1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.526 2009/08/01 15:09:58 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = (u8)eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 assert( pOffset==0 || pLimit!=0 ); 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( db->mallocFailed ) { 91 clearSelect(db, pNew); 92 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 93 pNew = 0; 94 } 95 return pNew; 96 } 97 98 /* 99 ** Delete the given Select structure and all of its substructures. 100 */ 101 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 102 if( p ){ 103 clearSelect(db, p); 104 sqlite3DbFree(db, p); 105 } 106 } 107 108 /* 109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 110 ** type of join. Return an integer constant that expresses that type 111 ** in terms of the following bit values: 112 ** 113 ** JT_INNER 114 ** JT_CROSS 115 ** JT_OUTER 116 ** JT_NATURAL 117 ** JT_LEFT 118 ** JT_RIGHT 119 ** 120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 121 ** 122 ** If an illegal or unsupported join type is seen, then still return 123 ** a join type, but put an error in the pParse structure. 124 */ 125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 126 int jointype = 0; 127 Token *apAll[3]; 128 Token *p; 129 /* 0123456789 123456789 123456789 123 */ 130 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 131 static const struct { 132 u8 i; /* Beginning of keyword text in zKeyText[] */ 133 u8 nChar; /* Length of the keyword in characters */ 134 u8 code; /* Join type mask */ 135 } aKeyword[] = { 136 /* natural */ { 0, 7, JT_NATURAL }, 137 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 138 /* outer */ { 10, 5, JT_OUTER }, 139 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 140 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 141 /* inner */ { 23, 5, JT_INNER }, 142 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 143 }; 144 int i, j; 145 apAll[0] = pA; 146 apAll[1] = pB; 147 apAll[2] = pC; 148 for(i=0; i<3 && apAll[i]; i++){ 149 p = apAll[i]; 150 for(j=0; j<ArraySize(aKeyword); j++){ 151 if( p->n==aKeyword[j].nChar 152 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 153 jointype |= aKeyword[j].code; 154 break; 155 } 156 } 157 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 158 if( j>=ArraySize(aKeyword) ){ 159 jointype |= JT_ERROR; 160 break; 161 } 162 } 163 if( 164 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 165 (jointype & JT_ERROR)!=0 166 ){ 167 const char *zSp = " "; 168 assert( pB!=0 ); 169 if( pC==0 ){ zSp++; } 170 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 171 "%T %T%s%T", pA, pB, zSp, pC); 172 jointype = JT_INNER; 173 }else if( (jointype & JT_OUTER)!=0 174 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 175 sqlite3ErrorMsg(pParse, 176 "RIGHT and FULL OUTER JOINs are not currently supported"); 177 jointype = JT_INNER; 178 } 179 return jointype; 180 } 181 182 /* 183 ** Return the index of a column in a table. Return -1 if the column 184 ** is not contained in the table. 185 */ 186 static int columnIndex(Table *pTab, const char *zCol){ 187 int i; 188 for(i=0; i<pTab->nCol; i++){ 189 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 190 } 191 return -1; 192 } 193 194 /* 195 ** Create an expression node for an identifier with the name of zName 196 */ 197 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 198 return sqlite3Expr(pParse->db, TK_ID, zName); 199 } 200 201 /* 202 ** Add a term to the WHERE expression in *ppExpr that requires the 203 ** zCol column to be equal in the two tables pTab1 and pTab2. 204 */ 205 static void addWhereTerm( 206 Parse *pParse, /* Parsing context */ 207 const char *zCol, /* Name of the column */ 208 const Table *pTab1, /* First table */ 209 const char *zAlias1, /* Alias for first table. May be NULL */ 210 const Table *pTab2, /* Second table */ 211 const char *zAlias2, /* Alias for second table. May be NULL */ 212 int iRightJoinTable, /* VDBE cursor for the right table */ 213 Expr **ppExpr, /* Add the equality term to this expression */ 214 int isOuterJoin /* True if dealing with an OUTER join */ 215 ){ 216 Expr *pE1a, *pE1b, *pE1c; 217 Expr *pE2a, *pE2b, *pE2c; 218 Expr *pE; 219 220 pE1a = sqlite3CreateIdExpr(pParse, zCol); 221 pE2a = sqlite3CreateIdExpr(pParse, zCol); 222 if( zAlias1==0 ){ 223 zAlias1 = pTab1->zName; 224 } 225 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 226 if( zAlias2==0 ){ 227 zAlias2 = pTab2->zName; 228 } 229 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 230 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 231 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 232 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 233 if( pE && isOuterJoin ){ 234 ExprSetProperty(pE, EP_FromJoin); 235 assert( !ExprHasAnyProperty(pE, EP_TokenOnly|EP_Reduced) ); 236 ExprSetIrreducible(pE); 237 pE->iRightJoinTable = (i16)iRightJoinTable; 238 } 239 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 240 } 241 242 /* 243 ** Set the EP_FromJoin property on all terms of the given expression. 244 ** And set the Expr.iRightJoinTable to iTable for every term in the 245 ** expression. 246 ** 247 ** The EP_FromJoin property is used on terms of an expression to tell 248 ** the LEFT OUTER JOIN processing logic that this term is part of the 249 ** join restriction specified in the ON or USING clause and not a part 250 ** of the more general WHERE clause. These terms are moved over to the 251 ** WHERE clause during join processing but we need to remember that they 252 ** originated in the ON or USING clause. 253 ** 254 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 255 ** expression depends on table iRightJoinTable even if that table is not 256 ** explicitly mentioned in the expression. That information is needed 257 ** for cases like this: 258 ** 259 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 260 ** 261 ** The where clause needs to defer the handling of the t1.x=5 262 ** term until after the t2 loop of the join. In that way, a 263 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 264 ** defer the handling of t1.x=5, it will be processed immediately 265 ** after the t1 loop and rows with t1.x!=5 will never appear in 266 ** the output, which is incorrect. 267 */ 268 static void setJoinExpr(Expr *p, int iTable){ 269 while( p ){ 270 ExprSetProperty(p, EP_FromJoin); 271 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 272 ExprSetIrreducible(p); 273 p->iRightJoinTable = (i16)iTable; 274 setJoinExpr(p->pLeft, iTable); 275 p = p->pRight; 276 } 277 } 278 279 /* 280 ** This routine processes the join information for a SELECT statement. 281 ** ON and USING clauses are converted into extra terms of the WHERE clause. 282 ** NATURAL joins also create extra WHERE clause terms. 283 ** 284 ** The terms of a FROM clause are contained in the Select.pSrc structure. 285 ** The left most table is the first entry in Select.pSrc. The right-most 286 ** table is the last entry. The join operator is held in the entry to 287 ** the left. Thus entry 0 contains the join operator for the join between 288 ** entries 0 and 1. Any ON or USING clauses associated with the join are 289 ** also attached to the left entry. 290 ** 291 ** This routine returns the number of errors encountered. 292 */ 293 static int sqliteProcessJoin(Parse *pParse, Select *p){ 294 SrcList *pSrc; /* All tables in the FROM clause */ 295 int i, j; /* Loop counters */ 296 struct SrcList_item *pLeft; /* Left table being joined */ 297 struct SrcList_item *pRight; /* Right table being joined */ 298 299 pSrc = p->pSrc; 300 pLeft = &pSrc->a[0]; 301 pRight = &pLeft[1]; 302 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 303 Table *pLeftTab = pLeft->pTab; 304 Table *pRightTab = pRight->pTab; 305 int isOuter; 306 307 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 308 isOuter = (pRight->jointype & JT_OUTER)!=0; 309 310 /* When the NATURAL keyword is present, add WHERE clause terms for 311 ** every column that the two tables have in common. 312 */ 313 if( pRight->jointype & JT_NATURAL ){ 314 if( pRight->pOn || pRight->pUsing ){ 315 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 316 "an ON or USING clause", 0); 317 return 1; 318 } 319 for(j=0; j<pLeftTab->nCol; j++){ 320 char *zName = pLeftTab->aCol[j].zName; 321 if( columnIndex(pRightTab, zName)>=0 ){ 322 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 323 pRightTab, pRight->zAlias, 324 pRight->iCursor, &p->pWhere, isOuter); 325 326 } 327 } 328 } 329 330 /* Disallow both ON and USING clauses in the same join 331 */ 332 if( pRight->pOn && pRight->pUsing ){ 333 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 334 "clauses in the same join"); 335 return 1; 336 } 337 338 /* Add the ON clause to the end of the WHERE clause, connected by 339 ** an AND operator. 340 */ 341 if( pRight->pOn ){ 342 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 343 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 344 pRight->pOn = 0; 345 } 346 347 /* Create extra terms on the WHERE clause for each column named 348 ** in the USING clause. Example: If the two tables to be joined are 349 ** A and B and the USING clause names X, Y, and Z, then add this 350 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 351 ** Report an error if any column mentioned in the USING clause is 352 ** not contained in both tables to be joined. 353 */ 354 if( pRight->pUsing ){ 355 IdList *pList = pRight->pUsing; 356 for(j=0; j<pList->nId; j++){ 357 char *zName = pList->a[j].zName; 358 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 359 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 360 "not present in both tables", zName); 361 return 1; 362 } 363 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 364 pRightTab, pRight->zAlias, 365 pRight->iCursor, &p->pWhere, isOuter); 366 } 367 } 368 } 369 return 0; 370 } 371 372 /* 373 ** Insert code into "v" that will push the record on the top of the 374 ** stack into the sorter. 375 */ 376 static void pushOntoSorter( 377 Parse *pParse, /* Parser context */ 378 ExprList *pOrderBy, /* The ORDER BY clause */ 379 Select *pSelect, /* The whole SELECT statement */ 380 int regData /* Register holding data to be sorted */ 381 ){ 382 Vdbe *v = pParse->pVdbe; 383 int nExpr = pOrderBy->nExpr; 384 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 385 int regRecord = sqlite3GetTempReg(pParse); 386 sqlite3ExprCacheClear(pParse); 387 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 388 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 389 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 390 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 391 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 392 sqlite3ReleaseTempReg(pParse, regRecord); 393 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 394 if( pSelect->iLimit ){ 395 int addr1, addr2; 396 int iLimit; 397 if( pSelect->iOffset ){ 398 iLimit = pSelect->iOffset+1; 399 }else{ 400 iLimit = pSelect->iLimit; 401 } 402 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 403 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 404 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 405 sqlite3VdbeJumpHere(v, addr1); 406 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 407 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 408 sqlite3VdbeJumpHere(v, addr2); 409 pSelect->iLimit = 0; 410 } 411 } 412 413 /* 414 ** Add code to implement the OFFSET 415 */ 416 static void codeOffset( 417 Vdbe *v, /* Generate code into this VM */ 418 Select *p, /* The SELECT statement being coded */ 419 int iContinue /* Jump here to skip the current record */ 420 ){ 421 if( p->iOffset && iContinue!=0 ){ 422 int addr; 423 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 424 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 425 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 426 VdbeComment((v, "skip OFFSET records")); 427 sqlite3VdbeJumpHere(v, addr); 428 } 429 } 430 431 /* 432 ** Add code that will check to make sure the N registers starting at iMem 433 ** form a distinct entry. iTab is a sorting index that holds previously 434 ** seen combinations of the N values. A new entry is made in iTab 435 ** if the current N values are new. 436 ** 437 ** A jump to addrRepeat is made and the N+1 values are popped from the 438 ** stack if the top N elements are not distinct. 439 */ 440 static void codeDistinct( 441 Parse *pParse, /* Parsing and code generating context */ 442 int iTab, /* A sorting index used to test for distinctness */ 443 int addrRepeat, /* Jump to here if not distinct */ 444 int N, /* Number of elements */ 445 int iMem /* First element */ 446 ){ 447 Vdbe *v; 448 int r1; 449 450 v = pParse->pVdbe; 451 r1 = sqlite3GetTempReg(pParse); 452 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 453 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 454 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 455 sqlite3ReleaseTempReg(pParse, r1); 456 } 457 458 /* 459 ** Generate an error message when a SELECT is used within a subexpression 460 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 461 ** column. We do this in a subroutine because the error occurs in multiple 462 ** places. 463 */ 464 static int checkForMultiColumnSelectError( 465 Parse *pParse, /* Parse context. */ 466 SelectDest *pDest, /* Destination of SELECT results */ 467 int nExpr /* Number of result columns returned by SELECT */ 468 ){ 469 int eDest = pDest->eDest; 470 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 471 sqlite3ErrorMsg(pParse, "only a single result allowed for " 472 "a SELECT that is part of an expression"); 473 return 1; 474 }else{ 475 return 0; 476 } 477 } 478 479 /* 480 ** This routine generates the code for the inside of the inner loop 481 ** of a SELECT. 482 ** 483 ** If srcTab and nColumn are both zero, then the pEList expressions 484 ** are evaluated in order to get the data for this row. If nColumn>0 485 ** then data is pulled from srcTab and pEList is used only to get the 486 ** datatypes for each column. 487 */ 488 static void selectInnerLoop( 489 Parse *pParse, /* The parser context */ 490 Select *p, /* The complete select statement being coded */ 491 ExprList *pEList, /* List of values being extracted */ 492 int srcTab, /* Pull data from this table */ 493 int nColumn, /* Number of columns in the source table */ 494 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 495 int distinct, /* If >=0, make sure results are distinct */ 496 SelectDest *pDest, /* How to dispose of the results */ 497 int iContinue, /* Jump here to continue with next row */ 498 int iBreak /* Jump here to break out of the inner loop */ 499 ){ 500 Vdbe *v = pParse->pVdbe; 501 int i; 502 int hasDistinct; /* True if the DISTINCT keyword is present */ 503 int regResult; /* Start of memory holding result set */ 504 int eDest = pDest->eDest; /* How to dispose of results */ 505 int iParm = pDest->iParm; /* First argument to disposal method */ 506 int nResultCol; /* Number of result columns */ 507 508 assert( v ); 509 if( NEVER(v==0) ) return; 510 assert( pEList!=0 ); 511 hasDistinct = distinct>=0; 512 if( pOrderBy==0 && !hasDistinct ){ 513 codeOffset(v, p, iContinue); 514 } 515 516 /* Pull the requested columns. 517 */ 518 if( nColumn>0 ){ 519 nResultCol = nColumn; 520 }else{ 521 nResultCol = pEList->nExpr; 522 } 523 if( pDest->iMem==0 ){ 524 pDest->iMem = pParse->nMem+1; 525 pDest->nMem = nResultCol; 526 pParse->nMem += nResultCol; 527 }else{ 528 assert( pDest->nMem==nResultCol ); 529 } 530 regResult = pDest->iMem; 531 if( nColumn>0 ){ 532 for(i=0; i<nColumn; i++){ 533 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 534 } 535 }else if( eDest!=SRT_Exists ){ 536 /* If the destination is an EXISTS(...) expression, the actual 537 ** values returned by the SELECT are not required. 538 */ 539 sqlite3ExprCacheClear(pParse); 540 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 541 } 542 nColumn = nResultCol; 543 544 /* If the DISTINCT keyword was present on the SELECT statement 545 ** and this row has been seen before, then do not make this row 546 ** part of the result. 547 */ 548 if( hasDistinct ){ 549 assert( pEList!=0 ); 550 assert( pEList->nExpr==nColumn ); 551 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 552 if( pOrderBy==0 ){ 553 codeOffset(v, p, iContinue); 554 } 555 } 556 557 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 558 return; 559 } 560 561 switch( eDest ){ 562 /* In this mode, write each query result to the key of the temporary 563 ** table iParm. 564 */ 565 #ifndef SQLITE_OMIT_COMPOUND_SELECT 566 case SRT_Union: { 567 int r1; 568 r1 = sqlite3GetTempReg(pParse); 569 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 570 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 571 sqlite3ReleaseTempReg(pParse, r1); 572 break; 573 } 574 575 /* Construct a record from the query result, but instead of 576 ** saving that record, use it as a key to delete elements from 577 ** the temporary table iParm. 578 */ 579 case SRT_Except: { 580 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 581 break; 582 } 583 #endif 584 585 /* Store the result as data using a unique key. 586 */ 587 case SRT_Table: 588 case SRT_EphemTab: { 589 int r1 = sqlite3GetTempReg(pParse); 590 testcase( eDest==SRT_Table ); 591 testcase( eDest==SRT_EphemTab ); 592 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 593 if( pOrderBy ){ 594 pushOntoSorter(pParse, pOrderBy, p, r1); 595 }else{ 596 int r2 = sqlite3GetTempReg(pParse); 597 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 598 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 599 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 600 sqlite3ReleaseTempReg(pParse, r2); 601 } 602 sqlite3ReleaseTempReg(pParse, r1); 603 break; 604 } 605 606 #ifndef SQLITE_OMIT_SUBQUERY 607 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 608 ** then there should be a single item on the stack. Write this 609 ** item into the set table with bogus data. 610 */ 611 case SRT_Set: { 612 assert( nColumn==1 ); 613 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 614 if( pOrderBy ){ 615 /* At first glance you would think we could optimize out the 616 ** ORDER BY in this case since the order of entries in the set 617 ** does not matter. But there might be a LIMIT clause, in which 618 ** case the order does matter */ 619 pushOntoSorter(pParse, pOrderBy, p, regResult); 620 }else{ 621 int r1 = sqlite3GetTempReg(pParse); 622 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 623 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 624 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 625 sqlite3ReleaseTempReg(pParse, r1); 626 } 627 break; 628 } 629 630 /* If any row exist in the result set, record that fact and abort. 631 */ 632 case SRT_Exists: { 633 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 634 /* The LIMIT clause will terminate the loop for us */ 635 break; 636 } 637 638 /* If this is a scalar select that is part of an expression, then 639 ** store the results in the appropriate memory cell and break out 640 ** of the scan loop. 641 */ 642 case SRT_Mem: { 643 assert( nColumn==1 ); 644 if( pOrderBy ){ 645 pushOntoSorter(pParse, pOrderBy, p, regResult); 646 }else{ 647 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 648 /* The LIMIT clause will jump out of the loop for us */ 649 } 650 break; 651 } 652 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 653 654 /* Send the data to the callback function or to a subroutine. In the 655 ** case of a subroutine, the subroutine itself is responsible for 656 ** popping the data from the stack. 657 */ 658 case SRT_Coroutine: 659 case SRT_Output: { 660 testcase( eDest==SRT_Coroutine ); 661 testcase( eDest==SRT_Output ); 662 if( pOrderBy ){ 663 int r1 = sqlite3GetTempReg(pParse); 664 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 665 pushOntoSorter(pParse, pOrderBy, p, r1); 666 sqlite3ReleaseTempReg(pParse, r1); 667 }else if( eDest==SRT_Coroutine ){ 668 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 669 }else{ 670 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 671 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 672 } 673 break; 674 } 675 676 #if !defined(SQLITE_OMIT_TRIGGER) 677 /* Discard the results. This is used for SELECT statements inside 678 ** the body of a TRIGGER. The purpose of such selects is to call 679 ** user-defined functions that have side effects. We do not care 680 ** about the actual results of the select. 681 */ 682 default: { 683 assert( eDest==SRT_Discard ); 684 break; 685 } 686 #endif 687 } 688 689 /* Jump to the end of the loop if the LIMIT is reached. 690 */ 691 if( p->iLimit ){ 692 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 693 ** pushOntoSorter() would have cleared p->iLimit */ 694 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 695 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 696 } 697 } 698 699 /* 700 ** Given an expression list, generate a KeyInfo structure that records 701 ** the collating sequence for each expression in that expression list. 702 ** 703 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 704 ** KeyInfo structure is appropriate for initializing a virtual index to 705 ** implement that clause. If the ExprList is the result set of a SELECT 706 ** then the KeyInfo structure is appropriate for initializing a virtual 707 ** index to implement a DISTINCT test. 708 ** 709 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 710 ** function is responsible for seeing that this structure is eventually 711 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 712 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 713 */ 714 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 715 sqlite3 *db = pParse->db; 716 int nExpr; 717 KeyInfo *pInfo; 718 struct ExprList_item *pItem; 719 int i; 720 721 nExpr = pList->nExpr; 722 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 723 if( pInfo ){ 724 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 725 pInfo->nField = (u16)nExpr; 726 pInfo->enc = ENC(db); 727 pInfo->db = db; 728 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 729 CollSeq *pColl; 730 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 731 if( !pColl ){ 732 pColl = db->pDfltColl; 733 } 734 pInfo->aColl[i] = pColl; 735 pInfo->aSortOrder[i] = pItem->sortOrder; 736 } 737 } 738 return pInfo; 739 } 740 741 742 /* 743 ** If the inner loop was generated using a non-null pOrderBy argument, 744 ** then the results were placed in a sorter. After the loop is terminated 745 ** we need to run the sorter and output the results. The following 746 ** routine generates the code needed to do that. 747 */ 748 static void generateSortTail( 749 Parse *pParse, /* Parsing context */ 750 Select *p, /* The SELECT statement */ 751 Vdbe *v, /* Generate code into this VDBE */ 752 int nColumn, /* Number of columns of data */ 753 SelectDest *pDest /* Write the sorted results here */ 754 ){ 755 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 756 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 757 int addr; 758 int iTab; 759 int pseudoTab = 0; 760 ExprList *pOrderBy = p->pOrderBy; 761 762 int eDest = pDest->eDest; 763 int iParm = pDest->iParm; 764 765 int regRow; 766 int regRowid; 767 768 iTab = pOrderBy->iECursor; 769 regRow = sqlite3GetTempReg(pParse); 770 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 771 pseudoTab = pParse->nTab++; 772 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 773 regRowid = 0; 774 }else{ 775 regRowid = sqlite3GetTempReg(pParse); 776 } 777 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 778 codeOffset(v, p, addrContinue); 779 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 780 switch( eDest ){ 781 case SRT_Table: 782 case SRT_EphemTab: { 783 testcase( eDest==SRT_Table ); 784 testcase( eDest==SRT_EphemTab ); 785 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 786 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 787 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 788 break; 789 } 790 #ifndef SQLITE_OMIT_SUBQUERY 791 case SRT_Set: { 792 assert( nColumn==1 ); 793 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 794 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 795 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 796 break; 797 } 798 case SRT_Mem: { 799 assert( nColumn==1 ); 800 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 801 /* The LIMIT clause will terminate the loop for us */ 802 break; 803 } 804 #endif 805 default: { 806 int i; 807 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 808 testcase( eDest==SRT_Output ); 809 testcase( eDest==SRT_Coroutine ); 810 for(i=0; i<nColumn; i++){ 811 assert( regRow!=pDest->iMem+i ); 812 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 813 if( i==0 ){ 814 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 815 } 816 } 817 if( eDest==SRT_Output ){ 818 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 819 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 820 }else{ 821 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 822 } 823 break; 824 } 825 } 826 sqlite3ReleaseTempReg(pParse, regRow); 827 sqlite3ReleaseTempReg(pParse, regRowid); 828 829 /* LIMIT has been implemented by the pushOntoSorter() routine. 830 */ 831 assert( p->iLimit==0 ); 832 833 /* The bottom of the loop 834 */ 835 sqlite3VdbeResolveLabel(v, addrContinue); 836 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 837 sqlite3VdbeResolveLabel(v, addrBreak); 838 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 839 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 840 } 841 } 842 843 /* 844 ** Return a pointer to a string containing the 'declaration type' of the 845 ** expression pExpr. The string may be treated as static by the caller. 846 ** 847 ** The declaration type is the exact datatype definition extracted from the 848 ** original CREATE TABLE statement if the expression is a column. The 849 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 850 ** is considered a column can be complex in the presence of subqueries. The 851 ** result-set expression in all of the following SELECT statements is 852 ** considered a column by this function. 853 ** 854 ** SELECT col FROM tbl; 855 ** SELECT (SELECT col FROM tbl; 856 ** SELECT (SELECT col FROM tbl); 857 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 858 ** 859 ** The declaration type for any expression other than a column is NULL. 860 */ 861 static const char *columnType( 862 NameContext *pNC, 863 Expr *pExpr, 864 const char **pzOriginDb, 865 const char **pzOriginTab, 866 const char **pzOriginCol 867 ){ 868 char const *zType = 0; 869 char const *zOriginDb = 0; 870 char const *zOriginTab = 0; 871 char const *zOriginCol = 0; 872 int j; 873 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 874 875 switch( pExpr->op ){ 876 case TK_AGG_COLUMN: 877 case TK_COLUMN: { 878 /* The expression is a column. Locate the table the column is being 879 ** extracted from in NameContext.pSrcList. This table may be real 880 ** database table or a subquery. 881 */ 882 Table *pTab = 0; /* Table structure column is extracted from */ 883 Select *pS = 0; /* Select the column is extracted from */ 884 int iCol = pExpr->iColumn; /* Index of column in pTab */ 885 testcase( pExpr->op==TK_AGG_COLUMN ); 886 testcase( pExpr->op==TK_COLUMN ); 887 while( pNC && !pTab ){ 888 SrcList *pTabList = pNC->pSrcList; 889 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 890 if( j<pTabList->nSrc ){ 891 pTab = pTabList->a[j].pTab; 892 pS = pTabList->a[j].pSelect; 893 }else{ 894 pNC = pNC->pNext; 895 } 896 } 897 898 if( pTab==0 ){ 899 /* At one time, code such as "SELECT new.x" within a trigger would 900 ** cause this condition to run. Since then, we have restructured how 901 ** trigger code is generated and so this condition is no longer 902 ** possible. However, it can still be true for statements like 903 ** the following: 904 ** 905 ** CREATE TABLE t1(col INTEGER); 906 ** SELECT (SELECT t1.col) FROM FROM t1; 907 ** 908 ** when columnType() is called on the expression "t1.col" in the 909 ** sub-select. In this case, set the column type to NULL, even 910 ** though it should really be "INTEGER". 911 ** 912 ** This is not a problem, as the column type of "t1.col" is never 913 ** used. When columnType() is called on the expression 914 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 915 ** branch below. */ 916 break; 917 } 918 919 assert( pTab && pExpr->pTab==pTab ); 920 if( pS ){ 921 /* The "table" is actually a sub-select or a view in the FROM clause 922 ** of the SELECT statement. Return the declaration type and origin 923 ** data for the result-set column of the sub-select. 924 */ 925 if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){ 926 /* If iCol is less than zero, then the expression requests the 927 ** rowid of the sub-select or view. This expression is legal (see 928 ** test case misc2.2.2) - it always evaluates to NULL. 929 */ 930 NameContext sNC; 931 Expr *p = pS->pEList->a[iCol].pExpr; 932 sNC.pSrcList = pS->pSrc; 933 sNC.pNext = pNC; 934 sNC.pParse = pNC->pParse; 935 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 936 } 937 }else if( ALWAYS(pTab->pSchema) ){ 938 /* A real table */ 939 assert( !pS ); 940 if( iCol<0 ) iCol = pTab->iPKey; 941 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 942 if( iCol<0 ){ 943 zType = "INTEGER"; 944 zOriginCol = "rowid"; 945 }else{ 946 zType = pTab->aCol[iCol].zType; 947 zOriginCol = pTab->aCol[iCol].zName; 948 } 949 zOriginTab = pTab->zName; 950 if( pNC->pParse ){ 951 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 952 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 953 } 954 } 955 break; 956 } 957 #ifndef SQLITE_OMIT_SUBQUERY 958 case TK_SELECT: { 959 /* The expression is a sub-select. Return the declaration type and 960 ** origin info for the single column in the result set of the SELECT 961 ** statement. 962 */ 963 NameContext sNC; 964 Select *pS = pExpr->x.pSelect; 965 Expr *p = pS->pEList->a[0].pExpr; 966 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 967 sNC.pSrcList = pS->pSrc; 968 sNC.pNext = pNC; 969 sNC.pParse = pNC->pParse; 970 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 971 break; 972 } 973 #endif 974 } 975 976 if( pzOriginDb ){ 977 assert( pzOriginTab && pzOriginCol ); 978 *pzOriginDb = zOriginDb; 979 *pzOriginTab = zOriginTab; 980 *pzOriginCol = zOriginCol; 981 } 982 return zType; 983 } 984 985 /* 986 ** Generate code that will tell the VDBE the declaration types of columns 987 ** in the result set. 988 */ 989 static void generateColumnTypes( 990 Parse *pParse, /* Parser context */ 991 SrcList *pTabList, /* List of tables */ 992 ExprList *pEList /* Expressions defining the result set */ 993 ){ 994 #ifndef SQLITE_OMIT_DECLTYPE 995 Vdbe *v = pParse->pVdbe; 996 int i; 997 NameContext sNC; 998 sNC.pSrcList = pTabList; 999 sNC.pParse = pParse; 1000 for(i=0; i<pEList->nExpr; i++){ 1001 Expr *p = pEList->a[i].pExpr; 1002 const char *zType; 1003 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1004 const char *zOrigDb = 0; 1005 const char *zOrigTab = 0; 1006 const char *zOrigCol = 0; 1007 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1008 1009 /* The vdbe must make its own copy of the column-type and other 1010 ** column specific strings, in case the schema is reset before this 1011 ** virtual machine is deleted. 1012 */ 1013 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1014 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1015 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1016 #else 1017 zType = columnType(&sNC, p, 0, 0, 0); 1018 #endif 1019 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1020 } 1021 #endif /* SQLITE_OMIT_DECLTYPE */ 1022 } 1023 1024 /* 1025 ** Generate code that will tell the VDBE the names of columns 1026 ** in the result set. This information is used to provide the 1027 ** azCol[] values in the callback. 1028 */ 1029 static void generateColumnNames( 1030 Parse *pParse, /* Parser context */ 1031 SrcList *pTabList, /* List of tables */ 1032 ExprList *pEList /* Expressions defining the result set */ 1033 ){ 1034 Vdbe *v = pParse->pVdbe; 1035 int i, j; 1036 sqlite3 *db = pParse->db; 1037 int fullNames, shortNames; 1038 1039 #ifndef SQLITE_OMIT_EXPLAIN 1040 /* If this is an EXPLAIN, skip this step */ 1041 if( pParse->explain ){ 1042 return; 1043 } 1044 #endif 1045 1046 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1047 pParse->colNamesSet = 1; 1048 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1049 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1050 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1051 for(i=0; i<pEList->nExpr; i++){ 1052 Expr *p; 1053 p = pEList->a[i].pExpr; 1054 if( NEVER(p==0) ) continue; 1055 if( pEList->a[i].zName ){ 1056 char *zName = pEList->a[i].zName; 1057 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1058 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1059 Table *pTab; 1060 char *zCol; 1061 int iCol = p->iColumn; 1062 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1063 if( pTabList->a[j].iCursor==p->iTable ) break; 1064 } 1065 assert( j<pTabList->nSrc ); 1066 pTab = pTabList->a[j].pTab; 1067 if( iCol<0 ) iCol = pTab->iPKey; 1068 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1069 if( iCol<0 ){ 1070 zCol = "rowid"; 1071 }else{ 1072 zCol = pTab->aCol[iCol].zName; 1073 } 1074 if( !shortNames && !fullNames ){ 1075 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1076 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1077 }else if( fullNames ){ 1078 char *zName = 0; 1079 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1080 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1081 }else{ 1082 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1083 } 1084 }else{ 1085 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1086 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1087 } 1088 } 1089 generateColumnTypes(pParse, pTabList, pEList); 1090 } 1091 1092 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1093 /* 1094 ** Name of the connection operator, used for error messages. 1095 */ 1096 static const char *selectOpName(int id){ 1097 char *z; 1098 switch( id ){ 1099 case TK_ALL: z = "UNION ALL"; break; 1100 case TK_INTERSECT: z = "INTERSECT"; break; 1101 case TK_EXCEPT: z = "EXCEPT"; break; 1102 default: z = "UNION"; break; 1103 } 1104 return z; 1105 } 1106 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1107 1108 /* 1109 ** Given a an expression list (which is really the list of expressions 1110 ** that form the result set of a SELECT statement) compute appropriate 1111 ** column names for a table that would hold the expression list. 1112 ** 1113 ** All column names will be unique. 1114 ** 1115 ** Only the column names are computed. Column.zType, Column.zColl, 1116 ** and other fields of Column are zeroed. 1117 ** 1118 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1119 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1120 */ 1121 static int selectColumnsFromExprList( 1122 Parse *pParse, /* Parsing context */ 1123 ExprList *pEList, /* Expr list from which to derive column names */ 1124 int *pnCol, /* Write the number of columns here */ 1125 Column **paCol /* Write the new column list here */ 1126 ){ 1127 sqlite3 *db = pParse->db; /* Database connection */ 1128 int i, j; /* Loop counters */ 1129 int cnt; /* Index added to make the name unique */ 1130 Column *aCol, *pCol; /* For looping over result columns */ 1131 int nCol; /* Number of columns in the result set */ 1132 Expr *p; /* Expression for a single result column */ 1133 char *zName; /* Column name */ 1134 int nName; /* Size of name in zName[] */ 1135 1136 *pnCol = nCol = pEList->nExpr; 1137 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1138 if( aCol==0 ) return SQLITE_NOMEM; 1139 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1140 /* Get an appropriate name for the column 1141 */ 1142 p = pEList->a[i].pExpr; 1143 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1144 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1145 if( (zName = pEList->a[i].zName)!=0 ){ 1146 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1147 zName = sqlite3DbStrDup(db, zName); 1148 }else{ 1149 Expr *pColExpr = p; /* The expression that is the result column name */ 1150 Table *pTab; /* Table associated with this expression */ 1151 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1152 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1153 /* For columns use the column name name */ 1154 int iCol = pColExpr->iColumn; 1155 pTab = pColExpr->pTab; 1156 if( iCol<0 ) iCol = pTab->iPKey; 1157 zName = sqlite3MPrintf(db, "%s", 1158 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1159 }else if( pColExpr->op==TK_ID ){ 1160 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1161 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1162 }else{ 1163 /* Use the original text of the column expression as its name */ 1164 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1165 } 1166 } 1167 if( db->mallocFailed ){ 1168 sqlite3DbFree(db, zName); 1169 break; 1170 } 1171 1172 /* Make sure the column name is unique. If the name is not unique, 1173 ** append a integer to the name so that it becomes unique. 1174 */ 1175 nName = sqlite3Strlen30(zName); 1176 for(j=cnt=0; j<i; j++){ 1177 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1178 char *zNewName; 1179 zName[nName] = 0; 1180 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1181 sqlite3DbFree(db, zName); 1182 zName = zNewName; 1183 j = -1; 1184 if( zName==0 ) break; 1185 } 1186 } 1187 pCol->zName = zName; 1188 } 1189 if( db->mallocFailed ){ 1190 for(j=0; j<i; j++){ 1191 sqlite3DbFree(db, aCol[j].zName); 1192 } 1193 sqlite3DbFree(db, aCol); 1194 *paCol = 0; 1195 *pnCol = 0; 1196 return SQLITE_NOMEM; 1197 } 1198 return SQLITE_OK; 1199 } 1200 1201 /* 1202 ** Add type and collation information to a column list based on 1203 ** a SELECT statement. 1204 ** 1205 ** The column list presumably came from selectColumnNamesFromExprList(). 1206 ** The column list has only names, not types or collations. This 1207 ** routine goes through and adds the types and collations. 1208 ** 1209 ** This routine requires that all identifiers in the SELECT 1210 ** statement be resolved. 1211 */ 1212 static void selectAddColumnTypeAndCollation( 1213 Parse *pParse, /* Parsing contexts */ 1214 int nCol, /* Number of columns */ 1215 Column *aCol, /* List of columns */ 1216 Select *pSelect /* SELECT used to determine types and collations */ 1217 ){ 1218 sqlite3 *db = pParse->db; 1219 NameContext sNC; 1220 Column *pCol; 1221 CollSeq *pColl; 1222 int i; 1223 Expr *p; 1224 struct ExprList_item *a; 1225 1226 assert( pSelect!=0 ); 1227 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1228 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1229 if( db->mallocFailed ) return; 1230 memset(&sNC, 0, sizeof(sNC)); 1231 sNC.pSrcList = pSelect->pSrc; 1232 a = pSelect->pEList->a; 1233 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1234 p = a[i].pExpr; 1235 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1236 pCol->affinity = sqlite3ExprAffinity(p); 1237 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1238 pColl = sqlite3ExprCollSeq(pParse, p); 1239 if( pColl ){ 1240 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1241 } 1242 } 1243 } 1244 1245 /* 1246 ** Given a SELECT statement, generate a Table structure that describes 1247 ** the result set of that SELECT. 1248 */ 1249 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1250 Table *pTab; 1251 sqlite3 *db = pParse->db; 1252 int savedFlags; 1253 1254 savedFlags = db->flags; 1255 db->flags &= ~SQLITE_FullColNames; 1256 db->flags |= SQLITE_ShortColNames; 1257 sqlite3SelectPrep(pParse, pSelect, 0); 1258 if( pParse->nErr ) return 0; 1259 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1260 db->flags = savedFlags; 1261 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1262 if( pTab==0 ){ 1263 return 0; 1264 } 1265 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1266 ** is disabled, so we might as well hard-code pTab->dbMem to NULL. */ 1267 assert( db->lookaside.bEnabled==0 ); 1268 pTab->dbMem = 0; 1269 pTab->nRef = 1; 1270 pTab->zName = 0; 1271 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1272 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1273 pTab->iPKey = -1; 1274 if( db->mallocFailed ){ 1275 sqlite3DeleteTable(pTab); 1276 return 0; 1277 } 1278 return pTab; 1279 } 1280 1281 /* 1282 ** Get a VDBE for the given parser context. Create a new one if necessary. 1283 ** If an error occurs, return NULL and leave a message in pParse. 1284 */ 1285 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1286 Vdbe *v = pParse->pVdbe; 1287 if( v==0 ){ 1288 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1289 #ifndef SQLITE_OMIT_TRACE 1290 if( v ){ 1291 sqlite3VdbeAddOp0(v, OP_Trace); 1292 } 1293 #endif 1294 } 1295 return v; 1296 } 1297 1298 1299 /* 1300 ** Compute the iLimit and iOffset fields of the SELECT based on the 1301 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1302 ** that appear in the original SQL statement after the LIMIT and OFFSET 1303 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1304 ** are the integer memory register numbers for counters used to compute 1305 ** the limit and offset. If there is no limit and/or offset, then 1306 ** iLimit and iOffset are negative. 1307 ** 1308 ** This routine changes the values of iLimit and iOffset only if 1309 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1310 ** iOffset should have been preset to appropriate default values 1311 ** (usually but not always -1) prior to calling this routine. 1312 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1313 ** redefined. The UNION ALL operator uses this property to force 1314 ** the reuse of the same limit and offset registers across multiple 1315 ** SELECT statements. 1316 */ 1317 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1318 Vdbe *v = 0; 1319 int iLimit = 0; 1320 int iOffset; 1321 int addr1; 1322 if( p->iLimit ) return; 1323 1324 /* 1325 ** "LIMIT -1" always shows all rows. There is some 1326 ** contraversy about what the correct behavior should be. 1327 ** The current implementation interprets "LIMIT 0" to mean 1328 ** no rows. 1329 */ 1330 sqlite3ExprCacheClear(pParse); 1331 assert( p->pOffset==0 || p->pLimit!=0 ); 1332 if( p->pLimit ){ 1333 p->iLimit = iLimit = ++pParse->nMem; 1334 v = sqlite3GetVdbe(pParse); 1335 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1336 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1337 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1338 VdbeComment((v, "LIMIT counter")); 1339 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1340 if( p->pOffset ){ 1341 p->iOffset = iOffset = ++pParse->nMem; 1342 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1343 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1344 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1345 VdbeComment((v, "OFFSET counter")); 1346 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1347 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1348 sqlite3VdbeJumpHere(v, addr1); 1349 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1350 VdbeComment((v, "LIMIT+OFFSET")); 1351 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1352 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1353 sqlite3VdbeJumpHere(v, addr1); 1354 } 1355 } 1356 } 1357 1358 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1359 /* 1360 ** Return the appropriate collating sequence for the iCol-th column of 1361 ** the result set for the compound-select statement "p". Return NULL if 1362 ** the column has no default collating sequence. 1363 ** 1364 ** The collating sequence for the compound select is taken from the 1365 ** left-most term of the select that has a collating sequence. 1366 */ 1367 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1368 CollSeq *pRet; 1369 if( p->pPrior ){ 1370 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1371 }else{ 1372 pRet = 0; 1373 } 1374 assert( iCol>=0 ); 1375 if( pRet==0 && iCol<p->pEList->nExpr ){ 1376 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1377 } 1378 return pRet; 1379 } 1380 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1381 1382 /* Forward reference */ 1383 static int multiSelectOrderBy( 1384 Parse *pParse, /* Parsing context */ 1385 Select *p, /* The right-most of SELECTs to be coded */ 1386 SelectDest *pDest /* What to do with query results */ 1387 ); 1388 1389 1390 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1391 /* 1392 ** This routine is called to process a compound query form from 1393 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1394 ** INTERSECT 1395 ** 1396 ** "p" points to the right-most of the two queries. the query on the 1397 ** left is p->pPrior. The left query could also be a compound query 1398 ** in which case this routine will be called recursively. 1399 ** 1400 ** The results of the total query are to be written into a destination 1401 ** of type eDest with parameter iParm. 1402 ** 1403 ** Example 1: Consider a three-way compound SQL statement. 1404 ** 1405 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1406 ** 1407 ** This statement is parsed up as follows: 1408 ** 1409 ** SELECT c FROM t3 1410 ** | 1411 ** `-----> SELECT b FROM t2 1412 ** | 1413 ** `------> SELECT a FROM t1 1414 ** 1415 ** The arrows in the diagram above represent the Select.pPrior pointer. 1416 ** So if this routine is called with p equal to the t3 query, then 1417 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1418 ** 1419 ** Notice that because of the way SQLite parses compound SELECTs, the 1420 ** individual selects always group from left to right. 1421 */ 1422 static int multiSelect( 1423 Parse *pParse, /* Parsing context */ 1424 Select *p, /* The right-most of SELECTs to be coded */ 1425 SelectDest *pDest /* What to do with query results */ 1426 ){ 1427 int rc = SQLITE_OK; /* Success code from a subroutine */ 1428 Select *pPrior; /* Another SELECT immediately to our left */ 1429 Vdbe *v; /* Generate code to this VDBE */ 1430 SelectDest dest; /* Alternative data destination */ 1431 Select *pDelete = 0; /* Chain of simple selects to delete */ 1432 sqlite3 *db; /* Database connection */ 1433 1434 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1435 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1436 */ 1437 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1438 db = pParse->db; 1439 pPrior = p->pPrior; 1440 assert( pPrior->pRightmost!=pPrior ); 1441 assert( pPrior->pRightmost==p->pRightmost ); 1442 dest = *pDest; 1443 if( pPrior->pOrderBy ){ 1444 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1445 selectOpName(p->op)); 1446 rc = 1; 1447 goto multi_select_end; 1448 } 1449 if( pPrior->pLimit ){ 1450 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1451 selectOpName(p->op)); 1452 rc = 1; 1453 goto multi_select_end; 1454 } 1455 1456 v = sqlite3GetVdbe(pParse); 1457 assert( v!=0 ); /* The VDBE already created by calling function */ 1458 1459 /* Create the destination temporary table if necessary 1460 */ 1461 if( dest.eDest==SRT_EphemTab ){ 1462 assert( p->pEList ); 1463 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1464 dest.eDest = SRT_Table; 1465 } 1466 1467 /* Make sure all SELECTs in the statement have the same number of elements 1468 ** in their result sets. 1469 */ 1470 assert( p->pEList && pPrior->pEList ); 1471 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1472 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1473 " do not have the same number of result columns", selectOpName(p->op)); 1474 rc = 1; 1475 goto multi_select_end; 1476 } 1477 1478 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1479 */ 1480 if( p->pOrderBy ){ 1481 return multiSelectOrderBy(pParse, p, pDest); 1482 } 1483 1484 /* Generate code for the left and right SELECT statements. 1485 */ 1486 switch( p->op ){ 1487 case TK_ALL: { 1488 int addr = 0; 1489 assert( !pPrior->pLimit ); 1490 pPrior->pLimit = p->pLimit; 1491 pPrior->pOffset = p->pOffset; 1492 rc = sqlite3Select(pParse, pPrior, &dest); 1493 p->pLimit = 0; 1494 p->pOffset = 0; 1495 if( rc ){ 1496 goto multi_select_end; 1497 } 1498 p->pPrior = 0; 1499 p->iLimit = pPrior->iLimit; 1500 p->iOffset = pPrior->iOffset; 1501 if( p->iLimit ){ 1502 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1503 VdbeComment((v, "Jump ahead if LIMIT reached")); 1504 } 1505 rc = sqlite3Select(pParse, p, &dest); 1506 testcase( rc!=SQLITE_OK ); 1507 pDelete = p->pPrior; 1508 p->pPrior = pPrior; 1509 if( addr ){ 1510 sqlite3VdbeJumpHere(v, addr); 1511 } 1512 break; 1513 } 1514 case TK_EXCEPT: 1515 case TK_UNION: { 1516 int unionTab; /* Cursor number of the temporary table holding result */ 1517 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1518 int priorOp; /* The SRT_ operation to apply to prior selects */ 1519 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1520 int addr; 1521 SelectDest uniondest; 1522 1523 testcase( p->op==TK_EXCEPT ); 1524 testcase( p->op==TK_UNION ); 1525 priorOp = SRT_Union; 1526 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1527 /* We can reuse a temporary table generated by a SELECT to our 1528 ** right. 1529 */ 1530 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1531 ** of a 3-way or more compound */ 1532 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1533 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1534 unionTab = dest.iParm; 1535 }else{ 1536 /* We will need to create our own temporary table to hold the 1537 ** intermediate results. 1538 */ 1539 unionTab = pParse->nTab++; 1540 assert( p->pOrderBy==0 ); 1541 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1542 assert( p->addrOpenEphm[0] == -1 ); 1543 p->addrOpenEphm[0] = addr; 1544 p->pRightmost->selFlags |= SF_UsesEphemeral; 1545 assert( p->pEList ); 1546 } 1547 1548 /* Code the SELECT statements to our left 1549 */ 1550 assert( !pPrior->pOrderBy ); 1551 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1552 rc = sqlite3Select(pParse, pPrior, &uniondest); 1553 if( rc ){ 1554 goto multi_select_end; 1555 } 1556 1557 /* Code the current SELECT statement 1558 */ 1559 if( p->op==TK_EXCEPT ){ 1560 op = SRT_Except; 1561 }else{ 1562 assert( p->op==TK_UNION ); 1563 op = SRT_Union; 1564 } 1565 p->pPrior = 0; 1566 pLimit = p->pLimit; 1567 p->pLimit = 0; 1568 pOffset = p->pOffset; 1569 p->pOffset = 0; 1570 uniondest.eDest = op; 1571 rc = sqlite3Select(pParse, p, &uniondest); 1572 testcase( rc!=SQLITE_OK ); 1573 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1574 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1575 sqlite3ExprListDelete(db, p->pOrderBy); 1576 pDelete = p->pPrior; 1577 p->pPrior = pPrior; 1578 p->pOrderBy = 0; 1579 sqlite3ExprDelete(db, p->pLimit); 1580 p->pLimit = pLimit; 1581 p->pOffset = pOffset; 1582 p->iLimit = 0; 1583 p->iOffset = 0; 1584 1585 /* Convert the data in the temporary table into whatever form 1586 ** it is that we currently need. 1587 */ 1588 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1589 if( dest.eDest!=priorOp ){ 1590 int iCont, iBreak, iStart; 1591 assert( p->pEList ); 1592 if( dest.eDest==SRT_Output ){ 1593 Select *pFirst = p; 1594 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1595 generateColumnNames(pParse, 0, pFirst->pEList); 1596 } 1597 iBreak = sqlite3VdbeMakeLabel(v); 1598 iCont = sqlite3VdbeMakeLabel(v); 1599 computeLimitRegisters(pParse, p, iBreak); 1600 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1601 iStart = sqlite3VdbeCurrentAddr(v); 1602 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1603 0, -1, &dest, iCont, iBreak); 1604 sqlite3VdbeResolveLabel(v, iCont); 1605 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1606 sqlite3VdbeResolveLabel(v, iBreak); 1607 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1608 } 1609 break; 1610 } 1611 default: assert( p->op==TK_INTERSECT ); { 1612 int tab1, tab2; 1613 int iCont, iBreak, iStart; 1614 Expr *pLimit, *pOffset; 1615 int addr; 1616 SelectDest intersectdest; 1617 int r1; 1618 1619 /* INTERSECT is different from the others since it requires 1620 ** two temporary tables. Hence it has its own case. Begin 1621 ** by allocating the tables we will need. 1622 */ 1623 tab1 = pParse->nTab++; 1624 tab2 = pParse->nTab++; 1625 assert( p->pOrderBy==0 ); 1626 1627 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1628 assert( p->addrOpenEphm[0] == -1 ); 1629 p->addrOpenEphm[0] = addr; 1630 p->pRightmost->selFlags |= SF_UsesEphemeral; 1631 assert( p->pEList ); 1632 1633 /* Code the SELECTs to our left into temporary table "tab1". 1634 */ 1635 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1636 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1637 if( rc ){ 1638 goto multi_select_end; 1639 } 1640 1641 /* Code the current SELECT into temporary table "tab2" 1642 */ 1643 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1644 assert( p->addrOpenEphm[1] == -1 ); 1645 p->addrOpenEphm[1] = addr; 1646 p->pPrior = 0; 1647 pLimit = p->pLimit; 1648 p->pLimit = 0; 1649 pOffset = p->pOffset; 1650 p->pOffset = 0; 1651 intersectdest.iParm = tab2; 1652 rc = sqlite3Select(pParse, p, &intersectdest); 1653 testcase( rc!=SQLITE_OK ); 1654 pDelete = p->pPrior; 1655 p->pPrior = pPrior; 1656 sqlite3ExprDelete(db, p->pLimit); 1657 p->pLimit = pLimit; 1658 p->pOffset = pOffset; 1659 1660 /* Generate code to take the intersection of the two temporary 1661 ** tables. 1662 */ 1663 assert( p->pEList ); 1664 if( dest.eDest==SRT_Output ){ 1665 Select *pFirst = p; 1666 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1667 generateColumnNames(pParse, 0, pFirst->pEList); 1668 } 1669 iBreak = sqlite3VdbeMakeLabel(v); 1670 iCont = sqlite3VdbeMakeLabel(v); 1671 computeLimitRegisters(pParse, p, iBreak); 1672 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1673 r1 = sqlite3GetTempReg(pParse); 1674 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1675 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 1676 sqlite3ReleaseTempReg(pParse, r1); 1677 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1678 0, -1, &dest, iCont, iBreak); 1679 sqlite3VdbeResolveLabel(v, iCont); 1680 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1681 sqlite3VdbeResolveLabel(v, iBreak); 1682 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1683 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1684 break; 1685 } 1686 } 1687 1688 /* Compute collating sequences used by 1689 ** temporary tables needed to implement the compound select. 1690 ** Attach the KeyInfo structure to all temporary tables. 1691 ** 1692 ** This section is run by the right-most SELECT statement only. 1693 ** SELECT statements to the left always skip this part. The right-most 1694 ** SELECT might also skip this part if it has no ORDER BY clause and 1695 ** no temp tables are required. 1696 */ 1697 if( p->selFlags & SF_UsesEphemeral ){ 1698 int i; /* Loop counter */ 1699 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1700 Select *pLoop; /* For looping through SELECT statements */ 1701 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1702 int nCol; /* Number of columns in result set */ 1703 1704 assert( p->pRightmost==p ); 1705 nCol = p->pEList->nExpr; 1706 pKeyInfo = sqlite3DbMallocZero(db, 1707 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1708 if( !pKeyInfo ){ 1709 rc = SQLITE_NOMEM; 1710 goto multi_select_end; 1711 } 1712 1713 pKeyInfo->enc = ENC(db); 1714 pKeyInfo->nField = (u16)nCol; 1715 1716 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1717 *apColl = multiSelectCollSeq(pParse, p, i); 1718 if( 0==*apColl ){ 1719 *apColl = db->pDfltColl; 1720 } 1721 } 1722 1723 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1724 for(i=0; i<2; i++){ 1725 int addr = pLoop->addrOpenEphm[i]; 1726 if( addr<0 ){ 1727 /* If [0] is unused then [1] is also unused. So we can 1728 ** always safely abort as soon as the first unused slot is found */ 1729 assert( pLoop->addrOpenEphm[1]<0 ); 1730 break; 1731 } 1732 sqlite3VdbeChangeP2(v, addr, nCol); 1733 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1734 pLoop->addrOpenEphm[i] = -1; 1735 } 1736 } 1737 sqlite3DbFree(db, pKeyInfo); 1738 } 1739 1740 multi_select_end: 1741 pDest->iMem = dest.iMem; 1742 pDest->nMem = dest.nMem; 1743 sqlite3SelectDelete(db, pDelete); 1744 return rc; 1745 } 1746 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1747 1748 /* 1749 ** Code an output subroutine for a coroutine implementation of a 1750 ** SELECT statment. 1751 ** 1752 ** The data to be output is contained in pIn->iMem. There are 1753 ** pIn->nMem columns to be output. pDest is where the output should 1754 ** be sent. 1755 ** 1756 ** regReturn is the number of the register holding the subroutine 1757 ** return address. 1758 ** 1759 ** If regPrev>0 then it is a the first register in a vector that 1760 ** records the previous output. mem[regPrev] is a flag that is false 1761 ** if there has been no previous output. If regPrev>0 then code is 1762 ** generated to suppress duplicates. pKeyInfo is used for comparing 1763 ** keys. 1764 ** 1765 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1766 ** iBreak. 1767 */ 1768 static int generateOutputSubroutine( 1769 Parse *pParse, /* Parsing context */ 1770 Select *p, /* The SELECT statement */ 1771 SelectDest *pIn, /* Coroutine supplying data */ 1772 SelectDest *pDest, /* Where to send the data */ 1773 int regReturn, /* The return address register */ 1774 int regPrev, /* Previous result register. No uniqueness if 0 */ 1775 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1776 int p4type, /* The p4 type for pKeyInfo */ 1777 int iBreak /* Jump here if we hit the LIMIT */ 1778 ){ 1779 Vdbe *v = pParse->pVdbe; 1780 int iContinue; 1781 int addr; 1782 1783 addr = sqlite3VdbeCurrentAddr(v); 1784 iContinue = sqlite3VdbeMakeLabel(v); 1785 1786 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1787 */ 1788 if( regPrev ){ 1789 int j1, j2; 1790 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1791 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1792 (char*)pKeyInfo, p4type); 1793 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1794 sqlite3VdbeJumpHere(v, j1); 1795 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1796 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1797 } 1798 if( pParse->db->mallocFailed ) return 0; 1799 1800 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1801 */ 1802 codeOffset(v, p, iContinue); 1803 1804 switch( pDest->eDest ){ 1805 /* Store the result as data using a unique key. 1806 */ 1807 case SRT_Table: 1808 case SRT_EphemTab: { 1809 int r1 = sqlite3GetTempReg(pParse); 1810 int r2 = sqlite3GetTempReg(pParse); 1811 testcase( pDest->eDest==SRT_Table ); 1812 testcase( pDest->eDest==SRT_EphemTab ); 1813 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1814 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1815 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1816 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1817 sqlite3ReleaseTempReg(pParse, r2); 1818 sqlite3ReleaseTempReg(pParse, r1); 1819 break; 1820 } 1821 1822 #ifndef SQLITE_OMIT_SUBQUERY 1823 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1824 ** then there should be a single item on the stack. Write this 1825 ** item into the set table with bogus data. 1826 */ 1827 case SRT_Set: { 1828 int r1; 1829 assert( pIn->nMem==1 ); 1830 p->affinity = 1831 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1832 r1 = sqlite3GetTempReg(pParse); 1833 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1834 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1835 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1836 sqlite3ReleaseTempReg(pParse, r1); 1837 break; 1838 } 1839 1840 #if 0 /* Never occurs on an ORDER BY query */ 1841 /* If any row exist in the result set, record that fact and abort. 1842 */ 1843 case SRT_Exists: { 1844 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1845 /* The LIMIT clause will terminate the loop for us */ 1846 break; 1847 } 1848 #endif 1849 1850 /* If this is a scalar select that is part of an expression, then 1851 ** store the results in the appropriate memory cell and break out 1852 ** of the scan loop. 1853 */ 1854 case SRT_Mem: { 1855 assert( pIn->nMem==1 ); 1856 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1857 /* The LIMIT clause will jump out of the loop for us */ 1858 break; 1859 } 1860 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1861 1862 /* The results are stored in a sequence of registers 1863 ** starting at pDest->iMem. Then the co-routine yields. 1864 */ 1865 case SRT_Coroutine: { 1866 if( pDest->iMem==0 ){ 1867 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1868 pDest->nMem = pIn->nMem; 1869 } 1870 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1871 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1872 break; 1873 } 1874 1875 /* If none of the above, then the result destination must be 1876 ** SRT_Output. This routine is never called with any other 1877 ** destination other than the ones handled above or SRT_Output. 1878 ** 1879 ** For SRT_Output, results are stored in a sequence of registers. 1880 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 1881 ** return the next row of result. 1882 */ 1883 default: { 1884 assert( pDest->eDest==SRT_Output ); 1885 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1886 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1887 break; 1888 } 1889 } 1890 1891 /* Jump to the end of the loop if the LIMIT is reached. 1892 */ 1893 if( p->iLimit ){ 1894 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1895 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 1896 } 1897 1898 /* Generate the subroutine return 1899 */ 1900 sqlite3VdbeResolveLabel(v, iContinue); 1901 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1902 1903 return addr; 1904 } 1905 1906 /* 1907 ** Alternative compound select code generator for cases when there 1908 ** is an ORDER BY clause. 1909 ** 1910 ** We assume a query of the following form: 1911 ** 1912 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1913 ** 1914 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1915 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1916 ** co-routines. Then run the co-routines in parallel and merge the results 1917 ** into the output. In addition to the two coroutines (called selectA and 1918 ** selectB) there are 7 subroutines: 1919 ** 1920 ** outA: Move the output of the selectA coroutine into the output 1921 ** of the compound query. 1922 ** 1923 ** outB: Move the output of the selectB coroutine into the output 1924 ** of the compound query. (Only generated for UNION and 1925 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1926 ** appears only in B.) 1927 ** 1928 ** AltB: Called when there is data from both coroutines and A<B. 1929 ** 1930 ** AeqB: Called when there is data from both coroutines and A==B. 1931 ** 1932 ** AgtB: Called when there is data from both coroutines and A>B. 1933 ** 1934 ** EofA: Called when data is exhausted from selectA. 1935 ** 1936 ** EofB: Called when data is exhausted from selectB. 1937 ** 1938 ** The implementation of the latter five subroutines depend on which 1939 ** <operator> is used: 1940 ** 1941 ** 1942 ** UNION ALL UNION EXCEPT INTERSECT 1943 ** ------------- ----------------- -------------- ----------------- 1944 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1945 ** 1946 ** AeqB: outA, nextA nextA nextA outA, nextA 1947 ** 1948 ** AgtB: outB, nextB outB, nextB nextB nextB 1949 ** 1950 ** EofA: outB, nextB outB, nextB halt halt 1951 ** 1952 ** EofB: outA, nextA outA, nextA outA, nextA halt 1953 ** 1954 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1955 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1956 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1957 ** following nextX causes a jump to the end of the select processing. 1958 ** 1959 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1960 ** within the output subroutine. The regPrev register set holds the previously 1961 ** output value. A comparison is made against this value and the output 1962 ** is skipped if the next results would be the same as the previous. 1963 ** 1964 ** The implementation plan is to implement the two coroutines and seven 1965 ** subroutines first, then put the control logic at the bottom. Like this: 1966 ** 1967 ** goto Init 1968 ** coA: coroutine for left query (A) 1969 ** coB: coroutine for right query (B) 1970 ** outA: output one row of A 1971 ** outB: output one row of B (UNION and UNION ALL only) 1972 ** EofA: ... 1973 ** EofB: ... 1974 ** AltB: ... 1975 ** AeqB: ... 1976 ** AgtB: ... 1977 ** Init: initialize coroutine registers 1978 ** yield coA 1979 ** if eof(A) goto EofA 1980 ** yield coB 1981 ** if eof(B) goto EofB 1982 ** Cmpr: Compare A, B 1983 ** Jump AltB, AeqB, AgtB 1984 ** End: ... 1985 ** 1986 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 1987 ** actually called using Gosub and they do not Return. EofA and EofB loop 1988 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 1989 ** and AgtB jump to either L2 or to one of EofA or EofB. 1990 */ 1991 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1992 static int multiSelectOrderBy( 1993 Parse *pParse, /* Parsing context */ 1994 Select *p, /* The right-most of SELECTs to be coded */ 1995 SelectDest *pDest /* What to do with query results */ 1996 ){ 1997 int i, j; /* Loop counters */ 1998 Select *pPrior; /* Another SELECT immediately to our left */ 1999 Vdbe *v; /* Generate code to this VDBE */ 2000 SelectDest destA; /* Destination for coroutine A */ 2001 SelectDest destB; /* Destination for coroutine B */ 2002 int regAddrA; /* Address register for select-A coroutine */ 2003 int regEofA; /* Flag to indicate when select-A is complete */ 2004 int regAddrB; /* Address register for select-B coroutine */ 2005 int regEofB; /* Flag to indicate when select-B is complete */ 2006 int addrSelectA; /* Address of the select-A coroutine */ 2007 int addrSelectB; /* Address of the select-B coroutine */ 2008 int regOutA; /* Address register for the output-A subroutine */ 2009 int regOutB; /* Address register for the output-B subroutine */ 2010 int addrOutA; /* Address of the output-A subroutine */ 2011 int addrOutB = 0; /* Address of the output-B subroutine */ 2012 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2013 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2014 int addrAltB; /* Address of the A<B subroutine */ 2015 int addrAeqB; /* Address of the A==B subroutine */ 2016 int addrAgtB; /* Address of the A>B subroutine */ 2017 int regLimitA; /* Limit register for select-A */ 2018 int regLimitB; /* Limit register for select-A */ 2019 int regPrev; /* A range of registers to hold previous output */ 2020 int savedLimit; /* Saved value of p->iLimit */ 2021 int savedOffset; /* Saved value of p->iOffset */ 2022 int labelCmpr; /* Label for the start of the merge algorithm */ 2023 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2024 int j1; /* Jump instructions that get retargetted */ 2025 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2026 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2027 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2028 sqlite3 *db; /* Database connection */ 2029 ExprList *pOrderBy; /* The ORDER BY clause */ 2030 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2031 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2032 2033 assert( p->pOrderBy!=0 ); 2034 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2035 db = pParse->db; 2036 v = pParse->pVdbe; 2037 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2038 labelEnd = sqlite3VdbeMakeLabel(v); 2039 labelCmpr = sqlite3VdbeMakeLabel(v); 2040 2041 2042 /* Patch up the ORDER BY clause 2043 */ 2044 op = p->op; 2045 pPrior = p->pPrior; 2046 assert( pPrior->pOrderBy==0 ); 2047 pOrderBy = p->pOrderBy; 2048 assert( pOrderBy ); 2049 nOrderBy = pOrderBy->nExpr; 2050 2051 /* For operators other than UNION ALL we have to make sure that 2052 ** the ORDER BY clause covers every term of the result set. Add 2053 ** terms to the ORDER BY clause as necessary. 2054 */ 2055 if( op!=TK_ALL ){ 2056 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2057 struct ExprList_item *pItem; 2058 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2059 assert( pItem->iCol>0 ); 2060 if( pItem->iCol==i ) break; 2061 } 2062 if( j==nOrderBy ){ 2063 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2064 if( pNew==0 ) return SQLITE_NOMEM; 2065 pNew->flags |= EP_IntValue; 2066 pNew->u.iValue = i; 2067 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2068 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2069 } 2070 } 2071 } 2072 2073 /* Compute the comparison permutation and keyinfo that is used with 2074 ** the permutation used to determine if the next 2075 ** row of results comes from selectA or selectB. Also add explicit 2076 ** collations to the ORDER BY clause terms so that when the subqueries 2077 ** to the right and the left are evaluated, they use the correct 2078 ** collation. 2079 */ 2080 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2081 if( aPermute ){ 2082 struct ExprList_item *pItem; 2083 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2084 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2085 aPermute[i] = pItem->iCol - 1; 2086 } 2087 pKeyMerge = 2088 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2089 if( pKeyMerge ){ 2090 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2091 pKeyMerge->nField = (u16)nOrderBy; 2092 pKeyMerge->enc = ENC(db); 2093 for(i=0; i<nOrderBy; i++){ 2094 CollSeq *pColl; 2095 Expr *pTerm = pOrderBy->a[i].pExpr; 2096 if( pTerm->flags & EP_ExpCollate ){ 2097 pColl = pTerm->pColl; 2098 }else{ 2099 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2100 pTerm->flags |= EP_ExpCollate; 2101 pTerm->pColl = pColl; 2102 } 2103 pKeyMerge->aColl[i] = pColl; 2104 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2105 } 2106 } 2107 }else{ 2108 pKeyMerge = 0; 2109 } 2110 2111 /* Reattach the ORDER BY clause to the query. 2112 */ 2113 p->pOrderBy = pOrderBy; 2114 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2115 2116 /* Allocate a range of temporary registers and the KeyInfo needed 2117 ** for the logic that removes duplicate result rows when the 2118 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2119 */ 2120 if( op==TK_ALL ){ 2121 regPrev = 0; 2122 }else{ 2123 int nExpr = p->pEList->nExpr; 2124 assert( nOrderBy>=nExpr || db->mallocFailed ); 2125 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2126 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2127 pKeyDup = sqlite3DbMallocZero(db, 2128 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2129 if( pKeyDup ){ 2130 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2131 pKeyDup->nField = (u16)nExpr; 2132 pKeyDup->enc = ENC(db); 2133 for(i=0; i<nExpr; i++){ 2134 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2135 pKeyDup->aSortOrder[i] = 0; 2136 } 2137 } 2138 } 2139 2140 /* Separate the left and the right query from one another 2141 */ 2142 p->pPrior = 0; 2143 pPrior->pRightmost = 0; 2144 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2145 if( pPrior->pPrior==0 ){ 2146 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2147 } 2148 2149 /* Compute the limit registers */ 2150 computeLimitRegisters(pParse, p, labelEnd); 2151 if( p->iLimit && op==TK_ALL ){ 2152 regLimitA = ++pParse->nMem; 2153 regLimitB = ++pParse->nMem; 2154 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2155 regLimitA); 2156 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2157 }else{ 2158 regLimitA = regLimitB = 0; 2159 } 2160 sqlite3ExprDelete(db, p->pLimit); 2161 p->pLimit = 0; 2162 sqlite3ExprDelete(db, p->pOffset); 2163 p->pOffset = 0; 2164 2165 regAddrA = ++pParse->nMem; 2166 regEofA = ++pParse->nMem; 2167 regAddrB = ++pParse->nMem; 2168 regEofB = ++pParse->nMem; 2169 regOutA = ++pParse->nMem; 2170 regOutB = ++pParse->nMem; 2171 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2172 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2173 2174 /* Jump past the various subroutines and coroutines to the main 2175 ** merge loop 2176 */ 2177 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2178 addrSelectA = sqlite3VdbeCurrentAddr(v); 2179 2180 2181 /* Generate a coroutine to evaluate the SELECT statement to the 2182 ** left of the compound operator - the "A" select. 2183 */ 2184 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2185 pPrior->iLimit = regLimitA; 2186 sqlite3Select(pParse, pPrior, &destA); 2187 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2188 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2189 VdbeNoopComment((v, "End coroutine for left SELECT")); 2190 2191 /* Generate a coroutine to evaluate the SELECT statement on 2192 ** the right - the "B" select 2193 */ 2194 addrSelectB = sqlite3VdbeCurrentAddr(v); 2195 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2196 savedLimit = p->iLimit; 2197 savedOffset = p->iOffset; 2198 p->iLimit = regLimitB; 2199 p->iOffset = 0; 2200 sqlite3Select(pParse, p, &destB); 2201 p->iLimit = savedLimit; 2202 p->iOffset = savedOffset; 2203 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2204 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2205 VdbeNoopComment((v, "End coroutine for right SELECT")); 2206 2207 /* Generate a subroutine that outputs the current row of the A 2208 ** select as the next output row of the compound select. 2209 */ 2210 VdbeNoopComment((v, "Output routine for A")); 2211 addrOutA = generateOutputSubroutine(pParse, 2212 p, &destA, pDest, regOutA, 2213 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2214 2215 /* Generate a subroutine that outputs the current row of the B 2216 ** select as the next output row of the compound select. 2217 */ 2218 if( op==TK_ALL || op==TK_UNION ){ 2219 VdbeNoopComment((v, "Output routine for B")); 2220 addrOutB = generateOutputSubroutine(pParse, 2221 p, &destB, pDest, regOutB, 2222 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2223 } 2224 2225 /* Generate a subroutine to run when the results from select A 2226 ** are exhausted and only data in select B remains. 2227 */ 2228 VdbeNoopComment((v, "eof-A subroutine")); 2229 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2230 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2231 }else{ 2232 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2233 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2234 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2235 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2236 } 2237 2238 /* Generate a subroutine to run when the results from select B 2239 ** are exhausted and only data in select A remains. 2240 */ 2241 if( op==TK_INTERSECT ){ 2242 addrEofB = addrEofA; 2243 }else{ 2244 VdbeNoopComment((v, "eof-B subroutine")); 2245 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2246 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2247 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2248 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2249 } 2250 2251 /* Generate code to handle the case of A<B 2252 */ 2253 VdbeNoopComment((v, "A-lt-B subroutine")); 2254 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2255 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2256 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2257 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2258 2259 /* Generate code to handle the case of A==B 2260 */ 2261 if( op==TK_ALL ){ 2262 addrAeqB = addrAltB; 2263 }else if( op==TK_INTERSECT ){ 2264 addrAeqB = addrAltB; 2265 addrAltB++; 2266 }else{ 2267 VdbeNoopComment((v, "A-eq-B subroutine")); 2268 addrAeqB = 2269 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2270 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2271 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2272 } 2273 2274 /* Generate code to handle the case of A>B 2275 */ 2276 VdbeNoopComment((v, "A-gt-B subroutine")); 2277 addrAgtB = sqlite3VdbeCurrentAddr(v); 2278 if( op==TK_ALL || op==TK_UNION ){ 2279 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2280 } 2281 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2282 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2283 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2284 2285 /* This code runs once to initialize everything. 2286 */ 2287 sqlite3VdbeJumpHere(v, j1); 2288 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2289 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2290 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2291 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2292 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2293 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2294 2295 /* Implement the main merge loop 2296 */ 2297 sqlite3VdbeResolveLabel(v, labelCmpr); 2298 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2299 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2300 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2301 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2302 2303 /* Release temporary registers 2304 */ 2305 if( regPrev ){ 2306 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2307 } 2308 2309 /* Jump to the this point in order to terminate the query. 2310 */ 2311 sqlite3VdbeResolveLabel(v, labelEnd); 2312 2313 /* Set the number of output columns 2314 */ 2315 if( pDest->eDest==SRT_Output ){ 2316 Select *pFirst = pPrior; 2317 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2318 generateColumnNames(pParse, 0, pFirst->pEList); 2319 } 2320 2321 /* Reassembly the compound query so that it will be freed correctly 2322 ** by the calling function */ 2323 if( p->pPrior ){ 2324 sqlite3SelectDelete(db, p->pPrior); 2325 } 2326 p->pPrior = pPrior; 2327 2328 /*** TBD: Insert subroutine calls to close cursors on incomplete 2329 **** subqueries ****/ 2330 return SQLITE_OK; 2331 } 2332 #endif 2333 2334 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2335 /* Forward Declarations */ 2336 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2337 static void substSelect(sqlite3*, Select *, int, ExprList *); 2338 2339 /* 2340 ** Scan through the expression pExpr. Replace every reference to 2341 ** a column in table number iTable with a copy of the iColumn-th 2342 ** entry in pEList. (But leave references to the ROWID column 2343 ** unchanged.) 2344 ** 2345 ** This routine is part of the flattening procedure. A subquery 2346 ** whose result set is defined by pEList appears as entry in the 2347 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2348 ** FORM clause entry is iTable. This routine make the necessary 2349 ** changes to pExpr so that it refers directly to the source table 2350 ** of the subquery rather the result set of the subquery. 2351 */ 2352 static Expr *substExpr( 2353 sqlite3 *db, /* Report malloc errors to this connection */ 2354 Expr *pExpr, /* Expr in which substitution occurs */ 2355 int iTable, /* Table to be substituted */ 2356 ExprList *pEList /* Substitute expressions */ 2357 ){ 2358 if( pExpr==0 ) return 0; 2359 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2360 if( pExpr->iColumn<0 ){ 2361 pExpr->op = TK_NULL; 2362 }else{ 2363 Expr *pNew; 2364 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2365 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2366 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2367 if( pNew && pExpr->pColl ){ 2368 pNew->pColl = pExpr->pColl; 2369 } 2370 sqlite3ExprDelete(db, pExpr); 2371 pExpr = pNew; 2372 } 2373 }else{ 2374 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2375 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2376 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2377 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2378 }else{ 2379 substExprList(db, pExpr->x.pList, iTable, pEList); 2380 } 2381 } 2382 return pExpr; 2383 } 2384 static void substExprList( 2385 sqlite3 *db, /* Report malloc errors here */ 2386 ExprList *pList, /* List to scan and in which to make substitutes */ 2387 int iTable, /* Table to be substituted */ 2388 ExprList *pEList /* Substitute values */ 2389 ){ 2390 int i; 2391 if( pList==0 ) return; 2392 for(i=0; i<pList->nExpr; i++){ 2393 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2394 } 2395 } 2396 static void substSelect( 2397 sqlite3 *db, /* Report malloc errors here */ 2398 Select *p, /* SELECT statement in which to make substitutions */ 2399 int iTable, /* Table to be replaced */ 2400 ExprList *pEList /* Substitute values */ 2401 ){ 2402 SrcList *pSrc; 2403 struct SrcList_item *pItem; 2404 int i; 2405 if( !p ) return; 2406 substExprList(db, p->pEList, iTable, pEList); 2407 substExprList(db, p->pGroupBy, iTable, pEList); 2408 substExprList(db, p->pOrderBy, iTable, pEList); 2409 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2410 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2411 substSelect(db, p->pPrior, iTable, pEList); 2412 pSrc = p->pSrc; 2413 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2414 if( ALWAYS(pSrc) ){ 2415 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2416 substSelect(db, pItem->pSelect, iTable, pEList); 2417 } 2418 } 2419 } 2420 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2421 2422 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2423 /* 2424 ** This routine attempts to flatten subqueries in order to speed 2425 ** execution. It returns 1 if it makes changes and 0 if no flattening 2426 ** occurs. 2427 ** 2428 ** To understand the concept of flattening, consider the following 2429 ** query: 2430 ** 2431 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2432 ** 2433 ** The default way of implementing this query is to execute the 2434 ** subquery first and store the results in a temporary table, then 2435 ** run the outer query on that temporary table. This requires two 2436 ** passes over the data. Furthermore, because the temporary table 2437 ** has no indices, the WHERE clause on the outer query cannot be 2438 ** optimized. 2439 ** 2440 ** This routine attempts to rewrite queries such as the above into 2441 ** a single flat select, like this: 2442 ** 2443 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2444 ** 2445 ** The code generated for this simpification gives the same result 2446 ** but only has to scan the data once. And because indices might 2447 ** exist on the table t1, a complete scan of the data might be 2448 ** avoided. 2449 ** 2450 ** Flattening is only attempted if all of the following are true: 2451 ** 2452 ** (1) The subquery and the outer query do not both use aggregates. 2453 ** 2454 ** (2) The subquery is not an aggregate or the outer query is not a join. 2455 ** 2456 ** (3) The subquery is not the right operand of a left outer join 2457 ** (Originally ticket #306. Strenghtened by ticket #3300) 2458 ** 2459 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2460 ** 2461 ** (5) The subquery is not DISTINCT or the outer query does not use 2462 ** aggregates. 2463 ** 2464 ** (6) The subquery does not use aggregates or the outer query is not 2465 ** DISTINCT. 2466 ** 2467 ** (7) The subquery has a FROM clause. 2468 ** 2469 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2470 ** 2471 ** (9) The subquery does not use LIMIT or the outer query does not use 2472 ** aggregates. 2473 ** 2474 ** (10) The subquery does not use aggregates or the outer query does not 2475 ** use LIMIT. 2476 ** 2477 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2478 ** 2479 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2480 ** a separate restriction deriving from ticket #350. 2481 ** 2482 ** (13) The subquery and outer query do not both use LIMIT 2483 ** 2484 ** (14) The subquery does not use OFFSET 2485 ** 2486 ** (15) The outer query is not part of a compound select or the 2487 ** subquery does not have both an ORDER BY and a LIMIT clause. 2488 ** (See ticket #2339) 2489 ** 2490 ** (16) The outer query is not an aggregate or the subquery does 2491 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2492 ** until we introduced the group_concat() function. 2493 ** 2494 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2495 ** compound clause made up entirely of non-aggregate queries, and 2496 ** the parent query: 2497 ** 2498 ** * is not itself part of a compound select, 2499 ** * is not an aggregate or DISTINCT query, and 2500 ** * has no other tables or sub-selects in the FROM clause. 2501 ** 2502 ** The parent and sub-query may contain WHERE clauses. Subject to 2503 ** rules (11), (13) and (14), they may also contain ORDER BY, 2504 ** LIMIT and OFFSET clauses. 2505 ** 2506 ** (18) If the sub-query is a compound select, then all terms of the 2507 ** ORDER by clause of the parent must be simple references to 2508 ** columns of the sub-query. 2509 ** 2510 ** (19) The subquery does not use LIMIT or the outer query does not 2511 ** have a WHERE clause. 2512 ** 2513 ** (20) If the sub-query is a compound select, then it must not use 2514 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2515 ** somewhat by saying that the terms of the ORDER BY clause must 2516 ** appear as unmodified result columns in the outer query. But 2517 ** have other optimizations in mind to deal with that case. 2518 ** 2519 ** In this routine, the "p" parameter is a pointer to the outer query. 2520 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2521 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2522 ** 2523 ** If flattening is not attempted, this routine is a no-op and returns 0. 2524 ** If flattening is attempted this routine returns 1. 2525 ** 2526 ** All of the expression analysis must occur on both the outer query and 2527 ** the subquery before this routine runs. 2528 */ 2529 static int flattenSubquery( 2530 Parse *pParse, /* Parsing context */ 2531 Select *p, /* The parent or outer SELECT statement */ 2532 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2533 int isAgg, /* True if outer SELECT uses aggregate functions */ 2534 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2535 ){ 2536 const char *zSavedAuthContext = pParse->zAuthContext; 2537 Select *pParent; 2538 Select *pSub; /* The inner query or "subquery" */ 2539 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2540 SrcList *pSrc; /* The FROM clause of the outer query */ 2541 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2542 ExprList *pList; /* The result set of the outer query */ 2543 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2544 int i; /* Loop counter */ 2545 Expr *pWhere; /* The WHERE clause */ 2546 struct SrcList_item *pSubitem; /* The subquery */ 2547 sqlite3 *db = pParse->db; 2548 2549 /* Check to see if flattening is permitted. Return 0 if not. 2550 */ 2551 assert( p!=0 ); 2552 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2553 pSrc = p->pSrc; 2554 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2555 pSubitem = &pSrc->a[iFrom]; 2556 iParent = pSubitem->iCursor; 2557 pSub = pSubitem->pSelect; 2558 assert( pSub!=0 ); 2559 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2560 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2561 pSubSrc = pSub->pSrc; 2562 assert( pSubSrc ); 2563 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2564 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2565 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2566 ** became arbitrary expressions, we were forced to add restrictions (13) 2567 ** and (14). */ 2568 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2569 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2570 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2571 return 0; /* Restriction (15) */ 2572 } 2573 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2574 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2575 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2576 return 0; 2577 } 2578 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2579 return 0; /* Restriction (6) */ 2580 } 2581 if( p->pOrderBy && pSub->pOrderBy ){ 2582 return 0; /* Restriction (11) */ 2583 } 2584 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2585 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2586 2587 /* OBSOLETE COMMENT 1: 2588 ** Restriction 3: If the subquery is a join, make sure the subquery is 2589 ** not used as the right operand of an outer join. Examples of why this 2590 ** is not allowed: 2591 ** 2592 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2593 ** 2594 ** If we flatten the above, we would get 2595 ** 2596 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2597 ** 2598 ** which is not at all the same thing. 2599 ** 2600 ** OBSOLETE COMMENT 2: 2601 ** Restriction 12: If the subquery is the right operand of a left outer 2602 ** join, make sure the subquery has no WHERE clause. 2603 ** An examples of why this is not allowed: 2604 ** 2605 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2606 ** 2607 ** If we flatten the above, we would get 2608 ** 2609 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2610 ** 2611 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2612 ** effectively converts the OUTER JOIN into an INNER JOIN. 2613 ** 2614 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2615 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2616 ** is fraught with danger. Best to avoid the whole thing. If the 2617 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2618 */ 2619 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2620 return 0; 2621 } 2622 2623 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2624 ** use only the UNION ALL operator. And none of the simple select queries 2625 ** that make up the compound SELECT are allowed to be aggregate or distinct 2626 ** queries. 2627 */ 2628 if( pSub->pPrior ){ 2629 if( pSub->pOrderBy ){ 2630 return 0; /* Restriction 20 */ 2631 } 2632 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2633 return 0; 2634 } 2635 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2636 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2637 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2638 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2639 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2640 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2641 ){ 2642 return 0; 2643 } 2644 } 2645 2646 /* Restriction 18. */ 2647 if( p->pOrderBy ){ 2648 int ii; 2649 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2650 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2651 } 2652 } 2653 } 2654 2655 /***** If we reach this point, flattening is permitted. *****/ 2656 2657 /* Authorize the subquery */ 2658 pParse->zAuthContext = pSubitem->zName; 2659 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2660 pParse->zAuthContext = zSavedAuthContext; 2661 2662 /* If the sub-query is a compound SELECT statement, then (by restrictions 2663 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2664 ** be of the form: 2665 ** 2666 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2667 ** 2668 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2669 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2670 ** OFFSET clauses and joins them to the left-hand-side of the original 2671 ** using UNION ALL operators. In this case N is the number of simple 2672 ** select statements in the compound sub-query. 2673 ** 2674 ** Example: 2675 ** 2676 ** SELECT a+1 FROM ( 2677 ** SELECT x FROM tab 2678 ** UNION ALL 2679 ** SELECT y FROM tab 2680 ** UNION ALL 2681 ** SELECT abs(z*2) FROM tab2 2682 ** ) WHERE a!=5 ORDER BY 1 2683 ** 2684 ** Transformed into: 2685 ** 2686 ** SELECT x+1 FROM tab WHERE x+1!=5 2687 ** UNION ALL 2688 ** SELECT y+1 FROM tab WHERE y+1!=5 2689 ** UNION ALL 2690 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2691 ** ORDER BY 1 2692 ** 2693 ** We call this the "compound-subquery flattening". 2694 */ 2695 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2696 Select *pNew; 2697 ExprList *pOrderBy = p->pOrderBy; 2698 Expr *pLimit = p->pLimit; 2699 Select *pPrior = p->pPrior; 2700 p->pOrderBy = 0; 2701 p->pSrc = 0; 2702 p->pPrior = 0; 2703 p->pLimit = 0; 2704 pNew = sqlite3SelectDup(db, p, 0); 2705 p->pLimit = pLimit; 2706 p->pOrderBy = pOrderBy; 2707 p->pSrc = pSrc; 2708 p->op = TK_ALL; 2709 p->pRightmost = 0; 2710 if( pNew==0 ){ 2711 pNew = pPrior; 2712 }else{ 2713 pNew->pPrior = pPrior; 2714 pNew->pRightmost = 0; 2715 } 2716 p->pPrior = pNew; 2717 if( db->mallocFailed ) return 1; 2718 } 2719 2720 /* Begin flattening the iFrom-th entry of the FROM clause 2721 ** in the outer query. 2722 */ 2723 pSub = pSub1 = pSubitem->pSelect; 2724 2725 /* Delete the transient table structure associated with the 2726 ** subquery 2727 */ 2728 sqlite3DbFree(db, pSubitem->zDatabase); 2729 sqlite3DbFree(db, pSubitem->zName); 2730 sqlite3DbFree(db, pSubitem->zAlias); 2731 pSubitem->zDatabase = 0; 2732 pSubitem->zName = 0; 2733 pSubitem->zAlias = 0; 2734 pSubitem->pSelect = 0; 2735 2736 /* Defer deleting the Table object associated with the 2737 ** subquery until code generation is 2738 ** complete, since there may still exist Expr.pTab entries that 2739 ** refer to the subquery even after flattening. Ticket #3346. 2740 ** 2741 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2742 */ 2743 if( ALWAYS(pSubitem->pTab!=0) ){ 2744 Table *pTabToDel = pSubitem->pTab; 2745 if( pTabToDel->nRef==1 ){ 2746 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2747 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2748 pToplevel->pZombieTab = pTabToDel; 2749 }else{ 2750 pTabToDel->nRef--; 2751 } 2752 pSubitem->pTab = 0; 2753 } 2754 2755 /* The following loop runs once for each term in a compound-subquery 2756 ** flattening (as described above). If we are doing a different kind 2757 ** of flattening - a flattening other than a compound-subquery flattening - 2758 ** then this loop only runs once. 2759 ** 2760 ** This loop moves all of the FROM elements of the subquery into the 2761 ** the FROM clause of the outer query. Before doing this, remember 2762 ** the cursor number for the original outer query FROM element in 2763 ** iParent. The iParent cursor will never be used. Subsequent code 2764 ** will scan expressions looking for iParent references and replace 2765 ** those references with expressions that resolve to the subquery FROM 2766 ** elements we are now copying in. 2767 */ 2768 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2769 int nSubSrc; 2770 u8 jointype = 0; 2771 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2772 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2773 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2774 2775 if( pSrc ){ 2776 assert( pParent==p ); /* First time through the loop */ 2777 jointype = pSubitem->jointype; 2778 }else{ 2779 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2780 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2781 if( pSrc==0 ){ 2782 assert( db->mallocFailed ); 2783 break; 2784 } 2785 } 2786 2787 /* The subquery uses a single slot of the FROM clause of the outer 2788 ** query. If the subquery has more than one element in its FROM clause, 2789 ** then expand the outer query to make space for it to hold all elements 2790 ** of the subquery. 2791 ** 2792 ** Example: 2793 ** 2794 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2795 ** 2796 ** The outer query has 3 slots in its FROM clause. One slot of the 2797 ** outer query (the middle slot) is used by the subquery. The next 2798 ** block of code will expand the out query to 4 slots. The middle 2799 ** slot is expanded to two slots in order to make space for the 2800 ** two elements in the FROM clause of the subquery. 2801 */ 2802 if( nSubSrc>1 ){ 2803 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2804 if( db->mallocFailed ){ 2805 break; 2806 } 2807 } 2808 2809 /* Transfer the FROM clause terms from the subquery into the 2810 ** outer query. 2811 */ 2812 for(i=0; i<nSubSrc; i++){ 2813 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2814 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2815 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2816 } 2817 pSrc->a[iFrom].jointype = jointype; 2818 2819 /* Now begin substituting subquery result set expressions for 2820 ** references to the iParent in the outer query. 2821 ** 2822 ** Example: 2823 ** 2824 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2825 ** \ \_____________ subquery __________/ / 2826 ** \_____________________ outer query ______________________________/ 2827 ** 2828 ** We look at every expression in the outer query and every place we see 2829 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2830 */ 2831 pList = pParent->pEList; 2832 for(i=0; i<pList->nExpr; i++){ 2833 if( pList->a[i].zName==0 ){ 2834 const char *zSpan = pList->a[i].zSpan; 2835 if( ALWAYS(zSpan) ){ 2836 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 2837 } 2838 } 2839 } 2840 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2841 if( isAgg ){ 2842 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2843 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2844 } 2845 if( pSub->pOrderBy ){ 2846 assert( pParent->pOrderBy==0 ); 2847 pParent->pOrderBy = pSub->pOrderBy; 2848 pSub->pOrderBy = 0; 2849 }else if( pParent->pOrderBy ){ 2850 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2851 } 2852 if( pSub->pWhere ){ 2853 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2854 }else{ 2855 pWhere = 0; 2856 } 2857 if( subqueryIsAgg ){ 2858 assert( pParent->pHaving==0 ); 2859 pParent->pHaving = pParent->pWhere; 2860 pParent->pWhere = pWhere; 2861 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2862 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2863 sqlite3ExprDup(db, pSub->pHaving, 0)); 2864 assert( pParent->pGroupBy==0 ); 2865 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2866 }else{ 2867 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2868 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2869 } 2870 2871 /* The flattened query is distinct if either the inner or the 2872 ** outer query is distinct. 2873 */ 2874 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2875 2876 /* 2877 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2878 ** 2879 ** One is tempted to try to add a and b to combine the limits. But this 2880 ** does not work if either limit is negative. 2881 */ 2882 if( pSub->pLimit ){ 2883 pParent->pLimit = pSub->pLimit; 2884 pSub->pLimit = 0; 2885 } 2886 } 2887 2888 /* Finially, delete what is left of the subquery and return 2889 ** success. 2890 */ 2891 sqlite3SelectDelete(db, pSub1); 2892 2893 return 1; 2894 } 2895 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2896 2897 /* 2898 ** Analyze the SELECT statement passed as an argument to see if it 2899 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2900 ** it is, or 0 otherwise. At present, a query is considered to be 2901 ** a min()/max() query if: 2902 ** 2903 ** 1. There is a single object in the FROM clause. 2904 ** 2905 ** 2. There is a single expression in the result set, and it is 2906 ** either min(x) or max(x), where x is a column reference. 2907 */ 2908 static u8 minMaxQuery(Select *p){ 2909 Expr *pExpr; 2910 ExprList *pEList = p->pEList; 2911 2912 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2913 pExpr = pEList->a[0].pExpr; 2914 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2915 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 2916 pEList = pExpr->x.pList; 2917 if( pEList==0 || pEList->nExpr!=1 ) return 0; 2918 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2919 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2920 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 2921 return WHERE_ORDERBY_MIN; 2922 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 2923 return WHERE_ORDERBY_MAX; 2924 } 2925 return WHERE_ORDERBY_NORMAL; 2926 } 2927 2928 /* 2929 ** The select statement passed as the first argument is an aggregate query. 2930 ** The second argment is the associated aggregate-info object. This 2931 ** function tests if the SELECT is of the form: 2932 ** 2933 ** SELECT count(*) FROM <tbl> 2934 ** 2935 ** where table is a database table, not a sub-select or view. If the query 2936 ** does match this pattern, then a pointer to the Table object representing 2937 ** <tbl> is returned. Otherwise, 0 is returned. 2938 */ 2939 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2940 Table *pTab; 2941 Expr *pExpr; 2942 2943 assert( !p->pGroupBy ); 2944 2945 if( p->pWhere || p->pEList->nExpr!=1 2946 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2947 ){ 2948 return 0; 2949 } 2950 pTab = p->pSrc->a[0].pTab; 2951 pExpr = p->pEList->a[0].pExpr; 2952 assert( pTab && !pTab->pSelect && pExpr ); 2953 2954 if( IsVirtual(pTab) ) return 0; 2955 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2956 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2957 if( pExpr->flags&EP_Distinct ) return 0; 2958 2959 return pTab; 2960 } 2961 2962 /* 2963 ** If the source-list item passed as an argument was augmented with an 2964 ** INDEXED BY clause, then try to locate the specified index. If there 2965 ** was such a clause and the named index cannot be found, return 2966 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 2967 ** pFrom->pIndex and return SQLITE_OK. 2968 */ 2969 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 2970 if( pFrom->pTab && pFrom->zIndex ){ 2971 Table *pTab = pFrom->pTab; 2972 char *zIndex = pFrom->zIndex; 2973 Index *pIdx; 2974 for(pIdx=pTab->pIndex; 2975 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 2976 pIdx=pIdx->pNext 2977 ); 2978 if( !pIdx ){ 2979 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 2980 return SQLITE_ERROR; 2981 } 2982 pFrom->pIndex = pIdx; 2983 } 2984 return SQLITE_OK; 2985 } 2986 2987 /* 2988 ** This routine is a Walker callback for "expanding" a SELECT statement. 2989 ** "Expanding" means to do the following: 2990 ** 2991 ** (1) Make sure VDBE cursor numbers have been assigned to every 2992 ** element of the FROM clause. 2993 ** 2994 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 2995 ** defines FROM clause. When views appear in the FROM clause, 2996 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 2997 ** that implements the view. A copy is made of the view's SELECT 2998 ** statement so that we can freely modify or delete that statement 2999 ** without worrying about messing up the presistent representation 3000 ** of the view. 3001 ** 3002 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3003 ** on joins and the ON and USING clause of joins. 3004 ** 3005 ** (4) Scan the list of columns in the result set (pEList) looking 3006 ** for instances of the "*" operator or the TABLE.* operator. 3007 ** If found, expand each "*" to be every column in every table 3008 ** and TABLE.* to be every column in TABLE. 3009 ** 3010 */ 3011 static int selectExpander(Walker *pWalker, Select *p){ 3012 Parse *pParse = pWalker->pParse; 3013 int i, j, k; 3014 SrcList *pTabList; 3015 ExprList *pEList; 3016 struct SrcList_item *pFrom; 3017 sqlite3 *db = pParse->db; 3018 3019 if( db->mallocFailed ){ 3020 return WRC_Abort; 3021 } 3022 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3023 return WRC_Prune; 3024 } 3025 p->selFlags |= SF_Expanded; 3026 pTabList = p->pSrc; 3027 pEList = p->pEList; 3028 3029 /* Make sure cursor numbers have been assigned to all entries in 3030 ** the FROM clause of the SELECT statement. 3031 */ 3032 sqlite3SrcListAssignCursors(pParse, pTabList); 3033 3034 /* Look up every table named in the FROM clause of the select. If 3035 ** an entry of the FROM clause is a subquery instead of a table or view, 3036 ** then create a transient table structure to describe the subquery. 3037 */ 3038 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3039 Table *pTab; 3040 if( pFrom->pTab!=0 ){ 3041 /* This statement has already been prepared. There is no need 3042 ** to go further. */ 3043 assert( i==0 ); 3044 return WRC_Prune; 3045 } 3046 if( pFrom->zName==0 ){ 3047 #ifndef SQLITE_OMIT_SUBQUERY 3048 Select *pSel = pFrom->pSelect; 3049 /* A sub-query in the FROM clause of a SELECT */ 3050 assert( pSel!=0 ); 3051 assert( pFrom->pTab==0 ); 3052 sqlite3WalkSelect(pWalker, pSel); 3053 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3054 if( pTab==0 ) return WRC_Abort; 3055 pTab->dbMem = db->lookaside.bEnabled ? db : 0; 3056 pTab->nRef = 1; 3057 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3058 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3059 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3060 pTab->iPKey = -1; 3061 pTab->tabFlags |= TF_Ephemeral; 3062 #endif 3063 }else{ 3064 /* An ordinary table or view name in the FROM clause */ 3065 assert( pFrom->pTab==0 ); 3066 pFrom->pTab = pTab = 3067 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3068 if( pTab==0 ) return WRC_Abort; 3069 pTab->nRef++; 3070 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3071 if( pTab->pSelect || IsVirtual(pTab) ){ 3072 /* We reach here if the named table is a really a view */ 3073 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3074 assert( pFrom->pSelect==0 ); 3075 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3076 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3077 } 3078 #endif 3079 } 3080 3081 /* Locate the index named by the INDEXED BY clause, if any. */ 3082 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3083 return WRC_Abort; 3084 } 3085 } 3086 3087 /* Process NATURAL keywords, and ON and USING clauses of joins. 3088 */ 3089 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3090 return WRC_Abort; 3091 } 3092 3093 /* For every "*" that occurs in the column list, insert the names of 3094 ** all columns in all tables. And for every TABLE.* insert the names 3095 ** of all columns in TABLE. The parser inserted a special expression 3096 ** with the TK_ALL operator for each "*" that it found in the column list. 3097 ** The following code just has to locate the TK_ALL expressions and expand 3098 ** each one to the list of all columns in all tables. 3099 ** 3100 ** The first loop just checks to see if there are any "*" operators 3101 ** that need expanding. 3102 */ 3103 for(k=0; k<pEList->nExpr; k++){ 3104 Expr *pE = pEList->a[k].pExpr; 3105 if( pE->op==TK_ALL ) break; 3106 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3107 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3108 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3109 } 3110 if( k<pEList->nExpr ){ 3111 /* 3112 ** If we get here it means the result set contains one or more "*" 3113 ** operators that need to be expanded. Loop through each expression 3114 ** in the result set and expand them one by one. 3115 */ 3116 struct ExprList_item *a = pEList->a; 3117 ExprList *pNew = 0; 3118 int flags = pParse->db->flags; 3119 int longNames = (flags & SQLITE_FullColNames)!=0 3120 && (flags & SQLITE_ShortColNames)==0; 3121 3122 for(k=0; k<pEList->nExpr; k++){ 3123 Expr *pE = a[k].pExpr; 3124 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3125 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3126 /* This particular expression does not need to be expanded. 3127 */ 3128 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3129 if( pNew ){ 3130 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3131 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3132 a[k].zName = 0; 3133 a[k].zSpan = 0; 3134 } 3135 a[k].pExpr = 0; 3136 }else{ 3137 /* This expression is a "*" or a "TABLE.*" and needs to be 3138 ** expanded. */ 3139 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3140 char *zTName; /* text of name of TABLE */ 3141 if( pE->op==TK_DOT ){ 3142 assert( pE->pLeft!=0 ); 3143 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3144 zTName = pE->pLeft->u.zToken; 3145 }else{ 3146 zTName = 0; 3147 } 3148 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3149 Table *pTab = pFrom->pTab; 3150 char *zTabName = pFrom->zAlias; 3151 if( zTabName==0 ){ 3152 zTabName = pTab->zName; 3153 } 3154 if( db->mallocFailed ) break; 3155 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3156 continue; 3157 } 3158 tableSeen = 1; 3159 for(j=0; j<pTab->nCol; j++){ 3160 Expr *pExpr, *pRight; 3161 char *zName = pTab->aCol[j].zName; 3162 char *zColname; /* The computed column name */ 3163 char *zToFree; /* Malloced string that needs to be freed */ 3164 Token sColname; /* Computed column name as a token */ 3165 3166 /* If a column is marked as 'hidden' (currently only possible 3167 ** for virtual tables), do not include it in the expanded 3168 ** result-set list. 3169 */ 3170 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3171 assert(IsVirtual(pTab)); 3172 continue; 3173 } 3174 3175 if( i>0 && zTName==0 ){ 3176 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3177 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3178 columnIndex(pLeft->pTab, zName)>=0 ){ 3179 /* In a NATURAL join, omit the join columns from the 3180 ** table on the right */ 3181 continue; 3182 } 3183 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3184 /* In a join with a USING clause, omit columns in the 3185 ** using clause from the table on the right. */ 3186 continue; 3187 } 3188 } 3189 pRight = sqlite3Expr(db, TK_ID, zName); 3190 zColname = zName; 3191 zToFree = 0; 3192 if( longNames || pTabList->nSrc>1 ){ 3193 Expr *pLeft; 3194 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3195 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3196 if( longNames ){ 3197 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3198 zToFree = zColname; 3199 } 3200 }else{ 3201 pExpr = pRight; 3202 } 3203 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3204 sColname.z = zColname; 3205 sColname.n = sqlite3Strlen30(zColname); 3206 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3207 sqlite3DbFree(db, zToFree); 3208 } 3209 } 3210 if( !tableSeen ){ 3211 if( zTName ){ 3212 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3213 }else{ 3214 sqlite3ErrorMsg(pParse, "no tables specified"); 3215 } 3216 } 3217 } 3218 } 3219 sqlite3ExprListDelete(db, pEList); 3220 p->pEList = pNew; 3221 } 3222 #if SQLITE_MAX_COLUMN 3223 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3224 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3225 } 3226 #endif 3227 return WRC_Continue; 3228 } 3229 3230 /* 3231 ** No-op routine for the parse-tree walker. 3232 ** 3233 ** When this routine is the Walker.xExprCallback then expression trees 3234 ** are walked without any actions being taken at each node. Presumably, 3235 ** when this routine is used for Walker.xExprCallback then 3236 ** Walker.xSelectCallback is set to do something useful for every 3237 ** subquery in the parser tree. 3238 */ 3239 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3240 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3241 return WRC_Continue; 3242 } 3243 3244 /* 3245 ** This routine "expands" a SELECT statement and all of its subqueries. 3246 ** For additional information on what it means to "expand" a SELECT 3247 ** statement, see the comment on the selectExpand worker callback above. 3248 ** 3249 ** Expanding a SELECT statement is the first step in processing a 3250 ** SELECT statement. The SELECT statement must be expanded before 3251 ** name resolution is performed. 3252 ** 3253 ** If anything goes wrong, an error message is written into pParse. 3254 ** The calling function can detect the problem by looking at pParse->nErr 3255 ** and/or pParse->db->mallocFailed. 3256 */ 3257 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3258 Walker w; 3259 w.xSelectCallback = selectExpander; 3260 w.xExprCallback = exprWalkNoop; 3261 w.pParse = pParse; 3262 sqlite3WalkSelect(&w, pSelect); 3263 } 3264 3265 3266 #ifndef SQLITE_OMIT_SUBQUERY 3267 /* 3268 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3269 ** interface. 3270 ** 3271 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3272 ** information to the Table structure that represents the result set 3273 ** of that subquery. 3274 ** 3275 ** The Table structure that represents the result set was constructed 3276 ** by selectExpander() but the type and collation information was omitted 3277 ** at that point because identifiers had not yet been resolved. This 3278 ** routine is called after identifier resolution. 3279 */ 3280 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3281 Parse *pParse; 3282 int i; 3283 SrcList *pTabList; 3284 struct SrcList_item *pFrom; 3285 3286 assert( p->selFlags & SF_Resolved ); 3287 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 3288 p->selFlags |= SF_HasTypeInfo; 3289 pParse = pWalker->pParse; 3290 pTabList = p->pSrc; 3291 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3292 Table *pTab = pFrom->pTab; 3293 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3294 /* A sub-query in the FROM clause of a SELECT */ 3295 Select *pSel = pFrom->pSelect; 3296 assert( pSel ); 3297 while( pSel->pPrior ) pSel = pSel->pPrior; 3298 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3299 } 3300 } 3301 return WRC_Continue; 3302 } 3303 #endif 3304 3305 3306 /* 3307 ** This routine adds datatype and collating sequence information to 3308 ** the Table structures of all FROM-clause subqueries in a 3309 ** SELECT statement. 3310 ** 3311 ** Use this routine after name resolution. 3312 */ 3313 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3314 #ifndef SQLITE_OMIT_SUBQUERY 3315 Walker w; 3316 w.xSelectCallback = selectAddSubqueryTypeInfo; 3317 w.xExprCallback = exprWalkNoop; 3318 w.pParse = pParse; 3319 sqlite3WalkSelect(&w, pSelect); 3320 #endif 3321 } 3322 3323 3324 /* 3325 ** This routine sets of a SELECT statement for processing. The 3326 ** following is accomplished: 3327 ** 3328 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3329 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3330 ** * ON and USING clauses are shifted into WHERE statements 3331 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3332 ** * Identifiers in expression are matched to tables. 3333 ** 3334 ** This routine acts recursively on all subqueries within the SELECT. 3335 */ 3336 void sqlite3SelectPrep( 3337 Parse *pParse, /* The parser context */ 3338 Select *p, /* The SELECT statement being coded. */ 3339 NameContext *pOuterNC /* Name context for container */ 3340 ){ 3341 sqlite3 *db; 3342 if( NEVER(p==0) ) return; 3343 db = pParse->db; 3344 if( p->selFlags & SF_HasTypeInfo ) return; 3345 sqlite3SelectExpand(pParse, p); 3346 if( pParse->nErr || db->mallocFailed ) return; 3347 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3348 if( pParse->nErr || db->mallocFailed ) return; 3349 sqlite3SelectAddTypeInfo(pParse, p); 3350 } 3351 3352 /* 3353 ** Reset the aggregate accumulator. 3354 ** 3355 ** The aggregate accumulator is a set of memory cells that hold 3356 ** intermediate results while calculating an aggregate. This 3357 ** routine simply stores NULLs in all of those memory cells. 3358 */ 3359 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3360 Vdbe *v = pParse->pVdbe; 3361 int i; 3362 struct AggInfo_func *pFunc; 3363 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3364 return; 3365 } 3366 for(i=0; i<pAggInfo->nColumn; i++){ 3367 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3368 } 3369 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3370 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3371 if( pFunc->iDistinct>=0 ){ 3372 Expr *pE = pFunc->pExpr; 3373 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3374 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3375 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3376 "argument"); 3377 pFunc->iDistinct = -1; 3378 }else{ 3379 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3380 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3381 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3382 } 3383 } 3384 } 3385 } 3386 3387 /* 3388 ** Invoke the OP_AggFinalize opcode for every aggregate function 3389 ** in the AggInfo structure. 3390 */ 3391 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3392 Vdbe *v = pParse->pVdbe; 3393 int i; 3394 struct AggInfo_func *pF; 3395 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3396 ExprList *pList = pF->pExpr->x.pList; 3397 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3398 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3399 (void*)pF->pFunc, P4_FUNCDEF); 3400 } 3401 } 3402 3403 /* 3404 ** Update the accumulator memory cells for an aggregate based on 3405 ** the current cursor position. 3406 */ 3407 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3408 Vdbe *v = pParse->pVdbe; 3409 int i; 3410 struct AggInfo_func *pF; 3411 struct AggInfo_col *pC; 3412 3413 pAggInfo->directMode = 1; 3414 sqlite3ExprCacheClear(pParse); 3415 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3416 int nArg; 3417 int addrNext = 0; 3418 int regAgg; 3419 ExprList *pList = pF->pExpr->x.pList; 3420 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3421 if( pList ){ 3422 nArg = pList->nExpr; 3423 regAgg = sqlite3GetTempRange(pParse, nArg); 3424 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3425 }else{ 3426 nArg = 0; 3427 regAgg = 0; 3428 } 3429 if( pF->iDistinct>=0 ){ 3430 addrNext = sqlite3VdbeMakeLabel(v); 3431 assert( nArg==1 ); 3432 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3433 } 3434 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3435 CollSeq *pColl = 0; 3436 struct ExprList_item *pItem; 3437 int j; 3438 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3439 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3440 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3441 } 3442 if( !pColl ){ 3443 pColl = pParse->db->pDfltColl; 3444 } 3445 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3446 } 3447 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3448 (void*)pF->pFunc, P4_FUNCDEF); 3449 sqlite3VdbeChangeP5(v, (u8)nArg); 3450 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3451 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3452 if( addrNext ){ 3453 sqlite3VdbeResolveLabel(v, addrNext); 3454 sqlite3ExprCacheClear(pParse); 3455 } 3456 } 3457 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3458 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3459 } 3460 pAggInfo->directMode = 0; 3461 sqlite3ExprCacheClear(pParse); 3462 } 3463 3464 /* 3465 ** Generate code for the SELECT statement given in the p argument. 3466 ** 3467 ** The results are distributed in various ways depending on the 3468 ** contents of the SelectDest structure pointed to by argument pDest 3469 ** as follows: 3470 ** 3471 ** pDest->eDest Result 3472 ** ------------ ------------------------------------------- 3473 ** SRT_Output Generate a row of output (using the OP_ResultRow 3474 ** opcode) for each row in the result set. 3475 ** 3476 ** SRT_Mem Only valid if the result is a single column. 3477 ** Store the first column of the first result row 3478 ** in register pDest->iParm then abandon the rest 3479 ** of the query. This destination implies "LIMIT 1". 3480 ** 3481 ** SRT_Set The result must be a single column. Store each 3482 ** row of result as the key in table pDest->iParm. 3483 ** Apply the affinity pDest->affinity before storing 3484 ** results. Used to implement "IN (SELECT ...)". 3485 ** 3486 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3487 ** 3488 ** SRT_Except Remove results from the temporary table pDest->iParm. 3489 ** 3490 ** SRT_Table Store results in temporary table pDest->iParm. 3491 ** This is like SRT_EphemTab except that the table 3492 ** is assumed to already be open. 3493 ** 3494 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3495 ** the result there. The cursor is left open after 3496 ** returning. This is like SRT_Table except that 3497 ** this destination uses OP_OpenEphemeral to create 3498 ** the table first. 3499 ** 3500 ** SRT_Coroutine Generate a co-routine that returns a new row of 3501 ** results each time it is invoked. The entry point 3502 ** of the co-routine is stored in register pDest->iParm. 3503 ** 3504 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3505 ** set is not empty. 3506 ** 3507 ** SRT_Discard Throw the results away. This is used by SELECT 3508 ** statements within triggers whose only purpose is 3509 ** the side-effects of functions. 3510 ** 3511 ** This routine returns the number of errors. If any errors are 3512 ** encountered, then an appropriate error message is left in 3513 ** pParse->zErrMsg. 3514 ** 3515 ** This routine does NOT free the Select structure passed in. The 3516 ** calling function needs to do that. 3517 */ 3518 int sqlite3Select( 3519 Parse *pParse, /* The parser context */ 3520 Select *p, /* The SELECT statement being coded. */ 3521 SelectDest *pDest /* What to do with the query results */ 3522 ){ 3523 int i, j; /* Loop counters */ 3524 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3525 Vdbe *v; /* The virtual machine under construction */ 3526 int isAgg; /* True for select lists like "count(*)" */ 3527 ExprList *pEList; /* List of columns to extract. */ 3528 SrcList *pTabList; /* List of tables to select from */ 3529 Expr *pWhere; /* The WHERE clause. May be NULL */ 3530 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3531 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3532 Expr *pHaving; /* The HAVING clause. May be NULL */ 3533 int isDistinct; /* True if the DISTINCT keyword is present */ 3534 int distinct; /* Table to use for the distinct set */ 3535 int rc = 1; /* Value to return from this function */ 3536 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3537 AggInfo sAggInfo; /* Information used by aggregate queries */ 3538 int iEnd; /* Address of the end of the query */ 3539 sqlite3 *db; /* The database connection */ 3540 3541 db = pParse->db; 3542 if( p==0 || db->mallocFailed || pParse->nErr ){ 3543 return 1; 3544 } 3545 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3546 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3547 3548 if( IgnorableOrderby(pDest) ){ 3549 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3550 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3551 /* If ORDER BY makes no difference in the output then neither does 3552 ** DISTINCT so it can be removed too. */ 3553 sqlite3ExprListDelete(db, p->pOrderBy); 3554 p->pOrderBy = 0; 3555 p->selFlags &= ~SF_Distinct; 3556 } 3557 sqlite3SelectPrep(pParse, p, 0); 3558 pOrderBy = p->pOrderBy; 3559 pTabList = p->pSrc; 3560 pEList = p->pEList; 3561 if( pParse->nErr || db->mallocFailed ){ 3562 goto select_end; 3563 } 3564 isAgg = (p->selFlags & SF_Aggregate)!=0; 3565 assert( pEList!=0 ); 3566 3567 /* Begin generating code. 3568 */ 3569 v = sqlite3GetVdbe(pParse); 3570 if( v==0 ) goto select_end; 3571 3572 /* Generate code for all sub-queries in the FROM clause 3573 */ 3574 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3575 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3576 struct SrcList_item *pItem = &pTabList->a[i]; 3577 SelectDest dest; 3578 Select *pSub = pItem->pSelect; 3579 int isAggSub; 3580 3581 if( pSub==0 || pItem->isPopulated ) continue; 3582 3583 /* Increment Parse.nHeight by the height of the largest expression 3584 ** tree refered to by this, the parent select. The child select 3585 ** may contain expression trees of at most 3586 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3587 ** more conservative than necessary, but much easier than enforcing 3588 ** an exact limit. 3589 */ 3590 pParse->nHeight += sqlite3SelectExprHeight(p); 3591 3592 /* Check to see if the subquery can be absorbed into the parent. */ 3593 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3594 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3595 if( isAggSub ){ 3596 isAgg = 1; 3597 p->selFlags |= SF_Aggregate; 3598 } 3599 i = -1; 3600 }else{ 3601 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3602 assert( pItem->isPopulated==0 ); 3603 sqlite3Select(pParse, pSub, &dest); 3604 pItem->isPopulated = 1; 3605 } 3606 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3607 goto select_end; 3608 } 3609 pParse->nHeight -= sqlite3SelectExprHeight(p); 3610 pTabList = p->pSrc; 3611 if( !IgnorableOrderby(pDest) ){ 3612 pOrderBy = p->pOrderBy; 3613 } 3614 } 3615 pEList = p->pEList; 3616 #endif 3617 pWhere = p->pWhere; 3618 pGroupBy = p->pGroupBy; 3619 pHaving = p->pHaving; 3620 isDistinct = (p->selFlags & SF_Distinct)!=0; 3621 3622 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3623 /* If there is are a sequence of queries, do the earlier ones first. 3624 */ 3625 if( p->pPrior ){ 3626 if( p->pRightmost==0 ){ 3627 Select *pLoop, *pRight = 0; 3628 int cnt = 0; 3629 int mxSelect; 3630 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3631 pLoop->pRightmost = p; 3632 pLoop->pNext = pRight; 3633 pRight = pLoop; 3634 } 3635 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3636 if( mxSelect && cnt>mxSelect ){ 3637 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3638 return 1; 3639 } 3640 } 3641 return multiSelect(pParse, p, pDest); 3642 } 3643 #endif 3644 3645 /* If writing to memory or generating a set 3646 ** only a single column may be output. 3647 */ 3648 #ifndef SQLITE_OMIT_SUBQUERY 3649 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3650 goto select_end; 3651 } 3652 #endif 3653 3654 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3655 ** GROUP BY might use an index, DISTINCT never does. 3656 */ 3657 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3658 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3659 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3660 pGroupBy = p->pGroupBy; 3661 p->selFlags &= ~SF_Distinct; 3662 isDistinct = 0; 3663 } 3664 3665 /* If there is an ORDER BY clause, then this sorting 3666 ** index might end up being unused if the data can be 3667 ** extracted in pre-sorted order. If that is the case, then the 3668 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3669 ** we figure out that the sorting index is not needed. The addrSortIndex 3670 ** variable is used to facilitate that change. 3671 */ 3672 if( pOrderBy ){ 3673 KeyInfo *pKeyInfo; 3674 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3675 pOrderBy->iECursor = pParse->nTab++; 3676 p->addrOpenEphm[2] = addrSortIndex = 3677 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3678 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3679 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3680 }else{ 3681 addrSortIndex = -1; 3682 } 3683 3684 /* If the output is destined for a temporary table, open that table. 3685 */ 3686 if( pDest->eDest==SRT_EphemTab ){ 3687 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3688 } 3689 3690 /* Set the limiter. 3691 */ 3692 iEnd = sqlite3VdbeMakeLabel(v); 3693 computeLimitRegisters(pParse, p, iEnd); 3694 3695 /* Open a virtual index to use for the distinct set. 3696 */ 3697 if( isDistinct ){ 3698 KeyInfo *pKeyInfo; 3699 assert( isAgg || pGroupBy ); 3700 distinct = pParse->nTab++; 3701 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3702 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3703 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3704 }else{ 3705 distinct = -1; 3706 } 3707 3708 /* Aggregate and non-aggregate queries are handled differently */ 3709 if( !isAgg && pGroupBy==0 ){ 3710 /* This case is for non-aggregate queries 3711 ** Begin the database scan 3712 */ 3713 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3714 if( pWInfo==0 ) goto select_end; 3715 3716 /* If sorting index that was created by a prior OP_OpenEphemeral 3717 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3718 ** into an OP_Noop. 3719 */ 3720 if( addrSortIndex>=0 && pOrderBy==0 ){ 3721 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3722 p->addrOpenEphm[2] = -1; 3723 } 3724 3725 /* Use the standard inner loop 3726 */ 3727 assert(!isDistinct); 3728 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3729 pWInfo->iContinue, pWInfo->iBreak); 3730 3731 /* End the database scan loop. 3732 */ 3733 sqlite3WhereEnd(pWInfo); 3734 }else{ 3735 /* This is the processing for aggregate queries */ 3736 NameContext sNC; /* Name context for processing aggregate information */ 3737 int iAMem; /* First Mem address for storing current GROUP BY */ 3738 int iBMem; /* First Mem address for previous GROUP BY */ 3739 int iUseFlag; /* Mem address holding flag indicating that at least 3740 ** one row of the input to the aggregator has been 3741 ** processed */ 3742 int iAbortFlag; /* Mem address which causes query abort if positive */ 3743 int groupBySort; /* Rows come from source in GROUP BY order */ 3744 int addrEnd; /* End of processing for this SELECT */ 3745 3746 /* Remove any and all aliases between the result set and the 3747 ** GROUP BY clause. 3748 */ 3749 if( pGroupBy ){ 3750 int k; /* Loop counter */ 3751 struct ExprList_item *pItem; /* For looping over expression in a list */ 3752 3753 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3754 pItem->iAlias = 0; 3755 } 3756 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3757 pItem->iAlias = 0; 3758 } 3759 } 3760 3761 3762 /* Create a label to jump to when we want to abort the query */ 3763 addrEnd = sqlite3VdbeMakeLabel(v); 3764 3765 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3766 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3767 ** SELECT statement. 3768 */ 3769 memset(&sNC, 0, sizeof(sNC)); 3770 sNC.pParse = pParse; 3771 sNC.pSrcList = pTabList; 3772 sNC.pAggInfo = &sAggInfo; 3773 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3774 sAggInfo.pGroupBy = pGroupBy; 3775 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3776 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3777 if( pHaving ){ 3778 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3779 } 3780 sAggInfo.nAccumulator = sAggInfo.nColumn; 3781 for(i=0; i<sAggInfo.nFunc; i++){ 3782 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3783 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3784 } 3785 if( db->mallocFailed ) goto select_end; 3786 3787 /* Processing for aggregates with GROUP BY is very different and 3788 ** much more complex than aggregates without a GROUP BY. 3789 */ 3790 if( pGroupBy ){ 3791 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3792 int j1; /* A-vs-B comparision jump */ 3793 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3794 int regOutputRow; /* Return address register for output subroutine */ 3795 int addrSetAbort; /* Set the abort flag and return */ 3796 int addrTopOfLoop; /* Top of the input loop */ 3797 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3798 int addrReset; /* Subroutine for resetting the accumulator */ 3799 int regReset; /* Return address register for reset subroutine */ 3800 3801 /* If there is a GROUP BY clause we might need a sorting index to 3802 ** implement it. Allocate that sorting index now. If it turns out 3803 ** that we do not need it after all, the OpenEphemeral instruction 3804 ** will be converted into a Noop. 3805 */ 3806 sAggInfo.sortingIdx = pParse->nTab++; 3807 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3808 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3809 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3810 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3811 3812 /* Initialize memory locations used by GROUP BY aggregate processing 3813 */ 3814 iUseFlag = ++pParse->nMem; 3815 iAbortFlag = ++pParse->nMem; 3816 regOutputRow = ++pParse->nMem; 3817 addrOutputRow = sqlite3VdbeMakeLabel(v); 3818 regReset = ++pParse->nMem; 3819 addrReset = sqlite3VdbeMakeLabel(v); 3820 iAMem = pParse->nMem + 1; 3821 pParse->nMem += pGroupBy->nExpr; 3822 iBMem = pParse->nMem + 1; 3823 pParse->nMem += pGroupBy->nExpr; 3824 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3825 VdbeComment((v, "clear abort flag")); 3826 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3827 VdbeComment((v, "indicate accumulator empty")); 3828 3829 /* Begin a loop that will extract all source rows in GROUP BY order. 3830 ** This might involve two separate loops with an OP_Sort in between, or 3831 ** it might be a single loop that uses an index to extract information 3832 ** in the right order to begin with. 3833 */ 3834 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3835 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3836 if( pWInfo==0 ) goto select_end; 3837 if( pGroupBy==0 ){ 3838 /* The optimizer is able to deliver rows in group by order so 3839 ** we do not have to sort. The OP_OpenEphemeral table will be 3840 ** cancelled later because we still need to use the pKeyInfo 3841 */ 3842 pGroupBy = p->pGroupBy; 3843 groupBySort = 0; 3844 }else{ 3845 /* Rows are coming out in undetermined order. We have to push 3846 ** each row into a sorting index, terminate the first loop, 3847 ** then loop over the sorting index in order to get the output 3848 ** in sorted order 3849 */ 3850 int regBase; 3851 int regRecord; 3852 int nCol; 3853 int nGroupBy; 3854 3855 groupBySort = 1; 3856 nGroupBy = pGroupBy->nExpr; 3857 nCol = nGroupBy + 1; 3858 j = nGroupBy+1; 3859 for(i=0; i<sAggInfo.nColumn; i++){ 3860 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3861 nCol++; 3862 j++; 3863 } 3864 } 3865 regBase = sqlite3GetTempRange(pParse, nCol); 3866 sqlite3ExprCacheClear(pParse); 3867 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3868 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3869 j = nGroupBy+1; 3870 for(i=0; i<sAggInfo.nColumn; i++){ 3871 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3872 if( pCol->iSorterColumn>=j ){ 3873 int r1 = j + regBase; 3874 int r2; 3875 3876 r2 = sqlite3ExprCodeGetColumn(pParse, 3877 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3878 if( r1!=r2 ){ 3879 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3880 } 3881 j++; 3882 } 3883 } 3884 regRecord = sqlite3GetTempReg(pParse); 3885 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3886 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3887 sqlite3ReleaseTempReg(pParse, regRecord); 3888 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3889 sqlite3WhereEnd(pWInfo); 3890 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3891 VdbeComment((v, "GROUP BY sort")); 3892 sAggInfo.useSortingIdx = 1; 3893 sqlite3ExprCacheClear(pParse); 3894 } 3895 3896 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3897 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3898 ** Then compare the current GROUP BY terms against the GROUP BY terms 3899 ** from the previous row currently stored in a0, a1, a2... 3900 */ 3901 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3902 sqlite3ExprCacheClear(pParse); 3903 for(j=0; j<pGroupBy->nExpr; j++){ 3904 if( groupBySort ){ 3905 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3906 }else{ 3907 sAggInfo.directMode = 1; 3908 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3909 } 3910 } 3911 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3912 (char*)pKeyInfo, P4_KEYINFO); 3913 j1 = sqlite3VdbeCurrentAddr(v); 3914 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3915 3916 /* Generate code that runs whenever the GROUP BY changes. 3917 ** Changes in the GROUP BY are detected by the previous code 3918 ** block. If there were no changes, this block is skipped. 3919 ** 3920 ** This code copies current group by terms in b0,b1,b2,... 3921 ** over to a0,a1,a2. It then calls the output subroutine 3922 ** and resets the aggregate accumulator registers in preparation 3923 ** for the next GROUP BY batch. 3924 */ 3925 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3926 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3927 VdbeComment((v, "output one row")); 3928 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3929 VdbeComment((v, "check abort flag")); 3930 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3931 VdbeComment((v, "reset accumulator")); 3932 3933 /* Update the aggregate accumulators based on the content of 3934 ** the current row 3935 */ 3936 sqlite3VdbeJumpHere(v, j1); 3937 updateAccumulator(pParse, &sAggInfo); 3938 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 3939 VdbeComment((v, "indicate data in accumulator")); 3940 3941 /* End of the loop 3942 */ 3943 if( groupBySort ){ 3944 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3945 }else{ 3946 sqlite3WhereEnd(pWInfo); 3947 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3948 } 3949 3950 /* Output the final row of result 3951 */ 3952 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3953 VdbeComment((v, "output final row")); 3954 3955 /* Jump over the subroutines 3956 */ 3957 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 3958 3959 /* Generate a subroutine that outputs a single row of the result 3960 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3961 ** is less than or equal to zero, the subroutine is a no-op. If 3962 ** the processing calls for the query to abort, this subroutine 3963 ** increments the iAbortFlag memory location before returning in 3964 ** order to signal the caller to abort. 3965 */ 3966 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3967 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3968 VdbeComment((v, "set abort flag")); 3969 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3970 sqlite3VdbeResolveLabel(v, addrOutputRow); 3971 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3972 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3973 VdbeComment((v, "Groupby result generator entry point")); 3974 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3975 finalizeAggFunctions(pParse, &sAggInfo); 3976 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3977 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3978 distinct, pDest, 3979 addrOutputRow+1, addrSetAbort); 3980 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3981 VdbeComment((v, "end groupby result generator")); 3982 3983 /* Generate a subroutine that will reset the group-by accumulator 3984 */ 3985 sqlite3VdbeResolveLabel(v, addrReset); 3986 resetAccumulator(pParse, &sAggInfo); 3987 sqlite3VdbeAddOp1(v, OP_Return, regReset); 3988 3989 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 3990 else { 3991 ExprList *pDel = 0; 3992 #ifndef SQLITE_OMIT_BTREECOUNT 3993 Table *pTab; 3994 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 3995 /* If isSimpleCount() returns a pointer to a Table structure, then 3996 ** the SQL statement is of the form: 3997 ** 3998 ** SELECT count(*) FROM <tbl> 3999 ** 4000 ** where the Table structure returned represents table <tbl>. 4001 ** 4002 ** This statement is so common that it is optimized specially. The 4003 ** OP_Count instruction is executed either on the intkey table that 4004 ** contains the data for table <tbl> or on one of its indexes. It 4005 ** is better to execute the op on an index, as indexes are almost 4006 ** always spread across less pages than their corresponding tables. 4007 */ 4008 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4009 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4010 Index *pIdx; /* Iterator variable */ 4011 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4012 Index *pBest = 0; /* Best index found so far */ 4013 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4014 4015 sqlite3CodeVerifySchema(pParse, iDb); 4016 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4017 4018 /* Search for the index that has the least amount of columns. If 4019 ** there is such an index, and it has less columns than the table 4020 ** does, then we can assume that it consumes less space on disk and 4021 ** will therefore be cheaper to scan to determine the query result. 4022 ** In this case set iRoot to the root page number of the index b-tree 4023 ** and pKeyInfo to the KeyInfo structure required to navigate the 4024 ** index. 4025 ** 4026 ** In practice the KeyInfo structure will not be used. It is only 4027 ** passed to keep OP_OpenRead happy. 4028 */ 4029 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4030 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4031 pBest = pIdx; 4032 } 4033 } 4034 if( pBest && pBest->nColumn<pTab->nCol ){ 4035 iRoot = pBest->tnum; 4036 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4037 } 4038 4039 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4040 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4041 if( pKeyInfo ){ 4042 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4043 } 4044 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4045 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4046 }else 4047 #endif /* SQLITE_OMIT_BTREECOUNT */ 4048 { 4049 /* Check if the query is of one of the following forms: 4050 ** 4051 ** SELECT min(x) FROM ... 4052 ** SELECT max(x) FROM ... 4053 ** 4054 ** If it is, then ask the code in where.c to attempt to sort results 4055 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4056 ** If where.c is able to produce results sorted in this order, then 4057 ** add vdbe code to break out of the processing loop after the 4058 ** first iteration (since the first iteration of the loop is 4059 ** guaranteed to operate on the row with the minimum or maximum 4060 ** value of x, the only row required). 4061 ** 4062 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4063 ** modify behaviour as follows: 4064 ** 4065 ** + If the query is a "SELECT min(x)", then the loop coded by 4066 ** where.c should not iterate over any values with a NULL value 4067 ** for x. 4068 ** 4069 ** + The optimizer code in where.c (the thing that decides which 4070 ** index or indices to use) should place a different priority on 4071 ** satisfying the 'ORDER BY' clause than it does in other cases. 4072 ** Refer to code and comments in where.c for details. 4073 */ 4074 ExprList *pMinMax = 0; 4075 u8 flag = minMaxQuery(p); 4076 if( flag ){ 4077 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4078 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4079 pDel = pMinMax; 4080 if( pMinMax && !db->mallocFailed ){ 4081 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4082 pMinMax->a[0].pExpr->op = TK_COLUMN; 4083 } 4084 } 4085 4086 /* This case runs if the aggregate has no GROUP BY clause. The 4087 ** processing is much simpler since there is only a single row 4088 ** of output. 4089 */ 4090 resetAccumulator(pParse, &sAggInfo); 4091 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4092 if( pWInfo==0 ){ 4093 sqlite3ExprListDelete(db, pDel); 4094 goto select_end; 4095 } 4096 updateAccumulator(pParse, &sAggInfo); 4097 if( !pMinMax && flag ){ 4098 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4099 VdbeComment((v, "%s() by index", 4100 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4101 } 4102 sqlite3WhereEnd(pWInfo); 4103 finalizeAggFunctions(pParse, &sAggInfo); 4104 } 4105 4106 pOrderBy = 0; 4107 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4108 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4109 pDest, addrEnd, addrEnd); 4110 sqlite3ExprListDelete(db, pDel); 4111 } 4112 sqlite3VdbeResolveLabel(v, addrEnd); 4113 4114 } /* endif aggregate query */ 4115 4116 /* If there is an ORDER BY clause, then we need to sort the results 4117 ** and send them to the callback one by one. 4118 */ 4119 if( pOrderBy ){ 4120 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4121 } 4122 4123 /* Jump here to skip this query 4124 */ 4125 sqlite3VdbeResolveLabel(v, iEnd); 4126 4127 /* The SELECT was successfully coded. Set the return code to 0 4128 ** to indicate no errors. 4129 */ 4130 rc = 0; 4131 4132 /* Control jumps to here if an error is encountered above, or upon 4133 ** successful coding of the SELECT. 4134 */ 4135 select_end: 4136 4137 /* Identify column names if results of the SELECT are to be output. 4138 */ 4139 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4140 generateColumnNames(pParse, pTabList, pEList); 4141 } 4142 4143 sqlite3DbFree(db, sAggInfo.aCol); 4144 sqlite3DbFree(db, sAggInfo.aFunc); 4145 return rc; 4146 } 4147 4148 #if defined(SQLITE_DEBUG) 4149 /* 4150 ******************************************************************************* 4151 ** The following code is used for testing and debugging only. The code 4152 ** that follows does not appear in normal builds. 4153 ** 4154 ** These routines are used to print out the content of all or part of a 4155 ** parse structures such as Select or Expr. Such printouts are useful 4156 ** for helping to understand what is happening inside the code generator 4157 ** during the execution of complex SELECT statements. 4158 ** 4159 ** These routine are not called anywhere from within the normal 4160 ** code base. Then are intended to be called from within the debugger 4161 ** or from temporary "printf" statements inserted for debugging. 4162 */ 4163 void sqlite3PrintExpr(Expr *p){ 4164 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 4165 sqlite3DebugPrintf("(%s", p->u.zToken); 4166 }else{ 4167 sqlite3DebugPrintf("(%d", p->op); 4168 } 4169 if( p->pLeft ){ 4170 sqlite3DebugPrintf(" "); 4171 sqlite3PrintExpr(p->pLeft); 4172 } 4173 if( p->pRight ){ 4174 sqlite3DebugPrintf(" "); 4175 sqlite3PrintExpr(p->pRight); 4176 } 4177 sqlite3DebugPrintf(")"); 4178 } 4179 void sqlite3PrintExprList(ExprList *pList){ 4180 int i; 4181 for(i=0; i<pList->nExpr; i++){ 4182 sqlite3PrintExpr(pList->a[i].pExpr); 4183 if( i<pList->nExpr-1 ){ 4184 sqlite3DebugPrintf(", "); 4185 } 4186 } 4187 } 4188 void sqlite3PrintSelect(Select *p, int indent){ 4189 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4190 sqlite3PrintExprList(p->pEList); 4191 sqlite3DebugPrintf("\n"); 4192 if( p->pSrc ){ 4193 char *zPrefix; 4194 int i; 4195 zPrefix = "FROM"; 4196 for(i=0; i<p->pSrc->nSrc; i++){ 4197 struct SrcList_item *pItem = &p->pSrc->a[i]; 4198 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4199 zPrefix = ""; 4200 if( pItem->pSelect ){ 4201 sqlite3DebugPrintf("(\n"); 4202 sqlite3PrintSelect(pItem->pSelect, indent+10); 4203 sqlite3DebugPrintf("%*s)", indent+8, ""); 4204 }else if( pItem->zName ){ 4205 sqlite3DebugPrintf("%s", pItem->zName); 4206 } 4207 if( pItem->pTab ){ 4208 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4209 } 4210 if( pItem->zAlias ){ 4211 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4212 } 4213 if( i<p->pSrc->nSrc-1 ){ 4214 sqlite3DebugPrintf(","); 4215 } 4216 sqlite3DebugPrintf("\n"); 4217 } 4218 } 4219 if( p->pWhere ){ 4220 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4221 sqlite3PrintExpr(p->pWhere); 4222 sqlite3DebugPrintf("\n"); 4223 } 4224 if( p->pGroupBy ){ 4225 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4226 sqlite3PrintExprList(p->pGroupBy); 4227 sqlite3DebugPrintf("\n"); 4228 } 4229 if( p->pHaving ){ 4230 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4231 sqlite3PrintExpr(p->pHaving); 4232 sqlite3DebugPrintf("\n"); 4233 } 4234 if( p->pOrderBy ){ 4235 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4236 sqlite3PrintExprList(p->pOrderBy); 4237 sqlite3DebugPrintf("\n"); 4238 } 4239 } 4240 /* End of the structure debug printing code 4241 *****************************************************************************/ 4242 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4243