1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 pNew = &standin; 69 memset(pNew, 0, sizeof(*pNew)); 70 } 71 if( pEList==0 ){ 72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 73 } 74 pNew->pEList = pEList; 75 pNew->pSrc = pSrc; 76 pNew->pWhere = pWhere; 77 pNew->pGroupBy = pGroupBy; 78 pNew->pHaving = pHaving; 79 pNew->pOrderBy = pOrderBy; 80 pNew->selFlags = isDistinct ? SF_Distinct : 0; 81 pNew->op = TK_SELECT; 82 pNew->pLimit = pLimit; 83 pNew->pOffset = pOffset; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->addrOpenEphm[0] = -1; 86 pNew->addrOpenEphm[1] = -1; 87 pNew->addrOpenEphm[2] = -1; 88 if( db->mallocFailed ) { 89 clearSelect(db, pNew); 90 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 91 pNew = 0; 92 } 93 return pNew; 94 } 95 96 /* 97 ** Delete the given Select structure and all of its substructures. 98 */ 99 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 100 if( p ){ 101 clearSelect(db, p); 102 sqlite3DbFree(db, p); 103 } 104 } 105 106 /* 107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 108 ** type of join. Return an integer constant that expresses that type 109 ** in terms of the following bit values: 110 ** 111 ** JT_INNER 112 ** JT_CROSS 113 ** JT_OUTER 114 ** JT_NATURAL 115 ** JT_LEFT 116 ** JT_RIGHT 117 ** 118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 119 ** 120 ** If an illegal or unsupported join type is seen, then still return 121 ** a join type, but put an error in the pParse structure. 122 */ 123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 124 int jointype = 0; 125 Token *apAll[3]; 126 Token *p; 127 /* 0123456789 123456789 123456789 123 */ 128 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 129 static const struct { 130 u8 i; /* Beginning of keyword text in zKeyText[] */ 131 u8 nChar; /* Length of the keyword in characters */ 132 u8 code; /* Join type mask */ 133 } aKeyword[] = { 134 /* natural */ { 0, 7, JT_NATURAL }, 135 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 136 /* outer */ { 10, 5, JT_OUTER }, 137 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 138 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 139 /* inner */ { 23, 5, JT_INNER }, 140 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 141 }; 142 int i, j; 143 apAll[0] = pA; 144 apAll[1] = pB; 145 apAll[2] = pC; 146 for(i=0; i<3 && apAll[i]; i++){ 147 p = apAll[i]; 148 for(j=0; j<ArraySize(aKeyword); j++){ 149 if( p->n==aKeyword[j].nChar 150 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 151 jointype |= aKeyword[j].code; 152 break; 153 } 154 } 155 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 156 if( j>=ArraySize(aKeyword) ){ 157 jointype |= JT_ERROR; 158 break; 159 } 160 } 161 if( 162 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 163 (jointype & JT_ERROR)!=0 164 ){ 165 const char *zSp = " "; 166 assert( pB!=0 ); 167 if( pC==0 ){ zSp++; } 168 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 169 "%T %T%s%T", pA, pB, zSp, pC); 170 jointype = JT_INNER; 171 }else if( (jointype & JT_OUTER)!=0 172 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 173 sqlite3ErrorMsg(pParse, 174 "RIGHT and FULL OUTER JOINs are not currently supported"); 175 jointype = JT_INNER; 176 } 177 return jointype; 178 } 179 180 /* 181 ** Return the index of a column in a table. Return -1 if the column 182 ** is not contained in the table. 183 */ 184 static int columnIndex(Table *pTab, const char *zCol){ 185 int i; 186 for(i=0; i<pTab->nCol; i++){ 187 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 188 } 189 return -1; 190 } 191 192 /* 193 ** Search the first N tables in pSrc, from left to right, looking for a 194 ** table that has a column named zCol. 195 ** 196 ** When found, set *piTab and *piCol to the table index and column index 197 ** of the matching column and return TRUE. 198 ** 199 ** If not found, return FALSE. 200 */ 201 static int tableAndColumnIndex( 202 SrcList *pSrc, /* Array of tables to search */ 203 int N, /* Number of tables in pSrc->a[] to search */ 204 const char *zCol, /* Name of the column we are looking for */ 205 int *piTab, /* Write index of pSrc->a[] here */ 206 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 207 ){ 208 int i; /* For looping over tables in pSrc */ 209 int iCol; /* Index of column matching zCol */ 210 211 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 212 for(i=0; i<N; i++){ 213 iCol = columnIndex(pSrc->a[i].pTab, zCol); 214 if( iCol>=0 ){ 215 if( piTab ){ 216 *piTab = i; 217 *piCol = iCol; 218 } 219 return 1; 220 } 221 } 222 return 0; 223 } 224 225 /* 226 ** This function is used to add terms implied by JOIN syntax to the 227 ** WHERE clause expression of a SELECT statement. The new term, which 228 ** is ANDed with the existing WHERE clause, is of the form: 229 ** 230 ** (tab1.col1 = tab2.col2) 231 ** 232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 234 ** column iColRight of tab2. 235 */ 236 static void addWhereTerm( 237 Parse *pParse, /* Parsing context */ 238 SrcList *pSrc, /* List of tables in FROM clause */ 239 int iLeft, /* Index of first table to join in pSrc */ 240 int iColLeft, /* Index of column in first table */ 241 int iRight, /* Index of second table in pSrc */ 242 int iColRight, /* Index of column in second table */ 243 int isOuterJoin, /* True if this is an OUTER join */ 244 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 245 ){ 246 sqlite3 *db = pParse->db; 247 Expr *pE1; 248 Expr *pE2; 249 Expr *pEq; 250 251 assert( iLeft<iRight ); 252 assert( pSrc->nSrc>iRight ); 253 assert( pSrc->a[iLeft].pTab ); 254 assert( pSrc->a[iRight].pTab ); 255 256 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 257 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 258 259 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 260 if( pEq && isOuterJoin ){ 261 ExprSetProperty(pEq, EP_FromJoin); 262 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 263 ExprSetIrreducible(pEq); 264 pEq->iRightJoinTable = (i16)pE2->iTable; 265 } 266 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 267 } 268 269 /* 270 ** Set the EP_FromJoin property on all terms of the given expression. 271 ** And set the Expr.iRightJoinTable to iTable for every term in the 272 ** expression. 273 ** 274 ** The EP_FromJoin property is used on terms of an expression to tell 275 ** the LEFT OUTER JOIN processing logic that this term is part of the 276 ** join restriction specified in the ON or USING clause and not a part 277 ** of the more general WHERE clause. These terms are moved over to the 278 ** WHERE clause during join processing but we need to remember that they 279 ** originated in the ON or USING clause. 280 ** 281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 282 ** expression depends on table iRightJoinTable even if that table is not 283 ** explicitly mentioned in the expression. That information is needed 284 ** for cases like this: 285 ** 286 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 287 ** 288 ** The where clause needs to defer the handling of the t1.x=5 289 ** term until after the t2 loop of the join. In that way, a 290 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 291 ** defer the handling of t1.x=5, it will be processed immediately 292 ** after the t1 loop and rows with t1.x!=5 will never appear in 293 ** the output, which is incorrect. 294 */ 295 static void setJoinExpr(Expr *p, int iTable){ 296 while( p ){ 297 ExprSetProperty(p, EP_FromJoin); 298 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 299 ExprSetIrreducible(p); 300 p->iRightJoinTable = (i16)iTable; 301 setJoinExpr(p->pLeft, iTable); 302 p = p->pRight; 303 } 304 } 305 306 /* 307 ** This routine processes the join information for a SELECT statement. 308 ** ON and USING clauses are converted into extra terms of the WHERE clause. 309 ** NATURAL joins also create extra WHERE clause terms. 310 ** 311 ** The terms of a FROM clause are contained in the Select.pSrc structure. 312 ** The left most table is the first entry in Select.pSrc. The right-most 313 ** table is the last entry. The join operator is held in the entry to 314 ** the left. Thus entry 0 contains the join operator for the join between 315 ** entries 0 and 1. Any ON or USING clauses associated with the join are 316 ** also attached to the left entry. 317 ** 318 ** This routine returns the number of errors encountered. 319 */ 320 static int sqliteProcessJoin(Parse *pParse, Select *p){ 321 SrcList *pSrc; /* All tables in the FROM clause */ 322 int i, j; /* Loop counters */ 323 struct SrcList_item *pLeft; /* Left table being joined */ 324 struct SrcList_item *pRight; /* Right table being joined */ 325 326 pSrc = p->pSrc; 327 pLeft = &pSrc->a[0]; 328 pRight = &pLeft[1]; 329 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 330 Table *pLeftTab = pLeft->pTab; 331 Table *pRightTab = pRight->pTab; 332 int isOuter; 333 334 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 335 isOuter = (pRight->jointype & JT_OUTER)!=0; 336 337 /* When the NATURAL keyword is present, add WHERE clause terms for 338 ** every column that the two tables have in common. 339 */ 340 if( pRight->jointype & JT_NATURAL ){ 341 if( pRight->pOn || pRight->pUsing ){ 342 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 343 "an ON or USING clause", 0); 344 return 1; 345 } 346 for(j=0; j<pRightTab->nCol; j++){ 347 char *zName; /* Name of column in the right table */ 348 int iLeft; /* Matching left table */ 349 int iLeftCol; /* Matching column in the left table */ 350 351 zName = pRightTab->aCol[j].zName; 352 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 353 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 354 isOuter, &p->pWhere); 355 } 356 } 357 } 358 359 /* Disallow both ON and USING clauses in the same join 360 */ 361 if( pRight->pOn && pRight->pUsing ){ 362 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 363 "clauses in the same join"); 364 return 1; 365 } 366 367 /* Add the ON clause to the end of the WHERE clause, connected by 368 ** an AND operator. 369 */ 370 if( pRight->pOn ){ 371 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 372 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 373 pRight->pOn = 0; 374 } 375 376 /* Create extra terms on the WHERE clause for each column named 377 ** in the USING clause. Example: If the two tables to be joined are 378 ** A and B and the USING clause names X, Y, and Z, then add this 379 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 380 ** Report an error if any column mentioned in the USING clause is 381 ** not contained in both tables to be joined. 382 */ 383 if( pRight->pUsing ){ 384 IdList *pList = pRight->pUsing; 385 for(j=0; j<pList->nId; j++){ 386 char *zName; /* Name of the term in the USING clause */ 387 int iLeft; /* Table on the left with matching column name */ 388 int iLeftCol; /* Column number of matching column on the left */ 389 int iRightCol; /* Column number of matching column on the right */ 390 391 zName = pList->a[j].zName; 392 iRightCol = columnIndex(pRightTab, zName); 393 if( iRightCol<0 394 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 395 ){ 396 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 397 "not present in both tables", zName); 398 return 1; 399 } 400 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 401 isOuter, &p->pWhere); 402 } 403 } 404 } 405 return 0; 406 } 407 408 /* 409 ** Insert code into "v" that will push the record on the top of the 410 ** stack into the sorter. 411 */ 412 static void pushOntoSorter( 413 Parse *pParse, /* Parser context */ 414 ExprList *pOrderBy, /* The ORDER BY clause */ 415 Select *pSelect, /* The whole SELECT statement */ 416 int regData /* Register holding data to be sorted */ 417 ){ 418 Vdbe *v = pParse->pVdbe; 419 int nExpr = pOrderBy->nExpr; 420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 421 int regRecord = sqlite3GetTempReg(pParse); 422 sqlite3ExprCacheClear(pParse); 423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 428 sqlite3ReleaseTempReg(pParse, regRecord); 429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 430 if( pSelect->iLimit ){ 431 int addr1, addr2; 432 int iLimit; 433 if( pSelect->iOffset ){ 434 iLimit = pSelect->iOffset+1; 435 }else{ 436 iLimit = pSelect->iLimit; 437 } 438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 441 sqlite3VdbeJumpHere(v, addr1); 442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 444 sqlite3VdbeJumpHere(v, addr2); 445 } 446 } 447 448 /* 449 ** Add code to implement the OFFSET 450 */ 451 static void codeOffset( 452 Vdbe *v, /* Generate code into this VM */ 453 Select *p, /* The SELECT statement being coded */ 454 int iContinue /* Jump here to skip the current record */ 455 ){ 456 if( p->iOffset && iContinue!=0 ){ 457 int addr; 458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 461 VdbeComment((v, "skip OFFSET records")); 462 sqlite3VdbeJumpHere(v, addr); 463 } 464 } 465 466 /* 467 ** Add code that will check to make sure the N registers starting at iMem 468 ** form a distinct entry. iTab is a sorting index that holds previously 469 ** seen combinations of the N values. A new entry is made in iTab 470 ** if the current N values are new. 471 ** 472 ** A jump to addrRepeat is made and the N+1 values are popped from the 473 ** stack if the top N elements are not distinct. 474 */ 475 static void codeDistinct( 476 Parse *pParse, /* Parsing and code generating context */ 477 int iTab, /* A sorting index used to test for distinctness */ 478 int addrRepeat, /* Jump to here if not distinct */ 479 int N, /* Number of elements */ 480 int iMem /* First element */ 481 ){ 482 Vdbe *v; 483 int r1; 484 485 v = pParse->pVdbe; 486 r1 = sqlite3GetTempReg(pParse); 487 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 488 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 490 sqlite3ReleaseTempReg(pParse, r1); 491 } 492 493 #ifndef SQLITE_OMIT_SUBQUERY 494 /* 495 ** Generate an error message when a SELECT is used within a subexpression 496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 497 ** column. We do this in a subroutine because the error used to occur 498 ** in multiple places. (The error only occurs in one place now, but we 499 ** retain the subroutine to minimize code disruption.) 500 */ 501 static int checkForMultiColumnSelectError( 502 Parse *pParse, /* Parse context. */ 503 SelectDest *pDest, /* Destination of SELECT results */ 504 int nExpr /* Number of result columns returned by SELECT */ 505 ){ 506 int eDest = pDest->eDest; 507 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 508 sqlite3ErrorMsg(pParse, "only a single result allowed for " 509 "a SELECT that is part of an expression"); 510 return 1; 511 }else{ 512 return 0; 513 } 514 } 515 #endif 516 517 /* 518 ** This routine generates the code for the inside of the inner loop 519 ** of a SELECT. 520 ** 521 ** If srcTab and nColumn are both zero, then the pEList expressions 522 ** are evaluated in order to get the data for this row. If nColumn>0 523 ** then data is pulled from srcTab and pEList is used only to get the 524 ** datatypes for each column. 525 */ 526 static void selectInnerLoop( 527 Parse *pParse, /* The parser context */ 528 Select *p, /* The complete select statement being coded */ 529 ExprList *pEList, /* List of values being extracted */ 530 int srcTab, /* Pull data from this table */ 531 int nColumn, /* Number of columns in the source table */ 532 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 533 int distinct, /* If >=0, make sure results are distinct */ 534 SelectDest *pDest, /* How to dispose of the results */ 535 int iContinue, /* Jump here to continue with next row */ 536 int iBreak /* Jump here to break out of the inner loop */ 537 ){ 538 Vdbe *v = pParse->pVdbe; 539 int i; 540 int hasDistinct; /* True if the DISTINCT keyword is present */ 541 int regResult; /* Start of memory holding result set */ 542 int eDest = pDest->eDest; /* How to dispose of results */ 543 int iParm = pDest->iParm; /* First argument to disposal method */ 544 int nResultCol; /* Number of result columns */ 545 546 assert( v ); 547 if( NEVER(v==0) ) return; 548 assert( pEList!=0 ); 549 hasDistinct = distinct>=0; 550 if( pOrderBy==0 && !hasDistinct ){ 551 codeOffset(v, p, iContinue); 552 } 553 554 /* Pull the requested columns. 555 */ 556 if( nColumn>0 ){ 557 nResultCol = nColumn; 558 }else{ 559 nResultCol = pEList->nExpr; 560 } 561 if( pDest->iMem==0 ){ 562 pDest->iMem = pParse->nMem+1; 563 pDest->nMem = nResultCol; 564 pParse->nMem += nResultCol; 565 }else{ 566 assert( pDest->nMem==nResultCol ); 567 } 568 regResult = pDest->iMem; 569 if( nColumn>0 ){ 570 for(i=0; i<nColumn; i++){ 571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 572 } 573 }else if( eDest!=SRT_Exists ){ 574 /* If the destination is an EXISTS(...) expression, the actual 575 ** values returned by the SELECT are not required. 576 */ 577 sqlite3ExprCacheClear(pParse); 578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 579 } 580 nColumn = nResultCol; 581 582 /* If the DISTINCT keyword was present on the SELECT statement 583 ** and this row has been seen before, then do not make this row 584 ** part of the result. 585 */ 586 if( hasDistinct ){ 587 assert( pEList!=0 ); 588 assert( pEList->nExpr==nColumn ); 589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 590 if( pOrderBy==0 ){ 591 codeOffset(v, p, iContinue); 592 } 593 } 594 595 switch( eDest ){ 596 /* In this mode, write each query result to the key of the temporary 597 ** table iParm. 598 */ 599 #ifndef SQLITE_OMIT_COMPOUND_SELECT 600 case SRT_Union: { 601 int r1; 602 r1 = sqlite3GetTempReg(pParse); 603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 604 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 605 sqlite3ReleaseTempReg(pParse, r1); 606 break; 607 } 608 609 /* Construct a record from the query result, but instead of 610 ** saving that record, use it as a key to delete elements from 611 ** the temporary table iParm. 612 */ 613 case SRT_Except: { 614 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 615 break; 616 } 617 #endif 618 619 /* Store the result as data using a unique key. 620 */ 621 case SRT_Table: 622 case SRT_EphemTab: { 623 int r1 = sqlite3GetTempReg(pParse); 624 testcase( eDest==SRT_Table ); 625 testcase( eDest==SRT_EphemTab ); 626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 627 if( pOrderBy ){ 628 pushOntoSorter(pParse, pOrderBy, p, r1); 629 }else{ 630 int r2 = sqlite3GetTempReg(pParse); 631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 634 sqlite3ReleaseTempReg(pParse, r2); 635 } 636 sqlite3ReleaseTempReg(pParse, r1); 637 break; 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 642 ** then there should be a single item on the stack. Write this 643 ** item into the set table with bogus data. 644 */ 645 case SRT_Set: { 646 assert( nColumn==1 ); 647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 648 if( pOrderBy ){ 649 /* At first glance you would think we could optimize out the 650 ** ORDER BY in this case since the order of entries in the set 651 ** does not matter. But there might be a LIMIT clause, in which 652 ** case the order does matter */ 653 pushOntoSorter(pParse, pOrderBy, p, regResult); 654 }else{ 655 int r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 break; 662 } 663 664 /* If any row exist in the result set, record that fact and abort. 665 */ 666 case SRT_Exists: { 667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 668 /* The LIMIT clause will terminate the loop for us */ 669 break; 670 } 671 672 /* If this is a scalar select that is part of an expression, then 673 ** store the results in the appropriate memory cell and break out 674 ** of the scan loop. 675 */ 676 case SRT_Mem: { 677 assert( nColumn==1 ); 678 if( pOrderBy ){ 679 pushOntoSorter(pParse, pOrderBy, p, regResult); 680 }else{ 681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 682 /* The LIMIT clause will jump out of the loop for us */ 683 } 684 break; 685 } 686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 687 688 /* Send the data to the callback function or to a subroutine. In the 689 ** case of a subroutine, the subroutine itself is responsible for 690 ** popping the data from the stack. 691 */ 692 case SRT_Coroutine: 693 case SRT_Output: { 694 testcase( eDest==SRT_Coroutine ); 695 testcase( eDest==SRT_Output ); 696 if( pOrderBy ){ 697 int r1 = sqlite3GetTempReg(pParse); 698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 699 pushOntoSorter(pParse, pOrderBy, p, r1); 700 sqlite3ReleaseTempReg(pParse, r1); 701 }else if( eDest==SRT_Coroutine ){ 702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 703 }else{ 704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 706 } 707 break; 708 } 709 710 #if !defined(SQLITE_OMIT_TRIGGER) 711 /* Discard the results. This is used for SELECT statements inside 712 ** the body of a TRIGGER. The purpose of such selects is to call 713 ** user-defined functions that have side effects. We do not care 714 ** about the actual results of the select. 715 */ 716 default: { 717 assert( eDest==SRT_Discard ); 718 break; 719 } 720 #endif 721 } 722 723 /* Jump to the end of the loop if the LIMIT is reached. Except, if 724 ** there is a sorter, in which case the sorter has already limited 725 ** the output for us. 726 */ 727 if( pOrderBy==0 && p->iLimit ){ 728 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 729 } 730 } 731 732 /* 733 ** Given an expression list, generate a KeyInfo structure that records 734 ** the collating sequence for each expression in that expression list. 735 ** 736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 737 ** KeyInfo structure is appropriate for initializing a virtual index to 738 ** implement that clause. If the ExprList is the result set of a SELECT 739 ** then the KeyInfo structure is appropriate for initializing a virtual 740 ** index to implement a DISTINCT test. 741 ** 742 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 743 ** function is responsible for seeing that this structure is eventually 744 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 746 */ 747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 748 sqlite3 *db = pParse->db; 749 int nExpr; 750 KeyInfo *pInfo; 751 struct ExprList_item *pItem; 752 int i; 753 754 nExpr = pList->nExpr; 755 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 756 if( pInfo ){ 757 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 758 pInfo->nField = (u16)nExpr; 759 pInfo->enc = ENC(db); 760 pInfo->db = db; 761 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 762 CollSeq *pColl; 763 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 764 if( !pColl ){ 765 pColl = db->pDfltColl; 766 } 767 pInfo->aColl[i] = pColl; 768 pInfo->aSortOrder[i] = pItem->sortOrder; 769 } 770 } 771 return pInfo; 772 } 773 774 #ifndef SQLITE_OMIT_COMPOUND_SELECT 775 /* 776 ** Name of the connection operator, used for error messages. 777 */ 778 static const char *selectOpName(int id){ 779 char *z; 780 switch( id ){ 781 case TK_ALL: z = "UNION ALL"; break; 782 case TK_INTERSECT: z = "INTERSECT"; break; 783 case TK_EXCEPT: z = "EXCEPT"; break; 784 default: z = "UNION"; break; 785 } 786 return z; 787 } 788 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 789 790 #ifndef SQLITE_OMIT_EXPLAIN 791 /* 792 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 793 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 794 ** where the caption is of the form: 795 ** 796 ** "USE TEMP B-TREE FOR xxx" 797 ** 798 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 799 ** is determined by the zUsage argument. 800 */ 801 static void explainTempTable(Parse *pParse, const char *zUsage){ 802 if( pParse->explain==2 ){ 803 Vdbe *v = pParse->pVdbe; 804 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 805 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 806 } 807 } 808 809 /* 810 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 811 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 812 ** where the caption is of one of the two forms: 813 ** 814 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 815 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 816 ** 817 ** where iSub1 and iSub2 are the integers passed as the corresponding 818 ** function parameters, and op is the text representation of the parameter 819 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 820 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 821 ** false, or the second form if it is true. 822 */ 823 static void explainComposite( 824 Parse *pParse, /* Parse context */ 825 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 826 int iSub1, /* Subquery id 1 */ 827 int iSub2, /* Subquery id 2 */ 828 int bUseTmp /* True if a temp table was used */ 829 ){ 830 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 831 if( pParse->explain==2 ){ 832 Vdbe *v = pParse->pVdbe; 833 char *zMsg = sqlite3MPrintf( 834 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 835 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 836 ); 837 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 838 } 839 } 840 841 /* 842 ** Assign expression b to lvalue a. A second, no-op, version of this macro 843 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 844 ** in sqlite3Select() to assign values to structure member variables that 845 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 846 ** code with #ifndef directives. 847 */ 848 # define explainSetInteger(a, b) a = b 849 850 #else 851 /* No-op versions of the explainXXX() functions and macros. */ 852 # define explainTempTable(y,z) 853 # define explainComposite(v,w,x,y,z) 854 # define explainSetInteger(y,z) 855 #endif 856 857 /* 858 ** If the inner loop was generated using a non-null pOrderBy argument, 859 ** then the results were placed in a sorter. After the loop is terminated 860 ** we need to run the sorter and output the results. The following 861 ** routine generates the code needed to do that. 862 */ 863 static void generateSortTail( 864 Parse *pParse, /* Parsing context */ 865 Select *p, /* The SELECT statement */ 866 Vdbe *v, /* Generate code into this VDBE */ 867 int nColumn, /* Number of columns of data */ 868 SelectDest *pDest /* Write the sorted results here */ 869 ){ 870 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 871 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 872 int addr; 873 int iTab; 874 int pseudoTab = 0; 875 ExprList *pOrderBy = p->pOrderBy; 876 877 int eDest = pDest->eDest; 878 int iParm = pDest->iParm; 879 880 int regRow; 881 int regRowid; 882 883 iTab = pOrderBy->iECursor; 884 regRow = sqlite3GetTempReg(pParse); 885 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 886 pseudoTab = pParse->nTab++; 887 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 888 regRowid = 0; 889 }else{ 890 regRowid = sqlite3GetTempReg(pParse); 891 } 892 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 893 codeOffset(v, p, addrContinue); 894 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 895 switch( eDest ){ 896 case SRT_Table: 897 case SRT_EphemTab: { 898 testcase( eDest==SRT_Table ); 899 testcase( eDest==SRT_EphemTab ); 900 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 901 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 902 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 903 break; 904 } 905 #ifndef SQLITE_OMIT_SUBQUERY 906 case SRT_Set: { 907 assert( nColumn==1 ); 908 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 909 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 910 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 911 break; 912 } 913 case SRT_Mem: { 914 assert( nColumn==1 ); 915 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 916 /* The LIMIT clause will terminate the loop for us */ 917 break; 918 } 919 #endif 920 default: { 921 int i; 922 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 923 testcase( eDest==SRT_Output ); 924 testcase( eDest==SRT_Coroutine ); 925 for(i=0; i<nColumn; i++){ 926 assert( regRow!=pDest->iMem+i ); 927 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 928 if( i==0 ){ 929 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 930 } 931 } 932 if( eDest==SRT_Output ){ 933 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 934 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 935 }else{ 936 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 937 } 938 break; 939 } 940 } 941 sqlite3ReleaseTempReg(pParse, regRow); 942 sqlite3ReleaseTempReg(pParse, regRowid); 943 944 /* The bottom of the loop 945 */ 946 sqlite3VdbeResolveLabel(v, addrContinue); 947 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 948 sqlite3VdbeResolveLabel(v, addrBreak); 949 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 950 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 951 } 952 } 953 954 /* 955 ** Return a pointer to a string containing the 'declaration type' of the 956 ** expression pExpr. The string may be treated as static by the caller. 957 ** 958 ** The declaration type is the exact datatype definition extracted from the 959 ** original CREATE TABLE statement if the expression is a column. The 960 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 961 ** is considered a column can be complex in the presence of subqueries. The 962 ** result-set expression in all of the following SELECT statements is 963 ** considered a column by this function. 964 ** 965 ** SELECT col FROM tbl; 966 ** SELECT (SELECT col FROM tbl; 967 ** SELECT (SELECT col FROM tbl); 968 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 969 ** 970 ** The declaration type for any expression other than a column is NULL. 971 */ 972 static const char *columnType( 973 NameContext *pNC, 974 Expr *pExpr, 975 const char **pzOriginDb, 976 const char **pzOriginTab, 977 const char **pzOriginCol 978 ){ 979 char const *zType = 0; 980 char const *zOriginDb = 0; 981 char const *zOriginTab = 0; 982 char const *zOriginCol = 0; 983 int j; 984 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 985 986 switch( pExpr->op ){ 987 case TK_AGG_COLUMN: 988 case TK_COLUMN: { 989 /* The expression is a column. Locate the table the column is being 990 ** extracted from in NameContext.pSrcList. This table may be real 991 ** database table or a subquery. 992 */ 993 Table *pTab = 0; /* Table structure column is extracted from */ 994 Select *pS = 0; /* Select the column is extracted from */ 995 int iCol = pExpr->iColumn; /* Index of column in pTab */ 996 testcase( pExpr->op==TK_AGG_COLUMN ); 997 testcase( pExpr->op==TK_COLUMN ); 998 while( pNC && !pTab ){ 999 SrcList *pTabList = pNC->pSrcList; 1000 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1001 if( j<pTabList->nSrc ){ 1002 pTab = pTabList->a[j].pTab; 1003 pS = pTabList->a[j].pSelect; 1004 }else{ 1005 pNC = pNC->pNext; 1006 } 1007 } 1008 1009 if( pTab==0 ){ 1010 /* At one time, code such as "SELECT new.x" within a trigger would 1011 ** cause this condition to run. Since then, we have restructured how 1012 ** trigger code is generated and so this condition is no longer 1013 ** possible. However, it can still be true for statements like 1014 ** the following: 1015 ** 1016 ** CREATE TABLE t1(col INTEGER); 1017 ** SELECT (SELECT t1.col) FROM FROM t1; 1018 ** 1019 ** when columnType() is called on the expression "t1.col" in the 1020 ** sub-select. In this case, set the column type to NULL, even 1021 ** though it should really be "INTEGER". 1022 ** 1023 ** This is not a problem, as the column type of "t1.col" is never 1024 ** used. When columnType() is called on the expression 1025 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1026 ** branch below. */ 1027 break; 1028 } 1029 1030 assert( pTab && pExpr->pTab==pTab ); 1031 if( pS ){ 1032 /* The "table" is actually a sub-select or a view in the FROM clause 1033 ** of the SELECT statement. Return the declaration type and origin 1034 ** data for the result-set column of the sub-select. 1035 */ 1036 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1037 /* If iCol is less than zero, then the expression requests the 1038 ** rowid of the sub-select or view. This expression is legal (see 1039 ** test case misc2.2.2) - it always evaluates to NULL. 1040 */ 1041 NameContext sNC; 1042 Expr *p = pS->pEList->a[iCol].pExpr; 1043 sNC.pSrcList = pS->pSrc; 1044 sNC.pNext = pNC; 1045 sNC.pParse = pNC->pParse; 1046 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1047 } 1048 }else if( ALWAYS(pTab->pSchema) ){ 1049 /* A real table */ 1050 assert( !pS ); 1051 if( iCol<0 ) iCol = pTab->iPKey; 1052 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1053 if( iCol<0 ){ 1054 zType = "INTEGER"; 1055 zOriginCol = "rowid"; 1056 }else{ 1057 zType = pTab->aCol[iCol].zType; 1058 zOriginCol = pTab->aCol[iCol].zName; 1059 } 1060 zOriginTab = pTab->zName; 1061 if( pNC->pParse ){ 1062 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1063 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 1064 } 1065 } 1066 break; 1067 } 1068 #ifndef SQLITE_OMIT_SUBQUERY 1069 case TK_SELECT: { 1070 /* The expression is a sub-select. Return the declaration type and 1071 ** origin info for the single column in the result set of the SELECT 1072 ** statement. 1073 */ 1074 NameContext sNC; 1075 Select *pS = pExpr->x.pSelect; 1076 Expr *p = pS->pEList->a[0].pExpr; 1077 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1078 sNC.pSrcList = pS->pSrc; 1079 sNC.pNext = pNC; 1080 sNC.pParse = pNC->pParse; 1081 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1082 break; 1083 } 1084 #endif 1085 } 1086 1087 if( pzOriginDb ){ 1088 assert( pzOriginTab && pzOriginCol ); 1089 *pzOriginDb = zOriginDb; 1090 *pzOriginTab = zOriginTab; 1091 *pzOriginCol = zOriginCol; 1092 } 1093 return zType; 1094 } 1095 1096 /* 1097 ** Generate code that will tell the VDBE the declaration types of columns 1098 ** in the result set. 1099 */ 1100 static void generateColumnTypes( 1101 Parse *pParse, /* Parser context */ 1102 SrcList *pTabList, /* List of tables */ 1103 ExprList *pEList /* Expressions defining the result set */ 1104 ){ 1105 #ifndef SQLITE_OMIT_DECLTYPE 1106 Vdbe *v = pParse->pVdbe; 1107 int i; 1108 NameContext sNC; 1109 sNC.pSrcList = pTabList; 1110 sNC.pParse = pParse; 1111 for(i=0; i<pEList->nExpr; i++){ 1112 Expr *p = pEList->a[i].pExpr; 1113 const char *zType; 1114 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1115 const char *zOrigDb = 0; 1116 const char *zOrigTab = 0; 1117 const char *zOrigCol = 0; 1118 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1119 1120 /* The vdbe must make its own copy of the column-type and other 1121 ** column specific strings, in case the schema is reset before this 1122 ** virtual machine is deleted. 1123 */ 1124 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1125 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1126 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1127 #else 1128 zType = columnType(&sNC, p, 0, 0, 0); 1129 #endif 1130 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1131 } 1132 #endif /* SQLITE_OMIT_DECLTYPE */ 1133 } 1134 1135 /* 1136 ** Generate code that will tell the VDBE the names of columns 1137 ** in the result set. This information is used to provide the 1138 ** azCol[] values in the callback. 1139 */ 1140 static void generateColumnNames( 1141 Parse *pParse, /* Parser context */ 1142 SrcList *pTabList, /* List of tables */ 1143 ExprList *pEList /* Expressions defining the result set */ 1144 ){ 1145 Vdbe *v = pParse->pVdbe; 1146 int i, j; 1147 sqlite3 *db = pParse->db; 1148 int fullNames, shortNames; 1149 1150 #ifndef SQLITE_OMIT_EXPLAIN 1151 /* If this is an EXPLAIN, skip this step */ 1152 if( pParse->explain ){ 1153 return; 1154 } 1155 #endif 1156 1157 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1158 pParse->colNamesSet = 1; 1159 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1160 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1161 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1162 for(i=0; i<pEList->nExpr; i++){ 1163 Expr *p; 1164 p = pEList->a[i].pExpr; 1165 if( NEVER(p==0) ) continue; 1166 if( pEList->a[i].zName ){ 1167 char *zName = pEList->a[i].zName; 1168 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1169 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1170 Table *pTab; 1171 char *zCol; 1172 int iCol = p->iColumn; 1173 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1174 if( pTabList->a[j].iCursor==p->iTable ) break; 1175 } 1176 assert( j<pTabList->nSrc ); 1177 pTab = pTabList->a[j].pTab; 1178 if( iCol<0 ) iCol = pTab->iPKey; 1179 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1180 if( iCol<0 ){ 1181 zCol = "rowid"; 1182 }else{ 1183 zCol = pTab->aCol[iCol].zName; 1184 } 1185 if( !shortNames && !fullNames ){ 1186 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1187 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1188 }else if( fullNames ){ 1189 char *zName = 0; 1190 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1191 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1192 }else{ 1193 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1194 } 1195 }else{ 1196 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1197 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1198 } 1199 } 1200 generateColumnTypes(pParse, pTabList, pEList); 1201 } 1202 1203 /* 1204 ** Given a an expression list (which is really the list of expressions 1205 ** that form the result set of a SELECT statement) compute appropriate 1206 ** column names for a table that would hold the expression list. 1207 ** 1208 ** All column names will be unique. 1209 ** 1210 ** Only the column names are computed. Column.zType, Column.zColl, 1211 ** and other fields of Column are zeroed. 1212 ** 1213 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1214 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1215 */ 1216 static int selectColumnsFromExprList( 1217 Parse *pParse, /* Parsing context */ 1218 ExprList *pEList, /* Expr list from which to derive column names */ 1219 int *pnCol, /* Write the number of columns here */ 1220 Column **paCol /* Write the new column list here */ 1221 ){ 1222 sqlite3 *db = pParse->db; /* Database connection */ 1223 int i, j; /* Loop counters */ 1224 int cnt; /* Index added to make the name unique */ 1225 Column *aCol, *pCol; /* For looping over result columns */ 1226 int nCol; /* Number of columns in the result set */ 1227 Expr *p; /* Expression for a single result column */ 1228 char *zName; /* Column name */ 1229 int nName; /* Size of name in zName[] */ 1230 1231 *pnCol = nCol = pEList->nExpr; 1232 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1233 if( aCol==0 ) return SQLITE_NOMEM; 1234 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1235 /* Get an appropriate name for the column 1236 */ 1237 p = pEList->a[i].pExpr; 1238 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1239 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1240 if( (zName = pEList->a[i].zName)!=0 ){ 1241 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1242 zName = sqlite3DbStrDup(db, zName); 1243 }else{ 1244 Expr *pColExpr = p; /* The expression that is the result column name */ 1245 Table *pTab; /* Table associated with this expression */ 1246 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1247 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1248 /* For columns use the column name name */ 1249 int iCol = pColExpr->iColumn; 1250 pTab = pColExpr->pTab; 1251 if( iCol<0 ) iCol = pTab->iPKey; 1252 zName = sqlite3MPrintf(db, "%s", 1253 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1254 }else if( pColExpr->op==TK_ID ){ 1255 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1256 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1257 }else{ 1258 /* Use the original text of the column expression as its name */ 1259 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1260 } 1261 } 1262 if( db->mallocFailed ){ 1263 sqlite3DbFree(db, zName); 1264 break; 1265 } 1266 1267 /* Make sure the column name is unique. If the name is not unique, 1268 ** append a integer to the name so that it becomes unique. 1269 */ 1270 nName = sqlite3Strlen30(zName); 1271 for(j=cnt=0; j<i; j++){ 1272 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1273 char *zNewName; 1274 zName[nName] = 0; 1275 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1276 sqlite3DbFree(db, zName); 1277 zName = zNewName; 1278 j = -1; 1279 if( zName==0 ) break; 1280 } 1281 } 1282 pCol->zName = zName; 1283 } 1284 if( db->mallocFailed ){ 1285 for(j=0; j<i; j++){ 1286 sqlite3DbFree(db, aCol[j].zName); 1287 } 1288 sqlite3DbFree(db, aCol); 1289 *paCol = 0; 1290 *pnCol = 0; 1291 return SQLITE_NOMEM; 1292 } 1293 return SQLITE_OK; 1294 } 1295 1296 /* 1297 ** Add type and collation information to a column list based on 1298 ** a SELECT statement. 1299 ** 1300 ** The column list presumably came from selectColumnNamesFromExprList(). 1301 ** The column list has only names, not types or collations. This 1302 ** routine goes through and adds the types and collations. 1303 ** 1304 ** This routine requires that all identifiers in the SELECT 1305 ** statement be resolved. 1306 */ 1307 static void selectAddColumnTypeAndCollation( 1308 Parse *pParse, /* Parsing contexts */ 1309 int nCol, /* Number of columns */ 1310 Column *aCol, /* List of columns */ 1311 Select *pSelect /* SELECT used to determine types and collations */ 1312 ){ 1313 sqlite3 *db = pParse->db; 1314 NameContext sNC; 1315 Column *pCol; 1316 CollSeq *pColl; 1317 int i; 1318 Expr *p; 1319 struct ExprList_item *a; 1320 1321 assert( pSelect!=0 ); 1322 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1323 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1324 if( db->mallocFailed ) return; 1325 memset(&sNC, 0, sizeof(sNC)); 1326 sNC.pSrcList = pSelect->pSrc; 1327 a = pSelect->pEList->a; 1328 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1329 p = a[i].pExpr; 1330 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1331 pCol->affinity = sqlite3ExprAffinity(p); 1332 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1333 pColl = sqlite3ExprCollSeq(pParse, p); 1334 if( pColl ){ 1335 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1336 } 1337 } 1338 } 1339 1340 /* 1341 ** Given a SELECT statement, generate a Table structure that describes 1342 ** the result set of that SELECT. 1343 */ 1344 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1345 Table *pTab; 1346 sqlite3 *db = pParse->db; 1347 int savedFlags; 1348 1349 savedFlags = db->flags; 1350 db->flags &= ~SQLITE_FullColNames; 1351 db->flags |= SQLITE_ShortColNames; 1352 sqlite3SelectPrep(pParse, pSelect, 0); 1353 if( pParse->nErr ) return 0; 1354 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1355 db->flags = savedFlags; 1356 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1357 if( pTab==0 ){ 1358 return 0; 1359 } 1360 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1361 ** is disabled */ 1362 assert( db->lookaside.bEnabled==0 ); 1363 pTab->nRef = 1; 1364 pTab->zName = 0; 1365 pTab->nRowEst = 1000000; 1366 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1367 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1368 pTab->iPKey = -1; 1369 if( db->mallocFailed ){ 1370 sqlite3DeleteTable(db, pTab); 1371 return 0; 1372 } 1373 return pTab; 1374 } 1375 1376 /* 1377 ** Get a VDBE for the given parser context. Create a new one if necessary. 1378 ** If an error occurs, return NULL and leave a message in pParse. 1379 */ 1380 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1381 Vdbe *v = pParse->pVdbe; 1382 if( v==0 ){ 1383 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1384 #ifndef SQLITE_OMIT_TRACE 1385 if( v ){ 1386 sqlite3VdbeAddOp0(v, OP_Trace); 1387 } 1388 #endif 1389 } 1390 return v; 1391 } 1392 1393 1394 /* 1395 ** Compute the iLimit and iOffset fields of the SELECT based on the 1396 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1397 ** that appear in the original SQL statement after the LIMIT and OFFSET 1398 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1399 ** are the integer memory register numbers for counters used to compute 1400 ** the limit and offset. If there is no limit and/or offset, then 1401 ** iLimit and iOffset are negative. 1402 ** 1403 ** This routine changes the values of iLimit and iOffset only if 1404 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1405 ** iOffset should have been preset to appropriate default values 1406 ** (usually but not always -1) prior to calling this routine. 1407 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1408 ** redefined. The UNION ALL operator uses this property to force 1409 ** the reuse of the same limit and offset registers across multiple 1410 ** SELECT statements. 1411 */ 1412 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1413 Vdbe *v = 0; 1414 int iLimit = 0; 1415 int iOffset; 1416 int addr1, n; 1417 if( p->iLimit ) return; 1418 1419 /* 1420 ** "LIMIT -1" always shows all rows. There is some 1421 ** contraversy about what the correct behavior should be. 1422 ** The current implementation interprets "LIMIT 0" to mean 1423 ** no rows. 1424 */ 1425 sqlite3ExprCacheClear(pParse); 1426 assert( p->pOffset==0 || p->pLimit!=0 ); 1427 if( p->pLimit ){ 1428 p->iLimit = iLimit = ++pParse->nMem; 1429 v = sqlite3GetVdbe(pParse); 1430 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1431 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1432 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1433 VdbeComment((v, "LIMIT counter")); 1434 if( n==0 ){ 1435 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1436 }else{ 1437 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; 1438 } 1439 }else{ 1440 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1441 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1442 VdbeComment((v, "LIMIT counter")); 1443 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1444 } 1445 if( p->pOffset ){ 1446 p->iOffset = iOffset = ++pParse->nMem; 1447 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1448 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1449 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1450 VdbeComment((v, "OFFSET counter")); 1451 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1452 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1453 sqlite3VdbeJumpHere(v, addr1); 1454 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1455 VdbeComment((v, "LIMIT+OFFSET")); 1456 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1457 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1458 sqlite3VdbeJumpHere(v, addr1); 1459 } 1460 } 1461 } 1462 1463 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1464 /* 1465 ** Return the appropriate collating sequence for the iCol-th column of 1466 ** the result set for the compound-select statement "p". Return NULL if 1467 ** the column has no default collating sequence. 1468 ** 1469 ** The collating sequence for the compound select is taken from the 1470 ** left-most term of the select that has a collating sequence. 1471 */ 1472 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1473 CollSeq *pRet; 1474 if( p->pPrior ){ 1475 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1476 }else{ 1477 pRet = 0; 1478 } 1479 assert( iCol>=0 ); 1480 if( pRet==0 && iCol<p->pEList->nExpr ){ 1481 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1482 } 1483 return pRet; 1484 } 1485 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1486 1487 /* Forward reference */ 1488 static int multiSelectOrderBy( 1489 Parse *pParse, /* Parsing context */ 1490 Select *p, /* The right-most of SELECTs to be coded */ 1491 SelectDest *pDest /* What to do with query results */ 1492 ); 1493 1494 1495 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1496 /* 1497 ** This routine is called to process a compound query form from 1498 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1499 ** INTERSECT 1500 ** 1501 ** "p" points to the right-most of the two queries. the query on the 1502 ** left is p->pPrior. The left query could also be a compound query 1503 ** in which case this routine will be called recursively. 1504 ** 1505 ** The results of the total query are to be written into a destination 1506 ** of type eDest with parameter iParm. 1507 ** 1508 ** Example 1: Consider a three-way compound SQL statement. 1509 ** 1510 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1511 ** 1512 ** This statement is parsed up as follows: 1513 ** 1514 ** SELECT c FROM t3 1515 ** | 1516 ** `-----> SELECT b FROM t2 1517 ** | 1518 ** `------> SELECT a FROM t1 1519 ** 1520 ** The arrows in the diagram above represent the Select.pPrior pointer. 1521 ** So if this routine is called with p equal to the t3 query, then 1522 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1523 ** 1524 ** Notice that because of the way SQLite parses compound SELECTs, the 1525 ** individual selects always group from left to right. 1526 */ 1527 static int multiSelect( 1528 Parse *pParse, /* Parsing context */ 1529 Select *p, /* The right-most of SELECTs to be coded */ 1530 SelectDest *pDest /* What to do with query results */ 1531 ){ 1532 int rc = SQLITE_OK; /* Success code from a subroutine */ 1533 Select *pPrior; /* Another SELECT immediately to our left */ 1534 Vdbe *v; /* Generate code to this VDBE */ 1535 SelectDest dest; /* Alternative data destination */ 1536 Select *pDelete = 0; /* Chain of simple selects to delete */ 1537 sqlite3 *db; /* Database connection */ 1538 #ifndef SQLITE_OMIT_EXPLAIN 1539 int iSub1; /* EQP id of left-hand query */ 1540 int iSub2; /* EQP id of right-hand query */ 1541 #endif 1542 1543 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1544 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1545 */ 1546 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1547 db = pParse->db; 1548 pPrior = p->pPrior; 1549 assert( pPrior->pRightmost!=pPrior ); 1550 assert( pPrior->pRightmost==p->pRightmost ); 1551 dest = *pDest; 1552 if( pPrior->pOrderBy ){ 1553 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1554 selectOpName(p->op)); 1555 rc = 1; 1556 goto multi_select_end; 1557 } 1558 if( pPrior->pLimit ){ 1559 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1560 selectOpName(p->op)); 1561 rc = 1; 1562 goto multi_select_end; 1563 } 1564 1565 v = sqlite3GetVdbe(pParse); 1566 assert( v!=0 ); /* The VDBE already created by calling function */ 1567 1568 /* Create the destination temporary table if necessary 1569 */ 1570 if( dest.eDest==SRT_EphemTab ){ 1571 assert( p->pEList ); 1572 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1573 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1574 dest.eDest = SRT_Table; 1575 } 1576 1577 /* Make sure all SELECTs in the statement have the same number of elements 1578 ** in their result sets. 1579 */ 1580 assert( p->pEList && pPrior->pEList ); 1581 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1582 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1583 " do not have the same number of result columns", selectOpName(p->op)); 1584 rc = 1; 1585 goto multi_select_end; 1586 } 1587 1588 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1589 */ 1590 if( p->pOrderBy ){ 1591 return multiSelectOrderBy(pParse, p, pDest); 1592 } 1593 1594 /* Generate code for the left and right SELECT statements. 1595 */ 1596 switch( p->op ){ 1597 case TK_ALL: { 1598 int addr = 0; 1599 int nLimit; 1600 assert( !pPrior->pLimit ); 1601 pPrior->pLimit = p->pLimit; 1602 pPrior->pOffset = p->pOffset; 1603 explainSetInteger(iSub1, pParse->iNextSelectId); 1604 rc = sqlite3Select(pParse, pPrior, &dest); 1605 p->pLimit = 0; 1606 p->pOffset = 0; 1607 if( rc ){ 1608 goto multi_select_end; 1609 } 1610 p->pPrior = 0; 1611 p->iLimit = pPrior->iLimit; 1612 p->iOffset = pPrior->iOffset; 1613 if( p->iLimit ){ 1614 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1615 VdbeComment((v, "Jump ahead if LIMIT reached")); 1616 } 1617 explainSetInteger(iSub2, pParse->iNextSelectId); 1618 rc = sqlite3Select(pParse, p, &dest); 1619 testcase( rc!=SQLITE_OK ); 1620 pDelete = p->pPrior; 1621 p->pPrior = pPrior; 1622 p->nSelectRow += pPrior->nSelectRow; 1623 if( pPrior->pLimit 1624 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 1625 && p->nSelectRow > (double)nLimit 1626 ){ 1627 p->nSelectRow = (double)nLimit; 1628 } 1629 if( addr ){ 1630 sqlite3VdbeJumpHere(v, addr); 1631 } 1632 break; 1633 } 1634 case TK_EXCEPT: 1635 case TK_UNION: { 1636 int unionTab; /* Cursor number of the temporary table holding result */ 1637 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1638 int priorOp; /* The SRT_ operation to apply to prior selects */ 1639 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1640 int addr; 1641 SelectDest uniondest; 1642 1643 testcase( p->op==TK_EXCEPT ); 1644 testcase( p->op==TK_UNION ); 1645 priorOp = SRT_Union; 1646 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1647 /* We can reuse a temporary table generated by a SELECT to our 1648 ** right. 1649 */ 1650 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1651 ** of a 3-way or more compound */ 1652 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1653 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1654 unionTab = dest.iParm; 1655 }else{ 1656 /* We will need to create our own temporary table to hold the 1657 ** intermediate results. 1658 */ 1659 unionTab = pParse->nTab++; 1660 assert( p->pOrderBy==0 ); 1661 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1662 assert( p->addrOpenEphm[0] == -1 ); 1663 p->addrOpenEphm[0] = addr; 1664 p->pRightmost->selFlags |= SF_UsesEphemeral; 1665 assert( p->pEList ); 1666 } 1667 1668 /* Code the SELECT statements to our left 1669 */ 1670 assert( !pPrior->pOrderBy ); 1671 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1672 explainSetInteger(iSub1, pParse->iNextSelectId); 1673 rc = sqlite3Select(pParse, pPrior, &uniondest); 1674 if( rc ){ 1675 goto multi_select_end; 1676 } 1677 1678 /* Code the current SELECT statement 1679 */ 1680 if( p->op==TK_EXCEPT ){ 1681 op = SRT_Except; 1682 }else{ 1683 assert( p->op==TK_UNION ); 1684 op = SRT_Union; 1685 } 1686 p->pPrior = 0; 1687 pLimit = p->pLimit; 1688 p->pLimit = 0; 1689 pOffset = p->pOffset; 1690 p->pOffset = 0; 1691 uniondest.eDest = op; 1692 explainSetInteger(iSub2, pParse->iNextSelectId); 1693 rc = sqlite3Select(pParse, p, &uniondest); 1694 testcase( rc!=SQLITE_OK ); 1695 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1696 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1697 sqlite3ExprListDelete(db, p->pOrderBy); 1698 pDelete = p->pPrior; 1699 p->pPrior = pPrior; 1700 p->pOrderBy = 0; 1701 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 1702 sqlite3ExprDelete(db, p->pLimit); 1703 p->pLimit = pLimit; 1704 p->pOffset = pOffset; 1705 p->iLimit = 0; 1706 p->iOffset = 0; 1707 1708 /* Convert the data in the temporary table into whatever form 1709 ** it is that we currently need. 1710 */ 1711 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1712 if( dest.eDest!=priorOp ){ 1713 int iCont, iBreak, iStart; 1714 assert( p->pEList ); 1715 if( dest.eDest==SRT_Output ){ 1716 Select *pFirst = p; 1717 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1718 generateColumnNames(pParse, 0, pFirst->pEList); 1719 } 1720 iBreak = sqlite3VdbeMakeLabel(v); 1721 iCont = sqlite3VdbeMakeLabel(v); 1722 computeLimitRegisters(pParse, p, iBreak); 1723 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1724 iStart = sqlite3VdbeCurrentAddr(v); 1725 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1726 0, -1, &dest, iCont, iBreak); 1727 sqlite3VdbeResolveLabel(v, iCont); 1728 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1729 sqlite3VdbeResolveLabel(v, iBreak); 1730 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1731 } 1732 break; 1733 } 1734 default: assert( p->op==TK_INTERSECT ); { 1735 int tab1, tab2; 1736 int iCont, iBreak, iStart; 1737 Expr *pLimit, *pOffset; 1738 int addr; 1739 SelectDest intersectdest; 1740 int r1; 1741 1742 /* INTERSECT is different from the others since it requires 1743 ** two temporary tables. Hence it has its own case. Begin 1744 ** by allocating the tables we will need. 1745 */ 1746 tab1 = pParse->nTab++; 1747 tab2 = pParse->nTab++; 1748 assert( p->pOrderBy==0 ); 1749 1750 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1751 assert( p->addrOpenEphm[0] == -1 ); 1752 p->addrOpenEphm[0] = addr; 1753 p->pRightmost->selFlags |= SF_UsesEphemeral; 1754 assert( p->pEList ); 1755 1756 /* Code the SELECTs to our left into temporary table "tab1". 1757 */ 1758 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1759 explainSetInteger(iSub1, pParse->iNextSelectId); 1760 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1761 if( rc ){ 1762 goto multi_select_end; 1763 } 1764 1765 /* Code the current SELECT into temporary table "tab2" 1766 */ 1767 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1768 assert( p->addrOpenEphm[1] == -1 ); 1769 p->addrOpenEphm[1] = addr; 1770 p->pPrior = 0; 1771 pLimit = p->pLimit; 1772 p->pLimit = 0; 1773 pOffset = p->pOffset; 1774 p->pOffset = 0; 1775 intersectdest.iParm = tab2; 1776 explainSetInteger(iSub2, pParse->iNextSelectId); 1777 rc = sqlite3Select(pParse, p, &intersectdest); 1778 testcase( rc!=SQLITE_OK ); 1779 pDelete = p->pPrior; 1780 p->pPrior = pPrior; 1781 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 1782 sqlite3ExprDelete(db, p->pLimit); 1783 p->pLimit = pLimit; 1784 p->pOffset = pOffset; 1785 1786 /* Generate code to take the intersection of the two temporary 1787 ** tables. 1788 */ 1789 assert( p->pEList ); 1790 if( dest.eDest==SRT_Output ){ 1791 Select *pFirst = p; 1792 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1793 generateColumnNames(pParse, 0, pFirst->pEList); 1794 } 1795 iBreak = sqlite3VdbeMakeLabel(v); 1796 iCont = sqlite3VdbeMakeLabel(v); 1797 computeLimitRegisters(pParse, p, iBreak); 1798 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1799 r1 = sqlite3GetTempReg(pParse); 1800 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1801 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1802 sqlite3ReleaseTempReg(pParse, r1); 1803 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1804 0, -1, &dest, iCont, iBreak); 1805 sqlite3VdbeResolveLabel(v, iCont); 1806 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1807 sqlite3VdbeResolveLabel(v, iBreak); 1808 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1809 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1810 break; 1811 } 1812 } 1813 1814 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 1815 1816 /* Compute collating sequences used by 1817 ** temporary tables needed to implement the compound select. 1818 ** Attach the KeyInfo structure to all temporary tables. 1819 ** 1820 ** This section is run by the right-most SELECT statement only. 1821 ** SELECT statements to the left always skip this part. The right-most 1822 ** SELECT might also skip this part if it has no ORDER BY clause and 1823 ** no temp tables are required. 1824 */ 1825 if( p->selFlags & SF_UsesEphemeral ){ 1826 int i; /* Loop counter */ 1827 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1828 Select *pLoop; /* For looping through SELECT statements */ 1829 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1830 int nCol; /* Number of columns in result set */ 1831 1832 assert( p->pRightmost==p ); 1833 nCol = p->pEList->nExpr; 1834 pKeyInfo = sqlite3DbMallocZero(db, 1835 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1836 if( !pKeyInfo ){ 1837 rc = SQLITE_NOMEM; 1838 goto multi_select_end; 1839 } 1840 1841 pKeyInfo->enc = ENC(db); 1842 pKeyInfo->nField = (u16)nCol; 1843 1844 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1845 *apColl = multiSelectCollSeq(pParse, p, i); 1846 if( 0==*apColl ){ 1847 *apColl = db->pDfltColl; 1848 } 1849 } 1850 1851 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1852 for(i=0; i<2; i++){ 1853 int addr = pLoop->addrOpenEphm[i]; 1854 if( addr<0 ){ 1855 /* If [0] is unused then [1] is also unused. So we can 1856 ** always safely abort as soon as the first unused slot is found */ 1857 assert( pLoop->addrOpenEphm[1]<0 ); 1858 break; 1859 } 1860 sqlite3VdbeChangeP2(v, addr, nCol); 1861 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1862 pLoop->addrOpenEphm[i] = -1; 1863 } 1864 } 1865 sqlite3DbFree(db, pKeyInfo); 1866 } 1867 1868 multi_select_end: 1869 pDest->iMem = dest.iMem; 1870 pDest->nMem = dest.nMem; 1871 sqlite3SelectDelete(db, pDelete); 1872 return rc; 1873 } 1874 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1875 1876 /* 1877 ** Code an output subroutine for a coroutine implementation of a 1878 ** SELECT statment. 1879 ** 1880 ** The data to be output is contained in pIn->iMem. There are 1881 ** pIn->nMem columns to be output. pDest is where the output should 1882 ** be sent. 1883 ** 1884 ** regReturn is the number of the register holding the subroutine 1885 ** return address. 1886 ** 1887 ** If regPrev>0 then it is the first register in a vector that 1888 ** records the previous output. mem[regPrev] is a flag that is false 1889 ** if there has been no previous output. If regPrev>0 then code is 1890 ** generated to suppress duplicates. pKeyInfo is used for comparing 1891 ** keys. 1892 ** 1893 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1894 ** iBreak. 1895 */ 1896 static int generateOutputSubroutine( 1897 Parse *pParse, /* Parsing context */ 1898 Select *p, /* The SELECT statement */ 1899 SelectDest *pIn, /* Coroutine supplying data */ 1900 SelectDest *pDest, /* Where to send the data */ 1901 int regReturn, /* The return address register */ 1902 int regPrev, /* Previous result register. No uniqueness if 0 */ 1903 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1904 int p4type, /* The p4 type for pKeyInfo */ 1905 int iBreak /* Jump here if we hit the LIMIT */ 1906 ){ 1907 Vdbe *v = pParse->pVdbe; 1908 int iContinue; 1909 int addr; 1910 1911 addr = sqlite3VdbeCurrentAddr(v); 1912 iContinue = sqlite3VdbeMakeLabel(v); 1913 1914 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1915 */ 1916 if( regPrev ){ 1917 int j1, j2; 1918 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1919 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1920 (char*)pKeyInfo, p4type); 1921 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1922 sqlite3VdbeJumpHere(v, j1); 1923 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1924 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1925 } 1926 if( pParse->db->mallocFailed ) return 0; 1927 1928 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1929 */ 1930 codeOffset(v, p, iContinue); 1931 1932 switch( pDest->eDest ){ 1933 /* Store the result as data using a unique key. 1934 */ 1935 case SRT_Table: 1936 case SRT_EphemTab: { 1937 int r1 = sqlite3GetTempReg(pParse); 1938 int r2 = sqlite3GetTempReg(pParse); 1939 testcase( pDest->eDest==SRT_Table ); 1940 testcase( pDest->eDest==SRT_EphemTab ); 1941 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1942 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1943 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1944 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1945 sqlite3ReleaseTempReg(pParse, r2); 1946 sqlite3ReleaseTempReg(pParse, r1); 1947 break; 1948 } 1949 1950 #ifndef SQLITE_OMIT_SUBQUERY 1951 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1952 ** then there should be a single item on the stack. Write this 1953 ** item into the set table with bogus data. 1954 */ 1955 case SRT_Set: { 1956 int r1; 1957 assert( pIn->nMem==1 ); 1958 p->affinity = 1959 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1960 r1 = sqlite3GetTempReg(pParse); 1961 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1962 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1963 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1964 sqlite3ReleaseTempReg(pParse, r1); 1965 break; 1966 } 1967 1968 #if 0 /* Never occurs on an ORDER BY query */ 1969 /* If any row exist in the result set, record that fact and abort. 1970 */ 1971 case SRT_Exists: { 1972 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1973 /* The LIMIT clause will terminate the loop for us */ 1974 break; 1975 } 1976 #endif 1977 1978 /* If this is a scalar select that is part of an expression, then 1979 ** store the results in the appropriate memory cell and break out 1980 ** of the scan loop. 1981 */ 1982 case SRT_Mem: { 1983 assert( pIn->nMem==1 ); 1984 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1985 /* The LIMIT clause will jump out of the loop for us */ 1986 break; 1987 } 1988 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1989 1990 /* The results are stored in a sequence of registers 1991 ** starting at pDest->iMem. Then the co-routine yields. 1992 */ 1993 case SRT_Coroutine: { 1994 if( pDest->iMem==0 ){ 1995 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1996 pDest->nMem = pIn->nMem; 1997 } 1998 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1999 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2000 break; 2001 } 2002 2003 /* If none of the above, then the result destination must be 2004 ** SRT_Output. This routine is never called with any other 2005 ** destination other than the ones handled above or SRT_Output. 2006 ** 2007 ** For SRT_Output, results are stored in a sequence of registers. 2008 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2009 ** return the next row of result. 2010 */ 2011 default: { 2012 assert( pDest->eDest==SRT_Output ); 2013 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2014 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2015 break; 2016 } 2017 } 2018 2019 /* Jump to the end of the loop if the LIMIT is reached. 2020 */ 2021 if( p->iLimit ){ 2022 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2023 } 2024 2025 /* Generate the subroutine return 2026 */ 2027 sqlite3VdbeResolveLabel(v, iContinue); 2028 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2029 2030 return addr; 2031 } 2032 2033 /* 2034 ** Alternative compound select code generator for cases when there 2035 ** is an ORDER BY clause. 2036 ** 2037 ** We assume a query of the following form: 2038 ** 2039 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2040 ** 2041 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2042 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2043 ** co-routines. Then run the co-routines in parallel and merge the results 2044 ** into the output. In addition to the two coroutines (called selectA and 2045 ** selectB) there are 7 subroutines: 2046 ** 2047 ** outA: Move the output of the selectA coroutine into the output 2048 ** of the compound query. 2049 ** 2050 ** outB: Move the output of the selectB coroutine into the output 2051 ** of the compound query. (Only generated for UNION and 2052 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2053 ** appears only in B.) 2054 ** 2055 ** AltB: Called when there is data from both coroutines and A<B. 2056 ** 2057 ** AeqB: Called when there is data from both coroutines and A==B. 2058 ** 2059 ** AgtB: Called when there is data from both coroutines and A>B. 2060 ** 2061 ** EofA: Called when data is exhausted from selectA. 2062 ** 2063 ** EofB: Called when data is exhausted from selectB. 2064 ** 2065 ** The implementation of the latter five subroutines depend on which 2066 ** <operator> is used: 2067 ** 2068 ** 2069 ** UNION ALL UNION EXCEPT INTERSECT 2070 ** ------------- ----------------- -------------- ----------------- 2071 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2072 ** 2073 ** AeqB: outA, nextA nextA nextA outA, nextA 2074 ** 2075 ** AgtB: outB, nextB outB, nextB nextB nextB 2076 ** 2077 ** EofA: outB, nextB outB, nextB halt halt 2078 ** 2079 ** EofB: outA, nextA outA, nextA outA, nextA halt 2080 ** 2081 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2082 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2083 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2084 ** following nextX causes a jump to the end of the select processing. 2085 ** 2086 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2087 ** within the output subroutine. The regPrev register set holds the previously 2088 ** output value. A comparison is made against this value and the output 2089 ** is skipped if the next results would be the same as the previous. 2090 ** 2091 ** The implementation plan is to implement the two coroutines and seven 2092 ** subroutines first, then put the control logic at the bottom. Like this: 2093 ** 2094 ** goto Init 2095 ** coA: coroutine for left query (A) 2096 ** coB: coroutine for right query (B) 2097 ** outA: output one row of A 2098 ** outB: output one row of B (UNION and UNION ALL only) 2099 ** EofA: ... 2100 ** EofB: ... 2101 ** AltB: ... 2102 ** AeqB: ... 2103 ** AgtB: ... 2104 ** Init: initialize coroutine registers 2105 ** yield coA 2106 ** if eof(A) goto EofA 2107 ** yield coB 2108 ** if eof(B) goto EofB 2109 ** Cmpr: Compare A, B 2110 ** Jump AltB, AeqB, AgtB 2111 ** End: ... 2112 ** 2113 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2114 ** actually called using Gosub and they do not Return. EofA and EofB loop 2115 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2116 ** and AgtB jump to either L2 or to one of EofA or EofB. 2117 */ 2118 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2119 static int multiSelectOrderBy( 2120 Parse *pParse, /* Parsing context */ 2121 Select *p, /* The right-most of SELECTs to be coded */ 2122 SelectDest *pDest /* What to do with query results */ 2123 ){ 2124 int i, j; /* Loop counters */ 2125 Select *pPrior; /* Another SELECT immediately to our left */ 2126 Vdbe *v; /* Generate code to this VDBE */ 2127 SelectDest destA; /* Destination for coroutine A */ 2128 SelectDest destB; /* Destination for coroutine B */ 2129 int regAddrA; /* Address register for select-A coroutine */ 2130 int regEofA; /* Flag to indicate when select-A is complete */ 2131 int regAddrB; /* Address register for select-B coroutine */ 2132 int regEofB; /* Flag to indicate when select-B is complete */ 2133 int addrSelectA; /* Address of the select-A coroutine */ 2134 int addrSelectB; /* Address of the select-B coroutine */ 2135 int regOutA; /* Address register for the output-A subroutine */ 2136 int regOutB; /* Address register for the output-B subroutine */ 2137 int addrOutA; /* Address of the output-A subroutine */ 2138 int addrOutB = 0; /* Address of the output-B subroutine */ 2139 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2140 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2141 int addrAltB; /* Address of the A<B subroutine */ 2142 int addrAeqB; /* Address of the A==B subroutine */ 2143 int addrAgtB; /* Address of the A>B subroutine */ 2144 int regLimitA; /* Limit register for select-A */ 2145 int regLimitB; /* Limit register for select-A */ 2146 int regPrev; /* A range of registers to hold previous output */ 2147 int savedLimit; /* Saved value of p->iLimit */ 2148 int savedOffset; /* Saved value of p->iOffset */ 2149 int labelCmpr; /* Label for the start of the merge algorithm */ 2150 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2151 int j1; /* Jump instructions that get retargetted */ 2152 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2153 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2154 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2155 sqlite3 *db; /* Database connection */ 2156 ExprList *pOrderBy; /* The ORDER BY clause */ 2157 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2158 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2159 #ifndef SQLITE_OMIT_EXPLAIN 2160 int iSub1; /* EQP id of left-hand query */ 2161 int iSub2; /* EQP id of right-hand query */ 2162 #endif 2163 2164 assert( p->pOrderBy!=0 ); 2165 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2166 db = pParse->db; 2167 v = pParse->pVdbe; 2168 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2169 labelEnd = sqlite3VdbeMakeLabel(v); 2170 labelCmpr = sqlite3VdbeMakeLabel(v); 2171 2172 2173 /* Patch up the ORDER BY clause 2174 */ 2175 op = p->op; 2176 pPrior = p->pPrior; 2177 assert( pPrior->pOrderBy==0 ); 2178 pOrderBy = p->pOrderBy; 2179 assert( pOrderBy ); 2180 nOrderBy = pOrderBy->nExpr; 2181 2182 /* For operators other than UNION ALL we have to make sure that 2183 ** the ORDER BY clause covers every term of the result set. Add 2184 ** terms to the ORDER BY clause as necessary. 2185 */ 2186 if( op!=TK_ALL ){ 2187 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2188 struct ExprList_item *pItem; 2189 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2190 assert( pItem->iCol>0 ); 2191 if( pItem->iCol==i ) break; 2192 } 2193 if( j==nOrderBy ){ 2194 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2195 if( pNew==0 ) return SQLITE_NOMEM; 2196 pNew->flags |= EP_IntValue; 2197 pNew->u.iValue = i; 2198 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2199 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2200 } 2201 } 2202 } 2203 2204 /* Compute the comparison permutation and keyinfo that is used with 2205 ** the permutation used to determine if the next 2206 ** row of results comes from selectA or selectB. Also add explicit 2207 ** collations to the ORDER BY clause terms so that when the subqueries 2208 ** to the right and the left are evaluated, they use the correct 2209 ** collation. 2210 */ 2211 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2212 if( aPermute ){ 2213 struct ExprList_item *pItem; 2214 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2215 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2216 aPermute[i] = pItem->iCol - 1; 2217 } 2218 pKeyMerge = 2219 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2220 if( pKeyMerge ){ 2221 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2222 pKeyMerge->nField = (u16)nOrderBy; 2223 pKeyMerge->enc = ENC(db); 2224 for(i=0; i<nOrderBy; i++){ 2225 CollSeq *pColl; 2226 Expr *pTerm = pOrderBy->a[i].pExpr; 2227 if( pTerm->flags & EP_ExpCollate ){ 2228 pColl = pTerm->pColl; 2229 }else{ 2230 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2231 pTerm->flags |= EP_ExpCollate; 2232 pTerm->pColl = pColl; 2233 } 2234 pKeyMerge->aColl[i] = pColl; 2235 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2236 } 2237 } 2238 }else{ 2239 pKeyMerge = 0; 2240 } 2241 2242 /* Reattach the ORDER BY clause to the query. 2243 */ 2244 p->pOrderBy = pOrderBy; 2245 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2246 2247 /* Allocate a range of temporary registers and the KeyInfo needed 2248 ** for the logic that removes duplicate result rows when the 2249 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2250 */ 2251 if( op==TK_ALL ){ 2252 regPrev = 0; 2253 }else{ 2254 int nExpr = p->pEList->nExpr; 2255 assert( nOrderBy>=nExpr || db->mallocFailed ); 2256 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2257 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2258 pKeyDup = sqlite3DbMallocZero(db, 2259 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2260 if( pKeyDup ){ 2261 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2262 pKeyDup->nField = (u16)nExpr; 2263 pKeyDup->enc = ENC(db); 2264 for(i=0; i<nExpr; i++){ 2265 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2266 pKeyDup->aSortOrder[i] = 0; 2267 } 2268 } 2269 } 2270 2271 /* Separate the left and the right query from one another 2272 */ 2273 p->pPrior = 0; 2274 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2275 if( pPrior->pPrior==0 ){ 2276 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2277 } 2278 2279 /* Compute the limit registers */ 2280 computeLimitRegisters(pParse, p, labelEnd); 2281 if( p->iLimit && op==TK_ALL ){ 2282 regLimitA = ++pParse->nMem; 2283 regLimitB = ++pParse->nMem; 2284 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2285 regLimitA); 2286 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2287 }else{ 2288 regLimitA = regLimitB = 0; 2289 } 2290 sqlite3ExprDelete(db, p->pLimit); 2291 p->pLimit = 0; 2292 sqlite3ExprDelete(db, p->pOffset); 2293 p->pOffset = 0; 2294 2295 regAddrA = ++pParse->nMem; 2296 regEofA = ++pParse->nMem; 2297 regAddrB = ++pParse->nMem; 2298 regEofB = ++pParse->nMem; 2299 regOutA = ++pParse->nMem; 2300 regOutB = ++pParse->nMem; 2301 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2302 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2303 2304 /* Jump past the various subroutines and coroutines to the main 2305 ** merge loop 2306 */ 2307 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2308 addrSelectA = sqlite3VdbeCurrentAddr(v); 2309 2310 2311 /* Generate a coroutine to evaluate the SELECT statement to the 2312 ** left of the compound operator - the "A" select. 2313 */ 2314 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2315 pPrior->iLimit = regLimitA; 2316 explainSetInteger(iSub1, pParse->iNextSelectId); 2317 sqlite3Select(pParse, pPrior, &destA); 2318 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2319 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2320 VdbeNoopComment((v, "End coroutine for left SELECT")); 2321 2322 /* Generate a coroutine to evaluate the SELECT statement on 2323 ** the right - the "B" select 2324 */ 2325 addrSelectB = sqlite3VdbeCurrentAddr(v); 2326 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2327 savedLimit = p->iLimit; 2328 savedOffset = p->iOffset; 2329 p->iLimit = regLimitB; 2330 p->iOffset = 0; 2331 explainSetInteger(iSub2, pParse->iNextSelectId); 2332 sqlite3Select(pParse, p, &destB); 2333 p->iLimit = savedLimit; 2334 p->iOffset = savedOffset; 2335 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2336 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2337 VdbeNoopComment((v, "End coroutine for right SELECT")); 2338 2339 /* Generate a subroutine that outputs the current row of the A 2340 ** select as the next output row of the compound select. 2341 */ 2342 VdbeNoopComment((v, "Output routine for A")); 2343 addrOutA = generateOutputSubroutine(pParse, 2344 p, &destA, pDest, regOutA, 2345 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2346 2347 /* Generate a subroutine that outputs the current row of the B 2348 ** select as the next output row of the compound select. 2349 */ 2350 if( op==TK_ALL || op==TK_UNION ){ 2351 VdbeNoopComment((v, "Output routine for B")); 2352 addrOutB = generateOutputSubroutine(pParse, 2353 p, &destB, pDest, regOutB, 2354 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2355 } 2356 2357 /* Generate a subroutine to run when the results from select A 2358 ** are exhausted and only data in select B remains. 2359 */ 2360 VdbeNoopComment((v, "eof-A subroutine")); 2361 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2362 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2363 }else{ 2364 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2365 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2366 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2367 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2368 p->nSelectRow += pPrior->nSelectRow; 2369 } 2370 2371 /* Generate a subroutine to run when the results from select B 2372 ** are exhausted and only data in select A remains. 2373 */ 2374 if( op==TK_INTERSECT ){ 2375 addrEofB = addrEofA; 2376 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2377 }else{ 2378 VdbeNoopComment((v, "eof-B subroutine")); 2379 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2380 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2381 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2382 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2383 } 2384 2385 /* Generate code to handle the case of A<B 2386 */ 2387 VdbeNoopComment((v, "A-lt-B subroutine")); 2388 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2389 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2390 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2391 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2392 2393 /* Generate code to handle the case of A==B 2394 */ 2395 if( op==TK_ALL ){ 2396 addrAeqB = addrAltB; 2397 }else if( op==TK_INTERSECT ){ 2398 addrAeqB = addrAltB; 2399 addrAltB++; 2400 }else{ 2401 VdbeNoopComment((v, "A-eq-B subroutine")); 2402 addrAeqB = 2403 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2404 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2405 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2406 } 2407 2408 /* Generate code to handle the case of A>B 2409 */ 2410 VdbeNoopComment((v, "A-gt-B subroutine")); 2411 addrAgtB = sqlite3VdbeCurrentAddr(v); 2412 if( op==TK_ALL || op==TK_UNION ){ 2413 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2414 } 2415 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2416 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2417 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2418 2419 /* This code runs once to initialize everything. 2420 */ 2421 sqlite3VdbeJumpHere(v, j1); 2422 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2423 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2424 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2425 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2426 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2427 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2428 2429 /* Implement the main merge loop 2430 */ 2431 sqlite3VdbeResolveLabel(v, labelCmpr); 2432 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2433 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2434 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2435 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2436 2437 /* Release temporary registers 2438 */ 2439 if( regPrev ){ 2440 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2441 } 2442 2443 /* Jump to the this point in order to terminate the query. 2444 */ 2445 sqlite3VdbeResolveLabel(v, labelEnd); 2446 2447 /* Set the number of output columns 2448 */ 2449 if( pDest->eDest==SRT_Output ){ 2450 Select *pFirst = pPrior; 2451 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2452 generateColumnNames(pParse, 0, pFirst->pEList); 2453 } 2454 2455 /* Reassembly the compound query so that it will be freed correctly 2456 ** by the calling function */ 2457 if( p->pPrior ){ 2458 sqlite3SelectDelete(db, p->pPrior); 2459 } 2460 p->pPrior = pPrior; 2461 2462 /*** TBD: Insert subroutine calls to close cursors on incomplete 2463 **** subqueries ****/ 2464 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2465 return SQLITE_OK; 2466 } 2467 #endif 2468 2469 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2470 /* Forward Declarations */ 2471 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2472 static void substSelect(sqlite3*, Select *, int, ExprList *); 2473 2474 /* 2475 ** Scan through the expression pExpr. Replace every reference to 2476 ** a column in table number iTable with a copy of the iColumn-th 2477 ** entry in pEList. (But leave references to the ROWID column 2478 ** unchanged.) 2479 ** 2480 ** This routine is part of the flattening procedure. A subquery 2481 ** whose result set is defined by pEList appears as entry in the 2482 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2483 ** FORM clause entry is iTable. This routine make the necessary 2484 ** changes to pExpr so that it refers directly to the source table 2485 ** of the subquery rather the result set of the subquery. 2486 */ 2487 static Expr *substExpr( 2488 sqlite3 *db, /* Report malloc errors to this connection */ 2489 Expr *pExpr, /* Expr in which substitution occurs */ 2490 int iTable, /* Table to be substituted */ 2491 ExprList *pEList /* Substitute expressions */ 2492 ){ 2493 if( pExpr==0 ) return 0; 2494 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2495 if( pExpr->iColumn<0 ){ 2496 pExpr->op = TK_NULL; 2497 }else{ 2498 Expr *pNew; 2499 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2500 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2501 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2502 if( pNew && pExpr->pColl ){ 2503 pNew->pColl = pExpr->pColl; 2504 } 2505 sqlite3ExprDelete(db, pExpr); 2506 pExpr = pNew; 2507 } 2508 }else{ 2509 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2510 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2511 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2512 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2513 }else{ 2514 substExprList(db, pExpr->x.pList, iTable, pEList); 2515 } 2516 } 2517 return pExpr; 2518 } 2519 static void substExprList( 2520 sqlite3 *db, /* Report malloc errors here */ 2521 ExprList *pList, /* List to scan and in which to make substitutes */ 2522 int iTable, /* Table to be substituted */ 2523 ExprList *pEList /* Substitute values */ 2524 ){ 2525 int i; 2526 if( pList==0 ) return; 2527 for(i=0; i<pList->nExpr; i++){ 2528 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2529 } 2530 } 2531 static void substSelect( 2532 sqlite3 *db, /* Report malloc errors here */ 2533 Select *p, /* SELECT statement in which to make substitutions */ 2534 int iTable, /* Table to be replaced */ 2535 ExprList *pEList /* Substitute values */ 2536 ){ 2537 SrcList *pSrc; 2538 struct SrcList_item *pItem; 2539 int i; 2540 if( !p ) return; 2541 substExprList(db, p->pEList, iTable, pEList); 2542 substExprList(db, p->pGroupBy, iTable, pEList); 2543 substExprList(db, p->pOrderBy, iTable, pEList); 2544 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2545 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2546 substSelect(db, p->pPrior, iTable, pEList); 2547 pSrc = p->pSrc; 2548 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2549 if( ALWAYS(pSrc) ){ 2550 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2551 substSelect(db, pItem->pSelect, iTable, pEList); 2552 } 2553 } 2554 } 2555 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2556 2557 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2558 /* 2559 ** This routine attempts to flatten subqueries in order to speed 2560 ** execution. It returns 1 if it makes changes and 0 if no flattening 2561 ** occurs. 2562 ** 2563 ** To understand the concept of flattening, consider the following 2564 ** query: 2565 ** 2566 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2567 ** 2568 ** The default way of implementing this query is to execute the 2569 ** subquery first and store the results in a temporary table, then 2570 ** run the outer query on that temporary table. This requires two 2571 ** passes over the data. Furthermore, because the temporary table 2572 ** has no indices, the WHERE clause on the outer query cannot be 2573 ** optimized. 2574 ** 2575 ** This routine attempts to rewrite queries such as the above into 2576 ** a single flat select, like this: 2577 ** 2578 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2579 ** 2580 ** The code generated for this simpification gives the same result 2581 ** but only has to scan the data once. And because indices might 2582 ** exist on the table t1, a complete scan of the data might be 2583 ** avoided. 2584 ** 2585 ** Flattening is only attempted if all of the following are true: 2586 ** 2587 ** (1) The subquery and the outer query do not both use aggregates. 2588 ** 2589 ** (2) The subquery is not an aggregate or the outer query is not a join. 2590 ** 2591 ** (3) The subquery is not the right operand of a left outer join 2592 ** (Originally ticket #306. Strengthened by ticket #3300) 2593 ** 2594 ** (4) The subquery is not DISTINCT. 2595 ** 2596 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 2597 ** sub-queries that were excluded from this optimization. Restriction 2598 ** (4) has since been expanded to exclude all DISTINCT subqueries. 2599 ** 2600 ** (6) The subquery does not use aggregates or the outer query is not 2601 ** DISTINCT. 2602 ** 2603 ** (7) The subquery has a FROM clause. 2604 ** 2605 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2606 ** 2607 ** (9) The subquery does not use LIMIT or the outer query does not use 2608 ** aggregates. 2609 ** 2610 ** (10) The subquery does not use aggregates or the outer query does not 2611 ** use LIMIT. 2612 ** 2613 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2614 ** 2615 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2616 ** a separate restriction deriving from ticket #350. 2617 ** 2618 ** (13) The subquery and outer query do not both use LIMIT. 2619 ** 2620 ** (14) The subquery does not use OFFSET. 2621 ** 2622 ** (15) The outer query is not part of a compound select or the 2623 ** subquery does not have a LIMIT clause. 2624 ** (See ticket #2339 and ticket [02a8e81d44]). 2625 ** 2626 ** (16) The outer query is not an aggregate or the subquery does 2627 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2628 ** until we introduced the group_concat() function. 2629 ** 2630 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2631 ** compound clause made up entirely of non-aggregate queries, and 2632 ** the parent query: 2633 ** 2634 ** * is not itself part of a compound select, 2635 ** * is not an aggregate or DISTINCT query, and 2636 ** * has no other tables or sub-selects in the FROM clause. 2637 ** 2638 ** The parent and sub-query may contain WHERE clauses. Subject to 2639 ** rules (11), (13) and (14), they may also contain ORDER BY, 2640 ** LIMIT and OFFSET clauses. 2641 ** 2642 ** (18) If the sub-query is a compound select, then all terms of the 2643 ** ORDER by clause of the parent must be simple references to 2644 ** columns of the sub-query. 2645 ** 2646 ** (19) The subquery does not use LIMIT or the outer query does not 2647 ** have a WHERE clause. 2648 ** 2649 ** (20) If the sub-query is a compound select, then it must not use 2650 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2651 ** somewhat by saying that the terms of the ORDER BY clause must 2652 ** appear as unmodified result columns in the outer query. But 2653 ** have other optimizations in mind to deal with that case. 2654 ** 2655 ** (21) The subquery does not use LIMIT or the outer query is not 2656 ** DISTINCT. (See ticket [752e1646fc]). 2657 ** 2658 ** In this routine, the "p" parameter is a pointer to the outer query. 2659 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2660 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2661 ** 2662 ** If flattening is not attempted, this routine is a no-op and returns 0. 2663 ** If flattening is attempted this routine returns 1. 2664 ** 2665 ** All of the expression analysis must occur on both the outer query and 2666 ** the subquery before this routine runs. 2667 */ 2668 static int flattenSubquery( 2669 Parse *pParse, /* Parsing context */ 2670 Select *p, /* The parent or outer SELECT statement */ 2671 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2672 int isAgg, /* True if outer SELECT uses aggregate functions */ 2673 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2674 ){ 2675 const char *zSavedAuthContext = pParse->zAuthContext; 2676 Select *pParent; 2677 Select *pSub; /* The inner query or "subquery" */ 2678 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2679 SrcList *pSrc; /* The FROM clause of the outer query */ 2680 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2681 ExprList *pList; /* The result set of the outer query */ 2682 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2683 int i; /* Loop counter */ 2684 Expr *pWhere; /* The WHERE clause */ 2685 struct SrcList_item *pSubitem; /* The subquery */ 2686 sqlite3 *db = pParse->db; 2687 2688 /* Check to see if flattening is permitted. Return 0 if not. 2689 */ 2690 assert( p!=0 ); 2691 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2692 if( db->flags & SQLITE_QueryFlattener ) return 0; 2693 pSrc = p->pSrc; 2694 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2695 pSubitem = &pSrc->a[iFrom]; 2696 iParent = pSubitem->iCursor; 2697 pSub = pSubitem->pSelect; 2698 assert( pSub!=0 ); 2699 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2700 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2701 pSubSrc = pSub->pSrc; 2702 assert( pSubSrc ); 2703 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2704 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2705 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2706 ** became arbitrary expressions, we were forced to add restrictions (13) 2707 ** and (14). */ 2708 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2709 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2710 if( p->pRightmost && pSub->pLimit ){ 2711 return 0; /* Restriction (15) */ 2712 } 2713 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2714 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 2715 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 2716 return 0; /* Restrictions (8)(9) */ 2717 } 2718 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2719 return 0; /* Restriction (6) */ 2720 } 2721 if( p->pOrderBy && pSub->pOrderBy ){ 2722 return 0; /* Restriction (11) */ 2723 } 2724 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2725 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2726 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 2727 return 0; /* Restriction (21) */ 2728 } 2729 2730 /* OBSOLETE COMMENT 1: 2731 ** Restriction 3: If the subquery is a join, make sure the subquery is 2732 ** not used as the right operand of an outer join. Examples of why this 2733 ** is not allowed: 2734 ** 2735 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2736 ** 2737 ** If we flatten the above, we would get 2738 ** 2739 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2740 ** 2741 ** which is not at all the same thing. 2742 ** 2743 ** OBSOLETE COMMENT 2: 2744 ** Restriction 12: If the subquery is the right operand of a left outer 2745 ** join, make sure the subquery has no WHERE clause. 2746 ** An examples of why this is not allowed: 2747 ** 2748 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2749 ** 2750 ** If we flatten the above, we would get 2751 ** 2752 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2753 ** 2754 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2755 ** effectively converts the OUTER JOIN into an INNER JOIN. 2756 ** 2757 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2758 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2759 ** is fraught with danger. Best to avoid the whole thing. If the 2760 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2761 */ 2762 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2763 return 0; 2764 } 2765 2766 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2767 ** use only the UNION ALL operator. And none of the simple select queries 2768 ** that make up the compound SELECT are allowed to be aggregate or distinct 2769 ** queries. 2770 */ 2771 if( pSub->pPrior ){ 2772 if( pSub->pOrderBy ){ 2773 return 0; /* Restriction 20 */ 2774 } 2775 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2776 return 0; 2777 } 2778 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2779 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2780 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2781 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2782 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2783 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2784 ){ 2785 return 0; 2786 } 2787 } 2788 2789 /* Restriction 18. */ 2790 if( p->pOrderBy ){ 2791 int ii; 2792 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2793 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2794 } 2795 } 2796 } 2797 2798 /***** If we reach this point, flattening is permitted. *****/ 2799 2800 /* Authorize the subquery */ 2801 pParse->zAuthContext = pSubitem->zName; 2802 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2803 pParse->zAuthContext = zSavedAuthContext; 2804 2805 /* If the sub-query is a compound SELECT statement, then (by restrictions 2806 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2807 ** be of the form: 2808 ** 2809 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2810 ** 2811 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2812 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2813 ** OFFSET clauses and joins them to the left-hand-side of the original 2814 ** using UNION ALL operators. In this case N is the number of simple 2815 ** select statements in the compound sub-query. 2816 ** 2817 ** Example: 2818 ** 2819 ** SELECT a+1 FROM ( 2820 ** SELECT x FROM tab 2821 ** UNION ALL 2822 ** SELECT y FROM tab 2823 ** UNION ALL 2824 ** SELECT abs(z*2) FROM tab2 2825 ** ) WHERE a!=5 ORDER BY 1 2826 ** 2827 ** Transformed into: 2828 ** 2829 ** SELECT x+1 FROM tab WHERE x+1!=5 2830 ** UNION ALL 2831 ** SELECT y+1 FROM tab WHERE y+1!=5 2832 ** UNION ALL 2833 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2834 ** ORDER BY 1 2835 ** 2836 ** We call this the "compound-subquery flattening". 2837 */ 2838 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2839 Select *pNew; 2840 ExprList *pOrderBy = p->pOrderBy; 2841 Expr *pLimit = p->pLimit; 2842 Select *pPrior = p->pPrior; 2843 p->pOrderBy = 0; 2844 p->pSrc = 0; 2845 p->pPrior = 0; 2846 p->pLimit = 0; 2847 pNew = sqlite3SelectDup(db, p, 0); 2848 p->pLimit = pLimit; 2849 p->pOrderBy = pOrderBy; 2850 p->pSrc = pSrc; 2851 p->op = TK_ALL; 2852 p->pRightmost = 0; 2853 if( pNew==0 ){ 2854 pNew = pPrior; 2855 }else{ 2856 pNew->pPrior = pPrior; 2857 pNew->pRightmost = 0; 2858 } 2859 p->pPrior = pNew; 2860 if( db->mallocFailed ) return 1; 2861 } 2862 2863 /* Begin flattening the iFrom-th entry of the FROM clause 2864 ** in the outer query. 2865 */ 2866 pSub = pSub1 = pSubitem->pSelect; 2867 2868 /* Delete the transient table structure associated with the 2869 ** subquery 2870 */ 2871 sqlite3DbFree(db, pSubitem->zDatabase); 2872 sqlite3DbFree(db, pSubitem->zName); 2873 sqlite3DbFree(db, pSubitem->zAlias); 2874 pSubitem->zDatabase = 0; 2875 pSubitem->zName = 0; 2876 pSubitem->zAlias = 0; 2877 pSubitem->pSelect = 0; 2878 2879 /* Defer deleting the Table object associated with the 2880 ** subquery until code generation is 2881 ** complete, since there may still exist Expr.pTab entries that 2882 ** refer to the subquery even after flattening. Ticket #3346. 2883 ** 2884 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2885 */ 2886 if( ALWAYS(pSubitem->pTab!=0) ){ 2887 Table *pTabToDel = pSubitem->pTab; 2888 if( pTabToDel->nRef==1 ){ 2889 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2890 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2891 pToplevel->pZombieTab = pTabToDel; 2892 }else{ 2893 pTabToDel->nRef--; 2894 } 2895 pSubitem->pTab = 0; 2896 } 2897 2898 /* The following loop runs once for each term in a compound-subquery 2899 ** flattening (as described above). If we are doing a different kind 2900 ** of flattening - a flattening other than a compound-subquery flattening - 2901 ** then this loop only runs once. 2902 ** 2903 ** This loop moves all of the FROM elements of the subquery into the 2904 ** the FROM clause of the outer query. Before doing this, remember 2905 ** the cursor number for the original outer query FROM element in 2906 ** iParent. The iParent cursor will never be used. Subsequent code 2907 ** will scan expressions looking for iParent references and replace 2908 ** those references with expressions that resolve to the subquery FROM 2909 ** elements we are now copying in. 2910 */ 2911 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2912 int nSubSrc; 2913 u8 jointype = 0; 2914 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2915 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2916 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2917 2918 if( pSrc ){ 2919 assert( pParent==p ); /* First time through the loop */ 2920 jointype = pSubitem->jointype; 2921 }else{ 2922 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2923 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2924 if( pSrc==0 ){ 2925 assert( db->mallocFailed ); 2926 break; 2927 } 2928 } 2929 2930 /* The subquery uses a single slot of the FROM clause of the outer 2931 ** query. If the subquery has more than one element in its FROM clause, 2932 ** then expand the outer query to make space for it to hold all elements 2933 ** of the subquery. 2934 ** 2935 ** Example: 2936 ** 2937 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2938 ** 2939 ** The outer query has 3 slots in its FROM clause. One slot of the 2940 ** outer query (the middle slot) is used by the subquery. The next 2941 ** block of code will expand the out query to 4 slots. The middle 2942 ** slot is expanded to two slots in order to make space for the 2943 ** two elements in the FROM clause of the subquery. 2944 */ 2945 if( nSubSrc>1 ){ 2946 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2947 if( db->mallocFailed ){ 2948 break; 2949 } 2950 } 2951 2952 /* Transfer the FROM clause terms from the subquery into the 2953 ** outer query. 2954 */ 2955 for(i=0; i<nSubSrc; i++){ 2956 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2957 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2958 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2959 } 2960 pSrc->a[iFrom].jointype = jointype; 2961 2962 /* Now begin substituting subquery result set expressions for 2963 ** references to the iParent in the outer query. 2964 ** 2965 ** Example: 2966 ** 2967 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2968 ** \ \_____________ subquery __________/ / 2969 ** \_____________________ outer query ______________________________/ 2970 ** 2971 ** We look at every expression in the outer query and every place we see 2972 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2973 */ 2974 pList = pParent->pEList; 2975 for(i=0; i<pList->nExpr; i++){ 2976 if( pList->a[i].zName==0 ){ 2977 const char *zSpan = pList->a[i].zSpan; 2978 if( ALWAYS(zSpan) ){ 2979 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 2980 } 2981 } 2982 } 2983 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2984 if( isAgg ){ 2985 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2986 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2987 } 2988 if( pSub->pOrderBy ){ 2989 assert( pParent->pOrderBy==0 ); 2990 pParent->pOrderBy = pSub->pOrderBy; 2991 pSub->pOrderBy = 0; 2992 }else if( pParent->pOrderBy ){ 2993 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2994 } 2995 if( pSub->pWhere ){ 2996 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2997 }else{ 2998 pWhere = 0; 2999 } 3000 if( subqueryIsAgg ){ 3001 assert( pParent->pHaving==0 ); 3002 pParent->pHaving = pParent->pWhere; 3003 pParent->pWhere = pWhere; 3004 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3005 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3006 sqlite3ExprDup(db, pSub->pHaving, 0)); 3007 assert( pParent->pGroupBy==0 ); 3008 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3009 }else{ 3010 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3011 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3012 } 3013 3014 /* The flattened query is distinct if either the inner or the 3015 ** outer query is distinct. 3016 */ 3017 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3018 3019 /* 3020 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3021 ** 3022 ** One is tempted to try to add a and b to combine the limits. But this 3023 ** does not work if either limit is negative. 3024 */ 3025 if( pSub->pLimit ){ 3026 pParent->pLimit = pSub->pLimit; 3027 pSub->pLimit = 0; 3028 } 3029 } 3030 3031 /* Finially, delete what is left of the subquery and return 3032 ** success. 3033 */ 3034 sqlite3SelectDelete(db, pSub1); 3035 3036 return 1; 3037 } 3038 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3039 3040 /* 3041 ** Analyze the SELECT statement passed as an argument to see if it 3042 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3043 ** it is, or 0 otherwise. At present, a query is considered to be 3044 ** a min()/max() query if: 3045 ** 3046 ** 1. There is a single object in the FROM clause. 3047 ** 3048 ** 2. There is a single expression in the result set, and it is 3049 ** either min(x) or max(x), where x is a column reference. 3050 */ 3051 static u8 minMaxQuery(Select *p){ 3052 Expr *pExpr; 3053 ExprList *pEList = p->pEList; 3054 3055 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3056 pExpr = pEList->a[0].pExpr; 3057 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3058 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 3059 pEList = pExpr->x.pList; 3060 if( pEList==0 || pEList->nExpr!=1 ) return 0; 3061 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3062 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3063 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 3064 return WHERE_ORDERBY_MIN; 3065 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 3066 return WHERE_ORDERBY_MAX; 3067 } 3068 return WHERE_ORDERBY_NORMAL; 3069 } 3070 3071 /* 3072 ** The select statement passed as the first argument is an aggregate query. 3073 ** The second argment is the associated aggregate-info object. This 3074 ** function tests if the SELECT is of the form: 3075 ** 3076 ** SELECT count(*) FROM <tbl> 3077 ** 3078 ** where table is a database table, not a sub-select or view. If the query 3079 ** does match this pattern, then a pointer to the Table object representing 3080 ** <tbl> is returned. Otherwise, 0 is returned. 3081 */ 3082 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3083 Table *pTab; 3084 Expr *pExpr; 3085 3086 assert( !p->pGroupBy ); 3087 3088 if( p->pWhere || p->pEList->nExpr!=1 3089 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3090 ){ 3091 return 0; 3092 } 3093 pTab = p->pSrc->a[0].pTab; 3094 pExpr = p->pEList->a[0].pExpr; 3095 assert( pTab && !pTab->pSelect && pExpr ); 3096 3097 if( IsVirtual(pTab) ) return 0; 3098 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3099 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 3100 if( pExpr->flags&EP_Distinct ) return 0; 3101 3102 return pTab; 3103 } 3104 3105 /* 3106 ** If the source-list item passed as an argument was augmented with an 3107 ** INDEXED BY clause, then try to locate the specified index. If there 3108 ** was such a clause and the named index cannot be found, return 3109 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3110 ** pFrom->pIndex and return SQLITE_OK. 3111 */ 3112 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3113 if( pFrom->pTab && pFrom->zIndex ){ 3114 Table *pTab = pFrom->pTab; 3115 char *zIndex = pFrom->zIndex; 3116 Index *pIdx; 3117 for(pIdx=pTab->pIndex; 3118 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3119 pIdx=pIdx->pNext 3120 ); 3121 if( !pIdx ){ 3122 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3123 pParse->checkSchema = 1; 3124 return SQLITE_ERROR; 3125 } 3126 pFrom->pIndex = pIdx; 3127 } 3128 return SQLITE_OK; 3129 } 3130 3131 /* 3132 ** This routine is a Walker callback for "expanding" a SELECT statement. 3133 ** "Expanding" means to do the following: 3134 ** 3135 ** (1) Make sure VDBE cursor numbers have been assigned to every 3136 ** element of the FROM clause. 3137 ** 3138 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3139 ** defines FROM clause. When views appear in the FROM clause, 3140 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3141 ** that implements the view. A copy is made of the view's SELECT 3142 ** statement so that we can freely modify or delete that statement 3143 ** without worrying about messing up the presistent representation 3144 ** of the view. 3145 ** 3146 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3147 ** on joins and the ON and USING clause of joins. 3148 ** 3149 ** (4) Scan the list of columns in the result set (pEList) looking 3150 ** for instances of the "*" operator or the TABLE.* operator. 3151 ** If found, expand each "*" to be every column in every table 3152 ** and TABLE.* to be every column in TABLE. 3153 ** 3154 */ 3155 static int selectExpander(Walker *pWalker, Select *p){ 3156 Parse *pParse = pWalker->pParse; 3157 int i, j, k; 3158 SrcList *pTabList; 3159 ExprList *pEList; 3160 struct SrcList_item *pFrom; 3161 sqlite3 *db = pParse->db; 3162 3163 if( db->mallocFailed ){ 3164 return WRC_Abort; 3165 } 3166 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3167 return WRC_Prune; 3168 } 3169 p->selFlags |= SF_Expanded; 3170 pTabList = p->pSrc; 3171 pEList = p->pEList; 3172 3173 /* Make sure cursor numbers have been assigned to all entries in 3174 ** the FROM clause of the SELECT statement. 3175 */ 3176 sqlite3SrcListAssignCursors(pParse, pTabList); 3177 3178 /* Look up every table named in the FROM clause of the select. If 3179 ** an entry of the FROM clause is a subquery instead of a table or view, 3180 ** then create a transient table structure to describe the subquery. 3181 */ 3182 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3183 Table *pTab; 3184 if( pFrom->pTab!=0 ){ 3185 /* This statement has already been prepared. There is no need 3186 ** to go further. */ 3187 assert( i==0 ); 3188 return WRC_Prune; 3189 } 3190 if( pFrom->zName==0 ){ 3191 #ifndef SQLITE_OMIT_SUBQUERY 3192 Select *pSel = pFrom->pSelect; 3193 /* A sub-query in the FROM clause of a SELECT */ 3194 assert( pSel!=0 ); 3195 assert( pFrom->pTab==0 ); 3196 sqlite3WalkSelect(pWalker, pSel); 3197 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3198 if( pTab==0 ) return WRC_Abort; 3199 pTab->nRef = 1; 3200 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3201 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3202 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3203 pTab->iPKey = -1; 3204 pTab->nRowEst = 1000000; 3205 pTab->tabFlags |= TF_Ephemeral; 3206 #endif 3207 }else{ 3208 /* An ordinary table or view name in the FROM clause */ 3209 assert( pFrom->pTab==0 ); 3210 pFrom->pTab = pTab = 3211 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3212 if( pTab==0 ) return WRC_Abort; 3213 pTab->nRef++; 3214 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3215 if( pTab->pSelect || IsVirtual(pTab) ){ 3216 /* We reach here if the named table is a really a view */ 3217 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3218 assert( pFrom->pSelect==0 ); 3219 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3220 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3221 } 3222 #endif 3223 } 3224 3225 /* Locate the index named by the INDEXED BY clause, if any. */ 3226 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3227 return WRC_Abort; 3228 } 3229 } 3230 3231 /* Process NATURAL keywords, and ON and USING clauses of joins. 3232 */ 3233 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3234 return WRC_Abort; 3235 } 3236 3237 /* For every "*" that occurs in the column list, insert the names of 3238 ** all columns in all tables. And for every TABLE.* insert the names 3239 ** of all columns in TABLE. The parser inserted a special expression 3240 ** with the TK_ALL operator for each "*" that it found in the column list. 3241 ** The following code just has to locate the TK_ALL expressions and expand 3242 ** each one to the list of all columns in all tables. 3243 ** 3244 ** The first loop just checks to see if there are any "*" operators 3245 ** that need expanding. 3246 */ 3247 for(k=0; k<pEList->nExpr; k++){ 3248 Expr *pE = pEList->a[k].pExpr; 3249 if( pE->op==TK_ALL ) break; 3250 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3251 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3252 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3253 } 3254 if( k<pEList->nExpr ){ 3255 /* 3256 ** If we get here it means the result set contains one or more "*" 3257 ** operators that need to be expanded. Loop through each expression 3258 ** in the result set and expand them one by one. 3259 */ 3260 struct ExprList_item *a = pEList->a; 3261 ExprList *pNew = 0; 3262 int flags = pParse->db->flags; 3263 int longNames = (flags & SQLITE_FullColNames)!=0 3264 && (flags & SQLITE_ShortColNames)==0; 3265 3266 for(k=0; k<pEList->nExpr; k++){ 3267 Expr *pE = a[k].pExpr; 3268 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3269 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3270 /* This particular expression does not need to be expanded. 3271 */ 3272 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3273 if( pNew ){ 3274 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3275 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3276 a[k].zName = 0; 3277 a[k].zSpan = 0; 3278 } 3279 a[k].pExpr = 0; 3280 }else{ 3281 /* This expression is a "*" or a "TABLE.*" and needs to be 3282 ** expanded. */ 3283 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3284 char *zTName; /* text of name of TABLE */ 3285 if( pE->op==TK_DOT ){ 3286 assert( pE->pLeft!=0 ); 3287 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3288 zTName = pE->pLeft->u.zToken; 3289 }else{ 3290 zTName = 0; 3291 } 3292 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3293 Table *pTab = pFrom->pTab; 3294 char *zTabName = pFrom->zAlias; 3295 if( zTabName==0 ){ 3296 zTabName = pTab->zName; 3297 } 3298 if( db->mallocFailed ) break; 3299 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3300 continue; 3301 } 3302 tableSeen = 1; 3303 for(j=0; j<pTab->nCol; j++){ 3304 Expr *pExpr, *pRight; 3305 char *zName = pTab->aCol[j].zName; 3306 char *zColname; /* The computed column name */ 3307 char *zToFree; /* Malloced string that needs to be freed */ 3308 Token sColname; /* Computed column name as a token */ 3309 3310 /* If a column is marked as 'hidden' (currently only possible 3311 ** for virtual tables), do not include it in the expanded 3312 ** result-set list. 3313 */ 3314 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3315 assert(IsVirtual(pTab)); 3316 continue; 3317 } 3318 3319 if( i>0 && zTName==0 ){ 3320 if( (pFrom->jointype & JT_NATURAL)!=0 3321 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3322 ){ 3323 /* In a NATURAL join, omit the join columns from the 3324 ** table to the right of the join */ 3325 continue; 3326 } 3327 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3328 /* In a join with a USING clause, omit columns in the 3329 ** using clause from the table on the right. */ 3330 continue; 3331 } 3332 } 3333 pRight = sqlite3Expr(db, TK_ID, zName); 3334 zColname = zName; 3335 zToFree = 0; 3336 if( longNames || pTabList->nSrc>1 ){ 3337 Expr *pLeft; 3338 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3339 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3340 if( longNames ){ 3341 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3342 zToFree = zColname; 3343 } 3344 }else{ 3345 pExpr = pRight; 3346 } 3347 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3348 sColname.z = zColname; 3349 sColname.n = sqlite3Strlen30(zColname); 3350 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3351 sqlite3DbFree(db, zToFree); 3352 } 3353 } 3354 if( !tableSeen ){ 3355 if( zTName ){ 3356 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3357 }else{ 3358 sqlite3ErrorMsg(pParse, "no tables specified"); 3359 } 3360 } 3361 } 3362 } 3363 sqlite3ExprListDelete(db, pEList); 3364 p->pEList = pNew; 3365 } 3366 #if SQLITE_MAX_COLUMN 3367 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3368 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3369 } 3370 #endif 3371 return WRC_Continue; 3372 } 3373 3374 /* 3375 ** No-op routine for the parse-tree walker. 3376 ** 3377 ** When this routine is the Walker.xExprCallback then expression trees 3378 ** are walked without any actions being taken at each node. Presumably, 3379 ** when this routine is used for Walker.xExprCallback then 3380 ** Walker.xSelectCallback is set to do something useful for every 3381 ** subquery in the parser tree. 3382 */ 3383 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3384 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3385 return WRC_Continue; 3386 } 3387 3388 /* 3389 ** This routine "expands" a SELECT statement and all of its subqueries. 3390 ** For additional information on what it means to "expand" a SELECT 3391 ** statement, see the comment on the selectExpand worker callback above. 3392 ** 3393 ** Expanding a SELECT statement is the first step in processing a 3394 ** SELECT statement. The SELECT statement must be expanded before 3395 ** name resolution is performed. 3396 ** 3397 ** If anything goes wrong, an error message is written into pParse. 3398 ** The calling function can detect the problem by looking at pParse->nErr 3399 ** and/or pParse->db->mallocFailed. 3400 */ 3401 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3402 Walker w; 3403 w.xSelectCallback = selectExpander; 3404 w.xExprCallback = exprWalkNoop; 3405 w.pParse = pParse; 3406 sqlite3WalkSelect(&w, pSelect); 3407 } 3408 3409 3410 #ifndef SQLITE_OMIT_SUBQUERY 3411 /* 3412 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3413 ** interface. 3414 ** 3415 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3416 ** information to the Table structure that represents the result set 3417 ** of that subquery. 3418 ** 3419 ** The Table structure that represents the result set was constructed 3420 ** by selectExpander() but the type and collation information was omitted 3421 ** at that point because identifiers had not yet been resolved. This 3422 ** routine is called after identifier resolution. 3423 */ 3424 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3425 Parse *pParse; 3426 int i; 3427 SrcList *pTabList; 3428 struct SrcList_item *pFrom; 3429 3430 assert( p->selFlags & SF_Resolved ); 3431 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3432 p->selFlags |= SF_HasTypeInfo; 3433 pParse = pWalker->pParse; 3434 pTabList = p->pSrc; 3435 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3436 Table *pTab = pFrom->pTab; 3437 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3438 /* A sub-query in the FROM clause of a SELECT */ 3439 Select *pSel = pFrom->pSelect; 3440 assert( pSel ); 3441 while( pSel->pPrior ) pSel = pSel->pPrior; 3442 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3443 } 3444 } 3445 } 3446 return WRC_Continue; 3447 } 3448 #endif 3449 3450 3451 /* 3452 ** This routine adds datatype and collating sequence information to 3453 ** the Table structures of all FROM-clause subqueries in a 3454 ** SELECT statement. 3455 ** 3456 ** Use this routine after name resolution. 3457 */ 3458 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3459 #ifndef SQLITE_OMIT_SUBQUERY 3460 Walker w; 3461 w.xSelectCallback = selectAddSubqueryTypeInfo; 3462 w.xExprCallback = exprWalkNoop; 3463 w.pParse = pParse; 3464 sqlite3WalkSelect(&w, pSelect); 3465 #endif 3466 } 3467 3468 3469 /* 3470 ** This routine sets of a SELECT statement for processing. The 3471 ** following is accomplished: 3472 ** 3473 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3474 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3475 ** * ON and USING clauses are shifted into WHERE statements 3476 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3477 ** * Identifiers in expression are matched to tables. 3478 ** 3479 ** This routine acts recursively on all subqueries within the SELECT. 3480 */ 3481 void sqlite3SelectPrep( 3482 Parse *pParse, /* The parser context */ 3483 Select *p, /* The SELECT statement being coded. */ 3484 NameContext *pOuterNC /* Name context for container */ 3485 ){ 3486 sqlite3 *db; 3487 if( NEVER(p==0) ) return; 3488 db = pParse->db; 3489 if( p->selFlags & SF_HasTypeInfo ) return; 3490 sqlite3SelectExpand(pParse, p); 3491 if( pParse->nErr || db->mallocFailed ) return; 3492 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3493 if( pParse->nErr || db->mallocFailed ) return; 3494 sqlite3SelectAddTypeInfo(pParse, p); 3495 } 3496 3497 /* 3498 ** Reset the aggregate accumulator. 3499 ** 3500 ** The aggregate accumulator is a set of memory cells that hold 3501 ** intermediate results while calculating an aggregate. This 3502 ** routine simply stores NULLs in all of those memory cells. 3503 */ 3504 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3505 Vdbe *v = pParse->pVdbe; 3506 int i; 3507 struct AggInfo_func *pFunc; 3508 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3509 return; 3510 } 3511 for(i=0; i<pAggInfo->nColumn; i++){ 3512 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3513 } 3514 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3515 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3516 if( pFunc->iDistinct>=0 ){ 3517 Expr *pE = pFunc->pExpr; 3518 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3519 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3520 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3521 "argument"); 3522 pFunc->iDistinct = -1; 3523 }else{ 3524 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3525 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3526 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3527 } 3528 } 3529 } 3530 } 3531 3532 /* 3533 ** Invoke the OP_AggFinalize opcode for every aggregate function 3534 ** in the AggInfo structure. 3535 */ 3536 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3537 Vdbe *v = pParse->pVdbe; 3538 int i; 3539 struct AggInfo_func *pF; 3540 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3541 ExprList *pList = pF->pExpr->x.pList; 3542 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3543 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3544 (void*)pF->pFunc, P4_FUNCDEF); 3545 } 3546 } 3547 3548 /* 3549 ** Update the accumulator memory cells for an aggregate based on 3550 ** the current cursor position. 3551 */ 3552 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3553 Vdbe *v = pParse->pVdbe; 3554 int i; 3555 struct AggInfo_func *pF; 3556 struct AggInfo_col *pC; 3557 3558 pAggInfo->directMode = 1; 3559 sqlite3ExprCacheClear(pParse); 3560 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3561 int nArg; 3562 int addrNext = 0; 3563 int regAgg; 3564 ExprList *pList = pF->pExpr->x.pList; 3565 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3566 if( pList ){ 3567 nArg = pList->nExpr; 3568 regAgg = sqlite3GetTempRange(pParse, nArg); 3569 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 3570 }else{ 3571 nArg = 0; 3572 regAgg = 0; 3573 } 3574 if( pF->iDistinct>=0 ){ 3575 addrNext = sqlite3VdbeMakeLabel(v); 3576 assert( nArg==1 ); 3577 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3578 } 3579 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3580 CollSeq *pColl = 0; 3581 struct ExprList_item *pItem; 3582 int j; 3583 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3584 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3585 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3586 } 3587 if( !pColl ){ 3588 pColl = pParse->db->pDfltColl; 3589 } 3590 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3591 } 3592 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3593 (void*)pF->pFunc, P4_FUNCDEF); 3594 sqlite3VdbeChangeP5(v, (u8)nArg); 3595 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3596 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3597 if( addrNext ){ 3598 sqlite3VdbeResolveLabel(v, addrNext); 3599 sqlite3ExprCacheClear(pParse); 3600 } 3601 } 3602 3603 /* Before populating the accumulator registers, clear the column cache. 3604 ** Otherwise, if any of the required column values are already present 3605 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3606 ** to pC->iMem. But by the time the value is used, the original register 3607 ** may have been used, invalidating the underlying buffer holding the 3608 ** text or blob value. See ticket [883034dcb5]. 3609 ** 3610 ** Another solution would be to change the OP_SCopy used to copy cached 3611 ** values to an OP_Copy. 3612 */ 3613 sqlite3ExprCacheClear(pParse); 3614 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3615 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3616 } 3617 pAggInfo->directMode = 0; 3618 sqlite3ExprCacheClear(pParse); 3619 } 3620 3621 /* 3622 ** Add a single OP_Explain instruction to the VDBE to explain a simple 3623 ** count(*) query ("SELECT count(*) FROM pTab"). 3624 */ 3625 #ifndef SQLITE_OMIT_EXPLAIN 3626 static void explainSimpleCount( 3627 Parse *pParse, /* Parse context */ 3628 Table *pTab, /* Table being queried */ 3629 Index *pIdx /* Index used to optimize scan, or NULL */ 3630 ){ 3631 if( pParse->explain==2 ){ 3632 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", 3633 pTab->zName, 3634 pIdx ? "USING COVERING INDEX " : "", 3635 pIdx ? pIdx->zName : "", 3636 pTab->nRowEst 3637 ); 3638 sqlite3VdbeAddOp4( 3639 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 3640 ); 3641 } 3642 } 3643 #else 3644 # define explainSimpleCount(a,b,c) 3645 #endif 3646 3647 /* 3648 ** Generate code for the SELECT statement given in the p argument. 3649 ** 3650 ** The results are distributed in various ways depending on the 3651 ** contents of the SelectDest structure pointed to by argument pDest 3652 ** as follows: 3653 ** 3654 ** pDest->eDest Result 3655 ** ------------ ------------------------------------------- 3656 ** SRT_Output Generate a row of output (using the OP_ResultRow 3657 ** opcode) for each row in the result set. 3658 ** 3659 ** SRT_Mem Only valid if the result is a single column. 3660 ** Store the first column of the first result row 3661 ** in register pDest->iParm then abandon the rest 3662 ** of the query. This destination implies "LIMIT 1". 3663 ** 3664 ** SRT_Set The result must be a single column. Store each 3665 ** row of result as the key in table pDest->iParm. 3666 ** Apply the affinity pDest->affinity before storing 3667 ** results. Used to implement "IN (SELECT ...)". 3668 ** 3669 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3670 ** 3671 ** SRT_Except Remove results from the temporary table pDest->iParm. 3672 ** 3673 ** SRT_Table Store results in temporary table pDest->iParm. 3674 ** This is like SRT_EphemTab except that the table 3675 ** is assumed to already be open. 3676 ** 3677 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3678 ** the result there. The cursor is left open after 3679 ** returning. This is like SRT_Table except that 3680 ** this destination uses OP_OpenEphemeral to create 3681 ** the table first. 3682 ** 3683 ** SRT_Coroutine Generate a co-routine that returns a new row of 3684 ** results each time it is invoked. The entry point 3685 ** of the co-routine is stored in register pDest->iParm. 3686 ** 3687 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3688 ** set is not empty. 3689 ** 3690 ** SRT_Discard Throw the results away. This is used by SELECT 3691 ** statements within triggers whose only purpose is 3692 ** the side-effects of functions. 3693 ** 3694 ** This routine returns the number of errors. If any errors are 3695 ** encountered, then an appropriate error message is left in 3696 ** pParse->zErrMsg. 3697 ** 3698 ** This routine does NOT free the Select structure passed in. The 3699 ** calling function needs to do that. 3700 */ 3701 int sqlite3Select( 3702 Parse *pParse, /* The parser context */ 3703 Select *p, /* The SELECT statement being coded. */ 3704 SelectDest *pDest /* What to do with the query results */ 3705 ){ 3706 int i, j; /* Loop counters */ 3707 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3708 Vdbe *v; /* The virtual machine under construction */ 3709 int isAgg; /* True for select lists like "count(*)" */ 3710 ExprList *pEList; /* List of columns to extract. */ 3711 SrcList *pTabList; /* List of tables to select from */ 3712 Expr *pWhere; /* The WHERE clause. May be NULL */ 3713 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3714 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3715 Expr *pHaving; /* The HAVING clause. May be NULL */ 3716 int isDistinct; /* True if the DISTINCT keyword is present */ 3717 int distinct; /* Table to use for the distinct set */ 3718 int rc = 1; /* Value to return from this function */ 3719 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3720 AggInfo sAggInfo; /* Information used by aggregate queries */ 3721 int iEnd; /* Address of the end of the query */ 3722 sqlite3 *db; /* The database connection */ 3723 3724 #ifndef SQLITE_OMIT_EXPLAIN 3725 int iRestoreSelectId = pParse->iSelectId; 3726 pParse->iSelectId = pParse->iNextSelectId++; 3727 #endif 3728 3729 db = pParse->db; 3730 if( p==0 || db->mallocFailed || pParse->nErr ){ 3731 return 1; 3732 } 3733 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3734 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3735 3736 if( IgnorableOrderby(pDest) ){ 3737 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3738 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3739 /* If ORDER BY makes no difference in the output then neither does 3740 ** DISTINCT so it can be removed too. */ 3741 sqlite3ExprListDelete(db, p->pOrderBy); 3742 p->pOrderBy = 0; 3743 p->selFlags &= ~SF_Distinct; 3744 } 3745 sqlite3SelectPrep(pParse, p, 0); 3746 pOrderBy = p->pOrderBy; 3747 pTabList = p->pSrc; 3748 pEList = p->pEList; 3749 if( pParse->nErr || db->mallocFailed ){ 3750 goto select_end; 3751 } 3752 isAgg = (p->selFlags & SF_Aggregate)!=0; 3753 assert( pEList!=0 ); 3754 3755 /* Begin generating code. 3756 */ 3757 v = sqlite3GetVdbe(pParse); 3758 if( v==0 ) goto select_end; 3759 3760 /* If writing to memory or generating a set 3761 ** only a single column may be output. 3762 */ 3763 #ifndef SQLITE_OMIT_SUBQUERY 3764 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3765 goto select_end; 3766 } 3767 #endif 3768 3769 /* Generate code for all sub-queries in the FROM clause 3770 */ 3771 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3772 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3773 struct SrcList_item *pItem = &pTabList->a[i]; 3774 SelectDest dest; 3775 Select *pSub = pItem->pSelect; 3776 int isAggSub; 3777 3778 if( pSub==0 || pItem->isPopulated ) continue; 3779 3780 /* Increment Parse.nHeight by the height of the largest expression 3781 ** tree refered to by this, the parent select. The child select 3782 ** may contain expression trees of at most 3783 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3784 ** more conservative than necessary, but much easier than enforcing 3785 ** an exact limit. 3786 */ 3787 pParse->nHeight += sqlite3SelectExprHeight(p); 3788 3789 /* Check to see if the subquery can be absorbed into the parent. */ 3790 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3791 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3792 if( isAggSub ){ 3793 isAgg = 1; 3794 p->selFlags |= SF_Aggregate; 3795 } 3796 i = -1; 3797 }else{ 3798 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3799 assert( pItem->isPopulated==0 ); 3800 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 3801 sqlite3Select(pParse, pSub, &dest); 3802 pItem->isPopulated = 1; 3803 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 3804 } 3805 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3806 goto select_end; 3807 } 3808 pParse->nHeight -= sqlite3SelectExprHeight(p); 3809 pTabList = p->pSrc; 3810 if( !IgnorableOrderby(pDest) ){ 3811 pOrderBy = p->pOrderBy; 3812 } 3813 } 3814 pEList = p->pEList; 3815 #endif 3816 pWhere = p->pWhere; 3817 pGroupBy = p->pGroupBy; 3818 pHaving = p->pHaving; 3819 isDistinct = (p->selFlags & SF_Distinct)!=0; 3820 3821 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3822 /* If there is are a sequence of queries, do the earlier ones first. 3823 */ 3824 if( p->pPrior ){ 3825 if( p->pRightmost==0 ){ 3826 Select *pLoop, *pRight = 0; 3827 int cnt = 0; 3828 int mxSelect; 3829 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3830 pLoop->pRightmost = p; 3831 pLoop->pNext = pRight; 3832 pRight = pLoop; 3833 } 3834 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3835 if( mxSelect && cnt>mxSelect ){ 3836 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3837 goto select_end; 3838 } 3839 } 3840 rc = multiSelect(pParse, p, pDest); 3841 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 3842 return rc; 3843 } 3844 #endif 3845 3846 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3847 ** GROUP BY might use an index, DISTINCT never does. 3848 */ 3849 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3850 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3851 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3852 pGroupBy = p->pGroupBy; 3853 p->selFlags &= ~SF_Distinct; 3854 } 3855 3856 /* If there is both a GROUP BY and an ORDER BY clause and they are 3857 ** identical, then disable the ORDER BY clause since the GROUP BY 3858 ** will cause elements to come out in the correct order. This is 3859 ** an optimization - the correct answer should result regardless. 3860 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 3861 ** to disable this optimization for testing purposes. 3862 */ 3863 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 3864 && (db->flags & SQLITE_GroupByOrder)==0 ){ 3865 pOrderBy = 0; 3866 } 3867 3868 /* If there is an ORDER BY clause, then this sorting 3869 ** index might end up being unused if the data can be 3870 ** extracted in pre-sorted order. If that is the case, then the 3871 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3872 ** we figure out that the sorting index is not needed. The addrSortIndex 3873 ** variable is used to facilitate that change. 3874 */ 3875 if( pOrderBy ){ 3876 KeyInfo *pKeyInfo; 3877 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3878 pOrderBy->iECursor = pParse->nTab++; 3879 p->addrOpenEphm[2] = addrSortIndex = 3880 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3881 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3882 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3883 }else{ 3884 addrSortIndex = -1; 3885 } 3886 3887 /* If the output is destined for a temporary table, open that table. 3888 */ 3889 if( pDest->eDest==SRT_EphemTab ){ 3890 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3891 } 3892 3893 /* Set the limiter. 3894 */ 3895 iEnd = sqlite3VdbeMakeLabel(v); 3896 p->nSelectRow = (double)LARGEST_INT64; 3897 computeLimitRegisters(pParse, p, iEnd); 3898 3899 /* Open a virtual index to use for the distinct set. 3900 */ 3901 if( p->selFlags & SF_Distinct ){ 3902 KeyInfo *pKeyInfo; 3903 assert( isAgg || pGroupBy ); 3904 distinct = pParse->nTab++; 3905 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3906 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3907 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3908 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 3909 }else{ 3910 distinct = -1; 3911 } 3912 3913 /* Aggregate and non-aggregate queries are handled differently */ 3914 if( !isAgg && pGroupBy==0 ){ 3915 /* This case is for non-aggregate queries 3916 ** Begin the database scan 3917 */ 3918 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3919 if( pWInfo==0 ) goto select_end; 3920 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; 3921 3922 /* If sorting index that was created by a prior OP_OpenEphemeral 3923 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3924 ** into an OP_Noop. 3925 */ 3926 if( addrSortIndex>=0 && pOrderBy==0 ){ 3927 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3928 p->addrOpenEphm[2] = -1; 3929 } 3930 3931 /* Use the standard inner loop 3932 */ 3933 assert(!isDistinct); 3934 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3935 pWInfo->iContinue, pWInfo->iBreak); 3936 3937 /* End the database scan loop. 3938 */ 3939 sqlite3WhereEnd(pWInfo); 3940 }else{ 3941 /* This is the processing for aggregate queries */ 3942 NameContext sNC; /* Name context for processing aggregate information */ 3943 int iAMem; /* First Mem address for storing current GROUP BY */ 3944 int iBMem; /* First Mem address for previous GROUP BY */ 3945 int iUseFlag; /* Mem address holding flag indicating that at least 3946 ** one row of the input to the aggregator has been 3947 ** processed */ 3948 int iAbortFlag; /* Mem address which causes query abort if positive */ 3949 int groupBySort; /* Rows come from source in GROUP BY order */ 3950 int addrEnd; /* End of processing for this SELECT */ 3951 3952 /* Remove any and all aliases between the result set and the 3953 ** GROUP BY clause. 3954 */ 3955 if( pGroupBy ){ 3956 int k; /* Loop counter */ 3957 struct ExprList_item *pItem; /* For looping over expression in a list */ 3958 3959 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3960 pItem->iAlias = 0; 3961 } 3962 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3963 pItem->iAlias = 0; 3964 } 3965 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; 3966 }else{ 3967 p->nSelectRow = (double)1; 3968 } 3969 3970 3971 /* Create a label to jump to when we want to abort the query */ 3972 addrEnd = sqlite3VdbeMakeLabel(v); 3973 3974 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3975 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3976 ** SELECT statement. 3977 */ 3978 memset(&sNC, 0, sizeof(sNC)); 3979 sNC.pParse = pParse; 3980 sNC.pSrcList = pTabList; 3981 sNC.pAggInfo = &sAggInfo; 3982 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3983 sAggInfo.pGroupBy = pGroupBy; 3984 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3985 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3986 if( pHaving ){ 3987 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3988 } 3989 sAggInfo.nAccumulator = sAggInfo.nColumn; 3990 for(i=0; i<sAggInfo.nFunc; i++){ 3991 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3992 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3993 } 3994 if( db->mallocFailed ) goto select_end; 3995 3996 /* Processing for aggregates with GROUP BY is very different and 3997 ** much more complex than aggregates without a GROUP BY. 3998 */ 3999 if( pGroupBy ){ 4000 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4001 int j1; /* A-vs-B comparision jump */ 4002 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4003 int regOutputRow; /* Return address register for output subroutine */ 4004 int addrSetAbort; /* Set the abort flag and return */ 4005 int addrTopOfLoop; /* Top of the input loop */ 4006 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4007 int addrReset; /* Subroutine for resetting the accumulator */ 4008 int regReset; /* Return address register for reset subroutine */ 4009 4010 /* If there is a GROUP BY clause we might need a sorting index to 4011 ** implement it. Allocate that sorting index now. If it turns out 4012 ** that we do not need it after all, the OpenEphemeral instruction 4013 ** will be converted into a Noop. 4014 */ 4015 sAggInfo.sortingIdx = pParse->nTab++; 4016 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 4017 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4018 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4019 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4020 4021 /* Initialize memory locations used by GROUP BY aggregate processing 4022 */ 4023 iUseFlag = ++pParse->nMem; 4024 iAbortFlag = ++pParse->nMem; 4025 regOutputRow = ++pParse->nMem; 4026 addrOutputRow = sqlite3VdbeMakeLabel(v); 4027 regReset = ++pParse->nMem; 4028 addrReset = sqlite3VdbeMakeLabel(v); 4029 iAMem = pParse->nMem + 1; 4030 pParse->nMem += pGroupBy->nExpr; 4031 iBMem = pParse->nMem + 1; 4032 pParse->nMem += pGroupBy->nExpr; 4033 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4034 VdbeComment((v, "clear abort flag")); 4035 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4036 VdbeComment((v, "indicate accumulator empty")); 4037 4038 /* Begin a loop that will extract all source rows in GROUP BY order. 4039 ** This might involve two separate loops with an OP_Sort in between, or 4040 ** it might be a single loop that uses an index to extract information 4041 ** in the right order to begin with. 4042 */ 4043 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4044 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 4045 if( pWInfo==0 ) goto select_end; 4046 if( pGroupBy==0 ){ 4047 /* The optimizer is able to deliver rows in group by order so 4048 ** we do not have to sort. The OP_OpenEphemeral table will be 4049 ** cancelled later because we still need to use the pKeyInfo 4050 */ 4051 pGroupBy = p->pGroupBy; 4052 groupBySort = 0; 4053 }else{ 4054 /* Rows are coming out in undetermined order. We have to push 4055 ** each row into a sorting index, terminate the first loop, 4056 ** then loop over the sorting index in order to get the output 4057 ** in sorted order 4058 */ 4059 int regBase; 4060 int regRecord; 4061 int nCol; 4062 int nGroupBy; 4063 4064 explainTempTable(pParse, 4065 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); 4066 4067 groupBySort = 1; 4068 nGroupBy = pGroupBy->nExpr; 4069 nCol = nGroupBy + 1; 4070 j = nGroupBy+1; 4071 for(i=0; i<sAggInfo.nColumn; i++){ 4072 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4073 nCol++; 4074 j++; 4075 } 4076 } 4077 regBase = sqlite3GetTempRange(pParse, nCol); 4078 sqlite3ExprCacheClear(pParse); 4079 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4080 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4081 j = nGroupBy+1; 4082 for(i=0; i<sAggInfo.nColumn; i++){ 4083 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4084 if( pCol->iSorterColumn>=j ){ 4085 int r1 = j + regBase; 4086 int r2; 4087 4088 r2 = sqlite3ExprCodeGetColumn(pParse, 4089 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 4090 if( r1!=r2 ){ 4091 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4092 } 4093 j++; 4094 } 4095 } 4096 regRecord = sqlite3GetTempReg(pParse); 4097 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4098 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 4099 sqlite3ReleaseTempReg(pParse, regRecord); 4100 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4101 sqlite3WhereEnd(pWInfo); 4102 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 4103 VdbeComment((v, "GROUP BY sort")); 4104 sAggInfo.useSortingIdx = 1; 4105 sqlite3ExprCacheClear(pParse); 4106 } 4107 4108 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4109 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4110 ** Then compare the current GROUP BY terms against the GROUP BY terms 4111 ** from the previous row currently stored in a0, a1, a2... 4112 */ 4113 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4114 sqlite3ExprCacheClear(pParse); 4115 for(j=0; j<pGroupBy->nExpr; j++){ 4116 if( groupBySort ){ 4117 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 4118 }else{ 4119 sAggInfo.directMode = 1; 4120 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4121 } 4122 } 4123 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4124 (char*)pKeyInfo, P4_KEYINFO); 4125 j1 = sqlite3VdbeCurrentAddr(v); 4126 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4127 4128 /* Generate code that runs whenever the GROUP BY changes. 4129 ** Changes in the GROUP BY are detected by the previous code 4130 ** block. If there were no changes, this block is skipped. 4131 ** 4132 ** This code copies current group by terms in b0,b1,b2,... 4133 ** over to a0,a1,a2. It then calls the output subroutine 4134 ** and resets the aggregate accumulator registers in preparation 4135 ** for the next GROUP BY batch. 4136 */ 4137 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4138 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4139 VdbeComment((v, "output one row")); 4140 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4141 VdbeComment((v, "check abort flag")); 4142 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4143 VdbeComment((v, "reset accumulator")); 4144 4145 /* Update the aggregate accumulators based on the content of 4146 ** the current row 4147 */ 4148 sqlite3VdbeJumpHere(v, j1); 4149 updateAccumulator(pParse, &sAggInfo); 4150 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4151 VdbeComment((v, "indicate data in accumulator")); 4152 4153 /* End of the loop 4154 */ 4155 if( groupBySort ){ 4156 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 4157 }else{ 4158 sqlite3WhereEnd(pWInfo); 4159 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 4160 } 4161 4162 /* Output the final row of result 4163 */ 4164 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4165 VdbeComment((v, "output final row")); 4166 4167 /* Jump over the subroutines 4168 */ 4169 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4170 4171 /* Generate a subroutine that outputs a single row of the result 4172 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4173 ** is less than or equal to zero, the subroutine is a no-op. If 4174 ** the processing calls for the query to abort, this subroutine 4175 ** increments the iAbortFlag memory location before returning in 4176 ** order to signal the caller to abort. 4177 */ 4178 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4179 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4180 VdbeComment((v, "set abort flag")); 4181 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4182 sqlite3VdbeResolveLabel(v, addrOutputRow); 4183 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4184 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4185 VdbeComment((v, "Groupby result generator entry point")); 4186 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4187 finalizeAggFunctions(pParse, &sAggInfo); 4188 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4189 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4190 distinct, pDest, 4191 addrOutputRow+1, addrSetAbort); 4192 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4193 VdbeComment((v, "end groupby result generator")); 4194 4195 /* Generate a subroutine that will reset the group-by accumulator 4196 */ 4197 sqlite3VdbeResolveLabel(v, addrReset); 4198 resetAccumulator(pParse, &sAggInfo); 4199 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4200 4201 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4202 else { 4203 ExprList *pDel = 0; 4204 #ifndef SQLITE_OMIT_BTREECOUNT 4205 Table *pTab; 4206 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4207 /* If isSimpleCount() returns a pointer to a Table structure, then 4208 ** the SQL statement is of the form: 4209 ** 4210 ** SELECT count(*) FROM <tbl> 4211 ** 4212 ** where the Table structure returned represents table <tbl>. 4213 ** 4214 ** This statement is so common that it is optimized specially. The 4215 ** OP_Count instruction is executed either on the intkey table that 4216 ** contains the data for table <tbl> or on one of its indexes. It 4217 ** is better to execute the op on an index, as indexes are almost 4218 ** always spread across less pages than their corresponding tables. 4219 */ 4220 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4221 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4222 Index *pIdx; /* Iterator variable */ 4223 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4224 Index *pBest = 0; /* Best index found so far */ 4225 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4226 4227 sqlite3CodeVerifySchema(pParse, iDb); 4228 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4229 4230 /* Search for the index that has the least amount of columns. If 4231 ** there is such an index, and it has less columns than the table 4232 ** does, then we can assume that it consumes less space on disk and 4233 ** will therefore be cheaper to scan to determine the query result. 4234 ** In this case set iRoot to the root page number of the index b-tree 4235 ** and pKeyInfo to the KeyInfo structure required to navigate the 4236 ** index. 4237 ** 4238 ** In practice the KeyInfo structure will not be used. It is only 4239 ** passed to keep OP_OpenRead happy. 4240 */ 4241 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4242 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4243 pBest = pIdx; 4244 } 4245 } 4246 if( pBest && pBest->nColumn<pTab->nCol ){ 4247 iRoot = pBest->tnum; 4248 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4249 } 4250 4251 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4252 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4253 if( pKeyInfo ){ 4254 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4255 } 4256 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4257 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4258 explainSimpleCount(pParse, pTab, pBest); 4259 }else 4260 #endif /* SQLITE_OMIT_BTREECOUNT */ 4261 { 4262 /* Check if the query is of one of the following forms: 4263 ** 4264 ** SELECT min(x) FROM ... 4265 ** SELECT max(x) FROM ... 4266 ** 4267 ** If it is, then ask the code in where.c to attempt to sort results 4268 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4269 ** If where.c is able to produce results sorted in this order, then 4270 ** add vdbe code to break out of the processing loop after the 4271 ** first iteration (since the first iteration of the loop is 4272 ** guaranteed to operate on the row with the minimum or maximum 4273 ** value of x, the only row required). 4274 ** 4275 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4276 ** modify behaviour as follows: 4277 ** 4278 ** + If the query is a "SELECT min(x)", then the loop coded by 4279 ** where.c should not iterate over any values with a NULL value 4280 ** for x. 4281 ** 4282 ** + The optimizer code in where.c (the thing that decides which 4283 ** index or indices to use) should place a different priority on 4284 ** satisfying the 'ORDER BY' clause than it does in other cases. 4285 ** Refer to code and comments in where.c for details. 4286 */ 4287 ExprList *pMinMax = 0; 4288 u8 flag = minMaxQuery(p); 4289 if( flag ){ 4290 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4291 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4292 pDel = pMinMax; 4293 if( pMinMax && !db->mallocFailed ){ 4294 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4295 pMinMax->a[0].pExpr->op = TK_COLUMN; 4296 } 4297 } 4298 4299 /* This case runs if the aggregate has no GROUP BY clause. The 4300 ** processing is much simpler since there is only a single row 4301 ** of output. 4302 */ 4303 resetAccumulator(pParse, &sAggInfo); 4304 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4305 if( pWInfo==0 ){ 4306 sqlite3ExprListDelete(db, pDel); 4307 goto select_end; 4308 } 4309 updateAccumulator(pParse, &sAggInfo); 4310 if( !pMinMax && flag ){ 4311 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4312 VdbeComment((v, "%s() by index", 4313 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4314 } 4315 sqlite3WhereEnd(pWInfo); 4316 finalizeAggFunctions(pParse, &sAggInfo); 4317 } 4318 4319 pOrderBy = 0; 4320 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4321 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4322 pDest, addrEnd, addrEnd); 4323 sqlite3ExprListDelete(db, pDel); 4324 } 4325 sqlite3VdbeResolveLabel(v, addrEnd); 4326 4327 } /* endif aggregate query */ 4328 4329 if( distinct>=0 ){ 4330 explainTempTable(pParse, "DISTINCT"); 4331 } 4332 4333 /* If there is an ORDER BY clause, then we need to sort the results 4334 ** and send them to the callback one by one. 4335 */ 4336 if( pOrderBy ){ 4337 explainTempTable(pParse, "ORDER BY"); 4338 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4339 } 4340 4341 /* Jump here to skip this query 4342 */ 4343 sqlite3VdbeResolveLabel(v, iEnd); 4344 4345 /* The SELECT was successfully coded. Set the return code to 0 4346 ** to indicate no errors. 4347 */ 4348 rc = 0; 4349 4350 /* Control jumps to here if an error is encountered above, or upon 4351 ** successful coding of the SELECT. 4352 */ 4353 select_end: 4354 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4355 4356 /* Identify column names if results of the SELECT are to be output. 4357 */ 4358 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4359 generateColumnNames(pParse, pTabList, pEList); 4360 } 4361 4362 sqlite3DbFree(db, sAggInfo.aCol); 4363 sqlite3DbFree(db, sAggInfo.aFunc); 4364 return rc; 4365 } 4366 4367 #if defined(SQLITE_DEBUG) 4368 /* 4369 ******************************************************************************* 4370 ** The following code is used for testing and debugging only. The code 4371 ** that follows does not appear in normal builds. 4372 ** 4373 ** These routines are used to print out the content of all or part of a 4374 ** parse structures such as Select or Expr. Such printouts are useful 4375 ** for helping to understand what is happening inside the code generator 4376 ** during the execution of complex SELECT statements. 4377 ** 4378 ** These routine are not called anywhere from within the normal 4379 ** code base. Then are intended to be called from within the debugger 4380 ** or from temporary "printf" statements inserted for debugging. 4381 */ 4382 void sqlite3PrintExpr(Expr *p){ 4383 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 4384 sqlite3DebugPrintf("(%s", p->u.zToken); 4385 }else{ 4386 sqlite3DebugPrintf("(%d", p->op); 4387 } 4388 if( p->pLeft ){ 4389 sqlite3DebugPrintf(" "); 4390 sqlite3PrintExpr(p->pLeft); 4391 } 4392 if( p->pRight ){ 4393 sqlite3DebugPrintf(" "); 4394 sqlite3PrintExpr(p->pRight); 4395 } 4396 sqlite3DebugPrintf(")"); 4397 } 4398 void sqlite3PrintExprList(ExprList *pList){ 4399 int i; 4400 for(i=0; i<pList->nExpr; i++){ 4401 sqlite3PrintExpr(pList->a[i].pExpr); 4402 if( i<pList->nExpr-1 ){ 4403 sqlite3DebugPrintf(", "); 4404 } 4405 } 4406 } 4407 void sqlite3PrintSelect(Select *p, int indent){ 4408 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4409 sqlite3PrintExprList(p->pEList); 4410 sqlite3DebugPrintf("\n"); 4411 if( p->pSrc ){ 4412 char *zPrefix; 4413 int i; 4414 zPrefix = "FROM"; 4415 for(i=0; i<p->pSrc->nSrc; i++){ 4416 struct SrcList_item *pItem = &p->pSrc->a[i]; 4417 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4418 zPrefix = ""; 4419 if( pItem->pSelect ){ 4420 sqlite3DebugPrintf("(\n"); 4421 sqlite3PrintSelect(pItem->pSelect, indent+10); 4422 sqlite3DebugPrintf("%*s)", indent+8, ""); 4423 }else if( pItem->zName ){ 4424 sqlite3DebugPrintf("%s", pItem->zName); 4425 } 4426 if( pItem->pTab ){ 4427 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4428 } 4429 if( pItem->zAlias ){ 4430 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4431 } 4432 if( i<p->pSrc->nSrc-1 ){ 4433 sqlite3DebugPrintf(","); 4434 } 4435 sqlite3DebugPrintf("\n"); 4436 } 4437 } 4438 if( p->pWhere ){ 4439 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4440 sqlite3PrintExpr(p->pWhere); 4441 sqlite3DebugPrintf("\n"); 4442 } 4443 if( p->pGroupBy ){ 4444 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4445 sqlite3PrintExprList(p->pGroupBy); 4446 sqlite3DebugPrintf("\n"); 4447 } 4448 if( p->pHaving ){ 4449 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4450 sqlite3PrintExpr(p->pHaving); 4451 sqlite3DebugPrintf("\n"); 4452 } 4453 if( p->pOrderBy ){ 4454 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4455 sqlite3PrintExprList(p->pOrderBy); 4456 sqlite3DebugPrintf("\n"); 4457 } 4458 } 4459 /* End of the structure debug printing code 4460 *****************************************************************************/ 4461 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4462