xref: /sqlite-3.40.0/src/select.c (revision fcd71b60)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iParm = iParm;
40   pDest->affinity = 0;
41   pDest->iMem = 0;
42   pDest->nMem = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     pNew = &standin;
69     memset(pNew, 0, sizeof(*pNew));
70   }
71   if( pEList==0 ){
72     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
73   }
74   pNew->pEList = pEList;
75   pNew->pSrc = pSrc;
76   pNew->pWhere = pWhere;
77   pNew->pGroupBy = pGroupBy;
78   pNew->pHaving = pHaving;
79   pNew->pOrderBy = pOrderBy;
80   pNew->selFlags = isDistinct ? SF_Distinct : 0;
81   pNew->op = TK_SELECT;
82   pNew->pLimit = pLimit;
83   pNew->pOffset = pOffset;
84   assert( pOffset==0 || pLimit!=0 );
85   pNew->addrOpenEphm[0] = -1;
86   pNew->addrOpenEphm[1] = -1;
87   pNew->addrOpenEphm[2] = -1;
88   if( db->mallocFailed ) {
89     clearSelect(db, pNew);
90     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
91     pNew = 0;
92   }
93   return pNew;
94 }
95 
96 /*
97 ** Delete the given Select structure and all of its substructures.
98 */
99 void sqlite3SelectDelete(sqlite3 *db, Select *p){
100   if( p ){
101     clearSelect(db, p);
102     sqlite3DbFree(db, p);
103   }
104 }
105 
106 /*
107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
108 ** type of join.  Return an integer constant that expresses that type
109 ** in terms of the following bit values:
110 **
111 **     JT_INNER
112 **     JT_CROSS
113 **     JT_OUTER
114 **     JT_NATURAL
115 **     JT_LEFT
116 **     JT_RIGHT
117 **
118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
119 **
120 ** If an illegal or unsupported join type is seen, then still return
121 ** a join type, but put an error in the pParse structure.
122 */
123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
124   int jointype = 0;
125   Token *apAll[3];
126   Token *p;
127                              /*   0123456789 123456789 123456789 123 */
128   static const char zKeyText[] = "naturaleftouterightfullinnercross";
129   static const struct {
130     u8 i;        /* Beginning of keyword text in zKeyText[] */
131     u8 nChar;    /* Length of the keyword in characters */
132     u8 code;     /* Join type mask */
133   } aKeyword[] = {
134     /* natural */ { 0,  7, JT_NATURAL                },
135     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
136     /* outer   */ { 10, 5, JT_OUTER                  },
137     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
138     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
139     /* inner   */ { 23, 5, JT_INNER                  },
140     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
141   };
142   int i, j;
143   apAll[0] = pA;
144   apAll[1] = pB;
145   apAll[2] = pC;
146   for(i=0; i<3 && apAll[i]; i++){
147     p = apAll[i];
148     for(j=0; j<ArraySize(aKeyword); j++){
149       if( p->n==aKeyword[j].nChar
150           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
151         jointype |= aKeyword[j].code;
152         break;
153       }
154     }
155     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
156     if( j>=ArraySize(aKeyword) ){
157       jointype |= JT_ERROR;
158       break;
159     }
160   }
161   if(
162      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
163      (jointype & JT_ERROR)!=0
164   ){
165     const char *zSp = " ";
166     assert( pB!=0 );
167     if( pC==0 ){ zSp++; }
168     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
169        "%T %T%s%T", pA, pB, zSp, pC);
170     jointype = JT_INNER;
171   }else if( (jointype & JT_OUTER)!=0
172          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
173     sqlite3ErrorMsg(pParse,
174       "RIGHT and FULL OUTER JOINs are not currently supported");
175     jointype = JT_INNER;
176   }
177   return jointype;
178 }
179 
180 /*
181 ** Return the index of a column in a table.  Return -1 if the column
182 ** is not contained in the table.
183 */
184 static int columnIndex(Table *pTab, const char *zCol){
185   int i;
186   for(i=0; i<pTab->nCol; i++){
187     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
188   }
189   return -1;
190 }
191 
192 /*
193 ** Search the first N tables in pSrc, from left to right, looking for a
194 ** table that has a column named zCol.
195 **
196 ** When found, set *piTab and *piCol to the table index and column index
197 ** of the matching column and return TRUE.
198 **
199 ** If not found, return FALSE.
200 */
201 static int tableAndColumnIndex(
202   SrcList *pSrc,       /* Array of tables to search */
203   int N,               /* Number of tables in pSrc->a[] to search */
204   const char *zCol,    /* Name of the column we are looking for */
205   int *piTab,          /* Write index of pSrc->a[] here */
206   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
207 ){
208   int i;               /* For looping over tables in pSrc */
209   int iCol;            /* Index of column matching zCol */
210 
211   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
212   for(i=0; i<N; i++){
213     iCol = columnIndex(pSrc->a[i].pTab, zCol);
214     if( iCol>=0 ){
215       if( piTab ){
216         *piTab = i;
217         *piCol = iCol;
218       }
219       return 1;
220     }
221   }
222   return 0;
223 }
224 
225 /*
226 ** This function is used to add terms implied by JOIN syntax to the
227 ** WHERE clause expression of a SELECT statement. The new term, which
228 ** is ANDed with the existing WHERE clause, is of the form:
229 **
230 **    (tab1.col1 = tab2.col2)
231 **
232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
234 ** column iColRight of tab2.
235 */
236 static void addWhereTerm(
237   Parse *pParse,                  /* Parsing context */
238   SrcList *pSrc,                  /* List of tables in FROM clause */
239   int iLeft,                      /* Index of first table to join in pSrc */
240   int iColLeft,                   /* Index of column in first table */
241   int iRight,                     /* Index of second table in pSrc */
242   int iColRight,                  /* Index of column in second table */
243   int isOuterJoin,                /* True if this is an OUTER join */
244   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
245 ){
246   sqlite3 *db = pParse->db;
247   Expr *pE1;
248   Expr *pE2;
249   Expr *pEq;
250 
251   assert( iLeft<iRight );
252   assert( pSrc->nSrc>iRight );
253   assert( pSrc->a[iLeft].pTab );
254   assert( pSrc->a[iRight].pTab );
255 
256   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
257   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
258 
259   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
260   if( pEq && isOuterJoin ){
261     ExprSetProperty(pEq, EP_FromJoin);
262     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
263     ExprSetIrreducible(pEq);
264     pEq->iRightJoinTable = (i16)pE2->iTable;
265   }
266   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
267 }
268 
269 /*
270 ** Set the EP_FromJoin property on all terms of the given expression.
271 ** And set the Expr.iRightJoinTable to iTable for every term in the
272 ** expression.
273 **
274 ** The EP_FromJoin property is used on terms of an expression to tell
275 ** the LEFT OUTER JOIN processing logic that this term is part of the
276 ** join restriction specified in the ON or USING clause and not a part
277 ** of the more general WHERE clause.  These terms are moved over to the
278 ** WHERE clause during join processing but we need to remember that they
279 ** originated in the ON or USING clause.
280 **
281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
282 ** expression depends on table iRightJoinTable even if that table is not
283 ** explicitly mentioned in the expression.  That information is needed
284 ** for cases like this:
285 **
286 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
287 **
288 ** The where clause needs to defer the handling of the t1.x=5
289 ** term until after the t2 loop of the join.  In that way, a
290 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
291 ** defer the handling of t1.x=5, it will be processed immediately
292 ** after the t1 loop and rows with t1.x!=5 will never appear in
293 ** the output, which is incorrect.
294 */
295 static void setJoinExpr(Expr *p, int iTable){
296   while( p ){
297     ExprSetProperty(p, EP_FromJoin);
298     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
299     ExprSetIrreducible(p);
300     p->iRightJoinTable = (i16)iTable;
301     setJoinExpr(p->pLeft, iTable);
302     p = p->pRight;
303   }
304 }
305 
306 /*
307 ** This routine processes the join information for a SELECT statement.
308 ** ON and USING clauses are converted into extra terms of the WHERE clause.
309 ** NATURAL joins also create extra WHERE clause terms.
310 **
311 ** The terms of a FROM clause are contained in the Select.pSrc structure.
312 ** The left most table is the first entry in Select.pSrc.  The right-most
313 ** table is the last entry.  The join operator is held in the entry to
314 ** the left.  Thus entry 0 contains the join operator for the join between
315 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
316 ** also attached to the left entry.
317 **
318 ** This routine returns the number of errors encountered.
319 */
320 static int sqliteProcessJoin(Parse *pParse, Select *p){
321   SrcList *pSrc;                  /* All tables in the FROM clause */
322   int i, j;                       /* Loop counters */
323   struct SrcList_item *pLeft;     /* Left table being joined */
324   struct SrcList_item *pRight;    /* Right table being joined */
325 
326   pSrc = p->pSrc;
327   pLeft = &pSrc->a[0];
328   pRight = &pLeft[1];
329   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
330     Table *pLeftTab = pLeft->pTab;
331     Table *pRightTab = pRight->pTab;
332     int isOuter;
333 
334     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
335     isOuter = (pRight->jointype & JT_OUTER)!=0;
336 
337     /* When the NATURAL keyword is present, add WHERE clause terms for
338     ** every column that the two tables have in common.
339     */
340     if( pRight->jointype & JT_NATURAL ){
341       if( pRight->pOn || pRight->pUsing ){
342         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
343            "an ON or USING clause", 0);
344         return 1;
345       }
346       for(j=0; j<pRightTab->nCol; j++){
347         char *zName;   /* Name of column in the right table */
348         int iLeft;     /* Matching left table */
349         int iLeftCol;  /* Matching column in the left table */
350 
351         zName = pRightTab->aCol[j].zName;
352         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
353           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
354                        isOuter, &p->pWhere);
355         }
356       }
357     }
358 
359     /* Disallow both ON and USING clauses in the same join
360     */
361     if( pRight->pOn && pRight->pUsing ){
362       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
363         "clauses in the same join");
364       return 1;
365     }
366 
367     /* Add the ON clause to the end of the WHERE clause, connected by
368     ** an AND operator.
369     */
370     if( pRight->pOn ){
371       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
372       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
373       pRight->pOn = 0;
374     }
375 
376     /* Create extra terms on the WHERE clause for each column named
377     ** in the USING clause.  Example: If the two tables to be joined are
378     ** A and B and the USING clause names X, Y, and Z, then add this
379     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
380     ** Report an error if any column mentioned in the USING clause is
381     ** not contained in both tables to be joined.
382     */
383     if( pRight->pUsing ){
384       IdList *pList = pRight->pUsing;
385       for(j=0; j<pList->nId; j++){
386         char *zName;     /* Name of the term in the USING clause */
387         int iLeft;       /* Table on the left with matching column name */
388         int iLeftCol;    /* Column number of matching column on the left */
389         int iRightCol;   /* Column number of matching column on the right */
390 
391         zName = pList->a[j].zName;
392         iRightCol = columnIndex(pRightTab, zName);
393         if( iRightCol<0
394          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
395         ){
396           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
397             "not present in both tables", zName);
398           return 1;
399         }
400         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
401                      isOuter, &p->pWhere);
402       }
403     }
404   }
405   return 0;
406 }
407 
408 /*
409 ** Insert code into "v" that will push the record on the top of the
410 ** stack into the sorter.
411 */
412 static void pushOntoSorter(
413   Parse *pParse,         /* Parser context */
414   ExprList *pOrderBy,    /* The ORDER BY clause */
415   Select *pSelect,       /* The whole SELECT statement */
416   int regData            /* Register holding data to be sorted */
417 ){
418   Vdbe *v = pParse->pVdbe;
419   int nExpr = pOrderBy->nExpr;
420   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
421   int regRecord = sqlite3GetTempReg(pParse);
422   sqlite3ExprCacheClear(pParse);
423   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
424   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
425   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
426   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
427   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
428   sqlite3ReleaseTempReg(pParse, regRecord);
429   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
430   if( pSelect->iLimit ){
431     int addr1, addr2;
432     int iLimit;
433     if( pSelect->iOffset ){
434       iLimit = pSelect->iOffset+1;
435     }else{
436       iLimit = pSelect->iLimit;
437     }
438     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
439     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
440     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
441     sqlite3VdbeJumpHere(v, addr1);
442     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
443     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
444     sqlite3VdbeJumpHere(v, addr2);
445   }
446 }
447 
448 /*
449 ** Add code to implement the OFFSET
450 */
451 static void codeOffset(
452   Vdbe *v,          /* Generate code into this VM */
453   Select *p,        /* The SELECT statement being coded */
454   int iContinue     /* Jump here to skip the current record */
455 ){
456   if( p->iOffset && iContinue!=0 ){
457     int addr;
458     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
459     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
460     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
461     VdbeComment((v, "skip OFFSET records"));
462     sqlite3VdbeJumpHere(v, addr);
463   }
464 }
465 
466 /*
467 ** Add code that will check to make sure the N registers starting at iMem
468 ** form a distinct entry.  iTab is a sorting index that holds previously
469 ** seen combinations of the N values.  A new entry is made in iTab
470 ** if the current N values are new.
471 **
472 ** A jump to addrRepeat is made and the N+1 values are popped from the
473 ** stack if the top N elements are not distinct.
474 */
475 static void codeDistinct(
476   Parse *pParse,     /* Parsing and code generating context */
477   int iTab,          /* A sorting index used to test for distinctness */
478   int addrRepeat,    /* Jump to here if not distinct */
479   int N,             /* Number of elements */
480   int iMem           /* First element */
481 ){
482   Vdbe *v;
483   int r1;
484 
485   v = pParse->pVdbe;
486   r1 = sqlite3GetTempReg(pParse);
487   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
488   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
489   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
490   sqlite3ReleaseTempReg(pParse, r1);
491 }
492 
493 #ifndef SQLITE_OMIT_SUBQUERY
494 /*
495 ** Generate an error message when a SELECT is used within a subexpression
496 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
497 ** column.  We do this in a subroutine because the error used to occur
498 ** in multiple places.  (The error only occurs in one place now, but we
499 ** retain the subroutine to minimize code disruption.)
500 */
501 static int checkForMultiColumnSelectError(
502   Parse *pParse,       /* Parse context. */
503   SelectDest *pDest,   /* Destination of SELECT results */
504   int nExpr            /* Number of result columns returned by SELECT */
505 ){
506   int eDest = pDest->eDest;
507   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
508     sqlite3ErrorMsg(pParse, "only a single result allowed for "
509        "a SELECT that is part of an expression");
510     return 1;
511   }else{
512     return 0;
513   }
514 }
515 #endif
516 
517 /*
518 ** This routine generates the code for the inside of the inner loop
519 ** of a SELECT.
520 **
521 ** If srcTab and nColumn are both zero, then the pEList expressions
522 ** are evaluated in order to get the data for this row.  If nColumn>0
523 ** then data is pulled from srcTab and pEList is used only to get the
524 ** datatypes for each column.
525 */
526 static void selectInnerLoop(
527   Parse *pParse,          /* The parser context */
528   Select *p,              /* The complete select statement being coded */
529   ExprList *pEList,       /* List of values being extracted */
530   int srcTab,             /* Pull data from this table */
531   int nColumn,            /* Number of columns in the source table */
532   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
533   int distinct,           /* If >=0, make sure results are distinct */
534   SelectDest *pDest,      /* How to dispose of the results */
535   int iContinue,          /* Jump here to continue with next row */
536   int iBreak              /* Jump here to break out of the inner loop */
537 ){
538   Vdbe *v = pParse->pVdbe;
539   int i;
540   int hasDistinct;        /* True if the DISTINCT keyword is present */
541   int regResult;              /* Start of memory holding result set */
542   int eDest = pDest->eDest;   /* How to dispose of results */
543   int iParm = pDest->iParm;   /* First argument to disposal method */
544   int nResultCol;             /* Number of result columns */
545 
546   assert( v );
547   if( NEVER(v==0) ) return;
548   assert( pEList!=0 );
549   hasDistinct = distinct>=0;
550   if( pOrderBy==0 && !hasDistinct ){
551     codeOffset(v, p, iContinue);
552   }
553 
554   /* Pull the requested columns.
555   */
556   if( nColumn>0 ){
557     nResultCol = nColumn;
558   }else{
559     nResultCol = pEList->nExpr;
560   }
561   if( pDest->iMem==0 ){
562     pDest->iMem = pParse->nMem+1;
563     pDest->nMem = nResultCol;
564     pParse->nMem += nResultCol;
565   }else{
566     assert( pDest->nMem==nResultCol );
567   }
568   regResult = pDest->iMem;
569   if( nColumn>0 ){
570     for(i=0; i<nColumn; i++){
571       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
572     }
573   }else if( eDest!=SRT_Exists ){
574     /* If the destination is an EXISTS(...) expression, the actual
575     ** values returned by the SELECT are not required.
576     */
577     sqlite3ExprCacheClear(pParse);
578     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
579   }
580   nColumn = nResultCol;
581 
582   /* If the DISTINCT keyword was present on the SELECT statement
583   ** and this row has been seen before, then do not make this row
584   ** part of the result.
585   */
586   if( hasDistinct ){
587     assert( pEList!=0 );
588     assert( pEList->nExpr==nColumn );
589     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
590     if( pOrderBy==0 ){
591       codeOffset(v, p, iContinue);
592     }
593   }
594 
595   switch( eDest ){
596     /* In this mode, write each query result to the key of the temporary
597     ** table iParm.
598     */
599 #ifndef SQLITE_OMIT_COMPOUND_SELECT
600     case SRT_Union: {
601       int r1;
602       r1 = sqlite3GetTempReg(pParse);
603       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
604       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
605       sqlite3ReleaseTempReg(pParse, r1);
606       break;
607     }
608 
609     /* Construct a record from the query result, but instead of
610     ** saving that record, use it as a key to delete elements from
611     ** the temporary table iParm.
612     */
613     case SRT_Except: {
614       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
615       break;
616     }
617 #endif
618 
619     /* Store the result as data using a unique key.
620     */
621     case SRT_Table:
622     case SRT_EphemTab: {
623       int r1 = sqlite3GetTempReg(pParse);
624       testcase( eDest==SRT_Table );
625       testcase( eDest==SRT_EphemTab );
626       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
627       if( pOrderBy ){
628         pushOntoSorter(pParse, pOrderBy, p, r1);
629       }else{
630         int r2 = sqlite3GetTempReg(pParse);
631         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
632         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
633         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
634         sqlite3ReleaseTempReg(pParse, r2);
635       }
636       sqlite3ReleaseTempReg(pParse, r1);
637       break;
638     }
639 
640 #ifndef SQLITE_OMIT_SUBQUERY
641     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
642     ** then there should be a single item on the stack.  Write this
643     ** item into the set table with bogus data.
644     */
645     case SRT_Set: {
646       assert( nColumn==1 );
647       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
648       if( pOrderBy ){
649         /* At first glance you would think we could optimize out the
650         ** ORDER BY in this case since the order of entries in the set
651         ** does not matter.  But there might be a LIMIT clause, in which
652         ** case the order does matter */
653         pushOntoSorter(pParse, pOrderBy, p, regResult);
654       }else{
655         int r1 = sqlite3GetTempReg(pParse);
656         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
657         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
658         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
659         sqlite3ReleaseTempReg(pParse, r1);
660       }
661       break;
662     }
663 
664     /* If any row exist in the result set, record that fact and abort.
665     */
666     case SRT_Exists: {
667       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
668       /* The LIMIT clause will terminate the loop for us */
669       break;
670     }
671 
672     /* If this is a scalar select that is part of an expression, then
673     ** store the results in the appropriate memory cell and break out
674     ** of the scan loop.
675     */
676     case SRT_Mem: {
677       assert( nColumn==1 );
678       if( pOrderBy ){
679         pushOntoSorter(pParse, pOrderBy, p, regResult);
680       }else{
681         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
682         /* The LIMIT clause will jump out of the loop for us */
683       }
684       break;
685     }
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
687 
688     /* Send the data to the callback function or to a subroutine.  In the
689     ** case of a subroutine, the subroutine itself is responsible for
690     ** popping the data from the stack.
691     */
692     case SRT_Coroutine:
693     case SRT_Output: {
694       testcase( eDest==SRT_Coroutine );
695       testcase( eDest==SRT_Output );
696       if( pOrderBy ){
697         int r1 = sqlite3GetTempReg(pParse);
698         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699         pushOntoSorter(pParse, pOrderBy, p, r1);
700         sqlite3ReleaseTempReg(pParse, r1);
701       }else if( eDest==SRT_Coroutine ){
702         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
703       }else{
704         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
705         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
706       }
707       break;
708     }
709 
710 #if !defined(SQLITE_OMIT_TRIGGER)
711     /* Discard the results.  This is used for SELECT statements inside
712     ** the body of a TRIGGER.  The purpose of such selects is to call
713     ** user-defined functions that have side effects.  We do not care
714     ** about the actual results of the select.
715     */
716     default: {
717       assert( eDest==SRT_Discard );
718       break;
719     }
720 #endif
721   }
722 
723   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
724   ** there is a sorter, in which case the sorter has already limited
725   ** the output for us.
726   */
727   if( pOrderBy==0 && p->iLimit ){
728     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
729   }
730 }
731 
732 /*
733 ** Given an expression list, generate a KeyInfo structure that records
734 ** the collating sequence for each expression in that expression list.
735 **
736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
737 ** KeyInfo structure is appropriate for initializing a virtual index to
738 ** implement that clause.  If the ExprList is the result set of a SELECT
739 ** then the KeyInfo structure is appropriate for initializing a virtual
740 ** index to implement a DISTINCT test.
741 **
742 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
743 ** function is responsible for seeing that this structure is eventually
744 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
746 */
747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
748   sqlite3 *db = pParse->db;
749   int nExpr;
750   KeyInfo *pInfo;
751   struct ExprList_item *pItem;
752   int i;
753 
754   nExpr = pList->nExpr;
755   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
756   if( pInfo ){
757     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
758     pInfo->nField = (u16)nExpr;
759     pInfo->enc = ENC(db);
760     pInfo->db = db;
761     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
762       CollSeq *pColl;
763       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
764       if( !pColl ){
765         pColl = db->pDfltColl;
766       }
767       pInfo->aColl[i] = pColl;
768       pInfo->aSortOrder[i] = pItem->sortOrder;
769     }
770   }
771   return pInfo;
772 }
773 
774 #ifndef SQLITE_OMIT_COMPOUND_SELECT
775 /*
776 ** Name of the connection operator, used for error messages.
777 */
778 static const char *selectOpName(int id){
779   char *z;
780   switch( id ){
781     case TK_ALL:       z = "UNION ALL";   break;
782     case TK_INTERSECT: z = "INTERSECT";   break;
783     case TK_EXCEPT:    z = "EXCEPT";      break;
784     default:           z = "UNION";       break;
785   }
786   return z;
787 }
788 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
789 
790 #ifndef SQLITE_OMIT_EXPLAIN
791 /*
792 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
793 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
794 ** where the caption is of the form:
795 **
796 **   "USE TEMP B-TREE FOR xxx"
797 **
798 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
799 ** is determined by the zUsage argument.
800 */
801 static void explainTempTable(Parse *pParse, const char *zUsage){
802   if( pParse->explain==2 ){
803     Vdbe *v = pParse->pVdbe;
804     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
805     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
806   }
807 }
808 
809 /*
810 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
811 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
812 ** where the caption is of one of the two forms:
813 **
814 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
815 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
816 **
817 ** where iSub1 and iSub2 are the integers passed as the corresponding
818 ** function parameters, and op is the text representation of the parameter
819 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
820 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
821 ** false, or the second form if it is true.
822 */
823 static void explainComposite(
824   Parse *pParse,                  /* Parse context */
825   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
826   int iSub1,                      /* Subquery id 1 */
827   int iSub2,                      /* Subquery id 2 */
828   int bUseTmp                     /* True if a temp table was used */
829 ){
830   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
831   if( pParse->explain==2 ){
832     Vdbe *v = pParse->pVdbe;
833     char *zMsg = sqlite3MPrintf(
834         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
835         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
836     );
837     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
838   }
839 }
840 
841 /*
842 ** Assign expression b to lvalue a. A second, no-op, version of this macro
843 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
844 ** in sqlite3Select() to assign values to structure member variables that
845 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
846 ** code with #ifndef directives.
847 */
848 # define explainSetInteger(a, b) a = b
849 
850 #else
851 /* No-op versions of the explainXXX() functions and macros. */
852 # define explainTempTable(y,z)
853 # define explainComposite(v,w,x,y,z)
854 # define explainSetInteger(y,z)
855 #endif
856 
857 /*
858 ** If the inner loop was generated using a non-null pOrderBy argument,
859 ** then the results were placed in a sorter.  After the loop is terminated
860 ** we need to run the sorter and output the results.  The following
861 ** routine generates the code needed to do that.
862 */
863 static void generateSortTail(
864   Parse *pParse,    /* Parsing context */
865   Select *p,        /* The SELECT statement */
866   Vdbe *v,          /* Generate code into this VDBE */
867   int nColumn,      /* Number of columns of data */
868   SelectDest *pDest /* Write the sorted results here */
869 ){
870   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
871   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
872   int addr;
873   int iTab;
874   int pseudoTab = 0;
875   ExprList *pOrderBy = p->pOrderBy;
876 
877   int eDest = pDest->eDest;
878   int iParm = pDest->iParm;
879 
880   int regRow;
881   int regRowid;
882 
883   iTab = pOrderBy->iECursor;
884   regRow = sqlite3GetTempReg(pParse);
885   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
886     pseudoTab = pParse->nTab++;
887     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
888     regRowid = 0;
889   }else{
890     regRowid = sqlite3GetTempReg(pParse);
891   }
892   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
893   codeOffset(v, p, addrContinue);
894   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
895   switch( eDest ){
896     case SRT_Table:
897     case SRT_EphemTab: {
898       testcase( eDest==SRT_Table );
899       testcase( eDest==SRT_EphemTab );
900       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
901       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
902       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
903       break;
904     }
905 #ifndef SQLITE_OMIT_SUBQUERY
906     case SRT_Set: {
907       assert( nColumn==1 );
908       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
909       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
910       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
911       break;
912     }
913     case SRT_Mem: {
914       assert( nColumn==1 );
915       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
916       /* The LIMIT clause will terminate the loop for us */
917       break;
918     }
919 #endif
920     default: {
921       int i;
922       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
923       testcase( eDest==SRT_Output );
924       testcase( eDest==SRT_Coroutine );
925       for(i=0; i<nColumn; i++){
926         assert( regRow!=pDest->iMem+i );
927         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
928         if( i==0 ){
929           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
930         }
931       }
932       if( eDest==SRT_Output ){
933         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
934         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
935       }else{
936         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
937       }
938       break;
939     }
940   }
941   sqlite3ReleaseTempReg(pParse, regRow);
942   sqlite3ReleaseTempReg(pParse, regRowid);
943 
944   /* The bottom of the loop
945   */
946   sqlite3VdbeResolveLabel(v, addrContinue);
947   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
948   sqlite3VdbeResolveLabel(v, addrBreak);
949   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
950     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
951   }
952 }
953 
954 /*
955 ** Return a pointer to a string containing the 'declaration type' of the
956 ** expression pExpr. The string may be treated as static by the caller.
957 **
958 ** The declaration type is the exact datatype definition extracted from the
959 ** original CREATE TABLE statement if the expression is a column. The
960 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
961 ** is considered a column can be complex in the presence of subqueries. The
962 ** result-set expression in all of the following SELECT statements is
963 ** considered a column by this function.
964 **
965 **   SELECT col FROM tbl;
966 **   SELECT (SELECT col FROM tbl;
967 **   SELECT (SELECT col FROM tbl);
968 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
969 **
970 ** The declaration type for any expression other than a column is NULL.
971 */
972 static const char *columnType(
973   NameContext *pNC,
974   Expr *pExpr,
975   const char **pzOriginDb,
976   const char **pzOriginTab,
977   const char **pzOriginCol
978 ){
979   char const *zType = 0;
980   char const *zOriginDb = 0;
981   char const *zOriginTab = 0;
982   char const *zOriginCol = 0;
983   int j;
984   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
985 
986   switch( pExpr->op ){
987     case TK_AGG_COLUMN:
988     case TK_COLUMN: {
989       /* The expression is a column. Locate the table the column is being
990       ** extracted from in NameContext.pSrcList. This table may be real
991       ** database table or a subquery.
992       */
993       Table *pTab = 0;            /* Table structure column is extracted from */
994       Select *pS = 0;             /* Select the column is extracted from */
995       int iCol = pExpr->iColumn;  /* Index of column in pTab */
996       testcase( pExpr->op==TK_AGG_COLUMN );
997       testcase( pExpr->op==TK_COLUMN );
998       while( pNC && !pTab ){
999         SrcList *pTabList = pNC->pSrcList;
1000         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1001         if( j<pTabList->nSrc ){
1002           pTab = pTabList->a[j].pTab;
1003           pS = pTabList->a[j].pSelect;
1004         }else{
1005           pNC = pNC->pNext;
1006         }
1007       }
1008 
1009       if( pTab==0 ){
1010         /* At one time, code such as "SELECT new.x" within a trigger would
1011         ** cause this condition to run.  Since then, we have restructured how
1012         ** trigger code is generated and so this condition is no longer
1013         ** possible. However, it can still be true for statements like
1014         ** the following:
1015         **
1016         **   CREATE TABLE t1(col INTEGER);
1017         **   SELECT (SELECT t1.col) FROM FROM t1;
1018         **
1019         ** when columnType() is called on the expression "t1.col" in the
1020         ** sub-select. In this case, set the column type to NULL, even
1021         ** though it should really be "INTEGER".
1022         **
1023         ** This is not a problem, as the column type of "t1.col" is never
1024         ** used. When columnType() is called on the expression
1025         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1026         ** branch below.  */
1027         break;
1028       }
1029 
1030       assert( pTab && pExpr->pTab==pTab );
1031       if( pS ){
1032         /* The "table" is actually a sub-select or a view in the FROM clause
1033         ** of the SELECT statement. Return the declaration type and origin
1034         ** data for the result-set column of the sub-select.
1035         */
1036         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1037           /* If iCol is less than zero, then the expression requests the
1038           ** rowid of the sub-select or view. This expression is legal (see
1039           ** test case misc2.2.2) - it always evaluates to NULL.
1040           */
1041           NameContext sNC;
1042           Expr *p = pS->pEList->a[iCol].pExpr;
1043           sNC.pSrcList = pS->pSrc;
1044           sNC.pNext = pNC;
1045           sNC.pParse = pNC->pParse;
1046           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1047         }
1048       }else if( ALWAYS(pTab->pSchema) ){
1049         /* A real table */
1050         assert( !pS );
1051         if( iCol<0 ) iCol = pTab->iPKey;
1052         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1053         if( iCol<0 ){
1054           zType = "INTEGER";
1055           zOriginCol = "rowid";
1056         }else{
1057           zType = pTab->aCol[iCol].zType;
1058           zOriginCol = pTab->aCol[iCol].zName;
1059         }
1060         zOriginTab = pTab->zName;
1061         if( pNC->pParse ){
1062           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1063           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1064         }
1065       }
1066       break;
1067     }
1068 #ifndef SQLITE_OMIT_SUBQUERY
1069     case TK_SELECT: {
1070       /* The expression is a sub-select. Return the declaration type and
1071       ** origin info for the single column in the result set of the SELECT
1072       ** statement.
1073       */
1074       NameContext sNC;
1075       Select *pS = pExpr->x.pSelect;
1076       Expr *p = pS->pEList->a[0].pExpr;
1077       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1078       sNC.pSrcList = pS->pSrc;
1079       sNC.pNext = pNC;
1080       sNC.pParse = pNC->pParse;
1081       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1082       break;
1083     }
1084 #endif
1085   }
1086 
1087   if( pzOriginDb ){
1088     assert( pzOriginTab && pzOriginCol );
1089     *pzOriginDb = zOriginDb;
1090     *pzOriginTab = zOriginTab;
1091     *pzOriginCol = zOriginCol;
1092   }
1093   return zType;
1094 }
1095 
1096 /*
1097 ** Generate code that will tell the VDBE the declaration types of columns
1098 ** in the result set.
1099 */
1100 static void generateColumnTypes(
1101   Parse *pParse,      /* Parser context */
1102   SrcList *pTabList,  /* List of tables */
1103   ExprList *pEList    /* Expressions defining the result set */
1104 ){
1105 #ifndef SQLITE_OMIT_DECLTYPE
1106   Vdbe *v = pParse->pVdbe;
1107   int i;
1108   NameContext sNC;
1109   sNC.pSrcList = pTabList;
1110   sNC.pParse = pParse;
1111   for(i=0; i<pEList->nExpr; i++){
1112     Expr *p = pEList->a[i].pExpr;
1113     const char *zType;
1114 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1115     const char *zOrigDb = 0;
1116     const char *zOrigTab = 0;
1117     const char *zOrigCol = 0;
1118     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1119 
1120     /* The vdbe must make its own copy of the column-type and other
1121     ** column specific strings, in case the schema is reset before this
1122     ** virtual machine is deleted.
1123     */
1124     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1125     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1126     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1127 #else
1128     zType = columnType(&sNC, p, 0, 0, 0);
1129 #endif
1130     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1131   }
1132 #endif /* SQLITE_OMIT_DECLTYPE */
1133 }
1134 
1135 /*
1136 ** Generate code that will tell the VDBE the names of columns
1137 ** in the result set.  This information is used to provide the
1138 ** azCol[] values in the callback.
1139 */
1140 static void generateColumnNames(
1141   Parse *pParse,      /* Parser context */
1142   SrcList *pTabList,  /* List of tables */
1143   ExprList *pEList    /* Expressions defining the result set */
1144 ){
1145   Vdbe *v = pParse->pVdbe;
1146   int i, j;
1147   sqlite3 *db = pParse->db;
1148   int fullNames, shortNames;
1149 
1150 #ifndef SQLITE_OMIT_EXPLAIN
1151   /* If this is an EXPLAIN, skip this step */
1152   if( pParse->explain ){
1153     return;
1154   }
1155 #endif
1156 
1157   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1158   pParse->colNamesSet = 1;
1159   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1160   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1161   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1162   for(i=0; i<pEList->nExpr; i++){
1163     Expr *p;
1164     p = pEList->a[i].pExpr;
1165     if( NEVER(p==0) ) continue;
1166     if( pEList->a[i].zName ){
1167       char *zName = pEList->a[i].zName;
1168       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1169     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1170       Table *pTab;
1171       char *zCol;
1172       int iCol = p->iColumn;
1173       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1174         if( pTabList->a[j].iCursor==p->iTable ) break;
1175       }
1176       assert( j<pTabList->nSrc );
1177       pTab = pTabList->a[j].pTab;
1178       if( iCol<0 ) iCol = pTab->iPKey;
1179       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1180       if( iCol<0 ){
1181         zCol = "rowid";
1182       }else{
1183         zCol = pTab->aCol[iCol].zName;
1184       }
1185       if( !shortNames && !fullNames ){
1186         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1187             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1188       }else if( fullNames ){
1189         char *zName = 0;
1190         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1191         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1192       }else{
1193         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1194       }
1195     }else{
1196       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1197           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1198     }
1199   }
1200   generateColumnTypes(pParse, pTabList, pEList);
1201 }
1202 
1203 /*
1204 ** Given a an expression list (which is really the list of expressions
1205 ** that form the result set of a SELECT statement) compute appropriate
1206 ** column names for a table that would hold the expression list.
1207 **
1208 ** All column names will be unique.
1209 **
1210 ** Only the column names are computed.  Column.zType, Column.zColl,
1211 ** and other fields of Column are zeroed.
1212 **
1213 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1214 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1215 */
1216 static int selectColumnsFromExprList(
1217   Parse *pParse,          /* Parsing context */
1218   ExprList *pEList,       /* Expr list from which to derive column names */
1219   int *pnCol,             /* Write the number of columns here */
1220   Column **paCol          /* Write the new column list here */
1221 ){
1222   sqlite3 *db = pParse->db;   /* Database connection */
1223   int i, j;                   /* Loop counters */
1224   int cnt;                    /* Index added to make the name unique */
1225   Column *aCol, *pCol;        /* For looping over result columns */
1226   int nCol;                   /* Number of columns in the result set */
1227   Expr *p;                    /* Expression for a single result column */
1228   char *zName;                /* Column name */
1229   int nName;                  /* Size of name in zName[] */
1230 
1231   *pnCol = nCol = pEList->nExpr;
1232   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1233   if( aCol==0 ) return SQLITE_NOMEM;
1234   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1235     /* Get an appropriate name for the column
1236     */
1237     p = pEList->a[i].pExpr;
1238     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1239                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1240     if( (zName = pEList->a[i].zName)!=0 ){
1241       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1242       zName = sqlite3DbStrDup(db, zName);
1243     }else{
1244       Expr *pColExpr = p;  /* The expression that is the result column name */
1245       Table *pTab;         /* Table associated with this expression */
1246       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1247       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1248         /* For columns use the column name name */
1249         int iCol = pColExpr->iColumn;
1250         pTab = pColExpr->pTab;
1251         if( iCol<0 ) iCol = pTab->iPKey;
1252         zName = sqlite3MPrintf(db, "%s",
1253                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1254       }else if( pColExpr->op==TK_ID ){
1255         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1256         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1257       }else{
1258         /* Use the original text of the column expression as its name */
1259         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1260       }
1261     }
1262     if( db->mallocFailed ){
1263       sqlite3DbFree(db, zName);
1264       break;
1265     }
1266 
1267     /* Make sure the column name is unique.  If the name is not unique,
1268     ** append a integer to the name so that it becomes unique.
1269     */
1270     nName = sqlite3Strlen30(zName);
1271     for(j=cnt=0; j<i; j++){
1272       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1273         char *zNewName;
1274         zName[nName] = 0;
1275         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1276         sqlite3DbFree(db, zName);
1277         zName = zNewName;
1278         j = -1;
1279         if( zName==0 ) break;
1280       }
1281     }
1282     pCol->zName = zName;
1283   }
1284   if( db->mallocFailed ){
1285     for(j=0; j<i; j++){
1286       sqlite3DbFree(db, aCol[j].zName);
1287     }
1288     sqlite3DbFree(db, aCol);
1289     *paCol = 0;
1290     *pnCol = 0;
1291     return SQLITE_NOMEM;
1292   }
1293   return SQLITE_OK;
1294 }
1295 
1296 /*
1297 ** Add type and collation information to a column list based on
1298 ** a SELECT statement.
1299 **
1300 ** The column list presumably came from selectColumnNamesFromExprList().
1301 ** The column list has only names, not types or collations.  This
1302 ** routine goes through and adds the types and collations.
1303 **
1304 ** This routine requires that all identifiers in the SELECT
1305 ** statement be resolved.
1306 */
1307 static void selectAddColumnTypeAndCollation(
1308   Parse *pParse,        /* Parsing contexts */
1309   int nCol,             /* Number of columns */
1310   Column *aCol,         /* List of columns */
1311   Select *pSelect       /* SELECT used to determine types and collations */
1312 ){
1313   sqlite3 *db = pParse->db;
1314   NameContext sNC;
1315   Column *pCol;
1316   CollSeq *pColl;
1317   int i;
1318   Expr *p;
1319   struct ExprList_item *a;
1320 
1321   assert( pSelect!=0 );
1322   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1323   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1324   if( db->mallocFailed ) return;
1325   memset(&sNC, 0, sizeof(sNC));
1326   sNC.pSrcList = pSelect->pSrc;
1327   a = pSelect->pEList->a;
1328   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1329     p = a[i].pExpr;
1330     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1331     pCol->affinity = sqlite3ExprAffinity(p);
1332     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1333     pColl = sqlite3ExprCollSeq(pParse, p);
1334     if( pColl ){
1335       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1336     }
1337   }
1338 }
1339 
1340 /*
1341 ** Given a SELECT statement, generate a Table structure that describes
1342 ** the result set of that SELECT.
1343 */
1344 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1345   Table *pTab;
1346   sqlite3 *db = pParse->db;
1347   int savedFlags;
1348 
1349   savedFlags = db->flags;
1350   db->flags &= ~SQLITE_FullColNames;
1351   db->flags |= SQLITE_ShortColNames;
1352   sqlite3SelectPrep(pParse, pSelect, 0);
1353   if( pParse->nErr ) return 0;
1354   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1355   db->flags = savedFlags;
1356   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1357   if( pTab==0 ){
1358     return 0;
1359   }
1360   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1361   ** is disabled */
1362   assert( db->lookaside.bEnabled==0 );
1363   pTab->nRef = 1;
1364   pTab->zName = 0;
1365   pTab->nRowEst = 1000000;
1366   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1367   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1368   pTab->iPKey = -1;
1369   if( db->mallocFailed ){
1370     sqlite3DeleteTable(db, pTab);
1371     return 0;
1372   }
1373   return pTab;
1374 }
1375 
1376 /*
1377 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1378 ** If an error occurs, return NULL and leave a message in pParse.
1379 */
1380 Vdbe *sqlite3GetVdbe(Parse *pParse){
1381   Vdbe *v = pParse->pVdbe;
1382   if( v==0 ){
1383     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1384 #ifndef SQLITE_OMIT_TRACE
1385     if( v ){
1386       sqlite3VdbeAddOp0(v, OP_Trace);
1387     }
1388 #endif
1389   }
1390   return v;
1391 }
1392 
1393 
1394 /*
1395 ** Compute the iLimit and iOffset fields of the SELECT based on the
1396 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1397 ** that appear in the original SQL statement after the LIMIT and OFFSET
1398 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1399 ** are the integer memory register numbers for counters used to compute
1400 ** the limit and offset.  If there is no limit and/or offset, then
1401 ** iLimit and iOffset are negative.
1402 **
1403 ** This routine changes the values of iLimit and iOffset only if
1404 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1405 ** iOffset should have been preset to appropriate default values
1406 ** (usually but not always -1) prior to calling this routine.
1407 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1408 ** redefined.  The UNION ALL operator uses this property to force
1409 ** the reuse of the same limit and offset registers across multiple
1410 ** SELECT statements.
1411 */
1412 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1413   Vdbe *v = 0;
1414   int iLimit = 0;
1415   int iOffset;
1416   int addr1, n;
1417   if( p->iLimit ) return;
1418 
1419   /*
1420   ** "LIMIT -1" always shows all rows.  There is some
1421   ** contraversy about what the correct behavior should be.
1422   ** The current implementation interprets "LIMIT 0" to mean
1423   ** no rows.
1424   */
1425   sqlite3ExprCacheClear(pParse);
1426   assert( p->pOffset==0 || p->pLimit!=0 );
1427   if( p->pLimit ){
1428     p->iLimit = iLimit = ++pParse->nMem;
1429     v = sqlite3GetVdbe(pParse);
1430     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1431     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1432       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1433       VdbeComment((v, "LIMIT counter"));
1434       if( n==0 ){
1435         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1436       }else{
1437         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1438       }
1439     }else{
1440       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1441       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1442       VdbeComment((v, "LIMIT counter"));
1443       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1444     }
1445     if( p->pOffset ){
1446       p->iOffset = iOffset = ++pParse->nMem;
1447       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1448       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1449       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1450       VdbeComment((v, "OFFSET counter"));
1451       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1452       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1453       sqlite3VdbeJumpHere(v, addr1);
1454       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1455       VdbeComment((v, "LIMIT+OFFSET"));
1456       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1457       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1458       sqlite3VdbeJumpHere(v, addr1);
1459     }
1460   }
1461 }
1462 
1463 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1464 /*
1465 ** Return the appropriate collating sequence for the iCol-th column of
1466 ** the result set for the compound-select statement "p".  Return NULL if
1467 ** the column has no default collating sequence.
1468 **
1469 ** The collating sequence for the compound select is taken from the
1470 ** left-most term of the select that has a collating sequence.
1471 */
1472 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1473   CollSeq *pRet;
1474   if( p->pPrior ){
1475     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1476   }else{
1477     pRet = 0;
1478   }
1479   assert( iCol>=0 );
1480   if( pRet==0 && iCol<p->pEList->nExpr ){
1481     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1482   }
1483   return pRet;
1484 }
1485 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1486 
1487 /* Forward reference */
1488 static int multiSelectOrderBy(
1489   Parse *pParse,        /* Parsing context */
1490   Select *p,            /* The right-most of SELECTs to be coded */
1491   SelectDest *pDest     /* What to do with query results */
1492 );
1493 
1494 
1495 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1496 /*
1497 ** This routine is called to process a compound query form from
1498 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1499 ** INTERSECT
1500 **
1501 ** "p" points to the right-most of the two queries.  the query on the
1502 ** left is p->pPrior.  The left query could also be a compound query
1503 ** in which case this routine will be called recursively.
1504 **
1505 ** The results of the total query are to be written into a destination
1506 ** of type eDest with parameter iParm.
1507 **
1508 ** Example 1:  Consider a three-way compound SQL statement.
1509 **
1510 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1511 **
1512 ** This statement is parsed up as follows:
1513 **
1514 **     SELECT c FROM t3
1515 **      |
1516 **      `----->  SELECT b FROM t2
1517 **                |
1518 **                `------>  SELECT a FROM t1
1519 **
1520 ** The arrows in the diagram above represent the Select.pPrior pointer.
1521 ** So if this routine is called with p equal to the t3 query, then
1522 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1523 **
1524 ** Notice that because of the way SQLite parses compound SELECTs, the
1525 ** individual selects always group from left to right.
1526 */
1527 static int multiSelect(
1528   Parse *pParse,        /* Parsing context */
1529   Select *p,            /* The right-most of SELECTs to be coded */
1530   SelectDest *pDest     /* What to do with query results */
1531 ){
1532   int rc = SQLITE_OK;   /* Success code from a subroutine */
1533   Select *pPrior;       /* Another SELECT immediately to our left */
1534   Vdbe *v;              /* Generate code to this VDBE */
1535   SelectDest dest;      /* Alternative data destination */
1536   Select *pDelete = 0;  /* Chain of simple selects to delete */
1537   sqlite3 *db;          /* Database connection */
1538 #ifndef SQLITE_OMIT_EXPLAIN
1539   int iSub1;            /* EQP id of left-hand query */
1540   int iSub2;            /* EQP id of right-hand query */
1541 #endif
1542 
1543   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1544   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1545   */
1546   assert( p && p->pPrior );  /* Calling function guarantees this much */
1547   db = pParse->db;
1548   pPrior = p->pPrior;
1549   assert( pPrior->pRightmost!=pPrior );
1550   assert( pPrior->pRightmost==p->pRightmost );
1551   dest = *pDest;
1552   if( pPrior->pOrderBy ){
1553     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1554       selectOpName(p->op));
1555     rc = 1;
1556     goto multi_select_end;
1557   }
1558   if( pPrior->pLimit ){
1559     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1560       selectOpName(p->op));
1561     rc = 1;
1562     goto multi_select_end;
1563   }
1564 
1565   v = sqlite3GetVdbe(pParse);
1566   assert( v!=0 );  /* The VDBE already created by calling function */
1567 
1568   /* Create the destination temporary table if necessary
1569   */
1570   if( dest.eDest==SRT_EphemTab ){
1571     assert( p->pEList );
1572     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1573     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1574     dest.eDest = SRT_Table;
1575   }
1576 
1577   /* Make sure all SELECTs in the statement have the same number of elements
1578   ** in their result sets.
1579   */
1580   assert( p->pEList && pPrior->pEList );
1581   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1582     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1583       " do not have the same number of result columns", selectOpName(p->op));
1584     rc = 1;
1585     goto multi_select_end;
1586   }
1587 
1588   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1589   */
1590   if( p->pOrderBy ){
1591     return multiSelectOrderBy(pParse, p, pDest);
1592   }
1593 
1594   /* Generate code for the left and right SELECT statements.
1595   */
1596   switch( p->op ){
1597     case TK_ALL: {
1598       int addr = 0;
1599       int nLimit;
1600       assert( !pPrior->pLimit );
1601       pPrior->pLimit = p->pLimit;
1602       pPrior->pOffset = p->pOffset;
1603       explainSetInteger(iSub1, pParse->iNextSelectId);
1604       rc = sqlite3Select(pParse, pPrior, &dest);
1605       p->pLimit = 0;
1606       p->pOffset = 0;
1607       if( rc ){
1608         goto multi_select_end;
1609       }
1610       p->pPrior = 0;
1611       p->iLimit = pPrior->iLimit;
1612       p->iOffset = pPrior->iOffset;
1613       if( p->iLimit ){
1614         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1615         VdbeComment((v, "Jump ahead if LIMIT reached"));
1616       }
1617       explainSetInteger(iSub2, pParse->iNextSelectId);
1618       rc = sqlite3Select(pParse, p, &dest);
1619       testcase( rc!=SQLITE_OK );
1620       pDelete = p->pPrior;
1621       p->pPrior = pPrior;
1622       p->nSelectRow += pPrior->nSelectRow;
1623       if( pPrior->pLimit
1624        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1625        && p->nSelectRow > (double)nLimit
1626       ){
1627         p->nSelectRow = (double)nLimit;
1628       }
1629       if( addr ){
1630         sqlite3VdbeJumpHere(v, addr);
1631       }
1632       break;
1633     }
1634     case TK_EXCEPT:
1635     case TK_UNION: {
1636       int unionTab;    /* Cursor number of the temporary table holding result */
1637       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1638       int priorOp;     /* The SRT_ operation to apply to prior selects */
1639       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1640       int addr;
1641       SelectDest uniondest;
1642 
1643       testcase( p->op==TK_EXCEPT );
1644       testcase( p->op==TK_UNION );
1645       priorOp = SRT_Union;
1646       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1647         /* We can reuse a temporary table generated by a SELECT to our
1648         ** right.
1649         */
1650         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1651                                      ** of a 3-way or more compound */
1652         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1653         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1654         unionTab = dest.iParm;
1655       }else{
1656         /* We will need to create our own temporary table to hold the
1657         ** intermediate results.
1658         */
1659         unionTab = pParse->nTab++;
1660         assert( p->pOrderBy==0 );
1661         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1662         assert( p->addrOpenEphm[0] == -1 );
1663         p->addrOpenEphm[0] = addr;
1664         p->pRightmost->selFlags |= SF_UsesEphemeral;
1665         assert( p->pEList );
1666       }
1667 
1668       /* Code the SELECT statements to our left
1669       */
1670       assert( !pPrior->pOrderBy );
1671       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1672       explainSetInteger(iSub1, pParse->iNextSelectId);
1673       rc = sqlite3Select(pParse, pPrior, &uniondest);
1674       if( rc ){
1675         goto multi_select_end;
1676       }
1677 
1678       /* Code the current SELECT statement
1679       */
1680       if( p->op==TK_EXCEPT ){
1681         op = SRT_Except;
1682       }else{
1683         assert( p->op==TK_UNION );
1684         op = SRT_Union;
1685       }
1686       p->pPrior = 0;
1687       pLimit = p->pLimit;
1688       p->pLimit = 0;
1689       pOffset = p->pOffset;
1690       p->pOffset = 0;
1691       uniondest.eDest = op;
1692       explainSetInteger(iSub2, pParse->iNextSelectId);
1693       rc = sqlite3Select(pParse, p, &uniondest);
1694       testcase( rc!=SQLITE_OK );
1695       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1696       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1697       sqlite3ExprListDelete(db, p->pOrderBy);
1698       pDelete = p->pPrior;
1699       p->pPrior = pPrior;
1700       p->pOrderBy = 0;
1701       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1702       sqlite3ExprDelete(db, p->pLimit);
1703       p->pLimit = pLimit;
1704       p->pOffset = pOffset;
1705       p->iLimit = 0;
1706       p->iOffset = 0;
1707 
1708       /* Convert the data in the temporary table into whatever form
1709       ** it is that we currently need.
1710       */
1711       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
1712       if( dest.eDest!=priorOp ){
1713         int iCont, iBreak, iStart;
1714         assert( p->pEList );
1715         if( dest.eDest==SRT_Output ){
1716           Select *pFirst = p;
1717           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1718           generateColumnNames(pParse, 0, pFirst->pEList);
1719         }
1720         iBreak = sqlite3VdbeMakeLabel(v);
1721         iCont = sqlite3VdbeMakeLabel(v);
1722         computeLimitRegisters(pParse, p, iBreak);
1723         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1724         iStart = sqlite3VdbeCurrentAddr(v);
1725         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1726                         0, -1, &dest, iCont, iBreak);
1727         sqlite3VdbeResolveLabel(v, iCont);
1728         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1729         sqlite3VdbeResolveLabel(v, iBreak);
1730         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1731       }
1732       break;
1733     }
1734     default: assert( p->op==TK_INTERSECT ); {
1735       int tab1, tab2;
1736       int iCont, iBreak, iStart;
1737       Expr *pLimit, *pOffset;
1738       int addr;
1739       SelectDest intersectdest;
1740       int r1;
1741 
1742       /* INTERSECT is different from the others since it requires
1743       ** two temporary tables.  Hence it has its own case.  Begin
1744       ** by allocating the tables we will need.
1745       */
1746       tab1 = pParse->nTab++;
1747       tab2 = pParse->nTab++;
1748       assert( p->pOrderBy==0 );
1749 
1750       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1751       assert( p->addrOpenEphm[0] == -1 );
1752       p->addrOpenEphm[0] = addr;
1753       p->pRightmost->selFlags |= SF_UsesEphemeral;
1754       assert( p->pEList );
1755 
1756       /* Code the SELECTs to our left into temporary table "tab1".
1757       */
1758       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1759       explainSetInteger(iSub1, pParse->iNextSelectId);
1760       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1761       if( rc ){
1762         goto multi_select_end;
1763       }
1764 
1765       /* Code the current SELECT into temporary table "tab2"
1766       */
1767       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1768       assert( p->addrOpenEphm[1] == -1 );
1769       p->addrOpenEphm[1] = addr;
1770       p->pPrior = 0;
1771       pLimit = p->pLimit;
1772       p->pLimit = 0;
1773       pOffset = p->pOffset;
1774       p->pOffset = 0;
1775       intersectdest.iParm = tab2;
1776       explainSetInteger(iSub2, pParse->iNextSelectId);
1777       rc = sqlite3Select(pParse, p, &intersectdest);
1778       testcase( rc!=SQLITE_OK );
1779       pDelete = p->pPrior;
1780       p->pPrior = pPrior;
1781       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1782       sqlite3ExprDelete(db, p->pLimit);
1783       p->pLimit = pLimit;
1784       p->pOffset = pOffset;
1785 
1786       /* Generate code to take the intersection of the two temporary
1787       ** tables.
1788       */
1789       assert( p->pEList );
1790       if( dest.eDest==SRT_Output ){
1791         Select *pFirst = p;
1792         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1793         generateColumnNames(pParse, 0, pFirst->pEList);
1794       }
1795       iBreak = sqlite3VdbeMakeLabel(v);
1796       iCont = sqlite3VdbeMakeLabel(v);
1797       computeLimitRegisters(pParse, p, iBreak);
1798       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1799       r1 = sqlite3GetTempReg(pParse);
1800       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1801       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1802       sqlite3ReleaseTempReg(pParse, r1);
1803       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1804                       0, -1, &dest, iCont, iBreak);
1805       sqlite3VdbeResolveLabel(v, iCont);
1806       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1807       sqlite3VdbeResolveLabel(v, iBreak);
1808       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1809       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1810       break;
1811     }
1812   }
1813 
1814   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1815 
1816   /* Compute collating sequences used by
1817   ** temporary tables needed to implement the compound select.
1818   ** Attach the KeyInfo structure to all temporary tables.
1819   **
1820   ** This section is run by the right-most SELECT statement only.
1821   ** SELECT statements to the left always skip this part.  The right-most
1822   ** SELECT might also skip this part if it has no ORDER BY clause and
1823   ** no temp tables are required.
1824   */
1825   if( p->selFlags & SF_UsesEphemeral ){
1826     int i;                        /* Loop counter */
1827     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1828     Select *pLoop;                /* For looping through SELECT statements */
1829     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1830     int nCol;                     /* Number of columns in result set */
1831 
1832     assert( p->pRightmost==p );
1833     nCol = p->pEList->nExpr;
1834     pKeyInfo = sqlite3DbMallocZero(db,
1835                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1836     if( !pKeyInfo ){
1837       rc = SQLITE_NOMEM;
1838       goto multi_select_end;
1839     }
1840 
1841     pKeyInfo->enc = ENC(db);
1842     pKeyInfo->nField = (u16)nCol;
1843 
1844     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1845       *apColl = multiSelectCollSeq(pParse, p, i);
1846       if( 0==*apColl ){
1847         *apColl = db->pDfltColl;
1848       }
1849     }
1850 
1851     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1852       for(i=0; i<2; i++){
1853         int addr = pLoop->addrOpenEphm[i];
1854         if( addr<0 ){
1855           /* If [0] is unused then [1] is also unused.  So we can
1856           ** always safely abort as soon as the first unused slot is found */
1857           assert( pLoop->addrOpenEphm[1]<0 );
1858           break;
1859         }
1860         sqlite3VdbeChangeP2(v, addr, nCol);
1861         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1862         pLoop->addrOpenEphm[i] = -1;
1863       }
1864     }
1865     sqlite3DbFree(db, pKeyInfo);
1866   }
1867 
1868 multi_select_end:
1869   pDest->iMem = dest.iMem;
1870   pDest->nMem = dest.nMem;
1871   sqlite3SelectDelete(db, pDelete);
1872   return rc;
1873 }
1874 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1875 
1876 /*
1877 ** Code an output subroutine for a coroutine implementation of a
1878 ** SELECT statment.
1879 **
1880 ** The data to be output is contained in pIn->iMem.  There are
1881 ** pIn->nMem columns to be output.  pDest is where the output should
1882 ** be sent.
1883 **
1884 ** regReturn is the number of the register holding the subroutine
1885 ** return address.
1886 **
1887 ** If regPrev>0 then it is the first register in a vector that
1888 ** records the previous output.  mem[regPrev] is a flag that is false
1889 ** if there has been no previous output.  If regPrev>0 then code is
1890 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1891 ** keys.
1892 **
1893 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1894 ** iBreak.
1895 */
1896 static int generateOutputSubroutine(
1897   Parse *pParse,          /* Parsing context */
1898   Select *p,              /* The SELECT statement */
1899   SelectDest *pIn,        /* Coroutine supplying data */
1900   SelectDest *pDest,      /* Where to send the data */
1901   int regReturn,          /* The return address register */
1902   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1903   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1904   int p4type,             /* The p4 type for pKeyInfo */
1905   int iBreak              /* Jump here if we hit the LIMIT */
1906 ){
1907   Vdbe *v = pParse->pVdbe;
1908   int iContinue;
1909   int addr;
1910 
1911   addr = sqlite3VdbeCurrentAddr(v);
1912   iContinue = sqlite3VdbeMakeLabel(v);
1913 
1914   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1915   */
1916   if( regPrev ){
1917     int j1, j2;
1918     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1919     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1920                               (char*)pKeyInfo, p4type);
1921     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1922     sqlite3VdbeJumpHere(v, j1);
1923     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1924     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1925   }
1926   if( pParse->db->mallocFailed ) return 0;
1927 
1928   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1929   */
1930   codeOffset(v, p, iContinue);
1931 
1932   switch( pDest->eDest ){
1933     /* Store the result as data using a unique key.
1934     */
1935     case SRT_Table:
1936     case SRT_EphemTab: {
1937       int r1 = sqlite3GetTempReg(pParse);
1938       int r2 = sqlite3GetTempReg(pParse);
1939       testcase( pDest->eDest==SRT_Table );
1940       testcase( pDest->eDest==SRT_EphemTab );
1941       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1942       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1943       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1944       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1945       sqlite3ReleaseTempReg(pParse, r2);
1946       sqlite3ReleaseTempReg(pParse, r1);
1947       break;
1948     }
1949 
1950 #ifndef SQLITE_OMIT_SUBQUERY
1951     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1952     ** then there should be a single item on the stack.  Write this
1953     ** item into the set table with bogus data.
1954     */
1955     case SRT_Set: {
1956       int r1;
1957       assert( pIn->nMem==1 );
1958       p->affinity =
1959          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1960       r1 = sqlite3GetTempReg(pParse);
1961       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1962       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1963       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1964       sqlite3ReleaseTempReg(pParse, r1);
1965       break;
1966     }
1967 
1968 #if 0  /* Never occurs on an ORDER BY query */
1969     /* If any row exist in the result set, record that fact and abort.
1970     */
1971     case SRT_Exists: {
1972       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1973       /* The LIMIT clause will terminate the loop for us */
1974       break;
1975     }
1976 #endif
1977 
1978     /* If this is a scalar select that is part of an expression, then
1979     ** store the results in the appropriate memory cell and break out
1980     ** of the scan loop.
1981     */
1982     case SRT_Mem: {
1983       assert( pIn->nMem==1 );
1984       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1985       /* The LIMIT clause will jump out of the loop for us */
1986       break;
1987     }
1988 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1989 
1990     /* The results are stored in a sequence of registers
1991     ** starting at pDest->iMem.  Then the co-routine yields.
1992     */
1993     case SRT_Coroutine: {
1994       if( pDest->iMem==0 ){
1995         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1996         pDest->nMem = pIn->nMem;
1997       }
1998       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1999       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
2000       break;
2001     }
2002 
2003     /* If none of the above, then the result destination must be
2004     ** SRT_Output.  This routine is never called with any other
2005     ** destination other than the ones handled above or SRT_Output.
2006     **
2007     ** For SRT_Output, results are stored in a sequence of registers.
2008     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2009     ** return the next row of result.
2010     */
2011     default: {
2012       assert( pDest->eDest==SRT_Output );
2013       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
2014       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
2015       break;
2016     }
2017   }
2018 
2019   /* Jump to the end of the loop if the LIMIT is reached.
2020   */
2021   if( p->iLimit ){
2022     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2023   }
2024 
2025   /* Generate the subroutine return
2026   */
2027   sqlite3VdbeResolveLabel(v, iContinue);
2028   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2029 
2030   return addr;
2031 }
2032 
2033 /*
2034 ** Alternative compound select code generator for cases when there
2035 ** is an ORDER BY clause.
2036 **
2037 ** We assume a query of the following form:
2038 **
2039 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2040 **
2041 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2042 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2043 ** co-routines.  Then run the co-routines in parallel and merge the results
2044 ** into the output.  In addition to the two coroutines (called selectA and
2045 ** selectB) there are 7 subroutines:
2046 **
2047 **    outA:    Move the output of the selectA coroutine into the output
2048 **             of the compound query.
2049 **
2050 **    outB:    Move the output of the selectB coroutine into the output
2051 **             of the compound query.  (Only generated for UNION and
2052 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2053 **             appears only in B.)
2054 **
2055 **    AltB:    Called when there is data from both coroutines and A<B.
2056 **
2057 **    AeqB:    Called when there is data from both coroutines and A==B.
2058 **
2059 **    AgtB:    Called when there is data from both coroutines and A>B.
2060 **
2061 **    EofA:    Called when data is exhausted from selectA.
2062 **
2063 **    EofB:    Called when data is exhausted from selectB.
2064 **
2065 ** The implementation of the latter five subroutines depend on which
2066 ** <operator> is used:
2067 **
2068 **
2069 **             UNION ALL         UNION            EXCEPT          INTERSECT
2070 **          -------------  -----------------  --------------  -----------------
2071 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2072 **
2073 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2074 **
2075 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2076 **
2077 **   EofA:   outB, nextB      outB, nextB          halt             halt
2078 **
2079 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2080 **
2081 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2082 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2083 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2084 ** following nextX causes a jump to the end of the select processing.
2085 **
2086 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2087 ** within the output subroutine.  The regPrev register set holds the previously
2088 ** output value.  A comparison is made against this value and the output
2089 ** is skipped if the next results would be the same as the previous.
2090 **
2091 ** The implementation plan is to implement the two coroutines and seven
2092 ** subroutines first, then put the control logic at the bottom.  Like this:
2093 **
2094 **          goto Init
2095 **     coA: coroutine for left query (A)
2096 **     coB: coroutine for right query (B)
2097 **    outA: output one row of A
2098 **    outB: output one row of B (UNION and UNION ALL only)
2099 **    EofA: ...
2100 **    EofB: ...
2101 **    AltB: ...
2102 **    AeqB: ...
2103 **    AgtB: ...
2104 **    Init: initialize coroutine registers
2105 **          yield coA
2106 **          if eof(A) goto EofA
2107 **          yield coB
2108 **          if eof(B) goto EofB
2109 **    Cmpr: Compare A, B
2110 **          Jump AltB, AeqB, AgtB
2111 **     End: ...
2112 **
2113 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2114 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2115 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2116 ** and AgtB jump to either L2 or to one of EofA or EofB.
2117 */
2118 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2119 static int multiSelectOrderBy(
2120   Parse *pParse,        /* Parsing context */
2121   Select *p,            /* The right-most of SELECTs to be coded */
2122   SelectDest *pDest     /* What to do with query results */
2123 ){
2124   int i, j;             /* Loop counters */
2125   Select *pPrior;       /* Another SELECT immediately to our left */
2126   Vdbe *v;              /* Generate code to this VDBE */
2127   SelectDest destA;     /* Destination for coroutine A */
2128   SelectDest destB;     /* Destination for coroutine B */
2129   int regAddrA;         /* Address register for select-A coroutine */
2130   int regEofA;          /* Flag to indicate when select-A is complete */
2131   int regAddrB;         /* Address register for select-B coroutine */
2132   int regEofB;          /* Flag to indicate when select-B is complete */
2133   int addrSelectA;      /* Address of the select-A coroutine */
2134   int addrSelectB;      /* Address of the select-B coroutine */
2135   int regOutA;          /* Address register for the output-A subroutine */
2136   int regOutB;          /* Address register for the output-B subroutine */
2137   int addrOutA;         /* Address of the output-A subroutine */
2138   int addrOutB = 0;     /* Address of the output-B subroutine */
2139   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2140   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2141   int addrAltB;         /* Address of the A<B subroutine */
2142   int addrAeqB;         /* Address of the A==B subroutine */
2143   int addrAgtB;         /* Address of the A>B subroutine */
2144   int regLimitA;        /* Limit register for select-A */
2145   int regLimitB;        /* Limit register for select-A */
2146   int regPrev;          /* A range of registers to hold previous output */
2147   int savedLimit;       /* Saved value of p->iLimit */
2148   int savedOffset;      /* Saved value of p->iOffset */
2149   int labelCmpr;        /* Label for the start of the merge algorithm */
2150   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2151   int j1;               /* Jump instructions that get retargetted */
2152   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2153   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2154   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2155   sqlite3 *db;          /* Database connection */
2156   ExprList *pOrderBy;   /* The ORDER BY clause */
2157   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2158   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2159 #ifndef SQLITE_OMIT_EXPLAIN
2160   int iSub1;            /* EQP id of left-hand query */
2161   int iSub2;            /* EQP id of right-hand query */
2162 #endif
2163 
2164   assert( p->pOrderBy!=0 );
2165   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2166   db = pParse->db;
2167   v = pParse->pVdbe;
2168   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2169   labelEnd = sqlite3VdbeMakeLabel(v);
2170   labelCmpr = sqlite3VdbeMakeLabel(v);
2171 
2172 
2173   /* Patch up the ORDER BY clause
2174   */
2175   op = p->op;
2176   pPrior = p->pPrior;
2177   assert( pPrior->pOrderBy==0 );
2178   pOrderBy = p->pOrderBy;
2179   assert( pOrderBy );
2180   nOrderBy = pOrderBy->nExpr;
2181 
2182   /* For operators other than UNION ALL we have to make sure that
2183   ** the ORDER BY clause covers every term of the result set.  Add
2184   ** terms to the ORDER BY clause as necessary.
2185   */
2186   if( op!=TK_ALL ){
2187     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2188       struct ExprList_item *pItem;
2189       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2190         assert( pItem->iCol>0 );
2191         if( pItem->iCol==i ) break;
2192       }
2193       if( j==nOrderBy ){
2194         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2195         if( pNew==0 ) return SQLITE_NOMEM;
2196         pNew->flags |= EP_IntValue;
2197         pNew->u.iValue = i;
2198         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2199         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2200       }
2201     }
2202   }
2203 
2204   /* Compute the comparison permutation and keyinfo that is used with
2205   ** the permutation used to determine if the next
2206   ** row of results comes from selectA or selectB.  Also add explicit
2207   ** collations to the ORDER BY clause terms so that when the subqueries
2208   ** to the right and the left are evaluated, they use the correct
2209   ** collation.
2210   */
2211   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2212   if( aPermute ){
2213     struct ExprList_item *pItem;
2214     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2215       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2216       aPermute[i] = pItem->iCol - 1;
2217     }
2218     pKeyMerge =
2219       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2220     if( pKeyMerge ){
2221       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2222       pKeyMerge->nField = (u16)nOrderBy;
2223       pKeyMerge->enc = ENC(db);
2224       for(i=0; i<nOrderBy; i++){
2225         CollSeq *pColl;
2226         Expr *pTerm = pOrderBy->a[i].pExpr;
2227         if( pTerm->flags & EP_ExpCollate ){
2228           pColl = pTerm->pColl;
2229         }else{
2230           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2231           pTerm->flags |= EP_ExpCollate;
2232           pTerm->pColl = pColl;
2233         }
2234         pKeyMerge->aColl[i] = pColl;
2235         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2236       }
2237     }
2238   }else{
2239     pKeyMerge = 0;
2240   }
2241 
2242   /* Reattach the ORDER BY clause to the query.
2243   */
2244   p->pOrderBy = pOrderBy;
2245   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2246 
2247   /* Allocate a range of temporary registers and the KeyInfo needed
2248   ** for the logic that removes duplicate result rows when the
2249   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2250   */
2251   if( op==TK_ALL ){
2252     regPrev = 0;
2253   }else{
2254     int nExpr = p->pEList->nExpr;
2255     assert( nOrderBy>=nExpr || db->mallocFailed );
2256     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2257     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2258     pKeyDup = sqlite3DbMallocZero(db,
2259                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2260     if( pKeyDup ){
2261       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2262       pKeyDup->nField = (u16)nExpr;
2263       pKeyDup->enc = ENC(db);
2264       for(i=0; i<nExpr; i++){
2265         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2266         pKeyDup->aSortOrder[i] = 0;
2267       }
2268     }
2269   }
2270 
2271   /* Separate the left and the right query from one another
2272   */
2273   p->pPrior = 0;
2274   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2275   if( pPrior->pPrior==0 ){
2276     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2277   }
2278 
2279   /* Compute the limit registers */
2280   computeLimitRegisters(pParse, p, labelEnd);
2281   if( p->iLimit && op==TK_ALL ){
2282     regLimitA = ++pParse->nMem;
2283     regLimitB = ++pParse->nMem;
2284     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2285                                   regLimitA);
2286     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2287   }else{
2288     regLimitA = regLimitB = 0;
2289   }
2290   sqlite3ExprDelete(db, p->pLimit);
2291   p->pLimit = 0;
2292   sqlite3ExprDelete(db, p->pOffset);
2293   p->pOffset = 0;
2294 
2295   regAddrA = ++pParse->nMem;
2296   regEofA = ++pParse->nMem;
2297   regAddrB = ++pParse->nMem;
2298   regEofB = ++pParse->nMem;
2299   regOutA = ++pParse->nMem;
2300   regOutB = ++pParse->nMem;
2301   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2302   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2303 
2304   /* Jump past the various subroutines and coroutines to the main
2305   ** merge loop
2306   */
2307   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2308   addrSelectA = sqlite3VdbeCurrentAddr(v);
2309 
2310 
2311   /* Generate a coroutine to evaluate the SELECT statement to the
2312   ** left of the compound operator - the "A" select.
2313   */
2314   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2315   pPrior->iLimit = regLimitA;
2316   explainSetInteger(iSub1, pParse->iNextSelectId);
2317   sqlite3Select(pParse, pPrior, &destA);
2318   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2319   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2320   VdbeNoopComment((v, "End coroutine for left SELECT"));
2321 
2322   /* Generate a coroutine to evaluate the SELECT statement on
2323   ** the right - the "B" select
2324   */
2325   addrSelectB = sqlite3VdbeCurrentAddr(v);
2326   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2327   savedLimit = p->iLimit;
2328   savedOffset = p->iOffset;
2329   p->iLimit = regLimitB;
2330   p->iOffset = 0;
2331   explainSetInteger(iSub2, pParse->iNextSelectId);
2332   sqlite3Select(pParse, p, &destB);
2333   p->iLimit = savedLimit;
2334   p->iOffset = savedOffset;
2335   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2336   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2337   VdbeNoopComment((v, "End coroutine for right SELECT"));
2338 
2339   /* Generate a subroutine that outputs the current row of the A
2340   ** select as the next output row of the compound select.
2341   */
2342   VdbeNoopComment((v, "Output routine for A"));
2343   addrOutA = generateOutputSubroutine(pParse,
2344                  p, &destA, pDest, regOutA,
2345                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2346 
2347   /* Generate a subroutine that outputs the current row of the B
2348   ** select as the next output row of the compound select.
2349   */
2350   if( op==TK_ALL || op==TK_UNION ){
2351     VdbeNoopComment((v, "Output routine for B"));
2352     addrOutB = generateOutputSubroutine(pParse,
2353                  p, &destB, pDest, regOutB,
2354                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2355   }
2356 
2357   /* Generate a subroutine to run when the results from select A
2358   ** are exhausted and only data in select B remains.
2359   */
2360   VdbeNoopComment((v, "eof-A subroutine"));
2361   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2362     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2363   }else{
2364     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2365     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2366     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2367     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2368     p->nSelectRow += pPrior->nSelectRow;
2369   }
2370 
2371   /* Generate a subroutine to run when the results from select B
2372   ** are exhausted and only data in select A remains.
2373   */
2374   if( op==TK_INTERSECT ){
2375     addrEofB = addrEofA;
2376     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2377   }else{
2378     VdbeNoopComment((v, "eof-B subroutine"));
2379     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2380     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2381     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2382     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2383   }
2384 
2385   /* Generate code to handle the case of A<B
2386   */
2387   VdbeNoopComment((v, "A-lt-B subroutine"));
2388   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2389   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2390   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2391   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2392 
2393   /* Generate code to handle the case of A==B
2394   */
2395   if( op==TK_ALL ){
2396     addrAeqB = addrAltB;
2397   }else if( op==TK_INTERSECT ){
2398     addrAeqB = addrAltB;
2399     addrAltB++;
2400   }else{
2401     VdbeNoopComment((v, "A-eq-B subroutine"));
2402     addrAeqB =
2403     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2404     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2405     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2406   }
2407 
2408   /* Generate code to handle the case of A>B
2409   */
2410   VdbeNoopComment((v, "A-gt-B subroutine"));
2411   addrAgtB = sqlite3VdbeCurrentAddr(v);
2412   if( op==TK_ALL || op==TK_UNION ){
2413     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2414   }
2415   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2416   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2417   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2418 
2419   /* This code runs once to initialize everything.
2420   */
2421   sqlite3VdbeJumpHere(v, j1);
2422   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2423   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2424   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2425   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2426   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2427   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2428 
2429   /* Implement the main merge loop
2430   */
2431   sqlite3VdbeResolveLabel(v, labelCmpr);
2432   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2433   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2434                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2435   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2436 
2437   /* Release temporary registers
2438   */
2439   if( regPrev ){
2440     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2441   }
2442 
2443   /* Jump to the this point in order to terminate the query.
2444   */
2445   sqlite3VdbeResolveLabel(v, labelEnd);
2446 
2447   /* Set the number of output columns
2448   */
2449   if( pDest->eDest==SRT_Output ){
2450     Select *pFirst = pPrior;
2451     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2452     generateColumnNames(pParse, 0, pFirst->pEList);
2453   }
2454 
2455   /* Reassembly the compound query so that it will be freed correctly
2456   ** by the calling function */
2457   if( p->pPrior ){
2458     sqlite3SelectDelete(db, p->pPrior);
2459   }
2460   p->pPrior = pPrior;
2461 
2462   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2463   **** subqueries ****/
2464   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2465   return SQLITE_OK;
2466 }
2467 #endif
2468 
2469 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2470 /* Forward Declarations */
2471 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2472 static void substSelect(sqlite3*, Select *, int, ExprList *);
2473 
2474 /*
2475 ** Scan through the expression pExpr.  Replace every reference to
2476 ** a column in table number iTable with a copy of the iColumn-th
2477 ** entry in pEList.  (But leave references to the ROWID column
2478 ** unchanged.)
2479 **
2480 ** This routine is part of the flattening procedure.  A subquery
2481 ** whose result set is defined by pEList appears as entry in the
2482 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2483 ** FORM clause entry is iTable.  This routine make the necessary
2484 ** changes to pExpr so that it refers directly to the source table
2485 ** of the subquery rather the result set of the subquery.
2486 */
2487 static Expr *substExpr(
2488   sqlite3 *db,        /* Report malloc errors to this connection */
2489   Expr *pExpr,        /* Expr in which substitution occurs */
2490   int iTable,         /* Table to be substituted */
2491   ExprList *pEList    /* Substitute expressions */
2492 ){
2493   if( pExpr==0 ) return 0;
2494   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2495     if( pExpr->iColumn<0 ){
2496       pExpr->op = TK_NULL;
2497     }else{
2498       Expr *pNew;
2499       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2500       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2501       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2502       if( pNew && pExpr->pColl ){
2503         pNew->pColl = pExpr->pColl;
2504       }
2505       sqlite3ExprDelete(db, pExpr);
2506       pExpr = pNew;
2507     }
2508   }else{
2509     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2510     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2511     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2512       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2513     }else{
2514       substExprList(db, pExpr->x.pList, iTable, pEList);
2515     }
2516   }
2517   return pExpr;
2518 }
2519 static void substExprList(
2520   sqlite3 *db,         /* Report malloc errors here */
2521   ExprList *pList,     /* List to scan and in which to make substitutes */
2522   int iTable,          /* Table to be substituted */
2523   ExprList *pEList     /* Substitute values */
2524 ){
2525   int i;
2526   if( pList==0 ) return;
2527   for(i=0; i<pList->nExpr; i++){
2528     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2529   }
2530 }
2531 static void substSelect(
2532   sqlite3 *db,         /* Report malloc errors here */
2533   Select *p,           /* SELECT statement in which to make substitutions */
2534   int iTable,          /* Table to be replaced */
2535   ExprList *pEList     /* Substitute values */
2536 ){
2537   SrcList *pSrc;
2538   struct SrcList_item *pItem;
2539   int i;
2540   if( !p ) return;
2541   substExprList(db, p->pEList, iTable, pEList);
2542   substExprList(db, p->pGroupBy, iTable, pEList);
2543   substExprList(db, p->pOrderBy, iTable, pEList);
2544   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2545   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2546   substSelect(db, p->pPrior, iTable, pEList);
2547   pSrc = p->pSrc;
2548   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2549   if( ALWAYS(pSrc) ){
2550     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2551       substSelect(db, pItem->pSelect, iTable, pEList);
2552     }
2553   }
2554 }
2555 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2556 
2557 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2558 /*
2559 ** This routine attempts to flatten subqueries in order to speed
2560 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2561 ** occurs.
2562 **
2563 ** To understand the concept of flattening, consider the following
2564 ** query:
2565 **
2566 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2567 **
2568 ** The default way of implementing this query is to execute the
2569 ** subquery first and store the results in a temporary table, then
2570 ** run the outer query on that temporary table.  This requires two
2571 ** passes over the data.  Furthermore, because the temporary table
2572 ** has no indices, the WHERE clause on the outer query cannot be
2573 ** optimized.
2574 **
2575 ** This routine attempts to rewrite queries such as the above into
2576 ** a single flat select, like this:
2577 **
2578 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2579 **
2580 ** The code generated for this simpification gives the same result
2581 ** but only has to scan the data once.  And because indices might
2582 ** exist on the table t1, a complete scan of the data might be
2583 ** avoided.
2584 **
2585 ** Flattening is only attempted if all of the following are true:
2586 **
2587 **   (1)  The subquery and the outer query do not both use aggregates.
2588 **
2589 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2590 **
2591 **   (3)  The subquery is not the right operand of a left outer join
2592 **        (Originally ticket #306.  Strengthened by ticket #3300)
2593 **
2594 **   (4)  The subquery is not DISTINCT.
2595 **
2596 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
2597 **        sub-queries that were excluded from this optimization. Restriction
2598 **        (4) has since been expanded to exclude all DISTINCT subqueries.
2599 **
2600 **   (6)  The subquery does not use aggregates or the outer query is not
2601 **        DISTINCT.
2602 **
2603 **   (7)  The subquery has a FROM clause.
2604 **
2605 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2606 **
2607 **   (9)  The subquery does not use LIMIT or the outer query does not use
2608 **        aggregates.
2609 **
2610 **  (10)  The subquery does not use aggregates or the outer query does not
2611 **        use LIMIT.
2612 **
2613 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2614 **
2615 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2616 **        a separate restriction deriving from ticket #350.
2617 **
2618 **  (13)  The subquery and outer query do not both use LIMIT.
2619 **
2620 **  (14)  The subquery does not use OFFSET.
2621 **
2622 **  (15)  The outer query is not part of a compound select or the
2623 **        subquery does not have a LIMIT clause.
2624 **        (See ticket #2339 and ticket [02a8e81d44]).
2625 **
2626 **  (16)  The outer query is not an aggregate or the subquery does
2627 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2628 **        until we introduced the group_concat() function.
2629 **
2630 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2631 **        compound clause made up entirely of non-aggregate queries, and
2632 **        the parent query:
2633 **
2634 **          * is not itself part of a compound select,
2635 **          * is not an aggregate or DISTINCT query, and
2636 **          * has no other tables or sub-selects in the FROM clause.
2637 **
2638 **        The parent and sub-query may contain WHERE clauses. Subject to
2639 **        rules (11), (13) and (14), they may also contain ORDER BY,
2640 **        LIMIT and OFFSET clauses.
2641 **
2642 **  (18)  If the sub-query is a compound select, then all terms of the
2643 **        ORDER by clause of the parent must be simple references to
2644 **        columns of the sub-query.
2645 **
2646 **  (19)  The subquery does not use LIMIT or the outer query does not
2647 **        have a WHERE clause.
2648 **
2649 **  (20)  If the sub-query is a compound select, then it must not use
2650 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2651 **        somewhat by saying that the terms of the ORDER BY clause must
2652 **        appear as unmodified result columns in the outer query.  But
2653 **        have other optimizations in mind to deal with that case.
2654 **
2655 **  (21)  The subquery does not use LIMIT or the outer query is not
2656 **        DISTINCT.  (See ticket [752e1646fc]).
2657 **
2658 ** In this routine, the "p" parameter is a pointer to the outer query.
2659 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2660 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2661 **
2662 ** If flattening is not attempted, this routine is a no-op and returns 0.
2663 ** If flattening is attempted this routine returns 1.
2664 **
2665 ** All of the expression analysis must occur on both the outer query and
2666 ** the subquery before this routine runs.
2667 */
2668 static int flattenSubquery(
2669   Parse *pParse,       /* Parsing context */
2670   Select *p,           /* The parent or outer SELECT statement */
2671   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2672   int isAgg,           /* True if outer SELECT uses aggregate functions */
2673   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2674 ){
2675   const char *zSavedAuthContext = pParse->zAuthContext;
2676   Select *pParent;
2677   Select *pSub;       /* The inner query or "subquery" */
2678   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2679   SrcList *pSrc;      /* The FROM clause of the outer query */
2680   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2681   ExprList *pList;    /* The result set of the outer query */
2682   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2683   int i;              /* Loop counter */
2684   Expr *pWhere;                    /* The WHERE clause */
2685   struct SrcList_item *pSubitem;   /* The subquery */
2686   sqlite3 *db = pParse->db;
2687 
2688   /* Check to see if flattening is permitted.  Return 0 if not.
2689   */
2690   assert( p!=0 );
2691   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2692   if( db->flags & SQLITE_QueryFlattener ) return 0;
2693   pSrc = p->pSrc;
2694   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2695   pSubitem = &pSrc->a[iFrom];
2696   iParent = pSubitem->iCursor;
2697   pSub = pSubitem->pSelect;
2698   assert( pSub!=0 );
2699   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2700   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2701   pSubSrc = pSub->pSrc;
2702   assert( pSubSrc );
2703   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2704   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2705   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2706   ** became arbitrary expressions, we were forced to add restrictions (13)
2707   ** and (14). */
2708   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2709   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2710   if( p->pRightmost && pSub->pLimit ){
2711     return 0;                                            /* Restriction (15) */
2712   }
2713   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2714   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
2715   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2716      return 0;         /* Restrictions (8)(9) */
2717   }
2718   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2719      return 0;         /* Restriction (6)  */
2720   }
2721   if( p->pOrderBy && pSub->pOrderBy ){
2722      return 0;                                           /* Restriction (11) */
2723   }
2724   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2725   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2726   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2727      return 0;         /* Restriction (21) */
2728   }
2729 
2730   /* OBSOLETE COMMENT 1:
2731   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2732   ** not used as the right operand of an outer join.  Examples of why this
2733   ** is not allowed:
2734   **
2735   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2736   **
2737   ** If we flatten the above, we would get
2738   **
2739   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2740   **
2741   ** which is not at all the same thing.
2742   **
2743   ** OBSOLETE COMMENT 2:
2744   ** Restriction 12:  If the subquery is the right operand of a left outer
2745   ** join, make sure the subquery has no WHERE clause.
2746   ** An examples of why this is not allowed:
2747   **
2748   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2749   **
2750   ** If we flatten the above, we would get
2751   **
2752   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2753   **
2754   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2755   ** effectively converts the OUTER JOIN into an INNER JOIN.
2756   **
2757   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2758   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2759   ** is fraught with danger.  Best to avoid the whole thing.  If the
2760   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2761   */
2762   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2763     return 0;
2764   }
2765 
2766   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2767   ** use only the UNION ALL operator. And none of the simple select queries
2768   ** that make up the compound SELECT are allowed to be aggregate or distinct
2769   ** queries.
2770   */
2771   if( pSub->pPrior ){
2772     if( pSub->pOrderBy ){
2773       return 0;  /* Restriction 20 */
2774     }
2775     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2776       return 0;
2777     }
2778     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2779       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2780       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2781       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2782        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2783        || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
2784       ){
2785         return 0;
2786       }
2787     }
2788 
2789     /* Restriction 18. */
2790     if( p->pOrderBy ){
2791       int ii;
2792       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2793         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2794       }
2795     }
2796   }
2797 
2798   /***** If we reach this point, flattening is permitted. *****/
2799 
2800   /* Authorize the subquery */
2801   pParse->zAuthContext = pSubitem->zName;
2802   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2803   pParse->zAuthContext = zSavedAuthContext;
2804 
2805   /* If the sub-query is a compound SELECT statement, then (by restrictions
2806   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2807   ** be of the form:
2808   **
2809   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2810   **
2811   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2812   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2813   ** OFFSET clauses and joins them to the left-hand-side of the original
2814   ** using UNION ALL operators. In this case N is the number of simple
2815   ** select statements in the compound sub-query.
2816   **
2817   ** Example:
2818   **
2819   **     SELECT a+1 FROM (
2820   **        SELECT x FROM tab
2821   **        UNION ALL
2822   **        SELECT y FROM tab
2823   **        UNION ALL
2824   **        SELECT abs(z*2) FROM tab2
2825   **     ) WHERE a!=5 ORDER BY 1
2826   **
2827   ** Transformed into:
2828   **
2829   **     SELECT x+1 FROM tab WHERE x+1!=5
2830   **     UNION ALL
2831   **     SELECT y+1 FROM tab WHERE y+1!=5
2832   **     UNION ALL
2833   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2834   **     ORDER BY 1
2835   **
2836   ** We call this the "compound-subquery flattening".
2837   */
2838   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2839     Select *pNew;
2840     ExprList *pOrderBy = p->pOrderBy;
2841     Expr *pLimit = p->pLimit;
2842     Select *pPrior = p->pPrior;
2843     p->pOrderBy = 0;
2844     p->pSrc = 0;
2845     p->pPrior = 0;
2846     p->pLimit = 0;
2847     pNew = sqlite3SelectDup(db, p, 0);
2848     p->pLimit = pLimit;
2849     p->pOrderBy = pOrderBy;
2850     p->pSrc = pSrc;
2851     p->op = TK_ALL;
2852     p->pRightmost = 0;
2853     if( pNew==0 ){
2854       pNew = pPrior;
2855     }else{
2856       pNew->pPrior = pPrior;
2857       pNew->pRightmost = 0;
2858     }
2859     p->pPrior = pNew;
2860     if( db->mallocFailed ) return 1;
2861   }
2862 
2863   /* Begin flattening the iFrom-th entry of the FROM clause
2864   ** in the outer query.
2865   */
2866   pSub = pSub1 = pSubitem->pSelect;
2867 
2868   /* Delete the transient table structure associated with the
2869   ** subquery
2870   */
2871   sqlite3DbFree(db, pSubitem->zDatabase);
2872   sqlite3DbFree(db, pSubitem->zName);
2873   sqlite3DbFree(db, pSubitem->zAlias);
2874   pSubitem->zDatabase = 0;
2875   pSubitem->zName = 0;
2876   pSubitem->zAlias = 0;
2877   pSubitem->pSelect = 0;
2878 
2879   /* Defer deleting the Table object associated with the
2880   ** subquery until code generation is
2881   ** complete, since there may still exist Expr.pTab entries that
2882   ** refer to the subquery even after flattening.  Ticket #3346.
2883   **
2884   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
2885   */
2886   if( ALWAYS(pSubitem->pTab!=0) ){
2887     Table *pTabToDel = pSubitem->pTab;
2888     if( pTabToDel->nRef==1 ){
2889       Parse *pToplevel = sqlite3ParseToplevel(pParse);
2890       pTabToDel->pNextZombie = pToplevel->pZombieTab;
2891       pToplevel->pZombieTab = pTabToDel;
2892     }else{
2893       pTabToDel->nRef--;
2894     }
2895     pSubitem->pTab = 0;
2896   }
2897 
2898   /* The following loop runs once for each term in a compound-subquery
2899   ** flattening (as described above).  If we are doing a different kind
2900   ** of flattening - a flattening other than a compound-subquery flattening -
2901   ** then this loop only runs once.
2902   **
2903   ** This loop moves all of the FROM elements of the subquery into the
2904   ** the FROM clause of the outer query.  Before doing this, remember
2905   ** the cursor number for the original outer query FROM element in
2906   ** iParent.  The iParent cursor will never be used.  Subsequent code
2907   ** will scan expressions looking for iParent references and replace
2908   ** those references with expressions that resolve to the subquery FROM
2909   ** elements we are now copying in.
2910   */
2911   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2912     int nSubSrc;
2913     u8 jointype = 0;
2914     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2915     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2916     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2917 
2918     if( pSrc ){
2919       assert( pParent==p );  /* First time through the loop */
2920       jointype = pSubitem->jointype;
2921     }else{
2922       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2923       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2924       if( pSrc==0 ){
2925         assert( db->mallocFailed );
2926         break;
2927       }
2928     }
2929 
2930     /* The subquery uses a single slot of the FROM clause of the outer
2931     ** query.  If the subquery has more than one element in its FROM clause,
2932     ** then expand the outer query to make space for it to hold all elements
2933     ** of the subquery.
2934     **
2935     ** Example:
2936     **
2937     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2938     **
2939     ** The outer query has 3 slots in its FROM clause.  One slot of the
2940     ** outer query (the middle slot) is used by the subquery.  The next
2941     ** block of code will expand the out query to 4 slots.  The middle
2942     ** slot is expanded to two slots in order to make space for the
2943     ** two elements in the FROM clause of the subquery.
2944     */
2945     if( nSubSrc>1 ){
2946       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2947       if( db->mallocFailed ){
2948         break;
2949       }
2950     }
2951 
2952     /* Transfer the FROM clause terms from the subquery into the
2953     ** outer query.
2954     */
2955     for(i=0; i<nSubSrc; i++){
2956       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
2957       pSrc->a[i+iFrom] = pSubSrc->a[i];
2958       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2959     }
2960     pSrc->a[iFrom].jointype = jointype;
2961 
2962     /* Now begin substituting subquery result set expressions for
2963     ** references to the iParent in the outer query.
2964     **
2965     ** Example:
2966     **
2967     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2968     **   \                     \_____________ subquery __________/          /
2969     **    \_____________________ outer query ______________________________/
2970     **
2971     ** We look at every expression in the outer query and every place we see
2972     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2973     */
2974     pList = pParent->pEList;
2975     for(i=0; i<pList->nExpr; i++){
2976       if( pList->a[i].zName==0 ){
2977         const char *zSpan = pList->a[i].zSpan;
2978         if( ALWAYS(zSpan) ){
2979           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
2980         }
2981       }
2982     }
2983     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2984     if( isAgg ){
2985       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2986       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2987     }
2988     if( pSub->pOrderBy ){
2989       assert( pParent->pOrderBy==0 );
2990       pParent->pOrderBy = pSub->pOrderBy;
2991       pSub->pOrderBy = 0;
2992     }else if( pParent->pOrderBy ){
2993       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2994     }
2995     if( pSub->pWhere ){
2996       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2997     }else{
2998       pWhere = 0;
2999     }
3000     if( subqueryIsAgg ){
3001       assert( pParent->pHaving==0 );
3002       pParent->pHaving = pParent->pWhere;
3003       pParent->pWhere = pWhere;
3004       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3005       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3006                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3007       assert( pParent->pGroupBy==0 );
3008       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3009     }else{
3010       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3011       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3012     }
3013 
3014     /* The flattened query is distinct if either the inner or the
3015     ** outer query is distinct.
3016     */
3017     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3018 
3019     /*
3020     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3021     **
3022     ** One is tempted to try to add a and b to combine the limits.  But this
3023     ** does not work if either limit is negative.
3024     */
3025     if( pSub->pLimit ){
3026       pParent->pLimit = pSub->pLimit;
3027       pSub->pLimit = 0;
3028     }
3029   }
3030 
3031   /* Finially, delete what is left of the subquery and return
3032   ** success.
3033   */
3034   sqlite3SelectDelete(db, pSub1);
3035 
3036   return 1;
3037 }
3038 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3039 
3040 /*
3041 ** Analyze the SELECT statement passed as an argument to see if it
3042 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3043 ** it is, or 0 otherwise. At present, a query is considered to be
3044 ** a min()/max() query if:
3045 **
3046 **   1. There is a single object in the FROM clause.
3047 **
3048 **   2. There is a single expression in the result set, and it is
3049 **      either min(x) or max(x), where x is a column reference.
3050 */
3051 static u8 minMaxQuery(Select *p){
3052   Expr *pExpr;
3053   ExprList *pEList = p->pEList;
3054 
3055   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3056   pExpr = pEList->a[0].pExpr;
3057   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3058   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
3059   pEList = pExpr->x.pList;
3060   if( pEList==0 || pEList->nExpr!=1 ) return 0;
3061   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3062   assert( !ExprHasProperty(pExpr, EP_IntValue) );
3063   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
3064     return WHERE_ORDERBY_MIN;
3065   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
3066     return WHERE_ORDERBY_MAX;
3067   }
3068   return WHERE_ORDERBY_NORMAL;
3069 }
3070 
3071 /*
3072 ** The select statement passed as the first argument is an aggregate query.
3073 ** The second argment is the associated aggregate-info object. This
3074 ** function tests if the SELECT is of the form:
3075 **
3076 **   SELECT count(*) FROM <tbl>
3077 **
3078 ** where table is a database table, not a sub-select or view. If the query
3079 ** does match this pattern, then a pointer to the Table object representing
3080 ** <tbl> is returned. Otherwise, 0 is returned.
3081 */
3082 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3083   Table *pTab;
3084   Expr *pExpr;
3085 
3086   assert( !p->pGroupBy );
3087 
3088   if( p->pWhere || p->pEList->nExpr!=1
3089    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3090   ){
3091     return 0;
3092   }
3093   pTab = p->pSrc->a[0].pTab;
3094   pExpr = p->pEList->a[0].pExpr;
3095   assert( pTab && !pTab->pSelect && pExpr );
3096 
3097   if( IsVirtual(pTab) ) return 0;
3098   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3099   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3100   if( pExpr->flags&EP_Distinct ) return 0;
3101 
3102   return pTab;
3103 }
3104 
3105 /*
3106 ** If the source-list item passed as an argument was augmented with an
3107 ** INDEXED BY clause, then try to locate the specified index. If there
3108 ** was such a clause and the named index cannot be found, return
3109 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3110 ** pFrom->pIndex and return SQLITE_OK.
3111 */
3112 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3113   if( pFrom->pTab && pFrom->zIndex ){
3114     Table *pTab = pFrom->pTab;
3115     char *zIndex = pFrom->zIndex;
3116     Index *pIdx;
3117     for(pIdx=pTab->pIndex;
3118         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3119         pIdx=pIdx->pNext
3120     );
3121     if( !pIdx ){
3122       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3123       pParse->checkSchema = 1;
3124       return SQLITE_ERROR;
3125     }
3126     pFrom->pIndex = pIdx;
3127   }
3128   return SQLITE_OK;
3129 }
3130 
3131 /*
3132 ** This routine is a Walker callback for "expanding" a SELECT statement.
3133 ** "Expanding" means to do the following:
3134 **
3135 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3136 **         element of the FROM clause.
3137 **
3138 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3139 **         defines FROM clause.  When views appear in the FROM clause,
3140 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3141 **         that implements the view.  A copy is made of the view's SELECT
3142 **         statement so that we can freely modify or delete that statement
3143 **         without worrying about messing up the presistent representation
3144 **         of the view.
3145 **
3146 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3147 **         on joins and the ON and USING clause of joins.
3148 **
3149 **    (4)  Scan the list of columns in the result set (pEList) looking
3150 **         for instances of the "*" operator or the TABLE.* operator.
3151 **         If found, expand each "*" to be every column in every table
3152 **         and TABLE.* to be every column in TABLE.
3153 **
3154 */
3155 static int selectExpander(Walker *pWalker, Select *p){
3156   Parse *pParse = pWalker->pParse;
3157   int i, j, k;
3158   SrcList *pTabList;
3159   ExprList *pEList;
3160   struct SrcList_item *pFrom;
3161   sqlite3 *db = pParse->db;
3162 
3163   if( db->mallocFailed  ){
3164     return WRC_Abort;
3165   }
3166   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3167     return WRC_Prune;
3168   }
3169   p->selFlags |= SF_Expanded;
3170   pTabList = p->pSrc;
3171   pEList = p->pEList;
3172 
3173   /* Make sure cursor numbers have been assigned to all entries in
3174   ** the FROM clause of the SELECT statement.
3175   */
3176   sqlite3SrcListAssignCursors(pParse, pTabList);
3177 
3178   /* Look up every table named in the FROM clause of the select.  If
3179   ** an entry of the FROM clause is a subquery instead of a table or view,
3180   ** then create a transient table structure to describe the subquery.
3181   */
3182   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3183     Table *pTab;
3184     if( pFrom->pTab!=0 ){
3185       /* This statement has already been prepared.  There is no need
3186       ** to go further. */
3187       assert( i==0 );
3188       return WRC_Prune;
3189     }
3190     if( pFrom->zName==0 ){
3191 #ifndef SQLITE_OMIT_SUBQUERY
3192       Select *pSel = pFrom->pSelect;
3193       /* A sub-query in the FROM clause of a SELECT */
3194       assert( pSel!=0 );
3195       assert( pFrom->pTab==0 );
3196       sqlite3WalkSelect(pWalker, pSel);
3197       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3198       if( pTab==0 ) return WRC_Abort;
3199       pTab->nRef = 1;
3200       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3201       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3202       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3203       pTab->iPKey = -1;
3204       pTab->nRowEst = 1000000;
3205       pTab->tabFlags |= TF_Ephemeral;
3206 #endif
3207     }else{
3208       /* An ordinary table or view name in the FROM clause */
3209       assert( pFrom->pTab==0 );
3210       pFrom->pTab = pTab =
3211         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3212       if( pTab==0 ) return WRC_Abort;
3213       pTab->nRef++;
3214 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3215       if( pTab->pSelect || IsVirtual(pTab) ){
3216         /* We reach here if the named table is a really a view */
3217         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3218         assert( pFrom->pSelect==0 );
3219         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3220         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3221       }
3222 #endif
3223     }
3224 
3225     /* Locate the index named by the INDEXED BY clause, if any. */
3226     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3227       return WRC_Abort;
3228     }
3229   }
3230 
3231   /* Process NATURAL keywords, and ON and USING clauses of joins.
3232   */
3233   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3234     return WRC_Abort;
3235   }
3236 
3237   /* For every "*" that occurs in the column list, insert the names of
3238   ** all columns in all tables.  And for every TABLE.* insert the names
3239   ** of all columns in TABLE.  The parser inserted a special expression
3240   ** with the TK_ALL operator for each "*" that it found in the column list.
3241   ** The following code just has to locate the TK_ALL expressions and expand
3242   ** each one to the list of all columns in all tables.
3243   **
3244   ** The first loop just checks to see if there are any "*" operators
3245   ** that need expanding.
3246   */
3247   for(k=0; k<pEList->nExpr; k++){
3248     Expr *pE = pEList->a[k].pExpr;
3249     if( pE->op==TK_ALL ) break;
3250     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3251     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3252     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3253   }
3254   if( k<pEList->nExpr ){
3255     /*
3256     ** If we get here it means the result set contains one or more "*"
3257     ** operators that need to be expanded.  Loop through each expression
3258     ** in the result set and expand them one by one.
3259     */
3260     struct ExprList_item *a = pEList->a;
3261     ExprList *pNew = 0;
3262     int flags = pParse->db->flags;
3263     int longNames = (flags & SQLITE_FullColNames)!=0
3264                       && (flags & SQLITE_ShortColNames)==0;
3265 
3266     for(k=0; k<pEList->nExpr; k++){
3267       Expr *pE = a[k].pExpr;
3268       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3269       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3270         /* This particular expression does not need to be expanded.
3271         */
3272         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3273         if( pNew ){
3274           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3275           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3276           a[k].zName = 0;
3277           a[k].zSpan = 0;
3278         }
3279         a[k].pExpr = 0;
3280       }else{
3281         /* This expression is a "*" or a "TABLE.*" and needs to be
3282         ** expanded. */
3283         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3284         char *zTName;            /* text of name of TABLE */
3285         if( pE->op==TK_DOT ){
3286           assert( pE->pLeft!=0 );
3287           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3288           zTName = pE->pLeft->u.zToken;
3289         }else{
3290           zTName = 0;
3291         }
3292         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3293           Table *pTab = pFrom->pTab;
3294           char *zTabName = pFrom->zAlias;
3295           if( zTabName==0 ){
3296             zTabName = pTab->zName;
3297           }
3298           if( db->mallocFailed ) break;
3299           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3300             continue;
3301           }
3302           tableSeen = 1;
3303           for(j=0; j<pTab->nCol; j++){
3304             Expr *pExpr, *pRight;
3305             char *zName = pTab->aCol[j].zName;
3306             char *zColname;  /* The computed column name */
3307             char *zToFree;   /* Malloced string that needs to be freed */
3308             Token sColname;  /* Computed column name as a token */
3309 
3310             /* If a column is marked as 'hidden' (currently only possible
3311             ** for virtual tables), do not include it in the expanded
3312             ** result-set list.
3313             */
3314             if( IsHiddenColumn(&pTab->aCol[j]) ){
3315               assert(IsVirtual(pTab));
3316               continue;
3317             }
3318 
3319             if( i>0 && zTName==0 ){
3320               if( (pFrom->jointype & JT_NATURAL)!=0
3321                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3322               ){
3323                 /* In a NATURAL join, omit the join columns from the
3324                 ** table to the right of the join */
3325                 continue;
3326               }
3327               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3328                 /* In a join with a USING clause, omit columns in the
3329                 ** using clause from the table on the right. */
3330                 continue;
3331               }
3332             }
3333             pRight = sqlite3Expr(db, TK_ID, zName);
3334             zColname = zName;
3335             zToFree = 0;
3336             if( longNames || pTabList->nSrc>1 ){
3337               Expr *pLeft;
3338               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3339               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3340               if( longNames ){
3341                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3342                 zToFree = zColname;
3343               }
3344             }else{
3345               pExpr = pRight;
3346             }
3347             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3348             sColname.z = zColname;
3349             sColname.n = sqlite3Strlen30(zColname);
3350             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3351             sqlite3DbFree(db, zToFree);
3352           }
3353         }
3354         if( !tableSeen ){
3355           if( zTName ){
3356             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3357           }else{
3358             sqlite3ErrorMsg(pParse, "no tables specified");
3359           }
3360         }
3361       }
3362     }
3363     sqlite3ExprListDelete(db, pEList);
3364     p->pEList = pNew;
3365   }
3366 #if SQLITE_MAX_COLUMN
3367   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3368     sqlite3ErrorMsg(pParse, "too many columns in result set");
3369   }
3370 #endif
3371   return WRC_Continue;
3372 }
3373 
3374 /*
3375 ** No-op routine for the parse-tree walker.
3376 **
3377 ** When this routine is the Walker.xExprCallback then expression trees
3378 ** are walked without any actions being taken at each node.  Presumably,
3379 ** when this routine is used for Walker.xExprCallback then
3380 ** Walker.xSelectCallback is set to do something useful for every
3381 ** subquery in the parser tree.
3382 */
3383 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3384   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3385   return WRC_Continue;
3386 }
3387 
3388 /*
3389 ** This routine "expands" a SELECT statement and all of its subqueries.
3390 ** For additional information on what it means to "expand" a SELECT
3391 ** statement, see the comment on the selectExpand worker callback above.
3392 **
3393 ** Expanding a SELECT statement is the first step in processing a
3394 ** SELECT statement.  The SELECT statement must be expanded before
3395 ** name resolution is performed.
3396 **
3397 ** If anything goes wrong, an error message is written into pParse.
3398 ** The calling function can detect the problem by looking at pParse->nErr
3399 ** and/or pParse->db->mallocFailed.
3400 */
3401 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3402   Walker w;
3403   w.xSelectCallback = selectExpander;
3404   w.xExprCallback = exprWalkNoop;
3405   w.pParse = pParse;
3406   sqlite3WalkSelect(&w, pSelect);
3407 }
3408 
3409 
3410 #ifndef SQLITE_OMIT_SUBQUERY
3411 /*
3412 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3413 ** interface.
3414 **
3415 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3416 ** information to the Table structure that represents the result set
3417 ** of that subquery.
3418 **
3419 ** The Table structure that represents the result set was constructed
3420 ** by selectExpander() but the type and collation information was omitted
3421 ** at that point because identifiers had not yet been resolved.  This
3422 ** routine is called after identifier resolution.
3423 */
3424 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3425   Parse *pParse;
3426   int i;
3427   SrcList *pTabList;
3428   struct SrcList_item *pFrom;
3429 
3430   assert( p->selFlags & SF_Resolved );
3431   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3432     p->selFlags |= SF_HasTypeInfo;
3433     pParse = pWalker->pParse;
3434     pTabList = p->pSrc;
3435     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3436       Table *pTab = pFrom->pTab;
3437       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3438         /* A sub-query in the FROM clause of a SELECT */
3439         Select *pSel = pFrom->pSelect;
3440         assert( pSel );
3441         while( pSel->pPrior ) pSel = pSel->pPrior;
3442         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3443       }
3444     }
3445   }
3446   return WRC_Continue;
3447 }
3448 #endif
3449 
3450 
3451 /*
3452 ** This routine adds datatype and collating sequence information to
3453 ** the Table structures of all FROM-clause subqueries in a
3454 ** SELECT statement.
3455 **
3456 ** Use this routine after name resolution.
3457 */
3458 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3459 #ifndef SQLITE_OMIT_SUBQUERY
3460   Walker w;
3461   w.xSelectCallback = selectAddSubqueryTypeInfo;
3462   w.xExprCallback = exprWalkNoop;
3463   w.pParse = pParse;
3464   sqlite3WalkSelect(&w, pSelect);
3465 #endif
3466 }
3467 
3468 
3469 /*
3470 ** This routine sets of a SELECT statement for processing.  The
3471 ** following is accomplished:
3472 **
3473 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3474 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3475 **     *  ON and USING clauses are shifted into WHERE statements
3476 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3477 **     *  Identifiers in expression are matched to tables.
3478 **
3479 ** This routine acts recursively on all subqueries within the SELECT.
3480 */
3481 void sqlite3SelectPrep(
3482   Parse *pParse,         /* The parser context */
3483   Select *p,             /* The SELECT statement being coded. */
3484   NameContext *pOuterNC  /* Name context for container */
3485 ){
3486   sqlite3 *db;
3487   if( NEVER(p==0) ) return;
3488   db = pParse->db;
3489   if( p->selFlags & SF_HasTypeInfo ) return;
3490   sqlite3SelectExpand(pParse, p);
3491   if( pParse->nErr || db->mallocFailed ) return;
3492   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3493   if( pParse->nErr || db->mallocFailed ) return;
3494   sqlite3SelectAddTypeInfo(pParse, p);
3495 }
3496 
3497 /*
3498 ** Reset the aggregate accumulator.
3499 **
3500 ** The aggregate accumulator is a set of memory cells that hold
3501 ** intermediate results while calculating an aggregate.  This
3502 ** routine simply stores NULLs in all of those memory cells.
3503 */
3504 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3505   Vdbe *v = pParse->pVdbe;
3506   int i;
3507   struct AggInfo_func *pFunc;
3508   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3509     return;
3510   }
3511   for(i=0; i<pAggInfo->nColumn; i++){
3512     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3513   }
3514   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3515     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3516     if( pFunc->iDistinct>=0 ){
3517       Expr *pE = pFunc->pExpr;
3518       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3519       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3520         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3521            "argument");
3522         pFunc->iDistinct = -1;
3523       }else{
3524         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3525         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3526                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3527       }
3528     }
3529   }
3530 }
3531 
3532 /*
3533 ** Invoke the OP_AggFinalize opcode for every aggregate function
3534 ** in the AggInfo structure.
3535 */
3536 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3537   Vdbe *v = pParse->pVdbe;
3538   int i;
3539   struct AggInfo_func *pF;
3540   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3541     ExprList *pList = pF->pExpr->x.pList;
3542     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3543     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3544                       (void*)pF->pFunc, P4_FUNCDEF);
3545   }
3546 }
3547 
3548 /*
3549 ** Update the accumulator memory cells for an aggregate based on
3550 ** the current cursor position.
3551 */
3552 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3553   Vdbe *v = pParse->pVdbe;
3554   int i;
3555   struct AggInfo_func *pF;
3556   struct AggInfo_col *pC;
3557 
3558   pAggInfo->directMode = 1;
3559   sqlite3ExprCacheClear(pParse);
3560   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3561     int nArg;
3562     int addrNext = 0;
3563     int regAgg;
3564     ExprList *pList = pF->pExpr->x.pList;
3565     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3566     if( pList ){
3567       nArg = pList->nExpr;
3568       regAgg = sqlite3GetTempRange(pParse, nArg);
3569       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3570     }else{
3571       nArg = 0;
3572       regAgg = 0;
3573     }
3574     if( pF->iDistinct>=0 ){
3575       addrNext = sqlite3VdbeMakeLabel(v);
3576       assert( nArg==1 );
3577       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3578     }
3579     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3580       CollSeq *pColl = 0;
3581       struct ExprList_item *pItem;
3582       int j;
3583       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3584       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3585         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3586       }
3587       if( !pColl ){
3588         pColl = pParse->db->pDfltColl;
3589       }
3590       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3591     }
3592     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3593                       (void*)pF->pFunc, P4_FUNCDEF);
3594     sqlite3VdbeChangeP5(v, (u8)nArg);
3595     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3596     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3597     if( addrNext ){
3598       sqlite3VdbeResolveLabel(v, addrNext);
3599       sqlite3ExprCacheClear(pParse);
3600     }
3601   }
3602 
3603   /* Before populating the accumulator registers, clear the column cache.
3604   ** Otherwise, if any of the required column values are already present
3605   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3606   ** to pC->iMem. But by the time the value is used, the original register
3607   ** may have been used, invalidating the underlying buffer holding the
3608   ** text or blob value. See ticket [883034dcb5].
3609   **
3610   ** Another solution would be to change the OP_SCopy used to copy cached
3611   ** values to an OP_Copy.
3612   */
3613   sqlite3ExprCacheClear(pParse);
3614   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3615     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3616   }
3617   pAggInfo->directMode = 0;
3618   sqlite3ExprCacheClear(pParse);
3619 }
3620 
3621 /*
3622 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3623 ** count(*) query ("SELECT count(*) FROM pTab").
3624 */
3625 #ifndef SQLITE_OMIT_EXPLAIN
3626 static void explainSimpleCount(
3627   Parse *pParse,                  /* Parse context */
3628   Table *pTab,                    /* Table being queried */
3629   Index *pIdx                     /* Index used to optimize scan, or NULL */
3630 ){
3631   if( pParse->explain==2 ){
3632     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3633         pTab->zName,
3634         pIdx ? "USING COVERING INDEX " : "",
3635         pIdx ? pIdx->zName : "",
3636         pTab->nRowEst
3637     );
3638     sqlite3VdbeAddOp4(
3639         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3640     );
3641   }
3642 }
3643 #else
3644 # define explainSimpleCount(a,b,c)
3645 #endif
3646 
3647 /*
3648 ** Generate code for the SELECT statement given in the p argument.
3649 **
3650 ** The results are distributed in various ways depending on the
3651 ** contents of the SelectDest structure pointed to by argument pDest
3652 ** as follows:
3653 **
3654 **     pDest->eDest    Result
3655 **     ------------    -------------------------------------------
3656 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3657 **                     opcode) for each row in the result set.
3658 **
3659 **     SRT_Mem         Only valid if the result is a single column.
3660 **                     Store the first column of the first result row
3661 **                     in register pDest->iParm then abandon the rest
3662 **                     of the query.  This destination implies "LIMIT 1".
3663 **
3664 **     SRT_Set         The result must be a single column.  Store each
3665 **                     row of result as the key in table pDest->iParm.
3666 **                     Apply the affinity pDest->affinity before storing
3667 **                     results.  Used to implement "IN (SELECT ...)".
3668 **
3669 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3670 **
3671 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3672 **
3673 **     SRT_Table       Store results in temporary table pDest->iParm.
3674 **                     This is like SRT_EphemTab except that the table
3675 **                     is assumed to already be open.
3676 **
3677 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3678 **                     the result there. The cursor is left open after
3679 **                     returning.  This is like SRT_Table except that
3680 **                     this destination uses OP_OpenEphemeral to create
3681 **                     the table first.
3682 **
3683 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3684 **                     results each time it is invoked.  The entry point
3685 **                     of the co-routine is stored in register pDest->iParm.
3686 **
3687 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3688 **                     set is not empty.
3689 **
3690 **     SRT_Discard     Throw the results away.  This is used by SELECT
3691 **                     statements within triggers whose only purpose is
3692 **                     the side-effects of functions.
3693 **
3694 ** This routine returns the number of errors.  If any errors are
3695 ** encountered, then an appropriate error message is left in
3696 ** pParse->zErrMsg.
3697 **
3698 ** This routine does NOT free the Select structure passed in.  The
3699 ** calling function needs to do that.
3700 */
3701 int sqlite3Select(
3702   Parse *pParse,         /* The parser context */
3703   Select *p,             /* The SELECT statement being coded. */
3704   SelectDest *pDest      /* What to do with the query results */
3705 ){
3706   int i, j;              /* Loop counters */
3707   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3708   Vdbe *v;               /* The virtual machine under construction */
3709   int isAgg;             /* True for select lists like "count(*)" */
3710   ExprList *pEList;      /* List of columns to extract. */
3711   SrcList *pTabList;     /* List of tables to select from */
3712   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3713   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3714   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3715   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3716   int isDistinct;        /* True if the DISTINCT keyword is present */
3717   int distinct;          /* Table to use for the distinct set */
3718   int rc = 1;            /* Value to return from this function */
3719   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3720   AggInfo sAggInfo;      /* Information used by aggregate queries */
3721   int iEnd;              /* Address of the end of the query */
3722   sqlite3 *db;           /* The database connection */
3723 
3724 #ifndef SQLITE_OMIT_EXPLAIN
3725   int iRestoreSelectId = pParse->iSelectId;
3726   pParse->iSelectId = pParse->iNextSelectId++;
3727 #endif
3728 
3729   db = pParse->db;
3730   if( p==0 || db->mallocFailed || pParse->nErr ){
3731     return 1;
3732   }
3733   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3734   memset(&sAggInfo, 0, sizeof(sAggInfo));
3735 
3736   if( IgnorableOrderby(pDest) ){
3737     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3738            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3739     /* If ORDER BY makes no difference in the output then neither does
3740     ** DISTINCT so it can be removed too. */
3741     sqlite3ExprListDelete(db, p->pOrderBy);
3742     p->pOrderBy = 0;
3743     p->selFlags &= ~SF_Distinct;
3744   }
3745   sqlite3SelectPrep(pParse, p, 0);
3746   pOrderBy = p->pOrderBy;
3747   pTabList = p->pSrc;
3748   pEList = p->pEList;
3749   if( pParse->nErr || db->mallocFailed ){
3750     goto select_end;
3751   }
3752   isAgg = (p->selFlags & SF_Aggregate)!=0;
3753   assert( pEList!=0 );
3754 
3755   /* Begin generating code.
3756   */
3757   v = sqlite3GetVdbe(pParse);
3758   if( v==0 ) goto select_end;
3759 
3760   /* If writing to memory or generating a set
3761   ** only a single column may be output.
3762   */
3763 #ifndef SQLITE_OMIT_SUBQUERY
3764   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3765     goto select_end;
3766   }
3767 #endif
3768 
3769   /* Generate code for all sub-queries in the FROM clause
3770   */
3771 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3772   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3773     struct SrcList_item *pItem = &pTabList->a[i];
3774     SelectDest dest;
3775     Select *pSub = pItem->pSelect;
3776     int isAggSub;
3777 
3778     if( pSub==0 || pItem->isPopulated ) continue;
3779 
3780     /* Increment Parse.nHeight by the height of the largest expression
3781     ** tree refered to by this, the parent select. The child select
3782     ** may contain expression trees of at most
3783     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3784     ** more conservative than necessary, but much easier than enforcing
3785     ** an exact limit.
3786     */
3787     pParse->nHeight += sqlite3SelectExprHeight(p);
3788 
3789     /* Check to see if the subquery can be absorbed into the parent. */
3790     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3791     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3792       if( isAggSub ){
3793         isAgg = 1;
3794         p->selFlags |= SF_Aggregate;
3795       }
3796       i = -1;
3797     }else{
3798       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3799       assert( pItem->isPopulated==0 );
3800       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
3801       sqlite3Select(pParse, pSub, &dest);
3802       pItem->isPopulated = 1;
3803       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
3804     }
3805     if( /*pParse->nErr ||*/ db->mallocFailed ){
3806       goto select_end;
3807     }
3808     pParse->nHeight -= sqlite3SelectExprHeight(p);
3809     pTabList = p->pSrc;
3810     if( !IgnorableOrderby(pDest) ){
3811       pOrderBy = p->pOrderBy;
3812     }
3813   }
3814   pEList = p->pEList;
3815 #endif
3816   pWhere = p->pWhere;
3817   pGroupBy = p->pGroupBy;
3818   pHaving = p->pHaving;
3819   isDistinct = (p->selFlags & SF_Distinct)!=0;
3820 
3821 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3822   /* If there is are a sequence of queries, do the earlier ones first.
3823   */
3824   if( p->pPrior ){
3825     if( p->pRightmost==0 ){
3826       Select *pLoop, *pRight = 0;
3827       int cnt = 0;
3828       int mxSelect;
3829       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3830         pLoop->pRightmost = p;
3831         pLoop->pNext = pRight;
3832         pRight = pLoop;
3833       }
3834       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3835       if( mxSelect && cnt>mxSelect ){
3836         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3837         goto select_end;
3838       }
3839     }
3840     rc = multiSelect(pParse, p, pDest);
3841     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
3842     return rc;
3843   }
3844 #endif
3845 
3846   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3847   ** GROUP BY might use an index, DISTINCT never does.
3848   */
3849   assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
3850   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
3851     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3852     pGroupBy = p->pGroupBy;
3853     p->selFlags &= ~SF_Distinct;
3854   }
3855 
3856   /* If there is both a GROUP BY and an ORDER BY clause and they are
3857   ** identical, then disable the ORDER BY clause since the GROUP BY
3858   ** will cause elements to come out in the correct order.  This is
3859   ** an optimization - the correct answer should result regardless.
3860   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
3861   ** to disable this optimization for testing purposes.
3862   */
3863   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
3864          && (db->flags & SQLITE_GroupByOrder)==0 ){
3865     pOrderBy = 0;
3866   }
3867 
3868   /* If there is an ORDER BY clause, then this sorting
3869   ** index might end up being unused if the data can be
3870   ** extracted in pre-sorted order.  If that is the case, then the
3871   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3872   ** we figure out that the sorting index is not needed.  The addrSortIndex
3873   ** variable is used to facilitate that change.
3874   */
3875   if( pOrderBy ){
3876     KeyInfo *pKeyInfo;
3877     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3878     pOrderBy->iECursor = pParse->nTab++;
3879     p->addrOpenEphm[2] = addrSortIndex =
3880       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3881                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3882                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3883   }else{
3884     addrSortIndex = -1;
3885   }
3886 
3887   /* If the output is destined for a temporary table, open that table.
3888   */
3889   if( pDest->eDest==SRT_EphemTab ){
3890     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3891   }
3892 
3893   /* Set the limiter.
3894   */
3895   iEnd = sqlite3VdbeMakeLabel(v);
3896   p->nSelectRow = (double)LARGEST_INT64;
3897   computeLimitRegisters(pParse, p, iEnd);
3898 
3899   /* Open a virtual index to use for the distinct set.
3900   */
3901   if( p->selFlags & SF_Distinct ){
3902     KeyInfo *pKeyInfo;
3903     assert( isAgg || pGroupBy );
3904     distinct = pParse->nTab++;
3905     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3906     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3907                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3908     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
3909   }else{
3910     distinct = -1;
3911   }
3912 
3913   /* Aggregate and non-aggregate queries are handled differently */
3914   if( !isAgg && pGroupBy==0 ){
3915     /* This case is for non-aggregate queries
3916     ** Begin the database scan
3917     */
3918     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3919     if( pWInfo==0 ) goto select_end;
3920     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
3921 
3922     /* If sorting index that was created by a prior OP_OpenEphemeral
3923     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3924     ** into an OP_Noop.
3925     */
3926     if( addrSortIndex>=0 && pOrderBy==0 ){
3927       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3928       p->addrOpenEphm[2] = -1;
3929     }
3930 
3931     /* Use the standard inner loop
3932     */
3933     assert(!isDistinct);
3934     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3935                     pWInfo->iContinue, pWInfo->iBreak);
3936 
3937     /* End the database scan loop.
3938     */
3939     sqlite3WhereEnd(pWInfo);
3940   }else{
3941     /* This is the processing for aggregate queries */
3942     NameContext sNC;    /* Name context for processing aggregate information */
3943     int iAMem;          /* First Mem address for storing current GROUP BY */
3944     int iBMem;          /* First Mem address for previous GROUP BY */
3945     int iUseFlag;       /* Mem address holding flag indicating that at least
3946                         ** one row of the input to the aggregator has been
3947                         ** processed */
3948     int iAbortFlag;     /* Mem address which causes query abort if positive */
3949     int groupBySort;    /* Rows come from source in GROUP BY order */
3950     int addrEnd;        /* End of processing for this SELECT */
3951 
3952     /* Remove any and all aliases between the result set and the
3953     ** GROUP BY clause.
3954     */
3955     if( pGroupBy ){
3956       int k;                        /* Loop counter */
3957       struct ExprList_item *pItem;  /* For looping over expression in a list */
3958 
3959       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3960         pItem->iAlias = 0;
3961       }
3962       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3963         pItem->iAlias = 0;
3964       }
3965       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
3966     }else{
3967       p->nSelectRow = (double)1;
3968     }
3969 
3970 
3971     /* Create a label to jump to when we want to abort the query */
3972     addrEnd = sqlite3VdbeMakeLabel(v);
3973 
3974     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3975     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3976     ** SELECT statement.
3977     */
3978     memset(&sNC, 0, sizeof(sNC));
3979     sNC.pParse = pParse;
3980     sNC.pSrcList = pTabList;
3981     sNC.pAggInfo = &sAggInfo;
3982     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3983     sAggInfo.pGroupBy = pGroupBy;
3984     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3985     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3986     if( pHaving ){
3987       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3988     }
3989     sAggInfo.nAccumulator = sAggInfo.nColumn;
3990     for(i=0; i<sAggInfo.nFunc; i++){
3991       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3992       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3993     }
3994     if( db->mallocFailed ) goto select_end;
3995 
3996     /* Processing for aggregates with GROUP BY is very different and
3997     ** much more complex than aggregates without a GROUP BY.
3998     */
3999     if( pGroupBy ){
4000       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4001       int j1;             /* A-vs-B comparision jump */
4002       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4003       int regOutputRow;   /* Return address register for output subroutine */
4004       int addrSetAbort;   /* Set the abort flag and return */
4005       int addrTopOfLoop;  /* Top of the input loop */
4006       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4007       int addrReset;      /* Subroutine for resetting the accumulator */
4008       int regReset;       /* Return address register for reset subroutine */
4009 
4010       /* If there is a GROUP BY clause we might need a sorting index to
4011       ** implement it.  Allocate that sorting index now.  If it turns out
4012       ** that we do not need it after all, the OpenEphemeral instruction
4013       ** will be converted into a Noop.
4014       */
4015       sAggInfo.sortingIdx = pParse->nTab++;
4016       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4017       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4018           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4019           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4020 
4021       /* Initialize memory locations used by GROUP BY aggregate processing
4022       */
4023       iUseFlag = ++pParse->nMem;
4024       iAbortFlag = ++pParse->nMem;
4025       regOutputRow = ++pParse->nMem;
4026       addrOutputRow = sqlite3VdbeMakeLabel(v);
4027       regReset = ++pParse->nMem;
4028       addrReset = sqlite3VdbeMakeLabel(v);
4029       iAMem = pParse->nMem + 1;
4030       pParse->nMem += pGroupBy->nExpr;
4031       iBMem = pParse->nMem + 1;
4032       pParse->nMem += pGroupBy->nExpr;
4033       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4034       VdbeComment((v, "clear abort flag"));
4035       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4036       VdbeComment((v, "indicate accumulator empty"));
4037 
4038       /* Begin a loop that will extract all source rows in GROUP BY order.
4039       ** This might involve two separate loops with an OP_Sort in between, or
4040       ** it might be a single loop that uses an index to extract information
4041       ** in the right order to begin with.
4042       */
4043       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4044       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
4045       if( pWInfo==0 ) goto select_end;
4046       if( pGroupBy==0 ){
4047         /* The optimizer is able to deliver rows in group by order so
4048         ** we do not have to sort.  The OP_OpenEphemeral table will be
4049         ** cancelled later because we still need to use the pKeyInfo
4050         */
4051         pGroupBy = p->pGroupBy;
4052         groupBySort = 0;
4053       }else{
4054         /* Rows are coming out in undetermined order.  We have to push
4055         ** each row into a sorting index, terminate the first loop,
4056         ** then loop over the sorting index in order to get the output
4057         ** in sorted order
4058         */
4059         int regBase;
4060         int regRecord;
4061         int nCol;
4062         int nGroupBy;
4063 
4064         explainTempTable(pParse,
4065             isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
4066 
4067         groupBySort = 1;
4068         nGroupBy = pGroupBy->nExpr;
4069         nCol = nGroupBy + 1;
4070         j = nGroupBy+1;
4071         for(i=0; i<sAggInfo.nColumn; i++){
4072           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4073             nCol++;
4074             j++;
4075           }
4076         }
4077         regBase = sqlite3GetTempRange(pParse, nCol);
4078         sqlite3ExprCacheClear(pParse);
4079         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4080         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4081         j = nGroupBy+1;
4082         for(i=0; i<sAggInfo.nColumn; i++){
4083           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4084           if( pCol->iSorterColumn>=j ){
4085             int r1 = j + regBase;
4086             int r2;
4087 
4088             r2 = sqlite3ExprCodeGetColumn(pParse,
4089                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
4090             if( r1!=r2 ){
4091               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4092             }
4093             j++;
4094           }
4095         }
4096         regRecord = sqlite3GetTempReg(pParse);
4097         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4098         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
4099         sqlite3ReleaseTempReg(pParse, regRecord);
4100         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4101         sqlite3WhereEnd(pWInfo);
4102         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
4103         VdbeComment((v, "GROUP BY sort"));
4104         sAggInfo.useSortingIdx = 1;
4105         sqlite3ExprCacheClear(pParse);
4106       }
4107 
4108       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4109       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4110       ** Then compare the current GROUP BY terms against the GROUP BY terms
4111       ** from the previous row currently stored in a0, a1, a2...
4112       */
4113       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4114       sqlite3ExprCacheClear(pParse);
4115       for(j=0; j<pGroupBy->nExpr; j++){
4116         if( groupBySort ){
4117           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
4118         }else{
4119           sAggInfo.directMode = 1;
4120           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4121         }
4122       }
4123       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4124                           (char*)pKeyInfo, P4_KEYINFO);
4125       j1 = sqlite3VdbeCurrentAddr(v);
4126       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4127 
4128       /* Generate code that runs whenever the GROUP BY changes.
4129       ** Changes in the GROUP BY are detected by the previous code
4130       ** block.  If there were no changes, this block is skipped.
4131       **
4132       ** This code copies current group by terms in b0,b1,b2,...
4133       ** over to a0,a1,a2.  It then calls the output subroutine
4134       ** and resets the aggregate accumulator registers in preparation
4135       ** for the next GROUP BY batch.
4136       */
4137       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4138       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4139       VdbeComment((v, "output one row"));
4140       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4141       VdbeComment((v, "check abort flag"));
4142       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4143       VdbeComment((v, "reset accumulator"));
4144 
4145       /* Update the aggregate accumulators based on the content of
4146       ** the current row
4147       */
4148       sqlite3VdbeJumpHere(v, j1);
4149       updateAccumulator(pParse, &sAggInfo);
4150       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4151       VdbeComment((v, "indicate data in accumulator"));
4152 
4153       /* End of the loop
4154       */
4155       if( groupBySort ){
4156         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
4157       }else{
4158         sqlite3WhereEnd(pWInfo);
4159         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
4160       }
4161 
4162       /* Output the final row of result
4163       */
4164       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4165       VdbeComment((v, "output final row"));
4166 
4167       /* Jump over the subroutines
4168       */
4169       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4170 
4171       /* Generate a subroutine that outputs a single row of the result
4172       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4173       ** is less than or equal to zero, the subroutine is a no-op.  If
4174       ** the processing calls for the query to abort, this subroutine
4175       ** increments the iAbortFlag memory location before returning in
4176       ** order to signal the caller to abort.
4177       */
4178       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4179       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4180       VdbeComment((v, "set abort flag"));
4181       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4182       sqlite3VdbeResolveLabel(v, addrOutputRow);
4183       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4184       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4185       VdbeComment((v, "Groupby result generator entry point"));
4186       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4187       finalizeAggFunctions(pParse, &sAggInfo);
4188       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4189       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4190                       distinct, pDest,
4191                       addrOutputRow+1, addrSetAbort);
4192       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4193       VdbeComment((v, "end groupby result generator"));
4194 
4195       /* Generate a subroutine that will reset the group-by accumulator
4196       */
4197       sqlite3VdbeResolveLabel(v, addrReset);
4198       resetAccumulator(pParse, &sAggInfo);
4199       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4200 
4201     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4202     else {
4203       ExprList *pDel = 0;
4204 #ifndef SQLITE_OMIT_BTREECOUNT
4205       Table *pTab;
4206       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4207         /* If isSimpleCount() returns a pointer to a Table structure, then
4208         ** the SQL statement is of the form:
4209         **
4210         **   SELECT count(*) FROM <tbl>
4211         **
4212         ** where the Table structure returned represents table <tbl>.
4213         **
4214         ** This statement is so common that it is optimized specially. The
4215         ** OP_Count instruction is executed either on the intkey table that
4216         ** contains the data for table <tbl> or on one of its indexes. It
4217         ** is better to execute the op on an index, as indexes are almost
4218         ** always spread across less pages than their corresponding tables.
4219         */
4220         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4221         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4222         Index *pIdx;                         /* Iterator variable */
4223         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4224         Index *pBest = 0;                    /* Best index found so far */
4225         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4226 
4227         sqlite3CodeVerifySchema(pParse, iDb);
4228         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4229 
4230         /* Search for the index that has the least amount of columns. If
4231         ** there is such an index, and it has less columns than the table
4232         ** does, then we can assume that it consumes less space on disk and
4233         ** will therefore be cheaper to scan to determine the query result.
4234         ** In this case set iRoot to the root page number of the index b-tree
4235         ** and pKeyInfo to the KeyInfo structure required to navigate the
4236         ** index.
4237         **
4238         ** In practice the KeyInfo structure will not be used. It is only
4239         ** passed to keep OP_OpenRead happy.
4240         */
4241         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4242           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4243             pBest = pIdx;
4244           }
4245         }
4246         if( pBest && pBest->nColumn<pTab->nCol ){
4247           iRoot = pBest->tnum;
4248           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4249         }
4250 
4251         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4252         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4253         if( pKeyInfo ){
4254           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4255         }
4256         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4257         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4258         explainSimpleCount(pParse, pTab, pBest);
4259       }else
4260 #endif /* SQLITE_OMIT_BTREECOUNT */
4261       {
4262         /* Check if the query is of one of the following forms:
4263         **
4264         **   SELECT min(x) FROM ...
4265         **   SELECT max(x) FROM ...
4266         **
4267         ** If it is, then ask the code in where.c to attempt to sort results
4268         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4269         ** If where.c is able to produce results sorted in this order, then
4270         ** add vdbe code to break out of the processing loop after the
4271         ** first iteration (since the first iteration of the loop is
4272         ** guaranteed to operate on the row with the minimum or maximum
4273         ** value of x, the only row required).
4274         **
4275         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4276         ** modify behaviour as follows:
4277         **
4278         **   + If the query is a "SELECT min(x)", then the loop coded by
4279         **     where.c should not iterate over any values with a NULL value
4280         **     for x.
4281         **
4282         **   + The optimizer code in where.c (the thing that decides which
4283         **     index or indices to use) should place a different priority on
4284         **     satisfying the 'ORDER BY' clause than it does in other cases.
4285         **     Refer to code and comments in where.c for details.
4286         */
4287         ExprList *pMinMax = 0;
4288         u8 flag = minMaxQuery(p);
4289         if( flag ){
4290           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4291           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4292           pDel = pMinMax;
4293           if( pMinMax && !db->mallocFailed ){
4294             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4295             pMinMax->a[0].pExpr->op = TK_COLUMN;
4296           }
4297         }
4298 
4299         /* This case runs if the aggregate has no GROUP BY clause.  The
4300         ** processing is much simpler since there is only a single row
4301         ** of output.
4302         */
4303         resetAccumulator(pParse, &sAggInfo);
4304         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4305         if( pWInfo==0 ){
4306           sqlite3ExprListDelete(db, pDel);
4307           goto select_end;
4308         }
4309         updateAccumulator(pParse, &sAggInfo);
4310         if( !pMinMax && flag ){
4311           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4312           VdbeComment((v, "%s() by index",
4313                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4314         }
4315         sqlite3WhereEnd(pWInfo);
4316         finalizeAggFunctions(pParse, &sAggInfo);
4317       }
4318 
4319       pOrderBy = 0;
4320       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4321       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4322                       pDest, addrEnd, addrEnd);
4323       sqlite3ExprListDelete(db, pDel);
4324     }
4325     sqlite3VdbeResolveLabel(v, addrEnd);
4326 
4327   } /* endif aggregate query */
4328 
4329   if( distinct>=0 ){
4330     explainTempTable(pParse, "DISTINCT");
4331   }
4332 
4333   /* If there is an ORDER BY clause, then we need to sort the results
4334   ** and send them to the callback one by one.
4335   */
4336   if( pOrderBy ){
4337     explainTempTable(pParse, "ORDER BY");
4338     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4339   }
4340 
4341   /* Jump here to skip this query
4342   */
4343   sqlite3VdbeResolveLabel(v, iEnd);
4344 
4345   /* The SELECT was successfully coded.   Set the return code to 0
4346   ** to indicate no errors.
4347   */
4348   rc = 0;
4349 
4350   /* Control jumps to here if an error is encountered above, or upon
4351   ** successful coding of the SELECT.
4352   */
4353 select_end:
4354   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4355 
4356   /* Identify column names if results of the SELECT are to be output.
4357   */
4358   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4359     generateColumnNames(pParse, pTabList, pEList);
4360   }
4361 
4362   sqlite3DbFree(db, sAggInfo.aCol);
4363   sqlite3DbFree(db, sAggInfo.aFunc);
4364   return rc;
4365 }
4366 
4367 #if defined(SQLITE_DEBUG)
4368 /*
4369 *******************************************************************************
4370 ** The following code is used for testing and debugging only.  The code
4371 ** that follows does not appear in normal builds.
4372 **
4373 ** These routines are used to print out the content of all or part of a
4374 ** parse structures such as Select or Expr.  Such printouts are useful
4375 ** for helping to understand what is happening inside the code generator
4376 ** during the execution of complex SELECT statements.
4377 **
4378 ** These routine are not called anywhere from within the normal
4379 ** code base.  Then are intended to be called from within the debugger
4380 ** or from temporary "printf" statements inserted for debugging.
4381 */
4382 void sqlite3PrintExpr(Expr *p){
4383   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
4384     sqlite3DebugPrintf("(%s", p->u.zToken);
4385   }else{
4386     sqlite3DebugPrintf("(%d", p->op);
4387   }
4388   if( p->pLeft ){
4389     sqlite3DebugPrintf(" ");
4390     sqlite3PrintExpr(p->pLeft);
4391   }
4392   if( p->pRight ){
4393     sqlite3DebugPrintf(" ");
4394     sqlite3PrintExpr(p->pRight);
4395   }
4396   sqlite3DebugPrintf(")");
4397 }
4398 void sqlite3PrintExprList(ExprList *pList){
4399   int i;
4400   for(i=0; i<pList->nExpr; i++){
4401     sqlite3PrintExpr(pList->a[i].pExpr);
4402     if( i<pList->nExpr-1 ){
4403       sqlite3DebugPrintf(", ");
4404     }
4405   }
4406 }
4407 void sqlite3PrintSelect(Select *p, int indent){
4408   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4409   sqlite3PrintExprList(p->pEList);
4410   sqlite3DebugPrintf("\n");
4411   if( p->pSrc ){
4412     char *zPrefix;
4413     int i;
4414     zPrefix = "FROM";
4415     for(i=0; i<p->pSrc->nSrc; i++){
4416       struct SrcList_item *pItem = &p->pSrc->a[i];
4417       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4418       zPrefix = "";
4419       if( pItem->pSelect ){
4420         sqlite3DebugPrintf("(\n");
4421         sqlite3PrintSelect(pItem->pSelect, indent+10);
4422         sqlite3DebugPrintf("%*s)", indent+8, "");
4423       }else if( pItem->zName ){
4424         sqlite3DebugPrintf("%s", pItem->zName);
4425       }
4426       if( pItem->pTab ){
4427         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4428       }
4429       if( pItem->zAlias ){
4430         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4431       }
4432       if( i<p->pSrc->nSrc-1 ){
4433         sqlite3DebugPrintf(",");
4434       }
4435       sqlite3DebugPrintf("\n");
4436     }
4437   }
4438   if( p->pWhere ){
4439     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4440     sqlite3PrintExpr(p->pWhere);
4441     sqlite3DebugPrintf("\n");
4442   }
4443   if( p->pGroupBy ){
4444     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4445     sqlite3PrintExprList(p->pGroupBy);
4446     sqlite3DebugPrintf("\n");
4447   }
4448   if( p->pHaving ){
4449     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4450     sqlite3PrintExpr(p->pHaving);
4451     sqlite3DebugPrintf("\n");
4452   }
4453   if( p->pOrderBy ){
4454     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4455     sqlite3PrintExprList(p->pOrderBy);
4456     sqlite3DebugPrintf("\n");
4457   }
4458 }
4459 /* End of the structure debug printing code
4460 *****************************************************************************/
4461 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4462