xref: /sqlite-3.40.0/src/select.c (revision fb8ca7de)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   if( pEq && isOuterJoin ){
351     ExprSetProperty(pEq, EP_FromJoin);
352     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
353     ExprSetVVAProperty(pEq, EP_NoReduce);
354     pEq->iRightJoinTable = pE2->iTable;
355   }
356   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
357 }
358 
359 /*
360 ** Set the EP_FromJoin property on all terms of the given expression.
361 ** And set the Expr.iRightJoinTable to iTable for every term in the
362 ** expression.
363 **
364 ** The EP_FromJoin property is used on terms of an expression to tell
365 ** the LEFT OUTER JOIN processing logic that this term is part of the
366 ** join restriction specified in the ON or USING clause and not a part
367 ** of the more general WHERE clause.  These terms are moved over to the
368 ** WHERE clause during join processing but we need to remember that they
369 ** originated in the ON or USING clause.
370 **
371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
372 ** expression depends on table iRightJoinTable even if that table is not
373 ** explicitly mentioned in the expression.  That information is needed
374 ** for cases like this:
375 **
376 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
377 **
378 ** The where clause needs to defer the handling of the t1.x=5
379 ** term until after the t2 loop of the join.  In that way, a
380 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
381 ** defer the handling of t1.x=5, it will be processed immediately
382 ** after the t1 loop and rows with t1.x!=5 will never appear in
383 ** the output, which is incorrect.
384 */
385 void sqlite3SetJoinExpr(Expr *p, int iTable){
386   while( p ){
387     ExprSetProperty(p, EP_FromJoin);
388     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
389     ExprSetVVAProperty(p, EP_NoReduce);
390     p->iRightJoinTable = iTable;
391     if( p->op==TK_FUNCTION && p->x.pList ){
392       int i;
393       for(i=0; i<p->x.pList->nExpr; i++){
394         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
395       }
396     }
397     sqlite3SetJoinExpr(p->pLeft, iTable);
398     p = p->pRight;
399   }
400 }
401 
402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
404 ** an ordinary term that omits the EP_FromJoin mark.
405 **
406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
407 */
408 static void unsetJoinExpr(Expr *p, int iTable){
409   while( p ){
410     if( ExprHasProperty(p, EP_FromJoin)
411      && (iTable<0 || p->iRightJoinTable==iTable) ){
412       ExprClearProperty(p, EP_FromJoin);
413     }
414     if( p->op==TK_COLUMN && p->iTable==iTable ){
415       ExprClearProperty(p, EP_CanBeNull);
416     }
417     if( p->op==TK_FUNCTION && p->x.pList ){
418       int i;
419       for(i=0; i<p->x.pList->nExpr; i++){
420         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
421       }
422     }
423     unsetJoinExpr(p->pLeft, iTable);
424     p = p->pRight;
425   }
426 }
427 
428 /*
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
432 **
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc.  The right-most
435 ** table is the last entry.  The join operator is held in the entry to
436 ** the left.  Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
439 **
440 ** This routine returns the number of errors encountered.
441 */
442 static int sqliteProcessJoin(Parse *pParse, Select *p){
443   SrcList *pSrc;                  /* All tables in the FROM clause */
444   int i, j;                       /* Loop counters */
445   SrcItem *pLeft;                 /* Left table being joined */
446   SrcItem *pRight;                /* Right table being joined */
447 
448   pSrc = p->pSrc;
449   pLeft = &pSrc->a[0];
450   pRight = &pLeft[1];
451   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
452     Table *pRightTab = pRight->pTab;
453     int isOuter;
454 
455     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
456     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 
458     /* When the NATURAL keyword is present, add WHERE clause terms for
459     ** every column that the two tables have in common.
460     */
461     if( pRight->fg.jointype & JT_NATURAL ){
462       if( pRight->pOn || pRight->pUsing ){
463         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
464            "an ON or USING clause", 0);
465         return 1;
466       }
467       for(j=0; j<pRightTab->nCol; j++){
468         char *zName;   /* Name of column in the right table */
469         int iLeft;     /* Matching left table */
470         int iLeftCol;  /* Matching column in the left table */
471 
472         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
473         zName = pRightTab->aCol[j].zCnName;
474         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
475           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
476                 isOuter, &p->pWhere);
477         }
478       }
479     }
480 
481     /* Disallow both ON and USING clauses in the same join
482     */
483     if( pRight->pOn && pRight->pUsing ){
484       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
485         "clauses in the same join");
486       return 1;
487     }
488 
489     /* Add the ON clause to the end of the WHERE clause, connected by
490     ** an AND operator.
491     */
492     if( pRight->pOn ){
493       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
494       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
495       pRight->pOn = 0;
496     }
497 
498     /* Create extra terms on the WHERE clause for each column named
499     ** in the USING clause.  Example: If the two tables to be joined are
500     ** A and B and the USING clause names X, Y, and Z, then add this
501     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
502     ** Report an error if any column mentioned in the USING clause is
503     ** not contained in both tables to be joined.
504     */
505     if( pRight->pUsing ){
506       IdList *pList = pRight->pUsing;
507       for(j=0; j<pList->nId; j++){
508         char *zName;     /* Name of the term in the USING clause */
509         int iLeft;       /* Table on the left with matching column name */
510         int iLeftCol;    /* Column number of matching column on the left */
511         int iRightCol;   /* Column number of matching column on the right */
512 
513         zName = pList->a[j].zName;
514         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
515         if( iRightCol<0
516          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
517         ){
518           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
519             "not present in both tables", zName);
520           return 1;
521         }
522         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
523                      isOuter, &p->pWhere);
524       }
525     }
526   }
527   return 0;
528 }
529 
530 /*
531 ** An instance of this object holds information (beyond pParse and pSelect)
532 ** needed to load the next result row that is to be added to the sorter.
533 */
534 typedef struct RowLoadInfo RowLoadInfo;
535 struct RowLoadInfo {
536   int regResult;               /* Store results in array of registers here */
537   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
539   ExprList *pExtra;            /* Extra columns needed by sorter refs */
540   int regExtraResult;          /* Where to load the extra columns */
541 #endif
542 };
543 
544 /*
545 ** This routine does the work of loading query data into an array of
546 ** registers so that it can be added to the sorter.
547 */
548 static void innerLoopLoadRow(
549   Parse *pParse,             /* Statement under construction */
550   Select *pSelect,           /* The query being coded */
551   RowLoadInfo *pInfo         /* Info needed to complete the row load */
552 ){
553   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
554                           0, pInfo->ecelFlags);
555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
556   if( pInfo->pExtra ){
557     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
558     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
559   }
560 #endif
561 }
562 
563 /*
564 ** Code the OP_MakeRecord instruction that generates the entry to be
565 ** added into the sorter.
566 **
567 ** Return the register in which the result is stored.
568 */
569 static int makeSorterRecord(
570   Parse *pParse,
571   SortCtx *pSort,
572   Select *pSelect,
573   int regBase,
574   int nBase
575 ){
576   int nOBSat = pSort->nOBSat;
577   Vdbe *v = pParse->pVdbe;
578   int regOut = ++pParse->nMem;
579   if( pSort->pDeferredRowLoad ){
580     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
581   }
582   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
583   return regOut;
584 }
585 
586 /*
587 ** Generate code that will push the record in registers regData
588 ** through regData+nData-1 onto the sorter.
589 */
590 static void pushOntoSorter(
591   Parse *pParse,         /* Parser context */
592   SortCtx *pSort,        /* Information about the ORDER BY clause */
593   Select *pSelect,       /* The whole SELECT statement */
594   int regData,           /* First register holding data to be sorted */
595   int regOrigData,       /* First register holding data before packing */
596   int nData,             /* Number of elements in the regData data array */
597   int nPrefixReg         /* No. of reg prior to regData available for use */
598 ){
599   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
600   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
601   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
602   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
603   int regBase;                                     /* Regs for sorter record */
604   int regRecord = 0;                               /* Assembled sorter record */
605   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
606   int op;                            /* Opcode to add sorter record to sorter */
607   int iLimit;                        /* LIMIT counter */
608   int iSkip = 0;                     /* End of the sorter insert loop */
609 
610   assert( bSeq==0 || bSeq==1 );
611 
612   /* Three cases:
613   **   (1) The data to be sorted has already been packed into a Record
614   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
615   **       will be completely unrelated to regOrigData.
616   **   (2) All output columns are included in the sort record.  In that
617   **       case regData==regOrigData.
618   **   (3) Some output columns are omitted from the sort record due to
619   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
620   **       SQLITE_ECEL_OMITREF optimization, or due to the
621   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
622   **       regOrigData is 0 to prevent this routine from trying to copy
623   **       values that might not yet exist.
624   */
625   assert( nData==1 || regData==regOrigData || regOrigData==0 );
626 
627   if( nPrefixReg ){
628     assert( nPrefixReg==nExpr+bSeq );
629     regBase = regData - nPrefixReg;
630   }else{
631     regBase = pParse->nMem + 1;
632     pParse->nMem += nBase;
633   }
634   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
635   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
636   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
637   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
638                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
639   if( bSeq ){
640     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
641   }
642   if( nPrefixReg==0 && nData>0 ){
643     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
644   }
645   if( nOBSat>0 ){
646     int regPrevKey;   /* The first nOBSat columns of the previous row */
647     int addrFirst;    /* Address of the OP_IfNot opcode */
648     int addrJmp;      /* Address of the OP_Jump opcode */
649     VdbeOp *pOp;      /* Opcode that opens the sorter */
650     int nKey;         /* Number of sorting key columns, including OP_Sequence */
651     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
652 
653     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
654     regPrevKey = pParse->nMem+1;
655     pParse->nMem += pSort->nOBSat;
656     nKey = nExpr - pSort->nOBSat + bSeq;
657     if( bSeq ){
658       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
659     }else{
660       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
661     }
662     VdbeCoverage(v);
663     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
664     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
665     if( pParse->db->mallocFailed ) return;
666     pOp->p2 = nKey + nData;
667     pKI = pOp->p4.pKeyInfo;
668     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
669     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
670     testcase( pKI->nAllField > pKI->nKeyField+2 );
671     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
672                                            pKI->nAllField-pKI->nKeyField-1);
673     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
674     addrJmp = sqlite3VdbeCurrentAddr(v);
675     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
676     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
677     pSort->regReturn = ++pParse->nMem;
678     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
679     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
680     if( iLimit ){
681       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
682       VdbeCoverage(v);
683     }
684     sqlite3VdbeJumpHere(v, addrFirst);
685     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
686     sqlite3VdbeJumpHere(v, addrJmp);
687   }
688   if( iLimit ){
689     /* At this point the values for the new sorter entry are stored
690     ** in an array of registers. They need to be composed into a record
691     ** and inserted into the sorter if either (a) there are currently
692     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
693     ** the largest record currently in the sorter. If (b) is true and there
694     ** are already LIMIT+OFFSET items in the sorter, delete the largest
695     ** entry before inserting the new one. This way there are never more
696     ** than LIMIT+OFFSET items in the sorter.
697     **
698     ** If the new record does not need to be inserted into the sorter,
699     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
700     ** value is not zero, then it is a label of where to jump.  Otherwise,
701     ** just bypass the row insert logic.  See the header comment on the
702     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
703     */
704     int iCsr = pSort->iECursor;
705     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
706     VdbeCoverage(v);
707     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
708     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
709                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
710     VdbeCoverage(v);
711     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
712   }
713   if( regRecord==0 ){
714     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
715   }
716   if( pSort->sortFlags & SORTFLAG_UseSorter ){
717     op = OP_SorterInsert;
718   }else{
719     op = OP_IdxInsert;
720   }
721   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
722                        regBase+nOBSat, nBase-nOBSat);
723   if( iSkip ){
724     sqlite3VdbeChangeP2(v, iSkip,
725          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
726   }
727 }
728 
729 /*
730 ** Add code to implement the OFFSET
731 */
732 static void codeOffset(
733   Vdbe *v,          /* Generate code into this VM */
734   int iOffset,      /* Register holding the offset counter */
735   int iContinue     /* Jump here to skip the current record */
736 ){
737   if( iOffset>0 ){
738     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
739     VdbeComment((v, "OFFSET"));
740   }
741 }
742 
743 /*
744 ** Add code that will check to make sure the array of registers starting at
745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
747 ** are available. Which is used depends on the value of parameter eTnctType,
748 ** as follows:
749 **
750 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
751 **     Build an ephemeral table that contains all entries seen before and
752 **     skip entries which have been seen before.
753 **
754 **     Parameter iTab is the cursor number of an ephemeral table that must
755 **     be opened before the VM code generated by this routine is executed.
756 **     The ephemeral cursor table is queried for a record identical to the
757 **     record formed by the current array of registers. If one is found,
758 **     jump to VM address addrRepeat. Otherwise, insert a new record into
759 **     the ephemeral cursor and proceed.
760 **
761 **     The returned value in this case is a copy of parameter iTab.
762 **
763 **   WHERE_DISTINCT_ORDERED:
764 **     In this case rows are being delivered sorted order. The ephermal
765 **     table is not required. Instead, the current set of values
766 **     is compared against previous row. If they match, the new row
767 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
768 **     the VM program proceeds with processing the new row.
769 **
770 **     The returned value in this case is the register number of the first
771 **     in an array of registers used to store the previous result row so that
772 **     it can be compared to the next. The caller must ensure that this
773 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
774 **     will take care of this initialization.)
775 **
776 **   WHERE_DISTINCT_UNIQUE:
777 **     In this case it has already been determined that the rows are distinct.
778 **     No special action is required. The return value is zero.
779 **
780 ** Parameter pEList is the list of expressions used to generated the
781 ** contents of each row. It is used by this routine to determine (a)
782 ** how many elements there are in the array of registers and (b) the
783 ** collation sequences that should be used for the comparisons if
784 ** eTnctType is WHERE_DISTINCT_ORDERED.
785 */
786 static int codeDistinct(
787   Parse *pParse,     /* Parsing and code generating context */
788   int eTnctType,     /* WHERE_DISTINCT_* value */
789   int iTab,          /* A sorting index used to test for distinctness */
790   int addrRepeat,    /* Jump to here if not distinct */
791   ExprList *pEList,  /* Expression for each element */
792   int regElem        /* First element */
793 ){
794   int iRet = 0;
795   int nResultCol = pEList->nExpr;
796   Vdbe *v = pParse->pVdbe;
797 
798   switch( eTnctType ){
799     case WHERE_DISTINCT_ORDERED: {
800       int i;
801       int iJump;              /* Jump destination */
802       int regPrev;            /* Previous row content */
803 
804       /* Allocate space for the previous row */
805       iRet = regPrev = pParse->nMem+1;
806       pParse->nMem += nResultCol;
807 
808       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
809       for(i=0; i<nResultCol; i++){
810         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
811         if( i<nResultCol-1 ){
812           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
813           VdbeCoverage(v);
814         }else{
815           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
816           VdbeCoverage(v);
817          }
818         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
819         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
820       }
821       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
822       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
823       break;
824     }
825 
826     case WHERE_DISTINCT_UNIQUE: {
827       /* nothing to do */
828       break;
829     }
830 
831     default: {
832       int r1 = sqlite3GetTempReg(pParse);
833       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
834       VdbeCoverage(v);
835       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
836       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
837       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
838       sqlite3ReleaseTempReg(pParse, r1);
839       iRet = iTab;
840       break;
841     }
842   }
843 
844   return iRet;
845 }
846 
847 /*
848 ** This routine runs after codeDistinct().  It makes necessary
849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
850 ** routine made use of.  This processing must be done separately since
851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
852 ** laid down.
853 **
854 ** WHERE_DISTINCT_NOOP:
855 ** WHERE_DISTINCT_UNORDERED:
856 **
857 **     No adjustments necessary.  This function is a no-op.
858 **
859 ** WHERE_DISTINCT_UNIQUE:
860 **
861 **     The ephemeral table is not needed.  So change the
862 **     OP_OpenEphemeral opcode into an OP_Noop.
863 **
864 ** WHERE_DISTINCT_ORDERED:
865 **
866 **     The ephemeral table is not needed.  But we do need register
867 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
868 **     into an OP_Null on the iVal register.
869 */
870 static void fixDistinctOpenEph(
871   Parse *pParse,     /* Parsing and code generating context */
872   int eTnctType,     /* WHERE_DISTINCT_* value */
873   int iVal,          /* Value returned by codeDistinct() */
874   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
875 ){
876   if( pParse->nErr==0
877    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
878   ){
879     Vdbe *v = pParse->pVdbe;
880     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
881     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
882       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
883     }
884     if( eTnctType==WHERE_DISTINCT_ORDERED ){
885       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
886       ** bit on the first register of the previous value.  This will cause the
887       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
888       ** the loop even if the first row is all NULLs.  */
889       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
890       pOp->opcode = OP_Null;
891       pOp->p1 = 1;
892       pOp->p2 = iVal;
893     }
894   }
895 }
896 
897 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
898 /*
899 ** This function is called as part of inner-loop generation for a SELECT
900 ** statement with an ORDER BY that is not optimized by an index. It
901 ** determines the expressions, if any, that the sorter-reference
902 ** optimization should be used for. The sorter-reference optimization
903 ** is used for SELECT queries like:
904 **
905 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
906 **
907 ** If the optimization is used for expression "bigblob", then instead of
908 ** storing values read from that column in the sorter records, the PK of
909 ** the row from table t1 is stored instead. Then, as records are extracted from
910 ** the sorter to return to the user, the required value of bigblob is
911 ** retrieved directly from table t1. If the values are very large, this
912 ** can be more efficient than storing them directly in the sorter records.
913 **
914 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
915 ** for which the sorter-reference optimization should be enabled.
916 ** Additionally, the pSort->aDefer[] array is populated with entries
917 ** for all cursors required to evaluate all selected expressions. Finally.
918 ** output variable (*ppExtra) is set to an expression list containing
919 ** expressions for all extra PK values that should be stored in the
920 ** sorter records.
921 */
922 static void selectExprDefer(
923   Parse *pParse,                  /* Leave any error here */
924   SortCtx *pSort,                 /* Sorter context */
925   ExprList *pEList,               /* Expressions destined for sorter */
926   ExprList **ppExtra              /* Expressions to append to sorter record */
927 ){
928   int i;
929   int nDefer = 0;
930   ExprList *pExtra = 0;
931   for(i=0; i<pEList->nExpr; i++){
932     struct ExprList_item *pItem = &pEList->a[i];
933     if( pItem->u.x.iOrderByCol==0 ){
934       Expr *pExpr = pItem->pExpr;
935       Table *pTab = pExpr->y.pTab;
936       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
937        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
938       ){
939         int j;
940         for(j=0; j<nDefer; j++){
941           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
942         }
943         if( j==nDefer ){
944           if( nDefer==ArraySize(pSort->aDefer) ){
945             continue;
946           }else{
947             int nKey = 1;
948             int k;
949             Index *pPk = 0;
950             if( !HasRowid(pTab) ){
951               pPk = sqlite3PrimaryKeyIndex(pTab);
952               nKey = pPk->nKeyCol;
953             }
954             for(k=0; k<nKey; k++){
955               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
956               if( pNew ){
957                 pNew->iTable = pExpr->iTable;
958                 pNew->y.pTab = pExpr->y.pTab;
959                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
960                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
961               }
962             }
963             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
964             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
965             pSort->aDefer[nDefer].nKey = nKey;
966             nDefer++;
967           }
968         }
969         pItem->bSorterRef = 1;
970       }
971     }
972   }
973   pSort->nDefer = (u8)nDefer;
974   *ppExtra = pExtra;
975 }
976 #endif
977 
978 /*
979 ** This routine generates the code for the inside of the inner loop
980 ** of a SELECT.
981 **
982 ** If srcTab is negative, then the p->pEList expressions
983 ** are evaluated in order to get the data for this row.  If srcTab is
984 ** zero or more, then data is pulled from srcTab and p->pEList is used only
985 ** to get the number of columns and the collation sequence for each column.
986 */
987 static void selectInnerLoop(
988   Parse *pParse,          /* The parser context */
989   Select *p,              /* The complete select statement being coded */
990   int srcTab,             /* Pull data from this table if non-negative */
991   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
992   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
993   SelectDest *pDest,      /* How to dispose of the results */
994   int iContinue,          /* Jump here to continue with next row */
995   int iBreak              /* Jump here to break out of the inner loop */
996 ){
997   Vdbe *v = pParse->pVdbe;
998   int i;
999   int hasDistinct;            /* True if the DISTINCT keyword is present */
1000   int eDest = pDest->eDest;   /* How to dispose of results */
1001   int iParm = pDest->iSDParm; /* First argument to disposal method */
1002   int nResultCol;             /* Number of result columns */
1003   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1004   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1005 
1006   /* Usually, regResult is the first cell in an array of memory cells
1007   ** containing the current result row. In this case regOrig is set to the
1008   ** same value. However, if the results are being sent to the sorter, the
1009   ** values for any expressions that are also part of the sort-key are omitted
1010   ** from this array. In this case regOrig is set to zero.  */
1011   int regResult;              /* Start of memory holding current results */
1012   int regOrig;                /* Start of memory holding full result (or 0) */
1013 
1014   assert( v );
1015   assert( p->pEList!=0 );
1016   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1017   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1018   if( pSort==0 && !hasDistinct ){
1019     assert( iContinue!=0 );
1020     codeOffset(v, p->iOffset, iContinue);
1021   }
1022 
1023   /* Pull the requested columns.
1024   */
1025   nResultCol = p->pEList->nExpr;
1026 
1027   if( pDest->iSdst==0 ){
1028     if( pSort ){
1029       nPrefixReg = pSort->pOrderBy->nExpr;
1030       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1031       pParse->nMem += nPrefixReg;
1032     }
1033     pDest->iSdst = pParse->nMem+1;
1034     pParse->nMem += nResultCol;
1035   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1036     /* This is an error condition that can result, for example, when a SELECT
1037     ** on the right-hand side of an INSERT contains more result columns than
1038     ** there are columns in the table on the left.  The error will be caught
1039     ** and reported later.  But we need to make sure enough memory is allocated
1040     ** to avoid other spurious errors in the meantime. */
1041     pParse->nMem += nResultCol;
1042   }
1043   pDest->nSdst = nResultCol;
1044   regOrig = regResult = pDest->iSdst;
1045   if( srcTab>=0 ){
1046     for(i=0; i<nResultCol; i++){
1047       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1048       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1049     }
1050   }else if( eDest!=SRT_Exists ){
1051 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1052     ExprList *pExtra = 0;
1053 #endif
1054     /* If the destination is an EXISTS(...) expression, the actual
1055     ** values returned by the SELECT are not required.
1056     */
1057     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1058     ExprList *pEList;
1059     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1060       ecelFlags = SQLITE_ECEL_DUP;
1061     }else{
1062       ecelFlags = 0;
1063     }
1064     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1065       /* For each expression in p->pEList that is a copy of an expression in
1066       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1067       ** iOrderByCol value to one more than the index of the ORDER BY
1068       ** expression within the sort-key that pushOntoSorter() will generate.
1069       ** This allows the p->pEList field to be omitted from the sorted record,
1070       ** saving space and CPU cycles.  */
1071       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1072 
1073       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1074         int j;
1075         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1076           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1077         }
1078       }
1079 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1080       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1081       if( pExtra && pParse->db->mallocFailed==0 ){
1082         /* If there are any extra PK columns to add to the sorter records,
1083         ** allocate extra memory cells and adjust the OpenEphemeral
1084         ** instruction to account for the larger records. This is only
1085         ** required if there are one or more WITHOUT ROWID tables with
1086         ** composite primary keys in the SortCtx.aDefer[] array.  */
1087         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1088         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1089         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1090         pParse->nMem += pExtra->nExpr;
1091       }
1092 #endif
1093 
1094       /* Adjust nResultCol to account for columns that are omitted
1095       ** from the sorter by the optimizations in this branch */
1096       pEList = p->pEList;
1097       for(i=0; i<pEList->nExpr; i++){
1098         if( pEList->a[i].u.x.iOrderByCol>0
1099 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1100          || pEList->a[i].bSorterRef
1101 #endif
1102         ){
1103           nResultCol--;
1104           regOrig = 0;
1105         }
1106       }
1107 
1108       testcase( regOrig );
1109       testcase( eDest==SRT_Set );
1110       testcase( eDest==SRT_Mem );
1111       testcase( eDest==SRT_Coroutine );
1112       testcase( eDest==SRT_Output );
1113       assert( eDest==SRT_Set || eDest==SRT_Mem
1114            || eDest==SRT_Coroutine || eDest==SRT_Output
1115            || eDest==SRT_Upfrom );
1116     }
1117     sRowLoadInfo.regResult = regResult;
1118     sRowLoadInfo.ecelFlags = ecelFlags;
1119 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1120     sRowLoadInfo.pExtra = pExtra;
1121     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1122     if( pExtra ) nResultCol += pExtra->nExpr;
1123 #endif
1124     if( p->iLimit
1125      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1126      && nPrefixReg>0
1127     ){
1128       assert( pSort!=0 );
1129       assert( hasDistinct==0 );
1130       pSort->pDeferredRowLoad = &sRowLoadInfo;
1131       regOrig = 0;
1132     }else{
1133       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1134     }
1135   }
1136 
1137   /* If the DISTINCT keyword was present on the SELECT statement
1138   ** and this row has been seen before, then do not make this row
1139   ** part of the result.
1140   */
1141   if( hasDistinct ){
1142     int eType = pDistinct->eTnctType;
1143     int iTab = pDistinct->tabTnct;
1144     assert( nResultCol==p->pEList->nExpr );
1145     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1146     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1147     if( pSort==0 ){
1148       codeOffset(v, p->iOffset, iContinue);
1149     }
1150   }
1151 
1152   switch( eDest ){
1153     /* In this mode, write each query result to the key of the temporary
1154     ** table iParm.
1155     */
1156 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1157     case SRT_Union: {
1158       int r1;
1159       r1 = sqlite3GetTempReg(pParse);
1160       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1161       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1162       sqlite3ReleaseTempReg(pParse, r1);
1163       break;
1164     }
1165 
1166     /* Construct a record from the query result, but instead of
1167     ** saving that record, use it as a key to delete elements from
1168     ** the temporary table iParm.
1169     */
1170     case SRT_Except: {
1171       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1172       break;
1173     }
1174 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1175 
1176     /* Store the result as data using a unique key.
1177     */
1178     case SRT_Fifo:
1179     case SRT_DistFifo:
1180     case SRT_Table:
1181     case SRT_EphemTab: {
1182       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1183       testcase( eDest==SRT_Table );
1184       testcase( eDest==SRT_EphemTab );
1185       testcase( eDest==SRT_Fifo );
1186       testcase( eDest==SRT_DistFifo );
1187       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1188 #ifndef SQLITE_OMIT_CTE
1189       if( eDest==SRT_DistFifo ){
1190         /* If the destination is DistFifo, then cursor (iParm+1) is open
1191         ** on an ephemeral index. If the current row is already present
1192         ** in the index, do not write it to the output. If not, add the
1193         ** current row to the index and proceed with writing it to the
1194         ** output table as well.  */
1195         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1196         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1197         VdbeCoverage(v);
1198         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1199         assert( pSort==0 );
1200       }
1201 #endif
1202       if( pSort ){
1203         assert( regResult==regOrig );
1204         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1205       }else{
1206         int r2 = sqlite3GetTempReg(pParse);
1207         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1208         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1209         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1210         sqlite3ReleaseTempReg(pParse, r2);
1211       }
1212       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1213       break;
1214     }
1215 
1216     case SRT_Upfrom: {
1217       if( pSort ){
1218         pushOntoSorter(
1219             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1220       }else{
1221         int i2 = pDest->iSDParm2;
1222         int r1 = sqlite3GetTempReg(pParse);
1223 
1224         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1225         ** might still be trying to return one row, because that is what
1226         ** aggregates do.  Don't record that empty row in the output table. */
1227         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1228 
1229         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1230                           regResult+(i2<0), nResultCol-(i2<0), r1);
1231         if( i2<0 ){
1232           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1233         }else{
1234           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1235         }
1236       }
1237       break;
1238     }
1239 
1240 #ifndef SQLITE_OMIT_SUBQUERY
1241     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1242     ** then there should be a single item on the stack.  Write this
1243     ** item into the set table with bogus data.
1244     */
1245     case SRT_Set: {
1246       if( pSort ){
1247         /* At first glance you would think we could optimize out the
1248         ** ORDER BY in this case since the order of entries in the set
1249         ** does not matter.  But there might be a LIMIT clause, in which
1250         ** case the order does matter */
1251         pushOntoSorter(
1252             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1253       }else{
1254         int r1 = sqlite3GetTempReg(pParse);
1255         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1256         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1257             r1, pDest->zAffSdst, nResultCol);
1258         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1259         sqlite3ReleaseTempReg(pParse, r1);
1260       }
1261       break;
1262     }
1263 
1264 
1265     /* If any row exist in the result set, record that fact and abort.
1266     */
1267     case SRT_Exists: {
1268       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1269       /* The LIMIT clause will terminate the loop for us */
1270       break;
1271     }
1272 
1273     /* If this is a scalar select that is part of an expression, then
1274     ** store the results in the appropriate memory cell or array of
1275     ** memory cells and break out of the scan loop.
1276     */
1277     case SRT_Mem: {
1278       if( pSort ){
1279         assert( nResultCol<=pDest->nSdst );
1280         pushOntoSorter(
1281             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1282       }else{
1283         assert( nResultCol==pDest->nSdst );
1284         assert( regResult==iParm );
1285         /* The LIMIT clause will jump out of the loop for us */
1286       }
1287       break;
1288     }
1289 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1290 
1291     case SRT_Coroutine:       /* Send data to a co-routine */
1292     case SRT_Output: {        /* Return the results */
1293       testcase( eDest==SRT_Coroutine );
1294       testcase( eDest==SRT_Output );
1295       if( pSort ){
1296         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1297                        nPrefixReg);
1298       }else if( eDest==SRT_Coroutine ){
1299         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1300       }else{
1301         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1302       }
1303       break;
1304     }
1305 
1306 #ifndef SQLITE_OMIT_CTE
1307     /* Write the results into a priority queue that is order according to
1308     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1309     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1310     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1311     ** final OP_Sequence column.  The last column is the record as a blob.
1312     */
1313     case SRT_DistQueue:
1314     case SRT_Queue: {
1315       int nKey;
1316       int r1, r2, r3;
1317       int addrTest = 0;
1318       ExprList *pSO;
1319       pSO = pDest->pOrderBy;
1320       assert( pSO );
1321       nKey = pSO->nExpr;
1322       r1 = sqlite3GetTempReg(pParse);
1323       r2 = sqlite3GetTempRange(pParse, nKey+2);
1324       r3 = r2+nKey+1;
1325       if( eDest==SRT_DistQueue ){
1326         /* If the destination is DistQueue, then cursor (iParm+1) is open
1327         ** on a second ephemeral index that holds all values every previously
1328         ** added to the queue. */
1329         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1330                                         regResult, nResultCol);
1331         VdbeCoverage(v);
1332       }
1333       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1334       if( eDest==SRT_DistQueue ){
1335         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1336         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1337       }
1338       for(i=0; i<nKey; i++){
1339         sqlite3VdbeAddOp2(v, OP_SCopy,
1340                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1341                           r2+i);
1342       }
1343       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1344       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1345       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1346       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1347       sqlite3ReleaseTempReg(pParse, r1);
1348       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1349       break;
1350     }
1351 #endif /* SQLITE_OMIT_CTE */
1352 
1353 
1354 
1355 #if !defined(SQLITE_OMIT_TRIGGER)
1356     /* Discard the results.  This is used for SELECT statements inside
1357     ** the body of a TRIGGER.  The purpose of such selects is to call
1358     ** user-defined functions that have side effects.  We do not care
1359     ** about the actual results of the select.
1360     */
1361     default: {
1362       assert( eDest==SRT_Discard );
1363       break;
1364     }
1365 #endif
1366   }
1367 
1368   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1369   ** there is a sorter, in which case the sorter has already limited
1370   ** the output for us.
1371   */
1372   if( pSort==0 && p->iLimit ){
1373     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1374   }
1375 }
1376 
1377 /*
1378 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1379 ** X extra columns.
1380 */
1381 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1382   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1383   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1384   if( p ){
1385     p->aSortFlags = (u8*)&p->aColl[N+X];
1386     p->nKeyField = (u16)N;
1387     p->nAllField = (u16)(N+X);
1388     p->enc = ENC(db);
1389     p->db = db;
1390     p->nRef = 1;
1391     memset(&p[1], 0, nExtra);
1392   }else{
1393     sqlite3OomFault(db);
1394   }
1395   return p;
1396 }
1397 
1398 /*
1399 ** Deallocate a KeyInfo object
1400 */
1401 void sqlite3KeyInfoUnref(KeyInfo *p){
1402   if( p ){
1403     assert( p->nRef>0 );
1404     p->nRef--;
1405     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1406   }
1407 }
1408 
1409 /*
1410 ** Make a new pointer to a KeyInfo object
1411 */
1412 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1413   if( p ){
1414     assert( p->nRef>0 );
1415     p->nRef++;
1416   }
1417   return p;
1418 }
1419 
1420 #ifdef SQLITE_DEBUG
1421 /*
1422 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1423 ** can only be changed if this is just a single reference to the object.
1424 **
1425 ** This routine is used only inside of assert() statements.
1426 */
1427 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1428 #endif /* SQLITE_DEBUG */
1429 
1430 /*
1431 ** Given an expression list, generate a KeyInfo structure that records
1432 ** the collating sequence for each expression in that expression list.
1433 **
1434 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1435 ** KeyInfo structure is appropriate for initializing a virtual index to
1436 ** implement that clause.  If the ExprList is the result set of a SELECT
1437 ** then the KeyInfo structure is appropriate for initializing a virtual
1438 ** index to implement a DISTINCT test.
1439 **
1440 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1441 ** function is responsible for seeing that this structure is eventually
1442 ** freed.
1443 */
1444 KeyInfo *sqlite3KeyInfoFromExprList(
1445   Parse *pParse,       /* Parsing context */
1446   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1447   int iStart,          /* Begin with this column of pList */
1448   int nExtra           /* Add this many extra columns to the end */
1449 ){
1450   int nExpr;
1451   KeyInfo *pInfo;
1452   struct ExprList_item *pItem;
1453   sqlite3 *db = pParse->db;
1454   int i;
1455 
1456   nExpr = pList->nExpr;
1457   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1458   if( pInfo ){
1459     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1460     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1461       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1462       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1463     }
1464   }
1465   return pInfo;
1466 }
1467 
1468 /*
1469 ** Name of the connection operator, used for error messages.
1470 */
1471 const char *sqlite3SelectOpName(int id){
1472   char *z;
1473   switch( id ){
1474     case TK_ALL:       z = "UNION ALL";   break;
1475     case TK_INTERSECT: z = "INTERSECT";   break;
1476     case TK_EXCEPT:    z = "EXCEPT";      break;
1477     default:           z = "UNION";       break;
1478   }
1479   return z;
1480 }
1481 
1482 #ifndef SQLITE_OMIT_EXPLAIN
1483 /*
1484 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1485 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1486 ** where the caption is of the form:
1487 **
1488 **   "USE TEMP B-TREE FOR xxx"
1489 **
1490 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1491 ** is determined by the zUsage argument.
1492 */
1493 static void explainTempTable(Parse *pParse, const char *zUsage){
1494   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1495 }
1496 
1497 /*
1498 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1499 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1500 ** in sqlite3Select() to assign values to structure member variables that
1501 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1502 ** code with #ifndef directives.
1503 */
1504 # define explainSetInteger(a, b) a = b
1505 
1506 #else
1507 /* No-op versions of the explainXXX() functions and macros. */
1508 # define explainTempTable(y,z)
1509 # define explainSetInteger(y,z)
1510 #endif
1511 
1512 
1513 /*
1514 ** If the inner loop was generated using a non-null pOrderBy argument,
1515 ** then the results were placed in a sorter.  After the loop is terminated
1516 ** we need to run the sorter and output the results.  The following
1517 ** routine generates the code needed to do that.
1518 */
1519 static void generateSortTail(
1520   Parse *pParse,    /* Parsing context */
1521   Select *p,        /* The SELECT statement */
1522   SortCtx *pSort,   /* Information on the ORDER BY clause */
1523   int nColumn,      /* Number of columns of data */
1524   SelectDest *pDest /* Write the sorted results here */
1525 ){
1526   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1527   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1528   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1529   int addr;                       /* Top of output loop. Jump for Next. */
1530   int addrOnce = 0;
1531   int iTab;
1532   ExprList *pOrderBy = pSort->pOrderBy;
1533   int eDest = pDest->eDest;
1534   int iParm = pDest->iSDParm;
1535   int regRow;
1536   int regRowid;
1537   int iCol;
1538   int nKey;                       /* Number of key columns in sorter record */
1539   int iSortTab;                   /* Sorter cursor to read from */
1540   int i;
1541   int bSeq;                       /* True if sorter record includes seq. no. */
1542   int nRefKey = 0;
1543   struct ExprList_item *aOutEx = p->pEList->a;
1544 
1545   assert( addrBreak<0 );
1546   if( pSort->labelBkOut ){
1547     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1548     sqlite3VdbeGoto(v, addrBreak);
1549     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1550   }
1551 
1552 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1553   /* Open any cursors needed for sorter-reference expressions */
1554   for(i=0; i<pSort->nDefer; i++){
1555     Table *pTab = pSort->aDefer[i].pTab;
1556     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1557     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1558     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1559   }
1560 #endif
1561 
1562   iTab = pSort->iECursor;
1563   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1564     regRowid = 0;
1565     regRow = pDest->iSdst;
1566   }else{
1567     regRowid = sqlite3GetTempReg(pParse);
1568     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1569       regRow = sqlite3GetTempReg(pParse);
1570       nColumn = 0;
1571     }else{
1572       regRow = sqlite3GetTempRange(pParse, nColumn);
1573     }
1574   }
1575   nKey = pOrderBy->nExpr - pSort->nOBSat;
1576   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1577     int regSortOut = ++pParse->nMem;
1578     iSortTab = pParse->nTab++;
1579     if( pSort->labelBkOut ){
1580       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1581     }
1582     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1583         nKey+1+nColumn+nRefKey);
1584     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1585     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1586     VdbeCoverage(v);
1587     codeOffset(v, p->iOffset, addrContinue);
1588     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1589     bSeq = 0;
1590   }else{
1591     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1592     codeOffset(v, p->iOffset, addrContinue);
1593     iSortTab = iTab;
1594     bSeq = 1;
1595   }
1596   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1597 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1598     if( aOutEx[i].bSorterRef ) continue;
1599 #endif
1600     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1601   }
1602 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1603   if( pSort->nDefer ){
1604     int iKey = iCol+1;
1605     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1606 
1607     for(i=0; i<pSort->nDefer; i++){
1608       int iCsr = pSort->aDefer[i].iCsr;
1609       Table *pTab = pSort->aDefer[i].pTab;
1610       int nKey = pSort->aDefer[i].nKey;
1611 
1612       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1613       if( HasRowid(pTab) ){
1614         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1615         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1616             sqlite3VdbeCurrentAddr(v)+1, regKey);
1617       }else{
1618         int k;
1619         int iJmp;
1620         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1621         for(k=0; k<nKey; k++){
1622           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1623         }
1624         iJmp = sqlite3VdbeCurrentAddr(v);
1625         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1626         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1627         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1628       }
1629     }
1630     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1631   }
1632 #endif
1633   for(i=nColumn-1; i>=0; i--){
1634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1635     if( aOutEx[i].bSorterRef ){
1636       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1637     }else
1638 #endif
1639     {
1640       int iRead;
1641       if( aOutEx[i].u.x.iOrderByCol ){
1642         iRead = aOutEx[i].u.x.iOrderByCol-1;
1643       }else{
1644         iRead = iCol--;
1645       }
1646       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1647       VdbeComment((v, "%s", aOutEx[i].zEName));
1648     }
1649   }
1650   switch( eDest ){
1651     case SRT_Table:
1652     case SRT_EphemTab: {
1653       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1654       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1655       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1656       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1657       break;
1658     }
1659 #ifndef SQLITE_OMIT_SUBQUERY
1660     case SRT_Set: {
1661       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1662       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1663                         pDest->zAffSdst, nColumn);
1664       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1665       break;
1666     }
1667     case SRT_Mem: {
1668       /* The LIMIT clause will terminate the loop for us */
1669       break;
1670     }
1671 #endif
1672     case SRT_Upfrom: {
1673       int i2 = pDest->iSDParm2;
1674       int r1 = sqlite3GetTempReg(pParse);
1675       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1676       if( i2<0 ){
1677         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1678       }else{
1679         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1680       }
1681       break;
1682     }
1683     default: {
1684       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1685       testcase( eDest==SRT_Output );
1686       testcase( eDest==SRT_Coroutine );
1687       if( eDest==SRT_Output ){
1688         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1689       }else{
1690         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1691       }
1692       break;
1693     }
1694   }
1695   if( regRowid ){
1696     if( eDest==SRT_Set ){
1697       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1698     }else{
1699       sqlite3ReleaseTempReg(pParse, regRow);
1700     }
1701     sqlite3ReleaseTempReg(pParse, regRowid);
1702   }
1703   /* The bottom of the loop
1704   */
1705   sqlite3VdbeResolveLabel(v, addrContinue);
1706   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1707     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1708   }else{
1709     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1710   }
1711   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1712   sqlite3VdbeResolveLabel(v, addrBreak);
1713 }
1714 
1715 /*
1716 ** Return a pointer to a string containing the 'declaration type' of the
1717 ** expression pExpr. The string may be treated as static by the caller.
1718 **
1719 ** Also try to estimate the size of the returned value and return that
1720 ** result in *pEstWidth.
1721 **
1722 ** The declaration type is the exact datatype definition extracted from the
1723 ** original CREATE TABLE statement if the expression is a column. The
1724 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1725 ** is considered a column can be complex in the presence of subqueries. The
1726 ** result-set expression in all of the following SELECT statements is
1727 ** considered a column by this function.
1728 **
1729 **   SELECT col FROM tbl;
1730 **   SELECT (SELECT col FROM tbl;
1731 **   SELECT (SELECT col FROM tbl);
1732 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1733 **
1734 ** The declaration type for any expression other than a column is NULL.
1735 **
1736 ** This routine has either 3 or 6 parameters depending on whether or not
1737 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1738 */
1739 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1741 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1742 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1743 #endif
1744 static const char *columnTypeImpl(
1745   NameContext *pNC,
1746 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1747   Expr *pExpr
1748 #else
1749   Expr *pExpr,
1750   const char **pzOrigDb,
1751   const char **pzOrigTab,
1752   const char **pzOrigCol
1753 #endif
1754 ){
1755   char const *zType = 0;
1756   int j;
1757 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1758   char const *zOrigDb = 0;
1759   char const *zOrigTab = 0;
1760   char const *zOrigCol = 0;
1761 #endif
1762 
1763   assert( pExpr!=0 );
1764   assert( pNC->pSrcList!=0 );
1765   switch( pExpr->op ){
1766     case TK_COLUMN: {
1767       /* The expression is a column. Locate the table the column is being
1768       ** extracted from in NameContext.pSrcList. This table may be real
1769       ** database table or a subquery.
1770       */
1771       Table *pTab = 0;            /* Table structure column is extracted from */
1772       Select *pS = 0;             /* Select the column is extracted from */
1773       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1774       while( pNC && !pTab ){
1775         SrcList *pTabList = pNC->pSrcList;
1776         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1777         if( j<pTabList->nSrc ){
1778           pTab = pTabList->a[j].pTab;
1779           pS = pTabList->a[j].pSelect;
1780         }else{
1781           pNC = pNC->pNext;
1782         }
1783       }
1784 
1785       if( pTab==0 ){
1786         /* At one time, code such as "SELECT new.x" within a trigger would
1787         ** cause this condition to run.  Since then, we have restructured how
1788         ** trigger code is generated and so this condition is no longer
1789         ** possible. However, it can still be true for statements like
1790         ** the following:
1791         **
1792         **   CREATE TABLE t1(col INTEGER);
1793         **   SELECT (SELECT t1.col) FROM FROM t1;
1794         **
1795         ** when columnType() is called on the expression "t1.col" in the
1796         ** sub-select. In this case, set the column type to NULL, even
1797         ** though it should really be "INTEGER".
1798         **
1799         ** This is not a problem, as the column type of "t1.col" is never
1800         ** used. When columnType() is called on the expression
1801         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1802         ** branch below.  */
1803         break;
1804       }
1805 
1806       assert( pTab && pExpr->y.pTab==pTab );
1807       if( pS ){
1808         /* The "table" is actually a sub-select or a view in the FROM clause
1809         ** of the SELECT statement. Return the declaration type and origin
1810         ** data for the result-set column of the sub-select.
1811         */
1812         if( iCol<pS->pEList->nExpr
1813 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1814          && iCol>=0
1815 #else
1816          && ALWAYS(iCol>=0)
1817 #endif
1818         ){
1819           /* If iCol is less than zero, then the expression requests the
1820           ** rowid of the sub-select or view. This expression is legal (see
1821           ** test case misc2.2.2) - it always evaluates to NULL.
1822           */
1823           NameContext sNC;
1824           Expr *p = pS->pEList->a[iCol].pExpr;
1825           sNC.pSrcList = pS->pSrc;
1826           sNC.pNext = pNC;
1827           sNC.pParse = pNC->pParse;
1828           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1829         }
1830       }else{
1831         /* A real table or a CTE table */
1832         assert( !pS );
1833 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1834         if( iCol<0 ) iCol = pTab->iPKey;
1835         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1836         if( iCol<0 ){
1837           zType = "INTEGER";
1838           zOrigCol = "rowid";
1839         }else{
1840           zOrigCol = pTab->aCol[iCol].zCnName;
1841           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1842         }
1843         zOrigTab = pTab->zName;
1844         if( pNC->pParse && pTab->pSchema ){
1845           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1846           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1847         }
1848 #else
1849         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1850         if( iCol<0 ){
1851           zType = "INTEGER";
1852         }else{
1853           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1854         }
1855 #endif
1856       }
1857       break;
1858     }
1859 #ifndef SQLITE_OMIT_SUBQUERY
1860     case TK_SELECT: {
1861       /* The expression is a sub-select. Return the declaration type and
1862       ** origin info for the single column in the result set of the SELECT
1863       ** statement.
1864       */
1865       NameContext sNC;
1866       Select *pS = pExpr->x.pSelect;
1867       Expr *p = pS->pEList->a[0].pExpr;
1868       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1869       sNC.pSrcList = pS->pSrc;
1870       sNC.pNext = pNC;
1871       sNC.pParse = pNC->pParse;
1872       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1873       break;
1874     }
1875 #endif
1876   }
1877 
1878 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1879   if( pzOrigDb ){
1880     assert( pzOrigTab && pzOrigCol );
1881     *pzOrigDb = zOrigDb;
1882     *pzOrigTab = zOrigTab;
1883     *pzOrigCol = zOrigCol;
1884   }
1885 #endif
1886   return zType;
1887 }
1888 
1889 /*
1890 ** Generate code that will tell the VDBE the declaration types of columns
1891 ** in the result set.
1892 */
1893 static void generateColumnTypes(
1894   Parse *pParse,      /* Parser context */
1895   SrcList *pTabList,  /* List of tables */
1896   ExprList *pEList    /* Expressions defining the result set */
1897 ){
1898 #ifndef SQLITE_OMIT_DECLTYPE
1899   Vdbe *v = pParse->pVdbe;
1900   int i;
1901   NameContext sNC;
1902   sNC.pSrcList = pTabList;
1903   sNC.pParse = pParse;
1904   sNC.pNext = 0;
1905   for(i=0; i<pEList->nExpr; i++){
1906     Expr *p = pEList->a[i].pExpr;
1907     const char *zType;
1908 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1909     const char *zOrigDb = 0;
1910     const char *zOrigTab = 0;
1911     const char *zOrigCol = 0;
1912     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1913 
1914     /* The vdbe must make its own copy of the column-type and other
1915     ** column specific strings, in case the schema is reset before this
1916     ** virtual machine is deleted.
1917     */
1918     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1919     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1920     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1921 #else
1922     zType = columnType(&sNC, p, 0, 0, 0);
1923 #endif
1924     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1925   }
1926 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1927 }
1928 
1929 
1930 /*
1931 ** Compute the column names for a SELECT statement.
1932 **
1933 ** The only guarantee that SQLite makes about column names is that if the
1934 ** column has an AS clause assigning it a name, that will be the name used.
1935 ** That is the only documented guarantee.  However, countless applications
1936 ** developed over the years have made baseless assumptions about column names
1937 ** and will break if those assumptions changes.  Hence, use extreme caution
1938 ** when modifying this routine to avoid breaking legacy.
1939 **
1940 ** See Also: sqlite3ColumnsFromExprList()
1941 **
1942 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1943 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1944 ** applications should operate this way.  Nevertheless, we need to support the
1945 ** other modes for legacy:
1946 **
1947 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1948 **                              originally appears in the SELECT statement.  In
1949 **                              other words, the zSpan of the result expression.
1950 **
1951 **    short=ON, full=OFF:       (This is the default setting).  If the result
1952 **                              refers directly to a table column, then the
1953 **                              result column name is just the table column
1954 **                              name: COLUMN.  Otherwise use zSpan.
1955 **
1956 **    full=ON, short=ANY:       If the result refers directly to a table column,
1957 **                              then the result column name with the table name
1958 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1959 */
1960 void sqlite3GenerateColumnNames(
1961   Parse *pParse,      /* Parser context */
1962   Select *pSelect     /* Generate column names for this SELECT statement */
1963 ){
1964   Vdbe *v = pParse->pVdbe;
1965   int i;
1966   Table *pTab;
1967   SrcList *pTabList;
1968   ExprList *pEList;
1969   sqlite3 *db = pParse->db;
1970   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1971   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1972 
1973 #ifndef SQLITE_OMIT_EXPLAIN
1974   /* If this is an EXPLAIN, skip this step */
1975   if( pParse->explain ){
1976     return;
1977   }
1978 #endif
1979 
1980   if( pParse->colNamesSet ) return;
1981   /* Column names are determined by the left-most term of a compound select */
1982   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1983   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1984   pTabList = pSelect->pSrc;
1985   pEList = pSelect->pEList;
1986   assert( v!=0 );
1987   assert( pTabList!=0 );
1988   pParse->colNamesSet = 1;
1989   fullName = (db->flags & SQLITE_FullColNames)!=0;
1990   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1991   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1992   for(i=0; i<pEList->nExpr; i++){
1993     Expr *p = pEList->a[i].pExpr;
1994 
1995     assert( p!=0 );
1996     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1997     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1998     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1999       /* An AS clause always takes first priority */
2000       char *zName = pEList->a[i].zEName;
2001       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2002     }else if( srcName && p->op==TK_COLUMN ){
2003       char *zCol;
2004       int iCol = p->iColumn;
2005       pTab = p->y.pTab;
2006       assert( pTab!=0 );
2007       if( iCol<0 ) iCol = pTab->iPKey;
2008       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2009       if( iCol<0 ){
2010         zCol = "rowid";
2011       }else{
2012         zCol = pTab->aCol[iCol].zCnName;
2013       }
2014       if( fullName ){
2015         char *zName = 0;
2016         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2017         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2018       }else{
2019         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2020       }
2021     }else{
2022       const char *z = pEList->a[i].zEName;
2023       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2024       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2025     }
2026   }
2027   generateColumnTypes(pParse, pTabList, pEList);
2028 }
2029 
2030 /*
2031 ** Given an expression list (which is really the list of expressions
2032 ** that form the result set of a SELECT statement) compute appropriate
2033 ** column names for a table that would hold the expression list.
2034 **
2035 ** All column names will be unique.
2036 **
2037 ** Only the column names are computed.  Column.zType, Column.zColl,
2038 ** and other fields of Column are zeroed.
2039 **
2040 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2041 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2042 **
2043 ** The only guarantee that SQLite makes about column names is that if the
2044 ** column has an AS clause assigning it a name, that will be the name used.
2045 ** That is the only documented guarantee.  However, countless applications
2046 ** developed over the years have made baseless assumptions about column names
2047 ** and will break if those assumptions changes.  Hence, use extreme caution
2048 ** when modifying this routine to avoid breaking legacy.
2049 **
2050 ** See Also: sqlite3GenerateColumnNames()
2051 */
2052 int sqlite3ColumnsFromExprList(
2053   Parse *pParse,          /* Parsing context */
2054   ExprList *pEList,       /* Expr list from which to derive column names */
2055   i16 *pnCol,             /* Write the number of columns here */
2056   Column **paCol          /* Write the new column list here */
2057 ){
2058   sqlite3 *db = pParse->db;   /* Database connection */
2059   int i, j;                   /* Loop counters */
2060   u32 cnt;                    /* Index added to make the name unique */
2061   Column *aCol, *pCol;        /* For looping over result columns */
2062   int nCol;                   /* Number of columns in the result set */
2063   char *zName;                /* Column name */
2064   int nName;                  /* Size of name in zName[] */
2065   Hash ht;                    /* Hash table of column names */
2066   Table *pTab;
2067 
2068   sqlite3HashInit(&ht);
2069   if( pEList ){
2070     nCol = pEList->nExpr;
2071     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2072     testcase( aCol==0 );
2073     if( NEVER(nCol>32767) ) nCol = 32767;
2074   }else{
2075     nCol = 0;
2076     aCol = 0;
2077   }
2078   assert( nCol==(i16)nCol );
2079   *pnCol = nCol;
2080   *paCol = aCol;
2081 
2082   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2083     /* Get an appropriate name for the column
2084     */
2085     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2086       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2087     }else{
2088       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2089       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2090         pColExpr = pColExpr->pRight;
2091         assert( pColExpr!=0 );
2092       }
2093       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2094         /* For columns use the column name name */
2095         int iCol = pColExpr->iColumn;
2096         if( iCol<0 ) iCol = pTab->iPKey;
2097         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2098       }else if( pColExpr->op==TK_ID ){
2099         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2100         zName = pColExpr->u.zToken;
2101       }else{
2102         /* Use the original text of the column expression as its name */
2103         zName = pEList->a[i].zEName;
2104       }
2105     }
2106     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2107       zName = sqlite3DbStrDup(db, zName);
2108     }else{
2109       zName = sqlite3MPrintf(db,"column%d",i+1);
2110     }
2111 
2112     /* Make sure the column name is unique.  If the name is not unique,
2113     ** append an integer to the name so that it becomes unique.
2114     */
2115     cnt = 0;
2116     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2117       nName = sqlite3Strlen30(zName);
2118       if( nName>0 ){
2119         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2120         if( zName[j]==':' ) nName = j;
2121       }
2122       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2123       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2124     }
2125     pCol->zCnName = zName;
2126     pCol->hName = sqlite3StrIHash(zName);
2127     sqlite3ColumnPropertiesFromName(0, pCol);
2128     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2129       sqlite3OomFault(db);
2130     }
2131   }
2132   sqlite3HashClear(&ht);
2133   if( db->mallocFailed ){
2134     for(j=0; j<i; j++){
2135       sqlite3DbFree(db, aCol[j].zCnName);
2136     }
2137     sqlite3DbFree(db, aCol);
2138     *paCol = 0;
2139     *pnCol = 0;
2140     return SQLITE_NOMEM_BKPT;
2141   }
2142   return SQLITE_OK;
2143 }
2144 
2145 /*
2146 ** Add type and collation information to a column list based on
2147 ** a SELECT statement.
2148 **
2149 ** The column list presumably came from selectColumnNamesFromExprList().
2150 ** The column list has only names, not types or collations.  This
2151 ** routine goes through and adds the types and collations.
2152 **
2153 ** This routine requires that all identifiers in the SELECT
2154 ** statement be resolved.
2155 */
2156 void sqlite3SelectAddColumnTypeAndCollation(
2157   Parse *pParse,        /* Parsing contexts */
2158   Table *pTab,          /* Add column type information to this table */
2159   Select *pSelect,      /* SELECT used to determine types and collations */
2160   char aff              /* Default affinity for columns */
2161 ){
2162   sqlite3 *db = pParse->db;
2163   NameContext sNC;
2164   Column *pCol;
2165   CollSeq *pColl;
2166   int i;
2167   Expr *p;
2168   struct ExprList_item *a;
2169 
2170   assert( pSelect!=0 );
2171   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2172   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2173   if( db->mallocFailed ) return;
2174   memset(&sNC, 0, sizeof(sNC));
2175   sNC.pSrcList = pSelect->pSrc;
2176   a = pSelect->pEList->a;
2177   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2178     const char *zType;
2179     int n, m;
2180     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2181     p = a[i].pExpr;
2182     zType = columnType(&sNC, p, 0, 0, 0);
2183     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2184     pCol->affinity = sqlite3ExprAffinity(p);
2185     if( zType ){
2186       m = sqlite3Strlen30(zType);
2187       n = sqlite3Strlen30(pCol->zCnName);
2188       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2189       if( pCol->zCnName ){
2190         memcpy(&pCol->zCnName[n+1], zType, m+1);
2191         pCol->colFlags |= COLFLAG_HASTYPE;
2192       }
2193     }
2194     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2195     pColl = sqlite3ExprCollSeq(pParse, p);
2196     if( pColl ){
2197       assert( pTab->pIndex==0 );
2198       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2199     }
2200   }
2201   pTab->szTabRow = 1; /* Any non-zero value works */
2202 }
2203 
2204 /*
2205 ** Given a SELECT statement, generate a Table structure that describes
2206 ** the result set of that SELECT.
2207 */
2208 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2209   Table *pTab;
2210   sqlite3 *db = pParse->db;
2211   u64 savedFlags;
2212 
2213   savedFlags = db->flags;
2214   db->flags &= ~(u64)SQLITE_FullColNames;
2215   db->flags |= SQLITE_ShortColNames;
2216   sqlite3SelectPrep(pParse, pSelect, 0);
2217   db->flags = savedFlags;
2218   if( pParse->nErr ) return 0;
2219   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2220   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2221   if( pTab==0 ){
2222     return 0;
2223   }
2224   pTab->nTabRef = 1;
2225   pTab->zName = 0;
2226   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2227   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2228   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2229   pTab->iPKey = -1;
2230   if( db->mallocFailed ){
2231     sqlite3DeleteTable(db, pTab);
2232     return 0;
2233   }
2234   return pTab;
2235 }
2236 
2237 /*
2238 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2239 ** If an error occurs, return NULL and leave a message in pParse.
2240 */
2241 Vdbe *sqlite3GetVdbe(Parse *pParse){
2242   if( pParse->pVdbe ){
2243     return pParse->pVdbe;
2244   }
2245   if( pParse->pToplevel==0
2246    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2247   ){
2248     pParse->okConstFactor = 1;
2249   }
2250   return sqlite3VdbeCreate(pParse);
2251 }
2252 
2253 
2254 /*
2255 ** Compute the iLimit and iOffset fields of the SELECT based on the
2256 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2257 ** that appear in the original SQL statement after the LIMIT and OFFSET
2258 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2259 ** are the integer memory register numbers for counters used to compute
2260 ** the limit and offset.  If there is no limit and/or offset, then
2261 ** iLimit and iOffset are negative.
2262 **
2263 ** This routine changes the values of iLimit and iOffset only if
2264 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2265 ** and iOffset should have been preset to appropriate default values (zero)
2266 ** prior to calling this routine.
2267 **
2268 ** The iOffset register (if it exists) is initialized to the value
2269 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2270 ** iOffset+1 is initialized to LIMIT+OFFSET.
2271 **
2272 ** Only if pLimit->pLeft!=0 do the limit registers get
2273 ** redefined.  The UNION ALL operator uses this property to force
2274 ** the reuse of the same limit and offset registers across multiple
2275 ** SELECT statements.
2276 */
2277 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2278   Vdbe *v = 0;
2279   int iLimit = 0;
2280   int iOffset;
2281   int n;
2282   Expr *pLimit = p->pLimit;
2283 
2284   if( p->iLimit ) return;
2285 
2286   /*
2287   ** "LIMIT -1" always shows all rows.  There is some
2288   ** controversy about what the correct behavior should be.
2289   ** The current implementation interprets "LIMIT 0" to mean
2290   ** no rows.
2291   */
2292   if( pLimit ){
2293     assert( pLimit->op==TK_LIMIT );
2294     assert( pLimit->pLeft!=0 );
2295     p->iLimit = iLimit = ++pParse->nMem;
2296     v = sqlite3GetVdbe(pParse);
2297     assert( v!=0 );
2298     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2299       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2300       VdbeComment((v, "LIMIT counter"));
2301       if( n==0 ){
2302         sqlite3VdbeGoto(v, iBreak);
2303       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2304         p->nSelectRow = sqlite3LogEst((u64)n);
2305         p->selFlags |= SF_FixedLimit;
2306       }
2307     }else{
2308       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2309       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2310       VdbeComment((v, "LIMIT counter"));
2311       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2312     }
2313     if( pLimit->pRight ){
2314       p->iOffset = iOffset = ++pParse->nMem;
2315       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2316       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2317       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2318       VdbeComment((v, "OFFSET counter"));
2319       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2320       VdbeComment((v, "LIMIT+OFFSET"));
2321     }
2322   }
2323 }
2324 
2325 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2326 /*
2327 ** Return the appropriate collating sequence for the iCol-th column of
2328 ** the result set for the compound-select statement "p".  Return NULL if
2329 ** the column has no default collating sequence.
2330 **
2331 ** The collating sequence for the compound select is taken from the
2332 ** left-most term of the select that has a collating sequence.
2333 */
2334 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2335   CollSeq *pRet;
2336   if( p->pPrior ){
2337     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2338   }else{
2339     pRet = 0;
2340   }
2341   assert( iCol>=0 );
2342   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2343   ** have been thrown during name resolution and we would not have gotten
2344   ** this far */
2345   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2346     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2347   }
2348   return pRet;
2349 }
2350 
2351 /*
2352 ** The select statement passed as the second parameter is a compound SELECT
2353 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2354 ** structure suitable for implementing the ORDER BY.
2355 **
2356 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2357 ** function is responsible for ensuring that this structure is eventually
2358 ** freed.
2359 */
2360 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2361   ExprList *pOrderBy = p->pOrderBy;
2362   int nOrderBy = p->pOrderBy->nExpr;
2363   sqlite3 *db = pParse->db;
2364   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2365   if( pRet ){
2366     int i;
2367     for(i=0; i<nOrderBy; i++){
2368       struct ExprList_item *pItem = &pOrderBy->a[i];
2369       Expr *pTerm = pItem->pExpr;
2370       CollSeq *pColl;
2371 
2372       if( pTerm->flags & EP_Collate ){
2373         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2374       }else{
2375         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2376         if( pColl==0 ) pColl = db->pDfltColl;
2377         pOrderBy->a[i].pExpr =
2378           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2379       }
2380       assert( sqlite3KeyInfoIsWriteable(pRet) );
2381       pRet->aColl[i] = pColl;
2382       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2383     }
2384   }
2385 
2386   return pRet;
2387 }
2388 
2389 #ifndef SQLITE_OMIT_CTE
2390 /*
2391 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2392 ** query of the form:
2393 **
2394 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2395 **                         \___________/             \_______________/
2396 **                           p->pPrior                      p
2397 **
2398 **
2399 ** There is exactly one reference to the recursive-table in the FROM clause
2400 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2401 **
2402 ** The setup-query runs once to generate an initial set of rows that go
2403 ** into a Queue table.  Rows are extracted from the Queue table one by
2404 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2405 ** extracted row (now in the iCurrent table) becomes the content of the
2406 ** recursive-table for a recursive-query run.  The output of the recursive-query
2407 ** is added back into the Queue table.  Then another row is extracted from Queue
2408 ** and the iteration continues until the Queue table is empty.
2409 **
2410 ** If the compound query operator is UNION then no duplicate rows are ever
2411 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2412 ** that have ever been inserted into Queue and causes duplicates to be
2413 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2414 **
2415 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2416 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2417 ** an ORDER BY, the Queue table is just a FIFO.
2418 **
2419 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2420 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2421 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2422 ** with a positive value, then the first OFFSET outputs are discarded rather
2423 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2424 ** rows have been skipped.
2425 */
2426 static void generateWithRecursiveQuery(
2427   Parse *pParse,        /* Parsing context */
2428   Select *p,            /* The recursive SELECT to be coded */
2429   SelectDest *pDest     /* What to do with query results */
2430 ){
2431   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2432   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2433   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2434   Select *pSetup = p->pPrior;   /* The setup query */
2435   Select *pFirstRec;            /* Left-most recursive term */
2436   int addrTop;                  /* Top of the loop */
2437   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2438   int iCurrent = 0;             /* The Current table */
2439   int regCurrent;               /* Register holding Current table */
2440   int iQueue;                   /* The Queue table */
2441   int iDistinct = 0;            /* To ensure unique results if UNION */
2442   int eDest = SRT_Fifo;         /* How to write to Queue */
2443   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2444   int i;                        /* Loop counter */
2445   int rc;                       /* Result code */
2446   ExprList *pOrderBy;           /* The ORDER BY clause */
2447   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2448   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2449 
2450 #ifndef SQLITE_OMIT_WINDOWFUNC
2451   if( p->pWin ){
2452     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2453     return;
2454   }
2455 #endif
2456 
2457   /* Obtain authorization to do a recursive query */
2458   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2459 
2460   /* Process the LIMIT and OFFSET clauses, if they exist */
2461   addrBreak = sqlite3VdbeMakeLabel(pParse);
2462   p->nSelectRow = 320;  /* 4 billion rows */
2463   computeLimitRegisters(pParse, p, addrBreak);
2464   pLimit = p->pLimit;
2465   regLimit = p->iLimit;
2466   regOffset = p->iOffset;
2467   p->pLimit = 0;
2468   p->iLimit = p->iOffset = 0;
2469   pOrderBy = p->pOrderBy;
2470 
2471   /* Locate the cursor number of the Current table */
2472   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2473     if( pSrc->a[i].fg.isRecursive ){
2474       iCurrent = pSrc->a[i].iCursor;
2475       break;
2476     }
2477   }
2478 
2479   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2480   ** the Distinct table must be exactly one greater than Queue in order
2481   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2482   iQueue = pParse->nTab++;
2483   if( p->op==TK_UNION ){
2484     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2485     iDistinct = pParse->nTab++;
2486   }else{
2487     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2488   }
2489   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2490 
2491   /* Allocate cursors for Current, Queue, and Distinct. */
2492   regCurrent = ++pParse->nMem;
2493   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2494   if( pOrderBy ){
2495     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2496     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2497                       (char*)pKeyInfo, P4_KEYINFO);
2498     destQueue.pOrderBy = pOrderBy;
2499   }else{
2500     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2501   }
2502   VdbeComment((v, "Queue table"));
2503   if( iDistinct ){
2504     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2505     p->selFlags |= SF_UsesEphemeral;
2506   }
2507 
2508   /* Detach the ORDER BY clause from the compound SELECT */
2509   p->pOrderBy = 0;
2510 
2511   /* Figure out how many elements of the compound SELECT are part of the
2512   ** recursive query.  Make sure no recursive elements use aggregate
2513   ** functions.  Mark the recursive elements as UNION ALL even if they
2514   ** are really UNION because the distinctness will be enforced by the
2515   ** iDistinct table.  pFirstRec is left pointing to the left-most
2516   ** recursive term of the CTE.
2517   */
2518   pFirstRec = p;
2519   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2520     if( pFirstRec->selFlags & SF_Aggregate ){
2521       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2522       goto end_of_recursive_query;
2523     }
2524     pFirstRec->op = TK_ALL;
2525     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2526   }
2527 
2528   /* Store the results of the setup-query in Queue. */
2529   pSetup = pFirstRec->pPrior;
2530   pSetup->pNext = 0;
2531   ExplainQueryPlan((pParse, 1, "SETUP"));
2532   rc = sqlite3Select(pParse, pSetup, &destQueue);
2533   pSetup->pNext = p;
2534   if( rc ) goto end_of_recursive_query;
2535 
2536   /* Find the next row in the Queue and output that row */
2537   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2538 
2539   /* Transfer the next row in Queue over to Current */
2540   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2541   if( pOrderBy ){
2542     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2543   }else{
2544     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2545   }
2546   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2547 
2548   /* Output the single row in Current */
2549   addrCont = sqlite3VdbeMakeLabel(pParse);
2550   codeOffset(v, regOffset, addrCont);
2551   selectInnerLoop(pParse, p, iCurrent,
2552       0, 0, pDest, addrCont, addrBreak);
2553   if( regLimit ){
2554     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2555     VdbeCoverage(v);
2556   }
2557   sqlite3VdbeResolveLabel(v, addrCont);
2558 
2559   /* Execute the recursive SELECT taking the single row in Current as
2560   ** the value for the recursive-table. Store the results in the Queue.
2561   */
2562   pFirstRec->pPrior = 0;
2563   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2564   sqlite3Select(pParse, p, &destQueue);
2565   assert( pFirstRec->pPrior==0 );
2566   pFirstRec->pPrior = pSetup;
2567 
2568   /* Keep running the loop until the Queue is empty */
2569   sqlite3VdbeGoto(v, addrTop);
2570   sqlite3VdbeResolveLabel(v, addrBreak);
2571 
2572 end_of_recursive_query:
2573   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2574   p->pOrderBy = pOrderBy;
2575   p->pLimit = pLimit;
2576   return;
2577 }
2578 #endif /* SQLITE_OMIT_CTE */
2579 
2580 /* Forward references */
2581 static int multiSelectOrderBy(
2582   Parse *pParse,        /* Parsing context */
2583   Select *p,            /* The right-most of SELECTs to be coded */
2584   SelectDest *pDest     /* What to do with query results */
2585 );
2586 
2587 /*
2588 ** Handle the special case of a compound-select that originates from a
2589 ** VALUES clause.  By handling this as a special case, we avoid deep
2590 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2591 ** on a VALUES clause.
2592 **
2593 ** Because the Select object originates from a VALUES clause:
2594 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2595 **   (2) All terms are UNION ALL
2596 **   (3) There is no ORDER BY clause
2597 **
2598 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2599 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2600 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2601 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2602 */
2603 static int multiSelectValues(
2604   Parse *pParse,        /* Parsing context */
2605   Select *p,            /* The right-most of SELECTs to be coded */
2606   SelectDest *pDest     /* What to do with query results */
2607 ){
2608   int nRow = 1;
2609   int rc = 0;
2610   int bShowAll = p->pLimit==0;
2611   assert( p->selFlags & SF_MultiValue );
2612   do{
2613     assert( p->selFlags & SF_Values );
2614     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2615     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2616 #ifndef SQLITE_OMIT_WINDOWFUNC
2617     if( p->pWin ) return -1;
2618 #endif
2619     if( p->pPrior==0 ) break;
2620     assert( p->pPrior->pNext==p );
2621     p = p->pPrior;
2622     nRow += bShowAll;
2623   }while(1);
2624   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2625                     nRow==1 ? "" : "S"));
2626   while( p ){
2627     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2628     if( !bShowAll ) break;
2629     p->nSelectRow = nRow;
2630     p = p->pNext;
2631   }
2632   return rc;
2633 }
2634 
2635 /*
2636 ** Return true if the SELECT statement which is known to be the recursive
2637 ** part of a recursive CTE still has its anchor terms attached.  If the
2638 ** anchor terms have already been removed, then return false.
2639 */
2640 static int hasAnchor(Select *p){
2641   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2642   return p!=0;
2643 }
2644 
2645 /*
2646 ** This routine is called to process a compound query form from
2647 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2648 ** INTERSECT
2649 **
2650 ** "p" points to the right-most of the two queries.  the query on the
2651 ** left is p->pPrior.  The left query could also be a compound query
2652 ** in which case this routine will be called recursively.
2653 **
2654 ** The results of the total query are to be written into a destination
2655 ** of type eDest with parameter iParm.
2656 **
2657 ** Example 1:  Consider a three-way compound SQL statement.
2658 **
2659 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2660 **
2661 ** This statement is parsed up as follows:
2662 **
2663 **     SELECT c FROM t3
2664 **      |
2665 **      `----->  SELECT b FROM t2
2666 **                |
2667 **                `------>  SELECT a FROM t1
2668 **
2669 ** The arrows in the diagram above represent the Select.pPrior pointer.
2670 ** So if this routine is called with p equal to the t3 query, then
2671 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2672 **
2673 ** Notice that because of the way SQLite parses compound SELECTs, the
2674 ** individual selects always group from left to right.
2675 */
2676 static int multiSelect(
2677   Parse *pParse,        /* Parsing context */
2678   Select *p,            /* The right-most of SELECTs to be coded */
2679   SelectDest *pDest     /* What to do with query results */
2680 ){
2681   int rc = SQLITE_OK;   /* Success code from a subroutine */
2682   Select *pPrior;       /* Another SELECT immediately to our left */
2683   Vdbe *v;              /* Generate code to this VDBE */
2684   SelectDest dest;      /* Alternative data destination */
2685   Select *pDelete = 0;  /* Chain of simple selects to delete */
2686   sqlite3 *db;          /* Database connection */
2687 
2688   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2689   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2690   */
2691   assert( p && p->pPrior );  /* Calling function guarantees this much */
2692   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2693   assert( p->selFlags & SF_Compound );
2694   db = pParse->db;
2695   pPrior = p->pPrior;
2696   dest = *pDest;
2697   assert( pPrior->pOrderBy==0 );
2698   assert( pPrior->pLimit==0 );
2699 
2700   v = sqlite3GetVdbe(pParse);
2701   assert( v!=0 );  /* The VDBE already created by calling function */
2702 
2703   /* Create the destination temporary table if necessary
2704   */
2705   if( dest.eDest==SRT_EphemTab ){
2706     assert( p->pEList );
2707     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2708     dest.eDest = SRT_Table;
2709   }
2710 
2711   /* Special handling for a compound-select that originates as a VALUES clause.
2712   */
2713   if( p->selFlags & SF_MultiValue ){
2714     rc = multiSelectValues(pParse, p, &dest);
2715     if( rc>=0 ) goto multi_select_end;
2716     rc = SQLITE_OK;
2717   }
2718 
2719   /* Make sure all SELECTs in the statement have the same number of elements
2720   ** in their result sets.
2721   */
2722   assert( p->pEList && pPrior->pEList );
2723   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2724 
2725 #ifndef SQLITE_OMIT_CTE
2726   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2727     generateWithRecursiveQuery(pParse, p, &dest);
2728   }else
2729 #endif
2730 
2731   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2732   */
2733   if( p->pOrderBy ){
2734     return multiSelectOrderBy(pParse, p, pDest);
2735   }else{
2736 
2737 #ifndef SQLITE_OMIT_EXPLAIN
2738     if( pPrior->pPrior==0 ){
2739       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2740       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2741     }
2742 #endif
2743 
2744     /* Generate code for the left and right SELECT statements.
2745     */
2746     switch( p->op ){
2747       case TK_ALL: {
2748         int addr = 0;
2749         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2750         assert( !pPrior->pLimit );
2751         pPrior->iLimit = p->iLimit;
2752         pPrior->iOffset = p->iOffset;
2753         pPrior->pLimit = p->pLimit;
2754         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2755         rc = sqlite3Select(pParse, pPrior, &dest);
2756         pPrior->pLimit = 0;
2757         if( rc ){
2758           goto multi_select_end;
2759         }
2760         p->pPrior = 0;
2761         p->iLimit = pPrior->iLimit;
2762         p->iOffset = pPrior->iOffset;
2763         if( p->iLimit ){
2764           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2765           VdbeComment((v, "Jump ahead if LIMIT reached"));
2766           if( p->iOffset ){
2767             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2768                               p->iLimit, p->iOffset+1, p->iOffset);
2769           }
2770         }
2771         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2772         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2773         rc = sqlite3Select(pParse, p, &dest);
2774         testcase( rc!=SQLITE_OK );
2775         pDelete = p->pPrior;
2776         p->pPrior = pPrior;
2777         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2778         if( p->pLimit
2779          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2780          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2781         ){
2782           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2783         }
2784         if( addr ){
2785           sqlite3VdbeJumpHere(v, addr);
2786         }
2787         break;
2788       }
2789       case TK_EXCEPT:
2790       case TK_UNION: {
2791         int unionTab;    /* Cursor number of the temp table holding result */
2792         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2793         int priorOp;     /* The SRT_ operation to apply to prior selects */
2794         Expr *pLimit;    /* Saved values of p->nLimit  */
2795         int addr;
2796         SelectDest uniondest;
2797 
2798         testcase( p->op==TK_EXCEPT );
2799         testcase( p->op==TK_UNION );
2800         priorOp = SRT_Union;
2801         if( dest.eDest==priorOp ){
2802           /* We can reuse a temporary table generated by a SELECT to our
2803           ** right.
2804           */
2805           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2806           unionTab = dest.iSDParm;
2807         }else{
2808           /* We will need to create our own temporary table to hold the
2809           ** intermediate results.
2810           */
2811           unionTab = pParse->nTab++;
2812           assert( p->pOrderBy==0 );
2813           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2814           assert( p->addrOpenEphm[0] == -1 );
2815           p->addrOpenEphm[0] = addr;
2816           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2817           assert( p->pEList );
2818         }
2819 
2820 
2821         /* Code the SELECT statements to our left
2822         */
2823         assert( !pPrior->pOrderBy );
2824         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2825         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2826         rc = sqlite3Select(pParse, pPrior, &uniondest);
2827         if( rc ){
2828           goto multi_select_end;
2829         }
2830 
2831         /* Code the current SELECT statement
2832         */
2833         if( p->op==TK_EXCEPT ){
2834           op = SRT_Except;
2835         }else{
2836           assert( p->op==TK_UNION );
2837           op = SRT_Union;
2838         }
2839         p->pPrior = 0;
2840         pLimit = p->pLimit;
2841         p->pLimit = 0;
2842         uniondest.eDest = op;
2843         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2844                           sqlite3SelectOpName(p->op)));
2845         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2846         rc = sqlite3Select(pParse, p, &uniondest);
2847         testcase( rc!=SQLITE_OK );
2848         assert( p->pOrderBy==0 );
2849         pDelete = p->pPrior;
2850         p->pPrior = pPrior;
2851         p->pOrderBy = 0;
2852         if( p->op==TK_UNION ){
2853           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2854         }
2855         sqlite3ExprDelete(db, p->pLimit);
2856         p->pLimit = pLimit;
2857         p->iLimit = 0;
2858         p->iOffset = 0;
2859 
2860         /* Convert the data in the temporary table into whatever form
2861         ** it is that we currently need.
2862         */
2863         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2864         assert( p->pEList || db->mallocFailed );
2865         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2866           int iCont, iBreak, iStart;
2867           iBreak = sqlite3VdbeMakeLabel(pParse);
2868           iCont = sqlite3VdbeMakeLabel(pParse);
2869           computeLimitRegisters(pParse, p, iBreak);
2870           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2871           iStart = sqlite3VdbeCurrentAddr(v);
2872           selectInnerLoop(pParse, p, unionTab,
2873                           0, 0, &dest, iCont, iBreak);
2874           sqlite3VdbeResolveLabel(v, iCont);
2875           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2876           sqlite3VdbeResolveLabel(v, iBreak);
2877           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2878         }
2879         break;
2880       }
2881       default: assert( p->op==TK_INTERSECT ); {
2882         int tab1, tab2;
2883         int iCont, iBreak, iStart;
2884         Expr *pLimit;
2885         int addr;
2886         SelectDest intersectdest;
2887         int r1;
2888 
2889         /* INTERSECT is different from the others since it requires
2890         ** two temporary tables.  Hence it has its own case.  Begin
2891         ** by allocating the tables we will need.
2892         */
2893         tab1 = pParse->nTab++;
2894         tab2 = pParse->nTab++;
2895         assert( p->pOrderBy==0 );
2896 
2897         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2898         assert( p->addrOpenEphm[0] == -1 );
2899         p->addrOpenEphm[0] = addr;
2900         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2901         assert( p->pEList );
2902 
2903         /* Code the SELECTs to our left into temporary table "tab1".
2904         */
2905         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2906         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2907         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2908         if( rc ){
2909           goto multi_select_end;
2910         }
2911 
2912         /* Code the current SELECT into temporary table "tab2"
2913         */
2914         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2915         assert( p->addrOpenEphm[1] == -1 );
2916         p->addrOpenEphm[1] = addr;
2917         p->pPrior = 0;
2918         pLimit = p->pLimit;
2919         p->pLimit = 0;
2920         intersectdest.iSDParm = tab2;
2921         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2922                           sqlite3SelectOpName(p->op)));
2923         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2924         rc = sqlite3Select(pParse, p, &intersectdest);
2925         testcase( rc!=SQLITE_OK );
2926         pDelete = p->pPrior;
2927         p->pPrior = pPrior;
2928         if( p->nSelectRow>pPrior->nSelectRow ){
2929           p->nSelectRow = pPrior->nSelectRow;
2930         }
2931         sqlite3ExprDelete(db, p->pLimit);
2932         p->pLimit = pLimit;
2933 
2934         /* Generate code to take the intersection of the two temporary
2935         ** tables.
2936         */
2937         if( rc ) break;
2938         assert( p->pEList );
2939         iBreak = sqlite3VdbeMakeLabel(pParse);
2940         iCont = sqlite3VdbeMakeLabel(pParse);
2941         computeLimitRegisters(pParse, p, iBreak);
2942         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2943         r1 = sqlite3GetTempReg(pParse);
2944         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2945         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2946         VdbeCoverage(v);
2947         sqlite3ReleaseTempReg(pParse, r1);
2948         selectInnerLoop(pParse, p, tab1,
2949                         0, 0, &dest, iCont, iBreak);
2950         sqlite3VdbeResolveLabel(v, iCont);
2951         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2952         sqlite3VdbeResolveLabel(v, iBreak);
2953         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2954         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2955         break;
2956       }
2957     }
2958 
2959   #ifndef SQLITE_OMIT_EXPLAIN
2960     if( p->pNext==0 ){
2961       ExplainQueryPlanPop(pParse);
2962     }
2963   #endif
2964   }
2965   if( pParse->nErr ) goto multi_select_end;
2966 
2967   /* Compute collating sequences used by
2968   ** temporary tables needed to implement the compound select.
2969   ** Attach the KeyInfo structure to all temporary tables.
2970   **
2971   ** This section is run by the right-most SELECT statement only.
2972   ** SELECT statements to the left always skip this part.  The right-most
2973   ** SELECT might also skip this part if it has no ORDER BY clause and
2974   ** no temp tables are required.
2975   */
2976   if( p->selFlags & SF_UsesEphemeral ){
2977     int i;                        /* Loop counter */
2978     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2979     Select *pLoop;                /* For looping through SELECT statements */
2980     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2981     int nCol;                     /* Number of columns in result set */
2982 
2983     assert( p->pNext==0 );
2984     nCol = p->pEList->nExpr;
2985     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2986     if( !pKeyInfo ){
2987       rc = SQLITE_NOMEM_BKPT;
2988       goto multi_select_end;
2989     }
2990     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2991       *apColl = multiSelectCollSeq(pParse, p, i);
2992       if( 0==*apColl ){
2993         *apColl = db->pDfltColl;
2994       }
2995     }
2996 
2997     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2998       for(i=0; i<2; i++){
2999         int addr = pLoop->addrOpenEphm[i];
3000         if( addr<0 ){
3001           /* If [0] is unused then [1] is also unused.  So we can
3002           ** always safely abort as soon as the first unused slot is found */
3003           assert( pLoop->addrOpenEphm[1]<0 );
3004           break;
3005         }
3006         sqlite3VdbeChangeP2(v, addr, nCol);
3007         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3008                             P4_KEYINFO);
3009         pLoop->addrOpenEphm[i] = -1;
3010       }
3011     }
3012     sqlite3KeyInfoUnref(pKeyInfo);
3013   }
3014 
3015 multi_select_end:
3016   pDest->iSdst = dest.iSdst;
3017   pDest->nSdst = dest.nSdst;
3018   if( pDelete ){
3019     sqlite3ParserAddCleanup(pParse,
3020         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3021         pDelete);
3022   }
3023   return rc;
3024 }
3025 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3026 
3027 /*
3028 ** Error message for when two or more terms of a compound select have different
3029 ** size result sets.
3030 */
3031 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3032   if( p->selFlags & SF_Values ){
3033     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3034   }else{
3035     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3036       " do not have the same number of result columns",
3037       sqlite3SelectOpName(p->op));
3038   }
3039 }
3040 
3041 /*
3042 ** Code an output subroutine for a coroutine implementation of a
3043 ** SELECT statment.
3044 **
3045 ** The data to be output is contained in pIn->iSdst.  There are
3046 ** pIn->nSdst columns to be output.  pDest is where the output should
3047 ** be sent.
3048 **
3049 ** regReturn is the number of the register holding the subroutine
3050 ** return address.
3051 **
3052 ** If regPrev>0 then it is the first register in a vector that
3053 ** records the previous output.  mem[regPrev] is a flag that is false
3054 ** if there has been no previous output.  If regPrev>0 then code is
3055 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3056 ** keys.
3057 **
3058 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3059 ** iBreak.
3060 */
3061 static int generateOutputSubroutine(
3062   Parse *pParse,          /* Parsing context */
3063   Select *p,              /* The SELECT statement */
3064   SelectDest *pIn,        /* Coroutine supplying data */
3065   SelectDest *pDest,      /* Where to send the data */
3066   int regReturn,          /* The return address register */
3067   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3068   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3069   int iBreak              /* Jump here if we hit the LIMIT */
3070 ){
3071   Vdbe *v = pParse->pVdbe;
3072   int iContinue;
3073   int addr;
3074 
3075   addr = sqlite3VdbeCurrentAddr(v);
3076   iContinue = sqlite3VdbeMakeLabel(pParse);
3077 
3078   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3079   */
3080   if( regPrev ){
3081     int addr1, addr2;
3082     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3083     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3084                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3085     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3086     sqlite3VdbeJumpHere(v, addr1);
3087     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3088     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3089   }
3090   if( pParse->db->mallocFailed ) return 0;
3091 
3092   /* Suppress the first OFFSET entries if there is an OFFSET clause
3093   */
3094   codeOffset(v, p->iOffset, iContinue);
3095 
3096   assert( pDest->eDest!=SRT_Exists );
3097   assert( pDest->eDest!=SRT_Table );
3098   switch( pDest->eDest ){
3099     /* Store the result as data using a unique key.
3100     */
3101     case SRT_EphemTab: {
3102       int r1 = sqlite3GetTempReg(pParse);
3103       int r2 = sqlite3GetTempReg(pParse);
3104       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3105       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3106       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3107       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3108       sqlite3ReleaseTempReg(pParse, r2);
3109       sqlite3ReleaseTempReg(pParse, r1);
3110       break;
3111     }
3112 
3113 #ifndef SQLITE_OMIT_SUBQUERY
3114     /* If we are creating a set for an "expr IN (SELECT ...)".
3115     */
3116     case SRT_Set: {
3117       int r1;
3118       testcase( pIn->nSdst>1 );
3119       r1 = sqlite3GetTempReg(pParse);
3120       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3121           r1, pDest->zAffSdst, pIn->nSdst);
3122       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3123                            pIn->iSdst, pIn->nSdst);
3124       sqlite3ReleaseTempReg(pParse, r1);
3125       break;
3126     }
3127 
3128     /* If this is a scalar select that is part of an expression, then
3129     ** store the results in the appropriate memory cell and break out
3130     ** of the scan loop.  Note that the select might return multiple columns
3131     ** if it is the RHS of a row-value IN operator.
3132     */
3133     case SRT_Mem: {
3134       testcase( pIn->nSdst>1 );
3135       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3136       /* The LIMIT clause will jump out of the loop for us */
3137       break;
3138     }
3139 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3140 
3141     /* The results are stored in a sequence of registers
3142     ** starting at pDest->iSdst.  Then the co-routine yields.
3143     */
3144     case SRT_Coroutine: {
3145       if( pDest->iSdst==0 ){
3146         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3147         pDest->nSdst = pIn->nSdst;
3148       }
3149       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3150       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3151       break;
3152     }
3153 
3154     /* If none of the above, then the result destination must be
3155     ** SRT_Output.  This routine is never called with any other
3156     ** destination other than the ones handled above or SRT_Output.
3157     **
3158     ** For SRT_Output, results are stored in a sequence of registers.
3159     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3160     ** return the next row of result.
3161     */
3162     default: {
3163       assert( pDest->eDest==SRT_Output );
3164       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3165       break;
3166     }
3167   }
3168 
3169   /* Jump to the end of the loop if the LIMIT is reached.
3170   */
3171   if( p->iLimit ){
3172     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3173   }
3174 
3175   /* Generate the subroutine return
3176   */
3177   sqlite3VdbeResolveLabel(v, iContinue);
3178   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3179 
3180   return addr;
3181 }
3182 
3183 /*
3184 ** Alternative compound select code generator for cases when there
3185 ** is an ORDER BY clause.
3186 **
3187 ** We assume a query of the following form:
3188 **
3189 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3190 **
3191 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3192 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3193 ** co-routines.  Then run the co-routines in parallel and merge the results
3194 ** into the output.  In addition to the two coroutines (called selectA and
3195 ** selectB) there are 7 subroutines:
3196 **
3197 **    outA:    Move the output of the selectA coroutine into the output
3198 **             of the compound query.
3199 **
3200 **    outB:    Move the output of the selectB coroutine into the output
3201 **             of the compound query.  (Only generated for UNION and
3202 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3203 **             appears only in B.)
3204 **
3205 **    AltB:    Called when there is data from both coroutines and A<B.
3206 **
3207 **    AeqB:    Called when there is data from both coroutines and A==B.
3208 **
3209 **    AgtB:    Called when there is data from both coroutines and A>B.
3210 **
3211 **    EofA:    Called when data is exhausted from selectA.
3212 **
3213 **    EofB:    Called when data is exhausted from selectB.
3214 **
3215 ** The implementation of the latter five subroutines depend on which
3216 ** <operator> is used:
3217 **
3218 **
3219 **             UNION ALL         UNION            EXCEPT          INTERSECT
3220 **          -------------  -----------------  --------------  -----------------
3221 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3222 **
3223 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3224 **
3225 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3226 **
3227 **   EofA:   outB, nextB      outB, nextB          halt             halt
3228 **
3229 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3230 **
3231 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3232 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3233 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3234 ** following nextX causes a jump to the end of the select processing.
3235 **
3236 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3237 ** within the output subroutine.  The regPrev register set holds the previously
3238 ** output value.  A comparison is made against this value and the output
3239 ** is skipped if the next results would be the same as the previous.
3240 **
3241 ** The implementation plan is to implement the two coroutines and seven
3242 ** subroutines first, then put the control logic at the bottom.  Like this:
3243 **
3244 **          goto Init
3245 **     coA: coroutine for left query (A)
3246 **     coB: coroutine for right query (B)
3247 **    outA: output one row of A
3248 **    outB: output one row of B (UNION and UNION ALL only)
3249 **    EofA: ...
3250 **    EofB: ...
3251 **    AltB: ...
3252 **    AeqB: ...
3253 **    AgtB: ...
3254 **    Init: initialize coroutine registers
3255 **          yield coA
3256 **          if eof(A) goto EofA
3257 **          yield coB
3258 **          if eof(B) goto EofB
3259 **    Cmpr: Compare A, B
3260 **          Jump AltB, AeqB, AgtB
3261 **     End: ...
3262 **
3263 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3264 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3265 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3266 ** and AgtB jump to either L2 or to one of EofA or EofB.
3267 */
3268 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3269 static int multiSelectOrderBy(
3270   Parse *pParse,        /* Parsing context */
3271   Select *p,            /* The right-most of SELECTs to be coded */
3272   SelectDest *pDest     /* What to do with query results */
3273 ){
3274   int i, j;             /* Loop counters */
3275   Select *pPrior;       /* Another SELECT immediately to our left */
3276   Vdbe *v;              /* Generate code to this VDBE */
3277   SelectDest destA;     /* Destination for coroutine A */
3278   SelectDest destB;     /* Destination for coroutine B */
3279   int regAddrA;         /* Address register for select-A coroutine */
3280   int regAddrB;         /* Address register for select-B coroutine */
3281   int addrSelectA;      /* Address of the select-A coroutine */
3282   int addrSelectB;      /* Address of the select-B coroutine */
3283   int regOutA;          /* Address register for the output-A subroutine */
3284   int regOutB;          /* Address register for the output-B subroutine */
3285   int addrOutA;         /* Address of the output-A subroutine */
3286   int addrOutB = 0;     /* Address of the output-B subroutine */
3287   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3288   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3289   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3290   int addrAltB;         /* Address of the A<B subroutine */
3291   int addrAeqB;         /* Address of the A==B subroutine */
3292   int addrAgtB;         /* Address of the A>B subroutine */
3293   int regLimitA;        /* Limit register for select-A */
3294   int regLimitB;        /* Limit register for select-A */
3295   int regPrev;          /* A range of registers to hold previous output */
3296   int savedLimit;       /* Saved value of p->iLimit */
3297   int savedOffset;      /* Saved value of p->iOffset */
3298   int labelCmpr;        /* Label for the start of the merge algorithm */
3299   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3300   int addr1;            /* Jump instructions that get retargetted */
3301   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3302   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3303   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3304   sqlite3 *db;          /* Database connection */
3305   ExprList *pOrderBy;   /* The ORDER BY clause */
3306   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3307   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3308 
3309   assert( p->pOrderBy!=0 );
3310   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3311   db = pParse->db;
3312   v = pParse->pVdbe;
3313   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3314   labelEnd = sqlite3VdbeMakeLabel(pParse);
3315   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3316 
3317 
3318   /* Patch up the ORDER BY clause
3319   */
3320   op = p->op;
3321   pPrior = p->pPrior;
3322   assert( pPrior->pOrderBy==0 );
3323   pOrderBy = p->pOrderBy;
3324   assert( pOrderBy );
3325   nOrderBy = pOrderBy->nExpr;
3326 
3327   /* For operators other than UNION ALL we have to make sure that
3328   ** the ORDER BY clause covers every term of the result set.  Add
3329   ** terms to the ORDER BY clause as necessary.
3330   */
3331   if( op!=TK_ALL ){
3332     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3333       struct ExprList_item *pItem;
3334       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3335         assert( pItem->u.x.iOrderByCol>0 );
3336         if( pItem->u.x.iOrderByCol==i ) break;
3337       }
3338       if( j==nOrderBy ){
3339         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3340         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3341         pNew->flags |= EP_IntValue;
3342         pNew->u.iValue = i;
3343         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3344         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3345       }
3346     }
3347   }
3348 
3349   /* Compute the comparison permutation and keyinfo that is used with
3350   ** the permutation used to determine if the next
3351   ** row of results comes from selectA or selectB.  Also add explicit
3352   ** collations to the ORDER BY clause terms so that when the subqueries
3353   ** to the right and the left are evaluated, they use the correct
3354   ** collation.
3355   */
3356   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3357   if( aPermute ){
3358     struct ExprList_item *pItem;
3359     aPermute[0] = nOrderBy;
3360     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3361       assert( pItem->u.x.iOrderByCol>0 );
3362       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3363       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3364     }
3365     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3366   }else{
3367     pKeyMerge = 0;
3368   }
3369 
3370   /* Reattach the ORDER BY clause to the query.
3371   */
3372   p->pOrderBy = pOrderBy;
3373   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3374 
3375   /* Allocate a range of temporary registers and the KeyInfo needed
3376   ** for the logic that removes duplicate result rows when the
3377   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3378   */
3379   if( op==TK_ALL ){
3380     regPrev = 0;
3381   }else{
3382     int nExpr = p->pEList->nExpr;
3383     assert( nOrderBy>=nExpr || db->mallocFailed );
3384     regPrev = pParse->nMem+1;
3385     pParse->nMem += nExpr+1;
3386     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3387     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3388     if( pKeyDup ){
3389       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3390       for(i=0; i<nExpr; i++){
3391         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3392         pKeyDup->aSortFlags[i] = 0;
3393       }
3394     }
3395   }
3396 
3397   /* Separate the left and the right query from one another
3398   */
3399   p->pPrior = 0;
3400   pPrior->pNext = 0;
3401   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3402   if( pPrior->pPrior==0 ){
3403     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3404   }
3405 
3406   /* Compute the limit registers */
3407   computeLimitRegisters(pParse, p, labelEnd);
3408   if( p->iLimit && op==TK_ALL ){
3409     regLimitA = ++pParse->nMem;
3410     regLimitB = ++pParse->nMem;
3411     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3412                                   regLimitA);
3413     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3414   }else{
3415     regLimitA = regLimitB = 0;
3416   }
3417   sqlite3ExprDelete(db, p->pLimit);
3418   p->pLimit = 0;
3419 
3420   regAddrA = ++pParse->nMem;
3421   regAddrB = ++pParse->nMem;
3422   regOutA = ++pParse->nMem;
3423   regOutB = ++pParse->nMem;
3424   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3425   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3426 
3427   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3428 
3429   /* Generate a coroutine to evaluate the SELECT statement to the
3430   ** left of the compound operator - the "A" select.
3431   */
3432   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3433   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3434   VdbeComment((v, "left SELECT"));
3435   pPrior->iLimit = regLimitA;
3436   ExplainQueryPlan((pParse, 1, "LEFT"));
3437   sqlite3Select(pParse, pPrior, &destA);
3438   sqlite3VdbeEndCoroutine(v, regAddrA);
3439   sqlite3VdbeJumpHere(v, addr1);
3440 
3441   /* Generate a coroutine to evaluate the SELECT statement on
3442   ** the right - the "B" select
3443   */
3444   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3445   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3446   VdbeComment((v, "right SELECT"));
3447   savedLimit = p->iLimit;
3448   savedOffset = p->iOffset;
3449   p->iLimit = regLimitB;
3450   p->iOffset = 0;
3451   ExplainQueryPlan((pParse, 1, "RIGHT"));
3452   sqlite3Select(pParse, p, &destB);
3453   p->iLimit = savedLimit;
3454   p->iOffset = savedOffset;
3455   sqlite3VdbeEndCoroutine(v, regAddrB);
3456 
3457   /* Generate a subroutine that outputs the current row of the A
3458   ** select as the next output row of the compound select.
3459   */
3460   VdbeNoopComment((v, "Output routine for A"));
3461   addrOutA = generateOutputSubroutine(pParse,
3462                  p, &destA, pDest, regOutA,
3463                  regPrev, pKeyDup, labelEnd);
3464 
3465   /* Generate a subroutine that outputs the current row of the B
3466   ** select as the next output row of the compound select.
3467   */
3468   if( op==TK_ALL || op==TK_UNION ){
3469     VdbeNoopComment((v, "Output routine for B"));
3470     addrOutB = generateOutputSubroutine(pParse,
3471                  p, &destB, pDest, regOutB,
3472                  regPrev, pKeyDup, labelEnd);
3473   }
3474   sqlite3KeyInfoUnref(pKeyDup);
3475 
3476   /* Generate a subroutine to run when the results from select A
3477   ** are exhausted and only data in select B remains.
3478   */
3479   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3480     addrEofA_noB = addrEofA = labelEnd;
3481   }else{
3482     VdbeNoopComment((v, "eof-A subroutine"));
3483     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3484     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3485                                      VdbeCoverage(v);
3486     sqlite3VdbeGoto(v, addrEofA);
3487     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3488   }
3489 
3490   /* Generate a subroutine to run when the results from select B
3491   ** are exhausted and only data in select A remains.
3492   */
3493   if( op==TK_INTERSECT ){
3494     addrEofB = addrEofA;
3495     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3496   }else{
3497     VdbeNoopComment((v, "eof-B subroutine"));
3498     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3499     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3500     sqlite3VdbeGoto(v, addrEofB);
3501   }
3502 
3503   /* Generate code to handle the case of A<B
3504   */
3505   VdbeNoopComment((v, "A-lt-B subroutine"));
3506   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3507   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3508   sqlite3VdbeGoto(v, labelCmpr);
3509 
3510   /* Generate code to handle the case of A==B
3511   */
3512   if( op==TK_ALL ){
3513     addrAeqB = addrAltB;
3514   }else if( op==TK_INTERSECT ){
3515     addrAeqB = addrAltB;
3516     addrAltB++;
3517   }else{
3518     VdbeNoopComment((v, "A-eq-B subroutine"));
3519     addrAeqB =
3520     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3521     sqlite3VdbeGoto(v, labelCmpr);
3522   }
3523 
3524   /* Generate code to handle the case of A>B
3525   */
3526   VdbeNoopComment((v, "A-gt-B subroutine"));
3527   addrAgtB = sqlite3VdbeCurrentAddr(v);
3528   if( op==TK_ALL || op==TK_UNION ){
3529     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3530   }
3531   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3532   sqlite3VdbeGoto(v, labelCmpr);
3533 
3534   /* This code runs once to initialize everything.
3535   */
3536   sqlite3VdbeJumpHere(v, addr1);
3537   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3538   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3539 
3540   /* Implement the main merge loop
3541   */
3542   sqlite3VdbeResolveLabel(v, labelCmpr);
3543   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3544   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3545                          (char*)pKeyMerge, P4_KEYINFO);
3546   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3547   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3548 
3549   /* Jump to the this point in order to terminate the query.
3550   */
3551   sqlite3VdbeResolveLabel(v, labelEnd);
3552 
3553   /* Reassembly the compound query so that it will be freed correctly
3554   ** by the calling function */
3555   if( p->pPrior ){
3556     sqlite3SelectDelete(db, p->pPrior);
3557   }
3558   p->pPrior = pPrior;
3559   pPrior->pNext = p;
3560 
3561   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3562   pPrior->pOrderBy = 0;
3563 
3564   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3565   **** subqueries ****/
3566   ExplainQueryPlanPop(pParse);
3567   return pParse->nErr!=0;
3568 }
3569 #endif
3570 
3571 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3572 
3573 /* An instance of the SubstContext object describes an substitution edit
3574 ** to be performed on a parse tree.
3575 **
3576 ** All references to columns in table iTable are to be replaced by corresponding
3577 ** expressions in pEList.
3578 */
3579 typedef struct SubstContext {
3580   Parse *pParse;            /* The parsing context */
3581   int iTable;               /* Replace references to this table */
3582   int iNewTable;            /* New table number */
3583   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3584   ExprList *pEList;         /* Replacement expressions */
3585 } SubstContext;
3586 
3587 /* Forward Declarations */
3588 static void substExprList(SubstContext*, ExprList*);
3589 static void substSelect(SubstContext*, Select*, int);
3590 
3591 /*
3592 ** Scan through the expression pExpr.  Replace every reference to
3593 ** a column in table number iTable with a copy of the iColumn-th
3594 ** entry in pEList.  (But leave references to the ROWID column
3595 ** unchanged.)
3596 **
3597 ** This routine is part of the flattening procedure.  A subquery
3598 ** whose result set is defined by pEList appears as entry in the
3599 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3600 ** FORM clause entry is iTable.  This routine makes the necessary
3601 ** changes to pExpr so that it refers directly to the source table
3602 ** of the subquery rather the result set of the subquery.
3603 */
3604 static Expr *substExpr(
3605   SubstContext *pSubst,  /* Description of the substitution */
3606   Expr *pExpr            /* Expr in which substitution occurs */
3607 ){
3608   if( pExpr==0 ) return 0;
3609   if( ExprHasProperty(pExpr, EP_FromJoin)
3610    && pExpr->iRightJoinTable==pSubst->iTable
3611   ){
3612     pExpr->iRightJoinTable = pSubst->iNewTable;
3613   }
3614   if( pExpr->op==TK_COLUMN
3615    && pExpr->iTable==pSubst->iTable
3616    && !ExprHasProperty(pExpr, EP_FixedCol)
3617   ){
3618 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3619     if( pExpr->iColumn<0 ){
3620       pExpr->op = TK_NULL;
3621     }else
3622 #endif
3623     {
3624       Expr *pNew;
3625       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3626       Expr ifNullRow;
3627       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3628       assert( pExpr->pRight==0 );
3629       if( sqlite3ExprIsVector(pCopy) ){
3630         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3631       }else{
3632         sqlite3 *db = pSubst->pParse->db;
3633         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3634           memset(&ifNullRow, 0, sizeof(ifNullRow));
3635           ifNullRow.op = TK_IF_NULL_ROW;
3636           ifNullRow.pLeft = pCopy;
3637           ifNullRow.iTable = pSubst->iNewTable;
3638           ifNullRow.flags = EP_IfNullRow;
3639           pCopy = &ifNullRow;
3640         }
3641         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3642         pNew = sqlite3ExprDup(db, pCopy, 0);
3643         if( db->mallocFailed ){
3644           sqlite3ExprDelete(db, pNew);
3645           return pExpr;
3646         }
3647         if( pSubst->isLeftJoin ){
3648           ExprSetProperty(pNew, EP_CanBeNull);
3649         }
3650         if( ExprHasProperty(pExpr,EP_FromJoin) ){
3651           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3652         }
3653         sqlite3ExprDelete(db, pExpr);
3654         pExpr = pNew;
3655 
3656         /* Ensure that the expression now has an implicit collation sequence,
3657         ** just as it did when it was a column of a view or sub-query. */
3658         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3659           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3660           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3661               (pColl ? pColl->zName : "BINARY")
3662           );
3663         }
3664         ExprClearProperty(pExpr, EP_Collate);
3665       }
3666     }
3667   }else{
3668     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3669       pExpr->iTable = pSubst->iNewTable;
3670     }
3671     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3672     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3673     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3674       substSelect(pSubst, pExpr->x.pSelect, 1);
3675     }else{
3676       substExprList(pSubst, pExpr->x.pList);
3677     }
3678 #ifndef SQLITE_OMIT_WINDOWFUNC
3679     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3680       Window *pWin = pExpr->y.pWin;
3681       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3682       substExprList(pSubst, pWin->pPartition);
3683       substExprList(pSubst, pWin->pOrderBy);
3684     }
3685 #endif
3686   }
3687   return pExpr;
3688 }
3689 static void substExprList(
3690   SubstContext *pSubst, /* Description of the substitution */
3691   ExprList *pList       /* List to scan and in which to make substitutes */
3692 ){
3693   int i;
3694   if( pList==0 ) return;
3695   for(i=0; i<pList->nExpr; i++){
3696     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3697   }
3698 }
3699 static void substSelect(
3700   SubstContext *pSubst, /* Description of the substitution */
3701   Select *p,            /* SELECT statement in which to make substitutions */
3702   int doPrior           /* Do substitutes on p->pPrior too */
3703 ){
3704   SrcList *pSrc;
3705   SrcItem *pItem;
3706   int i;
3707   if( !p ) return;
3708   do{
3709     substExprList(pSubst, p->pEList);
3710     substExprList(pSubst, p->pGroupBy);
3711     substExprList(pSubst, p->pOrderBy);
3712     p->pHaving = substExpr(pSubst, p->pHaving);
3713     p->pWhere = substExpr(pSubst, p->pWhere);
3714     pSrc = p->pSrc;
3715     assert( pSrc!=0 );
3716     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3717       substSelect(pSubst, pItem->pSelect, 1);
3718       if( pItem->fg.isTabFunc ){
3719         substExprList(pSubst, pItem->u1.pFuncArg);
3720       }
3721     }
3722   }while( doPrior && (p = p->pPrior)!=0 );
3723 }
3724 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3725 
3726 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3727 /*
3728 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3729 ** clause of that SELECT.
3730 **
3731 ** This routine scans the entire SELECT statement and recomputes the
3732 ** pSrcItem->colUsed mask.
3733 */
3734 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3735   SrcItem *pItem;
3736   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3737   pItem = pWalker->u.pSrcItem;
3738   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3739   if( pExpr->iColumn<0 ) return WRC_Continue;
3740   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3741   return WRC_Continue;
3742 }
3743 static void recomputeColumnsUsed(
3744   Select *pSelect,                 /* The complete SELECT statement */
3745   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3746 ){
3747   Walker w;
3748   if( NEVER(pSrcItem->pTab==0) ) return;
3749   memset(&w, 0, sizeof(w));
3750   w.xExprCallback = recomputeColumnsUsedExpr;
3751   w.xSelectCallback = sqlite3SelectWalkNoop;
3752   w.u.pSrcItem = pSrcItem;
3753   pSrcItem->colUsed = 0;
3754   sqlite3WalkSelect(&w, pSelect);
3755 }
3756 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3757 
3758 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3759 /*
3760 ** Assign new cursor numbers to each of the items in pSrc. For each
3761 ** new cursor number assigned, set an entry in the aCsrMap[] array
3762 ** to map the old cursor number to the new:
3763 **
3764 **     aCsrMap[iOld+1] = iNew;
3765 **
3766 ** The array is guaranteed by the caller to be large enough for all
3767 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3768 **
3769 ** If pSrc contains any sub-selects, call this routine recursively
3770 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3771 */
3772 static void srclistRenumberCursors(
3773   Parse *pParse,                  /* Parse context */
3774   int *aCsrMap,                   /* Array to store cursor mappings in */
3775   SrcList *pSrc,                  /* FROM clause to renumber */
3776   int iExcept                     /* FROM clause item to skip */
3777 ){
3778   int i;
3779   SrcItem *pItem;
3780   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3781     if( i!=iExcept ){
3782       Select *p;
3783       assert( pItem->iCursor < aCsrMap[0] );
3784       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3785         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3786       }
3787       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3788       for(p=pItem->pSelect; p; p=p->pPrior){
3789         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3790       }
3791     }
3792   }
3793 }
3794 
3795 /*
3796 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3797 */
3798 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3799   int *aCsrMap = pWalker->u.aiCol;
3800   int iCsr = *piCursor;
3801   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3802     *piCursor = aCsrMap[iCsr+1];
3803   }
3804 }
3805 
3806 /*
3807 ** Expression walker callback used by renumberCursors() to update
3808 ** Expr objects to match newly assigned cursor numbers.
3809 */
3810 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3811   int op = pExpr->op;
3812   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3813     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3814   }
3815   if( ExprHasProperty(pExpr, EP_FromJoin) ){
3816     renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable);
3817   }
3818   return WRC_Continue;
3819 }
3820 
3821 /*
3822 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3823 ** of the SELECT statement passed as the second argument, and to each
3824 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3825 ** Except, do not assign a new cursor number to the iExcept'th element in
3826 ** the FROM clause of (*p). Update all expressions and other references
3827 ** to refer to the new cursor numbers.
3828 **
3829 ** Argument aCsrMap is an array that may be used for temporary working
3830 ** space. Two guarantees are made by the caller:
3831 **
3832 **   * the array is larger than the largest cursor number used within the
3833 **     select statement passed as an argument, and
3834 **
3835 **   * the array entries for all cursor numbers that do *not* appear in
3836 **     FROM clauses of the select statement as described above are
3837 **     initialized to zero.
3838 */
3839 static void renumberCursors(
3840   Parse *pParse,                  /* Parse context */
3841   Select *p,                      /* Select to renumber cursors within */
3842   int iExcept,                    /* FROM clause item to skip */
3843   int *aCsrMap                    /* Working space */
3844 ){
3845   Walker w;
3846   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3847   memset(&w, 0, sizeof(w));
3848   w.u.aiCol = aCsrMap;
3849   w.xExprCallback = renumberCursorsCb;
3850   w.xSelectCallback = sqlite3SelectWalkNoop;
3851   sqlite3WalkSelect(&w, p);
3852 }
3853 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3854 
3855 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3856 /*
3857 ** This routine attempts to flatten subqueries as a performance optimization.
3858 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3859 **
3860 ** To understand the concept of flattening, consider the following
3861 ** query:
3862 **
3863 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3864 **
3865 ** The default way of implementing this query is to execute the
3866 ** subquery first and store the results in a temporary table, then
3867 ** run the outer query on that temporary table.  This requires two
3868 ** passes over the data.  Furthermore, because the temporary table
3869 ** has no indices, the WHERE clause on the outer query cannot be
3870 ** optimized.
3871 **
3872 ** This routine attempts to rewrite queries such as the above into
3873 ** a single flat select, like this:
3874 **
3875 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3876 **
3877 ** The code generated for this simplification gives the same result
3878 ** but only has to scan the data once.  And because indices might
3879 ** exist on the table t1, a complete scan of the data might be
3880 ** avoided.
3881 **
3882 ** Flattening is subject to the following constraints:
3883 **
3884 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3885 **        The subquery and the outer query cannot both be aggregates.
3886 **
3887 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3888 **        (2) If the subquery is an aggregate then
3889 **        (2a) the outer query must not be a join and
3890 **        (2b) the outer query must not use subqueries
3891 **             other than the one FROM-clause subquery that is a candidate
3892 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3893 **             from 2015-02-09.)
3894 **
3895 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3896 **        (3a) the subquery may not be a join and
3897 **        (3b) the FROM clause of the subquery may not contain a virtual
3898 **             table and
3899 **        (3c) the outer query may not be an aggregate.
3900 **        (3d) the outer query may not be DISTINCT.
3901 **
3902 **   (4)  The subquery can not be DISTINCT.
3903 **
3904 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3905 **        sub-queries that were excluded from this optimization. Restriction
3906 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3907 **
3908 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3909 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3910 **
3911 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3912 **        A FROM clause, consider adding a FROM clause with the special
3913 **        table sqlite_once that consists of a single row containing a
3914 **        single NULL.
3915 **
3916 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3917 **
3918 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3919 **
3920 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3921 **        accidently carried the comment forward until 2014-09-15.  Original
3922 **        constraint: "If the subquery is aggregate then the outer query
3923 **        may not use LIMIT."
3924 **
3925 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3926 **
3927 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3928 **        a separate restriction deriving from ticket #350.
3929 **
3930 **  (13)  The subquery and outer query may not both use LIMIT.
3931 **
3932 **  (14)  The subquery may not use OFFSET.
3933 **
3934 **  (15)  If the outer query is part of a compound select, then the
3935 **        subquery may not use LIMIT.
3936 **        (See ticket #2339 and ticket [02a8e81d44]).
3937 **
3938 **  (16)  If the outer query is aggregate, then the subquery may not
3939 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3940 **        until we introduced the group_concat() function.
3941 **
3942 **  (17)  If the subquery is a compound select, then
3943 **        (17a) all compound operators must be a UNION ALL, and
3944 **        (17b) no terms within the subquery compound may be aggregate
3945 **              or DISTINCT, and
3946 **        (17c) every term within the subquery compound must have a FROM clause
3947 **        (17d) the outer query may not be
3948 **              (17d1) aggregate, or
3949 **              (17d2) DISTINCT
3950 **        (17e) the subquery may not contain window functions, and
3951 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3952 **
3953 **        The parent and sub-query may contain WHERE clauses. Subject to
3954 **        rules (11), (13) and (14), they may also contain ORDER BY,
3955 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3956 **        operator other than UNION ALL because all the other compound
3957 **        operators have an implied DISTINCT which is disallowed by
3958 **        restriction (4).
3959 **
3960 **        Also, each component of the sub-query must return the same number
3961 **        of result columns. This is actually a requirement for any compound
3962 **        SELECT statement, but all the code here does is make sure that no
3963 **        such (illegal) sub-query is flattened. The caller will detect the
3964 **        syntax error and return a detailed message.
3965 **
3966 **  (18)  If the sub-query is a compound select, then all terms of the
3967 **        ORDER BY clause of the parent must be copies of a term returned
3968 **        by the parent query.
3969 **
3970 **  (19)  If the subquery uses LIMIT then the outer query may not
3971 **        have a WHERE clause.
3972 **
3973 **  (20)  If the sub-query is a compound select, then it must not use
3974 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3975 **        somewhat by saying that the terms of the ORDER BY clause must
3976 **        appear as unmodified result columns in the outer query.  But we
3977 **        have other optimizations in mind to deal with that case.
3978 **
3979 **  (21)  If the subquery uses LIMIT then the outer query may not be
3980 **        DISTINCT.  (See ticket [752e1646fc]).
3981 **
3982 **  (22)  The subquery may not be a recursive CTE.
3983 **
3984 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3985 **        a compound query.  This restriction is because transforming the
3986 **        parent to a compound query confuses the code that handles
3987 **        recursive queries in multiSelect().
3988 **
3989 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3990 **        The subquery may not be an aggregate that uses the built-in min() or
3991 **        or max() functions.  (Without this restriction, a query like:
3992 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3993 **        return the value X for which Y was maximal.)
3994 **
3995 **  (25)  If either the subquery or the parent query contains a window
3996 **        function in the select list or ORDER BY clause, flattening
3997 **        is not attempted.
3998 **
3999 **
4000 ** In this routine, the "p" parameter is a pointer to the outer query.
4001 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4002 ** uses aggregates.
4003 **
4004 ** If flattening is not attempted, this routine is a no-op and returns 0.
4005 ** If flattening is attempted this routine returns 1.
4006 **
4007 ** All of the expression analysis must occur on both the outer query and
4008 ** the subquery before this routine runs.
4009 */
4010 static int flattenSubquery(
4011   Parse *pParse,       /* Parsing context */
4012   Select *p,           /* The parent or outer SELECT statement */
4013   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4014   int isAgg            /* True if outer SELECT uses aggregate functions */
4015 ){
4016   const char *zSavedAuthContext = pParse->zAuthContext;
4017   Select *pParent;    /* Current UNION ALL term of the other query */
4018   Select *pSub;       /* The inner query or "subquery" */
4019   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4020   SrcList *pSrc;      /* The FROM clause of the outer query */
4021   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4022   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4023   int iNewParent = -1;/* Replacement table for iParent */
4024   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4025   int i;              /* Loop counter */
4026   Expr *pWhere;                    /* The WHERE clause */
4027   SrcItem *pSubitem;               /* The subquery */
4028   sqlite3 *db = pParse->db;
4029   Walker w;                        /* Walker to persist agginfo data */
4030   int *aCsrMap = 0;
4031 
4032   /* Check to see if flattening is permitted.  Return 0 if not.
4033   */
4034   assert( p!=0 );
4035   assert( p->pPrior==0 );
4036   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4037   pSrc = p->pSrc;
4038   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4039   pSubitem = &pSrc->a[iFrom];
4040   iParent = pSubitem->iCursor;
4041   pSub = pSubitem->pSelect;
4042   assert( pSub!=0 );
4043 
4044 #ifndef SQLITE_OMIT_WINDOWFUNC
4045   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4046 #endif
4047 
4048   pSubSrc = pSub->pSrc;
4049   assert( pSubSrc );
4050   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4051   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4052   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4053   ** became arbitrary expressions, we were forced to add restrictions (13)
4054   ** and (14). */
4055   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4056   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4057   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4058     return 0;                                            /* Restriction (15) */
4059   }
4060   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4061   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4062   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4063      return 0;         /* Restrictions (8)(9) */
4064   }
4065   if( p->pOrderBy && pSub->pOrderBy ){
4066      return 0;                                           /* Restriction (11) */
4067   }
4068   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4069   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4070   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4071      return 0;         /* Restriction (21) */
4072   }
4073   if( pSub->selFlags & (SF_Recursive) ){
4074     return 0; /* Restrictions (22) */
4075   }
4076 
4077   /*
4078   ** If the subquery is the right operand of a LEFT JOIN, then the
4079   ** subquery may not be a join itself (3a). Example of why this is not
4080   ** allowed:
4081   **
4082   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4083   **
4084   ** If we flatten the above, we would get
4085   **
4086   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4087   **
4088   ** which is not at all the same thing.
4089   **
4090   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4091   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4092   ** aggregates are processed - there is no mechanism to determine if
4093   ** the LEFT JOIN table should be all-NULL.
4094   **
4095   ** See also tickets #306, #350, and #3300.
4096   */
4097   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4098     isLeftJoin = 1;
4099     if( pSubSrc->nSrc>1                   /* (3a) */
4100      || isAgg                             /* (3b) */
4101      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4102      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4103     ){
4104       return 0;
4105     }
4106   }
4107 #ifdef SQLITE_EXTRA_IFNULLROW
4108   else if( iFrom>0 && !isAgg ){
4109     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4110     ** every reference to any result column from subquery in a join, even
4111     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4112     ** opcode. */
4113     isLeftJoin = -1;
4114   }
4115 #endif
4116 
4117   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4118   ** use only the UNION ALL operator. And none of the simple select queries
4119   ** that make up the compound SELECT are allowed to be aggregate or distinct
4120   ** queries.
4121   */
4122   if( pSub->pPrior ){
4123     if( pSub->pOrderBy ){
4124       return 0;  /* Restriction (20) */
4125     }
4126     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4127       return 0; /* (17d1), (17d2), or (17f) */
4128     }
4129     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4130       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4131       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4132       assert( pSub->pSrc!=0 );
4133       assert( (pSub->selFlags & SF_Recursive)==0 );
4134       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4135       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4136        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4137        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4138 #ifndef SQLITE_OMIT_WINDOWFUNC
4139        || pSub1->pWin                                          /* (17e) */
4140 #endif
4141       ){
4142         return 0;
4143       }
4144       testcase( pSub1->pSrc->nSrc>1 );
4145     }
4146 
4147     /* Restriction (18). */
4148     if( p->pOrderBy ){
4149       int ii;
4150       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4151         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4152       }
4153     }
4154 
4155     /* Restriction (23) */
4156     if( (p->selFlags & SF_Recursive) ) return 0;
4157 
4158     if( pSrc->nSrc>1 ){
4159       if( pParse->nSelect>500 ) return 0;
4160       aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int));
4161       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4162     }
4163   }
4164 
4165   /***** If we reach this point, flattening is permitted. *****/
4166   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4167                    pSub->selId, pSub, iFrom));
4168 
4169   /* Authorize the subquery */
4170   pParse->zAuthContext = pSubitem->zName;
4171   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4172   testcase( i==SQLITE_DENY );
4173   pParse->zAuthContext = zSavedAuthContext;
4174 
4175   /* Delete the transient structures associated with thesubquery */
4176   pSub1 = pSubitem->pSelect;
4177   sqlite3DbFree(db, pSubitem->zDatabase);
4178   sqlite3DbFree(db, pSubitem->zName);
4179   sqlite3DbFree(db, pSubitem->zAlias);
4180   pSubitem->zDatabase = 0;
4181   pSubitem->zName = 0;
4182   pSubitem->zAlias = 0;
4183   pSubitem->pSelect = 0;
4184   assert( pSubitem->pOn==0 );
4185 
4186   /* If the sub-query is a compound SELECT statement, then (by restrictions
4187   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4188   ** be of the form:
4189   **
4190   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4191   **
4192   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4193   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4194   ** OFFSET clauses and joins them to the left-hand-side of the original
4195   ** using UNION ALL operators. In this case N is the number of simple
4196   ** select statements in the compound sub-query.
4197   **
4198   ** Example:
4199   **
4200   **     SELECT a+1 FROM (
4201   **        SELECT x FROM tab
4202   **        UNION ALL
4203   **        SELECT y FROM tab
4204   **        UNION ALL
4205   **        SELECT abs(z*2) FROM tab2
4206   **     ) WHERE a!=5 ORDER BY 1
4207   **
4208   ** Transformed into:
4209   **
4210   **     SELECT x+1 FROM tab WHERE x+1!=5
4211   **     UNION ALL
4212   **     SELECT y+1 FROM tab WHERE y+1!=5
4213   **     UNION ALL
4214   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4215   **     ORDER BY 1
4216   **
4217   ** We call this the "compound-subquery flattening".
4218   */
4219   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4220     Select *pNew;
4221     ExprList *pOrderBy = p->pOrderBy;
4222     Expr *pLimit = p->pLimit;
4223     Select *pPrior = p->pPrior;
4224     Table *pItemTab = pSubitem->pTab;
4225     pSubitem->pTab = 0;
4226     p->pOrderBy = 0;
4227     p->pPrior = 0;
4228     p->pLimit = 0;
4229     pNew = sqlite3SelectDup(db, p, 0);
4230     p->pLimit = pLimit;
4231     p->pOrderBy = pOrderBy;
4232     p->op = TK_ALL;
4233     pSubitem->pTab = pItemTab;
4234     if( pNew==0 ){
4235       p->pPrior = pPrior;
4236     }else{
4237       pNew->selId = ++pParse->nSelect;
4238       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4239         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4240       }
4241       pNew->pPrior = pPrior;
4242       if( pPrior ) pPrior->pNext = pNew;
4243       pNew->pNext = p;
4244       p->pPrior = pNew;
4245       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4246                               " creates %u as peer\n",pNew->selId));
4247     }
4248     assert( pSubitem->pSelect==0 );
4249   }
4250   sqlite3DbFree(db, aCsrMap);
4251   if( db->mallocFailed ){
4252     pSubitem->pSelect = pSub1;
4253     return 1;
4254   }
4255 
4256   /* Defer deleting the Table object associated with the
4257   ** subquery until code generation is
4258   ** complete, since there may still exist Expr.pTab entries that
4259   ** refer to the subquery even after flattening.  Ticket #3346.
4260   **
4261   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4262   */
4263   if( ALWAYS(pSubitem->pTab!=0) ){
4264     Table *pTabToDel = pSubitem->pTab;
4265     if( pTabToDel->nTabRef==1 ){
4266       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4267       sqlite3ParserAddCleanup(pToplevel,
4268          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4269          pTabToDel);
4270       testcase( pToplevel->earlyCleanup );
4271     }else{
4272       pTabToDel->nTabRef--;
4273     }
4274     pSubitem->pTab = 0;
4275   }
4276 
4277   /* The following loop runs once for each term in a compound-subquery
4278   ** flattening (as described above).  If we are doing a different kind
4279   ** of flattening - a flattening other than a compound-subquery flattening -
4280   ** then this loop only runs once.
4281   **
4282   ** This loop moves all of the FROM elements of the subquery into the
4283   ** the FROM clause of the outer query.  Before doing this, remember
4284   ** the cursor number for the original outer query FROM element in
4285   ** iParent.  The iParent cursor will never be used.  Subsequent code
4286   ** will scan expressions looking for iParent references and replace
4287   ** those references with expressions that resolve to the subquery FROM
4288   ** elements we are now copying in.
4289   */
4290   pSub = pSub1;
4291   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4292     int nSubSrc;
4293     u8 jointype = 0;
4294     assert( pSub!=0 );
4295     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4296     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4297     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4298 
4299     if( pParent==p ){
4300       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4301     }
4302 
4303     /* The subquery uses a single slot of the FROM clause of the outer
4304     ** query.  If the subquery has more than one element in its FROM clause,
4305     ** then expand the outer query to make space for it to hold all elements
4306     ** of the subquery.
4307     **
4308     ** Example:
4309     **
4310     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4311     **
4312     ** The outer query has 3 slots in its FROM clause.  One slot of the
4313     ** outer query (the middle slot) is used by the subquery.  The next
4314     ** block of code will expand the outer query FROM clause to 4 slots.
4315     ** The middle slot is expanded to two slots in order to make space
4316     ** for the two elements in the FROM clause of the subquery.
4317     */
4318     if( nSubSrc>1 ){
4319       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4320       if( pSrc==0 ) break;
4321       pParent->pSrc = pSrc;
4322     }
4323 
4324     /* Transfer the FROM clause terms from the subquery into the
4325     ** outer query.
4326     */
4327     for(i=0; i<nSubSrc; i++){
4328       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4329       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4330       pSrc->a[i+iFrom] = pSubSrc->a[i];
4331       iNewParent = pSubSrc->a[i].iCursor;
4332       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4333     }
4334     pSrc->a[iFrom].fg.jointype = jointype;
4335 
4336     /* Now begin substituting subquery result set expressions for
4337     ** references to the iParent in the outer query.
4338     **
4339     ** Example:
4340     **
4341     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4342     **   \                     \_____________ subquery __________/          /
4343     **    \_____________________ outer query ______________________________/
4344     **
4345     ** We look at every expression in the outer query and every place we see
4346     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4347     */
4348     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4349       /* At this point, any non-zero iOrderByCol values indicate that the
4350       ** ORDER BY column expression is identical to the iOrderByCol'th
4351       ** expression returned by SELECT statement pSub. Since these values
4352       ** do not necessarily correspond to columns in SELECT statement pParent,
4353       ** zero them before transfering the ORDER BY clause.
4354       **
4355       ** Not doing this may cause an error if a subsequent call to this
4356       ** function attempts to flatten a compound sub-query into pParent
4357       ** (the only way this can happen is if the compound sub-query is
4358       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4359       ExprList *pOrderBy = pSub->pOrderBy;
4360       for(i=0; i<pOrderBy->nExpr; i++){
4361         pOrderBy->a[i].u.x.iOrderByCol = 0;
4362       }
4363       assert( pParent->pOrderBy==0 );
4364       pParent->pOrderBy = pOrderBy;
4365       pSub->pOrderBy = 0;
4366     }
4367     pWhere = pSub->pWhere;
4368     pSub->pWhere = 0;
4369     if( isLeftJoin>0 ){
4370       sqlite3SetJoinExpr(pWhere, iNewParent);
4371     }
4372     if( pWhere ){
4373       if( pParent->pWhere ){
4374         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4375       }else{
4376         pParent->pWhere = pWhere;
4377       }
4378     }
4379     if( db->mallocFailed==0 ){
4380       SubstContext x;
4381       x.pParse = pParse;
4382       x.iTable = iParent;
4383       x.iNewTable = iNewParent;
4384       x.isLeftJoin = isLeftJoin;
4385       x.pEList = pSub->pEList;
4386       substSelect(&x, pParent, 0);
4387     }
4388 
4389     /* The flattened query is a compound if either the inner or the
4390     ** outer query is a compound. */
4391     pParent->selFlags |= pSub->selFlags & SF_Compound;
4392     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4393 
4394     /*
4395     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4396     **
4397     ** One is tempted to try to add a and b to combine the limits.  But this
4398     ** does not work if either limit is negative.
4399     */
4400     if( pSub->pLimit ){
4401       pParent->pLimit = pSub->pLimit;
4402       pSub->pLimit = 0;
4403     }
4404 
4405     /* Recompute the SrcList_item.colUsed masks for the flattened
4406     ** tables. */
4407     for(i=0; i<nSubSrc; i++){
4408       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4409     }
4410   }
4411 
4412   /* Finially, delete what is left of the subquery and return
4413   ** success.
4414   */
4415   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4416   sqlite3WalkSelect(&w,pSub1);
4417   sqlite3SelectDelete(db, pSub1);
4418 
4419 #if SELECTTRACE_ENABLED
4420   if( sqlite3SelectTrace & 0x100 ){
4421     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4422     sqlite3TreeViewSelect(0, p, 0);
4423   }
4424 #endif
4425 
4426   return 1;
4427 }
4428 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4429 
4430 /*
4431 ** A structure to keep track of all of the column values that are fixed to
4432 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4433 */
4434 typedef struct WhereConst WhereConst;
4435 struct WhereConst {
4436   Parse *pParse;   /* Parsing context */
4437   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4438   int nConst;      /* Number for COLUMN=CONSTANT terms */
4439   int nChng;       /* Number of times a constant is propagated */
4440   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4441   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4442 };
4443 
4444 /*
4445 ** Add a new entry to the pConst object.  Except, do not add duplicate
4446 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4447 **
4448 ** The caller guarantees the pColumn is a column and pValue is a constant.
4449 ** This routine has to do some additional checks before completing the
4450 ** insert.
4451 */
4452 static void constInsert(
4453   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4454   Expr *pColumn,       /* The COLUMN part of the constraint */
4455   Expr *pValue,        /* The VALUE part of the constraint */
4456   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4457 ){
4458   int i;
4459   assert( pColumn->op==TK_COLUMN );
4460   assert( sqlite3ExprIsConstant(pValue) );
4461 
4462   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4463   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4464   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4465     return;
4466   }
4467 
4468   /* 2018-10-25 ticket [cf5ed20f]
4469   ** Make sure the same pColumn is not inserted more than once */
4470   for(i=0; i<pConst->nConst; i++){
4471     const Expr *pE2 = pConst->apExpr[i*2];
4472     assert( pE2->op==TK_COLUMN );
4473     if( pE2->iTable==pColumn->iTable
4474      && pE2->iColumn==pColumn->iColumn
4475     ){
4476       return;  /* Already present.  Return without doing anything. */
4477     }
4478   }
4479   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4480     pConst->bHasAffBlob = 1;
4481   }
4482 
4483   pConst->nConst++;
4484   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4485                          pConst->nConst*2*sizeof(Expr*));
4486   if( pConst->apExpr==0 ){
4487     pConst->nConst = 0;
4488   }else{
4489     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4490     pConst->apExpr[pConst->nConst*2-1] = pValue;
4491   }
4492 }
4493 
4494 /*
4495 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4496 ** is a constant expression and where the term must be true because it
4497 ** is part of the AND-connected terms of the expression.  For each term
4498 ** found, add it to the pConst structure.
4499 */
4500 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4501   Expr *pRight, *pLeft;
4502   if( NEVER(pExpr==0) ) return;
4503   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4504   if( pExpr->op==TK_AND ){
4505     findConstInWhere(pConst, pExpr->pRight);
4506     findConstInWhere(pConst, pExpr->pLeft);
4507     return;
4508   }
4509   if( pExpr->op!=TK_EQ ) return;
4510   pRight = pExpr->pRight;
4511   pLeft = pExpr->pLeft;
4512   assert( pRight!=0 );
4513   assert( pLeft!=0 );
4514   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4515     constInsert(pConst,pRight,pLeft,pExpr);
4516   }
4517   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4518     constInsert(pConst,pLeft,pRight,pExpr);
4519   }
4520 }
4521 
4522 /*
4523 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4524 **
4525 ** Argument pExpr is a candidate expression to be replaced by a value. If
4526 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4527 ** then overwrite it with the corresponding value. Except, do not do so
4528 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4529 ** is SQLITE_AFF_BLOB.
4530 */
4531 static int propagateConstantExprRewriteOne(
4532   WhereConst *pConst,
4533   Expr *pExpr,
4534   int bIgnoreAffBlob
4535 ){
4536   int i;
4537   if( pConst->pOomFault[0] ) return WRC_Prune;
4538   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4539   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4540     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4541     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4542     return WRC_Continue;
4543   }
4544   for(i=0; i<pConst->nConst; i++){
4545     Expr *pColumn = pConst->apExpr[i*2];
4546     if( pColumn==pExpr ) continue;
4547     if( pColumn->iTable!=pExpr->iTable ) continue;
4548     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4549     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4550       break;
4551     }
4552     /* A match is found.  Add the EP_FixedCol property */
4553     pConst->nChng++;
4554     ExprClearProperty(pExpr, EP_Leaf);
4555     ExprSetProperty(pExpr, EP_FixedCol);
4556     assert( pExpr->pLeft==0 );
4557     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4558     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4559     break;
4560   }
4561   return WRC_Prune;
4562 }
4563 
4564 /*
4565 ** This is a Walker expression callback. pExpr is a node from the WHERE
4566 ** clause of a SELECT statement. This function examines pExpr to see if
4567 ** any substitutions based on the contents of pWalker->u.pConst should
4568 ** be made to pExpr or its immediate children.
4569 **
4570 ** A substitution is made if:
4571 **
4572 **   + pExpr is a column with an affinity other than BLOB that matches
4573 **     one of the columns in pWalker->u.pConst, or
4574 **
4575 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4576 **     uses an affinity other than TEXT and one of its immediate
4577 **     children is a column that matches one of the columns in
4578 **     pWalker->u.pConst.
4579 */
4580 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4581   WhereConst *pConst = pWalker->u.pConst;
4582   assert( TK_GT==TK_EQ+1 );
4583   assert( TK_LE==TK_EQ+2 );
4584   assert( TK_LT==TK_EQ+3 );
4585   assert( TK_GE==TK_EQ+4 );
4586   if( pConst->bHasAffBlob ){
4587     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4588      || pExpr->op==TK_IS
4589     ){
4590       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4591       if( pConst->pOomFault[0] ) return WRC_Prune;
4592       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4593         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4594       }
4595     }
4596   }
4597   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4598 }
4599 
4600 /*
4601 ** The WHERE-clause constant propagation optimization.
4602 **
4603 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4604 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4605 ** part of a ON clause from a LEFT JOIN, then throughout the query
4606 ** replace all other occurrences of COLUMN with CONSTANT.
4607 **
4608 ** For example, the query:
4609 **
4610 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4611 **
4612 ** Is transformed into
4613 **
4614 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4615 **
4616 ** Return true if any transformations where made and false if not.
4617 **
4618 ** Implementation note:  Constant propagation is tricky due to affinity
4619 ** and collating sequence interactions.  Consider this example:
4620 **
4621 **    CREATE TABLE t1(a INT,b TEXT);
4622 **    INSERT INTO t1 VALUES(123,'0123');
4623 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4624 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4625 **
4626 ** The two SELECT statements above should return different answers.  b=a
4627 ** is alway true because the comparison uses numeric affinity, but b=123
4628 ** is false because it uses text affinity and '0123' is not the same as '123'.
4629 ** To work around this, the expression tree is not actually changed from
4630 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4631 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4632 ** routines know to generate the constant "123" instead of looking up the
4633 ** column value.  Also, to avoid collation problems, this optimization is
4634 ** only attempted if the "a=123" term uses the default BINARY collation.
4635 **
4636 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4637 **
4638 **    CREATE TABLE t1(x);
4639 **    INSERT INTO t1 VALUES(10.0);
4640 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4641 **
4642 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4643 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4644 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4645 ** resulting in a false positive.  To avoid this, constant propagation for
4646 ** columns with BLOB affinity is only allowed if the constant is used with
4647 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4648 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4649 ** for details.
4650 */
4651 static int propagateConstants(
4652   Parse *pParse,   /* The parsing context */
4653   Select *p        /* The query in which to propagate constants */
4654 ){
4655   WhereConst x;
4656   Walker w;
4657   int nChng = 0;
4658   x.pParse = pParse;
4659   x.pOomFault = &pParse->db->mallocFailed;
4660   do{
4661     x.nConst = 0;
4662     x.nChng = 0;
4663     x.apExpr = 0;
4664     x.bHasAffBlob = 0;
4665     findConstInWhere(&x, p->pWhere);
4666     if( x.nConst ){
4667       memset(&w, 0, sizeof(w));
4668       w.pParse = pParse;
4669       w.xExprCallback = propagateConstantExprRewrite;
4670       w.xSelectCallback = sqlite3SelectWalkNoop;
4671       w.xSelectCallback2 = 0;
4672       w.walkerDepth = 0;
4673       w.u.pConst = &x;
4674       sqlite3WalkExpr(&w, p->pWhere);
4675       sqlite3DbFree(x.pParse->db, x.apExpr);
4676       nChng += x.nChng;
4677     }
4678   }while( x.nChng );
4679   return nChng;
4680 }
4681 
4682 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4683 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4684 /*
4685 ** This function is called to determine whether or not it is safe to
4686 ** push WHERE clause expression pExpr down to FROM clause sub-query
4687 ** pSubq, which contains at least one window function. Return 1
4688 ** if it is safe and the expression should be pushed down, or 0
4689 ** otherwise.
4690 **
4691 ** It is only safe to push the expression down if it consists only
4692 ** of constants and copies of expressions that appear in the PARTITION
4693 ** BY clause of all window function used by the sub-query. It is safe
4694 ** to filter out entire partitions, but not rows within partitions, as
4695 ** this may change the results of the window functions.
4696 **
4697 ** At the time this function is called it is guaranteed that
4698 **
4699 **   * the sub-query uses only one distinct window frame, and
4700 **   * that the window frame has a PARTITION BY clase.
4701 */
4702 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4703   assert( pSubq->pWin->pPartition );
4704   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4705   assert( pSubq->pPrior==0 );
4706   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4707 }
4708 # endif /* SQLITE_OMIT_WINDOWFUNC */
4709 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4710 
4711 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4712 /*
4713 ** Make copies of relevant WHERE clause terms of the outer query into
4714 ** the WHERE clause of subquery.  Example:
4715 **
4716 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4717 **
4718 ** Transformed into:
4719 **
4720 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4721 **     WHERE x=5 AND y=10;
4722 **
4723 ** The hope is that the terms added to the inner query will make it more
4724 ** efficient.
4725 **
4726 ** Do not attempt this optimization if:
4727 **
4728 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4729 **           disallow this optimization for aggregate subqueries, but now
4730 **           it is allowed by putting the extra terms on the HAVING clause.
4731 **           The added HAVING clause is pointless if the subquery lacks
4732 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4733 **           so there does not appear to be any reason to add extra logic
4734 **           to suppress it. **)
4735 **
4736 **   (2) The inner query is the recursive part of a common table expression.
4737 **
4738 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4739 **       clause would change the meaning of the LIMIT).
4740 **
4741 **   (4) The inner query is the right operand of a LEFT JOIN and the
4742 **       expression to be pushed down does not come from the ON clause
4743 **       on that LEFT JOIN.
4744 **
4745 **   (5) The WHERE clause expression originates in the ON or USING clause
4746 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4747 **       left join.  An example:
4748 **
4749 **           SELECT *
4750 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4751 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4752 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4753 **
4754 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4755 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4756 **       then the (1,1,NULL) row would be suppressed.
4757 **
4758 **   (6) Window functions make things tricky as changes to the WHERE clause
4759 **       of the inner query could change the window over which window
4760 **       functions are calculated. Therefore, do not attempt the optimization
4761 **       if:
4762 **
4763 **     (6a) The inner query uses multiple incompatible window partitions.
4764 **
4765 **     (6b) The inner query is a compound and uses window-functions.
4766 **
4767 **     (6c) The WHERE clause does not consist entirely of constants and
4768 **          copies of expressions found in the PARTITION BY clause of
4769 **          all window-functions used by the sub-query. It is safe to
4770 **          filter out entire partitions, as this does not change the
4771 **          window over which any window-function is calculated.
4772 **
4773 **   (7) The inner query is a Common Table Expression (CTE) that should
4774 **       be materialized.  (This restriction is implemented in the calling
4775 **       routine.)
4776 **
4777 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4778 ** terms are duplicated into the subquery.
4779 */
4780 static int pushDownWhereTerms(
4781   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4782   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4783   Expr *pWhere,         /* The WHERE clause of the outer query */
4784   int iCursor,          /* Cursor number of the subquery */
4785   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4786 ){
4787   Expr *pNew;
4788   int nChng = 0;
4789   if( pWhere==0 ) return 0;
4790   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4791 
4792 #ifndef SQLITE_OMIT_WINDOWFUNC
4793   if( pSubq->pPrior ){
4794     Select *pSel;
4795     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4796       if( pSel->pWin ) return 0;    /* restriction (6b) */
4797     }
4798   }else{
4799     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4800   }
4801 #endif
4802 
4803 #ifdef SQLITE_DEBUG
4804   /* Only the first term of a compound can have a WITH clause.  But make
4805   ** sure no other terms are marked SF_Recursive in case something changes
4806   ** in the future.
4807   */
4808   {
4809     Select *pX;
4810     for(pX=pSubq; pX; pX=pX->pPrior){
4811       assert( (pX->selFlags & (SF_Recursive))==0 );
4812     }
4813   }
4814 #endif
4815 
4816   if( pSubq->pLimit!=0 ){
4817     return 0; /* restriction (3) */
4818   }
4819   while( pWhere->op==TK_AND ){
4820     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4821                                 iCursor, isLeftJoin);
4822     pWhere = pWhere->pLeft;
4823   }
4824   if( isLeftJoin
4825    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4826          || pWhere->iRightJoinTable!=iCursor)
4827   ){
4828     return 0; /* restriction (4) */
4829   }
4830   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4831     return 0; /* restriction (5) */
4832   }
4833   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4834     nChng++;
4835     pSubq->selFlags |= SF_PushDown;
4836     while( pSubq ){
4837       SubstContext x;
4838       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4839       unsetJoinExpr(pNew, -1);
4840       x.pParse = pParse;
4841       x.iTable = iCursor;
4842       x.iNewTable = iCursor;
4843       x.isLeftJoin = 0;
4844       x.pEList = pSubq->pEList;
4845       pNew = substExpr(&x, pNew);
4846 #ifndef SQLITE_OMIT_WINDOWFUNC
4847       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4848         /* Restriction 6c has prevented push-down in this case */
4849         sqlite3ExprDelete(pParse->db, pNew);
4850         nChng--;
4851         break;
4852       }
4853 #endif
4854       if( pSubq->selFlags & SF_Aggregate ){
4855         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4856       }else{
4857         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4858       }
4859       pSubq = pSubq->pPrior;
4860     }
4861   }
4862   return nChng;
4863 }
4864 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4865 
4866 /*
4867 ** The pFunc is the only aggregate function in the query.  Check to see
4868 ** if the query is a candidate for the min/max optimization.
4869 **
4870 ** If the query is a candidate for the min/max optimization, then set
4871 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4872 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4873 ** whether pFunc is a min() or max() function.
4874 **
4875 ** If the query is not a candidate for the min/max optimization, return
4876 ** WHERE_ORDERBY_NORMAL (which must be zero).
4877 **
4878 ** This routine must be called after aggregate functions have been
4879 ** located but before their arguments have been subjected to aggregate
4880 ** analysis.
4881 */
4882 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4883   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4884   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4885   const char *zFunc;                    /* Name of aggregate function pFunc */
4886   ExprList *pOrderBy;
4887   u8 sortFlags = 0;
4888 
4889   assert( *ppMinMax==0 );
4890   assert( pFunc->op==TK_AGG_FUNCTION );
4891   assert( !IsWindowFunc(pFunc) );
4892   if( pEList==0
4893    || pEList->nExpr!=1
4894    || ExprHasProperty(pFunc, EP_WinFunc)
4895    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4896   ){
4897     return eRet;
4898   }
4899   zFunc = pFunc->u.zToken;
4900   if( sqlite3StrICmp(zFunc, "min")==0 ){
4901     eRet = WHERE_ORDERBY_MIN;
4902     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4903       sortFlags = KEYINFO_ORDER_BIGNULL;
4904     }
4905   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4906     eRet = WHERE_ORDERBY_MAX;
4907     sortFlags = KEYINFO_ORDER_DESC;
4908   }else{
4909     return eRet;
4910   }
4911   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4912   assert( pOrderBy!=0 || db->mallocFailed );
4913   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4914   return eRet;
4915 }
4916 
4917 /*
4918 ** The select statement passed as the first argument is an aggregate query.
4919 ** The second argument is the associated aggregate-info object. This
4920 ** function tests if the SELECT is of the form:
4921 **
4922 **   SELECT count(*) FROM <tbl>
4923 **
4924 ** where table is a database table, not a sub-select or view. If the query
4925 ** does match this pattern, then a pointer to the Table object representing
4926 ** <tbl> is returned. Otherwise, 0 is returned.
4927 */
4928 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4929   Table *pTab;
4930   Expr *pExpr;
4931 
4932   assert( !p->pGroupBy );
4933 
4934   if( p->pWhere || p->pEList->nExpr!=1
4935    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4936   ){
4937     return 0;
4938   }
4939   pTab = p->pSrc->a[0].pTab;
4940   pExpr = p->pEList->a[0].pExpr;
4941   assert( pTab && !IsView(pTab) && pExpr );
4942 
4943   if( IsVirtual(pTab) ) return 0;
4944   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4945   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4946   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4947   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4948 
4949   return pTab;
4950 }
4951 
4952 /*
4953 ** If the source-list item passed as an argument was augmented with an
4954 ** INDEXED BY clause, then try to locate the specified index. If there
4955 ** was such a clause and the named index cannot be found, return
4956 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4957 ** pFrom->pIndex and return SQLITE_OK.
4958 */
4959 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4960   Table *pTab = pFrom->pTab;
4961   char *zIndexedBy = pFrom->u1.zIndexedBy;
4962   Index *pIdx;
4963   assert( pTab!=0 );
4964   assert( pFrom->fg.isIndexedBy!=0 );
4965 
4966   for(pIdx=pTab->pIndex;
4967       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4968       pIdx=pIdx->pNext
4969   );
4970   if( !pIdx ){
4971     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4972     pParse->checkSchema = 1;
4973     return SQLITE_ERROR;
4974   }
4975   pFrom->u2.pIBIndex = pIdx;
4976   return SQLITE_OK;
4977 }
4978 
4979 /*
4980 ** Detect compound SELECT statements that use an ORDER BY clause with
4981 ** an alternative collating sequence.
4982 **
4983 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4984 **
4985 ** These are rewritten as a subquery:
4986 **
4987 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4988 **     ORDER BY ... COLLATE ...
4989 **
4990 ** This transformation is necessary because the multiSelectOrderBy() routine
4991 ** above that generates the code for a compound SELECT with an ORDER BY clause
4992 ** uses a merge algorithm that requires the same collating sequence on the
4993 ** result columns as on the ORDER BY clause.  See ticket
4994 ** http://www.sqlite.org/src/info/6709574d2a
4995 **
4996 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4997 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4998 ** there are COLLATE terms in the ORDER BY.
4999 */
5000 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5001   int i;
5002   Select *pNew;
5003   Select *pX;
5004   sqlite3 *db;
5005   struct ExprList_item *a;
5006   SrcList *pNewSrc;
5007   Parse *pParse;
5008   Token dummy;
5009 
5010   if( p->pPrior==0 ) return WRC_Continue;
5011   if( p->pOrderBy==0 ) return WRC_Continue;
5012   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5013   if( pX==0 ) return WRC_Continue;
5014   a = p->pOrderBy->a;
5015 #ifndef SQLITE_OMIT_WINDOWFUNC
5016   /* If iOrderByCol is already non-zero, then it has already been matched
5017   ** to a result column of the SELECT statement. This occurs when the
5018   ** SELECT is rewritten for window-functions processing and then passed
5019   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5020   ** by this function is not required in this case. */
5021   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5022 #endif
5023   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5024     if( a[i].pExpr->flags & EP_Collate ) break;
5025   }
5026   if( i<0 ) return WRC_Continue;
5027 
5028   /* If we reach this point, that means the transformation is required. */
5029 
5030   pParse = pWalker->pParse;
5031   db = pParse->db;
5032   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5033   if( pNew==0 ) return WRC_Abort;
5034   memset(&dummy, 0, sizeof(dummy));
5035   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5036   if( pNewSrc==0 ) return WRC_Abort;
5037   *pNew = *p;
5038   p->pSrc = pNewSrc;
5039   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5040   p->op = TK_SELECT;
5041   p->pWhere = 0;
5042   pNew->pGroupBy = 0;
5043   pNew->pHaving = 0;
5044   pNew->pOrderBy = 0;
5045   p->pPrior = 0;
5046   p->pNext = 0;
5047   p->pWith = 0;
5048 #ifndef SQLITE_OMIT_WINDOWFUNC
5049   p->pWinDefn = 0;
5050 #endif
5051   p->selFlags &= ~SF_Compound;
5052   assert( (p->selFlags & SF_Converted)==0 );
5053   p->selFlags |= SF_Converted;
5054   assert( pNew->pPrior!=0 );
5055   pNew->pPrior->pNext = pNew;
5056   pNew->pLimit = 0;
5057   return WRC_Continue;
5058 }
5059 
5060 /*
5061 ** Check to see if the FROM clause term pFrom has table-valued function
5062 ** arguments.  If it does, leave an error message in pParse and return
5063 ** non-zero, since pFrom is not allowed to be a table-valued function.
5064 */
5065 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5066   if( pFrom->fg.isTabFunc ){
5067     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5068     return 1;
5069   }
5070   return 0;
5071 }
5072 
5073 #ifndef SQLITE_OMIT_CTE
5074 /*
5075 ** Argument pWith (which may be NULL) points to a linked list of nested
5076 ** WITH contexts, from inner to outermost. If the table identified by
5077 ** FROM clause element pItem is really a common-table-expression (CTE)
5078 ** then return a pointer to the CTE definition for that table. Otherwise
5079 ** return NULL.
5080 **
5081 ** If a non-NULL value is returned, set *ppContext to point to the With
5082 ** object that the returned CTE belongs to.
5083 */
5084 static struct Cte *searchWith(
5085   With *pWith,                    /* Current innermost WITH clause */
5086   SrcItem *pItem,                 /* FROM clause element to resolve */
5087   With **ppContext                /* OUT: WITH clause return value belongs to */
5088 ){
5089   const char *zName = pItem->zName;
5090   With *p;
5091   assert( pItem->zDatabase==0 );
5092   assert( zName!=0 );
5093   for(p=pWith; p; p=p->pOuter){
5094     int i;
5095     for(i=0; i<p->nCte; i++){
5096       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5097         *ppContext = p;
5098         return &p->a[i];
5099       }
5100     }
5101     if( p->bView ) break;
5102   }
5103   return 0;
5104 }
5105 
5106 /* The code generator maintains a stack of active WITH clauses
5107 ** with the inner-most WITH clause being at the top of the stack.
5108 **
5109 ** This routine pushes the WITH clause passed as the second argument
5110 ** onto the top of the stack. If argument bFree is true, then this
5111 ** WITH clause will never be popped from the stack but should instead
5112 ** be freed along with the Parse object. In other cases, when
5113 ** bFree==0, the With object will be freed along with the SELECT
5114 ** statement with which it is associated.
5115 **
5116 ** This routine returns a copy of pWith.  Or, if bFree is true and
5117 ** the pWith object is destroyed immediately due to an OOM condition,
5118 ** then this routine return NULL.
5119 **
5120 ** If bFree is true, do not continue to use the pWith pointer after
5121 ** calling this routine,  Instead, use only the return value.
5122 */
5123 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5124   if( pWith ){
5125     if( bFree ){
5126       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5127                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5128                       pWith);
5129       if( pWith==0 ) return 0;
5130     }
5131     if( pParse->nErr==0 ){
5132       assert( pParse->pWith!=pWith );
5133       pWith->pOuter = pParse->pWith;
5134       pParse->pWith = pWith;
5135     }
5136   }
5137   return pWith;
5138 }
5139 
5140 /*
5141 ** This function checks if argument pFrom refers to a CTE declared by
5142 ** a WITH clause on the stack currently maintained by the parser (on the
5143 ** pParse->pWith linked list).  And if currently processing a CTE
5144 ** CTE expression, through routine checks to see if the reference is
5145 ** a recursive reference to the CTE.
5146 **
5147 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5148 ** and other fields are populated accordingly.
5149 **
5150 ** Return 0 if no match is found.
5151 ** Return 1 if a match is found.
5152 ** Return 2 if an error condition is detected.
5153 */
5154 static int resolveFromTermToCte(
5155   Parse *pParse,                  /* The parsing context */
5156   Walker *pWalker,                /* Current tree walker */
5157   SrcItem *pFrom                  /* The FROM clause term to check */
5158 ){
5159   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5160   With *pWith;             /* The matching WITH */
5161 
5162   assert( pFrom->pTab==0 );
5163   if( pParse->pWith==0 ){
5164     /* There are no WITH clauses in the stack.  No match is possible */
5165     return 0;
5166   }
5167   if( pParse->nErr ){
5168     /* Prior errors might have left pParse->pWith in a goofy state, so
5169     ** go no further. */
5170     return 0;
5171   }
5172   if( pFrom->zDatabase!=0 ){
5173     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5174     ** it cannot possibly be a CTE reference. */
5175     return 0;
5176   }
5177   if( pFrom->fg.notCte ){
5178     /* The FROM term is specifically excluded from matching a CTE.
5179     **   (1)  It is part of a trigger that used to have zDatabase but had
5180     **        zDatabase removed by sqlite3FixTriggerStep().
5181     **   (2)  This is the first term in the FROM clause of an UPDATE.
5182     */
5183     return 0;
5184   }
5185   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5186   if( pCte ){
5187     sqlite3 *db = pParse->db;
5188     Table *pTab;
5189     ExprList *pEList;
5190     Select *pSel;
5191     Select *pLeft;                /* Left-most SELECT statement */
5192     Select *pRecTerm;             /* Left-most recursive term */
5193     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5194     With *pSavedWith;             /* Initial value of pParse->pWith */
5195     int iRecTab = -1;             /* Cursor for recursive table */
5196     CteUse *pCteUse;
5197 
5198     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5199     ** recursive reference to CTE pCte. Leave an error in pParse and return
5200     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5201     ** In this case, proceed.  */
5202     if( pCte->zCteErr ){
5203       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5204       return 2;
5205     }
5206     if( cannotBeFunction(pParse, pFrom) ) return 2;
5207 
5208     assert( pFrom->pTab==0 );
5209     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5210     if( pTab==0 ) return 2;
5211     pCteUse = pCte->pUse;
5212     if( pCteUse==0 ){
5213       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5214       if( pCteUse==0
5215        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5216       ){
5217         sqlite3DbFree(db, pTab);
5218         return 2;
5219       }
5220       pCteUse->eM10d = pCte->eM10d;
5221     }
5222     pFrom->pTab = pTab;
5223     pTab->nTabRef = 1;
5224     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5225     pTab->iPKey = -1;
5226     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5227     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5228     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5229     if( db->mallocFailed ) return 2;
5230     pFrom->pSelect->selFlags |= SF_CopyCte;
5231     assert( pFrom->pSelect );
5232     pFrom->fg.isCte = 1;
5233     pFrom->u2.pCteUse = pCteUse;
5234     pCteUse->nUse++;
5235     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5236       pCteUse->eM10d = M10d_Yes;
5237     }
5238 
5239     /* Check if this is a recursive CTE. */
5240     pRecTerm = pSel = pFrom->pSelect;
5241     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5242     while( bMayRecursive && pRecTerm->op==pSel->op ){
5243       int i;
5244       SrcList *pSrc = pRecTerm->pSrc;
5245       assert( pRecTerm->pPrior!=0 );
5246       for(i=0; i<pSrc->nSrc; i++){
5247         SrcItem *pItem = &pSrc->a[i];
5248         if( pItem->zDatabase==0
5249          && pItem->zName!=0
5250          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5251         ){
5252           pItem->pTab = pTab;
5253           pTab->nTabRef++;
5254           pItem->fg.isRecursive = 1;
5255           if( pRecTerm->selFlags & SF_Recursive ){
5256             sqlite3ErrorMsg(pParse,
5257                "multiple references to recursive table: %s", pCte->zName
5258             );
5259             return 2;
5260           }
5261           pRecTerm->selFlags |= SF_Recursive;
5262           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5263           pItem->iCursor = iRecTab;
5264         }
5265       }
5266       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5267       pRecTerm = pRecTerm->pPrior;
5268     }
5269 
5270     pCte->zCteErr = "circular reference: %s";
5271     pSavedWith = pParse->pWith;
5272     pParse->pWith = pWith;
5273     if( pSel->selFlags & SF_Recursive ){
5274       int rc;
5275       assert( pRecTerm!=0 );
5276       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5277       assert( pRecTerm->pNext!=0 );
5278       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5279       assert( pRecTerm->pWith==0 );
5280       pRecTerm->pWith = pSel->pWith;
5281       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5282       pRecTerm->pWith = 0;
5283       if( rc ){
5284         pParse->pWith = pSavedWith;
5285         return 2;
5286       }
5287     }else{
5288       if( sqlite3WalkSelect(pWalker, pSel) ){
5289         pParse->pWith = pSavedWith;
5290         return 2;
5291       }
5292     }
5293     pParse->pWith = pWith;
5294 
5295     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5296     pEList = pLeft->pEList;
5297     if( pCte->pCols ){
5298       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5299         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5300             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5301         );
5302         pParse->pWith = pSavedWith;
5303         return 2;
5304       }
5305       pEList = pCte->pCols;
5306     }
5307 
5308     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5309     if( bMayRecursive ){
5310       if( pSel->selFlags & SF_Recursive ){
5311         pCte->zCteErr = "multiple recursive references: %s";
5312       }else{
5313         pCte->zCteErr = "recursive reference in a subquery: %s";
5314       }
5315       sqlite3WalkSelect(pWalker, pSel);
5316     }
5317     pCte->zCteErr = 0;
5318     pParse->pWith = pSavedWith;
5319     return 1;  /* Success */
5320   }
5321   return 0;  /* No match */
5322 }
5323 #endif
5324 
5325 #ifndef SQLITE_OMIT_CTE
5326 /*
5327 ** If the SELECT passed as the second argument has an associated WITH
5328 ** clause, pop it from the stack stored as part of the Parse object.
5329 **
5330 ** This function is used as the xSelectCallback2() callback by
5331 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5332 ** names and other FROM clause elements.
5333 */
5334 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5335   Parse *pParse = pWalker->pParse;
5336   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5337     With *pWith = findRightmost(p)->pWith;
5338     if( pWith!=0 ){
5339       assert( pParse->pWith==pWith || pParse->nErr );
5340       pParse->pWith = pWith->pOuter;
5341     }
5342   }
5343 }
5344 #endif
5345 
5346 /*
5347 ** The SrcList_item structure passed as the second argument represents a
5348 ** sub-query in the FROM clause of a SELECT statement. This function
5349 ** allocates and populates the SrcList_item.pTab object. If successful,
5350 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5351 ** SQLITE_NOMEM.
5352 */
5353 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5354   Select *pSel = pFrom->pSelect;
5355   Table *pTab;
5356 
5357   assert( pSel );
5358   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5359   if( pTab==0 ) return SQLITE_NOMEM;
5360   pTab->nTabRef = 1;
5361   if( pFrom->zAlias ){
5362     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5363   }else{
5364     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5365   }
5366   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5367   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5368   pTab->iPKey = -1;
5369   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5370 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5371   /* The usual case - do not allow ROWID on a subquery */
5372   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5373 #else
5374   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5375 #endif
5376 
5377 
5378   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5379 }
5380 
5381 /*
5382 ** This routine is a Walker callback for "expanding" a SELECT statement.
5383 ** "Expanding" means to do the following:
5384 **
5385 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5386 **         element of the FROM clause.
5387 **
5388 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5389 **         defines FROM clause.  When views appear in the FROM clause,
5390 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5391 **         that implements the view.  A copy is made of the view's SELECT
5392 **         statement so that we can freely modify or delete that statement
5393 **         without worrying about messing up the persistent representation
5394 **         of the view.
5395 **
5396 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5397 **         on joins and the ON and USING clause of joins.
5398 **
5399 **    (4)  Scan the list of columns in the result set (pEList) looking
5400 **         for instances of the "*" operator or the TABLE.* operator.
5401 **         If found, expand each "*" to be every column in every table
5402 **         and TABLE.* to be every column in TABLE.
5403 **
5404 */
5405 static int selectExpander(Walker *pWalker, Select *p){
5406   Parse *pParse = pWalker->pParse;
5407   int i, j, k, rc;
5408   SrcList *pTabList;
5409   ExprList *pEList;
5410   SrcItem *pFrom;
5411   sqlite3 *db = pParse->db;
5412   Expr *pE, *pRight, *pExpr;
5413   u16 selFlags = p->selFlags;
5414   u32 elistFlags = 0;
5415 
5416   p->selFlags |= SF_Expanded;
5417   if( db->mallocFailed  ){
5418     return WRC_Abort;
5419   }
5420   assert( p->pSrc!=0 );
5421   if( (selFlags & SF_Expanded)!=0 ){
5422     return WRC_Prune;
5423   }
5424   if( pWalker->eCode ){
5425     /* Renumber selId because it has been copied from a view */
5426     p->selId = ++pParse->nSelect;
5427   }
5428   pTabList = p->pSrc;
5429   pEList = p->pEList;
5430   if( pParse->pWith && (p->selFlags & SF_View) ){
5431     if( p->pWith==0 ){
5432       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5433       if( p->pWith==0 ){
5434         return WRC_Abort;
5435       }
5436     }
5437     p->pWith->bView = 1;
5438   }
5439   sqlite3WithPush(pParse, p->pWith, 0);
5440 
5441   /* Make sure cursor numbers have been assigned to all entries in
5442   ** the FROM clause of the SELECT statement.
5443   */
5444   sqlite3SrcListAssignCursors(pParse, pTabList);
5445 
5446   /* Look up every table named in the FROM clause of the select.  If
5447   ** an entry of the FROM clause is a subquery instead of a table or view,
5448   ** then create a transient table structure to describe the subquery.
5449   */
5450   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5451     Table *pTab;
5452     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5453     if( pFrom->pTab ) continue;
5454     assert( pFrom->fg.isRecursive==0 );
5455     if( pFrom->zName==0 ){
5456 #ifndef SQLITE_OMIT_SUBQUERY
5457       Select *pSel = pFrom->pSelect;
5458       /* A sub-query in the FROM clause of a SELECT */
5459       assert( pSel!=0 );
5460       assert( pFrom->pTab==0 );
5461       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5462       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5463 #endif
5464 #ifndef SQLITE_OMIT_CTE
5465     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5466       if( rc>1 ) return WRC_Abort;
5467       pTab = pFrom->pTab;
5468       assert( pTab!=0 );
5469 #endif
5470     }else{
5471       /* An ordinary table or view name in the FROM clause */
5472       assert( pFrom->pTab==0 );
5473       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5474       if( pTab==0 ) return WRC_Abort;
5475       if( pTab->nTabRef>=0xffff ){
5476         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5477            pTab->zName);
5478         pFrom->pTab = 0;
5479         return WRC_Abort;
5480       }
5481       pTab->nTabRef++;
5482       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5483         return WRC_Abort;
5484       }
5485 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5486       if( !IsOrdinaryTable(pTab) ){
5487         i16 nCol;
5488         u8 eCodeOrig = pWalker->eCode;
5489         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5490         assert( pFrom->pSelect==0 );
5491         if( IsView(pTab) ){
5492           if( (db->flags & SQLITE_EnableView)==0
5493            && pTab->pSchema!=db->aDb[1].pSchema
5494           ){
5495             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5496               pTab->zName);
5497           }
5498           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5499         }else
5500 #ifndef SQLITE_OMIT_VIRTUALTABLE
5501         if( ALWAYS(IsVirtual(pTab))
5502          && pFrom->fg.fromDDL
5503          && ALWAYS(pTab->u.vtab.p!=0)
5504          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5505         ){
5506           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5507                                   pTab->zName);
5508         }
5509         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5510 #endif
5511         nCol = pTab->nCol;
5512         pTab->nCol = -1;
5513         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5514         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5515         pWalker->eCode = eCodeOrig;
5516         pTab->nCol = nCol;
5517       }
5518 #endif
5519     }
5520 
5521     /* Locate the index named by the INDEXED BY clause, if any. */
5522     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5523       return WRC_Abort;
5524     }
5525   }
5526 
5527   /* Process NATURAL keywords, and ON and USING clauses of joins.
5528   */
5529   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5530     return WRC_Abort;
5531   }
5532 
5533   /* For every "*" that occurs in the column list, insert the names of
5534   ** all columns in all tables.  And for every TABLE.* insert the names
5535   ** of all columns in TABLE.  The parser inserted a special expression
5536   ** with the TK_ASTERISK operator for each "*" that it found in the column
5537   ** list.  The following code just has to locate the TK_ASTERISK
5538   ** expressions and expand each one to the list of all columns in
5539   ** all tables.
5540   **
5541   ** The first loop just checks to see if there are any "*" operators
5542   ** that need expanding.
5543   */
5544   for(k=0; k<pEList->nExpr; k++){
5545     pE = pEList->a[k].pExpr;
5546     if( pE->op==TK_ASTERISK ) break;
5547     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5548     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5549     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5550     elistFlags |= pE->flags;
5551   }
5552   if( k<pEList->nExpr ){
5553     /*
5554     ** If we get here it means the result set contains one or more "*"
5555     ** operators that need to be expanded.  Loop through each expression
5556     ** in the result set and expand them one by one.
5557     */
5558     struct ExprList_item *a = pEList->a;
5559     ExprList *pNew = 0;
5560     int flags = pParse->db->flags;
5561     int longNames = (flags & SQLITE_FullColNames)!=0
5562                       && (flags & SQLITE_ShortColNames)==0;
5563 
5564     for(k=0; k<pEList->nExpr; k++){
5565       pE = a[k].pExpr;
5566       elistFlags |= pE->flags;
5567       pRight = pE->pRight;
5568       assert( pE->op!=TK_DOT || pRight!=0 );
5569       if( pE->op!=TK_ASTERISK
5570        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5571       ){
5572         /* This particular expression does not need to be expanded.
5573         */
5574         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5575         if( pNew ){
5576           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5577           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5578           a[k].zEName = 0;
5579         }
5580         a[k].pExpr = 0;
5581       }else{
5582         /* This expression is a "*" or a "TABLE.*" and needs to be
5583         ** expanded. */
5584         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5585         char *zTName = 0;       /* text of name of TABLE */
5586         if( pE->op==TK_DOT ){
5587           assert( pE->pLeft!=0 );
5588           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5589           zTName = pE->pLeft->u.zToken;
5590         }
5591         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5592           Table *pTab = pFrom->pTab;
5593           Select *pSub = pFrom->pSelect;
5594           char *zTabName = pFrom->zAlias;
5595           const char *zSchemaName = 0;
5596           int iDb;
5597           if( zTabName==0 ){
5598             zTabName = pTab->zName;
5599           }
5600           if( db->mallocFailed ) break;
5601           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5602             pSub = 0;
5603             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5604               continue;
5605             }
5606             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5607             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5608           }
5609           for(j=0; j<pTab->nCol; j++){
5610             char *zName = pTab->aCol[j].zCnName;
5611             char *zColname;  /* The computed column name */
5612             char *zToFree;   /* Malloced string that needs to be freed */
5613             Token sColname;  /* Computed column name as a token */
5614 
5615             assert( zName );
5616             if( zTName && pSub
5617              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5618             ){
5619               continue;
5620             }
5621 
5622             /* If a column is marked as 'hidden', omit it from the expanded
5623             ** result-set list unless the SELECT has the SF_IncludeHidden
5624             ** bit set.
5625             */
5626             if( (p->selFlags & SF_IncludeHidden)==0
5627              && IsHiddenColumn(&pTab->aCol[j])
5628             ){
5629               continue;
5630             }
5631             tableSeen = 1;
5632 
5633             if( i>0 && zTName==0 ){
5634               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5635                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5636               ){
5637                 /* In a NATURAL join, omit the join columns from the
5638                 ** table to the right of the join */
5639                 continue;
5640               }
5641               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5642                 /* In a join with a USING clause, omit columns in the
5643                 ** using clause from the table on the right. */
5644                 continue;
5645               }
5646             }
5647             pRight = sqlite3Expr(db, TK_ID, zName);
5648             zColname = zName;
5649             zToFree = 0;
5650             if( longNames || pTabList->nSrc>1 ){
5651               Expr *pLeft;
5652               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5653               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5654               if( zSchemaName ){
5655                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5656                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5657               }
5658               if( longNames ){
5659                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5660                 zToFree = zColname;
5661               }
5662             }else{
5663               pExpr = pRight;
5664             }
5665             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5666             sqlite3TokenInit(&sColname, zColname);
5667             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5668             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5669               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5670               sqlite3DbFree(db, pX->zEName);
5671               if( pSub ){
5672                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5673                 testcase( pX->zEName==0 );
5674               }else{
5675                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5676                                            zSchemaName, zTabName, zColname);
5677                 testcase( pX->zEName==0 );
5678               }
5679               pX->eEName = ENAME_TAB;
5680             }
5681             sqlite3DbFree(db, zToFree);
5682           }
5683         }
5684         if( !tableSeen ){
5685           if( zTName ){
5686             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5687           }else{
5688             sqlite3ErrorMsg(pParse, "no tables specified");
5689           }
5690         }
5691       }
5692     }
5693     sqlite3ExprListDelete(db, pEList);
5694     p->pEList = pNew;
5695   }
5696   if( p->pEList ){
5697     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5698       sqlite3ErrorMsg(pParse, "too many columns in result set");
5699       return WRC_Abort;
5700     }
5701     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5702       p->selFlags |= SF_ComplexResult;
5703     }
5704   }
5705   return WRC_Continue;
5706 }
5707 
5708 #if SQLITE_DEBUG
5709 /*
5710 ** Always assert.  This xSelectCallback2 implementation proves that the
5711 ** xSelectCallback2 is never invoked.
5712 */
5713 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5714   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5715   assert( 0 );
5716 }
5717 #endif
5718 /*
5719 ** This routine "expands" a SELECT statement and all of its subqueries.
5720 ** For additional information on what it means to "expand" a SELECT
5721 ** statement, see the comment on the selectExpand worker callback above.
5722 **
5723 ** Expanding a SELECT statement is the first step in processing a
5724 ** SELECT statement.  The SELECT statement must be expanded before
5725 ** name resolution is performed.
5726 **
5727 ** If anything goes wrong, an error message is written into pParse.
5728 ** The calling function can detect the problem by looking at pParse->nErr
5729 ** and/or pParse->db->mallocFailed.
5730 */
5731 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5732   Walker w;
5733   w.xExprCallback = sqlite3ExprWalkNoop;
5734   w.pParse = pParse;
5735   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5736     w.xSelectCallback = convertCompoundSelectToSubquery;
5737     w.xSelectCallback2 = 0;
5738     sqlite3WalkSelect(&w, pSelect);
5739   }
5740   w.xSelectCallback = selectExpander;
5741   w.xSelectCallback2 = sqlite3SelectPopWith;
5742   w.eCode = 0;
5743   sqlite3WalkSelect(&w, pSelect);
5744 }
5745 
5746 
5747 #ifndef SQLITE_OMIT_SUBQUERY
5748 /*
5749 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5750 ** interface.
5751 **
5752 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5753 ** information to the Table structure that represents the result set
5754 ** of that subquery.
5755 **
5756 ** The Table structure that represents the result set was constructed
5757 ** by selectExpander() but the type and collation information was omitted
5758 ** at that point because identifiers had not yet been resolved.  This
5759 ** routine is called after identifier resolution.
5760 */
5761 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5762   Parse *pParse;
5763   int i;
5764   SrcList *pTabList;
5765   SrcItem *pFrom;
5766 
5767   assert( p->selFlags & SF_Resolved );
5768   if( p->selFlags & SF_HasTypeInfo ) return;
5769   p->selFlags |= SF_HasTypeInfo;
5770   pParse = pWalker->pParse;
5771   pTabList = p->pSrc;
5772   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5773     Table *pTab = pFrom->pTab;
5774     assert( pTab!=0 );
5775     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5776       /* A sub-query in the FROM clause of a SELECT */
5777       Select *pSel = pFrom->pSelect;
5778       if( pSel ){
5779         while( pSel->pPrior ) pSel = pSel->pPrior;
5780         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5781                                                SQLITE_AFF_NONE);
5782       }
5783     }
5784   }
5785 }
5786 #endif
5787 
5788 
5789 /*
5790 ** This routine adds datatype and collating sequence information to
5791 ** the Table structures of all FROM-clause subqueries in a
5792 ** SELECT statement.
5793 **
5794 ** Use this routine after name resolution.
5795 */
5796 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5797 #ifndef SQLITE_OMIT_SUBQUERY
5798   Walker w;
5799   w.xSelectCallback = sqlite3SelectWalkNoop;
5800   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5801   w.xExprCallback = sqlite3ExprWalkNoop;
5802   w.pParse = pParse;
5803   sqlite3WalkSelect(&w, pSelect);
5804 #endif
5805 }
5806 
5807 
5808 /*
5809 ** This routine sets up a SELECT statement for processing.  The
5810 ** following is accomplished:
5811 **
5812 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5813 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5814 **     *  ON and USING clauses are shifted into WHERE statements
5815 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5816 **     *  Identifiers in expression are matched to tables.
5817 **
5818 ** This routine acts recursively on all subqueries within the SELECT.
5819 */
5820 void sqlite3SelectPrep(
5821   Parse *pParse,         /* The parser context */
5822   Select *p,             /* The SELECT statement being coded. */
5823   NameContext *pOuterNC  /* Name context for container */
5824 ){
5825   assert( p!=0 || pParse->db->mallocFailed );
5826   if( pParse->db->mallocFailed ) return;
5827   if( p->selFlags & SF_HasTypeInfo ) return;
5828   sqlite3SelectExpand(pParse, p);
5829   if( pParse->nErr || pParse->db->mallocFailed ) return;
5830   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5831   if( pParse->nErr || pParse->db->mallocFailed ) return;
5832   sqlite3SelectAddTypeInfo(pParse, p);
5833 }
5834 
5835 /*
5836 ** Reset the aggregate accumulator.
5837 **
5838 ** The aggregate accumulator is a set of memory cells that hold
5839 ** intermediate results while calculating an aggregate.  This
5840 ** routine generates code that stores NULLs in all of those memory
5841 ** cells.
5842 */
5843 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5844   Vdbe *v = pParse->pVdbe;
5845   int i;
5846   struct AggInfo_func *pFunc;
5847   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5848   if( nReg==0 ) return;
5849   if( pParse->nErr || pParse->db->mallocFailed ) return;
5850 #ifdef SQLITE_DEBUG
5851   /* Verify that all AggInfo registers are within the range specified by
5852   ** AggInfo.mnReg..AggInfo.mxReg */
5853   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5854   for(i=0; i<pAggInfo->nColumn; i++){
5855     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5856          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5857   }
5858   for(i=0; i<pAggInfo->nFunc; i++){
5859     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5860          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5861   }
5862 #endif
5863   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5864   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5865     if( pFunc->iDistinct>=0 ){
5866       Expr *pE = pFunc->pFExpr;
5867       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5868       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5869         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5870            "argument");
5871         pFunc->iDistinct = -1;
5872       }else{
5873         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5874         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5875             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5876         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5877                           pFunc->pFunc->zName));
5878       }
5879     }
5880   }
5881 }
5882 
5883 /*
5884 ** Invoke the OP_AggFinalize opcode for every aggregate function
5885 ** in the AggInfo structure.
5886 */
5887 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5888   Vdbe *v = pParse->pVdbe;
5889   int i;
5890   struct AggInfo_func *pF;
5891   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5892     ExprList *pList = pF->pFExpr->x.pList;
5893     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5894     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5895     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5896   }
5897 }
5898 
5899 
5900 /*
5901 ** Update the accumulator memory cells for an aggregate based on
5902 ** the current cursor position.
5903 **
5904 ** If regAcc is non-zero and there are no min() or max() aggregates
5905 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5906 ** registers if register regAcc contains 0. The caller will take care
5907 ** of setting and clearing regAcc.
5908 */
5909 static void updateAccumulator(
5910   Parse *pParse,
5911   int regAcc,
5912   AggInfo *pAggInfo,
5913   int eDistinctType
5914 ){
5915   Vdbe *v = pParse->pVdbe;
5916   int i;
5917   int regHit = 0;
5918   int addrHitTest = 0;
5919   struct AggInfo_func *pF;
5920   struct AggInfo_col *pC;
5921 
5922   pAggInfo->directMode = 1;
5923   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5924     int nArg;
5925     int addrNext = 0;
5926     int regAgg;
5927     ExprList *pList = pF->pFExpr->x.pList;
5928     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5929     assert( !IsWindowFunc(pF->pFExpr) );
5930     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5931       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5932       if( pAggInfo->nAccumulator
5933        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5934        && regAcc
5935       ){
5936         /* If regAcc==0, there there exists some min() or max() function
5937         ** without a FILTER clause that will ensure the magnet registers
5938         ** are populated. */
5939         if( regHit==0 ) regHit = ++pParse->nMem;
5940         /* If this is the first row of the group (regAcc contains 0), clear the
5941         ** "magnet" register regHit so that the accumulator registers
5942         ** are populated if the FILTER clause jumps over the the
5943         ** invocation of min() or max() altogether. Or, if this is not
5944         ** the first row (regAcc contains 1), set the magnet register so that
5945         ** the accumulators are not populated unless the min()/max() is invoked
5946         ** and indicates that they should be.  */
5947         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5948       }
5949       addrNext = sqlite3VdbeMakeLabel(pParse);
5950       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5951     }
5952     if( pList ){
5953       nArg = pList->nExpr;
5954       regAgg = sqlite3GetTempRange(pParse, nArg);
5955       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5956     }else{
5957       nArg = 0;
5958       regAgg = 0;
5959     }
5960     if( pF->iDistinct>=0 && pList ){
5961       if( addrNext==0 ){
5962         addrNext = sqlite3VdbeMakeLabel(pParse);
5963       }
5964       pF->iDistinct = codeDistinct(pParse, eDistinctType,
5965           pF->iDistinct, addrNext, pList, regAgg);
5966     }
5967     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5968       CollSeq *pColl = 0;
5969       struct ExprList_item *pItem;
5970       int j;
5971       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5972       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5973         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5974       }
5975       if( !pColl ){
5976         pColl = pParse->db->pDfltColl;
5977       }
5978       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5979       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5980     }
5981     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5982     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5983     sqlite3VdbeChangeP5(v, (u8)nArg);
5984     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5985     if( addrNext ){
5986       sqlite3VdbeResolveLabel(v, addrNext);
5987     }
5988   }
5989   if( regHit==0 && pAggInfo->nAccumulator ){
5990     regHit = regAcc;
5991   }
5992   if( regHit ){
5993     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5994   }
5995   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5996     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5997   }
5998 
5999   pAggInfo->directMode = 0;
6000   if( addrHitTest ){
6001     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6002   }
6003 }
6004 
6005 /*
6006 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6007 ** count(*) query ("SELECT count(*) FROM pTab").
6008 */
6009 #ifndef SQLITE_OMIT_EXPLAIN
6010 static void explainSimpleCount(
6011   Parse *pParse,                  /* Parse context */
6012   Table *pTab,                    /* Table being queried */
6013   Index *pIdx                     /* Index used to optimize scan, or NULL */
6014 ){
6015   if( pParse->explain==2 ){
6016     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6017     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6018         pTab->zName,
6019         bCover ? " USING COVERING INDEX " : "",
6020         bCover ? pIdx->zName : ""
6021     );
6022   }
6023 }
6024 #else
6025 # define explainSimpleCount(a,b,c)
6026 #endif
6027 
6028 /*
6029 ** sqlite3WalkExpr() callback used by havingToWhere().
6030 **
6031 ** If the node passed to the callback is a TK_AND node, return
6032 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6033 **
6034 ** Otherwise, return WRC_Prune. In this case, also check if the
6035 ** sub-expression matches the criteria for being moved to the WHERE
6036 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6037 ** within the HAVING expression with a constant "1".
6038 */
6039 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6040   if( pExpr->op!=TK_AND ){
6041     Select *pS = pWalker->u.pSelect;
6042     /* This routine is called before the HAVING clause of the current
6043     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6044     ** here, it indicates that the expression is a correlated reference to a
6045     ** column from an outer aggregate query, or an aggregate function that
6046     ** belongs to an outer query. Do not move the expression to the WHERE
6047     ** clause in this obscure case, as doing so may corrupt the outer Select
6048     ** statements AggInfo structure.  */
6049     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6050      && ExprAlwaysFalse(pExpr)==0
6051      && pExpr->pAggInfo==0
6052     ){
6053       sqlite3 *db = pWalker->pParse->db;
6054       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6055       if( pNew ){
6056         Expr *pWhere = pS->pWhere;
6057         SWAP(Expr, *pNew, *pExpr);
6058         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6059         pS->pWhere = pNew;
6060         pWalker->eCode = 1;
6061       }
6062     }
6063     return WRC_Prune;
6064   }
6065   return WRC_Continue;
6066 }
6067 
6068 /*
6069 ** Transfer eligible terms from the HAVING clause of a query, which is
6070 ** processed after grouping, to the WHERE clause, which is processed before
6071 ** grouping. For example, the query:
6072 **
6073 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6074 **
6075 ** can be rewritten as:
6076 **
6077 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6078 **
6079 ** A term of the HAVING expression is eligible for transfer if it consists
6080 ** entirely of constants and expressions that are also GROUP BY terms that
6081 ** use the "BINARY" collation sequence.
6082 */
6083 static void havingToWhere(Parse *pParse, Select *p){
6084   Walker sWalker;
6085   memset(&sWalker, 0, sizeof(sWalker));
6086   sWalker.pParse = pParse;
6087   sWalker.xExprCallback = havingToWhereExprCb;
6088   sWalker.u.pSelect = p;
6089   sqlite3WalkExpr(&sWalker, p->pHaving);
6090 #if SELECTTRACE_ENABLED
6091   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
6092     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6093     sqlite3TreeViewSelect(0, p, 0);
6094   }
6095 #endif
6096 }
6097 
6098 /*
6099 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6100 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6101 ** then return 0.
6102 */
6103 static SrcItem *isSelfJoinView(
6104   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6105   SrcItem *pThis               /* Search for prior reference to this subquery */
6106 ){
6107   SrcItem *pItem;
6108   assert( pThis->pSelect!=0 );
6109   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6110   for(pItem = pTabList->a; pItem<pThis; pItem++){
6111     Select *pS1;
6112     if( pItem->pSelect==0 ) continue;
6113     if( pItem->fg.viaCoroutine ) continue;
6114     if( pItem->zName==0 ) continue;
6115     assert( pItem->pTab!=0 );
6116     assert( pThis->pTab!=0 );
6117     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6118     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6119     pS1 = pItem->pSelect;
6120     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6121       /* The query flattener left two different CTE tables with identical
6122       ** names in the same FROM clause. */
6123       continue;
6124     }
6125     if( pItem->pSelect->selFlags & SF_PushDown ){
6126       /* The view was modified by some other optimization such as
6127       ** pushDownWhereTerms() */
6128       continue;
6129     }
6130     return pItem;
6131   }
6132   return 0;
6133 }
6134 
6135 /*
6136 ** Deallocate a single AggInfo object
6137 */
6138 static void agginfoFree(sqlite3 *db, AggInfo *p){
6139   sqlite3DbFree(db, p->aCol);
6140   sqlite3DbFree(db, p->aFunc);
6141   sqlite3DbFreeNN(db, p);
6142 }
6143 
6144 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6145 /*
6146 ** Attempt to transform a query of the form
6147 **
6148 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6149 **
6150 ** Into this:
6151 **
6152 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6153 **
6154 ** The transformation only works if all of the following are true:
6155 **
6156 **   *  The subquery is a UNION ALL of two or more terms
6157 **   *  The subquery does not have a LIMIT clause
6158 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6159 **   *  The outer query is a simple count(*) with no WHERE clause or other
6160 **      extraneous syntax.
6161 **
6162 ** Return TRUE if the optimization is undertaken.
6163 */
6164 static int countOfViewOptimization(Parse *pParse, Select *p){
6165   Select *pSub, *pPrior;
6166   Expr *pExpr;
6167   Expr *pCount;
6168   sqlite3 *db;
6169   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6170   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6171   if( p->pWhere ) return 0;
6172   if( p->pGroupBy ) return 0;
6173   pExpr = p->pEList->a[0].pExpr;
6174   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6175   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6176   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6177   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6178   pSub = p->pSrc->a[0].pSelect;
6179   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6180   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6181   do{
6182     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6183     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6184     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6185     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6186     pSub = pSub->pPrior;                              /* Repeat over compound */
6187   }while( pSub );
6188 
6189   /* If we reach this point then it is OK to perform the transformation */
6190 
6191   db = pParse->db;
6192   pCount = pExpr;
6193   pExpr = 0;
6194   pSub = p->pSrc->a[0].pSelect;
6195   p->pSrc->a[0].pSelect = 0;
6196   sqlite3SrcListDelete(db, p->pSrc);
6197   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6198   while( pSub ){
6199     Expr *pTerm;
6200     pPrior = pSub->pPrior;
6201     pSub->pPrior = 0;
6202     pSub->pNext = 0;
6203     pSub->selFlags |= SF_Aggregate;
6204     pSub->selFlags &= ~SF_Compound;
6205     pSub->nSelectRow = 0;
6206     sqlite3ExprListDelete(db, pSub->pEList);
6207     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6208     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6209     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6210     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6211     if( pExpr==0 ){
6212       pExpr = pTerm;
6213     }else{
6214       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6215     }
6216     pSub = pPrior;
6217   }
6218   p->pEList->a[0].pExpr = pExpr;
6219   p->selFlags &= ~SF_Aggregate;
6220 
6221 #if SELECTTRACE_ENABLED
6222   if( sqlite3SelectTrace & 0x400 ){
6223     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6224     sqlite3TreeViewSelect(0, p, 0);
6225   }
6226 #endif
6227   return 1;
6228 }
6229 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6230 
6231 /*
6232 ** Generate code for the SELECT statement given in the p argument.
6233 **
6234 ** The results are returned according to the SelectDest structure.
6235 ** See comments in sqliteInt.h for further information.
6236 **
6237 ** This routine returns the number of errors.  If any errors are
6238 ** encountered, then an appropriate error message is left in
6239 ** pParse->zErrMsg.
6240 **
6241 ** This routine does NOT free the Select structure passed in.  The
6242 ** calling function needs to do that.
6243 */
6244 int sqlite3Select(
6245   Parse *pParse,         /* The parser context */
6246   Select *p,             /* The SELECT statement being coded. */
6247   SelectDest *pDest      /* What to do with the query results */
6248 ){
6249   int i, j;              /* Loop counters */
6250   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6251   Vdbe *v;               /* The virtual machine under construction */
6252   int isAgg;             /* True for select lists like "count(*)" */
6253   ExprList *pEList = 0;  /* List of columns to extract. */
6254   SrcList *pTabList;     /* List of tables to select from */
6255   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6256   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6257   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6258   AggInfo *pAggInfo = 0; /* Aggregate information */
6259   int rc = 1;            /* Value to return from this function */
6260   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6261   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6262   int iEnd;              /* Address of the end of the query */
6263   sqlite3 *db;           /* The database connection */
6264   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6265   u8 minMaxFlag;                 /* Flag for min/max queries */
6266 
6267   db = pParse->db;
6268   v = sqlite3GetVdbe(pParse);
6269   if( p==0 || db->mallocFailed || pParse->nErr ){
6270     return 1;
6271   }
6272   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6273 #if SELECTTRACE_ENABLED
6274   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6275   if( sqlite3SelectTrace & 0x100 ){
6276     sqlite3TreeViewSelect(0, p, 0);
6277   }
6278 #endif
6279 
6280   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6281   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6282   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6283   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6284   if( IgnorableDistinct(pDest) ){
6285     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6286            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6287            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6288     /* All of these destinations are also able to ignore the ORDER BY clause */
6289     if( p->pOrderBy ){
6290 #if SELECTTRACE_ENABLED
6291       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6292       if( sqlite3SelectTrace & 0x100 ){
6293         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6294       }
6295 #endif
6296       sqlite3ParserAddCleanup(pParse,
6297         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6298         p->pOrderBy);
6299       testcase( pParse->earlyCleanup );
6300       p->pOrderBy = 0;
6301     }
6302     p->selFlags &= ~SF_Distinct;
6303     p->selFlags |= SF_NoopOrderBy;
6304   }
6305   sqlite3SelectPrep(pParse, p, 0);
6306   if( pParse->nErr || db->mallocFailed ){
6307     goto select_end;
6308   }
6309   assert( p->pEList!=0 );
6310 #if SELECTTRACE_ENABLED
6311   if( sqlite3SelectTrace & 0x104 ){
6312     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6313     sqlite3TreeViewSelect(0, p, 0);
6314   }
6315 #endif
6316 
6317   /* If the SF_UFSrcCheck flag is set, then this function is being called
6318   ** as part of populating the temp table for an UPDATE...FROM statement.
6319   ** In this case, it is an error if the target object (pSrc->a[0]) name
6320   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6321   **
6322   ** Postgres disallows this case too. The reason is that some other
6323   ** systems handle this case differently, and not all the same way,
6324   ** which is just confusing. To avoid this, we follow PG's lead and
6325   ** disallow it altogether.  */
6326   if( p->selFlags & SF_UFSrcCheck ){
6327     SrcItem *p0 = &p->pSrc->a[0];
6328     for(i=1; i<p->pSrc->nSrc; i++){
6329       SrcItem *p1 = &p->pSrc->a[i];
6330       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6331         sqlite3ErrorMsg(pParse,
6332             "target object/alias may not appear in FROM clause: %s",
6333             p0->zAlias ? p0->zAlias : p0->pTab->zName
6334         );
6335         goto select_end;
6336       }
6337     }
6338 
6339     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6340     ** and leaving this flag set can cause errors if a compound sub-query
6341     ** in p->pSrc is flattened into this query and this function called
6342     ** again as part of compound SELECT processing.  */
6343     p->selFlags &= ~SF_UFSrcCheck;
6344   }
6345 
6346   if( pDest->eDest==SRT_Output ){
6347     sqlite3GenerateColumnNames(pParse, p);
6348   }
6349 
6350 #ifndef SQLITE_OMIT_WINDOWFUNC
6351   if( sqlite3WindowRewrite(pParse, p) ){
6352     assert( db->mallocFailed || pParse->nErr>0 );
6353     goto select_end;
6354   }
6355 #if SELECTTRACE_ENABLED
6356   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6357     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6358     sqlite3TreeViewSelect(0, p, 0);
6359   }
6360 #endif
6361 #endif /* SQLITE_OMIT_WINDOWFUNC */
6362   pTabList = p->pSrc;
6363   isAgg = (p->selFlags & SF_Aggregate)!=0;
6364   memset(&sSort, 0, sizeof(sSort));
6365   sSort.pOrderBy = p->pOrderBy;
6366 
6367   /* Try to do various optimizations (flattening subqueries, and strength
6368   ** reduction of join operators) in the FROM clause up into the main query
6369   */
6370 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6371   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6372     SrcItem *pItem = &pTabList->a[i];
6373     Select *pSub = pItem->pSelect;
6374     Table *pTab = pItem->pTab;
6375 
6376     /* The expander should have already created transient Table objects
6377     ** even for FROM clause elements such as subqueries that do not correspond
6378     ** to a real table */
6379     assert( pTab!=0 );
6380 
6381     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6382     ** of the LEFT JOIN used in the WHERE clause.
6383     */
6384     if( (pItem->fg.jointype & JT_LEFT)!=0
6385      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6386      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6387     ){
6388       SELECTTRACE(0x100,pParse,p,
6389                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6390       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6391       unsetJoinExpr(p->pWhere, pItem->iCursor);
6392     }
6393 
6394     /* No futher action if this term of the FROM clause is no a subquery */
6395     if( pSub==0 ) continue;
6396 
6397     /* Catch mismatch in the declared columns of a view and the number of
6398     ** columns in the SELECT on the RHS */
6399     if( pTab->nCol!=pSub->pEList->nExpr ){
6400       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6401                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6402       goto select_end;
6403     }
6404 
6405     /* Do not try to flatten an aggregate subquery.
6406     **
6407     ** Flattening an aggregate subquery is only possible if the outer query
6408     ** is not a join.  But if the outer query is not a join, then the subquery
6409     ** will be implemented as a co-routine and there is no advantage to
6410     ** flattening in that case.
6411     */
6412     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6413     assert( pSub->pGroupBy==0 );
6414 
6415     /* If a FROM-clause subquery has an ORDER BY clause that is not
6416     ** really doing anything, then delete it now so that it does not
6417     ** interfere with query flattening.  See the discussion at
6418     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6419     **
6420     ** Beware of these cases where the ORDER BY clause may not be safely
6421     ** omitted:
6422     **
6423     **    (1)   There is also a LIMIT clause
6424     **    (2)   The subquery was added to help with window-function
6425     **          processing
6426     **    (3)   The subquery is in the FROM clause of an UPDATE
6427     **    (4)   The outer query uses an aggregate function other than
6428     **          the built-in count(), min(), or max().
6429     **    (5)   The ORDER BY isn't going to accomplish anything because
6430     **          one of:
6431     **            (a)  The outer query has a different ORDER BY clause
6432     **            (b)  The subquery is part of a join
6433     **          See forum post 062d576715d277c8
6434     */
6435     if( pSub->pOrderBy!=0
6436      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6437      && pSub->pLimit==0                           /* Condition (1) */
6438      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6439      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6440      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6441     ){
6442       SELECTTRACE(0x100,pParse,p,
6443                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6444       sqlite3ExprListDelete(db, pSub->pOrderBy);
6445       pSub->pOrderBy = 0;
6446     }
6447 
6448     /* If the outer query contains a "complex" result set (that is,
6449     ** if the result set of the outer query uses functions or subqueries)
6450     ** and if the subquery contains an ORDER BY clause and if
6451     ** it will be implemented as a co-routine, then do not flatten.  This
6452     ** restriction allows SQL constructs like this:
6453     **
6454     **  SELECT expensive_function(x)
6455     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6456     **
6457     ** The expensive_function() is only computed on the 10 rows that
6458     ** are output, rather than every row of the table.
6459     **
6460     ** The requirement that the outer query have a complex result set
6461     ** means that flattening does occur on simpler SQL constraints without
6462     ** the expensive_function() like:
6463     **
6464     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6465     */
6466     if( pSub->pOrderBy!=0
6467      && i==0
6468      && (p->selFlags & SF_ComplexResult)!=0
6469      && (pTabList->nSrc==1
6470          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6471     ){
6472       continue;
6473     }
6474 
6475     if( flattenSubquery(pParse, p, i, isAgg) ){
6476       if( pParse->nErr ) goto select_end;
6477       /* This subquery can be absorbed into its parent. */
6478       i = -1;
6479     }
6480     pTabList = p->pSrc;
6481     if( db->mallocFailed ) goto select_end;
6482     if( !IgnorableOrderby(pDest) ){
6483       sSort.pOrderBy = p->pOrderBy;
6484     }
6485   }
6486 #endif
6487 
6488 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6489   /* Handle compound SELECT statements using the separate multiSelect()
6490   ** procedure.
6491   */
6492   if( p->pPrior ){
6493     rc = multiSelect(pParse, p, pDest);
6494 #if SELECTTRACE_ENABLED
6495     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6496     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6497       sqlite3TreeViewSelect(0, p, 0);
6498     }
6499 #endif
6500     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6501     return rc;
6502   }
6503 #endif
6504 
6505   /* Do the WHERE-clause constant propagation optimization if this is
6506   ** a join.  No need to speed time on this operation for non-join queries
6507   ** as the equivalent optimization will be handled by query planner in
6508   ** sqlite3WhereBegin().
6509   */
6510   if( p->pWhere!=0
6511    && p->pWhere->op==TK_AND
6512    && OptimizationEnabled(db, SQLITE_PropagateConst)
6513    && propagateConstants(pParse, p)
6514   ){
6515 #if SELECTTRACE_ENABLED
6516     if( sqlite3SelectTrace & 0x100 ){
6517       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6518       sqlite3TreeViewSelect(0, p, 0);
6519     }
6520 #endif
6521   }else{
6522     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6523   }
6524 
6525 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6526   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6527    && countOfViewOptimization(pParse, p)
6528   ){
6529     if( db->mallocFailed ) goto select_end;
6530     pEList = p->pEList;
6531     pTabList = p->pSrc;
6532   }
6533 #endif
6534 
6535   /* For each term in the FROM clause, do two things:
6536   ** (1) Authorized unreferenced tables
6537   ** (2) Generate code for all sub-queries
6538   */
6539   for(i=0; i<pTabList->nSrc; i++){
6540     SrcItem *pItem = &pTabList->a[i];
6541     SrcItem *pPrior;
6542     SelectDest dest;
6543     Select *pSub;
6544 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6545     const char *zSavedAuthContext;
6546 #endif
6547 
6548     /* Issue SQLITE_READ authorizations with a fake column name for any
6549     ** tables that are referenced but from which no values are extracted.
6550     ** Examples of where these kinds of null SQLITE_READ authorizations
6551     ** would occur:
6552     **
6553     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6554     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6555     **
6556     ** The fake column name is an empty string.  It is possible for a table to
6557     ** have a column named by the empty string, in which case there is no way to
6558     ** distinguish between an unreferenced table and an actual reference to the
6559     ** "" column. The original design was for the fake column name to be a NULL,
6560     ** which would be unambiguous.  But legacy authorization callbacks might
6561     ** assume the column name is non-NULL and segfault.  The use of an empty
6562     ** string for the fake column name seems safer.
6563     */
6564     if( pItem->colUsed==0 && pItem->zName!=0 ){
6565       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6566     }
6567 
6568 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6569     /* Generate code for all sub-queries in the FROM clause
6570     */
6571     pSub = pItem->pSelect;
6572     if( pSub==0 ) continue;
6573 
6574     /* The code for a subquery should only be generated once. */
6575     assert( pItem->addrFillSub==0 );
6576 
6577     /* Increment Parse.nHeight by the height of the largest expression
6578     ** tree referred to by this, the parent select. The child select
6579     ** may contain expression trees of at most
6580     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6581     ** more conservative than necessary, but much easier than enforcing
6582     ** an exact limit.
6583     */
6584     pParse->nHeight += sqlite3SelectExprHeight(p);
6585 
6586     /* Make copies of constant WHERE-clause terms in the outer query down
6587     ** inside the subquery.  This can help the subquery to run more efficiently.
6588     */
6589     if( OptimizationEnabled(db, SQLITE_PushDown)
6590      && (pItem->fg.isCte==0
6591          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6592      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6593                            (pItem->fg.jointype & JT_OUTER)!=0)
6594     ){
6595 #if SELECTTRACE_ENABLED
6596       if( sqlite3SelectTrace & 0x100 ){
6597         SELECTTRACE(0x100,pParse,p,
6598             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6599         sqlite3TreeViewSelect(0, p, 0);
6600       }
6601 #endif
6602       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6603     }else{
6604       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6605     }
6606 
6607     zSavedAuthContext = pParse->zAuthContext;
6608     pParse->zAuthContext = pItem->zName;
6609 
6610     /* Generate code to implement the subquery
6611     **
6612     ** The subquery is implemented as a co-routine if:
6613     **    (1)  the subquery is guaranteed to be the outer loop (so that
6614     **         it does not need to be computed more than once), and
6615     **    (2)  the subquery is not a CTE that should be materialized
6616     **
6617     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6618     ** implementation?
6619     */
6620     if( i==0
6621      && (pTabList->nSrc==1
6622             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6623      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6624     ){
6625       /* Implement a co-routine that will return a single row of the result
6626       ** set on each invocation.
6627       */
6628       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6629 
6630       pItem->regReturn = ++pParse->nMem;
6631       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6632       VdbeComment((v, "%!S", pItem));
6633       pItem->addrFillSub = addrTop;
6634       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6635       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6636       sqlite3Select(pParse, pSub, &dest);
6637       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6638       pItem->fg.viaCoroutine = 1;
6639       pItem->regResult = dest.iSdst;
6640       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6641       sqlite3VdbeJumpHere(v, addrTop-1);
6642       sqlite3ClearTempRegCache(pParse);
6643     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6644       /* This is a CTE for which materialization code has already been
6645       ** generated.  Invoke the subroutine to compute the materialization,
6646       ** the make the pItem->iCursor be a copy of the ephemerial table that
6647       ** holds the result of the materialization. */
6648       CteUse *pCteUse = pItem->u2.pCteUse;
6649       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6650       if( pItem->iCursor!=pCteUse->iCur ){
6651         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6652         VdbeComment((v, "%!S", pItem));
6653       }
6654       pSub->nSelectRow = pCteUse->nRowEst;
6655     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6656       /* This view has already been materialized by a prior entry in
6657       ** this same FROM clause.  Reuse it. */
6658       if( pPrior->addrFillSub ){
6659         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6660       }
6661       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6662       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6663     }else{
6664       /* Materialize the view.  If the view is not correlated, generate a
6665       ** subroutine to do the materialization so that subsequent uses of
6666       ** the same view can reuse the materialization. */
6667       int topAddr;
6668       int onceAddr = 0;
6669       int retAddr;
6670 
6671       pItem->regReturn = ++pParse->nMem;
6672       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6673       pItem->addrFillSub = topAddr+1;
6674       if( pItem->fg.isCorrelated==0 ){
6675         /* If the subquery is not correlated and if we are not inside of
6676         ** a trigger, then we only need to compute the value of the subquery
6677         ** once. */
6678         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6679         VdbeComment((v, "materialize %!S", pItem));
6680       }else{
6681         VdbeNoopComment((v, "materialize %!S", pItem));
6682       }
6683       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6684       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6685       sqlite3Select(pParse, pSub, &dest);
6686       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6687       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6688       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6689       VdbeComment((v, "end %!S", pItem));
6690       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6691       sqlite3ClearTempRegCache(pParse);
6692       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6693         CteUse *pCteUse = pItem->u2.pCteUse;
6694         pCteUse->addrM9e = pItem->addrFillSub;
6695         pCteUse->regRtn = pItem->regReturn;
6696         pCteUse->iCur = pItem->iCursor;
6697         pCteUse->nRowEst = pSub->nSelectRow;
6698       }
6699     }
6700     if( db->mallocFailed ) goto select_end;
6701     pParse->nHeight -= sqlite3SelectExprHeight(p);
6702     pParse->zAuthContext = zSavedAuthContext;
6703 #endif
6704   }
6705 
6706   /* Various elements of the SELECT copied into local variables for
6707   ** convenience */
6708   pEList = p->pEList;
6709   pWhere = p->pWhere;
6710   pGroupBy = p->pGroupBy;
6711   pHaving = p->pHaving;
6712   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6713 
6714 #if SELECTTRACE_ENABLED
6715   if( sqlite3SelectTrace & 0x400 ){
6716     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6717     sqlite3TreeViewSelect(0, p, 0);
6718   }
6719 #endif
6720 
6721   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6722   ** if the select-list is the same as the ORDER BY list, then this query
6723   ** can be rewritten as a GROUP BY. In other words, this:
6724   **
6725   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6726   **
6727   ** is transformed to:
6728   **
6729   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6730   **
6731   ** The second form is preferred as a single index (or temp-table) may be
6732   ** used for both the ORDER BY and DISTINCT processing. As originally
6733   ** written the query must use a temp-table for at least one of the ORDER
6734   ** BY and DISTINCT, and an index or separate temp-table for the other.
6735   */
6736   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6737    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6738 #ifndef SQLITE_OMIT_WINDOWFUNC
6739    && p->pWin==0
6740 #endif
6741   ){
6742     p->selFlags &= ~SF_Distinct;
6743     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6744     p->selFlags |= SF_Aggregate;
6745     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6746     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6747     ** original setting of the SF_Distinct flag, not the current setting */
6748     assert( sDistinct.isTnct );
6749 
6750 #if SELECTTRACE_ENABLED
6751     if( sqlite3SelectTrace & 0x400 ){
6752       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6753       sqlite3TreeViewSelect(0, p, 0);
6754     }
6755 #endif
6756   }
6757 
6758   /* If there is an ORDER BY clause, then create an ephemeral index to
6759   ** do the sorting.  But this sorting ephemeral index might end up
6760   ** being unused if the data can be extracted in pre-sorted order.
6761   ** If that is the case, then the OP_OpenEphemeral instruction will be
6762   ** changed to an OP_Noop once we figure out that the sorting index is
6763   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6764   ** that change.
6765   */
6766   if( sSort.pOrderBy ){
6767     KeyInfo *pKeyInfo;
6768     pKeyInfo = sqlite3KeyInfoFromExprList(
6769         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6770     sSort.iECursor = pParse->nTab++;
6771     sSort.addrSortIndex =
6772       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6773           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6774           (char*)pKeyInfo, P4_KEYINFO
6775       );
6776   }else{
6777     sSort.addrSortIndex = -1;
6778   }
6779 
6780   /* If the output is destined for a temporary table, open that table.
6781   */
6782   if( pDest->eDest==SRT_EphemTab ){
6783     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6784   }
6785 
6786   /* Set the limiter.
6787   */
6788   iEnd = sqlite3VdbeMakeLabel(pParse);
6789   if( (p->selFlags & SF_FixedLimit)==0 ){
6790     p->nSelectRow = 320;  /* 4 billion rows */
6791   }
6792   computeLimitRegisters(pParse, p, iEnd);
6793   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6794     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6795     sSort.sortFlags |= SORTFLAG_UseSorter;
6796   }
6797 
6798   /* Open an ephemeral index to use for the distinct set.
6799   */
6800   if( p->selFlags & SF_Distinct ){
6801     sDistinct.tabTnct = pParse->nTab++;
6802     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6803                        sDistinct.tabTnct, 0, 0,
6804                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6805                        P4_KEYINFO);
6806     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6807     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6808   }else{
6809     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6810   }
6811 
6812   if( !isAgg && pGroupBy==0 ){
6813     /* No aggregate functions and no GROUP BY clause */
6814     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6815                    | (p->selFlags & SF_FixedLimit);
6816 #ifndef SQLITE_OMIT_WINDOWFUNC
6817     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6818     if( pWin ){
6819       sqlite3WindowCodeInit(pParse, p);
6820     }
6821 #endif
6822     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6823 
6824 
6825     /* Begin the database scan. */
6826     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6827     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6828                                p->pEList, wctrlFlags, p->nSelectRow);
6829     if( pWInfo==0 ) goto select_end;
6830     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6831       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6832     }
6833     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6834       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6835     }
6836     if( sSort.pOrderBy ){
6837       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6838       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6839       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6840         sSort.pOrderBy = 0;
6841       }
6842     }
6843     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6844 
6845     /* If sorting index that was created by a prior OP_OpenEphemeral
6846     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6847     ** into an OP_Noop.
6848     */
6849     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6850       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6851     }
6852 
6853     assert( p->pEList==pEList );
6854 #ifndef SQLITE_OMIT_WINDOWFUNC
6855     if( pWin ){
6856       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6857       int iCont = sqlite3VdbeMakeLabel(pParse);
6858       int iBreak = sqlite3VdbeMakeLabel(pParse);
6859       int regGosub = ++pParse->nMem;
6860 
6861       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6862 
6863       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6864       sqlite3VdbeResolveLabel(v, addrGosub);
6865       VdbeNoopComment((v, "inner-loop subroutine"));
6866       sSort.labelOBLopt = 0;
6867       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6868       sqlite3VdbeResolveLabel(v, iCont);
6869       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6870       VdbeComment((v, "end inner-loop subroutine"));
6871       sqlite3VdbeResolveLabel(v, iBreak);
6872     }else
6873 #endif /* SQLITE_OMIT_WINDOWFUNC */
6874     {
6875       /* Use the standard inner loop. */
6876       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6877           sqlite3WhereContinueLabel(pWInfo),
6878           sqlite3WhereBreakLabel(pWInfo));
6879 
6880       /* End the database scan loop.
6881       */
6882       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6883       sqlite3WhereEnd(pWInfo);
6884     }
6885   }else{
6886     /* This case when there exist aggregate functions or a GROUP BY clause
6887     ** or both */
6888     NameContext sNC;    /* Name context for processing aggregate information */
6889     int iAMem;          /* First Mem address for storing current GROUP BY */
6890     int iBMem;          /* First Mem address for previous GROUP BY */
6891     int iUseFlag;       /* Mem address holding flag indicating that at least
6892                         ** one row of the input to the aggregator has been
6893                         ** processed */
6894     int iAbortFlag;     /* Mem address which causes query abort if positive */
6895     int groupBySort;    /* Rows come from source in GROUP BY order */
6896     int addrEnd;        /* End of processing for this SELECT */
6897     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6898     int sortOut = 0;    /* Output register from the sorter */
6899     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6900 
6901     /* Remove any and all aliases between the result set and the
6902     ** GROUP BY clause.
6903     */
6904     if( pGroupBy ){
6905       int k;                        /* Loop counter */
6906       struct ExprList_item *pItem;  /* For looping over expression in a list */
6907 
6908       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6909         pItem->u.x.iAlias = 0;
6910       }
6911       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6912         pItem->u.x.iAlias = 0;
6913       }
6914       assert( 66==sqlite3LogEst(100) );
6915       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6916 
6917       /* If there is both a GROUP BY and an ORDER BY clause and they are
6918       ** identical, then it may be possible to disable the ORDER BY clause
6919       ** on the grounds that the GROUP BY will cause elements to come out
6920       ** in the correct order. It also may not - the GROUP BY might use a
6921       ** database index that causes rows to be grouped together as required
6922       ** but not actually sorted. Either way, record the fact that the
6923       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6924       ** variable.  */
6925       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6926         int ii;
6927         /* The GROUP BY processing doesn't care whether rows are delivered in
6928         ** ASC or DESC order - only that each group is returned contiguously.
6929         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6930         ** ORDER BY to maximize the chances of rows being delivered in an
6931         ** order that makes the ORDER BY redundant.  */
6932         for(ii=0; ii<pGroupBy->nExpr; ii++){
6933           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6934           pGroupBy->a[ii].sortFlags = sortFlags;
6935         }
6936         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6937           orderByGrp = 1;
6938         }
6939       }
6940     }else{
6941       assert( 0==sqlite3LogEst(1) );
6942       p->nSelectRow = 0;
6943     }
6944 
6945     /* Create a label to jump to when we want to abort the query */
6946     addrEnd = sqlite3VdbeMakeLabel(pParse);
6947 
6948     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6949     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6950     ** SELECT statement.
6951     */
6952     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6953     if( pAggInfo ){
6954       sqlite3ParserAddCleanup(pParse,
6955           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6956       testcase( pParse->earlyCleanup );
6957     }
6958     if( db->mallocFailed ){
6959       goto select_end;
6960     }
6961     pAggInfo->selId = p->selId;
6962     memset(&sNC, 0, sizeof(sNC));
6963     sNC.pParse = pParse;
6964     sNC.pSrcList = pTabList;
6965     sNC.uNC.pAggInfo = pAggInfo;
6966     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6967     pAggInfo->mnReg = pParse->nMem+1;
6968     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6969     pAggInfo->pGroupBy = pGroupBy;
6970     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6971     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6972     if( pHaving ){
6973       if( pGroupBy ){
6974         assert( pWhere==p->pWhere );
6975         assert( pHaving==p->pHaving );
6976         assert( pGroupBy==p->pGroupBy );
6977         havingToWhere(pParse, p);
6978         pWhere = p->pWhere;
6979       }
6980       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6981     }
6982     pAggInfo->nAccumulator = pAggInfo->nColumn;
6983     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6984       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6985     }else{
6986       minMaxFlag = WHERE_ORDERBY_NORMAL;
6987     }
6988     for(i=0; i<pAggInfo->nFunc; i++){
6989       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6990       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6991       sNC.ncFlags |= NC_InAggFunc;
6992       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6993 #ifndef SQLITE_OMIT_WINDOWFUNC
6994       assert( !IsWindowFunc(pExpr) );
6995       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6996         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6997       }
6998 #endif
6999       sNC.ncFlags &= ~NC_InAggFunc;
7000     }
7001     pAggInfo->mxReg = pParse->nMem;
7002     if( db->mallocFailed ) goto select_end;
7003 #if SELECTTRACE_ENABLED
7004     if( sqlite3SelectTrace & 0x400 ){
7005       int ii;
7006       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7007       sqlite3TreeViewSelect(0, p, 0);
7008       if( minMaxFlag ){
7009         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7010         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7011       }
7012       for(ii=0; ii<pAggInfo->nColumn; ii++){
7013         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7014             ii, pAggInfo->aCol[ii].iMem);
7015         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7016       }
7017       for(ii=0; ii<pAggInfo->nFunc; ii++){
7018         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7019             ii, pAggInfo->aFunc[ii].iMem);
7020         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7021       }
7022     }
7023 #endif
7024 
7025 
7026     /* Processing for aggregates with GROUP BY is very different and
7027     ** much more complex than aggregates without a GROUP BY.
7028     */
7029     if( pGroupBy ){
7030       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7031       int addr1;          /* A-vs-B comparision jump */
7032       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7033       int regOutputRow;   /* Return address register for output subroutine */
7034       int addrSetAbort;   /* Set the abort flag and return */
7035       int addrTopOfLoop;  /* Top of the input loop */
7036       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7037       int addrReset;      /* Subroutine for resetting the accumulator */
7038       int regReset;       /* Return address register for reset subroutine */
7039       ExprList *pDistinct = 0;
7040       u16 distFlag = 0;
7041       int eDist = WHERE_DISTINCT_NOOP;
7042 
7043       if( pAggInfo->nFunc==1
7044        && pAggInfo->aFunc[0].iDistinct>=0
7045        && pAggInfo->aFunc[0].pFExpr->x.pList
7046       ){
7047         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7048         pExpr = sqlite3ExprDup(db, pExpr, 0);
7049         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7050         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7051         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7052       }
7053 
7054       /* If there is a GROUP BY clause we might need a sorting index to
7055       ** implement it.  Allocate that sorting index now.  If it turns out
7056       ** that we do not need it after all, the OP_SorterOpen instruction
7057       ** will be converted into a Noop.
7058       */
7059       pAggInfo->sortingIdx = pParse->nTab++;
7060       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7061                                             0, pAggInfo->nColumn);
7062       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7063           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7064           0, (char*)pKeyInfo, P4_KEYINFO);
7065 
7066       /* Initialize memory locations used by GROUP BY aggregate processing
7067       */
7068       iUseFlag = ++pParse->nMem;
7069       iAbortFlag = ++pParse->nMem;
7070       regOutputRow = ++pParse->nMem;
7071       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7072       regReset = ++pParse->nMem;
7073       addrReset = sqlite3VdbeMakeLabel(pParse);
7074       iAMem = pParse->nMem + 1;
7075       pParse->nMem += pGroupBy->nExpr;
7076       iBMem = pParse->nMem + 1;
7077       pParse->nMem += pGroupBy->nExpr;
7078       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7079       VdbeComment((v, "clear abort flag"));
7080       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7081 
7082       /* Begin a loop that will extract all source rows in GROUP BY order.
7083       ** This might involve two separate loops with an OP_Sort in between, or
7084       ** it might be a single loop that uses an index to extract information
7085       ** in the right order to begin with.
7086       */
7087       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7088       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7089       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7090           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7091       );
7092       if( pWInfo==0 ){
7093         sqlite3ExprListDelete(db, pDistinct);
7094         goto select_end;
7095       }
7096       eDist = sqlite3WhereIsDistinct(pWInfo);
7097       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7098       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7099         /* The optimizer is able to deliver rows in group by order so
7100         ** we do not have to sort.  The OP_OpenEphemeral table will be
7101         ** cancelled later because we still need to use the pKeyInfo
7102         */
7103         groupBySort = 0;
7104       }else{
7105         /* Rows are coming out in undetermined order.  We have to push
7106         ** each row into a sorting index, terminate the first loop,
7107         ** then loop over the sorting index in order to get the output
7108         ** in sorted order
7109         */
7110         int regBase;
7111         int regRecord;
7112         int nCol;
7113         int nGroupBy;
7114 
7115         explainTempTable(pParse,
7116             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7117                     "DISTINCT" : "GROUP BY");
7118 
7119         groupBySort = 1;
7120         nGroupBy = pGroupBy->nExpr;
7121         nCol = nGroupBy;
7122         j = nGroupBy;
7123         for(i=0; i<pAggInfo->nColumn; i++){
7124           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7125             nCol++;
7126             j++;
7127           }
7128         }
7129         regBase = sqlite3GetTempRange(pParse, nCol);
7130         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7131         j = nGroupBy;
7132         for(i=0; i<pAggInfo->nColumn; i++){
7133           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7134           if( pCol->iSorterColumn>=j ){
7135             int r1 = j + regBase;
7136             sqlite3ExprCodeGetColumnOfTable(v,
7137                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7138             j++;
7139           }
7140         }
7141         regRecord = sqlite3GetTempReg(pParse);
7142         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7143         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7144         sqlite3ReleaseTempReg(pParse, regRecord);
7145         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7146         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7147         sqlite3WhereEnd(pWInfo);
7148         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7149         sortOut = sqlite3GetTempReg(pParse);
7150         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7151         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7152         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7153         pAggInfo->useSortingIdx = 1;
7154       }
7155 
7156       /* If the index or temporary table used by the GROUP BY sort
7157       ** will naturally deliver rows in the order required by the ORDER BY
7158       ** clause, cancel the ephemeral table open coded earlier.
7159       **
7160       ** This is an optimization - the correct answer should result regardless.
7161       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7162       ** disable this optimization for testing purposes.  */
7163       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7164        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7165       ){
7166         sSort.pOrderBy = 0;
7167         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7168       }
7169 
7170       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7171       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7172       ** Then compare the current GROUP BY terms against the GROUP BY terms
7173       ** from the previous row currently stored in a0, a1, a2...
7174       */
7175       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7176       if( groupBySort ){
7177         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7178                           sortOut, sortPTab);
7179       }
7180       for(j=0; j<pGroupBy->nExpr; j++){
7181         if( groupBySort ){
7182           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7183         }else{
7184           pAggInfo->directMode = 1;
7185           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7186         }
7187       }
7188       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7189                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7190       addr1 = sqlite3VdbeCurrentAddr(v);
7191       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7192 
7193       /* Generate code that runs whenever the GROUP BY changes.
7194       ** Changes in the GROUP BY are detected by the previous code
7195       ** block.  If there were no changes, this block is skipped.
7196       **
7197       ** This code copies current group by terms in b0,b1,b2,...
7198       ** over to a0,a1,a2.  It then calls the output subroutine
7199       ** and resets the aggregate accumulator registers in preparation
7200       ** for the next GROUP BY batch.
7201       */
7202       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7203       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7204       VdbeComment((v, "output one row"));
7205       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7206       VdbeComment((v, "check abort flag"));
7207       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7208       VdbeComment((v, "reset accumulator"));
7209 
7210       /* Update the aggregate accumulators based on the content of
7211       ** the current row
7212       */
7213       sqlite3VdbeJumpHere(v, addr1);
7214       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7215       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7216       VdbeComment((v, "indicate data in accumulator"));
7217 
7218       /* End of the loop
7219       */
7220       if( groupBySort ){
7221         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7222         VdbeCoverage(v);
7223       }else{
7224         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7225         sqlite3WhereEnd(pWInfo);
7226         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7227       }
7228       sqlite3ExprListDelete(db, pDistinct);
7229 
7230       /* Output the final row of result
7231       */
7232       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7233       VdbeComment((v, "output final row"));
7234 
7235       /* Jump over the subroutines
7236       */
7237       sqlite3VdbeGoto(v, addrEnd);
7238 
7239       /* Generate a subroutine that outputs a single row of the result
7240       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7241       ** is less than or equal to zero, the subroutine is a no-op.  If
7242       ** the processing calls for the query to abort, this subroutine
7243       ** increments the iAbortFlag memory location before returning in
7244       ** order to signal the caller to abort.
7245       */
7246       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7247       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7248       VdbeComment((v, "set abort flag"));
7249       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7250       sqlite3VdbeResolveLabel(v, addrOutputRow);
7251       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7252       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7253       VdbeCoverage(v);
7254       VdbeComment((v, "Groupby result generator entry point"));
7255       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7256       finalizeAggFunctions(pParse, pAggInfo);
7257       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7258       selectInnerLoop(pParse, p, -1, &sSort,
7259                       &sDistinct, pDest,
7260                       addrOutputRow+1, addrSetAbort);
7261       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7262       VdbeComment((v, "end groupby result generator"));
7263 
7264       /* Generate a subroutine that will reset the group-by accumulator
7265       */
7266       sqlite3VdbeResolveLabel(v, addrReset);
7267       resetAccumulator(pParse, pAggInfo);
7268       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7269       VdbeComment((v, "indicate accumulator empty"));
7270       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7271 
7272       if( eDist!=WHERE_DISTINCT_NOOP ){
7273         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7274         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7275       }
7276     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7277     else {
7278       Table *pTab;
7279       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7280         /* If isSimpleCount() returns a pointer to a Table structure, then
7281         ** the SQL statement is of the form:
7282         **
7283         **   SELECT count(*) FROM <tbl>
7284         **
7285         ** where the Table structure returned represents table <tbl>.
7286         **
7287         ** This statement is so common that it is optimized specially. The
7288         ** OP_Count instruction is executed either on the intkey table that
7289         ** contains the data for table <tbl> or on one of its indexes. It
7290         ** is better to execute the op on an index, as indexes are almost
7291         ** always spread across less pages than their corresponding tables.
7292         */
7293         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7294         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7295         Index *pIdx;                         /* Iterator variable */
7296         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7297         Index *pBest = 0;                    /* Best index found so far */
7298         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7299 
7300         sqlite3CodeVerifySchema(pParse, iDb);
7301         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7302 
7303         /* Search for the index that has the lowest scan cost.
7304         **
7305         ** (2011-04-15) Do not do a full scan of an unordered index.
7306         **
7307         ** (2013-10-03) Do not count the entries in a partial index.
7308         **
7309         ** In practice the KeyInfo structure will not be used. It is only
7310         ** passed to keep OP_OpenRead happy.
7311         */
7312         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7313         if( !p->pSrc->a[0].fg.notIndexed ){
7314           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7315             if( pIdx->bUnordered==0
7316              && pIdx->szIdxRow<pTab->szTabRow
7317              && pIdx->pPartIdxWhere==0
7318              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7319             ){
7320               pBest = pIdx;
7321             }
7322           }
7323         }
7324         if( pBest ){
7325           iRoot = pBest->tnum;
7326           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7327         }
7328 
7329         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7330         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7331         if( pKeyInfo ){
7332           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7333         }
7334         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7335         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7336         explainSimpleCount(pParse, pTab, pBest);
7337       }else{
7338         int regAcc = 0;           /* "populate accumulators" flag */
7339         ExprList *pDistinct = 0;
7340         u16 distFlag = 0;
7341         int eDist;
7342 
7343         /* If there are accumulator registers but no min() or max() functions
7344         ** without FILTER clauses, allocate register regAcc. Register regAcc
7345         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7346         ** The code generated by updateAccumulator() uses this to ensure
7347         ** that the accumulator registers are (a) updated only once if
7348         ** there are no min() or max functions or (b) always updated for the
7349         ** first row visited by the aggregate, so that they are updated at
7350         ** least once even if the FILTER clause means the min() or max()
7351         ** function visits zero rows.  */
7352         if( pAggInfo->nAccumulator ){
7353           for(i=0; i<pAggInfo->nFunc; i++){
7354             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7355               continue;
7356             }
7357             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7358               break;
7359             }
7360           }
7361           if( i==pAggInfo->nFunc ){
7362             regAcc = ++pParse->nMem;
7363             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7364           }
7365         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7366           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7367           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7368         }
7369 
7370         /* This case runs if the aggregate has no GROUP BY clause.  The
7371         ** processing is much simpler since there is only a single row
7372         ** of output.
7373         */
7374         assert( p->pGroupBy==0 );
7375         resetAccumulator(pParse, pAggInfo);
7376 
7377         /* If this query is a candidate for the min/max optimization, then
7378         ** minMaxFlag will have been previously set to either
7379         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7380         ** be an appropriate ORDER BY expression for the optimization.
7381         */
7382         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7383         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7384 
7385         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7386         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7387                                    pDistinct, minMaxFlag|distFlag, 0);
7388         if( pWInfo==0 ){
7389           goto select_end;
7390         }
7391         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7392         eDist = sqlite3WhereIsDistinct(pWInfo);
7393         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7394         if( eDist!=WHERE_DISTINCT_NOOP ){
7395           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7396           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7397         }
7398 
7399         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7400         if( minMaxFlag ){
7401           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7402         }
7403         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7404         sqlite3WhereEnd(pWInfo);
7405         finalizeAggFunctions(pParse, pAggInfo);
7406       }
7407 
7408       sSort.pOrderBy = 0;
7409       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7410       selectInnerLoop(pParse, p, -1, 0, 0,
7411                       pDest, addrEnd, addrEnd);
7412     }
7413     sqlite3VdbeResolveLabel(v, addrEnd);
7414 
7415   } /* endif aggregate query */
7416 
7417   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7418     explainTempTable(pParse, "DISTINCT");
7419   }
7420 
7421   /* If there is an ORDER BY clause, then we need to sort the results
7422   ** and send them to the callback one by one.
7423   */
7424   if( sSort.pOrderBy ){
7425     explainTempTable(pParse,
7426                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7427     assert( p->pEList==pEList );
7428     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7429   }
7430 
7431   /* Jump here to skip this query
7432   */
7433   sqlite3VdbeResolveLabel(v, iEnd);
7434 
7435   /* The SELECT has been coded. If there is an error in the Parse structure,
7436   ** set the return code to 1. Otherwise 0. */
7437   rc = (pParse->nErr>0);
7438 
7439   /* Control jumps to here if an error is encountered above, or upon
7440   ** successful coding of the SELECT.
7441   */
7442 select_end:
7443   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7444   pParse->nErr += db->mallocFailed;
7445   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7446 #ifdef SQLITE_DEBUG
7447   if( pAggInfo && !db->mallocFailed ){
7448     for(i=0; i<pAggInfo->nColumn; i++){
7449       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7450       assert( pExpr!=0 );
7451       assert( pExpr->pAggInfo==pAggInfo );
7452       assert( pExpr->iAgg==i );
7453     }
7454     for(i=0; i<pAggInfo->nFunc; i++){
7455       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7456       assert( pExpr!=0 );
7457       assert( pExpr->pAggInfo==pAggInfo );
7458       assert( pExpr->iAgg==i );
7459     }
7460   }
7461 #endif
7462 
7463 #if SELECTTRACE_ENABLED
7464   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7465   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7466     sqlite3TreeViewSelect(0, p, 0);
7467   }
7468 #endif
7469   ExplainQueryPlanPop(pParse);
7470   return rc;
7471 }
7472