1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 if( pEq && isOuterJoin ){ 351 ExprSetProperty(pEq, EP_FromJoin); 352 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 353 ExprSetVVAProperty(pEq, EP_NoReduce); 354 pEq->iRightJoinTable = pE2->iTable; 355 } 356 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 357 } 358 359 /* 360 ** Set the EP_FromJoin property on all terms of the given expression. 361 ** And set the Expr.iRightJoinTable to iTable for every term in the 362 ** expression. 363 ** 364 ** The EP_FromJoin property is used on terms of an expression to tell 365 ** the LEFT OUTER JOIN processing logic that this term is part of the 366 ** join restriction specified in the ON or USING clause and not a part 367 ** of the more general WHERE clause. These terms are moved over to the 368 ** WHERE clause during join processing but we need to remember that they 369 ** originated in the ON or USING clause. 370 ** 371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 372 ** expression depends on table iRightJoinTable even if that table is not 373 ** explicitly mentioned in the expression. That information is needed 374 ** for cases like this: 375 ** 376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 377 ** 378 ** The where clause needs to defer the handling of the t1.x=5 379 ** term until after the t2 loop of the join. In that way, a 380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 381 ** defer the handling of t1.x=5, it will be processed immediately 382 ** after the t1 loop and rows with t1.x!=5 will never appear in 383 ** the output, which is incorrect. 384 */ 385 void sqlite3SetJoinExpr(Expr *p, int iTable){ 386 while( p ){ 387 ExprSetProperty(p, EP_FromJoin); 388 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 389 ExprSetVVAProperty(p, EP_NoReduce); 390 p->iRightJoinTable = iTable; 391 if( p->op==TK_FUNCTION && p->x.pList ){ 392 int i; 393 for(i=0; i<p->x.pList->nExpr; i++){ 394 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 395 } 396 } 397 sqlite3SetJoinExpr(p->pLeft, iTable); 398 p = p->pRight; 399 } 400 } 401 402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 404 ** an ordinary term that omits the EP_FromJoin mark. 405 ** 406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 407 */ 408 static void unsetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 if( ExprHasProperty(p, EP_FromJoin) 411 && (iTable<0 || p->iRightJoinTable==iTable) ){ 412 ExprClearProperty(p, EP_FromJoin); 413 } 414 if( p->op==TK_COLUMN && p->iTable==iTable ){ 415 ExprClearProperty(p, EP_CanBeNull); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 SrcItem *pLeft; /* Left table being joined */ 446 SrcItem *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 473 zName = pRightTab->aCol[j].zCnName; 474 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 476 isOuter, &p->pWhere); 477 } 478 } 479 } 480 481 /* Disallow both ON and USING clauses in the same join 482 */ 483 if( pRight->pOn && pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 485 "clauses in the same join"); 486 return 1; 487 } 488 489 /* Add the ON clause to the end of the WHERE clause, connected by 490 ** an AND operator. 491 */ 492 if( pRight->pOn ){ 493 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 494 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 495 pRight->pOn = 0; 496 } 497 498 /* Create extra terms on the WHERE clause for each column named 499 ** in the USING clause. Example: If the two tables to be joined are 500 ** A and B and the USING clause names X, Y, and Z, then add this 501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 502 ** Report an error if any column mentioned in the USING clause is 503 ** not contained in both tables to be joined. 504 */ 505 if( pRight->pUsing ){ 506 IdList *pList = pRight->pUsing; 507 for(j=0; j<pList->nId; j++){ 508 char *zName; /* Name of the term in the USING clause */ 509 int iLeft; /* Table on the left with matching column name */ 510 int iLeftCol; /* Column number of matching column on the left */ 511 int iRightCol; /* Column number of matching column on the right */ 512 513 zName = pList->a[j].zName; 514 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 515 if( iRightCol<0 516 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 517 ){ 518 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 519 "not present in both tables", zName); 520 return 1; 521 } 522 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 523 isOuter, &p->pWhere); 524 } 525 } 526 } 527 return 0; 528 } 529 530 /* 531 ** An instance of this object holds information (beyond pParse and pSelect) 532 ** needed to load the next result row that is to be added to the sorter. 533 */ 534 typedef struct RowLoadInfo RowLoadInfo; 535 struct RowLoadInfo { 536 int regResult; /* Store results in array of registers here */ 537 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 539 ExprList *pExtra; /* Extra columns needed by sorter refs */ 540 int regExtraResult; /* Where to load the extra columns */ 541 #endif 542 }; 543 544 /* 545 ** This routine does the work of loading query data into an array of 546 ** registers so that it can be added to the sorter. 547 */ 548 static void innerLoopLoadRow( 549 Parse *pParse, /* Statement under construction */ 550 Select *pSelect, /* The query being coded */ 551 RowLoadInfo *pInfo /* Info needed to complete the row load */ 552 ){ 553 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 554 0, pInfo->ecelFlags); 555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 556 if( pInfo->pExtra ){ 557 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 558 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 559 } 560 #endif 561 } 562 563 /* 564 ** Code the OP_MakeRecord instruction that generates the entry to be 565 ** added into the sorter. 566 ** 567 ** Return the register in which the result is stored. 568 */ 569 static int makeSorterRecord( 570 Parse *pParse, 571 SortCtx *pSort, 572 Select *pSelect, 573 int regBase, 574 int nBase 575 ){ 576 int nOBSat = pSort->nOBSat; 577 Vdbe *v = pParse->pVdbe; 578 int regOut = ++pParse->nMem; 579 if( pSort->pDeferredRowLoad ){ 580 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 581 } 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 583 return regOut; 584 } 585 586 /* 587 ** Generate code that will push the record in registers regData 588 ** through regData+nData-1 onto the sorter. 589 */ 590 static void pushOntoSorter( 591 Parse *pParse, /* Parser context */ 592 SortCtx *pSort, /* Information about the ORDER BY clause */ 593 Select *pSelect, /* The whole SELECT statement */ 594 int regData, /* First register holding data to be sorted */ 595 int regOrigData, /* First register holding data before packing */ 596 int nData, /* Number of elements in the regData data array */ 597 int nPrefixReg /* No. of reg prior to regData available for use */ 598 ){ 599 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 600 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 601 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 602 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 603 int regBase; /* Regs for sorter record */ 604 int regRecord = 0; /* Assembled sorter record */ 605 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 606 int op; /* Opcode to add sorter record to sorter */ 607 int iLimit; /* LIMIT counter */ 608 int iSkip = 0; /* End of the sorter insert loop */ 609 610 assert( bSeq==0 || bSeq==1 ); 611 612 /* Three cases: 613 ** (1) The data to be sorted has already been packed into a Record 614 ** by a prior OP_MakeRecord. In this case nData==1 and regData 615 ** will be completely unrelated to regOrigData. 616 ** (2) All output columns are included in the sort record. In that 617 ** case regData==regOrigData. 618 ** (3) Some output columns are omitted from the sort record due to 619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 620 ** SQLITE_ECEL_OMITREF optimization, or due to the 621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 622 ** regOrigData is 0 to prevent this routine from trying to copy 623 ** values that might not yet exist. 624 */ 625 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 626 627 if( nPrefixReg ){ 628 assert( nPrefixReg==nExpr+bSeq ); 629 regBase = regData - nPrefixReg; 630 }else{ 631 regBase = pParse->nMem + 1; 632 pParse->nMem += nBase; 633 } 634 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 635 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 636 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 637 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 638 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 639 if( bSeq ){ 640 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 641 } 642 if( nPrefixReg==0 && nData>0 ){ 643 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 644 } 645 if( nOBSat>0 ){ 646 int regPrevKey; /* The first nOBSat columns of the previous row */ 647 int addrFirst; /* Address of the OP_IfNot opcode */ 648 int addrJmp; /* Address of the OP_Jump opcode */ 649 VdbeOp *pOp; /* Opcode that opens the sorter */ 650 int nKey; /* Number of sorting key columns, including OP_Sequence */ 651 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 652 653 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 654 regPrevKey = pParse->nMem+1; 655 pParse->nMem += pSort->nOBSat; 656 nKey = nExpr - pSort->nOBSat + bSeq; 657 if( bSeq ){ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 659 }else{ 660 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 661 } 662 VdbeCoverage(v); 663 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 664 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 665 if( pParse->db->mallocFailed ) return; 666 pOp->p2 = nKey + nData; 667 pKI = pOp->p4.pKeyInfo; 668 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 669 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 670 testcase( pKI->nAllField > pKI->nKeyField+2 ); 671 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 672 pKI->nAllField-pKI->nKeyField-1); 673 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 674 addrJmp = sqlite3VdbeCurrentAddr(v); 675 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 676 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 677 pSort->regReturn = ++pParse->nMem; 678 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 679 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 680 if( iLimit ){ 681 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 682 VdbeCoverage(v); 683 } 684 sqlite3VdbeJumpHere(v, addrFirst); 685 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 686 sqlite3VdbeJumpHere(v, addrJmp); 687 } 688 if( iLimit ){ 689 /* At this point the values for the new sorter entry are stored 690 ** in an array of registers. They need to be composed into a record 691 ** and inserted into the sorter if either (a) there are currently 692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 693 ** the largest record currently in the sorter. If (b) is true and there 694 ** are already LIMIT+OFFSET items in the sorter, delete the largest 695 ** entry before inserting the new one. This way there are never more 696 ** than LIMIT+OFFSET items in the sorter. 697 ** 698 ** If the new record does not need to be inserted into the sorter, 699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 700 ** value is not zero, then it is a label of where to jump. Otherwise, 701 ** just bypass the row insert logic. See the header comment on the 702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 703 */ 704 int iCsr = pSort->iECursor; 705 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 706 VdbeCoverage(v); 707 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 708 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 709 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 710 VdbeCoverage(v); 711 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 712 } 713 if( regRecord==0 ){ 714 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 715 } 716 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 717 op = OP_SorterInsert; 718 }else{ 719 op = OP_IdxInsert; 720 } 721 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 722 regBase+nOBSat, nBase-nOBSat); 723 if( iSkip ){ 724 sqlite3VdbeChangeP2(v, iSkip, 725 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 726 } 727 } 728 729 /* 730 ** Add code to implement the OFFSET 731 */ 732 static void codeOffset( 733 Vdbe *v, /* Generate code into this VM */ 734 int iOffset, /* Register holding the offset counter */ 735 int iContinue /* Jump here to skip the current record */ 736 ){ 737 if( iOffset>0 ){ 738 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 739 VdbeComment((v, "OFFSET")); 740 } 741 } 742 743 /* 744 ** Add code that will check to make sure the array of registers starting at 745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 747 ** are available. Which is used depends on the value of parameter eTnctType, 748 ** as follows: 749 ** 750 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 751 ** Build an ephemeral table that contains all entries seen before and 752 ** skip entries which have been seen before. 753 ** 754 ** Parameter iTab is the cursor number of an ephemeral table that must 755 ** be opened before the VM code generated by this routine is executed. 756 ** The ephemeral cursor table is queried for a record identical to the 757 ** record formed by the current array of registers. If one is found, 758 ** jump to VM address addrRepeat. Otherwise, insert a new record into 759 ** the ephemeral cursor and proceed. 760 ** 761 ** The returned value in this case is a copy of parameter iTab. 762 ** 763 ** WHERE_DISTINCT_ORDERED: 764 ** In this case rows are being delivered sorted order. The ephermal 765 ** table is not required. Instead, the current set of values 766 ** is compared against previous row. If they match, the new row 767 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 768 ** the VM program proceeds with processing the new row. 769 ** 770 ** The returned value in this case is the register number of the first 771 ** in an array of registers used to store the previous result row so that 772 ** it can be compared to the next. The caller must ensure that this 773 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 774 ** will take care of this initialization.) 775 ** 776 ** WHERE_DISTINCT_UNIQUE: 777 ** In this case it has already been determined that the rows are distinct. 778 ** No special action is required. The return value is zero. 779 ** 780 ** Parameter pEList is the list of expressions used to generated the 781 ** contents of each row. It is used by this routine to determine (a) 782 ** how many elements there are in the array of registers and (b) the 783 ** collation sequences that should be used for the comparisons if 784 ** eTnctType is WHERE_DISTINCT_ORDERED. 785 */ 786 static int codeDistinct( 787 Parse *pParse, /* Parsing and code generating context */ 788 int eTnctType, /* WHERE_DISTINCT_* value */ 789 int iTab, /* A sorting index used to test for distinctness */ 790 int addrRepeat, /* Jump to here if not distinct */ 791 ExprList *pEList, /* Expression for each element */ 792 int regElem /* First element */ 793 ){ 794 int iRet = 0; 795 int nResultCol = pEList->nExpr; 796 Vdbe *v = pParse->pVdbe; 797 798 switch( eTnctType ){ 799 case WHERE_DISTINCT_ORDERED: { 800 int i; 801 int iJump; /* Jump destination */ 802 int regPrev; /* Previous row content */ 803 804 /* Allocate space for the previous row */ 805 iRet = regPrev = pParse->nMem+1; 806 pParse->nMem += nResultCol; 807 808 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 809 for(i=0; i<nResultCol; i++){ 810 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 811 if( i<nResultCol-1 ){ 812 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 813 VdbeCoverage(v); 814 }else{ 815 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 816 VdbeCoverage(v); 817 } 818 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 819 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 820 } 821 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 822 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 823 break; 824 } 825 826 case WHERE_DISTINCT_UNIQUE: { 827 /* nothing to do */ 828 break; 829 } 830 831 default: { 832 int r1 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 834 VdbeCoverage(v); 835 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 837 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 838 sqlite3ReleaseTempReg(pParse, r1); 839 iRet = iTab; 840 break; 841 } 842 } 843 844 return iRet; 845 } 846 847 /* 848 ** This routine runs after codeDistinct(). It makes necessary 849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 850 ** routine made use of. This processing must be done separately since 851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 852 ** laid down. 853 ** 854 ** WHERE_DISTINCT_NOOP: 855 ** WHERE_DISTINCT_UNORDERED: 856 ** 857 ** No adjustments necessary. This function is a no-op. 858 ** 859 ** WHERE_DISTINCT_UNIQUE: 860 ** 861 ** The ephemeral table is not needed. So change the 862 ** OP_OpenEphemeral opcode into an OP_Noop. 863 ** 864 ** WHERE_DISTINCT_ORDERED: 865 ** 866 ** The ephemeral table is not needed. But we do need register 867 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 868 ** into an OP_Null on the iVal register. 869 */ 870 static void fixDistinctOpenEph( 871 Parse *pParse, /* Parsing and code generating context */ 872 int eTnctType, /* WHERE_DISTINCT_* value */ 873 int iVal, /* Value returned by codeDistinct() */ 874 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 875 ){ 876 if( pParse->nErr==0 877 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 878 ){ 879 Vdbe *v = pParse->pVdbe; 880 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 881 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 882 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 883 } 884 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 885 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 886 ** bit on the first register of the previous value. This will cause the 887 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 888 ** the loop even if the first row is all NULLs. */ 889 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 890 pOp->opcode = OP_Null; 891 pOp->p1 = 1; 892 pOp->p2 = iVal; 893 } 894 } 895 } 896 897 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 898 /* 899 ** This function is called as part of inner-loop generation for a SELECT 900 ** statement with an ORDER BY that is not optimized by an index. It 901 ** determines the expressions, if any, that the sorter-reference 902 ** optimization should be used for. The sorter-reference optimization 903 ** is used for SELECT queries like: 904 ** 905 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 906 ** 907 ** If the optimization is used for expression "bigblob", then instead of 908 ** storing values read from that column in the sorter records, the PK of 909 ** the row from table t1 is stored instead. Then, as records are extracted from 910 ** the sorter to return to the user, the required value of bigblob is 911 ** retrieved directly from table t1. If the values are very large, this 912 ** can be more efficient than storing them directly in the sorter records. 913 ** 914 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 915 ** for which the sorter-reference optimization should be enabled. 916 ** Additionally, the pSort->aDefer[] array is populated with entries 917 ** for all cursors required to evaluate all selected expressions. Finally. 918 ** output variable (*ppExtra) is set to an expression list containing 919 ** expressions for all extra PK values that should be stored in the 920 ** sorter records. 921 */ 922 static void selectExprDefer( 923 Parse *pParse, /* Leave any error here */ 924 SortCtx *pSort, /* Sorter context */ 925 ExprList *pEList, /* Expressions destined for sorter */ 926 ExprList **ppExtra /* Expressions to append to sorter record */ 927 ){ 928 int i; 929 int nDefer = 0; 930 ExprList *pExtra = 0; 931 for(i=0; i<pEList->nExpr; i++){ 932 struct ExprList_item *pItem = &pEList->a[i]; 933 if( pItem->u.x.iOrderByCol==0 ){ 934 Expr *pExpr = pItem->pExpr; 935 Table *pTab = pExpr->y.pTab; 936 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 937 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 938 ){ 939 int j; 940 for(j=0; j<nDefer; j++){ 941 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 942 } 943 if( j==nDefer ){ 944 if( nDefer==ArraySize(pSort->aDefer) ){ 945 continue; 946 }else{ 947 int nKey = 1; 948 int k; 949 Index *pPk = 0; 950 if( !HasRowid(pTab) ){ 951 pPk = sqlite3PrimaryKeyIndex(pTab); 952 nKey = pPk->nKeyCol; 953 } 954 for(k=0; k<nKey; k++){ 955 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 956 if( pNew ){ 957 pNew->iTable = pExpr->iTable; 958 pNew->y.pTab = pExpr->y.pTab; 959 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 960 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 961 } 962 } 963 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 964 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 965 pSort->aDefer[nDefer].nKey = nKey; 966 nDefer++; 967 } 968 } 969 pItem->bSorterRef = 1; 970 } 971 } 972 } 973 pSort->nDefer = (u8)nDefer; 974 *ppExtra = pExtra; 975 } 976 #endif 977 978 /* 979 ** This routine generates the code for the inside of the inner loop 980 ** of a SELECT. 981 ** 982 ** If srcTab is negative, then the p->pEList expressions 983 ** are evaluated in order to get the data for this row. If srcTab is 984 ** zero or more, then data is pulled from srcTab and p->pEList is used only 985 ** to get the number of columns and the collation sequence for each column. 986 */ 987 static void selectInnerLoop( 988 Parse *pParse, /* The parser context */ 989 Select *p, /* The complete select statement being coded */ 990 int srcTab, /* Pull data from this table if non-negative */ 991 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 992 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 993 SelectDest *pDest, /* How to dispose of the results */ 994 int iContinue, /* Jump here to continue with next row */ 995 int iBreak /* Jump here to break out of the inner loop */ 996 ){ 997 Vdbe *v = pParse->pVdbe; 998 int i; 999 int hasDistinct; /* True if the DISTINCT keyword is present */ 1000 int eDest = pDest->eDest; /* How to dispose of results */ 1001 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1002 int nResultCol; /* Number of result columns */ 1003 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1004 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1005 1006 /* Usually, regResult is the first cell in an array of memory cells 1007 ** containing the current result row. In this case regOrig is set to the 1008 ** same value. However, if the results are being sent to the sorter, the 1009 ** values for any expressions that are also part of the sort-key are omitted 1010 ** from this array. In this case regOrig is set to zero. */ 1011 int regResult; /* Start of memory holding current results */ 1012 int regOrig; /* Start of memory holding full result (or 0) */ 1013 1014 assert( v ); 1015 assert( p->pEList!=0 ); 1016 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1017 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1018 if( pSort==0 && !hasDistinct ){ 1019 assert( iContinue!=0 ); 1020 codeOffset(v, p->iOffset, iContinue); 1021 } 1022 1023 /* Pull the requested columns. 1024 */ 1025 nResultCol = p->pEList->nExpr; 1026 1027 if( pDest->iSdst==0 ){ 1028 if( pSort ){ 1029 nPrefixReg = pSort->pOrderBy->nExpr; 1030 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1031 pParse->nMem += nPrefixReg; 1032 } 1033 pDest->iSdst = pParse->nMem+1; 1034 pParse->nMem += nResultCol; 1035 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1036 /* This is an error condition that can result, for example, when a SELECT 1037 ** on the right-hand side of an INSERT contains more result columns than 1038 ** there are columns in the table on the left. The error will be caught 1039 ** and reported later. But we need to make sure enough memory is allocated 1040 ** to avoid other spurious errors in the meantime. */ 1041 pParse->nMem += nResultCol; 1042 } 1043 pDest->nSdst = nResultCol; 1044 regOrig = regResult = pDest->iSdst; 1045 if( srcTab>=0 ){ 1046 for(i=0; i<nResultCol; i++){ 1047 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1048 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1049 } 1050 }else if( eDest!=SRT_Exists ){ 1051 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1052 ExprList *pExtra = 0; 1053 #endif 1054 /* If the destination is an EXISTS(...) expression, the actual 1055 ** values returned by the SELECT are not required. 1056 */ 1057 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1058 ExprList *pEList; 1059 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1060 ecelFlags = SQLITE_ECEL_DUP; 1061 }else{ 1062 ecelFlags = 0; 1063 } 1064 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1065 /* For each expression in p->pEList that is a copy of an expression in 1066 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1067 ** iOrderByCol value to one more than the index of the ORDER BY 1068 ** expression within the sort-key that pushOntoSorter() will generate. 1069 ** This allows the p->pEList field to be omitted from the sorted record, 1070 ** saving space and CPU cycles. */ 1071 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1072 1073 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1074 int j; 1075 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1076 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1077 } 1078 } 1079 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1080 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1081 if( pExtra && pParse->db->mallocFailed==0 ){ 1082 /* If there are any extra PK columns to add to the sorter records, 1083 ** allocate extra memory cells and adjust the OpenEphemeral 1084 ** instruction to account for the larger records. This is only 1085 ** required if there are one or more WITHOUT ROWID tables with 1086 ** composite primary keys in the SortCtx.aDefer[] array. */ 1087 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1088 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1089 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1090 pParse->nMem += pExtra->nExpr; 1091 } 1092 #endif 1093 1094 /* Adjust nResultCol to account for columns that are omitted 1095 ** from the sorter by the optimizations in this branch */ 1096 pEList = p->pEList; 1097 for(i=0; i<pEList->nExpr; i++){ 1098 if( pEList->a[i].u.x.iOrderByCol>0 1099 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1100 || pEList->a[i].bSorterRef 1101 #endif 1102 ){ 1103 nResultCol--; 1104 regOrig = 0; 1105 } 1106 } 1107 1108 testcase( regOrig ); 1109 testcase( eDest==SRT_Set ); 1110 testcase( eDest==SRT_Mem ); 1111 testcase( eDest==SRT_Coroutine ); 1112 testcase( eDest==SRT_Output ); 1113 assert( eDest==SRT_Set || eDest==SRT_Mem 1114 || eDest==SRT_Coroutine || eDest==SRT_Output 1115 || eDest==SRT_Upfrom ); 1116 } 1117 sRowLoadInfo.regResult = regResult; 1118 sRowLoadInfo.ecelFlags = ecelFlags; 1119 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1120 sRowLoadInfo.pExtra = pExtra; 1121 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1122 if( pExtra ) nResultCol += pExtra->nExpr; 1123 #endif 1124 if( p->iLimit 1125 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1126 && nPrefixReg>0 1127 ){ 1128 assert( pSort!=0 ); 1129 assert( hasDistinct==0 ); 1130 pSort->pDeferredRowLoad = &sRowLoadInfo; 1131 regOrig = 0; 1132 }else{ 1133 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1134 } 1135 } 1136 1137 /* If the DISTINCT keyword was present on the SELECT statement 1138 ** and this row has been seen before, then do not make this row 1139 ** part of the result. 1140 */ 1141 if( hasDistinct ){ 1142 int eType = pDistinct->eTnctType; 1143 int iTab = pDistinct->tabTnct; 1144 assert( nResultCol==p->pEList->nExpr ); 1145 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1146 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1147 if( pSort==0 ){ 1148 codeOffset(v, p->iOffset, iContinue); 1149 } 1150 } 1151 1152 switch( eDest ){ 1153 /* In this mode, write each query result to the key of the temporary 1154 ** table iParm. 1155 */ 1156 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1157 case SRT_Union: { 1158 int r1; 1159 r1 = sqlite3GetTempReg(pParse); 1160 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1161 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1162 sqlite3ReleaseTempReg(pParse, r1); 1163 break; 1164 } 1165 1166 /* Construct a record from the query result, but instead of 1167 ** saving that record, use it as a key to delete elements from 1168 ** the temporary table iParm. 1169 */ 1170 case SRT_Except: { 1171 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1172 break; 1173 } 1174 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1175 1176 /* Store the result as data using a unique key. 1177 */ 1178 case SRT_Fifo: 1179 case SRT_DistFifo: 1180 case SRT_Table: 1181 case SRT_EphemTab: { 1182 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1183 testcase( eDest==SRT_Table ); 1184 testcase( eDest==SRT_EphemTab ); 1185 testcase( eDest==SRT_Fifo ); 1186 testcase( eDest==SRT_DistFifo ); 1187 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1188 #ifndef SQLITE_OMIT_CTE 1189 if( eDest==SRT_DistFifo ){ 1190 /* If the destination is DistFifo, then cursor (iParm+1) is open 1191 ** on an ephemeral index. If the current row is already present 1192 ** in the index, do not write it to the output. If not, add the 1193 ** current row to the index and proceed with writing it to the 1194 ** output table as well. */ 1195 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1196 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1197 VdbeCoverage(v); 1198 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1199 assert( pSort==0 ); 1200 } 1201 #endif 1202 if( pSort ){ 1203 assert( regResult==regOrig ); 1204 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1205 }else{ 1206 int r2 = sqlite3GetTempReg(pParse); 1207 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1208 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1209 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1210 sqlite3ReleaseTempReg(pParse, r2); 1211 } 1212 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1213 break; 1214 } 1215 1216 case SRT_Upfrom: { 1217 if( pSort ){ 1218 pushOntoSorter( 1219 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1220 }else{ 1221 int i2 = pDest->iSDParm2; 1222 int r1 = sqlite3GetTempReg(pParse); 1223 1224 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1225 ** might still be trying to return one row, because that is what 1226 ** aggregates do. Don't record that empty row in the output table. */ 1227 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1228 1229 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1230 regResult+(i2<0), nResultCol-(i2<0), r1); 1231 if( i2<0 ){ 1232 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1233 }else{ 1234 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1235 } 1236 } 1237 break; 1238 } 1239 1240 #ifndef SQLITE_OMIT_SUBQUERY 1241 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1242 ** then there should be a single item on the stack. Write this 1243 ** item into the set table with bogus data. 1244 */ 1245 case SRT_Set: { 1246 if( pSort ){ 1247 /* At first glance you would think we could optimize out the 1248 ** ORDER BY in this case since the order of entries in the set 1249 ** does not matter. But there might be a LIMIT clause, in which 1250 ** case the order does matter */ 1251 pushOntoSorter( 1252 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1253 }else{ 1254 int r1 = sqlite3GetTempReg(pParse); 1255 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1256 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1257 r1, pDest->zAffSdst, nResultCol); 1258 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1259 sqlite3ReleaseTempReg(pParse, r1); 1260 } 1261 break; 1262 } 1263 1264 1265 /* If any row exist in the result set, record that fact and abort. 1266 */ 1267 case SRT_Exists: { 1268 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1269 /* The LIMIT clause will terminate the loop for us */ 1270 break; 1271 } 1272 1273 /* If this is a scalar select that is part of an expression, then 1274 ** store the results in the appropriate memory cell or array of 1275 ** memory cells and break out of the scan loop. 1276 */ 1277 case SRT_Mem: { 1278 if( pSort ){ 1279 assert( nResultCol<=pDest->nSdst ); 1280 pushOntoSorter( 1281 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1282 }else{ 1283 assert( nResultCol==pDest->nSdst ); 1284 assert( regResult==iParm ); 1285 /* The LIMIT clause will jump out of the loop for us */ 1286 } 1287 break; 1288 } 1289 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1290 1291 case SRT_Coroutine: /* Send data to a co-routine */ 1292 case SRT_Output: { /* Return the results */ 1293 testcase( eDest==SRT_Coroutine ); 1294 testcase( eDest==SRT_Output ); 1295 if( pSort ){ 1296 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1297 nPrefixReg); 1298 }else if( eDest==SRT_Coroutine ){ 1299 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1300 }else{ 1301 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1302 } 1303 break; 1304 } 1305 1306 #ifndef SQLITE_OMIT_CTE 1307 /* Write the results into a priority queue that is order according to 1308 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1309 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1310 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1311 ** final OP_Sequence column. The last column is the record as a blob. 1312 */ 1313 case SRT_DistQueue: 1314 case SRT_Queue: { 1315 int nKey; 1316 int r1, r2, r3; 1317 int addrTest = 0; 1318 ExprList *pSO; 1319 pSO = pDest->pOrderBy; 1320 assert( pSO ); 1321 nKey = pSO->nExpr; 1322 r1 = sqlite3GetTempReg(pParse); 1323 r2 = sqlite3GetTempRange(pParse, nKey+2); 1324 r3 = r2+nKey+1; 1325 if( eDest==SRT_DistQueue ){ 1326 /* If the destination is DistQueue, then cursor (iParm+1) is open 1327 ** on a second ephemeral index that holds all values every previously 1328 ** added to the queue. */ 1329 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1330 regResult, nResultCol); 1331 VdbeCoverage(v); 1332 } 1333 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1334 if( eDest==SRT_DistQueue ){ 1335 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1336 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1337 } 1338 for(i=0; i<nKey; i++){ 1339 sqlite3VdbeAddOp2(v, OP_SCopy, 1340 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1341 r2+i); 1342 } 1343 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1344 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1345 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1346 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1347 sqlite3ReleaseTempReg(pParse, r1); 1348 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1349 break; 1350 } 1351 #endif /* SQLITE_OMIT_CTE */ 1352 1353 1354 1355 #if !defined(SQLITE_OMIT_TRIGGER) 1356 /* Discard the results. This is used for SELECT statements inside 1357 ** the body of a TRIGGER. The purpose of such selects is to call 1358 ** user-defined functions that have side effects. We do not care 1359 ** about the actual results of the select. 1360 */ 1361 default: { 1362 assert( eDest==SRT_Discard ); 1363 break; 1364 } 1365 #endif 1366 } 1367 1368 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1369 ** there is a sorter, in which case the sorter has already limited 1370 ** the output for us. 1371 */ 1372 if( pSort==0 && p->iLimit ){ 1373 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1374 } 1375 } 1376 1377 /* 1378 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1379 ** X extra columns. 1380 */ 1381 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1382 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1383 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1384 if( p ){ 1385 p->aSortFlags = (u8*)&p->aColl[N+X]; 1386 p->nKeyField = (u16)N; 1387 p->nAllField = (u16)(N+X); 1388 p->enc = ENC(db); 1389 p->db = db; 1390 p->nRef = 1; 1391 memset(&p[1], 0, nExtra); 1392 }else{ 1393 sqlite3OomFault(db); 1394 } 1395 return p; 1396 } 1397 1398 /* 1399 ** Deallocate a KeyInfo object 1400 */ 1401 void sqlite3KeyInfoUnref(KeyInfo *p){ 1402 if( p ){ 1403 assert( p->nRef>0 ); 1404 p->nRef--; 1405 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1406 } 1407 } 1408 1409 /* 1410 ** Make a new pointer to a KeyInfo object 1411 */ 1412 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1413 if( p ){ 1414 assert( p->nRef>0 ); 1415 p->nRef++; 1416 } 1417 return p; 1418 } 1419 1420 #ifdef SQLITE_DEBUG 1421 /* 1422 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1423 ** can only be changed if this is just a single reference to the object. 1424 ** 1425 ** This routine is used only inside of assert() statements. 1426 */ 1427 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1428 #endif /* SQLITE_DEBUG */ 1429 1430 /* 1431 ** Given an expression list, generate a KeyInfo structure that records 1432 ** the collating sequence for each expression in that expression list. 1433 ** 1434 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1435 ** KeyInfo structure is appropriate for initializing a virtual index to 1436 ** implement that clause. If the ExprList is the result set of a SELECT 1437 ** then the KeyInfo structure is appropriate for initializing a virtual 1438 ** index to implement a DISTINCT test. 1439 ** 1440 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1441 ** function is responsible for seeing that this structure is eventually 1442 ** freed. 1443 */ 1444 KeyInfo *sqlite3KeyInfoFromExprList( 1445 Parse *pParse, /* Parsing context */ 1446 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1447 int iStart, /* Begin with this column of pList */ 1448 int nExtra /* Add this many extra columns to the end */ 1449 ){ 1450 int nExpr; 1451 KeyInfo *pInfo; 1452 struct ExprList_item *pItem; 1453 sqlite3 *db = pParse->db; 1454 int i; 1455 1456 nExpr = pList->nExpr; 1457 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1458 if( pInfo ){ 1459 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1460 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1461 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1462 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1463 } 1464 } 1465 return pInfo; 1466 } 1467 1468 /* 1469 ** Name of the connection operator, used for error messages. 1470 */ 1471 const char *sqlite3SelectOpName(int id){ 1472 char *z; 1473 switch( id ){ 1474 case TK_ALL: z = "UNION ALL"; break; 1475 case TK_INTERSECT: z = "INTERSECT"; break; 1476 case TK_EXCEPT: z = "EXCEPT"; break; 1477 default: z = "UNION"; break; 1478 } 1479 return z; 1480 } 1481 1482 #ifndef SQLITE_OMIT_EXPLAIN 1483 /* 1484 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1485 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1486 ** where the caption is of the form: 1487 ** 1488 ** "USE TEMP B-TREE FOR xxx" 1489 ** 1490 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1491 ** is determined by the zUsage argument. 1492 */ 1493 static void explainTempTable(Parse *pParse, const char *zUsage){ 1494 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1495 } 1496 1497 /* 1498 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1499 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1500 ** in sqlite3Select() to assign values to structure member variables that 1501 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1502 ** code with #ifndef directives. 1503 */ 1504 # define explainSetInteger(a, b) a = b 1505 1506 #else 1507 /* No-op versions of the explainXXX() functions and macros. */ 1508 # define explainTempTable(y,z) 1509 # define explainSetInteger(y,z) 1510 #endif 1511 1512 1513 /* 1514 ** If the inner loop was generated using a non-null pOrderBy argument, 1515 ** then the results were placed in a sorter. After the loop is terminated 1516 ** we need to run the sorter and output the results. The following 1517 ** routine generates the code needed to do that. 1518 */ 1519 static void generateSortTail( 1520 Parse *pParse, /* Parsing context */ 1521 Select *p, /* The SELECT statement */ 1522 SortCtx *pSort, /* Information on the ORDER BY clause */ 1523 int nColumn, /* Number of columns of data */ 1524 SelectDest *pDest /* Write the sorted results here */ 1525 ){ 1526 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1527 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1528 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1529 int addr; /* Top of output loop. Jump for Next. */ 1530 int addrOnce = 0; 1531 int iTab; 1532 ExprList *pOrderBy = pSort->pOrderBy; 1533 int eDest = pDest->eDest; 1534 int iParm = pDest->iSDParm; 1535 int regRow; 1536 int regRowid; 1537 int iCol; 1538 int nKey; /* Number of key columns in sorter record */ 1539 int iSortTab; /* Sorter cursor to read from */ 1540 int i; 1541 int bSeq; /* True if sorter record includes seq. no. */ 1542 int nRefKey = 0; 1543 struct ExprList_item *aOutEx = p->pEList->a; 1544 1545 assert( addrBreak<0 ); 1546 if( pSort->labelBkOut ){ 1547 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1548 sqlite3VdbeGoto(v, addrBreak); 1549 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1550 } 1551 1552 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1553 /* Open any cursors needed for sorter-reference expressions */ 1554 for(i=0; i<pSort->nDefer; i++){ 1555 Table *pTab = pSort->aDefer[i].pTab; 1556 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1557 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1558 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1559 } 1560 #endif 1561 1562 iTab = pSort->iECursor; 1563 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1564 regRowid = 0; 1565 regRow = pDest->iSdst; 1566 }else{ 1567 regRowid = sqlite3GetTempReg(pParse); 1568 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1569 regRow = sqlite3GetTempReg(pParse); 1570 nColumn = 0; 1571 }else{ 1572 regRow = sqlite3GetTempRange(pParse, nColumn); 1573 } 1574 } 1575 nKey = pOrderBy->nExpr - pSort->nOBSat; 1576 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1577 int regSortOut = ++pParse->nMem; 1578 iSortTab = pParse->nTab++; 1579 if( pSort->labelBkOut ){ 1580 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1581 } 1582 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1583 nKey+1+nColumn+nRefKey); 1584 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1585 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1586 VdbeCoverage(v); 1587 codeOffset(v, p->iOffset, addrContinue); 1588 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1589 bSeq = 0; 1590 }else{ 1591 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1592 codeOffset(v, p->iOffset, addrContinue); 1593 iSortTab = iTab; 1594 bSeq = 1; 1595 } 1596 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1597 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1598 if( aOutEx[i].bSorterRef ) continue; 1599 #endif 1600 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1601 } 1602 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1603 if( pSort->nDefer ){ 1604 int iKey = iCol+1; 1605 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1606 1607 for(i=0; i<pSort->nDefer; i++){ 1608 int iCsr = pSort->aDefer[i].iCsr; 1609 Table *pTab = pSort->aDefer[i].pTab; 1610 int nKey = pSort->aDefer[i].nKey; 1611 1612 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1613 if( HasRowid(pTab) ){ 1614 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1615 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1616 sqlite3VdbeCurrentAddr(v)+1, regKey); 1617 }else{ 1618 int k; 1619 int iJmp; 1620 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1621 for(k=0; k<nKey; k++){ 1622 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1623 } 1624 iJmp = sqlite3VdbeCurrentAddr(v); 1625 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1626 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1627 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1628 } 1629 } 1630 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1631 } 1632 #endif 1633 for(i=nColumn-1; i>=0; i--){ 1634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1635 if( aOutEx[i].bSorterRef ){ 1636 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1637 }else 1638 #endif 1639 { 1640 int iRead; 1641 if( aOutEx[i].u.x.iOrderByCol ){ 1642 iRead = aOutEx[i].u.x.iOrderByCol-1; 1643 }else{ 1644 iRead = iCol--; 1645 } 1646 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1647 VdbeComment((v, "%s", aOutEx[i].zEName)); 1648 } 1649 } 1650 switch( eDest ){ 1651 case SRT_Table: 1652 case SRT_EphemTab: { 1653 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1654 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1655 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1656 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1657 break; 1658 } 1659 #ifndef SQLITE_OMIT_SUBQUERY 1660 case SRT_Set: { 1661 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1662 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1663 pDest->zAffSdst, nColumn); 1664 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1665 break; 1666 } 1667 case SRT_Mem: { 1668 /* The LIMIT clause will terminate the loop for us */ 1669 break; 1670 } 1671 #endif 1672 case SRT_Upfrom: { 1673 int i2 = pDest->iSDParm2; 1674 int r1 = sqlite3GetTempReg(pParse); 1675 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1676 if( i2<0 ){ 1677 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1678 }else{ 1679 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1680 } 1681 break; 1682 } 1683 default: { 1684 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1685 testcase( eDest==SRT_Output ); 1686 testcase( eDest==SRT_Coroutine ); 1687 if( eDest==SRT_Output ){ 1688 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1689 }else{ 1690 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1691 } 1692 break; 1693 } 1694 } 1695 if( regRowid ){ 1696 if( eDest==SRT_Set ){ 1697 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1698 }else{ 1699 sqlite3ReleaseTempReg(pParse, regRow); 1700 } 1701 sqlite3ReleaseTempReg(pParse, regRowid); 1702 } 1703 /* The bottom of the loop 1704 */ 1705 sqlite3VdbeResolveLabel(v, addrContinue); 1706 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1707 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1708 }else{ 1709 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1710 } 1711 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1712 sqlite3VdbeResolveLabel(v, addrBreak); 1713 } 1714 1715 /* 1716 ** Return a pointer to a string containing the 'declaration type' of the 1717 ** expression pExpr. The string may be treated as static by the caller. 1718 ** 1719 ** Also try to estimate the size of the returned value and return that 1720 ** result in *pEstWidth. 1721 ** 1722 ** The declaration type is the exact datatype definition extracted from the 1723 ** original CREATE TABLE statement if the expression is a column. The 1724 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1725 ** is considered a column can be complex in the presence of subqueries. The 1726 ** result-set expression in all of the following SELECT statements is 1727 ** considered a column by this function. 1728 ** 1729 ** SELECT col FROM tbl; 1730 ** SELECT (SELECT col FROM tbl; 1731 ** SELECT (SELECT col FROM tbl); 1732 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1733 ** 1734 ** The declaration type for any expression other than a column is NULL. 1735 ** 1736 ** This routine has either 3 or 6 parameters depending on whether or not 1737 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1738 */ 1739 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1741 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1742 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1743 #endif 1744 static const char *columnTypeImpl( 1745 NameContext *pNC, 1746 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1747 Expr *pExpr 1748 #else 1749 Expr *pExpr, 1750 const char **pzOrigDb, 1751 const char **pzOrigTab, 1752 const char **pzOrigCol 1753 #endif 1754 ){ 1755 char const *zType = 0; 1756 int j; 1757 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1758 char const *zOrigDb = 0; 1759 char const *zOrigTab = 0; 1760 char const *zOrigCol = 0; 1761 #endif 1762 1763 assert( pExpr!=0 ); 1764 assert( pNC->pSrcList!=0 ); 1765 switch( pExpr->op ){ 1766 case TK_COLUMN: { 1767 /* The expression is a column. Locate the table the column is being 1768 ** extracted from in NameContext.pSrcList. This table may be real 1769 ** database table or a subquery. 1770 */ 1771 Table *pTab = 0; /* Table structure column is extracted from */ 1772 Select *pS = 0; /* Select the column is extracted from */ 1773 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1774 while( pNC && !pTab ){ 1775 SrcList *pTabList = pNC->pSrcList; 1776 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1777 if( j<pTabList->nSrc ){ 1778 pTab = pTabList->a[j].pTab; 1779 pS = pTabList->a[j].pSelect; 1780 }else{ 1781 pNC = pNC->pNext; 1782 } 1783 } 1784 1785 if( pTab==0 ){ 1786 /* At one time, code such as "SELECT new.x" within a trigger would 1787 ** cause this condition to run. Since then, we have restructured how 1788 ** trigger code is generated and so this condition is no longer 1789 ** possible. However, it can still be true for statements like 1790 ** the following: 1791 ** 1792 ** CREATE TABLE t1(col INTEGER); 1793 ** SELECT (SELECT t1.col) FROM FROM t1; 1794 ** 1795 ** when columnType() is called on the expression "t1.col" in the 1796 ** sub-select. In this case, set the column type to NULL, even 1797 ** though it should really be "INTEGER". 1798 ** 1799 ** This is not a problem, as the column type of "t1.col" is never 1800 ** used. When columnType() is called on the expression 1801 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1802 ** branch below. */ 1803 break; 1804 } 1805 1806 assert( pTab && pExpr->y.pTab==pTab ); 1807 if( pS ){ 1808 /* The "table" is actually a sub-select or a view in the FROM clause 1809 ** of the SELECT statement. Return the declaration type and origin 1810 ** data for the result-set column of the sub-select. 1811 */ 1812 if( iCol<pS->pEList->nExpr 1813 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1814 && iCol>=0 1815 #else 1816 && ALWAYS(iCol>=0) 1817 #endif 1818 ){ 1819 /* If iCol is less than zero, then the expression requests the 1820 ** rowid of the sub-select or view. This expression is legal (see 1821 ** test case misc2.2.2) - it always evaluates to NULL. 1822 */ 1823 NameContext sNC; 1824 Expr *p = pS->pEList->a[iCol].pExpr; 1825 sNC.pSrcList = pS->pSrc; 1826 sNC.pNext = pNC; 1827 sNC.pParse = pNC->pParse; 1828 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1829 } 1830 }else{ 1831 /* A real table or a CTE table */ 1832 assert( !pS ); 1833 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1834 if( iCol<0 ) iCol = pTab->iPKey; 1835 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1836 if( iCol<0 ){ 1837 zType = "INTEGER"; 1838 zOrigCol = "rowid"; 1839 }else{ 1840 zOrigCol = pTab->aCol[iCol].zCnName; 1841 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1842 } 1843 zOrigTab = pTab->zName; 1844 if( pNC->pParse && pTab->pSchema ){ 1845 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1846 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1847 } 1848 #else 1849 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1850 if( iCol<0 ){ 1851 zType = "INTEGER"; 1852 }else{ 1853 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1854 } 1855 #endif 1856 } 1857 break; 1858 } 1859 #ifndef SQLITE_OMIT_SUBQUERY 1860 case TK_SELECT: { 1861 /* The expression is a sub-select. Return the declaration type and 1862 ** origin info for the single column in the result set of the SELECT 1863 ** statement. 1864 */ 1865 NameContext sNC; 1866 Select *pS = pExpr->x.pSelect; 1867 Expr *p = pS->pEList->a[0].pExpr; 1868 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1869 sNC.pSrcList = pS->pSrc; 1870 sNC.pNext = pNC; 1871 sNC.pParse = pNC->pParse; 1872 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1873 break; 1874 } 1875 #endif 1876 } 1877 1878 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1879 if( pzOrigDb ){ 1880 assert( pzOrigTab && pzOrigCol ); 1881 *pzOrigDb = zOrigDb; 1882 *pzOrigTab = zOrigTab; 1883 *pzOrigCol = zOrigCol; 1884 } 1885 #endif 1886 return zType; 1887 } 1888 1889 /* 1890 ** Generate code that will tell the VDBE the declaration types of columns 1891 ** in the result set. 1892 */ 1893 static void generateColumnTypes( 1894 Parse *pParse, /* Parser context */ 1895 SrcList *pTabList, /* List of tables */ 1896 ExprList *pEList /* Expressions defining the result set */ 1897 ){ 1898 #ifndef SQLITE_OMIT_DECLTYPE 1899 Vdbe *v = pParse->pVdbe; 1900 int i; 1901 NameContext sNC; 1902 sNC.pSrcList = pTabList; 1903 sNC.pParse = pParse; 1904 sNC.pNext = 0; 1905 for(i=0; i<pEList->nExpr; i++){ 1906 Expr *p = pEList->a[i].pExpr; 1907 const char *zType; 1908 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1909 const char *zOrigDb = 0; 1910 const char *zOrigTab = 0; 1911 const char *zOrigCol = 0; 1912 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1913 1914 /* The vdbe must make its own copy of the column-type and other 1915 ** column specific strings, in case the schema is reset before this 1916 ** virtual machine is deleted. 1917 */ 1918 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1919 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1920 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1921 #else 1922 zType = columnType(&sNC, p, 0, 0, 0); 1923 #endif 1924 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1925 } 1926 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1927 } 1928 1929 1930 /* 1931 ** Compute the column names for a SELECT statement. 1932 ** 1933 ** The only guarantee that SQLite makes about column names is that if the 1934 ** column has an AS clause assigning it a name, that will be the name used. 1935 ** That is the only documented guarantee. However, countless applications 1936 ** developed over the years have made baseless assumptions about column names 1937 ** and will break if those assumptions changes. Hence, use extreme caution 1938 ** when modifying this routine to avoid breaking legacy. 1939 ** 1940 ** See Also: sqlite3ColumnsFromExprList() 1941 ** 1942 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1943 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1944 ** applications should operate this way. Nevertheless, we need to support the 1945 ** other modes for legacy: 1946 ** 1947 ** short=OFF, full=OFF: Column name is the text of the expression has it 1948 ** originally appears in the SELECT statement. In 1949 ** other words, the zSpan of the result expression. 1950 ** 1951 ** short=ON, full=OFF: (This is the default setting). If the result 1952 ** refers directly to a table column, then the 1953 ** result column name is just the table column 1954 ** name: COLUMN. Otherwise use zSpan. 1955 ** 1956 ** full=ON, short=ANY: If the result refers directly to a table column, 1957 ** then the result column name with the table name 1958 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1959 */ 1960 void sqlite3GenerateColumnNames( 1961 Parse *pParse, /* Parser context */ 1962 Select *pSelect /* Generate column names for this SELECT statement */ 1963 ){ 1964 Vdbe *v = pParse->pVdbe; 1965 int i; 1966 Table *pTab; 1967 SrcList *pTabList; 1968 ExprList *pEList; 1969 sqlite3 *db = pParse->db; 1970 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1971 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1972 1973 #ifndef SQLITE_OMIT_EXPLAIN 1974 /* If this is an EXPLAIN, skip this step */ 1975 if( pParse->explain ){ 1976 return; 1977 } 1978 #endif 1979 1980 if( pParse->colNamesSet ) return; 1981 /* Column names are determined by the left-most term of a compound select */ 1982 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1983 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1984 pTabList = pSelect->pSrc; 1985 pEList = pSelect->pEList; 1986 assert( v!=0 ); 1987 assert( pTabList!=0 ); 1988 pParse->colNamesSet = 1; 1989 fullName = (db->flags & SQLITE_FullColNames)!=0; 1990 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1991 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1992 for(i=0; i<pEList->nExpr; i++){ 1993 Expr *p = pEList->a[i].pExpr; 1994 1995 assert( p!=0 ); 1996 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1997 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1998 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1999 /* An AS clause always takes first priority */ 2000 char *zName = pEList->a[i].zEName; 2001 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2002 }else if( srcName && p->op==TK_COLUMN ){ 2003 char *zCol; 2004 int iCol = p->iColumn; 2005 pTab = p->y.pTab; 2006 assert( pTab!=0 ); 2007 if( iCol<0 ) iCol = pTab->iPKey; 2008 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2009 if( iCol<0 ){ 2010 zCol = "rowid"; 2011 }else{ 2012 zCol = pTab->aCol[iCol].zCnName; 2013 } 2014 if( fullName ){ 2015 char *zName = 0; 2016 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2017 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2018 }else{ 2019 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2020 } 2021 }else{ 2022 const char *z = pEList->a[i].zEName; 2023 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2024 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2025 } 2026 } 2027 generateColumnTypes(pParse, pTabList, pEList); 2028 } 2029 2030 /* 2031 ** Given an expression list (which is really the list of expressions 2032 ** that form the result set of a SELECT statement) compute appropriate 2033 ** column names for a table that would hold the expression list. 2034 ** 2035 ** All column names will be unique. 2036 ** 2037 ** Only the column names are computed. Column.zType, Column.zColl, 2038 ** and other fields of Column are zeroed. 2039 ** 2040 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2041 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2042 ** 2043 ** The only guarantee that SQLite makes about column names is that if the 2044 ** column has an AS clause assigning it a name, that will be the name used. 2045 ** That is the only documented guarantee. However, countless applications 2046 ** developed over the years have made baseless assumptions about column names 2047 ** and will break if those assumptions changes. Hence, use extreme caution 2048 ** when modifying this routine to avoid breaking legacy. 2049 ** 2050 ** See Also: sqlite3GenerateColumnNames() 2051 */ 2052 int sqlite3ColumnsFromExprList( 2053 Parse *pParse, /* Parsing context */ 2054 ExprList *pEList, /* Expr list from which to derive column names */ 2055 i16 *pnCol, /* Write the number of columns here */ 2056 Column **paCol /* Write the new column list here */ 2057 ){ 2058 sqlite3 *db = pParse->db; /* Database connection */ 2059 int i, j; /* Loop counters */ 2060 u32 cnt; /* Index added to make the name unique */ 2061 Column *aCol, *pCol; /* For looping over result columns */ 2062 int nCol; /* Number of columns in the result set */ 2063 char *zName; /* Column name */ 2064 int nName; /* Size of name in zName[] */ 2065 Hash ht; /* Hash table of column names */ 2066 Table *pTab; 2067 2068 sqlite3HashInit(&ht); 2069 if( pEList ){ 2070 nCol = pEList->nExpr; 2071 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2072 testcase( aCol==0 ); 2073 if( NEVER(nCol>32767) ) nCol = 32767; 2074 }else{ 2075 nCol = 0; 2076 aCol = 0; 2077 } 2078 assert( nCol==(i16)nCol ); 2079 *pnCol = nCol; 2080 *paCol = aCol; 2081 2082 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2083 /* Get an appropriate name for the column 2084 */ 2085 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2086 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2087 }else{ 2088 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2089 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2090 pColExpr = pColExpr->pRight; 2091 assert( pColExpr!=0 ); 2092 } 2093 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2094 /* For columns use the column name name */ 2095 int iCol = pColExpr->iColumn; 2096 if( iCol<0 ) iCol = pTab->iPKey; 2097 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2098 }else if( pColExpr->op==TK_ID ){ 2099 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2100 zName = pColExpr->u.zToken; 2101 }else{ 2102 /* Use the original text of the column expression as its name */ 2103 zName = pEList->a[i].zEName; 2104 } 2105 } 2106 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2107 zName = sqlite3DbStrDup(db, zName); 2108 }else{ 2109 zName = sqlite3MPrintf(db,"column%d",i+1); 2110 } 2111 2112 /* Make sure the column name is unique. If the name is not unique, 2113 ** append an integer to the name so that it becomes unique. 2114 */ 2115 cnt = 0; 2116 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2117 nName = sqlite3Strlen30(zName); 2118 if( nName>0 ){ 2119 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2120 if( zName[j]==':' ) nName = j; 2121 } 2122 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2123 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2124 } 2125 pCol->zCnName = zName; 2126 pCol->hName = sqlite3StrIHash(zName); 2127 sqlite3ColumnPropertiesFromName(0, pCol); 2128 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2129 sqlite3OomFault(db); 2130 } 2131 } 2132 sqlite3HashClear(&ht); 2133 if( db->mallocFailed ){ 2134 for(j=0; j<i; j++){ 2135 sqlite3DbFree(db, aCol[j].zCnName); 2136 } 2137 sqlite3DbFree(db, aCol); 2138 *paCol = 0; 2139 *pnCol = 0; 2140 return SQLITE_NOMEM_BKPT; 2141 } 2142 return SQLITE_OK; 2143 } 2144 2145 /* 2146 ** Add type and collation information to a column list based on 2147 ** a SELECT statement. 2148 ** 2149 ** The column list presumably came from selectColumnNamesFromExprList(). 2150 ** The column list has only names, not types or collations. This 2151 ** routine goes through and adds the types and collations. 2152 ** 2153 ** This routine requires that all identifiers in the SELECT 2154 ** statement be resolved. 2155 */ 2156 void sqlite3SelectAddColumnTypeAndCollation( 2157 Parse *pParse, /* Parsing contexts */ 2158 Table *pTab, /* Add column type information to this table */ 2159 Select *pSelect, /* SELECT used to determine types and collations */ 2160 char aff /* Default affinity for columns */ 2161 ){ 2162 sqlite3 *db = pParse->db; 2163 NameContext sNC; 2164 Column *pCol; 2165 CollSeq *pColl; 2166 int i; 2167 Expr *p; 2168 struct ExprList_item *a; 2169 2170 assert( pSelect!=0 ); 2171 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2172 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2173 if( db->mallocFailed ) return; 2174 memset(&sNC, 0, sizeof(sNC)); 2175 sNC.pSrcList = pSelect->pSrc; 2176 a = pSelect->pEList->a; 2177 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2178 const char *zType; 2179 int n, m; 2180 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2181 p = a[i].pExpr; 2182 zType = columnType(&sNC, p, 0, 0, 0); 2183 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2184 pCol->affinity = sqlite3ExprAffinity(p); 2185 if( zType ){ 2186 m = sqlite3Strlen30(zType); 2187 n = sqlite3Strlen30(pCol->zCnName); 2188 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2189 if( pCol->zCnName ){ 2190 memcpy(&pCol->zCnName[n+1], zType, m+1); 2191 pCol->colFlags |= COLFLAG_HASTYPE; 2192 } 2193 } 2194 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2195 pColl = sqlite3ExprCollSeq(pParse, p); 2196 if( pColl ){ 2197 assert( pTab->pIndex==0 ); 2198 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2199 } 2200 } 2201 pTab->szTabRow = 1; /* Any non-zero value works */ 2202 } 2203 2204 /* 2205 ** Given a SELECT statement, generate a Table structure that describes 2206 ** the result set of that SELECT. 2207 */ 2208 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2209 Table *pTab; 2210 sqlite3 *db = pParse->db; 2211 u64 savedFlags; 2212 2213 savedFlags = db->flags; 2214 db->flags &= ~(u64)SQLITE_FullColNames; 2215 db->flags |= SQLITE_ShortColNames; 2216 sqlite3SelectPrep(pParse, pSelect, 0); 2217 db->flags = savedFlags; 2218 if( pParse->nErr ) return 0; 2219 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2220 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2221 if( pTab==0 ){ 2222 return 0; 2223 } 2224 pTab->nTabRef = 1; 2225 pTab->zName = 0; 2226 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2227 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2228 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2229 pTab->iPKey = -1; 2230 if( db->mallocFailed ){ 2231 sqlite3DeleteTable(db, pTab); 2232 return 0; 2233 } 2234 return pTab; 2235 } 2236 2237 /* 2238 ** Get a VDBE for the given parser context. Create a new one if necessary. 2239 ** If an error occurs, return NULL and leave a message in pParse. 2240 */ 2241 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2242 if( pParse->pVdbe ){ 2243 return pParse->pVdbe; 2244 } 2245 if( pParse->pToplevel==0 2246 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2247 ){ 2248 pParse->okConstFactor = 1; 2249 } 2250 return sqlite3VdbeCreate(pParse); 2251 } 2252 2253 2254 /* 2255 ** Compute the iLimit and iOffset fields of the SELECT based on the 2256 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2257 ** that appear in the original SQL statement after the LIMIT and OFFSET 2258 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2259 ** are the integer memory register numbers for counters used to compute 2260 ** the limit and offset. If there is no limit and/or offset, then 2261 ** iLimit and iOffset are negative. 2262 ** 2263 ** This routine changes the values of iLimit and iOffset only if 2264 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2265 ** and iOffset should have been preset to appropriate default values (zero) 2266 ** prior to calling this routine. 2267 ** 2268 ** The iOffset register (if it exists) is initialized to the value 2269 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2270 ** iOffset+1 is initialized to LIMIT+OFFSET. 2271 ** 2272 ** Only if pLimit->pLeft!=0 do the limit registers get 2273 ** redefined. The UNION ALL operator uses this property to force 2274 ** the reuse of the same limit and offset registers across multiple 2275 ** SELECT statements. 2276 */ 2277 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2278 Vdbe *v = 0; 2279 int iLimit = 0; 2280 int iOffset; 2281 int n; 2282 Expr *pLimit = p->pLimit; 2283 2284 if( p->iLimit ) return; 2285 2286 /* 2287 ** "LIMIT -1" always shows all rows. There is some 2288 ** controversy about what the correct behavior should be. 2289 ** The current implementation interprets "LIMIT 0" to mean 2290 ** no rows. 2291 */ 2292 if( pLimit ){ 2293 assert( pLimit->op==TK_LIMIT ); 2294 assert( pLimit->pLeft!=0 ); 2295 p->iLimit = iLimit = ++pParse->nMem; 2296 v = sqlite3GetVdbe(pParse); 2297 assert( v!=0 ); 2298 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2299 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2300 VdbeComment((v, "LIMIT counter")); 2301 if( n==0 ){ 2302 sqlite3VdbeGoto(v, iBreak); 2303 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2304 p->nSelectRow = sqlite3LogEst((u64)n); 2305 p->selFlags |= SF_FixedLimit; 2306 } 2307 }else{ 2308 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2309 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2310 VdbeComment((v, "LIMIT counter")); 2311 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2312 } 2313 if( pLimit->pRight ){ 2314 p->iOffset = iOffset = ++pParse->nMem; 2315 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2316 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2317 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2318 VdbeComment((v, "OFFSET counter")); 2319 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2320 VdbeComment((v, "LIMIT+OFFSET")); 2321 } 2322 } 2323 } 2324 2325 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2326 /* 2327 ** Return the appropriate collating sequence for the iCol-th column of 2328 ** the result set for the compound-select statement "p". Return NULL if 2329 ** the column has no default collating sequence. 2330 ** 2331 ** The collating sequence for the compound select is taken from the 2332 ** left-most term of the select that has a collating sequence. 2333 */ 2334 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2335 CollSeq *pRet; 2336 if( p->pPrior ){ 2337 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2338 }else{ 2339 pRet = 0; 2340 } 2341 assert( iCol>=0 ); 2342 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2343 ** have been thrown during name resolution and we would not have gotten 2344 ** this far */ 2345 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2346 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2347 } 2348 return pRet; 2349 } 2350 2351 /* 2352 ** The select statement passed as the second parameter is a compound SELECT 2353 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2354 ** structure suitable for implementing the ORDER BY. 2355 ** 2356 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2357 ** function is responsible for ensuring that this structure is eventually 2358 ** freed. 2359 */ 2360 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2361 ExprList *pOrderBy = p->pOrderBy; 2362 int nOrderBy = p->pOrderBy->nExpr; 2363 sqlite3 *db = pParse->db; 2364 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2365 if( pRet ){ 2366 int i; 2367 for(i=0; i<nOrderBy; i++){ 2368 struct ExprList_item *pItem = &pOrderBy->a[i]; 2369 Expr *pTerm = pItem->pExpr; 2370 CollSeq *pColl; 2371 2372 if( pTerm->flags & EP_Collate ){ 2373 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2374 }else{ 2375 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2376 if( pColl==0 ) pColl = db->pDfltColl; 2377 pOrderBy->a[i].pExpr = 2378 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2379 } 2380 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2381 pRet->aColl[i] = pColl; 2382 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2383 } 2384 } 2385 2386 return pRet; 2387 } 2388 2389 #ifndef SQLITE_OMIT_CTE 2390 /* 2391 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2392 ** query of the form: 2393 ** 2394 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2395 ** \___________/ \_______________/ 2396 ** p->pPrior p 2397 ** 2398 ** 2399 ** There is exactly one reference to the recursive-table in the FROM clause 2400 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2401 ** 2402 ** The setup-query runs once to generate an initial set of rows that go 2403 ** into a Queue table. Rows are extracted from the Queue table one by 2404 ** one. Each row extracted from Queue is output to pDest. Then the single 2405 ** extracted row (now in the iCurrent table) becomes the content of the 2406 ** recursive-table for a recursive-query run. The output of the recursive-query 2407 ** is added back into the Queue table. Then another row is extracted from Queue 2408 ** and the iteration continues until the Queue table is empty. 2409 ** 2410 ** If the compound query operator is UNION then no duplicate rows are ever 2411 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2412 ** that have ever been inserted into Queue and causes duplicates to be 2413 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2414 ** 2415 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2416 ** ORDER BY order and the first entry is extracted for each cycle. Without 2417 ** an ORDER BY, the Queue table is just a FIFO. 2418 ** 2419 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2420 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2421 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2422 ** with a positive value, then the first OFFSET outputs are discarded rather 2423 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2424 ** rows have been skipped. 2425 */ 2426 static void generateWithRecursiveQuery( 2427 Parse *pParse, /* Parsing context */ 2428 Select *p, /* The recursive SELECT to be coded */ 2429 SelectDest *pDest /* What to do with query results */ 2430 ){ 2431 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2432 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2433 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2434 Select *pSetup = p->pPrior; /* The setup query */ 2435 Select *pFirstRec; /* Left-most recursive term */ 2436 int addrTop; /* Top of the loop */ 2437 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2438 int iCurrent = 0; /* The Current table */ 2439 int regCurrent; /* Register holding Current table */ 2440 int iQueue; /* The Queue table */ 2441 int iDistinct = 0; /* To ensure unique results if UNION */ 2442 int eDest = SRT_Fifo; /* How to write to Queue */ 2443 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2444 int i; /* Loop counter */ 2445 int rc; /* Result code */ 2446 ExprList *pOrderBy; /* The ORDER BY clause */ 2447 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2448 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2449 2450 #ifndef SQLITE_OMIT_WINDOWFUNC 2451 if( p->pWin ){ 2452 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2453 return; 2454 } 2455 #endif 2456 2457 /* Obtain authorization to do a recursive query */ 2458 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2459 2460 /* Process the LIMIT and OFFSET clauses, if they exist */ 2461 addrBreak = sqlite3VdbeMakeLabel(pParse); 2462 p->nSelectRow = 320; /* 4 billion rows */ 2463 computeLimitRegisters(pParse, p, addrBreak); 2464 pLimit = p->pLimit; 2465 regLimit = p->iLimit; 2466 regOffset = p->iOffset; 2467 p->pLimit = 0; 2468 p->iLimit = p->iOffset = 0; 2469 pOrderBy = p->pOrderBy; 2470 2471 /* Locate the cursor number of the Current table */ 2472 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2473 if( pSrc->a[i].fg.isRecursive ){ 2474 iCurrent = pSrc->a[i].iCursor; 2475 break; 2476 } 2477 } 2478 2479 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2480 ** the Distinct table must be exactly one greater than Queue in order 2481 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2482 iQueue = pParse->nTab++; 2483 if( p->op==TK_UNION ){ 2484 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2485 iDistinct = pParse->nTab++; 2486 }else{ 2487 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2488 } 2489 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2490 2491 /* Allocate cursors for Current, Queue, and Distinct. */ 2492 regCurrent = ++pParse->nMem; 2493 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2494 if( pOrderBy ){ 2495 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2496 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2497 (char*)pKeyInfo, P4_KEYINFO); 2498 destQueue.pOrderBy = pOrderBy; 2499 }else{ 2500 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2501 } 2502 VdbeComment((v, "Queue table")); 2503 if( iDistinct ){ 2504 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2505 p->selFlags |= SF_UsesEphemeral; 2506 } 2507 2508 /* Detach the ORDER BY clause from the compound SELECT */ 2509 p->pOrderBy = 0; 2510 2511 /* Figure out how many elements of the compound SELECT are part of the 2512 ** recursive query. Make sure no recursive elements use aggregate 2513 ** functions. Mark the recursive elements as UNION ALL even if they 2514 ** are really UNION because the distinctness will be enforced by the 2515 ** iDistinct table. pFirstRec is left pointing to the left-most 2516 ** recursive term of the CTE. 2517 */ 2518 pFirstRec = p; 2519 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2520 if( pFirstRec->selFlags & SF_Aggregate ){ 2521 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2522 goto end_of_recursive_query; 2523 } 2524 pFirstRec->op = TK_ALL; 2525 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2526 } 2527 2528 /* Store the results of the setup-query in Queue. */ 2529 pSetup = pFirstRec->pPrior; 2530 pSetup->pNext = 0; 2531 ExplainQueryPlan((pParse, 1, "SETUP")); 2532 rc = sqlite3Select(pParse, pSetup, &destQueue); 2533 pSetup->pNext = p; 2534 if( rc ) goto end_of_recursive_query; 2535 2536 /* Find the next row in the Queue and output that row */ 2537 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2538 2539 /* Transfer the next row in Queue over to Current */ 2540 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2541 if( pOrderBy ){ 2542 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2543 }else{ 2544 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2545 } 2546 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2547 2548 /* Output the single row in Current */ 2549 addrCont = sqlite3VdbeMakeLabel(pParse); 2550 codeOffset(v, regOffset, addrCont); 2551 selectInnerLoop(pParse, p, iCurrent, 2552 0, 0, pDest, addrCont, addrBreak); 2553 if( regLimit ){ 2554 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2555 VdbeCoverage(v); 2556 } 2557 sqlite3VdbeResolveLabel(v, addrCont); 2558 2559 /* Execute the recursive SELECT taking the single row in Current as 2560 ** the value for the recursive-table. Store the results in the Queue. 2561 */ 2562 pFirstRec->pPrior = 0; 2563 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2564 sqlite3Select(pParse, p, &destQueue); 2565 assert( pFirstRec->pPrior==0 ); 2566 pFirstRec->pPrior = pSetup; 2567 2568 /* Keep running the loop until the Queue is empty */ 2569 sqlite3VdbeGoto(v, addrTop); 2570 sqlite3VdbeResolveLabel(v, addrBreak); 2571 2572 end_of_recursive_query: 2573 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2574 p->pOrderBy = pOrderBy; 2575 p->pLimit = pLimit; 2576 return; 2577 } 2578 #endif /* SQLITE_OMIT_CTE */ 2579 2580 /* Forward references */ 2581 static int multiSelectOrderBy( 2582 Parse *pParse, /* Parsing context */ 2583 Select *p, /* The right-most of SELECTs to be coded */ 2584 SelectDest *pDest /* What to do with query results */ 2585 ); 2586 2587 /* 2588 ** Handle the special case of a compound-select that originates from a 2589 ** VALUES clause. By handling this as a special case, we avoid deep 2590 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2591 ** on a VALUES clause. 2592 ** 2593 ** Because the Select object originates from a VALUES clause: 2594 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2595 ** (2) All terms are UNION ALL 2596 ** (3) There is no ORDER BY clause 2597 ** 2598 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2599 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2600 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2601 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2602 */ 2603 static int multiSelectValues( 2604 Parse *pParse, /* Parsing context */ 2605 Select *p, /* The right-most of SELECTs to be coded */ 2606 SelectDest *pDest /* What to do with query results */ 2607 ){ 2608 int nRow = 1; 2609 int rc = 0; 2610 int bShowAll = p->pLimit==0; 2611 assert( p->selFlags & SF_MultiValue ); 2612 do{ 2613 assert( p->selFlags & SF_Values ); 2614 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2615 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2616 #ifndef SQLITE_OMIT_WINDOWFUNC 2617 if( p->pWin ) return -1; 2618 #endif 2619 if( p->pPrior==0 ) break; 2620 assert( p->pPrior->pNext==p ); 2621 p = p->pPrior; 2622 nRow += bShowAll; 2623 }while(1); 2624 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2625 nRow==1 ? "" : "S")); 2626 while( p ){ 2627 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2628 if( !bShowAll ) break; 2629 p->nSelectRow = nRow; 2630 p = p->pNext; 2631 } 2632 return rc; 2633 } 2634 2635 /* 2636 ** Return true if the SELECT statement which is known to be the recursive 2637 ** part of a recursive CTE still has its anchor terms attached. If the 2638 ** anchor terms have already been removed, then return false. 2639 */ 2640 static int hasAnchor(Select *p){ 2641 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2642 return p!=0; 2643 } 2644 2645 /* 2646 ** This routine is called to process a compound query form from 2647 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2648 ** INTERSECT 2649 ** 2650 ** "p" points to the right-most of the two queries. the query on the 2651 ** left is p->pPrior. The left query could also be a compound query 2652 ** in which case this routine will be called recursively. 2653 ** 2654 ** The results of the total query are to be written into a destination 2655 ** of type eDest with parameter iParm. 2656 ** 2657 ** Example 1: Consider a three-way compound SQL statement. 2658 ** 2659 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2660 ** 2661 ** This statement is parsed up as follows: 2662 ** 2663 ** SELECT c FROM t3 2664 ** | 2665 ** `-----> SELECT b FROM t2 2666 ** | 2667 ** `------> SELECT a FROM t1 2668 ** 2669 ** The arrows in the diagram above represent the Select.pPrior pointer. 2670 ** So if this routine is called with p equal to the t3 query, then 2671 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2672 ** 2673 ** Notice that because of the way SQLite parses compound SELECTs, the 2674 ** individual selects always group from left to right. 2675 */ 2676 static int multiSelect( 2677 Parse *pParse, /* Parsing context */ 2678 Select *p, /* The right-most of SELECTs to be coded */ 2679 SelectDest *pDest /* What to do with query results */ 2680 ){ 2681 int rc = SQLITE_OK; /* Success code from a subroutine */ 2682 Select *pPrior; /* Another SELECT immediately to our left */ 2683 Vdbe *v; /* Generate code to this VDBE */ 2684 SelectDest dest; /* Alternative data destination */ 2685 Select *pDelete = 0; /* Chain of simple selects to delete */ 2686 sqlite3 *db; /* Database connection */ 2687 2688 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2689 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2690 */ 2691 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2692 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2693 assert( p->selFlags & SF_Compound ); 2694 db = pParse->db; 2695 pPrior = p->pPrior; 2696 dest = *pDest; 2697 assert( pPrior->pOrderBy==0 ); 2698 assert( pPrior->pLimit==0 ); 2699 2700 v = sqlite3GetVdbe(pParse); 2701 assert( v!=0 ); /* The VDBE already created by calling function */ 2702 2703 /* Create the destination temporary table if necessary 2704 */ 2705 if( dest.eDest==SRT_EphemTab ){ 2706 assert( p->pEList ); 2707 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2708 dest.eDest = SRT_Table; 2709 } 2710 2711 /* Special handling for a compound-select that originates as a VALUES clause. 2712 */ 2713 if( p->selFlags & SF_MultiValue ){ 2714 rc = multiSelectValues(pParse, p, &dest); 2715 if( rc>=0 ) goto multi_select_end; 2716 rc = SQLITE_OK; 2717 } 2718 2719 /* Make sure all SELECTs in the statement have the same number of elements 2720 ** in their result sets. 2721 */ 2722 assert( p->pEList && pPrior->pEList ); 2723 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2724 2725 #ifndef SQLITE_OMIT_CTE 2726 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2727 generateWithRecursiveQuery(pParse, p, &dest); 2728 }else 2729 #endif 2730 2731 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2732 */ 2733 if( p->pOrderBy ){ 2734 return multiSelectOrderBy(pParse, p, pDest); 2735 }else{ 2736 2737 #ifndef SQLITE_OMIT_EXPLAIN 2738 if( pPrior->pPrior==0 ){ 2739 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2740 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2741 } 2742 #endif 2743 2744 /* Generate code for the left and right SELECT statements. 2745 */ 2746 switch( p->op ){ 2747 case TK_ALL: { 2748 int addr = 0; 2749 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2750 assert( !pPrior->pLimit ); 2751 pPrior->iLimit = p->iLimit; 2752 pPrior->iOffset = p->iOffset; 2753 pPrior->pLimit = p->pLimit; 2754 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2755 rc = sqlite3Select(pParse, pPrior, &dest); 2756 pPrior->pLimit = 0; 2757 if( rc ){ 2758 goto multi_select_end; 2759 } 2760 p->pPrior = 0; 2761 p->iLimit = pPrior->iLimit; 2762 p->iOffset = pPrior->iOffset; 2763 if( p->iLimit ){ 2764 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2765 VdbeComment((v, "Jump ahead if LIMIT reached")); 2766 if( p->iOffset ){ 2767 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2768 p->iLimit, p->iOffset+1, p->iOffset); 2769 } 2770 } 2771 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2772 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2773 rc = sqlite3Select(pParse, p, &dest); 2774 testcase( rc!=SQLITE_OK ); 2775 pDelete = p->pPrior; 2776 p->pPrior = pPrior; 2777 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2778 if( p->pLimit 2779 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2780 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2781 ){ 2782 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2783 } 2784 if( addr ){ 2785 sqlite3VdbeJumpHere(v, addr); 2786 } 2787 break; 2788 } 2789 case TK_EXCEPT: 2790 case TK_UNION: { 2791 int unionTab; /* Cursor number of the temp table holding result */ 2792 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2793 int priorOp; /* The SRT_ operation to apply to prior selects */ 2794 Expr *pLimit; /* Saved values of p->nLimit */ 2795 int addr; 2796 SelectDest uniondest; 2797 2798 testcase( p->op==TK_EXCEPT ); 2799 testcase( p->op==TK_UNION ); 2800 priorOp = SRT_Union; 2801 if( dest.eDest==priorOp ){ 2802 /* We can reuse a temporary table generated by a SELECT to our 2803 ** right. 2804 */ 2805 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2806 unionTab = dest.iSDParm; 2807 }else{ 2808 /* We will need to create our own temporary table to hold the 2809 ** intermediate results. 2810 */ 2811 unionTab = pParse->nTab++; 2812 assert( p->pOrderBy==0 ); 2813 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2814 assert( p->addrOpenEphm[0] == -1 ); 2815 p->addrOpenEphm[0] = addr; 2816 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2817 assert( p->pEList ); 2818 } 2819 2820 2821 /* Code the SELECT statements to our left 2822 */ 2823 assert( !pPrior->pOrderBy ); 2824 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2825 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2826 rc = sqlite3Select(pParse, pPrior, &uniondest); 2827 if( rc ){ 2828 goto multi_select_end; 2829 } 2830 2831 /* Code the current SELECT statement 2832 */ 2833 if( p->op==TK_EXCEPT ){ 2834 op = SRT_Except; 2835 }else{ 2836 assert( p->op==TK_UNION ); 2837 op = SRT_Union; 2838 } 2839 p->pPrior = 0; 2840 pLimit = p->pLimit; 2841 p->pLimit = 0; 2842 uniondest.eDest = op; 2843 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2844 sqlite3SelectOpName(p->op))); 2845 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2846 rc = sqlite3Select(pParse, p, &uniondest); 2847 testcase( rc!=SQLITE_OK ); 2848 assert( p->pOrderBy==0 ); 2849 pDelete = p->pPrior; 2850 p->pPrior = pPrior; 2851 p->pOrderBy = 0; 2852 if( p->op==TK_UNION ){ 2853 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2854 } 2855 sqlite3ExprDelete(db, p->pLimit); 2856 p->pLimit = pLimit; 2857 p->iLimit = 0; 2858 p->iOffset = 0; 2859 2860 /* Convert the data in the temporary table into whatever form 2861 ** it is that we currently need. 2862 */ 2863 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2864 assert( p->pEList || db->mallocFailed ); 2865 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2866 int iCont, iBreak, iStart; 2867 iBreak = sqlite3VdbeMakeLabel(pParse); 2868 iCont = sqlite3VdbeMakeLabel(pParse); 2869 computeLimitRegisters(pParse, p, iBreak); 2870 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2871 iStart = sqlite3VdbeCurrentAddr(v); 2872 selectInnerLoop(pParse, p, unionTab, 2873 0, 0, &dest, iCont, iBreak); 2874 sqlite3VdbeResolveLabel(v, iCont); 2875 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2876 sqlite3VdbeResolveLabel(v, iBreak); 2877 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2878 } 2879 break; 2880 } 2881 default: assert( p->op==TK_INTERSECT ); { 2882 int tab1, tab2; 2883 int iCont, iBreak, iStart; 2884 Expr *pLimit; 2885 int addr; 2886 SelectDest intersectdest; 2887 int r1; 2888 2889 /* INTERSECT is different from the others since it requires 2890 ** two temporary tables. Hence it has its own case. Begin 2891 ** by allocating the tables we will need. 2892 */ 2893 tab1 = pParse->nTab++; 2894 tab2 = pParse->nTab++; 2895 assert( p->pOrderBy==0 ); 2896 2897 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2898 assert( p->addrOpenEphm[0] == -1 ); 2899 p->addrOpenEphm[0] = addr; 2900 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2901 assert( p->pEList ); 2902 2903 /* Code the SELECTs to our left into temporary table "tab1". 2904 */ 2905 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2906 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2907 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2908 if( rc ){ 2909 goto multi_select_end; 2910 } 2911 2912 /* Code the current SELECT into temporary table "tab2" 2913 */ 2914 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2915 assert( p->addrOpenEphm[1] == -1 ); 2916 p->addrOpenEphm[1] = addr; 2917 p->pPrior = 0; 2918 pLimit = p->pLimit; 2919 p->pLimit = 0; 2920 intersectdest.iSDParm = tab2; 2921 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2922 sqlite3SelectOpName(p->op))); 2923 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2924 rc = sqlite3Select(pParse, p, &intersectdest); 2925 testcase( rc!=SQLITE_OK ); 2926 pDelete = p->pPrior; 2927 p->pPrior = pPrior; 2928 if( p->nSelectRow>pPrior->nSelectRow ){ 2929 p->nSelectRow = pPrior->nSelectRow; 2930 } 2931 sqlite3ExprDelete(db, p->pLimit); 2932 p->pLimit = pLimit; 2933 2934 /* Generate code to take the intersection of the two temporary 2935 ** tables. 2936 */ 2937 if( rc ) break; 2938 assert( p->pEList ); 2939 iBreak = sqlite3VdbeMakeLabel(pParse); 2940 iCont = sqlite3VdbeMakeLabel(pParse); 2941 computeLimitRegisters(pParse, p, iBreak); 2942 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2943 r1 = sqlite3GetTempReg(pParse); 2944 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2945 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2946 VdbeCoverage(v); 2947 sqlite3ReleaseTempReg(pParse, r1); 2948 selectInnerLoop(pParse, p, tab1, 2949 0, 0, &dest, iCont, iBreak); 2950 sqlite3VdbeResolveLabel(v, iCont); 2951 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2952 sqlite3VdbeResolveLabel(v, iBreak); 2953 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2954 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2955 break; 2956 } 2957 } 2958 2959 #ifndef SQLITE_OMIT_EXPLAIN 2960 if( p->pNext==0 ){ 2961 ExplainQueryPlanPop(pParse); 2962 } 2963 #endif 2964 } 2965 if( pParse->nErr ) goto multi_select_end; 2966 2967 /* Compute collating sequences used by 2968 ** temporary tables needed to implement the compound select. 2969 ** Attach the KeyInfo structure to all temporary tables. 2970 ** 2971 ** This section is run by the right-most SELECT statement only. 2972 ** SELECT statements to the left always skip this part. The right-most 2973 ** SELECT might also skip this part if it has no ORDER BY clause and 2974 ** no temp tables are required. 2975 */ 2976 if( p->selFlags & SF_UsesEphemeral ){ 2977 int i; /* Loop counter */ 2978 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2979 Select *pLoop; /* For looping through SELECT statements */ 2980 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2981 int nCol; /* Number of columns in result set */ 2982 2983 assert( p->pNext==0 ); 2984 nCol = p->pEList->nExpr; 2985 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2986 if( !pKeyInfo ){ 2987 rc = SQLITE_NOMEM_BKPT; 2988 goto multi_select_end; 2989 } 2990 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2991 *apColl = multiSelectCollSeq(pParse, p, i); 2992 if( 0==*apColl ){ 2993 *apColl = db->pDfltColl; 2994 } 2995 } 2996 2997 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2998 for(i=0; i<2; i++){ 2999 int addr = pLoop->addrOpenEphm[i]; 3000 if( addr<0 ){ 3001 /* If [0] is unused then [1] is also unused. So we can 3002 ** always safely abort as soon as the first unused slot is found */ 3003 assert( pLoop->addrOpenEphm[1]<0 ); 3004 break; 3005 } 3006 sqlite3VdbeChangeP2(v, addr, nCol); 3007 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3008 P4_KEYINFO); 3009 pLoop->addrOpenEphm[i] = -1; 3010 } 3011 } 3012 sqlite3KeyInfoUnref(pKeyInfo); 3013 } 3014 3015 multi_select_end: 3016 pDest->iSdst = dest.iSdst; 3017 pDest->nSdst = dest.nSdst; 3018 if( pDelete ){ 3019 sqlite3ParserAddCleanup(pParse, 3020 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3021 pDelete); 3022 } 3023 return rc; 3024 } 3025 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3026 3027 /* 3028 ** Error message for when two or more terms of a compound select have different 3029 ** size result sets. 3030 */ 3031 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3032 if( p->selFlags & SF_Values ){ 3033 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3034 }else{ 3035 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3036 " do not have the same number of result columns", 3037 sqlite3SelectOpName(p->op)); 3038 } 3039 } 3040 3041 /* 3042 ** Code an output subroutine for a coroutine implementation of a 3043 ** SELECT statment. 3044 ** 3045 ** The data to be output is contained in pIn->iSdst. There are 3046 ** pIn->nSdst columns to be output. pDest is where the output should 3047 ** be sent. 3048 ** 3049 ** regReturn is the number of the register holding the subroutine 3050 ** return address. 3051 ** 3052 ** If regPrev>0 then it is the first register in a vector that 3053 ** records the previous output. mem[regPrev] is a flag that is false 3054 ** if there has been no previous output. If regPrev>0 then code is 3055 ** generated to suppress duplicates. pKeyInfo is used for comparing 3056 ** keys. 3057 ** 3058 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3059 ** iBreak. 3060 */ 3061 static int generateOutputSubroutine( 3062 Parse *pParse, /* Parsing context */ 3063 Select *p, /* The SELECT statement */ 3064 SelectDest *pIn, /* Coroutine supplying data */ 3065 SelectDest *pDest, /* Where to send the data */ 3066 int regReturn, /* The return address register */ 3067 int regPrev, /* Previous result register. No uniqueness if 0 */ 3068 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3069 int iBreak /* Jump here if we hit the LIMIT */ 3070 ){ 3071 Vdbe *v = pParse->pVdbe; 3072 int iContinue; 3073 int addr; 3074 3075 addr = sqlite3VdbeCurrentAddr(v); 3076 iContinue = sqlite3VdbeMakeLabel(pParse); 3077 3078 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3079 */ 3080 if( regPrev ){ 3081 int addr1, addr2; 3082 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3083 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3084 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3085 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3086 sqlite3VdbeJumpHere(v, addr1); 3087 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3088 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3089 } 3090 if( pParse->db->mallocFailed ) return 0; 3091 3092 /* Suppress the first OFFSET entries if there is an OFFSET clause 3093 */ 3094 codeOffset(v, p->iOffset, iContinue); 3095 3096 assert( pDest->eDest!=SRT_Exists ); 3097 assert( pDest->eDest!=SRT_Table ); 3098 switch( pDest->eDest ){ 3099 /* Store the result as data using a unique key. 3100 */ 3101 case SRT_EphemTab: { 3102 int r1 = sqlite3GetTempReg(pParse); 3103 int r2 = sqlite3GetTempReg(pParse); 3104 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3105 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3106 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3107 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3108 sqlite3ReleaseTempReg(pParse, r2); 3109 sqlite3ReleaseTempReg(pParse, r1); 3110 break; 3111 } 3112 3113 #ifndef SQLITE_OMIT_SUBQUERY 3114 /* If we are creating a set for an "expr IN (SELECT ...)". 3115 */ 3116 case SRT_Set: { 3117 int r1; 3118 testcase( pIn->nSdst>1 ); 3119 r1 = sqlite3GetTempReg(pParse); 3120 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3121 r1, pDest->zAffSdst, pIn->nSdst); 3122 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3123 pIn->iSdst, pIn->nSdst); 3124 sqlite3ReleaseTempReg(pParse, r1); 3125 break; 3126 } 3127 3128 /* If this is a scalar select that is part of an expression, then 3129 ** store the results in the appropriate memory cell and break out 3130 ** of the scan loop. Note that the select might return multiple columns 3131 ** if it is the RHS of a row-value IN operator. 3132 */ 3133 case SRT_Mem: { 3134 testcase( pIn->nSdst>1 ); 3135 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3136 /* The LIMIT clause will jump out of the loop for us */ 3137 break; 3138 } 3139 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3140 3141 /* The results are stored in a sequence of registers 3142 ** starting at pDest->iSdst. Then the co-routine yields. 3143 */ 3144 case SRT_Coroutine: { 3145 if( pDest->iSdst==0 ){ 3146 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3147 pDest->nSdst = pIn->nSdst; 3148 } 3149 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3150 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3151 break; 3152 } 3153 3154 /* If none of the above, then the result destination must be 3155 ** SRT_Output. This routine is never called with any other 3156 ** destination other than the ones handled above or SRT_Output. 3157 ** 3158 ** For SRT_Output, results are stored in a sequence of registers. 3159 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3160 ** return the next row of result. 3161 */ 3162 default: { 3163 assert( pDest->eDest==SRT_Output ); 3164 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3165 break; 3166 } 3167 } 3168 3169 /* Jump to the end of the loop if the LIMIT is reached. 3170 */ 3171 if( p->iLimit ){ 3172 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3173 } 3174 3175 /* Generate the subroutine return 3176 */ 3177 sqlite3VdbeResolveLabel(v, iContinue); 3178 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3179 3180 return addr; 3181 } 3182 3183 /* 3184 ** Alternative compound select code generator for cases when there 3185 ** is an ORDER BY clause. 3186 ** 3187 ** We assume a query of the following form: 3188 ** 3189 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3190 ** 3191 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3192 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3193 ** co-routines. Then run the co-routines in parallel and merge the results 3194 ** into the output. In addition to the two coroutines (called selectA and 3195 ** selectB) there are 7 subroutines: 3196 ** 3197 ** outA: Move the output of the selectA coroutine into the output 3198 ** of the compound query. 3199 ** 3200 ** outB: Move the output of the selectB coroutine into the output 3201 ** of the compound query. (Only generated for UNION and 3202 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3203 ** appears only in B.) 3204 ** 3205 ** AltB: Called when there is data from both coroutines and A<B. 3206 ** 3207 ** AeqB: Called when there is data from both coroutines and A==B. 3208 ** 3209 ** AgtB: Called when there is data from both coroutines and A>B. 3210 ** 3211 ** EofA: Called when data is exhausted from selectA. 3212 ** 3213 ** EofB: Called when data is exhausted from selectB. 3214 ** 3215 ** The implementation of the latter five subroutines depend on which 3216 ** <operator> is used: 3217 ** 3218 ** 3219 ** UNION ALL UNION EXCEPT INTERSECT 3220 ** ------------- ----------------- -------------- ----------------- 3221 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3222 ** 3223 ** AeqB: outA, nextA nextA nextA outA, nextA 3224 ** 3225 ** AgtB: outB, nextB outB, nextB nextB nextB 3226 ** 3227 ** EofA: outB, nextB outB, nextB halt halt 3228 ** 3229 ** EofB: outA, nextA outA, nextA outA, nextA halt 3230 ** 3231 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3232 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3233 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3234 ** following nextX causes a jump to the end of the select processing. 3235 ** 3236 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3237 ** within the output subroutine. The regPrev register set holds the previously 3238 ** output value. A comparison is made against this value and the output 3239 ** is skipped if the next results would be the same as the previous. 3240 ** 3241 ** The implementation plan is to implement the two coroutines and seven 3242 ** subroutines first, then put the control logic at the bottom. Like this: 3243 ** 3244 ** goto Init 3245 ** coA: coroutine for left query (A) 3246 ** coB: coroutine for right query (B) 3247 ** outA: output one row of A 3248 ** outB: output one row of B (UNION and UNION ALL only) 3249 ** EofA: ... 3250 ** EofB: ... 3251 ** AltB: ... 3252 ** AeqB: ... 3253 ** AgtB: ... 3254 ** Init: initialize coroutine registers 3255 ** yield coA 3256 ** if eof(A) goto EofA 3257 ** yield coB 3258 ** if eof(B) goto EofB 3259 ** Cmpr: Compare A, B 3260 ** Jump AltB, AeqB, AgtB 3261 ** End: ... 3262 ** 3263 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3264 ** actually called using Gosub and they do not Return. EofA and EofB loop 3265 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3266 ** and AgtB jump to either L2 or to one of EofA or EofB. 3267 */ 3268 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3269 static int multiSelectOrderBy( 3270 Parse *pParse, /* Parsing context */ 3271 Select *p, /* The right-most of SELECTs to be coded */ 3272 SelectDest *pDest /* What to do with query results */ 3273 ){ 3274 int i, j; /* Loop counters */ 3275 Select *pPrior; /* Another SELECT immediately to our left */ 3276 Vdbe *v; /* Generate code to this VDBE */ 3277 SelectDest destA; /* Destination for coroutine A */ 3278 SelectDest destB; /* Destination for coroutine B */ 3279 int regAddrA; /* Address register for select-A coroutine */ 3280 int regAddrB; /* Address register for select-B coroutine */ 3281 int addrSelectA; /* Address of the select-A coroutine */ 3282 int addrSelectB; /* Address of the select-B coroutine */ 3283 int regOutA; /* Address register for the output-A subroutine */ 3284 int regOutB; /* Address register for the output-B subroutine */ 3285 int addrOutA; /* Address of the output-A subroutine */ 3286 int addrOutB = 0; /* Address of the output-B subroutine */ 3287 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3288 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3289 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3290 int addrAltB; /* Address of the A<B subroutine */ 3291 int addrAeqB; /* Address of the A==B subroutine */ 3292 int addrAgtB; /* Address of the A>B subroutine */ 3293 int regLimitA; /* Limit register for select-A */ 3294 int regLimitB; /* Limit register for select-A */ 3295 int regPrev; /* A range of registers to hold previous output */ 3296 int savedLimit; /* Saved value of p->iLimit */ 3297 int savedOffset; /* Saved value of p->iOffset */ 3298 int labelCmpr; /* Label for the start of the merge algorithm */ 3299 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3300 int addr1; /* Jump instructions that get retargetted */ 3301 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3302 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3303 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3304 sqlite3 *db; /* Database connection */ 3305 ExprList *pOrderBy; /* The ORDER BY clause */ 3306 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3307 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3308 3309 assert( p->pOrderBy!=0 ); 3310 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3311 db = pParse->db; 3312 v = pParse->pVdbe; 3313 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3314 labelEnd = sqlite3VdbeMakeLabel(pParse); 3315 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3316 3317 3318 /* Patch up the ORDER BY clause 3319 */ 3320 op = p->op; 3321 pPrior = p->pPrior; 3322 assert( pPrior->pOrderBy==0 ); 3323 pOrderBy = p->pOrderBy; 3324 assert( pOrderBy ); 3325 nOrderBy = pOrderBy->nExpr; 3326 3327 /* For operators other than UNION ALL we have to make sure that 3328 ** the ORDER BY clause covers every term of the result set. Add 3329 ** terms to the ORDER BY clause as necessary. 3330 */ 3331 if( op!=TK_ALL ){ 3332 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3333 struct ExprList_item *pItem; 3334 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3335 assert( pItem->u.x.iOrderByCol>0 ); 3336 if( pItem->u.x.iOrderByCol==i ) break; 3337 } 3338 if( j==nOrderBy ){ 3339 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3340 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3341 pNew->flags |= EP_IntValue; 3342 pNew->u.iValue = i; 3343 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3344 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3345 } 3346 } 3347 } 3348 3349 /* Compute the comparison permutation and keyinfo that is used with 3350 ** the permutation used to determine if the next 3351 ** row of results comes from selectA or selectB. Also add explicit 3352 ** collations to the ORDER BY clause terms so that when the subqueries 3353 ** to the right and the left are evaluated, they use the correct 3354 ** collation. 3355 */ 3356 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3357 if( aPermute ){ 3358 struct ExprList_item *pItem; 3359 aPermute[0] = nOrderBy; 3360 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3361 assert( pItem->u.x.iOrderByCol>0 ); 3362 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3363 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3364 } 3365 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3366 }else{ 3367 pKeyMerge = 0; 3368 } 3369 3370 /* Reattach the ORDER BY clause to the query. 3371 */ 3372 p->pOrderBy = pOrderBy; 3373 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3374 3375 /* Allocate a range of temporary registers and the KeyInfo needed 3376 ** for the logic that removes duplicate result rows when the 3377 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3378 */ 3379 if( op==TK_ALL ){ 3380 regPrev = 0; 3381 }else{ 3382 int nExpr = p->pEList->nExpr; 3383 assert( nOrderBy>=nExpr || db->mallocFailed ); 3384 regPrev = pParse->nMem+1; 3385 pParse->nMem += nExpr+1; 3386 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3387 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3388 if( pKeyDup ){ 3389 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3390 for(i=0; i<nExpr; i++){ 3391 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3392 pKeyDup->aSortFlags[i] = 0; 3393 } 3394 } 3395 } 3396 3397 /* Separate the left and the right query from one another 3398 */ 3399 p->pPrior = 0; 3400 pPrior->pNext = 0; 3401 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3402 if( pPrior->pPrior==0 ){ 3403 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3404 } 3405 3406 /* Compute the limit registers */ 3407 computeLimitRegisters(pParse, p, labelEnd); 3408 if( p->iLimit && op==TK_ALL ){ 3409 regLimitA = ++pParse->nMem; 3410 regLimitB = ++pParse->nMem; 3411 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3412 regLimitA); 3413 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3414 }else{ 3415 regLimitA = regLimitB = 0; 3416 } 3417 sqlite3ExprDelete(db, p->pLimit); 3418 p->pLimit = 0; 3419 3420 regAddrA = ++pParse->nMem; 3421 regAddrB = ++pParse->nMem; 3422 regOutA = ++pParse->nMem; 3423 regOutB = ++pParse->nMem; 3424 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3425 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3426 3427 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3428 3429 /* Generate a coroutine to evaluate the SELECT statement to the 3430 ** left of the compound operator - the "A" select. 3431 */ 3432 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3433 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3434 VdbeComment((v, "left SELECT")); 3435 pPrior->iLimit = regLimitA; 3436 ExplainQueryPlan((pParse, 1, "LEFT")); 3437 sqlite3Select(pParse, pPrior, &destA); 3438 sqlite3VdbeEndCoroutine(v, regAddrA); 3439 sqlite3VdbeJumpHere(v, addr1); 3440 3441 /* Generate a coroutine to evaluate the SELECT statement on 3442 ** the right - the "B" select 3443 */ 3444 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3445 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3446 VdbeComment((v, "right SELECT")); 3447 savedLimit = p->iLimit; 3448 savedOffset = p->iOffset; 3449 p->iLimit = regLimitB; 3450 p->iOffset = 0; 3451 ExplainQueryPlan((pParse, 1, "RIGHT")); 3452 sqlite3Select(pParse, p, &destB); 3453 p->iLimit = savedLimit; 3454 p->iOffset = savedOffset; 3455 sqlite3VdbeEndCoroutine(v, regAddrB); 3456 3457 /* Generate a subroutine that outputs the current row of the A 3458 ** select as the next output row of the compound select. 3459 */ 3460 VdbeNoopComment((v, "Output routine for A")); 3461 addrOutA = generateOutputSubroutine(pParse, 3462 p, &destA, pDest, regOutA, 3463 regPrev, pKeyDup, labelEnd); 3464 3465 /* Generate a subroutine that outputs the current row of the B 3466 ** select as the next output row of the compound select. 3467 */ 3468 if( op==TK_ALL || op==TK_UNION ){ 3469 VdbeNoopComment((v, "Output routine for B")); 3470 addrOutB = generateOutputSubroutine(pParse, 3471 p, &destB, pDest, regOutB, 3472 regPrev, pKeyDup, labelEnd); 3473 } 3474 sqlite3KeyInfoUnref(pKeyDup); 3475 3476 /* Generate a subroutine to run when the results from select A 3477 ** are exhausted and only data in select B remains. 3478 */ 3479 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3480 addrEofA_noB = addrEofA = labelEnd; 3481 }else{ 3482 VdbeNoopComment((v, "eof-A subroutine")); 3483 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3484 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3485 VdbeCoverage(v); 3486 sqlite3VdbeGoto(v, addrEofA); 3487 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3488 } 3489 3490 /* Generate a subroutine to run when the results from select B 3491 ** are exhausted and only data in select A remains. 3492 */ 3493 if( op==TK_INTERSECT ){ 3494 addrEofB = addrEofA; 3495 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3496 }else{ 3497 VdbeNoopComment((v, "eof-B subroutine")); 3498 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3499 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3500 sqlite3VdbeGoto(v, addrEofB); 3501 } 3502 3503 /* Generate code to handle the case of A<B 3504 */ 3505 VdbeNoopComment((v, "A-lt-B subroutine")); 3506 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3507 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3508 sqlite3VdbeGoto(v, labelCmpr); 3509 3510 /* Generate code to handle the case of A==B 3511 */ 3512 if( op==TK_ALL ){ 3513 addrAeqB = addrAltB; 3514 }else if( op==TK_INTERSECT ){ 3515 addrAeqB = addrAltB; 3516 addrAltB++; 3517 }else{ 3518 VdbeNoopComment((v, "A-eq-B subroutine")); 3519 addrAeqB = 3520 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3521 sqlite3VdbeGoto(v, labelCmpr); 3522 } 3523 3524 /* Generate code to handle the case of A>B 3525 */ 3526 VdbeNoopComment((v, "A-gt-B subroutine")); 3527 addrAgtB = sqlite3VdbeCurrentAddr(v); 3528 if( op==TK_ALL || op==TK_UNION ){ 3529 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3530 } 3531 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3532 sqlite3VdbeGoto(v, labelCmpr); 3533 3534 /* This code runs once to initialize everything. 3535 */ 3536 sqlite3VdbeJumpHere(v, addr1); 3537 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3538 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3539 3540 /* Implement the main merge loop 3541 */ 3542 sqlite3VdbeResolveLabel(v, labelCmpr); 3543 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3544 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3545 (char*)pKeyMerge, P4_KEYINFO); 3546 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3547 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3548 3549 /* Jump to the this point in order to terminate the query. 3550 */ 3551 sqlite3VdbeResolveLabel(v, labelEnd); 3552 3553 /* Reassembly the compound query so that it will be freed correctly 3554 ** by the calling function */ 3555 if( p->pPrior ){ 3556 sqlite3SelectDelete(db, p->pPrior); 3557 } 3558 p->pPrior = pPrior; 3559 pPrior->pNext = p; 3560 3561 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3562 pPrior->pOrderBy = 0; 3563 3564 /*** TBD: Insert subroutine calls to close cursors on incomplete 3565 **** subqueries ****/ 3566 ExplainQueryPlanPop(pParse); 3567 return pParse->nErr!=0; 3568 } 3569 #endif 3570 3571 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3572 3573 /* An instance of the SubstContext object describes an substitution edit 3574 ** to be performed on a parse tree. 3575 ** 3576 ** All references to columns in table iTable are to be replaced by corresponding 3577 ** expressions in pEList. 3578 */ 3579 typedef struct SubstContext { 3580 Parse *pParse; /* The parsing context */ 3581 int iTable; /* Replace references to this table */ 3582 int iNewTable; /* New table number */ 3583 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3584 ExprList *pEList; /* Replacement expressions */ 3585 } SubstContext; 3586 3587 /* Forward Declarations */ 3588 static void substExprList(SubstContext*, ExprList*); 3589 static void substSelect(SubstContext*, Select*, int); 3590 3591 /* 3592 ** Scan through the expression pExpr. Replace every reference to 3593 ** a column in table number iTable with a copy of the iColumn-th 3594 ** entry in pEList. (But leave references to the ROWID column 3595 ** unchanged.) 3596 ** 3597 ** This routine is part of the flattening procedure. A subquery 3598 ** whose result set is defined by pEList appears as entry in the 3599 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3600 ** FORM clause entry is iTable. This routine makes the necessary 3601 ** changes to pExpr so that it refers directly to the source table 3602 ** of the subquery rather the result set of the subquery. 3603 */ 3604 static Expr *substExpr( 3605 SubstContext *pSubst, /* Description of the substitution */ 3606 Expr *pExpr /* Expr in which substitution occurs */ 3607 ){ 3608 if( pExpr==0 ) return 0; 3609 if( ExprHasProperty(pExpr, EP_FromJoin) 3610 && pExpr->iRightJoinTable==pSubst->iTable 3611 ){ 3612 pExpr->iRightJoinTable = pSubst->iNewTable; 3613 } 3614 if( pExpr->op==TK_COLUMN 3615 && pExpr->iTable==pSubst->iTable 3616 && !ExprHasProperty(pExpr, EP_FixedCol) 3617 ){ 3618 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3619 if( pExpr->iColumn<0 ){ 3620 pExpr->op = TK_NULL; 3621 }else 3622 #endif 3623 { 3624 Expr *pNew; 3625 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3626 Expr ifNullRow; 3627 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3628 assert( pExpr->pRight==0 ); 3629 if( sqlite3ExprIsVector(pCopy) ){ 3630 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3631 }else{ 3632 sqlite3 *db = pSubst->pParse->db; 3633 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3634 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3635 ifNullRow.op = TK_IF_NULL_ROW; 3636 ifNullRow.pLeft = pCopy; 3637 ifNullRow.iTable = pSubst->iNewTable; 3638 ifNullRow.flags = EP_IfNullRow; 3639 pCopy = &ifNullRow; 3640 } 3641 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3642 pNew = sqlite3ExprDup(db, pCopy, 0); 3643 if( db->mallocFailed ){ 3644 sqlite3ExprDelete(db, pNew); 3645 return pExpr; 3646 } 3647 if( pSubst->isLeftJoin ){ 3648 ExprSetProperty(pNew, EP_CanBeNull); 3649 } 3650 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3651 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3652 } 3653 sqlite3ExprDelete(db, pExpr); 3654 pExpr = pNew; 3655 3656 /* Ensure that the expression now has an implicit collation sequence, 3657 ** just as it did when it was a column of a view or sub-query. */ 3658 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3659 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3660 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3661 (pColl ? pColl->zName : "BINARY") 3662 ); 3663 } 3664 ExprClearProperty(pExpr, EP_Collate); 3665 } 3666 } 3667 }else{ 3668 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3669 pExpr->iTable = pSubst->iNewTable; 3670 } 3671 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3672 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3673 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3674 substSelect(pSubst, pExpr->x.pSelect, 1); 3675 }else{ 3676 substExprList(pSubst, pExpr->x.pList); 3677 } 3678 #ifndef SQLITE_OMIT_WINDOWFUNC 3679 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3680 Window *pWin = pExpr->y.pWin; 3681 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3682 substExprList(pSubst, pWin->pPartition); 3683 substExprList(pSubst, pWin->pOrderBy); 3684 } 3685 #endif 3686 } 3687 return pExpr; 3688 } 3689 static void substExprList( 3690 SubstContext *pSubst, /* Description of the substitution */ 3691 ExprList *pList /* List to scan and in which to make substitutes */ 3692 ){ 3693 int i; 3694 if( pList==0 ) return; 3695 for(i=0; i<pList->nExpr; i++){ 3696 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3697 } 3698 } 3699 static void substSelect( 3700 SubstContext *pSubst, /* Description of the substitution */ 3701 Select *p, /* SELECT statement in which to make substitutions */ 3702 int doPrior /* Do substitutes on p->pPrior too */ 3703 ){ 3704 SrcList *pSrc; 3705 SrcItem *pItem; 3706 int i; 3707 if( !p ) return; 3708 do{ 3709 substExprList(pSubst, p->pEList); 3710 substExprList(pSubst, p->pGroupBy); 3711 substExprList(pSubst, p->pOrderBy); 3712 p->pHaving = substExpr(pSubst, p->pHaving); 3713 p->pWhere = substExpr(pSubst, p->pWhere); 3714 pSrc = p->pSrc; 3715 assert( pSrc!=0 ); 3716 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3717 substSelect(pSubst, pItem->pSelect, 1); 3718 if( pItem->fg.isTabFunc ){ 3719 substExprList(pSubst, pItem->u1.pFuncArg); 3720 } 3721 } 3722 }while( doPrior && (p = p->pPrior)!=0 ); 3723 } 3724 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3725 3726 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3727 /* 3728 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3729 ** clause of that SELECT. 3730 ** 3731 ** This routine scans the entire SELECT statement and recomputes the 3732 ** pSrcItem->colUsed mask. 3733 */ 3734 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3735 SrcItem *pItem; 3736 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3737 pItem = pWalker->u.pSrcItem; 3738 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3739 if( pExpr->iColumn<0 ) return WRC_Continue; 3740 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3741 return WRC_Continue; 3742 } 3743 static void recomputeColumnsUsed( 3744 Select *pSelect, /* The complete SELECT statement */ 3745 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3746 ){ 3747 Walker w; 3748 if( NEVER(pSrcItem->pTab==0) ) return; 3749 memset(&w, 0, sizeof(w)); 3750 w.xExprCallback = recomputeColumnsUsedExpr; 3751 w.xSelectCallback = sqlite3SelectWalkNoop; 3752 w.u.pSrcItem = pSrcItem; 3753 pSrcItem->colUsed = 0; 3754 sqlite3WalkSelect(&w, pSelect); 3755 } 3756 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3757 3758 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3759 /* 3760 ** Assign new cursor numbers to each of the items in pSrc. For each 3761 ** new cursor number assigned, set an entry in the aCsrMap[] array 3762 ** to map the old cursor number to the new: 3763 ** 3764 ** aCsrMap[iOld+1] = iNew; 3765 ** 3766 ** The array is guaranteed by the caller to be large enough for all 3767 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3768 ** 3769 ** If pSrc contains any sub-selects, call this routine recursively 3770 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3771 */ 3772 static void srclistRenumberCursors( 3773 Parse *pParse, /* Parse context */ 3774 int *aCsrMap, /* Array to store cursor mappings in */ 3775 SrcList *pSrc, /* FROM clause to renumber */ 3776 int iExcept /* FROM clause item to skip */ 3777 ){ 3778 int i; 3779 SrcItem *pItem; 3780 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3781 if( i!=iExcept ){ 3782 Select *p; 3783 assert( pItem->iCursor < aCsrMap[0] ); 3784 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3785 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3786 } 3787 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3788 for(p=pItem->pSelect; p; p=p->pPrior){ 3789 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3790 } 3791 } 3792 } 3793 } 3794 3795 /* 3796 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3797 */ 3798 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3799 int *aCsrMap = pWalker->u.aiCol; 3800 int iCsr = *piCursor; 3801 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3802 *piCursor = aCsrMap[iCsr+1]; 3803 } 3804 } 3805 3806 /* 3807 ** Expression walker callback used by renumberCursors() to update 3808 ** Expr objects to match newly assigned cursor numbers. 3809 */ 3810 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3811 int op = pExpr->op; 3812 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3813 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3814 } 3815 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3816 renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable); 3817 } 3818 return WRC_Continue; 3819 } 3820 3821 /* 3822 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3823 ** of the SELECT statement passed as the second argument, and to each 3824 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3825 ** Except, do not assign a new cursor number to the iExcept'th element in 3826 ** the FROM clause of (*p). Update all expressions and other references 3827 ** to refer to the new cursor numbers. 3828 ** 3829 ** Argument aCsrMap is an array that may be used for temporary working 3830 ** space. Two guarantees are made by the caller: 3831 ** 3832 ** * the array is larger than the largest cursor number used within the 3833 ** select statement passed as an argument, and 3834 ** 3835 ** * the array entries for all cursor numbers that do *not* appear in 3836 ** FROM clauses of the select statement as described above are 3837 ** initialized to zero. 3838 */ 3839 static void renumberCursors( 3840 Parse *pParse, /* Parse context */ 3841 Select *p, /* Select to renumber cursors within */ 3842 int iExcept, /* FROM clause item to skip */ 3843 int *aCsrMap /* Working space */ 3844 ){ 3845 Walker w; 3846 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3847 memset(&w, 0, sizeof(w)); 3848 w.u.aiCol = aCsrMap; 3849 w.xExprCallback = renumberCursorsCb; 3850 w.xSelectCallback = sqlite3SelectWalkNoop; 3851 sqlite3WalkSelect(&w, p); 3852 } 3853 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3854 3855 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3856 /* 3857 ** This routine attempts to flatten subqueries as a performance optimization. 3858 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3859 ** 3860 ** To understand the concept of flattening, consider the following 3861 ** query: 3862 ** 3863 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3864 ** 3865 ** The default way of implementing this query is to execute the 3866 ** subquery first and store the results in a temporary table, then 3867 ** run the outer query on that temporary table. This requires two 3868 ** passes over the data. Furthermore, because the temporary table 3869 ** has no indices, the WHERE clause on the outer query cannot be 3870 ** optimized. 3871 ** 3872 ** This routine attempts to rewrite queries such as the above into 3873 ** a single flat select, like this: 3874 ** 3875 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3876 ** 3877 ** The code generated for this simplification gives the same result 3878 ** but only has to scan the data once. And because indices might 3879 ** exist on the table t1, a complete scan of the data might be 3880 ** avoided. 3881 ** 3882 ** Flattening is subject to the following constraints: 3883 ** 3884 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3885 ** The subquery and the outer query cannot both be aggregates. 3886 ** 3887 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3888 ** (2) If the subquery is an aggregate then 3889 ** (2a) the outer query must not be a join and 3890 ** (2b) the outer query must not use subqueries 3891 ** other than the one FROM-clause subquery that is a candidate 3892 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3893 ** from 2015-02-09.) 3894 ** 3895 ** (3) If the subquery is the right operand of a LEFT JOIN then 3896 ** (3a) the subquery may not be a join and 3897 ** (3b) the FROM clause of the subquery may not contain a virtual 3898 ** table and 3899 ** (3c) the outer query may not be an aggregate. 3900 ** (3d) the outer query may not be DISTINCT. 3901 ** 3902 ** (4) The subquery can not be DISTINCT. 3903 ** 3904 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3905 ** sub-queries that were excluded from this optimization. Restriction 3906 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3907 ** 3908 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3909 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3910 ** 3911 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3912 ** A FROM clause, consider adding a FROM clause with the special 3913 ** table sqlite_once that consists of a single row containing a 3914 ** single NULL. 3915 ** 3916 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3917 ** 3918 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3919 ** 3920 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3921 ** accidently carried the comment forward until 2014-09-15. Original 3922 ** constraint: "If the subquery is aggregate then the outer query 3923 ** may not use LIMIT." 3924 ** 3925 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3926 ** 3927 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3928 ** a separate restriction deriving from ticket #350. 3929 ** 3930 ** (13) The subquery and outer query may not both use LIMIT. 3931 ** 3932 ** (14) The subquery may not use OFFSET. 3933 ** 3934 ** (15) If the outer query is part of a compound select, then the 3935 ** subquery may not use LIMIT. 3936 ** (See ticket #2339 and ticket [02a8e81d44]). 3937 ** 3938 ** (16) If the outer query is aggregate, then the subquery may not 3939 ** use ORDER BY. (Ticket #2942) This used to not matter 3940 ** until we introduced the group_concat() function. 3941 ** 3942 ** (17) If the subquery is a compound select, then 3943 ** (17a) all compound operators must be a UNION ALL, and 3944 ** (17b) no terms within the subquery compound may be aggregate 3945 ** or DISTINCT, and 3946 ** (17c) every term within the subquery compound must have a FROM clause 3947 ** (17d) the outer query may not be 3948 ** (17d1) aggregate, or 3949 ** (17d2) DISTINCT 3950 ** (17e) the subquery may not contain window functions, and 3951 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3952 ** 3953 ** The parent and sub-query may contain WHERE clauses. Subject to 3954 ** rules (11), (13) and (14), they may also contain ORDER BY, 3955 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3956 ** operator other than UNION ALL because all the other compound 3957 ** operators have an implied DISTINCT which is disallowed by 3958 ** restriction (4). 3959 ** 3960 ** Also, each component of the sub-query must return the same number 3961 ** of result columns. This is actually a requirement for any compound 3962 ** SELECT statement, but all the code here does is make sure that no 3963 ** such (illegal) sub-query is flattened. The caller will detect the 3964 ** syntax error and return a detailed message. 3965 ** 3966 ** (18) If the sub-query is a compound select, then all terms of the 3967 ** ORDER BY clause of the parent must be copies of a term returned 3968 ** by the parent query. 3969 ** 3970 ** (19) If the subquery uses LIMIT then the outer query may not 3971 ** have a WHERE clause. 3972 ** 3973 ** (20) If the sub-query is a compound select, then it must not use 3974 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3975 ** somewhat by saying that the terms of the ORDER BY clause must 3976 ** appear as unmodified result columns in the outer query. But we 3977 ** have other optimizations in mind to deal with that case. 3978 ** 3979 ** (21) If the subquery uses LIMIT then the outer query may not be 3980 ** DISTINCT. (See ticket [752e1646fc]). 3981 ** 3982 ** (22) The subquery may not be a recursive CTE. 3983 ** 3984 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3985 ** a compound query. This restriction is because transforming the 3986 ** parent to a compound query confuses the code that handles 3987 ** recursive queries in multiSelect(). 3988 ** 3989 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3990 ** The subquery may not be an aggregate that uses the built-in min() or 3991 ** or max() functions. (Without this restriction, a query like: 3992 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3993 ** return the value X for which Y was maximal.) 3994 ** 3995 ** (25) If either the subquery or the parent query contains a window 3996 ** function in the select list or ORDER BY clause, flattening 3997 ** is not attempted. 3998 ** 3999 ** 4000 ** In this routine, the "p" parameter is a pointer to the outer query. 4001 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4002 ** uses aggregates. 4003 ** 4004 ** If flattening is not attempted, this routine is a no-op and returns 0. 4005 ** If flattening is attempted this routine returns 1. 4006 ** 4007 ** All of the expression analysis must occur on both the outer query and 4008 ** the subquery before this routine runs. 4009 */ 4010 static int flattenSubquery( 4011 Parse *pParse, /* Parsing context */ 4012 Select *p, /* The parent or outer SELECT statement */ 4013 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4014 int isAgg /* True if outer SELECT uses aggregate functions */ 4015 ){ 4016 const char *zSavedAuthContext = pParse->zAuthContext; 4017 Select *pParent; /* Current UNION ALL term of the other query */ 4018 Select *pSub; /* The inner query or "subquery" */ 4019 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4020 SrcList *pSrc; /* The FROM clause of the outer query */ 4021 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4022 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4023 int iNewParent = -1;/* Replacement table for iParent */ 4024 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4025 int i; /* Loop counter */ 4026 Expr *pWhere; /* The WHERE clause */ 4027 SrcItem *pSubitem; /* The subquery */ 4028 sqlite3 *db = pParse->db; 4029 Walker w; /* Walker to persist agginfo data */ 4030 int *aCsrMap = 0; 4031 4032 /* Check to see if flattening is permitted. Return 0 if not. 4033 */ 4034 assert( p!=0 ); 4035 assert( p->pPrior==0 ); 4036 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4037 pSrc = p->pSrc; 4038 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4039 pSubitem = &pSrc->a[iFrom]; 4040 iParent = pSubitem->iCursor; 4041 pSub = pSubitem->pSelect; 4042 assert( pSub!=0 ); 4043 4044 #ifndef SQLITE_OMIT_WINDOWFUNC 4045 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4046 #endif 4047 4048 pSubSrc = pSub->pSrc; 4049 assert( pSubSrc ); 4050 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4051 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4052 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4053 ** became arbitrary expressions, we were forced to add restrictions (13) 4054 ** and (14). */ 4055 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4056 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4057 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4058 return 0; /* Restriction (15) */ 4059 } 4060 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4061 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4062 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4063 return 0; /* Restrictions (8)(9) */ 4064 } 4065 if( p->pOrderBy && pSub->pOrderBy ){ 4066 return 0; /* Restriction (11) */ 4067 } 4068 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4069 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4070 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4071 return 0; /* Restriction (21) */ 4072 } 4073 if( pSub->selFlags & (SF_Recursive) ){ 4074 return 0; /* Restrictions (22) */ 4075 } 4076 4077 /* 4078 ** If the subquery is the right operand of a LEFT JOIN, then the 4079 ** subquery may not be a join itself (3a). Example of why this is not 4080 ** allowed: 4081 ** 4082 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4083 ** 4084 ** If we flatten the above, we would get 4085 ** 4086 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4087 ** 4088 ** which is not at all the same thing. 4089 ** 4090 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4091 ** query cannot be an aggregate. (3c) This is an artifact of the way 4092 ** aggregates are processed - there is no mechanism to determine if 4093 ** the LEFT JOIN table should be all-NULL. 4094 ** 4095 ** See also tickets #306, #350, and #3300. 4096 */ 4097 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4098 isLeftJoin = 1; 4099 if( pSubSrc->nSrc>1 /* (3a) */ 4100 || isAgg /* (3b) */ 4101 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4102 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4103 ){ 4104 return 0; 4105 } 4106 } 4107 #ifdef SQLITE_EXTRA_IFNULLROW 4108 else if( iFrom>0 && !isAgg ){ 4109 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4110 ** every reference to any result column from subquery in a join, even 4111 ** though they are not necessary. This will stress-test the OP_IfNullRow 4112 ** opcode. */ 4113 isLeftJoin = -1; 4114 } 4115 #endif 4116 4117 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4118 ** use only the UNION ALL operator. And none of the simple select queries 4119 ** that make up the compound SELECT are allowed to be aggregate or distinct 4120 ** queries. 4121 */ 4122 if( pSub->pPrior ){ 4123 if( pSub->pOrderBy ){ 4124 return 0; /* Restriction (20) */ 4125 } 4126 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4127 return 0; /* (17d1), (17d2), or (17f) */ 4128 } 4129 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4130 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4131 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4132 assert( pSub->pSrc!=0 ); 4133 assert( (pSub->selFlags & SF_Recursive)==0 ); 4134 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4135 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4136 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4137 || pSub1->pSrc->nSrc<1 /* (17c) */ 4138 #ifndef SQLITE_OMIT_WINDOWFUNC 4139 || pSub1->pWin /* (17e) */ 4140 #endif 4141 ){ 4142 return 0; 4143 } 4144 testcase( pSub1->pSrc->nSrc>1 ); 4145 } 4146 4147 /* Restriction (18). */ 4148 if( p->pOrderBy ){ 4149 int ii; 4150 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4151 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4152 } 4153 } 4154 4155 /* Restriction (23) */ 4156 if( (p->selFlags & SF_Recursive) ) return 0; 4157 4158 if( pSrc->nSrc>1 ){ 4159 if( pParse->nSelect>500 ) return 0; 4160 aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int)); 4161 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4162 } 4163 } 4164 4165 /***** If we reach this point, flattening is permitted. *****/ 4166 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4167 pSub->selId, pSub, iFrom)); 4168 4169 /* Authorize the subquery */ 4170 pParse->zAuthContext = pSubitem->zName; 4171 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4172 testcase( i==SQLITE_DENY ); 4173 pParse->zAuthContext = zSavedAuthContext; 4174 4175 /* Delete the transient structures associated with thesubquery */ 4176 pSub1 = pSubitem->pSelect; 4177 sqlite3DbFree(db, pSubitem->zDatabase); 4178 sqlite3DbFree(db, pSubitem->zName); 4179 sqlite3DbFree(db, pSubitem->zAlias); 4180 pSubitem->zDatabase = 0; 4181 pSubitem->zName = 0; 4182 pSubitem->zAlias = 0; 4183 pSubitem->pSelect = 0; 4184 assert( pSubitem->pOn==0 ); 4185 4186 /* If the sub-query is a compound SELECT statement, then (by restrictions 4187 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4188 ** be of the form: 4189 ** 4190 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4191 ** 4192 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4193 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4194 ** OFFSET clauses and joins them to the left-hand-side of the original 4195 ** using UNION ALL operators. In this case N is the number of simple 4196 ** select statements in the compound sub-query. 4197 ** 4198 ** Example: 4199 ** 4200 ** SELECT a+1 FROM ( 4201 ** SELECT x FROM tab 4202 ** UNION ALL 4203 ** SELECT y FROM tab 4204 ** UNION ALL 4205 ** SELECT abs(z*2) FROM tab2 4206 ** ) WHERE a!=5 ORDER BY 1 4207 ** 4208 ** Transformed into: 4209 ** 4210 ** SELECT x+1 FROM tab WHERE x+1!=5 4211 ** UNION ALL 4212 ** SELECT y+1 FROM tab WHERE y+1!=5 4213 ** UNION ALL 4214 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4215 ** ORDER BY 1 4216 ** 4217 ** We call this the "compound-subquery flattening". 4218 */ 4219 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4220 Select *pNew; 4221 ExprList *pOrderBy = p->pOrderBy; 4222 Expr *pLimit = p->pLimit; 4223 Select *pPrior = p->pPrior; 4224 Table *pItemTab = pSubitem->pTab; 4225 pSubitem->pTab = 0; 4226 p->pOrderBy = 0; 4227 p->pPrior = 0; 4228 p->pLimit = 0; 4229 pNew = sqlite3SelectDup(db, p, 0); 4230 p->pLimit = pLimit; 4231 p->pOrderBy = pOrderBy; 4232 p->op = TK_ALL; 4233 pSubitem->pTab = pItemTab; 4234 if( pNew==0 ){ 4235 p->pPrior = pPrior; 4236 }else{ 4237 pNew->selId = ++pParse->nSelect; 4238 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4239 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4240 } 4241 pNew->pPrior = pPrior; 4242 if( pPrior ) pPrior->pNext = pNew; 4243 pNew->pNext = p; 4244 p->pPrior = pNew; 4245 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4246 " creates %u as peer\n",pNew->selId)); 4247 } 4248 assert( pSubitem->pSelect==0 ); 4249 } 4250 sqlite3DbFree(db, aCsrMap); 4251 if( db->mallocFailed ){ 4252 pSubitem->pSelect = pSub1; 4253 return 1; 4254 } 4255 4256 /* Defer deleting the Table object associated with the 4257 ** subquery until code generation is 4258 ** complete, since there may still exist Expr.pTab entries that 4259 ** refer to the subquery even after flattening. Ticket #3346. 4260 ** 4261 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4262 */ 4263 if( ALWAYS(pSubitem->pTab!=0) ){ 4264 Table *pTabToDel = pSubitem->pTab; 4265 if( pTabToDel->nTabRef==1 ){ 4266 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4267 sqlite3ParserAddCleanup(pToplevel, 4268 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4269 pTabToDel); 4270 testcase( pToplevel->earlyCleanup ); 4271 }else{ 4272 pTabToDel->nTabRef--; 4273 } 4274 pSubitem->pTab = 0; 4275 } 4276 4277 /* The following loop runs once for each term in a compound-subquery 4278 ** flattening (as described above). If we are doing a different kind 4279 ** of flattening - a flattening other than a compound-subquery flattening - 4280 ** then this loop only runs once. 4281 ** 4282 ** This loop moves all of the FROM elements of the subquery into the 4283 ** the FROM clause of the outer query. Before doing this, remember 4284 ** the cursor number for the original outer query FROM element in 4285 ** iParent. The iParent cursor will never be used. Subsequent code 4286 ** will scan expressions looking for iParent references and replace 4287 ** those references with expressions that resolve to the subquery FROM 4288 ** elements we are now copying in. 4289 */ 4290 pSub = pSub1; 4291 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4292 int nSubSrc; 4293 u8 jointype = 0; 4294 assert( pSub!=0 ); 4295 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4296 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4297 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4298 4299 if( pParent==p ){ 4300 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4301 } 4302 4303 /* The subquery uses a single slot of the FROM clause of the outer 4304 ** query. If the subquery has more than one element in its FROM clause, 4305 ** then expand the outer query to make space for it to hold all elements 4306 ** of the subquery. 4307 ** 4308 ** Example: 4309 ** 4310 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4311 ** 4312 ** The outer query has 3 slots in its FROM clause. One slot of the 4313 ** outer query (the middle slot) is used by the subquery. The next 4314 ** block of code will expand the outer query FROM clause to 4 slots. 4315 ** The middle slot is expanded to two slots in order to make space 4316 ** for the two elements in the FROM clause of the subquery. 4317 */ 4318 if( nSubSrc>1 ){ 4319 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4320 if( pSrc==0 ) break; 4321 pParent->pSrc = pSrc; 4322 } 4323 4324 /* Transfer the FROM clause terms from the subquery into the 4325 ** outer query. 4326 */ 4327 for(i=0; i<nSubSrc; i++){ 4328 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4329 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4330 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4331 iNewParent = pSubSrc->a[i].iCursor; 4332 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4333 } 4334 pSrc->a[iFrom].fg.jointype = jointype; 4335 4336 /* Now begin substituting subquery result set expressions for 4337 ** references to the iParent in the outer query. 4338 ** 4339 ** Example: 4340 ** 4341 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4342 ** \ \_____________ subquery __________/ / 4343 ** \_____________________ outer query ______________________________/ 4344 ** 4345 ** We look at every expression in the outer query and every place we see 4346 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4347 */ 4348 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4349 /* At this point, any non-zero iOrderByCol values indicate that the 4350 ** ORDER BY column expression is identical to the iOrderByCol'th 4351 ** expression returned by SELECT statement pSub. Since these values 4352 ** do not necessarily correspond to columns in SELECT statement pParent, 4353 ** zero them before transfering the ORDER BY clause. 4354 ** 4355 ** Not doing this may cause an error if a subsequent call to this 4356 ** function attempts to flatten a compound sub-query into pParent 4357 ** (the only way this can happen is if the compound sub-query is 4358 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4359 ExprList *pOrderBy = pSub->pOrderBy; 4360 for(i=0; i<pOrderBy->nExpr; i++){ 4361 pOrderBy->a[i].u.x.iOrderByCol = 0; 4362 } 4363 assert( pParent->pOrderBy==0 ); 4364 pParent->pOrderBy = pOrderBy; 4365 pSub->pOrderBy = 0; 4366 } 4367 pWhere = pSub->pWhere; 4368 pSub->pWhere = 0; 4369 if( isLeftJoin>0 ){ 4370 sqlite3SetJoinExpr(pWhere, iNewParent); 4371 } 4372 if( pWhere ){ 4373 if( pParent->pWhere ){ 4374 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4375 }else{ 4376 pParent->pWhere = pWhere; 4377 } 4378 } 4379 if( db->mallocFailed==0 ){ 4380 SubstContext x; 4381 x.pParse = pParse; 4382 x.iTable = iParent; 4383 x.iNewTable = iNewParent; 4384 x.isLeftJoin = isLeftJoin; 4385 x.pEList = pSub->pEList; 4386 substSelect(&x, pParent, 0); 4387 } 4388 4389 /* The flattened query is a compound if either the inner or the 4390 ** outer query is a compound. */ 4391 pParent->selFlags |= pSub->selFlags & SF_Compound; 4392 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4393 4394 /* 4395 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4396 ** 4397 ** One is tempted to try to add a and b to combine the limits. But this 4398 ** does not work if either limit is negative. 4399 */ 4400 if( pSub->pLimit ){ 4401 pParent->pLimit = pSub->pLimit; 4402 pSub->pLimit = 0; 4403 } 4404 4405 /* Recompute the SrcList_item.colUsed masks for the flattened 4406 ** tables. */ 4407 for(i=0; i<nSubSrc; i++){ 4408 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4409 } 4410 } 4411 4412 /* Finially, delete what is left of the subquery and return 4413 ** success. 4414 */ 4415 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4416 sqlite3WalkSelect(&w,pSub1); 4417 sqlite3SelectDelete(db, pSub1); 4418 4419 #if SELECTTRACE_ENABLED 4420 if( sqlite3SelectTrace & 0x100 ){ 4421 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4422 sqlite3TreeViewSelect(0, p, 0); 4423 } 4424 #endif 4425 4426 return 1; 4427 } 4428 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4429 4430 /* 4431 ** A structure to keep track of all of the column values that are fixed to 4432 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4433 */ 4434 typedef struct WhereConst WhereConst; 4435 struct WhereConst { 4436 Parse *pParse; /* Parsing context */ 4437 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4438 int nConst; /* Number for COLUMN=CONSTANT terms */ 4439 int nChng; /* Number of times a constant is propagated */ 4440 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4441 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4442 }; 4443 4444 /* 4445 ** Add a new entry to the pConst object. Except, do not add duplicate 4446 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4447 ** 4448 ** The caller guarantees the pColumn is a column and pValue is a constant. 4449 ** This routine has to do some additional checks before completing the 4450 ** insert. 4451 */ 4452 static void constInsert( 4453 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4454 Expr *pColumn, /* The COLUMN part of the constraint */ 4455 Expr *pValue, /* The VALUE part of the constraint */ 4456 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4457 ){ 4458 int i; 4459 assert( pColumn->op==TK_COLUMN ); 4460 assert( sqlite3ExprIsConstant(pValue) ); 4461 4462 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4463 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4464 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4465 return; 4466 } 4467 4468 /* 2018-10-25 ticket [cf5ed20f] 4469 ** Make sure the same pColumn is not inserted more than once */ 4470 for(i=0; i<pConst->nConst; i++){ 4471 const Expr *pE2 = pConst->apExpr[i*2]; 4472 assert( pE2->op==TK_COLUMN ); 4473 if( pE2->iTable==pColumn->iTable 4474 && pE2->iColumn==pColumn->iColumn 4475 ){ 4476 return; /* Already present. Return without doing anything. */ 4477 } 4478 } 4479 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4480 pConst->bHasAffBlob = 1; 4481 } 4482 4483 pConst->nConst++; 4484 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4485 pConst->nConst*2*sizeof(Expr*)); 4486 if( pConst->apExpr==0 ){ 4487 pConst->nConst = 0; 4488 }else{ 4489 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4490 pConst->apExpr[pConst->nConst*2-1] = pValue; 4491 } 4492 } 4493 4494 /* 4495 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4496 ** is a constant expression and where the term must be true because it 4497 ** is part of the AND-connected terms of the expression. For each term 4498 ** found, add it to the pConst structure. 4499 */ 4500 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4501 Expr *pRight, *pLeft; 4502 if( NEVER(pExpr==0) ) return; 4503 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4504 if( pExpr->op==TK_AND ){ 4505 findConstInWhere(pConst, pExpr->pRight); 4506 findConstInWhere(pConst, pExpr->pLeft); 4507 return; 4508 } 4509 if( pExpr->op!=TK_EQ ) return; 4510 pRight = pExpr->pRight; 4511 pLeft = pExpr->pLeft; 4512 assert( pRight!=0 ); 4513 assert( pLeft!=0 ); 4514 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4515 constInsert(pConst,pRight,pLeft,pExpr); 4516 } 4517 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4518 constInsert(pConst,pLeft,pRight,pExpr); 4519 } 4520 } 4521 4522 /* 4523 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4524 ** 4525 ** Argument pExpr is a candidate expression to be replaced by a value. If 4526 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4527 ** then overwrite it with the corresponding value. Except, do not do so 4528 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4529 ** is SQLITE_AFF_BLOB. 4530 */ 4531 static int propagateConstantExprRewriteOne( 4532 WhereConst *pConst, 4533 Expr *pExpr, 4534 int bIgnoreAffBlob 4535 ){ 4536 int i; 4537 if( pConst->pOomFault[0] ) return WRC_Prune; 4538 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4539 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4540 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4541 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4542 return WRC_Continue; 4543 } 4544 for(i=0; i<pConst->nConst; i++){ 4545 Expr *pColumn = pConst->apExpr[i*2]; 4546 if( pColumn==pExpr ) continue; 4547 if( pColumn->iTable!=pExpr->iTable ) continue; 4548 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4549 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4550 break; 4551 } 4552 /* A match is found. Add the EP_FixedCol property */ 4553 pConst->nChng++; 4554 ExprClearProperty(pExpr, EP_Leaf); 4555 ExprSetProperty(pExpr, EP_FixedCol); 4556 assert( pExpr->pLeft==0 ); 4557 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4558 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4559 break; 4560 } 4561 return WRC_Prune; 4562 } 4563 4564 /* 4565 ** This is a Walker expression callback. pExpr is a node from the WHERE 4566 ** clause of a SELECT statement. This function examines pExpr to see if 4567 ** any substitutions based on the contents of pWalker->u.pConst should 4568 ** be made to pExpr or its immediate children. 4569 ** 4570 ** A substitution is made if: 4571 ** 4572 ** + pExpr is a column with an affinity other than BLOB that matches 4573 ** one of the columns in pWalker->u.pConst, or 4574 ** 4575 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4576 ** uses an affinity other than TEXT and one of its immediate 4577 ** children is a column that matches one of the columns in 4578 ** pWalker->u.pConst. 4579 */ 4580 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4581 WhereConst *pConst = pWalker->u.pConst; 4582 assert( TK_GT==TK_EQ+1 ); 4583 assert( TK_LE==TK_EQ+2 ); 4584 assert( TK_LT==TK_EQ+3 ); 4585 assert( TK_GE==TK_EQ+4 ); 4586 if( pConst->bHasAffBlob ){ 4587 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4588 || pExpr->op==TK_IS 4589 ){ 4590 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4591 if( pConst->pOomFault[0] ) return WRC_Prune; 4592 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4593 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4594 } 4595 } 4596 } 4597 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4598 } 4599 4600 /* 4601 ** The WHERE-clause constant propagation optimization. 4602 ** 4603 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4604 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4605 ** part of a ON clause from a LEFT JOIN, then throughout the query 4606 ** replace all other occurrences of COLUMN with CONSTANT. 4607 ** 4608 ** For example, the query: 4609 ** 4610 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4611 ** 4612 ** Is transformed into 4613 ** 4614 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4615 ** 4616 ** Return true if any transformations where made and false if not. 4617 ** 4618 ** Implementation note: Constant propagation is tricky due to affinity 4619 ** and collating sequence interactions. Consider this example: 4620 ** 4621 ** CREATE TABLE t1(a INT,b TEXT); 4622 ** INSERT INTO t1 VALUES(123,'0123'); 4623 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4624 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4625 ** 4626 ** The two SELECT statements above should return different answers. b=a 4627 ** is alway true because the comparison uses numeric affinity, but b=123 4628 ** is false because it uses text affinity and '0123' is not the same as '123'. 4629 ** To work around this, the expression tree is not actually changed from 4630 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4631 ** and the "123" value is hung off of the pLeft pointer. Code generator 4632 ** routines know to generate the constant "123" instead of looking up the 4633 ** column value. Also, to avoid collation problems, this optimization is 4634 ** only attempted if the "a=123" term uses the default BINARY collation. 4635 ** 4636 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4637 ** 4638 ** CREATE TABLE t1(x); 4639 ** INSERT INTO t1 VALUES(10.0); 4640 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4641 ** 4642 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4643 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4644 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4645 ** resulting in a false positive. To avoid this, constant propagation for 4646 ** columns with BLOB affinity is only allowed if the constant is used with 4647 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4648 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4649 ** for details. 4650 */ 4651 static int propagateConstants( 4652 Parse *pParse, /* The parsing context */ 4653 Select *p /* The query in which to propagate constants */ 4654 ){ 4655 WhereConst x; 4656 Walker w; 4657 int nChng = 0; 4658 x.pParse = pParse; 4659 x.pOomFault = &pParse->db->mallocFailed; 4660 do{ 4661 x.nConst = 0; 4662 x.nChng = 0; 4663 x.apExpr = 0; 4664 x.bHasAffBlob = 0; 4665 findConstInWhere(&x, p->pWhere); 4666 if( x.nConst ){ 4667 memset(&w, 0, sizeof(w)); 4668 w.pParse = pParse; 4669 w.xExprCallback = propagateConstantExprRewrite; 4670 w.xSelectCallback = sqlite3SelectWalkNoop; 4671 w.xSelectCallback2 = 0; 4672 w.walkerDepth = 0; 4673 w.u.pConst = &x; 4674 sqlite3WalkExpr(&w, p->pWhere); 4675 sqlite3DbFree(x.pParse->db, x.apExpr); 4676 nChng += x.nChng; 4677 } 4678 }while( x.nChng ); 4679 return nChng; 4680 } 4681 4682 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4683 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4684 /* 4685 ** This function is called to determine whether or not it is safe to 4686 ** push WHERE clause expression pExpr down to FROM clause sub-query 4687 ** pSubq, which contains at least one window function. Return 1 4688 ** if it is safe and the expression should be pushed down, or 0 4689 ** otherwise. 4690 ** 4691 ** It is only safe to push the expression down if it consists only 4692 ** of constants and copies of expressions that appear in the PARTITION 4693 ** BY clause of all window function used by the sub-query. It is safe 4694 ** to filter out entire partitions, but not rows within partitions, as 4695 ** this may change the results of the window functions. 4696 ** 4697 ** At the time this function is called it is guaranteed that 4698 ** 4699 ** * the sub-query uses only one distinct window frame, and 4700 ** * that the window frame has a PARTITION BY clase. 4701 */ 4702 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4703 assert( pSubq->pWin->pPartition ); 4704 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4705 assert( pSubq->pPrior==0 ); 4706 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4707 } 4708 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4709 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4710 4711 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4712 /* 4713 ** Make copies of relevant WHERE clause terms of the outer query into 4714 ** the WHERE clause of subquery. Example: 4715 ** 4716 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4717 ** 4718 ** Transformed into: 4719 ** 4720 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4721 ** WHERE x=5 AND y=10; 4722 ** 4723 ** The hope is that the terms added to the inner query will make it more 4724 ** efficient. 4725 ** 4726 ** Do not attempt this optimization if: 4727 ** 4728 ** (1) (** This restriction was removed on 2017-09-29. We used to 4729 ** disallow this optimization for aggregate subqueries, but now 4730 ** it is allowed by putting the extra terms on the HAVING clause. 4731 ** The added HAVING clause is pointless if the subquery lacks 4732 ** a GROUP BY clause. But such a HAVING clause is also harmless 4733 ** so there does not appear to be any reason to add extra logic 4734 ** to suppress it. **) 4735 ** 4736 ** (2) The inner query is the recursive part of a common table expression. 4737 ** 4738 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4739 ** clause would change the meaning of the LIMIT). 4740 ** 4741 ** (4) The inner query is the right operand of a LEFT JOIN and the 4742 ** expression to be pushed down does not come from the ON clause 4743 ** on that LEFT JOIN. 4744 ** 4745 ** (5) The WHERE clause expression originates in the ON or USING clause 4746 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4747 ** left join. An example: 4748 ** 4749 ** SELECT * 4750 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4751 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4752 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4753 ** 4754 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4755 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4756 ** then the (1,1,NULL) row would be suppressed. 4757 ** 4758 ** (6) Window functions make things tricky as changes to the WHERE clause 4759 ** of the inner query could change the window over which window 4760 ** functions are calculated. Therefore, do not attempt the optimization 4761 ** if: 4762 ** 4763 ** (6a) The inner query uses multiple incompatible window partitions. 4764 ** 4765 ** (6b) The inner query is a compound and uses window-functions. 4766 ** 4767 ** (6c) The WHERE clause does not consist entirely of constants and 4768 ** copies of expressions found in the PARTITION BY clause of 4769 ** all window-functions used by the sub-query. It is safe to 4770 ** filter out entire partitions, as this does not change the 4771 ** window over which any window-function is calculated. 4772 ** 4773 ** (7) The inner query is a Common Table Expression (CTE) that should 4774 ** be materialized. (This restriction is implemented in the calling 4775 ** routine.) 4776 ** 4777 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4778 ** terms are duplicated into the subquery. 4779 */ 4780 static int pushDownWhereTerms( 4781 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4782 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4783 Expr *pWhere, /* The WHERE clause of the outer query */ 4784 int iCursor, /* Cursor number of the subquery */ 4785 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4786 ){ 4787 Expr *pNew; 4788 int nChng = 0; 4789 if( pWhere==0 ) return 0; 4790 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4791 4792 #ifndef SQLITE_OMIT_WINDOWFUNC 4793 if( pSubq->pPrior ){ 4794 Select *pSel; 4795 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4796 if( pSel->pWin ) return 0; /* restriction (6b) */ 4797 } 4798 }else{ 4799 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4800 } 4801 #endif 4802 4803 #ifdef SQLITE_DEBUG 4804 /* Only the first term of a compound can have a WITH clause. But make 4805 ** sure no other terms are marked SF_Recursive in case something changes 4806 ** in the future. 4807 */ 4808 { 4809 Select *pX; 4810 for(pX=pSubq; pX; pX=pX->pPrior){ 4811 assert( (pX->selFlags & (SF_Recursive))==0 ); 4812 } 4813 } 4814 #endif 4815 4816 if( pSubq->pLimit!=0 ){ 4817 return 0; /* restriction (3) */ 4818 } 4819 while( pWhere->op==TK_AND ){ 4820 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4821 iCursor, isLeftJoin); 4822 pWhere = pWhere->pLeft; 4823 } 4824 if( isLeftJoin 4825 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4826 || pWhere->iRightJoinTable!=iCursor) 4827 ){ 4828 return 0; /* restriction (4) */ 4829 } 4830 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4831 return 0; /* restriction (5) */ 4832 } 4833 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4834 nChng++; 4835 pSubq->selFlags |= SF_PushDown; 4836 while( pSubq ){ 4837 SubstContext x; 4838 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4839 unsetJoinExpr(pNew, -1); 4840 x.pParse = pParse; 4841 x.iTable = iCursor; 4842 x.iNewTable = iCursor; 4843 x.isLeftJoin = 0; 4844 x.pEList = pSubq->pEList; 4845 pNew = substExpr(&x, pNew); 4846 #ifndef SQLITE_OMIT_WINDOWFUNC 4847 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4848 /* Restriction 6c has prevented push-down in this case */ 4849 sqlite3ExprDelete(pParse->db, pNew); 4850 nChng--; 4851 break; 4852 } 4853 #endif 4854 if( pSubq->selFlags & SF_Aggregate ){ 4855 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4856 }else{ 4857 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4858 } 4859 pSubq = pSubq->pPrior; 4860 } 4861 } 4862 return nChng; 4863 } 4864 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4865 4866 /* 4867 ** The pFunc is the only aggregate function in the query. Check to see 4868 ** if the query is a candidate for the min/max optimization. 4869 ** 4870 ** If the query is a candidate for the min/max optimization, then set 4871 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4872 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4873 ** whether pFunc is a min() or max() function. 4874 ** 4875 ** If the query is not a candidate for the min/max optimization, return 4876 ** WHERE_ORDERBY_NORMAL (which must be zero). 4877 ** 4878 ** This routine must be called after aggregate functions have been 4879 ** located but before their arguments have been subjected to aggregate 4880 ** analysis. 4881 */ 4882 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4883 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4884 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4885 const char *zFunc; /* Name of aggregate function pFunc */ 4886 ExprList *pOrderBy; 4887 u8 sortFlags = 0; 4888 4889 assert( *ppMinMax==0 ); 4890 assert( pFunc->op==TK_AGG_FUNCTION ); 4891 assert( !IsWindowFunc(pFunc) ); 4892 if( pEList==0 4893 || pEList->nExpr!=1 4894 || ExprHasProperty(pFunc, EP_WinFunc) 4895 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4896 ){ 4897 return eRet; 4898 } 4899 zFunc = pFunc->u.zToken; 4900 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4901 eRet = WHERE_ORDERBY_MIN; 4902 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4903 sortFlags = KEYINFO_ORDER_BIGNULL; 4904 } 4905 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4906 eRet = WHERE_ORDERBY_MAX; 4907 sortFlags = KEYINFO_ORDER_DESC; 4908 }else{ 4909 return eRet; 4910 } 4911 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4912 assert( pOrderBy!=0 || db->mallocFailed ); 4913 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4914 return eRet; 4915 } 4916 4917 /* 4918 ** The select statement passed as the first argument is an aggregate query. 4919 ** The second argument is the associated aggregate-info object. This 4920 ** function tests if the SELECT is of the form: 4921 ** 4922 ** SELECT count(*) FROM <tbl> 4923 ** 4924 ** where table is a database table, not a sub-select or view. If the query 4925 ** does match this pattern, then a pointer to the Table object representing 4926 ** <tbl> is returned. Otherwise, 0 is returned. 4927 */ 4928 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4929 Table *pTab; 4930 Expr *pExpr; 4931 4932 assert( !p->pGroupBy ); 4933 4934 if( p->pWhere || p->pEList->nExpr!=1 4935 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4936 ){ 4937 return 0; 4938 } 4939 pTab = p->pSrc->a[0].pTab; 4940 pExpr = p->pEList->a[0].pExpr; 4941 assert( pTab && !IsView(pTab) && pExpr ); 4942 4943 if( IsVirtual(pTab) ) return 0; 4944 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4945 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4946 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4947 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4948 4949 return pTab; 4950 } 4951 4952 /* 4953 ** If the source-list item passed as an argument was augmented with an 4954 ** INDEXED BY clause, then try to locate the specified index. If there 4955 ** was such a clause and the named index cannot be found, return 4956 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4957 ** pFrom->pIndex and return SQLITE_OK. 4958 */ 4959 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4960 Table *pTab = pFrom->pTab; 4961 char *zIndexedBy = pFrom->u1.zIndexedBy; 4962 Index *pIdx; 4963 assert( pTab!=0 ); 4964 assert( pFrom->fg.isIndexedBy!=0 ); 4965 4966 for(pIdx=pTab->pIndex; 4967 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4968 pIdx=pIdx->pNext 4969 ); 4970 if( !pIdx ){ 4971 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4972 pParse->checkSchema = 1; 4973 return SQLITE_ERROR; 4974 } 4975 pFrom->u2.pIBIndex = pIdx; 4976 return SQLITE_OK; 4977 } 4978 4979 /* 4980 ** Detect compound SELECT statements that use an ORDER BY clause with 4981 ** an alternative collating sequence. 4982 ** 4983 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4984 ** 4985 ** These are rewritten as a subquery: 4986 ** 4987 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4988 ** ORDER BY ... COLLATE ... 4989 ** 4990 ** This transformation is necessary because the multiSelectOrderBy() routine 4991 ** above that generates the code for a compound SELECT with an ORDER BY clause 4992 ** uses a merge algorithm that requires the same collating sequence on the 4993 ** result columns as on the ORDER BY clause. See ticket 4994 ** http://www.sqlite.org/src/info/6709574d2a 4995 ** 4996 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4997 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4998 ** there are COLLATE terms in the ORDER BY. 4999 */ 5000 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5001 int i; 5002 Select *pNew; 5003 Select *pX; 5004 sqlite3 *db; 5005 struct ExprList_item *a; 5006 SrcList *pNewSrc; 5007 Parse *pParse; 5008 Token dummy; 5009 5010 if( p->pPrior==0 ) return WRC_Continue; 5011 if( p->pOrderBy==0 ) return WRC_Continue; 5012 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5013 if( pX==0 ) return WRC_Continue; 5014 a = p->pOrderBy->a; 5015 #ifndef SQLITE_OMIT_WINDOWFUNC 5016 /* If iOrderByCol is already non-zero, then it has already been matched 5017 ** to a result column of the SELECT statement. This occurs when the 5018 ** SELECT is rewritten for window-functions processing and then passed 5019 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5020 ** by this function is not required in this case. */ 5021 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5022 #endif 5023 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5024 if( a[i].pExpr->flags & EP_Collate ) break; 5025 } 5026 if( i<0 ) return WRC_Continue; 5027 5028 /* If we reach this point, that means the transformation is required. */ 5029 5030 pParse = pWalker->pParse; 5031 db = pParse->db; 5032 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5033 if( pNew==0 ) return WRC_Abort; 5034 memset(&dummy, 0, sizeof(dummy)); 5035 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 5036 if( pNewSrc==0 ) return WRC_Abort; 5037 *pNew = *p; 5038 p->pSrc = pNewSrc; 5039 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5040 p->op = TK_SELECT; 5041 p->pWhere = 0; 5042 pNew->pGroupBy = 0; 5043 pNew->pHaving = 0; 5044 pNew->pOrderBy = 0; 5045 p->pPrior = 0; 5046 p->pNext = 0; 5047 p->pWith = 0; 5048 #ifndef SQLITE_OMIT_WINDOWFUNC 5049 p->pWinDefn = 0; 5050 #endif 5051 p->selFlags &= ~SF_Compound; 5052 assert( (p->selFlags & SF_Converted)==0 ); 5053 p->selFlags |= SF_Converted; 5054 assert( pNew->pPrior!=0 ); 5055 pNew->pPrior->pNext = pNew; 5056 pNew->pLimit = 0; 5057 return WRC_Continue; 5058 } 5059 5060 /* 5061 ** Check to see if the FROM clause term pFrom has table-valued function 5062 ** arguments. If it does, leave an error message in pParse and return 5063 ** non-zero, since pFrom is not allowed to be a table-valued function. 5064 */ 5065 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5066 if( pFrom->fg.isTabFunc ){ 5067 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5068 return 1; 5069 } 5070 return 0; 5071 } 5072 5073 #ifndef SQLITE_OMIT_CTE 5074 /* 5075 ** Argument pWith (which may be NULL) points to a linked list of nested 5076 ** WITH contexts, from inner to outermost. If the table identified by 5077 ** FROM clause element pItem is really a common-table-expression (CTE) 5078 ** then return a pointer to the CTE definition for that table. Otherwise 5079 ** return NULL. 5080 ** 5081 ** If a non-NULL value is returned, set *ppContext to point to the With 5082 ** object that the returned CTE belongs to. 5083 */ 5084 static struct Cte *searchWith( 5085 With *pWith, /* Current innermost WITH clause */ 5086 SrcItem *pItem, /* FROM clause element to resolve */ 5087 With **ppContext /* OUT: WITH clause return value belongs to */ 5088 ){ 5089 const char *zName = pItem->zName; 5090 With *p; 5091 assert( pItem->zDatabase==0 ); 5092 assert( zName!=0 ); 5093 for(p=pWith; p; p=p->pOuter){ 5094 int i; 5095 for(i=0; i<p->nCte; i++){ 5096 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5097 *ppContext = p; 5098 return &p->a[i]; 5099 } 5100 } 5101 if( p->bView ) break; 5102 } 5103 return 0; 5104 } 5105 5106 /* The code generator maintains a stack of active WITH clauses 5107 ** with the inner-most WITH clause being at the top of the stack. 5108 ** 5109 ** This routine pushes the WITH clause passed as the second argument 5110 ** onto the top of the stack. If argument bFree is true, then this 5111 ** WITH clause will never be popped from the stack but should instead 5112 ** be freed along with the Parse object. In other cases, when 5113 ** bFree==0, the With object will be freed along with the SELECT 5114 ** statement with which it is associated. 5115 ** 5116 ** This routine returns a copy of pWith. Or, if bFree is true and 5117 ** the pWith object is destroyed immediately due to an OOM condition, 5118 ** then this routine return NULL. 5119 ** 5120 ** If bFree is true, do not continue to use the pWith pointer after 5121 ** calling this routine, Instead, use only the return value. 5122 */ 5123 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5124 if( pWith ){ 5125 if( bFree ){ 5126 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5127 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5128 pWith); 5129 if( pWith==0 ) return 0; 5130 } 5131 if( pParse->nErr==0 ){ 5132 assert( pParse->pWith!=pWith ); 5133 pWith->pOuter = pParse->pWith; 5134 pParse->pWith = pWith; 5135 } 5136 } 5137 return pWith; 5138 } 5139 5140 /* 5141 ** This function checks if argument pFrom refers to a CTE declared by 5142 ** a WITH clause on the stack currently maintained by the parser (on the 5143 ** pParse->pWith linked list). And if currently processing a CTE 5144 ** CTE expression, through routine checks to see if the reference is 5145 ** a recursive reference to the CTE. 5146 ** 5147 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5148 ** and other fields are populated accordingly. 5149 ** 5150 ** Return 0 if no match is found. 5151 ** Return 1 if a match is found. 5152 ** Return 2 if an error condition is detected. 5153 */ 5154 static int resolveFromTermToCte( 5155 Parse *pParse, /* The parsing context */ 5156 Walker *pWalker, /* Current tree walker */ 5157 SrcItem *pFrom /* The FROM clause term to check */ 5158 ){ 5159 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5160 With *pWith; /* The matching WITH */ 5161 5162 assert( pFrom->pTab==0 ); 5163 if( pParse->pWith==0 ){ 5164 /* There are no WITH clauses in the stack. No match is possible */ 5165 return 0; 5166 } 5167 if( pParse->nErr ){ 5168 /* Prior errors might have left pParse->pWith in a goofy state, so 5169 ** go no further. */ 5170 return 0; 5171 } 5172 if( pFrom->zDatabase!=0 ){ 5173 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5174 ** it cannot possibly be a CTE reference. */ 5175 return 0; 5176 } 5177 if( pFrom->fg.notCte ){ 5178 /* The FROM term is specifically excluded from matching a CTE. 5179 ** (1) It is part of a trigger that used to have zDatabase but had 5180 ** zDatabase removed by sqlite3FixTriggerStep(). 5181 ** (2) This is the first term in the FROM clause of an UPDATE. 5182 */ 5183 return 0; 5184 } 5185 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5186 if( pCte ){ 5187 sqlite3 *db = pParse->db; 5188 Table *pTab; 5189 ExprList *pEList; 5190 Select *pSel; 5191 Select *pLeft; /* Left-most SELECT statement */ 5192 Select *pRecTerm; /* Left-most recursive term */ 5193 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5194 With *pSavedWith; /* Initial value of pParse->pWith */ 5195 int iRecTab = -1; /* Cursor for recursive table */ 5196 CteUse *pCteUse; 5197 5198 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5199 ** recursive reference to CTE pCte. Leave an error in pParse and return 5200 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5201 ** In this case, proceed. */ 5202 if( pCte->zCteErr ){ 5203 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5204 return 2; 5205 } 5206 if( cannotBeFunction(pParse, pFrom) ) return 2; 5207 5208 assert( pFrom->pTab==0 ); 5209 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5210 if( pTab==0 ) return 2; 5211 pCteUse = pCte->pUse; 5212 if( pCteUse==0 ){ 5213 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5214 if( pCteUse==0 5215 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5216 ){ 5217 sqlite3DbFree(db, pTab); 5218 return 2; 5219 } 5220 pCteUse->eM10d = pCte->eM10d; 5221 } 5222 pFrom->pTab = pTab; 5223 pTab->nTabRef = 1; 5224 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5225 pTab->iPKey = -1; 5226 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5227 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5228 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5229 if( db->mallocFailed ) return 2; 5230 pFrom->pSelect->selFlags |= SF_CopyCte; 5231 assert( pFrom->pSelect ); 5232 pFrom->fg.isCte = 1; 5233 pFrom->u2.pCteUse = pCteUse; 5234 pCteUse->nUse++; 5235 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5236 pCteUse->eM10d = M10d_Yes; 5237 } 5238 5239 /* Check if this is a recursive CTE. */ 5240 pRecTerm = pSel = pFrom->pSelect; 5241 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5242 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5243 int i; 5244 SrcList *pSrc = pRecTerm->pSrc; 5245 assert( pRecTerm->pPrior!=0 ); 5246 for(i=0; i<pSrc->nSrc; i++){ 5247 SrcItem *pItem = &pSrc->a[i]; 5248 if( pItem->zDatabase==0 5249 && pItem->zName!=0 5250 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5251 ){ 5252 pItem->pTab = pTab; 5253 pTab->nTabRef++; 5254 pItem->fg.isRecursive = 1; 5255 if( pRecTerm->selFlags & SF_Recursive ){ 5256 sqlite3ErrorMsg(pParse, 5257 "multiple references to recursive table: %s", pCte->zName 5258 ); 5259 return 2; 5260 } 5261 pRecTerm->selFlags |= SF_Recursive; 5262 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5263 pItem->iCursor = iRecTab; 5264 } 5265 } 5266 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5267 pRecTerm = pRecTerm->pPrior; 5268 } 5269 5270 pCte->zCteErr = "circular reference: %s"; 5271 pSavedWith = pParse->pWith; 5272 pParse->pWith = pWith; 5273 if( pSel->selFlags & SF_Recursive ){ 5274 int rc; 5275 assert( pRecTerm!=0 ); 5276 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5277 assert( pRecTerm->pNext!=0 ); 5278 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5279 assert( pRecTerm->pWith==0 ); 5280 pRecTerm->pWith = pSel->pWith; 5281 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5282 pRecTerm->pWith = 0; 5283 if( rc ){ 5284 pParse->pWith = pSavedWith; 5285 return 2; 5286 } 5287 }else{ 5288 if( sqlite3WalkSelect(pWalker, pSel) ){ 5289 pParse->pWith = pSavedWith; 5290 return 2; 5291 } 5292 } 5293 pParse->pWith = pWith; 5294 5295 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5296 pEList = pLeft->pEList; 5297 if( pCte->pCols ){ 5298 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5299 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5300 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5301 ); 5302 pParse->pWith = pSavedWith; 5303 return 2; 5304 } 5305 pEList = pCte->pCols; 5306 } 5307 5308 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5309 if( bMayRecursive ){ 5310 if( pSel->selFlags & SF_Recursive ){ 5311 pCte->zCteErr = "multiple recursive references: %s"; 5312 }else{ 5313 pCte->zCteErr = "recursive reference in a subquery: %s"; 5314 } 5315 sqlite3WalkSelect(pWalker, pSel); 5316 } 5317 pCte->zCteErr = 0; 5318 pParse->pWith = pSavedWith; 5319 return 1; /* Success */ 5320 } 5321 return 0; /* No match */ 5322 } 5323 #endif 5324 5325 #ifndef SQLITE_OMIT_CTE 5326 /* 5327 ** If the SELECT passed as the second argument has an associated WITH 5328 ** clause, pop it from the stack stored as part of the Parse object. 5329 ** 5330 ** This function is used as the xSelectCallback2() callback by 5331 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5332 ** names and other FROM clause elements. 5333 */ 5334 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5335 Parse *pParse = pWalker->pParse; 5336 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5337 With *pWith = findRightmost(p)->pWith; 5338 if( pWith!=0 ){ 5339 assert( pParse->pWith==pWith || pParse->nErr ); 5340 pParse->pWith = pWith->pOuter; 5341 } 5342 } 5343 } 5344 #endif 5345 5346 /* 5347 ** The SrcList_item structure passed as the second argument represents a 5348 ** sub-query in the FROM clause of a SELECT statement. This function 5349 ** allocates and populates the SrcList_item.pTab object. If successful, 5350 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5351 ** SQLITE_NOMEM. 5352 */ 5353 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5354 Select *pSel = pFrom->pSelect; 5355 Table *pTab; 5356 5357 assert( pSel ); 5358 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5359 if( pTab==0 ) return SQLITE_NOMEM; 5360 pTab->nTabRef = 1; 5361 if( pFrom->zAlias ){ 5362 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5363 }else{ 5364 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5365 } 5366 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5367 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5368 pTab->iPKey = -1; 5369 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5370 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5371 /* The usual case - do not allow ROWID on a subquery */ 5372 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5373 #else 5374 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5375 #endif 5376 5377 5378 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5379 } 5380 5381 /* 5382 ** This routine is a Walker callback for "expanding" a SELECT statement. 5383 ** "Expanding" means to do the following: 5384 ** 5385 ** (1) Make sure VDBE cursor numbers have been assigned to every 5386 ** element of the FROM clause. 5387 ** 5388 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5389 ** defines FROM clause. When views appear in the FROM clause, 5390 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5391 ** that implements the view. A copy is made of the view's SELECT 5392 ** statement so that we can freely modify or delete that statement 5393 ** without worrying about messing up the persistent representation 5394 ** of the view. 5395 ** 5396 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5397 ** on joins and the ON and USING clause of joins. 5398 ** 5399 ** (4) Scan the list of columns in the result set (pEList) looking 5400 ** for instances of the "*" operator or the TABLE.* operator. 5401 ** If found, expand each "*" to be every column in every table 5402 ** and TABLE.* to be every column in TABLE. 5403 ** 5404 */ 5405 static int selectExpander(Walker *pWalker, Select *p){ 5406 Parse *pParse = pWalker->pParse; 5407 int i, j, k, rc; 5408 SrcList *pTabList; 5409 ExprList *pEList; 5410 SrcItem *pFrom; 5411 sqlite3 *db = pParse->db; 5412 Expr *pE, *pRight, *pExpr; 5413 u16 selFlags = p->selFlags; 5414 u32 elistFlags = 0; 5415 5416 p->selFlags |= SF_Expanded; 5417 if( db->mallocFailed ){ 5418 return WRC_Abort; 5419 } 5420 assert( p->pSrc!=0 ); 5421 if( (selFlags & SF_Expanded)!=0 ){ 5422 return WRC_Prune; 5423 } 5424 if( pWalker->eCode ){ 5425 /* Renumber selId because it has been copied from a view */ 5426 p->selId = ++pParse->nSelect; 5427 } 5428 pTabList = p->pSrc; 5429 pEList = p->pEList; 5430 if( pParse->pWith && (p->selFlags & SF_View) ){ 5431 if( p->pWith==0 ){ 5432 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5433 if( p->pWith==0 ){ 5434 return WRC_Abort; 5435 } 5436 } 5437 p->pWith->bView = 1; 5438 } 5439 sqlite3WithPush(pParse, p->pWith, 0); 5440 5441 /* Make sure cursor numbers have been assigned to all entries in 5442 ** the FROM clause of the SELECT statement. 5443 */ 5444 sqlite3SrcListAssignCursors(pParse, pTabList); 5445 5446 /* Look up every table named in the FROM clause of the select. If 5447 ** an entry of the FROM clause is a subquery instead of a table or view, 5448 ** then create a transient table structure to describe the subquery. 5449 */ 5450 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5451 Table *pTab; 5452 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5453 if( pFrom->pTab ) continue; 5454 assert( pFrom->fg.isRecursive==0 ); 5455 if( pFrom->zName==0 ){ 5456 #ifndef SQLITE_OMIT_SUBQUERY 5457 Select *pSel = pFrom->pSelect; 5458 /* A sub-query in the FROM clause of a SELECT */ 5459 assert( pSel!=0 ); 5460 assert( pFrom->pTab==0 ); 5461 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5462 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5463 #endif 5464 #ifndef SQLITE_OMIT_CTE 5465 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5466 if( rc>1 ) return WRC_Abort; 5467 pTab = pFrom->pTab; 5468 assert( pTab!=0 ); 5469 #endif 5470 }else{ 5471 /* An ordinary table or view name in the FROM clause */ 5472 assert( pFrom->pTab==0 ); 5473 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5474 if( pTab==0 ) return WRC_Abort; 5475 if( pTab->nTabRef>=0xffff ){ 5476 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5477 pTab->zName); 5478 pFrom->pTab = 0; 5479 return WRC_Abort; 5480 } 5481 pTab->nTabRef++; 5482 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5483 return WRC_Abort; 5484 } 5485 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5486 if( !IsOrdinaryTable(pTab) ){ 5487 i16 nCol; 5488 u8 eCodeOrig = pWalker->eCode; 5489 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5490 assert( pFrom->pSelect==0 ); 5491 if( IsView(pTab) ){ 5492 if( (db->flags & SQLITE_EnableView)==0 5493 && pTab->pSchema!=db->aDb[1].pSchema 5494 ){ 5495 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5496 pTab->zName); 5497 } 5498 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5499 }else 5500 #ifndef SQLITE_OMIT_VIRTUALTABLE 5501 if( ALWAYS(IsVirtual(pTab)) 5502 && pFrom->fg.fromDDL 5503 && ALWAYS(pTab->u.vtab.p!=0) 5504 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5505 ){ 5506 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5507 pTab->zName); 5508 } 5509 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5510 #endif 5511 nCol = pTab->nCol; 5512 pTab->nCol = -1; 5513 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5514 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5515 pWalker->eCode = eCodeOrig; 5516 pTab->nCol = nCol; 5517 } 5518 #endif 5519 } 5520 5521 /* Locate the index named by the INDEXED BY clause, if any. */ 5522 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5523 return WRC_Abort; 5524 } 5525 } 5526 5527 /* Process NATURAL keywords, and ON and USING clauses of joins. 5528 */ 5529 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5530 return WRC_Abort; 5531 } 5532 5533 /* For every "*" that occurs in the column list, insert the names of 5534 ** all columns in all tables. And for every TABLE.* insert the names 5535 ** of all columns in TABLE. The parser inserted a special expression 5536 ** with the TK_ASTERISK operator for each "*" that it found in the column 5537 ** list. The following code just has to locate the TK_ASTERISK 5538 ** expressions and expand each one to the list of all columns in 5539 ** all tables. 5540 ** 5541 ** The first loop just checks to see if there are any "*" operators 5542 ** that need expanding. 5543 */ 5544 for(k=0; k<pEList->nExpr; k++){ 5545 pE = pEList->a[k].pExpr; 5546 if( pE->op==TK_ASTERISK ) break; 5547 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5548 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5549 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5550 elistFlags |= pE->flags; 5551 } 5552 if( k<pEList->nExpr ){ 5553 /* 5554 ** If we get here it means the result set contains one or more "*" 5555 ** operators that need to be expanded. Loop through each expression 5556 ** in the result set and expand them one by one. 5557 */ 5558 struct ExprList_item *a = pEList->a; 5559 ExprList *pNew = 0; 5560 int flags = pParse->db->flags; 5561 int longNames = (flags & SQLITE_FullColNames)!=0 5562 && (flags & SQLITE_ShortColNames)==0; 5563 5564 for(k=0; k<pEList->nExpr; k++){ 5565 pE = a[k].pExpr; 5566 elistFlags |= pE->flags; 5567 pRight = pE->pRight; 5568 assert( pE->op!=TK_DOT || pRight!=0 ); 5569 if( pE->op!=TK_ASTERISK 5570 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5571 ){ 5572 /* This particular expression does not need to be expanded. 5573 */ 5574 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5575 if( pNew ){ 5576 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5577 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5578 a[k].zEName = 0; 5579 } 5580 a[k].pExpr = 0; 5581 }else{ 5582 /* This expression is a "*" or a "TABLE.*" and needs to be 5583 ** expanded. */ 5584 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5585 char *zTName = 0; /* text of name of TABLE */ 5586 if( pE->op==TK_DOT ){ 5587 assert( pE->pLeft!=0 ); 5588 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5589 zTName = pE->pLeft->u.zToken; 5590 } 5591 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5592 Table *pTab = pFrom->pTab; 5593 Select *pSub = pFrom->pSelect; 5594 char *zTabName = pFrom->zAlias; 5595 const char *zSchemaName = 0; 5596 int iDb; 5597 if( zTabName==0 ){ 5598 zTabName = pTab->zName; 5599 } 5600 if( db->mallocFailed ) break; 5601 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5602 pSub = 0; 5603 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5604 continue; 5605 } 5606 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5607 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5608 } 5609 for(j=0; j<pTab->nCol; j++){ 5610 char *zName = pTab->aCol[j].zCnName; 5611 char *zColname; /* The computed column name */ 5612 char *zToFree; /* Malloced string that needs to be freed */ 5613 Token sColname; /* Computed column name as a token */ 5614 5615 assert( zName ); 5616 if( zTName && pSub 5617 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5618 ){ 5619 continue; 5620 } 5621 5622 /* If a column is marked as 'hidden', omit it from the expanded 5623 ** result-set list unless the SELECT has the SF_IncludeHidden 5624 ** bit set. 5625 */ 5626 if( (p->selFlags & SF_IncludeHidden)==0 5627 && IsHiddenColumn(&pTab->aCol[j]) 5628 ){ 5629 continue; 5630 } 5631 tableSeen = 1; 5632 5633 if( i>0 && zTName==0 ){ 5634 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5635 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5636 ){ 5637 /* In a NATURAL join, omit the join columns from the 5638 ** table to the right of the join */ 5639 continue; 5640 } 5641 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5642 /* In a join with a USING clause, omit columns in the 5643 ** using clause from the table on the right. */ 5644 continue; 5645 } 5646 } 5647 pRight = sqlite3Expr(db, TK_ID, zName); 5648 zColname = zName; 5649 zToFree = 0; 5650 if( longNames || pTabList->nSrc>1 ){ 5651 Expr *pLeft; 5652 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5653 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5654 if( zSchemaName ){ 5655 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5656 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5657 } 5658 if( longNames ){ 5659 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5660 zToFree = zColname; 5661 } 5662 }else{ 5663 pExpr = pRight; 5664 } 5665 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5666 sqlite3TokenInit(&sColname, zColname); 5667 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5668 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5669 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5670 sqlite3DbFree(db, pX->zEName); 5671 if( pSub ){ 5672 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5673 testcase( pX->zEName==0 ); 5674 }else{ 5675 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5676 zSchemaName, zTabName, zColname); 5677 testcase( pX->zEName==0 ); 5678 } 5679 pX->eEName = ENAME_TAB; 5680 } 5681 sqlite3DbFree(db, zToFree); 5682 } 5683 } 5684 if( !tableSeen ){ 5685 if( zTName ){ 5686 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5687 }else{ 5688 sqlite3ErrorMsg(pParse, "no tables specified"); 5689 } 5690 } 5691 } 5692 } 5693 sqlite3ExprListDelete(db, pEList); 5694 p->pEList = pNew; 5695 } 5696 if( p->pEList ){ 5697 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5698 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5699 return WRC_Abort; 5700 } 5701 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5702 p->selFlags |= SF_ComplexResult; 5703 } 5704 } 5705 return WRC_Continue; 5706 } 5707 5708 #if SQLITE_DEBUG 5709 /* 5710 ** Always assert. This xSelectCallback2 implementation proves that the 5711 ** xSelectCallback2 is never invoked. 5712 */ 5713 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5714 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5715 assert( 0 ); 5716 } 5717 #endif 5718 /* 5719 ** This routine "expands" a SELECT statement and all of its subqueries. 5720 ** For additional information on what it means to "expand" a SELECT 5721 ** statement, see the comment on the selectExpand worker callback above. 5722 ** 5723 ** Expanding a SELECT statement is the first step in processing a 5724 ** SELECT statement. The SELECT statement must be expanded before 5725 ** name resolution is performed. 5726 ** 5727 ** If anything goes wrong, an error message is written into pParse. 5728 ** The calling function can detect the problem by looking at pParse->nErr 5729 ** and/or pParse->db->mallocFailed. 5730 */ 5731 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5732 Walker w; 5733 w.xExprCallback = sqlite3ExprWalkNoop; 5734 w.pParse = pParse; 5735 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5736 w.xSelectCallback = convertCompoundSelectToSubquery; 5737 w.xSelectCallback2 = 0; 5738 sqlite3WalkSelect(&w, pSelect); 5739 } 5740 w.xSelectCallback = selectExpander; 5741 w.xSelectCallback2 = sqlite3SelectPopWith; 5742 w.eCode = 0; 5743 sqlite3WalkSelect(&w, pSelect); 5744 } 5745 5746 5747 #ifndef SQLITE_OMIT_SUBQUERY 5748 /* 5749 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5750 ** interface. 5751 ** 5752 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5753 ** information to the Table structure that represents the result set 5754 ** of that subquery. 5755 ** 5756 ** The Table structure that represents the result set was constructed 5757 ** by selectExpander() but the type and collation information was omitted 5758 ** at that point because identifiers had not yet been resolved. This 5759 ** routine is called after identifier resolution. 5760 */ 5761 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5762 Parse *pParse; 5763 int i; 5764 SrcList *pTabList; 5765 SrcItem *pFrom; 5766 5767 assert( p->selFlags & SF_Resolved ); 5768 if( p->selFlags & SF_HasTypeInfo ) return; 5769 p->selFlags |= SF_HasTypeInfo; 5770 pParse = pWalker->pParse; 5771 pTabList = p->pSrc; 5772 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5773 Table *pTab = pFrom->pTab; 5774 assert( pTab!=0 ); 5775 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5776 /* A sub-query in the FROM clause of a SELECT */ 5777 Select *pSel = pFrom->pSelect; 5778 if( pSel ){ 5779 while( pSel->pPrior ) pSel = pSel->pPrior; 5780 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5781 SQLITE_AFF_NONE); 5782 } 5783 } 5784 } 5785 } 5786 #endif 5787 5788 5789 /* 5790 ** This routine adds datatype and collating sequence information to 5791 ** the Table structures of all FROM-clause subqueries in a 5792 ** SELECT statement. 5793 ** 5794 ** Use this routine after name resolution. 5795 */ 5796 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5797 #ifndef SQLITE_OMIT_SUBQUERY 5798 Walker w; 5799 w.xSelectCallback = sqlite3SelectWalkNoop; 5800 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5801 w.xExprCallback = sqlite3ExprWalkNoop; 5802 w.pParse = pParse; 5803 sqlite3WalkSelect(&w, pSelect); 5804 #endif 5805 } 5806 5807 5808 /* 5809 ** This routine sets up a SELECT statement for processing. The 5810 ** following is accomplished: 5811 ** 5812 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5813 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5814 ** * ON and USING clauses are shifted into WHERE statements 5815 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5816 ** * Identifiers in expression are matched to tables. 5817 ** 5818 ** This routine acts recursively on all subqueries within the SELECT. 5819 */ 5820 void sqlite3SelectPrep( 5821 Parse *pParse, /* The parser context */ 5822 Select *p, /* The SELECT statement being coded. */ 5823 NameContext *pOuterNC /* Name context for container */ 5824 ){ 5825 assert( p!=0 || pParse->db->mallocFailed ); 5826 if( pParse->db->mallocFailed ) return; 5827 if( p->selFlags & SF_HasTypeInfo ) return; 5828 sqlite3SelectExpand(pParse, p); 5829 if( pParse->nErr || pParse->db->mallocFailed ) return; 5830 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5831 if( pParse->nErr || pParse->db->mallocFailed ) return; 5832 sqlite3SelectAddTypeInfo(pParse, p); 5833 } 5834 5835 /* 5836 ** Reset the aggregate accumulator. 5837 ** 5838 ** The aggregate accumulator is a set of memory cells that hold 5839 ** intermediate results while calculating an aggregate. This 5840 ** routine generates code that stores NULLs in all of those memory 5841 ** cells. 5842 */ 5843 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5844 Vdbe *v = pParse->pVdbe; 5845 int i; 5846 struct AggInfo_func *pFunc; 5847 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5848 if( nReg==0 ) return; 5849 if( pParse->nErr || pParse->db->mallocFailed ) return; 5850 #ifdef SQLITE_DEBUG 5851 /* Verify that all AggInfo registers are within the range specified by 5852 ** AggInfo.mnReg..AggInfo.mxReg */ 5853 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5854 for(i=0; i<pAggInfo->nColumn; i++){ 5855 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5856 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5857 } 5858 for(i=0; i<pAggInfo->nFunc; i++){ 5859 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5860 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5861 } 5862 #endif 5863 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5864 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5865 if( pFunc->iDistinct>=0 ){ 5866 Expr *pE = pFunc->pFExpr; 5867 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5868 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5869 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5870 "argument"); 5871 pFunc->iDistinct = -1; 5872 }else{ 5873 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5874 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5875 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5876 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5877 pFunc->pFunc->zName)); 5878 } 5879 } 5880 } 5881 } 5882 5883 /* 5884 ** Invoke the OP_AggFinalize opcode for every aggregate function 5885 ** in the AggInfo structure. 5886 */ 5887 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5888 Vdbe *v = pParse->pVdbe; 5889 int i; 5890 struct AggInfo_func *pF; 5891 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5892 ExprList *pList = pF->pFExpr->x.pList; 5893 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5894 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5895 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5896 } 5897 } 5898 5899 5900 /* 5901 ** Update the accumulator memory cells for an aggregate based on 5902 ** the current cursor position. 5903 ** 5904 ** If regAcc is non-zero and there are no min() or max() aggregates 5905 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5906 ** registers if register regAcc contains 0. The caller will take care 5907 ** of setting and clearing regAcc. 5908 */ 5909 static void updateAccumulator( 5910 Parse *pParse, 5911 int regAcc, 5912 AggInfo *pAggInfo, 5913 int eDistinctType 5914 ){ 5915 Vdbe *v = pParse->pVdbe; 5916 int i; 5917 int regHit = 0; 5918 int addrHitTest = 0; 5919 struct AggInfo_func *pF; 5920 struct AggInfo_col *pC; 5921 5922 pAggInfo->directMode = 1; 5923 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5924 int nArg; 5925 int addrNext = 0; 5926 int regAgg; 5927 ExprList *pList = pF->pFExpr->x.pList; 5928 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5929 assert( !IsWindowFunc(pF->pFExpr) ); 5930 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5931 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5932 if( pAggInfo->nAccumulator 5933 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5934 && regAcc 5935 ){ 5936 /* If regAcc==0, there there exists some min() or max() function 5937 ** without a FILTER clause that will ensure the magnet registers 5938 ** are populated. */ 5939 if( regHit==0 ) regHit = ++pParse->nMem; 5940 /* If this is the first row of the group (regAcc contains 0), clear the 5941 ** "magnet" register regHit so that the accumulator registers 5942 ** are populated if the FILTER clause jumps over the the 5943 ** invocation of min() or max() altogether. Or, if this is not 5944 ** the first row (regAcc contains 1), set the magnet register so that 5945 ** the accumulators are not populated unless the min()/max() is invoked 5946 ** and indicates that they should be. */ 5947 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5948 } 5949 addrNext = sqlite3VdbeMakeLabel(pParse); 5950 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5951 } 5952 if( pList ){ 5953 nArg = pList->nExpr; 5954 regAgg = sqlite3GetTempRange(pParse, nArg); 5955 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5956 }else{ 5957 nArg = 0; 5958 regAgg = 0; 5959 } 5960 if( pF->iDistinct>=0 && pList ){ 5961 if( addrNext==0 ){ 5962 addrNext = sqlite3VdbeMakeLabel(pParse); 5963 } 5964 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5965 pF->iDistinct, addrNext, pList, regAgg); 5966 } 5967 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5968 CollSeq *pColl = 0; 5969 struct ExprList_item *pItem; 5970 int j; 5971 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5972 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5973 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5974 } 5975 if( !pColl ){ 5976 pColl = pParse->db->pDfltColl; 5977 } 5978 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5979 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5980 } 5981 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5982 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5983 sqlite3VdbeChangeP5(v, (u8)nArg); 5984 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5985 if( addrNext ){ 5986 sqlite3VdbeResolveLabel(v, addrNext); 5987 } 5988 } 5989 if( regHit==0 && pAggInfo->nAccumulator ){ 5990 regHit = regAcc; 5991 } 5992 if( regHit ){ 5993 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5994 } 5995 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5996 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5997 } 5998 5999 pAggInfo->directMode = 0; 6000 if( addrHitTest ){ 6001 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6002 } 6003 } 6004 6005 /* 6006 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6007 ** count(*) query ("SELECT count(*) FROM pTab"). 6008 */ 6009 #ifndef SQLITE_OMIT_EXPLAIN 6010 static void explainSimpleCount( 6011 Parse *pParse, /* Parse context */ 6012 Table *pTab, /* Table being queried */ 6013 Index *pIdx /* Index used to optimize scan, or NULL */ 6014 ){ 6015 if( pParse->explain==2 ){ 6016 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6017 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6018 pTab->zName, 6019 bCover ? " USING COVERING INDEX " : "", 6020 bCover ? pIdx->zName : "" 6021 ); 6022 } 6023 } 6024 #else 6025 # define explainSimpleCount(a,b,c) 6026 #endif 6027 6028 /* 6029 ** sqlite3WalkExpr() callback used by havingToWhere(). 6030 ** 6031 ** If the node passed to the callback is a TK_AND node, return 6032 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6033 ** 6034 ** Otherwise, return WRC_Prune. In this case, also check if the 6035 ** sub-expression matches the criteria for being moved to the WHERE 6036 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6037 ** within the HAVING expression with a constant "1". 6038 */ 6039 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6040 if( pExpr->op!=TK_AND ){ 6041 Select *pS = pWalker->u.pSelect; 6042 /* This routine is called before the HAVING clause of the current 6043 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6044 ** here, it indicates that the expression is a correlated reference to a 6045 ** column from an outer aggregate query, or an aggregate function that 6046 ** belongs to an outer query. Do not move the expression to the WHERE 6047 ** clause in this obscure case, as doing so may corrupt the outer Select 6048 ** statements AggInfo structure. */ 6049 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6050 && ExprAlwaysFalse(pExpr)==0 6051 && pExpr->pAggInfo==0 6052 ){ 6053 sqlite3 *db = pWalker->pParse->db; 6054 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6055 if( pNew ){ 6056 Expr *pWhere = pS->pWhere; 6057 SWAP(Expr, *pNew, *pExpr); 6058 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6059 pS->pWhere = pNew; 6060 pWalker->eCode = 1; 6061 } 6062 } 6063 return WRC_Prune; 6064 } 6065 return WRC_Continue; 6066 } 6067 6068 /* 6069 ** Transfer eligible terms from the HAVING clause of a query, which is 6070 ** processed after grouping, to the WHERE clause, which is processed before 6071 ** grouping. For example, the query: 6072 ** 6073 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6074 ** 6075 ** can be rewritten as: 6076 ** 6077 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6078 ** 6079 ** A term of the HAVING expression is eligible for transfer if it consists 6080 ** entirely of constants and expressions that are also GROUP BY terms that 6081 ** use the "BINARY" collation sequence. 6082 */ 6083 static void havingToWhere(Parse *pParse, Select *p){ 6084 Walker sWalker; 6085 memset(&sWalker, 0, sizeof(sWalker)); 6086 sWalker.pParse = pParse; 6087 sWalker.xExprCallback = havingToWhereExprCb; 6088 sWalker.u.pSelect = p; 6089 sqlite3WalkExpr(&sWalker, p->pHaving); 6090 #if SELECTTRACE_ENABLED 6091 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 6092 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6093 sqlite3TreeViewSelect(0, p, 0); 6094 } 6095 #endif 6096 } 6097 6098 /* 6099 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6100 ** If it is, then return the SrcList_item for the prior view. If it is not, 6101 ** then return 0. 6102 */ 6103 static SrcItem *isSelfJoinView( 6104 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6105 SrcItem *pThis /* Search for prior reference to this subquery */ 6106 ){ 6107 SrcItem *pItem; 6108 assert( pThis->pSelect!=0 ); 6109 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6110 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6111 Select *pS1; 6112 if( pItem->pSelect==0 ) continue; 6113 if( pItem->fg.viaCoroutine ) continue; 6114 if( pItem->zName==0 ) continue; 6115 assert( pItem->pTab!=0 ); 6116 assert( pThis->pTab!=0 ); 6117 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6118 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6119 pS1 = pItem->pSelect; 6120 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6121 /* The query flattener left two different CTE tables with identical 6122 ** names in the same FROM clause. */ 6123 continue; 6124 } 6125 if( pItem->pSelect->selFlags & SF_PushDown ){ 6126 /* The view was modified by some other optimization such as 6127 ** pushDownWhereTerms() */ 6128 continue; 6129 } 6130 return pItem; 6131 } 6132 return 0; 6133 } 6134 6135 /* 6136 ** Deallocate a single AggInfo object 6137 */ 6138 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6139 sqlite3DbFree(db, p->aCol); 6140 sqlite3DbFree(db, p->aFunc); 6141 sqlite3DbFreeNN(db, p); 6142 } 6143 6144 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6145 /* 6146 ** Attempt to transform a query of the form 6147 ** 6148 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6149 ** 6150 ** Into this: 6151 ** 6152 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6153 ** 6154 ** The transformation only works if all of the following are true: 6155 ** 6156 ** * The subquery is a UNION ALL of two or more terms 6157 ** * The subquery does not have a LIMIT clause 6158 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6159 ** * The outer query is a simple count(*) with no WHERE clause or other 6160 ** extraneous syntax. 6161 ** 6162 ** Return TRUE if the optimization is undertaken. 6163 */ 6164 static int countOfViewOptimization(Parse *pParse, Select *p){ 6165 Select *pSub, *pPrior; 6166 Expr *pExpr; 6167 Expr *pCount; 6168 sqlite3 *db; 6169 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6170 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6171 if( p->pWhere ) return 0; 6172 if( p->pGroupBy ) return 0; 6173 pExpr = p->pEList->a[0].pExpr; 6174 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6175 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6176 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6177 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6178 pSub = p->pSrc->a[0].pSelect; 6179 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6180 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6181 do{ 6182 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6183 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6184 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6185 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6186 pSub = pSub->pPrior; /* Repeat over compound */ 6187 }while( pSub ); 6188 6189 /* If we reach this point then it is OK to perform the transformation */ 6190 6191 db = pParse->db; 6192 pCount = pExpr; 6193 pExpr = 0; 6194 pSub = p->pSrc->a[0].pSelect; 6195 p->pSrc->a[0].pSelect = 0; 6196 sqlite3SrcListDelete(db, p->pSrc); 6197 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6198 while( pSub ){ 6199 Expr *pTerm; 6200 pPrior = pSub->pPrior; 6201 pSub->pPrior = 0; 6202 pSub->pNext = 0; 6203 pSub->selFlags |= SF_Aggregate; 6204 pSub->selFlags &= ~SF_Compound; 6205 pSub->nSelectRow = 0; 6206 sqlite3ExprListDelete(db, pSub->pEList); 6207 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6208 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6209 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6210 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6211 if( pExpr==0 ){ 6212 pExpr = pTerm; 6213 }else{ 6214 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6215 } 6216 pSub = pPrior; 6217 } 6218 p->pEList->a[0].pExpr = pExpr; 6219 p->selFlags &= ~SF_Aggregate; 6220 6221 #if SELECTTRACE_ENABLED 6222 if( sqlite3SelectTrace & 0x400 ){ 6223 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6224 sqlite3TreeViewSelect(0, p, 0); 6225 } 6226 #endif 6227 return 1; 6228 } 6229 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6230 6231 /* 6232 ** Generate code for the SELECT statement given in the p argument. 6233 ** 6234 ** The results are returned according to the SelectDest structure. 6235 ** See comments in sqliteInt.h for further information. 6236 ** 6237 ** This routine returns the number of errors. If any errors are 6238 ** encountered, then an appropriate error message is left in 6239 ** pParse->zErrMsg. 6240 ** 6241 ** This routine does NOT free the Select structure passed in. The 6242 ** calling function needs to do that. 6243 */ 6244 int sqlite3Select( 6245 Parse *pParse, /* The parser context */ 6246 Select *p, /* The SELECT statement being coded. */ 6247 SelectDest *pDest /* What to do with the query results */ 6248 ){ 6249 int i, j; /* Loop counters */ 6250 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6251 Vdbe *v; /* The virtual machine under construction */ 6252 int isAgg; /* True for select lists like "count(*)" */ 6253 ExprList *pEList = 0; /* List of columns to extract. */ 6254 SrcList *pTabList; /* List of tables to select from */ 6255 Expr *pWhere; /* The WHERE clause. May be NULL */ 6256 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6257 Expr *pHaving; /* The HAVING clause. May be NULL */ 6258 AggInfo *pAggInfo = 0; /* Aggregate information */ 6259 int rc = 1; /* Value to return from this function */ 6260 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6261 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6262 int iEnd; /* Address of the end of the query */ 6263 sqlite3 *db; /* The database connection */ 6264 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6265 u8 minMaxFlag; /* Flag for min/max queries */ 6266 6267 db = pParse->db; 6268 v = sqlite3GetVdbe(pParse); 6269 if( p==0 || db->mallocFailed || pParse->nErr ){ 6270 return 1; 6271 } 6272 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6273 #if SELECTTRACE_ENABLED 6274 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6275 if( sqlite3SelectTrace & 0x100 ){ 6276 sqlite3TreeViewSelect(0, p, 0); 6277 } 6278 #endif 6279 6280 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6281 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6282 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6283 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6284 if( IgnorableDistinct(pDest) ){ 6285 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6286 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6287 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6288 /* All of these destinations are also able to ignore the ORDER BY clause */ 6289 if( p->pOrderBy ){ 6290 #if SELECTTRACE_ENABLED 6291 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6292 if( sqlite3SelectTrace & 0x100 ){ 6293 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6294 } 6295 #endif 6296 sqlite3ParserAddCleanup(pParse, 6297 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6298 p->pOrderBy); 6299 testcase( pParse->earlyCleanup ); 6300 p->pOrderBy = 0; 6301 } 6302 p->selFlags &= ~SF_Distinct; 6303 p->selFlags |= SF_NoopOrderBy; 6304 } 6305 sqlite3SelectPrep(pParse, p, 0); 6306 if( pParse->nErr || db->mallocFailed ){ 6307 goto select_end; 6308 } 6309 assert( p->pEList!=0 ); 6310 #if SELECTTRACE_ENABLED 6311 if( sqlite3SelectTrace & 0x104 ){ 6312 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6313 sqlite3TreeViewSelect(0, p, 0); 6314 } 6315 #endif 6316 6317 /* If the SF_UFSrcCheck flag is set, then this function is being called 6318 ** as part of populating the temp table for an UPDATE...FROM statement. 6319 ** In this case, it is an error if the target object (pSrc->a[0]) name 6320 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6321 ** 6322 ** Postgres disallows this case too. The reason is that some other 6323 ** systems handle this case differently, and not all the same way, 6324 ** which is just confusing. To avoid this, we follow PG's lead and 6325 ** disallow it altogether. */ 6326 if( p->selFlags & SF_UFSrcCheck ){ 6327 SrcItem *p0 = &p->pSrc->a[0]; 6328 for(i=1; i<p->pSrc->nSrc; i++){ 6329 SrcItem *p1 = &p->pSrc->a[i]; 6330 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6331 sqlite3ErrorMsg(pParse, 6332 "target object/alias may not appear in FROM clause: %s", 6333 p0->zAlias ? p0->zAlias : p0->pTab->zName 6334 ); 6335 goto select_end; 6336 } 6337 } 6338 6339 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6340 ** and leaving this flag set can cause errors if a compound sub-query 6341 ** in p->pSrc is flattened into this query and this function called 6342 ** again as part of compound SELECT processing. */ 6343 p->selFlags &= ~SF_UFSrcCheck; 6344 } 6345 6346 if( pDest->eDest==SRT_Output ){ 6347 sqlite3GenerateColumnNames(pParse, p); 6348 } 6349 6350 #ifndef SQLITE_OMIT_WINDOWFUNC 6351 if( sqlite3WindowRewrite(pParse, p) ){ 6352 assert( db->mallocFailed || pParse->nErr>0 ); 6353 goto select_end; 6354 } 6355 #if SELECTTRACE_ENABLED 6356 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6357 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6358 sqlite3TreeViewSelect(0, p, 0); 6359 } 6360 #endif 6361 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6362 pTabList = p->pSrc; 6363 isAgg = (p->selFlags & SF_Aggregate)!=0; 6364 memset(&sSort, 0, sizeof(sSort)); 6365 sSort.pOrderBy = p->pOrderBy; 6366 6367 /* Try to do various optimizations (flattening subqueries, and strength 6368 ** reduction of join operators) in the FROM clause up into the main query 6369 */ 6370 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6371 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6372 SrcItem *pItem = &pTabList->a[i]; 6373 Select *pSub = pItem->pSelect; 6374 Table *pTab = pItem->pTab; 6375 6376 /* The expander should have already created transient Table objects 6377 ** even for FROM clause elements such as subqueries that do not correspond 6378 ** to a real table */ 6379 assert( pTab!=0 ); 6380 6381 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6382 ** of the LEFT JOIN used in the WHERE clause. 6383 */ 6384 if( (pItem->fg.jointype & JT_LEFT)!=0 6385 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6386 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6387 ){ 6388 SELECTTRACE(0x100,pParse,p, 6389 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6390 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6391 unsetJoinExpr(p->pWhere, pItem->iCursor); 6392 } 6393 6394 /* No futher action if this term of the FROM clause is no a subquery */ 6395 if( pSub==0 ) continue; 6396 6397 /* Catch mismatch in the declared columns of a view and the number of 6398 ** columns in the SELECT on the RHS */ 6399 if( pTab->nCol!=pSub->pEList->nExpr ){ 6400 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6401 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6402 goto select_end; 6403 } 6404 6405 /* Do not try to flatten an aggregate subquery. 6406 ** 6407 ** Flattening an aggregate subquery is only possible if the outer query 6408 ** is not a join. But if the outer query is not a join, then the subquery 6409 ** will be implemented as a co-routine and there is no advantage to 6410 ** flattening in that case. 6411 */ 6412 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6413 assert( pSub->pGroupBy==0 ); 6414 6415 /* If a FROM-clause subquery has an ORDER BY clause that is not 6416 ** really doing anything, then delete it now so that it does not 6417 ** interfere with query flattening. See the discussion at 6418 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6419 ** 6420 ** Beware of these cases where the ORDER BY clause may not be safely 6421 ** omitted: 6422 ** 6423 ** (1) There is also a LIMIT clause 6424 ** (2) The subquery was added to help with window-function 6425 ** processing 6426 ** (3) The subquery is in the FROM clause of an UPDATE 6427 ** (4) The outer query uses an aggregate function other than 6428 ** the built-in count(), min(), or max(). 6429 ** (5) The ORDER BY isn't going to accomplish anything because 6430 ** one of: 6431 ** (a) The outer query has a different ORDER BY clause 6432 ** (b) The subquery is part of a join 6433 ** See forum post 062d576715d277c8 6434 */ 6435 if( pSub->pOrderBy!=0 6436 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6437 && pSub->pLimit==0 /* Condition (1) */ 6438 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6439 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6440 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6441 ){ 6442 SELECTTRACE(0x100,pParse,p, 6443 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6444 sqlite3ExprListDelete(db, pSub->pOrderBy); 6445 pSub->pOrderBy = 0; 6446 } 6447 6448 /* If the outer query contains a "complex" result set (that is, 6449 ** if the result set of the outer query uses functions or subqueries) 6450 ** and if the subquery contains an ORDER BY clause and if 6451 ** it will be implemented as a co-routine, then do not flatten. This 6452 ** restriction allows SQL constructs like this: 6453 ** 6454 ** SELECT expensive_function(x) 6455 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6456 ** 6457 ** The expensive_function() is only computed on the 10 rows that 6458 ** are output, rather than every row of the table. 6459 ** 6460 ** The requirement that the outer query have a complex result set 6461 ** means that flattening does occur on simpler SQL constraints without 6462 ** the expensive_function() like: 6463 ** 6464 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6465 */ 6466 if( pSub->pOrderBy!=0 6467 && i==0 6468 && (p->selFlags & SF_ComplexResult)!=0 6469 && (pTabList->nSrc==1 6470 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6471 ){ 6472 continue; 6473 } 6474 6475 if( flattenSubquery(pParse, p, i, isAgg) ){ 6476 if( pParse->nErr ) goto select_end; 6477 /* This subquery can be absorbed into its parent. */ 6478 i = -1; 6479 } 6480 pTabList = p->pSrc; 6481 if( db->mallocFailed ) goto select_end; 6482 if( !IgnorableOrderby(pDest) ){ 6483 sSort.pOrderBy = p->pOrderBy; 6484 } 6485 } 6486 #endif 6487 6488 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6489 /* Handle compound SELECT statements using the separate multiSelect() 6490 ** procedure. 6491 */ 6492 if( p->pPrior ){ 6493 rc = multiSelect(pParse, p, pDest); 6494 #if SELECTTRACE_ENABLED 6495 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6496 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6497 sqlite3TreeViewSelect(0, p, 0); 6498 } 6499 #endif 6500 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6501 return rc; 6502 } 6503 #endif 6504 6505 /* Do the WHERE-clause constant propagation optimization if this is 6506 ** a join. No need to speed time on this operation for non-join queries 6507 ** as the equivalent optimization will be handled by query planner in 6508 ** sqlite3WhereBegin(). 6509 */ 6510 if( p->pWhere!=0 6511 && p->pWhere->op==TK_AND 6512 && OptimizationEnabled(db, SQLITE_PropagateConst) 6513 && propagateConstants(pParse, p) 6514 ){ 6515 #if SELECTTRACE_ENABLED 6516 if( sqlite3SelectTrace & 0x100 ){ 6517 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6518 sqlite3TreeViewSelect(0, p, 0); 6519 } 6520 #endif 6521 }else{ 6522 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6523 } 6524 6525 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6526 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6527 && countOfViewOptimization(pParse, p) 6528 ){ 6529 if( db->mallocFailed ) goto select_end; 6530 pEList = p->pEList; 6531 pTabList = p->pSrc; 6532 } 6533 #endif 6534 6535 /* For each term in the FROM clause, do two things: 6536 ** (1) Authorized unreferenced tables 6537 ** (2) Generate code for all sub-queries 6538 */ 6539 for(i=0; i<pTabList->nSrc; i++){ 6540 SrcItem *pItem = &pTabList->a[i]; 6541 SrcItem *pPrior; 6542 SelectDest dest; 6543 Select *pSub; 6544 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6545 const char *zSavedAuthContext; 6546 #endif 6547 6548 /* Issue SQLITE_READ authorizations with a fake column name for any 6549 ** tables that are referenced but from which no values are extracted. 6550 ** Examples of where these kinds of null SQLITE_READ authorizations 6551 ** would occur: 6552 ** 6553 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6554 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6555 ** 6556 ** The fake column name is an empty string. It is possible for a table to 6557 ** have a column named by the empty string, in which case there is no way to 6558 ** distinguish between an unreferenced table and an actual reference to the 6559 ** "" column. The original design was for the fake column name to be a NULL, 6560 ** which would be unambiguous. But legacy authorization callbacks might 6561 ** assume the column name is non-NULL and segfault. The use of an empty 6562 ** string for the fake column name seems safer. 6563 */ 6564 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6565 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6566 } 6567 6568 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6569 /* Generate code for all sub-queries in the FROM clause 6570 */ 6571 pSub = pItem->pSelect; 6572 if( pSub==0 ) continue; 6573 6574 /* The code for a subquery should only be generated once. */ 6575 assert( pItem->addrFillSub==0 ); 6576 6577 /* Increment Parse.nHeight by the height of the largest expression 6578 ** tree referred to by this, the parent select. The child select 6579 ** may contain expression trees of at most 6580 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6581 ** more conservative than necessary, but much easier than enforcing 6582 ** an exact limit. 6583 */ 6584 pParse->nHeight += sqlite3SelectExprHeight(p); 6585 6586 /* Make copies of constant WHERE-clause terms in the outer query down 6587 ** inside the subquery. This can help the subquery to run more efficiently. 6588 */ 6589 if( OptimizationEnabled(db, SQLITE_PushDown) 6590 && (pItem->fg.isCte==0 6591 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6592 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6593 (pItem->fg.jointype & JT_OUTER)!=0) 6594 ){ 6595 #if SELECTTRACE_ENABLED 6596 if( sqlite3SelectTrace & 0x100 ){ 6597 SELECTTRACE(0x100,pParse,p, 6598 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6599 sqlite3TreeViewSelect(0, p, 0); 6600 } 6601 #endif 6602 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6603 }else{ 6604 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6605 } 6606 6607 zSavedAuthContext = pParse->zAuthContext; 6608 pParse->zAuthContext = pItem->zName; 6609 6610 /* Generate code to implement the subquery 6611 ** 6612 ** The subquery is implemented as a co-routine if: 6613 ** (1) the subquery is guaranteed to be the outer loop (so that 6614 ** it does not need to be computed more than once), and 6615 ** (2) the subquery is not a CTE that should be materialized 6616 ** 6617 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6618 ** implementation? 6619 */ 6620 if( i==0 6621 && (pTabList->nSrc==1 6622 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6623 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6624 ){ 6625 /* Implement a co-routine that will return a single row of the result 6626 ** set on each invocation. 6627 */ 6628 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6629 6630 pItem->regReturn = ++pParse->nMem; 6631 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6632 VdbeComment((v, "%!S", pItem)); 6633 pItem->addrFillSub = addrTop; 6634 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6635 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6636 sqlite3Select(pParse, pSub, &dest); 6637 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6638 pItem->fg.viaCoroutine = 1; 6639 pItem->regResult = dest.iSdst; 6640 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6641 sqlite3VdbeJumpHere(v, addrTop-1); 6642 sqlite3ClearTempRegCache(pParse); 6643 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6644 /* This is a CTE for which materialization code has already been 6645 ** generated. Invoke the subroutine to compute the materialization, 6646 ** the make the pItem->iCursor be a copy of the ephemerial table that 6647 ** holds the result of the materialization. */ 6648 CteUse *pCteUse = pItem->u2.pCteUse; 6649 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6650 if( pItem->iCursor!=pCteUse->iCur ){ 6651 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6652 VdbeComment((v, "%!S", pItem)); 6653 } 6654 pSub->nSelectRow = pCteUse->nRowEst; 6655 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6656 /* This view has already been materialized by a prior entry in 6657 ** this same FROM clause. Reuse it. */ 6658 if( pPrior->addrFillSub ){ 6659 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6660 } 6661 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6662 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6663 }else{ 6664 /* Materialize the view. If the view is not correlated, generate a 6665 ** subroutine to do the materialization so that subsequent uses of 6666 ** the same view can reuse the materialization. */ 6667 int topAddr; 6668 int onceAddr = 0; 6669 int retAddr; 6670 6671 pItem->regReturn = ++pParse->nMem; 6672 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6673 pItem->addrFillSub = topAddr+1; 6674 if( pItem->fg.isCorrelated==0 ){ 6675 /* If the subquery is not correlated and if we are not inside of 6676 ** a trigger, then we only need to compute the value of the subquery 6677 ** once. */ 6678 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6679 VdbeComment((v, "materialize %!S", pItem)); 6680 }else{ 6681 VdbeNoopComment((v, "materialize %!S", pItem)); 6682 } 6683 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6684 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6685 sqlite3Select(pParse, pSub, &dest); 6686 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6687 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6688 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6689 VdbeComment((v, "end %!S", pItem)); 6690 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6691 sqlite3ClearTempRegCache(pParse); 6692 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6693 CteUse *pCteUse = pItem->u2.pCteUse; 6694 pCteUse->addrM9e = pItem->addrFillSub; 6695 pCteUse->regRtn = pItem->regReturn; 6696 pCteUse->iCur = pItem->iCursor; 6697 pCteUse->nRowEst = pSub->nSelectRow; 6698 } 6699 } 6700 if( db->mallocFailed ) goto select_end; 6701 pParse->nHeight -= sqlite3SelectExprHeight(p); 6702 pParse->zAuthContext = zSavedAuthContext; 6703 #endif 6704 } 6705 6706 /* Various elements of the SELECT copied into local variables for 6707 ** convenience */ 6708 pEList = p->pEList; 6709 pWhere = p->pWhere; 6710 pGroupBy = p->pGroupBy; 6711 pHaving = p->pHaving; 6712 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6713 6714 #if SELECTTRACE_ENABLED 6715 if( sqlite3SelectTrace & 0x400 ){ 6716 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6717 sqlite3TreeViewSelect(0, p, 0); 6718 } 6719 #endif 6720 6721 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6722 ** if the select-list is the same as the ORDER BY list, then this query 6723 ** can be rewritten as a GROUP BY. In other words, this: 6724 ** 6725 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6726 ** 6727 ** is transformed to: 6728 ** 6729 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6730 ** 6731 ** The second form is preferred as a single index (or temp-table) may be 6732 ** used for both the ORDER BY and DISTINCT processing. As originally 6733 ** written the query must use a temp-table for at least one of the ORDER 6734 ** BY and DISTINCT, and an index or separate temp-table for the other. 6735 */ 6736 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6737 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6738 #ifndef SQLITE_OMIT_WINDOWFUNC 6739 && p->pWin==0 6740 #endif 6741 ){ 6742 p->selFlags &= ~SF_Distinct; 6743 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6744 p->selFlags |= SF_Aggregate; 6745 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6746 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6747 ** original setting of the SF_Distinct flag, not the current setting */ 6748 assert( sDistinct.isTnct ); 6749 6750 #if SELECTTRACE_ENABLED 6751 if( sqlite3SelectTrace & 0x400 ){ 6752 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6753 sqlite3TreeViewSelect(0, p, 0); 6754 } 6755 #endif 6756 } 6757 6758 /* If there is an ORDER BY clause, then create an ephemeral index to 6759 ** do the sorting. But this sorting ephemeral index might end up 6760 ** being unused if the data can be extracted in pre-sorted order. 6761 ** If that is the case, then the OP_OpenEphemeral instruction will be 6762 ** changed to an OP_Noop once we figure out that the sorting index is 6763 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6764 ** that change. 6765 */ 6766 if( sSort.pOrderBy ){ 6767 KeyInfo *pKeyInfo; 6768 pKeyInfo = sqlite3KeyInfoFromExprList( 6769 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6770 sSort.iECursor = pParse->nTab++; 6771 sSort.addrSortIndex = 6772 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6773 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6774 (char*)pKeyInfo, P4_KEYINFO 6775 ); 6776 }else{ 6777 sSort.addrSortIndex = -1; 6778 } 6779 6780 /* If the output is destined for a temporary table, open that table. 6781 */ 6782 if( pDest->eDest==SRT_EphemTab ){ 6783 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6784 } 6785 6786 /* Set the limiter. 6787 */ 6788 iEnd = sqlite3VdbeMakeLabel(pParse); 6789 if( (p->selFlags & SF_FixedLimit)==0 ){ 6790 p->nSelectRow = 320; /* 4 billion rows */ 6791 } 6792 computeLimitRegisters(pParse, p, iEnd); 6793 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6794 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6795 sSort.sortFlags |= SORTFLAG_UseSorter; 6796 } 6797 6798 /* Open an ephemeral index to use for the distinct set. 6799 */ 6800 if( p->selFlags & SF_Distinct ){ 6801 sDistinct.tabTnct = pParse->nTab++; 6802 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6803 sDistinct.tabTnct, 0, 0, 6804 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6805 P4_KEYINFO); 6806 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6807 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6808 }else{ 6809 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6810 } 6811 6812 if( !isAgg && pGroupBy==0 ){ 6813 /* No aggregate functions and no GROUP BY clause */ 6814 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6815 | (p->selFlags & SF_FixedLimit); 6816 #ifndef SQLITE_OMIT_WINDOWFUNC 6817 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6818 if( pWin ){ 6819 sqlite3WindowCodeInit(pParse, p); 6820 } 6821 #endif 6822 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6823 6824 6825 /* Begin the database scan. */ 6826 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6827 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6828 p->pEList, wctrlFlags, p->nSelectRow); 6829 if( pWInfo==0 ) goto select_end; 6830 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6831 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6832 } 6833 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6834 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6835 } 6836 if( sSort.pOrderBy ){ 6837 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6838 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6839 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6840 sSort.pOrderBy = 0; 6841 } 6842 } 6843 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6844 6845 /* If sorting index that was created by a prior OP_OpenEphemeral 6846 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6847 ** into an OP_Noop. 6848 */ 6849 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6850 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6851 } 6852 6853 assert( p->pEList==pEList ); 6854 #ifndef SQLITE_OMIT_WINDOWFUNC 6855 if( pWin ){ 6856 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6857 int iCont = sqlite3VdbeMakeLabel(pParse); 6858 int iBreak = sqlite3VdbeMakeLabel(pParse); 6859 int regGosub = ++pParse->nMem; 6860 6861 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6862 6863 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6864 sqlite3VdbeResolveLabel(v, addrGosub); 6865 VdbeNoopComment((v, "inner-loop subroutine")); 6866 sSort.labelOBLopt = 0; 6867 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6868 sqlite3VdbeResolveLabel(v, iCont); 6869 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6870 VdbeComment((v, "end inner-loop subroutine")); 6871 sqlite3VdbeResolveLabel(v, iBreak); 6872 }else 6873 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6874 { 6875 /* Use the standard inner loop. */ 6876 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6877 sqlite3WhereContinueLabel(pWInfo), 6878 sqlite3WhereBreakLabel(pWInfo)); 6879 6880 /* End the database scan loop. 6881 */ 6882 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6883 sqlite3WhereEnd(pWInfo); 6884 } 6885 }else{ 6886 /* This case when there exist aggregate functions or a GROUP BY clause 6887 ** or both */ 6888 NameContext sNC; /* Name context for processing aggregate information */ 6889 int iAMem; /* First Mem address for storing current GROUP BY */ 6890 int iBMem; /* First Mem address for previous GROUP BY */ 6891 int iUseFlag; /* Mem address holding flag indicating that at least 6892 ** one row of the input to the aggregator has been 6893 ** processed */ 6894 int iAbortFlag; /* Mem address which causes query abort if positive */ 6895 int groupBySort; /* Rows come from source in GROUP BY order */ 6896 int addrEnd; /* End of processing for this SELECT */ 6897 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6898 int sortOut = 0; /* Output register from the sorter */ 6899 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6900 6901 /* Remove any and all aliases between the result set and the 6902 ** GROUP BY clause. 6903 */ 6904 if( pGroupBy ){ 6905 int k; /* Loop counter */ 6906 struct ExprList_item *pItem; /* For looping over expression in a list */ 6907 6908 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6909 pItem->u.x.iAlias = 0; 6910 } 6911 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6912 pItem->u.x.iAlias = 0; 6913 } 6914 assert( 66==sqlite3LogEst(100) ); 6915 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6916 6917 /* If there is both a GROUP BY and an ORDER BY clause and they are 6918 ** identical, then it may be possible to disable the ORDER BY clause 6919 ** on the grounds that the GROUP BY will cause elements to come out 6920 ** in the correct order. It also may not - the GROUP BY might use a 6921 ** database index that causes rows to be grouped together as required 6922 ** but not actually sorted. Either way, record the fact that the 6923 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6924 ** variable. */ 6925 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6926 int ii; 6927 /* The GROUP BY processing doesn't care whether rows are delivered in 6928 ** ASC or DESC order - only that each group is returned contiguously. 6929 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6930 ** ORDER BY to maximize the chances of rows being delivered in an 6931 ** order that makes the ORDER BY redundant. */ 6932 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6933 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6934 pGroupBy->a[ii].sortFlags = sortFlags; 6935 } 6936 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6937 orderByGrp = 1; 6938 } 6939 } 6940 }else{ 6941 assert( 0==sqlite3LogEst(1) ); 6942 p->nSelectRow = 0; 6943 } 6944 6945 /* Create a label to jump to when we want to abort the query */ 6946 addrEnd = sqlite3VdbeMakeLabel(pParse); 6947 6948 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6949 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6950 ** SELECT statement. 6951 */ 6952 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6953 if( pAggInfo ){ 6954 sqlite3ParserAddCleanup(pParse, 6955 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6956 testcase( pParse->earlyCleanup ); 6957 } 6958 if( db->mallocFailed ){ 6959 goto select_end; 6960 } 6961 pAggInfo->selId = p->selId; 6962 memset(&sNC, 0, sizeof(sNC)); 6963 sNC.pParse = pParse; 6964 sNC.pSrcList = pTabList; 6965 sNC.uNC.pAggInfo = pAggInfo; 6966 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6967 pAggInfo->mnReg = pParse->nMem+1; 6968 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6969 pAggInfo->pGroupBy = pGroupBy; 6970 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6971 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6972 if( pHaving ){ 6973 if( pGroupBy ){ 6974 assert( pWhere==p->pWhere ); 6975 assert( pHaving==p->pHaving ); 6976 assert( pGroupBy==p->pGroupBy ); 6977 havingToWhere(pParse, p); 6978 pWhere = p->pWhere; 6979 } 6980 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6981 } 6982 pAggInfo->nAccumulator = pAggInfo->nColumn; 6983 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6984 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6985 }else{ 6986 minMaxFlag = WHERE_ORDERBY_NORMAL; 6987 } 6988 for(i=0; i<pAggInfo->nFunc; i++){ 6989 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6990 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6991 sNC.ncFlags |= NC_InAggFunc; 6992 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6993 #ifndef SQLITE_OMIT_WINDOWFUNC 6994 assert( !IsWindowFunc(pExpr) ); 6995 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6996 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6997 } 6998 #endif 6999 sNC.ncFlags &= ~NC_InAggFunc; 7000 } 7001 pAggInfo->mxReg = pParse->nMem; 7002 if( db->mallocFailed ) goto select_end; 7003 #if SELECTTRACE_ENABLED 7004 if( sqlite3SelectTrace & 0x400 ){ 7005 int ii; 7006 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7007 sqlite3TreeViewSelect(0, p, 0); 7008 if( minMaxFlag ){ 7009 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7010 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7011 } 7012 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7013 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7014 ii, pAggInfo->aCol[ii].iMem); 7015 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7016 } 7017 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7018 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7019 ii, pAggInfo->aFunc[ii].iMem); 7020 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7021 } 7022 } 7023 #endif 7024 7025 7026 /* Processing for aggregates with GROUP BY is very different and 7027 ** much more complex than aggregates without a GROUP BY. 7028 */ 7029 if( pGroupBy ){ 7030 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7031 int addr1; /* A-vs-B comparision jump */ 7032 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7033 int regOutputRow; /* Return address register for output subroutine */ 7034 int addrSetAbort; /* Set the abort flag and return */ 7035 int addrTopOfLoop; /* Top of the input loop */ 7036 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7037 int addrReset; /* Subroutine for resetting the accumulator */ 7038 int regReset; /* Return address register for reset subroutine */ 7039 ExprList *pDistinct = 0; 7040 u16 distFlag = 0; 7041 int eDist = WHERE_DISTINCT_NOOP; 7042 7043 if( pAggInfo->nFunc==1 7044 && pAggInfo->aFunc[0].iDistinct>=0 7045 && pAggInfo->aFunc[0].pFExpr->x.pList 7046 ){ 7047 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7048 pExpr = sqlite3ExprDup(db, pExpr, 0); 7049 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7050 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7051 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7052 } 7053 7054 /* If there is a GROUP BY clause we might need a sorting index to 7055 ** implement it. Allocate that sorting index now. If it turns out 7056 ** that we do not need it after all, the OP_SorterOpen instruction 7057 ** will be converted into a Noop. 7058 */ 7059 pAggInfo->sortingIdx = pParse->nTab++; 7060 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7061 0, pAggInfo->nColumn); 7062 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7063 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7064 0, (char*)pKeyInfo, P4_KEYINFO); 7065 7066 /* Initialize memory locations used by GROUP BY aggregate processing 7067 */ 7068 iUseFlag = ++pParse->nMem; 7069 iAbortFlag = ++pParse->nMem; 7070 regOutputRow = ++pParse->nMem; 7071 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7072 regReset = ++pParse->nMem; 7073 addrReset = sqlite3VdbeMakeLabel(pParse); 7074 iAMem = pParse->nMem + 1; 7075 pParse->nMem += pGroupBy->nExpr; 7076 iBMem = pParse->nMem + 1; 7077 pParse->nMem += pGroupBy->nExpr; 7078 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7079 VdbeComment((v, "clear abort flag")); 7080 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7081 7082 /* Begin a loop that will extract all source rows in GROUP BY order. 7083 ** This might involve two separate loops with an OP_Sort in between, or 7084 ** it might be a single loop that uses an index to extract information 7085 ** in the right order to begin with. 7086 */ 7087 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7088 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7089 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7090 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7091 ); 7092 if( pWInfo==0 ){ 7093 sqlite3ExprListDelete(db, pDistinct); 7094 goto select_end; 7095 } 7096 eDist = sqlite3WhereIsDistinct(pWInfo); 7097 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7098 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7099 /* The optimizer is able to deliver rows in group by order so 7100 ** we do not have to sort. The OP_OpenEphemeral table will be 7101 ** cancelled later because we still need to use the pKeyInfo 7102 */ 7103 groupBySort = 0; 7104 }else{ 7105 /* Rows are coming out in undetermined order. We have to push 7106 ** each row into a sorting index, terminate the first loop, 7107 ** then loop over the sorting index in order to get the output 7108 ** in sorted order 7109 */ 7110 int regBase; 7111 int regRecord; 7112 int nCol; 7113 int nGroupBy; 7114 7115 explainTempTable(pParse, 7116 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7117 "DISTINCT" : "GROUP BY"); 7118 7119 groupBySort = 1; 7120 nGroupBy = pGroupBy->nExpr; 7121 nCol = nGroupBy; 7122 j = nGroupBy; 7123 for(i=0; i<pAggInfo->nColumn; i++){ 7124 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7125 nCol++; 7126 j++; 7127 } 7128 } 7129 regBase = sqlite3GetTempRange(pParse, nCol); 7130 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7131 j = nGroupBy; 7132 for(i=0; i<pAggInfo->nColumn; i++){ 7133 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7134 if( pCol->iSorterColumn>=j ){ 7135 int r1 = j + regBase; 7136 sqlite3ExprCodeGetColumnOfTable(v, 7137 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7138 j++; 7139 } 7140 } 7141 regRecord = sqlite3GetTempReg(pParse); 7142 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7143 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7144 sqlite3ReleaseTempReg(pParse, regRecord); 7145 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7146 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7147 sqlite3WhereEnd(pWInfo); 7148 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7149 sortOut = sqlite3GetTempReg(pParse); 7150 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7151 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7152 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7153 pAggInfo->useSortingIdx = 1; 7154 } 7155 7156 /* If the index or temporary table used by the GROUP BY sort 7157 ** will naturally deliver rows in the order required by the ORDER BY 7158 ** clause, cancel the ephemeral table open coded earlier. 7159 ** 7160 ** This is an optimization - the correct answer should result regardless. 7161 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7162 ** disable this optimization for testing purposes. */ 7163 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7164 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7165 ){ 7166 sSort.pOrderBy = 0; 7167 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7168 } 7169 7170 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7171 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7172 ** Then compare the current GROUP BY terms against the GROUP BY terms 7173 ** from the previous row currently stored in a0, a1, a2... 7174 */ 7175 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7176 if( groupBySort ){ 7177 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7178 sortOut, sortPTab); 7179 } 7180 for(j=0; j<pGroupBy->nExpr; j++){ 7181 if( groupBySort ){ 7182 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7183 }else{ 7184 pAggInfo->directMode = 1; 7185 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7186 } 7187 } 7188 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7189 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7190 addr1 = sqlite3VdbeCurrentAddr(v); 7191 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7192 7193 /* Generate code that runs whenever the GROUP BY changes. 7194 ** Changes in the GROUP BY are detected by the previous code 7195 ** block. If there were no changes, this block is skipped. 7196 ** 7197 ** This code copies current group by terms in b0,b1,b2,... 7198 ** over to a0,a1,a2. It then calls the output subroutine 7199 ** and resets the aggregate accumulator registers in preparation 7200 ** for the next GROUP BY batch. 7201 */ 7202 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7203 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7204 VdbeComment((v, "output one row")); 7205 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7206 VdbeComment((v, "check abort flag")); 7207 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7208 VdbeComment((v, "reset accumulator")); 7209 7210 /* Update the aggregate accumulators based on the content of 7211 ** the current row 7212 */ 7213 sqlite3VdbeJumpHere(v, addr1); 7214 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7215 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7216 VdbeComment((v, "indicate data in accumulator")); 7217 7218 /* End of the loop 7219 */ 7220 if( groupBySort ){ 7221 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7222 VdbeCoverage(v); 7223 }else{ 7224 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7225 sqlite3WhereEnd(pWInfo); 7226 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7227 } 7228 sqlite3ExprListDelete(db, pDistinct); 7229 7230 /* Output the final row of result 7231 */ 7232 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7233 VdbeComment((v, "output final row")); 7234 7235 /* Jump over the subroutines 7236 */ 7237 sqlite3VdbeGoto(v, addrEnd); 7238 7239 /* Generate a subroutine that outputs a single row of the result 7240 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7241 ** is less than or equal to zero, the subroutine is a no-op. If 7242 ** the processing calls for the query to abort, this subroutine 7243 ** increments the iAbortFlag memory location before returning in 7244 ** order to signal the caller to abort. 7245 */ 7246 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7247 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7248 VdbeComment((v, "set abort flag")); 7249 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7250 sqlite3VdbeResolveLabel(v, addrOutputRow); 7251 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7252 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7253 VdbeCoverage(v); 7254 VdbeComment((v, "Groupby result generator entry point")); 7255 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7256 finalizeAggFunctions(pParse, pAggInfo); 7257 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7258 selectInnerLoop(pParse, p, -1, &sSort, 7259 &sDistinct, pDest, 7260 addrOutputRow+1, addrSetAbort); 7261 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7262 VdbeComment((v, "end groupby result generator")); 7263 7264 /* Generate a subroutine that will reset the group-by accumulator 7265 */ 7266 sqlite3VdbeResolveLabel(v, addrReset); 7267 resetAccumulator(pParse, pAggInfo); 7268 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7269 VdbeComment((v, "indicate accumulator empty")); 7270 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7271 7272 if( eDist!=WHERE_DISTINCT_NOOP ){ 7273 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7274 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7275 } 7276 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7277 else { 7278 Table *pTab; 7279 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7280 /* If isSimpleCount() returns a pointer to a Table structure, then 7281 ** the SQL statement is of the form: 7282 ** 7283 ** SELECT count(*) FROM <tbl> 7284 ** 7285 ** where the Table structure returned represents table <tbl>. 7286 ** 7287 ** This statement is so common that it is optimized specially. The 7288 ** OP_Count instruction is executed either on the intkey table that 7289 ** contains the data for table <tbl> or on one of its indexes. It 7290 ** is better to execute the op on an index, as indexes are almost 7291 ** always spread across less pages than their corresponding tables. 7292 */ 7293 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7294 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7295 Index *pIdx; /* Iterator variable */ 7296 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7297 Index *pBest = 0; /* Best index found so far */ 7298 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7299 7300 sqlite3CodeVerifySchema(pParse, iDb); 7301 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7302 7303 /* Search for the index that has the lowest scan cost. 7304 ** 7305 ** (2011-04-15) Do not do a full scan of an unordered index. 7306 ** 7307 ** (2013-10-03) Do not count the entries in a partial index. 7308 ** 7309 ** In practice the KeyInfo structure will not be used. It is only 7310 ** passed to keep OP_OpenRead happy. 7311 */ 7312 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7313 if( !p->pSrc->a[0].fg.notIndexed ){ 7314 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7315 if( pIdx->bUnordered==0 7316 && pIdx->szIdxRow<pTab->szTabRow 7317 && pIdx->pPartIdxWhere==0 7318 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7319 ){ 7320 pBest = pIdx; 7321 } 7322 } 7323 } 7324 if( pBest ){ 7325 iRoot = pBest->tnum; 7326 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7327 } 7328 7329 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7330 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7331 if( pKeyInfo ){ 7332 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7333 } 7334 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7335 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7336 explainSimpleCount(pParse, pTab, pBest); 7337 }else{ 7338 int regAcc = 0; /* "populate accumulators" flag */ 7339 ExprList *pDistinct = 0; 7340 u16 distFlag = 0; 7341 int eDist; 7342 7343 /* If there are accumulator registers but no min() or max() functions 7344 ** without FILTER clauses, allocate register regAcc. Register regAcc 7345 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7346 ** The code generated by updateAccumulator() uses this to ensure 7347 ** that the accumulator registers are (a) updated only once if 7348 ** there are no min() or max functions or (b) always updated for the 7349 ** first row visited by the aggregate, so that they are updated at 7350 ** least once even if the FILTER clause means the min() or max() 7351 ** function visits zero rows. */ 7352 if( pAggInfo->nAccumulator ){ 7353 for(i=0; i<pAggInfo->nFunc; i++){ 7354 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7355 continue; 7356 } 7357 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7358 break; 7359 } 7360 } 7361 if( i==pAggInfo->nFunc ){ 7362 regAcc = ++pParse->nMem; 7363 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7364 } 7365 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7366 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7367 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7368 } 7369 7370 /* This case runs if the aggregate has no GROUP BY clause. The 7371 ** processing is much simpler since there is only a single row 7372 ** of output. 7373 */ 7374 assert( p->pGroupBy==0 ); 7375 resetAccumulator(pParse, pAggInfo); 7376 7377 /* If this query is a candidate for the min/max optimization, then 7378 ** minMaxFlag will have been previously set to either 7379 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7380 ** be an appropriate ORDER BY expression for the optimization. 7381 */ 7382 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7383 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7384 7385 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7386 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7387 pDistinct, minMaxFlag|distFlag, 0); 7388 if( pWInfo==0 ){ 7389 goto select_end; 7390 } 7391 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7392 eDist = sqlite3WhereIsDistinct(pWInfo); 7393 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7394 if( eDist!=WHERE_DISTINCT_NOOP ){ 7395 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7396 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7397 } 7398 7399 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7400 if( minMaxFlag ){ 7401 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7402 } 7403 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7404 sqlite3WhereEnd(pWInfo); 7405 finalizeAggFunctions(pParse, pAggInfo); 7406 } 7407 7408 sSort.pOrderBy = 0; 7409 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7410 selectInnerLoop(pParse, p, -1, 0, 0, 7411 pDest, addrEnd, addrEnd); 7412 } 7413 sqlite3VdbeResolveLabel(v, addrEnd); 7414 7415 } /* endif aggregate query */ 7416 7417 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7418 explainTempTable(pParse, "DISTINCT"); 7419 } 7420 7421 /* If there is an ORDER BY clause, then we need to sort the results 7422 ** and send them to the callback one by one. 7423 */ 7424 if( sSort.pOrderBy ){ 7425 explainTempTable(pParse, 7426 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7427 assert( p->pEList==pEList ); 7428 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7429 } 7430 7431 /* Jump here to skip this query 7432 */ 7433 sqlite3VdbeResolveLabel(v, iEnd); 7434 7435 /* The SELECT has been coded. If there is an error in the Parse structure, 7436 ** set the return code to 1. Otherwise 0. */ 7437 rc = (pParse->nErr>0); 7438 7439 /* Control jumps to here if an error is encountered above, or upon 7440 ** successful coding of the SELECT. 7441 */ 7442 select_end: 7443 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7444 pParse->nErr += db->mallocFailed; 7445 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7446 #ifdef SQLITE_DEBUG 7447 if( pAggInfo && !db->mallocFailed ){ 7448 for(i=0; i<pAggInfo->nColumn; i++){ 7449 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7450 assert( pExpr!=0 ); 7451 assert( pExpr->pAggInfo==pAggInfo ); 7452 assert( pExpr->iAgg==i ); 7453 } 7454 for(i=0; i<pAggInfo->nFunc; i++){ 7455 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7456 assert( pExpr!=0 ); 7457 assert( pExpr->pAggInfo==pAggInfo ); 7458 assert( pExpr->iAgg==i ); 7459 } 7460 } 7461 #endif 7462 7463 #if SELECTTRACE_ENABLED 7464 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7465 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7466 sqlite3TreeViewSelect(0, p, 0); 7467 } 7468 #endif 7469 ExplainQueryPlanPop(pParse); 7470 return rc; 7471 } 7472