1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test 351 ** in sqlite3DbMallocRawNN() called from 352 ** sqlite3PExpr(). */ 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->iRightJoinTable = pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 void sqlite3SetJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->iRightJoinTable = iTable; 394 if( p->op==TK_FUNCTION ){ 395 assert( ExprUseXList(p) ); 396 if( p->x.pList ){ 397 int i; 398 for(i=0; i<p->x.pList->nExpr; i++){ 399 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 400 } 401 } 402 } 403 sqlite3SetJoinExpr(p->pLeft, iTable); 404 p = p->pRight; 405 } 406 } 407 408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 410 ** an ordinary term that omits the EP_FromJoin mark. 411 ** 412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 413 */ 414 static void unsetJoinExpr(Expr *p, int iTable){ 415 while( p ){ 416 if( ExprHasProperty(p, EP_FromJoin) 417 && (iTable<0 || p->iRightJoinTable==iTable) ){ 418 ExprClearProperty(p, EP_FromJoin); 419 } 420 if( p->op==TK_COLUMN && p->iTable==iTable ){ 421 ExprClearProperty(p, EP_CanBeNull); 422 } 423 if( p->op==TK_FUNCTION ){ 424 assert( ExprUseXList(p) ); 425 if( p->x.pList ){ 426 int i; 427 for(i=0; i<p->x.pList->nExpr; i++){ 428 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 429 } 430 } 431 } 432 unsetJoinExpr(p->pLeft, iTable); 433 p = p->pRight; 434 } 435 } 436 437 /* 438 ** This routine processes the join information for a SELECT statement. 439 ** ON and USING clauses are converted into extra terms of the WHERE clause. 440 ** NATURAL joins also create extra WHERE clause terms. 441 ** 442 ** The terms of a FROM clause are contained in the Select.pSrc structure. 443 ** The left most table is the first entry in Select.pSrc. The right-most 444 ** table is the last entry. The join operator is held in the entry to 445 ** the left. Thus entry 0 contains the join operator for the join between 446 ** entries 0 and 1. Any ON or USING clauses associated with the join are 447 ** also attached to the left entry. 448 ** 449 ** This routine returns the number of errors encountered. 450 */ 451 static int sqliteProcessJoin(Parse *pParse, Select *p){ 452 SrcList *pSrc; /* All tables in the FROM clause */ 453 int i, j; /* Loop counters */ 454 SrcItem *pLeft; /* Left table being joined */ 455 SrcItem *pRight; /* Right table being joined */ 456 457 pSrc = p->pSrc; 458 pLeft = &pSrc->a[0]; 459 pRight = &pLeft[1]; 460 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 461 Table *pRightTab = pRight->pTab; 462 int isOuter; 463 464 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 465 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 466 467 /* When the NATURAL keyword is present, add WHERE clause terms for 468 ** every column that the two tables have in common. 469 */ 470 if( pRight->fg.jointype & JT_NATURAL ){ 471 if( pRight->pOn || pRight->pUsing ){ 472 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 473 "an ON or USING clause", 0); 474 return 1; 475 } 476 for(j=0; j<pRightTab->nCol; j++){ 477 char *zName; /* Name of column in the right table */ 478 int iLeft; /* Matching left table */ 479 int iLeftCol; /* Matching column in the left table */ 480 481 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 482 zName = pRightTab->aCol[j].zCnName; 483 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 490 /* Disallow both ON and USING clauses in the same join 491 */ 492 if( pRight->pOn && pRight->pUsing ){ 493 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 494 "clauses in the same join"); 495 return 1; 496 } 497 498 /* Add the ON clause to the end of the WHERE clause, connected by 499 ** an AND operator. 500 */ 501 if( pRight->pOn ){ 502 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 503 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 504 pRight->pOn = 0; 505 } 506 507 /* Create extra terms on the WHERE clause for each column named 508 ** in the USING clause. Example: If the two tables to be joined are 509 ** A and B and the USING clause names X, Y, and Z, then add this 510 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 511 ** Report an error if any column mentioned in the USING clause is 512 ** not contained in both tables to be joined. 513 */ 514 if( pRight->pUsing ){ 515 IdList *pList = pRight->pUsing; 516 for(j=0; j<pList->nId; j++){ 517 char *zName; /* Name of the term in the USING clause */ 518 int iLeft; /* Table on the left with matching column name */ 519 int iLeftCol; /* Column number of matching column on the left */ 520 int iRightCol; /* Column number of matching column on the right */ 521 522 zName = pList->a[j].zName; 523 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 524 if( iRightCol<0 525 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 526 ){ 527 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 528 "not present in both tables", zName); 529 return 1; 530 } 531 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 532 isOuter, &p->pWhere); 533 } 534 } 535 } 536 return 0; 537 } 538 539 /* 540 ** An instance of this object holds information (beyond pParse and pSelect) 541 ** needed to load the next result row that is to be added to the sorter. 542 */ 543 typedef struct RowLoadInfo RowLoadInfo; 544 struct RowLoadInfo { 545 int regResult; /* Store results in array of registers here */ 546 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 547 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 548 ExprList *pExtra; /* Extra columns needed by sorter refs */ 549 int regExtraResult; /* Where to load the extra columns */ 550 #endif 551 }; 552 553 /* 554 ** This routine does the work of loading query data into an array of 555 ** registers so that it can be added to the sorter. 556 */ 557 static void innerLoopLoadRow( 558 Parse *pParse, /* Statement under construction */ 559 Select *pSelect, /* The query being coded */ 560 RowLoadInfo *pInfo /* Info needed to complete the row load */ 561 ){ 562 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 563 0, pInfo->ecelFlags); 564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 565 if( pInfo->pExtra ){ 566 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 567 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 568 } 569 #endif 570 } 571 572 /* 573 ** Code the OP_MakeRecord instruction that generates the entry to be 574 ** added into the sorter. 575 ** 576 ** Return the register in which the result is stored. 577 */ 578 static int makeSorterRecord( 579 Parse *pParse, 580 SortCtx *pSort, 581 Select *pSelect, 582 int regBase, 583 int nBase 584 ){ 585 int nOBSat = pSort->nOBSat; 586 Vdbe *v = pParse->pVdbe; 587 int regOut = ++pParse->nMem; 588 if( pSort->pDeferredRowLoad ){ 589 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 590 } 591 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 592 return regOut; 593 } 594 595 /* 596 ** Generate code that will push the record in registers regData 597 ** through regData+nData-1 onto the sorter. 598 */ 599 static void pushOntoSorter( 600 Parse *pParse, /* Parser context */ 601 SortCtx *pSort, /* Information about the ORDER BY clause */ 602 Select *pSelect, /* The whole SELECT statement */ 603 int regData, /* First register holding data to be sorted */ 604 int regOrigData, /* First register holding data before packing */ 605 int nData, /* Number of elements in the regData data array */ 606 int nPrefixReg /* No. of reg prior to regData available for use */ 607 ){ 608 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 609 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 610 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 611 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 612 int regBase; /* Regs for sorter record */ 613 int regRecord = 0; /* Assembled sorter record */ 614 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 615 int op; /* Opcode to add sorter record to sorter */ 616 int iLimit; /* LIMIT counter */ 617 int iSkip = 0; /* End of the sorter insert loop */ 618 619 assert( bSeq==0 || bSeq==1 ); 620 621 /* Three cases: 622 ** (1) The data to be sorted has already been packed into a Record 623 ** by a prior OP_MakeRecord. In this case nData==1 and regData 624 ** will be completely unrelated to regOrigData. 625 ** (2) All output columns are included in the sort record. In that 626 ** case regData==regOrigData. 627 ** (3) Some output columns are omitted from the sort record due to 628 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 629 ** SQLITE_ECEL_OMITREF optimization, or due to the 630 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 631 ** regOrigData is 0 to prevent this routine from trying to copy 632 ** values that might not yet exist. 633 */ 634 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 635 636 if( nPrefixReg ){ 637 assert( nPrefixReg==nExpr+bSeq ); 638 regBase = regData - nPrefixReg; 639 }else{ 640 regBase = pParse->nMem + 1; 641 pParse->nMem += nBase; 642 } 643 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 644 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 645 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 646 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 647 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 648 if( bSeq ){ 649 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 650 } 651 if( nPrefixReg==0 && nData>0 ){ 652 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 653 } 654 if( nOBSat>0 ){ 655 int regPrevKey; /* The first nOBSat columns of the previous row */ 656 int addrFirst; /* Address of the OP_IfNot opcode */ 657 int addrJmp; /* Address of the OP_Jump opcode */ 658 VdbeOp *pOp; /* Opcode that opens the sorter */ 659 int nKey; /* Number of sorting key columns, including OP_Sequence */ 660 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 661 662 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 663 regPrevKey = pParse->nMem+1; 664 pParse->nMem += pSort->nOBSat; 665 nKey = nExpr - pSort->nOBSat + bSeq; 666 if( bSeq ){ 667 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 668 }else{ 669 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 670 } 671 VdbeCoverage(v); 672 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 673 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 674 if( pParse->db->mallocFailed ) return; 675 pOp->p2 = nKey + nData; 676 pKI = pOp->p4.pKeyInfo; 677 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 678 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 679 testcase( pKI->nAllField > pKI->nKeyField+2 ); 680 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 681 pKI->nAllField-pKI->nKeyField-1); 682 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 683 addrJmp = sqlite3VdbeCurrentAddr(v); 684 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 685 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 686 pSort->regReturn = ++pParse->nMem; 687 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 688 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 689 if( iLimit ){ 690 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 691 VdbeCoverage(v); 692 } 693 sqlite3VdbeJumpHere(v, addrFirst); 694 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 695 sqlite3VdbeJumpHere(v, addrJmp); 696 } 697 if( iLimit ){ 698 /* At this point the values for the new sorter entry are stored 699 ** in an array of registers. They need to be composed into a record 700 ** and inserted into the sorter if either (a) there are currently 701 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 702 ** the largest record currently in the sorter. If (b) is true and there 703 ** are already LIMIT+OFFSET items in the sorter, delete the largest 704 ** entry before inserting the new one. This way there are never more 705 ** than LIMIT+OFFSET items in the sorter. 706 ** 707 ** If the new record does not need to be inserted into the sorter, 708 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 709 ** value is not zero, then it is a label of where to jump. Otherwise, 710 ** just bypass the row insert logic. See the header comment on the 711 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 712 */ 713 int iCsr = pSort->iECursor; 714 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 715 VdbeCoverage(v); 716 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 717 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 718 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 719 VdbeCoverage(v); 720 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 721 } 722 if( regRecord==0 ){ 723 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 724 } 725 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 726 op = OP_SorterInsert; 727 }else{ 728 op = OP_IdxInsert; 729 } 730 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 731 regBase+nOBSat, nBase-nOBSat); 732 if( iSkip ){ 733 sqlite3VdbeChangeP2(v, iSkip, 734 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 735 } 736 } 737 738 /* 739 ** Add code to implement the OFFSET 740 */ 741 static void codeOffset( 742 Vdbe *v, /* Generate code into this VM */ 743 int iOffset, /* Register holding the offset counter */ 744 int iContinue /* Jump here to skip the current record */ 745 ){ 746 if( iOffset>0 ){ 747 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 748 VdbeComment((v, "OFFSET")); 749 } 750 } 751 752 /* 753 ** Add code that will check to make sure the array of registers starting at 754 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 755 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 756 ** are available. Which is used depends on the value of parameter eTnctType, 757 ** as follows: 758 ** 759 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 760 ** Build an ephemeral table that contains all entries seen before and 761 ** skip entries which have been seen before. 762 ** 763 ** Parameter iTab is the cursor number of an ephemeral table that must 764 ** be opened before the VM code generated by this routine is executed. 765 ** The ephemeral cursor table is queried for a record identical to the 766 ** record formed by the current array of registers. If one is found, 767 ** jump to VM address addrRepeat. Otherwise, insert a new record into 768 ** the ephemeral cursor and proceed. 769 ** 770 ** The returned value in this case is a copy of parameter iTab. 771 ** 772 ** WHERE_DISTINCT_ORDERED: 773 ** In this case rows are being delivered sorted order. The ephermal 774 ** table is not required. Instead, the current set of values 775 ** is compared against previous row. If they match, the new row 776 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 777 ** the VM program proceeds with processing the new row. 778 ** 779 ** The returned value in this case is the register number of the first 780 ** in an array of registers used to store the previous result row so that 781 ** it can be compared to the next. The caller must ensure that this 782 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 783 ** will take care of this initialization.) 784 ** 785 ** WHERE_DISTINCT_UNIQUE: 786 ** In this case it has already been determined that the rows are distinct. 787 ** No special action is required. The return value is zero. 788 ** 789 ** Parameter pEList is the list of expressions used to generated the 790 ** contents of each row. It is used by this routine to determine (a) 791 ** how many elements there are in the array of registers and (b) the 792 ** collation sequences that should be used for the comparisons if 793 ** eTnctType is WHERE_DISTINCT_ORDERED. 794 */ 795 static int codeDistinct( 796 Parse *pParse, /* Parsing and code generating context */ 797 int eTnctType, /* WHERE_DISTINCT_* value */ 798 int iTab, /* A sorting index used to test for distinctness */ 799 int addrRepeat, /* Jump to here if not distinct */ 800 ExprList *pEList, /* Expression for each element */ 801 int regElem /* First element */ 802 ){ 803 int iRet = 0; 804 int nResultCol = pEList->nExpr; 805 Vdbe *v = pParse->pVdbe; 806 807 switch( eTnctType ){ 808 case WHERE_DISTINCT_ORDERED: { 809 int i; 810 int iJump; /* Jump destination */ 811 int regPrev; /* Previous row content */ 812 813 /* Allocate space for the previous row */ 814 iRet = regPrev = pParse->nMem+1; 815 pParse->nMem += nResultCol; 816 817 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 818 for(i=0; i<nResultCol; i++){ 819 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 820 if( i<nResultCol-1 ){ 821 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 822 VdbeCoverage(v); 823 }else{ 824 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 825 VdbeCoverage(v); 826 } 827 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 828 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 829 } 830 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 831 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 832 break; 833 } 834 835 case WHERE_DISTINCT_UNIQUE: { 836 /* nothing to do */ 837 break; 838 } 839 840 default: { 841 int r1 = sqlite3GetTempReg(pParse); 842 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 843 VdbeCoverage(v); 844 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 845 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 846 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 847 sqlite3ReleaseTempReg(pParse, r1); 848 iRet = iTab; 849 break; 850 } 851 } 852 853 return iRet; 854 } 855 856 /* 857 ** This routine runs after codeDistinct(). It makes necessary 858 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 859 ** routine made use of. This processing must be done separately since 860 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 861 ** laid down. 862 ** 863 ** WHERE_DISTINCT_NOOP: 864 ** WHERE_DISTINCT_UNORDERED: 865 ** 866 ** No adjustments necessary. This function is a no-op. 867 ** 868 ** WHERE_DISTINCT_UNIQUE: 869 ** 870 ** The ephemeral table is not needed. So change the 871 ** OP_OpenEphemeral opcode into an OP_Noop. 872 ** 873 ** WHERE_DISTINCT_ORDERED: 874 ** 875 ** The ephemeral table is not needed. But we do need register 876 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 877 ** into an OP_Null on the iVal register. 878 */ 879 static void fixDistinctOpenEph( 880 Parse *pParse, /* Parsing and code generating context */ 881 int eTnctType, /* WHERE_DISTINCT_* value */ 882 int iVal, /* Value returned by codeDistinct() */ 883 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 884 ){ 885 if( pParse->nErr==0 886 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 887 ){ 888 Vdbe *v = pParse->pVdbe; 889 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 890 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 891 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 892 } 893 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 894 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 895 ** bit on the first register of the previous value. This will cause the 896 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 897 ** the loop even if the first row is all NULLs. */ 898 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 899 pOp->opcode = OP_Null; 900 pOp->p1 = 1; 901 pOp->p2 = iVal; 902 } 903 } 904 } 905 906 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 907 /* 908 ** This function is called as part of inner-loop generation for a SELECT 909 ** statement with an ORDER BY that is not optimized by an index. It 910 ** determines the expressions, if any, that the sorter-reference 911 ** optimization should be used for. The sorter-reference optimization 912 ** is used for SELECT queries like: 913 ** 914 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 915 ** 916 ** If the optimization is used for expression "bigblob", then instead of 917 ** storing values read from that column in the sorter records, the PK of 918 ** the row from table t1 is stored instead. Then, as records are extracted from 919 ** the sorter to return to the user, the required value of bigblob is 920 ** retrieved directly from table t1. If the values are very large, this 921 ** can be more efficient than storing them directly in the sorter records. 922 ** 923 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 924 ** for which the sorter-reference optimization should be enabled. 925 ** Additionally, the pSort->aDefer[] array is populated with entries 926 ** for all cursors required to evaluate all selected expressions. Finally. 927 ** output variable (*ppExtra) is set to an expression list containing 928 ** expressions for all extra PK values that should be stored in the 929 ** sorter records. 930 */ 931 static void selectExprDefer( 932 Parse *pParse, /* Leave any error here */ 933 SortCtx *pSort, /* Sorter context */ 934 ExprList *pEList, /* Expressions destined for sorter */ 935 ExprList **ppExtra /* Expressions to append to sorter record */ 936 ){ 937 int i; 938 int nDefer = 0; 939 ExprList *pExtra = 0; 940 for(i=0; i<pEList->nExpr; i++){ 941 struct ExprList_item *pItem = &pEList->a[i]; 942 if( pItem->u.x.iOrderByCol==0 ){ 943 Expr *pExpr = pItem->pExpr; 944 Table *pTab; 945 if( pExpr->op==TK_COLUMN 946 && pExpr->iColumn>=0 947 && ALWAYS( ExprUseYTab(pExpr) ) 948 && (pTab = pExpr->y.pTab)!=0 949 && IsOrdinaryTable(pTab) 950 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 951 ){ 952 int j; 953 for(j=0; j<nDefer; j++){ 954 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 955 } 956 if( j==nDefer ){ 957 if( nDefer==ArraySize(pSort->aDefer) ){ 958 continue; 959 }else{ 960 int nKey = 1; 961 int k; 962 Index *pPk = 0; 963 if( !HasRowid(pTab) ){ 964 pPk = sqlite3PrimaryKeyIndex(pTab); 965 nKey = pPk->nKeyCol; 966 } 967 for(k=0; k<nKey; k++){ 968 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 969 if( pNew ){ 970 pNew->iTable = pExpr->iTable; 971 assert( ExprUseYTab(pNew) ); 972 pNew->y.pTab = pExpr->y.pTab; 973 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 974 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 975 } 976 } 977 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 978 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 979 pSort->aDefer[nDefer].nKey = nKey; 980 nDefer++; 981 } 982 } 983 pItem->bSorterRef = 1; 984 } 985 } 986 } 987 pSort->nDefer = (u8)nDefer; 988 *ppExtra = pExtra; 989 } 990 #endif 991 992 /* 993 ** This routine generates the code for the inside of the inner loop 994 ** of a SELECT. 995 ** 996 ** If srcTab is negative, then the p->pEList expressions 997 ** are evaluated in order to get the data for this row. If srcTab is 998 ** zero or more, then data is pulled from srcTab and p->pEList is used only 999 ** to get the number of columns and the collation sequence for each column. 1000 */ 1001 static void selectInnerLoop( 1002 Parse *pParse, /* The parser context */ 1003 Select *p, /* The complete select statement being coded */ 1004 int srcTab, /* Pull data from this table if non-negative */ 1005 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1006 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1007 SelectDest *pDest, /* How to dispose of the results */ 1008 int iContinue, /* Jump here to continue with next row */ 1009 int iBreak /* Jump here to break out of the inner loop */ 1010 ){ 1011 Vdbe *v = pParse->pVdbe; 1012 int i; 1013 int hasDistinct; /* True if the DISTINCT keyword is present */ 1014 int eDest = pDest->eDest; /* How to dispose of results */ 1015 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1016 int nResultCol; /* Number of result columns */ 1017 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1018 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1019 1020 /* Usually, regResult is the first cell in an array of memory cells 1021 ** containing the current result row. In this case regOrig is set to the 1022 ** same value. However, if the results are being sent to the sorter, the 1023 ** values for any expressions that are also part of the sort-key are omitted 1024 ** from this array. In this case regOrig is set to zero. */ 1025 int regResult; /* Start of memory holding current results */ 1026 int regOrig; /* Start of memory holding full result (or 0) */ 1027 1028 assert( v ); 1029 assert( p->pEList!=0 ); 1030 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1031 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1032 if( pSort==0 && !hasDistinct ){ 1033 assert( iContinue!=0 ); 1034 codeOffset(v, p->iOffset, iContinue); 1035 } 1036 1037 /* Pull the requested columns. 1038 */ 1039 nResultCol = p->pEList->nExpr; 1040 1041 if( pDest->iSdst==0 ){ 1042 if( pSort ){ 1043 nPrefixReg = pSort->pOrderBy->nExpr; 1044 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1045 pParse->nMem += nPrefixReg; 1046 } 1047 pDest->iSdst = pParse->nMem+1; 1048 pParse->nMem += nResultCol; 1049 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1050 /* This is an error condition that can result, for example, when a SELECT 1051 ** on the right-hand side of an INSERT contains more result columns than 1052 ** there are columns in the table on the left. The error will be caught 1053 ** and reported later. But we need to make sure enough memory is allocated 1054 ** to avoid other spurious errors in the meantime. */ 1055 pParse->nMem += nResultCol; 1056 } 1057 pDest->nSdst = nResultCol; 1058 regOrig = regResult = pDest->iSdst; 1059 if( srcTab>=0 ){ 1060 for(i=0; i<nResultCol; i++){ 1061 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1062 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1063 } 1064 }else if( eDest!=SRT_Exists ){ 1065 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1066 ExprList *pExtra = 0; 1067 #endif 1068 /* If the destination is an EXISTS(...) expression, the actual 1069 ** values returned by the SELECT are not required. 1070 */ 1071 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1072 ExprList *pEList; 1073 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1074 ecelFlags = SQLITE_ECEL_DUP; 1075 }else{ 1076 ecelFlags = 0; 1077 } 1078 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1079 /* For each expression in p->pEList that is a copy of an expression in 1080 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1081 ** iOrderByCol value to one more than the index of the ORDER BY 1082 ** expression within the sort-key that pushOntoSorter() will generate. 1083 ** This allows the p->pEList field to be omitted from the sorted record, 1084 ** saving space and CPU cycles. */ 1085 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1086 1087 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1088 int j; 1089 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1090 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1091 } 1092 } 1093 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1094 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1095 if( pExtra && pParse->db->mallocFailed==0 ){ 1096 /* If there are any extra PK columns to add to the sorter records, 1097 ** allocate extra memory cells and adjust the OpenEphemeral 1098 ** instruction to account for the larger records. This is only 1099 ** required if there are one or more WITHOUT ROWID tables with 1100 ** composite primary keys in the SortCtx.aDefer[] array. */ 1101 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1102 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1103 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1104 pParse->nMem += pExtra->nExpr; 1105 } 1106 #endif 1107 1108 /* Adjust nResultCol to account for columns that are omitted 1109 ** from the sorter by the optimizations in this branch */ 1110 pEList = p->pEList; 1111 for(i=0; i<pEList->nExpr; i++){ 1112 if( pEList->a[i].u.x.iOrderByCol>0 1113 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1114 || pEList->a[i].bSorterRef 1115 #endif 1116 ){ 1117 nResultCol--; 1118 regOrig = 0; 1119 } 1120 } 1121 1122 testcase( regOrig ); 1123 testcase( eDest==SRT_Set ); 1124 testcase( eDest==SRT_Mem ); 1125 testcase( eDest==SRT_Coroutine ); 1126 testcase( eDest==SRT_Output ); 1127 assert( eDest==SRT_Set || eDest==SRT_Mem 1128 || eDest==SRT_Coroutine || eDest==SRT_Output 1129 || eDest==SRT_Upfrom ); 1130 } 1131 sRowLoadInfo.regResult = regResult; 1132 sRowLoadInfo.ecelFlags = ecelFlags; 1133 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1134 sRowLoadInfo.pExtra = pExtra; 1135 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1136 if( pExtra ) nResultCol += pExtra->nExpr; 1137 #endif 1138 if( p->iLimit 1139 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1140 && nPrefixReg>0 1141 ){ 1142 assert( pSort!=0 ); 1143 assert( hasDistinct==0 ); 1144 pSort->pDeferredRowLoad = &sRowLoadInfo; 1145 regOrig = 0; 1146 }else{ 1147 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1148 } 1149 } 1150 1151 /* If the DISTINCT keyword was present on the SELECT statement 1152 ** and this row has been seen before, then do not make this row 1153 ** part of the result. 1154 */ 1155 if( hasDistinct ){ 1156 int eType = pDistinct->eTnctType; 1157 int iTab = pDistinct->tabTnct; 1158 assert( nResultCol==p->pEList->nExpr ); 1159 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1160 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1161 if( pSort==0 ){ 1162 codeOffset(v, p->iOffset, iContinue); 1163 } 1164 } 1165 1166 switch( eDest ){ 1167 /* In this mode, write each query result to the key of the temporary 1168 ** table iParm. 1169 */ 1170 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1171 case SRT_Union: { 1172 int r1; 1173 r1 = sqlite3GetTempReg(pParse); 1174 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1175 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1176 sqlite3ReleaseTempReg(pParse, r1); 1177 break; 1178 } 1179 1180 /* Construct a record from the query result, but instead of 1181 ** saving that record, use it as a key to delete elements from 1182 ** the temporary table iParm. 1183 */ 1184 case SRT_Except: { 1185 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1186 break; 1187 } 1188 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1189 1190 /* Store the result as data using a unique key. 1191 */ 1192 case SRT_Fifo: 1193 case SRT_DistFifo: 1194 case SRT_Table: 1195 case SRT_EphemTab: { 1196 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1197 testcase( eDest==SRT_Table ); 1198 testcase( eDest==SRT_EphemTab ); 1199 testcase( eDest==SRT_Fifo ); 1200 testcase( eDest==SRT_DistFifo ); 1201 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1202 #ifndef SQLITE_OMIT_CTE 1203 if( eDest==SRT_DistFifo ){ 1204 /* If the destination is DistFifo, then cursor (iParm+1) is open 1205 ** on an ephemeral index. If the current row is already present 1206 ** in the index, do not write it to the output. If not, add the 1207 ** current row to the index and proceed with writing it to the 1208 ** output table as well. */ 1209 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1210 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1211 VdbeCoverage(v); 1212 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1213 assert( pSort==0 ); 1214 } 1215 #endif 1216 if( pSort ){ 1217 assert( regResult==regOrig ); 1218 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1219 }else{ 1220 int r2 = sqlite3GetTempReg(pParse); 1221 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1222 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1223 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1224 sqlite3ReleaseTempReg(pParse, r2); 1225 } 1226 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1227 break; 1228 } 1229 1230 case SRT_Upfrom: { 1231 if( pSort ){ 1232 pushOntoSorter( 1233 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1234 }else{ 1235 int i2 = pDest->iSDParm2; 1236 int r1 = sqlite3GetTempReg(pParse); 1237 1238 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1239 ** might still be trying to return one row, because that is what 1240 ** aggregates do. Don't record that empty row in the output table. */ 1241 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1242 1243 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1244 regResult+(i2<0), nResultCol-(i2<0), r1); 1245 if( i2<0 ){ 1246 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1247 }else{ 1248 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1249 } 1250 } 1251 break; 1252 } 1253 1254 #ifndef SQLITE_OMIT_SUBQUERY 1255 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1256 ** then there should be a single item on the stack. Write this 1257 ** item into the set table with bogus data. 1258 */ 1259 case SRT_Set: { 1260 if( pSort ){ 1261 /* At first glance you would think we could optimize out the 1262 ** ORDER BY in this case since the order of entries in the set 1263 ** does not matter. But there might be a LIMIT clause, in which 1264 ** case the order does matter */ 1265 pushOntoSorter( 1266 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1267 }else{ 1268 int r1 = sqlite3GetTempReg(pParse); 1269 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1270 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1271 r1, pDest->zAffSdst, nResultCol); 1272 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1273 sqlite3ReleaseTempReg(pParse, r1); 1274 } 1275 break; 1276 } 1277 1278 1279 /* If any row exist in the result set, record that fact and abort. 1280 */ 1281 case SRT_Exists: { 1282 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1283 /* The LIMIT clause will terminate the loop for us */ 1284 break; 1285 } 1286 1287 /* If this is a scalar select that is part of an expression, then 1288 ** store the results in the appropriate memory cell or array of 1289 ** memory cells and break out of the scan loop. 1290 */ 1291 case SRT_Mem: { 1292 if( pSort ){ 1293 assert( nResultCol<=pDest->nSdst ); 1294 pushOntoSorter( 1295 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1296 }else{ 1297 assert( nResultCol==pDest->nSdst ); 1298 assert( regResult==iParm ); 1299 /* The LIMIT clause will jump out of the loop for us */ 1300 } 1301 break; 1302 } 1303 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1304 1305 case SRT_Coroutine: /* Send data to a co-routine */ 1306 case SRT_Output: { /* Return the results */ 1307 testcase( eDest==SRT_Coroutine ); 1308 testcase( eDest==SRT_Output ); 1309 if( pSort ){ 1310 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1311 nPrefixReg); 1312 }else if( eDest==SRT_Coroutine ){ 1313 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1314 }else{ 1315 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1316 } 1317 break; 1318 } 1319 1320 #ifndef SQLITE_OMIT_CTE 1321 /* Write the results into a priority queue that is order according to 1322 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1323 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1324 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1325 ** final OP_Sequence column. The last column is the record as a blob. 1326 */ 1327 case SRT_DistQueue: 1328 case SRT_Queue: { 1329 int nKey; 1330 int r1, r2, r3; 1331 int addrTest = 0; 1332 ExprList *pSO; 1333 pSO = pDest->pOrderBy; 1334 assert( pSO ); 1335 nKey = pSO->nExpr; 1336 r1 = sqlite3GetTempReg(pParse); 1337 r2 = sqlite3GetTempRange(pParse, nKey+2); 1338 r3 = r2+nKey+1; 1339 if( eDest==SRT_DistQueue ){ 1340 /* If the destination is DistQueue, then cursor (iParm+1) is open 1341 ** on a second ephemeral index that holds all values every previously 1342 ** added to the queue. */ 1343 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1344 regResult, nResultCol); 1345 VdbeCoverage(v); 1346 } 1347 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1348 if( eDest==SRT_DistQueue ){ 1349 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1350 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1351 } 1352 for(i=0; i<nKey; i++){ 1353 sqlite3VdbeAddOp2(v, OP_SCopy, 1354 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1355 r2+i); 1356 } 1357 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1358 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1359 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1360 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1361 sqlite3ReleaseTempReg(pParse, r1); 1362 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1363 break; 1364 } 1365 #endif /* SQLITE_OMIT_CTE */ 1366 1367 1368 1369 #if !defined(SQLITE_OMIT_TRIGGER) 1370 /* Discard the results. This is used for SELECT statements inside 1371 ** the body of a TRIGGER. The purpose of such selects is to call 1372 ** user-defined functions that have side effects. We do not care 1373 ** about the actual results of the select. 1374 */ 1375 default: { 1376 assert( eDest==SRT_Discard ); 1377 break; 1378 } 1379 #endif 1380 } 1381 1382 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1383 ** there is a sorter, in which case the sorter has already limited 1384 ** the output for us. 1385 */ 1386 if( pSort==0 && p->iLimit ){ 1387 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1388 } 1389 } 1390 1391 /* 1392 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1393 ** X extra columns. 1394 */ 1395 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1396 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1397 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1398 if( p ){ 1399 p->aSortFlags = (u8*)&p->aColl[N+X]; 1400 p->nKeyField = (u16)N; 1401 p->nAllField = (u16)(N+X); 1402 p->enc = ENC(db); 1403 p->db = db; 1404 p->nRef = 1; 1405 memset(&p[1], 0, nExtra); 1406 }else{ 1407 sqlite3OomFault(db); 1408 } 1409 return p; 1410 } 1411 1412 /* 1413 ** Deallocate a KeyInfo object 1414 */ 1415 void sqlite3KeyInfoUnref(KeyInfo *p){ 1416 if( p ){ 1417 assert( p->nRef>0 ); 1418 p->nRef--; 1419 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1420 } 1421 } 1422 1423 /* 1424 ** Make a new pointer to a KeyInfo object 1425 */ 1426 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1427 if( p ){ 1428 assert( p->nRef>0 ); 1429 p->nRef++; 1430 } 1431 return p; 1432 } 1433 1434 #ifdef SQLITE_DEBUG 1435 /* 1436 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1437 ** can only be changed if this is just a single reference to the object. 1438 ** 1439 ** This routine is used only inside of assert() statements. 1440 */ 1441 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1442 #endif /* SQLITE_DEBUG */ 1443 1444 /* 1445 ** Given an expression list, generate a KeyInfo structure that records 1446 ** the collating sequence for each expression in that expression list. 1447 ** 1448 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1449 ** KeyInfo structure is appropriate for initializing a virtual index to 1450 ** implement that clause. If the ExprList is the result set of a SELECT 1451 ** then the KeyInfo structure is appropriate for initializing a virtual 1452 ** index to implement a DISTINCT test. 1453 ** 1454 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1455 ** function is responsible for seeing that this structure is eventually 1456 ** freed. 1457 */ 1458 KeyInfo *sqlite3KeyInfoFromExprList( 1459 Parse *pParse, /* Parsing context */ 1460 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1461 int iStart, /* Begin with this column of pList */ 1462 int nExtra /* Add this many extra columns to the end */ 1463 ){ 1464 int nExpr; 1465 KeyInfo *pInfo; 1466 struct ExprList_item *pItem; 1467 sqlite3 *db = pParse->db; 1468 int i; 1469 1470 nExpr = pList->nExpr; 1471 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1472 if( pInfo ){ 1473 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1474 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1475 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1476 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1477 } 1478 } 1479 return pInfo; 1480 } 1481 1482 /* 1483 ** Name of the connection operator, used for error messages. 1484 */ 1485 const char *sqlite3SelectOpName(int id){ 1486 char *z; 1487 switch( id ){ 1488 case TK_ALL: z = "UNION ALL"; break; 1489 case TK_INTERSECT: z = "INTERSECT"; break; 1490 case TK_EXCEPT: z = "EXCEPT"; break; 1491 default: z = "UNION"; break; 1492 } 1493 return z; 1494 } 1495 1496 #ifndef SQLITE_OMIT_EXPLAIN 1497 /* 1498 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1499 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1500 ** where the caption is of the form: 1501 ** 1502 ** "USE TEMP B-TREE FOR xxx" 1503 ** 1504 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1505 ** is determined by the zUsage argument. 1506 */ 1507 static void explainTempTable(Parse *pParse, const char *zUsage){ 1508 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1509 } 1510 1511 /* 1512 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1513 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1514 ** in sqlite3Select() to assign values to structure member variables that 1515 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1516 ** code with #ifndef directives. 1517 */ 1518 # define explainSetInteger(a, b) a = b 1519 1520 #else 1521 /* No-op versions of the explainXXX() functions and macros. */ 1522 # define explainTempTable(y,z) 1523 # define explainSetInteger(y,z) 1524 #endif 1525 1526 1527 /* 1528 ** If the inner loop was generated using a non-null pOrderBy argument, 1529 ** then the results were placed in a sorter. After the loop is terminated 1530 ** we need to run the sorter and output the results. The following 1531 ** routine generates the code needed to do that. 1532 */ 1533 static void generateSortTail( 1534 Parse *pParse, /* Parsing context */ 1535 Select *p, /* The SELECT statement */ 1536 SortCtx *pSort, /* Information on the ORDER BY clause */ 1537 int nColumn, /* Number of columns of data */ 1538 SelectDest *pDest /* Write the sorted results here */ 1539 ){ 1540 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1541 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1542 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1543 int addr; /* Top of output loop. Jump for Next. */ 1544 int addrOnce = 0; 1545 int iTab; 1546 ExprList *pOrderBy = pSort->pOrderBy; 1547 int eDest = pDest->eDest; 1548 int iParm = pDest->iSDParm; 1549 int regRow; 1550 int regRowid; 1551 int iCol; 1552 int nKey; /* Number of key columns in sorter record */ 1553 int iSortTab; /* Sorter cursor to read from */ 1554 int i; 1555 int bSeq; /* True if sorter record includes seq. no. */ 1556 int nRefKey = 0; 1557 struct ExprList_item *aOutEx = p->pEList->a; 1558 1559 assert( addrBreak<0 ); 1560 if( pSort->labelBkOut ){ 1561 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1562 sqlite3VdbeGoto(v, addrBreak); 1563 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1564 } 1565 1566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1567 /* Open any cursors needed for sorter-reference expressions */ 1568 for(i=0; i<pSort->nDefer; i++){ 1569 Table *pTab = pSort->aDefer[i].pTab; 1570 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1571 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1572 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1573 } 1574 #endif 1575 1576 iTab = pSort->iECursor; 1577 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1578 regRowid = 0; 1579 regRow = pDest->iSdst; 1580 }else{ 1581 regRowid = sqlite3GetTempReg(pParse); 1582 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1583 regRow = sqlite3GetTempReg(pParse); 1584 nColumn = 0; 1585 }else{ 1586 regRow = sqlite3GetTempRange(pParse, nColumn); 1587 } 1588 } 1589 nKey = pOrderBy->nExpr - pSort->nOBSat; 1590 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1591 int regSortOut = ++pParse->nMem; 1592 iSortTab = pParse->nTab++; 1593 if( pSort->labelBkOut ){ 1594 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1595 } 1596 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1597 nKey+1+nColumn+nRefKey); 1598 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1599 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1600 VdbeCoverage(v); 1601 codeOffset(v, p->iOffset, addrContinue); 1602 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1603 bSeq = 0; 1604 }else{ 1605 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1606 codeOffset(v, p->iOffset, addrContinue); 1607 iSortTab = iTab; 1608 bSeq = 1; 1609 } 1610 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1611 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1612 if( aOutEx[i].bSorterRef ) continue; 1613 #endif 1614 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1615 } 1616 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1617 if( pSort->nDefer ){ 1618 int iKey = iCol+1; 1619 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1620 1621 for(i=0; i<pSort->nDefer; i++){ 1622 int iCsr = pSort->aDefer[i].iCsr; 1623 Table *pTab = pSort->aDefer[i].pTab; 1624 int nKey = pSort->aDefer[i].nKey; 1625 1626 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1627 if( HasRowid(pTab) ){ 1628 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1629 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1630 sqlite3VdbeCurrentAddr(v)+1, regKey); 1631 }else{ 1632 int k; 1633 int iJmp; 1634 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1635 for(k=0; k<nKey; k++){ 1636 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1637 } 1638 iJmp = sqlite3VdbeCurrentAddr(v); 1639 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1640 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1641 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1642 } 1643 } 1644 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1645 } 1646 #endif 1647 for(i=nColumn-1; i>=0; i--){ 1648 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1649 if( aOutEx[i].bSorterRef ){ 1650 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1651 }else 1652 #endif 1653 { 1654 int iRead; 1655 if( aOutEx[i].u.x.iOrderByCol ){ 1656 iRead = aOutEx[i].u.x.iOrderByCol-1; 1657 }else{ 1658 iRead = iCol--; 1659 } 1660 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1661 VdbeComment((v, "%s", aOutEx[i].zEName)); 1662 } 1663 } 1664 switch( eDest ){ 1665 case SRT_Table: 1666 case SRT_EphemTab: { 1667 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1668 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1669 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1670 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1671 break; 1672 } 1673 #ifndef SQLITE_OMIT_SUBQUERY 1674 case SRT_Set: { 1675 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1676 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1677 pDest->zAffSdst, nColumn); 1678 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1679 break; 1680 } 1681 case SRT_Mem: { 1682 /* The LIMIT clause will terminate the loop for us */ 1683 break; 1684 } 1685 #endif 1686 case SRT_Upfrom: { 1687 int i2 = pDest->iSDParm2; 1688 int r1 = sqlite3GetTempReg(pParse); 1689 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1690 if( i2<0 ){ 1691 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1692 }else{ 1693 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1694 } 1695 break; 1696 } 1697 default: { 1698 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1699 testcase( eDest==SRT_Output ); 1700 testcase( eDest==SRT_Coroutine ); 1701 if( eDest==SRT_Output ){ 1702 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1703 }else{ 1704 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1705 } 1706 break; 1707 } 1708 } 1709 if( regRowid ){ 1710 if( eDest==SRT_Set ){ 1711 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1712 }else{ 1713 sqlite3ReleaseTempReg(pParse, regRow); 1714 } 1715 sqlite3ReleaseTempReg(pParse, regRowid); 1716 } 1717 /* The bottom of the loop 1718 */ 1719 sqlite3VdbeResolveLabel(v, addrContinue); 1720 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1721 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1722 }else{ 1723 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1724 } 1725 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1726 sqlite3VdbeResolveLabel(v, addrBreak); 1727 } 1728 1729 /* 1730 ** Return a pointer to a string containing the 'declaration type' of the 1731 ** expression pExpr. The string may be treated as static by the caller. 1732 ** 1733 ** Also try to estimate the size of the returned value and return that 1734 ** result in *pEstWidth. 1735 ** 1736 ** The declaration type is the exact datatype definition extracted from the 1737 ** original CREATE TABLE statement if the expression is a column. The 1738 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1739 ** is considered a column can be complex in the presence of subqueries. The 1740 ** result-set expression in all of the following SELECT statements is 1741 ** considered a column by this function. 1742 ** 1743 ** SELECT col FROM tbl; 1744 ** SELECT (SELECT col FROM tbl; 1745 ** SELECT (SELECT col FROM tbl); 1746 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1747 ** 1748 ** The declaration type for any expression other than a column is NULL. 1749 ** 1750 ** This routine has either 3 or 6 parameters depending on whether or not 1751 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1752 */ 1753 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1754 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1755 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1756 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1757 #endif 1758 static const char *columnTypeImpl( 1759 NameContext *pNC, 1760 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1761 Expr *pExpr 1762 #else 1763 Expr *pExpr, 1764 const char **pzOrigDb, 1765 const char **pzOrigTab, 1766 const char **pzOrigCol 1767 #endif 1768 ){ 1769 char const *zType = 0; 1770 int j; 1771 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1772 char const *zOrigDb = 0; 1773 char const *zOrigTab = 0; 1774 char const *zOrigCol = 0; 1775 #endif 1776 1777 assert( pExpr!=0 ); 1778 assert( pNC->pSrcList!=0 ); 1779 switch( pExpr->op ){ 1780 case TK_COLUMN: { 1781 /* The expression is a column. Locate the table the column is being 1782 ** extracted from in NameContext.pSrcList. This table may be real 1783 ** database table or a subquery. 1784 */ 1785 Table *pTab = 0; /* Table structure column is extracted from */ 1786 Select *pS = 0; /* Select the column is extracted from */ 1787 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1788 while( pNC && !pTab ){ 1789 SrcList *pTabList = pNC->pSrcList; 1790 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1791 if( j<pTabList->nSrc ){ 1792 pTab = pTabList->a[j].pTab; 1793 pS = pTabList->a[j].pSelect; 1794 }else{ 1795 pNC = pNC->pNext; 1796 } 1797 } 1798 1799 if( pTab==0 ){ 1800 /* At one time, code such as "SELECT new.x" within a trigger would 1801 ** cause this condition to run. Since then, we have restructured how 1802 ** trigger code is generated and so this condition is no longer 1803 ** possible. However, it can still be true for statements like 1804 ** the following: 1805 ** 1806 ** CREATE TABLE t1(col INTEGER); 1807 ** SELECT (SELECT t1.col) FROM FROM t1; 1808 ** 1809 ** when columnType() is called on the expression "t1.col" in the 1810 ** sub-select. In this case, set the column type to NULL, even 1811 ** though it should really be "INTEGER". 1812 ** 1813 ** This is not a problem, as the column type of "t1.col" is never 1814 ** used. When columnType() is called on the expression 1815 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1816 ** branch below. */ 1817 break; 1818 } 1819 1820 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1821 if( pS ){ 1822 /* The "table" is actually a sub-select or a view in the FROM clause 1823 ** of the SELECT statement. Return the declaration type and origin 1824 ** data for the result-set column of the sub-select. 1825 */ 1826 if( iCol<pS->pEList->nExpr 1827 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1828 && iCol>=0 1829 #else 1830 && ALWAYS(iCol>=0) 1831 #endif 1832 ){ 1833 /* If iCol is less than zero, then the expression requests the 1834 ** rowid of the sub-select or view. This expression is legal (see 1835 ** test case misc2.2.2) - it always evaluates to NULL. 1836 */ 1837 NameContext sNC; 1838 Expr *p = pS->pEList->a[iCol].pExpr; 1839 sNC.pSrcList = pS->pSrc; 1840 sNC.pNext = pNC; 1841 sNC.pParse = pNC->pParse; 1842 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1843 } 1844 }else{ 1845 /* A real table or a CTE table */ 1846 assert( !pS ); 1847 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1848 if( iCol<0 ) iCol = pTab->iPKey; 1849 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1850 if( iCol<0 ){ 1851 zType = "INTEGER"; 1852 zOrigCol = "rowid"; 1853 }else{ 1854 zOrigCol = pTab->aCol[iCol].zCnName; 1855 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1856 } 1857 zOrigTab = pTab->zName; 1858 if( pNC->pParse && pTab->pSchema ){ 1859 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1860 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1861 } 1862 #else 1863 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1864 if( iCol<0 ){ 1865 zType = "INTEGER"; 1866 }else{ 1867 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1868 } 1869 #endif 1870 } 1871 break; 1872 } 1873 #ifndef SQLITE_OMIT_SUBQUERY 1874 case TK_SELECT: { 1875 /* The expression is a sub-select. Return the declaration type and 1876 ** origin info for the single column in the result set of the SELECT 1877 ** statement. 1878 */ 1879 NameContext sNC; 1880 Select *pS; 1881 Expr *p; 1882 assert( ExprUseXSelect(pExpr) ); 1883 pS = pExpr->x.pSelect; 1884 p = pS->pEList->a[0].pExpr; 1885 sNC.pSrcList = pS->pSrc; 1886 sNC.pNext = pNC; 1887 sNC.pParse = pNC->pParse; 1888 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1889 break; 1890 } 1891 #endif 1892 } 1893 1894 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1895 if( pzOrigDb ){ 1896 assert( pzOrigTab && pzOrigCol ); 1897 *pzOrigDb = zOrigDb; 1898 *pzOrigTab = zOrigTab; 1899 *pzOrigCol = zOrigCol; 1900 } 1901 #endif 1902 return zType; 1903 } 1904 1905 /* 1906 ** Generate code that will tell the VDBE the declaration types of columns 1907 ** in the result set. 1908 */ 1909 static void generateColumnTypes( 1910 Parse *pParse, /* Parser context */ 1911 SrcList *pTabList, /* List of tables */ 1912 ExprList *pEList /* Expressions defining the result set */ 1913 ){ 1914 #ifndef SQLITE_OMIT_DECLTYPE 1915 Vdbe *v = pParse->pVdbe; 1916 int i; 1917 NameContext sNC; 1918 sNC.pSrcList = pTabList; 1919 sNC.pParse = pParse; 1920 sNC.pNext = 0; 1921 for(i=0; i<pEList->nExpr; i++){ 1922 Expr *p = pEList->a[i].pExpr; 1923 const char *zType; 1924 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1925 const char *zOrigDb = 0; 1926 const char *zOrigTab = 0; 1927 const char *zOrigCol = 0; 1928 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1929 1930 /* The vdbe must make its own copy of the column-type and other 1931 ** column specific strings, in case the schema is reset before this 1932 ** virtual machine is deleted. 1933 */ 1934 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1935 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1936 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1937 #else 1938 zType = columnType(&sNC, p, 0, 0, 0); 1939 #endif 1940 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1941 } 1942 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1943 } 1944 1945 1946 /* 1947 ** Compute the column names for a SELECT statement. 1948 ** 1949 ** The only guarantee that SQLite makes about column names is that if the 1950 ** column has an AS clause assigning it a name, that will be the name used. 1951 ** That is the only documented guarantee. However, countless applications 1952 ** developed over the years have made baseless assumptions about column names 1953 ** and will break if those assumptions changes. Hence, use extreme caution 1954 ** when modifying this routine to avoid breaking legacy. 1955 ** 1956 ** See Also: sqlite3ColumnsFromExprList() 1957 ** 1958 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1959 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1960 ** applications should operate this way. Nevertheless, we need to support the 1961 ** other modes for legacy: 1962 ** 1963 ** short=OFF, full=OFF: Column name is the text of the expression has it 1964 ** originally appears in the SELECT statement. In 1965 ** other words, the zSpan of the result expression. 1966 ** 1967 ** short=ON, full=OFF: (This is the default setting). If the result 1968 ** refers directly to a table column, then the 1969 ** result column name is just the table column 1970 ** name: COLUMN. Otherwise use zSpan. 1971 ** 1972 ** full=ON, short=ANY: If the result refers directly to a table column, 1973 ** then the result column name with the table name 1974 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1975 */ 1976 void sqlite3GenerateColumnNames( 1977 Parse *pParse, /* Parser context */ 1978 Select *pSelect /* Generate column names for this SELECT statement */ 1979 ){ 1980 Vdbe *v = pParse->pVdbe; 1981 int i; 1982 Table *pTab; 1983 SrcList *pTabList; 1984 ExprList *pEList; 1985 sqlite3 *db = pParse->db; 1986 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1987 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1988 1989 #ifndef SQLITE_OMIT_EXPLAIN 1990 /* If this is an EXPLAIN, skip this step */ 1991 if( pParse->explain ){ 1992 return; 1993 } 1994 #endif 1995 1996 if( pParse->colNamesSet ) return; 1997 /* Column names are determined by the left-most term of a compound select */ 1998 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1999 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2000 pTabList = pSelect->pSrc; 2001 pEList = pSelect->pEList; 2002 assert( v!=0 ); 2003 assert( pTabList!=0 ); 2004 pParse->colNamesSet = 1; 2005 fullName = (db->flags & SQLITE_FullColNames)!=0; 2006 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2007 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2008 for(i=0; i<pEList->nExpr; i++){ 2009 Expr *p = pEList->a[i].pExpr; 2010 2011 assert( p!=0 ); 2012 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2013 assert( p->op!=TK_COLUMN 2014 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2015 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2016 /* An AS clause always takes first priority */ 2017 char *zName = pEList->a[i].zEName; 2018 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2019 }else if( srcName && p->op==TK_COLUMN ){ 2020 char *zCol; 2021 int iCol = p->iColumn; 2022 pTab = p->y.pTab; 2023 assert( pTab!=0 ); 2024 if( iCol<0 ) iCol = pTab->iPKey; 2025 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2026 if( iCol<0 ){ 2027 zCol = "rowid"; 2028 }else{ 2029 zCol = pTab->aCol[iCol].zCnName; 2030 } 2031 if( fullName ){ 2032 char *zName = 0; 2033 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2034 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2035 }else{ 2036 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2037 } 2038 }else{ 2039 const char *z = pEList->a[i].zEName; 2040 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2041 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2042 } 2043 } 2044 generateColumnTypes(pParse, pTabList, pEList); 2045 } 2046 2047 /* 2048 ** Given an expression list (which is really the list of expressions 2049 ** that form the result set of a SELECT statement) compute appropriate 2050 ** column names for a table that would hold the expression list. 2051 ** 2052 ** All column names will be unique. 2053 ** 2054 ** Only the column names are computed. Column.zType, Column.zColl, 2055 ** and other fields of Column are zeroed. 2056 ** 2057 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2058 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2059 ** 2060 ** The only guarantee that SQLite makes about column names is that if the 2061 ** column has an AS clause assigning it a name, that will be the name used. 2062 ** That is the only documented guarantee. However, countless applications 2063 ** developed over the years have made baseless assumptions about column names 2064 ** and will break if those assumptions changes. Hence, use extreme caution 2065 ** when modifying this routine to avoid breaking legacy. 2066 ** 2067 ** See Also: sqlite3GenerateColumnNames() 2068 */ 2069 int sqlite3ColumnsFromExprList( 2070 Parse *pParse, /* Parsing context */ 2071 ExprList *pEList, /* Expr list from which to derive column names */ 2072 i16 *pnCol, /* Write the number of columns here */ 2073 Column **paCol /* Write the new column list here */ 2074 ){ 2075 sqlite3 *db = pParse->db; /* Database connection */ 2076 int i, j; /* Loop counters */ 2077 u32 cnt; /* Index added to make the name unique */ 2078 Column *aCol, *pCol; /* For looping over result columns */ 2079 int nCol; /* Number of columns in the result set */ 2080 char *zName; /* Column name */ 2081 int nName; /* Size of name in zName[] */ 2082 Hash ht; /* Hash table of column names */ 2083 Table *pTab; 2084 2085 sqlite3HashInit(&ht); 2086 if( pEList ){ 2087 nCol = pEList->nExpr; 2088 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2089 testcase( aCol==0 ); 2090 if( NEVER(nCol>32767) ) nCol = 32767; 2091 }else{ 2092 nCol = 0; 2093 aCol = 0; 2094 } 2095 assert( nCol==(i16)nCol ); 2096 *pnCol = nCol; 2097 *paCol = aCol; 2098 2099 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2100 /* Get an appropriate name for the column 2101 */ 2102 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2103 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2104 }else{ 2105 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2106 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2107 pColExpr = pColExpr->pRight; 2108 assert( pColExpr!=0 ); 2109 } 2110 if( pColExpr->op==TK_COLUMN 2111 && ALWAYS( ExprUseYTab(pColExpr) ) 2112 && (pTab = pColExpr->y.pTab)!=0 2113 ){ 2114 /* For columns use the column name name */ 2115 int iCol = pColExpr->iColumn; 2116 if( iCol<0 ) iCol = pTab->iPKey; 2117 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2118 }else if( pColExpr->op==TK_ID ){ 2119 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2120 zName = pColExpr->u.zToken; 2121 }else{ 2122 /* Use the original text of the column expression as its name */ 2123 zName = pEList->a[i].zEName; 2124 } 2125 } 2126 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2127 zName = sqlite3DbStrDup(db, zName); 2128 }else{ 2129 zName = sqlite3MPrintf(db,"column%d",i+1); 2130 } 2131 2132 /* Make sure the column name is unique. If the name is not unique, 2133 ** append an integer to the name so that it becomes unique. 2134 */ 2135 cnt = 0; 2136 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2137 nName = sqlite3Strlen30(zName); 2138 if( nName>0 ){ 2139 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2140 if( zName[j]==':' ) nName = j; 2141 } 2142 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2143 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2144 } 2145 pCol->zCnName = zName; 2146 pCol->hName = sqlite3StrIHash(zName); 2147 sqlite3ColumnPropertiesFromName(0, pCol); 2148 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2149 sqlite3OomFault(db); 2150 } 2151 } 2152 sqlite3HashClear(&ht); 2153 if( db->mallocFailed ){ 2154 for(j=0; j<i; j++){ 2155 sqlite3DbFree(db, aCol[j].zCnName); 2156 } 2157 sqlite3DbFree(db, aCol); 2158 *paCol = 0; 2159 *pnCol = 0; 2160 return SQLITE_NOMEM_BKPT; 2161 } 2162 return SQLITE_OK; 2163 } 2164 2165 /* 2166 ** Add type and collation information to a column list based on 2167 ** a SELECT statement. 2168 ** 2169 ** The column list presumably came from selectColumnNamesFromExprList(). 2170 ** The column list has only names, not types or collations. This 2171 ** routine goes through and adds the types and collations. 2172 ** 2173 ** This routine requires that all identifiers in the SELECT 2174 ** statement be resolved. 2175 */ 2176 void sqlite3SelectAddColumnTypeAndCollation( 2177 Parse *pParse, /* Parsing contexts */ 2178 Table *pTab, /* Add column type information to this table */ 2179 Select *pSelect, /* SELECT used to determine types and collations */ 2180 char aff /* Default affinity for columns */ 2181 ){ 2182 sqlite3 *db = pParse->db; 2183 NameContext sNC; 2184 Column *pCol; 2185 CollSeq *pColl; 2186 int i; 2187 Expr *p; 2188 struct ExprList_item *a; 2189 2190 assert( pSelect!=0 ); 2191 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2192 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2193 if( db->mallocFailed ) return; 2194 memset(&sNC, 0, sizeof(sNC)); 2195 sNC.pSrcList = pSelect->pSrc; 2196 a = pSelect->pEList->a; 2197 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2198 const char *zType; 2199 int n, m; 2200 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2201 p = a[i].pExpr; 2202 zType = columnType(&sNC, p, 0, 0, 0); 2203 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2204 pCol->affinity = sqlite3ExprAffinity(p); 2205 if( zType ){ 2206 m = sqlite3Strlen30(zType); 2207 n = sqlite3Strlen30(pCol->zCnName); 2208 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2209 if( pCol->zCnName ){ 2210 memcpy(&pCol->zCnName[n+1], zType, m+1); 2211 pCol->colFlags |= COLFLAG_HASTYPE; 2212 } 2213 } 2214 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2215 pColl = sqlite3ExprCollSeq(pParse, p); 2216 if( pColl ){ 2217 assert( pTab->pIndex==0 ); 2218 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2219 } 2220 } 2221 pTab->szTabRow = 1; /* Any non-zero value works */ 2222 } 2223 2224 /* 2225 ** Given a SELECT statement, generate a Table structure that describes 2226 ** the result set of that SELECT. 2227 */ 2228 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2229 Table *pTab; 2230 sqlite3 *db = pParse->db; 2231 u64 savedFlags; 2232 2233 savedFlags = db->flags; 2234 db->flags &= ~(u64)SQLITE_FullColNames; 2235 db->flags |= SQLITE_ShortColNames; 2236 sqlite3SelectPrep(pParse, pSelect, 0); 2237 db->flags = savedFlags; 2238 if( pParse->nErr ) return 0; 2239 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2240 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2241 if( pTab==0 ){ 2242 return 0; 2243 } 2244 pTab->nTabRef = 1; 2245 pTab->zName = 0; 2246 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2247 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2248 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2249 pTab->iPKey = -1; 2250 if( db->mallocFailed ){ 2251 sqlite3DeleteTable(db, pTab); 2252 return 0; 2253 } 2254 return pTab; 2255 } 2256 2257 /* 2258 ** Get a VDBE for the given parser context. Create a new one if necessary. 2259 ** If an error occurs, return NULL and leave a message in pParse. 2260 */ 2261 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2262 if( pParse->pVdbe ){ 2263 return pParse->pVdbe; 2264 } 2265 if( pParse->pToplevel==0 2266 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2267 ){ 2268 pParse->okConstFactor = 1; 2269 } 2270 return sqlite3VdbeCreate(pParse); 2271 } 2272 2273 2274 /* 2275 ** Compute the iLimit and iOffset fields of the SELECT based on the 2276 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2277 ** that appear in the original SQL statement after the LIMIT and OFFSET 2278 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2279 ** are the integer memory register numbers for counters used to compute 2280 ** the limit and offset. If there is no limit and/or offset, then 2281 ** iLimit and iOffset are negative. 2282 ** 2283 ** This routine changes the values of iLimit and iOffset only if 2284 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2285 ** and iOffset should have been preset to appropriate default values (zero) 2286 ** prior to calling this routine. 2287 ** 2288 ** The iOffset register (if it exists) is initialized to the value 2289 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2290 ** iOffset+1 is initialized to LIMIT+OFFSET. 2291 ** 2292 ** Only if pLimit->pLeft!=0 do the limit registers get 2293 ** redefined. The UNION ALL operator uses this property to force 2294 ** the reuse of the same limit and offset registers across multiple 2295 ** SELECT statements. 2296 */ 2297 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2298 Vdbe *v = 0; 2299 int iLimit = 0; 2300 int iOffset; 2301 int n; 2302 Expr *pLimit = p->pLimit; 2303 2304 if( p->iLimit ) return; 2305 2306 /* 2307 ** "LIMIT -1" always shows all rows. There is some 2308 ** controversy about what the correct behavior should be. 2309 ** The current implementation interprets "LIMIT 0" to mean 2310 ** no rows. 2311 */ 2312 if( pLimit ){ 2313 assert( pLimit->op==TK_LIMIT ); 2314 assert( pLimit->pLeft!=0 ); 2315 p->iLimit = iLimit = ++pParse->nMem; 2316 v = sqlite3GetVdbe(pParse); 2317 assert( v!=0 ); 2318 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2319 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2320 VdbeComment((v, "LIMIT counter")); 2321 if( n==0 ){ 2322 sqlite3VdbeGoto(v, iBreak); 2323 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2324 p->nSelectRow = sqlite3LogEst((u64)n); 2325 p->selFlags |= SF_FixedLimit; 2326 } 2327 }else{ 2328 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2329 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2330 VdbeComment((v, "LIMIT counter")); 2331 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2332 } 2333 if( pLimit->pRight ){ 2334 p->iOffset = iOffset = ++pParse->nMem; 2335 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2336 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2337 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2338 VdbeComment((v, "OFFSET counter")); 2339 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2340 VdbeComment((v, "LIMIT+OFFSET")); 2341 } 2342 } 2343 } 2344 2345 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2346 /* 2347 ** Return the appropriate collating sequence for the iCol-th column of 2348 ** the result set for the compound-select statement "p". Return NULL if 2349 ** the column has no default collating sequence. 2350 ** 2351 ** The collating sequence for the compound select is taken from the 2352 ** left-most term of the select that has a collating sequence. 2353 */ 2354 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2355 CollSeq *pRet; 2356 if( p->pPrior ){ 2357 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2358 }else{ 2359 pRet = 0; 2360 } 2361 assert( iCol>=0 ); 2362 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2363 ** have been thrown during name resolution and we would not have gotten 2364 ** this far */ 2365 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2366 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2367 } 2368 return pRet; 2369 } 2370 2371 /* 2372 ** The select statement passed as the second parameter is a compound SELECT 2373 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2374 ** structure suitable for implementing the ORDER BY. 2375 ** 2376 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2377 ** function is responsible for ensuring that this structure is eventually 2378 ** freed. 2379 */ 2380 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2381 ExprList *pOrderBy = p->pOrderBy; 2382 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2383 sqlite3 *db = pParse->db; 2384 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2385 if( pRet ){ 2386 int i; 2387 for(i=0; i<nOrderBy; i++){ 2388 struct ExprList_item *pItem = &pOrderBy->a[i]; 2389 Expr *pTerm = pItem->pExpr; 2390 CollSeq *pColl; 2391 2392 if( pTerm->flags & EP_Collate ){ 2393 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2394 }else{ 2395 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2396 if( pColl==0 ) pColl = db->pDfltColl; 2397 pOrderBy->a[i].pExpr = 2398 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2399 } 2400 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2401 pRet->aColl[i] = pColl; 2402 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2403 } 2404 } 2405 2406 return pRet; 2407 } 2408 2409 #ifndef SQLITE_OMIT_CTE 2410 /* 2411 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2412 ** query of the form: 2413 ** 2414 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2415 ** \___________/ \_______________/ 2416 ** p->pPrior p 2417 ** 2418 ** 2419 ** There is exactly one reference to the recursive-table in the FROM clause 2420 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2421 ** 2422 ** The setup-query runs once to generate an initial set of rows that go 2423 ** into a Queue table. Rows are extracted from the Queue table one by 2424 ** one. Each row extracted from Queue is output to pDest. Then the single 2425 ** extracted row (now in the iCurrent table) becomes the content of the 2426 ** recursive-table for a recursive-query run. The output of the recursive-query 2427 ** is added back into the Queue table. Then another row is extracted from Queue 2428 ** and the iteration continues until the Queue table is empty. 2429 ** 2430 ** If the compound query operator is UNION then no duplicate rows are ever 2431 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2432 ** that have ever been inserted into Queue and causes duplicates to be 2433 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2434 ** 2435 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2436 ** ORDER BY order and the first entry is extracted for each cycle. Without 2437 ** an ORDER BY, the Queue table is just a FIFO. 2438 ** 2439 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2440 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2441 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2442 ** with a positive value, then the first OFFSET outputs are discarded rather 2443 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2444 ** rows have been skipped. 2445 */ 2446 static void generateWithRecursiveQuery( 2447 Parse *pParse, /* Parsing context */ 2448 Select *p, /* The recursive SELECT to be coded */ 2449 SelectDest *pDest /* What to do with query results */ 2450 ){ 2451 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2452 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2453 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2454 Select *pSetup; /* The setup query */ 2455 Select *pFirstRec; /* Left-most recursive term */ 2456 int addrTop; /* Top of the loop */ 2457 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2458 int iCurrent = 0; /* The Current table */ 2459 int regCurrent; /* Register holding Current table */ 2460 int iQueue; /* The Queue table */ 2461 int iDistinct = 0; /* To ensure unique results if UNION */ 2462 int eDest = SRT_Fifo; /* How to write to Queue */ 2463 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2464 int i; /* Loop counter */ 2465 int rc; /* Result code */ 2466 ExprList *pOrderBy; /* The ORDER BY clause */ 2467 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2468 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2469 2470 #ifndef SQLITE_OMIT_WINDOWFUNC 2471 if( p->pWin ){ 2472 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2473 return; 2474 } 2475 #endif 2476 2477 /* Obtain authorization to do a recursive query */ 2478 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2479 2480 /* Process the LIMIT and OFFSET clauses, if they exist */ 2481 addrBreak = sqlite3VdbeMakeLabel(pParse); 2482 p->nSelectRow = 320; /* 4 billion rows */ 2483 computeLimitRegisters(pParse, p, addrBreak); 2484 pLimit = p->pLimit; 2485 regLimit = p->iLimit; 2486 regOffset = p->iOffset; 2487 p->pLimit = 0; 2488 p->iLimit = p->iOffset = 0; 2489 pOrderBy = p->pOrderBy; 2490 2491 /* Locate the cursor number of the Current table */ 2492 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2493 if( pSrc->a[i].fg.isRecursive ){ 2494 iCurrent = pSrc->a[i].iCursor; 2495 break; 2496 } 2497 } 2498 2499 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2500 ** the Distinct table must be exactly one greater than Queue in order 2501 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2502 iQueue = pParse->nTab++; 2503 if( p->op==TK_UNION ){ 2504 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2505 iDistinct = pParse->nTab++; 2506 }else{ 2507 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2508 } 2509 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2510 2511 /* Allocate cursors for Current, Queue, and Distinct. */ 2512 regCurrent = ++pParse->nMem; 2513 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2514 if( pOrderBy ){ 2515 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2516 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2517 (char*)pKeyInfo, P4_KEYINFO); 2518 destQueue.pOrderBy = pOrderBy; 2519 }else{ 2520 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2521 } 2522 VdbeComment((v, "Queue table")); 2523 if( iDistinct ){ 2524 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2525 p->selFlags |= SF_UsesEphemeral; 2526 } 2527 2528 /* Detach the ORDER BY clause from the compound SELECT */ 2529 p->pOrderBy = 0; 2530 2531 /* Figure out how many elements of the compound SELECT are part of the 2532 ** recursive query. Make sure no recursive elements use aggregate 2533 ** functions. Mark the recursive elements as UNION ALL even if they 2534 ** are really UNION because the distinctness will be enforced by the 2535 ** iDistinct table. pFirstRec is left pointing to the left-most 2536 ** recursive term of the CTE. 2537 */ 2538 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2539 if( pFirstRec->selFlags & SF_Aggregate ){ 2540 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2541 goto end_of_recursive_query; 2542 } 2543 pFirstRec->op = TK_ALL; 2544 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2545 } 2546 2547 /* Store the results of the setup-query in Queue. */ 2548 pSetup = pFirstRec->pPrior; 2549 pSetup->pNext = 0; 2550 ExplainQueryPlan((pParse, 1, "SETUP")); 2551 rc = sqlite3Select(pParse, pSetup, &destQueue); 2552 pSetup->pNext = p; 2553 if( rc ) goto end_of_recursive_query; 2554 2555 /* Find the next row in the Queue and output that row */ 2556 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2557 2558 /* Transfer the next row in Queue over to Current */ 2559 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2560 if( pOrderBy ){ 2561 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2562 }else{ 2563 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2564 } 2565 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2566 2567 /* Output the single row in Current */ 2568 addrCont = sqlite3VdbeMakeLabel(pParse); 2569 codeOffset(v, regOffset, addrCont); 2570 selectInnerLoop(pParse, p, iCurrent, 2571 0, 0, pDest, addrCont, addrBreak); 2572 if( regLimit ){ 2573 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2574 VdbeCoverage(v); 2575 } 2576 sqlite3VdbeResolveLabel(v, addrCont); 2577 2578 /* Execute the recursive SELECT taking the single row in Current as 2579 ** the value for the recursive-table. Store the results in the Queue. 2580 */ 2581 pFirstRec->pPrior = 0; 2582 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2583 sqlite3Select(pParse, p, &destQueue); 2584 assert( pFirstRec->pPrior==0 ); 2585 pFirstRec->pPrior = pSetup; 2586 2587 /* Keep running the loop until the Queue is empty */ 2588 sqlite3VdbeGoto(v, addrTop); 2589 sqlite3VdbeResolveLabel(v, addrBreak); 2590 2591 end_of_recursive_query: 2592 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2593 p->pOrderBy = pOrderBy; 2594 p->pLimit = pLimit; 2595 return; 2596 } 2597 #endif /* SQLITE_OMIT_CTE */ 2598 2599 /* Forward references */ 2600 static int multiSelectOrderBy( 2601 Parse *pParse, /* Parsing context */ 2602 Select *p, /* The right-most of SELECTs to be coded */ 2603 SelectDest *pDest /* What to do with query results */ 2604 ); 2605 2606 /* 2607 ** Handle the special case of a compound-select that originates from a 2608 ** VALUES clause. By handling this as a special case, we avoid deep 2609 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2610 ** on a VALUES clause. 2611 ** 2612 ** Because the Select object originates from a VALUES clause: 2613 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2614 ** (2) All terms are UNION ALL 2615 ** (3) There is no ORDER BY clause 2616 ** 2617 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2618 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2619 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2620 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2621 */ 2622 static int multiSelectValues( 2623 Parse *pParse, /* Parsing context */ 2624 Select *p, /* The right-most of SELECTs to be coded */ 2625 SelectDest *pDest /* What to do with query results */ 2626 ){ 2627 int nRow = 1; 2628 int rc = 0; 2629 int bShowAll = p->pLimit==0; 2630 assert( p->selFlags & SF_MultiValue ); 2631 do{ 2632 assert( p->selFlags & SF_Values ); 2633 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2634 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2635 #ifndef SQLITE_OMIT_WINDOWFUNC 2636 if( p->pWin ) return -1; 2637 #endif 2638 if( p->pPrior==0 ) break; 2639 assert( p->pPrior->pNext==p ); 2640 p = p->pPrior; 2641 nRow += bShowAll; 2642 }while(1); 2643 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2644 nRow==1 ? "" : "S")); 2645 while( p ){ 2646 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2647 if( !bShowAll ) break; 2648 p->nSelectRow = nRow; 2649 p = p->pNext; 2650 } 2651 return rc; 2652 } 2653 2654 /* 2655 ** Return true if the SELECT statement which is known to be the recursive 2656 ** part of a recursive CTE still has its anchor terms attached. If the 2657 ** anchor terms have already been removed, then return false. 2658 */ 2659 static int hasAnchor(Select *p){ 2660 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2661 return p!=0; 2662 } 2663 2664 /* 2665 ** This routine is called to process a compound query form from 2666 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2667 ** INTERSECT 2668 ** 2669 ** "p" points to the right-most of the two queries. the query on the 2670 ** left is p->pPrior. The left query could also be a compound query 2671 ** in which case this routine will be called recursively. 2672 ** 2673 ** The results of the total query are to be written into a destination 2674 ** of type eDest with parameter iParm. 2675 ** 2676 ** Example 1: Consider a three-way compound SQL statement. 2677 ** 2678 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2679 ** 2680 ** This statement is parsed up as follows: 2681 ** 2682 ** SELECT c FROM t3 2683 ** | 2684 ** `-----> SELECT b FROM t2 2685 ** | 2686 ** `------> SELECT a FROM t1 2687 ** 2688 ** The arrows in the diagram above represent the Select.pPrior pointer. 2689 ** So if this routine is called with p equal to the t3 query, then 2690 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2691 ** 2692 ** Notice that because of the way SQLite parses compound SELECTs, the 2693 ** individual selects always group from left to right. 2694 */ 2695 static int multiSelect( 2696 Parse *pParse, /* Parsing context */ 2697 Select *p, /* The right-most of SELECTs to be coded */ 2698 SelectDest *pDest /* What to do with query results */ 2699 ){ 2700 int rc = SQLITE_OK; /* Success code from a subroutine */ 2701 Select *pPrior; /* Another SELECT immediately to our left */ 2702 Vdbe *v; /* Generate code to this VDBE */ 2703 SelectDest dest; /* Alternative data destination */ 2704 Select *pDelete = 0; /* Chain of simple selects to delete */ 2705 sqlite3 *db; /* Database connection */ 2706 2707 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2708 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2709 */ 2710 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2711 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2712 assert( p->selFlags & SF_Compound ); 2713 db = pParse->db; 2714 pPrior = p->pPrior; 2715 dest = *pDest; 2716 assert( pPrior->pOrderBy==0 ); 2717 assert( pPrior->pLimit==0 ); 2718 2719 v = sqlite3GetVdbe(pParse); 2720 assert( v!=0 ); /* The VDBE already created by calling function */ 2721 2722 /* Create the destination temporary table if necessary 2723 */ 2724 if( dest.eDest==SRT_EphemTab ){ 2725 assert( p->pEList ); 2726 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2727 dest.eDest = SRT_Table; 2728 } 2729 2730 /* Special handling for a compound-select that originates as a VALUES clause. 2731 */ 2732 if( p->selFlags & SF_MultiValue ){ 2733 rc = multiSelectValues(pParse, p, &dest); 2734 if( rc>=0 ) goto multi_select_end; 2735 rc = SQLITE_OK; 2736 } 2737 2738 /* Make sure all SELECTs in the statement have the same number of elements 2739 ** in their result sets. 2740 */ 2741 assert( p->pEList && pPrior->pEList ); 2742 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2743 2744 #ifndef SQLITE_OMIT_CTE 2745 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2746 generateWithRecursiveQuery(pParse, p, &dest); 2747 }else 2748 #endif 2749 2750 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2751 */ 2752 if( p->pOrderBy ){ 2753 return multiSelectOrderBy(pParse, p, pDest); 2754 }else{ 2755 2756 #ifndef SQLITE_OMIT_EXPLAIN 2757 if( pPrior->pPrior==0 ){ 2758 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2759 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2760 } 2761 #endif 2762 2763 /* Generate code for the left and right SELECT statements. 2764 */ 2765 switch( p->op ){ 2766 case TK_ALL: { 2767 int addr = 0; 2768 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2769 assert( !pPrior->pLimit ); 2770 pPrior->iLimit = p->iLimit; 2771 pPrior->iOffset = p->iOffset; 2772 pPrior->pLimit = p->pLimit; 2773 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2774 rc = sqlite3Select(pParse, pPrior, &dest); 2775 pPrior->pLimit = 0; 2776 if( rc ){ 2777 goto multi_select_end; 2778 } 2779 p->pPrior = 0; 2780 p->iLimit = pPrior->iLimit; 2781 p->iOffset = pPrior->iOffset; 2782 if( p->iLimit ){ 2783 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2784 VdbeComment((v, "Jump ahead if LIMIT reached")); 2785 if( p->iOffset ){ 2786 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2787 p->iLimit, p->iOffset+1, p->iOffset); 2788 } 2789 } 2790 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2791 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2792 rc = sqlite3Select(pParse, p, &dest); 2793 testcase( rc!=SQLITE_OK ); 2794 pDelete = p->pPrior; 2795 p->pPrior = pPrior; 2796 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2797 if( p->pLimit 2798 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2799 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2800 ){ 2801 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2802 } 2803 if( addr ){ 2804 sqlite3VdbeJumpHere(v, addr); 2805 } 2806 break; 2807 } 2808 case TK_EXCEPT: 2809 case TK_UNION: { 2810 int unionTab; /* Cursor number of the temp table holding result */ 2811 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2812 int priorOp; /* The SRT_ operation to apply to prior selects */ 2813 Expr *pLimit; /* Saved values of p->nLimit */ 2814 int addr; 2815 SelectDest uniondest; 2816 2817 testcase( p->op==TK_EXCEPT ); 2818 testcase( p->op==TK_UNION ); 2819 priorOp = SRT_Union; 2820 if( dest.eDest==priorOp ){ 2821 /* We can reuse a temporary table generated by a SELECT to our 2822 ** right. 2823 */ 2824 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2825 unionTab = dest.iSDParm; 2826 }else{ 2827 /* We will need to create our own temporary table to hold the 2828 ** intermediate results. 2829 */ 2830 unionTab = pParse->nTab++; 2831 assert( p->pOrderBy==0 ); 2832 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2833 assert( p->addrOpenEphm[0] == -1 ); 2834 p->addrOpenEphm[0] = addr; 2835 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2836 assert( p->pEList ); 2837 } 2838 2839 2840 /* Code the SELECT statements to our left 2841 */ 2842 assert( !pPrior->pOrderBy ); 2843 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2844 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2845 rc = sqlite3Select(pParse, pPrior, &uniondest); 2846 if( rc ){ 2847 goto multi_select_end; 2848 } 2849 2850 /* Code the current SELECT statement 2851 */ 2852 if( p->op==TK_EXCEPT ){ 2853 op = SRT_Except; 2854 }else{ 2855 assert( p->op==TK_UNION ); 2856 op = SRT_Union; 2857 } 2858 p->pPrior = 0; 2859 pLimit = p->pLimit; 2860 p->pLimit = 0; 2861 uniondest.eDest = op; 2862 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2863 sqlite3SelectOpName(p->op))); 2864 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2865 rc = sqlite3Select(pParse, p, &uniondest); 2866 testcase( rc!=SQLITE_OK ); 2867 assert( p->pOrderBy==0 ); 2868 pDelete = p->pPrior; 2869 p->pPrior = pPrior; 2870 p->pOrderBy = 0; 2871 if( p->op==TK_UNION ){ 2872 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2873 } 2874 sqlite3ExprDelete(db, p->pLimit); 2875 p->pLimit = pLimit; 2876 p->iLimit = 0; 2877 p->iOffset = 0; 2878 2879 /* Convert the data in the temporary table into whatever form 2880 ** it is that we currently need. 2881 */ 2882 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2883 assert( p->pEList || db->mallocFailed ); 2884 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2885 int iCont, iBreak, iStart; 2886 iBreak = sqlite3VdbeMakeLabel(pParse); 2887 iCont = sqlite3VdbeMakeLabel(pParse); 2888 computeLimitRegisters(pParse, p, iBreak); 2889 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2890 iStart = sqlite3VdbeCurrentAddr(v); 2891 selectInnerLoop(pParse, p, unionTab, 2892 0, 0, &dest, iCont, iBreak); 2893 sqlite3VdbeResolveLabel(v, iCont); 2894 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2895 sqlite3VdbeResolveLabel(v, iBreak); 2896 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2897 } 2898 break; 2899 } 2900 default: assert( p->op==TK_INTERSECT ); { 2901 int tab1, tab2; 2902 int iCont, iBreak, iStart; 2903 Expr *pLimit; 2904 int addr; 2905 SelectDest intersectdest; 2906 int r1; 2907 2908 /* INTERSECT is different from the others since it requires 2909 ** two temporary tables. Hence it has its own case. Begin 2910 ** by allocating the tables we will need. 2911 */ 2912 tab1 = pParse->nTab++; 2913 tab2 = pParse->nTab++; 2914 assert( p->pOrderBy==0 ); 2915 2916 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2917 assert( p->addrOpenEphm[0] == -1 ); 2918 p->addrOpenEphm[0] = addr; 2919 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2920 assert( p->pEList ); 2921 2922 /* Code the SELECTs to our left into temporary table "tab1". 2923 */ 2924 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2925 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2926 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2927 if( rc ){ 2928 goto multi_select_end; 2929 } 2930 2931 /* Code the current SELECT into temporary table "tab2" 2932 */ 2933 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2934 assert( p->addrOpenEphm[1] == -1 ); 2935 p->addrOpenEphm[1] = addr; 2936 p->pPrior = 0; 2937 pLimit = p->pLimit; 2938 p->pLimit = 0; 2939 intersectdest.iSDParm = tab2; 2940 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2941 sqlite3SelectOpName(p->op))); 2942 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2943 rc = sqlite3Select(pParse, p, &intersectdest); 2944 testcase( rc!=SQLITE_OK ); 2945 pDelete = p->pPrior; 2946 p->pPrior = pPrior; 2947 if( p->nSelectRow>pPrior->nSelectRow ){ 2948 p->nSelectRow = pPrior->nSelectRow; 2949 } 2950 sqlite3ExprDelete(db, p->pLimit); 2951 p->pLimit = pLimit; 2952 2953 /* Generate code to take the intersection of the two temporary 2954 ** tables. 2955 */ 2956 if( rc ) break; 2957 assert( p->pEList ); 2958 iBreak = sqlite3VdbeMakeLabel(pParse); 2959 iCont = sqlite3VdbeMakeLabel(pParse); 2960 computeLimitRegisters(pParse, p, iBreak); 2961 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2962 r1 = sqlite3GetTempReg(pParse); 2963 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2964 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2965 VdbeCoverage(v); 2966 sqlite3ReleaseTempReg(pParse, r1); 2967 selectInnerLoop(pParse, p, tab1, 2968 0, 0, &dest, iCont, iBreak); 2969 sqlite3VdbeResolveLabel(v, iCont); 2970 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2971 sqlite3VdbeResolveLabel(v, iBreak); 2972 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2973 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2974 break; 2975 } 2976 } 2977 2978 #ifndef SQLITE_OMIT_EXPLAIN 2979 if( p->pNext==0 ){ 2980 ExplainQueryPlanPop(pParse); 2981 } 2982 #endif 2983 } 2984 if( pParse->nErr ) goto multi_select_end; 2985 2986 /* Compute collating sequences used by 2987 ** temporary tables needed to implement the compound select. 2988 ** Attach the KeyInfo structure to all temporary tables. 2989 ** 2990 ** This section is run by the right-most SELECT statement only. 2991 ** SELECT statements to the left always skip this part. The right-most 2992 ** SELECT might also skip this part if it has no ORDER BY clause and 2993 ** no temp tables are required. 2994 */ 2995 if( p->selFlags & SF_UsesEphemeral ){ 2996 int i; /* Loop counter */ 2997 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2998 Select *pLoop; /* For looping through SELECT statements */ 2999 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3000 int nCol; /* Number of columns in result set */ 3001 3002 assert( p->pNext==0 ); 3003 assert( p->pEList!=0 ); 3004 nCol = p->pEList->nExpr; 3005 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3006 if( !pKeyInfo ){ 3007 rc = SQLITE_NOMEM_BKPT; 3008 goto multi_select_end; 3009 } 3010 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3011 *apColl = multiSelectCollSeq(pParse, p, i); 3012 if( 0==*apColl ){ 3013 *apColl = db->pDfltColl; 3014 } 3015 } 3016 3017 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3018 for(i=0; i<2; i++){ 3019 int addr = pLoop->addrOpenEphm[i]; 3020 if( addr<0 ){ 3021 /* If [0] is unused then [1] is also unused. So we can 3022 ** always safely abort as soon as the first unused slot is found */ 3023 assert( pLoop->addrOpenEphm[1]<0 ); 3024 break; 3025 } 3026 sqlite3VdbeChangeP2(v, addr, nCol); 3027 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3028 P4_KEYINFO); 3029 pLoop->addrOpenEphm[i] = -1; 3030 } 3031 } 3032 sqlite3KeyInfoUnref(pKeyInfo); 3033 } 3034 3035 multi_select_end: 3036 pDest->iSdst = dest.iSdst; 3037 pDest->nSdst = dest.nSdst; 3038 if( pDelete ){ 3039 sqlite3ParserAddCleanup(pParse, 3040 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3041 pDelete); 3042 } 3043 return rc; 3044 } 3045 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3046 3047 /* 3048 ** Error message for when two or more terms of a compound select have different 3049 ** size result sets. 3050 */ 3051 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3052 if( p->selFlags & SF_Values ){ 3053 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3054 }else{ 3055 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3056 " do not have the same number of result columns", 3057 sqlite3SelectOpName(p->op)); 3058 } 3059 } 3060 3061 /* 3062 ** Code an output subroutine for a coroutine implementation of a 3063 ** SELECT statment. 3064 ** 3065 ** The data to be output is contained in pIn->iSdst. There are 3066 ** pIn->nSdst columns to be output. pDest is where the output should 3067 ** be sent. 3068 ** 3069 ** regReturn is the number of the register holding the subroutine 3070 ** return address. 3071 ** 3072 ** If regPrev>0 then it is the first register in a vector that 3073 ** records the previous output. mem[regPrev] is a flag that is false 3074 ** if there has been no previous output. If regPrev>0 then code is 3075 ** generated to suppress duplicates. pKeyInfo is used for comparing 3076 ** keys. 3077 ** 3078 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3079 ** iBreak. 3080 */ 3081 static int generateOutputSubroutine( 3082 Parse *pParse, /* Parsing context */ 3083 Select *p, /* The SELECT statement */ 3084 SelectDest *pIn, /* Coroutine supplying data */ 3085 SelectDest *pDest, /* Where to send the data */ 3086 int regReturn, /* The return address register */ 3087 int regPrev, /* Previous result register. No uniqueness if 0 */ 3088 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3089 int iBreak /* Jump here if we hit the LIMIT */ 3090 ){ 3091 Vdbe *v = pParse->pVdbe; 3092 int iContinue; 3093 int addr; 3094 3095 addr = sqlite3VdbeCurrentAddr(v); 3096 iContinue = sqlite3VdbeMakeLabel(pParse); 3097 3098 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3099 */ 3100 if( regPrev ){ 3101 int addr1, addr2; 3102 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3103 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3104 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3105 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3106 sqlite3VdbeJumpHere(v, addr1); 3107 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3108 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3109 } 3110 if( pParse->db->mallocFailed ) return 0; 3111 3112 /* Suppress the first OFFSET entries if there is an OFFSET clause 3113 */ 3114 codeOffset(v, p->iOffset, iContinue); 3115 3116 assert( pDest->eDest!=SRT_Exists ); 3117 assert( pDest->eDest!=SRT_Table ); 3118 switch( pDest->eDest ){ 3119 /* Store the result as data using a unique key. 3120 */ 3121 case SRT_EphemTab: { 3122 int r1 = sqlite3GetTempReg(pParse); 3123 int r2 = sqlite3GetTempReg(pParse); 3124 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3125 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3126 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3127 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3128 sqlite3ReleaseTempReg(pParse, r2); 3129 sqlite3ReleaseTempReg(pParse, r1); 3130 break; 3131 } 3132 3133 #ifndef SQLITE_OMIT_SUBQUERY 3134 /* If we are creating a set for an "expr IN (SELECT ...)". 3135 */ 3136 case SRT_Set: { 3137 int r1; 3138 testcase( pIn->nSdst>1 ); 3139 r1 = sqlite3GetTempReg(pParse); 3140 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3141 r1, pDest->zAffSdst, pIn->nSdst); 3142 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3143 pIn->iSdst, pIn->nSdst); 3144 sqlite3ReleaseTempReg(pParse, r1); 3145 break; 3146 } 3147 3148 /* If this is a scalar select that is part of an expression, then 3149 ** store the results in the appropriate memory cell and break out 3150 ** of the scan loop. Note that the select might return multiple columns 3151 ** if it is the RHS of a row-value IN operator. 3152 */ 3153 case SRT_Mem: { 3154 testcase( pIn->nSdst>1 ); 3155 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3156 /* The LIMIT clause will jump out of the loop for us */ 3157 break; 3158 } 3159 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3160 3161 /* The results are stored in a sequence of registers 3162 ** starting at pDest->iSdst. Then the co-routine yields. 3163 */ 3164 case SRT_Coroutine: { 3165 if( pDest->iSdst==0 ){ 3166 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3167 pDest->nSdst = pIn->nSdst; 3168 } 3169 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3170 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3171 break; 3172 } 3173 3174 /* If none of the above, then the result destination must be 3175 ** SRT_Output. This routine is never called with any other 3176 ** destination other than the ones handled above or SRT_Output. 3177 ** 3178 ** For SRT_Output, results are stored in a sequence of registers. 3179 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3180 ** return the next row of result. 3181 */ 3182 default: { 3183 assert( pDest->eDest==SRT_Output ); 3184 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3185 break; 3186 } 3187 } 3188 3189 /* Jump to the end of the loop if the LIMIT is reached. 3190 */ 3191 if( p->iLimit ){ 3192 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3193 } 3194 3195 /* Generate the subroutine return 3196 */ 3197 sqlite3VdbeResolveLabel(v, iContinue); 3198 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3199 3200 return addr; 3201 } 3202 3203 /* 3204 ** Alternative compound select code generator for cases when there 3205 ** is an ORDER BY clause. 3206 ** 3207 ** We assume a query of the following form: 3208 ** 3209 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3210 ** 3211 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3212 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3213 ** co-routines. Then run the co-routines in parallel and merge the results 3214 ** into the output. In addition to the two coroutines (called selectA and 3215 ** selectB) there are 7 subroutines: 3216 ** 3217 ** outA: Move the output of the selectA coroutine into the output 3218 ** of the compound query. 3219 ** 3220 ** outB: Move the output of the selectB coroutine into the output 3221 ** of the compound query. (Only generated for UNION and 3222 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3223 ** appears only in B.) 3224 ** 3225 ** AltB: Called when there is data from both coroutines and A<B. 3226 ** 3227 ** AeqB: Called when there is data from both coroutines and A==B. 3228 ** 3229 ** AgtB: Called when there is data from both coroutines and A>B. 3230 ** 3231 ** EofA: Called when data is exhausted from selectA. 3232 ** 3233 ** EofB: Called when data is exhausted from selectB. 3234 ** 3235 ** The implementation of the latter five subroutines depend on which 3236 ** <operator> is used: 3237 ** 3238 ** 3239 ** UNION ALL UNION EXCEPT INTERSECT 3240 ** ------------- ----------------- -------------- ----------------- 3241 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3242 ** 3243 ** AeqB: outA, nextA nextA nextA outA, nextA 3244 ** 3245 ** AgtB: outB, nextB outB, nextB nextB nextB 3246 ** 3247 ** EofA: outB, nextB outB, nextB halt halt 3248 ** 3249 ** EofB: outA, nextA outA, nextA outA, nextA halt 3250 ** 3251 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3252 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3253 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3254 ** following nextX causes a jump to the end of the select processing. 3255 ** 3256 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3257 ** within the output subroutine. The regPrev register set holds the previously 3258 ** output value. A comparison is made against this value and the output 3259 ** is skipped if the next results would be the same as the previous. 3260 ** 3261 ** The implementation plan is to implement the two coroutines and seven 3262 ** subroutines first, then put the control logic at the bottom. Like this: 3263 ** 3264 ** goto Init 3265 ** coA: coroutine for left query (A) 3266 ** coB: coroutine for right query (B) 3267 ** outA: output one row of A 3268 ** outB: output one row of B (UNION and UNION ALL only) 3269 ** EofA: ... 3270 ** EofB: ... 3271 ** AltB: ... 3272 ** AeqB: ... 3273 ** AgtB: ... 3274 ** Init: initialize coroutine registers 3275 ** yield coA 3276 ** if eof(A) goto EofA 3277 ** yield coB 3278 ** if eof(B) goto EofB 3279 ** Cmpr: Compare A, B 3280 ** Jump AltB, AeqB, AgtB 3281 ** End: ... 3282 ** 3283 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3284 ** actually called using Gosub and they do not Return. EofA and EofB loop 3285 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3286 ** and AgtB jump to either L2 or to one of EofA or EofB. 3287 */ 3288 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3289 static int multiSelectOrderBy( 3290 Parse *pParse, /* Parsing context */ 3291 Select *p, /* The right-most of SELECTs to be coded */ 3292 SelectDest *pDest /* What to do with query results */ 3293 ){ 3294 int i, j; /* Loop counters */ 3295 Select *pPrior; /* Another SELECT immediately to our left */ 3296 Vdbe *v; /* Generate code to this VDBE */ 3297 SelectDest destA; /* Destination for coroutine A */ 3298 SelectDest destB; /* Destination for coroutine B */ 3299 int regAddrA; /* Address register for select-A coroutine */ 3300 int regAddrB; /* Address register for select-B coroutine */ 3301 int addrSelectA; /* Address of the select-A coroutine */ 3302 int addrSelectB; /* Address of the select-B coroutine */ 3303 int regOutA; /* Address register for the output-A subroutine */ 3304 int regOutB; /* Address register for the output-B subroutine */ 3305 int addrOutA; /* Address of the output-A subroutine */ 3306 int addrOutB = 0; /* Address of the output-B subroutine */ 3307 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3308 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3309 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3310 int addrAltB; /* Address of the A<B subroutine */ 3311 int addrAeqB; /* Address of the A==B subroutine */ 3312 int addrAgtB; /* Address of the A>B subroutine */ 3313 int regLimitA; /* Limit register for select-A */ 3314 int regLimitB; /* Limit register for select-A */ 3315 int regPrev; /* A range of registers to hold previous output */ 3316 int savedLimit; /* Saved value of p->iLimit */ 3317 int savedOffset; /* Saved value of p->iOffset */ 3318 int labelCmpr; /* Label for the start of the merge algorithm */ 3319 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3320 int addr1; /* Jump instructions that get retargetted */ 3321 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3322 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3323 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3324 sqlite3 *db; /* Database connection */ 3325 ExprList *pOrderBy; /* The ORDER BY clause */ 3326 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3327 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3328 3329 assert( p->pOrderBy!=0 ); 3330 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3331 db = pParse->db; 3332 v = pParse->pVdbe; 3333 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3334 labelEnd = sqlite3VdbeMakeLabel(pParse); 3335 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3336 3337 3338 /* Patch up the ORDER BY clause 3339 */ 3340 op = p->op; 3341 pPrior = p->pPrior; 3342 assert( pPrior->pOrderBy==0 ); 3343 pOrderBy = p->pOrderBy; 3344 assert( pOrderBy ); 3345 nOrderBy = pOrderBy->nExpr; 3346 3347 /* For operators other than UNION ALL we have to make sure that 3348 ** the ORDER BY clause covers every term of the result set. Add 3349 ** terms to the ORDER BY clause as necessary. 3350 */ 3351 if( op!=TK_ALL ){ 3352 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3353 struct ExprList_item *pItem; 3354 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3355 assert( pItem!=0 ); 3356 assert( pItem->u.x.iOrderByCol>0 ); 3357 if( pItem->u.x.iOrderByCol==i ) break; 3358 } 3359 if( j==nOrderBy ){ 3360 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3361 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3362 pNew->flags |= EP_IntValue; 3363 pNew->u.iValue = i; 3364 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3365 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3366 } 3367 } 3368 } 3369 3370 /* Compute the comparison permutation and keyinfo that is used with 3371 ** the permutation used to determine if the next 3372 ** row of results comes from selectA or selectB. Also add explicit 3373 ** collations to the ORDER BY clause terms so that when the subqueries 3374 ** to the right and the left are evaluated, they use the correct 3375 ** collation. 3376 */ 3377 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3378 if( aPermute ){ 3379 struct ExprList_item *pItem; 3380 aPermute[0] = nOrderBy; 3381 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3382 assert( pItem!=0 ); 3383 assert( pItem->u.x.iOrderByCol>0 ); 3384 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3385 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3386 } 3387 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3388 }else{ 3389 pKeyMerge = 0; 3390 } 3391 3392 /* Reattach the ORDER BY clause to the query. 3393 */ 3394 p->pOrderBy = pOrderBy; 3395 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3396 3397 /* Allocate a range of temporary registers and the KeyInfo needed 3398 ** for the logic that removes duplicate result rows when the 3399 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3400 */ 3401 if( op==TK_ALL ){ 3402 regPrev = 0; 3403 }else{ 3404 int nExpr = p->pEList->nExpr; 3405 assert( nOrderBy>=nExpr || db->mallocFailed ); 3406 regPrev = pParse->nMem+1; 3407 pParse->nMem += nExpr+1; 3408 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3409 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3410 if( pKeyDup ){ 3411 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3412 for(i=0; i<nExpr; i++){ 3413 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3414 pKeyDup->aSortFlags[i] = 0; 3415 } 3416 } 3417 } 3418 3419 /* Separate the left and the right query from one another 3420 */ 3421 p->pPrior = 0; 3422 pPrior->pNext = 0; 3423 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3424 if( pPrior->pPrior==0 ){ 3425 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3426 } 3427 3428 /* Compute the limit registers */ 3429 computeLimitRegisters(pParse, p, labelEnd); 3430 if( p->iLimit && op==TK_ALL ){ 3431 regLimitA = ++pParse->nMem; 3432 regLimitB = ++pParse->nMem; 3433 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3434 regLimitA); 3435 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3436 }else{ 3437 regLimitA = regLimitB = 0; 3438 } 3439 sqlite3ExprDelete(db, p->pLimit); 3440 p->pLimit = 0; 3441 3442 regAddrA = ++pParse->nMem; 3443 regAddrB = ++pParse->nMem; 3444 regOutA = ++pParse->nMem; 3445 regOutB = ++pParse->nMem; 3446 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3447 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3448 3449 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3450 3451 /* Generate a coroutine to evaluate the SELECT statement to the 3452 ** left of the compound operator - the "A" select. 3453 */ 3454 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3455 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3456 VdbeComment((v, "left SELECT")); 3457 pPrior->iLimit = regLimitA; 3458 ExplainQueryPlan((pParse, 1, "LEFT")); 3459 sqlite3Select(pParse, pPrior, &destA); 3460 sqlite3VdbeEndCoroutine(v, regAddrA); 3461 sqlite3VdbeJumpHere(v, addr1); 3462 3463 /* Generate a coroutine to evaluate the SELECT statement on 3464 ** the right - the "B" select 3465 */ 3466 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3467 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3468 VdbeComment((v, "right SELECT")); 3469 savedLimit = p->iLimit; 3470 savedOffset = p->iOffset; 3471 p->iLimit = regLimitB; 3472 p->iOffset = 0; 3473 ExplainQueryPlan((pParse, 1, "RIGHT")); 3474 sqlite3Select(pParse, p, &destB); 3475 p->iLimit = savedLimit; 3476 p->iOffset = savedOffset; 3477 sqlite3VdbeEndCoroutine(v, regAddrB); 3478 3479 /* Generate a subroutine that outputs the current row of the A 3480 ** select as the next output row of the compound select. 3481 */ 3482 VdbeNoopComment((v, "Output routine for A")); 3483 addrOutA = generateOutputSubroutine(pParse, 3484 p, &destA, pDest, regOutA, 3485 regPrev, pKeyDup, labelEnd); 3486 3487 /* Generate a subroutine that outputs the current row of the B 3488 ** select as the next output row of the compound select. 3489 */ 3490 if( op==TK_ALL || op==TK_UNION ){ 3491 VdbeNoopComment((v, "Output routine for B")); 3492 addrOutB = generateOutputSubroutine(pParse, 3493 p, &destB, pDest, regOutB, 3494 regPrev, pKeyDup, labelEnd); 3495 } 3496 sqlite3KeyInfoUnref(pKeyDup); 3497 3498 /* Generate a subroutine to run when the results from select A 3499 ** are exhausted and only data in select B remains. 3500 */ 3501 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3502 addrEofA_noB = addrEofA = labelEnd; 3503 }else{ 3504 VdbeNoopComment((v, "eof-A subroutine")); 3505 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3506 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3507 VdbeCoverage(v); 3508 sqlite3VdbeGoto(v, addrEofA); 3509 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3510 } 3511 3512 /* Generate a subroutine to run when the results from select B 3513 ** are exhausted and only data in select A remains. 3514 */ 3515 if( op==TK_INTERSECT ){ 3516 addrEofB = addrEofA; 3517 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3518 }else{ 3519 VdbeNoopComment((v, "eof-B subroutine")); 3520 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3521 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3522 sqlite3VdbeGoto(v, addrEofB); 3523 } 3524 3525 /* Generate code to handle the case of A<B 3526 */ 3527 VdbeNoopComment((v, "A-lt-B subroutine")); 3528 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3529 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3530 sqlite3VdbeGoto(v, labelCmpr); 3531 3532 /* Generate code to handle the case of A==B 3533 */ 3534 if( op==TK_ALL ){ 3535 addrAeqB = addrAltB; 3536 }else if( op==TK_INTERSECT ){ 3537 addrAeqB = addrAltB; 3538 addrAltB++; 3539 }else{ 3540 VdbeNoopComment((v, "A-eq-B subroutine")); 3541 addrAeqB = 3542 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3543 sqlite3VdbeGoto(v, labelCmpr); 3544 } 3545 3546 /* Generate code to handle the case of A>B 3547 */ 3548 VdbeNoopComment((v, "A-gt-B subroutine")); 3549 addrAgtB = sqlite3VdbeCurrentAddr(v); 3550 if( op==TK_ALL || op==TK_UNION ){ 3551 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3552 } 3553 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3554 sqlite3VdbeGoto(v, labelCmpr); 3555 3556 /* This code runs once to initialize everything. 3557 */ 3558 sqlite3VdbeJumpHere(v, addr1); 3559 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3560 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3561 3562 /* Implement the main merge loop 3563 */ 3564 sqlite3VdbeResolveLabel(v, labelCmpr); 3565 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3566 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3567 (char*)pKeyMerge, P4_KEYINFO); 3568 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3569 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3570 3571 /* Jump to the this point in order to terminate the query. 3572 */ 3573 sqlite3VdbeResolveLabel(v, labelEnd); 3574 3575 /* Reassembly the compound query so that it will be freed correctly 3576 ** by the calling function */ 3577 if( p->pPrior ){ 3578 sqlite3SelectDelete(db, p->pPrior); 3579 } 3580 p->pPrior = pPrior; 3581 pPrior->pNext = p; 3582 3583 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3584 pPrior->pOrderBy = 0; 3585 3586 /*** TBD: Insert subroutine calls to close cursors on incomplete 3587 **** subqueries ****/ 3588 ExplainQueryPlanPop(pParse); 3589 return pParse->nErr!=0; 3590 } 3591 #endif 3592 3593 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3594 3595 /* An instance of the SubstContext object describes an substitution edit 3596 ** to be performed on a parse tree. 3597 ** 3598 ** All references to columns in table iTable are to be replaced by corresponding 3599 ** expressions in pEList. 3600 */ 3601 typedef struct SubstContext { 3602 Parse *pParse; /* The parsing context */ 3603 int iTable; /* Replace references to this table */ 3604 int iNewTable; /* New table number */ 3605 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3606 ExprList *pEList; /* Replacement expressions */ 3607 } SubstContext; 3608 3609 /* Forward Declarations */ 3610 static void substExprList(SubstContext*, ExprList*); 3611 static void substSelect(SubstContext*, Select*, int); 3612 3613 /* 3614 ** Scan through the expression pExpr. Replace every reference to 3615 ** a column in table number iTable with a copy of the iColumn-th 3616 ** entry in pEList. (But leave references to the ROWID column 3617 ** unchanged.) 3618 ** 3619 ** This routine is part of the flattening procedure. A subquery 3620 ** whose result set is defined by pEList appears as entry in the 3621 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3622 ** FORM clause entry is iTable. This routine makes the necessary 3623 ** changes to pExpr so that it refers directly to the source table 3624 ** of the subquery rather the result set of the subquery. 3625 */ 3626 static Expr *substExpr( 3627 SubstContext *pSubst, /* Description of the substitution */ 3628 Expr *pExpr /* Expr in which substitution occurs */ 3629 ){ 3630 if( pExpr==0 ) return 0; 3631 if( ExprHasProperty(pExpr, EP_FromJoin) 3632 && pExpr->iRightJoinTable==pSubst->iTable 3633 ){ 3634 pExpr->iRightJoinTable = pSubst->iNewTable; 3635 } 3636 if( pExpr->op==TK_COLUMN 3637 && pExpr->iTable==pSubst->iTable 3638 && !ExprHasProperty(pExpr, EP_FixedCol) 3639 ){ 3640 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3641 if( pExpr->iColumn<0 ){ 3642 pExpr->op = TK_NULL; 3643 }else 3644 #endif 3645 { 3646 Expr *pNew; 3647 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3648 Expr ifNullRow; 3649 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3650 assert( pExpr->pRight==0 ); 3651 if( sqlite3ExprIsVector(pCopy) ){ 3652 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3653 }else{ 3654 sqlite3 *db = pSubst->pParse->db; 3655 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3656 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3657 ifNullRow.op = TK_IF_NULL_ROW; 3658 ifNullRow.pLeft = pCopy; 3659 ifNullRow.iTable = pSubst->iNewTable; 3660 ifNullRow.flags = EP_IfNullRow; 3661 pCopy = &ifNullRow; 3662 } 3663 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3664 pNew = sqlite3ExprDup(db, pCopy, 0); 3665 if( db->mallocFailed ){ 3666 sqlite3ExprDelete(db, pNew); 3667 return pExpr; 3668 } 3669 if( pSubst->isLeftJoin ){ 3670 ExprSetProperty(pNew, EP_CanBeNull); 3671 } 3672 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3673 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3674 } 3675 sqlite3ExprDelete(db, pExpr); 3676 pExpr = pNew; 3677 3678 /* Ensure that the expression now has an implicit collation sequence, 3679 ** just as it did when it was a column of a view or sub-query. */ 3680 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3681 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3682 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3683 (pColl ? pColl->zName : "BINARY") 3684 ); 3685 } 3686 ExprClearProperty(pExpr, EP_Collate); 3687 } 3688 } 3689 }else{ 3690 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3691 pExpr->iTable = pSubst->iNewTable; 3692 } 3693 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3694 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3695 if( ExprUseXSelect(pExpr) ){ 3696 substSelect(pSubst, pExpr->x.pSelect, 1); 3697 }else{ 3698 substExprList(pSubst, pExpr->x.pList); 3699 } 3700 #ifndef SQLITE_OMIT_WINDOWFUNC 3701 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3702 Window *pWin = pExpr->y.pWin; 3703 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3704 substExprList(pSubst, pWin->pPartition); 3705 substExprList(pSubst, pWin->pOrderBy); 3706 } 3707 #endif 3708 } 3709 return pExpr; 3710 } 3711 static void substExprList( 3712 SubstContext *pSubst, /* Description of the substitution */ 3713 ExprList *pList /* List to scan and in which to make substitutes */ 3714 ){ 3715 int i; 3716 if( pList==0 ) return; 3717 for(i=0; i<pList->nExpr; i++){ 3718 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3719 } 3720 } 3721 static void substSelect( 3722 SubstContext *pSubst, /* Description of the substitution */ 3723 Select *p, /* SELECT statement in which to make substitutions */ 3724 int doPrior /* Do substitutes on p->pPrior too */ 3725 ){ 3726 SrcList *pSrc; 3727 SrcItem *pItem; 3728 int i; 3729 if( !p ) return; 3730 do{ 3731 substExprList(pSubst, p->pEList); 3732 substExprList(pSubst, p->pGroupBy); 3733 substExprList(pSubst, p->pOrderBy); 3734 p->pHaving = substExpr(pSubst, p->pHaving); 3735 p->pWhere = substExpr(pSubst, p->pWhere); 3736 pSrc = p->pSrc; 3737 assert( pSrc!=0 ); 3738 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3739 substSelect(pSubst, pItem->pSelect, 1); 3740 if( pItem->fg.isTabFunc ){ 3741 substExprList(pSubst, pItem->u1.pFuncArg); 3742 } 3743 } 3744 }while( doPrior && (p = p->pPrior)!=0 ); 3745 } 3746 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3747 3748 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3749 /* 3750 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3751 ** clause of that SELECT. 3752 ** 3753 ** This routine scans the entire SELECT statement and recomputes the 3754 ** pSrcItem->colUsed mask. 3755 */ 3756 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3757 SrcItem *pItem; 3758 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3759 pItem = pWalker->u.pSrcItem; 3760 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3761 if( pExpr->iColumn<0 ) return WRC_Continue; 3762 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3763 return WRC_Continue; 3764 } 3765 static void recomputeColumnsUsed( 3766 Select *pSelect, /* The complete SELECT statement */ 3767 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3768 ){ 3769 Walker w; 3770 if( NEVER(pSrcItem->pTab==0) ) return; 3771 memset(&w, 0, sizeof(w)); 3772 w.xExprCallback = recomputeColumnsUsedExpr; 3773 w.xSelectCallback = sqlite3SelectWalkNoop; 3774 w.u.pSrcItem = pSrcItem; 3775 pSrcItem->colUsed = 0; 3776 sqlite3WalkSelect(&w, pSelect); 3777 } 3778 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3779 3780 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3781 /* 3782 ** Assign new cursor numbers to each of the items in pSrc. For each 3783 ** new cursor number assigned, set an entry in the aCsrMap[] array 3784 ** to map the old cursor number to the new: 3785 ** 3786 ** aCsrMap[iOld+1] = iNew; 3787 ** 3788 ** The array is guaranteed by the caller to be large enough for all 3789 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3790 ** 3791 ** If pSrc contains any sub-selects, call this routine recursively 3792 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3793 */ 3794 static void srclistRenumberCursors( 3795 Parse *pParse, /* Parse context */ 3796 int *aCsrMap, /* Array to store cursor mappings in */ 3797 SrcList *pSrc, /* FROM clause to renumber */ 3798 int iExcept /* FROM clause item to skip */ 3799 ){ 3800 int i; 3801 SrcItem *pItem; 3802 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3803 if( i!=iExcept ){ 3804 Select *p; 3805 assert( pItem->iCursor < aCsrMap[0] ); 3806 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3807 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3808 } 3809 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3810 for(p=pItem->pSelect; p; p=p->pPrior){ 3811 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3812 } 3813 } 3814 } 3815 } 3816 3817 /* 3818 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3819 */ 3820 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3821 int *aCsrMap = pWalker->u.aiCol; 3822 int iCsr = *piCursor; 3823 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3824 *piCursor = aCsrMap[iCsr+1]; 3825 } 3826 } 3827 3828 /* 3829 ** Expression walker callback used by renumberCursors() to update 3830 ** Expr objects to match newly assigned cursor numbers. 3831 */ 3832 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3833 int op = pExpr->op; 3834 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3835 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3836 } 3837 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3838 renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable); 3839 } 3840 return WRC_Continue; 3841 } 3842 3843 /* 3844 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3845 ** of the SELECT statement passed as the second argument, and to each 3846 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3847 ** Except, do not assign a new cursor number to the iExcept'th element in 3848 ** the FROM clause of (*p). Update all expressions and other references 3849 ** to refer to the new cursor numbers. 3850 ** 3851 ** Argument aCsrMap is an array that may be used for temporary working 3852 ** space. Two guarantees are made by the caller: 3853 ** 3854 ** * the array is larger than the largest cursor number used within the 3855 ** select statement passed as an argument, and 3856 ** 3857 ** * the array entries for all cursor numbers that do *not* appear in 3858 ** FROM clauses of the select statement as described above are 3859 ** initialized to zero. 3860 */ 3861 static void renumberCursors( 3862 Parse *pParse, /* Parse context */ 3863 Select *p, /* Select to renumber cursors within */ 3864 int iExcept, /* FROM clause item to skip */ 3865 int *aCsrMap /* Working space */ 3866 ){ 3867 Walker w; 3868 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3869 memset(&w, 0, sizeof(w)); 3870 w.u.aiCol = aCsrMap; 3871 w.xExprCallback = renumberCursorsCb; 3872 w.xSelectCallback = sqlite3SelectWalkNoop; 3873 sqlite3WalkSelect(&w, p); 3874 } 3875 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3876 3877 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3878 /* 3879 ** This routine attempts to flatten subqueries as a performance optimization. 3880 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3881 ** 3882 ** To understand the concept of flattening, consider the following 3883 ** query: 3884 ** 3885 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3886 ** 3887 ** The default way of implementing this query is to execute the 3888 ** subquery first and store the results in a temporary table, then 3889 ** run the outer query on that temporary table. This requires two 3890 ** passes over the data. Furthermore, because the temporary table 3891 ** has no indices, the WHERE clause on the outer query cannot be 3892 ** optimized. 3893 ** 3894 ** This routine attempts to rewrite queries such as the above into 3895 ** a single flat select, like this: 3896 ** 3897 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3898 ** 3899 ** The code generated for this simplification gives the same result 3900 ** but only has to scan the data once. And because indices might 3901 ** exist on the table t1, a complete scan of the data might be 3902 ** avoided. 3903 ** 3904 ** Flattening is subject to the following constraints: 3905 ** 3906 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3907 ** The subquery and the outer query cannot both be aggregates. 3908 ** 3909 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3910 ** (2) If the subquery is an aggregate then 3911 ** (2a) the outer query must not be a join and 3912 ** (2b) the outer query must not use subqueries 3913 ** other than the one FROM-clause subquery that is a candidate 3914 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3915 ** from 2015-02-09.) 3916 ** 3917 ** (3) If the subquery is the right operand of a LEFT JOIN then 3918 ** (3a) the subquery may not be a join and 3919 ** (3b) the FROM clause of the subquery may not contain a virtual 3920 ** table and 3921 ** (3c) the outer query may not be an aggregate. 3922 ** (3d) the outer query may not be DISTINCT. 3923 ** 3924 ** (4) The subquery can not be DISTINCT. 3925 ** 3926 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3927 ** sub-queries that were excluded from this optimization. Restriction 3928 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3929 ** 3930 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3931 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3932 ** 3933 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3934 ** A FROM clause, consider adding a FROM clause with the special 3935 ** table sqlite_once that consists of a single row containing a 3936 ** single NULL. 3937 ** 3938 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3939 ** 3940 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3941 ** 3942 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3943 ** accidently carried the comment forward until 2014-09-15. Original 3944 ** constraint: "If the subquery is aggregate then the outer query 3945 ** may not use LIMIT." 3946 ** 3947 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3948 ** 3949 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3950 ** a separate restriction deriving from ticket #350. 3951 ** 3952 ** (13) The subquery and outer query may not both use LIMIT. 3953 ** 3954 ** (14) The subquery may not use OFFSET. 3955 ** 3956 ** (15) If the outer query is part of a compound select, then the 3957 ** subquery may not use LIMIT. 3958 ** (See ticket #2339 and ticket [02a8e81d44]). 3959 ** 3960 ** (16) If the outer query is aggregate, then the subquery may not 3961 ** use ORDER BY. (Ticket #2942) This used to not matter 3962 ** until we introduced the group_concat() function. 3963 ** 3964 ** (17) If the subquery is a compound select, then 3965 ** (17a) all compound operators must be a UNION ALL, and 3966 ** (17b) no terms within the subquery compound may be aggregate 3967 ** or DISTINCT, and 3968 ** (17c) every term within the subquery compound must have a FROM clause 3969 ** (17d) the outer query may not be 3970 ** (17d1) aggregate, or 3971 ** (17d2) DISTINCT 3972 ** (17e) the subquery may not contain window functions, and 3973 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3974 ** 3975 ** The parent and sub-query may contain WHERE clauses. Subject to 3976 ** rules (11), (13) and (14), they may also contain ORDER BY, 3977 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3978 ** operator other than UNION ALL because all the other compound 3979 ** operators have an implied DISTINCT which is disallowed by 3980 ** restriction (4). 3981 ** 3982 ** Also, each component of the sub-query must return the same number 3983 ** of result columns. This is actually a requirement for any compound 3984 ** SELECT statement, but all the code here does is make sure that no 3985 ** such (illegal) sub-query is flattened. The caller will detect the 3986 ** syntax error and return a detailed message. 3987 ** 3988 ** (18) If the sub-query is a compound select, then all terms of the 3989 ** ORDER BY clause of the parent must be copies of a term returned 3990 ** by the parent query. 3991 ** 3992 ** (19) If the subquery uses LIMIT then the outer query may not 3993 ** have a WHERE clause. 3994 ** 3995 ** (20) If the sub-query is a compound select, then it must not use 3996 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3997 ** somewhat by saying that the terms of the ORDER BY clause must 3998 ** appear as unmodified result columns in the outer query. But we 3999 ** have other optimizations in mind to deal with that case. 4000 ** 4001 ** (21) If the subquery uses LIMIT then the outer query may not be 4002 ** DISTINCT. (See ticket [752e1646fc]). 4003 ** 4004 ** (22) The subquery may not be a recursive CTE. 4005 ** 4006 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4007 ** a compound query. This restriction is because transforming the 4008 ** parent to a compound query confuses the code that handles 4009 ** recursive queries in multiSelect(). 4010 ** 4011 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4012 ** The subquery may not be an aggregate that uses the built-in min() or 4013 ** or max() functions. (Without this restriction, a query like: 4014 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4015 ** return the value X for which Y was maximal.) 4016 ** 4017 ** (25) If either the subquery or the parent query contains a window 4018 ** function in the select list or ORDER BY clause, flattening 4019 ** is not attempted. 4020 ** 4021 ** 4022 ** In this routine, the "p" parameter is a pointer to the outer query. 4023 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4024 ** uses aggregates. 4025 ** 4026 ** If flattening is not attempted, this routine is a no-op and returns 0. 4027 ** If flattening is attempted this routine returns 1. 4028 ** 4029 ** All of the expression analysis must occur on both the outer query and 4030 ** the subquery before this routine runs. 4031 */ 4032 static int flattenSubquery( 4033 Parse *pParse, /* Parsing context */ 4034 Select *p, /* The parent or outer SELECT statement */ 4035 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4036 int isAgg /* True if outer SELECT uses aggregate functions */ 4037 ){ 4038 const char *zSavedAuthContext = pParse->zAuthContext; 4039 Select *pParent; /* Current UNION ALL term of the other query */ 4040 Select *pSub; /* The inner query or "subquery" */ 4041 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4042 SrcList *pSrc; /* The FROM clause of the outer query */ 4043 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4044 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4045 int iNewParent = -1;/* Replacement table for iParent */ 4046 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4047 int i; /* Loop counter */ 4048 Expr *pWhere; /* The WHERE clause */ 4049 SrcItem *pSubitem; /* The subquery */ 4050 sqlite3 *db = pParse->db; 4051 Walker w; /* Walker to persist agginfo data */ 4052 int *aCsrMap = 0; 4053 4054 /* Check to see if flattening is permitted. Return 0 if not. 4055 */ 4056 assert( p!=0 ); 4057 assert( p->pPrior==0 ); 4058 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4059 pSrc = p->pSrc; 4060 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4061 pSubitem = &pSrc->a[iFrom]; 4062 iParent = pSubitem->iCursor; 4063 pSub = pSubitem->pSelect; 4064 assert( pSub!=0 ); 4065 4066 #ifndef SQLITE_OMIT_WINDOWFUNC 4067 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4068 #endif 4069 4070 pSubSrc = pSub->pSrc; 4071 assert( pSubSrc ); 4072 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4073 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4074 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4075 ** became arbitrary expressions, we were forced to add restrictions (13) 4076 ** and (14). */ 4077 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4078 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4079 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4080 return 0; /* Restriction (15) */ 4081 } 4082 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4083 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4084 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4085 return 0; /* Restrictions (8)(9) */ 4086 } 4087 if( p->pOrderBy && pSub->pOrderBy ){ 4088 return 0; /* Restriction (11) */ 4089 } 4090 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4091 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4092 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4093 return 0; /* Restriction (21) */ 4094 } 4095 if( pSub->selFlags & (SF_Recursive) ){ 4096 return 0; /* Restrictions (22) */ 4097 } 4098 4099 /* 4100 ** If the subquery is the right operand of a LEFT JOIN, then the 4101 ** subquery may not be a join itself (3a). Example of why this is not 4102 ** allowed: 4103 ** 4104 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4105 ** 4106 ** If we flatten the above, we would get 4107 ** 4108 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4109 ** 4110 ** which is not at all the same thing. 4111 ** 4112 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4113 ** query cannot be an aggregate. (3c) This is an artifact of the way 4114 ** aggregates are processed - there is no mechanism to determine if 4115 ** the LEFT JOIN table should be all-NULL. 4116 ** 4117 ** See also tickets #306, #350, and #3300. 4118 */ 4119 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4120 isLeftJoin = 1; 4121 if( pSubSrc->nSrc>1 /* (3a) */ 4122 || isAgg /* (3b) */ 4123 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4124 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4125 ){ 4126 return 0; 4127 } 4128 } 4129 #ifdef SQLITE_EXTRA_IFNULLROW 4130 else if( iFrom>0 && !isAgg ){ 4131 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4132 ** every reference to any result column from subquery in a join, even 4133 ** though they are not necessary. This will stress-test the OP_IfNullRow 4134 ** opcode. */ 4135 isLeftJoin = -1; 4136 } 4137 #endif 4138 4139 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4140 ** use only the UNION ALL operator. And none of the simple select queries 4141 ** that make up the compound SELECT are allowed to be aggregate or distinct 4142 ** queries. 4143 */ 4144 if( pSub->pPrior ){ 4145 if( pSub->pOrderBy ){ 4146 return 0; /* Restriction (20) */ 4147 } 4148 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4149 return 0; /* (17d1), (17d2), or (17f) */ 4150 } 4151 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4152 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4153 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4154 assert( pSub->pSrc!=0 ); 4155 assert( (pSub->selFlags & SF_Recursive)==0 ); 4156 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4157 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4158 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4159 || pSub1->pSrc->nSrc<1 /* (17c) */ 4160 #ifndef SQLITE_OMIT_WINDOWFUNC 4161 || pSub1->pWin /* (17e) */ 4162 #endif 4163 ){ 4164 return 0; 4165 } 4166 testcase( pSub1->pSrc->nSrc>1 ); 4167 } 4168 4169 /* Restriction (18). */ 4170 if( p->pOrderBy ){ 4171 int ii; 4172 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4173 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4174 } 4175 } 4176 4177 /* Restriction (23) */ 4178 if( (p->selFlags & SF_Recursive) ) return 0; 4179 4180 if( pSrc->nSrc>1 ){ 4181 if( pParse->nSelect>500 ) return 0; 4182 aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int)); 4183 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4184 } 4185 } 4186 4187 /***** If we reach this point, flattening is permitted. *****/ 4188 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4189 pSub->selId, pSub, iFrom)); 4190 4191 /* Authorize the subquery */ 4192 pParse->zAuthContext = pSubitem->zName; 4193 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4194 testcase( i==SQLITE_DENY ); 4195 pParse->zAuthContext = zSavedAuthContext; 4196 4197 /* Delete the transient structures associated with thesubquery */ 4198 pSub1 = pSubitem->pSelect; 4199 sqlite3DbFree(db, pSubitem->zDatabase); 4200 sqlite3DbFree(db, pSubitem->zName); 4201 sqlite3DbFree(db, pSubitem->zAlias); 4202 pSubitem->zDatabase = 0; 4203 pSubitem->zName = 0; 4204 pSubitem->zAlias = 0; 4205 pSubitem->pSelect = 0; 4206 assert( pSubitem->pOn==0 ); 4207 4208 /* If the sub-query is a compound SELECT statement, then (by restrictions 4209 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4210 ** be of the form: 4211 ** 4212 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4213 ** 4214 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4215 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4216 ** OFFSET clauses and joins them to the left-hand-side of the original 4217 ** using UNION ALL operators. In this case N is the number of simple 4218 ** select statements in the compound sub-query. 4219 ** 4220 ** Example: 4221 ** 4222 ** SELECT a+1 FROM ( 4223 ** SELECT x FROM tab 4224 ** UNION ALL 4225 ** SELECT y FROM tab 4226 ** UNION ALL 4227 ** SELECT abs(z*2) FROM tab2 4228 ** ) WHERE a!=5 ORDER BY 1 4229 ** 4230 ** Transformed into: 4231 ** 4232 ** SELECT x+1 FROM tab WHERE x+1!=5 4233 ** UNION ALL 4234 ** SELECT y+1 FROM tab WHERE y+1!=5 4235 ** UNION ALL 4236 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4237 ** ORDER BY 1 4238 ** 4239 ** We call this the "compound-subquery flattening". 4240 */ 4241 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4242 Select *pNew; 4243 ExprList *pOrderBy = p->pOrderBy; 4244 Expr *pLimit = p->pLimit; 4245 Select *pPrior = p->pPrior; 4246 Table *pItemTab = pSubitem->pTab; 4247 pSubitem->pTab = 0; 4248 p->pOrderBy = 0; 4249 p->pPrior = 0; 4250 p->pLimit = 0; 4251 pNew = sqlite3SelectDup(db, p, 0); 4252 p->pLimit = pLimit; 4253 p->pOrderBy = pOrderBy; 4254 p->op = TK_ALL; 4255 pSubitem->pTab = pItemTab; 4256 if( pNew==0 ){ 4257 p->pPrior = pPrior; 4258 }else{ 4259 pNew->selId = ++pParse->nSelect; 4260 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4261 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4262 } 4263 pNew->pPrior = pPrior; 4264 if( pPrior ) pPrior->pNext = pNew; 4265 pNew->pNext = p; 4266 p->pPrior = pNew; 4267 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4268 " creates %u as peer\n",pNew->selId)); 4269 } 4270 assert( pSubitem->pSelect==0 ); 4271 } 4272 sqlite3DbFree(db, aCsrMap); 4273 if( db->mallocFailed ){ 4274 pSubitem->pSelect = pSub1; 4275 return 1; 4276 } 4277 4278 /* Defer deleting the Table object associated with the 4279 ** subquery until code generation is 4280 ** complete, since there may still exist Expr.pTab entries that 4281 ** refer to the subquery even after flattening. Ticket #3346. 4282 ** 4283 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4284 */ 4285 if( ALWAYS(pSubitem->pTab!=0) ){ 4286 Table *pTabToDel = pSubitem->pTab; 4287 if( pTabToDel->nTabRef==1 ){ 4288 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4289 sqlite3ParserAddCleanup(pToplevel, 4290 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4291 pTabToDel); 4292 testcase( pToplevel->earlyCleanup ); 4293 }else{ 4294 pTabToDel->nTabRef--; 4295 } 4296 pSubitem->pTab = 0; 4297 } 4298 4299 /* The following loop runs once for each term in a compound-subquery 4300 ** flattening (as described above). If we are doing a different kind 4301 ** of flattening - a flattening other than a compound-subquery flattening - 4302 ** then this loop only runs once. 4303 ** 4304 ** This loop moves all of the FROM elements of the subquery into the 4305 ** the FROM clause of the outer query. Before doing this, remember 4306 ** the cursor number for the original outer query FROM element in 4307 ** iParent. The iParent cursor will never be used. Subsequent code 4308 ** will scan expressions looking for iParent references and replace 4309 ** those references with expressions that resolve to the subquery FROM 4310 ** elements we are now copying in. 4311 */ 4312 pSub = pSub1; 4313 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4314 int nSubSrc; 4315 u8 jointype = 0; 4316 assert( pSub!=0 ); 4317 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4318 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4319 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4320 4321 if( pParent==p ){ 4322 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4323 } 4324 4325 /* The subquery uses a single slot of the FROM clause of the outer 4326 ** query. If the subquery has more than one element in its FROM clause, 4327 ** then expand the outer query to make space for it to hold all elements 4328 ** of the subquery. 4329 ** 4330 ** Example: 4331 ** 4332 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4333 ** 4334 ** The outer query has 3 slots in its FROM clause. One slot of the 4335 ** outer query (the middle slot) is used by the subquery. The next 4336 ** block of code will expand the outer query FROM clause to 4 slots. 4337 ** The middle slot is expanded to two slots in order to make space 4338 ** for the two elements in the FROM clause of the subquery. 4339 */ 4340 if( nSubSrc>1 ){ 4341 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4342 if( pSrc==0 ) break; 4343 pParent->pSrc = pSrc; 4344 } 4345 4346 /* Transfer the FROM clause terms from the subquery into the 4347 ** outer query. 4348 */ 4349 for(i=0; i<nSubSrc; i++){ 4350 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4351 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4352 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4353 iNewParent = pSubSrc->a[i].iCursor; 4354 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4355 } 4356 pSrc->a[iFrom].fg.jointype = jointype; 4357 4358 /* Now begin substituting subquery result set expressions for 4359 ** references to the iParent in the outer query. 4360 ** 4361 ** Example: 4362 ** 4363 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4364 ** \ \_____________ subquery __________/ / 4365 ** \_____________________ outer query ______________________________/ 4366 ** 4367 ** We look at every expression in the outer query and every place we see 4368 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4369 */ 4370 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4371 /* At this point, any non-zero iOrderByCol values indicate that the 4372 ** ORDER BY column expression is identical to the iOrderByCol'th 4373 ** expression returned by SELECT statement pSub. Since these values 4374 ** do not necessarily correspond to columns in SELECT statement pParent, 4375 ** zero them before transfering the ORDER BY clause. 4376 ** 4377 ** Not doing this may cause an error if a subsequent call to this 4378 ** function attempts to flatten a compound sub-query into pParent 4379 ** (the only way this can happen is if the compound sub-query is 4380 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4381 ExprList *pOrderBy = pSub->pOrderBy; 4382 for(i=0; i<pOrderBy->nExpr; i++){ 4383 pOrderBy->a[i].u.x.iOrderByCol = 0; 4384 } 4385 assert( pParent->pOrderBy==0 ); 4386 pParent->pOrderBy = pOrderBy; 4387 pSub->pOrderBy = 0; 4388 } 4389 pWhere = pSub->pWhere; 4390 pSub->pWhere = 0; 4391 if( isLeftJoin>0 ){ 4392 sqlite3SetJoinExpr(pWhere, iNewParent); 4393 } 4394 if( pWhere ){ 4395 if( pParent->pWhere ){ 4396 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4397 }else{ 4398 pParent->pWhere = pWhere; 4399 } 4400 } 4401 if( db->mallocFailed==0 ){ 4402 SubstContext x; 4403 x.pParse = pParse; 4404 x.iTable = iParent; 4405 x.iNewTable = iNewParent; 4406 x.isLeftJoin = isLeftJoin; 4407 x.pEList = pSub->pEList; 4408 substSelect(&x, pParent, 0); 4409 } 4410 4411 /* The flattened query is a compound if either the inner or the 4412 ** outer query is a compound. */ 4413 pParent->selFlags |= pSub->selFlags & SF_Compound; 4414 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4415 4416 /* 4417 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4418 ** 4419 ** One is tempted to try to add a and b to combine the limits. But this 4420 ** does not work if either limit is negative. 4421 */ 4422 if( pSub->pLimit ){ 4423 pParent->pLimit = pSub->pLimit; 4424 pSub->pLimit = 0; 4425 } 4426 4427 /* Recompute the SrcList_item.colUsed masks for the flattened 4428 ** tables. */ 4429 for(i=0; i<nSubSrc; i++){ 4430 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4431 } 4432 } 4433 4434 /* Finially, delete what is left of the subquery and return 4435 ** success. 4436 */ 4437 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4438 sqlite3WalkSelect(&w,pSub1); 4439 sqlite3SelectDelete(db, pSub1); 4440 4441 #if SELECTTRACE_ENABLED 4442 if( sqlite3SelectTrace & 0x100 ){ 4443 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4444 sqlite3TreeViewSelect(0, p, 0); 4445 } 4446 #endif 4447 4448 return 1; 4449 } 4450 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4451 4452 /* 4453 ** A structure to keep track of all of the column values that are fixed to 4454 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4455 */ 4456 typedef struct WhereConst WhereConst; 4457 struct WhereConst { 4458 Parse *pParse; /* Parsing context */ 4459 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4460 int nConst; /* Number for COLUMN=CONSTANT terms */ 4461 int nChng; /* Number of times a constant is propagated */ 4462 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4463 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4464 }; 4465 4466 /* 4467 ** Add a new entry to the pConst object. Except, do not add duplicate 4468 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4469 ** 4470 ** The caller guarantees the pColumn is a column and pValue is a constant. 4471 ** This routine has to do some additional checks before completing the 4472 ** insert. 4473 */ 4474 static void constInsert( 4475 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4476 Expr *pColumn, /* The COLUMN part of the constraint */ 4477 Expr *pValue, /* The VALUE part of the constraint */ 4478 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4479 ){ 4480 int i; 4481 assert( pColumn->op==TK_COLUMN ); 4482 assert( sqlite3ExprIsConstant(pValue) ); 4483 4484 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4485 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4486 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4487 return; 4488 } 4489 4490 /* 2018-10-25 ticket [cf5ed20f] 4491 ** Make sure the same pColumn is not inserted more than once */ 4492 for(i=0; i<pConst->nConst; i++){ 4493 const Expr *pE2 = pConst->apExpr[i*2]; 4494 assert( pE2->op==TK_COLUMN ); 4495 if( pE2->iTable==pColumn->iTable 4496 && pE2->iColumn==pColumn->iColumn 4497 ){ 4498 return; /* Already present. Return without doing anything. */ 4499 } 4500 } 4501 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4502 pConst->bHasAffBlob = 1; 4503 } 4504 4505 pConst->nConst++; 4506 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4507 pConst->nConst*2*sizeof(Expr*)); 4508 if( pConst->apExpr==0 ){ 4509 pConst->nConst = 0; 4510 }else{ 4511 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4512 pConst->apExpr[pConst->nConst*2-1] = pValue; 4513 } 4514 } 4515 4516 /* 4517 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4518 ** is a constant expression and where the term must be true because it 4519 ** is part of the AND-connected terms of the expression. For each term 4520 ** found, add it to the pConst structure. 4521 */ 4522 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4523 Expr *pRight, *pLeft; 4524 if( NEVER(pExpr==0) ) return; 4525 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4526 if( pExpr->op==TK_AND ){ 4527 findConstInWhere(pConst, pExpr->pRight); 4528 findConstInWhere(pConst, pExpr->pLeft); 4529 return; 4530 } 4531 if( pExpr->op!=TK_EQ ) return; 4532 pRight = pExpr->pRight; 4533 pLeft = pExpr->pLeft; 4534 assert( pRight!=0 ); 4535 assert( pLeft!=0 ); 4536 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4537 constInsert(pConst,pRight,pLeft,pExpr); 4538 } 4539 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4540 constInsert(pConst,pLeft,pRight,pExpr); 4541 } 4542 } 4543 4544 /* 4545 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4546 ** 4547 ** Argument pExpr is a candidate expression to be replaced by a value. If 4548 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4549 ** then overwrite it with the corresponding value. Except, do not do so 4550 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4551 ** is SQLITE_AFF_BLOB. 4552 */ 4553 static int propagateConstantExprRewriteOne( 4554 WhereConst *pConst, 4555 Expr *pExpr, 4556 int bIgnoreAffBlob 4557 ){ 4558 int i; 4559 if( pConst->pOomFault[0] ) return WRC_Prune; 4560 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4561 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4562 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4563 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4564 return WRC_Continue; 4565 } 4566 for(i=0; i<pConst->nConst; i++){ 4567 Expr *pColumn = pConst->apExpr[i*2]; 4568 if( pColumn==pExpr ) continue; 4569 if( pColumn->iTable!=pExpr->iTable ) continue; 4570 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4571 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4572 break; 4573 } 4574 /* A match is found. Add the EP_FixedCol property */ 4575 pConst->nChng++; 4576 ExprClearProperty(pExpr, EP_Leaf); 4577 ExprSetProperty(pExpr, EP_FixedCol); 4578 assert( pExpr->pLeft==0 ); 4579 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4580 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4581 break; 4582 } 4583 return WRC_Prune; 4584 } 4585 4586 /* 4587 ** This is a Walker expression callback. pExpr is a node from the WHERE 4588 ** clause of a SELECT statement. This function examines pExpr to see if 4589 ** any substitutions based on the contents of pWalker->u.pConst should 4590 ** be made to pExpr or its immediate children. 4591 ** 4592 ** A substitution is made if: 4593 ** 4594 ** + pExpr is a column with an affinity other than BLOB that matches 4595 ** one of the columns in pWalker->u.pConst, or 4596 ** 4597 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4598 ** uses an affinity other than TEXT and one of its immediate 4599 ** children is a column that matches one of the columns in 4600 ** pWalker->u.pConst. 4601 */ 4602 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4603 WhereConst *pConst = pWalker->u.pConst; 4604 assert( TK_GT==TK_EQ+1 ); 4605 assert( TK_LE==TK_EQ+2 ); 4606 assert( TK_LT==TK_EQ+3 ); 4607 assert( TK_GE==TK_EQ+4 ); 4608 if( pConst->bHasAffBlob ){ 4609 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4610 || pExpr->op==TK_IS 4611 ){ 4612 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4613 if( pConst->pOomFault[0] ) return WRC_Prune; 4614 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4615 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4616 } 4617 } 4618 } 4619 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4620 } 4621 4622 /* 4623 ** The WHERE-clause constant propagation optimization. 4624 ** 4625 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4626 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4627 ** part of a ON clause from a LEFT JOIN, then throughout the query 4628 ** replace all other occurrences of COLUMN with CONSTANT. 4629 ** 4630 ** For example, the query: 4631 ** 4632 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4633 ** 4634 ** Is transformed into 4635 ** 4636 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4637 ** 4638 ** Return true if any transformations where made and false if not. 4639 ** 4640 ** Implementation note: Constant propagation is tricky due to affinity 4641 ** and collating sequence interactions. Consider this example: 4642 ** 4643 ** CREATE TABLE t1(a INT,b TEXT); 4644 ** INSERT INTO t1 VALUES(123,'0123'); 4645 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4646 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4647 ** 4648 ** The two SELECT statements above should return different answers. b=a 4649 ** is alway true because the comparison uses numeric affinity, but b=123 4650 ** is false because it uses text affinity and '0123' is not the same as '123'. 4651 ** To work around this, the expression tree is not actually changed from 4652 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4653 ** and the "123" value is hung off of the pLeft pointer. Code generator 4654 ** routines know to generate the constant "123" instead of looking up the 4655 ** column value. Also, to avoid collation problems, this optimization is 4656 ** only attempted if the "a=123" term uses the default BINARY collation. 4657 ** 4658 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4659 ** 4660 ** CREATE TABLE t1(x); 4661 ** INSERT INTO t1 VALUES(10.0); 4662 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4663 ** 4664 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4665 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4666 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4667 ** resulting in a false positive. To avoid this, constant propagation for 4668 ** columns with BLOB affinity is only allowed if the constant is used with 4669 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4670 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4671 ** for details. 4672 */ 4673 static int propagateConstants( 4674 Parse *pParse, /* The parsing context */ 4675 Select *p /* The query in which to propagate constants */ 4676 ){ 4677 WhereConst x; 4678 Walker w; 4679 int nChng = 0; 4680 x.pParse = pParse; 4681 x.pOomFault = &pParse->db->mallocFailed; 4682 do{ 4683 x.nConst = 0; 4684 x.nChng = 0; 4685 x.apExpr = 0; 4686 x.bHasAffBlob = 0; 4687 findConstInWhere(&x, p->pWhere); 4688 if( x.nConst ){ 4689 memset(&w, 0, sizeof(w)); 4690 w.pParse = pParse; 4691 w.xExprCallback = propagateConstantExprRewrite; 4692 w.xSelectCallback = sqlite3SelectWalkNoop; 4693 w.xSelectCallback2 = 0; 4694 w.walkerDepth = 0; 4695 w.u.pConst = &x; 4696 sqlite3WalkExpr(&w, p->pWhere); 4697 sqlite3DbFree(x.pParse->db, x.apExpr); 4698 nChng += x.nChng; 4699 } 4700 }while( x.nChng ); 4701 return nChng; 4702 } 4703 4704 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4705 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4706 /* 4707 ** This function is called to determine whether or not it is safe to 4708 ** push WHERE clause expression pExpr down to FROM clause sub-query 4709 ** pSubq, which contains at least one window function. Return 1 4710 ** if it is safe and the expression should be pushed down, or 0 4711 ** otherwise. 4712 ** 4713 ** It is only safe to push the expression down if it consists only 4714 ** of constants and copies of expressions that appear in the PARTITION 4715 ** BY clause of all window function used by the sub-query. It is safe 4716 ** to filter out entire partitions, but not rows within partitions, as 4717 ** this may change the results of the window functions. 4718 ** 4719 ** At the time this function is called it is guaranteed that 4720 ** 4721 ** * the sub-query uses only one distinct window frame, and 4722 ** * that the window frame has a PARTITION BY clase. 4723 */ 4724 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4725 assert( pSubq->pWin->pPartition ); 4726 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4727 assert( pSubq->pPrior==0 ); 4728 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4729 } 4730 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4731 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4732 4733 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4734 /* 4735 ** Make copies of relevant WHERE clause terms of the outer query into 4736 ** the WHERE clause of subquery. Example: 4737 ** 4738 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4739 ** 4740 ** Transformed into: 4741 ** 4742 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4743 ** WHERE x=5 AND y=10; 4744 ** 4745 ** The hope is that the terms added to the inner query will make it more 4746 ** efficient. 4747 ** 4748 ** Do not attempt this optimization if: 4749 ** 4750 ** (1) (** This restriction was removed on 2017-09-29. We used to 4751 ** disallow this optimization for aggregate subqueries, but now 4752 ** it is allowed by putting the extra terms on the HAVING clause. 4753 ** The added HAVING clause is pointless if the subquery lacks 4754 ** a GROUP BY clause. But such a HAVING clause is also harmless 4755 ** so there does not appear to be any reason to add extra logic 4756 ** to suppress it. **) 4757 ** 4758 ** (2) The inner query is the recursive part of a common table expression. 4759 ** 4760 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4761 ** clause would change the meaning of the LIMIT). 4762 ** 4763 ** (4) The inner query is the right operand of a LEFT JOIN and the 4764 ** expression to be pushed down does not come from the ON clause 4765 ** on that LEFT JOIN. 4766 ** 4767 ** (5) The WHERE clause expression originates in the ON or USING clause 4768 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4769 ** left join. An example: 4770 ** 4771 ** SELECT * 4772 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4773 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4774 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4775 ** 4776 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4777 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4778 ** then the (1,1,NULL) row would be suppressed. 4779 ** 4780 ** (6) Window functions make things tricky as changes to the WHERE clause 4781 ** of the inner query could change the window over which window 4782 ** functions are calculated. Therefore, do not attempt the optimization 4783 ** if: 4784 ** 4785 ** (6a) The inner query uses multiple incompatible window partitions. 4786 ** 4787 ** (6b) The inner query is a compound and uses window-functions. 4788 ** 4789 ** (6c) The WHERE clause does not consist entirely of constants and 4790 ** copies of expressions found in the PARTITION BY clause of 4791 ** all window-functions used by the sub-query. It is safe to 4792 ** filter out entire partitions, as this does not change the 4793 ** window over which any window-function is calculated. 4794 ** 4795 ** (7) The inner query is a Common Table Expression (CTE) that should 4796 ** be materialized. (This restriction is implemented in the calling 4797 ** routine.) 4798 ** 4799 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4800 ** terms are duplicated into the subquery. 4801 */ 4802 static int pushDownWhereTerms( 4803 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4804 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4805 Expr *pWhere, /* The WHERE clause of the outer query */ 4806 int iCursor, /* Cursor number of the subquery */ 4807 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4808 ){ 4809 Expr *pNew; 4810 int nChng = 0; 4811 if( pWhere==0 ) return 0; 4812 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4813 4814 #ifndef SQLITE_OMIT_WINDOWFUNC 4815 if( pSubq->pPrior ){ 4816 Select *pSel; 4817 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4818 if( pSel->pWin ) return 0; /* restriction (6b) */ 4819 } 4820 }else{ 4821 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4822 } 4823 #endif 4824 4825 #ifdef SQLITE_DEBUG 4826 /* Only the first term of a compound can have a WITH clause. But make 4827 ** sure no other terms are marked SF_Recursive in case something changes 4828 ** in the future. 4829 */ 4830 { 4831 Select *pX; 4832 for(pX=pSubq; pX; pX=pX->pPrior){ 4833 assert( (pX->selFlags & (SF_Recursive))==0 ); 4834 } 4835 } 4836 #endif 4837 4838 if( pSubq->pLimit!=0 ){ 4839 return 0; /* restriction (3) */ 4840 } 4841 while( pWhere->op==TK_AND ){ 4842 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4843 iCursor, isLeftJoin); 4844 pWhere = pWhere->pLeft; 4845 } 4846 if( isLeftJoin 4847 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4848 || pWhere->iRightJoinTable!=iCursor) 4849 ){ 4850 return 0; /* restriction (4) */ 4851 } 4852 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4853 return 0; /* restriction (5) */ 4854 } 4855 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4856 nChng++; 4857 pSubq->selFlags |= SF_PushDown; 4858 while( pSubq ){ 4859 SubstContext x; 4860 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4861 unsetJoinExpr(pNew, -1); 4862 x.pParse = pParse; 4863 x.iTable = iCursor; 4864 x.iNewTable = iCursor; 4865 x.isLeftJoin = 0; 4866 x.pEList = pSubq->pEList; 4867 pNew = substExpr(&x, pNew); 4868 #ifndef SQLITE_OMIT_WINDOWFUNC 4869 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4870 /* Restriction 6c has prevented push-down in this case */ 4871 sqlite3ExprDelete(pParse->db, pNew); 4872 nChng--; 4873 break; 4874 } 4875 #endif 4876 if( pSubq->selFlags & SF_Aggregate ){ 4877 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4878 }else{ 4879 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4880 } 4881 pSubq = pSubq->pPrior; 4882 } 4883 } 4884 return nChng; 4885 } 4886 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4887 4888 /* 4889 ** The pFunc is the only aggregate function in the query. Check to see 4890 ** if the query is a candidate for the min/max optimization. 4891 ** 4892 ** If the query is a candidate for the min/max optimization, then set 4893 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4894 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4895 ** whether pFunc is a min() or max() function. 4896 ** 4897 ** If the query is not a candidate for the min/max optimization, return 4898 ** WHERE_ORDERBY_NORMAL (which must be zero). 4899 ** 4900 ** This routine must be called after aggregate functions have been 4901 ** located but before their arguments have been subjected to aggregate 4902 ** analysis. 4903 */ 4904 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4905 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4906 ExprList *pEList; /* Arguments to agg function */ 4907 const char *zFunc; /* Name of aggregate function pFunc */ 4908 ExprList *pOrderBy; 4909 u8 sortFlags = 0; 4910 4911 assert( *ppMinMax==0 ); 4912 assert( pFunc->op==TK_AGG_FUNCTION ); 4913 assert( !IsWindowFunc(pFunc) ); 4914 assert( ExprUseXList(pFunc) ); 4915 pEList = pFunc->x.pList; 4916 if( pEList==0 4917 || pEList->nExpr!=1 4918 || ExprHasProperty(pFunc, EP_WinFunc) 4919 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4920 ){ 4921 return eRet; 4922 } 4923 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 4924 zFunc = pFunc->u.zToken; 4925 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4926 eRet = WHERE_ORDERBY_MIN; 4927 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4928 sortFlags = KEYINFO_ORDER_BIGNULL; 4929 } 4930 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4931 eRet = WHERE_ORDERBY_MAX; 4932 sortFlags = KEYINFO_ORDER_DESC; 4933 }else{ 4934 return eRet; 4935 } 4936 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4937 assert( pOrderBy!=0 || db->mallocFailed ); 4938 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4939 return eRet; 4940 } 4941 4942 /* 4943 ** The select statement passed as the first argument is an aggregate query. 4944 ** The second argument is the associated aggregate-info object. This 4945 ** function tests if the SELECT is of the form: 4946 ** 4947 ** SELECT count(*) FROM <tbl> 4948 ** 4949 ** where table is a database table, not a sub-select or view. If the query 4950 ** does match this pattern, then a pointer to the Table object representing 4951 ** <tbl> is returned. Otherwise, 0 is returned. 4952 */ 4953 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4954 Table *pTab; 4955 Expr *pExpr; 4956 4957 assert( !p->pGroupBy ); 4958 4959 if( p->pWhere || p->pEList->nExpr!=1 4960 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4961 ){ 4962 return 0; 4963 } 4964 pTab = p->pSrc->a[0].pTab; 4965 pExpr = p->pEList->a[0].pExpr; 4966 assert( pTab && !IsView(pTab) && pExpr ); 4967 4968 if( IsVirtual(pTab) ) return 0; 4969 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4970 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4971 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4972 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4973 4974 return pTab; 4975 } 4976 4977 /* 4978 ** If the source-list item passed as an argument was augmented with an 4979 ** INDEXED BY clause, then try to locate the specified index. If there 4980 ** was such a clause and the named index cannot be found, return 4981 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4982 ** pFrom->pIndex and return SQLITE_OK. 4983 */ 4984 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4985 Table *pTab = pFrom->pTab; 4986 char *zIndexedBy = pFrom->u1.zIndexedBy; 4987 Index *pIdx; 4988 assert( pTab!=0 ); 4989 assert( pFrom->fg.isIndexedBy!=0 ); 4990 4991 for(pIdx=pTab->pIndex; 4992 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4993 pIdx=pIdx->pNext 4994 ); 4995 if( !pIdx ){ 4996 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4997 pParse->checkSchema = 1; 4998 return SQLITE_ERROR; 4999 } 5000 assert( pFrom->fg.isCte==0 ); 5001 pFrom->u2.pIBIndex = pIdx; 5002 return SQLITE_OK; 5003 } 5004 5005 /* 5006 ** Detect compound SELECT statements that use an ORDER BY clause with 5007 ** an alternative collating sequence. 5008 ** 5009 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5010 ** 5011 ** These are rewritten as a subquery: 5012 ** 5013 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5014 ** ORDER BY ... COLLATE ... 5015 ** 5016 ** This transformation is necessary because the multiSelectOrderBy() routine 5017 ** above that generates the code for a compound SELECT with an ORDER BY clause 5018 ** uses a merge algorithm that requires the same collating sequence on the 5019 ** result columns as on the ORDER BY clause. See ticket 5020 ** http://www.sqlite.org/src/info/6709574d2a 5021 ** 5022 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5023 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5024 ** there are COLLATE terms in the ORDER BY. 5025 */ 5026 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5027 int i; 5028 Select *pNew; 5029 Select *pX; 5030 sqlite3 *db; 5031 struct ExprList_item *a; 5032 SrcList *pNewSrc; 5033 Parse *pParse; 5034 Token dummy; 5035 5036 if( p->pPrior==0 ) return WRC_Continue; 5037 if( p->pOrderBy==0 ) return WRC_Continue; 5038 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5039 if( pX==0 ) return WRC_Continue; 5040 a = p->pOrderBy->a; 5041 #ifndef SQLITE_OMIT_WINDOWFUNC 5042 /* If iOrderByCol is already non-zero, then it has already been matched 5043 ** to a result column of the SELECT statement. This occurs when the 5044 ** SELECT is rewritten for window-functions processing and then passed 5045 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5046 ** by this function is not required in this case. */ 5047 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5048 #endif 5049 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5050 if( a[i].pExpr->flags & EP_Collate ) break; 5051 } 5052 if( i<0 ) return WRC_Continue; 5053 5054 /* If we reach this point, that means the transformation is required. */ 5055 5056 pParse = pWalker->pParse; 5057 db = pParse->db; 5058 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5059 if( pNew==0 ) return WRC_Abort; 5060 memset(&dummy, 0, sizeof(dummy)); 5061 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 5062 if( pNewSrc==0 ) return WRC_Abort; 5063 *pNew = *p; 5064 p->pSrc = pNewSrc; 5065 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5066 p->op = TK_SELECT; 5067 p->pWhere = 0; 5068 pNew->pGroupBy = 0; 5069 pNew->pHaving = 0; 5070 pNew->pOrderBy = 0; 5071 p->pPrior = 0; 5072 p->pNext = 0; 5073 p->pWith = 0; 5074 #ifndef SQLITE_OMIT_WINDOWFUNC 5075 p->pWinDefn = 0; 5076 #endif 5077 p->selFlags &= ~SF_Compound; 5078 assert( (p->selFlags & SF_Converted)==0 ); 5079 p->selFlags |= SF_Converted; 5080 assert( pNew->pPrior!=0 ); 5081 pNew->pPrior->pNext = pNew; 5082 pNew->pLimit = 0; 5083 return WRC_Continue; 5084 } 5085 5086 /* 5087 ** Check to see if the FROM clause term pFrom has table-valued function 5088 ** arguments. If it does, leave an error message in pParse and return 5089 ** non-zero, since pFrom is not allowed to be a table-valued function. 5090 */ 5091 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5092 if( pFrom->fg.isTabFunc ){ 5093 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5094 return 1; 5095 } 5096 return 0; 5097 } 5098 5099 #ifndef SQLITE_OMIT_CTE 5100 /* 5101 ** Argument pWith (which may be NULL) points to a linked list of nested 5102 ** WITH contexts, from inner to outermost. If the table identified by 5103 ** FROM clause element pItem is really a common-table-expression (CTE) 5104 ** then return a pointer to the CTE definition for that table. Otherwise 5105 ** return NULL. 5106 ** 5107 ** If a non-NULL value is returned, set *ppContext to point to the With 5108 ** object that the returned CTE belongs to. 5109 */ 5110 static struct Cte *searchWith( 5111 With *pWith, /* Current innermost WITH clause */ 5112 SrcItem *pItem, /* FROM clause element to resolve */ 5113 With **ppContext /* OUT: WITH clause return value belongs to */ 5114 ){ 5115 const char *zName = pItem->zName; 5116 With *p; 5117 assert( pItem->zDatabase==0 ); 5118 assert( zName!=0 ); 5119 for(p=pWith; p; p=p->pOuter){ 5120 int i; 5121 for(i=0; i<p->nCte; i++){ 5122 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5123 *ppContext = p; 5124 return &p->a[i]; 5125 } 5126 } 5127 if( p->bView ) break; 5128 } 5129 return 0; 5130 } 5131 5132 /* The code generator maintains a stack of active WITH clauses 5133 ** with the inner-most WITH clause being at the top of the stack. 5134 ** 5135 ** This routine pushes the WITH clause passed as the second argument 5136 ** onto the top of the stack. If argument bFree is true, then this 5137 ** WITH clause will never be popped from the stack but should instead 5138 ** be freed along with the Parse object. In other cases, when 5139 ** bFree==0, the With object will be freed along with the SELECT 5140 ** statement with which it is associated. 5141 ** 5142 ** This routine returns a copy of pWith. Or, if bFree is true and 5143 ** the pWith object is destroyed immediately due to an OOM condition, 5144 ** then this routine return NULL. 5145 ** 5146 ** If bFree is true, do not continue to use the pWith pointer after 5147 ** calling this routine, Instead, use only the return value. 5148 */ 5149 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5150 if( pWith ){ 5151 if( bFree ){ 5152 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5153 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5154 pWith); 5155 if( pWith==0 ) return 0; 5156 } 5157 if( pParse->nErr==0 ){ 5158 assert( pParse->pWith!=pWith ); 5159 pWith->pOuter = pParse->pWith; 5160 pParse->pWith = pWith; 5161 } 5162 } 5163 return pWith; 5164 } 5165 5166 /* 5167 ** This function checks if argument pFrom refers to a CTE declared by 5168 ** a WITH clause on the stack currently maintained by the parser (on the 5169 ** pParse->pWith linked list). And if currently processing a CTE 5170 ** CTE expression, through routine checks to see if the reference is 5171 ** a recursive reference to the CTE. 5172 ** 5173 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5174 ** and other fields are populated accordingly. 5175 ** 5176 ** Return 0 if no match is found. 5177 ** Return 1 if a match is found. 5178 ** Return 2 if an error condition is detected. 5179 */ 5180 static int resolveFromTermToCte( 5181 Parse *pParse, /* The parsing context */ 5182 Walker *pWalker, /* Current tree walker */ 5183 SrcItem *pFrom /* The FROM clause term to check */ 5184 ){ 5185 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5186 With *pWith; /* The matching WITH */ 5187 5188 assert( pFrom->pTab==0 ); 5189 if( pParse->pWith==0 ){ 5190 /* There are no WITH clauses in the stack. No match is possible */ 5191 return 0; 5192 } 5193 if( pParse->nErr ){ 5194 /* Prior errors might have left pParse->pWith in a goofy state, so 5195 ** go no further. */ 5196 return 0; 5197 } 5198 if( pFrom->zDatabase!=0 ){ 5199 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5200 ** it cannot possibly be a CTE reference. */ 5201 return 0; 5202 } 5203 if( pFrom->fg.notCte ){ 5204 /* The FROM term is specifically excluded from matching a CTE. 5205 ** (1) It is part of a trigger that used to have zDatabase but had 5206 ** zDatabase removed by sqlite3FixTriggerStep(). 5207 ** (2) This is the first term in the FROM clause of an UPDATE. 5208 */ 5209 return 0; 5210 } 5211 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5212 if( pCte ){ 5213 sqlite3 *db = pParse->db; 5214 Table *pTab; 5215 ExprList *pEList; 5216 Select *pSel; 5217 Select *pLeft; /* Left-most SELECT statement */ 5218 Select *pRecTerm; /* Left-most recursive term */ 5219 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5220 With *pSavedWith; /* Initial value of pParse->pWith */ 5221 int iRecTab = -1; /* Cursor for recursive table */ 5222 CteUse *pCteUse; 5223 5224 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5225 ** recursive reference to CTE pCte. Leave an error in pParse and return 5226 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5227 ** In this case, proceed. */ 5228 if( pCte->zCteErr ){ 5229 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5230 return 2; 5231 } 5232 if( cannotBeFunction(pParse, pFrom) ) return 2; 5233 5234 assert( pFrom->pTab==0 ); 5235 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5236 if( pTab==0 ) return 2; 5237 pCteUse = pCte->pUse; 5238 if( pCteUse==0 ){ 5239 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5240 if( pCteUse==0 5241 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5242 ){ 5243 sqlite3DbFree(db, pTab); 5244 return 2; 5245 } 5246 pCteUse->eM10d = pCte->eM10d; 5247 } 5248 pFrom->pTab = pTab; 5249 pTab->nTabRef = 1; 5250 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5251 pTab->iPKey = -1; 5252 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5253 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5254 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5255 if( db->mallocFailed ) return 2; 5256 pFrom->pSelect->selFlags |= SF_CopyCte; 5257 assert( pFrom->pSelect ); 5258 if( pFrom->fg.isIndexedBy ){ 5259 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5260 return 2; 5261 } 5262 pFrom->fg.isCte = 1; 5263 pFrom->u2.pCteUse = pCteUse; 5264 pCteUse->nUse++; 5265 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5266 pCteUse->eM10d = M10d_Yes; 5267 } 5268 5269 /* Check if this is a recursive CTE. */ 5270 pRecTerm = pSel = pFrom->pSelect; 5271 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5272 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5273 int i; 5274 SrcList *pSrc = pRecTerm->pSrc; 5275 assert( pRecTerm->pPrior!=0 ); 5276 for(i=0; i<pSrc->nSrc; i++){ 5277 SrcItem *pItem = &pSrc->a[i]; 5278 if( pItem->zDatabase==0 5279 && pItem->zName!=0 5280 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5281 ){ 5282 pItem->pTab = pTab; 5283 pTab->nTabRef++; 5284 pItem->fg.isRecursive = 1; 5285 if( pRecTerm->selFlags & SF_Recursive ){ 5286 sqlite3ErrorMsg(pParse, 5287 "multiple references to recursive table: %s", pCte->zName 5288 ); 5289 return 2; 5290 } 5291 pRecTerm->selFlags |= SF_Recursive; 5292 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5293 pItem->iCursor = iRecTab; 5294 } 5295 } 5296 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5297 pRecTerm = pRecTerm->pPrior; 5298 } 5299 5300 pCte->zCteErr = "circular reference: %s"; 5301 pSavedWith = pParse->pWith; 5302 pParse->pWith = pWith; 5303 if( pSel->selFlags & SF_Recursive ){ 5304 int rc; 5305 assert( pRecTerm!=0 ); 5306 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5307 assert( pRecTerm->pNext!=0 ); 5308 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5309 assert( pRecTerm->pWith==0 ); 5310 pRecTerm->pWith = pSel->pWith; 5311 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5312 pRecTerm->pWith = 0; 5313 if( rc ){ 5314 pParse->pWith = pSavedWith; 5315 return 2; 5316 } 5317 }else{ 5318 if( sqlite3WalkSelect(pWalker, pSel) ){ 5319 pParse->pWith = pSavedWith; 5320 return 2; 5321 } 5322 } 5323 pParse->pWith = pWith; 5324 5325 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5326 pEList = pLeft->pEList; 5327 if( pCte->pCols ){ 5328 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5329 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5330 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5331 ); 5332 pParse->pWith = pSavedWith; 5333 return 2; 5334 } 5335 pEList = pCte->pCols; 5336 } 5337 5338 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5339 if( bMayRecursive ){ 5340 if( pSel->selFlags & SF_Recursive ){ 5341 pCte->zCteErr = "multiple recursive references: %s"; 5342 }else{ 5343 pCte->zCteErr = "recursive reference in a subquery: %s"; 5344 } 5345 sqlite3WalkSelect(pWalker, pSel); 5346 } 5347 pCte->zCteErr = 0; 5348 pParse->pWith = pSavedWith; 5349 return 1; /* Success */ 5350 } 5351 return 0; /* No match */ 5352 } 5353 #endif 5354 5355 #ifndef SQLITE_OMIT_CTE 5356 /* 5357 ** If the SELECT passed as the second argument has an associated WITH 5358 ** clause, pop it from the stack stored as part of the Parse object. 5359 ** 5360 ** This function is used as the xSelectCallback2() callback by 5361 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5362 ** names and other FROM clause elements. 5363 */ 5364 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5365 Parse *pParse = pWalker->pParse; 5366 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5367 With *pWith = findRightmost(p)->pWith; 5368 if( pWith!=0 ){ 5369 assert( pParse->pWith==pWith || pParse->nErr ); 5370 pParse->pWith = pWith->pOuter; 5371 } 5372 } 5373 } 5374 #endif 5375 5376 /* 5377 ** The SrcList_item structure passed as the second argument represents a 5378 ** sub-query in the FROM clause of a SELECT statement. This function 5379 ** allocates and populates the SrcList_item.pTab object. If successful, 5380 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5381 ** SQLITE_NOMEM. 5382 */ 5383 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5384 Select *pSel = pFrom->pSelect; 5385 Table *pTab; 5386 5387 assert( pSel ); 5388 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5389 if( pTab==0 ) return SQLITE_NOMEM; 5390 pTab->nTabRef = 1; 5391 if( pFrom->zAlias ){ 5392 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5393 }else{ 5394 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5395 } 5396 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5397 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5398 pTab->iPKey = -1; 5399 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5400 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5401 /* The usual case - do not allow ROWID on a subquery */ 5402 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5403 #else 5404 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5405 #endif 5406 5407 5408 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5409 } 5410 5411 /* 5412 ** This routine is a Walker callback for "expanding" a SELECT statement. 5413 ** "Expanding" means to do the following: 5414 ** 5415 ** (1) Make sure VDBE cursor numbers have been assigned to every 5416 ** element of the FROM clause. 5417 ** 5418 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5419 ** defines FROM clause. When views appear in the FROM clause, 5420 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5421 ** that implements the view. A copy is made of the view's SELECT 5422 ** statement so that we can freely modify or delete that statement 5423 ** without worrying about messing up the persistent representation 5424 ** of the view. 5425 ** 5426 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5427 ** on joins and the ON and USING clause of joins. 5428 ** 5429 ** (4) Scan the list of columns in the result set (pEList) looking 5430 ** for instances of the "*" operator or the TABLE.* operator. 5431 ** If found, expand each "*" to be every column in every table 5432 ** and TABLE.* to be every column in TABLE. 5433 ** 5434 */ 5435 static int selectExpander(Walker *pWalker, Select *p){ 5436 Parse *pParse = pWalker->pParse; 5437 int i, j, k, rc; 5438 SrcList *pTabList; 5439 ExprList *pEList; 5440 SrcItem *pFrom; 5441 sqlite3 *db = pParse->db; 5442 Expr *pE, *pRight, *pExpr; 5443 u16 selFlags = p->selFlags; 5444 u32 elistFlags = 0; 5445 5446 p->selFlags |= SF_Expanded; 5447 if( db->mallocFailed ){ 5448 return WRC_Abort; 5449 } 5450 assert( p->pSrc!=0 ); 5451 if( (selFlags & SF_Expanded)!=0 ){ 5452 return WRC_Prune; 5453 } 5454 if( pWalker->eCode ){ 5455 /* Renumber selId because it has been copied from a view */ 5456 p->selId = ++pParse->nSelect; 5457 } 5458 pTabList = p->pSrc; 5459 pEList = p->pEList; 5460 if( pParse->pWith && (p->selFlags & SF_View) ){ 5461 if( p->pWith==0 ){ 5462 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5463 if( p->pWith==0 ){ 5464 return WRC_Abort; 5465 } 5466 } 5467 p->pWith->bView = 1; 5468 } 5469 sqlite3WithPush(pParse, p->pWith, 0); 5470 5471 /* Make sure cursor numbers have been assigned to all entries in 5472 ** the FROM clause of the SELECT statement. 5473 */ 5474 sqlite3SrcListAssignCursors(pParse, pTabList); 5475 5476 /* Look up every table named in the FROM clause of the select. If 5477 ** an entry of the FROM clause is a subquery instead of a table or view, 5478 ** then create a transient table structure to describe the subquery. 5479 */ 5480 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5481 Table *pTab; 5482 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5483 if( pFrom->pTab ) continue; 5484 assert( pFrom->fg.isRecursive==0 ); 5485 if( pFrom->zName==0 ){ 5486 #ifndef SQLITE_OMIT_SUBQUERY 5487 Select *pSel = pFrom->pSelect; 5488 /* A sub-query in the FROM clause of a SELECT */ 5489 assert( pSel!=0 ); 5490 assert( pFrom->pTab==0 ); 5491 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5492 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5493 #endif 5494 #ifndef SQLITE_OMIT_CTE 5495 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5496 if( rc>1 ) return WRC_Abort; 5497 pTab = pFrom->pTab; 5498 assert( pTab!=0 ); 5499 #endif 5500 }else{ 5501 /* An ordinary table or view name in the FROM clause */ 5502 assert( pFrom->pTab==0 ); 5503 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5504 if( pTab==0 ) return WRC_Abort; 5505 if( pTab->nTabRef>=0xffff ){ 5506 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5507 pTab->zName); 5508 pFrom->pTab = 0; 5509 return WRC_Abort; 5510 } 5511 pTab->nTabRef++; 5512 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5513 return WRC_Abort; 5514 } 5515 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5516 if( !IsOrdinaryTable(pTab) ){ 5517 i16 nCol; 5518 u8 eCodeOrig = pWalker->eCode; 5519 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5520 assert( pFrom->pSelect==0 ); 5521 if( IsView(pTab) ){ 5522 if( (db->flags & SQLITE_EnableView)==0 5523 && pTab->pSchema!=db->aDb[1].pSchema 5524 ){ 5525 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5526 pTab->zName); 5527 } 5528 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5529 } 5530 #ifndef SQLITE_OMIT_VIRTUALTABLE 5531 else if( ALWAYS(IsVirtual(pTab)) 5532 && pFrom->fg.fromDDL 5533 && ALWAYS(pTab->u.vtab.p!=0) 5534 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5535 ){ 5536 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5537 pTab->zName); 5538 } 5539 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5540 #endif 5541 nCol = pTab->nCol; 5542 pTab->nCol = -1; 5543 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5544 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5545 pWalker->eCode = eCodeOrig; 5546 pTab->nCol = nCol; 5547 } 5548 #endif 5549 } 5550 5551 /* Locate the index named by the INDEXED BY clause, if any. */ 5552 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5553 return WRC_Abort; 5554 } 5555 } 5556 5557 /* Process NATURAL keywords, and ON and USING clauses of joins. 5558 */ 5559 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5560 return WRC_Abort; 5561 } 5562 5563 /* For every "*" that occurs in the column list, insert the names of 5564 ** all columns in all tables. And for every TABLE.* insert the names 5565 ** of all columns in TABLE. The parser inserted a special expression 5566 ** with the TK_ASTERISK operator for each "*" that it found in the column 5567 ** list. The following code just has to locate the TK_ASTERISK 5568 ** expressions and expand each one to the list of all columns in 5569 ** all tables. 5570 ** 5571 ** The first loop just checks to see if there are any "*" operators 5572 ** that need expanding. 5573 */ 5574 for(k=0; k<pEList->nExpr; k++){ 5575 pE = pEList->a[k].pExpr; 5576 if( pE->op==TK_ASTERISK ) break; 5577 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5578 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5579 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5580 elistFlags |= pE->flags; 5581 } 5582 if( k<pEList->nExpr ){ 5583 /* 5584 ** If we get here it means the result set contains one or more "*" 5585 ** operators that need to be expanded. Loop through each expression 5586 ** in the result set and expand them one by one. 5587 */ 5588 struct ExprList_item *a = pEList->a; 5589 ExprList *pNew = 0; 5590 int flags = pParse->db->flags; 5591 int longNames = (flags & SQLITE_FullColNames)!=0 5592 && (flags & SQLITE_ShortColNames)==0; 5593 5594 for(k=0; k<pEList->nExpr; k++){ 5595 pE = a[k].pExpr; 5596 elistFlags |= pE->flags; 5597 pRight = pE->pRight; 5598 assert( pE->op!=TK_DOT || pRight!=0 ); 5599 if( pE->op!=TK_ASTERISK 5600 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5601 ){ 5602 /* This particular expression does not need to be expanded. 5603 */ 5604 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5605 if( pNew ){ 5606 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5607 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5608 a[k].zEName = 0; 5609 } 5610 a[k].pExpr = 0; 5611 }else{ 5612 /* This expression is a "*" or a "TABLE.*" and needs to be 5613 ** expanded. */ 5614 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5615 char *zTName = 0; /* text of name of TABLE */ 5616 if( pE->op==TK_DOT ){ 5617 assert( pE->pLeft!=0 ); 5618 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5619 zTName = pE->pLeft->u.zToken; 5620 } 5621 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5622 Table *pTab = pFrom->pTab; 5623 Select *pSub = pFrom->pSelect; 5624 char *zTabName = pFrom->zAlias; 5625 const char *zSchemaName = 0; 5626 int iDb; 5627 if( zTabName==0 ){ 5628 zTabName = pTab->zName; 5629 } 5630 if( db->mallocFailed ) break; 5631 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5632 pSub = 0; 5633 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5634 continue; 5635 } 5636 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5637 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5638 } 5639 for(j=0; j<pTab->nCol; j++){ 5640 char *zName = pTab->aCol[j].zCnName; 5641 char *zColname; /* The computed column name */ 5642 char *zToFree; /* Malloced string that needs to be freed */ 5643 Token sColname; /* Computed column name as a token */ 5644 5645 assert( zName ); 5646 if( zTName && pSub 5647 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5648 ){ 5649 continue; 5650 } 5651 5652 /* If a column is marked as 'hidden', omit it from the expanded 5653 ** result-set list unless the SELECT has the SF_IncludeHidden 5654 ** bit set. 5655 */ 5656 if( (p->selFlags & SF_IncludeHidden)==0 5657 && IsHiddenColumn(&pTab->aCol[j]) 5658 ){ 5659 continue; 5660 } 5661 tableSeen = 1; 5662 5663 if( i>0 && zTName==0 ){ 5664 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5665 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5666 ){ 5667 /* In a NATURAL join, omit the join columns from the 5668 ** table to the right of the join */ 5669 continue; 5670 } 5671 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5672 /* In a join with a USING clause, omit columns in the 5673 ** using clause from the table on the right. */ 5674 continue; 5675 } 5676 } 5677 pRight = sqlite3Expr(db, TK_ID, zName); 5678 zColname = zName; 5679 zToFree = 0; 5680 if( longNames || pTabList->nSrc>1 ){ 5681 Expr *pLeft; 5682 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5683 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5684 if( zSchemaName ){ 5685 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5686 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5687 } 5688 if( longNames ){ 5689 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5690 zToFree = zColname; 5691 } 5692 }else{ 5693 pExpr = pRight; 5694 } 5695 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5696 sqlite3TokenInit(&sColname, zColname); 5697 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5698 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5699 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5700 sqlite3DbFree(db, pX->zEName); 5701 if( pSub ){ 5702 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5703 testcase( pX->zEName==0 ); 5704 }else{ 5705 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5706 zSchemaName, zTabName, zColname); 5707 testcase( pX->zEName==0 ); 5708 } 5709 pX->eEName = ENAME_TAB; 5710 } 5711 sqlite3DbFree(db, zToFree); 5712 } 5713 } 5714 if( !tableSeen ){ 5715 if( zTName ){ 5716 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5717 }else{ 5718 sqlite3ErrorMsg(pParse, "no tables specified"); 5719 } 5720 } 5721 } 5722 } 5723 sqlite3ExprListDelete(db, pEList); 5724 p->pEList = pNew; 5725 } 5726 if( p->pEList ){ 5727 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5728 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5729 return WRC_Abort; 5730 } 5731 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5732 p->selFlags |= SF_ComplexResult; 5733 } 5734 } 5735 return WRC_Continue; 5736 } 5737 5738 #if SQLITE_DEBUG 5739 /* 5740 ** Always assert. This xSelectCallback2 implementation proves that the 5741 ** xSelectCallback2 is never invoked. 5742 */ 5743 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5744 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5745 assert( 0 ); 5746 } 5747 #endif 5748 /* 5749 ** This routine "expands" a SELECT statement and all of its subqueries. 5750 ** For additional information on what it means to "expand" a SELECT 5751 ** statement, see the comment on the selectExpand worker callback above. 5752 ** 5753 ** Expanding a SELECT statement is the first step in processing a 5754 ** SELECT statement. The SELECT statement must be expanded before 5755 ** name resolution is performed. 5756 ** 5757 ** If anything goes wrong, an error message is written into pParse. 5758 ** The calling function can detect the problem by looking at pParse->nErr 5759 ** and/or pParse->db->mallocFailed. 5760 */ 5761 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5762 Walker w; 5763 w.xExprCallback = sqlite3ExprWalkNoop; 5764 w.pParse = pParse; 5765 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5766 w.xSelectCallback = convertCompoundSelectToSubquery; 5767 w.xSelectCallback2 = 0; 5768 sqlite3WalkSelect(&w, pSelect); 5769 } 5770 w.xSelectCallback = selectExpander; 5771 w.xSelectCallback2 = sqlite3SelectPopWith; 5772 w.eCode = 0; 5773 sqlite3WalkSelect(&w, pSelect); 5774 } 5775 5776 5777 #ifndef SQLITE_OMIT_SUBQUERY 5778 /* 5779 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5780 ** interface. 5781 ** 5782 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5783 ** information to the Table structure that represents the result set 5784 ** of that subquery. 5785 ** 5786 ** The Table structure that represents the result set was constructed 5787 ** by selectExpander() but the type and collation information was omitted 5788 ** at that point because identifiers had not yet been resolved. This 5789 ** routine is called after identifier resolution. 5790 */ 5791 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5792 Parse *pParse; 5793 int i; 5794 SrcList *pTabList; 5795 SrcItem *pFrom; 5796 5797 assert( p->selFlags & SF_Resolved ); 5798 if( p->selFlags & SF_HasTypeInfo ) return; 5799 p->selFlags |= SF_HasTypeInfo; 5800 pParse = pWalker->pParse; 5801 pTabList = p->pSrc; 5802 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5803 Table *pTab = pFrom->pTab; 5804 assert( pTab!=0 ); 5805 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5806 /* A sub-query in the FROM clause of a SELECT */ 5807 Select *pSel = pFrom->pSelect; 5808 if( pSel ){ 5809 while( pSel->pPrior ) pSel = pSel->pPrior; 5810 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5811 SQLITE_AFF_NONE); 5812 } 5813 } 5814 } 5815 } 5816 #endif 5817 5818 5819 /* 5820 ** This routine adds datatype and collating sequence information to 5821 ** the Table structures of all FROM-clause subqueries in a 5822 ** SELECT statement. 5823 ** 5824 ** Use this routine after name resolution. 5825 */ 5826 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5827 #ifndef SQLITE_OMIT_SUBQUERY 5828 Walker w; 5829 w.xSelectCallback = sqlite3SelectWalkNoop; 5830 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5831 w.xExprCallback = sqlite3ExprWalkNoop; 5832 w.pParse = pParse; 5833 sqlite3WalkSelect(&w, pSelect); 5834 #endif 5835 } 5836 5837 5838 /* 5839 ** This routine sets up a SELECT statement for processing. The 5840 ** following is accomplished: 5841 ** 5842 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5843 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5844 ** * ON and USING clauses are shifted into WHERE statements 5845 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5846 ** * Identifiers in expression are matched to tables. 5847 ** 5848 ** This routine acts recursively on all subqueries within the SELECT. 5849 */ 5850 void sqlite3SelectPrep( 5851 Parse *pParse, /* The parser context */ 5852 Select *p, /* The SELECT statement being coded. */ 5853 NameContext *pOuterNC /* Name context for container */ 5854 ){ 5855 assert( p!=0 || pParse->db->mallocFailed ); 5856 if( pParse->db->mallocFailed ) return; 5857 if( p->selFlags & SF_HasTypeInfo ) return; 5858 sqlite3SelectExpand(pParse, p); 5859 if( pParse->nErr || pParse->db->mallocFailed ) return; 5860 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5861 if( pParse->nErr || pParse->db->mallocFailed ) return; 5862 sqlite3SelectAddTypeInfo(pParse, p); 5863 } 5864 5865 /* 5866 ** Reset the aggregate accumulator. 5867 ** 5868 ** The aggregate accumulator is a set of memory cells that hold 5869 ** intermediate results while calculating an aggregate. This 5870 ** routine generates code that stores NULLs in all of those memory 5871 ** cells. 5872 */ 5873 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5874 Vdbe *v = pParse->pVdbe; 5875 int i; 5876 struct AggInfo_func *pFunc; 5877 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5878 if( nReg==0 ) return; 5879 if( pParse->nErr || pParse->db->mallocFailed ) return; 5880 #ifdef SQLITE_DEBUG 5881 /* Verify that all AggInfo registers are within the range specified by 5882 ** AggInfo.mnReg..AggInfo.mxReg */ 5883 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5884 for(i=0; i<pAggInfo->nColumn; i++){ 5885 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5886 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5887 } 5888 for(i=0; i<pAggInfo->nFunc; i++){ 5889 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5890 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5891 } 5892 #endif 5893 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5894 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5895 if( pFunc->iDistinct>=0 ){ 5896 Expr *pE = pFunc->pFExpr; 5897 assert( ExprUseXList(pE) ); 5898 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5899 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5900 "argument"); 5901 pFunc->iDistinct = -1; 5902 }else{ 5903 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5904 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5905 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5906 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5907 pFunc->pFunc->zName)); 5908 } 5909 } 5910 } 5911 } 5912 5913 /* 5914 ** Invoke the OP_AggFinalize opcode for every aggregate function 5915 ** in the AggInfo structure. 5916 */ 5917 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5918 Vdbe *v = pParse->pVdbe; 5919 int i; 5920 struct AggInfo_func *pF; 5921 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5922 ExprList *pList; 5923 assert( ExprUseXList(pF->pFExpr) ); 5924 pList = pF->pFExpr->x.pList; 5925 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5926 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5927 } 5928 } 5929 5930 5931 /* 5932 ** Update the accumulator memory cells for an aggregate based on 5933 ** the current cursor position. 5934 ** 5935 ** If regAcc is non-zero and there are no min() or max() aggregates 5936 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5937 ** registers if register regAcc contains 0. The caller will take care 5938 ** of setting and clearing regAcc. 5939 */ 5940 static void updateAccumulator( 5941 Parse *pParse, 5942 int regAcc, 5943 AggInfo *pAggInfo, 5944 int eDistinctType 5945 ){ 5946 Vdbe *v = pParse->pVdbe; 5947 int i; 5948 int regHit = 0; 5949 int addrHitTest = 0; 5950 struct AggInfo_func *pF; 5951 struct AggInfo_col *pC; 5952 5953 pAggInfo->directMode = 1; 5954 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5955 int nArg; 5956 int addrNext = 0; 5957 int regAgg; 5958 ExprList *pList; 5959 assert( ExprUseXList(pF->pFExpr) ); 5960 assert( !IsWindowFunc(pF->pFExpr) ); 5961 pList = pF->pFExpr->x.pList; 5962 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5963 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5964 if( pAggInfo->nAccumulator 5965 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5966 && regAcc 5967 ){ 5968 /* If regAcc==0, there there exists some min() or max() function 5969 ** without a FILTER clause that will ensure the magnet registers 5970 ** are populated. */ 5971 if( regHit==0 ) regHit = ++pParse->nMem; 5972 /* If this is the first row of the group (regAcc contains 0), clear the 5973 ** "magnet" register regHit so that the accumulator registers 5974 ** are populated if the FILTER clause jumps over the the 5975 ** invocation of min() or max() altogether. Or, if this is not 5976 ** the first row (regAcc contains 1), set the magnet register so that 5977 ** the accumulators are not populated unless the min()/max() is invoked 5978 ** and indicates that they should be. */ 5979 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5980 } 5981 addrNext = sqlite3VdbeMakeLabel(pParse); 5982 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5983 } 5984 if( pList ){ 5985 nArg = pList->nExpr; 5986 regAgg = sqlite3GetTempRange(pParse, nArg); 5987 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5988 }else{ 5989 nArg = 0; 5990 regAgg = 0; 5991 } 5992 if( pF->iDistinct>=0 && pList ){ 5993 if( addrNext==0 ){ 5994 addrNext = sqlite3VdbeMakeLabel(pParse); 5995 } 5996 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5997 pF->iDistinct, addrNext, pList, regAgg); 5998 } 5999 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6000 CollSeq *pColl = 0; 6001 struct ExprList_item *pItem; 6002 int j; 6003 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6004 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6005 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6006 } 6007 if( !pColl ){ 6008 pColl = pParse->db->pDfltColl; 6009 } 6010 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6011 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6012 } 6013 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6014 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6015 sqlite3VdbeChangeP5(v, (u8)nArg); 6016 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6017 if( addrNext ){ 6018 sqlite3VdbeResolveLabel(v, addrNext); 6019 } 6020 } 6021 if( regHit==0 && pAggInfo->nAccumulator ){ 6022 regHit = regAcc; 6023 } 6024 if( regHit ){ 6025 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6026 } 6027 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6028 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6029 } 6030 6031 pAggInfo->directMode = 0; 6032 if( addrHitTest ){ 6033 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6034 } 6035 } 6036 6037 /* 6038 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6039 ** count(*) query ("SELECT count(*) FROM pTab"). 6040 */ 6041 #ifndef SQLITE_OMIT_EXPLAIN 6042 static void explainSimpleCount( 6043 Parse *pParse, /* Parse context */ 6044 Table *pTab, /* Table being queried */ 6045 Index *pIdx /* Index used to optimize scan, or NULL */ 6046 ){ 6047 if( pParse->explain==2 ){ 6048 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6049 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6050 pTab->zName, 6051 bCover ? " USING COVERING INDEX " : "", 6052 bCover ? pIdx->zName : "" 6053 ); 6054 } 6055 } 6056 #else 6057 # define explainSimpleCount(a,b,c) 6058 #endif 6059 6060 /* 6061 ** sqlite3WalkExpr() callback used by havingToWhere(). 6062 ** 6063 ** If the node passed to the callback is a TK_AND node, return 6064 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6065 ** 6066 ** Otherwise, return WRC_Prune. In this case, also check if the 6067 ** sub-expression matches the criteria for being moved to the WHERE 6068 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6069 ** within the HAVING expression with a constant "1". 6070 */ 6071 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6072 if( pExpr->op!=TK_AND ){ 6073 Select *pS = pWalker->u.pSelect; 6074 /* This routine is called before the HAVING clause of the current 6075 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6076 ** here, it indicates that the expression is a correlated reference to a 6077 ** column from an outer aggregate query, or an aggregate function that 6078 ** belongs to an outer query. Do not move the expression to the WHERE 6079 ** clause in this obscure case, as doing so may corrupt the outer Select 6080 ** statements AggInfo structure. */ 6081 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6082 && ExprAlwaysFalse(pExpr)==0 6083 && pExpr->pAggInfo==0 6084 ){ 6085 sqlite3 *db = pWalker->pParse->db; 6086 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6087 if( pNew ){ 6088 Expr *pWhere = pS->pWhere; 6089 SWAP(Expr, *pNew, *pExpr); 6090 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6091 pS->pWhere = pNew; 6092 pWalker->eCode = 1; 6093 } 6094 } 6095 return WRC_Prune; 6096 } 6097 return WRC_Continue; 6098 } 6099 6100 /* 6101 ** Transfer eligible terms from the HAVING clause of a query, which is 6102 ** processed after grouping, to the WHERE clause, which is processed before 6103 ** grouping. For example, the query: 6104 ** 6105 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6106 ** 6107 ** can be rewritten as: 6108 ** 6109 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6110 ** 6111 ** A term of the HAVING expression is eligible for transfer if it consists 6112 ** entirely of constants and expressions that are also GROUP BY terms that 6113 ** use the "BINARY" collation sequence. 6114 */ 6115 static void havingToWhere(Parse *pParse, Select *p){ 6116 Walker sWalker; 6117 memset(&sWalker, 0, sizeof(sWalker)); 6118 sWalker.pParse = pParse; 6119 sWalker.xExprCallback = havingToWhereExprCb; 6120 sWalker.u.pSelect = p; 6121 sqlite3WalkExpr(&sWalker, p->pHaving); 6122 #if SELECTTRACE_ENABLED 6123 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 6124 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6125 sqlite3TreeViewSelect(0, p, 0); 6126 } 6127 #endif 6128 } 6129 6130 /* 6131 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6132 ** If it is, then return the SrcList_item for the prior view. If it is not, 6133 ** then return 0. 6134 */ 6135 static SrcItem *isSelfJoinView( 6136 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6137 SrcItem *pThis /* Search for prior reference to this subquery */ 6138 ){ 6139 SrcItem *pItem; 6140 assert( pThis->pSelect!=0 ); 6141 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6142 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6143 Select *pS1; 6144 if( pItem->pSelect==0 ) continue; 6145 if( pItem->fg.viaCoroutine ) continue; 6146 if( pItem->zName==0 ) continue; 6147 assert( pItem->pTab!=0 ); 6148 assert( pThis->pTab!=0 ); 6149 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6150 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6151 pS1 = pItem->pSelect; 6152 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6153 /* The query flattener left two different CTE tables with identical 6154 ** names in the same FROM clause. */ 6155 continue; 6156 } 6157 if( pItem->pSelect->selFlags & SF_PushDown ){ 6158 /* The view was modified by some other optimization such as 6159 ** pushDownWhereTerms() */ 6160 continue; 6161 } 6162 return pItem; 6163 } 6164 return 0; 6165 } 6166 6167 /* 6168 ** Deallocate a single AggInfo object 6169 */ 6170 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6171 sqlite3DbFree(db, p->aCol); 6172 sqlite3DbFree(db, p->aFunc); 6173 sqlite3DbFreeNN(db, p); 6174 } 6175 6176 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6177 /* 6178 ** Attempt to transform a query of the form 6179 ** 6180 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6181 ** 6182 ** Into this: 6183 ** 6184 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6185 ** 6186 ** The transformation only works if all of the following are true: 6187 ** 6188 ** * The subquery is a UNION ALL of two or more terms 6189 ** * The subquery does not have a LIMIT clause 6190 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6191 ** * The outer query is a simple count(*) with no WHERE clause or other 6192 ** extraneous syntax. 6193 ** 6194 ** Return TRUE if the optimization is undertaken. 6195 */ 6196 static int countOfViewOptimization(Parse *pParse, Select *p){ 6197 Select *pSub, *pPrior; 6198 Expr *pExpr; 6199 Expr *pCount; 6200 sqlite3 *db; 6201 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6202 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6203 if( p->pWhere ) return 0; 6204 if( p->pGroupBy ) return 0; 6205 pExpr = p->pEList->a[0].pExpr; 6206 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6207 assert( ExprUseUToken(pExpr) ); 6208 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6209 assert( ExprUseXList(pExpr) ); 6210 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6211 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6212 pSub = p->pSrc->a[0].pSelect; 6213 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6214 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6215 do{ 6216 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6217 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6218 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6219 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6220 pSub = pSub->pPrior; /* Repeat over compound */ 6221 }while( pSub ); 6222 6223 /* If we reach this point then it is OK to perform the transformation */ 6224 6225 db = pParse->db; 6226 pCount = pExpr; 6227 pExpr = 0; 6228 pSub = p->pSrc->a[0].pSelect; 6229 p->pSrc->a[0].pSelect = 0; 6230 sqlite3SrcListDelete(db, p->pSrc); 6231 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6232 while( pSub ){ 6233 Expr *pTerm; 6234 pPrior = pSub->pPrior; 6235 pSub->pPrior = 0; 6236 pSub->pNext = 0; 6237 pSub->selFlags |= SF_Aggregate; 6238 pSub->selFlags &= ~SF_Compound; 6239 pSub->nSelectRow = 0; 6240 sqlite3ExprListDelete(db, pSub->pEList); 6241 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6242 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6243 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6244 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6245 if( pExpr==0 ){ 6246 pExpr = pTerm; 6247 }else{ 6248 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6249 } 6250 pSub = pPrior; 6251 } 6252 p->pEList->a[0].pExpr = pExpr; 6253 p->selFlags &= ~SF_Aggregate; 6254 6255 #if SELECTTRACE_ENABLED 6256 if( sqlite3SelectTrace & 0x400 ){ 6257 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6258 sqlite3TreeViewSelect(0, p, 0); 6259 } 6260 #endif 6261 return 1; 6262 } 6263 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6264 6265 /* 6266 ** Generate code for the SELECT statement given in the p argument. 6267 ** 6268 ** The results are returned according to the SelectDest structure. 6269 ** See comments in sqliteInt.h for further information. 6270 ** 6271 ** This routine returns the number of errors. If any errors are 6272 ** encountered, then an appropriate error message is left in 6273 ** pParse->zErrMsg. 6274 ** 6275 ** This routine does NOT free the Select structure passed in. The 6276 ** calling function needs to do that. 6277 */ 6278 int sqlite3Select( 6279 Parse *pParse, /* The parser context */ 6280 Select *p, /* The SELECT statement being coded. */ 6281 SelectDest *pDest /* What to do with the query results */ 6282 ){ 6283 int i, j; /* Loop counters */ 6284 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6285 Vdbe *v; /* The virtual machine under construction */ 6286 int isAgg; /* True for select lists like "count(*)" */ 6287 ExprList *pEList = 0; /* List of columns to extract. */ 6288 SrcList *pTabList; /* List of tables to select from */ 6289 Expr *pWhere; /* The WHERE clause. May be NULL */ 6290 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6291 Expr *pHaving; /* The HAVING clause. May be NULL */ 6292 AggInfo *pAggInfo = 0; /* Aggregate information */ 6293 int rc = 1; /* Value to return from this function */ 6294 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6295 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6296 int iEnd; /* Address of the end of the query */ 6297 sqlite3 *db; /* The database connection */ 6298 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6299 u8 minMaxFlag; /* Flag for min/max queries */ 6300 6301 db = pParse->db; 6302 v = sqlite3GetVdbe(pParse); 6303 if( p==0 || db->mallocFailed || pParse->nErr ){ 6304 return 1; 6305 } 6306 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6307 #if SELECTTRACE_ENABLED 6308 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6309 if( sqlite3SelectTrace & 0x100 ){ 6310 sqlite3TreeViewSelect(0, p, 0); 6311 } 6312 #endif 6313 6314 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6315 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6316 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6317 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6318 if( IgnorableDistinct(pDest) ){ 6319 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6320 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6321 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6322 /* All of these destinations are also able to ignore the ORDER BY clause */ 6323 if( p->pOrderBy ){ 6324 #if SELECTTRACE_ENABLED 6325 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6326 if( sqlite3SelectTrace & 0x100 ){ 6327 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6328 } 6329 #endif 6330 sqlite3ParserAddCleanup(pParse, 6331 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6332 p->pOrderBy); 6333 testcase( pParse->earlyCleanup ); 6334 p->pOrderBy = 0; 6335 } 6336 p->selFlags &= ~SF_Distinct; 6337 p->selFlags |= SF_NoopOrderBy; 6338 } 6339 sqlite3SelectPrep(pParse, p, 0); 6340 if( pParse->nErr || db->mallocFailed ){ 6341 goto select_end; 6342 } 6343 assert( p->pEList!=0 ); 6344 #if SELECTTRACE_ENABLED 6345 if( sqlite3SelectTrace & 0x104 ){ 6346 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6347 sqlite3TreeViewSelect(0, p, 0); 6348 } 6349 #endif 6350 6351 /* If the SF_UFSrcCheck flag is set, then this function is being called 6352 ** as part of populating the temp table for an UPDATE...FROM statement. 6353 ** In this case, it is an error if the target object (pSrc->a[0]) name 6354 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6355 ** 6356 ** Postgres disallows this case too. The reason is that some other 6357 ** systems handle this case differently, and not all the same way, 6358 ** which is just confusing. To avoid this, we follow PG's lead and 6359 ** disallow it altogether. */ 6360 if( p->selFlags & SF_UFSrcCheck ){ 6361 SrcItem *p0 = &p->pSrc->a[0]; 6362 for(i=1; i<p->pSrc->nSrc; i++){ 6363 SrcItem *p1 = &p->pSrc->a[i]; 6364 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6365 sqlite3ErrorMsg(pParse, 6366 "target object/alias may not appear in FROM clause: %s", 6367 p0->zAlias ? p0->zAlias : p0->pTab->zName 6368 ); 6369 goto select_end; 6370 } 6371 } 6372 6373 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6374 ** and leaving this flag set can cause errors if a compound sub-query 6375 ** in p->pSrc is flattened into this query and this function called 6376 ** again as part of compound SELECT processing. */ 6377 p->selFlags &= ~SF_UFSrcCheck; 6378 } 6379 6380 if( pDest->eDest==SRT_Output ){ 6381 sqlite3GenerateColumnNames(pParse, p); 6382 } 6383 6384 #ifndef SQLITE_OMIT_WINDOWFUNC 6385 if( sqlite3WindowRewrite(pParse, p) ){ 6386 assert( db->mallocFailed || pParse->nErr>0 ); 6387 goto select_end; 6388 } 6389 #if SELECTTRACE_ENABLED 6390 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6391 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6392 sqlite3TreeViewSelect(0, p, 0); 6393 } 6394 #endif 6395 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6396 pTabList = p->pSrc; 6397 isAgg = (p->selFlags & SF_Aggregate)!=0; 6398 memset(&sSort, 0, sizeof(sSort)); 6399 sSort.pOrderBy = p->pOrderBy; 6400 6401 /* Try to do various optimizations (flattening subqueries, and strength 6402 ** reduction of join operators) in the FROM clause up into the main query 6403 */ 6404 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6405 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6406 SrcItem *pItem = &pTabList->a[i]; 6407 Select *pSub = pItem->pSelect; 6408 Table *pTab = pItem->pTab; 6409 6410 /* The expander should have already created transient Table objects 6411 ** even for FROM clause elements such as subqueries that do not correspond 6412 ** to a real table */ 6413 assert( pTab!=0 ); 6414 6415 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6416 ** of the LEFT JOIN used in the WHERE clause. 6417 */ 6418 if( (pItem->fg.jointype & JT_LEFT)!=0 6419 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6420 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6421 ){ 6422 SELECTTRACE(0x100,pParse,p, 6423 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6424 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6425 unsetJoinExpr(p->pWhere, pItem->iCursor); 6426 } 6427 6428 /* No futher action if this term of the FROM clause is no a subquery */ 6429 if( pSub==0 ) continue; 6430 6431 /* Catch mismatch in the declared columns of a view and the number of 6432 ** columns in the SELECT on the RHS */ 6433 if( pTab->nCol!=pSub->pEList->nExpr ){ 6434 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6435 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6436 goto select_end; 6437 } 6438 6439 /* Do not try to flatten an aggregate subquery. 6440 ** 6441 ** Flattening an aggregate subquery is only possible if the outer query 6442 ** is not a join. But if the outer query is not a join, then the subquery 6443 ** will be implemented as a co-routine and there is no advantage to 6444 ** flattening in that case. 6445 */ 6446 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6447 assert( pSub->pGroupBy==0 ); 6448 6449 /* If a FROM-clause subquery has an ORDER BY clause that is not 6450 ** really doing anything, then delete it now so that it does not 6451 ** interfere with query flattening. See the discussion at 6452 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6453 ** 6454 ** Beware of these cases where the ORDER BY clause may not be safely 6455 ** omitted: 6456 ** 6457 ** (1) There is also a LIMIT clause 6458 ** (2) The subquery was added to help with window-function 6459 ** processing 6460 ** (3) The subquery is in the FROM clause of an UPDATE 6461 ** (4) The outer query uses an aggregate function other than 6462 ** the built-in count(), min(), or max(). 6463 ** (5) The ORDER BY isn't going to accomplish anything because 6464 ** one of: 6465 ** (a) The outer query has a different ORDER BY clause 6466 ** (b) The subquery is part of a join 6467 ** See forum post 062d576715d277c8 6468 */ 6469 if( pSub->pOrderBy!=0 6470 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6471 && pSub->pLimit==0 /* Condition (1) */ 6472 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6473 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6474 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6475 ){ 6476 SELECTTRACE(0x100,pParse,p, 6477 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6478 sqlite3ExprListDelete(db, pSub->pOrderBy); 6479 pSub->pOrderBy = 0; 6480 } 6481 6482 /* If the outer query contains a "complex" result set (that is, 6483 ** if the result set of the outer query uses functions or subqueries) 6484 ** and if the subquery contains an ORDER BY clause and if 6485 ** it will be implemented as a co-routine, then do not flatten. This 6486 ** restriction allows SQL constructs like this: 6487 ** 6488 ** SELECT expensive_function(x) 6489 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6490 ** 6491 ** The expensive_function() is only computed on the 10 rows that 6492 ** are output, rather than every row of the table. 6493 ** 6494 ** The requirement that the outer query have a complex result set 6495 ** means that flattening does occur on simpler SQL constraints without 6496 ** the expensive_function() like: 6497 ** 6498 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6499 */ 6500 if( pSub->pOrderBy!=0 6501 && i==0 6502 && (p->selFlags & SF_ComplexResult)!=0 6503 && (pTabList->nSrc==1 6504 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6505 ){ 6506 continue; 6507 } 6508 6509 if( flattenSubquery(pParse, p, i, isAgg) ){ 6510 if( pParse->nErr ) goto select_end; 6511 /* This subquery can be absorbed into its parent. */ 6512 i = -1; 6513 } 6514 pTabList = p->pSrc; 6515 if( db->mallocFailed ) goto select_end; 6516 if( !IgnorableOrderby(pDest) ){ 6517 sSort.pOrderBy = p->pOrderBy; 6518 } 6519 } 6520 #endif 6521 6522 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6523 /* Handle compound SELECT statements using the separate multiSelect() 6524 ** procedure. 6525 */ 6526 if( p->pPrior ){ 6527 rc = multiSelect(pParse, p, pDest); 6528 #if SELECTTRACE_ENABLED 6529 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6530 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6531 sqlite3TreeViewSelect(0, p, 0); 6532 } 6533 #endif 6534 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6535 return rc; 6536 } 6537 #endif 6538 6539 /* Do the WHERE-clause constant propagation optimization if this is 6540 ** a join. No need to speed time on this operation for non-join queries 6541 ** as the equivalent optimization will be handled by query planner in 6542 ** sqlite3WhereBegin(). 6543 */ 6544 if( p->pWhere!=0 6545 && p->pWhere->op==TK_AND 6546 && OptimizationEnabled(db, SQLITE_PropagateConst) 6547 && propagateConstants(pParse, p) 6548 ){ 6549 #if SELECTTRACE_ENABLED 6550 if( sqlite3SelectTrace & 0x100 ){ 6551 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6552 sqlite3TreeViewSelect(0, p, 0); 6553 } 6554 #endif 6555 }else{ 6556 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6557 } 6558 6559 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6560 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6561 && countOfViewOptimization(pParse, p) 6562 ){ 6563 if( db->mallocFailed ) goto select_end; 6564 pEList = p->pEList; 6565 pTabList = p->pSrc; 6566 } 6567 #endif 6568 6569 /* For each term in the FROM clause, do two things: 6570 ** (1) Authorized unreferenced tables 6571 ** (2) Generate code for all sub-queries 6572 */ 6573 for(i=0; i<pTabList->nSrc; i++){ 6574 SrcItem *pItem = &pTabList->a[i]; 6575 SrcItem *pPrior; 6576 SelectDest dest; 6577 Select *pSub; 6578 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6579 const char *zSavedAuthContext; 6580 #endif 6581 6582 /* Issue SQLITE_READ authorizations with a fake column name for any 6583 ** tables that are referenced but from which no values are extracted. 6584 ** Examples of where these kinds of null SQLITE_READ authorizations 6585 ** would occur: 6586 ** 6587 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6588 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6589 ** 6590 ** The fake column name is an empty string. It is possible for a table to 6591 ** have a column named by the empty string, in which case there is no way to 6592 ** distinguish between an unreferenced table and an actual reference to the 6593 ** "" column. The original design was for the fake column name to be a NULL, 6594 ** which would be unambiguous. But legacy authorization callbacks might 6595 ** assume the column name is non-NULL and segfault. The use of an empty 6596 ** string for the fake column name seems safer. 6597 */ 6598 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6599 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6600 } 6601 6602 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6603 /* Generate code for all sub-queries in the FROM clause 6604 */ 6605 pSub = pItem->pSelect; 6606 if( pSub==0 ) continue; 6607 6608 /* The code for a subquery should only be generated once. */ 6609 assert( pItem->addrFillSub==0 ); 6610 6611 /* Increment Parse.nHeight by the height of the largest expression 6612 ** tree referred to by this, the parent select. The child select 6613 ** may contain expression trees of at most 6614 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6615 ** more conservative than necessary, but much easier than enforcing 6616 ** an exact limit. 6617 */ 6618 pParse->nHeight += sqlite3SelectExprHeight(p); 6619 6620 /* Make copies of constant WHERE-clause terms in the outer query down 6621 ** inside the subquery. This can help the subquery to run more efficiently. 6622 */ 6623 if( OptimizationEnabled(db, SQLITE_PushDown) 6624 && (pItem->fg.isCte==0 6625 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6626 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6627 (pItem->fg.jointype & JT_OUTER)!=0) 6628 ){ 6629 #if SELECTTRACE_ENABLED 6630 if( sqlite3SelectTrace & 0x100 ){ 6631 SELECTTRACE(0x100,pParse,p, 6632 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6633 sqlite3TreeViewSelect(0, p, 0); 6634 } 6635 #endif 6636 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6637 }else{ 6638 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6639 } 6640 6641 zSavedAuthContext = pParse->zAuthContext; 6642 pParse->zAuthContext = pItem->zName; 6643 6644 /* Generate code to implement the subquery 6645 ** 6646 ** The subquery is implemented as a co-routine if: 6647 ** (1) the subquery is guaranteed to be the outer loop (so that 6648 ** it does not need to be computed more than once), and 6649 ** (2) the subquery is not a CTE that should be materialized 6650 ** 6651 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6652 ** implementation? 6653 */ 6654 if( i==0 6655 && (pTabList->nSrc==1 6656 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6657 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6658 ){ 6659 /* Implement a co-routine that will return a single row of the result 6660 ** set on each invocation. 6661 */ 6662 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6663 6664 pItem->regReturn = ++pParse->nMem; 6665 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6666 VdbeComment((v, "%!S", pItem)); 6667 pItem->addrFillSub = addrTop; 6668 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6669 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6670 sqlite3Select(pParse, pSub, &dest); 6671 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6672 pItem->fg.viaCoroutine = 1; 6673 pItem->regResult = dest.iSdst; 6674 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6675 sqlite3VdbeJumpHere(v, addrTop-1); 6676 sqlite3ClearTempRegCache(pParse); 6677 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6678 /* This is a CTE for which materialization code has already been 6679 ** generated. Invoke the subroutine to compute the materialization, 6680 ** the make the pItem->iCursor be a copy of the ephemerial table that 6681 ** holds the result of the materialization. */ 6682 CteUse *pCteUse = pItem->u2.pCteUse; 6683 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6684 if( pItem->iCursor!=pCteUse->iCur ){ 6685 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6686 VdbeComment((v, "%!S", pItem)); 6687 } 6688 pSub->nSelectRow = pCteUse->nRowEst; 6689 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6690 /* This view has already been materialized by a prior entry in 6691 ** this same FROM clause. Reuse it. */ 6692 if( pPrior->addrFillSub ){ 6693 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6694 } 6695 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6696 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6697 }else{ 6698 /* Materialize the view. If the view is not correlated, generate a 6699 ** subroutine to do the materialization so that subsequent uses of 6700 ** the same view can reuse the materialization. */ 6701 int topAddr; 6702 int onceAddr = 0; 6703 int retAddr; 6704 6705 pItem->regReturn = ++pParse->nMem; 6706 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6707 pItem->addrFillSub = topAddr+1; 6708 if( pItem->fg.isCorrelated==0 ){ 6709 /* If the subquery is not correlated and if we are not inside of 6710 ** a trigger, then we only need to compute the value of the subquery 6711 ** once. */ 6712 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6713 VdbeComment((v, "materialize %!S", pItem)); 6714 }else{ 6715 VdbeNoopComment((v, "materialize %!S", pItem)); 6716 } 6717 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6718 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6719 sqlite3Select(pParse, pSub, &dest); 6720 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6721 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6722 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6723 VdbeComment((v, "end %!S", pItem)); 6724 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6725 sqlite3ClearTempRegCache(pParse); 6726 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6727 CteUse *pCteUse = pItem->u2.pCteUse; 6728 pCteUse->addrM9e = pItem->addrFillSub; 6729 pCteUse->regRtn = pItem->regReturn; 6730 pCteUse->iCur = pItem->iCursor; 6731 pCteUse->nRowEst = pSub->nSelectRow; 6732 } 6733 } 6734 if( db->mallocFailed ) goto select_end; 6735 pParse->nHeight -= sqlite3SelectExprHeight(p); 6736 pParse->zAuthContext = zSavedAuthContext; 6737 #endif 6738 } 6739 6740 /* Various elements of the SELECT copied into local variables for 6741 ** convenience */ 6742 pEList = p->pEList; 6743 pWhere = p->pWhere; 6744 pGroupBy = p->pGroupBy; 6745 pHaving = p->pHaving; 6746 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6747 6748 #if SELECTTRACE_ENABLED 6749 if( sqlite3SelectTrace & 0x400 ){ 6750 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6751 sqlite3TreeViewSelect(0, p, 0); 6752 } 6753 #endif 6754 6755 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6756 ** if the select-list is the same as the ORDER BY list, then this query 6757 ** can be rewritten as a GROUP BY. In other words, this: 6758 ** 6759 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6760 ** 6761 ** is transformed to: 6762 ** 6763 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6764 ** 6765 ** The second form is preferred as a single index (or temp-table) may be 6766 ** used for both the ORDER BY and DISTINCT processing. As originally 6767 ** written the query must use a temp-table for at least one of the ORDER 6768 ** BY and DISTINCT, and an index or separate temp-table for the other. 6769 */ 6770 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6771 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6772 #ifndef SQLITE_OMIT_WINDOWFUNC 6773 && p->pWin==0 6774 #endif 6775 ){ 6776 p->selFlags &= ~SF_Distinct; 6777 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6778 p->selFlags |= SF_Aggregate; 6779 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6780 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6781 ** original setting of the SF_Distinct flag, not the current setting */ 6782 assert( sDistinct.isTnct ); 6783 6784 #if SELECTTRACE_ENABLED 6785 if( sqlite3SelectTrace & 0x400 ){ 6786 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6787 sqlite3TreeViewSelect(0, p, 0); 6788 } 6789 #endif 6790 } 6791 6792 /* If there is an ORDER BY clause, then create an ephemeral index to 6793 ** do the sorting. But this sorting ephemeral index might end up 6794 ** being unused if the data can be extracted in pre-sorted order. 6795 ** If that is the case, then the OP_OpenEphemeral instruction will be 6796 ** changed to an OP_Noop once we figure out that the sorting index is 6797 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6798 ** that change. 6799 */ 6800 if( sSort.pOrderBy ){ 6801 KeyInfo *pKeyInfo; 6802 pKeyInfo = sqlite3KeyInfoFromExprList( 6803 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6804 sSort.iECursor = pParse->nTab++; 6805 sSort.addrSortIndex = 6806 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6807 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6808 (char*)pKeyInfo, P4_KEYINFO 6809 ); 6810 }else{ 6811 sSort.addrSortIndex = -1; 6812 } 6813 6814 /* If the output is destined for a temporary table, open that table. 6815 */ 6816 if( pDest->eDest==SRT_EphemTab ){ 6817 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6818 } 6819 6820 /* Set the limiter. 6821 */ 6822 iEnd = sqlite3VdbeMakeLabel(pParse); 6823 if( (p->selFlags & SF_FixedLimit)==0 ){ 6824 p->nSelectRow = 320; /* 4 billion rows */ 6825 } 6826 computeLimitRegisters(pParse, p, iEnd); 6827 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6828 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6829 sSort.sortFlags |= SORTFLAG_UseSorter; 6830 } 6831 6832 /* Open an ephemeral index to use for the distinct set. 6833 */ 6834 if( p->selFlags & SF_Distinct ){ 6835 sDistinct.tabTnct = pParse->nTab++; 6836 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6837 sDistinct.tabTnct, 0, 0, 6838 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6839 P4_KEYINFO); 6840 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6841 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6842 }else{ 6843 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6844 } 6845 6846 if( !isAgg && pGroupBy==0 ){ 6847 /* No aggregate functions and no GROUP BY clause */ 6848 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6849 | (p->selFlags & SF_FixedLimit); 6850 #ifndef SQLITE_OMIT_WINDOWFUNC 6851 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6852 if( pWin ){ 6853 sqlite3WindowCodeInit(pParse, p); 6854 } 6855 #endif 6856 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6857 6858 6859 /* Begin the database scan. */ 6860 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6861 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6862 p->pEList, wctrlFlags, p->nSelectRow); 6863 if( pWInfo==0 ) goto select_end; 6864 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6865 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6866 } 6867 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6868 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6869 } 6870 if( sSort.pOrderBy ){ 6871 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6872 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6873 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6874 sSort.pOrderBy = 0; 6875 } 6876 } 6877 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6878 6879 /* If sorting index that was created by a prior OP_OpenEphemeral 6880 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6881 ** into an OP_Noop. 6882 */ 6883 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6884 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6885 } 6886 6887 assert( p->pEList==pEList ); 6888 #ifndef SQLITE_OMIT_WINDOWFUNC 6889 if( pWin ){ 6890 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6891 int iCont = sqlite3VdbeMakeLabel(pParse); 6892 int iBreak = sqlite3VdbeMakeLabel(pParse); 6893 int regGosub = ++pParse->nMem; 6894 6895 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6896 6897 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6898 sqlite3VdbeResolveLabel(v, addrGosub); 6899 VdbeNoopComment((v, "inner-loop subroutine")); 6900 sSort.labelOBLopt = 0; 6901 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6902 sqlite3VdbeResolveLabel(v, iCont); 6903 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6904 VdbeComment((v, "end inner-loop subroutine")); 6905 sqlite3VdbeResolveLabel(v, iBreak); 6906 }else 6907 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6908 { 6909 /* Use the standard inner loop. */ 6910 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6911 sqlite3WhereContinueLabel(pWInfo), 6912 sqlite3WhereBreakLabel(pWInfo)); 6913 6914 /* End the database scan loop. 6915 */ 6916 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6917 sqlite3WhereEnd(pWInfo); 6918 } 6919 }else{ 6920 /* This case when there exist aggregate functions or a GROUP BY clause 6921 ** or both */ 6922 NameContext sNC; /* Name context for processing aggregate information */ 6923 int iAMem; /* First Mem address for storing current GROUP BY */ 6924 int iBMem; /* First Mem address for previous GROUP BY */ 6925 int iUseFlag; /* Mem address holding flag indicating that at least 6926 ** one row of the input to the aggregator has been 6927 ** processed */ 6928 int iAbortFlag; /* Mem address which causes query abort if positive */ 6929 int groupBySort; /* Rows come from source in GROUP BY order */ 6930 int addrEnd; /* End of processing for this SELECT */ 6931 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6932 int sortOut = 0; /* Output register from the sorter */ 6933 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6934 6935 /* Remove any and all aliases between the result set and the 6936 ** GROUP BY clause. 6937 */ 6938 if( pGroupBy ){ 6939 int k; /* Loop counter */ 6940 struct ExprList_item *pItem; /* For looping over expression in a list */ 6941 6942 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6943 pItem->u.x.iAlias = 0; 6944 } 6945 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6946 pItem->u.x.iAlias = 0; 6947 } 6948 assert( 66==sqlite3LogEst(100) ); 6949 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6950 6951 /* If there is both a GROUP BY and an ORDER BY clause and they are 6952 ** identical, then it may be possible to disable the ORDER BY clause 6953 ** on the grounds that the GROUP BY will cause elements to come out 6954 ** in the correct order. It also may not - the GROUP BY might use a 6955 ** database index that causes rows to be grouped together as required 6956 ** but not actually sorted. Either way, record the fact that the 6957 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6958 ** variable. */ 6959 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6960 int ii; 6961 /* The GROUP BY processing doesn't care whether rows are delivered in 6962 ** ASC or DESC order - only that each group is returned contiguously. 6963 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6964 ** ORDER BY to maximize the chances of rows being delivered in an 6965 ** order that makes the ORDER BY redundant. */ 6966 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6967 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6968 pGroupBy->a[ii].sortFlags = sortFlags; 6969 } 6970 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6971 orderByGrp = 1; 6972 } 6973 } 6974 }else{ 6975 assert( 0==sqlite3LogEst(1) ); 6976 p->nSelectRow = 0; 6977 } 6978 6979 /* Create a label to jump to when we want to abort the query */ 6980 addrEnd = sqlite3VdbeMakeLabel(pParse); 6981 6982 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6983 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6984 ** SELECT statement. 6985 */ 6986 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6987 if( pAggInfo ){ 6988 sqlite3ParserAddCleanup(pParse, 6989 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6990 testcase( pParse->earlyCleanup ); 6991 } 6992 if( db->mallocFailed ){ 6993 goto select_end; 6994 } 6995 pAggInfo->selId = p->selId; 6996 memset(&sNC, 0, sizeof(sNC)); 6997 sNC.pParse = pParse; 6998 sNC.pSrcList = pTabList; 6999 sNC.uNC.pAggInfo = pAggInfo; 7000 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7001 pAggInfo->mnReg = pParse->nMem+1; 7002 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7003 pAggInfo->pGroupBy = pGroupBy; 7004 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7005 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7006 if( pHaving ){ 7007 if( pGroupBy ){ 7008 assert( pWhere==p->pWhere ); 7009 assert( pHaving==p->pHaving ); 7010 assert( pGroupBy==p->pGroupBy ); 7011 havingToWhere(pParse, p); 7012 pWhere = p->pWhere; 7013 } 7014 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7015 } 7016 pAggInfo->nAccumulator = pAggInfo->nColumn; 7017 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7018 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7019 }else{ 7020 minMaxFlag = WHERE_ORDERBY_NORMAL; 7021 } 7022 for(i=0; i<pAggInfo->nFunc; i++){ 7023 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7024 assert( ExprUseXList(pExpr) ); 7025 sNC.ncFlags |= NC_InAggFunc; 7026 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7027 #ifndef SQLITE_OMIT_WINDOWFUNC 7028 assert( !IsWindowFunc(pExpr) ); 7029 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7030 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7031 } 7032 #endif 7033 sNC.ncFlags &= ~NC_InAggFunc; 7034 } 7035 pAggInfo->mxReg = pParse->nMem; 7036 if( db->mallocFailed ) goto select_end; 7037 #if SELECTTRACE_ENABLED 7038 if( sqlite3SelectTrace & 0x400 ){ 7039 int ii; 7040 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7041 sqlite3TreeViewSelect(0, p, 0); 7042 if( minMaxFlag ){ 7043 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7044 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7045 } 7046 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7047 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7048 ii, pAggInfo->aCol[ii].iMem); 7049 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7050 } 7051 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7052 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7053 ii, pAggInfo->aFunc[ii].iMem); 7054 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7055 } 7056 } 7057 #endif 7058 7059 7060 /* Processing for aggregates with GROUP BY is very different and 7061 ** much more complex than aggregates without a GROUP BY. 7062 */ 7063 if( pGroupBy ){ 7064 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7065 int addr1; /* A-vs-B comparision jump */ 7066 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7067 int regOutputRow; /* Return address register for output subroutine */ 7068 int addrSetAbort; /* Set the abort flag and return */ 7069 int addrTopOfLoop; /* Top of the input loop */ 7070 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7071 int addrReset; /* Subroutine for resetting the accumulator */ 7072 int regReset; /* Return address register for reset subroutine */ 7073 ExprList *pDistinct = 0; 7074 u16 distFlag = 0; 7075 int eDist = WHERE_DISTINCT_NOOP; 7076 7077 if( pAggInfo->nFunc==1 7078 && pAggInfo->aFunc[0].iDistinct>=0 7079 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7080 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7081 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7082 ){ 7083 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7084 pExpr = sqlite3ExprDup(db, pExpr, 0); 7085 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7086 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7087 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7088 } 7089 7090 /* If there is a GROUP BY clause we might need a sorting index to 7091 ** implement it. Allocate that sorting index now. If it turns out 7092 ** that we do not need it after all, the OP_SorterOpen instruction 7093 ** will be converted into a Noop. 7094 */ 7095 pAggInfo->sortingIdx = pParse->nTab++; 7096 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7097 0, pAggInfo->nColumn); 7098 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7099 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7100 0, (char*)pKeyInfo, P4_KEYINFO); 7101 7102 /* Initialize memory locations used by GROUP BY aggregate processing 7103 */ 7104 iUseFlag = ++pParse->nMem; 7105 iAbortFlag = ++pParse->nMem; 7106 regOutputRow = ++pParse->nMem; 7107 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7108 regReset = ++pParse->nMem; 7109 addrReset = sqlite3VdbeMakeLabel(pParse); 7110 iAMem = pParse->nMem + 1; 7111 pParse->nMem += pGroupBy->nExpr; 7112 iBMem = pParse->nMem + 1; 7113 pParse->nMem += pGroupBy->nExpr; 7114 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7115 VdbeComment((v, "clear abort flag")); 7116 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7117 7118 /* Begin a loop that will extract all source rows in GROUP BY order. 7119 ** This might involve two separate loops with an OP_Sort in between, or 7120 ** it might be a single loop that uses an index to extract information 7121 ** in the right order to begin with. 7122 */ 7123 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7124 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7125 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7126 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7127 ); 7128 if( pWInfo==0 ){ 7129 sqlite3ExprListDelete(db, pDistinct); 7130 goto select_end; 7131 } 7132 eDist = sqlite3WhereIsDistinct(pWInfo); 7133 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7134 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7135 /* The optimizer is able to deliver rows in group by order so 7136 ** we do not have to sort. The OP_OpenEphemeral table will be 7137 ** cancelled later because we still need to use the pKeyInfo 7138 */ 7139 groupBySort = 0; 7140 }else{ 7141 /* Rows are coming out in undetermined order. We have to push 7142 ** each row into a sorting index, terminate the first loop, 7143 ** then loop over the sorting index in order to get the output 7144 ** in sorted order 7145 */ 7146 int regBase; 7147 int regRecord; 7148 int nCol; 7149 int nGroupBy; 7150 7151 explainTempTable(pParse, 7152 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7153 "DISTINCT" : "GROUP BY"); 7154 7155 groupBySort = 1; 7156 nGroupBy = pGroupBy->nExpr; 7157 nCol = nGroupBy; 7158 j = nGroupBy; 7159 for(i=0; i<pAggInfo->nColumn; i++){ 7160 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7161 nCol++; 7162 j++; 7163 } 7164 } 7165 regBase = sqlite3GetTempRange(pParse, nCol); 7166 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7167 j = nGroupBy; 7168 for(i=0; i<pAggInfo->nColumn; i++){ 7169 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7170 if( pCol->iSorterColumn>=j ){ 7171 int r1 = j + regBase; 7172 sqlite3ExprCodeGetColumnOfTable(v, 7173 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7174 j++; 7175 } 7176 } 7177 regRecord = sqlite3GetTempReg(pParse); 7178 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7179 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7180 sqlite3ReleaseTempReg(pParse, regRecord); 7181 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7182 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7183 sqlite3WhereEnd(pWInfo); 7184 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7185 sortOut = sqlite3GetTempReg(pParse); 7186 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7187 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7188 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7189 pAggInfo->useSortingIdx = 1; 7190 } 7191 7192 /* If the index or temporary table used by the GROUP BY sort 7193 ** will naturally deliver rows in the order required by the ORDER BY 7194 ** clause, cancel the ephemeral table open coded earlier. 7195 ** 7196 ** This is an optimization - the correct answer should result regardless. 7197 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7198 ** disable this optimization for testing purposes. */ 7199 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7200 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7201 ){ 7202 sSort.pOrderBy = 0; 7203 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7204 } 7205 7206 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7207 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7208 ** Then compare the current GROUP BY terms against the GROUP BY terms 7209 ** from the previous row currently stored in a0, a1, a2... 7210 */ 7211 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7212 if( groupBySort ){ 7213 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7214 sortOut, sortPTab); 7215 } 7216 for(j=0; j<pGroupBy->nExpr; j++){ 7217 if( groupBySort ){ 7218 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7219 }else{ 7220 pAggInfo->directMode = 1; 7221 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7222 } 7223 } 7224 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7225 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7226 addr1 = sqlite3VdbeCurrentAddr(v); 7227 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7228 7229 /* Generate code that runs whenever the GROUP BY changes. 7230 ** Changes in the GROUP BY are detected by the previous code 7231 ** block. If there were no changes, this block is skipped. 7232 ** 7233 ** This code copies current group by terms in b0,b1,b2,... 7234 ** over to a0,a1,a2. It then calls the output subroutine 7235 ** and resets the aggregate accumulator registers in preparation 7236 ** for the next GROUP BY batch. 7237 */ 7238 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7239 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7240 VdbeComment((v, "output one row")); 7241 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7242 VdbeComment((v, "check abort flag")); 7243 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7244 VdbeComment((v, "reset accumulator")); 7245 7246 /* Update the aggregate accumulators based on the content of 7247 ** the current row 7248 */ 7249 sqlite3VdbeJumpHere(v, addr1); 7250 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7251 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7252 VdbeComment((v, "indicate data in accumulator")); 7253 7254 /* End of the loop 7255 */ 7256 if( groupBySort ){ 7257 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7258 VdbeCoverage(v); 7259 }else{ 7260 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7261 sqlite3WhereEnd(pWInfo); 7262 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7263 } 7264 sqlite3ExprListDelete(db, pDistinct); 7265 7266 /* Output the final row of result 7267 */ 7268 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7269 VdbeComment((v, "output final row")); 7270 7271 /* Jump over the subroutines 7272 */ 7273 sqlite3VdbeGoto(v, addrEnd); 7274 7275 /* Generate a subroutine that outputs a single row of the result 7276 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7277 ** is less than or equal to zero, the subroutine is a no-op. If 7278 ** the processing calls for the query to abort, this subroutine 7279 ** increments the iAbortFlag memory location before returning in 7280 ** order to signal the caller to abort. 7281 */ 7282 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7283 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7284 VdbeComment((v, "set abort flag")); 7285 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7286 sqlite3VdbeResolveLabel(v, addrOutputRow); 7287 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7288 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7289 VdbeCoverage(v); 7290 VdbeComment((v, "Groupby result generator entry point")); 7291 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7292 finalizeAggFunctions(pParse, pAggInfo); 7293 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7294 selectInnerLoop(pParse, p, -1, &sSort, 7295 &sDistinct, pDest, 7296 addrOutputRow+1, addrSetAbort); 7297 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7298 VdbeComment((v, "end groupby result generator")); 7299 7300 /* Generate a subroutine that will reset the group-by accumulator 7301 */ 7302 sqlite3VdbeResolveLabel(v, addrReset); 7303 resetAccumulator(pParse, pAggInfo); 7304 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7305 VdbeComment((v, "indicate accumulator empty")); 7306 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7307 7308 if( eDist!=WHERE_DISTINCT_NOOP ){ 7309 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7310 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7311 } 7312 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7313 else { 7314 Table *pTab; 7315 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7316 /* If isSimpleCount() returns a pointer to a Table structure, then 7317 ** the SQL statement is of the form: 7318 ** 7319 ** SELECT count(*) FROM <tbl> 7320 ** 7321 ** where the Table structure returned represents table <tbl>. 7322 ** 7323 ** This statement is so common that it is optimized specially. The 7324 ** OP_Count instruction is executed either on the intkey table that 7325 ** contains the data for table <tbl> or on one of its indexes. It 7326 ** is better to execute the op on an index, as indexes are almost 7327 ** always spread across less pages than their corresponding tables. 7328 */ 7329 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7330 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7331 Index *pIdx; /* Iterator variable */ 7332 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7333 Index *pBest = 0; /* Best index found so far */ 7334 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7335 7336 sqlite3CodeVerifySchema(pParse, iDb); 7337 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7338 7339 /* Search for the index that has the lowest scan cost. 7340 ** 7341 ** (2011-04-15) Do not do a full scan of an unordered index. 7342 ** 7343 ** (2013-10-03) Do not count the entries in a partial index. 7344 ** 7345 ** In practice the KeyInfo structure will not be used. It is only 7346 ** passed to keep OP_OpenRead happy. 7347 */ 7348 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7349 if( !p->pSrc->a[0].fg.notIndexed ){ 7350 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7351 if( pIdx->bUnordered==0 7352 && pIdx->szIdxRow<pTab->szTabRow 7353 && pIdx->pPartIdxWhere==0 7354 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7355 ){ 7356 pBest = pIdx; 7357 } 7358 } 7359 } 7360 if( pBest ){ 7361 iRoot = pBest->tnum; 7362 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7363 } 7364 7365 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7366 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7367 if( pKeyInfo ){ 7368 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7369 } 7370 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7371 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7372 explainSimpleCount(pParse, pTab, pBest); 7373 }else{ 7374 int regAcc = 0; /* "populate accumulators" flag */ 7375 ExprList *pDistinct = 0; 7376 u16 distFlag = 0; 7377 int eDist; 7378 7379 /* If there are accumulator registers but no min() or max() functions 7380 ** without FILTER clauses, allocate register regAcc. Register regAcc 7381 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7382 ** The code generated by updateAccumulator() uses this to ensure 7383 ** that the accumulator registers are (a) updated only once if 7384 ** there are no min() or max functions or (b) always updated for the 7385 ** first row visited by the aggregate, so that they are updated at 7386 ** least once even if the FILTER clause means the min() or max() 7387 ** function visits zero rows. */ 7388 if( pAggInfo->nAccumulator ){ 7389 for(i=0; i<pAggInfo->nFunc; i++){ 7390 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7391 continue; 7392 } 7393 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7394 break; 7395 } 7396 } 7397 if( i==pAggInfo->nFunc ){ 7398 regAcc = ++pParse->nMem; 7399 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7400 } 7401 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7402 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7403 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7404 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7405 } 7406 7407 /* This case runs if the aggregate has no GROUP BY clause. The 7408 ** processing is much simpler since there is only a single row 7409 ** of output. 7410 */ 7411 assert( p->pGroupBy==0 ); 7412 resetAccumulator(pParse, pAggInfo); 7413 7414 /* If this query is a candidate for the min/max optimization, then 7415 ** minMaxFlag will have been previously set to either 7416 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7417 ** be an appropriate ORDER BY expression for the optimization. 7418 */ 7419 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7420 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7421 7422 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7423 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7424 pDistinct, minMaxFlag|distFlag, 0); 7425 if( pWInfo==0 ){ 7426 goto select_end; 7427 } 7428 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7429 eDist = sqlite3WhereIsDistinct(pWInfo); 7430 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7431 if( eDist!=WHERE_DISTINCT_NOOP ){ 7432 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7433 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7434 } 7435 7436 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7437 if( minMaxFlag ){ 7438 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7439 } 7440 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7441 sqlite3WhereEnd(pWInfo); 7442 finalizeAggFunctions(pParse, pAggInfo); 7443 } 7444 7445 sSort.pOrderBy = 0; 7446 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7447 selectInnerLoop(pParse, p, -1, 0, 0, 7448 pDest, addrEnd, addrEnd); 7449 } 7450 sqlite3VdbeResolveLabel(v, addrEnd); 7451 7452 } /* endif aggregate query */ 7453 7454 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7455 explainTempTable(pParse, "DISTINCT"); 7456 } 7457 7458 /* If there is an ORDER BY clause, then we need to sort the results 7459 ** and send them to the callback one by one. 7460 */ 7461 if( sSort.pOrderBy ){ 7462 explainTempTable(pParse, 7463 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7464 assert( p->pEList==pEList ); 7465 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7466 } 7467 7468 /* Jump here to skip this query 7469 */ 7470 sqlite3VdbeResolveLabel(v, iEnd); 7471 7472 /* The SELECT has been coded. If there is an error in the Parse structure, 7473 ** set the return code to 1. Otherwise 0. */ 7474 rc = (pParse->nErr>0); 7475 7476 /* Control jumps to here if an error is encountered above, or upon 7477 ** successful coding of the SELECT. 7478 */ 7479 select_end: 7480 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7481 pParse->nErr += db->mallocFailed; 7482 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7483 #ifdef SQLITE_DEBUG 7484 if( pAggInfo && !db->mallocFailed ){ 7485 for(i=0; i<pAggInfo->nColumn; i++){ 7486 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7487 assert( pExpr!=0 ); 7488 assert( pExpr->pAggInfo==pAggInfo ); 7489 assert( pExpr->iAgg==i ); 7490 } 7491 for(i=0; i<pAggInfo->nFunc; i++){ 7492 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7493 assert( pExpr!=0 ); 7494 assert( pExpr->pAggInfo==pAggInfo ); 7495 assert( pExpr->iAgg==i ); 7496 } 7497 } 7498 #endif 7499 7500 #if SELECTTRACE_ENABLED 7501 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7502 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7503 sqlite3TreeViewSelect(0, p, 0); 7504 } 7505 #endif 7506 ExplainQueryPlanPop(pParse); 7507 return rc; 7508 } 7509