1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 if( pEq && isOuterJoin ){ 351 ExprSetProperty(pEq, EP_FromJoin); 352 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 353 ExprSetVVAProperty(pEq, EP_NoReduce); 354 pEq->iRightJoinTable = pE2->iTable; 355 } 356 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 357 } 358 359 /* 360 ** Set the EP_FromJoin property on all terms of the given expression. 361 ** And set the Expr.iRightJoinTable to iTable for every term in the 362 ** expression. 363 ** 364 ** The EP_FromJoin property is used on terms of an expression to tell 365 ** the LEFT OUTER JOIN processing logic that this term is part of the 366 ** join restriction specified in the ON or USING clause and not a part 367 ** of the more general WHERE clause. These terms are moved over to the 368 ** WHERE clause during join processing but we need to remember that they 369 ** originated in the ON or USING clause. 370 ** 371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 372 ** expression depends on table iRightJoinTable even if that table is not 373 ** explicitly mentioned in the expression. That information is needed 374 ** for cases like this: 375 ** 376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 377 ** 378 ** The where clause needs to defer the handling of the t1.x=5 379 ** term until after the t2 loop of the join. In that way, a 380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 381 ** defer the handling of t1.x=5, it will be processed immediately 382 ** after the t1 loop and rows with t1.x!=5 will never appear in 383 ** the output, which is incorrect. 384 */ 385 void sqlite3SetJoinExpr(Expr *p, int iTable){ 386 while( p ){ 387 ExprSetProperty(p, EP_FromJoin); 388 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 389 ExprSetVVAProperty(p, EP_NoReduce); 390 p->iRightJoinTable = iTable; 391 if( p->op==TK_FUNCTION && p->x.pList ){ 392 int i; 393 for(i=0; i<p->x.pList->nExpr; i++){ 394 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 395 } 396 } 397 sqlite3SetJoinExpr(p->pLeft, iTable); 398 p = p->pRight; 399 } 400 } 401 402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 404 ** an ordinary term that omits the EP_FromJoin mark. 405 ** 406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 407 */ 408 static void unsetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 if( ExprHasProperty(p, EP_FromJoin) 411 && (iTable<0 || p->iRightJoinTable==iTable) ){ 412 ExprClearProperty(p, EP_FromJoin); 413 } 414 if( p->op==TK_COLUMN && p->iTable==iTable ){ 415 ExprClearProperty(p, EP_CanBeNull); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 SrcItem *pLeft; /* Left table being joined */ 446 SrcItem *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 473 zName = pRightTab->aCol[j].zCnName; 474 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 476 isOuter, &p->pWhere); 477 } 478 } 479 } 480 481 /* Disallow both ON and USING clauses in the same join 482 */ 483 if( pRight->pOn && pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 485 "clauses in the same join"); 486 return 1; 487 } 488 489 /* Add the ON clause to the end of the WHERE clause, connected by 490 ** an AND operator. 491 */ 492 if( pRight->pOn ){ 493 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 494 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 495 pRight->pOn = 0; 496 } 497 498 /* Create extra terms on the WHERE clause for each column named 499 ** in the USING clause. Example: If the two tables to be joined are 500 ** A and B and the USING clause names X, Y, and Z, then add this 501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 502 ** Report an error if any column mentioned in the USING clause is 503 ** not contained in both tables to be joined. 504 */ 505 if( pRight->pUsing ){ 506 IdList *pList = pRight->pUsing; 507 for(j=0; j<pList->nId; j++){ 508 char *zName; /* Name of the term in the USING clause */ 509 int iLeft; /* Table on the left with matching column name */ 510 int iLeftCol; /* Column number of matching column on the left */ 511 int iRightCol; /* Column number of matching column on the right */ 512 513 zName = pList->a[j].zName; 514 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 515 if( iRightCol<0 516 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 517 ){ 518 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 519 "not present in both tables", zName); 520 return 1; 521 } 522 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 523 isOuter, &p->pWhere); 524 } 525 } 526 } 527 return 0; 528 } 529 530 /* 531 ** An instance of this object holds information (beyond pParse and pSelect) 532 ** needed to load the next result row that is to be added to the sorter. 533 */ 534 typedef struct RowLoadInfo RowLoadInfo; 535 struct RowLoadInfo { 536 int regResult; /* Store results in array of registers here */ 537 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 539 ExprList *pExtra; /* Extra columns needed by sorter refs */ 540 int regExtraResult; /* Where to load the extra columns */ 541 #endif 542 }; 543 544 /* 545 ** This routine does the work of loading query data into an array of 546 ** registers so that it can be added to the sorter. 547 */ 548 static void innerLoopLoadRow( 549 Parse *pParse, /* Statement under construction */ 550 Select *pSelect, /* The query being coded */ 551 RowLoadInfo *pInfo /* Info needed to complete the row load */ 552 ){ 553 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 554 0, pInfo->ecelFlags); 555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 556 if( pInfo->pExtra ){ 557 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 558 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 559 } 560 #endif 561 } 562 563 /* 564 ** Code the OP_MakeRecord instruction that generates the entry to be 565 ** added into the sorter. 566 ** 567 ** Return the register in which the result is stored. 568 */ 569 static int makeSorterRecord( 570 Parse *pParse, 571 SortCtx *pSort, 572 Select *pSelect, 573 int regBase, 574 int nBase 575 ){ 576 int nOBSat = pSort->nOBSat; 577 Vdbe *v = pParse->pVdbe; 578 int regOut = ++pParse->nMem; 579 if( pSort->pDeferredRowLoad ){ 580 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 581 } 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 583 return regOut; 584 } 585 586 /* 587 ** Generate code that will push the record in registers regData 588 ** through regData+nData-1 onto the sorter. 589 */ 590 static void pushOntoSorter( 591 Parse *pParse, /* Parser context */ 592 SortCtx *pSort, /* Information about the ORDER BY clause */ 593 Select *pSelect, /* The whole SELECT statement */ 594 int regData, /* First register holding data to be sorted */ 595 int regOrigData, /* First register holding data before packing */ 596 int nData, /* Number of elements in the regData data array */ 597 int nPrefixReg /* No. of reg prior to regData available for use */ 598 ){ 599 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 600 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 601 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 602 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 603 int regBase; /* Regs for sorter record */ 604 int regRecord = 0; /* Assembled sorter record */ 605 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 606 int op; /* Opcode to add sorter record to sorter */ 607 int iLimit; /* LIMIT counter */ 608 int iSkip = 0; /* End of the sorter insert loop */ 609 610 assert( bSeq==0 || bSeq==1 ); 611 612 /* Three cases: 613 ** (1) The data to be sorted has already been packed into a Record 614 ** by a prior OP_MakeRecord. In this case nData==1 and regData 615 ** will be completely unrelated to regOrigData. 616 ** (2) All output columns are included in the sort record. In that 617 ** case regData==regOrigData. 618 ** (3) Some output columns are omitted from the sort record due to 619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 620 ** SQLITE_ECEL_OMITREF optimization, or due to the 621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 622 ** regOrigData is 0 to prevent this routine from trying to copy 623 ** values that might not yet exist. 624 */ 625 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 626 627 if( nPrefixReg ){ 628 assert( nPrefixReg==nExpr+bSeq ); 629 regBase = regData - nPrefixReg; 630 }else{ 631 regBase = pParse->nMem + 1; 632 pParse->nMem += nBase; 633 } 634 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 635 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 636 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 637 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 638 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 639 if( bSeq ){ 640 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 641 } 642 if( nPrefixReg==0 && nData>0 ){ 643 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 644 } 645 if( nOBSat>0 ){ 646 int regPrevKey; /* The first nOBSat columns of the previous row */ 647 int addrFirst; /* Address of the OP_IfNot opcode */ 648 int addrJmp; /* Address of the OP_Jump opcode */ 649 VdbeOp *pOp; /* Opcode that opens the sorter */ 650 int nKey; /* Number of sorting key columns, including OP_Sequence */ 651 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 652 653 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 654 regPrevKey = pParse->nMem+1; 655 pParse->nMem += pSort->nOBSat; 656 nKey = nExpr - pSort->nOBSat + bSeq; 657 if( bSeq ){ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 659 }else{ 660 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 661 } 662 VdbeCoverage(v); 663 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 664 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 665 if( pParse->db->mallocFailed ) return; 666 pOp->p2 = nKey + nData; 667 pKI = pOp->p4.pKeyInfo; 668 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 669 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 670 testcase( pKI->nAllField > pKI->nKeyField+2 ); 671 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 672 pKI->nAllField-pKI->nKeyField-1); 673 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 674 addrJmp = sqlite3VdbeCurrentAddr(v); 675 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 676 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 677 pSort->regReturn = ++pParse->nMem; 678 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 679 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 680 if( iLimit ){ 681 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 682 VdbeCoverage(v); 683 } 684 sqlite3VdbeJumpHere(v, addrFirst); 685 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 686 sqlite3VdbeJumpHere(v, addrJmp); 687 } 688 if( iLimit ){ 689 /* At this point the values for the new sorter entry are stored 690 ** in an array of registers. They need to be composed into a record 691 ** and inserted into the sorter if either (a) there are currently 692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 693 ** the largest record currently in the sorter. If (b) is true and there 694 ** are already LIMIT+OFFSET items in the sorter, delete the largest 695 ** entry before inserting the new one. This way there are never more 696 ** than LIMIT+OFFSET items in the sorter. 697 ** 698 ** If the new record does not need to be inserted into the sorter, 699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 700 ** value is not zero, then it is a label of where to jump. Otherwise, 701 ** just bypass the row insert logic. See the header comment on the 702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 703 */ 704 int iCsr = pSort->iECursor; 705 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 706 VdbeCoverage(v); 707 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 708 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 709 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 710 VdbeCoverage(v); 711 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 712 } 713 if( regRecord==0 ){ 714 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 715 } 716 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 717 op = OP_SorterInsert; 718 }else{ 719 op = OP_IdxInsert; 720 } 721 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 722 regBase+nOBSat, nBase-nOBSat); 723 if( iSkip ){ 724 sqlite3VdbeChangeP2(v, iSkip, 725 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 726 } 727 } 728 729 /* 730 ** Add code to implement the OFFSET 731 */ 732 static void codeOffset( 733 Vdbe *v, /* Generate code into this VM */ 734 int iOffset, /* Register holding the offset counter */ 735 int iContinue /* Jump here to skip the current record */ 736 ){ 737 if( iOffset>0 ){ 738 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 739 VdbeComment((v, "OFFSET")); 740 } 741 } 742 743 /* 744 ** Add code that will check to make sure the array of registers starting at 745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 747 ** are available. Which is used depends on the value of parameter eTnctType, 748 ** as follows: 749 ** 750 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 751 ** Build an ephemeral table that contains all entries seen before and 752 ** skip entries which have been seen before. 753 ** 754 ** Parameter iTab is the cursor number of an ephemeral table that must 755 ** be opened before the VM code generated by this routine is executed. 756 ** The ephemeral cursor table is queried for a record identical to the 757 ** record formed by the current array of registers. If one is found, 758 ** jump to VM address addrRepeat. Otherwise, insert a new record into 759 ** the ephemeral cursor and proceed. 760 ** 761 ** The returned value in this case is a copy of parameter iTab. 762 ** 763 ** WHERE_DISTINCT_ORDERED: 764 ** In this case rows are being delivered sorted order. The ephermal 765 ** table is not required. Instead, the current set of values 766 ** is compared against previous row. If they match, the new row 767 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 768 ** the VM program proceeds with processing the new row. 769 ** 770 ** The returned value in this case is the register number of the first 771 ** in an array of registers used to store the previous result row so that 772 ** it can be compared to the next. The caller must ensure that this 773 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 774 ** will take care of this initialization.) 775 ** 776 ** WHERE_DISTINCT_UNIQUE: 777 ** In this case it has already been determined that the rows are distinct. 778 ** No special action is required. The return value is zero. 779 ** 780 ** Parameter pEList is the list of expressions used to generated the 781 ** contents of each row. It is used by this routine to determine (a) 782 ** how many elements there are in the array of registers and (b) the 783 ** collation sequences that should be used for the comparisons if 784 ** eTnctType is WHERE_DISTINCT_ORDERED. 785 */ 786 static int codeDistinct( 787 Parse *pParse, /* Parsing and code generating context */ 788 int eTnctType, /* WHERE_DISTINCT_* value */ 789 int iTab, /* A sorting index used to test for distinctness */ 790 int addrRepeat, /* Jump to here if not distinct */ 791 ExprList *pEList, /* Expression for each element */ 792 int regElem /* First element */ 793 ){ 794 int iRet = 0; 795 int nResultCol = pEList->nExpr; 796 Vdbe *v = pParse->pVdbe; 797 798 switch( eTnctType ){ 799 case WHERE_DISTINCT_ORDERED: { 800 int i; 801 int iJump; /* Jump destination */ 802 int regPrev; /* Previous row content */ 803 804 /* Allocate space for the previous row */ 805 iRet = regPrev = pParse->nMem+1; 806 pParse->nMem += nResultCol; 807 808 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 809 for(i=0; i<nResultCol; i++){ 810 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 811 if( i<nResultCol-1 ){ 812 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 813 VdbeCoverage(v); 814 }else{ 815 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 816 VdbeCoverage(v); 817 } 818 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 819 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 820 } 821 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 822 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 823 break; 824 } 825 826 case WHERE_DISTINCT_UNIQUE: { 827 /* nothing to do */ 828 break; 829 } 830 831 default: { 832 int r1 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 834 VdbeCoverage(v); 835 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 837 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 838 sqlite3ReleaseTempReg(pParse, r1); 839 iRet = iTab; 840 break; 841 } 842 } 843 844 return iRet; 845 } 846 847 /* 848 ** This routine runs after codeDistinct(). It makes necessary 849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 850 ** routine made use of. This processing must be done separately since 851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 852 ** laid down. 853 ** 854 ** WHERE_DISTINCT_NOOP: 855 ** WHERE_DISTINCT_UNORDERED: 856 ** 857 ** No adjustments necessary. This function is a no-op. 858 ** 859 ** WHERE_DISTINCT_UNIQUE: 860 ** 861 ** The ephemeral table is not needed. So change the 862 ** OP_OpenEphemeral opcode into an OP_Noop. 863 ** 864 ** WHERE_DISTINCT_ORDERED: 865 ** 866 ** The ephemeral table is not needed. But we do need register 867 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 868 ** into an OP_Null on the iVal register. 869 */ 870 static void fixDistinctOpenEph( 871 Parse *pParse, /* Parsing and code generating context */ 872 int eTnctType, /* WHERE_DISTINCT_* value */ 873 int iVal, /* Value returned by codeDistinct() */ 874 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 875 ){ 876 if( pParse->nErr==0 877 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 878 ){ 879 Vdbe *v = pParse->pVdbe; 880 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 881 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 882 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 883 } 884 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 885 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 886 ** bit on the first register of the previous value. This will cause the 887 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 888 ** the loop even if the first row is all NULLs. */ 889 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 890 pOp->opcode = OP_Null; 891 pOp->p1 = 1; 892 pOp->p2 = iVal; 893 } 894 } 895 } 896 897 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 898 /* 899 ** This function is called as part of inner-loop generation for a SELECT 900 ** statement with an ORDER BY that is not optimized by an index. It 901 ** determines the expressions, if any, that the sorter-reference 902 ** optimization should be used for. The sorter-reference optimization 903 ** is used for SELECT queries like: 904 ** 905 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 906 ** 907 ** If the optimization is used for expression "bigblob", then instead of 908 ** storing values read from that column in the sorter records, the PK of 909 ** the row from table t1 is stored instead. Then, as records are extracted from 910 ** the sorter to return to the user, the required value of bigblob is 911 ** retrieved directly from table t1. If the values are very large, this 912 ** can be more efficient than storing them directly in the sorter records. 913 ** 914 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 915 ** for which the sorter-reference optimization should be enabled. 916 ** Additionally, the pSort->aDefer[] array is populated with entries 917 ** for all cursors required to evaluate all selected expressions. Finally. 918 ** output variable (*ppExtra) is set to an expression list containing 919 ** expressions for all extra PK values that should be stored in the 920 ** sorter records. 921 */ 922 static void selectExprDefer( 923 Parse *pParse, /* Leave any error here */ 924 SortCtx *pSort, /* Sorter context */ 925 ExprList *pEList, /* Expressions destined for sorter */ 926 ExprList **ppExtra /* Expressions to append to sorter record */ 927 ){ 928 int i; 929 int nDefer = 0; 930 ExprList *pExtra = 0; 931 for(i=0; i<pEList->nExpr; i++){ 932 struct ExprList_item *pItem = &pEList->a[i]; 933 if( pItem->u.x.iOrderByCol==0 ){ 934 Expr *pExpr = pItem->pExpr; 935 Table *pTab = pExpr->y.pTab; 936 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 937 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 938 ){ 939 int j; 940 for(j=0; j<nDefer; j++){ 941 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 942 } 943 if( j==nDefer ){ 944 if( nDefer==ArraySize(pSort->aDefer) ){ 945 continue; 946 }else{ 947 int nKey = 1; 948 int k; 949 Index *pPk = 0; 950 if( !HasRowid(pTab) ){ 951 pPk = sqlite3PrimaryKeyIndex(pTab); 952 nKey = pPk->nKeyCol; 953 } 954 for(k=0; k<nKey; k++){ 955 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 956 if( pNew ){ 957 pNew->iTable = pExpr->iTable; 958 pNew->y.pTab = pExpr->y.pTab; 959 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 960 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 961 } 962 } 963 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 964 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 965 pSort->aDefer[nDefer].nKey = nKey; 966 nDefer++; 967 } 968 } 969 pItem->bSorterRef = 1; 970 } 971 } 972 } 973 pSort->nDefer = (u8)nDefer; 974 *ppExtra = pExtra; 975 } 976 #endif 977 978 /* 979 ** This routine generates the code for the inside of the inner loop 980 ** of a SELECT. 981 ** 982 ** If srcTab is negative, then the p->pEList expressions 983 ** are evaluated in order to get the data for this row. If srcTab is 984 ** zero or more, then data is pulled from srcTab and p->pEList is used only 985 ** to get the number of columns and the collation sequence for each column. 986 */ 987 static void selectInnerLoop( 988 Parse *pParse, /* The parser context */ 989 Select *p, /* The complete select statement being coded */ 990 int srcTab, /* Pull data from this table if non-negative */ 991 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 992 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 993 SelectDest *pDest, /* How to dispose of the results */ 994 int iContinue, /* Jump here to continue with next row */ 995 int iBreak /* Jump here to break out of the inner loop */ 996 ){ 997 Vdbe *v = pParse->pVdbe; 998 int i; 999 int hasDistinct; /* True if the DISTINCT keyword is present */ 1000 int eDest = pDest->eDest; /* How to dispose of results */ 1001 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1002 int nResultCol; /* Number of result columns */ 1003 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1004 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1005 1006 /* Usually, regResult is the first cell in an array of memory cells 1007 ** containing the current result row. In this case regOrig is set to the 1008 ** same value. However, if the results are being sent to the sorter, the 1009 ** values for any expressions that are also part of the sort-key are omitted 1010 ** from this array. In this case regOrig is set to zero. */ 1011 int regResult; /* Start of memory holding current results */ 1012 int regOrig; /* Start of memory holding full result (or 0) */ 1013 1014 assert( v ); 1015 assert( p->pEList!=0 ); 1016 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1017 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1018 if( pSort==0 && !hasDistinct ){ 1019 assert( iContinue!=0 ); 1020 codeOffset(v, p->iOffset, iContinue); 1021 } 1022 1023 /* Pull the requested columns. 1024 */ 1025 nResultCol = p->pEList->nExpr; 1026 1027 if( pDest->iSdst==0 ){ 1028 if( pSort ){ 1029 nPrefixReg = pSort->pOrderBy->nExpr; 1030 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1031 pParse->nMem += nPrefixReg; 1032 } 1033 pDest->iSdst = pParse->nMem+1; 1034 pParse->nMem += nResultCol; 1035 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1036 /* This is an error condition that can result, for example, when a SELECT 1037 ** on the right-hand side of an INSERT contains more result columns than 1038 ** there are columns in the table on the left. The error will be caught 1039 ** and reported later. But we need to make sure enough memory is allocated 1040 ** to avoid other spurious errors in the meantime. */ 1041 pParse->nMem += nResultCol; 1042 } 1043 pDest->nSdst = nResultCol; 1044 regOrig = regResult = pDest->iSdst; 1045 if( srcTab>=0 ){ 1046 for(i=0; i<nResultCol; i++){ 1047 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1048 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1049 } 1050 }else if( eDest!=SRT_Exists ){ 1051 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1052 ExprList *pExtra = 0; 1053 #endif 1054 /* If the destination is an EXISTS(...) expression, the actual 1055 ** values returned by the SELECT are not required. 1056 */ 1057 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1058 ExprList *pEList; 1059 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1060 ecelFlags = SQLITE_ECEL_DUP; 1061 }else{ 1062 ecelFlags = 0; 1063 } 1064 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1065 /* For each expression in p->pEList that is a copy of an expression in 1066 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1067 ** iOrderByCol value to one more than the index of the ORDER BY 1068 ** expression within the sort-key that pushOntoSorter() will generate. 1069 ** This allows the p->pEList field to be omitted from the sorted record, 1070 ** saving space and CPU cycles. */ 1071 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1072 1073 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1074 int j; 1075 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1076 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1077 } 1078 } 1079 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1080 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1081 if( pExtra && pParse->db->mallocFailed==0 ){ 1082 /* If there are any extra PK columns to add to the sorter records, 1083 ** allocate extra memory cells and adjust the OpenEphemeral 1084 ** instruction to account for the larger records. This is only 1085 ** required if there are one or more WITHOUT ROWID tables with 1086 ** composite primary keys in the SortCtx.aDefer[] array. */ 1087 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1088 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1089 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1090 pParse->nMem += pExtra->nExpr; 1091 } 1092 #endif 1093 1094 /* Adjust nResultCol to account for columns that are omitted 1095 ** from the sorter by the optimizations in this branch */ 1096 pEList = p->pEList; 1097 for(i=0; i<pEList->nExpr; i++){ 1098 if( pEList->a[i].u.x.iOrderByCol>0 1099 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1100 || pEList->a[i].bSorterRef 1101 #endif 1102 ){ 1103 nResultCol--; 1104 regOrig = 0; 1105 } 1106 } 1107 1108 testcase( regOrig ); 1109 testcase( eDest==SRT_Set ); 1110 testcase( eDest==SRT_Mem ); 1111 testcase( eDest==SRT_Coroutine ); 1112 testcase( eDest==SRT_Output ); 1113 assert( eDest==SRT_Set || eDest==SRT_Mem 1114 || eDest==SRT_Coroutine || eDest==SRT_Output 1115 || eDest==SRT_Upfrom ); 1116 } 1117 sRowLoadInfo.regResult = regResult; 1118 sRowLoadInfo.ecelFlags = ecelFlags; 1119 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1120 sRowLoadInfo.pExtra = pExtra; 1121 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1122 if( pExtra ) nResultCol += pExtra->nExpr; 1123 #endif 1124 if( p->iLimit 1125 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1126 && nPrefixReg>0 1127 ){ 1128 assert( pSort!=0 ); 1129 assert( hasDistinct==0 ); 1130 pSort->pDeferredRowLoad = &sRowLoadInfo; 1131 regOrig = 0; 1132 }else{ 1133 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1134 } 1135 } 1136 1137 /* If the DISTINCT keyword was present on the SELECT statement 1138 ** and this row has been seen before, then do not make this row 1139 ** part of the result. 1140 */ 1141 if( hasDistinct ){ 1142 int eType = pDistinct->eTnctType; 1143 int iTab = pDistinct->tabTnct; 1144 assert( nResultCol==p->pEList->nExpr ); 1145 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1146 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1147 if( pSort==0 ){ 1148 codeOffset(v, p->iOffset, iContinue); 1149 } 1150 } 1151 1152 switch( eDest ){ 1153 /* In this mode, write each query result to the key of the temporary 1154 ** table iParm. 1155 */ 1156 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1157 case SRT_Union: { 1158 int r1; 1159 r1 = sqlite3GetTempReg(pParse); 1160 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1161 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1162 sqlite3ReleaseTempReg(pParse, r1); 1163 break; 1164 } 1165 1166 /* Construct a record from the query result, but instead of 1167 ** saving that record, use it as a key to delete elements from 1168 ** the temporary table iParm. 1169 */ 1170 case SRT_Except: { 1171 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1172 break; 1173 } 1174 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1175 1176 /* Store the result as data using a unique key. 1177 */ 1178 case SRT_Fifo: 1179 case SRT_DistFifo: 1180 case SRT_Table: 1181 case SRT_EphemTab: { 1182 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1183 testcase( eDest==SRT_Table ); 1184 testcase( eDest==SRT_EphemTab ); 1185 testcase( eDest==SRT_Fifo ); 1186 testcase( eDest==SRT_DistFifo ); 1187 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1188 #ifndef SQLITE_OMIT_CTE 1189 if( eDest==SRT_DistFifo ){ 1190 /* If the destination is DistFifo, then cursor (iParm+1) is open 1191 ** on an ephemeral index. If the current row is already present 1192 ** in the index, do not write it to the output. If not, add the 1193 ** current row to the index and proceed with writing it to the 1194 ** output table as well. */ 1195 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1196 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1197 VdbeCoverage(v); 1198 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1199 assert( pSort==0 ); 1200 } 1201 #endif 1202 if( pSort ){ 1203 assert( regResult==regOrig ); 1204 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1205 }else{ 1206 int r2 = sqlite3GetTempReg(pParse); 1207 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1208 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1209 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1210 sqlite3ReleaseTempReg(pParse, r2); 1211 } 1212 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1213 break; 1214 } 1215 1216 case SRT_Upfrom: { 1217 if( pSort ){ 1218 pushOntoSorter( 1219 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1220 }else{ 1221 int i2 = pDest->iSDParm2; 1222 int r1 = sqlite3GetTempReg(pParse); 1223 1224 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1225 ** might still be trying to return one row, because that is what 1226 ** aggregates do. Don't record that empty row in the output table. */ 1227 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1228 1229 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1230 regResult+(i2<0), nResultCol-(i2<0), r1); 1231 if( i2<0 ){ 1232 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1233 }else{ 1234 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1235 } 1236 } 1237 break; 1238 } 1239 1240 #ifndef SQLITE_OMIT_SUBQUERY 1241 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1242 ** then there should be a single item on the stack. Write this 1243 ** item into the set table with bogus data. 1244 */ 1245 case SRT_Set: { 1246 if( pSort ){ 1247 /* At first glance you would think we could optimize out the 1248 ** ORDER BY in this case since the order of entries in the set 1249 ** does not matter. But there might be a LIMIT clause, in which 1250 ** case the order does matter */ 1251 pushOntoSorter( 1252 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1253 }else{ 1254 int r1 = sqlite3GetTempReg(pParse); 1255 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1256 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1257 r1, pDest->zAffSdst, nResultCol); 1258 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1259 sqlite3ReleaseTempReg(pParse, r1); 1260 } 1261 break; 1262 } 1263 1264 1265 /* If any row exist in the result set, record that fact and abort. 1266 */ 1267 case SRT_Exists: { 1268 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1269 /* The LIMIT clause will terminate the loop for us */ 1270 break; 1271 } 1272 1273 /* If this is a scalar select that is part of an expression, then 1274 ** store the results in the appropriate memory cell or array of 1275 ** memory cells and break out of the scan loop. 1276 */ 1277 case SRT_Mem: { 1278 if( pSort ){ 1279 assert( nResultCol<=pDest->nSdst ); 1280 pushOntoSorter( 1281 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1282 }else{ 1283 assert( nResultCol==pDest->nSdst ); 1284 assert( regResult==iParm ); 1285 /* The LIMIT clause will jump out of the loop for us */ 1286 } 1287 break; 1288 } 1289 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1290 1291 case SRT_Coroutine: /* Send data to a co-routine */ 1292 case SRT_Output: { /* Return the results */ 1293 testcase( eDest==SRT_Coroutine ); 1294 testcase( eDest==SRT_Output ); 1295 if( pSort ){ 1296 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1297 nPrefixReg); 1298 }else if( eDest==SRT_Coroutine ){ 1299 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1300 }else{ 1301 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1302 } 1303 break; 1304 } 1305 1306 #ifndef SQLITE_OMIT_CTE 1307 /* Write the results into a priority queue that is order according to 1308 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1309 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1310 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1311 ** final OP_Sequence column. The last column is the record as a blob. 1312 */ 1313 case SRT_DistQueue: 1314 case SRT_Queue: { 1315 int nKey; 1316 int r1, r2, r3; 1317 int addrTest = 0; 1318 ExprList *pSO; 1319 pSO = pDest->pOrderBy; 1320 assert( pSO ); 1321 nKey = pSO->nExpr; 1322 r1 = sqlite3GetTempReg(pParse); 1323 r2 = sqlite3GetTempRange(pParse, nKey+2); 1324 r3 = r2+nKey+1; 1325 if( eDest==SRT_DistQueue ){ 1326 /* If the destination is DistQueue, then cursor (iParm+1) is open 1327 ** on a second ephemeral index that holds all values every previously 1328 ** added to the queue. */ 1329 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1330 regResult, nResultCol); 1331 VdbeCoverage(v); 1332 } 1333 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1334 if( eDest==SRT_DistQueue ){ 1335 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1336 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1337 } 1338 for(i=0; i<nKey; i++){ 1339 sqlite3VdbeAddOp2(v, OP_SCopy, 1340 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1341 r2+i); 1342 } 1343 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1344 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1345 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1346 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1347 sqlite3ReleaseTempReg(pParse, r1); 1348 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1349 break; 1350 } 1351 #endif /* SQLITE_OMIT_CTE */ 1352 1353 1354 1355 #if !defined(SQLITE_OMIT_TRIGGER) 1356 /* Discard the results. This is used for SELECT statements inside 1357 ** the body of a TRIGGER. The purpose of such selects is to call 1358 ** user-defined functions that have side effects. We do not care 1359 ** about the actual results of the select. 1360 */ 1361 default: { 1362 assert( eDest==SRT_Discard ); 1363 break; 1364 } 1365 #endif 1366 } 1367 1368 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1369 ** there is a sorter, in which case the sorter has already limited 1370 ** the output for us. 1371 */ 1372 if( pSort==0 && p->iLimit ){ 1373 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1374 } 1375 } 1376 1377 /* 1378 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1379 ** X extra columns. 1380 */ 1381 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1382 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1383 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1384 if( p ){ 1385 p->aSortFlags = (u8*)&p->aColl[N+X]; 1386 p->nKeyField = (u16)N; 1387 p->nAllField = (u16)(N+X); 1388 p->enc = ENC(db); 1389 p->db = db; 1390 p->nRef = 1; 1391 memset(&p[1], 0, nExtra); 1392 }else{ 1393 sqlite3OomFault(db); 1394 } 1395 return p; 1396 } 1397 1398 /* 1399 ** Deallocate a KeyInfo object 1400 */ 1401 void sqlite3KeyInfoUnref(KeyInfo *p){ 1402 if( p ){ 1403 assert( p->nRef>0 ); 1404 p->nRef--; 1405 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1406 } 1407 } 1408 1409 /* 1410 ** Make a new pointer to a KeyInfo object 1411 */ 1412 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1413 if( p ){ 1414 assert( p->nRef>0 ); 1415 p->nRef++; 1416 } 1417 return p; 1418 } 1419 1420 #ifdef SQLITE_DEBUG 1421 /* 1422 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1423 ** can only be changed if this is just a single reference to the object. 1424 ** 1425 ** This routine is used only inside of assert() statements. 1426 */ 1427 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1428 #endif /* SQLITE_DEBUG */ 1429 1430 /* 1431 ** Given an expression list, generate a KeyInfo structure that records 1432 ** the collating sequence for each expression in that expression list. 1433 ** 1434 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1435 ** KeyInfo structure is appropriate for initializing a virtual index to 1436 ** implement that clause. If the ExprList is the result set of a SELECT 1437 ** then the KeyInfo structure is appropriate for initializing a virtual 1438 ** index to implement a DISTINCT test. 1439 ** 1440 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1441 ** function is responsible for seeing that this structure is eventually 1442 ** freed. 1443 */ 1444 KeyInfo *sqlite3KeyInfoFromExprList( 1445 Parse *pParse, /* Parsing context */ 1446 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1447 int iStart, /* Begin with this column of pList */ 1448 int nExtra /* Add this many extra columns to the end */ 1449 ){ 1450 int nExpr; 1451 KeyInfo *pInfo; 1452 struct ExprList_item *pItem; 1453 sqlite3 *db = pParse->db; 1454 int i; 1455 1456 nExpr = pList->nExpr; 1457 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1458 if( pInfo ){ 1459 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1460 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1461 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1462 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1463 } 1464 } 1465 return pInfo; 1466 } 1467 1468 /* 1469 ** Name of the connection operator, used for error messages. 1470 */ 1471 const char *sqlite3SelectOpName(int id){ 1472 char *z; 1473 switch( id ){ 1474 case TK_ALL: z = "UNION ALL"; break; 1475 case TK_INTERSECT: z = "INTERSECT"; break; 1476 case TK_EXCEPT: z = "EXCEPT"; break; 1477 default: z = "UNION"; break; 1478 } 1479 return z; 1480 } 1481 1482 #ifndef SQLITE_OMIT_EXPLAIN 1483 /* 1484 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1485 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1486 ** where the caption is of the form: 1487 ** 1488 ** "USE TEMP B-TREE FOR xxx" 1489 ** 1490 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1491 ** is determined by the zUsage argument. 1492 */ 1493 static void explainTempTable(Parse *pParse, const char *zUsage){ 1494 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1495 } 1496 1497 /* 1498 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1499 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1500 ** in sqlite3Select() to assign values to structure member variables that 1501 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1502 ** code with #ifndef directives. 1503 */ 1504 # define explainSetInteger(a, b) a = b 1505 1506 #else 1507 /* No-op versions of the explainXXX() functions and macros. */ 1508 # define explainTempTable(y,z) 1509 # define explainSetInteger(y,z) 1510 #endif 1511 1512 1513 /* 1514 ** If the inner loop was generated using a non-null pOrderBy argument, 1515 ** then the results were placed in a sorter. After the loop is terminated 1516 ** we need to run the sorter and output the results. The following 1517 ** routine generates the code needed to do that. 1518 */ 1519 static void generateSortTail( 1520 Parse *pParse, /* Parsing context */ 1521 Select *p, /* The SELECT statement */ 1522 SortCtx *pSort, /* Information on the ORDER BY clause */ 1523 int nColumn, /* Number of columns of data */ 1524 SelectDest *pDest /* Write the sorted results here */ 1525 ){ 1526 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1527 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1528 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1529 int addr; /* Top of output loop. Jump for Next. */ 1530 int addrOnce = 0; 1531 int iTab; 1532 ExprList *pOrderBy = pSort->pOrderBy; 1533 int eDest = pDest->eDest; 1534 int iParm = pDest->iSDParm; 1535 int regRow; 1536 int regRowid; 1537 int iCol; 1538 int nKey; /* Number of key columns in sorter record */ 1539 int iSortTab; /* Sorter cursor to read from */ 1540 int i; 1541 int bSeq; /* True if sorter record includes seq. no. */ 1542 int nRefKey = 0; 1543 struct ExprList_item *aOutEx = p->pEList->a; 1544 1545 assert( addrBreak<0 ); 1546 if( pSort->labelBkOut ){ 1547 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1548 sqlite3VdbeGoto(v, addrBreak); 1549 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1550 } 1551 1552 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1553 /* Open any cursors needed for sorter-reference expressions */ 1554 for(i=0; i<pSort->nDefer; i++){ 1555 Table *pTab = pSort->aDefer[i].pTab; 1556 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1557 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1558 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1559 } 1560 #endif 1561 1562 iTab = pSort->iECursor; 1563 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1564 regRowid = 0; 1565 regRow = pDest->iSdst; 1566 }else{ 1567 regRowid = sqlite3GetTempReg(pParse); 1568 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1569 regRow = sqlite3GetTempReg(pParse); 1570 nColumn = 0; 1571 }else{ 1572 regRow = sqlite3GetTempRange(pParse, nColumn); 1573 } 1574 } 1575 nKey = pOrderBy->nExpr - pSort->nOBSat; 1576 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1577 int regSortOut = ++pParse->nMem; 1578 iSortTab = pParse->nTab++; 1579 if( pSort->labelBkOut ){ 1580 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1581 } 1582 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1583 nKey+1+nColumn+nRefKey); 1584 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1585 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1586 VdbeCoverage(v); 1587 codeOffset(v, p->iOffset, addrContinue); 1588 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1589 bSeq = 0; 1590 }else{ 1591 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1592 codeOffset(v, p->iOffset, addrContinue); 1593 iSortTab = iTab; 1594 bSeq = 1; 1595 } 1596 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1597 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1598 if( aOutEx[i].bSorterRef ) continue; 1599 #endif 1600 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1601 } 1602 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1603 if( pSort->nDefer ){ 1604 int iKey = iCol+1; 1605 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1606 1607 for(i=0; i<pSort->nDefer; i++){ 1608 int iCsr = pSort->aDefer[i].iCsr; 1609 Table *pTab = pSort->aDefer[i].pTab; 1610 int nKey = pSort->aDefer[i].nKey; 1611 1612 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1613 if( HasRowid(pTab) ){ 1614 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1615 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1616 sqlite3VdbeCurrentAddr(v)+1, regKey); 1617 }else{ 1618 int k; 1619 int iJmp; 1620 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1621 for(k=0; k<nKey; k++){ 1622 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1623 } 1624 iJmp = sqlite3VdbeCurrentAddr(v); 1625 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1626 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1627 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1628 } 1629 } 1630 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1631 } 1632 #endif 1633 for(i=nColumn-1; i>=0; i--){ 1634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1635 if( aOutEx[i].bSorterRef ){ 1636 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1637 }else 1638 #endif 1639 { 1640 int iRead; 1641 if( aOutEx[i].u.x.iOrderByCol ){ 1642 iRead = aOutEx[i].u.x.iOrderByCol-1; 1643 }else{ 1644 iRead = iCol--; 1645 } 1646 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1647 VdbeComment((v, "%s", aOutEx[i].zEName)); 1648 } 1649 } 1650 switch( eDest ){ 1651 case SRT_Table: 1652 case SRT_EphemTab: { 1653 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1654 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1655 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1656 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1657 break; 1658 } 1659 #ifndef SQLITE_OMIT_SUBQUERY 1660 case SRT_Set: { 1661 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1662 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1663 pDest->zAffSdst, nColumn); 1664 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1665 break; 1666 } 1667 case SRT_Mem: { 1668 /* The LIMIT clause will terminate the loop for us */ 1669 break; 1670 } 1671 #endif 1672 case SRT_Upfrom: { 1673 int i2 = pDest->iSDParm2; 1674 int r1 = sqlite3GetTempReg(pParse); 1675 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1676 if( i2<0 ){ 1677 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1678 }else{ 1679 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1680 } 1681 break; 1682 } 1683 default: { 1684 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1685 testcase( eDest==SRT_Output ); 1686 testcase( eDest==SRT_Coroutine ); 1687 if( eDest==SRT_Output ){ 1688 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1689 }else{ 1690 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1691 } 1692 break; 1693 } 1694 } 1695 if( regRowid ){ 1696 if( eDest==SRT_Set ){ 1697 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1698 }else{ 1699 sqlite3ReleaseTempReg(pParse, regRow); 1700 } 1701 sqlite3ReleaseTempReg(pParse, regRowid); 1702 } 1703 /* The bottom of the loop 1704 */ 1705 sqlite3VdbeResolveLabel(v, addrContinue); 1706 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1707 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1708 }else{ 1709 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1710 } 1711 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1712 sqlite3VdbeResolveLabel(v, addrBreak); 1713 } 1714 1715 /* 1716 ** Return a pointer to a string containing the 'declaration type' of the 1717 ** expression pExpr. The string may be treated as static by the caller. 1718 ** 1719 ** Also try to estimate the size of the returned value and return that 1720 ** result in *pEstWidth. 1721 ** 1722 ** The declaration type is the exact datatype definition extracted from the 1723 ** original CREATE TABLE statement if the expression is a column. The 1724 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1725 ** is considered a column can be complex in the presence of subqueries. The 1726 ** result-set expression in all of the following SELECT statements is 1727 ** considered a column by this function. 1728 ** 1729 ** SELECT col FROM tbl; 1730 ** SELECT (SELECT col FROM tbl; 1731 ** SELECT (SELECT col FROM tbl); 1732 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1733 ** 1734 ** The declaration type for any expression other than a column is NULL. 1735 ** 1736 ** This routine has either 3 or 6 parameters depending on whether or not 1737 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1738 */ 1739 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1741 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1742 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1743 #endif 1744 static const char *columnTypeImpl( 1745 NameContext *pNC, 1746 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1747 Expr *pExpr 1748 #else 1749 Expr *pExpr, 1750 const char **pzOrigDb, 1751 const char **pzOrigTab, 1752 const char **pzOrigCol 1753 #endif 1754 ){ 1755 char const *zType = 0; 1756 int j; 1757 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1758 char const *zOrigDb = 0; 1759 char const *zOrigTab = 0; 1760 char const *zOrigCol = 0; 1761 #endif 1762 1763 assert( pExpr!=0 ); 1764 assert( pNC->pSrcList!=0 ); 1765 switch( pExpr->op ){ 1766 case TK_COLUMN: { 1767 /* The expression is a column. Locate the table the column is being 1768 ** extracted from in NameContext.pSrcList. This table may be real 1769 ** database table or a subquery. 1770 */ 1771 Table *pTab = 0; /* Table structure column is extracted from */ 1772 Select *pS = 0; /* Select the column is extracted from */ 1773 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1774 while( pNC && !pTab ){ 1775 SrcList *pTabList = pNC->pSrcList; 1776 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1777 if( j<pTabList->nSrc ){ 1778 pTab = pTabList->a[j].pTab; 1779 pS = pTabList->a[j].pSelect; 1780 }else{ 1781 pNC = pNC->pNext; 1782 } 1783 } 1784 1785 if( pTab==0 ){ 1786 /* At one time, code such as "SELECT new.x" within a trigger would 1787 ** cause this condition to run. Since then, we have restructured how 1788 ** trigger code is generated and so this condition is no longer 1789 ** possible. However, it can still be true for statements like 1790 ** the following: 1791 ** 1792 ** CREATE TABLE t1(col INTEGER); 1793 ** SELECT (SELECT t1.col) FROM FROM t1; 1794 ** 1795 ** when columnType() is called on the expression "t1.col" in the 1796 ** sub-select. In this case, set the column type to NULL, even 1797 ** though it should really be "INTEGER". 1798 ** 1799 ** This is not a problem, as the column type of "t1.col" is never 1800 ** used. When columnType() is called on the expression 1801 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1802 ** branch below. */ 1803 break; 1804 } 1805 1806 assert( pTab && pExpr->y.pTab==pTab ); 1807 if( pS ){ 1808 /* The "table" is actually a sub-select or a view in the FROM clause 1809 ** of the SELECT statement. Return the declaration type and origin 1810 ** data for the result-set column of the sub-select. 1811 */ 1812 if( iCol<pS->pEList->nExpr 1813 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1814 && iCol>=0 1815 #else 1816 && ALWAYS(iCol>=0) 1817 #endif 1818 ){ 1819 /* If iCol is less than zero, then the expression requests the 1820 ** rowid of the sub-select or view. This expression is legal (see 1821 ** test case misc2.2.2) - it always evaluates to NULL. 1822 */ 1823 NameContext sNC; 1824 Expr *p = pS->pEList->a[iCol].pExpr; 1825 sNC.pSrcList = pS->pSrc; 1826 sNC.pNext = pNC; 1827 sNC.pParse = pNC->pParse; 1828 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1829 } 1830 }else{ 1831 /* A real table or a CTE table */ 1832 assert( !pS ); 1833 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1834 if( iCol<0 ) iCol = pTab->iPKey; 1835 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1836 if( iCol<0 ){ 1837 zType = "INTEGER"; 1838 zOrigCol = "rowid"; 1839 }else{ 1840 zOrigCol = pTab->aCol[iCol].zCnName; 1841 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1842 } 1843 zOrigTab = pTab->zName; 1844 if( pNC->pParse && pTab->pSchema ){ 1845 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1846 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1847 } 1848 #else 1849 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1850 if( iCol<0 ){ 1851 zType = "INTEGER"; 1852 }else{ 1853 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1854 } 1855 #endif 1856 } 1857 break; 1858 } 1859 #ifndef SQLITE_OMIT_SUBQUERY 1860 case TK_SELECT: { 1861 /* The expression is a sub-select. Return the declaration type and 1862 ** origin info for the single column in the result set of the SELECT 1863 ** statement. 1864 */ 1865 NameContext sNC; 1866 Select *pS = pExpr->x.pSelect; 1867 Expr *p = pS->pEList->a[0].pExpr; 1868 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1869 sNC.pSrcList = pS->pSrc; 1870 sNC.pNext = pNC; 1871 sNC.pParse = pNC->pParse; 1872 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1873 break; 1874 } 1875 #endif 1876 } 1877 1878 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1879 if( pzOrigDb ){ 1880 assert( pzOrigTab && pzOrigCol ); 1881 *pzOrigDb = zOrigDb; 1882 *pzOrigTab = zOrigTab; 1883 *pzOrigCol = zOrigCol; 1884 } 1885 #endif 1886 return zType; 1887 } 1888 1889 /* 1890 ** Generate code that will tell the VDBE the declaration types of columns 1891 ** in the result set. 1892 */ 1893 static void generateColumnTypes( 1894 Parse *pParse, /* Parser context */ 1895 SrcList *pTabList, /* List of tables */ 1896 ExprList *pEList /* Expressions defining the result set */ 1897 ){ 1898 #ifndef SQLITE_OMIT_DECLTYPE 1899 Vdbe *v = pParse->pVdbe; 1900 int i; 1901 NameContext sNC; 1902 sNC.pSrcList = pTabList; 1903 sNC.pParse = pParse; 1904 sNC.pNext = 0; 1905 for(i=0; i<pEList->nExpr; i++){ 1906 Expr *p = pEList->a[i].pExpr; 1907 const char *zType; 1908 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1909 const char *zOrigDb = 0; 1910 const char *zOrigTab = 0; 1911 const char *zOrigCol = 0; 1912 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1913 1914 /* The vdbe must make its own copy of the column-type and other 1915 ** column specific strings, in case the schema is reset before this 1916 ** virtual machine is deleted. 1917 */ 1918 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1919 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1920 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1921 #else 1922 zType = columnType(&sNC, p, 0, 0, 0); 1923 #endif 1924 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1925 } 1926 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1927 } 1928 1929 1930 /* 1931 ** Compute the column names for a SELECT statement. 1932 ** 1933 ** The only guarantee that SQLite makes about column names is that if the 1934 ** column has an AS clause assigning it a name, that will be the name used. 1935 ** That is the only documented guarantee. However, countless applications 1936 ** developed over the years have made baseless assumptions about column names 1937 ** and will break if those assumptions changes. Hence, use extreme caution 1938 ** when modifying this routine to avoid breaking legacy. 1939 ** 1940 ** See Also: sqlite3ColumnsFromExprList() 1941 ** 1942 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1943 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1944 ** applications should operate this way. Nevertheless, we need to support the 1945 ** other modes for legacy: 1946 ** 1947 ** short=OFF, full=OFF: Column name is the text of the expression has it 1948 ** originally appears in the SELECT statement. In 1949 ** other words, the zSpan of the result expression. 1950 ** 1951 ** short=ON, full=OFF: (This is the default setting). If the result 1952 ** refers directly to a table column, then the 1953 ** result column name is just the table column 1954 ** name: COLUMN. Otherwise use zSpan. 1955 ** 1956 ** full=ON, short=ANY: If the result refers directly to a table column, 1957 ** then the result column name with the table name 1958 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1959 */ 1960 void sqlite3GenerateColumnNames( 1961 Parse *pParse, /* Parser context */ 1962 Select *pSelect /* Generate column names for this SELECT statement */ 1963 ){ 1964 Vdbe *v = pParse->pVdbe; 1965 int i; 1966 Table *pTab; 1967 SrcList *pTabList; 1968 ExprList *pEList; 1969 sqlite3 *db = pParse->db; 1970 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1971 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1972 1973 #ifndef SQLITE_OMIT_EXPLAIN 1974 /* If this is an EXPLAIN, skip this step */ 1975 if( pParse->explain ){ 1976 return; 1977 } 1978 #endif 1979 1980 if( pParse->colNamesSet ) return; 1981 /* Column names are determined by the left-most term of a compound select */ 1982 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1983 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1984 pTabList = pSelect->pSrc; 1985 pEList = pSelect->pEList; 1986 assert( v!=0 ); 1987 assert( pTabList!=0 ); 1988 pParse->colNamesSet = 1; 1989 fullName = (db->flags & SQLITE_FullColNames)!=0; 1990 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1991 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1992 for(i=0; i<pEList->nExpr; i++){ 1993 Expr *p = pEList->a[i].pExpr; 1994 1995 assert( p!=0 ); 1996 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1997 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1998 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1999 /* An AS clause always takes first priority */ 2000 char *zName = pEList->a[i].zEName; 2001 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2002 }else if( srcName && p->op==TK_COLUMN ){ 2003 char *zCol; 2004 int iCol = p->iColumn; 2005 pTab = p->y.pTab; 2006 assert( pTab!=0 ); 2007 if( iCol<0 ) iCol = pTab->iPKey; 2008 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2009 if( iCol<0 ){ 2010 zCol = "rowid"; 2011 }else{ 2012 zCol = pTab->aCol[iCol].zCnName; 2013 } 2014 if( fullName ){ 2015 char *zName = 0; 2016 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2017 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2018 }else{ 2019 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2020 } 2021 }else{ 2022 const char *z = pEList->a[i].zEName; 2023 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2024 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2025 } 2026 } 2027 generateColumnTypes(pParse, pTabList, pEList); 2028 } 2029 2030 /* 2031 ** Given an expression list (which is really the list of expressions 2032 ** that form the result set of a SELECT statement) compute appropriate 2033 ** column names for a table that would hold the expression list. 2034 ** 2035 ** All column names will be unique. 2036 ** 2037 ** Only the column names are computed. Column.zType, Column.zColl, 2038 ** and other fields of Column are zeroed. 2039 ** 2040 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2041 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2042 ** 2043 ** The only guarantee that SQLite makes about column names is that if the 2044 ** column has an AS clause assigning it a name, that will be the name used. 2045 ** That is the only documented guarantee. However, countless applications 2046 ** developed over the years have made baseless assumptions about column names 2047 ** and will break if those assumptions changes. Hence, use extreme caution 2048 ** when modifying this routine to avoid breaking legacy. 2049 ** 2050 ** See Also: sqlite3GenerateColumnNames() 2051 */ 2052 int sqlite3ColumnsFromExprList( 2053 Parse *pParse, /* Parsing context */ 2054 ExprList *pEList, /* Expr list from which to derive column names */ 2055 i16 *pnCol, /* Write the number of columns here */ 2056 Column **paCol /* Write the new column list here */ 2057 ){ 2058 sqlite3 *db = pParse->db; /* Database connection */ 2059 int i, j; /* Loop counters */ 2060 u32 cnt; /* Index added to make the name unique */ 2061 Column *aCol, *pCol; /* For looping over result columns */ 2062 int nCol; /* Number of columns in the result set */ 2063 char *zName; /* Column name */ 2064 int nName; /* Size of name in zName[] */ 2065 Hash ht; /* Hash table of column names */ 2066 Table *pTab; 2067 2068 sqlite3HashInit(&ht); 2069 if( pEList ){ 2070 nCol = pEList->nExpr; 2071 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2072 testcase( aCol==0 ); 2073 if( NEVER(nCol>32767) ) nCol = 32767; 2074 }else{ 2075 nCol = 0; 2076 aCol = 0; 2077 } 2078 assert( nCol==(i16)nCol ); 2079 *pnCol = nCol; 2080 *paCol = aCol; 2081 2082 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2083 /* Get an appropriate name for the column 2084 */ 2085 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2086 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2087 }else{ 2088 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2089 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2090 pColExpr = pColExpr->pRight; 2091 assert( pColExpr!=0 ); 2092 } 2093 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2094 /* For columns use the column name name */ 2095 int iCol = pColExpr->iColumn; 2096 if( iCol<0 ) iCol = pTab->iPKey; 2097 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2098 }else if( pColExpr->op==TK_ID ){ 2099 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2100 zName = pColExpr->u.zToken; 2101 }else{ 2102 /* Use the original text of the column expression as its name */ 2103 zName = pEList->a[i].zEName; 2104 } 2105 } 2106 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2107 zName = sqlite3DbStrDup(db, zName); 2108 }else{ 2109 zName = sqlite3MPrintf(db,"column%d",i+1); 2110 } 2111 2112 /* Make sure the column name is unique. If the name is not unique, 2113 ** append an integer to the name so that it becomes unique. 2114 */ 2115 cnt = 0; 2116 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2117 nName = sqlite3Strlen30(zName); 2118 if( nName>0 ){ 2119 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2120 if( zName[j]==':' ) nName = j; 2121 } 2122 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2123 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2124 } 2125 pCol->zCnName = zName; 2126 pCol->hName = sqlite3StrIHash(zName); 2127 sqlite3ColumnPropertiesFromName(0, pCol); 2128 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2129 sqlite3OomFault(db); 2130 } 2131 } 2132 sqlite3HashClear(&ht); 2133 if( db->mallocFailed ){ 2134 for(j=0; j<i; j++){ 2135 sqlite3DbFree(db, aCol[j].zCnName); 2136 } 2137 sqlite3DbFree(db, aCol); 2138 *paCol = 0; 2139 *pnCol = 0; 2140 return SQLITE_NOMEM_BKPT; 2141 } 2142 return SQLITE_OK; 2143 } 2144 2145 /* 2146 ** Add type and collation information to a column list based on 2147 ** a SELECT statement. 2148 ** 2149 ** The column list presumably came from selectColumnNamesFromExprList(). 2150 ** The column list has only names, not types or collations. This 2151 ** routine goes through and adds the types and collations. 2152 ** 2153 ** This routine requires that all identifiers in the SELECT 2154 ** statement be resolved. 2155 */ 2156 void sqlite3SelectAddColumnTypeAndCollation( 2157 Parse *pParse, /* Parsing contexts */ 2158 Table *pTab, /* Add column type information to this table */ 2159 Select *pSelect, /* SELECT used to determine types and collations */ 2160 char aff /* Default affinity for columns */ 2161 ){ 2162 sqlite3 *db = pParse->db; 2163 NameContext sNC; 2164 Column *pCol; 2165 CollSeq *pColl; 2166 int i; 2167 Expr *p; 2168 struct ExprList_item *a; 2169 2170 assert( pSelect!=0 ); 2171 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2172 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2173 if( db->mallocFailed ) return; 2174 memset(&sNC, 0, sizeof(sNC)); 2175 sNC.pSrcList = pSelect->pSrc; 2176 a = pSelect->pEList->a; 2177 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2178 const char *zType; 2179 int n, m; 2180 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2181 p = a[i].pExpr; 2182 zType = columnType(&sNC, p, 0, 0, 0); 2183 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2184 pCol->affinity = sqlite3ExprAffinity(p); 2185 if( zType ){ 2186 m = sqlite3Strlen30(zType); 2187 n = sqlite3Strlen30(pCol->zCnName); 2188 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2189 if( pCol->zCnName ){ 2190 memcpy(&pCol->zCnName[n+1], zType, m+1); 2191 pCol->colFlags |= COLFLAG_HASTYPE; 2192 } 2193 } 2194 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2195 pColl = sqlite3ExprCollSeq(pParse, p); 2196 if( pColl && pCol->zCnColl==0 ){ 2197 pCol->zCnColl = sqlite3DbStrDup(db, pColl->zName); 2198 } 2199 } 2200 pTab->szTabRow = 1; /* Any non-zero value works */ 2201 } 2202 2203 /* 2204 ** Given a SELECT statement, generate a Table structure that describes 2205 ** the result set of that SELECT. 2206 */ 2207 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2208 Table *pTab; 2209 sqlite3 *db = pParse->db; 2210 u64 savedFlags; 2211 2212 savedFlags = db->flags; 2213 db->flags &= ~(u64)SQLITE_FullColNames; 2214 db->flags |= SQLITE_ShortColNames; 2215 sqlite3SelectPrep(pParse, pSelect, 0); 2216 db->flags = savedFlags; 2217 if( pParse->nErr ) return 0; 2218 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2219 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2220 if( pTab==0 ){ 2221 return 0; 2222 } 2223 pTab->nTabRef = 1; 2224 pTab->zName = 0; 2225 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2226 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2227 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2228 pTab->iPKey = -1; 2229 if( db->mallocFailed ){ 2230 sqlite3DeleteTable(db, pTab); 2231 return 0; 2232 } 2233 return pTab; 2234 } 2235 2236 /* 2237 ** Get a VDBE for the given parser context. Create a new one if necessary. 2238 ** If an error occurs, return NULL and leave a message in pParse. 2239 */ 2240 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2241 if( pParse->pVdbe ){ 2242 return pParse->pVdbe; 2243 } 2244 if( pParse->pToplevel==0 2245 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2246 ){ 2247 pParse->okConstFactor = 1; 2248 } 2249 return sqlite3VdbeCreate(pParse); 2250 } 2251 2252 2253 /* 2254 ** Compute the iLimit and iOffset fields of the SELECT based on the 2255 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2256 ** that appear in the original SQL statement after the LIMIT and OFFSET 2257 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2258 ** are the integer memory register numbers for counters used to compute 2259 ** the limit and offset. If there is no limit and/or offset, then 2260 ** iLimit and iOffset are negative. 2261 ** 2262 ** This routine changes the values of iLimit and iOffset only if 2263 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2264 ** and iOffset should have been preset to appropriate default values (zero) 2265 ** prior to calling this routine. 2266 ** 2267 ** The iOffset register (if it exists) is initialized to the value 2268 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2269 ** iOffset+1 is initialized to LIMIT+OFFSET. 2270 ** 2271 ** Only if pLimit->pLeft!=0 do the limit registers get 2272 ** redefined. The UNION ALL operator uses this property to force 2273 ** the reuse of the same limit and offset registers across multiple 2274 ** SELECT statements. 2275 */ 2276 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2277 Vdbe *v = 0; 2278 int iLimit = 0; 2279 int iOffset; 2280 int n; 2281 Expr *pLimit = p->pLimit; 2282 2283 if( p->iLimit ) return; 2284 2285 /* 2286 ** "LIMIT -1" always shows all rows. There is some 2287 ** controversy about what the correct behavior should be. 2288 ** The current implementation interprets "LIMIT 0" to mean 2289 ** no rows. 2290 */ 2291 if( pLimit ){ 2292 assert( pLimit->op==TK_LIMIT ); 2293 assert( pLimit->pLeft!=0 ); 2294 p->iLimit = iLimit = ++pParse->nMem; 2295 v = sqlite3GetVdbe(pParse); 2296 assert( v!=0 ); 2297 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2298 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2299 VdbeComment((v, "LIMIT counter")); 2300 if( n==0 ){ 2301 sqlite3VdbeGoto(v, iBreak); 2302 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2303 p->nSelectRow = sqlite3LogEst((u64)n); 2304 p->selFlags |= SF_FixedLimit; 2305 } 2306 }else{ 2307 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2308 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2309 VdbeComment((v, "LIMIT counter")); 2310 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2311 } 2312 if( pLimit->pRight ){ 2313 p->iOffset = iOffset = ++pParse->nMem; 2314 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2315 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2316 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2317 VdbeComment((v, "OFFSET counter")); 2318 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2319 VdbeComment((v, "LIMIT+OFFSET")); 2320 } 2321 } 2322 } 2323 2324 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2325 /* 2326 ** Return the appropriate collating sequence for the iCol-th column of 2327 ** the result set for the compound-select statement "p". Return NULL if 2328 ** the column has no default collating sequence. 2329 ** 2330 ** The collating sequence for the compound select is taken from the 2331 ** left-most term of the select that has a collating sequence. 2332 */ 2333 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2334 CollSeq *pRet; 2335 if( p->pPrior ){ 2336 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2337 }else{ 2338 pRet = 0; 2339 } 2340 assert( iCol>=0 ); 2341 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2342 ** have been thrown during name resolution and we would not have gotten 2343 ** this far */ 2344 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2345 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2346 } 2347 return pRet; 2348 } 2349 2350 /* 2351 ** The select statement passed as the second parameter is a compound SELECT 2352 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2353 ** structure suitable for implementing the ORDER BY. 2354 ** 2355 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2356 ** function is responsible for ensuring that this structure is eventually 2357 ** freed. 2358 */ 2359 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2360 ExprList *pOrderBy = p->pOrderBy; 2361 int nOrderBy = p->pOrderBy->nExpr; 2362 sqlite3 *db = pParse->db; 2363 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2364 if( pRet ){ 2365 int i; 2366 for(i=0; i<nOrderBy; i++){ 2367 struct ExprList_item *pItem = &pOrderBy->a[i]; 2368 Expr *pTerm = pItem->pExpr; 2369 CollSeq *pColl; 2370 2371 if( pTerm->flags & EP_Collate ){ 2372 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2373 }else{ 2374 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2375 if( pColl==0 ) pColl = db->pDfltColl; 2376 pOrderBy->a[i].pExpr = 2377 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2378 } 2379 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2380 pRet->aColl[i] = pColl; 2381 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2382 } 2383 } 2384 2385 return pRet; 2386 } 2387 2388 #ifndef SQLITE_OMIT_CTE 2389 /* 2390 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2391 ** query of the form: 2392 ** 2393 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2394 ** \___________/ \_______________/ 2395 ** p->pPrior p 2396 ** 2397 ** 2398 ** There is exactly one reference to the recursive-table in the FROM clause 2399 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2400 ** 2401 ** The setup-query runs once to generate an initial set of rows that go 2402 ** into a Queue table. Rows are extracted from the Queue table one by 2403 ** one. Each row extracted from Queue is output to pDest. Then the single 2404 ** extracted row (now in the iCurrent table) becomes the content of the 2405 ** recursive-table for a recursive-query run. The output of the recursive-query 2406 ** is added back into the Queue table. Then another row is extracted from Queue 2407 ** and the iteration continues until the Queue table is empty. 2408 ** 2409 ** If the compound query operator is UNION then no duplicate rows are ever 2410 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2411 ** that have ever been inserted into Queue and causes duplicates to be 2412 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2413 ** 2414 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2415 ** ORDER BY order and the first entry is extracted for each cycle. Without 2416 ** an ORDER BY, the Queue table is just a FIFO. 2417 ** 2418 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2419 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2420 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2421 ** with a positive value, then the first OFFSET outputs are discarded rather 2422 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2423 ** rows have been skipped. 2424 */ 2425 static void generateWithRecursiveQuery( 2426 Parse *pParse, /* Parsing context */ 2427 Select *p, /* The recursive SELECT to be coded */ 2428 SelectDest *pDest /* What to do with query results */ 2429 ){ 2430 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2431 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2432 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2433 Select *pSetup = p->pPrior; /* The setup query */ 2434 Select *pFirstRec; /* Left-most recursive term */ 2435 int addrTop; /* Top of the loop */ 2436 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2437 int iCurrent = 0; /* The Current table */ 2438 int regCurrent; /* Register holding Current table */ 2439 int iQueue; /* The Queue table */ 2440 int iDistinct = 0; /* To ensure unique results if UNION */ 2441 int eDest = SRT_Fifo; /* How to write to Queue */ 2442 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2443 int i; /* Loop counter */ 2444 int rc; /* Result code */ 2445 ExprList *pOrderBy; /* The ORDER BY clause */ 2446 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2447 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2448 2449 #ifndef SQLITE_OMIT_WINDOWFUNC 2450 if( p->pWin ){ 2451 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2452 return; 2453 } 2454 #endif 2455 2456 /* Obtain authorization to do a recursive query */ 2457 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2458 2459 /* Process the LIMIT and OFFSET clauses, if they exist */ 2460 addrBreak = sqlite3VdbeMakeLabel(pParse); 2461 p->nSelectRow = 320; /* 4 billion rows */ 2462 computeLimitRegisters(pParse, p, addrBreak); 2463 pLimit = p->pLimit; 2464 regLimit = p->iLimit; 2465 regOffset = p->iOffset; 2466 p->pLimit = 0; 2467 p->iLimit = p->iOffset = 0; 2468 pOrderBy = p->pOrderBy; 2469 2470 /* Locate the cursor number of the Current table */ 2471 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2472 if( pSrc->a[i].fg.isRecursive ){ 2473 iCurrent = pSrc->a[i].iCursor; 2474 break; 2475 } 2476 } 2477 2478 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2479 ** the Distinct table must be exactly one greater than Queue in order 2480 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2481 iQueue = pParse->nTab++; 2482 if( p->op==TK_UNION ){ 2483 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2484 iDistinct = pParse->nTab++; 2485 }else{ 2486 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2487 } 2488 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2489 2490 /* Allocate cursors for Current, Queue, and Distinct. */ 2491 regCurrent = ++pParse->nMem; 2492 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2493 if( pOrderBy ){ 2494 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2495 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2496 (char*)pKeyInfo, P4_KEYINFO); 2497 destQueue.pOrderBy = pOrderBy; 2498 }else{ 2499 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2500 } 2501 VdbeComment((v, "Queue table")); 2502 if( iDistinct ){ 2503 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2504 p->selFlags |= SF_UsesEphemeral; 2505 } 2506 2507 /* Detach the ORDER BY clause from the compound SELECT */ 2508 p->pOrderBy = 0; 2509 2510 /* Figure out how many elements of the compound SELECT are part of the 2511 ** recursive query. Make sure no recursive elements use aggregate 2512 ** functions. Mark the recursive elements as UNION ALL even if they 2513 ** are really UNION because the distinctness will be enforced by the 2514 ** iDistinct table. pFirstRec is left pointing to the left-most 2515 ** recursive term of the CTE. 2516 */ 2517 pFirstRec = p; 2518 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2519 if( pFirstRec->selFlags & SF_Aggregate ){ 2520 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2521 goto end_of_recursive_query; 2522 } 2523 pFirstRec->op = TK_ALL; 2524 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2525 } 2526 2527 /* Store the results of the setup-query in Queue. */ 2528 pSetup = pFirstRec->pPrior; 2529 pSetup->pNext = 0; 2530 ExplainQueryPlan((pParse, 1, "SETUP")); 2531 rc = sqlite3Select(pParse, pSetup, &destQueue); 2532 pSetup->pNext = p; 2533 if( rc ) goto end_of_recursive_query; 2534 2535 /* Find the next row in the Queue and output that row */ 2536 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2537 2538 /* Transfer the next row in Queue over to Current */ 2539 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2540 if( pOrderBy ){ 2541 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2542 }else{ 2543 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2544 } 2545 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2546 2547 /* Output the single row in Current */ 2548 addrCont = sqlite3VdbeMakeLabel(pParse); 2549 codeOffset(v, regOffset, addrCont); 2550 selectInnerLoop(pParse, p, iCurrent, 2551 0, 0, pDest, addrCont, addrBreak); 2552 if( regLimit ){ 2553 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2554 VdbeCoverage(v); 2555 } 2556 sqlite3VdbeResolveLabel(v, addrCont); 2557 2558 /* Execute the recursive SELECT taking the single row in Current as 2559 ** the value for the recursive-table. Store the results in the Queue. 2560 */ 2561 pFirstRec->pPrior = 0; 2562 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2563 sqlite3Select(pParse, p, &destQueue); 2564 assert( pFirstRec->pPrior==0 ); 2565 pFirstRec->pPrior = pSetup; 2566 2567 /* Keep running the loop until the Queue is empty */ 2568 sqlite3VdbeGoto(v, addrTop); 2569 sqlite3VdbeResolveLabel(v, addrBreak); 2570 2571 end_of_recursive_query: 2572 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2573 p->pOrderBy = pOrderBy; 2574 p->pLimit = pLimit; 2575 return; 2576 } 2577 #endif /* SQLITE_OMIT_CTE */ 2578 2579 /* Forward references */ 2580 static int multiSelectOrderBy( 2581 Parse *pParse, /* Parsing context */ 2582 Select *p, /* The right-most of SELECTs to be coded */ 2583 SelectDest *pDest /* What to do with query results */ 2584 ); 2585 2586 /* 2587 ** Handle the special case of a compound-select that originates from a 2588 ** VALUES clause. By handling this as a special case, we avoid deep 2589 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2590 ** on a VALUES clause. 2591 ** 2592 ** Because the Select object originates from a VALUES clause: 2593 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2594 ** (2) All terms are UNION ALL 2595 ** (3) There is no ORDER BY clause 2596 ** 2597 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2598 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2599 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2600 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2601 */ 2602 static int multiSelectValues( 2603 Parse *pParse, /* Parsing context */ 2604 Select *p, /* The right-most of SELECTs to be coded */ 2605 SelectDest *pDest /* What to do with query results */ 2606 ){ 2607 int nRow = 1; 2608 int rc = 0; 2609 int bShowAll = p->pLimit==0; 2610 assert( p->selFlags & SF_MultiValue ); 2611 do{ 2612 assert( p->selFlags & SF_Values ); 2613 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2614 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2615 #ifndef SQLITE_OMIT_WINDOWFUNC 2616 if( p->pWin ) return -1; 2617 #endif 2618 if( p->pPrior==0 ) break; 2619 assert( p->pPrior->pNext==p ); 2620 p = p->pPrior; 2621 nRow += bShowAll; 2622 }while(1); 2623 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2624 nRow==1 ? "" : "S")); 2625 while( p ){ 2626 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2627 if( !bShowAll ) break; 2628 p->nSelectRow = nRow; 2629 p = p->pNext; 2630 } 2631 return rc; 2632 } 2633 2634 /* 2635 ** Return true if the SELECT statement which is known to be the recursive 2636 ** part of a recursive CTE still has its anchor terms attached. If the 2637 ** anchor terms have already been removed, then return false. 2638 */ 2639 static int hasAnchor(Select *p){ 2640 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2641 return p!=0; 2642 } 2643 2644 /* 2645 ** This routine is called to process a compound query form from 2646 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2647 ** INTERSECT 2648 ** 2649 ** "p" points to the right-most of the two queries. the query on the 2650 ** left is p->pPrior. The left query could also be a compound query 2651 ** in which case this routine will be called recursively. 2652 ** 2653 ** The results of the total query are to be written into a destination 2654 ** of type eDest with parameter iParm. 2655 ** 2656 ** Example 1: Consider a three-way compound SQL statement. 2657 ** 2658 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2659 ** 2660 ** This statement is parsed up as follows: 2661 ** 2662 ** SELECT c FROM t3 2663 ** | 2664 ** `-----> SELECT b FROM t2 2665 ** | 2666 ** `------> SELECT a FROM t1 2667 ** 2668 ** The arrows in the diagram above represent the Select.pPrior pointer. 2669 ** So if this routine is called with p equal to the t3 query, then 2670 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2671 ** 2672 ** Notice that because of the way SQLite parses compound SELECTs, the 2673 ** individual selects always group from left to right. 2674 */ 2675 static int multiSelect( 2676 Parse *pParse, /* Parsing context */ 2677 Select *p, /* The right-most of SELECTs to be coded */ 2678 SelectDest *pDest /* What to do with query results */ 2679 ){ 2680 int rc = SQLITE_OK; /* Success code from a subroutine */ 2681 Select *pPrior; /* Another SELECT immediately to our left */ 2682 Vdbe *v; /* Generate code to this VDBE */ 2683 SelectDest dest; /* Alternative data destination */ 2684 Select *pDelete = 0; /* Chain of simple selects to delete */ 2685 sqlite3 *db; /* Database connection */ 2686 2687 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2688 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2689 */ 2690 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2691 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2692 assert( p->selFlags & SF_Compound ); 2693 db = pParse->db; 2694 pPrior = p->pPrior; 2695 dest = *pDest; 2696 assert( pPrior->pOrderBy==0 ); 2697 assert( pPrior->pLimit==0 ); 2698 2699 v = sqlite3GetVdbe(pParse); 2700 assert( v!=0 ); /* The VDBE already created by calling function */ 2701 2702 /* Create the destination temporary table if necessary 2703 */ 2704 if( dest.eDest==SRT_EphemTab ){ 2705 assert( p->pEList ); 2706 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2707 dest.eDest = SRT_Table; 2708 } 2709 2710 /* Special handling for a compound-select that originates as a VALUES clause. 2711 */ 2712 if( p->selFlags & SF_MultiValue ){ 2713 rc = multiSelectValues(pParse, p, &dest); 2714 if( rc>=0 ) goto multi_select_end; 2715 rc = SQLITE_OK; 2716 } 2717 2718 /* Make sure all SELECTs in the statement have the same number of elements 2719 ** in their result sets. 2720 */ 2721 assert( p->pEList && pPrior->pEList ); 2722 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2723 2724 #ifndef SQLITE_OMIT_CTE 2725 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2726 generateWithRecursiveQuery(pParse, p, &dest); 2727 }else 2728 #endif 2729 2730 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2731 */ 2732 if( p->pOrderBy ){ 2733 return multiSelectOrderBy(pParse, p, pDest); 2734 }else{ 2735 2736 #ifndef SQLITE_OMIT_EXPLAIN 2737 if( pPrior->pPrior==0 ){ 2738 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2739 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2740 } 2741 #endif 2742 2743 /* Generate code for the left and right SELECT statements. 2744 */ 2745 switch( p->op ){ 2746 case TK_ALL: { 2747 int addr = 0; 2748 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2749 assert( !pPrior->pLimit ); 2750 pPrior->iLimit = p->iLimit; 2751 pPrior->iOffset = p->iOffset; 2752 pPrior->pLimit = p->pLimit; 2753 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2754 rc = sqlite3Select(pParse, pPrior, &dest); 2755 pPrior->pLimit = 0; 2756 if( rc ){ 2757 goto multi_select_end; 2758 } 2759 p->pPrior = 0; 2760 p->iLimit = pPrior->iLimit; 2761 p->iOffset = pPrior->iOffset; 2762 if( p->iLimit ){ 2763 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2764 VdbeComment((v, "Jump ahead if LIMIT reached")); 2765 if( p->iOffset ){ 2766 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2767 p->iLimit, p->iOffset+1, p->iOffset); 2768 } 2769 } 2770 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2771 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2772 rc = sqlite3Select(pParse, p, &dest); 2773 testcase( rc!=SQLITE_OK ); 2774 pDelete = p->pPrior; 2775 p->pPrior = pPrior; 2776 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2777 if( p->pLimit 2778 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2779 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2780 ){ 2781 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2782 } 2783 if( addr ){ 2784 sqlite3VdbeJumpHere(v, addr); 2785 } 2786 break; 2787 } 2788 case TK_EXCEPT: 2789 case TK_UNION: { 2790 int unionTab; /* Cursor number of the temp table holding result */ 2791 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2792 int priorOp; /* The SRT_ operation to apply to prior selects */ 2793 Expr *pLimit; /* Saved values of p->nLimit */ 2794 int addr; 2795 SelectDest uniondest; 2796 2797 testcase( p->op==TK_EXCEPT ); 2798 testcase( p->op==TK_UNION ); 2799 priorOp = SRT_Union; 2800 if( dest.eDest==priorOp ){ 2801 /* We can reuse a temporary table generated by a SELECT to our 2802 ** right. 2803 */ 2804 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2805 unionTab = dest.iSDParm; 2806 }else{ 2807 /* We will need to create our own temporary table to hold the 2808 ** intermediate results. 2809 */ 2810 unionTab = pParse->nTab++; 2811 assert( p->pOrderBy==0 ); 2812 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2813 assert( p->addrOpenEphm[0] == -1 ); 2814 p->addrOpenEphm[0] = addr; 2815 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2816 assert( p->pEList ); 2817 } 2818 2819 2820 /* Code the SELECT statements to our left 2821 */ 2822 assert( !pPrior->pOrderBy ); 2823 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2824 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2825 rc = sqlite3Select(pParse, pPrior, &uniondest); 2826 if( rc ){ 2827 goto multi_select_end; 2828 } 2829 2830 /* Code the current SELECT statement 2831 */ 2832 if( p->op==TK_EXCEPT ){ 2833 op = SRT_Except; 2834 }else{ 2835 assert( p->op==TK_UNION ); 2836 op = SRT_Union; 2837 } 2838 p->pPrior = 0; 2839 pLimit = p->pLimit; 2840 p->pLimit = 0; 2841 uniondest.eDest = op; 2842 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2843 sqlite3SelectOpName(p->op))); 2844 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2845 rc = sqlite3Select(pParse, p, &uniondest); 2846 testcase( rc!=SQLITE_OK ); 2847 assert( p->pOrderBy==0 ); 2848 pDelete = p->pPrior; 2849 p->pPrior = pPrior; 2850 p->pOrderBy = 0; 2851 if( p->op==TK_UNION ){ 2852 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2853 } 2854 sqlite3ExprDelete(db, p->pLimit); 2855 p->pLimit = pLimit; 2856 p->iLimit = 0; 2857 p->iOffset = 0; 2858 2859 /* Convert the data in the temporary table into whatever form 2860 ** it is that we currently need. 2861 */ 2862 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2863 assert( p->pEList || db->mallocFailed ); 2864 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2865 int iCont, iBreak, iStart; 2866 iBreak = sqlite3VdbeMakeLabel(pParse); 2867 iCont = sqlite3VdbeMakeLabel(pParse); 2868 computeLimitRegisters(pParse, p, iBreak); 2869 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2870 iStart = sqlite3VdbeCurrentAddr(v); 2871 selectInnerLoop(pParse, p, unionTab, 2872 0, 0, &dest, iCont, iBreak); 2873 sqlite3VdbeResolveLabel(v, iCont); 2874 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2875 sqlite3VdbeResolveLabel(v, iBreak); 2876 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2877 } 2878 break; 2879 } 2880 default: assert( p->op==TK_INTERSECT ); { 2881 int tab1, tab2; 2882 int iCont, iBreak, iStart; 2883 Expr *pLimit; 2884 int addr; 2885 SelectDest intersectdest; 2886 int r1; 2887 2888 /* INTERSECT is different from the others since it requires 2889 ** two temporary tables. Hence it has its own case. Begin 2890 ** by allocating the tables we will need. 2891 */ 2892 tab1 = pParse->nTab++; 2893 tab2 = pParse->nTab++; 2894 assert( p->pOrderBy==0 ); 2895 2896 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2897 assert( p->addrOpenEphm[0] == -1 ); 2898 p->addrOpenEphm[0] = addr; 2899 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2900 assert( p->pEList ); 2901 2902 /* Code the SELECTs to our left into temporary table "tab1". 2903 */ 2904 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2905 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2906 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2907 if( rc ){ 2908 goto multi_select_end; 2909 } 2910 2911 /* Code the current SELECT into temporary table "tab2" 2912 */ 2913 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2914 assert( p->addrOpenEphm[1] == -1 ); 2915 p->addrOpenEphm[1] = addr; 2916 p->pPrior = 0; 2917 pLimit = p->pLimit; 2918 p->pLimit = 0; 2919 intersectdest.iSDParm = tab2; 2920 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2921 sqlite3SelectOpName(p->op))); 2922 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2923 rc = sqlite3Select(pParse, p, &intersectdest); 2924 testcase( rc!=SQLITE_OK ); 2925 pDelete = p->pPrior; 2926 p->pPrior = pPrior; 2927 if( p->nSelectRow>pPrior->nSelectRow ){ 2928 p->nSelectRow = pPrior->nSelectRow; 2929 } 2930 sqlite3ExprDelete(db, p->pLimit); 2931 p->pLimit = pLimit; 2932 2933 /* Generate code to take the intersection of the two temporary 2934 ** tables. 2935 */ 2936 if( rc ) break; 2937 assert( p->pEList ); 2938 iBreak = sqlite3VdbeMakeLabel(pParse); 2939 iCont = sqlite3VdbeMakeLabel(pParse); 2940 computeLimitRegisters(pParse, p, iBreak); 2941 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2942 r1 = sqlite3GetTempReg(pParse); 2943 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2944 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2945 VdbeCoverage(v); 2946 sqlite3ReleaseTempReg(pParse, r1); 2947 selectInnerLoop(pParse, p, tab1, 2948 0, 0, &dest, iCont, iBreak); 2949 sqlite3VdbeResolveLabel(v, iCont); 2950 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2951 sqlite3VdbeResolveLabel(v, iBreak); 2952 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2953 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2954 break; 2955 } 2956 } 2957 2958 #ifndef SQLITE_OMIT_EXPLAIN 2959 if( p->pNext==0 ){ 2960 ExplainQueryPlanPop(pParse); 2961 } 2962 #endif 2963 } 2964 if( pParse->nErr ) goto multi_select_end; 2965 2966 /* Compute collating sequences used by 2967 ** temporary tables needed to implement the compound select. 2968 ** Attach the KeyInfo structure to all temporary tables. 2969 ** 2970 ** This section is run by the right-most SELECT statement only. 2971 ** SELECT statements to the left always skip this part. The right-most 2972 ** SELECT might also skip this part if it has no ORDER BY clause and 2973 ** no temp tables are required. 2974 */ 2975 if( p->selFlags & SF_UsesEphemeral ){ 2976 int i; /* Loop counter */ 2977 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2978 Select *pLoop; /* For looping through SELECT statements */ 2979 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2980 int nCol; /* Number of columns in result set */ 2981 2982 assert( p->pNext==0 ); 2983 nCol = p->pEList->nExpr; 2984 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2985 if( !pKeyInfo ){ 2986 rc = SQLITE_NOMEM_BKPT; 2987 goto multi_select_end; 2988 } 2989 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2990 *apColl = multiSelectCollSeq(pParse, p, i); 2991 if( 0==*apColl ){ 2992 *apColl = db->pDfltColl; 2993 } 2994 } 2995 2996 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2997 for(i=0; i<2; i++){ 2998 int addr = pLoop->addrOpenEphm[i]; 2999 if( addr<0 ){ 3000 /* If [0] is unused then [1] is also unused. So we can 3001 ** always safely abort as soon as the first unused slot is found */ 3002 assert( pLoop->addrOpenEphm[1]<0 ); 3003 break; 3004 } 3005 sqlite3VdbeChangeP2(v, addr, nCol); 3006 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3007 P4_KEYINFO); 3008 pLoop->addrOpenEphm[i] = -1; 3009 } 3010 } 3011 sqlite3KeyInfoUnref(pKeyInfo); 3012 } 3013 3014 multi_select_end: 3015 pDest->iSdst = dest.iSdst; 3016 pDest->nSdst = dest.nSdst; 3017 sqlite3SelectDelete(db, pDelete); 3018 return rc; 3019 } 3020 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3021 3022 /* 3023 ** Error message for when two or more terms of a compound select have different 3024 ** size result sets. 3025 */ 3026 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3027 if( p->selFlags & SF_Values ){ 3028 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3029 }else{ 3030 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3031 " do not have the same number of result columns", 3032 sqlite3SelectOpName(p->op)); 3033 } 3034 } 3035 3036 /* 3037 ** Code an output subroutine for a coroutine implementation of a 3038 ** SELECT statment. 3039 ** 3040 ** The data to be output is contained in pIn->iSdst. There are 3041 ** pIn->nSdst columns to be output. pDest is where the output should 3042 ** be sent. 3043 ** 3044 ** regReturn is the number of the register holding the subroutine 3045 ** return address. 3046 ** 3047 ** If regPrev>0 then it is the first register in a vector that 3048 ** records the previous output. mem[regPrev] is a flag that is false 3049 ** if there has been no previous output. If regPrev>0 then code is 3050 ** generated to suppress duplicates. pKeyInfo is used for comparing 3051 ** keys. 3052 ** 3053 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3054 ** iBreak. 3055 */ 3056 static int generateOutputSubroutine( 3057 Parse *pParse, /* Parsing context */ 3058 Select *p, /* The SELECT statement */ 3059 SelectDest *pIn, /* Coroutine supplying data */ 3060 SelectDest *pDest, /* Where to send the data */ 3061 int regReturn, /* The return address register */ 3062 int regPrev, /* Previous result register. No uniqueness if 0 */ 3063 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3064 int iBreak /* Jump here if we hit the LIMIT */ 3065 ){ 3066 Vdbe *v = pParse->pVdbe; 3067 int iContinue; 3068 int addr; 3069 3070 addr = sqlite3VdbeCurrentAddr(v); 3071 iContinue = sqlite3VdbeMakeLabel(pParse); 3072 3073 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3074 */ 3075 if( regPrev ){ 3076 int addr1, addr2; 3077 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3078 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3079 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3080 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3081 sqlite3VdbeJumpHere(v, addr1); 3082 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3083 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3084 } 3085 if( pParse->db->mallocFailed ) return 0; 3086 3087 /* Suppress the first OFFSET entries if there is an OFFSET clause 3088 */ 3089 codeOffset(v, p->iOffset, iContinue); 3090 3091 assert( pDest->eDest!=SRT_Exists ); 3092 assert( pDest->eDest!=SRT_Table ); 3093 switch( pDest->eDest ){ 3094 /* Store the result as data using a unique key. 3095 */ 3096 case SRT_EphemTab: { 3097 int r1 = sqlite3GetTempReg(pParse); 3098 int r2 = sqlite3GetTempReg(pParse); 3099 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3100 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3101 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3102 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3103 sqlite3ReleaseTempReg(pParse, r2); 3104 sqlite3ReleaseTempReg(pParse, r1); 3105 break; 3106 } 3107 3108 #ifndef SQLITE_OMIT_SUBQUERY 3109 /* If we are creating a set for an "expr IN (SELECT ...)". 3110 */ 3111 case SRT_Set: { 3112 int r1; 3113 testcase( pIn->nSdst>1 ); 3114 r1 = sqlite3GetTempReg(pParse); 3115 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3116 r1, pDest->zAffSdst, pIn->nSdst); 3117 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3118 pIn->iSdst, pIn->nSdst); 3119 sqlite3ReleaseTempReg(pParse, r1); 3120 break; 3121 } 3122 3123 /* If this is a scalar select that is part of an expression, then 3124 ** store the results in the appropriate memory cell and break out 3125 ** of the scan loop. Note that the select might return multiple columns 3126 ** if it is the RHS of a row-value IN operator. 3127 */ 3128 case SRT_Mem: { 3129 testcase( pIn->nSdst>1 ); 3130 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3131 /* The LIMIT clause will jump out of the loop for us */ 3132 break; 3133 } 3134 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3135 3136 /* The results are stored in a sequence of registers 3137 ** starting at pDest->iSdst. Then the co-routine yields. 3138 */ 3139 case SRT_Coroutine: { 3140 if( pDest->iSdst==0 ){ 3141 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3142 pDest->nSdst = pIn->nSdst; 3143 } 3144 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3145 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3146 break; 3147 } 3148 3149 /* If none of the above, then the result destination must be 3150 ** SRT_Output. This routine is never called with any other 3151 ** destination other than the ones handled above or SRT_Output. 3152 ** 3153 ** For SRT_Output, results are stored in a sequence of registers. 3154 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3155 ** return the next row of result. 3156 */ 3157 default: { 3158 assert( pDest->eDest==SRT_Output ); 3159 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3160 break; 3161 } 3162 } 3163 3164 /* Jump to the end of the loop if the LIMIT is reached. 3165 */ 3166 if( p->iLimit ){ 3167 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3168 } 3169 3170 /* Generate the subroutine return 3171 */ 3172 sqlite3VdbeResolveLabel(v, iContinue); 3173 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3174 3175 return addr; 3176 } 3177 3178 /* 3179 ** Alternative compound select code generator for cases when there 3180 ** is an ORDER BY clause. 3181 ** 3182 ** We assume a query of the following form: 3183 ** 3184 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3185 ** 3186 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3187 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3188 ** co-routines. Then run the co-routines in parallel and merge the results 3189 ** into the output. In addition to the two coroutines (called selectA and 3190 ** selectB) there are 7 subroutines: 3191 ** 3192 ** outA: Move the output of the selectA coroutine into the output 3193 ** of the compound query. 3194 ** 3195 ** outB: Move the output of the selectB coroutine into the output 3196 ** of the compound query. (Only generated for UNION and 3197 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3198 ** appears only in B.) 3199 ** 3200 ** AltB: Called when there is data from both coroutines and A<B. 3201 ** 3202 ** AeqB: Called when there is data from both coroutines and A==B. 3203 ** 3204 ** AgtB: Called when there is data from both coroutines and A>B. 3205 ** 3206 ** EofA: Called when data is exhausted from selectA. 3207 ** 3208 ** EofB: Called when data is exhausted from selectB. 3209 ** 3210 ** The implementation of the latter five subroutines depend on which 3211 ** <operator> is used: 3212 ** 3213 ** 3214 ** UNION ALL UNION EXCEPT INTERSECT 3215 ** ------------- ----------------- -------------- ----------------- 3216 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3217 ** 3218 ** AeqB: outA, nextA nextA nextA outA, nextA 3219 ** 3220 ** AgtB: outB, nextB outB, nextB nextB nextB 3221 ** 3222 ** EofA: outB, nextB outB, nextB halt halt 3223 ** 3224 ** EofB: outA, nextA outA, nextA outA, nextA halt 3225 ** 3226 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3227 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3228 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3229 ** following nextX causes a jump to the end of the select processing. 3230 ** 3231 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3232 ** within the output subroutine. The regPrev register set holds the previously 3233 ** output value. A comparison is made against this value and the output 3234 ** is skipped if the next results would be the same as the previous. 3235 ** 3236 ** The implementation plan is to implement the two coroutines and seven 3237 ** subroutines first, then put the control logic at the bottom. Like this: 3238 ** 3239 ** goto Init 3240 ** coA: coroutine for left query (A) 3241 ** coB: coroutine for right query (B) 3242 ** outA: output one row of A 3243 ** outB: output one row of B (UNION and UNION ALL only) 3244 ** EofA: ... 3245 ** EofB: ... 3246 ** AltB: ... 3247 ** AeqB: ... 3248 ** AgtB: ... 3249 ** Init: initialize coroutine registers 3250 ** yield coA 3251 ** if eof(A) goto EofA 3252 ** yield coB 3253 ** if eof(B) goto EofB 3254 ** Cmpr: Compare A, B 3255 ** Jump AltB, AeqB, AgtB 3256 ** End: ... 3257 ** 3258 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3259 ** actually called using Gosub and they do not Return. EofA and EofB loop 3260 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3261 ** and AgtB jump to either L2 or to one of EofA or EofB. 3262 */ 3263 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3264 static int multiSelectOrderBy( 3265 Parse *pParse, /* Parsing context */ 3266 Select *p, /* The right-most of SELECTs to be coded */ 3267 SelectDest *pDest /* What to do with query results */ 3268 ){ 3269 int i, j; /* Loop counters */ 3270 Select *pPrior; /* Another SELECT immediately to our left */ 3271 Vdbe *v; /* Generate code to this VDBE */ 3272 SelectDest destA; /* Destination for coroutine A */ 3273 SelectDest destB; /* Destination for coroutine B */ 3274 int regAddrA; /* Address register for select-A coroutine */ 3275 int regAddrB; /* Address register for select-B coroutine */ 3276 int addrSelectA; /* Address of the select-A coroutine */ 3277 int addrSelectB; /* Address of the select-B coroutine */ 3278 int regOutA; /* Address register for the output-A subroutine */ 3279 int regOutB; /* Address register for the output-B subroutine */ 3280 int addrOutA; /* Address of the output-A subroutine */ 3281 int addrOutB = 0; /* Address of the output-B subroutine */ 3282 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3283 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3284 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3285 int addrAltB; /* Address of the A<B subroutine */ 3286 int addrAeqB; /* Address of the A==B subroutine */ 3287 int addrAgtB; /* Address of the A>B subroutine */ 3288 int regLimitA; /* Limit register for select-A */ 3289 int regLimitB; /* Limit register for select-A */ 3290 int regPrev; /* A range of registers to hold previous output */ 3291 int savedLimit; /* Saved value of p->iLimit */ 3292 int savedOffset; /* Saved value of p->iOffset */ 3293 int labelCmpr; /* Label for the start of the merge algorithm */ 3294 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3295 int addr1; /* Jump instructions that get retargetted */ 3296 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3297 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3298 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3299 sqlite3 *db; /* Database connection */ 3300 ExprList *pOrderBy; /* The ORDER BY clause */ 3301 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3302 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3303 3304 assert( p->pOrderBy!=0 ); 3305 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3306 db = pParse->db; 3307 v = pParse->pVdbe; 3308 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3309 labelEnd = sqlite3VdbeMakeLabel(pParse); 3310 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3311 3312 3313 /* Patch up the ORDER BY clause 3314 */ 3315 op = p->op; 3316 pPrior = p->pPrior; 3317 assert( pPrior->pOrderBy==0 ); 3318 pOrderBy = p->pOrderBy; 3319 assert( pOrderBy ); 3320 nOrderBy = pOrderBy->nExpr; 3321 3322 /* For operators other than UNION ALL we have to make sure that 3323 ** the ORDER BY clause covers every term of the result set. Add 3324 ** terms to the ORDER BY clause as necessary. 3325 */ 3326 if( op!=TK_ALL ){ 3327 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3328 struct ExprList_item *pItem; 3329 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3330 assert( pItem->u.x.iOrderByCol>0 ); 3331 if( pItem->u.x.iOrderByCol==i ) break; 3332 } 3333 if( j==nOrderBy ){ 3334 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3335 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3336 pNew->flags |= EP_IntValue; 3337 pNew->u.iValue = i; 3338 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3339 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3340 } 3341 } 3342 } 3343 3344 /* Compute the comparison permutation and keyinfo that is used with 3345 ** the permutation used to determine if the next 3346 ** row of results comes from selectA or selectB. Also add explicit 3347 ** collations to the ORDER BY clause terms so that when the subqueries 3348 ** to the right and the left are evaluated, they use the correct 3349 ** collation. 3350 */ 3351 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3352 if( aPermute ){ 3353 struct ExprList_item *pItem; 3354 aPermute[0] = nOrderBy; 3355 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3356 assert( pItem->u.x.iOrderByCol>0 ); 3357 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3358 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3359 } 3360 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3361 }else{ 3362 pKeyMerge = 0; 3363 } 3364 3365 /* Reattach the ORDER BY clause to the query. 3366 */ 3367 p->pOrderBy = pOrderBy; 3368 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3369 3370 /* Allocate a range of temporary registers and the KeyInfo needed 3371 ** for the logic that removes duplicate result rows when the 3372 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3373 */ 3374 if( op==TK_ALL ){ 3375 regPrev = 0; 3376 }else{ 3377 int nExpr = p->pEList->nExpr; 3378 assert( nOrderBy>=nExpr || db->mallocFailed ); 3379 regPrev = pParse->nMem+1; 3380 pParse->nMem += nExpr+1; 3381 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3382 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3383 if( pKeyDup ){ 3384 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3385 for(i=0; i<nExpr; i++){ 3386 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3387 pKeyDup->aSortFlags[i] = 0; 3388 } 3389 } 3390 } 3391 3392 /* Separate the left and the right query from one another 3393 */ 3394 p->pPrior = 0; 3395 pPrior->pNext = 0; 3396 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3397 if( pPrior->pPrior==0 ){ 3398 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3399 } 3400 3401 /* Compute the limit registers */ 3402 computeLimitRegisters(pParse, p, labelEnd); 3403 if( p->iLimit && op==TK_ALL ){ 3404 regLimitA = ++pParse->nMem; 3405 regLimitB = ++pParse->nMem; 3406 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3407 regLimitA); 3408 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3409 }else{ 3410 regLimitA = regLimitB = 0; 3411 } 3412 sqlite3ExprDelete(db, p->pLimit); 3413 p->pLimit = 0; 3414 3415 regAddrA = ++pParse->nMem; 3416 regAddrB = ++pParse->nMem; 3417 regOutA = ++pParse->nMem; 3418 regOutB = ++pParse->nMem; 3419 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3420 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3421 3422 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3423 3424 /* Generate a coroutine to evaluate the SELECT statement to the 3425 ** left of the compound operator - the "A" select. 3426 */ 3427 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3428 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3429 VdbeComment((v, "left SELECT")); 3430 pPrior->iLimit = regLimitA; 3431 ExplainQueryPlan((pParse, 1, "LEFT")); 3432 sqlite3Select(pParse, pPrior, &destA); 3433 sqlite3VdbeEndCoroutine(v, regAddrA); 3434 sqlite3VdbeJumpHere(v, addr1); 3435 3436 /* Generate a coroutine to evaluate the SELECT statement on 3437 ** the right - the "B" select 3438 */ 3439 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3440 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3441 VdbeComment((v, "right SELECT")); 3442 savedLimit = p->iLimit; 3443 savedOffset = p->iOffset; 3444 p->iLimit = regLimitB; 3445 p->iOffset = 0; 3446 ExplainQueryPlan((pParse, 1, "RIGHT")); 3447 sqlite3Select(pParse, p, &destB); 3448 p->iLimit = savedLimit; 3449 p->iOffset = savedOffset; 3450 sqlite3VdbeEndCoroutine(v, regAddrB); 3451 3452 /* Generate a subroutine that outputs the current row of the A 3453 ** select as the next output row of the compound select. 3454 */ 3455 VdbeNoopComment((v, "Output routine for A")); 3456 addrOutA = generateOutputSubroutine(pParse, 3457 p, &destA, pDest, regOutA, 3458 regPrev, pKeyDup, labelEnd); 3459 3460 /* Generate a subroutine that outputs the current row of the B 3461 ** select as the next output row of the compound select. 3462 */ 3463 if( op==TK_ALL || op==TK_UNION ){ 3464 VdbeNoopComment((v, "Output routine for B")); 3465 addrOutB = generateOutputSubroutine(pParse, 3466 p, &destB, pDest, regOutB, 3467 regPrev, pKeyDup, labelEnd); 3468 } 3469 sqlite3KeyInfoUnref(pKeyDup); 3470 3471 /* Generate a subroutine to run when the results from select A 3472 ** are exhausted and only data in select B remains. 3473 */ 3474 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3475 addrEofA_noB = addrEofA = labelEnd; 3476 }else{ 3477 VdbeNoopComment((v, "eof-A subroutine")); 3478 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3479 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3480 VdbeCoverage(v); 3481 sqlite3VdbeGoto(v, addrEofA); 3482 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3483 } 3484 3485 /* Generate a subroutine to run when the results from select B 3486 ** are exhausted and only data in select A remains. 3487 */ 3488 if( op==TK_INTERSECT ){ 3489 addrEofB = addrEofA; 3490 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3491 }else{ 3492 VdbeNoopComment((v, "eof-B subroutine")); 3493 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3494 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3495 sqlite3VdbeGoto(v, addrEofB); 3496 } 3497 3498 /* Generate code to handle the case of A<B 3499 */ 3500 VdbeNoopComment((v, "A-lt-B subroutine")); 3501 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3502 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3503 sqlite3VdbeGoto(v, labelCmpr); 3504 3505 /* Generate code to handle the case of A==B 3506 */ 3507 if( op==TK_ALL ){ 3508 addrAeqB = addrAltB; 3509 }else if( op==TK_INTERSECT ){ 3510 addrAeqB = addrAltB; 3511 addrAltB++; 3512 }else{ 3513 VdbeNoopComment((v, "A-eq-B subroutine")); 3514 addrAeqB = 3515 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3516 sqlite3VdbeGoto(v, labelCmpr); 3517 } 3518 3519 /* Generate code to handle the case of A>B 3520 */ 3521 VdbeNoopComment((v, "A-gt-B subroutine")); 3522 addrAgtB = sqlite3VdbeCurrentAddr(v); 3523 if( op==TK_ALL || op==TK_UNION ){ 3524 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3525 } 3526 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3527 sqlite3VdbeGoto(v, labelCmpr); 3528 3529 /* This code runs once to initialize everything. 3530 */ 3531 sqlite3VdbeJumpHere(v, addr1); 3532 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3533 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3534 3535 /* Implement the main merge loop 3536 */ 3537 sqlite3VdbeResolveLabel(v, labelCmpr); 3538 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3539 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3540 (char*)pKeyMerge, P4_KEYINFO); 3541 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3542 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3543 3544 /* Jump to the this point in order to terminate the query. 3545 */ 3546 sqlite3VdbeResolveLabel(v, labelEnd); 3547 3548 /* Reassembly the compound query so that it will be freed correctly 3549 ** by the calling function */ 3550 if( p->pPrior ){ 3551 sqlite3SelectDelete(db, p->pPrior); 3552 } 3553 p->pPrior = pPrior; 3554 pPrior->pNext = p; 3555 3556 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3557 pPrior->pOrderBy = 0; 3558 3559 /*** TBD: Insert subroutine calls to close cursors on incomplete 3560 **** subqueries ****/ 3561 ExplainQueryPlanPop(pParse); 3562 return pParse->nErr!=0; 3563 } 3564 #endif 3565 3566 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3567 3568 /* An instance of the SubstContext object describes an substitution edit 3569 ** to be performed on a parse tree. 3570 ** 3571 ** All references to columns in table iTable are to be replaced by corresponding 3572 ** expressions in pEList. 3573 */ 3574 typedef struct SubstContext { 3575 Parse *pParse; /* The parsing context */ 3576 int iTable; /* Replace references to this table */ 3577 int iNewTable; /* New table number */ 3578 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3579 ExprList *pEList; /* Replacement expressions */ 3580 } SubstContext; 3581 3582 /* Forward Declarations */ 3583 static void substExprList(SubstContext*, ExprList*); 3584 static void substSelect(SubstContext*, Select*, int); 3585 3586 /* 3587 ** Scan through the expression pExpr. Replace every reference to 3588 ** a column in table number iTable with a copy of the iColumn-th 3589 ** entry in pEList. (But leave references to the ROWID column 3590 ** unchanged.) 3591 ** 3592 ** This routine is part of the flattening procedure. A subquery 3593 ** whose result set is defined by pEList appears as entry in the 3594 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3595 ** FORM clause entry is iTable. This routine makes the necessary 3596 ** changes to pExpr so that it refers directly to the source table 3597 ** of the subquery rather the result set of the subquery. 3598 */ 3599 static Expr *substExpr( 3600 SubstContext *pSubst, /* Description of the substitution */ 3601 Expr *pExpr /* Expr in which substitution occurs */ 3602 ){ 3603 if( pExpr==0 ) return 0; 3604 if( ExprHasProperty(pExpr, EP_FromJoin) 3605 && pExpr->iRightJoinTable==pSubst->iTable 3606 ){ 3607 pExpr->iRightJoinTable = pSubst->iNewTable; 3608 } 3609 if( pExpr->op==TK_COLUMN 3610 && pExpr->iTable==pSubst->iTable 3611 && !ExprHasProperty(pExpr, EP_FixedCol) 3612 ){ 3613 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3614 if( pExpr->iColumn<0 ){ 3615 pExpr->op = TK_NULL; 3616 }else 3617 #endif 3618 { 3619 Expr *pNew; 3620 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3621 Expr ifNullRow; 3622 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3623 assert( pExpr->pRight==0 ); 3624 if( sqlite3ExprIsVector(pCopy) ){ 3625 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3626 }else{ 3627 sqlite3 *db = pSubst->pParse->db; 3628 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3629 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3630 ifNullRow.op = TK_IF_NULL_ROW; 3631 ifNullRow.pLeft = pCopy; 3632 ifNullRow.iTable = pSubst->iNewTable; 3633 ifNullRow.flags = EP_IfNullRow; 3634 pCopy = &ifNullRow; 3635 } 3636 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3637 pNew = sqlite3ExprDup(db, pCopy, 0); 3638 if( db->mallocFailed ){ 3639 sqlite3ExprDelete(db, pNew); 3640 return pExpr; 3641 } 3642 if( pSubst->isLeftJoin ){ 3643 ExprSetProperty(pNew, EP_CanBeNull); 3644 } 3645 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3646 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3647 } 3648 sqlite3ExprDelete(db, pExpr); 3649 pExpr = pNew; 3650 3651 /* Ensure that the expression now has an implicit collation sequence, 3652 ** just as it did when it was a column of a view or sub-query. */ 3653 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3654 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3655 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3656 (pColl ? pColl->zName : "BINARY") 3657 ); 3658 } 3659 ExprClearProperty(pExpr, EP_Collate); 3660 } 3661 } 3662 }else{ 3663 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3664 pExpr->iTable = pSubst->iNewTable; 3665 } 3666 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3667 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3668 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3669 substSelect(pSubst, pExpr->x.pSelect, 1); 3670 }else{ 3671 substExprList(pSubst, pExpr->x.pList); 3672 } 3673 #ifndef SQLITE_OMIT_WINDOWFUNC 3674 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3675 Window *pWin = pExpr->y.pWin; 3676 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3677 substExprList(pSubst, pWin->pPartition); 3678 substExprList(pSubst, pWin->pOrderBy); 3679 } 3680 #endif 3681 } 3682 return pExpr; 3683 } 3684 static void substExprList( 3685 SubstContext *pSubst, /* Description of the substitution */ 3686 ExprList *pList /* List to scan and in which to make substitutes */ 3687 ){ 3688 int i; 3689 if( pList==0 ) return; 3690 for(i=0; i<pList->nExpr; i++){ 3691 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3692 } 3693 } 3694 static void substSelect( 3695 SubstContext *pSubst, /* Description of the substitution */ 3696 Select *p, /* SELECT statement in which to make substitutions */ 3697 int doPrior /* Do substitutes on p->pPrior too */ 3698 ){ 3699 SrcList *pSrc; 3700 SrcItem *pItem; 3701 int i; 3702 if( !p ) return; 3703 do{ 3704 substExprList(pSubst, p->pEList); 3705 substExprList(pSubst, p->pGroupBy); 3706 substExprList(pSubst, p->pOrderBy); 3707 p->pHaving = substExpr(pSubst, p->pHaving); 3708 p->pWhere = substExpr(pSubst, p->pWhere); 3709 pSrc = p->pSrc; 3710 assert( pSrc!=0 ); 3711 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3712 substSelect(pSubst, pItem->pSelect, 1); 3713 if( pItem->fg.isTabFunc ){ 3714 substExprList(pSubst, pItem->u1.pFuncArg); 3715 } 3716 } 3717 }while( doPrior && (p = p->pPrior)!=0 ); 3718 } 3719 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3720 3721 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3722 /* 3723 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3724 ** clause of that SELECT. 3725 ** 3726 ** This routine scans the entire SELECT statement and recomputes the 3727 ** pSrcItem->colUsed mask. 3728 */ 3729 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3730 SrcItem *pItem; 3731 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3732 pItem = pWalker->u.pSrcItem; 3733 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3734 if( pExpr->iColumn<0 ) return WRC_Continue; 3735 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3736 return WRC_Continue; 3737 } 3738 static void recomputeColumnsUsed( 3739 Select *pSelect, /* The complete SELECT statement */ 3740 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3741 ){ 3742 Walker w; 3743 if( NEVER(pSrcItem->pTab==0) ) return; 3744 memset(&w, 0, sizeof(w)); 3745 w.xExprCallback = recomputeColumnsUsedExpr; 3746 w.xSelectCallback = sqlite3SelectWalkNoop; 3747 w.u.pSrcItem = pSrcItem; 3748 pSrcItem->colUsed = 0; 3749 sqlite3WalkSelect(&w, pSelect); 3750 } 3751 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3752 3753 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3754 /* 3755 ** Assign new cursor numbers to each of the items in pSrc. For each 3756 ** new cursor number assigned, set an entry in the aCsrMap[] array 3757 ** to map the old cursor number to the new: 3758 ** 3759 ** aCsrMap[iOld+1] = iNew; 3760 ** 3761 ** The array is guaranteed by the caller to be large enough for all 3762 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3763 ** 3764 ** If pSrc contains any sub-selects, call this routine recursively 3765 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3766 */ 3767 static void srclistRenumberCursors( 3768 Parse *pParse, /* Parse context */ 3769 int *aCsrMap, /* Array to store cursor mappings in */ 3770 SrcList *pSrc, /* FROM clause to renumber */ 3771 int iExcept /* FROM clause item to skip */ 3772 ){ 3773 int i; 3774 SrcItem *pItem; 3775 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3776 if( i!=iExcept ){ 3777 Select *p; 3778 assert( pItem->iCursor < aCsrMap[0] ); 3779 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3780 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3781 } 3782 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3783 for(p=pItem->pSelect; p; p=p->pPrior){ 3784 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3785 } 3786 } 3787 } 3788 } 3789 3790 /* 3791 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3792 */ 3793 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3794 int *aCsrMap = pWalker->u.aiCol; 3795 int iCsr = *piCursor; 3796 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3797 *piCursor = aCsrMap[iCsr+1]; 3798 } 3799 } 3800 3801 /* 3802 ** Expression walker callback used by renumberCursors() to update 3803 ** Expr objects to match newly assigned cursor numbers. 3804 */ 3805 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3806 int op = pExpr->op; 3807 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3808 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3809 } 3810 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3811 renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable); 3812 } 3813 return WRC_Continue; 3814 } 3815 3816 /* 3817 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3818 ** of the SELECT statement passed as the second argument, and to each 3819 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3820 ** Except, do not assign a new cursor number to the iExcept'th element in 3821 ** the FROM clause of (*p). Update all expressions and other references 3822 ** to refer to the new cursor numbers. 3823 ** 3824 ** Argument aCsrMap is an array that may be used for temporary working 3825 ** space. Two guarantees are made by the caller: 3826 ** 3827 ** * the array is larger than the largest cursor number used within the 3828 ** select statement passed as an argument, and 3829 ** 3830 ** * the array entries for all cursor numbers that do *not* appear in 3831 ** FROM clauses of the select statement as described above are 3832 ** initialized to zero. 3833 */ 3834 static void renumberCursors( 3835 Parse *pParse, /* Parse context */ 3836 Select *p, /* Select to renumber cursors within */ 3837 int iExcept, /* FROM clause item to skip */ 3838 int *aCsrMap /* Working space */ 3839 ){ 3840 Walker w; 3841 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3842 memset(&w, 0, sizeof(w)); 3843 w.u.aiCol = aCsrMap; 3844 w.xExprCallback = renumberCursorsCb; 3845 w.xSelectCallback = sqlite3SelectWalkNoop; 3846 sqlite3WalkSelect(&w, p); 3847 } 3848 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3849 3850 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3851 /* 3852 ** This routine attempts to flatten subqueries as a performance optimization. 3853 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3854 ** 3855 ** To understand the concept of flattening, consider the following 3856 ** query: 3857 ** 3858 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3859 ** 3860 ** The default way of implementing this query is to execute the 3861 ** subquery first and store the results in a temporary table, then 3862 ** run the outer query on that temporary table. This requires two 3863 ** passes over the data. Furthermore, because the temporary table 3864 ** has no indices, the WHERE clause on the outer query cannot be 3865 ** optimized. 3866 ** 3867 ** This routine attempts to rewrite queries such as the above into 3868 ** a single flat select, like this: 3869 ** 3870 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3871 ** 3872 ** The code generated for this simplification gives the same result 3873 ** but only has to scan the data once. And because indices might 3874 ** exist on the table t1, a complete scan of the data might be 3875 ** avoided. 3876 ** 3877 ** Flattening is subject to the following constraints: 3878 ** 3879 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3880 ** The subquery and the outer query cannot both be aggregates. 3881 ** 3882 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3883 ** (2) If the subquery is an aggregate then 3884 ** (2a) the outer query must not be a join and 3885 ** (2b) the outer query must not use subqueries 3886 ** other than the one FROM-clause subquery that is a candidate 3887 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3888 ** from 2015-02-09.) 3889 ** 3890 ** (3) If the subquery is the right operand of a LEFT JOIN then 3891 ** (3a) the subquery may not be a join and 3892 ** (3b) the FROM clause of the subquery may not contain a virtual 3893 ** table and 3894 ** (3c) the outer query may not be an aggregate. 3895 ** (3d) the outer query may not be DISTINCT. 3896 ** 3897 ** (4) The subquery can not be DISTINCT. 3898 ** 3899 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3900 ** sub-queries that were excluded from this optimization. Restriction 3901 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3902 ** 3903 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3904 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3905 ** 3906 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3907 ** A FROM clause, consider adding a FROM clause with the special 3908 ** table sqlite_once that consists of a single row containing a 3909 ** single NULL. 3910 ** 3911 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3912 ** 3913 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3914 ** 3915 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3916 ** accidently carried the comment forward until 2014-09-15. Original 3917 ** constraint: "If the subquery is aggregate then the outer query 3918 ** may not use LIMIT." 3919 ** 3920 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3921 ** 3922 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3923 ** a separate restriction deriving from ticket #350. 3924 ** 3925 ** (13) The subquery and outer query may not both use LIMIT. 3926 ** 3927 ** (14) The subquery may not use OFFSET. 3928 ** 3929 ** (15) If the outer query is part of a compound select, then the 3930 ** subquery may not use LIMIT. 3931 ** (See ticket #2339 and ticket [02a8e81d44]). 3932 ** 3933 ** (16) If the outer query is aggregate, then the subquery may not 3934 ** use ORDER BY. (Ticket #2942) This used to not matter 3935 ** until we introduced the group_concat() function. 3936 ** 3937 ** (17) If the subquery is a compound select, then 3938 ** (17a) all compound operators must be a UNION ALL, and 3939 ** (17b) no terms within the subquery compound may be aggregate 3940 ** or DISTINCT, and 3941 ** (17c) every term within the subquery compound must have a FROM clause 3942 ** (17d) the outer query may not be 3943 ** (17d1) aggregate, or 3944 ** (17d2) DISTINCT 3945 ** (17e) the subquery may not contain window functions, and 3946 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3947 ** 3948 ** The parent and sub-query may contain WHERE clauses. Subject to 3949 ** rules (11), (13) and (14), they may also contain ORDER BY, 3950 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3951 ** operator other than UNION ALL because all the other compound 3952 ** operators have an implied DISTINCT which is disallowed by 3953 ** restriction (4). 3954 ** 3955 ** Also, each component of the sub-query must return the same number 3956 ** of result columns. This is actually a requirement for any compound 3957 ** SELECT statement, but all the code here does is make sure that no 3958 ** such (illegal) sub-query is flattened. The caller will detect the 3959 ** syntax error and return a detailed message. 3960 ** 3961 ** (18) If the sub-query is a compound select, then all terms of the 3962 ** ORDER BY clause of the parent must be copies of a term returned 3963 ** by the parent query. 3964 ** 3965 ** (19) If the subquery uses LIMIT then the outer query may not 3966 ** have a WHERE clause. 3967 ** 3968 ** (20) If the sub-query is a compound select, then it must not use 3969 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3970 ** somewhat by saying that the terms of the ORDER BY clause must 3971 ** appear as unmodified result columns in the outer query. But we 3972 ** have other optimizations in mind to deal with that case. 3973 ** 3974 ** (21) If the subquery uses LIMIT then the outer query may not be 3975 ** DISTINCT. (See ticket [752e1646fc]). 3976 ** 3977 ** (22) The subquery may not be a recursive CTE. 3978 ** 3979 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3980 ** a compound query. This restriction is because transforming the 3981 ** parent to a compound query confuses the code that handles 3982 ** recursive queries in multiSelect(). 3983 ** 3984 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3985 ** The subquery may not be an aggregate that uses the built-in min() or 3986 ** or max() functions. (Without this restriction, a query like: 3987 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3988 ** return the value X for which Y was maximal.) 3989 ** 3990 ** (25) If either the subquery or the parent query contains a window 3991 ** function in the select list or ORDER BY clause, flattening 3992 ** is not attempted. 3993 ** 3994 ** 3995 ** In this routine, the "p" parameter is a pointer to the outer query. 3996 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3997 ** uses aggregates. 3998 ** 3999 ** If flattening is not attempted, this routine is a no-op and returns 0. 4000 ** If flattening is attempted this routine returns 1. 4001 ** 4002 ** All of the expression analysis must occur on both the outer query and 4003 ** the subquery before this routine runs. 4004 */ 4005 static int flattenSubquery( 4006 Parse *pParse, /* Parsing context */ 4007 Select *p, /* The parent or outer SELECT statement */ 4008 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4009 int isAgg /* True if outer SELECT uses aggregate functions */ 4010 ){ 4011 const char *zSavedAuthContext = pParse->zAuthContext; 4012 Select *pParent; /* Current UNION ALL term of the other query */ 4013 Select *pSub; /* The inner query or "subquery" */ 4014 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4015 SrcList *pSrc; /* The FROM clause of the outer query */ 4016 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4017 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4018 int iNewParent = -1;/* Replacement table for iParent */ 4019 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4020 int i; /* Loop counter */ 4021 Expr *pWhere; /* The WHERE clause */ 4022 SrcItem *pSubitem; /* The subquery */ 4023 sqlite3 *db = pParse->db; 4024 Walker w; /* Walker to persist agginfo data */ 4025 int *aCsrMap = 0; 4026 4027 /* Check to see if flattening is permitted. Return 0 if not. 4028 */ 4029 assert( p!=0 ); 4030 assert( p->pPrior==0 ); 4031 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4032 pSrc = p->pSrc; 4033 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4034 pSubitem = &pSrc->a[iFrom]; 4035 iParent = pSubitem->iCursor; 4036 pSub = pSubitem->pSelect; 4037 assert( pSub!=0 ); 4038 4039 #ifndef SQLITE_OMIT_WINDOWFUNC 4040 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4041 #endif 4042 4043 pSubSrc = pSub->pSrc; 4044 assert( pSubSrc ); 4045 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4046 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4047 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4048 ** became arbitrary expressions, we were forced to add restrictions (13) 4049 ** and (14). */ 4050 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4051 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4052 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4053 return 0; /* Restriction (15) */ 4054 } 4055 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4056 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4057 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4058 return 0; /* Restrictions (8)(9) */ 4059 } 4060 if( p->pOrderBy && pSub->pOrderBy ){ 4061 return 0; /* Restriction (11) */ 4062 } 4063 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4064 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4065 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4066 return 0; /* Restriction (21) */ 4067 } 4068 if( pSub->selFlags & (SF_Recursive) ){ 4069 return 0; /* Restrictions (22) */ 4070 } 4071 4072 /* 4073 ** If the subquery is the right operand of a LEFT JOIN, then the 4074 ** subquery may not be a join itself (3a). Example of why this is not 4075 ** allowed: 4076 ** 4077 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4078 ** 4079 ** If we flatten the above, we would get 4080 ** 4081 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4082 ** 4083 ** which is not at all the same thing. 4084 ** 4085 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4086 ** query cannot be an aggregate. (3c) This is an artifact of the way 4087 ** aggregates are processed - there is no mechanism to determine if 4088 ** the LEFT JOIN table should be all-NULL. 4089 ** 4090 ** See also tickets #306, #350, and #3300. 4091 */ 4092 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4093 isLeftJoin = 1; 4094 if( pSubSrc->nSrc>1 /* (3a) */ 4095 || isAgg /* (3b) */ 4096 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4097 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4098 ){ 4099 return 0; 4100 } 4101 } 4102 #ifdef SQLITE_EXTRA_IFNULLROW 4103 else if( iFrom>0 && !isAgg ){ 4104 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4105 ** every reference to any result column from subquery in a join, even 4106 ** though they are not necessary. This will stress-test the OP_IfNullRow 4107 ** opcode. */ 4108 isLeftJoin = -1; 4109 } 4110 #endif 4111 4112 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4113 ** use only the UNION ALL operator. And none of the simple select queries 4114 ** that make up the compound SELECT are allowed to be aggregate or distinct 4115 ** queries. 4116 */ 4117 if( pSub->pPrior ){ 4118 if( pSub->pOrderBy ){ 4119 return 0; /* Restriction (20) */ 4120 } 4121 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4122 return 0; /* (17d1), (17d2), or (17f) */ 4123 } 4124 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4125 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4126 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4127 assert( pSub->pSrc!=0 ); 4128 assert( (pSub->selFlags & SF_Recursive)==0 ); 4129 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4130 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4131 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4132 || pSub1->pSrc->nSrc<1 /* (17c) */ 4133 #ifndef SQLITE_OMIT_WINDOWFUNC 4134 || pSub1->pWin /* (17e) */ 4135 #endif 4136 ){ 4137 return 0; 4138 } 4139 testcase( pSub1->pSrc->nSrc>1 ); 4140 } 4141 4142 /* Restriction (18). */ 4143 if( p->pOrderBy ){ 4144 int ii; 4145 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4146 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4147 } 4148 } 4149 4150 /* Restriction (23) */ 4151 if( (p->selFlags & SF_Recursive) ) return 0; 4152 4153 if( pSrc->nSrc>1 ){ 4154 if( pParse->nSelect>500 ) return 0; 4155 aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int)); 4156 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4157 } 4158 } 4159 4160 /***** If we reach this point, flattening is permitted. *****/ 4161 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4162 pSub->selId, pSub, iFrom)); 4163 4164 /* Authorize the subquery */ 4165 pParse->zAuthContext = pSubitem->zName; 4166 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4167 testcase( i==SQLITE_DENY ); 4168 pParse->zAuthContext = zSavedAuthContext; 4169 4170 /* Delete the transient structures associated with thesubquery */ 4171 pSub1 = pSubitem->pSelect; 4172 sqlite3DbFree(db, pSubitem->zDatabase); 4173 sqlite3DbFree(db, pSubitem->zName); 4174 sqlite3DbFree(db, pSubitem->zAlias); 4175 pSubitem->zDatabase = 0; 4176 pSubitem->zName = 0; 4177 pSubitem->zAlias = 0; 4178 pSubitem->pSelect = 0; 4179 assert( pSubitem->pOn==0 ); 4180 4181 /* If the sub-query is a compound SELECT statement, then (by restrictions 4182 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4183 ** be of the form: 4184 ** 4185 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4186 ** 4187 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4188 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4189 ** OFFSET clauses and joins them to the left-hand-side of the original 4190 ** using UNION ALL operators. In this case N is the number of simple 4191 ** select statements in the compound sub-query. 4192 ** 4193 ** Example: 4194 ** 4195 ** SELECT a+1 FROM ( 4196 ** SELECT x FROM tab 4197 ** UNION ALL 4198 ** SELECT y FROM tab 4199 ** UNION ALL 4200 ** SELECT abs(z*2) FROM tab2 4201 ** ) WHERE a!=5 ORDER BY 1 4202 ** 4203 ** Transformed into: 4204 ** 4205 ** SELECT x+1 FROM tab WHERE x+1!=5 4206 ** UNION ALL 4207 ** SELECT y+1 FROM tab WHERE y+1!=5 4208 ** UNION ALL 4209 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4210 ** ORDER BY 1 4211 ** 4212 ** We call this the "compound-subquery flattening". 4213 */ 4214 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4215 Select *pNew; 4216 ExprList *pOrderBy = p->pOrderBy; 4217 Expr *pLimit = p->pLimit; 4218 Select *pPrior = p->pPrior; 4219 Table *pItemTab = pSubitem->pTab; 4220 pSubitem->pTab = 0; 4221 p->pOrderBy = 0; 4222 p->pPrior = 0; 4223 p->pLimit = 0; 4224 pNew = sqlite3SelectDup(db, p, 0); 4225 p->pLimit = pLimit; 4226 p->pOrderBy = pOrderBy; 4227 p->op = TK_ALL; 4228 pSubitem->pTab = pItemTab; 4229 if( pNew==0 ){ 4230 p->pPrior = pPrior; 4231 }else{ 4232 pNew->selId = ++pParse->nSelect; 4233 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4234 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4235 } 4236 pNew->pPrior = pPrior; 4237 if( pPrior ) pPrior->pNext = pNew; 4238 pNew->pNext = p; 4239 p->pPrior = pNew; 4240 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4241 " creates %u as peer\n",pNew->selId)); 4242 } 4243 assert( pSubitem->pSelect==0 ); 4244 } 4245 sqlite3DbFree(db, aCsrMap); 4246 if( db->mallocFailed ){ 4247 pSubitem->pSelect = pSub1; 4248 return 1; 4249 } 4250 4251 /* Defer deleting the Table object associated with the 4252 ** subquery until code generation is 4253 ** complete, since there may still exist Expr.pTab entries that 4254 ** refer to the subquery even after flattening. Ticket #3346. 4255 ** 4256 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4257 */ 4258 if( ALWAYS(pSubitem->pTab!=0) ){ 4259 Table *pTabToDel = pSubitem->pTab; 4260 if( pTabToDel->nTabRef==1 ){ 4261 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4262 sqlite3ParserAddCleanup(pToplevel, 4263 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4264 pTabToDel); 4265 testcase( pToplevel->earlyCleanup ); 4266 }else{ 4267 pTabToDel->nTabRef--; 4268 } 4269 pSubitem->pTab = 0; 4270 } 4271 4272 /* The following loop runs once for each term in a compound-subquery 4273 ** flattening (as described above). If we are doing a different kind 4274 ** of flattening - a flattening other than a compound-subquery flattening - 4275 ** then this loop only runs once. 4276 ** 4277 ** This loop moves all of the FROM elements of the subquery into the 4278 ** the FROM clause of the outer query. Before doing this, remember 4279 ** the cursor number for the original outer query FROM element in 4280 ** iParent. The iParent cursor will never be used. Subsequent code 4281 ** will scan expressions looking for iParent references and replace 4282 ** those references with expressions that resolve to the subquery FROM 4283 ** elements we are now copying in. 4284 */ 4285 pSub = pSub1; 4286 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4287 int nSubSrc; 4288 u8 jointype = 0; 4289 assert( pSub!=0 ); 4290 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4291 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4292 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4293 4294 if( pParent==p ){ 4295 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4296 } 4297 4298 /* The subquery uses a single slot of the FROM clause of the outer 4299 ** query. If the subquery has more than one element in its FROM clause, 4300 ** then expand the outer query to make space for it to hold all elements 4301 ** of the subquery. 4302 ** 4303 ** Example: 4304 ** 4305 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4306 ** 4307 ** The outer query has 3 slots in its FROM clause. One slot of the 4308 ** outer query (the middle slot) is used by the subquery. The next 4309 ** block of code will expand the outer query FROM clause to 4 slots. 4310 ** The middle slot is expanded to two slots in order to make space 4311 ** for the two elements in the FROM clause of the subquery. 4312 */ 4313 if( nSubSrc>1 ){ 4314 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4315 if( pSrc==0 ) break; 4316 pParent->pSrc = pSrc; 4317 } 4318 4319 /* Transfer the FROM clause terms from the subquery into the 4320 ** outer query. 4321 */ 4322 for(i=0; i<nSubSrc; i++){ 4323 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4324 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4325 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4326 iNewParent = pSubSrc->a[i].iCursor; 4327 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4328 } 4329 pSrc->a[iFrom].fg.jointype = jointype; 4330 4331 /* Now begin substituting subquery result set expressions for 4332 ** references to the iParent in the outer query. 4333 ** 4334 ** Example: 4335 ** 4336 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4337 ** \ \_____________ subquery __________/ / 4338 ** \_____________________ outer query ______________________________/ 4339 ** 4340 ** We look at every expression in the outer query and every place we see 4341 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4342 */ 4343 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4344 /* At this point, any non-zero iOrderByCol values indicate that the 4345 ** ORDER BY column expression is identical to the iOrderByCol'th 4346 ** expression returned by SELECT statement pSub. Since these values 4347 ** do not necessarily correspond to columns in SELECT statement pParent, 4348 ** zero them before transfering the ORDER BY clause. 4349 ** 4350 ** Not doing this may cause an error if a subsequent call to this 4351 ** function attempts to flatten a compound sub-query into pParent 4352 ** (the only way this can happen is if the compound sub-query is 4353 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4354 ExprList *pOrderBy = pSub->pOrderBy; 4355 for(i=0; i<pOrderBy->nExpr; i++){ 4356 pOrderBy->a[i].u.x.iOrderByCol = 0; 4357 } 4358 assert( pParent->pOrderBy==0 ); 4359 pParent->pOrderBy = pOrderBy; 4360 pSub->pOrderBy = 0; 4361 } 4362 pWhere = pSub->pWhere; 4363 pSub->pWhere = 0; 4364 if( isLeftJoin>0 ){ 4365 sqlite3SetJoinExpr(pWhere, iNewParent); 4366 } 4367 if( pWhere ){ 4368 if( pParent->pWhere ){ 4369 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4370 }else{ 4371 pParent->pWhere = pWhere; 4372 } 4373 } 4374 if( db->mallocFailed==0 ){ 4375 SubstContext x; 4376 x.pParse = pParse; 4377 x.iTable = iParent; 4378 x.iNewTable = iNewParent; 4379 x.isLeftJoin = isLeftJoin; 4380 x.pEList = pSub->pEList; 4381 substSelect(&x, pParent, 0); 4382 } 4383 4384 /* The flattened query is a compound if either the inner or the 4385 ** outer query is a compound. */ 4386 pParent->selFlags |= pSub->selFlags & SF_Compound; 4387 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4388 4389 /* 4390 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4391 ** 4392 ** One is tempted to try to add a and b to combine the limits. But this 4393 ** does not work if either limit is negative. 4394 */ 4395 if( pSub->pLimit ){ 4396 pParent->pLimit = pSub->pLimit; 4397 pSub->pLimit = 0; 4398 } 4399 4400 /* Recompute the SrcList_item.colUsed masks for the flattened 4401 ** tables. */ 4402 for(i=0; i<nSubSrc; i++){ 4403 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4404 } 4405 } 4406 4407 /* Finially, delete what is left of the subquery and return 4408 ** success. 4409 */ 4410 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4411 sqlite3WalkSelect(&w,pSub1); 4412 sqlite3SelectDelete(db, pSub1); 4413 4414 #if SELECTTRACE_ENABLED 4415 if( sqlite3SelectTrace & 0x100 ){ 4416 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4417 sqlite3TreeViewSelect(0, p, 0); 4418 } 4419 #endif 4420 4421 return 1; 4422 } 4423 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4424 4425 /* 4426 ** A structure to keep track of all of the column values that are fixed to 4427 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4428 */ 4429 typedef struct WhereConst WhereConst; 4430 struct WhereConst { 4431 Parse *pParse; /* Parsing context */ 4432 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4433 int nConst; /* Number for COLUMN=CONSTANT terms */ 4434 int nChng; /* Number of times a constant is propagated */ 4435 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4436 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4437 }; 4438 4439 /* 4440 ** Add a new entry to the pConst object. Except, do not add duplicate 4441 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4442 ** 4443 ** The caller guarantees the pColumn is a column and pValue is a constant. 4444 ** This routine has to do some additional checks before completing the 4445 ** insert. 4446 */ 4447 static void constInsert( 4448 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4449 Expr *pColumn, /* The COLUMN part of the constraint */ 4450 Expr *pValue, /* The VALUE part of the constraint */ 4451 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4452 ){ 4453 int i; 4454 assert( pColumn->op==TK_COLUMN ); 4455 assert( sqlite3ExprIsConstant(pValue) ); 4456 4457 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4458 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4459 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4460 return; 4461 } 4462 4463 /* 2018-10-25 ticket [cf5ed20f] 4464 ** Make sure the same pColumn is not inserted more than once */ 4465 for(i=0; i<pConst->nConst; i++){ 4466 const Expr *pE2 = pConst->apExpr[i*2]; 4467 assert( pE2->op==TK_COLUMN ); 4468 if( pE2->iTable==pColumn->iTable 4469 && pE2->iColumn==pColumn->iColumn 4470 ){ 4471 return; /* Already present. Return without doing anything. */ 4472 } 4473 } 4474 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4475 pConst->bHasAffBlob = 1; 4476 } 4477 4478 pConst->nConst++; 4479 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4480 pConst->nConst*2*sizeof(Expr*)); 4481 if( pConst->apExpr==0 ){ 4482 pConst->nConst = 0; 4483 }else{ 4484 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4485 pConst->apExpr[pConst->nConst*2-1] = pValue; 4486 } 4487 } 4488 4489 /* 4490 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4491 ** is a constant expression and where the term must be true because it 4492 ** is part of the AND-connected terms of the expression. For each term 4493 ** found, add it to the pConst structure. 4494 */ 4495 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4496 Expr *pRight, *pLeft; 4497 if( NEVER(pExpr==0) ) return; 4498 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4499 if( pExpr->op==TK_AND ){ 4500 findConstInWhere(pConst, pExpr->pRight); 4501 findConstInWhere(pConst, pExpr->pLeft); 4502 return; 4503 } 4504 if( pExpr->op!=TK_EQ ) return; 4505 pRight = pExpr->pRight; 4506 pLeft = pExpr->pLeft; 4507 assert( pRight!=0 ); 4508 assert( pLeft!=0 ); 4509 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4510 constInsert(pConst,pRight,pLeft,pExpr); 4511 } 4512 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4513 constInsert(pConst,pLeft,pRight,pExpr); 4514 } 4515 } 4516 4517 /* 4518 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4519 ** 4520 ** Argument pExpr is a candidate expression to be replaced by a value. If 4521 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4522 ** then overwrite it with the corresponding value. Except, do not do so 4523 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4524 ** is SQLITE_AFF_BLOB. 4525 */ 4526 static int propagateConstantExprRewriteOne( 4527 WhereConst *pConst, 4528 Expr *pExpr, 4529 int bIgnoreAffBlob 4530 ){ 4531 int i; 4532 if( pConst->pOomFault[0] ) return WRC_Prune; 4533 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4534 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4535 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4536 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4537 return WRC_Continue; 4538 } 4539 for(i=0; i<pConst->nConst; i++){ 4540 Expr *pColumn = pConst->apExpr[i*2]; 4541 if( pColumn==pExpr ) continue; 4542 if( pColumn->iTable!=pExpr->iTable ) continue; 4543 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4544 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4545 break; 4546 } 4547 /* A match is found. Add the EP_FixedCol property */ 4548 pConst->nChng++; 4549 ExprClearProperty(pExpr, EP_Leaf); 4550 ExprSetProperty(pExpr, EP_FixedCol); 4551 assert( pExpr->pLeft==0 ); 4552 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4553 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4554 break; 4555 } 4556 return WRC_Prune; 4557 } 4558 4559 /* 4560 ** This is a Walker expression callback. pExpr is a node from the WHERE 4561 ** clause of a SELECT statement. This function examines pExpr to see if 4562 ** any substitutions based on the contents of pWalker->u.pConst should 4563 ** be made to pExpr or its immediate children. 4564 ** 4565 ** A substitution is made if: 4566 ** 4567 ** + pExpr is a column with an affinity other than BLOB that matches 4568 ** one of the columns in pWalker->u.pConst, or 4569 ** 4570 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4571 ** uses an affinity other than TEXT and one of its immediate 4572 ** children is a column that matches one of the columns in 4573 ** pWalker->u.pConst. 4574 */ 4575 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4576 WhereConst *pConst = pWalker->u.pConst; 4577 assert( TK_GT==TK_EQ+1 ); 4578 assert( TK_LE==TK_EQ+2 ); 4579 assert( TK_LT==TK_EQ+3 ); 4580 assert( TK_GE==TK_EQ+4 ); 4581 if( pConst->bHasAffBlob ){ 4582 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4583 || pExpr->op==TK_IS 4584 ){ 4585 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4586 if( pConst->pOomFault[0] ) return WRC_Prune; 4587 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4588 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4589 } 4590 } 4591 } 4592 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4593 } 4594 4595 /* 4596 ** The WHERE-clause constant propagation optimization. 4597 ** 4598 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4599 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4600 ** part of a ON clause from a LEFT JOIN, then throughout the query 4601 ** replace all other occurrences of COLUMN with CONSTANT. 4602 ** 4603 ** For example, the query: 4604 ** 4605 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4606 ** 4607 ** Is transformed into 4608 ** 4609 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4610 ** 4611 ** Return true if any transformations where made and false if not. 4612 ** 4613 ** Implementation note: Constant propagation is tricky due to affinity 4614 ** and collating sequence interactions. Consider this example: 4615 ** 4616 ** CREATE TABLE t1(a INT,b TEXT); 4617 ** INSERT INTO t1 VALUES(123,'0123'); 4618 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4619 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4620 ** 4621 ** The two SELECT statements above should return different answers. b=a 4622 ** is alway true because the comparison uses numeric affinity, but b=123 4623 ** is false because it uses text affinity and '0123' is not the same as '123'. 4624 ** To work around this, the expression tree is not actually changed from 4625 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4626 ** and the "123" value is hung off of the pLeft pointer. Code generator 4627 ** routines know to generate the constant "123" instead of looking up the 4628 ** column value. Also, to avoid collation problems, this optimization is 4629 ** only attempted if the "a=123" term uses the default BINARY collation. 4630 ** 4631 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4632 ** 4633 ** CREATE TABLE t1(x); 4634 ** INSERT INTO t1 VALUES(10.0); 4635 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4636 ** 4637 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4638 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4639 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4640 ** resulting in a false positive. To avoid this, constant propagation for 4641 ** columns with BLOB affinity is only allowed if the constant is used with 4642 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4643 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4644 ** for details. 4645 */ 4646 static int propagateConstants( 4647 Parse *pParse, /* The parsing context */ 4648 Select *p /* The query in which to propagate constants */ 4649 ){ 4650 WhereConst x; 4651 Walker w; 4652 int nChng = 0; 4653 x.pParse = pParse; 4654 x.pOomFault = &pParse->db->mallocFailed; 4655 do{ 4656 x.nConst = 0; 4657 x.nChng = 0; 4658 x.apExpr = 0; 4659 x.bHasAffBlob = 0; 4660 findConstInWhere(&x, p->pWhere); 4661 if( x.nConst ){ 4662 memset(&w, 0, sizeof(w)); 4663 w.pParse = pParse; 4664 w.xExprCallback = propagateConstantExprRewrite; 4665 w.xSelectCallback = sqlite3SelectWalkNoop; 4666 w.xSelectCallback2 = 0; 4667 w.walkerDepth = 0; 4668 w.u.pConst = &x; 4669 sqlite3WalkExpr(&w, p->pWhere); 4670 sqlite3DbFree(x.pParse->db, x.apExpr); 4671 nChng += x.nChng; 4672 } 4673 }while( x.nChng ); 4674 return nChng; 4675 } 4676 4677 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4678 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4679 /* 4680 ** This function is called to determine whether or not it is safe to 4681 ** push WHERE clause expression pExpr down to FROM clause sub-query 4682 ** pSubq, which contains at least one window function. Return 1 4683 ** if it is safe and the expression should be pushed down, or 0 4684 ** otherwise. 4685 ** 4686 ** It is only safe to push the expression down if it consists only 4687 ** of constants and copies of expressions that appear in the PARTITION 4688 ** BY clause of all window function used by the sub-query. It is safe 4689 ** to filter out entire partitions, but not rows within partitions, as 4690 ** this may change the results of the window functions. 4691 ** 4692 ** At the time this function is called it is guaranteed that 4693 ** 4694 ** * the sub-query uses only one distinct window frame, and 4695 ** * that the window frame has a PARTITION BY clase. 4696 */ 4697 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4698 assert( pSubq->pWin->pPartition ); 4699 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4700 assert( pSubq->pPrior==0 ); 4701 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4702 } 4703 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4704 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4705 4706 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4707 /* 4708 ** Make copies of relevant WHERE clause terms of the outer query into 4709 ** the WHERE clause of subquery. Example: 4710 ** 4711 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4712 ** 4713 ** Transformed into: 4714 ** 4715 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4716 ** WHERE x=5 AND y=10; 4717 ** 4718 ** The hope is that the terms added to the inner query will make it more 4719 ** efficient. 4720 ** 4721 ** Do not attempt this optimization if: 4722 ** 4723 ** (1) (** This restriction was removed on 2017-09-29. We used to 4724 ** disallow this optimization for aggregate subqueries, but now 4725 ** it is allowed by putting the extra terms on the HAVING clause. 4726 ** The added HAVING clause is pointless if the subquery lacks 4727 ** a GROUP BY clause. But such a HAVING clause is also harmless 4728 ** so there does not appear to be any reason to add extra logic 4729 ** to suppress it. **) 4730 ** 4731 ** (2) The inner query is the recursive part of a common table expression. 4732 ** 4733 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4734 ** clause would change the meaning of the LIMIT). 4735 ** 4736 ** (4) The inner query is the right operand of a LEFT JOIN and the 4737 ** expression to be pushed down does not come from the ON clause 4738 ** on that LEFT JOIN. 4739 ** 4740 ** (5) The WHERE clause expression originates in the ON or USING clause 4741 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4742 ** left join. An example: 4743 ** 4744 ** SELECT * 4745 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4746 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4747 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4748 ** 4749 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4750 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4751 ** then the (1,1,NULL) row would be suppressed. 4752 ** 4753 ** (6) Window functions make things tricky as changes to the WHERE clause 4754 ** of the inner query could change the window over which window 4755 ** functions are calculated. Therefore, do not attempt the optimization 4756 ** if: 4757 ** 4758 ** (6a) The inner query uses multiple incompatible window partitions. 4759 ** 4760 ** (6b) The inner query is a compound and uses window-functions. 4761 ** 4762 ** (6c) The WHERE clause does not consist entirely of constants and 4763 ** copies of expressions found in the PARTITION BY clause of 4764 ** all window-functions used by the sub-query. It is safe to 4765 ** filter out entire partitions, as this does not change the 4766 ** window over which any window-function is calculated. 4767 ** 4768 ** (7) The inner query is a Common Table Expression (CTE) that should 4769 ** be materialized. (This restriction is implemented in the calling 4770 ** routine.) 4771 ** 4772 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4773 ** terms are duplicated into the subquery. 4774 */ 4775 static int pushDownWhereTerms( 4776 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4777 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4778 Expr *pWhere, /* The WHERE clause of the outer query */ 4779 int iCursor, /* Cursor number of the subquery */ 4780 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4781 ){ 4782 Expr *pNew; 4783 int nChng = 0; 4784 if( pWhere==0 ) return 0; 4785 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4786 4787 #ifndef SQLITE_OMIT_WINDOWFUNC 4788 if( pSubq->pPrior ){ 4789 Select *pSel; 4790 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4791 if( pSel->pWin ) return 0; /* restriction (6b) */ 4792 } 4793 }else{ 4794 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4795 } 4796 #endif 4797 4798 #ifdef SQLITE_DEBUG 4799 /* Only the first term of a compound can have a WITH clause. But make 4800 ** sure no other terms are marked SF_Recursive in case something changes 4801 ** in the future. 4802 */ 4803 { 4804 Select *pX; 4805 for(pX=pSubq; pX; pX=pX->pPrior){ 4806 assert( (pX->selFlags & (SF_Recursive))==0 ); 4807 } 4808 } 4809 #endif 4810 4811 if( pSubq->pLimit!=0 ){ 4812 return 0; /* restriction (3) */ 4813 } 4814 while( pWhere->op==TK_AND ){ 4815 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4816 iCursor, isLeftJoin); 4817 pWhere = pWhere->pLeft; 4818 } 4819 if( isLeftJoin 4820 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4821 || pWhere->iRightJoinTable!=iCursor) 4822 ){ 4823 return 0; /* restriction (4) */ 4824 } 4825 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4826 return 0; /* restriction (5) */ 4827 } 4828 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4829 nChng++; 4830 pSubq->selFlags |= SF_PushDown; 4831 while( pSubq ){ 4832 SubstContext x; 4833 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4834 unsetJoinExpr(pNew, -1); 4835 x.pParse = pParse; 4836 x.iTable = iCursor; 4837 x.iNewTable = iCursor; 4838 x.isLeftJoin = 0; 4839 x.pEList = pSubq->pEList; 4840 pNew = substExpr(&x, pNew); 4841 #ifndef SQLITE_OMIT_WINDOWFUNC 4842 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4843 /* Restriction 6c has prevented push-down in this case */ 4844 sqlite3ExprDelete(pParse->db, pNew); 4845 nChng--; 4846 break; 4847 } 4848 #endif 4849 if( pSubq->selFlags & SF_Aggregate ){ 4850 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4851 }else{ 4852 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4853 } 4854 pSubq = pSubq->pPrior; 4855 } 4856 } 4857 return nChng; 4858 } 4859 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4860 4861 /* 4862 ** The pFunc is the only aggregate function in the query. Check to see 4863 ** if the query is a candidate for the min/max optimization. 4864 ** 4865 ** If the query is a candidate for the min/max optimization, then set 4866 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4867 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4868 ** whether pFunc is a min() or max() function. 4869 ** 4870 ** If the query is not a candidate for the min/max optimization, return 4871 ** WHERE_ORDERBY_NORMAL (which must be zero). 4872 ** 4873 ** This routine must be called after aggregate functions have been 4874 ** located but before their arguments have been subjected to aggregate 4875 ** analysis. 4876 */ 4877 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4878 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4879 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4880 const char *zFunc; /* Name of aggregate function pFunc */ 4881 ExprList *pOrderBy; 4882 u8 sortFlags = 0; 4883 4884 assert( *ppMinMax==0 ); 4885 assert( pFunc->op==TK_AGG_FUNCTION ); 4886 assert( !IsWindowFunc(pFunc) ); 4887 if( pEList==0 4888 || pEList->nExpr!=1 4889 || ExprHasProperty(pFunc, EP_WinFunc) 4890 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4891 ){ 4892 return eRet; 4893 } 4894 zFunc = pFunc->u.zToken; 4895 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4896 eRet = WHERE_ORDERBY_MIN; 4897 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4898 sortFlags = KEYINFO_ORDER_BIGNULL; 4899 } 4900 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4901 eRet = WHERE_ORDERBY_MAX; 4902 sortFlags = KEYINFO_ORDER_DESC; 4903 }else{ 4904 return eRet; 4905 } 4906 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4907 assert( pOrderBy!=0 || db->mallocFailed ); 4908 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4909 return eRet; 4910 } 4911 4912 /* 4913 ** The select statement passed as the first argument is an aggregate query. 4914 ** The second argument is the associated aggregate-info object. This 4915 ** function tests if the SELECT is of the form: 4916 ** 4917 ** SELECT count(*) FROM <tbl> 4918 ** 4919 ** where table is a database table, not a sub-select or view. If the query 4920 ** does match this pattern, then a pointer to the Table object representing 4921 ** <tbl> is returned. Otherwise, 0 is returned. 4922 */ 4923 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4924 Table *pTab; 4925 Expr *pExpr; 4926 4927 assert( !p->pGroupBy ); 4928 4929 if( p->pWhere || p->pEList->nExpr!=1 4930 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4931 ){ 4932 return 0; 4933 } 4934 pTab = p->pSrc->a[0].pTab; 4935 pExpr = p->pEList->a[0].pExpr; 4936 assert( pTab && !IsView(pTab) && pExpr ); 4937 4938 if( IsVirtual(pTab) ) return 0; 4939 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4940 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4941 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4942 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4943 4944 return pTab; 4945 } 4946 4947 /* 4948 ** If the source-list item passed as an argument was augmented with an 4949 ** INDEXED BY clause, then try to locate the specified index. If there 4950 ** was such a clause and the named index cannot be found, return 4951 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4952 ** pFrom->pIndex and return SQLITE_OK. 4953 */ 4954 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4955 Table *pTab = pFrom->pTab; 4956 char *zIndexedBy = pFrom->u1.zIndexedBy; 4957 Index *pIdx; 4958 assert( pTab!=0 ); 4959 assert( pFrom->fg.isIndexedBy!=0 ); 4960 4961 for(pIdx=pTab->pIndex; 4962 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4963 pIdx=pIdx->pNext 4964 ); 4965 if( !pIdx ){ 4966 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4967 pParse->checkSchema = 1; 4968 return SQLITE_ERROR; 4969 } 4970 pFrom->u2.pIBIndex = pIdx; 4971 return SQLITE_OK; 4972 } 4973 4974 /* 4975 ** Detect compound SELECT statements that use an ORDER BY clause with 4976 ** an alternative collating sequence. 4977 ** 4978 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4979 ** 4980 ** These are rewritten as a subquery: 4981 ** 4982 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4983 ** ORDER BY ... COLLATE ... 4984 ** 4985 ** This transformation is necessary because the multiSelectOrderBy() routine 4986 ** above that generates the code for a compound SELECT with an ORDER BY clause 4987 ** uses a merge algorithm that requires the same collating sequence on the 4988 ** result columns as on the ORDER BY clause. See ticket 4989 ** http://www.sqlite.org/src/info/6709574d2a 4990 ** 4991 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4992 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4993 ** there are COLLATE terms in the ORDER BY. 4994 */ 4995 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4996 int i; 4997 Select *pNew; 4998 Select *pX; 4999 sqlite3 *db; 5000 struct ExprList_item *a; 5001 SrcList *pNewSrc; 5002 Parse *pParse; 5003 Token dummy; 5004 5005 if( p->pPrior==0 ) return WRC_Continue; 5006 if( p->pOrderBy==0 ) return WRC_Continue; 5007 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5008 if( pX==0 ) return WRC_Continue; 5009 a = p->pOrderBy->a; 5010 #ifndef SQLITE_OMIT_WINDOWFUNC 5011 /* If iOrderByCol is already non-zero, then it has already been matched 5012 ** to a result column of the SELECT statement. This occurs when the 5013 ** SELECT is rewritten for window-functions processing and then passed 5014 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5015 ** by this function is not required in this case. */ 5016 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5017 #endif 5018 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5019 if( a[i].pExpr->flags & EP_Collate ) break; 5020 } 5021 if( i<0 ) return WRC_Continue; 5022 5023 /* If we reach this point, that means the transformation is required. */ 5024 5025 pParse = pWalker->pParse; 5026 db = pParse->db; 5027 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5028 if( pNew==0 ) return WRC_Abort; 5029 memset(&dummy, 0, sizeof(dummy)); 5030 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 5031 if( pNewSrc==0 ) return WRC_Abort; 5032 *pNew = *p; 5033 p->pSrc = pNewSrc; 5034 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5035 p->op = TK_SELECT; 5036 p->pWhere = 0; 5037 pNew->pGroupBy = 0; 5038 pNew->pHaving = 0; 5039 pNew->pOrderBy = 0; 5040 p->pPrior = 0; 5041 p->pNext = 0; 5042 p->pWith = 0; 5043 #ifndef SQLITE_OMIT_WINDOWFUNC 5044 p->pWinDefn = 0; 5045 #endif 5046 p->selFlags &= ~SF_Compound; 5047 assert( (p->selFlags & SF_Converted)==0 ); 5048 p->selFlags |= SF_Converted; 5049 assert( pNew->pPrior!=0 ); 5050 pNew->pPrior->pNext = pNew; 5051 pNew->pLimit = 0; 5052 return WRC_Continue; 5053 } 5054 5055 /* 5056 ** Check to see if the FROM clause term pFrom has table-valued function 5057 ** arguments. If it does, leave an error message in pParse and return 5058 ** non-zero, since pFrom is not allowed to be a table-valued function. 5059 */ 5060 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5061 if( pFrom->fg.isTabFunc ){ 5062 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5063 return 1; 5064 } 5065 return 0; 5066 } 5067 5068 #ifndef SQLITE_OMIT_CTE 5069 /* 5070 ** Argument pWith (which may be NULL) points to a linked list of nested 5071 ** WITH contexts, from inner to outermost. If the table identified by 5072 ** FROM clause element pItem is really a common-table-expression (CTE) 5073 ** then return a pointer to the CTE definition for that table. Otherwise 5074 ** return NULL. 5075 ** 5076 ** If a non-NULL value is returned, set *ppContext to point to the With 5077 ** object that the returned CTE belongs to. 5078 */ 5079 static struct Cte *searchWith( 5080 With *pWith, /* Current innermost WITH clause */ 5081 SrcItem *pItem, /* FROM clause element to resolve */ 5082 With **ppContext /* OUT: WITH clause return value belongs to */ 5083 ){ 5084 const char *zName = pItem->zName; 5085 With *p; 5086 assert( pItem->zDatabase==0 ); 5087 assert( zName!=0 ); 5088 for(p=pWith; p; p=p->pOuter){ 5089 int i; 5090 for(i=0; i<p->nCte; i++){ 5091 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5092 *ppContext = p; 5093 return &p->a[i]; 5094 } 5095 } 5096 if( p->bView ) break; 5097 } 5098 return 0; 5099 } 5100 5101 /* The code generator maintains a stack of active WITH clauses 5102 ** with the inner-most WITH clause being at the top of the stack. 5103 ** 5104 ** This routine pushes the WITH clause passed as the second argument 5105 ** onto the top of the stack. If argument bFree is true, then this 5106 ** WITH clause will never be popped from the stack but should instead 5107 ** be freed along with the Parse object. In other cases, when 5108 ** bFree==0, the With object will be freed along with the SELECT 5109 ** statement with which it is associated. 5110 ** 5111 ** This routine returns a copy of pWith. Or, if bFree is true and 5112 ** the pWith object is destroyed immediately due to an OOM condition, 5113 ** then this routine return NULL. 5114 ** 5115 ** If bFree is true, do not continue to use the pWith pointer after 5116 ** calling this routine, Instead, use only the return value. 5117 */ 5118 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5119 if( pWith ){ 5120 if( bFree ){ 5121 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5122 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5123 pWith); 5124 if( pWith==0 ) return 0; 5125 } 5126 if( pParse->nErr==0 ){ 5127 assert( pParse->pWith!=pWith ); 5128 pWith->pOuter = pParse->pWith; 5129 pParse->pWith = pWith; 5130 } 5131 } 5132 return pWith; 5133 } 5134 5135 /* 5136 ** This function checks if argument pFrom refers to a CTE declared by 5137 ** a WITH clause on the stack currently maintained by the parser (on the 5138 ** pParse->pWith linked list). And if currently processing a CTE 5139 ** CTE expression, through routine checks to see if the reference is 5140 ** a recursive reference to the CTE. 5141 ** 5142 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5143 ** and other fields are populated accordingly. 5144 ** 5145 ** Return 0 if no match is found. 5146 ** Return 1 if a match is found. 5147 ** Return 2 if an error condition is detected. 5148 */ 5149 static int resolveFromTermToCte( 5150 Parse *pParse, /* The parsing context */ 5151 Walker *pWalker, /* Current tree walker */ 5152 SrcItem *pFrom /* The FROM clause term to check */ 5153 ){ 5154 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5155 With *pWith; /* The matching WITH */ 5156 5157 assert( pFrom->pTab==0 ); 5158 if( pParse->pWith==0 ){ 5159 /* There are no WITH clauses in the stack. No match is possible */ 5160 return 0; 5161 } 5162 if( pParse->nErr ){ 5163 /* Prior errors might have left pParse->pWith in a goofy state, so 5164 ** go no further. */ 5165 return 0; 5166 } 5167 if( pFrom->zDatabase!=0 ){ 5168 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5169 ** it cannot possibly be a CTE reference. */ 5170 return 0; 5171 } 5172 if( pFrom->fg.notCte ){ 5173 /* The FROM term is specifically excluded from matching a CTE. 5174 ** (1) It is part of a trigger that used to have zDatabase but had 5175 ** zDatabase removed by sqlite3FixTriggerStep(). 5176 ** (2) This is the first term in the FROM clause of an UPDATE. 5177 */ 5178 return 0; 5179 } 5180 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5181 if( pCte ){ 5182 sqlite3 *db = pParse->db; 5183 Table *pTab; 5184 ExprList *pEList; 5185 Select *pSel; 5186 Select *pLeft; /* Left-most SELECT statement */ 5187 Select *pRecTerm; /* Left-most recursive term */ 5188 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5189 With *pSavedWith; /* Initial value of pParse->pWith */ 5190 int iRecTab = -1; /* Cursor for recursive table */ 5191 CteUse *pCteUse; 5192 5193 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5194 ** recursive reference to CTE pCte. Leave an error in pParse and return 5195 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5196 ** In this case, proceed. */ 5197 if( pCte->zCteErr ){ 5198 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5199 return 2; 5200 } 5201 if( cannotBeFunction(pParse, pFrom) ) return 2; 5202 5203 assert( pFrom->pTab==0 ); 5204 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5205 if( pTab==0 ) return 2; 5206 pCteUse = pCte->pUse; 5207 if( pCteUse==0 ){ 5208 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5209 if( pCteUse==0 5210 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5211 ){ 5212 sqlite3DbFree(db, pTab); 5213 return 2; 5214 } 5215 pCteUse->eM10d = pCte->eM10d; 5216 } 5217 pFrom->pTab = pTab; 5218 pTab->nTabRef = 1; 5219 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5220 pTab->iPKey = -1; 5221 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5222 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5223 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5224 if( db->mallocFailed ) return 2; 5225 pFrom->pSelect->selFlags |= SF_CopyCte; 5226 assert( pFrom->pSelect ); 5227 pFrom->fg.isCte = 1; 5228 pFrom->u2.pCteUse = pCteUse; 5229 pCteUse->nUse++; 5230 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5231 pCteUse->eM10d = M10d_Yes; 5232 } 5233 5234 /* Check if this is a recursive CTE. */ 5235 pRecTerm = pSel = pFrom->pSelect; 5236 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5237 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5238 int i; 5239 SrcList *pSrc = pRecTerm->pSrc; 5240 assert( pRecTerm->pPrior!=0 ); 5241 for(i=0; i<pSrc->nSrc; i++){ 5242 SrcItem *pItem = &pSrc->a[i]; 5243 if( pItem->zDatabase==0 5244 && pItem->zName!=0 5245 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5246 ){ 5247 pItem->pTab = pTab; 5248 pTab->nTabRef++; 5249 pItem->fg.isRecursive = 1; 5250 if( pRecTerm->selFlags & SF_Recursive ){ 5251 sqlite3ErrorMsg(pParse, 5252 "multiple references to recursive table: %s", pCte->zName 5253 ); 5254 return 2; 5255 } 5256 pRecTerm->selFlags |= SF_Recursive; 5257 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5258 pItem->iCursor = iRecTab; 5259 } 5260 } 5261 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5262 pRecTerm = pRecTerm->pPrior; 5263 } 5264 5265 pCte->zCteErr = "circular reference: %s"; 5266 pSavedWith = pParse->pWith; 5267 pParse->pWith = pWith; 5268 if( pSel->selFlags & SF_Recursive ){ 5269 int rc; 5270 assert( pRecTerm!=0 ); 5271 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5272 assert( pRecTerm->pNext!=0 ); 5273 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5274 assert( pRecTerm->pWith==0 ); 5275 pRecTerm->pWith = pSel->pWith; 5276 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5277 pRecTerm->pWith = 0; 5278 if( rc ){ 5279 pParse->pWith = pSavedWith; 5280 return 2; 5281 } 5282 }else{ 5283 if( sqlite3WalkSelect(pWalker, pSel) ){ 5284 pParse->pWith = pSavedWith; 5285 return 2; 5286 } 5287 } 5288 pParse->pWith = pWith; 5289 5290 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5291 pEList = pLeft->pEList; 5292 if( pCte->pCols ){ 5293 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5294 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5295 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5296 ); 5297 pParse->pWith = pSavedWith; 5298 return 2; 5299 } 5300 pEList = pCte->pCols; 5301 } 5302 5303 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5304 if( bMayRecursive ){ 5305 if( pSel->selFlags & SF_Recursive ){ 5306 pCte->zCteErr = "multiple recursive references: %s"; 5307 }else{ 5308 pCte->zCteErr = "recursive reference in a subquery: %s"; 5309 } 5310 sqlite3WalkSelect(pWalker, pSel); 5311 } 5312 pCte->zCteErr = 0; 5313 pParse->pWith = pSavedWith; 5314 return 1; /* Success */ 5315 } 5316 return 0; /* No match */ 5317 } 5318 #endif 5319 5320 #ifndef SQLITE_OMIT_CTE 5321 /* 5322 ** If the SELECT passed as the second argument has an associated WITH 5323 ** clause, pop it from the stack stored as part of the Parse object. 5324 ** 5325 ** This function is used as the xSelectCallback2() callback by 5326 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5327 ** names and other FROM clause elements. 5328 */ 5329 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5330 Parse *pParse = pWalker->pParse; 5331 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5332 With *pWith = findRightmost(p)->pWith; 5333 if( pWith!=0 ){ 5334 assert( pParse->pWith==pWith || pParse->nErr ); 5335 pParse->pWith = pWith->pOuter; 5336 } 5337 } 5338 } 5339 #endif 5340 5341 /* 5342 ** The SrcList_item structure passed as the second argument represents a 5343 ** sub-query in the FROM clause of a SELECT statement. This function 5344 ** allocates and populates the SrcList_item.pTab object. If successful, 5345 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5346 ** SQLITE_NOMEM. 5347 */ 5348 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5349 Select *pSel = pFrom->pSelect; 5350 Table *pTab; 5351 5352 assert( pSel ); 5353 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5354 if( pTab==0 ) return SQLITE_NOMEM; 5355 pTab->nTabRef = 1; 5356 if( pFrom->zAlias ){ 5357 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5358 }else{ 5359 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5360 } 5361 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5362 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5363 pTab->iPKey = -1; 5364 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5365 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5366 /* The usual case - do not allow ROWID on a subquery */ 5367 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5368 #else 5369 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5370 #endif 5371 5372 5373 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5374 } 5375 5376 /* 5377 ** This routine is a Walker callback for "expanding" a SELECT statement. 5378 ** "Expanding" means to do the following: 5379 ** 5380 ** (1) Make sure VDBE cursor numbers have been assigned to every 5381 ** element of the FROM clause. 5382 ** 5383 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5384 ** defines FROM clause. When views appear in the FROM clause, 5385 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5386 ** that implements the view. A copy is made of the view's SELECT 5387 ** statement so that we can freely modify or delete that statement 5388 ** without worrying about messing up the persistent representation 5389 ** of the view. 5390 ** 5391 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5392 ** on joins and the ON and USING clause of joins. 5393 ** 5394 ** (4) Scan the list of columns in the result set (pEList) looking 5395 ** for instances of the "*" operator or the TABLE.* operator. 5396 ** If found, expand each "*" to be every column in every table 5397 ** and TABLE.* to be every column in TABLE. 5398 ** 5399 */ 5400 static int selectExpander(Walker *pWalker, Select *p){ 5401 Parse *pParse = pWalker->pParse; 5402 int i, j, k, rc; 5403 SrcList *pTabList; 5404 ExprList *pEList; 5405 SrcItem *pFrom; 5406 sqlite3 *db = pParse->db; 5407 Expr *pE, *pRight, *pExpr; 5408 u16 selFlags = p->selFlags; 5409 u32 elistFlags = 0; 5410 5411 p->selFlags |= SF_Expanded; 5412 if( db->mallocFailed ){ 5413 return WRC_Abort; 5414 } 5415 assert( p->pSrc!=0 ); 5416 if( (selFlags & SF_Expanded)!=0 ){ 5417 return WRC_Prune; 5418 } 5419 if( pWalker->eCode ){ 5420 /* Renumber selId because it has been copied from a view */ 5421 p->selId = ++pParse->nSelect; 5422 } 5423 pTabList = p->pSrc; 5424 pEList = p->pEList; 5425 if( pParse->pWith && (p->selFlags & SF_View) ){ 5426 if( p->pWith==0 ){ 5427 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5428 if( p->pWith==0 ){ 5429 return WRC_Abort; 5430 } 5431 } 5432 p->pWith->bView = 1; 5433 } 5434 sqlite3WithPush(pParse, p->pWith, 0); 5435 5436 /* Make sure cursor numbers have been assigned to all entries in 5437 ** the FROM clause of the SELECT statement. 5438 */ 5439 sqlite3SrcListAssignCursors(pParse, pTabList); 5440 5441 /* Look up every table named in the FROM clause of the select. If 5442 ** an entry of the FROM clause is a subquery instead of a table or view, 5443 ** then create a transient table structure to describe the subquery. 5444 */ 5445 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5446 Table *pTab; 5447 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5448 if( pFrom->pTab ) continue; 5449 assert( pFrom->fg.isRecursive==0 ); 5450 if( pFrom->zName==0 ){ 5451 #ifndef SQLITE_OMIT_SUBQUERY 5452 Select *pSel = pFrom->pSelect; 5453 /* A sub-query in the FROM clause of a SELECT */ 5454 assert( pSel!=0 ); 5455 assert( pFrom->pTab==0 ); 5456 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5457 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5458 #endif 5459 #ifndef SQLITE_OMIT_CTE 5460 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5461 if( rc>1 ) return WRC_Abort; 5462 pTab = pFrom->pTab; 5463 assert( pTab!=0 ); 5464 #endif 5465 }else{ 5466 /* An ordinary table or view name in the FROM clause */ 5467 assert( pFrom->pTab==0 ); 5468 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5469 if( pTab==0 ) return WRC_Abort; 5470 if( pTab->nTabRef>=0xffff ){ 5471 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5472 pTab->zName); 5473 pFrom->pTab = 0; 5474 return WRC_Abort; 5475 } 5476 pTab->nTabRef++; 5477 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5478 return WRC_Abort; 5479 } 5480 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5481 if( !IsOrdinaryTable(pTab) ){ 5482 i16 nCol; 5483 u8 eCodeOrig = pWalker->eCode; 5484 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5485 assert( pFrom->pSelect==0 ); 5486 if( IsView(pTab) ){ 5487 if( (db->flags & SQLITE_EnableView)==0 5488 && pTab->pSchema!=db->aDb[1].pSchema 5489 ){ 5490 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5491 pTab->zName); 5492 } 5493 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5494 }else 5495 #ifndef SQLITE_OMIT_VIRTUALTABLE 5496 if( ALWAYS(IsVirtual(pTab)) 5497 && pFrom->fg.fromDDL 5498 && ALWAYS(pTab->u.vtab.p!=0) 5499 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5500 ){ 5501 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5502 pTab->zName); 5503 } 5504 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5505 #endif 5506 nCol = pTab->nCol; 5507 pTab->nCol = -1; 5508 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5509 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5510 pWalker->eCode = eCodeOrig; 5511 pTab->nCol = nCol; 5512 } 5513 #endif 5514 } 5515 5516 /* Locate the index named by the INDEXED BY clause, if any. */ 5517 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5518 return WRC_Abort; 5519 } 5520 } 5521 5522 /* Process NATURAL keywords, and ON and USING clauses of joins. 5523 */ 5524 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5525 return WRC_Abort; 5526 } 5527 5528 /* For every "*" that occurs in the column list, insert the names of 5529 ** all columns in all tables. And for every TABLE.* insert the names 5530 ** of all columns in TABLE. The parser inserted a special expression 5531 ** with the TK_ASTERISK operator for each "*" that it found in the column 5532 ** list. The following code just has to locate the TK_ASTERISK 5533 ** expressions and expand each one to the list of all columns in 5534 ** all tables. 5535 ** 5536 ** The first loop just checks to see if there are any "*" operators 5537 ** that need expanding. 5538 */ 5539 for(k=0; k<pEList->nExpr; k++){ 5540 pE = pEList->a[k].pExpr; 5541 if( pE->op==TK_ASTERISK ) break; 5542 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5543 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5544 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5545 elistFlags |= pE->flags; 5546 } 5547 if( k<pEList->nExpr ){ 5548 /* 5549 ** If we get here it means the result set contains one or more "*" 5550 ** operators that need to be expanded. Loop through each expression 5551 ** in the result set and expand them one by one. 5552 */ 5553 struct ExprList_item *a = pEList->a; 5554 ExprList *pNew = 0; 5555 int flags = pParse->db->flags; 5556 int longNames = (flags & SQLITE_FullColNames)!=0 5557 && (flags & SQLITE_ShortColNames)==0; 5558 5559 for(k=0; k<pEList->nExpr; k++){ 5560 pE = a[k].pExpr; 5561 elistFlags |= pE->flags; 5562 pRight = pE->pRight; 5563 assert( pE->op!=TK_DOT || pRight!=0 ); 5564 if( pE->op!=TK_ASTERISK 5565 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5566 ){ 5567 /* This particular expression does not need to be expanded. 5568 */ 5569 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5570 if( pNew ){ 5571 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5572 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5573 a[k].zEName = 0; 5574 } 5575 a[k].pExpr = 0; 5576 }else{ 5577 /* This expression is a "*" or a "TABLE.*" and needs to be 5578 ** expanded. */ 5579 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5580 char *zTName = 0; /* text of name of TABLE */ 5581 if( pE->op==TK_DOT ){ 5582 assert( pE->pLeft!=0 ); 5583 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5584 zTName = pE->pLeft->u.zToken; 5585 } 5586 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5587 Table *pTab = pFrom->pTab; 5588 Select *pSub = pFrom->pSelect; 5589 char *zTabName = pFrom->zAlias; 5590 const char *zSchemaName = 0; 5591 int iDb; 5592 if( zTabName==0 ){ 5593 zTabName = pTab->zName; 5594 } 5595 if( db->mallocFailed ) break; 5596 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5597 pSub = 0; 5598 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5599 continue; 5600 } 5601 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5602 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5603 } 5604 for(j=0; j<pTab->nCol; j++){ 5605 char *zName = pTab->aCol[j].zCnName; 5606 char *zColname; /* The computed column name */ 5607 char *zToFree; /* Malloced string that needs to be freed */ 5608 Token sColname; /* Computed column name as a token */ 5609 5610 assert( zName ); 5611 if( zTName && pSub 5612 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5613 ){ 5614 continue; 5615 } 5616 5617 /* If a column is marked as 'hidden', omit it from the expanded 5618 ** result-set list unless the SELECT has the SF_IncludeHidden 5619 ** bit set. 5620 */ 5621 if( (p->selFlags & SF_IncludeHidden)==0 5622 && IsHiddenColumn(&pTab->aCol[j]) 5623 ){ 5624 continue; 5625 } 5626 tableSeen = 1; 5627 5628 if( i>0 && zTName==0 ){ 5629 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5630 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5631 ){ 5632 /* In a NATURAL join, omit the join columns from the 5633 ** table to the right of the join */ 5634 continue; 5635 } 5636 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5637 /* In a join with a USING clause, omit columns in the 5638 ** using clause from the table on the right. */ 5639 continue; 5640 } 5641 } 5642 pRight = sqlite3Expr(db, TK_ID, zName); 5643 zColname = zName; 5644 zToFree = 0; 5645 if( longNames || pTabList->nSrc>1 ){ 5646 Expr *pLeft; 5647 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5648 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5649 if( zSchemaName ){ 5650 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5651 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5652 } 5653 if( longNames ){ 5654 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5655 zToFree = zColname; 5656 } 5657 }else{ 5658 pExpr = pRight; 5659 } 5660 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5661 sqlite3TokenInit(&sColname, zColname); 5662 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5663 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5664 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5665 sqlite3DbFree(db, pX->zEName); 5666 if( pSub ){ 5667 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5668 testcase( pX->zEName==0 ); 5669 }else{ 5670 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5671 zSchemaName, zTabName, zColname); 5672 testcase( pX->zEName==0 ); 5673 } 5674 pX->eEName = ENAME_TAB; 5675 } 5676 sqlite3DbFree(db, zToFree); 5677 } 5678 } 5679 if( !tableSeen ){ 5680 if( zTName ){ 5681 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5682 }else{ 5683 sqlite3ErrorMsg(pParse, "no tables specified"); 5684 } 5685 } 5686 } 5687 } 5688 sqlite3ExprListDelete(db, pEList); 5689 p->pEList = pNew; 5690 } 5691 if( p->pEList ){ 5692 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5693 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5694 return WRC_Abort; 5695 } 5696 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5697 p->selFlags |= SF_ComplexResult; 5698 } 5699 } 5700 return WRC_Continue; 5701 } 5702 5703 #if SQLITE_DEBUG 5704 /* 5705 ** Always assert. This xSelectCallback2 implementation proves that the 5706 ** xSelectCallback2 is never invoked. 5707 */ 5708 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5709 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5710 assert( 0 ); 5711 } 5712 #endif 5713 /* 5714 ** This routine "expands" a SELECT statement and all of its subqueries. 5715 ** For additional information on what it means to "expand" a SELECT 5716 ** statement, see the comment on the selectExpand worker callback above. 5717 ** 5718 ** Expanding a SELECT statement is the first step in processing a 5719 ** SELECT statement. The SELECT statement must be expanded before 5720 ** name resolution is performed. 5721 ** 5722 ** If anything goes wrong, an error message is written into pParse. 5723 ** The calling function can detect the problem by looking at pParse->nErr 5724 ** and/or pParse->db->mallocFailed. 5725 */ 5726 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5727 Walker w; 5728 w.xExprCallback = sqlite3ExprWalkNoop; 5729 w.pParse = pParse; 5730 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5731 w.xSelectCallback = convertCompoundSelectToSubquery; 5732 w.xSelectCallback2 = 0; 5733 sqlite3WalkSelect(&w, pSelect); 5734 } 5735 w.xSelectCallback = selectExpander; 5736 w.xSelectCallback2 = sqlite3SelectPopWith; 5737 w.eCode = 0; 5738 sqlite3WalkSelect(&w, pSelect); 5739 } 5740 5741 5742 #ifndef SQLITE_OMIT_SUBQUERY 5743 /* 5744 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5745 ** interface. 5746 ** 5747 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5748 ** information to the Table structure that represents the result set 5749 ** of that subquery. 5750 ** 5751 ** The Table structure that represents the result set was constructed 5752 ** by selectExpander() but the type and collation information was omitted 5753 ** at that point because identifiers had not yet been resolved. This 5754 ** routine is called after identifier resolution. 5755 */ 5756 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5757 Parse *pParse; 5758 int i; 5759 SrcList *pTabList; 5760 SrcItem *pFrom; 5761 5762 assert( p->selFlags & SF_Resolved ); 5763 if( p->selFlags & SF_HasTypeInfo ) return; 5764 p->selFlags |= SF_HasTypeInfo; 5765 pParse = pWalker->pParse; 5766 pTabList = p->pSrc; 5767 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5768 Table *pTab = pFrom->pTab; 5769 assert( pTab!=0 ); 5770 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5771 /* A sub-query in the FROM clause of a SELECT */ 5772 Select *pSel = pFrom->pSelect; 5773 if( pSel ){ 5774 while( pSel->pPrior ) pSel = pSel->pPrior; 5775 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5776 SQLITE_AFF_NONE); 5777 } 5778 } 5779 } 5780 } 5781 #endif 5782 5783 5784 /* 5785 ** This routine adds datatype and collating sequence information to 5786 ** the Table structures of all FROM-clause subqueries in a 5787 ** SELECT statement. 5788 ** 5789 ** Use this routine after name resolution. 5790 */ 5791 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5792 #ifndef SQLITE_OMIT_SUBQUERY 5793 Walker w; 5794 w.xSelectCallback = sqlite3SelectWalkNoop; 5795 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5796 w.xExprCallback = sqlite3ExprWalkNoop; 5797 w.pParse = pParse; 5798 sqlite3WalkSelect(&w, pSelect); 5799 #endif 5800 } 5801 5802 5803 /* 5804 ** This routine sets up a SELECT statement for processing. The 5805 ** following is accomplished: 5806 ** 5807 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5808 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5809 ** * ON and USING clauses are shifted into WHERE statements 5810 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5811 ** * Identifiers in expression are matched to tables. 5812 ** 5813 ** This routine acts recursively on all subqueries within the SELECT. 5814 */ 5815 void sqlite3SelectPrep( 5816 Parse *pParse, /* The parser context */ 5817 Select *p, /* The SELECT statement being coded. */ 5818 NameContext *pOuterNC /* Name context for container */ 5819 ){ 5820 assert( p!=0 || pParse->db->mallocFailed ); 5821 if( pParse->db->mallocFailed ) return; 5822 if( p->selFlags & SF_HasTypeInfo ) return; 5823 sqlite3SelectExpand(pParse, p); 5824 if( pParse->nErr || pParse->db->mallocFailed ) return; 5825 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5826 if( pParse->nErr || pParse->db->mallocFailed ) return; 5827 sqlite3SelectAddTypeInfo(pParse, p); 5828 } 5829 5830 /* 5831 ** Reset the aggregate accumulator. 5832 ** 5833 ** The aggregate accumulator is a set of memory cells that hold 5834 ** intermediate results while calculating an aggregate. This 5835 ** routine generates code that stores NULLs in all of those memory 5836 ** cells. 5837 */ 5838 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5839 Vdbe *v = pParse->pVdbe; 5840 int i; 5841 struct AggInfo_func *pFunc; 5842 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5843 if( nReg==0 ) return; 5844 if( pParse->nErr || pParse->db->mallocFailed ) return; 5845 #ifdef SQLITE_DEBUG 5846 /* Verify that all AggInfo registers are within the range specified by 5847 ** AggInfo.mnReg..AggInfo.mxReg */ 5848 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5849 for(i=0; i<pAggInfo->nColumn; i++){ 5850 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5851 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5852 } 5853 for(i=0; i<pAggInfo->nFunc; i++){ 5854 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5855 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5856 } 5857 #endif 5858 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5859 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5860 if( pFunc->iDistinct>=0 ){ 5861 Expr *pE = pFunc->pFExpr; 5862 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5863 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5864 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5865 "argument"); 5866 pFunc->iDistinct = -1; 5867 }else{ 5868 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5869 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5870 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5871 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5872 pFunc->pFunc->zName)); 5873 } 5874 } 5875 } 5876 } 5877 5878 /* 5879 ** Invoke the OP_AggFinalize opcode for every aggregate function 5880 ** in the AggInfo structure. 5881 */ 5882 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5883 Vdbe *v = pParse->pVdbe; 5884 int i; 5885 struct AggInfo_func *pF; 5886 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5887 ExprList *pList = pF->pFExpr->x.pList; 5888 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5889 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5890 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5891 } 5892 } 5893 5894 5895 /* 5896 ** Update the accumulator memory cells for an aggregate based on 5897 ** the current cursor position. 5898 ** 5899 ** If regAcc is non-zero and there are no min() or max() aggregates 5900 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5901 ** registers if register regAcc contains 0. The caller will take care 5902 ** of setting and clearing regAcc. 5903 */ 5904 static void updateAccumulator( 5905 Parse *pParse, 5906 int regAcc, 5907 AggInfo *pAggInfo, 5908 int eDistinctType 5909 ){ 5910 Vdbe *v = pParse->pVdbe; 5911 int i; 5912 int regHit = 0; 5913 int addrHitTest = 0; 5914 struct AggInfo_func *pF; 5915 struct AggInfo_col *pC; 5916 5917 pAggInfo->directMode = 1; 5918 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5919 int nArg; 5920 int addrNext = 0; 5921 int regAgg; 5922 ExprList *pList = pF->pFExpr->x.pList; 5923 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5924 assert( !IsWindowFunc(pF->pFExpr) ); 5925 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5926 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5927 if( pAggInfo->nAccumulator 5928 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5929 && regAcc 5930 ){ 5931 /* If regAcc==0, there there exists some min() or max() function 5932 ** without a FILTER clause that will ensure the magnet registers 5933 ** are populated. */ 5934 if( regHit==0 ) regHit = ++pParse->nMem; 5935 /* If this is the first row of the group (regAcc contains 0), clear the 5936 ** "magnet" register regHit so that the accumulator registers 5937 ** are populated if the FILTER clause jumps over the the 5938 ** invocation of min() or max() altogether. Or, if this is not 5939 ** the first row (regAcc contains 1), set the magnet register so that 5940 ** the accumulators are not populated unless the min()/max() is invoked 5941 ** and indicates that they should be. */ 5942 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5943 } 5944 addrNext = sqlite3VdbeMakeLabel(pParse); 5945 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5946 } 5947 if( pList ){ 5948 nArg = pList->nExpr; 5949 regAgg = sqlite3GetTempRange(pParse, nArg); 5950 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5951 }else{ 5952 nArg = 0; 5953 regAgg = 0; 5954 } 5955 if( pF->iDistinct>=0 && pList ){ 5956 if( addrNext==0 ){ 5957 addrNext = sqlite3VdbeMakeLabel(pParse); 5958 } 5959 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5960 pF->iDistinct, addrNext, pList, regAgg); 5961 } 5962 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5963 CollSeq *pColl = 0; 5964 struct ExprList_item *pItem; 5965 int j; 5966 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5967 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5968 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5969 } 5970 if( !pColl ){ 5971 pColl = pParse->db->pDfltColl; 5972 } 5973 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5974 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5975 } 5976 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5977 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5978 sqlite3VdbeChangeP5(v, (u8)nArg); 5979 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5980 if( addrNext ){ 5981 sqlite3VdbeResolveLabel(v, addrNext); 5982 } 5983 } 5984 if( regHit==0 && pAggInfo->nAccumulator ){ 5985 regHit = regAcc; 5986 } 5987 if( regHit ){ 5988 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5989 } 5990 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5991 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5992 } 5993 5994 pAggInfo->directMode = 0; 5995 if( addrHitTest ){ 5996 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5997 } 5998 } 5999 6000 /* 6001 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6002 ** count(*) query ("SELECT count(*) FROM pTab"). 6003 */ 6004 #ifndef SQLITE_OMIT_EXPLAIN 6005 static void explainSimpleCount( 6006 Parse *pParse, /* Parse context */ 6007 Table *pTab, /* Table being queried */ 6008 Index *pIdx /* Index used to optimize scan, or NULL */ 6009 ){ 6010 if( pParse->explain==2 ){ 6011 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6012 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6013 pTab->zName, 6014 bCover ? " USING COVERING INDEX " : "", 6015 bCover ? pIdx->zName : "" 6016 ); 6017 } 6018 } 6019 #else 6020 # define explainSimpleCount(a,b,c) 6021 #endif 6022 6023 /* 6024 ** sqlite3WalkExpr() callback used by havingToWhere(). 6025 ** 6026 ** If the node passed to the callback is a TK_AND node, return 6027 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6028 ** 6029 ** Otherwise, return WRC_Prune. In this case, also check if the 6030 ** sub-expression matches the criteria for being moved to the WHERE 6031 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6032 ** within the HAVING expression with a constant "1". 6033 */ 6034 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6035 if( pExpr->op!=TK_AND ){ 6036 Select *pS = pWalker->u.pSelect; 6037 /* This routine is called before the HAVING clause of the current 6038 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6039 ** here, it indicates that the expression is a correlated reference to a 6040 ** column from an outer aggregate query, or an aggregate function that 6041 ** belongs to an outer query. Do not move the expression to the WHERE 6042 ** clause in this obscure case, as doing so may corrupt the outer Select 6043 ** statements AggInfo structure. */ 6044 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6045 && ExprAlwaysFalse(pExpr)==0 6046 && pExpr->pAggInfo==0 6047 ){ 6048 sqlite3 *db = pWalker->pParse->db; 6049 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6050 if( pNew ){ 6051 Expr *pWhere = pS->pWhere; 6052 SWAP(Expr, *pNew, *pExpr); 6053 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6054 pS->pWhere = pNew; 6055 pWalker->eCode = 1; 6056 } 6057 } 6058 return WRC_Prune; 6059 } 6060 return WRC_Continue; 6061 } 6062 6063 /* 6064 ** Transfer eligible terms from the HAVING clause of a query, which is 6065 ** processed after grouping, to the WHERE clause, which is processed before 6066 ** grouping. For example, the query: 6067 ** 6068 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6069 ** 6070 ** can be rewritten as: 6071 ** 6072 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6073 ** 6074 ** A term of the HAVING expression is eligible for transfer if it consists 6075 ** entirely of constants and expressions that are also GROUP BY terms that 6076 ** use the "BINARY" collation sequence. 6077 */ 6078 static void havingToWhere(Parse *pParse, Select *p){ 6079 Walker sWalker; 6080 memset(&sWalker, 0, sizeof(sWalker)); 6081 sWalker.pParse = pParse; 6082 sWalker.xExprCallback = havingToWhereExprCb; 6083 sWalker.u.pSelect = p; 6084 sqlite3WalkExpr(&sWalker, p->pHaving); 6085 #if SELECTTRACE_ENABLED 6086 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 6087 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6088 sqlite3TreeViewSelect(0, p, 0); 6089 } 6090 #endif 6091 } 6092 6093 /* 6094 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6095 ** If it is, then return the SrcList_item for the prior view. If it is not, 6096 ** then return 0. 6097 */ 6098 static SrcItem *isSelfJoinView( 6099 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6100 SrcItem *pThis /* Search for prior reference to this subquery */ 6101 ){ 6102 SrcItem *pItem; 6103 assert( pThis->pSelect!=0 ); 6104 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6105 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6106 Select *pS1; 6107 if( pItem->pSelect==0 ) continue; 6108 if( pItem->fg.viaCoroutine ) continue; 6109 if( pItem->zName==0 ) continue; 6110 assert( pItem->pTab!=0 ); 6111 assert( pThis->pTab!=0 ); 6112 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6113 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6114 pS1 = pItem->pSelect; 6115 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6116 /* The query flattener left two different CTE tables with identical 6117 ** names in the same FROM clause. */ 6118 continue; 6119 } 6120 if( pItem->pSelect->selFlags & SF_PushDown ){ 6121 /* The view was modified by some other optimization such as 6122 ** pushDownWhereTerms() */ 6123 continue; 6124 } 6125 return pItem; 6126 } 6127 return 0; 6128 } 6129 6130 /* 6131 ** Deallocate a single AggInfo object 6132 */ 6133 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6134 sqlite3DbFree(db, p->aCol); 6135 sqlite3DbFree(db, p->aFunc); 6136 sqlite3DbFreeNN(db, p); 6137 } 6138 6139 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6140 /* 6141 ** Attempt to transform a query of the form 6142 ** 6143 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6144 ** 6145 ** Into this: 6146 ** 6147 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6148 ** 6149 ** The transformation only works if all of the following are true: 6150 ** 6151 ** * The subquery is a UNION ALL of two or more terms 6152 ** * The subquery does not have a LIMIT clause 6153 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6154 ** * The outer query is a simple count(*) with no WHERE clause or other 6155 ** extraneous syntax. 6156 ** 6157 ** Return TRUE if the optimization is undertaken. 6158 */ 6159 static int countOfViewOptimization(Parse *pParse, Select *p){ 6160 Select *pSub, *pPrior; 6161 Expr *pExpr; 6162 Expr *pCount; 6163 sqlite3 *db; 6164 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6165 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6166 if( p->pWhere ) return 0; 6167 if( p->pGroupBy ) return 0; 6168 pExpr = p->pEList->a[0].pExpr; 6169 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6170 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6171 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6172 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6173 pSub = p->pSrc->a[0].pSelect; 6174 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6175 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6176 do{ 6177 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6178 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6179 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6180 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6181 pSub = pSub->pPrior; /* Repeat over compound */ 6182 }while( pSub ); 6183 6184 /* If we reach this point then it is OK to perform the transformation */ 6185 6186 db = pParse->db; 6187 pCount = pExpr; 6188 pExpr = 0; 6189 pSub = p->pSrc->a[0].pSelect; 6190 p->pSrc->a[0].pSelect = 0; 6191 sqlite3SrcListDelete(db, p->pSrc); 6192 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6193 while( pSub ){ 6194 Expr *pTerm; 6195 pPrior = pSub->pPrior; 6196 pSub->pPrior = 0; 6197 pSub->pNext = 0; 6198 pSub->selFlags |= SF_Aggregate; 6199 pSub->selFlags &= ~SF_Compound; 6200 pSub->nSelectRow = 0; 6201 sqlite3ExprListDelete(db, pSub->pEList); 6202 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6203 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6204 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6205 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6206 if( pExpr==0 ){ 6207 pExpr = pTerm; 6208 }else{ 6209 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6210 } 6211 pSub = pPrior; 6212 } 6213 p->pEList->a[0].pExpr = pExpr; 6214 p->selFlags &= ~SF_Aggregate; 6215 6216 #if SELECTTRACE_ENABLED 6217 if( sqlite3SelectTrace & 0x400 ){ 6218 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6219 sqlite3TreeViewSelect(0, p, 0); 6220 } 6221 #endif 6222 return 1; 6223 } 6224 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6225 6226 /* 6227 ** Generate code for the SELECT statement given in the p argument. 6228 ** 6229 ** The results are returned according to the SelectDest structure. 6230 ** See comments in sqliteInt.h for further information. 6231 ** 6232 ** This routine returns the number of errors. If any errors are 6233 ** encountered, then an appropriate error message is left in 6234 ** pParse->zErrMsg. 6235 ** 6236 ** This routine does NOT free the Select structure passed in. The 6237 ** calling function needs to do that. 6238 */ 6239 int sqlite3Select( 6240 Parse *pParse, /* The parser context */ 6241 Select *p, /* The SELECT statement being coded. */ 6242 SelectDest *pDest /* What to do with the query results */ 6243 ){ 6244 int i, j; /* Loop counters */ 6245 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6246 Vdbe *v; /* The virtual machine under construction */ 6247 int isAgg; /* True for select lists like "count(*)" */ 6248 ExprList *pEList = 0; /* List of columns to extract. */ 6249 SrcList *pTabList; /* List of tables to select from */ 6250 Expr *pWhere; /* The WHERE clause. May be NULL */ 6251 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6252 Expr *pHaving; /* The HAVING clause. May be NULL */ 6253 AggInfo *pAggInfo = 0; /* Aggregate information */ 6254 int rc = 1; /* Value to return from this function */ 6255 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6256 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6257 int iEnd; /* Address of the end of the query */ 6258 sqlite3 *db; /* The database connection */ 6259 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6260 u8 minMaxFlag; /* Flag for min/max queries */ 6261 6262 db = pParse->db; 6263 v = sqlite3GetVdbe(pParse); 6264 if( p==0 || db->mallocFailed || pParse->nErr ){ 6265 return 1; 6266 } 6267 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6268 #if SELECTTRACE_ENABLED 6269 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6270 if( sqlite3SelectTrace & 0x100 ){ 6271 sqlite3TreeViewSelect(0, p, 0); 6272 } 6273 #endif 6274 6275 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6276 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6277 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6278 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6279 if( IgnorableDistinct(pDest) ){ 6280 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6281 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6282 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6283 /* All of these destinations are also able to ignore the ORDER BY clause */ 6284 if( p->pOrderBy ){ 6285 #if SELECTTRACE_ENABLED 6286 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6287 if( sqlite3SelectTrace & 0x100 ){ 6288 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6289 } 6290 #endif 6291 sqlite3ParserAddCleanup(pParse, 6292 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6293 p->pOrderBy); 6294 testcase( pParse->earlyCleanup ); 6295 p->pOrderBy = 0; 6296 } 6297 p->selFlags &= ~SF_Distinct; 6298 p->selFlags |= SF_NoopOrderBy; 6299 } 6300 sqlite3SelectPrep(pParse, p, 0); 6301 if( pParse->nErr || db->mallocFailed ){ 6302 goto select_end; 6303 } 6304 assert( p->pEList!=0 ); 6305 #if SELECTTRACE_ENABLED 6306 if( sqlite3SelectTrace & 0x104 ){ 6307 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6308 sqlite3TreeViewSelect(0, p, 0); 6309 } 6310 #endif 6311 6312 /* If the SF_UFSrcCheck flag is set, then this function is being called 6313 ** as part of populating the temp table for an UPDATE...FROM statement. 6314 ** In this case, it is an error if the target object (pSrc->a[0]) name 6315 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6316 ** 6317 ** Postgres disallows this case too. The reason is that some other 6318 ** systems handle this case differently, and not all the same way, 6319 ** which is just confusing. To avoid this, we follow PG's lead and 6320 ** disallow it altogether. */ 6321 if( p->selFlags & SF_UFSrcCheck ){ 6322 SrcItem *p0 = &p->pSrc->a[0]; 6323 for(i=1; i<p->pSrc->nSrc; i++){ 6324 SrcItem *p1 = &p->pSrc->a[i]; 6325 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6326 sqlite3ErrorMsg(pParse, 6327 "target object/alias may not appear in FROM clause: %s", 6328 p0->zAlias ? p0->zAlias : p0->pTab->zName 6329 ); 6330 goto select_end; 6331 } 6332 } 6333 6334 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6335 ** and leaving this flag set can cause errors if a compound sub-query 6336 ** in p->pSrc is flattened into this query and this function called 6337 ** again as part of compound SELECT processing. */ 6338 p->selFlags &= ~SF_UFSrcCheck; 6339 } 6340 6341 if( pDest->eDest==SRT_Output ){ 6342 sqlite3GenerateColumnNames(pParse, p); 6343 } 6344 6345 #ifndef SQLITE_OMIT_WINDOWFUNC 6346 if( sqlite3WindowRewrite(pParse, p) ){ 6347 assert( db->mallocFailed || pParse->nErr>0 ); 6348 goto select_end; 6349 } 6350 #if SELECTTRACE_ENABLED 6351 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6352 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6353 sqlite3TreeViewSelect(0, p, 0); 6354 } 6355 #endif 6356 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6357 pTabList = p->pSrc; 6358 isAgg = (p->selFlags & SF_Aggregate)!=0; 6359 memset(&sSort, 0, sizeof(sSort)); 6360 sSort.pOrderBy = p->pOrderBy; 6361 6362 /* Try to do various optimizations (flattening subqueries, and strength 6363 ** reduction of join operators) in the FROM clause up into the main query 6364 */ 6365 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6366 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6367 SrcItem *pItem = &pTabList->a[i]; 6368 Select *pSub = pItem->pSelect; 6369 Table *pTab = pItem->pTab; 6370 6371 /* The expander should have already created transient Table objects 6372 ** even for FROM clause elements such as subqueries that do not correspond 6373 ** to a real table */ 6374 assert( pTab!=0 ); 6375 6376 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6377 ** of the LEFT JOIN used in the WHERE clause. 6378 */ 6379 if( (pItem->fg.jointype & JT_LEFT)!=0 6380 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6381 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6382 ){ 6383 SELECTTRACE(0x100,pParse,p, 6384 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6385 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6386 unsetJoinExpr(p->pWhere, pItem->iCursor); 6387 } 6388 6389 /* No futher action if this term of the FROM clause is no a subquery */ 6390 if( pSub==0 ) continue; 6391 6392 /* Catch mismatch in the declared columns of a view and the number of 6393 ** columns in the SELECT on the RHS */ 6394 if( pTab->nCol!=pSub->pEList->nExpr ){ 6395 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6396 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6397 goto select_end; 6398 } 6399 6400 /* Do not try to flatten an aggregate subquery. 6401 ** 6402 ** Flattening an aggregate subquery is only possible if the outer query 6403 ** is not a join. But if the outer query is not a join, then the subquery 6404 ** will be implemented as a co-routine and there is no advantage to 6405 ** flattening in that case. 6406 */ 6407 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6408 assert( pSub->pGroupBy==0 ); 6409 6410 /* If a FROM-clause subquery has an ORDER BY clause that is not 6411 ** really doing anything, then delete it now so that it does not 6412 ** interfere with query flattening. See the discussion at 6413 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6414 ** 6415 ** Beware of these cases where the ORDER BY clause may not be safely 6416 ** omitted: 6417 ** 6418 ** (1) There is also a LIMIT clause 6419 ** (2) The subquery was added to help with window-function 6420 ** processing 6421 ** (3) The subquery is in the FROM clause of an UPDATE 6422 ** (4) The outer query uses an aggregate function other than 6423 ** the built-in count(), min(), or max(). 6424 ** (5) The ORDER BY isn't going to accomplish anything because 6425 ** one of: 6426 ** (a) The outer query has a different ORDER BY clause 6427 ** (b) The subquery is part of a join 6428 ** See forum post 062d576715d277c8 6429 */ 6430 if( pSub->pOrderBy!=0 6431 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6432 && pSub->pLimit==0 /* Condition (1) */ 6433 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6434 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6435 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6436 ){ 6437 SELECTTRACE(0x100,pParse,p, 6438 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6439 sqlite3ExprListDelete(db, pSub->pOrderBy); 6440 pSub->pOrderBy = 0; 6441 } 6442 6443 /* If the outer query contains a "complex" result set (that is, 6444 ** if the result set of the outer query uses functions or subqueries) 6445 ** and if the subquery contains an ORDER BY clause and if 6446 ** it will be implemented as a co-routine, then do not flatten. This 6447 ** restriction allows SQL constructs like this: 6448 ** 6449 ** SELECT expensive_function(x) 6450 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6451 ** 6452 ** The expensive_function() is only computed on the 10 rows that 6453 ** are output, rather than every row of the table. 6454 ** 6455 ** The requirement that the outer query have a complex result set 6456 ** means that flattening does occur on simpler SQL constraints without 6457 ** the expensive_function() like: 6458 ** 6459 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6460 */ 6461 if( pSub->pOrderBy!=0 6462 && i==0 6463 && (p->selFlags & SF_ComplexResult)!=0 6464 && (pTabList->nSrc==1 6465 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6466 ){ 6467 continue; 6468 } 6469 6470 if( flattenSubquery(pParse, p, i, isAgg) ){ 6471 if( pParse->nErr ) goto select_end; 6472 /* This subquery can be absorbed into its parent. */ 6473 i = -1; 6474 } 6475 pTabList = p->pSrc; 6476 if( db->mallocFailed ) goto select_end; 6477 if( !IgnorableOrderby(pDest) ){ 6478 sSort.pOrderBy = p->pOrderBy; 6479 } 6480 } 6481 #endif 6482 6483 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6484 /* Handle compound SELECT statements using the separate multiSelect() 6485 ** procedure. 6486 */ 6487 if( p->pPrior ){ 6488 rc = multiSelect(pParse, p, pDest); 6489 #if SELECTTRACE_ENABLED 6490 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6491 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6492 sqlite3TreeViewSelect(0, p, 0); 6493 } 6494 #endif 6495 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6496 return rc; 6497 } 6498 #endif 6499 6500 /* Do the WHERE-clause constant propagation optimization if this is 6501 ** a join. No need to speed time on this operation for non-join queries 6502 ** as the equivalent optimization will be handled by query planner in 6503 ** sqlite3WhereBegin(). 6504 */ 6505 if( p->pWhere!=0 6506 && p->pWhere->op==TK_AND 6507 && OptimizationEnabled(db, SQLITE_PropagateConst) 6508 && propagateConstants(pParse, p) 6509 ){ 6510 #if SELECTTRACE_ENABLED 6511 if( sqlite3SelectTrace & 0x100 ){ 6512 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6513 sqlite3TreeViewSelect(0, p, 0); 6514 } 6515 #endif 6516 }else{ 6517 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6518 } 6519 6520 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6521 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6522 && countOfViewOptimization(pParse, p) 6523 ){ 6524 if( db->mallocFailed ) goto select_end; 6525 pEList = p->pEList; 6526 pTabList = p->pSrc; 6527 } 6528 #endif 6529 6530 /* For each term in the FROM clause, do two things: 6531 ** (1) Authorized unreferenced tables 6532 ** (2) Generate code for all sub-queries 6533 */ 6534 for(i=0; i<pTabList->nSrc; i++){ 6535 SrcItem *pItem = &pTabList->a[i]; 6536 SrcItem *pPrior; 6537 SelectDest dest; 6538 Select *pSub; 6539 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6540 const char *zSavedAuthContext; 6541 #endif 6542 6543 /* Issue SQLITE_READ authorizations with a fake column name for any 6544 ** tables that are referenced but from which no values are extracted. 6545 ** Examples of where these kinds of null SQLITE_READ authorizations 6546 ** would occur: 6547 ** 6548 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6549 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6550 ** 6551 ** The fake column name is an empty string. It is possible for a table to 6552 ** have a column named by the empty string, in which case there is no way to 6553 ** distinguish between an unreferenced table and an actual reference to the 6554 ** "" column. The original design was for the fake column name to be a NULL, 6555 ** which would be unambiguous. But legacy authorization callbacks might 6556 ** assume the column name is non-NULL and segfault. The use of an empty 6557 ** string for the fake column name seems safer. 6558 */ 6559 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6560 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6561 } 6562 6563 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6564 /* Generate code for all sub-queries in the FROM clause 6565 */ 6566 pSub = pItem->pSelect; 6567 if( pSub==0 ) continue; 6568 6569 /* The code for a subquery should only be generated once. */ 6570 assert( pItem->addrFillSub==0 ); 6571 6572 /* Increment Parse.nHeight by the height of the largest expression 6573 ** tree referred to by this, the parent select. The child select 6574 ** may contain expression trees of at most 6575 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6576 ** more conservative than necessary, but much easier than enforcing 6577 ** an exact limit. 6578 */ 6579 pParse->nHeight += sqlite3SelectExprHeight(p); 6580 6581 /* Make copies of constant WHERE-clause terms in the outer query down 6582 ** inside the subquery. This can help the subquery to run more efficiently. 6583 */ 6584 if( OptimizationEnabled(db, SQLITE_PushDown) 6585 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) 6586 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6587 (pItem->fg.jointype & JT_OUTER)!=0) 6588 ){ 6589 #if SELECTTRACE_ENABLED 6590 if( sqlite3SelectTrace & 0x100 ){ 6591 SELECTTRACE(0x100,pParse,p, 6592 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6593 sqlite3TreeViewSelect(0, p, 0); 6594 } 6595 #endif 6596 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6597 }else{ 6598 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6599 } 6600 6601 zSavedAuthContext = pParse->zAuthContext; 6602 pParse->zAuthContext = pItem->zName; 6603 6604 /* Generate code to implement the subquery 6605 ** 6606 ** The subquery is implemented as a co-routine if: 6607 ** (1) the subquery is guaranteed to be the outer loop (so that 6608 ** it does not need to be computed more than once), and 6609 ** (2) the subquery is not a CTE that should be materialized 6610 ** 6611 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6612 ** implementation? 6613 */ 6614 if( i==0 6615 && (pTabList->nSrc==1 6616 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6617 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6618 ){ 6619 /* Implement a co-routine that will return a single row of the result 6620 ** set on each invocation. 6621 */ 6622 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6623 6624 pItem->regReturn = ++pParse->nMem; 6625 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6626 VdbeComment((v, "%!S", pItem)); 6627 pItem->addrFillSub = addrTop; 6628 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6629 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6630 sqlite3Select(pParse, pSub, &dest); 6631 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6632 pItem->fg.viaCoroutine = 1; 6633 pItem->regResult = dest.iSdst; 6634 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6635 sqlite3VdbeJumpHere(v, addrTop-1); 6636 sqlite3ClearTempRegCache(pParse); 6637 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6638 /* This is a CTE for which materialization code has already been 6639 ** generated. Invoke the subroutine to compute the materialization, 6640 ** the make the pItem->iCursor be a copy of the ephemerial table that 6641 ** holds the result of the materialization. */ 6642 CteUse *pCteUse = pItem->u2.pCteUse; 6643 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6644 if( pItem->iCursor!=pCteUse->iCur ){ 6645 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6646 } 6647 pSub->nSelectRow = pCteUse->nRowEst; 6648 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6649 /* This view has already been materialized by a prior entry in 6650 ** this same FROM clause. Reuse it. */ 6651 if( pPrior->addrFillSub ){ 6652 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6653 } 6654 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6655 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6656 }else{ 6657 /* Materialize the view. If the view is not correlated, generate a 6658 ** subroutine to do the materialization so that subsequent uses of 6659 ** the same view can reuse the materialization. */ 6660 int topAddr; 6661 int onceAddr = 0; 6662 int retAddr; 6663 6664 pItem->regReturn = ++pParse->nMem; 6665 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6666 pItem->addrFillSub = topAddr+1; 6667 if( pItem->fg.isCorrelated==0 ){ 6668 /* If the subquery is not correlated and if we are not inside of 6669 ** a trigger, then we only need to compute the value of the subquery 6670 ** once. */ 6671 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6672 VdbeComment((v, "materialize %!S", pItem)); 6673 }else{ 6674 VdbeNoopComment((v, "materialize %!S", pItem)); 6675 } 6676 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6677 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6678 sqlite3Select(pParse, pSub, &dest); 6679 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6680 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6681 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6682 VdbeComment((v, "end %!S", pItem)); 6683 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6684 sqlite3ClearTempRegCache(pParse); 6685 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6686 CteUse *pCteUse = pItem->u2.pCteUse; 6687 pCteUse->addrM9e = pItem->addrFillSub; 6688 pCteUse->regRtn = pItem->regReturn; 6689 pCteUse->iCur = pItem->iCursor; 6690 pCteUse->nRowEst = pSub->nSelectRow; 6691 } 6692 } 6693 if( db->mallocFailed ) goto select_end; 6694 pParse->nHeight -= sqlite3SelectExprHeight(p); 6695 pParse->zAuthContext = zSavedAuthContext; 6696 #endif 6697 } 6698 6699 /* Various elements of the SELECT copied into local variables for 6700 ** convenience */ 6701 pEList = p->pEList; 6702 pWhere = p->pWhere; 6703 pGroupBy = p->pGroupBy; 6704 pHaving = p->pHaving; 6705 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6706 6707 #if SELECTTRACE_ENABLED 6708 if( sqlite3SelectTrace & 0x400 ){ 6709 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6710 sqlite3TreeViewSelect(0, p, 0); 6711 } 6712 #endif 6713 6714 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6715 ** if the select-list is the same as the ORDER BY list, then this query 6716 ** can be rewritten as a GROUP BY. In other words, this: 6717 ** 6718 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6719 ** 6720 ** is transformed to: 6721 ** 6722 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6723 ** 6724 ** The second form is preferred as a single index (or temp-table) may be 6725 ** used for both the ORDER BY and DISTINCT processing. As originally 6726 ** written the query must use a temp-table for at least one of the ORDER 6727 ** BY and DISTINCT, and an index or separate temp-table for the other. 6728 */ 6729 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6730 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6731 #ifndef SQLITE_OMIT_WINDOWFUNC 6732 && p->pWin==0 6733 #endif 6734 ){ 6735 p->selFlags &= ~SF_Distinct; 6736 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6737 p->selFlags |= SF_Aggregate; 6738 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6739 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6740 ** original setting of the SF_Distinct flag, not the current setting */ 6741 assert( sDistinct.isTnct ); 6742 6743 #if SELECTTRACE_ENABLED 6744 if( sqlite3SelectTrace & 0x400 ){ 6745 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6746 sqlite3TreeViewSelect(0, p, 0); 6747 } 6748 #endif 6749 } 6750 6751 /* If there is an ORDER BY clause, then create an ephemeral index to 6752 ** do the sorting. But this sorting ephemeral index might end up 6753 ** being unused if the data can be extracted in pre-sorted order. 6754 ** If that is the case, then the OP_OpenEphemeral instruction will be 6755 ** changed to an OP_Noop once we figure out that the sorting index is 6756 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6757 ** that change. 6758 */ 6759 if( sSort.pOrderBy ){ 6760 KeyInfo *pKeyInfo; 6761 pKeyInfo = sqlite3KeyInfoFromExprList( 6762 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6763 sSort.iECursor = pParse->nTab++; 6764 sSort.addrSortIndex = 6765 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6766 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6767 (char*)pKeyInfo, P4_KEYINFO 6768 ); 6769 }else{ 6770 sSort.addrSortIndex = -1; 6771 } 6772 6773 /* If the output is destined for a temporary table, open that table. 6774 */ 6775 if( pDest->eDest==SRT_EphemTab ){ 6776 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6777 } 6778 6779 /* Set the limiter. 6780 */ 6781 iEnd = sqlite3VdbeMakeLabel(pParse); 6782 if( (p->selFlags & SF_FixedLimit)==0 ){ 6783 p->nSelectRow = 320; /* 4 billion rows */ 6784 } 6785 computeLimitRegisters(pParse, p, iEnd); 6786 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6787 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6788 sSort.sortFlags |= SORTFLAG_UseSorter; 6789 } 6790 6791 /* Open an ephemeral index to use for the distinct set. 6792 */ 6793 if( p->selFlags & SF_Distinct ){ 6794 sDistinct.tabTnct = pParse->nTab++; 6795 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6796 sDistinct.tabTnct, 0, 0, 6797 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6798 P4_KEYINFO); 6799 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6800 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6801 }else{ 6802 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6803 } 6804 6805 if( !isAgg && pGroupBy==0 ){ 6806 /* No aggregate functions and no GROUP BY clause */ 6807 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6808 | (p->selFlags & SF_FixedLimit); 6809 #ifndef SQLITE_OMIT_WINDOWFUNC 6810 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6811 if( pWin ){ 6812 sqlite3WindowCodeInit(pParse, p); 6813 } 6814 #endif 6815 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6816 6817 6818 /* Begin the database scan. */ 6819 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6820 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6821 p->pEList, wctrlFlags, p->nSelectRow); 6822 if( pWInfo==0 ) goto select_end; 6823 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6824 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6825 } 6826 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6827 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6828 } 6829 if( sSort.pOrderBy ){ 6830 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6831 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6832 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6833 sSort.pOrderBy = 0; 6834 } 6835 } 6836 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6837 6838 /* If sorting index that was created by a prior OP_OpenEphemeral 6839 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6840 ** into an OP_Noop. 6841 */ 6842 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6843 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6844 } 6845 6846 assert( p->pEList==pEList ); 6847 #ifndef SQLITE_OMIT_WINDOWFUNC 6848 if( pWin ){ 6849 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6850 int iCont = sqlite3VdbeMakeLabel(pParse); 6851 int iBreak = sqlite3VdbeMakeLabel(pParse); 6852 int regGosub = ++pParse->nMem; 6853 6854 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6855 6856 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6857 sqlite3VdbeResolveLabel(v, addrGosub); 6858 VdbeNoopComment((v, "inner-loop subroutine")); 6859 sSort.labelOBLopt = 0; 6860 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6861 sqlite3VdbeResolveLabel(v, iCont); 6862 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6863 VdbeComment((v, "end inner-loop subroutine")); 6864 sqlite3VdbeResolveLabel(v, iBreak); 6865 }else 6866 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6867 { 6868 /* Use the standard inner loop. */ 6869 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6870 sqlite3WhereContinueLabel(pWInfo), 6871 sqlite3WhereBreakLabel(pWInfo)); 6872 6873 /* End the database scan loop. 6874 */ 6875 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6876 sqlite3WhereEnd(pWInfo); 6877 } 6878 }else{ 6879 /* This case when there exist aggregate functions or a GROUP BY clause 6880 ** or both */ 6881 NameContext sNC; /* Name context for processing aggregate information */ 6882 int iAMem; /* First Mem address for storing current GROUP BY */ 6883 int iBMem; /* First Mem address for previous GROUP BY */ 6884 int iUseFlag; /* Mem address holding flag indicating that at least 6885 ** one row of the input to the aggregator has been 6886 ** processed */ 6887 int iAbortFlag; /* Mem address which causes query abort if positive */ 6888 int groupBySort; /* Rows come from source in GROUP BY order */ 6889 int addrEnd; /* End of processing for this SELECT */ 6890 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6891 int sortOut = 0; /* Output register from the sorter */ 6892 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6893 6894 /* Remove any and all aliases between the result set and the 6895 ** GROUP BY clause. 6896 */ 6897 if( pGroupBy ){ 6898 int k; /* Loop counter */ 6899 struct ExprList_item *pItem; /* For looping over expression in a list */ 6900 6901 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6902 pItem->u.x.iAlias = 0; 6903 } 6904 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6905 pItem->u.x.iAlias = 0; 6906 } 6907 assert( 66==sqlite3LogEst(100) ); 6908 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6909 6910 /* If there is both a GROUP BY and an ORDER BY clause and they are 6911 ** identical, then it may be possible to disable the ORDER BY clause 6912 ** on the grounds that the GROUP BY will cause elements to come out 6913 ** in the correct order. It also may not - the GROUP BY might use a 6914 ** database index that causes rows to be grouped together as required 6915 ** but not actually sorted. Either way, record the fact that the 6916 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6917 ** variable. */ 6918 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6919 int ii; 6920 /* The GROUP BY processing doesn't care whether rows are delivered in 6921 ** ASC or DESC order - only that each group is returned contiguously. 6922 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6923 ** ORDER BY to maximize the chances of rows being delivered in an 6924 ** order that makes the ORDER BY redundant. */ 6925 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6926 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6927 pGroupBy->a[ii].sortFlags = sortFlags; 6928 } 6929 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6930 orderByGrp = 1; 6931 } 6932 } 6933 }else{ 6934 assert( 0==sqlite3LogEst(1) ); 6935 p->nSelectRow = 0; 6936 } 6937 6938 /* Create a label to jump to when we want to abort the query */ 6939 addrEnd = sqlite3VdbeMakeLabel(pParse); 6940 6941 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6942 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6943 ** SELECT statement. 6944 */ 6945 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6946 if( pAggInfo ){ 6947 sqlite3ParserAddCleanup(pParse, 6948 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6949 testcase( pParse->earlyCleanup ); 6950 } 6951 if( db->mallocFailed ){ 6952 goto select_end; 6953 } 6954 pAggInfo->selId = p->selId; 6955 memset(&sNC, 0, sizeof(sNC)); 6956 sNC.pParse = pParse; 6957 sNC.pSrcList = pTabList; 6958 sNC.uNC.pAggInfo = pAggInfo; 6959 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6960 pAggInfo->mnReg = pParse->nMem+1; 6961 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6962 pAggInfo->pGroupBy = pGroupBy; 6963 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6964 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6965 if( pHaving ){ 6966 if( pGroupBy ){ 6967 assert( pWhere==p->pWhere ); 6968 assert( pHaving==p->pHaving ); 6969 assert( pGroupBy==p->pGroupBy ); 6970 havingToWhere(pParse, p); 6971 pWhere = p->pWhere; 6972 } 6973 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6974 } 6975 pAggInfo->nAccumulator = pAggInfo->nColumn; 6976 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6977 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6978 }else{ 6979 minMaxFlag = WHERE_ORDERBY_NORMAL; 6980 } 6981 for(i=0; i<pAggInfo->nFunc; i++){ 6982 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6983 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6984 sNC.ncFlags |= NC_InAggFunc; 6985 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6986 #ifndef SQLITE_OMIT_WINDOWFUNC 6987 assert( !IsWindowFunc(pExpr) ); 6988 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6989 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6990 } 6991 #endif 6992 sNC.ncFlags &= ~NC_InAggFunc; 6993 } 6994 pAggInfo->mxReg = pParse->nMem; 6995 if( db->mallocFailed ) goto select_end; 6996 #if SELECTTRACE_ENABLED 6997 if( sqlite3SelectTrace & 0x400 ){ 6998 int ii; 6999 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7000 sqlite3TreeViewSelect(0, p, 0); 7001 if( minMaxFlag ){ 7002 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7003 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7004 } 7005 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7006 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7007 ii, pAggInfo->aCol[ii].iMem); 7008 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7009 } 7010 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7011 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7012 ii, pAggInfo->aFunc[ii].iMem); 7013 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7014 } 7015 } 7016 #endif 7017 7018 7019 /* Processing for aggregates with GROUP BY is very different and 7020 ** much more complex than aggregates without a GROUP BY. 7021 */ 7022 if( pGroupBy ){ 7023 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7024 int addr1; /* A-vs-B comparision jump */ 7025 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7026 int regOutputRow; /* Return address register for output subroutine */ 7027 int addrSetAbort; /* Set the abort flag and return */ 7028 int addrTopOfLoop; /* Top of the input loop */ 7029 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7030 int addrReset; /* Subroutine for resetting the accumulator */ 7031 int regReset; /* Return address register for reset subroutine */ 7032 ExprList *pDistinct = 0; 7033 u16 distFlag = 0; 7034 int eDist = WHERE_DISTINCT_NOOP; 7035 7036 if( pAggInfo->nFunc==1 7037 && pAggInfo->aFunc[0].iDistinct>=0 7038 && pAggInfo->aFunc[0].pFExpr->x.pList 7039 ){ 7040 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7041 pExpr = sqlite3ExprDup(db, pExpr, 0); 7042 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7043 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7044 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7045 } 7046 7047 /* If there is a GROUP BY clause we might need a sorting index to 7048 ** implement it. Allocate that sorting index now. If it turns out 7049 ** that we do not need it after all, the OP_SorterOpen instruction 7050 ** will be converted into a Noop. 7051 */ 7052 pAggInfo->sortingIdx = pParse->nTab++; 7053 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7054 0, pAggInfo->nColumn); 7055 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7056 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7057 0, (char*)pKeyInfo, P4_KEYINFO); 7058 7059 /* Initialize memory locations used by GROUP BY aggregate processing 7060 */ 7061 iUseFlag = ++pParse->nMem; 7062 iAbortFlag = ++pParse->nMem; 7063 regOutputRow = ++pParse->nMem; 7064 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7065 regReset = ++pParse->nMem; 7066 addrReset = sqlite3VdbeMakeLabel(pParse); 7067 iAMem = pParse->nMem + 1; 7068 pParse->nMem += pGroupBy->nExpr; 7069 iBMem = pParse->nMem + 1; 7070 pParse->nMem += pGroupBy->nExpr; 7071 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7072 VdbeComment((v, "clear abort flag")); 7073 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7074 7075 /* Begin a loop that will extract all source rows in GROUP BY order. 7076 ** This might involve two separate loops with an OP_Sort in between, or 7077 ** it might be a single loop that uses an index to extract information 7078 ** in the right order to begin with. 7079 */ 7080 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7081 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7082 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7083 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7084 ); 7085 if( pWInfo==0 ){ 7086 sqlite3ExprListDelete(db, pDistinct); 7087 goto select_end; 7088 } 7089 eDist = sqlite3WhereIsDistinct(pWInfo); 7090 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7091 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7092 /* The optimizer is able to deliver rows in group by order so 7093 ** we do not have to sort. The OP_OpenEphemeral table will be 7094 ** cancelled later because we still need to use the pKeyInfo 7095 */ 7096 groupBySort = 0; 7097 }else{ 7098 /* Rows are coming out in undetermined order. We have to push 7099 ** each row into a sorting index, terminate the first loop, 7100 ** then loop over the sorting index in order to get the output 7101 ** in sorted order 7102 */ 7103 int regBase; 7104 int regRecord; 7105 int nCol; 7106 int nGroupBy; 7107 7108 explainTempTable(pParse, 7109 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7110 "DISTINCT" : "GROUP BY"); 7111 7112 groupBySort = 1; 7113 nGroupBy = pGroupBy->nExpr; 7114 nCol = nGroupBy; 7115 j = nGroupBy; 7116 for(i=0; i<pAggInfo->nColumn; i++){ 7117 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7118 nCol++; 7119 j++; 7120 } 7121 } 7122 regBase = sqlite3GetTempRange(pParse, nCol); 7123 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7124 j = nGroupBy; 7125 for(i=0; i<pAggInfo->nColumn; i++){ 7126 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7127 if( pCol->iSorterColumn>=j ){ 7128 int r1 = j + regBase; 7129 sqlite3ExprCodeGetColumnOfTable(v, 7130 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7131 j++; 7132 } 7133 } 7134 regRecord = sqlite3GetTempReg(pParse); 7135 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7136 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7137 sqlite3ReleaseTempReg(pParse, regRecord); 7138 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7139 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7140 sqlite3WhereEnd(pWInfo); 7141 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7142 sortOut = sqlite3GetTempReg(pParse); 7143 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7144 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7145 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7146 pAggInfo->useSortingIdx = 1; 7147 } 7148 7149 /* If the index or temporary table used by the GROUP BY sort 7150 ** will naturally deliver rows in the order required by the ORDER BY 7151 ** clause, cancel the ephemeral table open coded earlier. 7152 ** 7153 ** This is an optimization - the correct answer should result regardless. 7154 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7155 ** disable this optimization for testing purposes. */ 7156 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7157 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7158 ){ 7159 sSort.pOrderBy = 0; 7160 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7161 } 7162 7163 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7164 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7165 ** Then compare the current GROUP BY terms against the GROUP BY terms 7166 ** from the previous row currently stored in a0, a1, a2... 7167 */ 7168 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7169 if( groupBySort ){ 7170 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7171 sortOut, sortPTab); 7172 } 7173 for(j=0; j<pGroupBy->nExpr; j++){ 7174 if( groupBySort ){ 7175 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7176 }else{ 7177 pAggInfo->directMode = 1; 7178 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7179 } 7180 } 7181 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7182 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7183 addr1 = sqlite3VdbeCurrentAddr(v); 7184 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7185 7186 /* Generate code that runs whenever the GROUP BY changes. 7187 ** Changes in the GROUP BY are detected by the previous code 7188 ** block. If there were no changes, this block is skipped. 7189 ** 7190 ** This code copies current group by terms in b0,b1,b2,... 7191 ** over to a0,a1,a2. It then calls the output subroutine 7192 ** and resets the aggregate accumulator registers in preparation 7193 ** for the next GROUP BY batch. 7194 */ 7195 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7196 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7197 VdbeComment((v, "output one row")); 7198 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7199 VdbeComment((v, "check abort flag")); 7200 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7201 VdbeComment((v, "reset accumulator")); 7202 7203 /* Update the aggregate accumulators based on the content of 7204 ** the current row 7205 */ 7206 sqlite3VdbeJumpHere(v, addr1); 7207 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7208 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7209 VdbeComment((v, "indicate data in accumulator")); 7210 7211 /* End of the loop 7212 */ 7213 if( groupBySort ){ 7214 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7215 VdbeCoverage(v); 7216 }else{ 7217 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7218 sqlite3WhereEnd(pWInfo); 7219 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7220 } 7221 sqlite3ExprListDelete(db, pDistinct); 7222 7223 /* Output the final row of result 7224 */ 7225 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7226 VdbeComment((v, "output final row")); 7227 7228 /* Jump over the subroutines 7229 */ 7230 sqlite3VdbeGoto(v, addrEnd); 7231 7232 /* Generate a subroutine that outputs a single row of the result 7233 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7234 ** is less than or equal to zero, the subroutine is a no-op. If 7235 ** the processing calls for the query to abort, this subroutine 7236 ** increments the iAbortFlag memory location before returning in 7237 ** order to signal the caller to abort. 7238 */ 7239 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7240 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7241 VdbeComment((v, "set abort flag")); 7242 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7243 sqlite3VdbeResolveLabel(v, addrOutputRow); 7244 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7245 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7246 VdbeCoverage(v); 7247 VdbeComment((v, "Groupby result generator entry point")); 7248 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7249 finalizeAggFunctions(pParse, pAggInfo); 7250 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7251 selectInnerLoop(pParse, p, -1, &sSort, 7252 &sDistinct, pDest, 7253 addrOutputRow+1, addrSetAbort); 7254 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7255 VdbeComment((v, "end groupby result generator")); 7256 7257 /* Generate a subroutine that will reset the group-by accumulator 7258 */ 7259 sqlite3VdbeResolveLabel(v, addrReset); 7260 resetAccumulator(pParse, pAggInfo); 7261 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7262 VdbeComment((v, "indicate accumulator empty")); 7263 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7264 7265 if( eDist!=WHERE_DISTINCT_NOOP ){ 7266 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7267 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7268 } 7269 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7270 else { 7271 Table *pTab; 7272 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7273 /* If isSimpleCount() returns a pointer to a Table structure, then 7274 ** the SQL statement is of the form: 7275 ** 7276 ** SELECT count(*) FROM <tbl> 7277 ** 7278 ** where the Table structure returned represents table <tbl>. 7279 ** 7280 ** This statement is so common that it is optimized specially. The 7281 ** OP_Count instruction is executed either on the intkey table that 7282 ** contains the data for table <tbl> or on one of its indexes. It 7283 ** is better to execute the op on an index, as indexes are almost 7284 ** always spread across less pages than their corresponding tables. 7285 */ 7286 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7287 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7288 Index *pIdx; /* Iterator variable */ 7289 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7290 Index *pBest = 0; /* Best index found so far */ 7291 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7292 7293 sqlite3CodeVerifySchema(pParse, iDb); 7294 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7295 7296 /* Search for the index that has the lowest scan cost. 7297 ** 7298 ** (2011-04-15) Do not do a full scan of an unordered index. 7299 ** 7300 ** (2013-10-03) Do not count the entries in a partial index. 7301 ** 7302 ** In practice the KeyInfo structure will not be used. It is only 7303 ** passed to keep OP_OpenRead happy. 7304 */ 7305 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7306 if( !p->pSrc->a[0].fg.notIndexed ){ 7307 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7308 if( pIdx->bUnordered==0 7309 && pIdx->szIdxRow<pTab->szTabRow 7310 && pIdx->pPartIdxWhere==0 7311 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7312 ){ 7313 pBest = pIdx; 7314 } 7315 } 7316 } 7317 if( pBest ){ 7318 iRoot = pBest->tnum; 7319 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7320 } 7321 7322 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7323 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7324 if( pKeyInfo ){ 7325 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7326 } 7327 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7328 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7329 explainSimpleCount(pParse, pTab, pBest); 7330 }else{ 7331 int regAcc = 0; /* "populate accumulators" flag */ 7332 ExprList *pDistinct = 0; 7333 u16 distFlag = 0; 7334 int eDist; 7335 7336 /* If there are accumulator registers but no min() or max() functions 7337 ** without FILTER clauses, allocate register regAcc. Register regAcc 7338 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7339 ** The code generated by updateAccumulator() uses this to ensure 7340 ** that the accumulator registers are (a) updated only once if 7341 ** there are no min() or max functions or (b) always updated for the 7342 ** first row visited by the aggregate, so that they are updated at 7343 ** least once even if the FILTER clause means the min() or max() 7344 ** function visits zero rows. */ 7345 if( pAggInfo->nAccumulator ){ 7346 for(i=0; i<pAggInfo->nFunc; i++){ 7347 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7348 continue; 7349 } 7350 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7351 break; 7352 } 7353 } 7354 if( i==pAggInfo->nFunc ){ 7355 regAcc = ++pParse->nMem; 7356 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7357 } 7358 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7359 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7360 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7361 } 7362 7363 /* This case runs if the aggregate has no GROUP BY clause. The 7364 ** processing is much simpler since there is only a single row 7365 ** of output. 7366 */ 7367 assert( p->pGroupBy==0 ); 7368 resetAccumulator(pParse, pAggInfo); 7369 7370 /* If this query is a candidate for the min/max optimization, then 7371 ** minMaxFlag will have been previously set to either 7372 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7373 ** be an appropriate ORDER BY expression for the optimization. 7374 */ 7375 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7376 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7377 7378 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7379 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7380 pDistinct, minMaxFlag|distFlag, 0); 7381 if( pWInfo==0 ){ 7382 goto select_end; 7383 } 7384 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7385 eDist = sqlite3WhereIsDistinct(pWInfo); 7386 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7387 if( eDist!=WHERE_DISTINCT_NOOP ){ 7388 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7389 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7390 } 7391 7392 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7393 if( minMaxFlag ){ 7394 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7395 } 7396 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7397 sqlite3WhereEnd(pWInfo); 7398 finalizeAggFunctions(pParse, pAggInfo); 7399 } 7400 7401 sSort.pOrderBy = 0; 7402 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7403 selectInnerLoop(pParse, p, -1, 0, 0, 7404 pDest, addrEnd, addrEnd); 7405 } 7406 sqlite3VdbeResolveLabel(v, addrEnd); 7407 7408 } /* endif aggregate query */ 7409 7410 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7411 explainTempTable(pParse, "DISTINCT"); 7412 } 7413 7414 /* If there is an ORDER BY clause, then we need to sort the results 7415 ** and send them to the callback one by one. 7416 */ 7417 if( sSort.pOrderBy ){ 7418 explainTempTable(pParse, 7419 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7420 assert( p->pEList==pEList ); 7421 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7422 } 7423 7424 /* Jump here to skip this query 7425 */ 7426 sqlite3VdbeResolveLabel(v, iEnd); 7427 7428 /* The SELECT has been coded. If there is an error in the Parse structure, 7429 ** set the return code to 1. Otherwise 0. */ 7430 rc = (pParse->nErr>0); 7431 7432 /* Control jumps to here if an error is encountered above, or upon 7433 ** successful coding of the SELECT. 7434 */ 7435 select_end: 7436 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7437 pParse->nErr += db->mallocFailed; 7438 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7439 #ifdef SQLITE_DEBUG 7440 if( pAggInfo && !db->mallocFailed ){ 7441 for(i=0; i<pAggInfo->nColumn; i++){ 7442 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7443 assert( pExpr!=0 ); 7444 assert( pExpr->pAggInfo==pAggInfo ); 7445 assert( pExpr->iAgg==i ); 7446 } 7447 for(i=0; i<pAggInfo->nFunc; i++){ 7448 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7449 assert( pExpr!=0 ); 7450 assert( pExpr->pAggInfo==pAggInfo ); 7451 assert( pExpr->iAgg==i ); 7452 } 7453 } 7454 #endif 7455 7456 #if SELECTTRACE_ENABLED 7457 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7458 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7459 sqlite3TreeViewSelect(0, p, 0); 7460 } 7461 #endif 7462 ExplainQueryPlanPop(pParse); 7463 return rc; 7464 } 7465