists ){
1051 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1052     ExprList *pExtra = 0;
1053 #endif
1054     /* If the destination is an EXISTS(...) expression, the actual
1055     ** values returned by the SELECT are not required.
1056     */
1057     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1058     ExprList *pEList;
1059     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1060       ecelFlags = SQLITE_ECEL_DUP;
1061     }else{
1062       ecelFlags = 0;
1063     }
1064     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1065       /* For each expression in p->pEList that is a copy of an expression in
1066       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1067       ** iOrderByCol value to one more than the index of the ORDER BY
1068       ** expression within the sort-key that pushOntoSorter() will generate.
1069       ** This allows the p->pEList field to be omitted from the sorted record,
1070       ** saving space and CPU cycles.  */
1071       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1072 
1073       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1074         int j;
1075         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1076           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1077         }
1078       }
1079 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1080       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1081       if( pExtra && pParse->db->mallocFailed==0 ){
1082         /* If there are any extra PK columns to add to the sorter records,
1083         ** allocate extra memory cells and adjust the OpenEphemeral
1084         ** instruction to account for the larger records. This is only
1085         ** required if there are one or more WITHOUT ROWID tables with
1086         ** composite primary keys in the SortCtx.aDefer[] array.  */
1087         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1088         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1089         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1090         pParse->nMem += pExtra->nExpr;
1091       }
1092 #endif
1093 
1094       /* Adjust nResultCol to account for columns that are omitted
1095       ** from the sorter by the optimizations in this branch */
1096       pEList = p->pEList;
1097       for(i=0; i<pEList->nExpr; i++){
1098         if( pEList->a[i].u.x.iOrderByCol>0
1099 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1100          || pEList->a[i].bSorterRef
1101 #endif
1102         ){
1103           nResultCol--;
1104           regOrig = 0;
1105         }
1106       }
1107 
1108       testcase( regOrig );
1109       testcase( eDest==SRT_Set );
1110       testcase( eDest==SRT_Mem );
1111       testcase( eDest==SRT_Coroutine );
1112       testcase( eDest==SRT_Output );
1113       assert( eDest==SRT_Set || eDest==SRT_Mem
1114            || eDest==SRT_Coroutine || eDest==SRT_Output
1115            || eDest==SRT_Upfrom );
1116     }
1117     sRowLoadInfo.regResult = regResult;
1118     sRowLoadInfo.ecelFlags = ecelFlags;
1119 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1120     sRowLoadInfo.pExtra = pExtra;
1121     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1122     if( pExtra ) nResultCol += pExtra->nExpr;
1123 #endif
1124     if( p->iLimit
1125      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1126      && nPrefixReg>0
1127     ){
1128       assert( pSort!=0 );
1129       assert( hasDistinct==0 );
1130       pSort->pDeferredRowLoad = &sRowLoadInfo;
1131       regOrig = 0;
1132     }else{
1133       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1134     }
1135   }
1136 
1137   /* If the DISTINCT keyword was present on the SELECT statement
1138   ** and this row has been seen before, then do not make this row
1139   ** part of the result.
1140   */
1141   if( hasDistinct ){
1142     int eType = pDistinct->eTnctType;
1143     int iTab = pDistinct->tabTnct;
1144     assert( nResultCol==p->pEList->nExpr );
1145     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1146     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1147     if( pSort==0 ){
1148       codeOffset(v, p->iOffset, iContinue);
1149     }
1150   }
1151 
1152   switch( eDest ){
1153     /* In this mode, write each query result to the key of the temporary
1154     ** table iParm.
1155     */
1156 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1157     case SRT_Union: {
1158       int r1;
1159       r1 = sqlite3GetTempReg(pParse);
1160       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1161       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1162       sqlite3ReleaseTempReg(pParse, r1);
1163       break;
1164     }
1165 
1166     /* Construct a record from the query result, but instead of
1167     ** saving that record, use it as a key to delete elements from
1168     ** the temporary table iParm.
1169     */
1170     case SRT_Except: {
1171       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1172       break;
1173     }
1174 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1175 
1176     /* Store the result as data using a unique key.
1177     */
1178     case SRT_Fifo:
1179     case SRT_DistFifo:
1180     case SRT_Table:
1181     case SRT_EphemTab: {
1182       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1183       testcase( eDest==SRT_Table );
1184       testcase( eDest==SRT_EphemTab );
1185       testcase( eDest==SRT_Fifo );
1186       testcase( eDest==SRT_DistFifo );
1187       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1188 #ifndef SQLITE_OMIT_CTE
1189       if( eDest==SRT_DistFifo ){
1190         /* If the destination is DistFifo, then cursor (iParm+1) is open
1191         ** on an ephemeral index. If the current row is already present
1192         ** in the index, do not write it to the output. If not, add the
1193         ** current row to the index and proceed with writing it to the
1194         ** output table as well.  */
1195         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1196         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1197         VdbeCoverage(v);
1198         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1199         assert( pSort==0 );
1200       }
1201 #endif
1202       if( pSort ){
1203         assert( regResult==regOrig );
1204         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1205       }else{
1206         int r2 = sqlite3GetTempReg(pParse);
1207         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1208         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1209         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1210         sqlite3ReleaseTempReg(pParse, r2);
1211       }
1212       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1213       break;
1214     }
1215 
1216     case SRT_Upfrom: {
1217       if( pSort ){
1218         pushOntoSorter(
1219             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1220       }else{
1221         int i2 = pDest->iSDParm2;
1222         int r1 = sqlite3GetTempReg(pParse);
1223 
1224         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1225         ** might still be trying to return one row, because that is what
1226         ** aggregates do.  Don't record that empty row in the output table. */
1227         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1228 
1229         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1230                           regResult+(i2<0), nResultCol-(i2<0), r1);
1231         if( i2<0 ){
1232           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1233         }else{
1234           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1235         }
1236       }
1237       break;
1238     }
1239 
1240 #ifndef SQLITE_OMIT_SUBQUERY
1241     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1242     ** then there should be a single item on the stack.  Write this
1243     ** item into the set table with bogus data.
1244     */
1245     case SRT_Set: {
1246       if( pSort ){
1247         /* At first glance you would think we could optimize out the
1248         ** ORDER BY in this case since the order of entries in the set
1249         ** does not matter.  But there might be a LIMIT clause, in which
1250         ** case the order does matter */
1251         pushOntoSorter(
1252             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1253       }else{
1254         int r1 = sqlite3GetTempReg(pParse);
1255         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1256         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1257             r1, pDest->zAffSdst, nResultCol);
1258         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1259         sqlite3ReleaseTempReg(pParse, r1);
1260       }
1261       break;
1262     }
1263 
1264 
1265     /* If any row exist in the result set, record that fact and abort.
1266     */
1267     case SRT_Exists: {
1268       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1269       /* The LIMIT clause will terminate the loop for us */
1270       break;
1271     }
1272 
1273     /* If this is a scalar select that is part of an expression, then
1274     ** store the results in the appropriate memory cell or array of
1275     ** memory cells and break out of the scan loop.
1276     */
1277     case SRT_Mem: {
1278       if( pSort ){
1279         assert( nResultCol<=pDest->nSdst );
1280         pushOntoSorter(
1281             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1282       }else{
1283         assert( nResultCol==pDest->nSdst );
1284         assert( regResult==iParm );
1285         /* The LIMIT clause will jump out of the loop for us */
1286       }
1287       break;
1288     }
1289 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1290 
1291     case SRT_Coroutine:       /* Send data to a co-routine */
1292     case SRT_Output: {        /* Return the results */
1293       testcase( eDest==SRT_Coroutine );
1294       testcase( eDest==SRT_Output );
1295       if( pSort ){
1296         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1297                        nPrefixReg);
1298       }else if( eDest==SRT_Coroutine ){
1299         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1300       }else{
1301         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1302       }
1303       break;
1304     }
1305 
1306 #ifndef SQLITE_OMIT_CTE
1307     /* Write the results into a priority queue that is order according to
1308     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1309     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1310     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1311     ** final OP_Sequence column.  The last column is the record as a blob.
1312     */
1313     case SRT_DistQueue:
1314     case SRT_Queue: {
1315       int nKey;
1316       int r1, r2, r3;
1317       int addrTest = 0;
1318       ExprList *pSO;
1319       pSO = pDest->pOrderBy;
1320       assert( pSO );
1321       nKey = pSO->nExpr;
1322       r1 = sqlite3GetTempReg(pParse);
1323       r2 = sqlite3GetTempRange(pParse, nKey+2);
1324       r3 = r2+nKey+1;
1325       if( eDest==SRT_DistQueue ){
1326         /* If the destination is DistQueue, then cursor (iParm+1) is open
1327         ** on a second ephemeral index that holds all values every previously
1328         ** added to the queue. */
1329         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1330                                         regResult, nResultCol);
1331         VdbeCoverage(v);
1332       }
1333       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1334       if( eDest==SRT_DistQueue ){
1335         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1336         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1337       }
1338       for(i=0; i<nKey; i++){
1339         sqlite3VdbeAddOp2(v, OP_SCopy,
1340                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1341                           r2+i);
1342       }
1343       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1344       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1345       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1346       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1347       sqlite3ReleaseTempReg(pParse, r1);
1348       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1349       break;
1350     }
1351 #endif /* SQLITE_OMIT_CTE */
1352 
1353 
1354 
1355 #if !defined(SQLITE_OMIT_TRIGGER)
1356     /* Discard the results.  This is used for SELECT statements inside
1357     ** the body of a TRIGGER.  The purpose of such selects is to call
1358     ** user-defined functions that have side effects.  We do not care
1359     ** about the actual results of the select.
1360     */
1361     default: {
1362       assert( eDest==SRT_Discard );
1363       break;
1364     }
1365 #endif
1366   }
1367 
1368   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1369   ** there is a sorter, in which case the sorter has already limited
1370   ** the output for us.
1371   */
1372   if( pSort==0 && p->iLimit ){
1373     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1374   }
1375 }
1376 
1377 /*
1378 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1379 ** X extra columns.
1380 */
1381 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1382   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1383   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1384   if( p ){
1385     p->aSortFlags = (u8*)&p->aColl[N+X];
1386     p->nKeyField = (u16)N;
1387     p->nAllField = (u16)(N+X);
1388     p->enc = ENC(db);
1389     p->db = db;
1390     p->nRef = 1;
1391     memset(&p[1], 0, nExtra);
1392   }else{
1393     sqlite3OomFault(db);
1394   }
1395   return p;
1396 }
1397 
1398 /*
1399 ** Deallocate a KeyInfo object
1400 */
1401 void sqlite3KeyInfoUnref(KeyInfo *p){
1402   if( p ){
1403     assert( p->nRef>0 );
1404     p->nRef--;
1405     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1406   }
1407 }
1408 
1409 /*
1410 ** Make a new pointer to a KeyInfo object
1411 */
1412 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1413   if( p ){
1414     assert( p->nRef>0 );
1415     p->nRef++;
1416   }
1417   return p;
1418 }
1419 
1420 #ifdef SQLITE_DEBUG
1421 /*
1422 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1423 ** can only be changed if this is just a single reference to the object.
1424 **
1425 ** This routine is used only inside of assert() statements.
1426 */
1427 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1428 #endif /* SQLITE_DEBUG */
1429 
1430 /*
1431 ** Given an expression list, generate a KeyInfo structure that records
1432 ** the collating sequence for each expression in that expression list.
1433 **
1434 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1435 ** KeyInfo structure is appropriate for initializing a virtual index to
1436 ** implement that clause.  If the ExprList is the result set of a SELECT
1437 ** then the KeyInfo structure is appropriate for initializing a virtual
1438 ** index to implement a DISTINCT test.
1439 **
1440 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1441 ** function is responsible for seeing that this structure is eventually
1442 ** freed.
1443 */
1444 KeyInfo *sqlite3KeyInfoFromExprList(
1445   Parse *pParse,       /* Parsing context */
1446   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1447   int iStart,          /* Begin with this column of pList */
1448   int nExtra           /* Add this many extra columns to the end */
1449 ){
1450   int nExpr;
1451   KeyInfo *pInfo;
1452   struct ExprList_item *pItem;
1453   sqlite3 *db = pParse->db;
1454   int i;
1455 
1456   nExpr = pList->nExpr;
1457   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1458   if( pInfo ){
1459     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1460     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1461       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1462       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1463     }
1464   }
1465   return pInfo;
1466 }
1467 
1468 /*
1469 ** Name of the connection operator, used for error messages.
1470 */
1471 const char *sqlite3SelectOpName(int id){
1472   char *z;
1473   switch( id ){
1474     case TK_ALL:       z = "UNION ALL";   break;
1475     case TK_INTERSECT: z = "INTERSECT";   break;
1476     case TK_EXCEPT:    z = "EXCEPT";      break;
1477     default:           z = "UNION";       break;
1478   }
1479   return z;
1480 }
1481 
1482 #ifndef SQLITE_OMIT_EXPLAIN
1483 /*
1484 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1485 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1486 ** where the caption is of the form:
1487 **
1488 **   "USE TEMP B-TREE FOR xxx"
1489 **
1490 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1491 ** is determined by the zUsage argument.
1492 */
1493 static void explainTempTable(Parse *pParse, const char *zUsage){
1494   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1495 }
1496 
1497 /*
1498 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1499 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1500 ** in sqlite3Select() to assign values to structure member variables that
1501 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1502 ** code with #ifndef directives.
1503 */
1504 # define explainSetInteger(a, b) a = b
1505 
1506 #else
1507 /* No-op versions of the explainXXX() functions and macros. */
1508 # define explainTempTable(y,z)
1509 # define explainSetInteger(y,z)
1510 #endif
1511 
1512 
1513 /*
1514 ** If the inner loop was generated using a non-null pOrderBy argument,
1515 ** then the results were placed in a sorter.  After the loop is terminated
1516 ** we need to run the sorter and output the results.  The following
1517 ** routine generates the code needed to do that.
1518 */
1519 static void generateSortTail(
1520   Parse *pParse,    /* Parsing context */
1521   Select *p,        /* The SELECT statement */
1522   SortCtx *pSort,   /* Information on the ORDER BY clause */
1523   int nColumn,      /* Number of columns of data */
1524   SelectDest *pDest /* Write the sorted results here */
1525 ){
1526   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1527   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1528   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1529   int addr;                       /* Top of output loop. Jump for Next. */
1530   int addrOnce = 0;
1531   int iTab;
1532   ExprList *pOrderBy = pSort->pOrderBy;
1533   int eDest = pDest->eDest;
1534   int iParm = pDest->iSDParm;
1535   int regRow;
1536   int regRowid;
1537   int iCol;
1538   int nKey;                       /* Number of key columns in sorter record */
1539   int iSortTab;                   /* Sorter cursor to read from */
1540   int i;
1541   int bSeq;                       /* True if sorter record includes seq. no. */
1542   int nRefKey = 0;
1543   struct ExprList_item *aOutEx = p->pEList->a;
1544 
1545   assert( addrBreak<0 );
1546   if( pSort->labelBkOut ){
1547     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1548     sqlite3VdbeGoto(v, addrBreak);
1549     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1550   }
1551 
1552 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1553   /* Open any cursors needed for sorter-reference expressions */
1554   for(i=0; i<pSort->nDefer; i++){
1555     Table *pTab = pSort->aDefer[i].pTab;
1556     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1557     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1558     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1559   }
1560 #endif
1561 
1562   iTab = pSort->iECursor;
1563   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1564     regRowid = 0;
1565     regRow = pDest->iSdst;
1566   }else{
1567     regRowid = sqlite3GetTempReg(pParse);
1568     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1569       regRow = sqlite3GetTempReg(pParse);
1570       nColumn = 0;
1571     }else{
1572       regRow = sqlite3GetTempRange(pParse, nColumn);
1573     }
1574   }
1575   nKey = pOrderBy->nExpr - pSort->nOBSat;
1576   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1577     int regSortOut = ++pParse->nMem;
1578     iSortTab = pParse->nTab++;
1579     if( pSort->labelBkOut ){
1580       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1581     }
1582     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1583         nKey+1+nColumn+nRefKey);
1584     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1585     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1586     VdbeCoverage(v);
1587     codeOffset(v, p->iOffset, addrContinue);
1588     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1589     bSeq = 0;
1590   }else{
1591     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1592     codeOffset(v, p->iOffset, addrContinue);
1593     iSortTab = iTab;
1594     bSeq = 1;
1595   }
1596   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1597 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1598     if( aOutEx[i].bSorterRef ) continue;
1599 #endif
1600     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1601   }
1602 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1603   if( pSort->nDefer ){
1604     int iKey = iCol+1;
1605     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1606 
1607     for(i=0; i<pSort->nDefer; i++){
1608       int iCsr = pSort->aDefer[i].iCsr;
1609       Table *pTab = pSort->aDefer[i].pTab;
1610       int nKey = pSort->aDefer[i].nKey;
1611 
1612       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1613       if( HasRowid(pTab) ){
1614         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1615         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1616             sqlite3VdbeCurrentAddr(v)+1, regKey);
1617       }else{
1618         int k;
1619         int iJmp;
1620         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1621         for(k=0; k<nKey; k++){
1622           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1623         }
1624         iJmp = sqlite3VdbeCurrentAddr(v);
1625         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1626         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1627         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1628       }
1629     }
1630     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1631   }
1632 #endif
1633   for(i=nColumn-1; i>=0; i--){
1634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1635     if( aOutEx[i].bSorterRef ){
1636       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1637     }else
1638 #endif
1639     {
1640       int iRead;
1641       if( aOutEx[i].u.x.iOrderByCol ){
1642         iRead = aOutEx[i].u.x.iOrderByCol-1;
1643       }else{
1644         iRead = iCol--;
1645       }
1646       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1647       VdbeComment((v, "%s", aOutEx[i].zEName));
1648     }
1649   }
1650   switch( eDest ){
1651     case SRT_Table:
1652     case SRT_EphemTab: {
1653       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1654       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1655       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1656       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1657       break;
1658     }
1659 #ifndef SQLITE_OMIT_SUBQUERY
1660     case SRT_Set: {
1661       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1662       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1663                         pDest->zAffSdst, nColumn);
1664       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1665       break;
1666     }
1667     case SRT_Mem: {
1668       /* The LIMIT clause will terminate the loop for us */
1669       break;
1670     }
1671 #endif
1672     case SRT_Upfrom: {
1673       int i2 = pDest->iSDParm2;
1674       int r1 = sqlite3GetTempReg(pParse);
1675       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1676       if( i2<0 ){
1677         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1678       }else{
1679         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1680       }
1681       break;
1682     }
1683     default: {
1684       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1685       testcase( eDest==SRT_Output );
1686       testcase( eDest==SRT_Coroutine );
1687       if( eDest==SRT_Output ){
1688         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1689       }else{
1690         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1691       }
1692       break;
1693     }
1694   }
1695   if( regRowid ){
1696     if( eDest==SRT_Set ){
1697       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1698     }else{
1699       sqlite3ReleaseTempReg(pParse, regRow);
1700     }
1701     sqlite3ReleaseTempReg(pParse, regRowid);
1702   }
1703   /* The bottom of the loop
1704   */
1705   sqlite3VdbeResolveLabel(v, addrContinue);
1706   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1707     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1708   }else{
1709     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1710   }
1711   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1712   sqlite3VdbeResolveLabel(v, addrBreak);
1713 }
1714 
1715 /*
1716 ** Return a pointer to a string containing the 'declaration type' of the
1717 ** expression pExpr. The string may be treated as static by the caller.
1718 **
1719 ** Also try to estimate the size of the returned value and return that
1720 ** result in *pEstWidth.
1721 **
1722 ** The declaration type is the exact datatype definition extracted from the
1723 ** original CREATE TABLE statement if the expression is a column. The
1724 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1725 ** is considered a column can be complex in the presence of subqueries. The
1726 ** result-set expression in all of the following SELECT statements is
1727 ** considered a column by this function.
1728 **
1729 **   SELECT col FROM tbl;
1730 **   SELECT (SELECT col FROM tbl;
1731 **   SELECT (SELECT col FROM tbl);
1732 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1733 **
1734 ** The declaration type for any expression other than a column is NULL.
1735 **
1736 ** This routine has either 3 or 6 parameters depending on whether or not
1737 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1738 */
1739 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1741 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1742 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1743 #endif
1744 static const char *columnTypeImpl(
1745   NameContext *pNC,
1746 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1747   Expr *pExpr
1748 #else
1749   Expr *pExpr,
1750   const char **pzOrigDb,
1751   const char **pzOrigTab,
1752   const char **pzOrigCol
1753 #endif
1754 ){
1755   char const *zType = 0;
1756   int j;
1757 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1758   char const *zOrigDb = 0;
1759   char const *zOrigTab = 0;
1760   char const *zOrigCol = 0;
1761 #endif
1762 
1763   assert( pExpr!=0 );
1764   assert( pNC->pSrcList!=0 );
1765   switch( pExpr->op ){
1766     case TK_COLUMN: {
1767       /* The expression is a column. Locate the table the column is being
1768       ** extracted from in NameContext.pSrcList. This table may be real
1769       ** database table or a subquery.
1770       */
1771       Table *pTab = 0;            /* Table structure column is extracted from */
1772       Select *pS = 0;             /* Select the column is extracted from */
1773       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1774       while( pNC && !pTab ){
1775         SrcList *pTabList = pNC->pSrcList;
1776         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1777         if( j<pTabList->nSrc ){
1778           pTab = pTabList->a[j].pTab;
1779           pS = pTabList->a[j].pSelect;
1780         }else{
1781           pNC = pNC->pNext;
1782         }
1783       }
1784 
1785       if( pTab==0 ){
1786         /* At one time, code such as "SELECT new.x" within a trigger would
1787         ** cause this condition to run.  Since then, we have restructured how
1788         ** trigger code is generated and so this condition is no longer
1789         ** possible. However, it can still be true for statements like
1790         ** the following:
1791         **
1792         **   CREATE TABLE t1(col INTEGER);
1793         **   SELECT (SELECT t1.col) FROM FROM t1;
1794         **
1795         ** when columnType() is called on the expression "t1.col" in the
1796         ** sub-select. In this case, set the column type to NULL, even
1797         ** though it should really be "INTEGER".
1798         **
1799         ** This is not a problem, as the column type of "t1.col" is never
1800         ** used. When columnType() is called on the expression
1801         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1802         ** branch below.  */
1803         break;
1804       }
1805 
1806       assert( pTab && pExpr->y.pTab==pTab );
1807       if( pS ){
1808         /* The "table" is actually a sub-select or a view in the FROM clause
1809         ** of the SELECT statement. Return the declaration type and origin
1810         ** data for the result-set column of the sub-select.
1811         */
1812         if( iCol<pS->pEList->nExpr
1813 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1814          && iCol>=0
1815 #else
1816          && ALWAYS(iCol>=0)
1817 #endif
1818         ){
1819           /* If iCol is less than zero, then the expression requests the
1820           ** rowid of the sub-select or view. This expression is legal (see
1821           ** test case misc2.2.2) - it always evaluates to NULL.
1822           */
1823           NameContext sNC;
1824           Expr *p = pS->pEList->a[iCol].pExpr;
1825           sNC.pSrcList = pS->pSrc;
1826           sNC.pNext = pNC;
1827           sNC.pParse = pNC->pParse;
1828           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1829         }
1830       }else{
1831         /* A real table or a CTE table */
1832         assert( !pS );
1833 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1834         if( iCol<0 ) iCol = pTab->iPKey;
1835         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1836         if( iCol<0 ){
1837           zType = "INTEGER";
1838           zOrigCol = "rowid";
1839         }else{
1840           zOrigCol = pTab->aCol[iCol].zCnName;
1841           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1842         }
1843         zOrigTab = pTab->zName;
1844         if( pNC->pParse && pTab->pSchema ){
1845           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1846           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1847         }
1848 #else
1849         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1850         if( iCol<0 ){
1851           zType = "INTEGER";
1852         }else{
1853           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1854         }
1855 #endif
1856       }
1857       break;
1858     }
1859 #ifndef SQLITE_OMIT_SUBQUERY
1860     case TK_SELECT: {
1861       /* The expression is a sub-select. Return the declaration type and
1862       ** origin info for the single column in the result set of the SELECT
1863       ** statement.
1864       */
1865       NameContext sNC;
1866       Select *pS = pExpr->x.pSelect;
1867       Expr *p = pS->pEList->a[0].pExpr;
1868       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1869       sNC.pSrcList = pS->pSrc;
1870       sNC.pNext = pNC;
1871       sNC.pParse = pNC->pParse;
1872       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1873       break;
1874     }
1875 #endif
1876   }
1877 
1878 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1879   if( pzOrigDb ){
1880     assert( pzOrigTab && pzOrigCol );
1881     *pzOrigDb = zOrigDb;
1882     *pzOrigTab = zOrigTab;
1883     *pzOrigCol = zOrigCol;
1884   }
1885 #endif
1886   return zType;
1887 }
1888 
1889 /*
1890 ** Generate code that will tell the VDBE the declaration types of columns
1891 ** in the result set.
1892 */
1893 static void generateColumnTypes(
1894   Parse *pParse,      /* Parser context */
1895   SrcList *pTabList,  /* List of tables */
1896   ExprList *pEList    /* Expressions defining the result set */
1897 ){
1898 #ifndef SQLITE_OMIT_DECLTYPE
1899   Vdbe *v = pParse->pVdbe;
1900   int i;
1901   NameContext sNC;
1902   sNC.pSrcList = pTabList;
1903   sNC.pParse = pParse;
1904   sNC.pNext = 0;
1905   for(i=0; i<pEList->nExpr; i++){
1906     Expr *p = pEList->a[i].pExpr;
1907     const char *zType;
1908 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1909     const char *zOrigDb = 0;
1910     const char *zOrigTab = 0;
1911     const char *zOrigCol = 0;
1912     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1913 
1914     /* The vdbe must make its own copy of the column-type and other
1915     ** column specific strings, in case the schema is reset before this
1916     ** virtual machine is deleted.
1917     */
1918     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1919     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1920     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1921 #else
1922     zType = columnType(&sNC, p, 0, 0, 0);
1923 #endif
1924     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1925   }
1926 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1927 }
1928 
1929 
1930 /*
1931 ** Compute the column names for a SELECT statement.
1932 **
1933 ** The only guarantee that SQLite makes about column names is that if the
1934 ** column has an AS clause assigning it a name, that will be the name used.
1935 ** That is the only documented guarantee.  However, countless applications
1936 ** developed over the years have made baseless assumptions about column names
1937 ** and will break if those assumptions changes.  Hence, use extreme caution
1938 ** when modifying this routine to avoid breaking legacy.
1939 **
1940 ** See Also: sqlite3ColumnsFromExprList()
1941 **
1942 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1943 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1944 ** applications should operate this way.  Nevertheless, we need to support the
1945 ** other modes for legacy:
1946 **
1947 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1948 **                              originally appears in the SELECT statement.  In
1949 **                              other words, the zSpan of the result expression.
1950 **
1951 **    short=ON, full=OFF:       (This is the default setting).  If the result
1952 **                              refers directly to a table column, then the
1953 **                              result column name is just the table column
1954 **                              name: COLUMN.  Otherwise use zSpan.
1955 **
1956 **    full=ON, short=ANY:       If the result refers directly to a table column,
1957 **                              then the result column name with the table name
1958 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1959 */
1960 void sqlite3GenerateColumnNames(
1961   Parse *pParse,      /* Parser context */
1962   Select *pSelect     /* Generate column names for this SELECT statement */
1963 ){
1964   Vdbe *v = pParse->pVdbe;
1965   int i;
1966   Table *pTab;
1967   SrcList *pTabList;
1968   ExprList *pEList;
1969   sqlite3 *db = pParse->db;
1970   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1971   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1972 
1973 #ifndef SQLITE_OMIT_EXPLAIN
1974   /* If this is an EXPLAIN, skip this step */
1975   if( pParse->explain ){
1976     return;
1977   }
1978 #endif
1979 
1980   if( pParse->colNamesSet ) return;
1981   /* Column names are determined by the left-most term of a compound select */
1982   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1983   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1984   pTabList = pSelect->pSrc;
1985   pEList = pSelect->pEList;
1986   assert( v!=0 );
1987   assert( pTabList!=0 );
1988   pParse->colNamesSet = 1;
1989   fullName = (db->flags & SQLITE_FullColNames)!=0;
1990   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1991   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1992   for(i=0; i<pEList->nExpr; i++){
1993     Expr *p = pEList->a[i].pExpr;
1994 
1995     assert( p!=0 );
1996     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1997     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1998     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1999       /* An AS clause always takes first priority */
2000       char *zName = pEList->a[i].zEName;
2001       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2002     }else if( srcName && p->op==TK_COLUMN ){
2003       char *zCol;
2004       int iCol = p->iColumn;
2005       pTab = p->y.pTab;
2006       assert( pTab!=0 );
2007       if( iCol<0 ) iCol = pTab->iPKey;
2008       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2009       if( iCol<0 ){
2010         zCol = "rowid";
2011       }else{
2012         zCol = pTab->aCol[iCol].zCnName;
2013       }
2014       if( fullName ){
2015         char *zName = 0;
2016         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2017         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2018       }else{
2019         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2020       }
2021     }else{
2022       const char *z = pEList->a[i].zEName;
2023       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2024       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2025     }
2026   }
2027   generateColumnTypes(pParse, pTabList, pEList);
2028 }
2029 
2030 /*
2031 ** Given an expression list (which is really the list of expressions
2032 ** that form the result set of a SELECT statement) compute appropriate
2033 ** column names for a table that would hold the expression list.
2034 **
2035 ** All column names will be unique.
2036 **
2037 ** Only the column names are computed.  Column.zType, Column.zColl,
2038 ** and other fields of Column are zeroed.
2039 **
2040 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2041 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2042 **
2043 ** The only guarantee that SQLite makes about column names is that if the
2044 ** column has an AS clause assigning it a name, that will be the name used.
2045 ** That is the only documented guarantee.  However, countless applications
2046 ** developed over the years have made baseless assumptions about column names
2047 ** and will break if those assumptions changes.  Hence, use extreme caution
2048 ** when modifying this routine to avoid breaking legacy.
2049 **
2050 ** See Also: sqlite3GenerateColumnNames()
2051 */
2052 int sqlite3ColumnsFromExprList(
2053   Parse *pParse,          /* Parsing context */
2054   ExprList *pEList,       /* Expr list from which to derive column names */
2055   i16 *pnCol,             /* Write the number of columns here */
2056   Column **paCol          /* Write the new column list here */
2057 ){
2058   sqlite3 *db = pParse->db;   /* Database connection */
2059   int i, j;                   /* Loop counters */
2060   u32 cnt;                    /* Index added to make the name unique */
2061   Column *aCol, *pCol;        /* For looping over result columns */
2062   int nCol;                   /* Number of columns in the result set */
2063   char *zName;                /* Column name */
2064   int nName;                  /* Size of name in zName[] */
2065   Hash ht;                    /* Hash table of column names */
2066   Table *pTab;
2067 
2068   sqlite3HashInit(&ht);
2069   if( pEList ){
2070     nCol = pEList->nExpr;
2071     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2072     testcase( aCol==0 );
2073     if( NEVER(nCol>32767) ) nCol = 32767;
2074   }else{
2075     nCol = 0;
2076     aCol = 0;
2077   }
2078   assert( nCol==(i16)nCol );
2079   *pnCol = nCol;
2080   *paCol = aCol;
2081 
2082   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2083     /* Get an appropriate name for the column
2084     */
2085     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2086       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2087     }else{
2088       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2089       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2090         pColExpr = pColExpr->pRight;
2091         assert( pColExpr!=0 );
2092       }
2093       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2094         /* For columns use the column name name */
2095         int iCol = pColExpr->iColumn;
2096         if( iCol<0 ) iCol = pTab->iPKey;
2097         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2098       }else if( pColExpr->op==TK_ID ){
2099         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2100         zName = pColExpr->u.zToken;
2101       }else{
2102         /* Use the original text of the column expression as its name */
2103         zName = pEList->a[i].zEName;
2104       }
2105     }
2106     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2107       zName = sqlite3DbStrDup(db, zName);
2108     }else{
2109       zName = sqlite3MPrintf(db,"column%d",i+1);
2110     }
2111 
2112     /* Make sure the column name is unique.  If the name is not unique,
2113     ** append an integer to the name so that it becomes unique.
2114     */
2115     cnt = 0;
2116     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2117       nName = sqlite3Strlen30(zName);
2118       if( nName>0 ){
2119         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2120         if( zName[j]==':' ) nName = j;
2121       }
2122       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2123       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2124     }
2125     pCol->zCnName = zName;
2126     pCol->hName = sqlite3StrIHash(zName);
2127     sqlite3ColumnPropertiesFromName(0, pCol);
2128     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2129       sqlite3OomFault(db);
2130     }
2131   }
2132   sqlite3HashClear(&ht);
2133   if( db->mallocFailed ){
2134     for(j=0; j<i; j++){
2135       sqlite3DbFree(db, aCol[j].zCnName);
2136     }
2137     sqlite3DbFree(db, aCol);
2138     *paCol = 0;
2139     *pnCol = 0;
2140     return SQLITE_NOMEM_BKPT;
2141   }
2142   return SQLITE_OK;
2143 }
2144 
2145 /*
2146 ** Add type and collation information to a column list based on
2147 ** a SELECT statement.
2148 **
2149 ** The column list presumably came from selectColumnNamesFromExprList().
2150 ** The column list has only names, not types or collations.  This
2151 ** routine goes through and adds the types and collations.
2152 **
2153 ** This routine requires that all identifiers in the SELECT
2154 ** statement be resolved.
2155 */
2156 void sqlite3SelectAddColumnTypeAndCollation(
2157   Parse *pParse,        /* Parsing contexts */
2158   Table *pTab,          /* Add column type information to this table */
2159   Select *pSelect,      /* SELECT used to determine types and collations */
2160   char aff              /* Default affinity for columns */
2161 ){
2162   sqlite3 *db = pParse->db;
2163   NameContext sNC;
2164   Column *pCol;
2165   CollSeq *pColl;
2166   int i;
2167   Expr *p;
2168   struct ExprList_item *a;
2169 
2170   assert( pSelect!=0 );
2171   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2172   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2173   if( db->mallocFailed ) return;
2174   memset(&sNC, 0, sizeof(sNC));
2175   sNC.pSrcList = pSelect->pSrc;
2176   a = pSelect->pEList->a;
2177   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2178     const char *zType;
2179     int n, m;
2180     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2181     p = a[i].pExpr;
2182     zType = columnType(&sNC, p, 0, 0, 0);
2183     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2184     pCol->affinity = sqlite3ExprAffinity(p);
2185     if( zType ){
2186       m = sqlite3Strlen30(zType);
2187       n = sqlite3Strlen30(pCol->zCnName);
2188       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2189       if( pCol->zCnName ){
2190         memcpy(&pCol->zCnName[n+1], zType, m+1);
2191         pCol->colFlags |= COLFLAG_HASTYPE;
2192       }
2193     }
2194     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2195     pColl = sqlite3ExprCollSeq(pParse, p);
2196     if( pColl && pCol->zCnColl==0 ){
2197       pCol->zCnColl = sqlite3DbStrDup(db, pColl->zName);
2198     }
2199   }
2200   pTab->szTabRow = 1; /* Any non-zero value works */
2201 }
2202 
2203 /*
2204 ** Given a SELECT statement, generate a Table structure that describes
2205 ** the result set of that SELECT.
2206 */
2207 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2208   Table *pTab;
2209   sqlite3 *db = pParse->db;
2210   u64 savedFlags;
2211 
2212   savedFlags = db->flags;
2213   db->flags &= ~(u64)SQLITE_FullColNames;
2214   db->flags |= SQLITE_ShortColNames;
2215   sqlite3SelectPrep(pParse, pSelect, 0);
2216   db->flags = savedFlags;
2217   if( pParse->nErr ) return 0;
2218   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2219   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2220   if( pTab==0 ){
2221     return 0;
2222   }
2223   pTab->nTabRef = 1;
2224   pTab->zName = 0;
2225   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2226   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2227   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2228   pTab->iPKey = -1;
2229   if( db->mallocFailed ){
2230     sqlite3DeleteTable(db, pTab);
2231     return 0;
2232   }
2233   return pTab;
2234 }
2235 
2236 /*
2237 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2238 ** If an error occurs, return NULL and leave a message in pParse.
2239 */
2240 Vdbe *sqlite3GetVdbe(Parse *pParse){
2241   if( pParse->pVdbe ){
2242     return pParse->pVdbe;
2243   }
2244   if( pParse->pToplevel==0
2245    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2246   ){
2247     pParse->okConstFactor = 1;
2248   }
2249   return sqlite3VdbeCreate(pParse);
2250 }
2251 
2252 
2253 /*
2254 ** Compute the iLimit and iOffset fields of the SELECT based on the
2255 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2256 ** that appear in the original SQL statement after the LIMIT and OFFSET
2257 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2258 ** are the integer memory register numbers for counters used to compute
2259 ** the limit and offset.  If there is no limit and/or offset, then
2260 ** iLimit and iOffset are negative.
2261 **
2262 ** This routine changes the values of iLimit and iOffset only if
2263 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2264 ** and iOffset should have been preset to appropriate default values (zero)
2265 ** prior to calling this routine.
2266 **
2267 ** The iOffset register (if it exists) is initialized to the value
2268 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2269 ** iOffset+1 is initialized to LIMIT+OFFSET.
2270 **
2271 ** Only if pLimit->pLeft!=0 do the limit registers get
2272 ** redefined.  The UNION ALL operator uses this property to force
2273 ** the reuse of the same limit and offset registers across multiple
2274 ** SELECT statements.
2275 */
2276 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2277   Vdbe *v = 0;
2278   int iLimit = 0;
2279   int iOffset;
2280   int n;
2281   Expr *pLimit = p->pLimit;
2282 
2283   if( p->iLimit ) return;
2284 
2285   /*
2286   ** "LIMIT -1" always shows all rows.  There is some
2287   ** controversy about what the correct behavior should be.
2288   ** The current implementation interprets "LIMIT 0" to mean
2289   ** no rows.
2290   */
2291   if( pLimit ){
2292     assert( pLimit->op==TK_LIMIT );
2293     assert( pLimit->pLeft!=0 );
2294     p->iLimit = iLimit = ++pParse->nMem;
2295     v = sqlite3GetVdbe(pParse);
2296     assert( v!=0 );
2297     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2298       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2299       VdbeComment((v, "LIMIT counter"));
2300       if( n==0 ){
2301         sqlite3VdbeGoto(v, iBreak);
2302       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2303         p->nSelectRow = sqlite3LogEst((u64)n);
2304         p->selFlags |= SF_FixedLimit;
2305       }
2306     }else{
2307       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2308       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2309       VdbeComment((v, "LIMIT counter"));
2310       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2311     }
2312     if( pLimit->pRight ){
2313       p->iOffset = iOffset = ++pParse->nMem;
2314       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2315       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2316       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2317       VdbeComment((v, "OFFSET counter"));
2318       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2319       VdbeComment((v, "LIMIT+OFFSET"));
2320     }
2321   }
2322 }
2323 
2324 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2325 /*
2326 ** Return the appropriate collating sequence for the iCol-th column of
2327 ** the result set for the compound-select statement "p".  Return NULL if
2328 ** the column has no default collating sequence.
2329 **
2330 ** The collating sequence for the compound select is taken from the
2331 ** left-most term of the select that has a collating sequence.
2332 */
2333 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2334   CollSeq *pRet;
2335   if( p->pPrior ){
2336     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2337   }else{
2338     pRet = 0;
2339   }
2340   assert( iCol>=0 );
2341   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2342   ** have been thrown during name resolution and we would not have gotten
2343   ** this far */
2344   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2345     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2346   }
2347   return pRet;
2348 }
2349 
2350 /*
2351 ** The select statement passed as the second parameter is a compound SELECT
2352 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2353 ** structure suitable for implementing the ORDER BY.
2354 **
2355 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2356 ** function is responsible for ensuring that this structure is eventually
2357 ** freed.
2358 */
2359 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2360   ExprList *pOrderBy = p->pOrderBy;
2361   int nOrderBy = p->pOrderBy->nExpr;
2362   sqlite3 *db = pParse->db;
2363   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2364   if( pRet ){
2365     int i;
2366     for(i=0; i<nOrderBy; i++){
2367       struct ExprList_item *pItem = &pOrderBy->a[i];
2368       Expr *pTerm = pItem->pExpr;
2369       CollSeq *pColl;
2370 
2371       if( pTerm->flags & EP_Collate ){
2372         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2373       }else{
2374         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2375         if( pColl==0 ) pColl = db->pDfltColl;
2376         pOrderBy->a[i].pExpr =
2377           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2378       }
2379       assert( sqlite3KeyInfoIsWriteable(pRet) );
2380       pRet->aColl[i] = pColl;
2381       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2382     }
2383   }
2384 
2385   return pRet;
2386 }
2387 
2388 #ifndef SQLITE_OMIT_CTE
2389 /*
2390 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2391 ** query of the form:
2392 **
2393 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2394 **                         \___________/             \_______________/
2395 **                           p->pPrior                      p
2396 **
2397 **
2398 ** There is exactly one reference to the recursive-table in the FROM clause
2399 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2400 **
2401 ** The setup-query runs once to generate an initial set of rows that go
2402 ** into a Queue table.  Rows are extracted from the Queue table one by
2403 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2404 ** extracted row (now in the iCurrent table) becomes the content of the
2405 ** recursive-table for a recursive-query run.  The output of the recursive-query
2406 ** is added back into the Queue table.  Then another row is extracted from Queue
2407 ** and the iteration continues until the Queue table is empty.
2408 **
2409 ** If the compound query operator is UNION then no duplicate rows are ever
2410 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2411 ** that have ever been inserted into Queue and causes duplicates to be
2412 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2413 **
2414 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2415 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2416 ** an ORDER BY, the Queue table is just a FIFO.
2417 **
2418 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2419 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2420 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2421 ** with a positive value, then the first OFFSET outputs are discarded rather
2422 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2423 ** rows have been skipped.
2424 */
2425 static void generateWithRecursiveQuery(
2426   Parse *pParse,        /* Parsing context */
2427   Select *p,            /* The recursive SELECT to be coded */
2428   SelectDest *pDest     /* What to do with query results */
2429 ){
2430   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2431   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2432   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2433   Select *pSetup = p->pPrior;   /* The setup query */
2434   Select *pFirstRec;            /* Left-most recursive term */
2435   int addrTop;                  /* Top of the loop */
2436   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2437   int iCurrent = 0;             /* The Current table */
2438   int regCurrent;               /* Register holding Current table */
2439   int iQueue;                   /* The Queue table */
2440   int iDistinct = 0;            /* To ensure unique results if UNION */
2441   int eDest = SRT_Fifo;         /* How to write to Queue */
2442   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2443   int i;                        /* Loop counter */
2444   int rc;                       /* Result code */
2445   ExprList *pOrderBy;           /* The ORDER BY clause */
2446   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2447   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2448 
2449 #ifndef SQLITE_OMIT_WINDOWFUNC
2450   if( p->pWin ){
2451     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2452     return;
2453   }
2454 #endif
2455 
2456   /* Obtain authorization to do a recursive query */
2457   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2458 
2459   /* Process the LIMIT and OFFSET clauses, if they exist */
2460   addrBreak = sqlite3VdbeMakeLabel(pParse);
2461   p->nSelectRow = 320;  /* 4 billion rows */
2462   computeLimitRegisters(pParse, p, addrBreak);
2463   pLimit = p->pLimit;
2464   regLimit = p->iLimit;
2465   regOffset = p->iOffset;
2466   p->pLimit = 0;
2467   p->iLimit = p->iOffset = 0;
2468   pOrderBy = p->pOrderBy;
2469 
2470   /* Locate the cursor number of the Current table */
2471   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2472     if( pSrc->a[i].fg.isRecursive ){
2473       iCurrent = pSrc->a[i].iCursor;
2474       break;
2475     }
2476   }
2477 
2478   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2479   ** the Distinct table must be exactly one greater than Queue in order
2480   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2481   iQueue = pParse->nTab++;
2482   if( p->op==TK_UNION ){
2483     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2484     iDistinct = pParse->nTab++;
2485   }else{
2486     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2487   }
2488   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2489 
2490   /* Allocate cursors for Current, Queue, and Distinct. */
2491   regCurrent = ++pParse->nMem;
2492   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2493   if( pOrderBy ){
2494     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2495     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2496                       (char*)pKeyInfo, P4_KEYINFO);
2497     destQueue.pOrderBy = pOrderBy;
2498   }else{
2499     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2500   }
2501   VdbeComment((v, "Queue table"));
2502   if( iDistinct ){
2503     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2504     p->selFlags |= SF_UsesEphemeral;
2505   }
2506 
2507   /* Detach the ORDER BY clause from the compound SELECT */
2508   p->pOrderBy = 0;
2509 
2510   /* Figure out how many elements of the compound SELECT are part of the
2511   ** recursive query.  Make sure no recursive elements use aggregate
2512   ** functions.  Mark the recursive elements as UNION ALL even if they
2513   ** are really UNION because the distinctness will be enforced by the
2514   ** iDistinct table.  pFirstRec is left pointing to the left-most
2515   ** recursive term of the CTE.
2516   */
2517   pFirstRec = p;
2518   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2519     if( pFirstRec->selFlags & SF_Aggregate ){
2520       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2521       goto end_of_recursive_query;
2522     }
2523     pFirstRec->op = TK_ALL;
2524     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2525   }
2526 
2527   /* Store the results of the setup-query in Queue. */
2528   pSetup = pFirstRec->pPrior;
2529   pSetup->pNext = 0;
2530   ExplainQueryPlan((pParse, 1, "SETUP"));
2531   rc = sqlite3Select(pParse, pSetup, &destQueue);
2532   pSetup->pNext = p;
2533   if( rc ) goto end_of_recursive_query;
2534 
2535   /* Find the next row in the Queue and output that row */
2536   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2537 
2538   /* Transfer the next row in Queue over to Current */
2539   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2540   if( pOrderBy ){
2541     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2542   }else{
2543     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2544   }
2545   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2546 
2547   /* Output the single row in Current */
2548   addrCont = sqlite3VdbeMakeLabel(pParse);
2549   codeOffset(v, regOffset, addrCont);
2550   selectInnerLoop(pParse, p, iCurrent,
2551       0, 0, pDest, addrCont, addrBreak);
2552   if( regLimit ){
2553     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2554     VdbeCoverage(v);
2555   }
2556   sqlite3VdbeResolveLabel(v, addrCont);
2557 
2558   /* Execute the recursive SELECT taking the single row in Current as
2559   ** the value for the recursive-table. Store the results in the Queue.
2560   */
2561   pFirstRec->pPrior = 0;
2562   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2563   sqlite3Select(pParse, p, &destQueue);
2564   assert( pFirstRec->pPrior==0 );
2565   pFirstRec->pPrior = pSetup;
2566 
2567   /* Keep running the loop until the Queue is empty */
2568   sqlite3VdbeGoto(v, addrTop);
2569   sqlite3VdbeResolveLabel(v, addrBreak);
2570 
2571 end_of_recursive_query:
2572   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2573   p->pOrderBy = pOrderBy;
2574   p->pLimit = pLimit;
2575   return;
2576 }
2577 #endif /* SQLITE_OMIT_CTE */
2578 
2579 /* Forward references */
2580 static int multiSelectOrderBy(
2581   Parse *pParse,        /* Parsing context */
2582   Select *p,            /* The right-most of SELECTs to be coded */
2583   SelectDest *pDest     /* What to do with query results */
2584 );
2585 
2586 /*
2587 ** Handle the special case of a compound-select that originates from a
2588 ** VALUES clause.  By handling this as a special case, we avoid deep
2589 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2590 ** on a VALUES clause.
2591 **
2592 ** Because the Select object originates from a VALUES clause:
2593 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2594 **   (2) All terms are UNION ALL
2595 **   (3) There is no ORDER BY clause
2596 **
2597 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2598 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2599 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2600 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2601 */
2602 static int multiSelectValues(
2603   Parse *pParse,        /* Parsing context */
2604   Select *p,            /* The right-most of SELECTs to be coded */
2605   SelectDest *pDest     /* What to do with query results */
2606 ){
2607   int nRow = 1;
2608   int rc = 0;
2609   int bShowAll = p->pLimit==0;
2610   assert( p->selFlags & SF_MultiValue );
2611   do{
2612     assert( p->selFlags & SF_Values );
2613     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2614     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2615 #ifndef SQLITE_OMIT_WINDOWFUNC
2616     if( p->pWin ) return -1;
2617 #endif
2618     if( p->pPrior==0 ) break;
2619     assert( p->pPrior->pNext==p );
2620     p = p->pPrior;
2621     nRow += bShowAll;
2622   }while(1);
2623   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2624                     nRow==1 ? "" : "S"));
2625   while( p ){
2626     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2627     if( !bShowAll ) break;
2628     p->nSelectRow = nRow;
2629     p = p->pNext;
2630   }
2631   return rc;
2632 }
2633 
2634 /*
2635 ** Return true if the SELECT statement which is known to be the recursive
2636 ** part of a recursive CTE still has its anchor terms attached.  If the
2637 ** anchor terms have already been removed, then return false.
2638 */
2639 static int hasAnchor(Select *p){
2640   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2641   return p!=0;
2642 }
2643 
2644 /*
2645 ** This routine is called to process a compound query form from
2646 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2647 ** INTERSECT
2648 **
2649 ** "p" points to the right-most of the two queries.  the query on the
2650 ** left is p->pPrior.  The left query could also be a compound query
2651 ** in which case this routine will be called recursively.
2652 **
2653 ** The results of the total query are to be written into a destination
2654 ** of type eDest with parameter iParm.
2655 **
2656 ** Example 1:  Consider a three-way compound SQL statement.
2657 **
2658 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2659 **
2660 ** This statement is parsed up as follows:
2661 **
2662 **     SELECT c FROM t3
2663 **      |
2664 **      `----->  SELECT b FROM t2
2665 **                |
2666 **                `------>  SELECT a FROM t1
2667 **
2668 ** The arrows in the diagram above represent the Select.pPrior pointer.
2669 ** So if this routine is called with p equal to the t3 query, then
2670 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2671 **
2672 ** Notice that because of the way SQLite parses compound SELECTs, the
2673 ** individual selects always group from left to right.
2674 */
2675 static int multiSelect(
2676   Parse *pParse,        /* Parsing context */
2677   Select *p,            /* The right-most of SELECTs to be coded */
2678   SelectDest *pDest     /* What to do with query results */
2679 ){
2680   int rc = SQLITE_OK;   /* Success code from a subroutine */
2681   Select *pPrior;       /* Another SELECT immediately to our left */
2682   Vdbe *v;              /* Generate code to this VDBE */
2683   SelectDest dest;      /* Alternative data destination */
2684   Select *pDelete = 0;  /* Chain of simple selects to delete */
2685   sqlite3 *db;          /* Database connection */
2686 
2687   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2688   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2689   */
2690   assert( p && p->pPrior );  /* Calling function guarantees this much */
2691   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2692   assert( p->selFlags & SF_Compound );
2693   db = pParse->db;
2694   pPrior = p->pPrior;
2695   dest = *pDest;
2696   assert( pPrior->pOrderBy==0 );
2697   assert( pPrior->pLimit==0 );
2698 
2699   v = sqlite3GetVdbe(pParse);
2700   assert( v!=0 );  /* The VDBE already created by calling function */
2701 
2702   /* Create the destination temporary table if necessary
2703   */
2704   if( dest.eDest==SRT_EphemTab ){
2705     assert( p->pEList );
2706     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2707     dest.eDest = SRT_Table;
2708   }
2709 
2710   /* Special handling for a compound-select that originates as a VALUES clause.
2711   */
2712   if( p->selFlags & SF_MultiValue ){
2713     rc = multiSelectValues(pParse, p, &dest);
2714     if( rc>=0 ) goto multi_select_end;
2715     rc = SQLITE_OK;
2716   }
2717 
2718   /* Make sure all SELECTs in the statement have the same number of elements
2719   ** in their result sets.
2720   */
2721   assert( p->pEList && pPrior->pEList );
2722   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2723 
2724 #ifndef SQLITE_OMIT_CTE
2725   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2726     generateWithRecursiveQuery(pParse, p, &dest);
2727   }else
2728 #endif
2729 
2730   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2731   */
2732   if( p->pOrderBy ){
2733     return multiSelectOrderBy(pParse, p, pDest);
2734   }else{
2735 
2736 #ifndef SQLITE_OMIT_EXPLAIN
2737     if( pPrior->pPrior==0 ){
2738       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2739       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2740     }
2741 #endif
2742 
2743     /* Generate code for the left and right SELECT statements.
2744     */
2745     switch( p->op ){
2746       case TK_ALL: {
2747         int addr = 0;
2748         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2749         assert( !pPrior->pLimit );
2750         pPrior->iLimit = p->iLimit;
2751         pPrior->iOffset = p->iOffset;
2752         pPrior->pLimit = p->pLimit;
2753         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2754         rc = sqlite3Select(pParse, pPrior, &dest);
2755         pPrior->pLimit = 0;
2756         if( rc ){
2757           goto multi_select_end;
2758         }
2759         p->pPrior = 0;
2760         p->iLimit = pPrior->iLimit;
2761         p->iOffset = pPrior->iOffset;
2762         if( p->iLimit ){
2763           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2764           VdbeComment((v, "Jump ahead if LIMIT reached"));
2765           if( p->iOffset ){
2766             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2767                               p->iLimit, p->iOffset+1, p->iOffset);
2768           }
2769         }
2770         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2771         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2772         rc = sqlite3Select(pParse, p, &dest);
2773         testcase( rc!=SQLITE_OK );
2774         pDelete = p->pPrior;
2775         p->pPrior = pPrior;
2776         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2777         if( p->pLimit
2778          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2779          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2780         ){
2781           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2782         }
2783         if( addr ){
2784           sqlite3VdbeJumpHere(v, addr);
2785         }
2786         break;
2787       }
2788       case TK_EXCEPT:
2789       case TK_UNION: {
2790         int unionTab;    /* Cursor number of the temp table holding result */
2791         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2792         int priorOp;     /* The SRT_ operation to apply to prior selects */
2793         Expr *pLimit;    /* Saved values of p->nLimit  */
2794         int addr;
2795         SelectDest uniondest;
2796 
2797         testcase( p->op==TK_EXCEPT );
2798         testcase( p->op==TK_UNION );
2799         priorOp = SRT_Union;
2800         if( dest.eDest==priorOp ){
2801           /* We can reuse a temporary table generated by a SELECT to our
2802           ** right.
2803           */
2804           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2805           unionTab = dest.iSDParm;
2806         }else{
2807           /* We will need to create our own temporary table to hold the
2808           ** intermediate results.
2809           */
2810           unionTab = pParse->nTab++;
2811           assert( p->pOrderBy==0 );
2812           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2813           assert( p->addrOpenEphm[0] == -1 );
2814           p->addrOpenEphm[0] = addr;
2815           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2816           assert( p->pEList );
2817         }
2818 
2819 
2820         /* Code the SELECT statements to our left
2821         */
2822         assert( !pPrior->pOrderBy );
2823         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2824         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2825         rc = sqlite3Select(pParse, pPrior, &uniondest);
2826         if( rc ){
2827           goto multi_select_end;
2828         }
2829 
2830         /* Code the current SELECT statement
2831         */
2832         if( p->op==TK_EXCEPT ){
2833           op = SRT_Except;
2834         }else{
2835           assert( p->op==TK_UNION );
2836           op = SRT_Union;
2837         }
2838         p->pPrior = 0;
2839         pLimit = p->pLimit;
2840         p->pLimit = 0;
2841         uniondest.eDest = op;
2842         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2843                           sqlite3SelectOpName(p->op)));
2844         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2845         rc = sqlite3Select(pParse, p, &uniondest);
2846         testcase( rc!=SQLITE_OK );
2847         assert( p->pOrderBy==0 );
2848         pDelete = p->pPrior;
2849         p->pPrior = pPrior;
2850         p->pOrderBy = 0;
2851         if( p->op==TK_UNION ){
2852           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2853         }
2854         sqlite3ExprDelete(db, p->pLimit);
2855         p->pLimit = pLimit;
2856         p->iLimit = 0;
2857         p->iOffset = 0;
2858 
2859         /* Convert the data in the temporary table into whatever form
2860         ** it is that we currently need.
2861         */
2862         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2863         assert( p->pEList || db->mallocFailed );
2864         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2865           int iCont, iBreak, iStart;
2866           iBreak = sqlite3VdbeMakeLabel(pParse);
2867           iCont = sqlite3VdbeMakeLabel(pParse);
2868           computeLimitRegisters(pParse, p, iBreak);
2869           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2870           iStart = sqlite3VdbeCurrentAddr(v);
2871           selectInnerLoop(pParse, p, unionTab,
2872                           0, 0, &dest, iCont, iBreak);
2873           sqlite3VdbeResolveLabel(v, iCont);
2874           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2875           sqlite3VdbeResolveLabel(v, iBreak);
2876           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2877         }
2878         break;
2879       }
2880       default: assert( p->op==TK_INTERSECT ); {
2881         int tab1, tab2;
2882         int iCont, iBreak, iStart;
2883         Expr *pLimit;
2884         int addr;
2885         SelectDest intersectdest;
2886         int r1;
2887 
2888         /* INTERSECT is different from the others since it requires
2889         ** two temporary tables.  Hence it has its own case.  Begin
2890         ** by allocating the tables we will need.
2891         */
2892         tab1 = pParse->nTab++;
2893         tab2 = pParse->nTab++;
2894         assert( p->pOrderBy==0 );
2895 
2896         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2897         assert( p->addrOpenEphm[0] == -1 );
2898         p->addrOpenEphm[0] = addr;
2899         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2900         assert( p->pEList );
2901 
2902         /* Code the SELECTs to our left into temporary table "tab1".
2903         */
2904         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2905         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2906         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2907         if( rc ){
2908           goto multi_select_end;
2909         }
2910 
2911         /* Code the current SELECT into temporary table "tab2"
2912         */
2913         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2914         assert( p->addrOpenEphm[1] == -1 );
2915         p->addrOpenEphm[1] = addr;
2916         p->pPrior = 0;
2917         pLimit = p->pLimit;
2918         p->pLimit = 0;
2919         intersectdest.iSDParm = tab2;
2920         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2921                           sqlite3SelectOpName(p->op)));
2922         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2923         rc = sqlite3Select(pParse, p, &intersectdest);
2924         testcase( rc!=SQLITE_OK );
2925         pDelete = p->pPrior;
2926         p->pPrior = pPrior;
2927         if( p->nSelectRow>pPrior->nSelectRow ){
2928           p->nSelectRow = pPrior->nSelectRow;
2929         }
2930         sqlite3ExprDelete(db, p->pLimit);
2931         p->pLimit = pLimit;
2932 
2933         /* Generate code to take the intersection of the two temporary
2934         ** tables.
2935         */
2936         if( rc ) break;
2937         assert( p->pEList );
2938         iBreak = sqlite3VdbeMakeLabel(pParse);
2939         iCont = sqlite3VdbeMakeLabel(pParse);
2940         computeLimitRegisters(pParse, p, iBreak);
2941         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2942         r1 = sqlite3GetTempReg(pParse);
2943         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2944         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2945         VdbeCoverage(v);
2946         sqlite3ReleaseTempReg(pParse, r1);
2947         selectInnerLoop(pParse, p, tab1,
2948                         0, 0, &dest, iCont, iBreak);
2949         sqlite3VdbeResolveLabel(v, iCont);
2950         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2951         sqlite3VdbeResolveLabel(v, iBreak);
2952         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2953         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2954         break;
2955       }
2956     }
2957 
2958   #ifndef SQLITE_OMIT_EXPLAIN
2959     if( p->pNext==0 ){
2960       ExplainQueryPlanPop(pParse);
2961     }
2962   #endif
2963   }
2964   if( pParse->nErr ) goto multi_select_end;
2965 
2966   /* Compute collating sequences used by
2967   ** temporary tables needed to implement the compound select.
2968   ** Attach the KeyInfo structure to all temporary tables.
2969   **
2970   ** This section is run by the right-most SELECT statement only.
2971   ** SELECT statements to the left always skip this part.  The right-most
2972   ** SELECT might also skip this part if it has no ORDER BY clause and
2973   ** no temp tables are required.
2974   */
2975   if( p->selFlags & SF_UsesEphemeral ){
2976     int i;                        /* Loop counter */
2977     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2978     Select *pLoop;                /* For looping through SELECT statements */
2979     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2980     int nCol;                     /* Number of columns in result set */
2981 
2982     assert( p->pNext==0 );
2983     nCol = p->pEList->nExpr;
2984     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2985     if( !pKeyInfo ){
2986       rc = SQLITE_NOMEM_BKPT;
2987       goto multi_select_end;
2988     }
2989     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2990       *apColl = multiSelectCollSeq(pParse, p, i);
2991       if( 0==*apColl ){
2992         *apColl = db->pDfltColl;
2993       }
2994     }
2995 
2996     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2997       for(i=0; i<2; i++){
2998         int addr = pLoop->addrOpenEphm[i];
2999         if( addr<0 ){
3000           /* If [0] is unused then [1] is also unused.  So we can
3001           ** always safely abort as soon as the first unused slot is found */
3002           assert( pLoop->addrOpenEphm[1]<0 );
3003           break;
3004         }
3005         sqlite3VdbeChangeP2(v, addr, nCol);
3006         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3007                             P4_KEYINFO);
3008         pLoop->addrOpenEphm[i] = -1;
3009       }
3010     }
3011     sqlite3KeyInfoUnref(pKeyInfo);
3012   }
3013 
3014 multi_select_end:
3015   pDest->iSdst = dest.iSdst;
3016   pDest->nSdst = dest.nSdst;
3017   sqlite3SelectDelete(db, pDelete);
3018   return rc;
3019 }
3020 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3021 
3022 /*
3023 ** Error message for when two or more terms of a compound select have different
3024 ** size result sets.
3025 */
3026 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3027   if( p->selFlags & SF_Values ){
3028     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3029   }else{
3030     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3031       " do not have the same number of result columns",
3032       sqlite3SelectOpName(p->op));
3033   }
3034 }
3035 
3036 /*
3037 ** Code an output subroutine for a coroutine implementation of a
3038 ** SELECT statment.
3039 **
3040 ** The data to be output is contained in pIn->iSdst.  There are
3041 ** pIn->nSdst columns to be output.  pDest is where the output should
3042 ** be sent.
3043 **
3044 ** regReturn is the number of the register holding the subroutine
3045 ** return address.
3046 **
3047 ** If regPrev>0 then it is the first register in a vector that
3048 ** records the previous output.  mem[regPrev] is a flag that is false
3049 ** if there has been no previous output.  If regPrev>0 then code is
3050 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3051 ** keys.
3052 **
3053 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3054 ** iBreak.
3055 */
3056 static int generateOutputSubroutine(
3057   Parse *pParse,          /* Parsing context */
3058   Select *p,              /* The SELECT statement */
3059   SelectDest *pIn,        /* Coroutine supplying data */
3060   SelectDest *pDest,      /* Where to send the data */
3061   int regReturn,          /* The return address register */
3062   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3063   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3064   int iBreak              /* Jump here if we hit the LIMIT */
3065 ){
3066   Vdbe *v = pParse->pVdbe;
3067   int iContinue;
3068   int addr;
3069 
3070   addr = sqlite3VdbeCurrentAddr(v);
3071   iContinue = sqlite3VdbeMakeLabel(pParse);
3072 
3073   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3074   */
3075   if( regPrev ){
3076     int addr1, addr2;
3077     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3078     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3079                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3080     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3081     sqlite3VdbeJumpHere(v, addr1);
3082     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3083     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3084   }
3085   if( pParse->db->mallocFailed ) return 0;
3086 
3087   /* Suppress the first OFFSET entries if there is an OFFSET clause
3088   */
3089   codeOffset(v, p->iOffset, iContinue);
3090 
3091   assert( pDest->eDest!=SRT_Exists );
3092   assert( pDest->eDest!=SRT_Table );
3093   switch( pDest->eDest ){
3094     /* Store the result as data using a unique key.
3095     */
3096     case SRT_EphemTab: {
3097       int r1 = sqlite3GetTempReg(pParse);
3098       int r2 = sqlite3GetTempReg(pParse);
3099       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3100       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3101       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3102       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3103       sqlite3ReleaseTempReg(pParse, r2);
3104       sqlite3ReleaseTempReg(pParse, r1);
3105       break;
3106     }
3107 
3108 #ifndef SQLITE_OMIT_SUBQUERY
3109     /* If we are creating a set for an "expr IN (SELECT ...)".
3110     */
3111     case SRT_Set: {
3112       int r1;
3113       testcase( pIn->nSdst>1 );
3114       r1 = sqlite3GetTempReg(pParse);
3115       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3116           r1, pDest->zAffSdst, pIn->nSdst);
3117       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3118                            pIn->iSdst, pIn->nSdst);
3119       sqlite3ReleaseTempReg(pParse, r1);
3120       break;
3121     }
3122 
3123     /* If this is a scalar select that is part of an expression, then
3124     ** store the results in the appropriate memory cell and break out
3125     ** of the scan loop.  Note that the select might return multiple columns
3126     ** if it is the RHS of a row-value IN operator.
3127     */
3128     case SRT_Mem: {
3129       testcase( pIn->nSdst>1 );
3130       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3131       /* The LIMIT clause will jump out of the loop for us */
3132       break;
3133     }
3134 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3135 
3136     /* The results are stored in a sequence of registers
3137     ** starting at pDest->iSdst.  Then the co-routine yields.
3138     */
3139     case SRT_Coroutine: {
3140       if( pDest->iSdst==0 ){
3141         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3142         pDest->nSdst = pIn->nSdst;
3143       }
3144       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3145       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3146       break;
3147     }
3148 
3149     /* If none of the above, then the result destination must be
3150     ** SRT_Output.  This routine is never called with any other
3151     ** destination other than the ones handled above or SRT_Output.
3152     **
3153     ** For SRT_Output, results are stored in a sequence of registers.
3154     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3155     ** return the next row of result.
3156     */
3157     default: {
3158       assert( pDest->eDest==SRT_Output );
3159       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3160       break;
3161     }
3162   }
3163 
3164   /* Jump to the end of the loop if the LIMIT is reached.
3165   */
3166   if( p->iLimit ){
3167     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3168   }
3169 
3170   /* Generate the subroutine return
3171   */
3172   sqlite3VdbeResolveLabel(v, iContinue);
3173   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3174 
3175   return addr;
3176 }
3177 
3178 /*
3179 ** Alternative compound select code generator for cases when there
3180 ** is an ORDER BY clause.
3181 **
3182 ** We assume a query of the following form:
3183 **
3184 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3185 **
3186 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3187 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3188 ** co-routines.  Then run the co-routines in parallel and merge the results
3189 ** into the output.  In addition to the two coroutines (called selectA and
3190 ** selectB) there are 7 subroutines:
3191 **
3192 **    outA:    Move the output of the selectA coroutine into the output
3193 **             of the compound query.
3194 **
3195 **    outB:    Move the output of the selectB coroutine into the output
3196 **             of the compound query.  (Only generated for UNION and
3197 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3198 **             appears only in B.)
3199 **
3200 **    AltB:    Called when there is data from both coroutines and A<B.
3201 **
3202 **    AeqB:    Called when there is data from both coroutines and A==B.
3203 **
3204 **    AgtB:    Called when there is data from both coroutines and A>B.
3205 **
3206 **    EofA:    Called when data is exhausted from selectA.
3207 **
3208 **    EofB:    Called when data is exhausted from selectB.
3209 **
3210 ** The implementation of the latter five subroutines depend on which
3211 ** <operator> is used:
3212 **
3213 **
3214 **             UNION ALL         UNION            EXCEPT          INTERSECT
3215 **          -------------  -----------------  --------------  -----------------
3216 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3217 **
3218 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3219 **
3220 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3221 **
3222 **   EofA:   outB, nextB      outB, nextB          halt             halt
3223 **
3224 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3225 **
3226 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3227 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3228 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3229 ** following nextX causes a jump to the end of the select processing.
3230 **
3231 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3232 ** within the output subroutine.  The regPrev register set holds the previously
3233 ** output value.  A comparison is made against this value and the output
3234 ** is skipped if the next results would be the same as the previous.
3235 **
3236 ** The implementation plan is to implement the two coroutines and seven
3237 ** subroutines first, then put the control logic at the bottom.  Like this:
3238 **
3239 **          goto Init
3240 **     coA: coroutine for left query (A)
3241 **     coB: coroutine for right query (B)
3242 **    outA: output one row of A
3243 **    outB: output one row of B (UNION and UNION ALL only)
3244 **    EofA: ...
3245 **    EofB: ...
3246 **    AltB: ...
3247 **    AeqB: ...
3248 **    AgtB: ...
3249 **    Init: initialize coroutine registers
3250 **          yield coA
3251 **          if eof(A) goto EofA
3252 **          yield coB
3253 **          if eof(B) goto EofB
3254 **    Cmpr: Compare A, B
3255 **          Jump AltB, AeqB, AgtB
3256 **     End: ...
3257 **
3258 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3259 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3260 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3261 ** and AgtB jump to either L2 or to one of EofA or EofB.
3262 */
3263 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3264 static int multiSelectOrderBy(
3265   Parse *pParse,        /* Parsing context */
3266   Select *p,            /* The right-most of SELECTs to be coded */
3267   SelectDest *pDest     /* What to do with query results */
3268 ){
3269   int i, j;             /* Loop counters */
3270   Select *pPrior;       /* Another SELECT immediately to our left */
3271   Vdbe *v;              /* Generate code to this VDBE */
3272   SelectDest destA;     /* Destination for coroutine A */
3273   SelectDest destB;     /* Destination for coroutine B */
3274   int regAddrA;         /* Address register for select-A coroutine */
3275   int regAddrB;         /* Address register for select-B coroutine */
3276   int addrSelectA;      /* Address of the select-A coroutine */
3277   int addrSelectB;      /* Address of the select-B coroutine */
3278   int regOutA;          /* Address register for the output-A subroutine */
3279   int regOutB;          /* Address register for the output-B subroutine */
3280   int addrOutA;         /* Address of the output-A subroutine */
3281   int addrOutB = 0;     /* Address of the output-B subroutine */
3282   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3283   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3284   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3285   int addrAltB;         /* Address of the A<B subroutine */
3286   int addrAeqB;         /* Address of the A==B subroutine */
3287   int addrAgtB;         /* Address of the A>B subroutine */
3288   int regLimitA;        /* Limit register for select-A */
3289   int regLimitB;        /* Limit register for select-A */
3290   int regPrev;          /* A range of registers to hold previous output */
3291   int savedLimit;       /* Saved value of p->iLimit */
3292   int savedOffset;      /* Saved value of p->iOffset */
3293   int labelCmpr;        /* Label for the start of the merge algorithm */
3294   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3295   int addr1;            /* Jump instructions that get retargetted */
3296   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3297   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3298   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3299   sqlite3 *db;          /* Database connection */
3300   ExprList *pOrderBy;   /* The ORDER BY clause */
3301   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3302   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3303 
3304   assert( p->pOrderBy!=0 );
3305   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3306   db = pParse->db;
3307   v = pParse->pVdbe;
3308   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3309   labelEnd = sqlite3VdbeMakeLabel(pParse);
3310   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3311 
3312 
3313   /* Patch up the ORDER BY clause
3314   */
3315   op = p->op;
3316   pPrior = p->pPrior;
3317   assert( pPrior->pOrderBy==0 );
3318   pOrderBy = p->pOrderBy;
3319   assert( pOrderBy );
3320   nOrderBy = pOrderBy->nExpr;
3321 
3322   /* For operators other than UNION ALL we have to make sure that
3323   ** the ORDER BY clause covers every term of the result set.  Add
3324   ** terms to the ORDER BY clause as necessary.
3325   */
3326   if( op!=TK_ALL ){
3327     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3328       struct ExprList_item *pItem;
3329       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3330         assert( pItem->u.x.iOrderByCol>0 );
3331         if( pItem->u.x.iOrderByCol==i ) break;
3332       }
3333       if( j==nOrderBy ){
3334         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3335         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3336         pNew->flags |= EP_IntValue;
3337         pNew->u.iValue = i;
3338         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3339         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3340       }
3341     }
3342   }
3343 
3344   /* Compute the comparison permutation and keyinfo that is used with
3345   ** the permutation used to determine if the next
3346   ** row of results comes from selectA or selectB.  Also add explicit
3347   ** collations to the ORDER BY clause terms so that when the subqueries
3348   ** to the right and the left are evaluated, they use the correct
3349   ** collation.
3350   */
3351   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3352   if( aPermute ){
3353     struct ExprList_item *pItem;
3354     aPermute[0] = nOrderBy;
3355     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3356       assert( pItem->u.x.iOrderByCol>0 );
3357       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3358       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3359     }
3360     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3361   }else{
3362     pKeyMerge = 0;
3363   }
3364 
3365   /* Reattach the ORDER BY clause to the query.
3366   */
3367   p->pOrderBy = pOrderBy;
3368   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3369 
3370   /* Allocate a range of temporary registers and the KeyInfo needed
3371   ** for the logic that removes duplicate result rows when the
3372   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3373   */
3374   if( op==TK_ALL ){
3375     regPrev = 0;
3376   }else{
3377     int nExpr = p->pEList->nExpr;
3378     assert( nOrderBy>=nExpr || db->mallocFailed );
3379     regPrev = pParse->nMem+1;
3380     pParse->nMem += nExpr+1;
3381     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3382     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3383     if( pKeyDup ){
3384       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3385       for(i=0; i<nExpr; i++){
3386         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3387         pKeyDup->aSortFlags[i] = 0;
3388       }
3389     }
3390   }
3391 
3392   /* Separate the left and the right query from one another
3393   */
3394   p->pPrior = 0;
3395   pPrior->pNext = 0;
3396   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3397   if( pPrior->pPrior==0 ){
3398     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3399   }
3400 
3401   /* Compute the limit registers */
3402   computeLimitRegisters(pParse, p, labelEnd);
3403   if( p->iLimit && op==TK_ALL ){
3404     regLimitA = ++pParse->nMem;
3405     regLimitB = ++pParse->nMem;
3406     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3407                                   regLimitA);
3408     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3409   }else{
3410     regLimitA = regLimitB = 0;
3411   }
3412   sqlite3ExprDelete(db, p->pLimit);
3413   p->pLimit = 0;
3414 
3415   regAddrA = ++pParse->nMem;
3416   regAddrB = ++pParse->nMem;
3417   regOutA = ++pParse->nMem;
3418   regOutB = ++pParse->nMem;
3419   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3420   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3421 
3422   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3423 
3424   /* Generate a coroutine to evaluate the SELECT statement to the
3425   ** left of the compound operator - the "A" select.
3426   */
3427   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3428   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3429   VdbeComment((v, "left SELECT"));
3430   pPrior->iLimit = regLimitA;
3431   ExplainQueryPlan((pParse, 1, "LEFT"));
3432   sqlite3Select(pParse, pPrior, &destA);
3433   sqlite3VdbeEndCoroutine(v, regAddrA);
3434   sqlite3VdbeJumpHere(v, addr1);
3435 
3436   /* Generate a coroutine to evaluate the SELECT statement on
3437   ** the right - the "B" select
3438   */
3439   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3440   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3441   VdbeComment((v, "right SELECT"));
3442   savedLimit = p->iLimit;
3443   savedOffset = p->iOffset;
3444   p->iLimit = regLimitB;
3445   p->iOffset = 0;
3446   ExplainQueryPlan((pParse, 1, "RIGHT"));
3447   sqlite3Select(pParse, p, &destB);
3448   p->iLimit = savedLimit;
3449   p->iOffset = savedOffset;
3450   sqlite3VdbeEndCoroutine(v, regAddrB);
3451 
3452   /* Generate a subroutine that outputs the current row of the A
3453   ** select as the next output row of the compound select.
3454   */
3455   VdbeNoopComment((v, "Output routine for A"));
3456   addrOutA = generateOutputSubroutine(pParse,
3457                  p, &destA, pDest, regOutA,
3458                  regPrev, pKeyDup, labelEnd);
3459 
3460   /* Generate a subroutine that outputs the current row of the B
3461   ** select as the next output row of the compound select.
3462   */
3463   if( op==TK_ALL || op==TK_UNION ){
3464     VdbeNoopComment((v, "Output routine for B"));
3465     addrOutB = generateOutputSubroutine(pParse,
3466                  p, &destB, pDest, regOutB,
3467                  regPrev, pKeyDup, labelEnd);
3468   }
3469   sqlite3KeyInfoUnref(pKeyDup);
3470 
3471   /* Generate a subroutine to run when the results from select A
3472   ** are exhausted and only data in select B remains.
3473   */
3474   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3475     addrEofA_noB = addrEofA = labelEnd;
3476   }else{
3477     VdbeNoopComment((v, "eof-A subroutine"));
3478     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3479     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3480                                      VdbeCoverage(v);
3481     sqlite3VdbeGoto(v, addrEofA);
3482     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3483   }
3484 
3485   /* Generate a subroutine to run when the results from select B
3486   ** are exhausted and only data in select A remains.
3487   */
3488   if( op==TK_INTERSECT ){
3489     addrEofB = addrEofA;
3490     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3491   }else{
3492     VdbeNoopComment((v, "eof-B subroutine"));
3493     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3494     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3495     sqlite3VdbeGoto(v, addrEofB);
3496   }
3497 
3498   /* Generate code to handle the case of A<B
3499   */
3500   VdbeNoopComment((v, "A-lt-B subroutine"));
3501   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3502   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3503   sqlite3VdbeGoto(v, labelCmpr);
3504 
3505   /* Generate code to handle the case of A==B
3506   */
3507   if( op==TK_ALL ){
3508     addrAeqB = addrAltB;
3509   }else if( op==TK_INTERSECT ){
3510     addrAeqB = addrAltB;
3511     addrAltB++;
3512   }else{
3513     VdbeNoopComment((v, "A-eq-B subroutine"));
3514     addrAeqB =
3515     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3516     sqlite3VdbeGoto(v, labelCmpr);
3517   }
3518 
3519   /* Generate code to handle the case of A>B
3520   */
3521   VdbeNoopComment((v, "A-gt-B subroutine"));
3522   addrAgtB = sqlite3VdbeCurrentAddr(v);
3523   if( op==TK_ALL || op==TK_UNION ){
3524     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3525   }
3526   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3527   sqlite3VdbeGoto(v, labelCmpr);
3528 
3529   /* This code runs once to initialize everything.
3530   */
3531   sqlite3VdbeJumpHere(v, addr1);
3532   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3533   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3534 
3535   /* Implement the main merge loop
3536   */
3537   sqlite3VdbeResolveLabel(v, labelCmpr);
3538   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3539   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3540                          (char*)pKeyMerge, P4_KEYINFO);
3541   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3542   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3543 
3544   /* Jump to the this point in order to terminate the query.
3545   */
3546   sqlite3VdbeResolveLabel(v, labelEnd);
3547 
3548   /* Reassembly the compound query so that it will be freed correctly
3549   ** by the calling function */
3550   if( p->pPrior ){
3551     sqlite3SelectDelete(db, p->pPrior);
3552   }
3553   p->pPrior = pPrior;
3554   pPrior->pNext = p;
3555 
3556   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3557   pPrior->pOrderBy = 0;
3558 
3559   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3560   **** subqueries ****/
3561   ExplainQueryPlanPop(pParse);
3562   return pParse->nErr!=0;
3563 }
3564 #endif
3565 
3566 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3567 
3568 /* An instance of the SubstContext object describes an substitution edit
3569 ** to be performed on a parse tree.
3570 **
3571 ** All references to columns in table iTable are to be replaced by corresponding
3572 ** expressions in pEList.
3573 */
3574 typedef struct SubstContext {
3575   Parse *pParse;            /* The parsing context */
3576   int iTable;               /* Replace references to this table */
3577   int iNewTable;            /* New table number */
3578   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3579   ExprList *pEList;         /* Replacement expressions */
3580 } SubstContext;
3581 
3582 /* Forward Declarations */
3583 static void substExprList(SubstContext*, ExprList*);
3584 static void substSelect(SubstContext*, Select*, int);
3585 
3586 /*
3587 ** Scan through the expression pExpr.  Replace every reference to
3588 ** a column in table number iTable with a copy of the iColumn-th
3589 ** entry in pEList.  (But leave references to the ROWID column
3590 ** unchanged.)
3591 **
3592 ** This routine is part of the flattening procedure.  A subquery
3593 ** whose result set is defined by pEList appears as entry in the
3594 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3595 ** FORM clause entry is iTable.  This routine makes the necessary
3596 ** changes to pExpr so that it refers directly to the source table
3597 ** of the subquery rather the result set of the subquery.
3598 */
3599 static Expr *substExpr(
3600   SubstContext *pSubst,  /* Description of the substitution */
3601   Expr *pExpr            /* Expr in which substitution occurs */
3602 ){
3603   if( pExpr==0 ) return 0;
3604   if( ExprHasProperty(pExpr, EP_FromJoin)
3605    && pExpr->iRightJoinTable==pSubst->iTable
3606   ){
3607     pExpr->iRightJoinTable = pSubst->iNewTable;
3608   }
3609   if( pExpr->op==TK_COLUMN
3610    && pExpr->iTable==pSubst->iTable
3611    && !ExprHasProperty(pExpr, EP_FixedCol)
3612   ){
3613 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3614     if( pExpr->iColumn<0 ){
3615       pExpr->op = TK_NULL;
3616     }else
3617 #endif
3618     {
3619       Expr *pNew;
3620       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3621       Expr ifNullRow;
3622       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3623       assert( pExpr->pRight==0 );
3624       if( sqlite3ExprIsVector(pCopy) ){
3625         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3626       }else{
3627         sqlite3 *db = pSubst->pParse->db;
3628         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3629           memset(&ifNullRow, 0, sizeof(ifNullRow));
3630           ifNullRow.op = TK_IF_NULL_ROW;
3631           ifNullRow.pLeft = pCopy;
3632           ifNullRow.iTable = pSubst->iNewTable;
3633           ifNullRow.flags = EP_IfNullRow;
3634           pCopy = &ifNullRow;
3635         }
3636         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3637         pNew = sqlite3ExprDup(db, pCopy, 0);
3638         if( db->mallocFailed ){
3639           sqlite3ExprDelete(db, pNew);
3640           return pExpr;
3641         }
3642         if( pSubst->isLeftJoin ){
3643           ExprSetProperty(pNew, EP_CanBeNull);
3644         }
3645         if( ExprHasProperty(pExpr,EP_FromJoin) ){
3646           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3647         }
3648         sqlite3ExprDelete(db, pExpr);
3649         pExpr = pNew;
3650 
3651         /* Ensure that the expression now has an implicit collation sequence,
3652         ** just as it did when it was a column of a view or sub-query. */
3653         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3654           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3655           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3656               (pColl ? pColl->zName : "BINARY")
3657           );
3658         }
3659         ExprClearProperty(pExpr, EP_Collate);
3660       }
3661     }
3662   }else{
3663     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3664       pExpr->iTable = pSubst->iNewTable;
3665     }
3666     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3667     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3668     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3669       substSelect(pSubst, pExpr->x.pSelect, 1);
3670     }else{
3671       substExprList(pSubst, pExpr->x.pList);
3672     }
3673 #ifndef SQLITE_OMIT_WINDOWFUNC
3674     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3675       Window *pWin = pExpr->y.pWin;
3676       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3677       substExprList(pSubst, pWin->pPartition);
3678       substExprList(pSubst, pWin->pOrderBy);
3679     }
3680 #endif
3681   }
3682   return pExpr;
3683 }
3684 static void substExprList(
3685   SubstContext *pSubst, /* Description of the substitution */
3686   ExprList *pList       /* List to scan and in which to make substitutes */
3687 ){
3688   int i;
3689   if( pList==0 ) return;
3690   for(i=0; i<pList->nExpr; i++){
3691     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3692   }
3693 }
3694 static void substSelect(
3695   SubstContext *pSubst, /* Description of the substitution */
3696   Select *p,            /* SELECT statement in which to make substitutions */
3697   int doPrior           /* Do substitutes on p->pPrior too */
3698 ){
3699   SrcList *pSrc;
3700   SrcItem *pItem;
3701   int i;
3702   if( !p ) return;
3703   do{
3704     substExprList(pSubst, p->pEList);
3705     substExprList(pSubst, p->pGroupBy);
3706     substExprList(pSubst, p->pOrderBy);
3707     p->pHaving = substExpr(pSubst, p->pHaving);
3708     p->pWhere = substExpr(pSubst, p->pWhere);
3709     pSrc = p->pSrc;
3710     assert( pSrc!=0 );
3711     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3712       substSelect(pSubst, pItem->pSelect, 1);
3713       if( pItem->fg.isTabFunc ){
3714         substExprList(pSubst, pItem->u1.pFuncArg);
3715       }
3716     }
3717   }while( doPrior && (p = p->pPrior)!=0 );
3718 }
3719 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3720 
3721 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3722 /*
3723 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3724 ** clause of that SELECT.
3725 **
3726 ** This routine scans the entire SELECT statement and recomputes the
3727 ** pSrcItem->colUsed mask.
3728 */
3729 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3730   SrcItem *pItem;
3731   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3732   pItem = pWalker->u.pSrcItem;
3733   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3734   if( pExpr->iColumn<0 ) return WRC_Continue;
3735   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3736   return WRC_Continue;
3737 }
3738 static void recomputeColumnsUsed(
3739   Select *pSelect,                 /* The complete SELECT statement */
3740   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3741 ){
3742   Walker w;
3743   if( NEVER(pSrcItem->pTab==0) ) return;
3744   memset(&w, 0, sizeof(w));
3745   w.xExprCallback = recomputeColumnsUsedExpr;
3746   w.xSelectCallback = sqlite3SelectWalkNoop;
3747   w.u.pSrcItem = pSrcItem;
3748   pSrcItem->colUsed = 0;
3749   sqlite3WalkSelect(&w, pSelect);
3750 }
3751 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3752 
3753 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3754 /*
3755 ** Assign new cursor numbers to each of the items in pSrc. For each
3756 ** new cursor number assigned, set an entry in the aCsrMap[] array
3757 ** to map the old cursor number to the new:
3758 **
3759 **     aCsrMap[iOld+1] = iNew;
3760 **
3761 ** The array is guaranteed by the caller to be large enough for all
3762 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3763 **
3764 ** If pSrc contains any sub-selects, call this routine recursively
3765 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3766 */
3767 static void srclistRenumberCursors(
3768   Parse *pParse,                  /* Parse context */
3769   int *aCsrMap,                   /* Array to store cursor mappings in */
3770   SrcList *pSrc,                  /* FROM clause to renumber */
3771   int iExcept                     /* FROM clause item to skip */
3772 ){
3773   int i;
3774   SrcItem *pItem;
3775   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3776     if( i!=iExcept ){
3777       Select *p;
3778       assert( pItem->iCursor < aCsrMap[0] );
3779       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3780         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3781       }
3782       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3783       for(p=pItem->pSelect; p; p=p->pPrior){
3784         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3785       }
3786     }
3787   }
3788 }
3789 
3790 /*
3791 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3792 */
3793 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3794   int *aCsrMap = pWalker->u.aiCol;
3795   int iCsr = *piCursor;
3796   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3797     *piCursor = aCsrMap[iCsr+1];
3798   }
3799 }
3800 
3801 /*
3802 ** Expression walker callback used by renumberCursors() to update
3803 ** Expr objects to match newly assigned cursor numbers.
3804 */
3805 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3806   int op = pExpr->op;
3807   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3808     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3809   }
3810   if( ExprHasProperty(pExpr, EP_FromJoin) ){
3811     renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable);
3812   }
3813   return WRC_Continue;
3814 }
3815 
3816 /*
3817 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3818 ** of the SELECT statement passed as the second argument, and to each
3819 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3820 ** Except, do not assign a new cursor number to the iExcept'th element in
3821 ** the FROM clause of (*p). Update all expressions and other references
3822 ** to refer to the new cursor numbers.
3823 **
3824 ** Argument aCsrMap is an array that may be used for temporary working
3825 ** space. Two guarantees are made by the caller:
3826 **
3827 **   * the array is larger than the largest cursor number used within the
3828 **     select statement passed as an argument, and
3829 **
3830 **   * the array entries for all cursor numbers that do *not* appear in
3831 **     FROM clauses of the select statement as described above are
3832 **     initialized to zero.
3833 */
3834 static void renumberCursors(
3835   Parse *pParse,                  /* Parse context */
3836   Select *p,                      /* Select to renumber cursors within */
3837   int iExcept,                    /* FROM clause item to skip */
3838   int *aCsrMap                    /* Working space */
3839 ){
3840   Walker w;
3841   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3842   memset(&w, 0, sizeof(w));
3843   w.u.aiCol = aCsrMap;
3844   w.xExprCallback = renumberCursorsCb;
3845   w.xSelectCallback = sqlite3SelectWalkNoop;
3846   sqlite3WalkSelect(&w, p);
3847 }
3848 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3849 
3850 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3851 /*
3852 ** This routine attempts to flatten subqueries as a performance optimization.
3853 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3854 **
3855 ** To understand the concept of flattening, consider the following
3856 ** query:
3857 **
3858 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3859 **
3860 ** The default way of implementing this query is to execute the
3861 ** subquery first and store the results in a temporary table, then
3862 ** run the outer query on that temporary table.  This requires two
3863 ** passes over the data.  Furthermore, because the temporary table
3864 ** has no indices, the WHERE clause on the outer query cannot be
3865 ** optimized.
3866 **
3867 ** This routine attempts to rewrite queries such as the above into
3868 ** a single flat select, like this:
3869 **
3870 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3871 **
3872 ** The code generated for this simplification gives the same result
3873 ** but only has to scan the data once.  And because indices might
3874 ** exist on the table t1, a complete scan of the data might be
3875 ** avoided.
3876 **
3877 ** Flattening is subject to the following constraints:
3878 **
3879 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3880 **        The subquery and the outer query cannot both be aggregates.
3881 **
3882 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3883 **        (2) If the subquery is an aggregate then
3884 **        (2a) the outer query must not be a join and
3885 **        (2b) the outer query must not use subqueries
3886 **             other than the one FROM-clause subquery that is a candidate
3887 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3888 **             from 2015-02-09.)
3889 **
3890 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3891 **        (3a) the subquery may not be a join and
3892 **        (3b) the FROM clause of the subquery may not contain a virtual
3893 **             table and
3894 **        (3c) the outer query may not be an aggregate.
3895 **        (3d) the outer query may not be DISTINCT.
3896 **
3897 **   (4)  The subquery can not be DISTINCT.
3898 **
3899 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3900 **        sub-queries that were excluded from this optimization. Restriction
3901 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3902 **
3903 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3904 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3905 **
3906 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3907 **        A FROM clause, consider adding a FROM clause with the special
3908 **        table sqlite_once that consists of a single row containing a
3909 **        single NULL.
3910 **
3911 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3912 **
3913 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3914 **
3915 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3916 **        accidently carried the comment forward until 2014-09-15.  Original
3917 **        constraint: "If the subquery is aggregate then the outer query
3918 **        may not use LIMIT."
3919 **
3920 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3921 **
3922 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3923 **        a separate restriction deriving from ticket #350.
3924 **
3925 **  (13)  The subquery and outer query may not both use LIMIT.
3926 **
3927 **  (14)  The subquery may not use OFFSET.
3928 **
3929 **  (15)  If the outer query is part of a compound select, then the
3930 **        subquery may not use LIMIT.
3931 **        (See ticket #2339 and ticket [02a8e81d44]).
3932 **
3933 **  (16)  If the outer query is aggregate, then the subquery may not
3934 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3935 **        until we introduced the group_concat() function.
3936 **
3937 **  (17)  If the subquery is a compound select, then
3938 **        (17a) all compound operators must be a UNION ALL, and
3939 **        (17b) no terms within the subquery compound may be aggregate
3940 **              or DISTINCT, and
3941 **        (17c) every term within the subquery compound must have a FROM clause
3942 **        (17d) the outer query may not be
3943 **              (17d1) aggregate, or
3944 **              (17d2) DISTINCT
3945 **        (17e) the subquery may not contain window functions, and
3946 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3947 **
3948 **        The parent and sub-query may contain WHERE clauses. Subject to
3949 **        rules (11), (13) and (14), they may also contain ORDER BY,
3950 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3951 **        operator other than UNION ALL because all the other compound
3952 **        operators have an implied DISTINCT which is disallowed by
3953 **        restriction (4).
3954 **
3955 **        Also, each component of the sub-query must return the same number
3956 **        of result columns. This is actually a requirement for any compound
3957 **        SELECT statement, but all the code here does is make sure that no
3958 **        such (illegal) sub-query is flattened. The caller will detect the
3959 **        syntax error and return a detailed message.
3960 **
3961 **  (18)  If the sub-query is a compound select, then all terms of the
3962 **        ORDER BY clause of the parent must be copies of a term returned
3963 **        by the parent query.
3964 **
3965 **  (19)  If the subquery uses LIMIT then the outer query may not
3966 **        have a WHERE clause.
3967 **
3968 **  (20)  If the sub-query is a compound select, then it must not use
3969 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3970 **        somewhat by saying that the terms of the ORDER BY clause must
3971 **        appear as unmodified result columns in the outer query.  But we
3972 **        have other optimizations in mind to deal with that case.
3973 **
3974 **  (21)  If the subquery uses LIMIT then the outer query may not be
3975 **        DISTINCT.  (See ticket [752e1646fc]).
3976 **
3977 **  (22)  The subquery may not be a recursive CTE.
3978 **
3979 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3980 **        a compound query.  This restriction is because transforming the
3981 **        parent to a compound query confuses the code that handles
3982 **        recursive queries in multiSelect().
3983 **
3984 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3985 **        The subquery may not be an aggregate that uses the built-in min() or
3986 **        or max() functions.  (Without this restriction, a query like:
3987 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3988 **        return the value X for which Y was maximal.)
3989 **
3990 **  (25)  If either the subquery or the parent query contains a window
3991 **        function in the select list or ORDER BY clause, flattening
3992 **        is not attempted.
3993 **
3994 **
3995 ** In this routine, the "p" parameter is a pointer to the outer query.
3996 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3997 ** uses aggregates.
3998 **
3999 ** If flattening is not attempted, this routine is a no-op and returns 0.
4000 ** If flattening is attempted this routine returns 1.
4001 **
4002 ** All of the expression analysis must occur on both the outer query and
4003 ** the subquery before this routine runs.
4004 */
4005 static int flattenSubquery(
4006   Parse *pParse,       /* Parsing context */
4007   Select *p,           /* The parent or outer SELECT statement */
4008   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4009   int isAgg            /* True if outer SELECT uses aggregate functions */
4010 ){
4011   const char *zSavedAuthContext = pParse->zAuthContext;
4012   Select *pParent;    /* Current UNION ALL term of the other query */
4013   Select *pSub;       /* The inner query or "subquery" */
4014   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4015   SrcList *pSrc;      /* The FROM clause of the outer query */
4016   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4017   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4018   int iNewParent = -1;/* Replacement table for iParent */
4019   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4020   int i;              /* Loop counter */
4021   Expr *pWhere;                    /* The WHERE clause */
4022   SrcItem *pSubitem;               /* The subquery */
4023   sqlite3 *db = pParse->db;
4024   Walker w;                        /* Walker to persist agginfo data */
4025   int *aCsrMap = 0;
4026 
4027   /* Check to see if flattening is permitted.  Return 0 if not.
4028   */
4029   assert( p!=0 );
4030   assert( p->pPrior==0 );
4031   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4032   pSrc = p->pSrc;
4033   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4034   pSubitem = &pSrc->a[iFrom];
4035   iParent = pSubitem->iCursor;
4036   pSub = pSubitem->pSelect;
4037   assert( pSub!=0 );
4038 
4039 #ifndef SQLITE_OMIT_WINDOWFUNC
4040   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4041 #endif
4042 
4043   pSubSrc = pSub->pSrc;
4044   assert( pSubSrc );
4045   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4046   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4047   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4048   ** became arbitrary expressions, we were forced to add restrictions (13)
4049   ** and (14). */
4050   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4051   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4052   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4053     return 0;                                            /* Restriction (15) */
4054   }
4055   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4056   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4057   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4058      return 0;         /* Restrictions (8)(9) */
4059   }
4060   if( p->pOrderBy && pSub->pOrderBy ){
4061      return 0;                                           /* Restriction (11) */
4062   }
4063   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4064   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4065   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4066      return 0;         /* Restriction (21) */
4067   }
4068   if( pSub->selFlags & (SF_Recursive) ){
4069     return 0; /* Restrictions (22) */
4070   }
4071 
4072   /*
4073   ** If the subquery is the right operand of a LEFT JOIN, then the
4074   ** subquery may not be a join itself (3a). Example of why this is not
4075   ** allowed:
4076   **
4077   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4078   **
4079   ** If we flatten the above, we would get
4080   **
4081   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4082   **
4083   ** which is not at all the same thing.
4084   **
4085   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4086   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4087   ** aggregates are processed - there is no mechanism to determine if
4088   ** the LEFT JOIN table should be all-NULL.
4089   **
4090   ** See also tickets #306, #350, and #3300.
4091   */
4092   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4093     isLeftJoin = 1;
4094     if( pSubSrc->nSrc>1                   /* (3a) */
4095      || isAgg                             /* (3b) */
4096      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4097      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4098     ){
4099       return 0;
4100     }
4101   }
4102 #ifdef SQLITE_EXTRA_IFNULLROW
4103   else if( iFrom>0 && !isAgg ){
4104     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4105     ** every reference to any result column from subquery in a join, even
4106     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4107     ** opcode. */
4108     isLeftJoin = -1;
4109   }
4110 #endif
4111 
4112   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4113   ** use only the UNION ALL operator. And none of the simple select queries
4114   ** that make up the compound SELECT are allowed to be aggregate or distinct
4115   ** queries.
4116   */
4117   if( pSub->pPrior ){
4118     if( pSub->pOrderBy ){
4119       return 0;  /* Restriction (20) */
4120     }
4121     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4122       return 0; /* (17d1), (17d2), or (17f) */
4123     }
4124     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4125       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4126       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4127       assert( pSub->pSrc!=0 );
4128       assert( (pSub->selFlags & SF_Recursive)==0 );
4129       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4130       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4131        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4132        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4133 #ifndef SQLITE_OMIT_WINDOWFUNC
4134        || pSub1->pWin                                          /* (17e) */
4135 #endif
4136       ){
4137         return 0;
4138       }
4139       testcase( pSub1->pSrc->nSrc>1 );
4140     }
4141 
4142     /* Restriction (18). */
4143     if( p->pOrderBy ){
4144       int ii;
4145       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4146         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4147       }
4148     }
4149 
4150     /* Restriction (23) */
4151     if( (p->selFlags & SF_Recursive) ) return 0;
4152 
4153     if( pSrc->nSrc>1 ){
4154       if( pParse->nSelect>500 ) return 0;
4155       aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int));
4156       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4157     }
4158   }
4159 
4160   /***** If we reach this point, flattening is permitted. *****/
4161   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4162                    pSub->selId, pSub, iFrom));
4163 
4164   /* Authorize the subquery */
4165   pParse->zAuthContext = pSubitem->zName;
4166   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4167   testcase( i==SQLITE_DENY );
4168   pParse->zAuthContext = zSavedAuthContext;
4169 
4170   /* Delete the transient structures associated with thesubquery */
4171   pSub1 = pSubitem->pSelect;
4172   sqlite3DbFree(db, pSubitem->zDatabase);
4173   sqlite3DbFree(db, pSubitem->zName);
4174   sqlite3DbFree(db, pSubitem->zAlias);
4175   pSubitem->zDatabase = 0;
4176   pSubitem->zName = 0;
4177   pSubitem->zAlias = 0;
4178   pSubitem->pSelect = 0;
4179   assert( pSubitem->pOn==0 );
4180 
4181   /* If the sub-query is a compound SELECT statement, then (by restrictions
4182   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4183   ** be of the form:
4184   **
4185   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4186   **
4187   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4188   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4189   ** OFFSET clauses and joins them to the left-hand-side of the original
4190   ** using UNION ALL operators. In this case N is the number of simple
4191   ** select statements in the compound sub-query.
4192   **
4193   ** Example:
4194   **
4195   **     SELECT a+1 FROM (
4196   **        SELECT x FROM tab
4197   **        UNION ALL
4198   **        SELECT y FROM tab
4199   **        UNION ALL
4200   **        SELECT abs(z*2) FROM tab2
4201   **     ) WHERE a!=5 ORDER BY 1
4202   **
4203   ** Transformed into:
4204   **
4205   **     SELECT x+1 FROM tab WHERE x+1!=5
4206   **     UNION ALL
4207   **     SELECT y+1 FROM tab WHERE y+1!=5
4208   **     UNION ALL
4209   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4210   **     ORDER BY 1
4211   **
4212   ** We call this the "compound-subquery flattening".
4213   */
4214   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4215     Select *pNew;
4216     ExprList *pOrderBy = p->pOrderBy;
4217     Expr *pLimit = p->pLimit;
4218     Select *pPrior = p->pPrior;
4219     Table *pItemTab = pSubitem->pTab;
4220     pSubitem->pTab = 0;
4221     p->pOrderBy = 0;
4222     p->pPrior = 0;
4223     p->pLimit = 0;
4224     pNew = sqlite3SelectDup(db, p, 0);
4225     p->pLimit = pLimit;
4226     p->pOrderBy = pOrderBy;
4227     p->op = TK_ALL;
4228     pSubitem->pTab = pItemTab;
4229     if( pNew==0 ){
4230       p->pPrior = pPrior;
4231     }else{
4232       pNew->selId = ++pParse->nSelect;
4233       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4234         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4235       }
4236       pNew->pPrior = pPrior;
4237       if( pPrior ) pPrior->pNext = pNew;
4238       pNew->pNext = p;
4239       p->pPrior = pNew;
4240       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4241                               " creates %u as peer\n",pNew->selId));
4242     }
4243     assert( pSubitem->pSelect==0 );
4244   }
4245   sqlite3DbFree(db, aCsrMap);
4246   if( db->mallocFailed ){
4247     pSubitem->pSelect = pSub1;
4248     return 1;
4249   }
4250 
4251   /* Defer deleting the Table object associated with the
4252   ** subquery until code generation is
4253   ** complete, since there may still exist Expr.pTab entries that
4254   ** refer to the subquery even after flattening.  Ticket #3346.
4255   **
4256   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4257   */
4258   if( ALWAYS(pSubitem->pTab!=0) ){
4259     Table *pTabToDel = pSubitem->pTab;
4260     if( pTabToDel->nTabRef==1 ){
4261       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4262       sqlite3ParserAddCleanup(pToplevel,
4263          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4264          pTabToDel);
4265       testcase( pToplevel->earlyCleanup );
4266     }else{
4267       pTabToDel->nTabRef--;
4268     }
4269     pSubitem->pTab = 0;
4270   }
4271 
4272   /* The following loop runs once for each term in a compound-subquery
4273   ** flattening (as described above).  If we are doing a different kind
4274   ** of flattening - a flattening other than a compound-subquery flattening -
4275   ** then this loop only runs once.
4276   **
4277   ** This loop moves all of the FROM elements of the subquery into the
4278   ** the FROM clause of the outer query.  Before doing this, remember
4279   ** the cursor number for the original outer query FROM element in
4280   ** iParent.  The iParent cursor will never be used.  Subsequent code
4281   ** will scan expressions looking for iParent references and replace
4282   ** those references with expressions that resolve to the subquery FROM
4283   ** elements we are now copying in.
4284   */
4285   pSub = pSub1;
4286   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4287     int nSubSrc;
4288     u8 jointype = 0;
4289     assert( pSub!=0 );
4290     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4291     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4292     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4293 
4294     if( pParent==p ){
4295       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4296     }
4297 
4298     /* The subquery uses a single slot of the FROM clause of the outer
4299     ** query.  If the subquery has more than one element in its FROM clause,
4300     ** then expand the outer query to make space for it to hold all elements
4301     ** of the subquery.
4302     **
4303     ** Example:
4304     **
4305     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4306     **
4307     ** The outer query has 3 slots in its FROM clause.  One slot of the
4308     ** outer query (the middle slot) is used by the subquery.  The next
4309     ** block of code will expand the outer query FROM clause to 4 slots.
4310     ** The middle slot is expanded to two slots in order to make space
4311     ** for the two elements in the FROM clause of the subquery.
4312     */
4313     if( nSubSrc>1 ){
4314       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4315       if( pSrc==0 ) break;
4316       pParent->pSrc = pSrc;
4317     }
4318 
4319     /* Transfer the FROM clause terms from the subquery into the
4320     ** outer query.
4321     */
4322     for(i=0; i<nSubSrc; i++){
4323       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4324       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4325       pSrc->a[i+iFrom] = pSubSrc->a[i];
4326       iNewParent = pSubSrc->a[i].iCursor;
4327       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4328     }
4329     pSrc->a[iFrom].fg.jointype = jointype;
4330 
4331     /* Now begin substituting subquery result set expressions for
4332     ** references to the iParent in the outer query.
4333     **
4334     ** Example:
4335     **
4336     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4337     **   \                     \_____________ subquery __________/          /
4338     **    \_____________________ outer query ______________________________/
4339     **
4340     ** We look at every expression in the outer query and every place we see
4341     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4342     */
4343     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4344       /* At this point, any non-zero iOrderByCol values indicate that the
4345       ** ORDER BY column expression is identical to the iOrderByCol'th
4346       ** expression returned by SELECT statement pSub. Since these values
4347       ** do not necessarily correspond to columns in SELECT statement pParent,
4348       ** zero them before transfering the ORDER BY clause.
4349       **
4350       ** Not doing this may cause an error if a subsequent call to this
4351       ** function attempts to flatten a compound sub-query into pParent
4352       ** (the only way this can happen is if the compound sub-query is
4353       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4354       ExprList *pOrderBy = pSub->pOrderBy;
4355       for(i=0; i<pOrderBy->nExpr; i++){
4356         pOrderBy->a[i].u.x.iOrderByCol = 0;
4357       }
4358       assert( pParent->pOrderBy==0 );
4359       pParent->pOrderBy = pOrderBy;
4360       pSub->pOrderBy = 0;
4361     }
4362     pWhere = pSub->pWhere;
4363     pSub->pWhere = 0;
4364     if( isLeftJoin>0 ){
4365       sqlite3SetJoinExpr(pWhere, iNewParent);
4366     }
4367     if( pWhere ){
4368       if( pParent->pWhere ){
4369         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4370       }else{
4371         pParent->pWhere = pWhere;
4372       }
4373     }
4374     if( db->mallocFailed==0 ){
4375       SubstContext x;
4376       x.pParse = pParse;
4377       x.iTable = iParent;
4378       x.iNewTable = iNewParent;
4379       x.isLeftJoin = isLeftJoin;
4380       x.pEList = pSub->pEList;
4381       substSelect(&x, pParent, 0);
4382     }
4383 
4384     /* The flattened query is a compound if either the inner or the
4385     ** outer query is a compound. */
4386     pParent->selFlags |= pSub->selFlags & SF_Compound;
4387     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4388 
4389     /*
4390     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4391     **
4392     ** One is tempted to try to add a and b to combine the limits.  But this
4393     ** does not work if either limit is negative.
4394     */
4395     if( pSub->pLimit ){
4396       pParent->pLimit = pSub->pLimit;
4397       pSub->pLimit = 0;
4398     }
4399 
4400     /* Recompute the SrcList_item.colUsed masks for the flattened
4401     ** tables. */
4402     for(i=0; i<nSubSrc; i++){
4403       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4404     }
4405   }
4406 
4407   /* Finially, delete what is left of the subquery and return
4408   ** success.
4409   */
4410   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4411   sqlite3WalkSelect(&w,pSub1);
4412   sqlite3SelectDelete(db, pSub1);
4413 
4414 #if SELECTTRACE_ENABLED
4415   if( sqlite3SelectTrace & 0x100 ){
4416     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4417     sqlite3TreeViewSelect(0, p, 0);
4418   }
4419 #endif
4420 
4421   return 1;
4422 }
4423 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4424 
4425 /*
4426 ** A structure to keep track of all of the column values that are fixed to
4427 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4428 */
4429 typedef struct WhereConst WhereConst;
4430 struct WhereConst {
4431   Parse *pParse;   /* Parsing context */
4432   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4433   int nConst;      /* Number for COLUMN=CONSTANT terms */
4434   int nChng;       /* Number of times a constant is propagated */
4435   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4436   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4437 };
4438 
4439 /*
4440 ** Add a new entry to the pConst object.  Except, do not add duplicate
4441 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4442 **
4443 ** The caller guarantees the pColumn is a column and pValue is a constant.
4444 ** This routine has to do some additional checks before completing the
4445 ** insert.
4446 */
4447 static void constInsert(
4448   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4449   Expr *pColumn,       /* The COLUMN part of the constraint */
4450   Expr *pValue,        /* The VALUE part of the constraint */
4451   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4452 ){
4453   int i;
4454   assert( pColumn->op==TK_COLUMN );
4455   assert( sqlite3ExprIsConstant(pValue) );
4456 
4457   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4458   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4459   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4460     return;
4461   }
4462 
4463   /* 2018-10-25 ticket [cf5ed20f]
4464   ** Make sure the same pColumn is not inserted more than once */
4465   for(i=0; i<pConst->nConst; i++){
4466     const Expr *pE2 = pConst->apExpr[i*2];
4467     assert( pE2->op==TK_COLUMN );
4468     if( pE2->iTable==pColumn->iTable
4469      && pE2->iColumn==pColumn->iColumn
4470     ){
4471       return;  /* Already present.  Return without doing anything. */
4472     }
4473   }
4474   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4475     pConst->bHasAffBlob = 1;
4476   }
4477 
4478   pConst->nConst++;
4479   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4480                          pConst->nConst*2*sizeof(Expr*));
4481   if( pConst->apExpr==0 ){
4482     pConst->nConst = 0;
4483   }else{
4484     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4485     pConst->apExpr[pConst->nConst*2-1] = pValue;
4486   }
4487 }
4488 
4489 /*
4490 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4491 ** is a constant expression and where the term must be true because it
4492 ** is part of the AND-connected terms of the expression.  For each term
4493 ** found, add it to the pConst structure.
4494 */
4495 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4496   Expr *pRight, *pLeft;
4497   if( NEVER(pExpr==0) ) return;
4498   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4499   if( pExpr->op==TK_AND ){
4500     findConstInWhere(pConst, pExpr->pRight);
4501     findConstInWhere(pConst, pExpr->pLeft);
4502     return;
4503   }
4504   if( pExpr->op!=TK_EQ ) return;
4505   pRight = pExpr->pRight;
4506   pLeft = pExpr->pLeft;
4507   assert( pRight!=0 );
4508   assert( pLeft!=0 );
4509   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4510     constInsert(pConst,pRight,pLeft,pExpr);
4511   }
4512   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4513     constInsert(pConst,pLeft,pRight,pExpr);
4514   }
4515 }
4516 
4517 /*
4518 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4519 **
4520 ** Argument pExpr is a candidate expression to be replaced by a value. If
4521 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4522 ** then overwrite it with the corresponding value. Except, do not do so
4523 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4524 ** is SQLITE_AFF_BLOB.
4525 */
4526 static int propagateConstantExprRewriteOne(
4527   WhereConst *pConst,
4528   Expr *pExpr,
4529   int bIgnoreAffBlob
4530 ){
4531   int i;
4532   if( pConst->pOomFault[0] ) return WRC_Prune;
4533   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4534   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4535     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4536     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4537     return WRC_Continue;
4538   }
4539   for(i=0; i<pConst->nConst; i++){
4540     Expr *pColumn = pConst->apExpr[i*2];
4541     if( pColumn==pExpr ) continue;
4542     if( pColumn->iTable!=pExpr->iTable ) continue;
4543     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4544     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4545       break;
4546     }
4547     /* A match is found.  Add the EP_FixedCol property */
4548     pConst->nChng++;
4549     ExprClearProperty(pExpr, EP_Leaf);
4550     ExprSetProperty(pExpr, EP_FixedCol);
4551     assert( pExpr->pLeft==0 );
4552     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4553     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4554     break;
4555   }
4556   return WRC_Prune;
4557 }
4558 
4559 /*
4560 ** This is a Walker expression callback. pExpr is a node from the WHERE
4561 ** clause of a SELECT statement. This function examines pExpr to see if
4562 ** any substitutions based on the contents of pWalker->u.pConst should
4563 ** be made to pExpr or its immediate children.
4564 **
4565 ** A substitution is made if:
4566 **
4567 **   + pExpr is a column with an affinity other than BLOB that matches
4568 **     one of the columns in pWalker->u.pConst, or
4569 **
4570 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4571 **     uses an affinity other than TEXT and one of its immediate
4572 **     children is a column that matches one of the columns in
4573 **     pWalker->u.pConst.
4574 */
4575 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4576   WhereConst *pConst = pWalker->u.pConst;
4577   assert( TK_GT==TK_EQ+1 );
4578   assert( TK_LE==TK_EQ+2 );
4579   assert( TK_LT==TK_EQ+3 );
4580   assert( TK_GE==TK_EQ+4 );
4581   if( pConst->bHasAffBlob ){
4582     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4583      || pExpr->op==TK_IS
4584     ){
4585       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4586       if( pConst->pOomFault[0] ) return WRC_Prune;
4587       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4588         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4589       }
4590     }
4591   }
4592   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4593 }
4594 
4595 /*
4596 ** The WHERE-clause constant propagation optimization.
4597 **
4598 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4599 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4600 ** part of a ON clause from a LEFT JOIN, then throughout the query
4601 ** replace all other occurrences of COLUMN with CONSTANT.
4602 **
4603 ** For example, the query:
4604 **
4605 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4606 **
4607 ** Is transformed into
4608 **
4609 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4610 **
4611 ** Return true if any transformations where made and false if not.
4612 **
4613 ** Implementation note:  Constant propagation is tricky due to affinity
4614 ** and collating sequence interactions.  Consider this example:
4615 **
4616 **    CREATE TABLE t1(a INT,b TEXT);
4617 **    INSERT INTO t1 VALUES(123,'0123');
4618 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4619 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4620 **
4621 ** The two SELECT statements above should return different answers.  b=a
4622 ** is alway true because the comparison uses numeric affinity, but b=123
4623 ** is false because it uses text affinity and '0123' is not the same as '123'.
4624 ** To work around this, the expression tree is not actually changed from
4625 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4626 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4627 ** routines know to generate the constant "123" instead of looking up the
4628 ** column value.  Also, to avoid collation problems, this optimization is
4629 ** only attempted if the "a=123" term uses the default BINARY collation.
4630 **
4631 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4632 **
4633 **    CREATE TABLE t1(x);
4634 **    INSERT INTO t1 VALUES(10.0);
4635 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4636 **
4637 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4638 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4639 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4640 ** resulting in a false positive.  To avoid this, constant propagation for
4641 ** columns with BLOB affinity is only allowed if the constant is used with
4642 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4643 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4644 ** for details.
4645 */
4646 static int propagateConstants(
4647   Parse *pParse,   /* The parsing context */
4648   Select *p        /* The query in which to propagate constants */
4649 ){
4650   WhereConst x;
4651   Walker w;
4652   int nChng = 0;
4653   x.pParse = pParse;
4654   x.pOomFault = &pParse->db->mallocFailed;
4655   do{
4656     x.nConst = 0;
4657     x.nChng = 0;
4658     x.apExpr = 0;
4659     x.bHasAffBlob = 0;
4660     findConstInWhere(&x, p->pWhere);
4661     if( x.nConst ){
4662       memset(&w, 0, sizeof(w));
4663       w.pParse = pParse;
4664       w.xExprCallback = propagateConstantExprRewrite;
4665       w.xSelectCallback = sqlite3SelectWalkNoop;
4666       w.xSelectCallback2 = 0;
4667       w.walkerDepth = 0;
4668       w.u.pConst = &x;
4669       sqlite3WalkExpr(&w, p->pWhere);
4670       sqlite3DbFree(x.pParse->db, x.apExpr);
4671       nChng += x.nChng;
4672     }
4673   }while( x.nChng );
4674   return nChng;
4675 }
4676 
4677 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4678 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4679 /*
4680 ** This function is called to determine whether or not it is safe to
4681 ** push WHERE clause expression pExpr down to FROM clause sub-query
4682 ** pSubq, which contains at least one window function. Return 1
4683 ** if it is safe and the expression should be pushed down, or 0
4684 ** otherwise.
4685 **
4686 ** It is only safe to push the expression down if it consists only
4687 ** of constants and copies of expressions that appear in the PARTITION
4688 ** BY clause of all window function used by the sub-query. It is safe
4689 ** to filter out entire partitions, but not rows within partitions, as
4690 ** this may change the results of the window functions.
4691 **
4692 ** At the time this function is called it is guaranteed that
4693 **
4694 **   * the sub-query uses only one distinct window frame, and
4695 **   * that the window frame has a PARTITION BY clase.
4696 */
4697 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4698   assert( pSubq->pWin->pPartition );
4699   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4700   assert( pSubq->pPrior==0 );
4701   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4702 }
4703 # endif /* SQLITE_OMIT_WINDOWFUNC */
4704 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4705 
4706 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4707 /*
4708 ** Make copies of relevant WHERE clause terms of the outer query into
4709 ** the WHERE clause of subquery.  Example:
4710 **
4711 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4712 **
4713 ** Transformed into:
4714 **
4715 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4716 **     WHERE x=5 AND y=10;
4717 **
4718 ** The hope is that the terms added to the inner query will make it more
4719 ** efficient.
4720 **
4721 ** Do not attempt this optimization if:
4722 **
4723 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4724 **           disallow this optimization for aggregate subqueries, but now
4725 **           it is allowed by putting the extra terms on the HAVING clause.
4726 **           The added HAVING clause is pointless if the subquery lacks
4727 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4728 **           so there does not appear to be any reason to add extra logic
4729 **           to suppress it. **)
4730 **
4731 **   (2) The inner query is the recursive part of a common table expression.
4732 **
4733 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4734 **       clause would change the meaning of the LIMIT).
4735 **
4736 **   (4) The inner query is the right operand of a LEFT JOIN and the
4737 **       expression to be pushed down does not come from the ON clause
4738 **       on that LEFT JOIN.
4739 **
4740 **   (5) The WHERE clause expression originates in the ON or USING clause
4741 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4742 **       left join.  An example:
4743 **
4744 **           SELECT *
4745 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4746 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4747 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4748 **
4749 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4750 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4751 **       then the (1,1,NULL) row would be suppressed.
4752 **
4753 **   (6) Window functions make things tricky as changes to the WHERE clause
4754 **       of the inner query could change the window over which window
4755 **       functions are calculated. Therefore, do not attempt the optimization
4756 **       if:
4757 **
4758 **     (6a) The inner query uses multiple incompatible window partitions.
4759 **
4760 **     (6b) The inner query is a compound and uses window-functions.
4761 **
4762 **     (6c) The WHERE clause does not consist entirely of constants and
4763 **          copies of expressions found in the PARTITION BY clause of
4764 **          all window-functions used by the sub-query. It is safe to
4765 **          filter out entire partitions, as this does not change the
4766 **          window over which any window-function is calculated.
4767 **
4768 **   (7) The inner query is a Common Table Expression (CTE) that should
4769 **       be materialized.  (This restriction is implemented in the calling
4770 **       routine.)
4771 **
4772 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4773 ** terms are duplicated into the subquery.
4774 */
4775 static int pushDownWhereTerms(
4776   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4777   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4778   Expr *pWhere,         /* The WHERE clause of the outer query */
4779   int iCursor,          /* Cursor number of the subquery */
4780   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4781 ){
4782   Expr *pNew;
4783   int nChng = 0;
4784   if( pWhere==0 ) return 0;
4785   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4786 
4787 #ifndef SQLITE_OMIT_WINDOWFUNC
4788   if( pSubq->pPrior ){
4789     Select *pSel;
4790     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4791       if( pSel->pWin ) return 0;    /* restriction (6b) */
4792     }
4793   }else{
4794     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4795   }
4796 #endif
4797 
4798 #ifdef SQLITE_DEBUG
4799   /* Only the first term of a compound can have a WITH clause.  But make
4800   ** sure no other terms are marked SF_Recursive in case something changes
4801   ** in the future.
4802   */
4803   {
4804     Select *pX;
4805     for(pX=pSubq; pX; pX=pX->pPrior){
4806       assert( (pX->selFlags & (SF_Recursive))==0 );
4807     }
4808   }
4809 #endif
4810 
4811   if( pSubq->pLimit!=0 ){
4812     return 0; /* restriction (3) */
4813   }
4814   while( pWhere->op==TK_AND ){
4815     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4816                                 iCursor, isLeftJoin);
4817     pWhere = pWhere->pLeft;
4818   }
4819   if( isLeftJoin
4820    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4821          || pWhere->iRightJoinTable!=iCursor)
4822   ){
4823     return 0; /* restriction (4) */
4824   }
4825   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4826     return 0; /* restriction (5) */
4827   }
4828   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4829     nChng++;
4830     pSubq->selFlags |= SF_PushDown;
4831     while( pSubq ){
4832       SubstContext x;
4833       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4834       unsetJoinExpr(pNew, -1);
4835       x.pParse = pParse;
4836       x.iTable = iCursor;
4837       x.iNewTable = iCursor;
4838       x.isLeftJoin = 0;
4839       x.pEList = pSubq->pEList;
4840       pNew = substExpr(&x, pNew);
4841 #ifndef SQLITE_OMIT_WINDOWFUNC
4842       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4843         /* Restriction 6c has prevented push-down in this case */
4844         sqlite3ExprDelete(pParse->db, pNew);
4845         nChng--;
4846         break;
4847       }
4848 #endif
4849       if( pSubq->selFlags & SF_Aggregate ){
4850         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4851       }else{
4852         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4853       }
4854       pSubq = pSubq->pPrior;
4855     }
4856   }
4857   return nChng;
4858 }
4859 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4860 
4861 /*
4862 ** The pFunc is the only aggregate function in the query.  Check to see
4863 ** if the query is a candidate for the min/max optimization.
4864 **
4865 ** If the query is a candidate for the min/max optimization, then set
4866 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4867 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4868 ** whether pFunc is a min() or max() function.
4869 **
4870 ** If the query is not a candidate for the min/max optimization, return
4871 ** WHERE_ORDERBY_NORMAL (which must be zero).
4872 **
4873 ** This routine must be called after aggregate functions have been
4874 ** located but before their arguments have been subjected to aggregate
4875 ** analysis.
4876 */
4877 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4878   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4879   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4880   const char *zFunc;                    /* Name of aggregate function pFunc */
4881   ExprList *pOrderBy;
4882   u8 sortFlags = 0;
4883 
4884   assert( *ppMinMax==0 );
4885   assert( pFunc->op==TK_AGG_FUNCTION );
4886   assert( !IsWindowFunc(pFunc) );
4887   if( pEList==0
4888    || pEList->nExpr!=1
4889    || ExprHasProperty(pFunc, EP_WinFunc)
4890    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4891   ){
4892     return eRet;
4893   }
4894   zFunc = pFunc->u.zToken;
4895   if( sqlite3StrICmp(zFunc, "min")==0 ){
4896     eRet = WHERE_ORDERBY_MIN;
4897     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4898       sortFlags = KEYINFO_ORDER_BIGNULL;
4899     }
4900   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4901     eRet = WHERE_ORDERBY_MAX;
4902     sortFlags = KEYINFO_ORDER_DESC;
4903   }else{
4904     return eRet;
4905   }
4906   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4907   assert( pOrderBy!=0 || db->mallocFailed );
4908   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4909   return eRet;
4910 }
4911 
4912 /*
4913 ** The select statement passed as the first argument is an aggregate query.
4914 ** The second argument is the associated aggregate-info object. This
4915 ** function tests if the SELECT is of the form:
4916 **
4917 **   SELECT count(*) FROM <tbl>
4918 **
4919 ** where table is a database table, not a sub-select or view. If the query
4920 ** does match this pattern, then a pointer to the Table object representing
4921 ** <tbl> is returned. Otherwise, 0 is returned.
4922 */
4923 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4924   Table *pTab;
4925   Expr *pExpr;
4926 
4927   assert( !p->pGroupBy );
4928 
4929   if( p->pWhere || p->pEList->nExpr!=1
4930    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4931   ){
4932     return 0;
4933   }
4934   pTab = p->pSrc->a[0].pTab;
4935   pExpr = p->pEList->a[0].pExpr;
4936   assert( pTab && !IsView(pTab) && pExpr );
4937 
4938   if( IsVirtual(pTab) ) return 0;
4939   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4940   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4941   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4942   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4943 
4944   return pTab;
4945 }
4946 
4947 /*
4948 ** If the source-list item passed as an argument was augmented with an
4949 ** INDEXED BY clause, then try to locate the specified index. If there
4950 ** was such a clause and the named index cannot be found, return
4951 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4952 ** pFrom->pIndex and return SQLITE_OK.
4953 */
4954 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4955   Table *pTab = pFrom->pTab;
4956   char *zIndexedBy = pFrom->u1.zIndexedBy;
4957   Index *pIdx;
4958   assert( pTab!=0 );
4959   assert( pFrom->fg.isIndexedBy!=0 );
4960 
4961   for(pIdx=pTab->pIndex;
4962       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4963       pIdx=pIdx->pNext
4964   );
4965   if( !pIdx ){
4966     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4967     pParse->checkSchema = 1;
4968     return SQLITE_ERROR;
4969   }
4970   pFrom->u2.pIBIndex = pIdx;
4971   return SQLITE_OK;
4972 }
4973 
4974 /*
4975 ** Detect compound SELECT statements that use an ORDER BY clause with
4976 ** an alternative collating sequence.
4977 **
4978 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4979 **
4980 ** These are rewritten as a subquery:
4981 **
4982 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4983 **     ORDER BY ... COLLATE ...
4984 **
4985 ** This transformation is necessary because the multiSelectOrderBy() routine
4986 ** above that generates the code for a compound SELECT with an ORDER BY clause
4987 ** uses a merge algorithm that requires the same collating sequence on the
4988 ** result columns as on the ORDER BY clause.  See ticket
4989 ** http://www.sqlite.org/src/info/6709574d2a
4990 **
4991 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4992 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4993 ** there are COLLATE terms in the ORDER BY.
4994 */
4995 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4996   int i;
4997   Select *pNew;
4998   Select *pX;
4999   sqlite3 *db;
5000   struct ExprList_item *a;
5001   SrcList *pNewSrc;
5002   Parse *pParse;
5003   Token dummy;
5004 
5005   if( p->pPrior==0 ) return WRC_Continue;
5006   if( p->pOrderBy==0 ) return WRC_Continue;
5007   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5008   if( pX==0 ) return WRC_Continue;
5009   a = p->pOrderBy->a;
5010 #ifndef SQLITE_OMIT_WINDOWFUNC
5011   /* If iOrderByCol is already non-zero, then it has already been matched
5012   ** to a result column of the SELECT statement. This occurs when the
5013   ** SELECT is rewritten for window-functions processing and then passed
5014   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5015   ** by this function is not required in this case. */
5016   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5017 #endif
5018   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5019     if( a[i].pExpr->flags & EP_Collate ) break;
5020   }
5021   if( i<0 ) return WRC_Continue;
5022 
5023   /* If we reach this point, that means the transformation is required. */
5024 
5025   pParse = pWalker->pParse;
5026   db = pParse->db;
5027   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5028   if( pNew==0 ) return WRC_Abort;
5029   memset(&dummy, 0, sizeof(dummy));
5030   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5031   if( pNewSrc==0 ) return WRC_Abort;
5032   *pNew = *p;
5033   p->pSrc = pNewSrc;
5034   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5035   p->op = TK_SELECT;
5036   p->pWhere = 0;
5037   pNew->pGroupBy = 0;
5038   pNew->pHaving = 0;
5039   pNew->pOrderBy = 0;
5040   p->pPrior = 0;
5041   p->pNext = 0;
5042   p->pWith = 0;
5043 #ifndef SQLITE_OMIT_WINDOWFUNC
5044   p->pWinDefn = 0;
5045 #endif
5046   p->selFlags &= ~SF_Compound;
5047   assert( (p->selFlags & SF_Converted)==0 );
5048   p->selFlags |= SF_Converted;
5049   assert( pNew->pPrior!=0 );
5050   pNew->pPrior->pNext = pNew;
5051   pNew->pLimit = 0;
5052   return WRC_Continue;
5053 }
5054 
5055 /*
5056 ** Check to see if the FROM clause term pFrom has table-valued function
5057 ** arguments.  If it does, leave an error message in pParse and return
5058 ** non-zero, since pFrom is not allowed to be a table-valued function.
5059 */
5060 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5061   if( pFrom->fg.isTabFunc ){
5062     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5063     return 1;
5064   }
5065   return 0;
5066 }
5067 
5068 #ifndef SQLITE_OMIT_CTE
5069 /*
5070 ** Argument pWith (which may be NULL) points to a linked list of nested
5071 ** WITH contexts, from inner to outermost. If the table identified by
5072 ** FROM clause element pItem is really a common-table-expression (CTE)
5073 ** then return a pointer to the CTE definition for that table. Otherwise
5074 ** return NULL.
5075 **
5076 ** If a non-NULL value is returned, set *ppContext to point to the With
5077 ** object that the returned CTE belongs to.
5078 */
5079 static struct Cte *searchWith(
5080   With *pWith,                    /* Current innermost WITH clause */
5081   SrcItem *pItem,                 /* FROM clause element to resolve */
5082   With **ppContext                /* OUT: WITH clause return value belongs to */
5083 ){
5084   const char *zName = pItem->zName;
5085   With *p;
5086   assert( pItem->zDatabase==0 );
5087   assert( zName!=0 );
5088   for(p=pWith; p; p=p->pOuter){
5089     int i;
5090     for(i=0; i<p->nCte; i++){
5091       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5092         *ppContext = p;
5093         return &p->a[i];
5094       }
5095     }
5096     if( p->bView ) break;
5097   }
5098   return 0;
5099 }
5100 
5101 /* The code generator maintains a stack of active WITH clauses
5102 ** with the inner-most WITH clause being at the top of the stack.
5103 **
5104 ** This routine pushes the WITH clause passed as the second argument
5105 ** onto the top of the stack. If argument bFree is true, then this
5106 ** WITH clause will never be popped from the stack but should instead
5107 ** be freed along with the Parse object. In other cases, when
5108 ** bFree==0, the With object will be freed along with the SELECT
5109 ** statement with which it is associated.
5110 **
5111 ** This routine returns a copy of pWith.  Or, if bFree is true and
5112 ** the pWith object is destroyed immediately due to an OOM condition,
5113 ** then this routine return NULL.
5114 **
5115 ** If bFree is true, do not continue to use the pWith pointer after
5116 ** calling this routine,  Instead, use only the return value.
5117 */
5118 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5119   if( pWith ){
5120     if( bFree ){
5121       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5122                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5123                       pWith);
5124       if( pWith==0 ) return 0;
5125     }
5126     if( pParse->nErr==0 ){
5127       assert( pParse->pWith!=pWith );
5128       pWith->pOuter = pParse->pWith;
5129       pParse->pWith = pWith;
5130     }
5131   }
5132   return pWith;
5133 }
5134 
5135 /*
5136 ** This function checks if argument pFrom refers to a CTE declared by
5137 ** a WITH clause on the stack currently maintained by the parser (on the
5138 ** pParse->pWith linked list).  And if currently processing a CTE
5139 ** CTE expression, through routine checks to see if the reference is
5140 ** a recursive reference to the CTE.
5141 **
5142 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5143 ** and other fields are populated accordingly.
5144 **
5145 ** Return 0 if no match is found.
5146 ** Return 1 if a match is found.
5147 ** Return 2 if an error condition is detected.
5148 */
5149 static int resolveFromTermToCte(
5150   Parse *pParse,                  /* The parsing context */
5151   Walker *pWalker,                /* Current tree walker */
5152   SrcItem *pFrom                  /* The FROM clause term to check */
5153 ){
5154   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5155   With *pWith;             /* The matching WITH */
5156 
5157   assert( pFrom->pTab==0 );
5158   if( pParse->pWith==0 ){
5159     /* There are no WITH clauses in the stack.  No match is possible */
5160     return 0;
5161   }
5162   if( pParse->nErr ){
5163     /* Prior errors might have left pParse->pWith in a goofy state, so
5164     ** go no further. */
5165     return 0;
5166   }
5167   if( pFrom->zDatabase!=0 ){
5168     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5169     ** it cannot possibly be a CTE reference. */
5170     return 0;
5171   }
5172   if( pFrom->fg.notCte ){
5173     /* The FROM term is specifically excluded from matching a CTE.
5174     **   (1)  It is part of a trigger that used to have zDatabase but had
5175     **        zDatabase removed by sqlite3FixTriggerStep().
5176     **   (2)  This is the first term in the FROM clause of an UPDATE.
5177     */
5178     return 0;
5179   }
5180   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5181   if( pCte ){
5182     sqlite3 *db = pParse->db;
5183     Table *pTab;
5184     ExprList *pEList;
5185     Select *pSel;
5186     Select *pLeft;                /* Left-most SELECT statement */
5187     Select *pRecTerm;             /* Left-most recursive term */
5188     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5189     With *pSavedWith;             /* Initial value of pParse->pWith */
5190     int iRecTab = -1;             /* Cursor for recursive table */
5191     CteUse *pCteUse;
5192 
5193     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5194     ** recursive reference to CTE pCte. Leave an error in pParse and return
5195     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5196     ** In this case, proceed.  */
5197     if( pCte->zCteErr ){
5198       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5199       return 2;
5200     }
5201     if( cannotBeFunction(pParse, pFrom) ) return 2;
5202 
5203     assert( pFrom->pTab==0 );
5204     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5205     if( pTab==0 ) return 2;
5206     pCteUse = pCte->pUse;
5207     if( pCteUse==0 ){
5208       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5209       if( pCteUse==0
5210        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5211       ){
5212         sqlite3DbFree(db, pTab);
5213         return 2;
5214       }
5215       pCteUse->eM10d = pCte->eM10d;
5216     }
5217     pFrom->pTab = pTab;
5218     pTab->nTabRef = 1;
5219     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5220     pTab->iPKey = -1;
5221     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5222     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5223     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5224     if( db->mallocFailed ) return 2;
5225     pFrom->pSelect->selFlags |= SF_CopyCte;
5226     assert( pFrom->pSelect );
5227     pFrom->fg.isCte = 1;
5228     pFrom->u2.pCteUse = pCteUse;
5229     pCteUse->nUse++;
5230     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5231       pCteUse->eM10d = M10d_Yes;
5232     }
5233 
5234     /* Check if this is a recursive CTE. */
5235     pRecTerm = pSel = pFrom->pSelect;
5236     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5237     while( bMayRecursive && pRecTerm->op==pSel->op ){
5238       int i;
5239       SrcList *pSrc = pRecTerm->pSrc;
5240       assert( pRecTerm->pPrior!=0 );
5241       for(i=0; i<pSrc->nSrc; i++){
5242         SrcItem *pItem = &pSrc->a[i];
5243         if( pItem->zDatabase==0
5244          && pItem->zName!=0
5245          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5246         ){
5247           pItem->pTab = pTab;
5248           pTab->nTabRef++;
5249           pItem->fg.isRecursive = 1;
5250           if( pRecTerm->selFlags & SF_Recursive ){
5251             sqlite3ErrorMsg(pParse,
5252                "multiple references to recursive table: %s", pCte->zName
5253             );
5254             return 2;
5255           }
5256           pRecTerm->selFlags |= SF_Recursive;
5257           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5258           pItem->iCursor = iRecTab;
5259         }
5260       }
5261       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5262       pRecTerm = pRecTerm->pPrior;
5263     }
5264 
5265     pCte->zCteErr = "circular reference: %s";
5266     pSavedWith = pParse->pWith;
5267     pParse->pWith = pWith;
5268     if( pSel->selFlags & SF_Recursive ){
5269       int rc;
5270       assert( pRecTerm!=0 );
5271       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5272       assert( pRecTerm->pNext!=0 );
5273       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5274       assert( pRecTerm->pWith==0 );
5275       pRecTerm->pWith = pSel->pWith;
5276       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5277       pRecTerm->pWith = 0;
5278       if( rc ){
5279         pParse->pWith = pSavedWith;
5280         return 2;
5281       }
5282     }else{
5283       if( sqlite3WalkSelect(pWalker, pSel) ){
5284         pParse->pWith = pSavedWith;
5285         return 2;
5286       }
5287     }
5288     pParse->pWith = pWith;
5289 
5290     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5291     pEList = pLeft->pEList;
5292     if( pCte->pCols ){
5293       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5294         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5295             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5296         );
5297         pParse->pWith = pSavedWith;
5298         return 2;
5299       }
5300       pEList = pCte->pCols;
5301     }
5302 
5303     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5304     if( bMayRecursive ){
5305       if( pSel->selFlags & SF_Recursive ){
5306         pCte->zCteErr = "multiple recursive references: %s";
5307       }else{
5308         pCte->zCteErr = "recursive reference in a subquery: %s";
5309       }
5310       sqlite3WalkSelect(pWalker, pSel);
5311     }
5312     pCte->zCteErr = 0;
5313     pParse->pWith = pSavedWith;
5314     return 1;  /* Success */
5315   }
5316   return 0;  /* No match */
5317 }
5318 #endif
5319 
5320 #ifndef SQLITE_OMIT_CTE
5321 /*
5322 ** If the SELECT passed as the second argument has an associated WITH
5323 ** clause, pop it from the stack stored as part of the Parse object.
5324 **
5325 ** This function is used as the xSelectCallback2() callback by
5326 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5327 ** names and other FROM clause elements.
5328 */
5329 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5330   Parse *pParse = pWalker->pParse;
5331   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5332     With *pWith = findRightmost(p)->pWith;
5333     if( pWith!=0 ){
5334       assert( pParse->pWith==pWith || pParse->nErr );
5335       pParse->pWith = pWith->pOuter;
5336     }
5337   }
5338 }
5339 #endif
5340 
5341 /*
5342 ** The SrcList_item structure passed as the second argument represents a
5343 ** sub-query in the FROM clause of a SELECT statement. This function
5344 ** allocates and populates the SrcList_item.pTab object. If successful,
5345 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5346 ** SQLITE_NOMEM.
5347 */
5348 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5349   Select *pSel = pFrom->pSelect;
5350   Table *pTab;
5351 
5352   assert( pSel );
5353   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5354   if( pTab==0 ) return SQLITE_NOMEM;
5355   pTab->nTabRef = 1;
5356   if( pFrom->zAlias ){
5357     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5358   }else{
5359     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5360   }
5361   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5362   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5363   pTab->iPKey = -1;
5364   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5365 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5366   /* The usual case - do not allow ROWID on a subquery */
5367   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5368 #else
5369   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5370 #endif
5371 
5372 
5373   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5374 }
5375 
5376 /*
5377 ** This routine is a Walker callback for "expanding" a SELECT statement.
5378 ** "Expanding" means to do the following:
5379 **
5380 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5381 **         element of the FROM clause.
5382 **
5383 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5384 **         defines FROM clause.  When views appear in the FROM clause,
5385 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5386 **         that implements the view.  A copy is made of the view's SELECT
5387 **         statement so that we can freely modify or delete that statement
5388 **         without worrying about messing up the persistent representation
5389 **         of the view.
5390 **
5391 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5392 **         on joins and the ON and USING clause of joins.
5393 **
5394 **    (4)  Scan the list of columns in the result set (pEList) looking
5395 **         for instances of the "*" operator or the TABLE.* operator.
5396 **         If found, expand each "*" to be every column in every table
5397 **         and TABLE.* to be every column in TABLE.
5398 **
5399 */
5400 static int selectExpander(Walker *pWalker, Select *p){
5401   Parse *pParse = pWalker->pParse;
5402   int i, j, k, rc;
5403   SrcList *pTabList;
5404   ExprList *pEList;
5405   SrcItem *pFrom;
5406   sqlite3 *db = pParse->db;
5407   Expr *pE, *pRight, *pExpr;
5408   u16 selFlags = p->selFlags;
5409   u32 elistFlags = 0;
5410 
5411   p->selFlags |= SF_Expanded;
5412   if( db->mallocFailed  ){
5413     return WRC_Abort;
5414   }
5415   assert( p->pSrc!=0 );
5416   if( (selFlags & SF_Expanded)!=0 ){
5417     return WRC_Prune;
5418   }
5419   if( pWalker->eCode ){
5420     /* Renumber selId because it has been copied from a view */
5421     p->selId = ++pParse->nSelect;
5422   }
5423   pTabList = p->pSrc;
5424   pEList = p->pEList;
5425   if( pParse->pWith && (p->selFlags & SF_View) ){
5426     if( p->pWith==0 ){
5427       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5428       if( p->pWith==0 ){
5429         return WRC_Abort;
5430       }
5431     }
5432     p->pWith->bView = 1;
5433   }
5434   sqlite3WithPush(pParse, p->pWith, 0);
5435 
5436   /* Make sure cursor numbers have been assigned to all entries in
5437   ** the FROM clause of the SELECT statement.
5438   */
5439   sqlite3SrcListAssignCursors(pParse, pTabList);
5440 
5441   /* Look up every table named in the FROM clause of the select.  If
5442   ** an entry of the FROM clause is a subquery instead of a table or view,
5443   ** then create a transient table structure to describe the subquery.
5444   */
5445   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5446     Table *pTab;
5447     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5448     if( pFrom->pTab ) continue;
5449     assert( pFrom->fg.isRecursive==0 );
5450     if( pFrom->zName==0 ){
5451 #ifndef SQLITE_OMIT_SUBQUERY
5452       Select *pSel = pFrom->pSelect;
5453       /* A sub-query in the FROM clause of a SELECT */
5454       assert( pSel!=0 );
5455       assert( pFrom->pTab==0 );
5456       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5457       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5458 #endif
5459 #ifndef SQLITE_OMIT_CTE
5460     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5461       if( rc>1 ) return WRC_Abort;
5462       pTab = pFrom->pTab;
5463       assert( pTab!=0 );
5464 #endif
5465     }else{
5466       /* An ordinary table or view name in the FROM clause */
5467       assert( pFrom->pTab==0 );
5468       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5469       if( pTab==0 ) return WRC_Abort;
5470       if( pTab->nTabRef>=0xffff ){
5471         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5472            pTab->zName);
5473         pFrom->pTab = 0;
5474         return WRC_Abort;
5475       }
5476       pTab->nTabRef++;
5477       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5478         return WRC_Abort;
5479       }
5480 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5481       if( !IsOrdinaryTable(pTab) ){
5482         i16 nCol;
5483         u8 eCodeOrig = pWalker->eCode;
5484         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5485         assert( pFrom->pSelect==0 );
5486         if( IsView(pTab) ){
5487           if( (db->flags & SQLITE_EnableView)==0
5488            && pTab->pSchema!=db->aDb[1].pSchema
5489           ){
5490             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5491               pTab->zName);
5492           }
5493           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5494         }else
5495 #ifndef SQLITE_OMIT_VIRTUALTABLE
5496         if( ALWAYS(IsVirtual(pTab))
5497          && pFrom->fg.fromDDL
5498          && ALWAYS(pTab->u.vtab.p!=0)
5499          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5500         ){
5501           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5502                                   pTab->zName);
5503         }
5504         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5505 #endif
5506         nCol = pTab->nCol;
5507         pTab->nCol = -1;
5508         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5509         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5510         pWalker->eCode = eCodeOrig;
5511         pTab->nCol = nCol;
5512       }
5513 #endif
5514     }
5515 
5516     /* Locate the index named by the INDEXED BY clause, if any. */
5517     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5518       return WRC_Abort;
5519     }
5520   }
5521 
5522   /* Process NATURAL keywords, and ON and USING clauses of joins.
5523   */
5524   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5525     return WRC_Abort;
5526   }
5527 
5528   /* For every "*" that occurs in the column list, insert the names of
5529   ** all columns in all tables.  And for every TABLE.* insert the names
5530   ** of all columns in TABLE.  The parser inserted a special expression
5531   ** with the TK_ASTERISK operator for each "*" that it found in the column
5532   ** list.  The following code just has to locate the TK_ASTERISK
5533   ** expressions and expand each one to the list of all columns in
5534   ** all tables.
5535   **
5536   ** The first loop just checks to see if there are any "*" operators
5537   ** that need expanding.
5538   */
5539   for(k=0; k<pEList->nExpr; k++){
5540     pE = pEList->a[k].pExpr;
5541     if( pE->op==TK_ASTERISK ) break;
5542     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5543     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5544     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5545     elistFlags |= pE->flags;
5546   }
5547   if( k<pEList->nExpr ){
5548     /*
5549     ** If we get here it means the result set contains one or more "*"
5550     ** operators that need to be expanded.  Loop through each expression
5551     ** in the result set and expand them one by one.
5552     */
5553     struct ExprList_item *a = pEList->a;
5554     ExprList *pNew = 0;
5555     int flags = pParse->db->flags;
5556     int longNames = (flags & SQLITE_FullColNames)!=0
5557                       && (flags & SQLITE_ShortColNames)==0;
5558 
5559     for(k=0; k<pEList->nExpr; k++){
5560       pE = a[k].pExpr;
5561       elistFlags |= pE->flags;
5562       pRight = pE->pRight;
5563       assert( pE->op!=TK_DOT || pRight!=0 );
5564       if( pE->op!=TK_ASTERISK
5565        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5566       ){
5567         /* This particular expression does not need to be expanded.
5568         */
5569         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5570         if( pNew ){
5571           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5572           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5573           a[k].zEName = 0;
5574         }
5575         a[k].pExpr = 0;
5576       }else{
5577         /* This expression is a "*" or a "TABLE.*" and needs to be
5578         ** expanded. */
5579         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5580         char *zTName = 0;       /* text of name of TABLE */
5581         if( pE->op==TK_DOT ){
5582           assert( pE->pLeft!=0 );
5583           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5584           zTName = pE->pLeft->u.zToken;
5585         }
5586         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5587           Table *pTab = pFrom->pTab;
5588           Select *pSub = pFrom->pSelect;
5589           char *zTabName = pFrom->zAlias;
5590           const char *zSchemaName = 0;
5591           int iDb;
5592           if( zTabName==0 ){
5593             zTabName = pTab->zName;
5594           }
5595           if( db->mallocFailed ) break;
5596           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5597             pSub = 0;
5598             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5599               continue;
5600             }
5601             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5602             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5603           }
5604           for(j=0; j<pTab->nCol; j++){
5605             char *zName = pTab->aCol[j].zCnName;
5606             char *zColname;  /* The computed column name */
5607             char *zToFree;   /* Malloced string that needs to be freed */
5608             Token sColname;  /* Computed column name as a token */
5609 
5610             assert( zName );
5611             if( zTName && pSub
5612              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5613             ){
5614               continue;
5615             }
5616 
5617             /* If a column is marked as 'hidden', omit it from the expanded
5618             ** result-set list unless the SELECT has the SF_IncludeHidden
5619             ** bit set.
5620             */
5621             if( (p->selFlags & SF_IncludeHidden)==0
5622              && IsHiddenColumn(&pTab->aCol[j])
5623             ){
5624               continue;
5625             }
5626             tableSeen = 1;
5627 
5628             if( i>0 && zTName==0 ){
5629               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5630                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5631               ){
5632                 /* In a NATURAL join, omit the join columns from the
5633                 ** table to the right of the join */
5634                 continue;
5635               }
5636               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5637                 /* In a join with a USING clause, omit columns in the
5638                 ** using clause from the table on the right. */
5639                 continue;
5640               }
5641             }
5642             pRight = sqlite3Expr(db, TK_ID, zName);
5643             zColname = zName;
5644             zToFree = 0;
5645             if( longNames || pTabList->nSrc>1 ){
5646               Expr *pLeft;
5647               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5648               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5649               if( zSchemaName ){
5650                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5651                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5652               }
5653               if( longNames ){
5654                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5655                 zToFree = zColname;
5656               }
5657             }else{
5658               pExpr = pRight;
5659             }
5660             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5661             sqlite3TokenInit(&sColname, zColname);
5662             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5663             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5664               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5665               sqlite3DbFree(db, pX->zEName);
5666               if( pSub ){
5667                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5668                 testcase( pX->zEName==0 );
5669               }else{
5670                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5671                                            zSchemaName, zTabName, zColname);
5672                 testcase( pX->zEName==0 );
5673               }
5674               pX->eEName = ENAME_TAB;
5675             }
5676             sqlite3DbFree(db, zToFree);
5677           }
5678         }
5679         if( !tableSeen ){
5680           if( zTName ){
5681             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5682           }else{
5683             sqlite3ErrorMsg(pParse, "no tables specified");
5684           }
5685         }
5686       }
5687     }
5688     sqlite3ExprListDelete(db, pEList);
5689     p->pEList = pNew;
5690   }
5691   if( p->pEList ){
5692     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5693       sqlite3ErrorMsg(pParse, "too many columns in result set");
5694       return WRC_Abort;
5695     }
5696     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5697       p->selFlags |= SF_ComplexResult;
5698     }
5699   }
5700   return WRC_Continue;
5701 }
5702 
5703 #if SQLITE_DEBUG
5704 /*
5705 ** Always assert.  This xSelectCallback2 implementation proves that the
5706 ** xSelectCallback2 is never invoked.
5707 */
5708 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5709   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5710   assert( 0 );
5711 }
5712 #endif
5713 /*
5714 ** This routine "expands" a SELECT statement and all of its subqueries.
5715 ** For additional information on what it means to "expand" a SELECT
5716 ** statement, see the comment on the selectExpand worker callback above.
5717 **
5718 ** Expanding a SELECT statement is the first step in processing a
5719 ** SELECT statement.  The SELECT statement must be expanded before
5720 ** name resolution is performed.
5721 **
5722 ** If anything goes wrong, an error message is written into pParse.
5723 ** The calling function can detect the problem by looking at pParse->nErr
5724 ** and/or pParse->db->mallocFailed.
5725 */
5726 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5727   Walker w;
5728   w.xExprCallback = sqlite3ExprWalkNoop;
5729   w.pParse = pParse;
5730   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5731     w.xSelectCallback = convertCompoundSelectToSubquery;
5732     w.xSelectCallback2 = 0;
5733     sqlite3WalkSelect(&w, pSelect);
5734   }
5735   w.xSelectCallback = selectExpander;
5736   w.xSelectCallback2 = sqlite3SelectPopWith;
5737   w.eCode = 0;
5738   sqlite3WalkSelect(&w, pSelect);
5739 }
5740 
5741 
5742 #ifndef SQLITE_OMIT_SUBQUERY
5743 /*
5744 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5745 ** interface.
5746 **
5747 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5748 ** information to the Table structure that represents the result set
5749 ** of that subquery.
5750 **
5751 ** The Table structure that represents the result set was constructed
5752 ** by selectExpander() but the type and collation information was omitted
5753 ** at that point because identifiers had not yet been resolved.  This
5754 ** routine is called after identifier resolution.
5755 */
5756 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5757   Parse *pParse;
5758   int i;
5759   SrcList *pTabList;
5760   SrcItem *pFrom;
5761 
5762   assert( p->selFlags & SF_Resolved );
5763   if( p->selFlags & SF_HasTypeInfo ) return;
5764   p->selFlags |= SF_HasTypeInfo;
5765   pParse = pWalker->pParse;
5766   pTabList = p->pSrc;
5767   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5768     Table *pTab = pFrom->pTab;
5769     assert( pTab!=0 );
5770     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5771       /* A sub-query in the FROM clause of a SELECT */
5772       Select *pSel = pFrom->pSelect;
5773       if( pSel ){
5774         while( pSel->pPrior ) pSel = pSel->pPrior;
5775         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5776                                                SQLITE_AFF_NONE);
5777       }
5778     }
5779   }
5780 }
5781 #endif
5782 
5783 
5784 /*
5785 ** This routine adds datatype and collating sequence information to
5786 ** the Table structures of all FROM-clause subqueries in a
5787 ** SELECT statement.
5788 **
5789 ** Use this routine after name resolution.
5790 */
5791 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5792 #ifndef SQLITE_OMIT_SUBQUERY
5793   Walker w;
5794   w.xSelectCallback = sqlite3SelectWalkNoop;
5795   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5796   w.xExprCallback = sqlite3ExprWalkNoop;
5797   w.pParse = pParse;
5798   sqlite3WalkSelect(&w, pSelect);
5799 #endif
5800 }
5801 
5802 
5803 /*
5804 ** This routine sets up a SELECT statement for processing.  The
5805 ** following is accomplished:
5806 **
5807 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5808 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5809 **     *  ON and USING clauses are shifted into WHERE statements
5810 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5811 **     *  Identifiers in expression are matched to tables.
5812 **
5813 ** This routine acts recursively on all subqueries within the SELECT.
5814 */
5815 void sqlite3SelectPrep(
5816   Parse *pParse,         /* The parser context */
5817   Select *p,             /* The SELECT statement being coded. */
5818   NameContext *pOuterNC  /* Name context for container */
5819 ){
5820   assert( p!=0 || pParse->db->mallocFailed );
5821   if( pParse->db->mallocFailed ) return;
5822   if( p->selFlags & SF_HasTypeInfo ) return;
5823   sqlite3SelectExpand(pParse, p);
5824   if( pParse->nErr || pParse->db->mallocFailed ) return;
5825   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5826   if( pParse->nErr || pParse->db->mallocFailed ) return;
5827   sqlite3SelectAddTypeInfo(pParse, p);
5828 }
5829 
5830 /*
5831 ** Reset the aggregate accumulator.
5832 **
5833 ** The aggregate accumulator is a set of memory cells that hold
5834 ** intermediate results while calculating an aggregate.  This
5835 ** routine generates code that stores NULLs in all of those memory
5836 ** cells.
5837 */
5838 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5839   Vdbe *v = pParse->pVdbe;
5840   int i;
5841   struct AggInfo_func *pFunc;
5842   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5843   if( nReg==0 ) return;
5844   if( pParse->nErr || pParse->db->mallocFailed ) return;
5845 #ifdef SQLITE_DEBUG
5846   /* Verify that all AggInfo registers are within the range specified by
5847   ** AggInfo.mnReg..AggInfo.mxReg */
5848   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5849   for(i=0; i<pAggInfo->nColumn; i++){
5850     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5851          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5852   }
5853   for(i=0; i<pAggInfo->nFunc; i++){
5854     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5855          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5856   }
5857 #endif
5858   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5859   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5860     if( pFunc->iDistinct>=0 ){
5861       Expr *pE = pFunc->pFExpr;
5862       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5863       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5864         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5865            "argument");
5866         pFunc->iDistinct = -1;
5867       }else{
5868         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5869         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5870             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5871         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5872                           pFunc->pFunc->zName));
5873       }
5874     }
5875   }
5876 }
5877 
5878 /*
5879 ** Invoke the OP_AggFinalize opcode for every aggregate function
5880 ** in the AggInfo structure.
5881 */
5882 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5883   Vdbe *v = pParse->pVdbe;
5884   int i;
5885   struct AggInfo_func *pF;
5886   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5887     ExprList *pList = pF->pFExpr->x.pList;
5888     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5889     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5890     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5891   }
5892 }
5893 
5894 
5895 /*
5896 ** Update the accumulator memory cells for an aggregate based on
5897 ** the current cursor position.
5898 **
5899 ** If regAcc is non-zero and there are no min() or max() aggregates
5900 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5901 ** registers if register regAcc contains 0. The caller will take care
5902 ** of setting and clearing regAcc.
5903 */
5904 static void updateAccumulator(
5905   Parse *pParse,
5906   int regAcc,
5907   AggInfo *pAggInfo,
5908   int eDistinctType
5909 ){
5910   Vdbe *v = pParse->pVdbe;
5911   int i;
5912   int regHit = 0;
5913   int addrHitTest = 0;
5914   struct AggInfo_func *pF;
5915   struct AggInfo_col *pC;
5916 
5917   pAggInfo->directMode = 1;
5918   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5919     int nArg;
5920     int addrNext = 0;
5921     int regAgg;
5922     ExprList *pList = pF->pFExpr->x.pList;
5923     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5924     assert( !IsWindowFunc(pF->pFExpr) );
5925     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5926       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5927       if( pAggInfo->nAccumulator
5928        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5929        && regAcc
5930       ){
5931         /* If regAcc==0, there there exists some min() or max() function
5932         ** without a FILTER clause that will ensure the magnet registers
5933         ** are populated. */
5934         if( regHit==0 ) regHit = ++pParse->nMem;
5935         /* If this is the first row of the group (regAcc contains 0), clear the
5936         ** "magnet" register regHit so that the accumulator registers
5937         ** are populated if the FILTER clause jumps over the the
5938         ** invocation of min() or max() altogether. Or, if this is not
5939         ** the first row (regAcc contains 1), set the magnet register so that
5940         ** the accumulators are not populated unless the min()/max() is invoked
5941         ** and indicates that they should be.  */
5942         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5943       }
5944       addrNext = sqlite3VdbeMakeLabel(pParse);
5945       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5946     }
5947     if( pList ){
5948       nArg = pList->nExpr;
5949       regAgg = sqlite3GetTempRange(pParse, nArg);
5950       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5951     }else{
5952       nArg = 0;
5953       regAgg = 0;
5954     }
5955     if( pF->iDistinct>=0 && pList ){
5956       if( addrNext==0 ){
5957         addrNext = sqlite3VdbeMakeLabel(pParse);
5958       }
5959       pF->iDistinct = codeDistinct(pParse, eDistinctType,
5960           pF->iDistinct, addrNext, pList, regAgg);
5961     }
5962     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5963       CollSeq *pColl = 0;
5964       struct ExprList_item *pItem;
5965       int j;
5966       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5967       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5968         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5969       }
5970       if( !pColl ){
5971         pColl = pParse->db->pDfltColl;
5972       }
5973       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5974       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5975     }
5976     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5977     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5978     sqlite3VdbeChangeP5(v, (u8)nArg);
5979     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5980     if( addrNext ){
5981       sqlite3VdbeResolveLabel(v, addrNext);
5982     }
5983   }
5984   if( regHit==0 && pAggInfo->nAccumulator ){
5985     regHit = regAcc;
5986   }
5987   if( regHit ){
5988     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5989   }
5990   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5991     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5992   }
5993 
5994   pAggInfo->directMode = 0;
5995   if( addrHitTest ){
5996     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5997   }
5998 }
5999 
6000 /*
6001 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6002 ** count(*) query ("SELECT count(*) FROM pTab").
6003 */
6004 #ifndef SQLITE_OMIT_EXPLAIN
6005 static void explainSimpleCount(
6006   Parse *pParse,                  /* Parse context */
6007   Table *pTab,                    /* Table being queried */
6008   Index *pIdx                     /* Index used to optimize scan, or NULL */
6009 ){
6010   if( pParse->explain==2 ){
6011     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6012     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6013         pTab->zName,
6014         bCover ? " USING COVERING INDEX " : "",
6015         bCover ? pIdx->zName : ""
6016     );
6017   }
6018 }
6019 #else
6020 # define explainSimpleCount(a,b,c)
6021 #endif
6022 
6023 /*
6024 ** sqlite3WalkExpr() callback used by havingToWhere().
6025 **
6026 ** If the node passed to the callback is a TK_AND node, return
6027 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6028 **
6029 ** Otherwise, return WRC_Prune. In this case, also check if the
6030 ** sub-expression matches the criteria for being moved to the WHERE
6031 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6032 ** within the HAVING expression with a constant "1".
6033 */
6034 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6035   if( pExpr->op!=TK_AND ){
6036     Select *pS = pWalker->u.pSelect;
6037     /* This routine is called before the HAVING clause of the current
6038     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6039     ** here, it indicates that the expression is a correlated reference to a
6040     ** column from an outer aggregate query, or an aggregate function that
6041     ** belongs to an outer query. Do not move the expression to the WHERE
6042     ** clause in this obscure case, as doing so may corrupt the outer Select
6043     ** statements AggInfo structure.  */
6044     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6045      && ExprAlwaysFalse(pExpr)==0
6046      && pExpr->pAggInfo==0
6047     ){
6048       sqlite3 *db = pWalker->pParse->db;
6049       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6050       if( pNew ){
6051         Expr *pWhere = pS->pWhere;
6052         SWAP(Expr, *pNew, *pExpr);
6053         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6054         pS->pWhere = pNew;
6055         pWalker->eCode = 1;
6056       }
6057     }
6058     return WRC_Prune;
6059   }
6060   return WRC_Continue;
6061 }
6062 
6063 /*
6064 ** Transfer eligible terms from the HAVING clause of a query, which is
6065 ** processed after grouping, to the WHERE clause, which is processed before
6066 ** grouping. For example, the query:
6067 **
6068 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6069 **
6070 ** can be rewritten as:
6071 **
6072 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6073 **
6074 ** A term of the HAVING expression is eligible for transfer if it consists
6075 ** entirely of constants and expressions that are also GROUP BY terms that
6076 ** use the "BINARY" collation sequence.
6077 */
6078 static void havingToWhere(Parse *pParse, Select *p){
6079   Walker sWalker;
6080   memset(&sWalker, 0, sizeof(sWalker));
6081   sWalker.pParse = pParse;
6082   sWalker.xExprCallback = havingToWhereExprCb;
6083   sWalker.u.pSelect = p;
6084   sqlite3WalkExpr(&sWalker, p->pHaving);
6085 #if SELECTTRACE_ENABLED
6086   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
6087     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6088     sqlite3TreeViewSelect(0, p, 0);
6089   }
6090 #endif
6091 }
6092 
6093 /*
6094 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6095 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6096 ** then return 0.
6097 */
6098 static SrcItem *isSelfJoinView(
6099   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6100   SrcItem *pThis               /* Search for prior reference to this subquery */
6101 ){
6102   SrcItem *pItem;
6103   assert( pThis->pSelect!=0 );
6104   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6105   for(pItem = pTabList->a; pItem<pThis; pItem++){
6106     Select *pS1;
6107     if( pItem->pSelect==0 ) continue;
6108     if( pItem->fg.viaCoroutine ) continue;
6109     if( pItem->zName==0 ) continue;
6110     assert( pItem->pTab!=0 );
6111     assert( pThis->pTab!=0 );
6112     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6113     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6114     pS1 = pItem->pSelect;
6115     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6116       /* The query flattener left two different CTE tables with identical
6117       ** names in the same FROM clause. */
6118       continue;
6119     }
6120     if( pItem->pSelect->selFlags & SF_PushDown ){
6121       /* The view was modified by some other optimization such as
6122       ** pushDownWhereTerms() */
6123       continue;
6124     }
6125     return pItem;
6126   }
6127   return 0;
6128 }
6129 
6130 /*
6131 ** Deallocate a single AggInfo object
6132 */
6133 static void agginfoFree(sqlite3 *db, AggInfo *p){
6134   sqlite3DbFree(db, p->aCol);
6135   sqlite3DbFree(db, p->aFunc);
6136   sqlite3DbFreeNN(db, p);
6137 }
6138 
6139 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6140 /*
6141 ** Attempt to transform a query of the form
6142 **
6143 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6144 **
6145 ** Into this:
6146 **
6147 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6148 **
6149 ** The transformation only works if all of the following are true:
6150 **
6151 **   *  The subquery is a UNION ALL of two or more terms
6152 **   *  The subquery does not have a LIMIT clause
6153 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6154 **   *  The outer query is a simple count(*) with no WHERE clause or other
6155 **      extraneous syntax.
6156 **
6157 ** Return TRUE if the optimization is undertaken.
6158 */
6159 static int countOfViewOptimization(Parse *pParse, Select *p){
6160   Select *pSub, *pPrior;
6161   Expr *pExpr;
6162   Expr *pCount;
6163   sqlite3 *db;
6164   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6165   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6166   if( p->pWhere ) return 0;
6167   if( p->pGroupBy ) return 0;
6168   pExpr = p->pEList->a[0].pExpr;
6169   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6170   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6171   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6172   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6173   pSub = p->pSrc->a[0].pSelect;
6174   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6175   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6176   do{
6177     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6178     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6179     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6180     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6181     pSub = pSub->pPrior;                              /* Repeat over compound */
6182   }while( pSub );
6183 
6184   /* If we reach this point then it is OK to perform the transformation */
6185 
6186   db = pParse->db;
6187   pCount = pExpr;
6188   pExpr = 0;
6189   pSub = p->pSrc->a[0].pSelect;
6190   p->pSrc->a[0].pSelect = 0;
6191   sqlite3SrcListDelete(db, p->pSrc);
6192   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6193   while( pSub ){
6194     Expr *pTerm;
6195     pPrior = pSub->pPrior;
6196     pSub->pPrior = 0;
6197     pSub->pNext = 0;
6198     pSub->selFlags |= SF_Aggregate;
6199     pSub->selFlags &= ~SF_Compound;
6200     pSub->nSelectRow = 0;
6201     sqlite3ExprListDelete(db, pSub->pEList);
6202     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6203     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6204     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6205     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6206     if( pExpr==0 ){
6207       pExpr = pTerm;
6208     }else{
6209       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6210     }
6211     pSub = pPrior;
6212   }
6213   p->pEList->a[0].pExpr = pExpr;
6214   p->selFlags &= ~SF_Aggregate;
6215 
6216 #if SELECTTRACE_ENABLED
6217   if( sqlite3SelectTrace & 0x400 ){
6218     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6219     sqlite3TreeViewSelect(0, p, 0);
6220   }
6221 #endif
6222   return 1;
6223 }
6224 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6225 
6226 /*
6227 ** Generate code for the SELECT statement given in the p argument.
6228 **
6229 ** The results are returned according to the SelectDest structure.
6230 ** See comments in sqliteInt.h for further information.
6231 **
6232 ** This routine returns the number of errors.  If any errors are
6233 ** encountered, then an appropriate error message is left in
6234 ** pParse->zErrMsg.
6235 **
6236 ** This routine does NOT free the Select structure passed in.  The
6237 ** calling function needs to do that.
6238 */
6239 int sqlite3Select(
6240   Parse *pParse,         /* The parser context */
6241   Select *p,             /* The SELECT statement being coded. */
6242   SelectDest *pDest      /* What to do with the query results */
6243 ){
6244   int i, j;              /* Loop counters */
6245   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6246   Vdbe *v;               /* The virtual machine under construction */
6247   int isAgg;             /* True for select lists like "count(*)" */
6248   ExprList *pEList = 0;  /* List of columns to extract. */
6249   SrcList *pTabList;     /* List of tables to select from */
6250   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6251   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6252   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6253   AggInfo *pAggInfo = 0; /* Aggregate information */
6254   int rc = 1;            /* Value to return from this function */
6255   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6256   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6257   int iEnd;              /* Address of the end of the query */
6258   sqlite3 *db;           /* The database connection */
6259   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6260   u8 minMaxFlag;                 /* Flag for min/max queries */
6261 
6262   db = pParse->db;
6263   v = sqlite3GetVdbe(pParse);
6264   if( p==0 || db->mallocFailed || pParse->nErr ){
6265     return 1;
6266   }
6267   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6268 #if SELECTTRACE_ENABLED
6269   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6270   if( sqlite3SelectTrace & 0x100 ){
6271     sqlite3TreeViewSelect(0, p, 0);
6272   }
6273 #endif
6274 
6275   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6276   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6277   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6278   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6279   if( IgnorableDistinct(pDest) ){
6280     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6281            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6282            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6283     /* All of these destinations are also able to ignore the ORDER BY clause */
6284     if( p->pOrderBy ){
6285 #if SELECTTRACE_ENABLED
6286       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6287       if( sqlite3SelectTrace & 0x100 ){
6288         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6289       }
6290 #endif
6291       sqlite3ParserAddCleanup(pParse,
6292         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6293         p->pOrderBy);
6294       testcase( pParse->earlyCleanup );
6295       p->pOrderBy = 0;
6296     }
6297     p->selFlags &= ~SF_Distinct;
6298     p->selFlags |= SF_NoopOrderBy;
6299   }
6300   sqlite3SelectPrep(pParse, p, 0);
6301   if( pParse->nErr || db->mallocFailed ){
6302     goto select_end;
6303   }
6304   assert( p->pEList!=0 );
6305 #if SELECTTRACE_ENABLED
6306   if( sqlite3SelectTrace & 0x104 ){
6307     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6308     sqlite3TreeViewSelect(0, p, 0);
6309   }
6310 #endif
6311 
6312   /* If the SF_UFSrcCheck flag is set, then this function is being called
6313   ** as part of populating the temp table for an UPDATE...FROM statement.
6314   ** In this case, it is an error if the target object (pSrc->a[0]) name
6315   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6316   **
6317   ** Postgres disallows this case too. The reason is that some other
6318   ** systems handle this case differently, and not all the same way,
6319   ** which is just confusing. To avoid this, we follow PG's lead and
6320   ** disallow it altogether.  */
6321   if( p->selFlags & SF_UFSrcCheck ){
6322     SrcItem *p0 = &p->pSrc->a[0];
6323     for(i=1; i<p->pSrc->nSrc; i++){
6324       SrcItem *p1 = &p->pSrc->a[i];
6325       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6326         sqlite3ErrorMsg(pParse,
6327             "target object/alias may not appear in FROM clause: %s",
6328             p0->zAlias ? p0->zAlias : p0->pTab->zName
6329         );
6330         goto select_end;
6331       }
6332     }
6333 
6334     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6335     ** and leaving this flag set can cause errors if a compound sub-query
6336     ** in p->pSrc is flattened into this query and this function called
6337     ** again as part of compound SELECT processing.  */
6338     p->selFlags &= ~SF_UFSrcCheck;
6339   }
6340 
6341   if( pDest->eDest==SRT_Output ){
6342     sqlite3GenerateColumnNames(pParse, p);
6343   }
6344 
6345 #ifndef SQLITE_OMIT_WINDOWFUNC
6346   if( sqlite3WindowRewrite(pParse, p) ){
6347     assert( db->mallocFailed || pParse->nErr>0 );
6348     goto select_end;
6349   }
6350 #if SELECTTRACE_ENABLED
6351   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6352     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6353     sqlite3TreeViewSelect(0, p, 0);
6354   }
6355 #endif
6356 #endif /* SQLITE_OMIT_WINDOWFUNC */
6357   pTabList = p->pSrc;
6358   isAgg = (p->selFlags & SF_Aggregate)!=0;
6359   memset(&sSort, 0, sizeof(sSort));
6360   sSort.pOrderBy = p->pOrderBy;
6361 
6362   /* Try to do various optimizations (flattening subqueries, and strength
6363   ** reduction of join operators) in the FROM clause up into the main query
6364   */
6365 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6366   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6367     SrcItem *pItem = &pTabList->a[i];
6368     Select *pSub = pItem->pSelect;
6369     Table *pTab = pItem->pTab;
6370 
6371     /* The expander should have already created transient Table objects
6372     ** even for FROM clause elements such as subqueries that do not correspond
6373     ** to a real table */
6374     assert( pTab!=0 );
6375 
6376     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6377     ** of the LEFT JOIN used in the WHERE clause.
6378     */
6379     if( (pItem->fg.jointype & JT_LEFT)!=0
6380      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6381      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6382     ){
6383       SELECTTRACE(0x100,pParse,p,
6384                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6385       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6386       unsetJoinExpr(p->pWhere, pItem->iCursor);
6387     }
6388 
6389     /* No futher action if this term of the FROM clause is no a subquery */
6390     if( pSub==0 ) continue;
6391 
6392     /* Catch mismatch in the declared columns of a view and the number of
6393     ** columns in the SELECT on the RHS */
6394     if( pTab->nCol!=pSub->pEList->nExpr ){
6395       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6396                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6397       goto select_end;
6398     }
6399 
6400     /* Do not try to flatten an aggregate subquery.
6401     **
6402     ** Flattening an aggregate subquery is only possible if the outer query
6403     ** is not a join.  But if the outer query is not a join, then the subquery
6404     ** will be implemented as a co-routine and there is no advantage to
6405     ** flattening in that case.
6406     */
6407     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6408     assert( pSub->pGroupBy==0 );
6409 
6410     /* If a FROM-clause subquery has an ORDER BY clause that is not
6411     ** really doing anything, then delete it now so that it does not
6412     ** interfere with query flattening.  See the discussion at
6413     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6414     **
6415     ** Beware of these cases where the ORDER BY clause may not be safely
6416     ** omitted:
6417     **
6418     **    (1)   There is also a LIMIT clause
6419     **    (2)   The subquery was added to help with window-function
6420     **          processing
6421     **    (3)   The subquery is in the FROM clause of an UPDATE
6422     **    (4)   The outer query uses an aggregate function other than
6423     **          the built-in count(), min(), or max().
6424     **    (5)   The ORDER BY isn't going to accomplish anything because
6425     **          one of:
6426     **            (a)  The outer query has a different ORDER BY clause
6427     **            (b)  The subquery is part of a join
6428     **          See forum post 062d576715d277c8
6429     */
6430     if( pSub->pOrderBy!=0
6431      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6432      && pSub->pLimit==0                           /* Condition (1) */
6433      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6434      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6435      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6436     ){
6437       SELECTTRACE(0x100,pParse,p,
6438                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6439       sqlite3ExprListDelete(db, pSub->pOrderBy);
6440       pSub->pOrderBy = 0;
6441     }
6442 
6443     /* If the outer query contains a "complex" result set (that is,
6444     ** if the result set of the outer query uses functions or subqueries)
6445     ** and if the subquery contains an ORDER BY clause and if
6446     ** it will be implemented as a co-routine, then do not flatten.  This
6447     ** restriction allows SQL constructs like this:
6448     **
6449     **  SELECT expensive_function(x)
6450     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6451     **
6452     ** The expensive_function() is only computed on the 10 rows that
6453     ** are output, rather than every row of the table.
6454     **
6455     ** The requirement that the outer query have a complex result set
6456     ** means that flattening does occur on simpler SQL constraints without
6457     ** the expensive_function() like:
6458     **
6459     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6460     */
6461     if( pSub->pOrderBy!=0
6462      && i==0
6463      && (p->selFlags & SF_ComplexResult)!=0
6464      && (pTabList->nSrc==1
6465          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6466     ){
6467       continue;
6468     }
6469 
6470     if( flattenSubquery(pParse, p, i, isAgg) ){
6471       if( pParse->nErr ) goto select_end;
6472       /* This subquery can be absorbed into its parent. */
6473       i = -1;
6474     }
6475     pTabList = p->pSrc;
6476     if( db->mallocFailed ) goto select_end;
6477     if( !IgnorableOrderby(pDest) ){
6478       sSort.pOrderBy = p->pOrderBy;
6479     }
6480   }
6481 #endif
6482 
6483 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6484   /* Handle compound SELECT statements using the separate multiSelect()
6485   ** procedure.
6486   */
6487   if( p->pPrior ){
6488     rc = multiSelect(pParse, p, pDest);
6489 #if SELECTTRACE_ENABLED
6490     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6491     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6492       sqlite3TreeViewSelect(0, p, 0);
6493     }
6494 #endif
6495     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6496     return rc;
6497   }
6498 #endif
6499 
6500   /* Do the WHERE-clause constant propagation optimization if this is
6501   ** a join.  No need to speed time on this operation for non-join queries
6502   ** as the equivalent optimization will be handled by query planner in
6503   ** sqlite3WhereBegin().
6504   */
6505   if( p->pWhere!=0
6506    && p->pWhere->op==TK_AND
6507    && OptimizationEnabled(db, SQLITE_PropagateConst)
6508    && propagateConstants(pParse, p)
6509   ){
6510 #if SELECTTRACE_ENABLED
6511     if( sqlite3SelectTrace & 0x100 ){
6512       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6513       sqlite3TreeViewSelect(0, p, 0);
6514     }
6515 #endif
6516   }else{
6517     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6518   }
6519 
6520 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6521   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6522    && countOfViewOptimization(pParse, p)
6523   ){
6524     if( db->mallocFailed ) goto select_end;
6525     pEList = p->pEList;
6526     pTabList = p->pSrc;
6527   }
6528 #endif
6529 
6530   /* For each term in the FROM clause, do two things:
6531   ** (1) Authorized unreferenced tables
6532   ** (2) Generate code for all sub-queries
6533   */
6534   for(i=0; i<pTabList->nSrc; i++){
6535     SrcItem *pItem = &pTabList->a[i];
6536     SrcItem *pPrior;
6537     SelectDest dest;
6538     Select *pSub;
6539 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6540     const char *zSavedAuthContext;
6541 #endif
6542 
6543     /* Issue SQLITE_READ authorizations with a fake column name for any
6544     ** tables that are referenced but from which no values are extracted.
6545     ** Examples of where these kinds of null SQLITE_READ authorizations
6546     ** would occur:
6547     **
6548     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6549     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6550     **
6551     ** The fake column name is an empty string.  It is possible for a table to
6552     ** have a column named by the empty string, in which case there is no way to
6553     ** distinguish between an unreferenced table and an actual reference to the
6554     ** "" column. The original design was for the fake column name to be a NULL,
6555     ** which would be unambiguous.  But legacy authorization callbacks might
6556     ** assume the column name is non-NULL and segfault.  The use of an empty
6557     ** string for the fake column name seems safer.
6558     */
6559     if( pItem->colUsed==0 && pItem->zName!=0 ){
6560       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6561     }
6562 
6563 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6564     /* Generate code for all sub-queries in the FROM clause
6565     */
6566     pSub = pItem->pSelect;
6567     if( pSub==0 ) continue;
6568 
6569     /* The code for a subquery should only be generated once. */
6570     assert( pItem->addrFillSub==0 );
6571 
6572     /* Increment Parse.nHeight by the height of the largest expression
6573     ** tree referred to by this, the parent select. The child select
6574     ** may contain expression trees of at most
6575     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6576     ** more conservative than necessary, but much easier than enforcing
6577     ** an exact limit.
6578     */
6579     pParse->nHeight += sqlite3SelectExprHeight(p);
6580 
6581     /* Make copies of constant WHERE-clause terms in the outer query down
6582     ** inside the subquery.  This can help the subquery to run more efficiently.
6583     */
6584     if( OptimizationEnabled(db, SQLITE_PushDown)
6585      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)
6586      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6587                            (pItem->fg.jointype & JT_OUTER)!=0)
6588     ){
6589 #if SELECTTRACE_ENABLED
6590       if( sqlite3SelectTrace & 0x100 ){
6591         SELECTTRACE(0x100,pParse,p,
6592             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6593         sqlite3TreeViewSelect(0, p, 0);
6594       }
6595 #endif
6596       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6597     }else{
6598       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6599     }
6600 
6601     zSavedAuthContext = pParse->zAuthContext;
6602     pParse->zAuthContext = pItem->zName;
6603 
6604     /* Generate code to implement the subquery
6605     **
6606     ** The subquery is implemented as a co-routine if:
6607     **    (1)  the subquery is guaranteed to be the outer loop (so that
6608     **         it does not need to be computed more than once), and
6609     **    (2)  the subquery is not a CTE that should be materialized
6610     **
6611     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6612     ** implementation?
6613     */
6614     if( i==0
6615      && (pTabList->nSrc==1
6616             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6617      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6618     ){
6619       /* Implement a co-routine that will return a single row of the result
6620       ** set on each invocation.
6621       */
6622       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6623 
6624       pItem->regReturn = ++pParse->nMem;
6625       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6626       VdbeComment((v, "%!S", pItem));
6627       pItem->addrFillSub = addrTop;
6628       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6629       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6630       sqlite3Select(pParse, pSub, &dest);
6631       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6632       pItem->fg.viaCoroutine = 1;
6633       pItem->regResult = dest.iSdst;
6634       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6635       sqlite3VdbeJumpHere(v, addrTop-1);
6636       sqlite3ClearTempRegCache(pParse);
6637     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6638       /* This is a CTE for which materialization code has already been
6639       ** generated.  Invoke the subroutine to compute the materialization,
6640       ** the make the pItem->iCursor be a copy of the ephemerial table that
6641       ** holds the result of the materialization. */
6642       CteUse *pCteUse = pItem->u2.pCteUse;
6643       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6644       if( pItem->iCursor!=pCteUse->iCur ){
6645         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6646       }
6647       pSub->nSelectRow = pCteUse->nRowEst;
6648     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6649       /* This view has already been materialized by a prior entry in
6650       ** this same FROM clause.  Reuse it. */
6651       if( pPrior->addrFillSub ){
6652         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6653       }
6654       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6655       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6656     }else{
6657       /* Materialize the view.  If the view is not correlated, generate a
6658       ** subroutine to do the materialization so that subsequent uses of
6659       ** the same view can reuse the materialization. */
6660       int topAddr;
6661       int onceAddr = 0;
6662       int retAddr;
6663 
6664       pItem->regReturn = ++pParse->nMem;
6665       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6666       pItem->addrFillSub = topAddr+1;
6667       if( pItem->fg.isCorrelated==0 ){
6668         /* If the subquery is not correlated and if we are not inside of
6669         ** a trigger, then we only need to compute the value of the subquery
6670         ** once. */
6671         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6672         VdbeComment((v, "materialize %!S", pItem));
6673       }else{
6674         VdbeNoopComment((v, "materialize %!S", pItem));
6675       }
6676       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6677       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6678       sqlite3Select(pParse, pSub, &dest);
6679       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6680       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6681       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6682       VdbeComment((v, "end %!S", pItem));
6683       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6684       sqlite3ClearTempRegCache(pParse);
6685       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6686         CteUse *pCteUse = pItem->u2.pCteUse;
6687         pCteUse->addrM9e = pItem->addrFillSub;
6688         pCteUse->regRtn = pItem->regReturn;
6689         pCteUse->iCur = pItem->iCursor;
6690         pCteUse->nRowEst = pSub->nSelectRow;
6691       }
6692     }
6693     if( db->mallocFailed ) goto select_end;
6694     pParse->nHeight -= sqlite3SelectExprHeight(p);
6695     pParse->zAuthContext = zSavedAuthContext;
6696 #endif
6697   }
6698 
6699   /* Various elements of the SELECT copied into local variables for
6700   ** convenience */
6701   pEList = p->pEList;
6702   pWhere = p->pWhere;
6703   pGroupBy = p->pGroupBy;
6704   pHaving = p->pHaving;
6705   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6706 
6707 #if SELECTTRACE_ENABLED
6708   if( sqlite3SelectTrace & 0x400 ){
6709     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6710     sqlite3TreeViewSelect(0, p, 0);
6711   }
6712 #endif
6713 
6714   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6715   ** if the select-list is the same as the ORDER BY list, then this query
6716   ** can be rewritten as a GROUP BY. In other words, this:
6717   **
6718   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6719   **
6720   ** is transformed to:
6721   **
6722   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6723   **
6724   ** The second form is preferred as a single index (or temp-table) may be
6725   ** used for both the ORDER BY and DISTINCT processing. As originally
6726   ** written the query must use a temp-table for at least one of the ORDER
6727   ** BY and DISTINCT, and an index or separate temp-table for the other.
6728   */
6729   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6730    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6731 #ifndef SQLITE_OMIT_WINDOWFUNC
6732    && p->pWin==0
6733 #endif
6734   ){
6735     p->selFlags &= ~SF_Distinct;
6736     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6737     p->selFlags |= SF_Aggregate;
6738     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6739     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6740     ** original setting of the SF_Distinct flag, not the current setting */
6741     assert( sDistinct.isTnct );
6742 
6743 #if SELECTTRACE_ENABLED
6744     if( sqlite3SelectTrace & 0x400 ){
6745       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6746       sqlite3TreeViewSelect(0, p, 0);
6747     }
6748 #endif
6749   }
6750 
6751   /* If there is an ORDER BY clause, then create an ephemeral index to
6752   ** do the sorting.  But this sorting ephemeral index might end up
6753   ** being unused if the data can be extracted in pre-sorted order.
6754   ** If that is the case, then the OP_OpenEphemeral instruction will be
6755   ** changed to an OP_Noop once we figure out that the sorting index is
6756   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6757   ** that change.
6758   */
6759   if( sSort.pOrderBy ){
6760     KeyInfo *pKeyInfo;
6761     pKeyInfo = sqlite3KeyInfoFromExprList(
6762         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6763     sSort.iECursor = pParse->nTab++;
6764     sSort.addrSortIndex =
6765       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6766           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6767           (char*)pKeyInfo, P4_KEYINFO
6768       );
6769   }else{
6770     sSort.addrSortIndex = -1;
6771   }
6772 
6773   /* If the output is destined for a temporary table, open that table.
6774   */
6775   if( pDest->eDest==SRT_EphemTab ){
6776     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6777   }
6778 
6779   /* Set the limiter.
6780   */
6781   iEnd = sqlite3VdbeMakeLabel(pParse);
6782   if( (p->selFlags & SF_FixedLimit)==0 ){
6783     p->nSelectRow = 320;  /* 4 billion rows */
6784   }
6785   computeLimitRegisters(pParse, p, iEnd);
6786   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6787     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6788     sSort.sortFlags |= SORTFLAG_UseSorter;
6789   }
6790 
6791   /* Open an ephemeral index to use for the distinct set.
6792   */
6793   if( p->selFlags & SF_Distinct ){
6794     sDistinct.tabTnct = pParse->nTab++;
6795     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6796                        sDistinct.tabTnct, 0, 0,
6797                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6798                        P4_KEYINFO);
6799     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6800     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6801   }else{
6802     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6803   }
6804 
6805   if( !isAgg && pGroupBy==0 ){
6806     /* No aggregate functions and no GROUP BY clause */
6807     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6808                    | (p->selFlags & SF_FixedLimit);
6809 #ifndef SQLITE_OMIT_WINDOWFUNC
6810     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6811     if( pWin ){
6812       sqlite3WindowCodeInit(pParse, p);
6813     }
6814 #endif
6815     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6816 
6817 
6818     /* Begin the database scan. */
6819     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6820     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6821                                p->pEList, wctrlFlags, p->nSelectRow);
6822     if( pWInfo==0 ) goto select_end;
6823     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6824       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6825     }
6826     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6827       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6828     }
6829     if( sSort.pOrderBy ){
6830       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6831       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6832       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6833         sSort.pOrderBy = 0;
6834       }
6835     }
6836     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6837 
6838     /* If sorting index that was created by a prior OP_OpenEphemeral
6839     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6840     ** into an OP_Noop.
6841     */
6842     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6843       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6844     }
6845 
6846     assert( p->pEList==pEList );
6847 #ifndef SQLITE_OMIT_WINDOWFUNC
6848     if( pWin ){
6849       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6850       int iCont = sqlite3VdbeMakeLabel(pParse);
6851       int iBreak = sqlite3VdbeMakeLabel(pParse);
6852       int regGosub = ++pParse->nMem;
6853 
6854       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6855 
6856       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6857       sqlite3VdbeResolveLabel(v, addrGosub);
6858       VdbeNoopComment((v, "inner-loop subroutine"));
6859       sSort.labelOBLopt = 0;
6860       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6861       sqlite3VdbeResolveLabel(v, iCont);
6862       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6863       VdbeComment((v, "end inner-loop subroutine"));
6864       sqlite3VdbeResolveLabel(v, iBreak);
6865     }else
6866 #endif /* SQLITE_OMIT_WINDOWFUNC */
6867     {
6868       /* Use the standard inner loop. */
6869       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6870           sqlite3WhereContinueLabel(pWInfo),
6871           sqlite3WhereBreakLabel(pWInfo));
6872 
6873       /* End the database scan loop.
6874       */
6875       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6876       sqlite3WhereEnd(pWInfo);
6877     }
6878   }else{
6879     /* This case when there exist aggregate functions or a GROUP BY clause
6880     ** or both */
6881     NameContext sNC;    /* Name context for processing aggregate information */
6882     int iAMem;          /* First Mem address for storing current GROUP BY */
6883     int iBMem;          /* First Mem address for previous GROUP BY */
6884     int iUseFlag;       /* Mem address holding flag indicating that at least
6885                         ** one row of the input to the aggregator has been
6886                         ** processed */
6887     int iAbortFlag;     /* Mem address which causes query abort if positive */
6888     int groupBySort;    /* Rows come from source in GROUP BY order */
6889     int addrEnd;        /* End of processing for this SELECT */
6890     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6891     int sortOut = 0;    /* Output register from the sorter */
6892     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6893 
6894     /* Remove any and all aliases between the result set and the
6895     ** GROUP BY clause.
6896     */
6897     if( pGroupBy ){
6898       int k;                        /* Loop counter */
6899       struct ExprList_item *pItem;  /* For looping over expression in a list */
6900 
6901       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6902         pItem->u.x.iAlias = 0;
6903       }
6904       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6905         pItem->u.x.iAlias = 0;
6906       }
6907       assert( 66==sqlite3LogEst(100) );
6908       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6909 
6910       /* If there is both a GROUP BY and an ORDER BY clause and they are
6911       ** identical, then it may be possible to disable the ORDER BY clause
6912       ** on the grounds that the GROUP BY will cause elements to come out
6913       ** in the correct order. It also may not - the GROUP BY might use a
6914       ** database index that causes rows to be grouped together as required
6915       ** but not actually sorted. Either way, record the fact that the
6916       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6917       ** variable.  */
6918       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6919         int ii;
6920         /* The GROUP BY processing doesn't care whether rows are delivered in
6921         ** ASC or DESC order - only that each group is returned contiguously.
6922         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6923         ** ORDER BY to maximize the chances of rows being delivered in an
6924         ** order that makes the ORDER BY redundant.  */
6925         for(ii=0; ii<pGroupBy->nExpr; ii++){
6926           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6927           pGroupBy->a[ii].sortFlags = sortFlags;
6928         }
6929         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6930           orderByGrp = 1;
6931         }
6932       }
6933     }else{
6934       assert( 0==sqlite3LogEst(1) );
6935       p->nSelectRow = 0;
6936     }
6937 
6938     /* Create a label to jump to when we want to abort the query */
6939     addrEnd = sqlite3VdbeMakeLabel(pParse);
6940 
6941     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6942     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6943     ** SELECT statement.
6944     */
6945     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6946     if( pAggInfo ){
6947       sqlite3ParserAddCleanup(pParse,
6948           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6949       testcase( pParse->earlyCleanup );
6950     }
6951     if( db->mallocFailed ){
6952       goto select_end;
6953     }
6954     pAggInfo->selId = p->selId;
6955     memset(&sNC, 0, sizeof(sNC));
6956     sNC.pParse = pParse;
6957     sNC.pSrcList = pTabList;
6958     sNC.uNC.pAggInfo = pAggInfo;
6959     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6960     pAggInfo->mnReg = pParse->nMem+1;
6961     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6962     pAggInfo->pGroupBy = pGroupBy;
6963     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6964     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6965     if( pHaving ){
6966       if( pGroupBy ){
6967         assert( pWhere==p->pWhere );
6968         assert( pHaving==p->pHaving );
6969         assert( pGroupBy==p->pGroupBy );
6970         havingToWhere(pParse, p);
6971         pWhere = p->pWhere;
6972       }
6973       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6974     }
6975     pAggInfo->nAccumulator = pAggInfo->nColumn;
6976     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6977       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6978     }else{
6979       minMaxFlag = WHERE_ORDERBY_NORMAL;
6980     }
6981     for(i=0; i<pAggInfo->nFunc; i++){
6982       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6983       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6984       sNC.ncFlags |= NC_InAggFunc;
6985       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6986 #ifndef SQLITE_OMIT_WINDOWFUNC
6987       assert( !IsWindowFunc(pExpr) );
6988       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6989         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6990       }
6991 #endif
6992       sNC.ncFlags &= ~NC_InAggFunc;
6993     }
6994     pAggInfo->mxReg = pParse->nMem;
6995     if( db->mallocFailed ) goto select_end;
6996 #if SELECTTRACE_ENABLED
6997     if( sqlite3SelectTrace & 0x400 ){
6998       int ii;
6999       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7000       sqlite3TreeViewSelect(0, p, 0);
7001       if( minMaxFlag ){
7002         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7003         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7004       }
7005       for(ii=0; ii<pAggInfo->nColumn; ii++){
7006         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7007             ii, pAggInfo->aCol[ii].iMem);
7008         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7009       }
7010       for(ii=0; ii<pAggInfo->nFunc; ii++){
7011         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7012             ii, pAggInfo->aFunc[ii].iMem);
7013         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7014       }
7015     }
7016 #endif
7017 
7018 
7019     /* Processing for aggregates with GROUP BY is very different and
7020     ** much more complex than aggregates without a GROUP BY.
7021     */
7022     if( pGroupBy ){
7023       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7024       int addr1;          /* A-vs-B comparision jump */
7025       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7026       int regOutputRow;   /* Return address register for output subroutine */
7027       int addrSetAbort;   /* Set the abort flag and return */
7028       int addrTopOfLoop;  /* Top of the input loop */
7029       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7030       int addrReset;      /* Subroutine for resetting the accumulator */
7031       int regReset;       /* Return address register for reset subroutine */
7032       ExprList *pDistinct = 0;
7033       u16 distFlag = 0;
7034       int eDist = WHERE_DISTINCT_NOOP;
7035 
7036       if( pAggInfo->nFunc==1
7037        && pAggInfo->aFunc[0].iDistinct>=0
7038        && pAggInfo->aFunc[0].pFExpr->x.pList
7039       ){
7040         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7041         pExpr = sqlite3ExprDup(db, pExpr, 0);
7042         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7043         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7044         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7045       }
7046 
7047       /* If there is a GROUP BY clause we might need a sorting index to
7048       ** implement it.  Allocate that sorting index now.  If it turns out
7049       ** that we do not need it after all, the OP_SorterOpen instruction
7050       ** will be converted into a Noop.
7051       */
7052       pAggInfo->sortingIdx = pParse->nTab++;
7053       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7054                                             0, pAggInfo->nColumn);
7055       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7056           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7057           0, (char*)pKeyInfo, P4_KEYINFO);
7058 
7059       /* Initialize memory locations used by GROUP BY aggregate processing
7060       */
7061       iUseFlag = ++pParse->nMem;
7062       iAbortFlag = ++pParse->nMem;
7063       regOutputRow = ++pParse->nMem;
7064       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7065       regReset = ++pParse->nMem;
7066       addrReset = sqlite3VdbeMakeLabel(pParse);
7067       iAMem = pParse->nMem + 1;
7068       pParse->nMem += pGroupBy->nExpr;
7069       iBMem = pParse->nMem + 1;
7070       pParse->nMem += pGroupBy->nExpr;
7071       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7072       VdbeComment((v, "clear abort flag"));
7073       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7074 
7075       /* Begin a loop that will extract all source rows in GROUP BY order.
7076       ** This might involve two separate loops with an OP_Sort in between, or
7077       ** it might be a single loop that uses an index to extract information
7078       ** in the right order to begin with.
7079       */
7080       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7081       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7082       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7083           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7084       );
7085       if( pWInfo==0 ){
7086         sqlite3ExprListDelete(db, pDistinct);
7087         goto select_end;
7088       }
7089       eDist = sqlite3WhereIsDistinct(pWInfo);
7090       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7091       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7092         /* The optimizer is able to deliver rows in group by order so
7093         ** we do not have to sort.  The OP_OpenEphemeral table will be
7094         ** cancelled later because we still need to use the pKeyInfo
7095         */
7096         groupBySort = 0;
7097       }else{
7098         /* Rows are coming out in undetermined order.  We have to push
7099         ** each row into a sorting index, terminate the first loop,
7100         ** then loop over the sorting index in order to get the output
7101         ** in sorted order
7102         */
7103         int regBase;
7104         int regRecord;
7105         int nCol;
7106         int nGroupBy;
7107 
7108         explainTempTable(pParse,
7109             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7110                     "DISTINCT" : "GROUP BY");
7111 
7112         groupBySort = 1;
7113         nGroupBy = pGroupBy->nExpr;
7114         nCol = nGroupBy;
7115         j = nGroupBy;
7116         for(i=0; i<pAggInfo->nColumn; i++){
7117           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7118             nCol++;
7119             j++;
7120           }
7121         }
7122         regBase = sqlite3GetTempRange(pParse, nCol);
7123         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7124         j = nGroupBy;
7125         for(i=0; i<pAggInfo->nColumn; i++){
7126           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7127           if( pCol->iSorterColumn>=j ){
7128             int r1 = j + regBase;
7129             sqlite3ExprCodeGetColumnOfTable(v,
7130                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7131             j++;
7132           }
7133         }
7134         regRecord = sqlite3GetTempReg(pParse);
7135         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7136         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7137         sqlite3ReleaseTempReg(pParse, regRecord);
7138         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7139         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7140         sqlite3WhereEnd(pWInfo);
7141         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7142         sortOut = sqlite3GetTempReg(pParse);
7143         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7144         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7145         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7146         pAggInfo->useSortingIdx = 1;
7147       }
7148 
7149       /* If the index or temporary table used by the GROUP BY sort
7150       ** will naturally deliver rows in the order required by the ORDER BY
7151       ** clause, cancel the ephemeral table open coded earlier.
7152       **
7153       ** This is an optimization - the correct answer should result regardless.
7154       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7155       ** disable this optimization for testing purposes.  */
7156       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7157        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7158       ){
7159         sSort.pOrderBy = 0;
7160         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7161       }
7162 
7163       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7164       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7165       ** Then compare the current GROUP BY terms against the GROUP BY terms
7166       ** from the previous row currently stored in a0, a1, a2...
7167       */
7168       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7169       if( groupBySort ){
7170         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7171                           sortOut, sortPTab);
7172       }
7173       for(j=0; j<pGroupBy->nExpr; j++){
7174         if( groupBySort ){
7175           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7176         }else{
7177           pAggInfo->directMode = 1;
7178           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7179         }
7180       }
7181       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7182                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7183       addr1 = sqlite3VdbeCurrentAddr(v);
7184       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7185 
7186       /* Generate code that runs whenever the GROUP BY changes.
7187       ** Changes in the GROUP BY are detected by the previous code
7188       ** block.  If there were no changes, this block is skipped.
7189       **
7190       ** This code copies current group by terms in b0,b1,b2,...
7191       ** over to a0,a1,a2.  It then calls the output subroutine
7192       ** and resets the aggregate accumulator registers in preparation
7193       ** for the next GROUP BY batch.
7194       */
7195       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7196       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7197       VdbeComment((v, "output one row"));
7198       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7199       VdbeComment((v, "check abort flag"));
7200       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7201       VdbeComment((v, "reset accumulator"));
7202 
7203       /* Update the aggregate accumulators based on the content of
7204       ** the current row
7205       */
7206       sqlite3VdbeJumpHere(v, addr1);
7207       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7208       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7209       VdbeComment((v, "indicate data in accumulator"));
7210 
7211       /* End of the loop
7212       */
7213       if( groupBySort ){
7214         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7215         VdbeCoverage(v);
7216       }else{
7217         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7218         sqlite3WhereEnd(pWInfo);
7219         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7220       }
7221       sqlite3ExprListDelete(db, pDistinct);
7222 
7223       /* Output the final row of result
7224       */
7225       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7226       VdbeComment((v, "output final row"));
7227 
7228       /* Jump over the subroutines
7229       */
7230       sqlite3VdbeGoto(v, addrEnd);
7231 
7232       /* Generate a subroutine that outputs a single row of the result
7233       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7234       ** is less than or equal to zero, the subroutine is a no-op.  If
7235       ** the processing calls for the query to abort, this subroutine
7236       ** increments the iAbortFlag memory location before returning in
7237       ** order to signal the caller to abort.
7238       */
7239       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7240       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7241       VdbeComment((v, "set abort flag"));
7242       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7243       sqlite3VdbeResolveLabel(v, addrOutputRow);
7244       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7245       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7246       VdbeCoverage(v);
7247       VdbeComment((v, "Groupby result generator entry point"));
7248       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7249       finalizeAggFunctions(pParse, pAggInfo);
7250       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7251       selectInnerLoop(pParse, p, -1, &sSort,
7252                       &sDistinct, pDest,
7253                       addrOutputRow+1, addrSetAbort);
7254       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7255       VdbeComment((v, "end groupby result generator"));
7256 
7257       /* Generate a subroutine that will reset the group-by accumulator
7258       */
7259       sqlite3VdbeResolveLabel(v, addrReset);
7260       resetAccumulator(pParse, pAggInfo);
7261       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7262       VdbeComment((v, "indicate accumulator empty"));
7263       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7264 
7265       if( eDist!=WHERE_DISTINCT_NOOP ){
7266         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7267         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7268       }
7269     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7270     else {
7271       Table *pTab;
7272       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7273         /* If isSimpleCount() returns a pointer to a Table structure, then
7274         ** the SQL statement is of the form:
7275         **
7276         **   SELECT count(*) FROM <tbl>
7277         **
7278         ** where the Table structure returned represents table <tbl>.
7279         **
7280         ** This statement is so common that it is optimized specially. The
7281         ** OP_Count instruction is executed either on the intkey table that
7282         ** contains the data for table <tbl> or on one of its indexes. It
7283         ** is better to execute the op on an index, as indexes are almost
7284         ** always spread across less pages than their corresponding tables.
7285         */
7286         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7287         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7288         Index *pIdx;                         /* Iterator variable */
7289         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7290         Index *pBest = 0;                    /* Best index found so far */
7291         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7292 
7293         sqlite3CodeVerifySchema(pParse, iDb);
7294         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7295 
7296         /* Search for the index that has the lowest scan cost.
7297         **
7298         ** (2011-04-15) Do not do a full scan of an unordered index.
7299         **
7300         ** (2013-10-03) Do not count the entries in a partial index.
7301         **
7302         ** In practice the KeyInfo structure will not be used. It is only
7303         ** passed to keep OP_OpenRead happy.
7304         */
7305         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7306         if( !p->pSrc->a[0].fg.notIndexed ){
7307           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7308             if( pIdx->bUnordered==0
7309              && pIdx->szIdxRow<pTab->szTabRow
7310              && pIdx->pPartIdxWhere==0
7311              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7312             ){
7313               pBest = pIdx;
7314             }
7315           }
7316         }
7317         if( pBest ){
7318           iRoot = pBest->tnum;
7319           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7320         }
7321 
7322         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7323         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7324         if( pKeyInfo ){
7325           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7326         }
7327         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7328         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7329         explainSimpleCount(pParse, pTab, pBest);
7330       }else{
7331         int regAcc = 0;           /* "populate accumulators" flag */
7332         ExprList *pDistinct = 0;
7333         u16 distFlag = 0;
7334         int eDist;
7335 
7336         /* If there are accumulator registers but no min() or max() functions
7337         ** without FILTER clauses, allocate register regAcc. Register regAcc
7338         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7339         ** The code generated by updateAccumulator() uses this to ensure
7340         ** that the accumulator registers are (a) updated only once if
7341         ** there are no min() or max functions or (b) always updated for the
7342         ** first row visited by the aggregate, so that they are updated at
7343         ** least once even if the FILTER clause means the min() or max()
7344         ** function visits zero rows.  */
7345         if( pAggInfo->nAccumulator ){
7346           for(i=0; i<pAggInfo->nFunc; i++){
7347             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7348               continue;
7349             }
7350             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7351               break;
7352             }
7353           }
7354           if( i==pAggInfo->nFunc ){
7355             regAcc = ++pParse->nMem;
7356             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7357           }
7358         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7359           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7360           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7361         }
7362 
7363         /* This case runs if the aggregate has no GROUP BY clause.  The
7364         ** processing is much simpler since there is only a single row
7365         ** of output.
7366         */
7367         assert( p->pGroupBy==0 );
7368         resetAccumulator(pParse, pAggInfo);
7369 
7370         /* If this query is a candidate for the min/max optimization, then
7371         ** minMaxFlag will have been previously set to either
7372         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7373         ** be an appropriate ORDER BY expression for the optimization.
7374         */
7375         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7376         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7377 
7378         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7379         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7380                                    pDistinct, minMaxFlag|distFlag, 0);
7381         if( pWInfo==0 ){
7382           goto select_end;
7383         }
7384         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7385         eDist = sqlite3WhereIsDistinct(pWInfo);
7386         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7387         if( eDist!=WHERE_DISTINCT_NOOP ){
7388           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7389           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7390         }
7391 
7392         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7393         if( minMaxFlag ){
7394           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7395         }
7396         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7397         sqlite3WhereEnd(pWInfo);
7398         finalizeAggFunctions(pParse, pAggInfo);
7399       }
7400 
7401       sSort.pOrderBy = 0;
7402       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7403       selectInnerLoop(pParse, p, -1, 0, 0,
7404                       pDest, addrEnd, addrEnd);
7405     }
7406     sqlite3VdbeResolveLabel(v, addrEnd);
7407 
7408   } /* endif aggregate query */
7409 
7410   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7411     explainTempTable(pParse, "DISTINCT");
7412   }
7413 
7414   /* If there is an ORDER BY clause, then we need to sort the results
7415   ** and send them to the callback one by one.
7416   */
7417   if( sSort.pOrderBy ){
7418     explainTempTable(pParse,
7419                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7420     assert( p->pEList==pEList );
7421     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7422   }
7423 
7424   /* Jump here to skip this query
7425   */
7426   sqlite3VdbeResolveLabel(v, iEnd);
7427 
7428   /* The SELECT has been coded. If there is an error in the Parse structure,
7429   ** set the return code to 1. Otherwise 0. */
7430   rc = (pParse->nErr>0);
7431 
7432   /* Control jumps to here if an error is encountered above, or upon
7433   ** successful coding of the SELECT.
7434   */
7435 select_end:
7436   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7437   pParse->nErr += db->mallocFailed;
7438   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7439 #ifdef SQLITE_DEBUG
7440   if( pAggInfo && !db->mallocFailed ){
7441     for(i=0; i<pAggInfo->nColumn; i++){
7442       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7443       assert( pExpr!=0 );
7444       assert( pExpr->pAggInfo==pAggInfo );
7445       assert( pExpr->iAgg==i );
7446     }
7447     for(i=0; i<pAggInfo->nFunc; i++){
7448       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7449       assert( pExpr!=0 );
7450       assert( pExpr->pAggInfo==pAggInfo );
7451       assert( pExpr->iAgg==i );
7452     }
7453   }
7454 #endif
7455 
7456 #if SELECTTRACE_ENABLED
7457   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7458   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7459     sqlite3TreeViewSelect(0, p, 0);
7460   }
7461 #endif
7462   ExplainQueryPlanPop(pParse);
7463   return rc;
7464 }
7465