xref: /sqlite-3.40.0/src/select.c (revision fb32c44e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%s/%p: ",(S)->zSelName,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
72   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81 };
82 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
83 
84 /*
85 ** Delete all the content of a Select structure.  Deallocate the structure
86 ** itself only if bFree is true.
87 */
88 static void clearSelect(sqlite3 *db, Select *p, int bFree){
89   while( p ){
90     Select *pPrior = p->pPrior;
91     sqlite3ExprListDelete(db, p->pEList);
92     sqlite3SrcListDelete(db, p->pSrc);
93     sqlite3ExprDelete(db, p->pWhere);
94     sqlite3ExprListDelete(db, p->pGroupBy);
95     sqlite3ExprDelete(db, p->pHaving);
96     sqlite3ExprListDelete(db, p->pOrderBy);
97     sqlite3ExprDelete(db, p->pLimit);
98     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
99     if( bFree ) sqlite3DbFreeNN(db, p);
100     p = pPrior;
101     bFree = 1;
102   }
103 }
104 
105 /*
106 ** Initialize a SelectDest structure.
107 */
108 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
109   pDest->eDest = (u8)eDest;
110   pDest->iSDParm = iParm;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew;
133   Select standin;
134   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148 #if SELECTTRACE_ENABLED
149   pNew->zSelName[0] = 0;
150 #endif
151   pNew->addrOpenEphm[0] = -1;
152   pNew->addrOpenEphm[1] = -1;
153   pNew->nSelectRow = 0;
154   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
155   pNew->pSrc = pSrc;
156   pNew->pWhere = pWhere;
157   pNew->pGroupBy = pGroupBy;
158   pNew->pHaving = pHaving;
159   pNew->pOrderBy = pOrderBy;
160   pNew->pPrior = 0;
161   pNew->pNext = 0;
162   pNew->pLimit = pLimit;
163   pNew->pWith = 0;
164   if( pParse->db->mallocFailed ) {
165     clearSelect(pParse->db, pNew, pNew!=&standin);
166     pNew = 0;
167   }else{
168     assert( pNew->pSrc!=0 || pParse->nErr>0 );
169   }
170   assert( pNew!=&standin );
171   return pNew;
172 }
173 
174 #if SELECTTRACE_ENABLED
175 /*
176 ** Set the name of a Select object
177 */
178 void sqlite3SelectSetName(Select *p, const char *zName){
179   if( p && zName ){
180     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
181   }
182 }
183 #endif
184 
185 
186 /*
187 ** Delete the given Select structure and all of its substructures.
188 */
189 void sqlite3SelectDelete(sqlite3 *db, Select *p){
190   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
191 }
192 
193 /*
194 ** Return a pointer to the right-most SELECT statement in a compound.
195 */
196 static Select *findRightmost(Select *p){
197   while( p->pNext ) p = p->pNext;
198   return p;
199 }
200 
201 /*
202 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
203 ** type of join.  Return an integer constant that expresses that type
204 ** in terms of the following bit values:
205 **
206 **     JT_INNER
207 **     JT_CROSS
208 **     JT_OUTER
209 **     JT_NATURAL
210 **     JT_LEFT
211 **     JT_RIGHT
212 **
213 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
214 **
215 ** If an illegal or unsupported join type is seen, then still return
216 ** a join type, but put an error in the pParse structure.
217 */
218 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
219   int jointype = 0;
220   Token *apAll[3];
221   Token *p;
222                              /*   0123456789 123456789 123456789 123 */
223   static const char zKeyText[] = "naturaleftouterightfullinnercross";
224   static const struct {
225     u8 i;        /* Beginning of keyword text in zKeyText[] */
226     u8 nChar;    /* Length of the keyword in characters */
227     u8 code;     /* Join type mask */
228   } aKeyword[] = {
229     /* natural */ { 0,  7, JT_NATURAL                },
230     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
231     /* outer   */ { 10, 5, JT_OUTER                  },
232     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
233     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
234     /* inner   */ { 23, 5, JT_INNER                  },
235     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
236   };
237   int i, j;
238   apAll[0] = pA;
239   apAll[1] = pB;
240   apAll[2] = pC;
241   for(i=0; i<3 && apAll[i]; i++){
242     p = apAll[i];
243     for(j=0; j<ArraySize(aKeyword); j++){
244       if( p->n==aKeyword[j].nChar
245           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
246         jointype |= aKeyword[j].code;
247         break;
248       }
249     }
250     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
251     if( j>=ArraySize(aKeyword) ){
252       jointype |= JT_ERROR;
253       break;
254     }
255   }
256   if(
257      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
258      (jointype & JT_ERROR)!=0
259   ){
260     const char *zSp = " ";
261     assert( pB!=0 );
262     if( pC==0 ){ zSp++; }
263     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
264        "%T %T%s%T", pA, pB, zSp, pC);
265     jointype = JT_INNER;
266   }else if( (jointype & JT_OUTER)!=0
267          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
268     sqlite3ErrorMsg(pParse,
269       "RIGHT and FULL OUTER JOINs are not currently supported");
270     jointype = JT_INNER;
271   }
272   return jointype;
273 }
274 
275 /*
276 ** Return the index of a column in a table.  Return -1 if the column
277 ** is not contained in the table.
278 */
279 static int columnIndex(Table *pTab, const char *zCol){
280   int i;
281   for(i=0; i<pTab->nCol; i++){
282     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
283   }
284   return -1;
285 }
286 
287 /*
288 ** Search the first N tables in pSrc, from left to right, looking for a
289 ** table that has a column named zCol.
290 **
291 ** When found, set *piTab and *piCol to the table index and column index
292 ** of the matching column and return TRUE.
293 **
294 ** If not found, return FALSE.
295 */
296 static int tableAndColumnIndex(
297   SrcList *pSrc,       /* Array of tables to search */
298   int N,               /* Number of tables in pSrc->a[] to search */
299   const char *zCol,    /* Name of the column we are looking for */
300   int *piTab,          /* Write index of pSrc->a[] here */
301   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
302 ){
303   int i;               /* For looping over tables in pSrc */
304   int iCol;            /* Index of column matching zCol */
305 
306   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
307   for(i=0; i<N; i++){
308     iCol = columnIndex(pSrc->a[i].pTab, zCol);
309     if( iCol>=0 ){
310       if( piTab ){
311         *piTab = i;
312         *piCol = iCol;
313       }
314       return 1;
315     }
316   }
317   return 0;
318 }
319 
320 /*
321 ** This function is used to add terms implied by JOIN syntax to the
322 ** WHERE clause expression of a SELECT statement. The new term, which
323 ** is ANDed with the existing WHERE clause, is of the form:
324 **
325 **    (tab1.col1 = tab2.col2)
326 **
327 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
328 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
329 ** column iColRight of tab2.
330 */
331 static void addWhereTerm(
332   Parse *pParse,                  /* Parsing context */
333   SrcList *pSrc,                  /* List of tables in FROM clause */
334   int iLeft,                      /* Index of first table to join in pSrc */
335   int iColLeft,                   /* Index of column in first table */
336   int iRight,                     /* Index of second table in pSrc */
337   int iColRight,                  /* Index of column in second table */
338   int isOuterJoin,                /* True if this is an OUTER join */
339   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
340 ){
341   sqlite3 *db = pParse->db;
342   Expr *pE1;
343   Expr *pE2;
344   Expr *pEq;
345 
346   assert( iLeft<iRight );
347   assert( pSrc->nSrc>iRight );
348   assert( pSrc->a[iLeft].pTab );
349   assert( pSrc->a[iRight].pTab );
350 
351   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
352   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
353 
354   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
355   if( pEq && isOuterJoin ){
356     ExprSetProperty(pEq, EP_FromJoin);
357     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
358     ExprSetVVAProperty(pEq, EP_NoReduce);
359     pEq->iRightJoinTable = (i16)pE2->iTable;
360   }
361   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
362 }
363 
364 /*
365 ** Set the EP_FromJoin property on all terms of the given expression.
366 ** And set the Expr.iRightJoinTable to iTable for every term in the
367 ** expression.
368 **
369 ** The EP_FromJoin property is used on terms of an expression to tell
370 ** the LEFT OUTER JOIN processing logic that this term is part of the
371 ** join restriction specified in the ON or USING clause and not a part
372 ** of the more general WHERE clause.  These terms are moved over to the
373 ** WHERE clause during join processing but we need to remember that they
374 ** originated in the ON or USING clause.
375 **
376 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
377 ** expression depends on table iRightJoinTable even if that table is not
378 ** explicitly mentioned in the expression.  That information is needed
379 ** for cases like this:
380 **
381 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
382 **
383 ** The where clause needs to defer the handling of the t1.x=5
384 ** term until after the t2 loop of the join.  In that way, a
385 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
386 ** defer the handling of t1.x=5, it will be processed immediately
387 ** after the t1 loop and rows with t1.x!=5 will never appear in
388 ** the output, which is incorrect.
389 */
390 static void setJoinExpr(Expr *p, int iTable){
391   while( p ){
392     ExprSetProperty(p, EP_FromJoin);
393     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
394     ExprSetVVAProperty(p, EP_NoReduce);
395     p->iRightJoinTable = (i16)iTable;
396     if( p->op==TK_FUNCTION && p->x.pList ){
397       int i;
398       for(i=0; i<p->x.pList->nExpr; i++){
399         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
400       }
401     }
402     setJoinExpr(p->pLeft, iTable);
403     p = p->pRight;
404   }
405 }
406 
407 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
408 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
409 ** an ordinary term that omits the EP_FromJoin mark.
410 **
411 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
412 */
413 static void unsetJoinExpr(Expr *p, int iTable){
414   while( p ){
415     if( ExprHasProperty(p, EP_FromJoin)
416      && (iTable<0 || p->iRightJoinTable==iTable) ){
417       ExprClearProperty(p, EP_FromJoin);
418     }
419     if( p->op==TK_FUNCTION && p->x.pList ){
420       int i;
421       for(i=0; i<p->x.pList->nExpr; i++){
422         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
423       }
424     }
425     unsetJoinExpr(p->pLeft, iTable);
426     p = p->pRight;
427   }
428 }
429 
430 /*
431 ** This routine processes the join information for a SELECT statement.
432 ** ON and USING clauses are converted into extra terms of the WHERE clause.
433 ** NATURAL joins also create extra WHERE clause terms.
434 **
435 ** The terms of a FROM clause are contained in the Select.pSrc structure.
436 ** The left most table is the first entry in Select.pSrc.  The right-most
437 ** table is the last entry.  The join operator is held in the entry to
438 ** the left.  Thus entry 0 contains the join operator for the join between
439 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
440 ** also attached to the left entry.
441 **
442 ** This routine returns the number of errors encountered.
443 */
444 static int sqliteProcessJoin(Parse *pParse, Select *p){
445   SrcList *pSrc;                  /* All tables in the FROM clause */
446   int i, j;                       /* Loop counters */
447   struct SrcList_item *pLeft;     /* Left table being joined */
448   struct SrcList_item *pRight;    /* Right table being joined */
449 
450   pSrc = p->pSrc;
451   pLeft = &pSrc->a[0];
452   pRight = &pLeft[1];
453   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
454     Table *pRightTab = pRight->pTab;
455     int isOuter;
456 
457     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
458     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
459 
460     /* When the NATURAL keyword is present, add WHERE clause terms for
461     ** every column that the two tables have in common.
462     */
463     if( pRight->fg.jointype & JT_NATURAL ){
464       if( pRight->pOn || pRight->pUsing ){
465         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
466            "an ON or USING clause", 0);
467         return 1;
468       }
469       for(j=0; j<pRightTab->nCol; j++){
470         char *zName;   /* Name of column in the right table */
471         int iLeft;     /* Matching left table */
472         int iLeftCol;  /* Matching column in the left table */
473 
474         zName = pRightTab->aCol[j].zName;
475         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
476           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
477                        isOuter, &p->pWhere);
478         }
479       }
480     }
481 
482     /* Disallow both ON and USING clauses in the same join
483     */
484     if( pRight->pOn && pRight->pUsing ){
485       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
486         "clauses in the same join");
487       return 1;
488     }
489 
490     /* Add the ON clause to the end of the WHERE clause, connected by
491     ** an AND operator.
492     */
493     if( pRight->pOn ){
494       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
495       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
496       pRight->pOn = 0;
497     }
498 
499     /* Create extra terms on the WHERE clause for each column named
500     ** in the USING clause.  Example: If the two tables to be joined are
501     ** A and B and the USING clause names X, Y, and Z, then add this
502     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
503     ** Report an error if any column mentioned in the USING clause is
504     ** not contained in both tables to be joined.
505     */
506     if( pRight->pUsing ){
507       IdList *pList = pRight->pUsing;
508       for(j=0; j<pList->nId; j++){
509         char *zName;     /* Name of the term in the USING clause */
510         int iLeft;       /* Table on the left with matching column name */
511         int iLeftCol;    /* Column number of matching column on the left */
512         int iRightCol;   /* Column number of matching column on the right */
513 
514         zName = pList->a[j].zName;
515         iRightCol = columnIndex(pRightTab, zName);
516         if( iRightCol<0
517          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
518         ){
519           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
520             "not present in both tables", zName);
521           return 1;
522         }
523         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
524                      isOuter, &p->pWhere);
525       }
526     }
527   }
528   return 0;
529 }
530 
531 /* Forward reference */
532 static KeyInfo *keyInfoFromExprList(
533   Parse *pParse,       /* Parsing context */
534   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
535   int iStart,          /* Begin with this column of pList */
536   int nExtra           /* Add this many extra columns to the end */
537 );
538 
539 /*
540 ** Generate code that will push the record in registers regData
541 ** through regData+nData-1 onto the sorter.
542 */
543 static void pushOntoSorter(
544   Parse *pParse,         /* Parser context */
545   SortCtx *pSort,        /* Information about the ORDER BY clause */
546   Select *pSelect,       /* The whole SELECT statement */
547   int regData,           /* First register holding data to be sorted */
548   int regOrigData,       /* First register holding data before packing */
549   int nData,             /* Number of elements in the data array */
550   int nPrefixReg         /* No. of reg prior to regData available for use */
551 ){
552   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
553   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
554   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
555   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
556   int regBase;                                     /* Regs for sorter record */
557   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
558   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
559   int op;                            /* Opcode to add sorter record to sorter */
560   int iLimit;                        /* LIMIT counter */
561 
562   assert( bSeq==0 || bSeq==1 );
563   assert( nData==1 || regData==regOrigData || regOrigData==0 );
564   if( nPrefixReg ){
565     assert( nPrefixReg==nExpr+bSeq );
566     regBase = regData - nExpr - bSeq;
567   }else{
568     regBase = pParse->nMem + 1;
569     pParse->nMem += nBase;
570   }
571   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
572   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
573   pSort->labelDone = sqlite3VdbeMakeLabel(v);
574   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
575                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
576   if( bSeq ){
577     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
578   }
579   if( nPrefixReg==0 && nData>0 ){
580     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
581   }
582   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
583   if( nOBSat>0 ){
584     int regPrevKey;   /* The first nOBSat columns of the previous row */
585     int addrFirst;    /* Address of the OP_IfNot opcode */
586     int addrJmp;      /* Address of the OP_Jump opcode */
587     VdbeOp *pOp;      /* Opcode that opens the sorter */
588     int nKey;         /* Number of sorting key columns, including OP_Sequence */
589     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
590 
591     regPrevKey = pParse->nMem+1;
592     pParse->nMem += pSort->nOBSat;
593     nKey = nExpr - pSort->nOBSat + bSeq;
594     if( bSeq ){
595       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
596     }else{
597       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
598     }
599     VdbeCoverage(v);
600     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
601     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
602     if( pParse->db->mallocFailed ) return;
603     pOp->p2 = nKey + nData;
604     pKI = pOp->p4.pKeyInfo;
605     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
606     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
607     testcase( pKI->nAllField > pKI->nKeyField+2 );
608     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
609                                            pKI->nAllField-pKI->nKeyField-1);
610     addrJmp = sqlite3VdbeCurrentAddr(v);
611     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
612     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
613     pSort->regReturn = ++pParse->nMem;
614     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
615     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
616     if( iLimit ){
617       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
618       VdbeCoverage(v);
619     }
620     sqlite3VdbeJumpHere(v, addrFirst);
621     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
622     sqlite3VdbeJumpHere(v, addrJmp);
623   }
624   if( pSort->sortFlags & SORTFLAG_UseSorter ){
625     op = OP_SorterInsert;
626   }else{
627     op = OP_IdxInsert;
628   }
629   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
630                        regBase+nOBSat, nBase-nOBSat);
631   if( iLimit ){
632     int addr;
633     int r1 = 0;
634     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
635     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
636     ** fills up, delete the least entry in the sorter after each insert.
637     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
638     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
639     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
640     if( pSort->bOrderedInnerLoop ){
641       r1 = ++pParse->nMem;
642       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
643       VdbeComment((v, "seq"));
644     }
645     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
646     if( pSort->bOrderedInnerLoop ){
647       /* If the inner loop is driven by an index such that values from
648       ** the same iteration of the inner loop are in sorted order, then
649       ** immediately jump to the next iteration of an inner loop if the
650       ** entry from the current iteration does not fit into the top
651       ** LIMIT+OFFSET entries of the sorter. */
652       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
653       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
654       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
655       VdbeCoverage(v);
656     }
657     sqlite3VdbeJumpHere(v, addr);
658   }
659 }
660 
661 /*
662 ** Add code to implement the OFFSET
663 */
664 static void codeOffset(
665   Vdbe *v,          /* Generate code into this VM */
666   int iOffset,      /* Register holding the offset counter */
667   int iContinue     /* Jump here to skip the current record */
668 ){
669   if( iOffset>0 ){
670     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
671     VdbeComment((v, "OFFSET"));
672   }
673 }
674 
675 /*
676 ** Add code that will check to make sure the N registers starting at iMem
677 ** form a distinct entry.  iTab is a sorting index that holds previously
678 ** seen combinations of the N values.  A new entry is made in iTab
679 ** if the current N values are new.
680 **
681 ** A jump to addrRepeat is made and the N+1 values are popped from the
682 ** stack if the top N elements are not distinct.
683 */
684 static void codeDistinct(
685   Parse *pParse,     /* Parsing and code generating context */
686   int iTab,          /* A sorting index used to test for distinctness */
687   int addrRepeat,    /* Jump to here if not distinct */
688   int N,             /* Number of elements */
689   int iMem           /* First element */
690 ){
691   Vdbe *v;
692   int r1;
693 
694   v = pParse->pVdbe;
695   r1 = sqlite3GetTempReg(pParse);
696   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
697   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
698   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
699   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
700   sqlite3ReleaseTempReg(pParse, r1);
701 }
702 
703 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
704 /*
705 ** This function is called as part of inner-loop generation for a SELECT
706 ** statement with an ORDER BY that is not optimized by an index. It
707 ** determines the expressions, if any, that the sorter-reference
708 ** optimization should be used for. The sorter-reference optimization
709 ** is used for SELECT queries like:
710 **
711 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
712 **
713 ** If the optimization is used for expression "bigblob", then instead of
714 ** storing values read from that column in the sorter records, the PK of
715 ** the row from table t1 is stored instead. Then, as records are extracted from
716 ** the sorter to return to the user, the required value of bigblob is
717 ** retrieved directly from table t1. If the values are very large, this
718 ** can be more efficient than storing them directly in the sorter records.
719 **
720 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
721 ** for which the sorter-reference optimization should be enabled.
722 ** Additionally, the pSort->aDefer[] array is populated with entries
723 ** for all cursors required to evaluate all selected expressions. Finally.
724 ** output variable (*ppExtra) is set to an expression list containing
725 ** expressions for all extra PK values that should be stored in the
726 ** sorter records.
727 */
728 static void selectExprDefer(
729   Parse *pParse,                  /* Leave any error here */
730   SortCtx *pSort,                 /* Sorter context */
731   ExprList *pEList,               /* Expressions destined for sorter */
732   ExprList **ppExtra              /* Expressions to append to sorter record */
733 ){
734   int i;
735   int nDefer = 0;
736   ExprList *pExtra = 0;
737   for(i=0; i<pEList->nExpr; i++){
738     struct ExprList_item *pItem = &pEList->a[i];
739     if( pItem->u.x.iOrderByCol==0 ){
740       Expr *pExpr = pItem->pExpr;
741       Table *pTab = pExpr->pTab;
742       if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab)
743        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
744 #if 0
745           && pTab->pSchema && pTab->pSelect==0 && !IsVirtual(pTab)
746 #endif
747       ){
748         int j;
749         for(j=0; j<nDefer; j++){
750           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
751         }
752         if( j==nDefer ){
753           if( nDefer==ArraySize(pSort->aDefer) ){
754             continue;
755           }else{
756             int nKey = 1;
757             int k;
758             Index *pPk = 0;
759             if( !HasRowid(pTab) ){
760               pPk = sqlite3PrimaryKeyIndex(pTab);
761               nKey = pPk->nKeyCol;
762             }
763             for(k=0; k<nKey; k++){
764               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
765               if( pNew ){
766                 pNew->iTable = pExpr->iTable;
767                 pNew->pTab = pExpr->pTab;
768                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
769                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
770               }
771             }
772             pSort->aDefer[nDefer].pTab = pExpr->pTab;
773             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
774             pSort->aDefer[nDefer].nKey = nKey;
775             nDefer++;
776           }
777         }
778         pItem->bSorterRef = 1;
779       }
780     }
781   }
782   pSort->nDefer = (u8)nDefer;
783   *ppExtra = pExtra;
784 }
785 #endif
786 
787 /*
788 ** This routine generates the code for the inside of the inner loop
789 ** of a SELECT.
790 **
791 ** If srcTab is negative, then the p->pEList expressions
792 ** are evaluated in order to get the data for this row.  If srcTab is
793 ** zero or more, then data is pulled from srcTab and p->pEList is used only
794 ** to get the number of columns and the collation sequence for each column.
795 */
796 static void selectInnerLoop(
797   Parse *pParse,          /* The parser context */
798   Select *p,              /* The complete select statement being coded */
799   int srcTab,             /* Pull data from this table if non-negative */
800   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
801   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
802   SelectDest *pDest,      /* How to dispose of the results */
803   int iContinue,          /* Jump here to continue with next row */
804   int iBreak              /* Jump here to break out of the inner loop */
805 ){
806   Vdbe *v = pParse->pVdbe;
807   int i;
808   int hasDistinct;            /* True if the DISTINCT keyword is present */
809   int eDest = pDest->eDest;   /* How to dispose of results */
810   int iParm = pDest->iSDParm; /* First argument to disposal method */
811   int nResultCol;             /* Number of result columns */
812   int nPrefixReg = 0;         /* Number of extra registers before regResult */
813 
814   /* Usually, regResult is the first cell in an array of memory cells
815   ** containing the current result row. In this case regOrig is set to the
816   ** same value. However, if the results are being sent to the sorter, the
817   ** values for any expressions that are also part of the sort-key are omitted
818   ** from this array. In this case regOrig is set to zero.  */
819   int regResult;              /* Start of memory holding current results */
820   int regOrig;                /* Start of memory holding full result (or 0) */
821 
822   assert( v );
823   assert( p->pEList!=0 );
824   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
825   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
826   if( pSort==0 && !hasDistinct ){
827     assert( iContinue!=0 );
828     codeOffset(v, p->iOffset, iContinue);
829   }
830 
831   /* Pull the requested columns.
832   */
833   nResultCol = p->pEList->nExpr;
834 
835   if( pDest->iSdst==0 ){
836     if( pSort ){
837       nPrefixReg = pSort->pOrderBy->nExpr;
838       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
839       pParse->nMem += nPrefixReg;
840     }
841     pDest->iSdst = pParse->nMem+1;
842     pParse->nMem += nResultCol;
843   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
844     /* This is an error condition that can result, for example, when a SELECT
845     ** on the right-hand side of an INSERT contains more result columns than
846     ** there are columns in the table on the left.  The error will be caught
847     ** and reported later.  But we need to make sure enough memory is allocated
848     ** to avoid other spurious errors in the meantime. */
849     pParse->nMem += nResultCol;
850   }
851   pDest->nSdst = nResultCol;
852   regOrig = regResult = pDest->iSdst;
853   if( srcTab>=0 ){
854     for(i=0; i<nResultCol; i++){
855       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
856       VdbeComment((v, "%s", p->pEList->a[i].zName));
857     }
858   }else if( eDest!=SRT_Exists ){
859 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
860     ExprList *pExtra = 0;
861 #endif
862     /* If the destination is an EXISTS(...) expression, the actual
863     ** values returned by the SELECT are not required.
864     */
865     u8 ecelFlags;
866     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
867       ecelFlags = SQLITE_ECEL_DUP;
868     }else{
869       ecelFlags = 0;
870     }
871     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
872       /* For each expression in p->pEList that is a copy of an expression in
873       ** the ORDER BY clause (pSort->pOrderBy), set the associated
874       ** iOrderByCol value to one more than the index of the ORDER BY
875       ** expression within the sort-key that pushOntoSorter() will generate.
876       ** This allows the p->pEList field to be omitted from the sorted record,
877       ** saving space and CPU cycles.  */
878       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
879       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
880         int j;
881         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
882           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
883         }
884       }
885 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
886       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
887       if( pExtra && pParse->db->mallocFailed==0 ){
888         /* If there are any extra PK columns to add to the sorter records,
889         ** allocate extra memory cells and adjust the OpenEphemeral
890         ** instruction to account for the larger records. This is only
891         ** required if there are one or more WITHOUT ROWID tables with
892         ** composite primary keys in the SortCtx.aDefer[] array.  */
893         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
894         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
895         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
896         pParse->nMem += pExtra->nExpr;
897       }
898 #endif
899       regOrig = 0;
900       assert( eDest==SRT_Set || eDest==SRT_Mem
901            || eDest==SRT_Coroutine || eDest==SRT_Output );
902     }
903     nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
904                                          0,ecelFlags);
905 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
906     if( pExtra ){
907       nResultCol += sqlite3ExprCodeExprList(
908           pParse, pExtra, regResult + nResultCol, 0, 0
909       );
910       sqlite3ExprListDelete(pParse->db, pExtra);
911     }
912 #endif
913   }
914 
915   /* If the DISTINCT keyword was present on the SELECT statement
916   ** and this row has been seen before, then do not make this row
917   ** part of the result.
918   */
919   if( hasDistinct ){
920     switch( pDistinct->eTnctType ){
921       case WHERE_DISTINCT_ORDERED: {
922         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
923         int iJump;              /* Jump destination */
924         int regPrev;            /* Previous row content */
925 
926         /* Allocate space for the previous row */
927         regPrev = pParse->nMem+1;
928         pParse->nMem += nResultCol;
929 
930         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
931         ** sets the MEM_Cleared bit on the first register of the
932         ** previous value.  This will cause the OP_Ne below to always
933         ** fail on the first iteration of the loop even if the first
934         ** row is all NULLs.
935         */
936         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
937         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
938         pOp->opcode = OP_Null;
939         pOp->p1 = 1;
940         pOp->p2 = regPrev;
941 
942         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
943         for(i=0; i<nResultCol; i++){
944           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
945           if( i<nResultCol-1 ){
946             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
947             VdbeCoverage(v);
948           }else{
949             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
950             VdbeCoverage(v);
951            }
952           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
953           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
954         }
955         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
956         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
957         break;
958       }
959 
960       case WHERE_DISTINCT_UNIQUE: {
961         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
962         break;
963       }
964 
965       default: {
966         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
967         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
968                      regResult);
969         break;
970       }
971     }
972     if( pSort==0 ){
973       codeOffset(v, p->iOffset, iContinue);
974     }
975   }
976 
977   switch( eDest ){
978     /* In this mode, write each query result to the key of the temporary
979     ** table iParm.
980     */
981 #ifndef SQLITE_OMIT_COMPOUND_SELECT
982     case SRT_Union: {
983       int r1;
984       r1 = sqlite3GetTempReg(pParse);
985       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
986       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
987       sqlite3ReleaseTempReg(pParse, r1);
988       break;
989     }
990 
991     /* Construct a record from the query result, but instead of
992     ** saving that record, use it as a key to delete elements from
993     ** the temporary table iParm.
994     */
995     case SRT_Except: {
996       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
997       break;
998     }
999 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1000 
1001     /* Store the result as data using a unique key.
1002     */
1003     case SRT_Fifo:
1004     case SRT_DistFifo:
1005     case SRT_Table:
1006     case SRT_EphemTab: {
1007       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1008       testcase( eDest==SRT_Table );
1009       testcase( eDest==SRT_EphemTab );
1010       testcase( eDest==SRT_Fifo );
1011       testcase( eDest==SRT_DistFifo );
1012       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1013 #ifndef SQLITE_OMIT_CTE
1014       if( eDest==SRT_DistFifo ){
1015         /* If the destination is DistFifo, then cursor (iParm+1) is open
1016         ** on an ephemeral index. If the current row is already present
1017         ** in the index, do not write it to the output. If not, add the
1018         ** current row to the index and proceed with writing it to the
1019         ** output table as well.  */
1020         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1021         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1022         VdbeCoverage(v);
1023         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1024         assert( pSort==0 );
1025       }
1026 #endif
1027       if( pSort ){
1028         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
1029       }else{
1030         int r2 = sqlite3GetTempReg(pParse);
1031         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1032         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1033         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1034         sqlite3ReleaseTempReg(pParse, r2);
1035       }
1036       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1037       break;
1038     }
1039 
1040 #ifndef SQLITE_OMIT_SUBQUERY
1041     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1042     ** then there should be a single item on the stack.  Write this
1043     ** item into the set table with bogus data.
1044     */
1045     case SRT_Set: {
1046       if( pSort ){
1047         /* At first glance you would think we could optimize out the
1048         ** ORDER BY in this case since the order of entries in the set
1049         ** does not matter.  But there might be a LIMIT clause, in which
1050         ** case the order does matter */
1051         pushOntoSorter(
1052             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1053       }else{
1054         int r1 = sqlite3GetTempReg(pParse);
1055         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1056         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1057             r1, pDest->zAffSdst, nResultCol);
1058         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1059         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1060         sqlite3ReleaseTempReg(pParse, r1);
1061       }
1062       break;
1063     }
1064 
1065     /* If any row exist in the result set, record that fact and abort.
1066     */
1067     case SRT_Exists: {
1068       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1069       /* The LIMIT clause will terminate the loop for us */
1070       break;
1071     }
1072 
1073     /* If this is a scalar select that is part of an expression, then
1074     ** store the results in the appropriate memory cell or array of
1075     ** memory cells and break out of the scan loop.
1076     */
1077     case SRT_Mem: {
1078       if( pSort ){
1079         assert( nResultCol<=pDest->nSdst );
1080         pushOntoSorter(
1081             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1082       }else{
1083         assert( nResultCol==pDest->nSdst );
1084         assert( regResult==iParm );
1085         /* The LIMIT clause will jump out of the loop for us */
1086       }
1087       break;
1088     }
1089 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1090 
1091     case SRT_Coroutine:       /* Send data to a co-routine */
1092     case SRT_Output: {        /* Return the results */
1093       testcase( eDest==SRT_Coroutine );
1094       testcase( eDest==SRT_Output );
1095       if( pSort ){
1096         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1097                        nPrefixReg);
1098       }else if( eDest==SRT_Coroutine ){
1099         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1100       }else{
1101         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1102         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1103       }
1104       break;
1105     }
1106 
1107 #ifndef SQLITE_OMIT_CTE
1108     /* Write the results into a priority queue that is order according to
1109     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1110     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1111     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1112     ** final OP_Sequence column.  The last column is the record as a blob.
1113     */
1114     case SRT_DistQueue:
1115     case SRT_Queue: {
1116       int nKey;
1117       int r1, r2, r3;
1118       int addrTest = 0;
1119       ExprList *pSO;
1120       pSO = pDest->pOrderBy;
1121       assert( pSO );
1122       nKey = pSO->nExpr;
1123       r1 = sqlite3GetTempReg(pParse);
1124       r2 = sqlite3GetTempRange(pParse, nKey+2);
1125       r3 = r2+nKey+1;
1126       if( eDest==SRT_DistQueue ){
1127         /* If the destination is DistQueue, then cursor (iParm+1) is open
1128         ** on a second ephemeral index that holds all values every previously
1129         ** added to the queue. */
1130         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1131                                         regResult, nResultCol);
1132         VdbeCoverage(v);
1133       }
1134       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1135       if( eDest==SRT_DistQueue ){
1136         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1137         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1138       }
1139       for(i=0; i<nKey; i++){
1140         sqlite3VdbeAddOp2(v, OP_SCopy,
1141                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1142                           r2+i);
1143       }
1144       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1145       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1146       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1147       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1148       sqlite3ReleaseTempReg(pParse, r1);
1149       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1150       break;
1151     }
1152 #endif /* SQLITE_OMIT_CTE */
1153 
1154 
1155 
1156 #if !defined(SQLITE_OMIT_TRIGGER)
1157     /* Discard the results.  This is used for SELECT statements inside
1158     ** the body of a TRIGGER.  The purpose of such selects is to call
1159     ** user-defined functions that have side effects.  We do not care
1160     ** about the actual results of the select.
1161     */
1162     default: {
1163       assert( eDest==SRT_Discard );
1164       break;
1165     }
1166 #endif
1167   }
1168 
1169   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1170   ** there is a sorter, in which case the sorter has already limited
1171   ** the output for us.
1172   */
1173   if( pSort==0 && p->iLimit ){
1174     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1175   }
1176 }
1177 
1178 /*
1179 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1180 ** X extra columns.
1181 */
1182 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1183   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1184   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1185   if( p ){
1186     p->aSortOrder = (u8*)&p->aColl[N+X];
1187     p->nKeyField = (u16)N;
1188     p->nAllField = (u16)(N+X);
1189     p->enc = ENC(db);
1190     p->db = db;
1191     p->nRef = 1;
1192     memset(&p[1], 0, nExtra);
1193   }else{
1194     sqlite3OomFault(db);
1195   }
1196   return p;
1197 }
1198 
1199 /*
1200 ** Deallocate a KeyInfo object
1201 */
1202 void sqlite3KeyInfoUnref(KeyInfo *p){
1203   if( p ){
1204     assert( p->nRef>0 );
1205     p->nRef--;
1206     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1207   }
1208 }
1209 
1210 /*
1211 ** Make a new pointer to a KeyInfo object
1212 */
1213 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1214   if( p ){
1215     assert( p->nRef>0 );
1216     p->nRef++;
1217   }
1218   return p;
1219 }
1220 
1221 #ifdef SQLITE_DEBUG
1222 /*
1223 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1224 ** can only be changed if this is just a single reference to the object.
1225 **
1226 ** This routine is used only inside of assert() statements.
1227 */
1228 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1229 #endif /* SQLITE_DEBUG */
1230 
1231 /*
1232 ** Given an expression list, generate a KeyInfo structure that records
1233 ** the collating sequence for each expression in that expression list.
1234 **
1235 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1236 ** KeyInfo structure is appropriate for initializing a virtual index to
1237 ** implement that clause.  If the ExprList is the result set of a SELECT
1238 ** then the KeyInfo structure is appropriate for initializing a virtual
1239 ** index to implement a DISTINCT test.
1240 **
1241 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1242 ** function is responsible for seeing that this structure is eventually
1243 ** freed.
1244 */
1245 static KeyInfo *keyInfoFromExprList(
1246   Parse *pParse,       /* Parsing context */
1247   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1248   int iStart,          /* Begin with this column of pList */
1249   int nExtra           /* Add this many extra columns to the end */
1250 ){
1251   int nExpr;
1252   KeyInfo *pInfo;
1253   struct ExprList_item *pItem;
1254   sqlite3 *db = pParse->db;
1255   int i;
1256 
1257   nExpr = pList->nExpr;
1258   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1259   if( pInfo ){
1260     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1261     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1262       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1263       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1264     }
1265   }
1266   return pInfo;
1267 }
1268 
1269 /*
1270 ** Name of the connection operator, used for error messages.
1271 */
1272 static const char *selectOpName(int id){
1273   char *z;
1274   switch( id ){
1275     case TK_ALL:       z = "UNION ALL";   break;
1276     case TK_INTERSECT: z = "INTERSECT";   break;
1277     case TK_EXCEPT:    z = "EXCEPT";      break;
1278     default:           z = "UNION";       break;
1279   }
1280   return z;
1281 }
1282 
1283 #ifndef SQLITE_OMIT_EXPLAIN
1284 /*
1285 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1286 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1287 ** where the caption is of the form:
1288 **
1289 **   "USE TEMP B-TREE FOR xxx"
1290 **
1291 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1292 ** is determined by the zUsage argument.
1293 */
1294 static void explainTempTable(Parse *pParse, const char *zUsage){
1295   if( pParse->explain==2 ){
1296     Vdbe *v = pParse->pVdbe;
1297     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1298     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1299   }
1300 }
1301 
1302 /*
1303 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1304 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1305 ** in sqlite3Select() to assign values to structure member variables that
1306 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1307 ** code with #ifndef directives.
1308 */
1309 # define explainSetInteger(a, b) a = b
1310 
1311 #else
1312 /* No-op versions of the explainXXX() functions and macros. */
1313 # define explainTempTable(y,z)
1314 # define explainSetInteger(y,z)
1315 #endif
1316 
1317 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1318 /*
1319 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1320 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1321 ** where the caption is of one of the two forms:
1322 **
1323 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1324 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1325 **
1326 ** where iSub1 and iSub2 are the integers passed as the corresponding
1327 ** function parameters, and op is the text representation of the parameter
1328 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1329 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1330 ** false, or the second form if it is true.
1331 */
1332 static void explainComposite(
1333   Parse *pParse,                  /* Parse context */
1334   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1335   int iSub1,                      /* Subquery id 1 */
1336   int iSub2,                      /* Subquery id 2 */
1337   int bUseTmp                     /* True if a temp table was used */
1338 ){
1339   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1340   if( pParse->explain==2 ){
1341     Vdbe *v = pParse->pVdbe;
1342     char *zMsg = sqlite3MPrintf(
1343         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1344         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1345     );
1346     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1347   }
1348 }
1349 #else
1350 /* No-op versions of the explainXXX() functions and macros. */
1351 # define explainComposite(v,w,x,y,z)
1352 #endif
1353 
1354 /*
1355 ** If the inner loop was generated using a non-null pOrderBy argument,
1356 ** then the results were placed in a sorter.  After the loop is terminated
1357 ** we need to run the sorter and output the results.  The following
1358 ** routine generates the code needed to do that.
1359 */
1360 static void generateSortTail(
1361   Parse *pParse,    /* Parsing context */
1362   Select *p,        /* The SELECT statement */
1363   SortCtx *pSort,   /* Information on the ORDER BY clause */
1364   int nColumn,      /* Number of columns of data */
1365   SelectDest *pDest /* Write the sorted results here */
1366 ){
1367   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1368   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1369   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1370   int addr;                       /* Top of output loop. Jump for Next. */
1371   int addrOnce = 0;
1372   int iTab;
1373   ExprList *pOrderBy = pSort->pOrderBy;
1374   int eDest = pDest->eDest;
1375   int iParm = pDest->iSDParm;
1376   int regRow;
1377   int regRowid;
1378   int iCol;
1379   int nKey;                       /* Number of key columns in sorter record */
1380   int iSortTab;                   /* Sorter cursor to read from */
1381   int i;
1382   int bSeq;                       /* True if sorter record includes seq. no. */
1383   int nRefKey = 0;
1384   struct ExprList_item *aOutEx = p->pEList->a;
1385 
1386   assert( addrBreak<0 );
1387   if( pSort->labelBkOut ){
1388     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1389     sqlite3VdbeGoto(v, addrBreak);
1390     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1391   }
1392 
1393 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1394   /* Open any cursors needed for sorter-reference expressions */
1395   for(i=0; i<pSort->nDefer; i++){
1396     Table *pTab = pSort->aDefer[i].pTab;
1397     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1398     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1399     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1400   }
1401 #endif
1402 
1403   iTab = pSort->iECursor;
1404   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1405     regRowid = 0;
1406     regRow = pDest->iSdst;
1407   }else{
1408     regRowid = sqlite3GetTempReg(pParse);
1409     regRow = sqlite3GetTempRange(pParse, nColumn);
1410   }
1411   nKey = pOrderBy->nExpr - pSort->nOBSat;
1412   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1413     int regSortOut = ++pParse->nMem;
1414     iSortTab = pParse->nTab++;
1415     if( pSort->labelBkOut ){
1416       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1417     }
1418     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1419         nKey+1+nColumn+nRefKey);
1420     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1421     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1422     VdbeCoverage(v);
1423     codeOffset(v, p->iOffset, addrContinue);
1424     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1425     bSeq = 0;
1426   }else{
1427     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1428     codeOffset(v, p->iOffset, addrContinue);
1429     iSortTab = iTab;
1430     bSeq = 1;
1431   }
1432   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1433 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1434     if( aOutEx[i].bSorterRef ) continue;
1435 #endif
1436     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1437   }
1438 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1439   if( pSort->nDefer ){
1440     int iKey = iCol+1;
1441     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1442 
1443     for(i=0; i<pSort->nDefer; i++){
1444       int iCsr = pSort->aDefer[i].iCsr;
1445       Table *pTab = pSort->aDefer[i].pTab;
1446       int nKey = pSort->aDefer[i].nKey;
1447 
1448       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1449       if( HasRowid(pTab) ){
1450         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1451         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1452             sqlite3VdbeCurrentAddr(v)+1, regKey);
1453       }else{
1454         int k;
1455         int iJmp;
1456         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1457         for(k=0; k<nKey; k++){
1458           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1459         }
1460         iJmp = sqlite3VdbeCurrentAddr(v);
1461         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1462         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1463         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1464       }
1465     }
1466     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1467   }
1468 #endif
1469   for(i=nColumn-1; i>=0; i--){
1470 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1471     if( aOutEx[i].bSorterRef ){
1472       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1473     }else
1474 #endif
1475     {
1476       int iRead;
1477       if( aOutEx[i].u.x.iOrderByCol ){
1478         iRead = aOutEx[i].u.x.iOrderByCol-1;
1479       }else{
1480         iRead = iCol--;
1481       }
1482       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1483       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1484     }
1485   }
1486   switch( eDest ){
1487     case SRT_Table:
1488     case SRT_EphemTab: {
1489       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1490       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1491       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1492       break;
1493     }
1494 #ifndef SQLITE_OMIT_SUBQUERY
1495     case SRT_Set: {
1496       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1497       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1498                         pDest->zAffSdst, nColumn);
1499       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1500       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1501       break;
1502     }
1503     case SRT_Mem: {
1504       /* The LIMIT clause will terminate the loop for us */
1505       break;
1506     }
1507 #endif
1508     default: {
1509       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1510       testcase( eDest==SRT_Output );
1511       testcase( eDest==SRT_Coroutine );
1512       if( eDest==SRT_Output ){
1513         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1514         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1515       }else{
1516         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1517       }
1518       break;
1519     }
1520   }
1521   if( regRowid ){
1522     if( eDest==SRT_Set ){
1523       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1524     }else{
1525       sqlite3ReleaseTempReg(pParse, regRow);
1526     }
1527     sqlite3ReleaseTempReg(pParse, regRowid);
1528   }
1529   /* The bottom of the loop
1530   */
1531   sqlite3VdbeResolveLabel(v, addrContinue);
1532   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1533     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1534   }else{
1535     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1536   }
1537   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1538   sqlite3VdbeResolveLabel(v, addrBreak);
1539 }
1540 
1541 /*
1542 ** Return a pointer to a string containing the 'declaration type' of the
1543 ** expression pExpr. The string may be treated as static by the caller.
1544 **
1545 ** Also try to estimate the size of the returned value and return that
1546 ** result in *pEstWidth.
1547 **
1548 ** The declaration type is the exact datatype definition extracted from the
1549 ** original CREATE TABLE statement if the expression is a column. The
1550 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1551 ** is considered a column can be complex in the presence of subqueries. The
1552 ** result-set expression in all of the following SELECT statements is
1553 ** considered a column by this function.
1554 **
1555 **   SELECT col FROM tbl;
1556 **   SELECT (SELECT col FROM tbl;
1557 **   SELECT (SELECT col FROM tbl);
1558 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1559 **
1560 ** The declaration type for any expression other than a column is NULL.
1561 **
1562 ** This routine has either 3 or 6 parameters depending on whether or not
1563 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1564 */
1565 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1566 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1567 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1568 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1569 #endif
1570 static const char *columnTypeImpl(
1571   NameContext *pNC,
1572 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1573   Expr *pExpr
1574 #else
1575   Expr *pExpr,
1576   const char **pzOrigDb,
1577   const char **pzOrigTab,
1578   const char **pzOrigCol
1579 #endif
1580 ){
1581   char const *zType = 0;
1582   int j;
1583 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1584   char const *zOrigDb = 0;
1585   char const *zOrigTab = 0;
1586   char const *zOrigCol = 0;
1587 #endif
1588 
1589   assert( pExpr!=0 );
1590   assert( pNC->pSrcList!=0 );
1591   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1592                                        ** are processed */
1593   switch( pExpr->op ){
1594     case TK_COLUMN: {
1595       /* The expression is a column. Locate the table the column is being
1596       ** extracted from in NameContext.pSrcList. This table may be real
1597       ** database table or a subquery.
1598       */
1599       Table *pTab = 0;            /* Table structure column is extracted from */
1600       Select *pS = 0;             /* Select the column is extracted from */
1601       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1602       while( pNC && !pTab ){
1603         SrcList *pTabList = pNC->pSrcList;
1604         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1605         if( j<pTabList->nSrc ){
1606           pTab = pTabList->a[j].pTab;
1607           pS = pTabList->a[j].pSelect;
1608         }else{
1609           pNC = pNC->pNext;
1610         }
1611       }
1612 
1613       if( pTab==0 ){
1614         /* At one time, code such as "SELECT new.x" within a trigger would
1615         ** cause this condition to run.  Since then, we have restructured how
1616         ** trigger code is generated and so this condition is no longer
1617         ** possible. However, it can still be true for statements like
1618         ** the following:
1619         **
1620         **   CREATE TABLE t1(col INTEGER);
1621         **   SELECT (SELECT t1.col) FROM FROM t1;
1622         **
1623         ** when columnType() is called on the expression "t1.col" in the
1624         ** sub-select. In this case, set the column type to NULL, even
1625         ** though it should really be "INTEGER".
1626         **
1627         ** This is not a problem, as the column type of "t1.col" is never
1628         ** used. When columnType() is called on the expression
1629         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1630         ** branch below.  */
1631         break;
1632       }
1633 
1634       assert( pTab && pExpr->pTab==pTab );
1635       if( pS ){
1636         /* The "table" is actually a sub-select or a view in the FROM clause
1637         ** of the SELECT statement. Return the declaration type and origin
1638         ** data for the result-set column of the sub-select.
1639         */
1640         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1641           /* If iCol is less than zero, then the expression requests the
1642           ** rowid of the sub-select or view. This expression is legal (see
1643           ** test case misc2.2.2) - it always evaluates to NULL.
1644           */
1645           NameContext sNC;
1646           Expr *p = pS->pEList->a[iCol].pExpr;
1647           sNC.pSrcList = pS->pSrc;
1648           sNC.pNext = pNC;
1649           sNC.pParse = pNC->pParse;
1650           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1651         }
1652       }else{
1653         /* A real table or a CTE table */
1654         assert( !pS );
1655 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1656         if( iCol<0 ) iCol = pTab->iPKey;
1657         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1658         if( iCol<0 ){
1659           zType = "INTEGER";
1660           zOrigCol = "rowid";
1661         }else{
1662           zOrigCol = pTab->aCol[iCol].zName;
1663           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1664         }
1665         zOrigTab = pTab->zName;
1666         if( pNC->pParse && pTab->pSchema ){
1667           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1668           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1669         }
1670 #else
1671         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1672         if( iCol<0 ){
1673           zType = "INTEGER";
1674         }else{
1675           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1676         }
1677 #endif
1678       }
1679       break;
1680     }
1681 #ifndef SQLITE_OMIT_SUBQUERY
1682     case TK_SELECT: {
1683       /* The expression is a sub-select. Return the declaration type and
1684       ** origin info for the single column in the result set of the SELECT
1685       ** statement.
1686       */
1687       NameContext sNC;
1688       Select *pS = pExpr->x.pSelect;
1689       Expr *p = pS->pEList->a[0].pExpr;
1690       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1691       sNC.pSrcList = pS->pSrc;
1692       sNC.pNext = pNC;
1693       sNC.pParse = pNC->pParse;
1694       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1695       break;
1696     }
1697 #endif
1698   }
1699 
1700 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1701   if( pzOrigDb ){
1702     assert( pzOrigTab && pzOrigCol );
1703     *pzOrigDb = zOrigDb;
1704     *pzOrigTab = zOrigTab;
1705     *pzOrigCol = zOrigCol;
1706   }
1707 #endif
1708   return zType;
1709 }
1710 
1711 /*
1712 ** Generate code that will tell the VDBE the declaration types of columns
1713 ** in the result set.
1714 */
1715 static void generateColumnTypes(
1716   Parse *pParse,      /* Parser context */
1717   SrcList *pTabList,  /* List of tables */
1718   ExprList *pEList    /* Expressions defining the result set */
1719 ){
1720 #ifndef SQLITE_OMIT_DECLTYPE
1721   Vdbe *v = pParse->pVdbe;
1722   int i;
1723   NameContext sNC;
1724   sNC.pSrcList = pTabList;
1725   sNC.pParse = pParse;
1726   sNC.pNext = 0;
1727   for(i=0; i<pEList->nExpr; i++){
1728     Expr *p = pEList->a[i].pExpr;
1729     const char *zType;
1730 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1731     const char *zOrigDb = 0;
1732     const char *zOrigTab = 0;
1733     const char *zOrigCol = 0;
1734     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1735 
1736     /* The vdbe must make its own copy of the column-type and other
1737     ** column specific strings, in case the schema is reset before this
1738     ** virtual machine is deleted.
1739     */
1740     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1741     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1742     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1743 #else
1744     zType = columnType(&sNC, p, 0, 0, 0);
1745 #endif
1746     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1747   }
1748 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1749 }
1750 
1751 
1752 /*
1753 ** Compute the column names for a SELECT statement.
1754 **
1755 ** The only guarantee that SQLite makes about column names is that if the
1756 ** column has an AS clause assigning it a name, that will be the name used.
1757 ** That is the only documented guarantee.  However, countless applications
1758 ** developed over the years have made baseless assumptions about column names
1759 ** and will break if those assumptions changes.  Hence, use extreme caution
1760 ** when modifying this routine to avoid breaking legacy.
1761 **
1762 ** See Also: sqlite3ColumnsFromExprList()
1763 **
1764 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1765 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1766 ** applications should operate this way.  Nevertheless, we need to support the
1767 ** other modes for legacy:
1768 **
1769 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1770 **                              originally appears in the SELECT statement.  In
1771 **                              other words, the zSpan of the result expression.
1772 **
1773 **    short=ON, full=OFF:       (This is the default setting).  If the result
1774 **                              refers directly to a table column, then the
1775 **                              result column name is just the table column
1776 **                              name: COLUMN.  Otherwise use zSpan.
1777 **
1778 **    full=ON, short=ANY:       If the result refers directly to a table column,
1779 **                              then the result column name with the table name
1780 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1781 */
1782 static void generateColumnNames(
1783   Parse *pParse,      /* Parser context */
1784   Select *pSelect     /* Generate column names for this SELECT statement */
1785 ){
1786   Vdbe *v = pParse->pVdbe;
1787   int i;
1788   Table *pTab;
1789   SrcList *pTabList;
1790   ExprList *pEList;
1791   sqlite3 *db = pParse->db;
1792   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1793   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1794 
1795 #ifndef SQLITE_OMIT_EXPLAIN
1796   /* If this is an EXPLAIN, skip this step */
1797   if( pParse->explain ){
1798     return;
1799   }
1800 #endif
1801 
1802   if( pParse->colNamesSet || db->mallocFailed ) return;
1803   /* Column names are determined by the left-most term of a compound select */
1804   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1805   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1806   pTabList = pSelect->pSrc;
1807   pEList = pSelect->pEList;
1808   assert( v!=0 );
1809   assert( pTabList!=0 );
1810   pParse->colNamesSet = 1;
1811   fullName = (db->flags & SQLITE_FullColNames)!=0;
1812   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1813   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1814   for(i=0; i<pEList->nExpr; i++){
1815     Expr *p = pEList->a[i].pExpr;
1816 
1817     assert( p!=0 );
1818     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1819     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1820     if( pEList->a[i].zName ){
1821       /* An AS clause always takes first priority */
1822       char *zName = pEList->a[i].zName;
1823       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1824     }else if( srcName && p->op==TK_COLUMN ){
1825       char *zCol;
1826       int iCol = p->iColumn;
1827       pTab = p->pTab;
1828       assert( pTab!=0 );
1829       if( iCol<0 ) iCol = pTab->iPKey;
1830       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1831       if( iCol<0 ){
1832         zCol = "rowid";
1833       }else{
1834         zCol = pTab->aCol[iCol].zName;
1835       }
1836       if( fullName ){
1837         char *zName = 0;
1838         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1839         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1840       }else{
1841         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1842       }
1843     }else{
1844       const char *z = pEList->a[i].zSpan;
1845       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1846       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1847     }
1848   }
1849   generateColumnTypes(pParse, pTabList, pEList);
1850 }
1851 
1852 /*
1853 ** Given an expression list (which is really the list of expressions
1854 ** that form the result set of a SELECT statement) compute appropriate
1855 ** column names for a table that would hold the expression list.
1856 **
1857 ** All column names will be unique.
1858 **
1859 ** Only the column names are computed.  Column.zType, Column.zColl,
1860 ** and other fields of Column are zeroed.
1861 **
1862 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1863 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1864 **
1865 ** The only guarantee that SQLite makes about column names is that if the
1866 ** column has an AS clause assigning it a name, that will be the name used.
1867 ** That is the only documented guarantee.  However, countless applications
1868 ** developed over the years have made baseless assumptions about column names
1869 ** and will break if those assumptions changes.  Hence, use extreme caution
1870 ** when modifying this routine to avoid breaking legacy.
1871 **
1872 ** See Also: generateColumnNames()
1873 */
1874 int sqlite3ColumnsFromExprList(
1875   Parse *pParse,          /* Parsing context */
1876   ExprList *pEList,       /* Expr list from which to derive column names */
1877   i16 *pnCol,             /* Write the number of columns here */
1878   Column **paCol          /* Write the new column list here */
1879 ){
1880   sqlite3 *db = pParse->db;   /* Database connection */
1881   int i, j;                   /* Loop counters */
1882   u32 cnt;                    /* Index added to make the name unique */
1883   Column *aCol, *pCol;        /* For looping over result columns */
1884   int nCol;                   /* Number of columns in the result set */
1885   char *zName;                /* Column name */
1886   int nName;                  /* Size of name in zName[] */
1887   Hash ht;                    /* Hash table of column names */
1888 
1889   sqlite3HashInit(&ht);
1890   if( pEList ){
1891     nCol = pEList->nExpr;
1892     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1893     testcase( aCol==0 );
1894     if( nCol>32767 ) nCol = 32767;
1895   }else{
1896     nCol = 0;
1897     aCol = 0;
1898   }
1899   assert( nCol==(i16)nCol );
1900   *pnCol = nCol;
1901   *paCol = aCol;
1902 
1903   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1904     /* Get an appropriate name for the column
1905     */
1906     if( (zName = pEList->a[i].zName)!=0 ){
1907       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1908     }else{
1909       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1910       while( pColExpr->op==TK_DOT ){
1911         pColExpr = pColExpr->pRight;
1912         assert( pColExpr!=0 );
1913       }
1914       assert( pColExpr->op!=TK_AGG_COLUMN );
1915       if( pColExpr->op==TK_COLUMN ){
1916         /* For columns use the column name name */
1917         int iCol = pColExpr->iColumn;
1918         Table *pTab = pColExpr->pTab;
1919         assert( pTab!=0 );
1920         if( iCol<0 ) iCol = pTab->iPKey;
1921         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1922       }else if( pColExpr->op==TK_ID ){
1923         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1924         zName = pColExpr->u.zToken;
1925       }else{
1926         /* Use the original text of the column expression as its name */
1927         zName = pEList->a[i].zSpan;
1928       }
1929     }
1930     if( zName ){
1931       zName = sqlite3DbStrDup(db, zName);
1932     }else{
1933       zName = sqlite3MPrintf(db,"column%d",i+1);
1934     }
1935 
1936     /* Make sure the column name is unique.  If the name is not unique,
1937     ** append an integer to the name so that it becomes unique.
1938     */
1939     cnt = 0;
1940     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1941       nName = sqlite3Strlen30(zName);
1942       if( nName>0 ){
1943         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1944         if( zName[j]==':' ) nName = j;
1945       }
1946       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1947       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1948     }
1949     pCol->zName = zName;
1950     sqlite3ColumnPropertiesFromName(0, pCol);
1951     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1952       sqlite3OomFault(db);
1953     }
1954   }
1955   sqlite3HashClear(&ht);
1956   if( db->mallocFailed ){
1957     for(j=0; j<i; j++){
1958       sqlite3DbFree(db, aCol[j].zName);
1959     }
1960     sqlite3DbFree(db, aCol);
1961     *paCol = 0;
1962     *pnCol = 0;
1963     return SQLITE_NOMEM_BKPT;
1964   }
1965   return SQLITE_OK;
1966 }
1967 
1968 /*
1969 ** Add type and collation information to a column list based on
1970 ** a SELECT statement.
1971 **
1972 ** The column list presumably came from selectColumnNamesFromExprList().
1973 ** The column list has only names, not types or collations.  This
1974 ** routine goes through and adds the types and collations.
1975 **
1976 ** This routine requires that all identifiers in the SELECT
1977 ** statement be resolved.
1978 */
1979 void sqlite3SelectAddColumnTypeAndCollation(
1980   Parse *pParse,        /* Parsing contexts */
1981   Table *pTab,          /* Add column type information to this table */
1982   Select *pSelect       /* SELECT used to determine types and collations */
1983 ){
1984   sqlite3 *db = pParse->db;
1985   NameContext sNC;
1986   Column *pCol;
1987   CollSeq *pColl;
1988   int i;
1989   Expr *p;
1990   struct ExprList_item *a;
1991 
1992   assert( pSelect!=0 );
1993   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1994   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1995   if( db->mallocFailed ) return;
1996   memset(&sNC, 0, sizeof(sNC));
1997   sNC.pSrcList = pSelect->pSrc;
1998   a = pSelect->pEList->a;
1999   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2000     const char *zType;
2001     int n, m;
2002     p = a[i].pExpr;
2003     zType = columnType(&sNC, p, 0, 0, 0);
2004     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2005     pCol->affinity = sqlite3ExprAffinity(p);
2006     if( zType ){
2007       m = sqlite3Strlen30(zType);
2008       n = sqlite3Strlen30(pCol->zName);
2009       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2010       if( pCol->zName ){
2011         memcpy(&pCol->zName[n+1], zType, m+1);
2012         pCol->colFlags |= COLFLAG_HASTYPE;
2013       }
2014     }
2015     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2016     pColl = sqlite3ExprCollSeq(pParse, p);
2017     if( pColl && pCol->zColl==0 ){
2018       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2019     }
2020   }
2021   pTab->szTabRow = 1; /* Any non-zero value works */
2022 }
2023 
2024 /*
2025 ** Given a SELECT statement, generate a Table structure that describes
2026 ** the result set of that SELECT.
2027 */
2028 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2029   Table *pTab;
2030   sqlite3 *db = pParse->db;
2031   int savedFlags;
2032 
2033   savedFlags = db->flags;
2034   db->flags &= ~SQLITE_FullColNames;
2035   db->flags |= SQLITE_ShortColNames;
2036   sqlite3SelectPrep(pParse, pSelect, 0);
2037   if( pParse->nErr ) return 0;
2038   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2039   db->flags = savedFlags;
2040   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2041   if( pTab==0 ){
2042     return 0;
2043   }
2044   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2045   ** is disabled */
2046   assert( db->lookaside.bDisable );
2047   pTab->nTabRef = 1;
2048   pTab->zName = 0;
2049   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2050   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2051   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2052   pTab->iPKey = -1;
2053   if( db->mallocFailed ){
2054     sqlite3DeleteTable(db, pTab);
2055     return 0;
2056   }
2057   return pTab;
2058 }
2059 
2060 /*
2061 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2062 ** If an error occurs, return NULL and leave a message in pParse.
2063 */
2064 Vdbe *sqlite3GetVdbe(Parse *pParse){
2065   if( pParse->pVdbe ){
2066     return pParse->pVdbe;
2067   }
2068   if( pParse->pToplevel==0
2069    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2070   ){
2071     pParse->okConstFactor = 1;
2072   }
2073   return sqlite3VdbeCreate(pParse);
2074 }
2075 
2076 
2077 /*
2078 ** Compute the iLimit and iOffset fields of the SELECT based on the
2079 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2080 ** that appear in the original SQL statement after the LIMIT and OFFSET
2081 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2082 ** are the integer memory register numbers for counters used to compute
2083 ** the limit and offset.  If there is no limit and/or offset, then
2084 ** iLimit and iOffset are negative.
2085 **
2086 ** This routine changes the values of iLimit and iOffset only if
2087 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2088 ** and iOffset should have been preset to appropriate default values (zero)
2089 ** prior to calling this routine.
2090 **
2091 ** The iOffset register (if it exists) is initialized to the value
2092 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2093 ** iOffset+1 is initialized to LIMIT+OFFSET.
2094 **
2095 ** Only if pLimit->pLeft!=0 do the limit registers get
2096 ** redefined.  The UNION ALL operator uses this property to force
2097 ** the reuse of the same limit and offset registers across multiple
2098 ** SELECT statements.
2099 */
2100 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2101   Vdbe *v = 0;
2102   int iLimit = 0;
2103   int iOffset;
2104   int n;
2105   Expr *pLimit = p->pLimit;
2106 
2107   if( p->iLimit ) return;
2108 
2109   /*
2110   ** "LIMIT -1" always shows all rows.  There is some
2111   ** controversy about what the correct behavior should be.
2112   ** The current implementation interprets "LIMIT 0" to mean
2113   ** no rows.
2114   */
2115   sqlite3ExprCacheClear(pParse);
2116   if( pLimit ){
2117     assert( pLimit->op==TK_LIMIT );
2118     assert( pLimit->pLeft!=0 );
2119     p->iLimit = iLimit = ++pParse->nMem;
2120     v = sqlite3GetVdbe(pParse);
2121     assert( v!=0 );
2122     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2123       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2124       VdbeComment((v, "LIMIT counter"));
2125       if( n==0 ){
2126         sqlite3VdbeGoto(v, iBreak);
2127       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2128         p->nSelectRow = sqlite3LogEst((u64)n);
2129         p->selFlags |= SF_FixedLimit;
2130       }
2131     }else{
2132       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2133       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2134       VdbeComment((v, "LIMIT counter"));
2135       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2136     }
2137     if( pLimit->pRight ){
2138       p->iOffset = iOffset = ++pParse->nMem;
2139       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2140       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2141       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2142       VdbeComment((v, "OFFSET counter"));
2143       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2144       VdbeComment((v, "LIMIT+OFFSET"));
2145     }
2146   }
2147 }
2148 
2149 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2150 /*
2151 ** Return the appropriate collating sequence for the iCol-th column of
2152 ** the result set for the compound-select statement "p".  Return NULL if
2153 ** the column has no default collating sequence.
2154 **
2155 ** The collating sequence for the compound select is taken from the
2156 ** left-most term of the select that has a collating sequence.
2157 */
2158 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2159   CollSeq *pRet;
2160   if( p->pPrior ){
2161     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2162   }else{
2163     pRet = 0;
2164   }
2165   assert( iCol>=0 );
2166   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2167   ** have been thrown during name resolution and we would not have gotten
2168   ** this far */
2169   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2170     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2171   }
2172   return pRet;
2173 }
2174 
2175 /*
2176 ** The select statement passed as the second parameter is a compound SELECT
2177 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2178 ** structure suitable for implementing the ORDER BY.
2179 **
2180 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2181 ** function is responsible for ensuring that this structure is eventually
2182 ** freed.
2183 */
2184 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2185   ExprList *pOrderBy = p->pOrderBy;
2186   int nOrderBy = p->pOrderBy->nExpr;
2187   sqlite3 *db = pParse->db;
2188   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2189   if( pRet ){
2190     int i;
2191     for(i=0; i<nOrderBy; i++){
2192       struct ExprList_item *pItem = &pOrderBy->a[i];
2193       Expr *pTerm = pItem->pExpr;
2194       CollSeq *pColl;
2195 
2196       if( pTerm->flags & EP_Collate ){
2197         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2198       }else{
2199         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2200         if( pColl==0 ) pColl = db->pDfltColl;
2201         pOrderBy->a[i].pExpr =
2202           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2203       }
2204       assert( sqlite3KeyInfoIsWriteable(pRet) );
2205       pRet->aColl[i] = pColl;
2206       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2207     }
2208   }
2209 
2210   return pRet;
2211 }
2212 
2213 #ifndef SQLITE_OMIT_CTE
2214 /*
2215 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2216 ** query of the form:
2217 **
2218 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2219 **                         \___________/             \_______________/
2220 **                           p->pPrior                      p
2221 **
2222 **
2223 ** There is exactly one reference to the recursive-table in the FROM clause
2224 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2225 **
2226 ** The setup-query runs once to generate an initial set of rows that go
2227 ** into a Queue table.  Rows are extracted from the Queue table one by
2228 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2229 ** extracted row (now in the iCurrent table) becomes the content of the
2230 ** recursive-table for a recursive-query run.  The output of the recursive-query
2231 ** is added back into the Queue table.  Then another row is extracted from Queue
2232 ** and the iteration continues until the Queue table is empty.
2233 **
2234 ** If the compound query operator is UNION then no duplicate rows are ever
2235 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2236 ** that have ever been inserted into Queue and causes duplicates to be
2237 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2238 **
2239 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2240 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2241 ** an ORDER BY, the Queue table is just a FIFO.
2242 **
2243 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2244 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2245 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2246 ** with a positive value, then the first OFFSET outputs are discarded rather
2247 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2248 ** rows have been skipped.
2249 */
2250 static void generateWithRecursiveQuery(
2251   Parse *pParse,        /* Parsing context */
2252   Select *p,            /* The recursive SELECT to be coded */
2253   SelectDest *pDest     /* What to do with query results */
2254 ){
2255   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2256   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2257   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2258   Select *pSetup = p->pPrior;   /* The setup query */
2259   int addrTop;                  /* Top of the loop */
2260   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2261   int iCurrent = 0;             /* The Current table */
2262   int regCurrent;               /* Register holding Current table */
2263   int iQueue;                   /* The Queue table */
2264   int iDistinct = 0;            /* To ensure unique results if UNION */
2265   int eDest = SRT_Fifo;         /* How to write to Queue */
2266   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2267   int i;                        /* Loop counter */
2268   int rc;                       /* Result code */
2269   ExprList *pOrderBy;           /* The ORDER BY clause */
2270   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2271   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2272 
2273   /* Obtain authorization to do a recursive query */
2274   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2275 
2276   /* Process the LIMIT and OFFSET clauses, if they exist */
2277   addrBreak = sqlite3VdbeMakeLabel(v);
2278   p->nSelectRow = 320;  /* 4 billion rows */
2279   computeLimitRegisters(pParse, p, addrBreak);
2280   pLimit = p->pLimit;
2281   regLimit = p->iLimit;
2282   regOffset = p->iOffset;
2283   p->pLimit = 0;
2284   p->iLimit = p->iOffset = 0;
2285   pOrderBy = p->pOrderBy;
2286 
2287   /* Locate the cursor number of the Current table */
2288   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2289     if( pSrc->a[i].fg.isRecursive ){
2290       iCurrent = pSrc->a[i].iCursor;
2291       break;
2292     }
2293   }
2294 
2295   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2296   ** the Distinct table must be exactly one greater than Queue in order
2297   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2298   iQueue = pParse->nTab++;
2299   if( p->op==TK_UNION ){
2300     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2301     iDistinct = pParse->nTab++;
2302   }else{
2303     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2304   }
2305   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2306 
2307   /* Allocate cursors for Current, Queue, and Distinct. */
2308   regCurrent = ++pParse->nMem;
2309   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2310   if( pOrderBy ){
2311     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2312     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2313                       (char*)pKeyInfo, P4_KEYINFO);
2314     destQueue.pOrderBy = pOrderBy;
2315   }else{
2316     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2317   }
2318   VdbeComment((v, "Queue table"));
2319   if( iDistinct ){
2320     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2321     p->selFlags |= SF_UsesEphemeral;
2322   }
2323 
2324   /* Detach the ORDER BY clause from the compound SELECT */
2325   p->pOrderBy = 0;
2326 
2327   /* Store the results of the setup-query in Queue. */
2328   pSetup->pNext = 0;
2329   rc = sqlite3Select(pParse, pSetup, &destQueue);
2330   pSetup->pNext = p;
2331   if( rc ) goto end_of_recursive_query;
2332 
2333   /* Find the next row in the Queue and output that row */
2334   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2335 
2336   /* Transfer the next row in Queue over to Current */
2337   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2338   if( pOrderBy ){
2339     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2340   }else{
2341     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2342   }
2343   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2344 
2345   /* Output the single row in Current */
2346   addrCont = sqlite3VdbeMakeLabel(v);
2347   codeOffset(v, regOffset, addrCont);
2348   selectInnerLoop(pParse, p, iCurrent,
2349       0, 0, pDest, addrCont, addrBreak);
2350   if( regLimit ){
2351     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2352     VdbeCoverage(v);
2353   }
2354   sqlite3VdbeResolveLabel(v, addrCont);
2355 
2356   /* Execute the recursive SELECT taking the single row in Current as
2357   ** the value for the recursive-table. Store the results in the Queue.
2358   */
2359   if( p->selFlags & SF_Aggregate ){
2360     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2361   }else{
2362     p->pPrior = 0;
2363     sqlite3Select(pParse, p, &destQueue);
2364     assert( p->pPrior==0 );
2365     p->pPrior = pSetup;
2366   }
2367 
2368   /* Keep running the loop until the Queue is empty */
2369   sqlite3VdbeGoto(v, addrTop);
2370   sqlite3VdbeResolveLabel(v, addrBreak);
2371 
2372 end_of_recursive_query:
2373   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2374   p->pOrderBy = pOrderBy;
2375   p->pLimit = pLimit;
2376   return;
2377 }
2378 #endif /* SQLITE_OMIT_CTE */
2379 
2380 /* Forward references */
2381 static int multiSelectOrderBy(
2382   Parse *pParse,        /* Parsing context */
2383   Select *p,            /* The right-most of SELECTs to be coded */
2384   SelectDest *pDest     /* What to do with query results */
2385 );
2386 
2387 /*
2388 ** Handle the special case of a compound-select that originates from a
2389 ** VALUES clause.  By handling this as a special case, we avoid deep
2390 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2391 ** on a VALUES clause.
2392 **
2393 ** Because the Select object originates from a VALUES clause:
2394 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2395 **   (2) All terms are UNION ALL
2396 **   (3) There is no ORDER BY clause
2397 **
2398 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2399 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2400 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2401 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2402 */
2403 static int multiSelectValues(
2404   Parse *pParse,        /* Parsing context */
2405   Select *p,            /* The right-most of SELECTs to be coded */
2406   SelectDest *pDest     /* What to do with query results */
2407 ){
2408   Select *pPrior;
2409   Select *pRightmost = p;
2410   int nRow = 1;
2411   int rc = 0;
2412   assert( p->selFlags & SF_MultiValue );
2413   do{
2414     assert( p->selFlags & SF_Values );
2415     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2416     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2417     if( p->pPrior==0 ) break;
2418     assert( p->pPrior->pNext==p );
2419     p = p->pPrior;
2420     nRow++;
2421   }while(1);
2422   while( p ){
2423     pPrior = p->pPrior;
2424     p->pPrior = 0;
2425     rc = sqlite3Select(pParse, p, pDest);
2426     p->pPrior = pPrior;
2427     if( rc || pRightmost->pLimit ) break;
2428     p->nSelectRow = nRow;
2429     p = p->pNext;
2430   }
2431   return rc;
2432 }
2433 
2434 /*
2435 ** This routine is called to process a compound query form from
2436 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2437 ** INTERSECT
2438 **
2439 ** "p" points to the right-most of the two queries.  the query on the
2440 ** left is p->pPrior.  The left query could also be a compound query
2441 ** in which case this routine will be called recursively.
2442 **
2443 ** The results of the total query are to be written into a destination
2444 ** of type eDest with parameter iParm.
2445 **
2446 ** Example 1:  Consider a three-way compound SQL statement.
2447 **
2448 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2449 **
2450 ** This statement is parsed up as follows:
2451 **
2452 **     SELECT c FROM t3
2453 **      |
2454 **      `----->  SELECT b FROM t2
2455 **                |
2456 **                `------>  SELECT a FROM t1
2457 **
2458 ** The arrows in the diagram above represent the Select.pPrior pointer.
2459 ** So if this routine is called with p equal to the t3 query, then
2460 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2461 **
2462 ** Notice that because of the way SQLite parses compound SELECTs, the
2463 ** individual selects always group from left to right.
2464 */
2465 static int multiSelect(
2466   Parse *pParse,        /* Parsing context */
2467   Select *p,            /* The right-most of SELECTs to be coded */
2468   SelectDest *pDest     /* What to do with query results */
2469 ){
2470   int rc = SQLITE_OK;   /* Success code from a subroutine */
2471   Select *pPrior;       /* Another SELECT immediately to our left */
2472   Vdbe *v;              /* Generate code to this VDBE */
2473   SelectDest dest;      /* Alternative data destination */
2474   Select *pDelete = 0;  /* Chain of simple selects to delete */
2475   sqlite3 *db;          /* Database connection */
2476 #ifndef SQLITE_OMIT_EXPLAIN
2477   int iSub1 = 0;        /* EQP id of left-hand query */
2478   int iSub2 = 0;        /* EQP id of right-hand query */
2479 #endif
2480 
2481   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2482   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2483   */
2484   assert( p && p->pPrior );  /* Calling function guarantees this much */
2485   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2486   db = pParse->db;
2487   pPrior = p->pPrior;
2488   dest = *pDest;
2489   if( pPrior->pOrderBy || pPrior->pLimit ){
2490     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2491       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2492     rc = 1;
2493     goto multi_select_end;
2494   }
2495 
2496   v = sqlite3GetVdbe(pParse);
2497   assert( v!=0 );  /* The VDBE already created by calling function */
2498 
2499   /* Create the destination temporary table if necessary
2500   */
2501   if( dest.eDest==SRT_EphemTab ){
2502     assert( p->pEList );
2503     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2504     dest.eDest = SRT_Table;
2505   }
2506 
2507   /* Special handling for a compound-select that originates as a VALUES clause.
2508   */
2509   if( p->selFlags & SF_MultiValue ){
2510     rc = multiSelectValues(pParse, p, &dest);
2511     goto multi_select_end;
2512   }
2513 
2514   /* Make sure all SELECTs in the statement have the same number of elements
2515   ** in their result sets.
2516   */
2517   assert( p->pEList && pPrior->pEList );
2518   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2519 
2520 #ifndef SQLITE_OMIT_CTE
2521   if( p->selFlags & SF_Recursive ){
2522     generateWithRecursiveQuery(pParse, p, &dest);
2523   }else
2524 #endif
2525 
2526   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2527   */
2528   if( p->pOrderBy ){
2529     return multiSelectOrderBy(pParse, p, pDest);
2530   }else
2531 
2532   /* Generate code for the left and right SELECT statements.
2533   */
2534   switch( p->op ){
2535     case TK_ALL: {
2536       int addr = 0;
2537       int nLimit;
2538       assert( !pPrior->pLimit );
2539       pPrior->iLimit = p->iLimit;
2540       pPrior->iOffset = p->iOffset;
2541       pPrior->pLimit = p->pLimit;
2542       explainSetInteger(iSub1, pParse->iNextSelectId);
2543       rc = sqlite3Select(pParse, pPrior, &dest);
2544       p->pLimit = 0;
2545       if( rc ){
2546         goto multi_select_end;
2547       }
2548       p->pPrior = 0;
2549       p->iLimit = pPrior->iLimit;
2550       p->iOffset = pPrior->iOffset;
2551       if( p->iLimit ){
2552         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2553         VdbeComment((v, "Jump ahead if LIMIT reached"));
2554         if( p->iOffset ){
2555           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2556                             p->iLimit, p->iOffset+1, p->iOffset);
2557         }
2558       }
2559       explainSetInteger(iSub2, pParse->iNextSelectId);
2560       rc = sqlite3Select(pParse, p, &dest);
2561       testcase( rc!=SQLITE_OK );
2562       pDelete = p->pPrior;
2563       p->pPrior = pPrior;
2564       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2565       if( pPrior->pLimit
2566        && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2567        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2568       ){
2569         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2570       }
2571       if( addr ){
2572         sqlite3VdbeJumpHere(v, addr);
2573       }
2574       break;
2575     }
2576     case TK_EXCEPT:
2577     case TK_UNION: {
2578       int unionTab;    /* Cursor number of the temporary table holding result */
2579       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2580       int priorOp;     /* The SRT_ operation to apply to prior selects */
2581       Expr *pLimit;    /* Saved values of p->nLimit  */
2582       int addr;
2583       SelectDest uniondest;
2584 
2585       testcase( p->op==TK_EXCEPT );
2586       testcase( p->op==TK_UNION );
2587       priorOp = SRT_Union;
2588       if( dest.eDest==priorOp ){
2589         /* We can reuse a temporary table generated by a SELECT to our
2590         ** right.
2591         */
2592         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2593         unionTab = dest.iSDParm;
2594       }else{
2595         /* We will need to create our own temporary table to hold the
2596         ** intermediate results.
2597         */
2598         unionTab = pParse->nTab++;
2599         assert( p->pOrderBy==0 );
2600         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2601         assert( p->addrOpenEphm[0] == -1 );
2602         p->addrOpenEphm[0] = addr;
2603         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2604         assert( p->pEList );
2605       }
2606 
2607       /* Code the SELECT statements to our left
2608       */
2609       assert( !pPrior->pOrderBy );
2610       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2611       explainSetInteger(iSub1, pParse->iNextSelectId);
2612       rc = sqlite3Select(pParse, pPrior, &uniondest);
2613       if( rc ){
2614         goto multi_select_end;
2615       }
2616 
2617       /* Code the current SELECT statement
2618       */
2619       if( p->op==TK_EXCEPT ){
2620         op = SRT_Except;
2621       }else{
2622         assert( p->op==TK_UNION );
2623         op = SRT_Union;
2624       }
2625       p->pPrior = 0;
2626       pLimit = p->pLimit;
2627       p->pLimit = 0;
2628       uniondest.eDest = op;
2629       explainSetInteger(iSub2, pParse->iNextSelectId);
2630       rc = sqlite3Select(pParse, p, &uniondest);
2631       testcase( rc!=SQLITE_OK );
2632       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2633       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2634       sqlite3ExprListDelete(db, p->pOrderBy);
2635       pDelete = p->pPrior;
2636       p->pPrior = pPrior;
2637       p->pOrderBy = 0;
2638       if( p->op==TK_UNION ){
2639         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2640       }
2641       sqlite3ExprDelete(db, p->pLimit);
2642       p->pLimit = pLimit;
2643       p->iLimit = 0;
2644       p->iOffset = 0;
2645 
2646       /* Convert the data in the temporary table into whatever form
2647       ** it is that we currently need.
2648       */
2649       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2650       if( dest.eDest!=priorOp ){
2651         int iCont, iBreak, iStart;
2652         assert( p->pEList );
2653         iBreak = sqlite3VdbeMakeLabel(v);
2654         iCont = sqlite3VdbeMakeLabel(v);
2655         computeLimitRegisters(pParse, p, iBreak);
2656         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2657         iStart = sqlite3VdbeCurrentAddr(v);
2658         selectInnerLoop(pParse, p, unionTab,
2659                         0, 0, &dest, iCont, iBreak);
2660         sqlite3VdbeResolveLabel(v, iCont);
2661         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2662         sqlite3VdbeResolveLabel(v, iBreak);
2663         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2664       }
2665       break;
2666     }
2667     default: assert( p->op==TK_INTERSECT ); {
2668       int tab1, tab2;
2669       int iCont, iBreak, iStart;
2670       Expr *pLimit;
2671       int addr;
2672       SelectDest intersectdest;
2673       int r1;
2674 
2675       /* INTERSECT is different from the others since it requires
2676       ** two temporary tables.  Hence it has its own case.  Begin
2677       ** by allocating the tables we will need.
2678       */
2679       tab1 = pParse->nTab++;
2680       tab2 = pParse->nTab++;
2681       assert( p->pOrderBy==0 );
2682 
2683       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2684       assert( p->addrOpenEphm[0] == -1 );
2685       p->addrOpenEphm[0] = addr;
2686       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2687       assert( p->pEList );
2688 
2689       /* Code the SELECTs to our left into temporary table "tab1".
2690       */
2691       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2692       explainSetInteger(iSub1, pParse->iNextSelectId);
2693       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2694       if( rc ){
2695         goto multi_select_end;
2696       }
2697 
2698       /* Code the current SELECT into temporary table "tab2"
2699       */
2700       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2701       assert( p->addrOpenEphm[1] == -1 );
2702       p->addrOpenEphm[1] = addr;
2703       p->pPrior = 0;
2704       pLimit = p->pLimit;
2705       p->pLimit = 0;
2706       intersectdest.iSDParm = tab2;
2707       explainSetInteger(iSub2, pParse->iNextSelectId);
2708       rc = sqlite3Select(pParse, p, &intersectdest);
2709       testcase( rc!=SQLITE_OK );
2710       pDelete = p->pPrior;
2711       p->pPrior = pPrior;
2712       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2713       sqlite3ExprDelete(db, p->pLimit);
2714       p->pLimit = pLimit;
2715 
2716       /* Generate code to take the intersection of the two temporary
2717       ** tables.
2718       */
2719       assert( p->pEList );
2720       iBreak = sqlite3VdbeMakeLabel(v);
2721       iCont = sqlite3VdbeMakeLabel(v);
2722       computeLimitRegisters(pParse, p, iBreak);
2723       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2724       r1 = sqlite3GetTempReg(pParse);
2725       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2726       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2727       sqlite3ReleaseTempReg(pParse, r1);
2728       selectInnerLoop(pParse, p, tab1,
2729                       0, 0, &dest, iCont, iBreak);
2730       sqlite3VdbeResolveLabel(v, iCont);
2731       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2732       sqlite3VdbeResolveLabel(v, iBreak);
2733       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2734       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2735       break;
2736     }
2737   }
2738 
2739   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2740 
2741   /* Compute collating sequences used by
2742   ** temporary tables needed to implement the compound select.
2743   ** Attach the KeyInfo structure to all temporary tables.
2744   **
2745   ** This section is run by the right-most SELECT statement only.
2746   ** SELECT statements to the left always skip this part.  The right-most
2747   ** SELECT might also skip this part if it has no ORDER BY clause and
2748   ** no temp tables are required.
2749   */
2750   if( p->selFlags & SF_UsesEphemeral ){
2751     int i;                        /* Loop counter */
2752     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2753     Select *pLoop;                /* For looping through SELECT statements */
2754     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2755     int nCol;                     /* Number of columns in result set */
2756 
2757     assert( p->pNext==0 );
2758     nCol = p->pEList->nExpr;
2759     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2760     if( !pKeyInfo ){
2761       rc = SQLITE_NOMEM_BKPT;
2762       goto multi_select_end;
2763     }
2764     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2765       *apColl = multiSelectCollSeq(pParse, p, i);
2766       if( 0==*apColl ){
2767         *apColl = db->pDfltColl;
2768       }
2769     }
2770 
2771     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2772       for(i=0; i<2; i++){
2773         int addr = pLoop->addrOpenEphm[i];
2774         if( addr<0 ){
2775           /* If [0] is unused then [1] is also unused.  So we can
2776           ** always safely abort as soon as the first unused slot is found */
2777           assert( pLoop->addrOpenEphm[1]<0 );
2778           break;
2779         }
2780         sqlite3VdbeChangeP2(v, addr, nCol);
2781         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2782                             P4_KEYINFO);
2783         pLoop->addrOpenEphm[i] = -1;
2784       }
2785     }
2786     sqlite3KeyInfoUnref(pKeyInfo);
2787   }
2788 
2789 multi_select_end:
2790   pDest->iSdst = dest.iSdst;
2791   pDest->nSdst = dest.nSdst;
2792   sqlite3SelectDelete(db, pDelete);
2793   return rc;
2794 }
2795 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2796 
2797 /*
2798 ** Error message for when two or more terms of a compound select have different
2799 ** size result sets.
2800 */
2801 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2802   if( p->selFlags & SF_Values ){
2803     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2804   }else{
2805     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2806       " do not have the same number of result columns", selectOpName(p->op));
2807   }
2808 }
2809 
2810 /*
2811 ** Code an output subroutine for a coroutine implementation of a
2812 ** SELECT statment.
2813 **
2814 ** The data to be output is contained in pIn->iSdst.  There are
2815 ** pIn->nSdst columns to be output.  pDest is where the output should
2816 ** be sent.
2817 **
2818 ** regReturn is the number of the register holding the subroutine
2819 ** return address.
2820 **
2821 ** If regPrev>0 then it is the first register in a vector that
2822 ** records the previous output.  mem[regPrev] is a flag that is false
2823 ** if there has been no previous output.  If regPrev>0 then code is
2824 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2825 ** keys.
2826 **
2827 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2828 ** iBreak.
2829 */
2830 static int generateOutputSubroutine(
2831   Parse *pParse,          /* Parsing context */
2832   Select *p,              /* The SELECT statement */
2833   SelectDest *pIn,        /* Coroutine supplying data */
2834   SelectDest *pDest,      /* Where to send the data */
2835   int regReturn,          /* The return address register */
2836   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2837   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2838   int iBreak              /* Jump here if we hit the LIMIT */
2839 ){
2840   Vdbe *v = pParse->pVdbe;
2841   int iContinue;
2842   int addr;
2843 
2844   addr = sqlite3VdbeCurrentAddr(v);
2845   iContinue = sqlite3VdbeMakeLabel(v);
2846 
2847   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2848   */
2849   if( regPrev ){
2850     int addr1, addr2;
2851     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2852     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2853                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2854     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2855     sqlite3VdbeJumpHere(v, addr1);
2856     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2857     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2858   }
2859   if( pParse->db->mallocFailed ) return 0;
2860 
2861   /* Suppress the first OFFSET entries if there is an OFFSET clause
2862   */
2863   codeOffset(v, p->iOffset, iContinue);
2864 
2865   assert( pDest->eDest!=SRT_Exists );
2866   assert( pDest->eDest!=SRT_Table );
2867   switch( pDest->eDest ){
2868     /* Store the result as data using a unique key.
2869     */
2870     case SRT_EphemTab: {
2871       int r1 = sqlite3GetTempReg(pParse);
2872       int r2 = sqlite3GetTempReg(pParse);
2873       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2874       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2875       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2876       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2877       sqlite3ReleaseTempReg(pParse, r2);
2878       sqlite3ReleaseTempReg(pParse, r1);
2879       break;
2880     }
2881 
2882 #ifndef SQLITE_OMIT_SUBQUERY
2883     /* If we are creating a set for an "expr IN (SELECT ...)".
2884     */
2885     case SRT_Set: {
2886       int r1;
2887       testcase( pIn->nSdst>1 );
2888       r1 = sqlite3GetTempReg(pParse);
2889       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2890           r1, pDest->zAffSdst, pIn->nSdst);
2891       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2892       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2893                            pIn->iSdst, pIn->nSdst);
2894       sqlite3ReleaseTempReg(pParse, r1);
2895       break;
2896     }
2897 
2898     /* If this is a scalar select that is part of an expression, then
2899     ** store the results in the appropriate memory cell and break out
2900     ** of the scan loop.
2901     */
2902     case SRT_Mem: {
2903       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2904       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2905       /* The LIMIT clause will jump out of the loop for us */
2906       break;
2907     }
2908 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2909 
2910     /* The results are stored in a sequence of registers
2911     ** starting at pDest->iSdst.  Then the co-routine yields.
2912     */
2913     case SRT_Coroutine: {
2914       if( pDest->iSdst==0 ){
2915         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2916         pDest->nSdst = pIn->nSdst;
2917       }
2918       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2919       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2920       break;
2921     }
2922 
2923     /* If none of the above, then the result destination must be
2924     ** SRT_Output.  This routine is never called with any other
2925     ** destination other than the ones handled above or SRT_Output.
2926     **
2927     ** For SRT_Output, results are stored in a sequence of registers.
2928     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2929     ** return the next row of result.
2930     */
2931     default: {
2932       assert( pDest->eDest==SRT_Output );
2933       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2934       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2935       break;
2936     }
2937   }
2938 
2939   /* Jump to the end of the loop if the LIMIT is reached.
2940   */
2941   if( p->iLimit ){
2942     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2943   }
2944 
2945   /* Generate the subroutine return
2946   */
2947   sqlite3VdbeResolveLabel(v, iContinue);
2948   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2949 
2950   return addr;
2951 }
2952 
2953 /*
2954 ** Alternative compound select code generator for cases when there
2955 ** is an ORDER BY clause.
2956 **
2957 ** We assume a query of the following form:
2958 **
2959 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2960 **
2961 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2962 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2963 ** co-routines.  Then run the co-routines in parallel and merge the results
2964 ** into the output.  In addition to the two coroutines (called selectA and
2965 ** selectB) there are 7 subroutines:
2966 **
2967 **    outA:    Move the output of the selectA coroutine into the output
2968 **             of the compound query.
2969 **
2970 **    outB:    Move the output of the selectB coroutine into the output
2971 **             of the compound query.  (Only generated for UNION and
2972 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2973 **             appears only in B.)
2974 **
2975 **    AltB:    Called when there is data from both coroutines and A<B.
2976 **
2977 **    AeqB:    Called when there is data from both coroutines and A==B.
2978 **
2979 **    AgtB:    Called when there is data from both coroutines and A>B.
2980 **
2981 **    EofA:    Called when data is exhausted from selectA.
2982 **
2983 **    EofB:    Called when data is exhausted from selectB.
2984 **
2985 ** The implementation of the latter five subroutines depend on which
2986 ** <operator> is used:
2987 **
2988 **
2989 **             UNION ALL         UNION            EXCEPT          INTERSECT
2990 **          -------------  -----------------  --------------  -----------------
2991 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2992 **
2993 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2994 **
2995 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2996 **
2997 **   EofA:   outB, nextB      outB, nextB          halt             halt
2998 **
2999 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3000 **
3001 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3002 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3003 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3004 ** following nextX causes a jump to the end of the select processing.
3005 **
3006 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3007 ** within the output subroutine.  The regPrev register set holds the previously
3008 ** output value.  A comparison is made against this value and the output
3009 ** is skipped if the next results would be the same as the previous.
3010 **
3011 ** The implementation plan is to implement the two coroutines and seven
3012 ** subroutines first, then put the control logic at the bottom.  Like this:
3013 **
3014 **          goto Init
3015 **     coA: coroutine for left query (A)
3016 **     coB: coroutine for right query (B)
3017 **    outA: output one row of A
3018 **    outB: output one row of B (UNION and UNION ALL only)
3019 **    EofA: ...
3020 **    EofB: ...
3021 **    AltB: ...
3022 **    AeqB: ...
3023 **    AgtB: ...
3024 **    Init: initialize coroutine registers
3025 **          yield coA
3026 **          if eof(A) goto EofA
3027 **          yield coB
3028 **          if eof(B) goto EofB
3029 **    Cmpr: Compare A, B
3030 **          Jump AltB, AeqB, AgtB
3031 **     End: ...
3032 **
3033 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3034 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3035 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3036 ** and AgtB jump to either L2 or to one of EofA or EofB.
3037 */
3038 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3039 static int multiSelectOrderBy(
3040   Parse *pParse,        /* Parsing context */
3041   Select *p,            /* The right-most of SELECTs to be coded */
3042   SelectDest *pDest     /* What to do with query results */
3043 ){
3044   int i, j;             /* Loop counters */
3045   Select *pPrior;       /* Another SELECT immediately to our left */
3046   Vdbe *v;              /* Generate code to this VDBE */
3047   SelectDest destA;     /* Destination for coroutine A */
3048   SelectDest destB;     /* Destination for coroutine B */
3049   int regAddrA;         /* Address register for select-A coroutine */
3050   int regAddrB;         /* Address register for select-B coroutine */
3051   int addrSelectA;      /* Address of the select-A coroutine */
3052   int addrSelectB;      /* Address of the select-B coroutine */
3053   int regOutA;          /* Address register for the output-A subroutine */
3054   int regOutB;          /* Address register for the output-B subroutine */
3055   int addrOutA;         /* Address of the output-A subroutine */
3056   int addrOutB = 0;     /* Address of the output-B subroutine */
3057   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3058   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3059   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3060   int addrAltB;         /* Address of the A<B subroutine */
3061   int addrAeqB;         /* Address of the A==B subroutine */
3062   int addrAgtB;         /* Address of the A>B subroutine */
3063   int regLimitA;        /* Limit register for select-A */
3064   int regLimitB;        /* Limit register for select-A */
3065   int regPrev;          /* A range of registers to hold previous output */
3066   int savedLimit;       /* Saved value of p->iLimit */
3067   int savedOffset;      /* Saved value of p->iOffset */
3068   int labelCmpr;        /* Label for the start of the merge algorithm */
3069   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3070   int addr1;            /* Jump instructions that get retargetted */
3071   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3072   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3073   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3074   sqlite3 *db;          /* Database connection */
3075   ExprList *pOrderBy;   /* The ORDER BY clause */
3076   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3077   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3078 #ifndef SQLITE_OMIT_EXPLAIN
3079   int iSub1;            /* EQP id of left-hand query */
3080   int iSub2;            /* EQP id of right-hand query */
3081 #endif
3082 
3083   assert( p->pOrderBy!=0 );
3084   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3085   db = pParse->db;
3086   v = pParse->pVdbe;
3087   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3088   labelEnd = sqlite3VdbeMakeLabel(v);
3089   labelCmpr = sqlite3VdbeMakeLabel(v);
3090 
3091 
3092   /* Patch up the ORDER BY clause
3093   */
3094   op = p->op;
3095   pPrior = p->pPrior;
3096   assert( pPrior->pOrderBy==0 );
3097   pOrderBy = p->pOrderBy;
3098   assert( pOrderBy );
3099   nOrderBy = pOrderBy->nExpr;
3100 
3101   /* For operators other than UNION ALL we have to make sure that
3102   ** the ORDER BY clause covers every term of the result set.  Add
3103   ** terms to the ORDER BY clause as necessary.
3104   */
3105   if( op!=TK_ALL ){
3106     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3107       struct ExprList_item *pItem;
3108       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3109         assert( pItem->u.x.iOrderByCol>0 );
3110         if( pItem->u.x.iOrderByCol==i ) break;
3111       }
3112       if( j==nOrderBy ){
3113         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3114         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3115         pNew->flags |= EP_IntValue;
3116         pNew->u.iValue = i;
3117         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3118         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3119       }
3120     }
3121   }
3122 
3123   /* Compute the comparison permutation and keyinfo that is used with
3124   ** the permutation used to determine if the next
3125   ** row of results comes from selectA or selectB.  Also add explicit
3126   ** collations to the ORDER BY clause terms so that when the subqueries
3127   ** to the right and the left are evaluated, they use the correct
3128   ** collation.
3129   */
3130   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3131   if( aPermute ){
3132     struct ExprList_item *pItem;
3133     aPermute[0] = nOrderBy;
3134     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3135       assert( pItem->u.x.iOrderByCol>0 );
3136       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3137       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3138     }
3139     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3140   }else{
3141     pKeyMerge = 0;
3142   }
3143 
3144   /* Reattach the ORDER BY clause to the query.
3145   */
3146   p->pOrderBy = pOrderBy;
3147   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3148 
3149   /* Allocate a range of temporary registers and the KeyInfo needed
3150   ** for the logic that removes duplicate result rows when the
3151   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3152   */
3153   if( op==TK_ALL ){
3154     regPrev = 0;
3155   }else{
3156     int nExpr = p->pEList->nExpr;
3157     assert( nOrderBy>=nExpr || db->mallocFailed );
3158     regPrev = pParse->nMem+1;
3159     pParse->nMem += nExpr+1;
3160     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3161     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3162     if( pKeyDup ){
3163       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3164       for(i=0; i<nExpr; i++){
3165         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3166         pKeyDup->aSortOrder[i] = 0;
3167       }
3168     }
3169   }
3170 
3171   /* Separate the left and the right query from one another
3172   */
3173   p->pPrior = 0;
3174   pPrior->pNext = 0;
3175   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3176   if( pPrior->pPrior==0 ){
3177     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3178   }
3179 
3180   /* Compute the limit registers */
3181   computeLimitRegisters(pParse, p, labelEnd);
3182   if( p->iLimit && op==TK_ALL ){
3183     regLimitA = ++pParse->nMem;
3184     regLimitB = ++pParse->nMem;
3185     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3186                                   regLimitA);
3187     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3188   }else{
3189     regLimitA = regLimitB = 0;
3190   }
3191   sqlite3ExprDelete(db, p->pLimit);
3192   p->pLimit = 0;
3193 
3194   regAddrA = ++pParse->nMem;
3195   regAddrB = ++pParse->nMem;
3196   regOutA = ++pParse->nMem;
3197   regOutB = ++pParse->nMem;
3198   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3199   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3200 
3201   /* Generate a coroutine to evaluate the SELECT statement to the
3202   ** left of the compound operator - the "A" select.
3203   */
3204   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3205   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3206   VdbeComment((v, "left SELECT"));
3207   pPrior->iLimit = regLimitA;
3208   explainSetInteger(iSub1, pParse->iNextSelectId);
3209   sqlite3Select(pParse, pPrior, &destA);
3210   sqlite3VdbeEndCoroutine(v, regAddrA);
3211   sqlite3VdbeJumpHere(v, addr1);
3212 
3213   /* Generate a coroutine to evaluate the SELECT statement on
3214   ** the right - the "B" select
3215   */
3216   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3217   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3218   VdbeComment((v, "right SELECT"));
3219   savedLimit = p->iLimit;
3220   savedOffset = p->iOffset;
3221   p->iLimit = regLimitB;
3222   p->iOffset = 0;
3223   explainSetInteger(iSub2, pParse->iNextSelectId);
3224   sqlite3Select(pParse, p, &destB);
3225   p->iLimit = savedLimit;
3226   p->iOffset = savedOffset;
3227   sqlite3VdbeEndCoroutine(v, regAddrB);
3228 
3229   /* Generate a subroutine that outputs the current row of the A
3230   ** select as the next output row of the compound select.
3231   */
3232   VdbeNoopComment((v, "Output routine for A"));
3233   addrOutA = generateOutputSubroutine(pParse,
3234                  p, &destA, pDest, regOutA,
3235                  regPrev, pKeyDup, labelEnd);
3236 
3237   /* Generate a subroutine that outputs the current row of the B
3238   ** select as the next output row of the compound select.
3239   */
3240   if( op==TK_ALL || op==TK_UNION ){
3241     VdbeNoopComment((v, "Output routine for B"));
3242     addrOutB = generateOutputSubroutine(pParse,
3243                  p, &destB, pDest, regOutB,
3244                  regPrev, pKeyDup, labelEnd);
3245   }
3246   sqlite3KeyInfoUnref(pKeyDup);
3247 
3248   /* Generate a subroutine to run when the results from select A
3249   ** are exhausted and only data in select B remains.
3250   */
3251   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3252     addrEofA_noB = addrEofA = labelEnd;
3253   }else{
3254     VdbeNoopComment((v, "eof-A subroutine"));
3255     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3256     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3257                                      VdbeCoverage(v);
3258     sqlite3VdbeGoto(v, addrEofA);
3259     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3260   }
3261 
3262   /* Generate a subroutine to run when the results from select B
3263   ** are exhausted and only data in select A remains.
3264   */
3265   if( op==TK_INTERSECT ){
3266     addrEofB = addrEofA;
3267     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3268   }else{
3269     VdbeNoopComment((v, "eof-B subroutine"));
3270     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3271     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3272     sqlite3VdbeGoto(v, addrEofB);
3273   }
3274 
3275   /* Generate code to handle the case of A<B
3276   */
3277   VdbeNoopComment((v, "A-lt-B subroutine"));
3278   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3279   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3280   sqlite3VdbeGoto(v, labelCmpr);
3281 
3282   /* Generate code to handle the case of A==B
3283   */
3284   if( op==TK_ALL ){
3285     addrAeqB = addrAltB;
3286   }else if( op==TK_INTERSECT ){
3287     addrAeqB = addrAltB;
3288     addrAltB++;
3289   }else{
3290     VdbeNoopComment((v, "A-eq-B subroutine"));
3291     addrAeqB =
3292     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3293     sqlite3VdbeGoto(v, labelCmpr);
3294   }
3295 
3296   /* Generate code to handle the case of A>B
3297   */
3298   VdbeNoopComment((v, "A-gt-B subroutine"));
3299   addrAgtB = sqlite3VdbeCurrentAddr(v);
3300   if( op==TK_ALL || op==TK_UNION ){
3301     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3302   }
3303   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3304   sqlite3VdbeGoto(v, labelCmpr);
3305 
3306   /* This code runs once to initialize everything.
3307   */
3308   sqlite3VdbeJumpHere(v, addr1);
3309   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3310   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3311 
3312   /* Implement the main merge loop
3313   */
3314   sqlite3VdbeResolveLabel(v, labelCmpr);
3315   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3316   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3317                          (char*)pKeyMerge, P4_KEYINFO);
3318   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3319   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3320 
3321   /* Jump to the this point in order to terminate the query.
3322   */
3323   sqlite3VdbeResolveLabel(v, labelEnd);
3324 
3325   /* Reassembly the compound query so that it will be freed correctly
3326   ** by the calling function */
3327   if( p->pPrior ){
3328     sqlite3SelectDelete(db, p->pPrior);
3329   }
3330   p->pPrior = pPrior;
3331   pPrior->pNext = p;
3332 
3333   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3334   **** subqueries ****/
3335   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3336   return pParse->nErr!=0;
3337 }
3338 #endif
3339 
3340 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3341 
3342 /* An instance of the SubstContext object describes an substitution edit
3343 ** to be performed on a parse tree.
3344 **
3345 ** All references to columns in table iTable are to be replaced by corresponding
3346 ** expressions in pEList.
3347 */
3348 typedef struct SubstContext {
3349   Parse *pParse;            /* The parsing context */
3350   int iTable;               /* Replace references to this table */
3351   int iNewTable;            /* New table number */
3352   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3353   ExprList *pEList;         /* Replacement expressions */
3354 } SubstContext;
3355 
3356 /* Forward Declarations */
3357 static void substExprList(SubstContext*, ExprList*);
3358 static void substSelect(SubstContext*, Select*, int);
3359 
3360 /*
3361 ** Scan through the expression pExpr.  Replace every reference to
3362 ** a column in table number iTable with a copy of the iColumn-th
3363 ** entry in pEList.  (But leave references to the ROWID column
3364 ** unchanged.)
3365 **
3366 ** This routine is part of the flattening procedure.  A subquery
3367 ** whose result set is defined by pEList appears as entry in the
3368 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3369 ** FORM clause entry is iTable.  This routine makes the necessary
3370 ** changes to pExpr so that it refers directly to the source table
3371 ** of the subquery rather the result set of the subquery.
3372 */
3373 static Expr *substExpr(
3374   SubstContext *pSubst,  /* Description of the substitution */
3375   Expr *pExpr            /* Expr in which substitution occurs */
3376 ){
3377   if( pExpr==0 ) return 0;
3378   if( ExprHasProperty(pExpr, EP_FromJoin)
3379    && pExpr->iRightJoinTable==pSubst->iTable
3380   ){
3381     pExpr->iRightJoinTable = pSubst->iNewTable;
3382   }
3383   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3384     if( pExpr->iColumn<0 ){
3385       pExpr->op = TK_NULL;
3386     }else{
3387       Expr *pNew;
3388       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3389       Expr ifNullRow;
3390       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3391       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3392       if( sqlite3ExprIsVector(pCopy) ){
3393         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3394       }else{
3395         sqlite3 *db = pSubst->pParse->db;
3396         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3397           memset(&ifNullRow, 0, sizeof(ifNullRow));
3398           ifNullRow.op = TK_IF_NULL_ROW;
3399           ifNullRow.pLeft = pCopy;
3400           ifNullRow.iTable = pSubst->iNewTable;
3401           pCopy = &ifNullRow;
3402         }
3403         pNew = sqlite3ExprDup(db, pCopy, 0);
3404         if( pNew && pSubst->isLeftJoin ){
3405           ExprSetProperty(pNew, EP_CanBeNull);
3406         }
3407         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3408           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3409           ExprSetProperty(pNew, EP_FromJoin);
3410         }
3411         sqlite3ExprDelete(db, pExpr);
3412         pExpr = pNew;
3413       }
3414     }
3415   }else{
3416     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3417       pExpr->iTable = pSubst->iNewTable;
3418     }
3419     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3420     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3421     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3422       substSelect(pSubst, pExpr->x.pSelect, 1);
3423     }else{
3424       substExprList(pSubst, pExpr->x.pList);
3425     }
3426   }
3427   return pExpr;
3428 }
3429 static void substExprList(
3430   SubstContext *pSubst, /* Description of the substitution */
3431   ExprList *pList       /* List to scan and in which to make substitutes */
3432 ){
3433   int i;
3434   if( pList==0 ) return;
3435   for(i=0; i<pList->nExpr; i++){
3436     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3437   }
3438 }
3439 static void substSelect(
3440   SubstContext *pSubst, /* Description of the substitution */
3441   Select *p,            /* SELECT statement in which to make substitutions */
3442   int doPrior           /* Do substitutes on p->pPrior too */
3443 ){
3444   SrcList *pSrc;
3445   struct SrcList_item *pItem;
3446   int i;
3447   if( !p ) return;
3448   do{
3449     substExprList(pSubst, p->pEList);
3450     substExprList(pSubst, p->pGroupBy);
3451     substExprList(pSubst, p->pOrderBy);
3452     p->pHaving = substExpr(pSubst, p->pHaving);
3453     p->pWhere = substExpr(pSubst, p->pWhere);
3454     pSrc = p->pSrc;
3455     assert( pSrc!=0 );
3456     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3457       substSelect(pSubst, pItem->pSelect, 1);
3458       if( pItem->fg.isTabFunc ){
3459         substExprList(pSubst, pItem->u1.pFuncArg);
3460       }
3461     }
3462   }while( doPrior && (p = p->pPrior)!=0 );
3463 }
3464 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3465 
3466 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3467 /*
3468 ** This routine attempts to flatten subqueries as a performance optimization.
3469 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3470 **
3471 ** To understand the concept of flattening, consider the following
3472 ** query:
3473 **
3474 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3475 **
3476 ** The default way of implementing this query is to execute the
3477 ** subquery first and store the results in a temporary table, then
3478 ** run the outer query on that temporary table.  This requires two
3479 ** passes over the data.  Furthermore, because the temporary table
3480 ** has no indices, the WHERE clause on the outer query cannot be
3481 ** optimized.
3482 **
3483 ** This routine attempts to rewrite queries such as the above into
3484 ** a single flat select, like this:
3485 **
3486 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3487 **
3488 ** The code generated for this simplification gives the same result
3489 ** but only has to scan the data once.  And because indices might
3490 ** exist on the table t1, a complete scan of the data might be
3491 ** avoided.
3492 **
3493 ** Flattening is subject to the following constraints:
3494 **
3495 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3496 **        The subquery and the outer query cannot both be aggregates.
3497 **
3498 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3499 **        (2) If the subquery is an aggregate then
3500 **        (2a) the outer query must not be a join and
3501 **        (2b) the outer query must not use subqueries
3502 **             other than the one FROM-clause subquery that is a candidate
3503 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3504 **             from 2015-02-09.)
3505 **
3506 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3507 **        (3a) the subquery may not be a join and
3508 **        (3b) the FROM clause of the subquery may not contain a virtual
3509 **             table and
3510 **        (3c) the outer query may not be an aggregate.
3511 **
3512 **   (4)  The subquery can not be DISTINCT.
3513 **
3514 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3515 **        sub-queries that were excluded from this optimization. Restriction
3516 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3517 **
3518 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3519 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3520 **
3521 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3522 **        A FROM clause, consider adding a FROM clause with the special
3523 **        table sqlite_once that consists of a single row containing a
3524 **        single NULL.
3525 **
3526 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3527 **
3528 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3529 **
3530 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3531 **        accidently carried the comment forward until 2014-09-15.  Original
3532 **        constraint: "If the subquery is aggregate then the outer query
3533 **        may not use LIMIT."
3534 **
3535 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3536 **
3537 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3538 **        a separate restriction deriving from ticket #350.
3539 **
3540 **  (13)  The subquery and outer query may not both use LIMIT.
3541 **
3542 **  (14)  The subquery may not use OFFSET.
3543 **
3544 **  (15)  If the outer query is part of a compound select, then the
3545 **        subquery may not use LIMIT.
3546 **        (See ticket #2339 and ticket [02a8e81d44]).
3547 **
3548 **  (16)  If the outer query is aggregate, then the subquery may not
3549 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3550 **        until we introduced the group_concat() function.
3551 **
3552 **  (17)  If the subquery is a compound select, then
3553 **        (17a) all compound operators must be a UNION ALL, and
3554 **        (17b) no terms within the subquery compound may be aggregate
3555 **              or DISTINCT, and
3556 **        (17c) every term within the subquery compound must have a FROM clause
3557 **        (17d) the outer query may not be
3558 **              (17d1) aggregate, or
3559 **              (17d2) DISTINCT, or
3560 **              (17d3) a join.
3561 **
3562 **        The parent and sub-query may contain WHERE clauses. Subject to
3563 **        rules (11), (13) and (14), they may also contain ORDER BY,
3564 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3565 **        operator other than UNION ALL because all the other compound
3566 **        operators have an implied DISTINCT which is disallowed by
3567 **        restriction (4).
3568 **
3569 **        Also, each component of the sub-query must return the same number
3570 **        of result columns. This is actually a requirement for any compound
3571 **        SELECT statement, but all the code here does is make sure that no
3572 **        such (illegal) sub-query is flattened. The caller will detect the
3573 **        syntax error and return a detailed message.
3574 **
3575 **  (18)  If the sub-query is a compound select, then all terms of the
3576 **        ORDER BY clause of the parent must be simple references to
3577 **        columns of the sub-query.
3578 **
3579 **  (19)  If the subquery uses LIMIT then the outer query may not
3580 **        have a WHERE clause.
3581 **
3582 **  (20)  If the sub-query is a compound select, then it must not use
3583 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3584 **        somewhat by saying that the terms of the ORDER BY clause must
3585 **        appear as unmodified result columns in the outer query.  But we
3586 **        have other optimizations in mind to deal with that case.
3587 **
3588 **  (21)  If the subquery uses LIMIT then the outer query may not be
3589 **        DISTINCT.  (See ticket [752e1646fc]).
3590 **
3591 **  (22)  The subquery may not be a recursive CTE.
3592 **
3593 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3594 **        a recursive CTE, then the sub-query may not be a compound query.
3595 **        This restriction is because transforming the
3596 **        parent to a compound query confuses the code that handles
3597 **        recursive queries in multiSelect().
3598 **
3599 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3600 **        The subquery may not be an aggregate that uses the built-in min() or
3601 **        or max() functions.  (Without this restriction, a query like:
3602 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3603 **        return the value X for which Y was maximal.)
3604 **
3605 **
3606 ** In this routine, the "p" parameter is a pointer to the outer query.
3607 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3608 ** uses aggregates.
3609 **
3610 ** If flattening is not attempted, this routine is a no-op and returns 0.
3611 ** If flattening is attempted this routine returns 1.
3612 **
3613 ** All of the expression analysis must occur on both the outer query and
3614 ** the subquery before this routine runs.
3615 */
3616 static int flattenSubquery(
3617   Parse *pParse,       /* Parsing context */
3618   Select *p,           /* The parent or outer SELECT statement */
3619   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3620   int isAgg            /* True if outer SELECT uses aggregate functions */
3621 ){
3622   const char *zSavedAuthContext = pParse->zAuthContext;
3623   Select *pParent;    /* Current UNION ALL term of the other query */
3624   Select *pSub;       /* The inner query or "subquery" */
3625   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3626   SrcList *pSrc;      /* The FROM clause of the outer query */
3627   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3628   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3629   int iNewParent = -1;/* Replacement table for iParent */
3630   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3631   int i;              /* Loop counter */
3632   Expr *pWhere;                    /* The WHERE clause */
3633   struct SrcList_item *pSubitem;   /* The subquery */
3634   sqlite3 *db = pParse->db;
3635 
3636   /* Check to see if flattening is permitted.  Return 0 if not.
3637   */
3638   assert( p!=0 );
3639   assert( p->pPrior==0 );
3640   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3641   pSrc = p->pSrc;
3642   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3643   pSubitem = &pSrc->a[iFrom];
3644   iParent = pSubitem->iCursor;
3645   pSub = pSubitem->pSelect;
3646   assert( pSub!=0 );
3647 
3648   pSubSrc = pSub->pSrc;
3649   assert( pSubSrc );
3650   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3651   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3652   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3653   ** became arbitrary expressions, we were forced to add restrictions (13)
3654   ** and (14). */
3655   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3656   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3657   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3658     return 0;                                            /* Restriction (15) */
3659   }
3660   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3661   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3662   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3663      return 0;         /* Restrictions (8)(9) */
3664   }
3665   if( p->pOrderBy && pSub->pOrderBy ){
3666      return 0;                                           /* Restriction (11) */
3667   }
3668   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3669   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3670   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3671      return 0;         /* Restriction (21) */
3672   }
3673   if( pSub->selFlags & (SF_Recursive) ){
3674     return 0; /* Restrictions (22) */
3675   }
3676 
3677   /*
3678   ** If the subquery is the right operand of a LEFT JOIN, then the
3679   ** subquery may not be a join itself (3a). Example of why this is not
3680   ** allowed:
3681   **
3682   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3683   **
3684   ** If we flatten the above, we would get
3685   **
3686   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3687   **
3688   ** which is not at all the same thing.
3689   **
3690   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3691   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3692   ** aggregates are processed - there is no mechanism to determine if
3693   ** the LEFT JOIN table should be all-NULL.
3694   **
3695   ** See also tickets #306, #350, and #3300.
3696   */
3697   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3698     isLeftJoin = 1;
3699     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3700       /*  (3a)             (3c)     (3b) */
3701       return 0;
3702     }
3703   }
3704 #ifdef SQLITE_EXTRA_IFNULLROW
3705   else if( iFrom>0 && !isAgg ){
3706     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3707     ** every reference to any result column from subquery in a join, even
3708     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3709     ** opcode. */
3710     isLeftJoin = -1;
3711   }
3712 #endif
3713 
3714   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3715   ** use only the UNION ALL operator. And none of the simple select queries
3716   ** that make up the compound SELECT are allowed to be aggregate or distinct
3717   ** queries.
3718   */
3719   if( pSub->pPrior ){
3720     if( pSub->pOrderBy ){
3721       return 0;  /* Restriction (20) */
3722     }
3723     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3724       return 0; /* (17d1), (17d2), or (17d3) */
3725     }
3726     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3727       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3728       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3729       assert( pSub->pSrc!=0 );
3730       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3731       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3732        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3733        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3734       ){
3735         return 0;
3736       }
3737       testcase( pSub1->pSrc->nSrc>1 );
3738     }
3739 
3740     /* Restriction (18). */
3741     if( p->pOrderBy ){
3742       int ii;
3743       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3744         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3745       }
3746     }
3747   }
3748 
3749   /* Ex-restriction (23):
3750   ** The only way that the recursive part of a CTE can contain a compound
3751   ** subquery is for the subquery to be one term of a join.  But if the
3752   ** subquery is a join, then the flattening has already been stopped by
3753   ** restriction (17d3)
3754   */
3755   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3756 
3757   /***** If we reach this point, flattening is permitted. *****/
3758   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3759                    pSub->zSelName, pSub, iFrom));
3760 
3761   /* Authorize the subquery */
3762   pParse->zAuthContext = pSubitem->zName;
3763   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3764   testcase( i==SQLITE_DENY );
3765   pParse->zAuthContext = zSavedAuthContext;
3766 
3767   /* If the sub-query is a compound SELECT statement, then (by restrictions
3768   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3769   ** be of the form:
3770   **
3771   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3772   **
3773   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3774   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3775   ** OFFSET clauses and joins them to the left-hand-side of the original
3776   ** using UNION ALL operators. In this case N is the number of simple
3777   ** select statements in the compound sub-query.
3778   **
3779   ** Example:
3780   **
3781   **     SELECT a+1 FROM (
3782   **        SELECT x FROM tab
3783   **        UNION ALL
3784   **        SELECT y FROM tab
3785   **        UNION ALL
3786   **        SELECT abs(z*2) FROM tab2
3787   **     ) WHERE a!=5 ORDER BY 1
3788   **
3789   ** Transformed into:
3790   **
3791   **     SELECT x+1 FROM tab WHERE x+1!=5
3792   **     UNION ALL
3793   **     SELECT y+1 FROM tab WHERE y+1!=5
3794   **     UNION ALL
3795   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3796   **     ORDER BY 1
3797   **
3798   ** We call this the "compound-subquery flattening".
3799   */
3800   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3801     Select *pNew;
3802     ExprList *pOrderBy = p->pOrderBy;
3803     Expr *pLimit = p->pLimit;
3804     Select *pPrior = p->pPrior;
3805     p->pOrderBy = 0;
3806     p->pSrc = 0;
3807     p->pPrior = 0;
3808     p->pLimit = 0;
3809     pNew = sqlite3SelectDup(db, p, 0);
3810     sqlite3SelectSetName(pNew, pSub->zSelName);
3811     p->pLimit = pLimit;
3812     p->pOrderBy = pOrderBy;
3813     p->pSrc = pSrc;
3814     p->op = TK_ALL;
3815     if( pNew==0 ){
3816       p->pPrior = pPrior;
3817     }else{
3818       pNew->pPrior = pPrior;
3819       if( pPrior ) pPrior->pNext = pNew;
3820       pNew->pNext = p;
3821       p->pPrior = pNew;
3822       SELECTTRACE(2,pParse,p,
3823          ("compound-subquery flattener creates %s.%p as peer\n",
3824          pNew->zSelName, pNew));
3825     }
3826     if( db->mallocFailed ) return 1;
3827   }
3828 
3829   /* Begin flattening the iFrom-th entry of the FROM clause
3830   ** in the outer query.
3831   */
3832   pSub = pSub1 = pSubitem->pSelect;
3833 
3834   /* Delete the transient table structure associated with the
3835   ** subquery
3836   */
3837   sqlite3DbFree(db, pSubitem->zDatabase);
3838   sqlite3DbFree(db, pSubitem->zName);
3839   sqlite3DbFree(db, pSubitem->zAlias);
3840   pSubitem->zDatabase = 0;
3841   pSubitem->zName = 0;
3842   pSubitem->zAlias = 0;
3843   pSubitem->pSelect = 0;
3844 
3845   /* Defer deleting the Table object associated with the
3846   ** subquery until code generation is
3847   ** complete, since there may still exist Expr.pTab entries that
3848   ** refer to the subquery even after flattening.  Ticket #3346.
3849   **
3850   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3851   */
3852   if( ALWAYS(pSubitem->pTab!=0) ){
3853     Table *pTabToDel = pSubitem->pTab;
3854     if( pTabToDel->nTabRef==1 ){
3855       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3856       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3857       pToplevel->pZombieTab = pTabToDel;
3858     }else{
3859       pTabToDel->nTabRef--;
3860     }
3861     pSubitem->pTab = 0;
3862   }
3863 
3864   /* The following loop runs once for each term in a compound-subquery
3865   ** flattening (as described above).  If we are doing a different kind
3866   ** of flattening - a flattening other than a compound-subquery flattening -
3867   ** then this loop only runs once.
3868   **
3869   ** This loop moves all of the FROM elements of the subquery into the
3870   ** the FROM clause of the outer query.  Before doing this, remember
3871   ** the cursor number for the original outer query FROM element in
3872   ** iParent.  The iParent cursor will never be used.  Subsequent code
3873   ** will scan expressions looking for iParent references and replace
3874   ** those references with expressions that resolve to the subquery FROM
3875   ** elements we are now copying in.
3876   */
3877   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3878     int nSubSrc;
3879     u8 jointype = 0;
3880     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3881     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3882     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3883 
3884     if( pSrc ){
3885       assert( pParent==p );  /* First time through the loop */
3886       jointype = pSubitem->fg.jointype;
3887     }else{
3888       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3889       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3890       if( pSrc==0 ){
3891         assert( db->mallocFailed );
3892         break;
3893       }
3894     }
3895 
3896     /* The subquery uses a single slot of the FROM clause of the outer
3897     ** query.  If the subquery has more than one element in its FROM clause,
3898     ** then expand the outer query to make space for it to hold all elements
3899     ** of the subquery.
3900     **
3901     ** Example:
3902     **
3903     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3904     **
3905     ** The outer query has 3 slots in its FROM clause.  One slot of the
3906     ** outer query (the middle slot) is used by the subquery.  The next
3907     ** block of code will expand the outer query FROM clause to 4 slots.
3908     ** The middle slot is expanded to two slots in order to make space
3909     ** for the two elements in the FROM clause of the subquery.
3910     */
3911     if( nSubSrc>1 ){
3912       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3913       if( db->mallocFailed ){
3914         break;
3915       }
3916     }
3917 
3918     /* Transfer the FROM clause terms from the subquery into the
3919     ** outer query.
3920     */
3921     for(i=0; i<nSubSrc; i++){
3922       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3923       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3924       pSrc->a[i+iFrom] = pSubSrc->a[i];
3925       iNewParent = pSubSrc->a[i].iCursor;
3926       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3927     }
3928     pSrc->a[iFrom].fg.jointype = jointype;
3929 
3930     /* Now begin substituting subquery result set expressions for
3931     ** references to the iParent in the outer query.
3932     **
3933     ** Example:
3934     **
3935     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3936     **   \                     \_____________ subquery __________/          /
3937     **    \_____________________ outer query ______________________________/
3938     **
3939     ** We look at every expression in the outer query and every place we see
3940     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3941     */
3942     if( pSub->pOrderBy ){
3943       /* At this point, any non-zero iOrderByCol values indicate that the
3944       ** ORDER BY column expression is identical to the iOrderByCol'th
3945       ** expression returned by SELECT statement pSub. Since these values
3946       ** do not necessarily correspond to columns in SELECT statement pParent,
3947       ** zero them before transfering the ORDER BY clause.
3948       **
3949       ** Not doing this may cause an error if a subsequent call to this
3950       ** function attempts to flatten a compound sub-query into pParent
3951       ** (the only way this can happen is if the compound sub-query is
3952       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3953       ExprList *pOrderBy = pSub->pOrderBy;
3954       for(i=0; i<pOrderBy->nExpr; i++){
3955         pOrderBy->a[i].u.x.iOrderByCol = 0;
3956       }
3957       assert( pParent->pOrderBy==0 );
3958       pParent->pOrderBy = pOrderBy;
3959       pSub->pOrderBy = 0;
3960     }
3961     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3962     if( isLeftJoin>0 ){
3963       setJoinExpr(pWhere, iNewParent);
3964     }
3965     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3966     if( db->mallocFailed==0 ){
3967       SubstContext x;
3968       x.pParse = pParse;
3969       x.iTable = iParent;
3970       x.iNewTable = iNewParent;
3971       x.isLeftJoin = isLeftJoin;
3972       x.pEList = pSub->pEList;
3973       substSelect(&x, pParent, 0);
3974     }
3975 
3976     /* The flattened query is distinct if either the inner or the
3977     ** outer query is distinct.
3978     */
3979     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3980 
3981     /*
3982     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3983     **
3984     ** One is tempted to try to add a and b to combine the limits.  But this
3985     ** does not work if either limit is negative.
3986     */
3987     if( pSub->pLimit ){
3988       pParent->pLimit = pSub->pLimit;
3989       pSub->pLimit = 0;
3990     }
3991   }
3992 
3993   /* Finially, delete what is left of the subquery and return
3994   ** success.
3995   */
3996   sqlite3SelectDelete(db, pSub1);
3997 
3998 #if SELECTTRACE_ENABLED
3999   if( sqlite3SelectTrace & 0x100 ){
4000     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4001     sqlite3TreeViewSelect(0, p, 0);
4002   }
4003 #endif
4004 
4005   return 1;
4006 }
4007 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4008 
4009 
4010 
4011 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4012 /*
4013 ** Make copies of relevant WHERE clause terms of the outer query into
4014 ** the WHERE clause of subquery.  Example:
4015 **
4016 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4017 **
4018 ** Transformed into:
4019 **
4020 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4021 **     WHERE x=5 AND y=10;
4022 **
4023 ** The hope is that the terms added to the inner query will make it more
4024 ** efficient.
4025 **
4026 ** Do not attempt this optimization if:
4027 **
4028 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4029 **           disallow this optimization for aggregate subqueries, but now
4030 **           it is allowed by putting the extra terms on the HAVING clause.
4031 **           The added HAVING clause is pointless if the subquery lacks
4032 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4033 **           so there does not appear to be any reason to add extra logic
4034 **           to suppress it. **)
4035 **
4036 **   (2) The inner query is the recursive part of a common table expression.
4037 **
4038 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4039 **       close would change the meaning of the LIMIT).
4040 **
4041 **   (4) The inner query is the right operand of a LEFT JOIN and the
4042 **       expression to be pushed down does not come from the ON clause
4043 **       on that LEFT JOIN.
4044 **
4045 **   (5) The WHERE clause expression originates in the ON or USING clause
4046 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4047 **       left join.  An example:
4048 **
4049 **           SELECT *
4050 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4051 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4052 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4053 **
4054 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4055 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4056 **       then the (1,1,NULL) row would be suppressed.
4057 **
4058 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4059 ** terms are duplicated into the subquery.
4060 */
4061 static int pushDownWhereTerms(
4062   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4063   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4064   Expr *pWhere,         /* The WHERE clause of the outer query */
4065   int iCursor,          /* Cursor number of the subquery */
4066   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4067 ){
4068   Expr *pNew;
4069   int nChng = 0;
4070   if( pWhere==0 ) return 0;
4071   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4072 
4073 #ifdef SQLITE_DEBUG
4074   /* Only the first term of a compound can have a WITH clause.  But make
4075   ** sure no other terms are marked SF_Recursive in case something changes
4076   ** in the future.
4077   */
4078   {
4079     Select *pX;
4080     for(pX=pSubq; pX; pX=pX->pPrior){
4081       assert( (pX->selFlags & (SF_Recursive))==0 );
4082     }
4083   }
4084 #endif
4085 
4086   if( pSubq->pLimit!=0 ){
4087     return 0; /* restriction (3) */
4088   }
4089   while( pWhere->op==TK_AND ){
4090     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4091                                 iCursor, isLeftJoin);
4092     pWhere = pWhere->pLeft;
4093   }
4094   if( isLeftJoin
4095    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4096          || pWhere->iRightJoinTable!=iCursor)
4097   ){
4098     return 0; /* restriction (4) */
4099   }
4100   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4101     return 0; /* restriction (5) */
4102   }
4103   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4104     nChng++;
4105     while( pSubq ){
4106       SubstContext x;
4107       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4108       unsetJoinExpr(pNew, -1);
4109       x.pParse = pParse;
4110       x.iTable = iCursor;
4111       x.iNewTable = iCursor;
4112       x.isLeftJoin = 0;
4113       x.pEList = pSubq->pEList;
4114       pNew = substExpr(&x, pNew);
4115       if( pSubq->selFlags & SF_Aggregate ){
4116         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4117       }else{
4118         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4119       }
4120       pSubq = pSubq->pPrior;
4121     }
4122   }
4123   return nChng;
4124 }
4125 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4126 
4127 /*
4128 ** The pFunc is the only aggregate function in the query.  Check to see
4129 ** if the query is a candidate for the min/max optimization.
4130 **
4131 ** If the query is a candidate for the min/max optimization, then set
4132 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4133 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4134 ** whether pFunc is a min() or max() function.
4135 **
4136 ** If the query is not a candidate for the min/max optimization, return
4137 ** WHERE_ORDERBY_NORMAL (which must be zero).
4138 **
4139 ** This routine must be called after aggregate functions have been
4140 ** located but before their arguments have been subjected to aggregate
4141 ** analysis.
4142 */
4143 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4144   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4145   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4146   const char *zFunc;                    /* Name of aggregate function pFunc */
4147   ExprList *pOrderBy;
4148   u8 sortOrder;
4149 
4150   assert( *ppMinMax==0 );
4151   assert( pFunc->op==TK_AGG_FUNCTION );
4152   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4153   zFunc = pFunc->u.zToken;
4154   if( sqlite3StrICmp(zFunc, "min")==0 ){
4155     eRet = WHERE_ORDERBY_MIN;
4156     sortOrder = SQLITE_SO_ASC;
4157   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4158     eRet = WHERE_ORDERBY_MAX;
4159     sortOrder = SQLITE_SO_DESC;
4160   }else{
4161     return eRet;
4162   }
4163   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4164   assert( pOrderBy!=0 || db->mallocFailed );
4165   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4166   return eRet;
4167 }
4168 
4169 /*
4170 ** The select statement passed as the first argument is an aggregate query.
4171 ** The second argument is the associated aggregate-info object. This
4172 ** function tests if the SELECT is of the form:
4173 **
4174 **   SELECT count(*) FROM <tbl>
4175 **
4176 ** where table is a database table, not a sub-select or view. If the query
4177 ** does match this pattern, then a pointer to the Table object representing
4178 ** <tbl> is returned. Otherwise, 0 is returned.
4179 */
4180 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4181   Table *pTab;
4182   Expr *pExpr;
4183 
4184   assert( !p->pGroupBy );
4185 
4186   if( p->pWhere || p->pEList->nExpr!=1
4187    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4188   ){
4189     return 0;
4190   }
4191   pTab = p->pSrc->a[0].pTab;
4192   pExpr = p->pEList->a[0].pExpr;
4193   assert( pTab && !pTab->pSelect && pExpr );
4194 
4195   if( IsVirtual(pTab) ) return 0;
4196   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4197   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4198   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4199   if( pExpr->flags&EP_Distinct ) return 0;
4200 
4201   return pTab;
4202 }
4203 
4204 /*
4205 ** If the source-list item passed as an argument was augmented with an
4206 ** INDEXED BY clause, then try to locate the specified index. If there
4207 ** was such a clause and the named index cannot be found, return
4208 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4209 ** pFrom->pIndex and return SQLITE_OK.
4210 */
4211 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4212   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4213     Table *pTab = pFrom->pTab;
4214     char *zIndexedBy = pFrom->u1.zIndexedBy;
4215     Index *pIdx;
4216     for(pIdx=pTab->pIndex;
4217         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4218         pIdx=pIdx->pNext
4219     );
4220     if( !pIdx ){
4221       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4222       pParse->checkSchema = 1;
4223       return SQLITE_ERROR;
4224     }
4225     pFrom->pIBIndex = pIdx;
4226   }
4227   return SQLITE_OK;
4228 }
4229 /*
4230 ** Detect compound SELECT statements that use an ORDER BY clause with
4231 ** an alternative collating sequence.
4232 **
4233 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4234 **
4235 ** These are rewritten as a subquery:
4236 **
4237 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4238 **     ORDER BY ... COLLATE ...
4239 **
4240 ** This transformation is necessary because the multiSelectOrderBy() routine
4241 ** above that generates the code for a compound SELECT with an ORDER BY clause
4242 ** uses a merge algorithm that requires the same collating sequence on the
4243 ** result columns as on the ORDER BY clause.  See ticket
4244 ** http://www.sqlite.org/src/info/6709574d2a
4245 **
4246 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4247 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4248 ** there are COLLATE terms in the ORDER BY.
4249 */
4250 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4251   int i;
4252   Select *pNew;
4253   Select *pX;
4254   sqlite3 *db;
4255   struct ExprList_item *a;
4256   SrcList *pNewSrc;
4257   Parse *pParse;
4258   Token dummy;
4259 
4260   if( p->pPrior==0 ) return WRC_Continue;
4261   if( p->pOrderBy==0 ) return WRC_Continue;
4262   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4263   if( pX==0 ) return WRC_Continue;
4264   a = p->pOrderBy->a;
4265   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4266     if( a[i].pExpr->flags & EP_Collate ) break;
4267   }
4268   if( i<0 ) return WRC_Continue;
4269 
4270   /* If we reach this point, that means the transformation is required. */
4271 
4272   pParse = pWalker->pParse;
4273   db = pParse->db;
4274   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4275   if( pNew==0 ) return WRC_Abort;
4276   memset(&dummy, 0, sizeof(dummy));
4277   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4278   if( pNewSrc==0 ) return WRC_Abort;
4279   *pNew = *p;
4280   p->pSrc = pNewSrc;
4281   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4282   p->op = TK_SELECT;
4283   p->pWhere = 0;
4284   pNew->pGroupBy = 0;
4285   pNew->pHaving = 0;
4286   pNew->pOrderBy = 0;
4287   p->pPrior = 0;
4288   p->pNext = 0;
4289   p->pWith = 0;
4290   p->selFlags &= ~SF_Compound;
4291   assert( (p->selFlags & SF_Converted)==0 );
4292   p->selFlags |= SF_Converted;
4293   assert( pNew->pPrior!=0 );
4294   pNew->pPrior->pNext = pNew;
4295   pNew->pLimit = 0;
4296   return WRC_Continue;
4297 }
4298 
4299 /*
4300 ** Check to see if the FROM clause term pFrom has table-valued function
4301 ** arguments.  If it does, leave an error message in pParse and return
4302 ** non-zero, since pFrom is not allowed to be a table-valued function.
4303 */
4304 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4305   if( pFrom->fg.isTabFunc ){
4306     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4307     return 1;
4308   }
4309   return 0;
4310 }
4311 
4312 #ifndef SQLITE_OMIT_CTE
4313 /*
4314 ** Argument pWith (which may be NULL) points to a linked list of nested
4315 ** WITH contexts, from inner to outermost. If the table identified by
4316 ** FROM clause element pItem is really a common-table-expression (CTE)
4317 ** then return a pointer to the CTE definition for that table. Otherwise
4318 ** return NULL.
4319 **
4320 ** If a non-NULL value is returned, set *ppContext to point to the With
4321 ** object that the returned CTE belongs to.
4322 */
4323 static struct Cte *searchWith(
4324   With *pWith,                    /* Current innermost WITH clause */
4325   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4326   With **ppContext                /* OUT: WITH clause return value belongs to */
4327 ){
4328   const char *zName;
4329   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4330     With *p;
4331     for(p=pWith; p; p=p->pOuter){
4332       int i;
4333       for(i=0; i<p->nCte; i++){
4334         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4335           *ppContext = p;
4336           return &p->a[i];
4337         }
4338       }
4339     }
4340   }
4341   return 0;
4342 }
4343 
4344 /* The code generator maintains a stack of active WITH clauses
4345 ** with the inner-most WITH clause being at the top of the stack.
4346 **
4347 ** This routine pushes the WITH clause passed as the second argument
4348 ** onto the top of the stack. If argument bFree is true, then this
4349 ** WITH clause will never be popped from the stack. In this case it
4350 ** should be freed along with the Parse object. In other cases, when
4351 ** bFree==0, the With object will be freed along with the SELECT
4352 ** statement with which it is associated.
4353 */
4354 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4355   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4356   if( pWith ){
4357     assert( pParse->pWith!=pWith );
4358     pWith->pOuter = pParse->pWith;
4359     pParse->pWith = pWith;
4360     if( bFree ) pParse->pWithToFree = pWith;
4361   }
4362 }
4363 
4364 /*
4365 ** This function checks if argument pFrom refers to a CTE declared by
4366 ** a WITH clause on the stack currently maintained by the parser. And,
4367 ** if currently processing a CTE expression, if it is a recursive
4368 ** reference to the current CTE.
4369 **
4370 ** If pFrom falls into either of the two categories above, pFrom->pTab
4371 ** and other fields are populated accordingly. The caller should check
4372 ** (pFrom->pTab!=0) to determine whether or not a successful match
4373 ** was found.
4374 **
4375 ** Whether or not a match is found, SQLITE_OK is returned if no error
4376 ** occurs. If an error does occur, an error message is stored in the
4377 ** parser and some error code other than SQLITE_OK returned.
4378 */
4379 static int withExpand(
4380   Walker *pWalker,
4381   struct SrcList_item *pFrom
4382 ){
4383   Parse *pParse = pWalker->pParse;
4384   sqlite3 *db = pParse->db;
4385   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4386   With *pWith;                    /* WITH clause that pCte belongs to */
4387 
4388   assert( pFrom->pTab==0 );
4389 
4390   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4391   if( pCte ){
4392     Table *pTab;
4393     ExprList *pEList;
4394     Select *pSel;
4395     Select *pLeft;                /* Left-most SELECT statement */
4396     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4397     With *pSavedWith;             /* Initial value of pParse->pWith */
4398 
4399     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4400     ** recursive reference to CTE pCte. Leave an error in pParse and return
4401     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4402     ** In this case, proceed.  */
4403     if( pCte->zCteErr ){
4404       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4405       return SQLITE_ERROR;
4406     }
4407     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4408 
4409     assert( pFrom->pTab==0 );
4410     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4411     if( pTab==0 ) return WRC_Abort;
4412     pTab->nTabRef = 1;
4413     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4414     pTab->iPKey = -1;
4415     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4416     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4417     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4418     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4419     assert( pFrom->pSelect );
4420 
4421     /* Check if this is a recursive CTE. */
4422     pSel = pFrom->pSelect;
4423     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4424     if( bMayRecursive ){
4425       int i;
4426       SrcList *pSrc = pFrom->pSelect->pSrc;
4427       for(i=0; i<pSrc->nSrc; i++){
4428         struct SrcList_item *pItem = &pSrc->a[i];
4429         if( pItem->zDatabase==0
4430          && pItem->zName!=0
4431          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4432           ){
4433           pItem->pTab = pTab;
4434           pItem->fg.isRecursive = 1;
4435           pTab->nTabRef++;
4436           pSel->selFlags |= SF_Recursive;
4437         }
4438       }
4439     }
4440 
4441     /* Only one recursive reference is permitted. */
4442     if( pTab->nTabRef>2 ){
4443       sqlite3ErrorMsg(
4444           pParse, "multiple references to recursive table: %s", pCte->zName
4445       );
4446       return SQLITE_ERROR;
4447     }
4448     assert( pTab->nTabRef==1 ||
4449             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4450 
4451     pCte->zCteErr = "circular reference: %s";
4452     pSavedWith = pParse->pWith;
4453     pParse->pWith = pWith;
4454     if( bMayRecursive ){
4455       Select *pPrior = pSel->pPrior;
4456       assert( pPrior->pWith==0 );
4457       pPrior->pWith = pSel->pWith;
4458       sqlite3WalkSelect(pWalker, pPrior);
4459       pPrior->pWith = 0;
4460     }else{
4461       sqlite3WalkSelect(pWalker, pSel);
4462     }
4463     pParse->pWith = pWith;
4464 
4465     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4466     pEList = pLeft->pEList;
4467     if( pCte->pCols ){
4468       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4469         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4470             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4471         );
4472         pParse->pWith = pSavedWith;
4473         return SQLITE_ERROR;
4474       }
4475       pEList = pCte->pCols;
4476     }
4477 
4478     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4479     if( bMayRecursive ){
4480       if( pSel->selFlags & SF_Recursive ){
4481         pCte->zCteErr = "multiple recursive references: %s";
4482       }else{
4483         pCte->zCteErr = "recursive reference in a subquery: %s";
4484       }
4485       sqlite3WalkSelect(pWalker, pSel);
4486     }
4487     pCte->zCteErr = 0;
4488     pParse->pWith = pSavedWith;
4489   }
4490 
4491   return SQLITE_OK;
4492 }
4493 #endif
4494 
4495 #ifndef SQLITE_OMIT_CTE
4496 /*
4497 ** If the SELECT passed as the second argument has an associated WITH
4498 ** clause, pop it from the stack stored as part of the Parse object.
4499 **
4500 ** This function is used as the xSelectCallback2() callback by
4501 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4502 ** names and other FROM clause elements.
4503 */
4504 static void selectPopWith(Walker *pWalker, Select *p){
4505   Parse *pParse = pWalker->pParse;
4506   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4507     With *pWith = findRightmost(p)->pWith;
4508     if( pWith!=0 ){
4509       assert( pParse->pWith==pWith );
4510       pParse->pWith = pWith->pOuter;
4511     }
4512   }
4513 }
4514 #else
4515 #define selectPopWith 0
4516 #endif
4517 
4518 /*
4519 ** This routine is a Walker callback for "expanding" a SELECT statement.
4520 ** "Expanding" means to do the following:
4521 **
4522 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4523 **         element of the FROM clause.
4524 **
4525 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4526 **         defines FROM clause.  When views appear in the FROM clause,
4527 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4528 **         that implements the view.  A copy is made of the view's SELECT
4529 **         statement so that we can freely modify or delete that statement
4530 **         without worrying about messing up the persistent representation
4531 **         of the view.
4532 **
4533 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4534 **         on joins and the ON and USING clause of joins.
4535 **
4536 **    (4)  Scan the list of columns in the result set (pEList) looking
4537 **         for instances of the "*" operator or the TABLE.* operator.
4538 **         If found, expand each "*" to be every column in every table
4539 **         and TABLE.* to be every column in TABLE.
4540 **
4541 */
4542 static int selectExpander(Walker *pWalker, Select *p){
4543   Parse *pParse = pWalker->pParse;
4544   int i, j, k;
4545   SrcList *pTabList;
4546   ExprList *pEList;
4547   struct SrcList_item *pFrom;
4548   sqlite3 *db = pParse->db;
4549   Expr *pE, *pRight, *pExpr;
4550   u16 selFlags = p->selFlags;
4551   u32 elistFlags = 0;
4552 
4553   p->selFlags |= SF_Expanded;
4554   if( db->mallocFailed  ){
4555     return WRC_Abort;
4556   }
4557   assert( p->pSrc!=0 );
4558   if( (selFlags & SF_Expanded)!=0 ){
4559     return WRC_Prune;
4560   }
4561   pTabList = p->pSrc;
4562   pEList = p->pEList;
4563   sqlite3WithPush(pParse, p->pWith, 0);
4564 
4565   /* Make sure cursor numbers have been assigned to all entries in
4566   ** the FROM clause of the SELECT statement.
4567   */
4568   sqlite3SrcListAssignCursors(pParse, pTabList);
4569 
4570   /* Look up every table named in the FROM clause of the select.  If
4571   ** an entry of the FROM clause is a subquery instead of a table or view,
4572   ** then create a transient table structure to describe the subquery.
4573   */
4574   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4575     Table *pTab;
4576     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4577     if( pFrom->fg.isRecursive ) continue;
4578     assert( pFrom->pTab==0 );
4579 #ifndef SQLITE_OMIT_CTE
4580     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4581     if( pFrom->pTab ) {} else
4582 #endif
4583     if( pFrom->zName==0 ){
4584 #ifndef SQLITE_OMIT_SUBQUERY
4585       Select *pSel = pFrom->pSelect;
4586       /* A sub-query in the FROM clause of a SELECT */
4587       assert( pSel!=0 );
4588       assert( pFrom->pTab==0 );
4589       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4590       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4591       if( pTab==0 ) return WRC_Abort;
4592       pTab->nTabRef = 1;
4593       if( pFrom->zAlias ){
4594         pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4595       }else{
4596         pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4597       }
4598       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4599       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4600       pTab->iPKey = -1;
4601       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4602       pTab->tabFlags |= TF_Ephemeral;
4603 #endif
4604     }else{
4605       /* An ordinary table or view name in the FROM clause */
4606       assert( pFrom->pTab==0 );
4607       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4608       if( pTab==0 ) return WRC_Abort;
4609       if( pTab->nTabRef>=0xffff ){
4610         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4611            pTab->zName);
4612         pFrom->pTab = 0;
4613         return WRC_Abort;
4614       }
4615       pTab->nTabRef++;
4616       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4617         return WRC_Abort;
4618       }
4619 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4620       if( IsVirtual(pTab) || pTab->pSelect ){
4621         i16 nCol;
4622         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4623         assert( pFrom->pSelect==0 );
4624         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4625         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4626         nCol = pTab->nCol;
4627         pTab->nCol = -1;
4628         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4629         pTab->nCol = nCol;
4630       }
4631 #endif
4632     }
4633 
4634     /* Locate the index named by the INDEXED BY clause, if any. */
4635     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4636       return WRC_Abort;
4637     }
4638   }
4639 
4640   /* Process NATURAL keywords, and ON and USING clauses of joins.
4641   */
4642   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4643     return WRC_Abort;
4644   }
4645 
4646   /* For every "*" that occurs in the column list, insert the names of
4647   ** all columns in all tables.  And for every TABLE.* insert the names
4648   ** of all columns in TABLE.  The parser inserted a special expression
4649   ** with the TK_ASTERISK operator for each "*" that it found in the column
4650   ** list.  The following code just has to locate the TK_ASTERISK
4651   ** expressions and expand each one to the list of all columns in
4652   ** all tables.
4653   **
4654   ** The first loop just checks to see if there are any "*" operators
4655   ** that need expanding.
4656   */
4657   for(k=0; k<pEList->nExpr; k++){
4658     pE = pEList->a[k].pExpr;
4659     if( pE->op==TK_ASTERISK ) break;
4660     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4661     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4662     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4663     elistFlags |= pE->flags;
4664   }
4665   if( k<pEList->nExpr ){
4666     /*
4667     ** If we get here it means the result set contains one or more "*"
4668     ** operators that need to be expanded.  Loop through each expression
4669     ** in the result set and expand them one by one.
4670     */
4671     struct ExprList_item *a = pEList->a;
4672     ExprList *pNew = 0;
4673     int flags = pParse->db->flags;
4674     int longNames = (flags & SQLITE_FullColNames)!=0
4675                       && (flags & SQLITE_ShortColNames)==0;
4676 
4677     for(k=0; k<pEList->nExpr; k++){
4678       pE = a[k].pExpr;
4679       elistFlags |= pE->flags;
4680       pRight = pE->pRight;
4681       assert( pE->op!=TK_DOT || pRight!=0 );
4682       if( pE->op!=TK_ASTERISK
4683        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4684       ){
4685         /* This particular expression does not need to be expanded.
4686         */
4687         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4688         if( pNew ){
4689           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4690           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4691           a[k].zName = 0;
4692           a[k].zSpan = 0;
4693         }
4694         a[k].pExpr = 0;
4695       }else{
4696         /* This expression is a "*" or a "TABLE.*" and needs to be
4697         ** expanded. */
4698         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4699         char *zTName = 0;       /* text of name of TABLE */
4700         if( pE->op==TK_DOT ){
4701           assert( pE->pLeft!=0 );
4702           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4703           zTName = pE->pLeft->u.zToken;
4704         }
4705         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4706           Table *pTab = pFrom->pTab;
4707           Select *pSub = pFrom->pSelect;
4708           char *zTabName = pFrom->zAlias;
4709           const char *zSchemaName = 0;
4710           int iDb;
4711           if( zTabName==0 ){
4712             zTabName = pTab->zName;
4713           }
4714           if( db->mallocFailed ) break;
4715           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4716             pSub = 0;
4717             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4718               continue;
4719             }
4720             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4721             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4722           }
4723           for(j=0; j<pTab->nCol; j++){
4724             char *zName = pTab->aCol[j].zName;
4725             char *zColname;  /* The computed column name */
4726             char *zToFree;   /* Malloced string that needs to be freed */
4727             Token sColname;  /* Computed column name as a token */
4728 
4729             assert( zName );
4730             if( zTName && pSub
4731              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4732             ){
4733               continue;
4734             }
4735 
4736             /* If a column is marked as 'hidden', omit it from the expanded
4737             ** result-set list unless the SELECT has the SF_IncludeHidden
4738             ** bit set.
4739             */
4740             if( (p->selFlags & SF_IncludeHidden)==0
4741              && IsHiddenColumn(&pTab->aCol[j])
4742             ){
4743               continue;
4744             }
4745             tableSeen = 1;
4746 
4747             if( i>0 && zTName==0 ){
4748               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4749                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4750               ){
4751                 /* In a NATURAL join, omit the join columns from the
4752                 ** table to the right of the join */
4753                 continue;
4754               }
4755               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4756                 /* In a join with a USING clause, omit columns in the
4757                 ** using clause from the table on the right. */
4758                 continue;
4759               }
4760             }
4761             pRight = sqlite3Expr(db, TK_ID, zName);
4762             zColname = zName;
4763             zToFree = 0;
4764             if( longNames || pTabList->nSrc>1 ){
4765               Expr *pLeft;
4766               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4767               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4768               if( zSchemaName ){
4769                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4770                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4771               }
4772               if( longNames ){
4773                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4774                 zToFree = zColname;
4775               }
4776             }else{
4777               pExpr = pRight;
4778             }
4779             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4780             sqlite3TokenInit(&sColname, zColname);
4781             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4782             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4783               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4784               if( pSub ){
4785                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4786                 testcase( pX->zSpan==0 );
4787               }else{
4788                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4789                                            zSchemaName, zTabName, zColname);
4790                 testcase( pX->zSpan==0 );
4791               }
4792               pX->bSpanIsTab = 1;
4793             }
4794             sqlite3DbFree(db, zToFree);
4795           }
4796         }
4797         if( !tableSeen ){
4798           if( zTName ){
4799             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4800           }else{
4801             sqlite3ErrorMsg(pParse, "no tables specified");
4802           }
4803         }
4804       }
4805     }
4806     sqlite3ExprListDelete(db, pEList);
4807     p->pEList = pNew;
4808   }
4809   if( p->pEList ){
4810     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4811       sqlite3ErrorMsg(pParse, "too many columns in result set");
4812       return WRC_Abort;
4813     }
4814     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4815       p->selFlags |= SF_ComplexResult;
4816     }
4817   }
4818   return WRC_Continue;
4819 }
4820 
4821 /*
4822 ** No-op routine for the parse-tree walker.
4823 **
4824 ** When this routine is the Walker.xExprCallback then expression trees
4825 ** are walked without any actions being taken at each node.  Presumably,
4826 ** when this routine is used for Walker.xExprCallback then
4827 ** Walker.xSelectCallback is set to do something useful for every
4828 ** subquery in the parser tree.
4829 */
4830 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4831   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4832   return WRC_Continue;
4833 }
4834 
4835 /*
4836 ** No-op routine for the parse-tree walker for SELECT statements.
4837 ** subquery in the parser tree.
4838 */
4839 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4840   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4841   return WRC_Continue;
4842 }
4843 
4844 #if SQLITE_DEBUG
4845 /*
4846 ** Always assert.  This xSelectCallback2 implementation proves that the
4847 ** xSelectCallback2 is never invoked.
4848 */
4849 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4850   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4851   assert( 0 );
4852 }
4853 #endif
4854 /*
4855 ** This routine "expands" a SELECT statement and all of its subqueries.
4856 ** For additional information on what it means to "expand" a SELECT
4857 ** statement, see the comment on the selectExpand worker callback above.
4858 **
4859 ** Expanding a SELECT statement is the first step in processing a
4860 ** SELECT statement.  The SELECT statement must be expanded before
4861 ** name resolution is performed.
4862 **
4863 ** If anything goes wrong, an error message is written into pParse.
4864 ** The calling function can detect the problem by looking at pParse->nErr
4865 ** and/or pParse->db->mallocFailed.
4866 */
4867 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4868   Walker w;
4869   w.xExprCallback = sqlite3ExprWalkNoop;
4870   w.pParse = pParse;
4871   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4872     w.xSelectCallback = convertCompoundSelectToSubquery;
4873     w.xSelectCallback2 = 0;
4874     sqlite3WalkSelect(&w, pSelect);
4875   }
4876   w.xSelectCallback = selectExpander;
4877   w.xSelectCallback2 = selectPopWith;
4878   sqlite3WalkSelect(&w, pSelect);
4879 }
4880 
4881 
4882 #ifndef SQLITE_OMIT_SUBQUERY
4883 /*
4884 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4885 ** interface.
4886 **
4887 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4888 ** information to the Table structure that represents the result set
4889 ** of that subquery.
4890 **
4891 ** The Table structure that represents the result set was constructed
4892 ** by selectExpander() but the type and collation information was omitted
4893 ** at that point because identifiers had not yet been resolved.  This
4894 ** routine is called after identifier resolution.
4895 */
4896 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4897   Parse *pParse;
4898   int i;
4899   SrcList *pTabList;
4900   struct SrcList_item *pFrom;
4901 
4902   assert( p->selFlags & SF_Resolved );
4903   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4904   p->selFlags |= SF_HasTypeInfo;
4905   pParse = pWalker->pParse;
4906   pTabList = p->pSrc;
4907   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4908     Table *pTab = pFrom->pTab;
4909     assert( pTab!=0 );
4910     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4911       /* A sub-query in the FROM clause of a SELECT */
4912       Select *pSel = pFrom->pSelect;
4913       if( pSel ){
4914         while( pSel->pPrior ) pSel = pSel->pPrior;
4915         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4916       }
4917     }
4918   }
4919 }
4920 #endif
4921 
4922 
4923 /*
4924 ** This routine adds datatype and collating sequence information to
4925 ** the Table structures of all FROM-clause subqueries in a
4926 ** SELECT statement.
4927 **
4928 ** Use this routine after name resolution.
4929 */
4930 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4931 #ifndef SQLITE_OMIT_SUBQUERY
4932   Walker w;
4933   w.xSelectCallback = sqlite3SelectWalkNoop;
4934   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4935   w.xExprCallback = sqlite3ExprWalkNoop;
4936   w.pParse = pParse;
4937   sqlite3WalkSelect(&w, pSelect);
4938 #endif
4939 }
4940 
4941 
4942 /*
4943 ** This routine sets up a SELECT statement for processing.  The
4944 ** following is accomplished:
4945 **
4946 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4947 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4948 **     *  ON and USING clauses are shifted into WHERE statements
4949 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4950 **     *  Identifiers in expression are matched to tables.
4951 **
4952 ** This routine acts recursively on all subqueries within the SELECT.
4953 */
4954 void sqlite3SelectPrep(
4955   Parse *pParse,         /* The parser context */
4956   Select *p,             /* The SELECT statement being coded. */
4957   NameContext *pOuterNC  /* Name context for container */
4958 ){
4959   assert( p!=0 || pParse->db->mallocFailed );
4960   if( pParse->db->mallocFailed ) return;
4961   if( p->selFlags & SF_HasTypeInfo ) return;
4962   sqlite3SelectExpand(pParse, p);
4963   if( pParse->nErr || pParse->db->mallocFailed ) return;
4964   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4965   if( pParse->nErr || pParse->db->mallocFailed ) return;
4966   sqlite3SelectAddTypeInfo(pParse, p);
4967 }
4968 
4969 /*
4970 ** Reset the aggregate accumulator.
4971 **
4972 ** The aggregate accumulator is a set of memory cells that hold
4973 ** intermediate results while calculating an aggregate.  This
4974 ** routine generates code that stores NULLs in all of those memory
4975 ** cells.
4976 */
4977 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4978   Vdbe *v = pParse->pVdbe;
4979   int i;
4980   struct AggInfo_func *pFunc;
4981   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4982   if( nReg==0 ) return;
4983 #ifdef SQLITE_DEBUG
4984   /* Verify that all AggInfo registers are within the range specified by
4985   ** AggInfo.mnReg..AggInfo.mxReg */
4986   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4987   for(i=0; i<pAggInfo->nColumn; i++){
4988     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4989          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4990   }
4991   for(i=0; i<pAggInfo->nFunc; i++){
4992     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4993          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4994   }
4995 #endif
4996   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4997   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4998     if( pFunc->iDistinct>=0 ){
4999       Expr *pE = pFunc->pExpr;
5000       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5001       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5002         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5003            "argument");
5004         pFunc->iDistinct = -1;
5005       }else{
5006         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
5007         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5008                           (char*)pKeyInfo, P4_KEYINFO);
5009       }
5010     }
5011   }
5012 }
5013 
5014 /*
5015 ** Invoke the OP_AggFinalize opcode for every aggregate function
5016 ** in the AggInfo structure.
5017 */
5018 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5019   Vdbe *v = pParse->pVdbe;
5020   int i;
5021   struct AggInfo_func *pF;
5022   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5023     ExprList *pList = pF->pExpr->x.pList;
5024     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5025     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5026     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5027   }
5028 }
5029 
5030 /*
5031 ** Update the accumulator memory cells for an aggregate based on
5032 ** the current cursor position.
5033 */
5034 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
5035   Vdbe *v = pParse->pVdbe;
5036   int i;
5037   int regHit = 0;
5038   int addrHitTest = 0;
5039   struct AggInfo_func *pF;
5040   struct AggInfo_col *pC;
5041 
5042   pAggInfo->directMode = 1;
5043   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5044     int nArg;
5045     int addrNext = 0;
5046     int regAgg;
5047     ExprList *pList = pF->pExpr->x.pList;
5048     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5049     if( pList ){
5050       nArg = pList->nExpr;
5051       regAgg = sqlite3GetTempRange(pParse, nArg);
5052       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5053     }else{
5054       nArg = 0;
5055       regAgg = 0;
5056     }
5057     if( pF->iDistinct>=0 ){
5058       addrNext = sqlite3VdbeMakeLabel(v);
5059       testcase( nArg==0 );  /* Error condition */
5060       testcase( nArg>1 );   /* Also an error */
5061       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5062     }
5063     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5064       CollSeq *pColl = 0;
5065       struct ExprList_item *pItem;
5066       int j;
5067       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5068       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5069         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5070       }
5071       if( !pColl ){
5072         pColl = pParse->db->pDfltColl;
5073       }
5074       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5075       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5076     }
5077     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
5078     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5079     sqlite3VdbeChangeP5(v, (u8)nArg);
5080     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5081     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5082     if( addrNext ){
5083       sqlite3VdbeResolveLabel(v, addrNext);
5084       sqlite3ExprCacheClear(pParse);
5085     }
5086   }
5087 
5088   /* Before populating the accumulator registers, clear the column cache.
5089   ** Otherwise, if any of the required column values are already present
5090   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5091   ** to pC->iMem. But by the time the value is used, the original register
5092   ** may have been used, invalidating the underlying buffer holding the
5093   ** text or blob value. See ticket [883034dcb5].
5094   **
5095   ** Another solution would be to change the OP_SCopy used to copy cached
5096   ** values to an OP_Copy.
5097   */
5098   if( regHit ){
5099     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5100   }
5101   sqlite3ExprCacheClear(pParse);
5102   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5103     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5104   }
5105   pAggInfo->directMode = 0;
5106   sqlite3ExprCacheClear(pParse);
5107   if( addrHitTest ){
5108     sqlite3VdbeJumpHere(v, addrHitTest);
5109   }
5110 }
5111 
5112 /*
5113 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5114 ** count(*) query ("SELECT count(*) FROM pTab").
5115 */
5116 #ifndef SQLITE_OMIT_EXPLAIN
5117 static void explainSimpleCount(
5118   Parse *pParse,                  /* Parse context */
5119   Table *pTab,                    /* Table being queried */
5120   Index *pIdx                     /* Index used to optimize scan, or NULL */
5121 ){
5122   if( pParse->explain==2 ){
5123     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5124     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
5125         pTab->zName,
5126         bCover ? " USING COVERING INDEX " : "",
5127         bCover ? pIdx->zName : ""
5128     );
5129     sqlite3VdbeAddOp4(
5130         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
5131     );
5132   }
5133 }
5134 #else
5135 # define explainSimpleCount(a,b,c)
5136 #endif
5137 
5138 /*
5139 ** sqlite3WalkExpr() callback used by havingToWhere().
5140 **
5141 ** If the node passed to the callback is a TK_AND node, return
5142 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5143 **
5144 ** Otherwise, return WRC_Prune. In this case, also check if the
5145 ** sub-expression matches the criteria for being moved to the WHERE
5146 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5147 ** within the HAVING expression with a constant "1".
5148 */
5149 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5150   if( pExpr->op!=TK_AND ){
5151     Select *pS = pWalker->u.pSelect;
5152     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5153       sqlite3 *db = pWalker->pParse->db;
5154       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5155       if( pNew ){
5156         Expr *pWhere = pS->pWhere;
5157         SWAP(Expr, *pNew, *pExpr);
5158         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5159         pS->pWhere = pNew;
5160         pWalker->eCode = 1;
5161       }
5162     }
5163     return WRC_Prune;
5164   }
5165   return WRC_Continue;
5166 }
5167 
5168 /*
5169 ** Transfer eligible terms from the HAVING clause of a query, which is
5170 ** processed after grouping, to the WHERE clause, which is processed before
5171 ** grouping. For example, the query:
5172 **
5173 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5174 **
5175 ** can be rewritten as:
5176 **
5177 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5178 **
5179 ** A term of the HAVING expression is eligible for transfer if it consists
5180 ** entirely of constants and expressions that are also GROUP BY terms that
5181 ** use the "BINARY" collation sequence.
5182 */
5183 static void havingToWhere(Parse *pParse, Select *p){
5184   Walker sWalker;
5185   memset(&sWalker, 0, sizeof(sWalker));
5186   sWalker.pParse = pParse;
5187   sWalker.xExprCallback = havingToWhereExprCb;
5188   sWalker.u.pSelect = p;
5189   sqlite3WalkExpr(&sWalker, p->pHaving);
5190 #if SELECTTRACE_ENABLED
5191   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5192     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5193     sqlite3TreeViewSelect(0, p, 0);
5194   }
5195 #endif
5196 }
5197 
5198 /*
5199 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5200 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5201 ** then return 0.
5202 */
5203 static struct SrcList_item *isSelfJoinView(
5204   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5205   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5206 ){
5207   struct SrcList_item *pItem;
5208   for(pItem = pTabList->a; pItem<pThis; pItem++){
5209     if( pItem->pSelect==0 ) continue;
5210     if( pItem->fg.viaCoroutine ) continue;
5211     if( pItem->zName==0 ) continue;
5212     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5213     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5214     if( sqlite3ExprCompare(0,
5215           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5216     ){
5217       /* The view was modified by some other optimization such as
5218       ** pushDownWhereTerms() */
5219       continue;
5220     }
5221     return pItem;
5222   }
5223   return 0;
5224 }
5225 
5226 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5227 /*
5228 ** Attempt to transform a query of the form
5229 **
5230 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5231 **
5232 ** Into this:
5233 **
5234 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5235 **
5236 ** The transformation only works if all of the following are true:
5237 **
5238 **   *  The subquery is a UNION ALL of two or more terms
5239 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5240 **   *  The outer query is a simple count(*)
5241 **
5242 ** Return TRUE if the optimization is undertaken.
5243 */
5244 static int countOfViewOptimization(Parse *pParse, Select *p){
5245   Select *pSub, *pPrior;
5246   Expr *pExpr;
5247   Expr *pCount;
5248   sqlite3 *db;
5249   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5250   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5251   pExpr = p->pEList->a[0].pExpr;
5252   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5253   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5254   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5255   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5256   pSub = p->pSrc->a[0].pSelect;
5257   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5258   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5259   do{
5260     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5261     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5262     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5263     pSub = pSub->pPrior;                              /* Repeat over compound */
5264   }while( pSub );
5265 
5266   /* If we reach this point then it is OK to perform the transformation */
5267 
5268   db = pParse->db;
5269   pCount = pExpr;
5270   pExpr = 0;
5271   pSub = p->pSrc->a[0].pSelect;
5272   p->pSrc->a[0].pSelect = 0;
5273   sqlite3SrcListDelete(db, p->pSrc);
5274   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5275   while( pSub ){
5276     Expr *pTerm;
5277     pPrior = pSub->pPrior;
5278     pSub->pPrior = 0;
5279     pSub->pNext = 0;
5280     pSub->selFlags |= SF_Aggregate;
5281     pSub->selFlags &= ~SF_Compound;
5282     pSub->nSelectRow = 0;
5283     sqlite3ExprListDelete(db, pSub->pEList);
5284     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5285     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5286     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5287     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5288     if( pExpr==0 ){
5289       pExpr = pTerm;
5290     }else{
5291       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5292     }
5293     pSub = pPrior;
5294   }
5295   p->pEList->a[0].pExpr = pExpr;
5296   p->selFlags &= ~SF_Aggregate;
5297 
5298 #if SELECTTRACE_ENABLED
5299   if( sqlite3SelectTrace & 0x400 ){
5300     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5301     sqlite3TreeViewSelect(0, p, 0);
5302   }
5303 #endif
5304   return 1;
5305 }
5306 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5307 
5308 /*
5309 ** Generate code for the SELECT statement given in the p argument.
5310 **
5311 ** The results are returned according to the SelectDest structure.
5312 ** See comments in sqliteInt.h for further information.
5313 **
5314 ** This routine returns the number of errors.  If any errors are
5315 ** encountered, then an appropriate error message is left in
5316 ** pParse->zErrMsg.
5317 **
5318 ** This routine does NOT free the Select structure passed in.  The
5319 ** calling function needs to do that.
5320 */
5321 int sqlite3Select(
5322   Parse *pParse,         /* The parser context */
5323   Select *p,             /* The SELECT statement being coded. */
5324   SelectDest *pDest      /* What to do with the query results */
5325 ){
5326   int i, j;              /* Loop counters */
5327   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5328   Vdbe *v;               /* The virtual machine under construction */
5329   int isAgg;             /* True for select lists like "count(*)" */
5330   ExprList *pEList = 0;  /* List of columns to extract. */
5331   SrcList *pTabList;     /* List of tables to select from */
5332   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5333   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5334   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5335   int rc = 1;            /* Value to return from this function */
5336   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5337   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5338   AggInfo sAggInfo;      /* Information used by aggregate queries */
5339   int iEnd;              /* Address of the end of the query */
5340   sqlite3 *db;           /* The database connection */
5341   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5342   u8 minMaxFlag;                 /* Flag for min/max queries */
5343 
5344 #ifndef SQLITE_OMIT_EXPLAIN
5345   int iRestoreSelectId = pParse->iSelectId;
5346   pParse->iSelectId = pParse->iNextSelectId++;
5347 #endif
5348 
5349   db = pParse->db;
5350   if( p==0 || db->mallocFailed || pParse->nErr ){
5351     return 1;
5352   }
5353   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5354   memset(&sAggInfo, 0, sizeof(sAggInfo));
5355 #if SELECTTRACE_ENABLED
5356   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5357   if( sqlite3SelectTrace & 0x100 ){
5358     sqlite3TreeViewSelect(0, p, 0);
5359   }
5360 #endif
5361 
5362   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5363   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5364   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5365   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5366   if( IgnorableOrderby(pDest) ){
5367     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5368            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5369            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5370            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5371     /* If ORDER BY makes no difference in the output then neither does
5372     ** DISTINCT so it can be removed too. */
5373     sqlite3ExprListDelete(db, p->pOrderBy);
5374     p->pOrderBy = 0;
5375     p->selFlags &= ~SF_Distinct;
5376   }
5377   sqlite3SelectPrep(pParse, p, 0);
5378   memset(&sSort, 0, sizeof(sSort));
5379   sSort.pOrderBy = p->pOrderBy;
5380   pTabList = p->pSrc;
5381   if( pParse->nErr || db->mallocFailed ){
5382     goto select_end;
5383   }
5384   assert( p->pEList!=0 );
5385   isAgg = (p->selFlags & SF_Aggregate)!=0;
5386 #if SELECTTRACE_ENABLED
5387   if( sqlite3SelectTrace & 0x100 ){
5388     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5389     sqlite3TreeViewSelect(0, p, 0);
5390   }
5391 #endif
5392 
5393   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5394   ** does not already exist */
5395   v = sqlite3GetVdbe(pParse);
5396   if( v==0 ) goto select_end;
5397   if( pDest->eDest==SRT_Output ){
5398     generateColumnNames(pParse, p);
5399   }
5400 
5401   /* Try to various optimizations (flattening subqueries, and strength
5402   ** reduction of join operators) in the FROM clause up into the main query
5403   */
5404 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5405   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5406     struct SrcList_item *pItem = &pTabList->a[i];
5407     Select *pSub = pItem->pSelect;
5408     Table *pTab = pItem->pTab;
5409 
5410     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5411     ** of the LEFT JOIN used in the WHERE clause.
5412     */
5413     if( (pItem->fg.jointype & JT_LEFT)!=0
5414      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5415      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5416     ){
5417       SELECTTRACE(0x100,pParse,p,
5418                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5419       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5420       unsetJoinExpr(p->pWhere, pItem->iCursor);
5421     }
5422 
5423     /* No futher action if this term of the FROM clause is no a subquery */
5424     if( pSub==0 ) continue;
5425 
5426     /* Catch mismatch in the declared columns of a view and the number of
5427     ** columns in the SELECT on the RHS */
5428     if( pTab->nCol!=pSub->pEList->nExpr ){
5429       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5430                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5431       goto select_end;
5432     }
5433 
5434     /* Do not try to flatten an aggregate subquery.
5435     **
5436     ** Flattening an aggregate subquery is only possible if the outer query
5437     ** is not a join.  But if the outer query is not a join, then the subquery
5438     ** will be implemented as a co-routine and there is no advantage to
5439     ** flattening in that case.
5440     */
5441     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5442     assert( pSub->pGroupBy==0 );
5443 
5444     /* If the outer query contains a "complex" result set (that is,
5445     ** if the result set of the outer query uses functions or subqueries)
5446     ** and if the subquery contains an ORDER BY clause and if
5447     ** it will be implemented as a co-routine, then do not flatten.  This
5448     ** restriction allows SQL constructs like this:
5449     **
5450     **  SELECT expensive_function(x)
5451     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5452     **
5453     ** The expensive_function() is only computed on the 10 rows that
5454     ** are output, rather than every row of the table.
5455     **
5456     ** The requirement that the outer query have a complex result set
5457     ** means that flattening does occur on simpler SQL constraints without
5458     ** the expensive_function() like:
5459     **
5460     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5461     */
5462     if( pSub->pOrderBy!=0
5463      && i==0
5464      && (p->selFlags & SF_ComplexResult)!=0
5465      && (pTabList->nSrc==1
5466          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5467     ){
5468       continue;
5469     }
5470 
5471     if( flattenSubquery(pParse, p, i, isAgg) ){
5472       /* This subquery can be absorbed into its parent. */
5473       i = -1;
5474     }
5475     pTabList = p->pSrc;
5476     if( db->mallocFailed ) goto select_end;
5477     if( !IgnorableOrderby(pDest) ){
5478       sSort.pOrderBy = p->pOrderBy;
5479     }
5480   }
5481 #endif
5482 
5483 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5484   /* Handle compound SELECT statements using the separate multiSelect()
5485   ** procedure.
5486   */
5487   if( p->pPrior ){
5488     rc = multiSelect(pParse, p, pDest);
5489     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5490 #if SELECTTRACE_ENABLED
5491     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5492 #endif
5493     return rc;
5494   }
5495 #endif
5496 
5497   /* For each term in the FROM clause, do two things:
5498   ** (1) Authorized unreferenced tables
5499   ** (2) Generate code for all sub-queries
5500   */
5501   for(i=0; i<pTabList->nSrc; i++){
5502     struct SrcList_item *pItem = &pTabList->a[i];
5503     SelectDest dest;
5504     Select *pSub;
5505 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5506     const char *zSavedAuthContext;
5507 #endif
5508 
5509     /* Issue SQLITE_READ authorizations with a fake column name for any
5510     ** tables that are referenced but from which no values are extracted.
5511     ** Examples of where these kinds of null SQLITE_READ authorizations
5512     ** would occur:
5513     **
5514     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5515     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5516     **
5517     ** The fake column name is an empty string.  It is possible for a table to
5518     ** have a column named by the empty string, in which case there is no way to
5519     ** distinguish between an unreferenced table and an actual reference to the
5520     ** "" column. The original design was for the fake column name to be a NULL,
5521     ** which would be unambiguous.  But legacy authorization callbacks might
5522     ** assume the column name is non-NULL and segfault.  The use of an empty
5523     ** string for the fake column name seems safer.
5524     */
5525     if( pItem->colUsed==0 ){
5526       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5527     }
5528 
5529 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5530     /* Generate code for all sub-queries in the FROM clause
5531     */
5532     pSub = pItem->pSelect;
5533     if( pSub==0 ) continue;
5534 
5535     /* Sometimes the code for a subquery will be generated more than
5536     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5537     ** for example.  In that case, do not regenerate the code to manifest
5538     ** a view or the co-routine to implement a view.  The first instance
5539     ** is sufficient, though the subroutine to manifest the view does need
5540     ** to be invoked again. */
5541     if( pItem->addrFillSub ){
5542       if( pItem->fg.viaCoroutine==0 ){
5543         /* The subroutine that manifests the view might be a one-time routine,
5544         ** or it might need to be rerun on each iteration because it
5545         ** encodes a correlated subquery. */
5546         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5547         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5548       }
5549       continue;
5550     }
5551 
5552     /* Increment Parse.nHeight by the height of the largest expression
5553     ** tree referred to by this, the parent select. The child select
5554     ** may contain expression trees of at most
5555     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5556     ** more conservative than necessary, but much easier than enforcing
5557     ** an exact limit.
5558     */
5559     pParse->nHeight += sqlite3SelectExprHeight(p);
5560 
5561     /* Make copies of constant WHERE-clause terms in the outer query down
5562     ** inside the subquery.  This can help the subquery to run more efficiently.
5563     */
5564     if( OptimizationEnabled(db, SQLITE_PushDown)
5565      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5566                            (pItem->fg.jointype & JT_OUTER)!=0)
5567     ){
5568 #if SELECTTRACE_ENABLED
5569       if( sqlite3SelectTrace & 0x100 ){
5570         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5571         sqlite3TreeViewSelect(0, p, 0);
5572       }
5573 #endif
5574     }else{
5575       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5576     }
5577 
5578     zSavedAuthContext = pParse->zAuthContext;
5579     pParse->zAuthContext = pItem->zName;
5580 
5581     /* Generate code to implement the subquery
5582     **
5583     ** The subquery is implemented as a co-routine if the subquery is
5584     ** guaranteed to be the outer loop (so that it does not need to be
5585     ** computed more than once)
5586     **
5587     ** TODO: Are there other reasons beside (1) to use a co-routine
5588     ** implementation?
5589     */
5590     if( i==0
5591      && (pTabList->nSrc==1
5592             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5593     ){
5594       /* Implement a co-routine that will return a single row of the result
5595       ** set on each invocation.
5596       */
5597       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5598 
5599       pItem->regReturn = ++pParse->nMem;
5600       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5601       VdbeComment((v, "%s", pItem->pTab->zName));
5602       pItem->addrFillSub = addrTop;
5603       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5604       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5605       sqlite3Select(pParse, pSub, &dest);
5606       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5607       pItem->fg.viaCoroutine = 1;
5608       pItem->regResult = dest.iSdst;
5609       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5610       sqlite3VdbeJumpHere(v, addrTop-1);
5611       sqlite3ClearTempRegCache(pParse);
5612     }else{
5613       /* Generate a subroutine that will fill an ephemeral table with
5614       ** the content of this subquery.  pItem->addrFillSub will point
5615       ** to the address of the generated subroutine.  pItem->regReturn
5616       ** is a register allocated to hold the subroutine return address
5617       */
5618       int topAddr;
5619       int onceAddr = 0;
5620       int retAddr;
5621       struct SrcList_item *pPrior;
5622 
5623       assert( pItem->addrFillSub==0 );
5624       pItem->regReturn = ++pParse->nMem;
5625       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5626       pItem->addrFillSub = topAddr+1;
5627       if( pItem->fg.isCorrelated==0 ){
5628         /* If the subquery is not correlated and if we are not inside of
5629         ** a trigger, then we only need to compute the value of the subquery
5630         ** once. */
5631         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5632         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5633       }else{
5634         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5635       }
5636       pPrior = isSelfJoinView(pTabList, pItem);
5637       if( pPrior ){
5638         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5639         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5640         assert( pPrior->pSelect!=0 );
5641         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5642       }else{
5643         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5644         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5645         sqlite3Select(pParse, pSub, &dest);
5646       }
5647       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5648       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5649       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5650       VdbeComment((v, "end %s", pItem->pTab->zName));
5651       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5652       sqlite3ClearTempRegCache(pParse);
5653     }
5654     if( db->mallocFailed ) goto select_end;
5655     pParse->nHeight -= sqlite3SelectExprHeight(p);
5656     pParse->zAuthContext = zSavedAuthContext;
5657 #endif
5658   }
5659 
5660   /* Various elements of the SELECT copied into local variables for
5661   ** convenience */
5662   pEList = p->pEList;
5663   pWhere = p->pWhere;
5664   pGroupBy = p->pGroupBy;
5665   pHaving = p->pHaving;
5666   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5667 
5668 #if SELECTTRACE_ENABLED
5669   if( sqlite3SelectTrace & 0x400 ){
5670     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5671     sqlite3TreeViewSelect(0, p, 0);
5672   }
5673 #endif
5674 
5675 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5676   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5677    && countOfViewOptimization(pParse, p)
5678   ){
5679     if( db->mallocFailed ) goto select_end;
5680     pEList = p->pEList;
5681     pTabList = p->pSrc;
5682   }
5683 #endif
5684 
5685   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5686   ** if the select-list is the same as the ORDER BY list, then this query
5687   ** can be rewritten as a GROUP BY. In other words, this:
5688   **
5689   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5690   **
5691   ** is transformed to:
5692   **
5693   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5694   **
5695   ** The second form is preferred as a single index (or temp-table) may be
5696   ** used for both the ORDER BY and DISTINCT processing. As originally
5697   ** written the query must use a temp-table for at least one of the ORDER
5698   ** BY and DISTINCT, and an index or separate temp-table for the other.
5699   */
5700   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5701    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5702   ){
5703     p->selFlags &= ~SF_Distinct;
5704     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5705     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5706     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5707     ** original setting of the SF_Distinct flag, not the current setting */
5708     assert( sDistinct.isTnct );
5709 
5710 #if SELECTTRACE_ENABLED
5711     if( sqlite3SelectTrace & 0x400 ){
5712       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5713       sqlite3TreeViewSelect(0, p, 0);
5714     }
5715 #endif
5716   }
5717 
5718   /* If there is an ORDER BY clause, then create an ephemeral index to
5719   ** do the sorting.  But this sorting ephemeral index might end up
5720   ** being unused if the data can be extracted in pre-sorted order.
5721   ** If that is the case, then the OP_OpenEphemeral instruction will be
5722   ** changed to an OP_Noop once we figure out that the sorting index is
5723   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5724   ** that change.
5725   */
5726   if( sSort.pOrderBy ){
5727     KeyInfo *pKeyInfo;
5728     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5729     sSort.iECursor = pParse->nTab++;
5730     sSort.addrSortIndex =
5731       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5732           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5733           (char*)pKeyInfo, P4_KEYINFO
5734       );
5735   }else{
5736     sSort.addrSortIndex = -1;
5737   }
5738 
5739   /* If the output is destined for a temporary table, open that table.
5740   */
5741   if( pDest->eDest==SRT_EphemTab ){
5742     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5743   }
5744 
5745   /* Set the limiter.
5746   */
5747   iEnd = sqlite3VdbeMakeLabel(v);
5748   if( (p->selFlags & SF_FixedLimit)==0 ){
5749     p->nSelectRow = 320;  /* 4 billion rows */
5750   }
5751   computeLimitRegisters(pParse, p, iEnd);
5752   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5753     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5754     sSort.sortFlags |= SORTFLAG_UseSorter;
5755   }
5756 
5757   /* Open an ephemeral index to use for the distinct set.
5758   */
5759   if( p->selFlags & SF_Distinct ){
5760     sDistinct.tabTnct = pParse->nTab++;
5761     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5762                              sDistinct.tabTnct, 0, 0,
5763                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5764                              P4_KEYINFO);
5765     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5766     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5767   }else{
5768     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5769   }
5770 
5771   if( !isAgg && pGroupBy==0 ){
5772     /* No aggregate functions and no GROUP BY clause */
5773     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5774     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5775     wctrlFlags |= p->selFlags & SF_FixedLimit;
5776 
5777     /* Begin the database scan. */
5778     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5779     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5780                                p->pEList, wctrlFlags, p->nSelectRow);
5781     if( pWInfo==0 ) goto select_end;
5782     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5783       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5784     }
5785     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5786       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5787     }
5788     if( sSort.pOrderBy ){
5789       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5790       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5791       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5792         sSort.pOrderBy = 0;
5793       }
5794     }
5795 
5796     /* If sorting index that was created by a prior OP_OpenEphemeral
5797     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5798     ** into an OP_Noop.
5799     */
5800     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5801       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5802     }
5803 
5804     /* Use the standard inner loop. */
5805     assert( p->pEList==pEList );
5806     selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5807                     sqlite3WhereContinueLabel(pWInfo),
5808                     sqlite3WhereBreakLabel(pWInfo));
5809 
5810     /* End the database scan loop.
5811     */
5812     sqlite3WhereEnd(pWInfo);
5813   }else{
5814     /* This case when there exist aggregate functions or a GROUP BY clause
5815     ** or both */
5816     NameContext sNC;    /* Name context for processing aggregate information */
5817     int iAMem;          /* First Mem address for storing current GROUP BY */
5818     int iBMem;          /* First Mem address for previous GROUP BY */
5819     int iUseFlag;       /* Mem address holding flag indicating that at least
5820                         ** one row of the input to the aggregator has been
5821                         ** processed */
5822     int iAbortFlag;     /* Mem address which causes query abort if positive */
5823     int groupBySort;    /* Rows come from source in GROUP BY order */
5824     int addrEnd;        /* End of processing for this SELECT */
5825     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5826     int sortOut = 0;    /* Output register from the sorter */
5827     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5828 
5829     /* Remove any and all aliases between the result set and the
5830     ** GROUP BY clause.
5831     */
5832     if( pGroupBy ){
5833       int k;                        /* Loop counter */
5834       struct ExprList_item *pItem;  /* For looping over expression in a list */
5835 
5836       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5837         pItem->u.x.iAlias = 0;
5838       }
5839       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5840         pItem->u.x.iAlias = 0;
5841       }
5842       assert( 66==sqlite3LogEst(100) );
5843       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5844     }else{
5845       assert( 0==sqlite3LogEst(1) );
5846       p->nSelectRow = 0;
5847     }
5848 
5849     /* If there is both a GROUP BY and an ORDER BY clause and they are
5850     ** identical, then it may be possible to disable the ORDER BY clause
5851     ** on the grounds that the GROUP BY will cause elements to come out
5852     ** in the correct order. It also may not - the GROUP BY might use a
5853     ** database index that causes rows to be grouped together as required
5854     ** but not actually sorted. Either way, record the fact that the
5855     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5856     ** variable.  */
5857     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5858       orderByGrp = 1;
5859     }
5860 
5861     /* Create a label to jump to when we want to abort the query */
5862     addrEnd = sqlite3VdbeMakeLabel(v);
5863 
5864     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5865     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5866     ** SELECT statement.
5867     */
5868     memset(&sNC, 0, sizeof(sNC));
5869     sNC.pParse = pParse;
5870     sNC.pSrcList = pTabList;
5871     sNC.uNC.pAggInfo = &sAggInfo;
5872     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
5873     sAggInfo.mnReg = pParse->nMem+1;
5874     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5875     sAggInfo.pGroupBy = pGroupBy;
5876     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5877     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5878     if( pHaving ){
5879       if( pGroupBy ){
5880         assert( pWhere==p->pWhere );
5881         assert( pHaving==p->pHaving );
5882         assert( pGroupBy==p->pGroupBy );
5883         havingToWhere(pParse, p);
5884         pWhere = p->pWhere;
5885       }
5886       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5887     }
5888     sAggInfo.nAccumulator = sAggInfo.nColumn;
5889     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5890       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5891     }else{
5892       minMaxFlag = WHERE_ORDERBY_NORMAL;
5893     }
5894     for(i=0; i<sAggInfo.nFunc; i++){
5895       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5896       sNC.ncFlags |= NC_InAggFunc;
5897       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5898       sNC.ncFlags &= ~NC_InAggFunc;
5899     }
5900     sAggInfo.mxReg = pParse->nMem;
5901     if( db->mallocFailed ) goto select_end;
5902 #if SELECTTRACE_ENABLED
5903     if( sqlite3SelectTrace & 0x400 ){
5904       int ii;
5905       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5906       sqlite3TreeViewSelect(0, p, 0);
5907       for(ii=0; ii<sAggInfo.nColumn; ii++){
5908         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5909             ii, sAggInfo.aCol[ii].iMem);
5910         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5911       }
5912       for(ii=0; ii<sAggInfo.nFunc; ii++){
5913         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5914             ii, sAggInfo.aFunc[ii].iMem);
5915         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5916       }
5917     }
5918 #endif
5919 
5920 
5921     /* Processing for aggregates with GROUP BY is very different and
5922     ** much more complex than aggregates without a GROUP BY.
5923     */
5924     if( pGroupBy ){
5925       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5926       int addr1;          /* A-vs-B comparision jump */
5927       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5928       int regOutputRow;   /* Return address register for output subroutine */
5929       int addrSetAbort;   /* Set the abort flag and return */
5930       int addrTopOfLoop;  /* Top of the input loop */
5931       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5932       int addrReset;      /* Subroutine for resetting the accumulator */
5933       int regReset;       /* Return address register for reset subroutine */
5934 
5935       /* If there is a GROUP BY clause we might need a sorting index to
5936       ** implement it.  Allocate that sorting index now.  If it turns out
5937       ** that we do not need it after all, the OP_SorterOpen instruction
5938       ** will be converted into a Noop.
5939       */
5940       sAggInfo.sortingIdx = pParse->nTab++;
5941       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5942       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5943           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5944           0, (char*)pKeyInfo, P4_KEYINFO);
5945 
5946       /* Initialize memory locations used by GROUP BY aggregate processing
5947       */
5948       iUseFlag = ++pParse->nMem;
5949       iAbortFlag = ++pParse->nMem;
5950       regOutputRow = ++pParse->nMem;
5951       addrOutputRow = sqlite3VdbeMakeLabel(v);
5952       regReset = ++pParse->nMem;
5953       addrReset = sqlite3VdbeMakeLabel(v);
5954       iAMem = pParse->nMem + 1;
5955       pParse->nMem += pGroupBy->nExpr;
5956       iBMem = pParse->nMem + 1;
5957       pParse->nMem += pGroupBy->nExpr;
5958       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5959       VdbeComment((v, "clear abort flag"));
5960       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5961       VdbeComment((v, "indicate accumulator empty"));
5962       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5963 
5964       /* Begin a loop that will extract all source rows in GROUP BY order.
5965       ** This might involve two separate loops with an OP_Sort in between, or
5966       ** it might be a single loop that uses an index to extract information
5967       ** in the right order to begin with.
5968       */
5969       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5970       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5971       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5972           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5973       );
5974       if( pWInfo==0 ) goto select_end;
5975       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5976         /* The optimizer is able to deliver rows in group by order so
5977         ** we do not have to sort.  The OP_OpenEphemeral table will be
5978         ** cancelled later because we still need to use the pKeyInfo
5979         */
5980         groupBySort = 0;
5981       }else{
5982         /* Rows are coming out in undetermined order.  We have to push
5983         ** each row into a sorting index, terminate the first loop,
5984         ** then loop over the sorting index in order to get the output
5985         ** in sorted order
5986         */
5987         int regBase;
5988         int regRecord;
5989         int nCol;
5990         int nGroupBy;
5991 
5992         explainTempTable(pParse,
5993             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5994                     "DISTINCT" : "GROUP BY");
5995 
5996         groupBySort = 1;
5997         nGroupBy = pGroupBy->nExpr;
5998         nCol = nGroupBy;
5999         j = nGroupBy;
6000         for(i=0; i<sAggInfo.nColumn; i++){
6001           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6002             nCol++;
6003             j++;
6004           }
6005         }
6006         regBase = sqlite3GetTempRange(pParse, nCol);
6007         sqlite3ExprCacheClear(pParse);
6008         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6009         j = nGroupBy;
6010         for(i=0; i<sAggInfo.nColumn; i++){
6011           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6012           if( pCol->iSorterColumn>=j ){
6013             int r1 = j + regBase;
6014             sqlite3ExprCodeGetColumnToReg(pParse,
6015                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6016             j++;
6017           }
6018         }
6019         regRecord = sqlite3GetTempReg(pParse);
6020         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6021         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6022         sqlite3ReleaseTempReg(pParse, regRecord);
6023         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6024         sqlite3WhereEnd(pWInfo);
6025         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6026         sortOut = sqlite3GetTempReg(pParse);
6027         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6028         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6029         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6030         sAggInfo.useSortingIdx = 1;
6031         sqlite3ExprCacheClear(pParse);
6032 
6033       }
6034 
6035       /* If the index or temporary table used by the GROUP BY sort
6036       ** will naturally deliver rows in the order required by the ORDER BY
6037       ** clause, cancel the ephemeral table open coded earlier.
6038       **
6039       ** This is an optimization - the correct answer should result regardless.
6040       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6041       ** disable this optimization for testing purposes.  */
6042       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6043        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6044       ){
6045         sSort.pOrderBy = 0;
6046         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6047       }
6048 
6049       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6050       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6051       ** Then compare the current GROUP BY terms against the GROUP BY terms
6052       ** from the previous row currently stored in a0, a1, a2...
6053       */
6054       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6055       sqlite3ExprCacheClear(pParse);
6056       if( groupBySort ){
6057         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6058                           sortOut, sortPTab);
6059       }
6060       for(j=0; j<pGroupBy->nExpr; j++){
6061         if( groupBySort ){
6062           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6063         }else{
6064           sAggInfo.directMode = 1;
6065           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6066         }
6067       }
6068       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6069                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6070       addr1 = sqlite3VdbeCurrentAddr(v);
6071       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6072 
6073       /* Generate code that runs whenever the GROUP BY changes.
6074       ** Changes in the GROUP BY are detected by the previous code
6075       ** block.  If there were no changes, this block is skipped.
6076       **
6077       ** This code copies current group by terms in b0,b1,b2,...
6078       ** over to a0,a1,a2.  It then calls the output subroutine
6079       ** and resets the aggregate accumulator registers in preparation
6080       ** for the next GROUP BY batch.
6081       */
6082       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6083       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6084       VdbeComment((v, "output one row"));
6085       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6086       VdbeComment((v, "check abort flag"));
6087       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6088       VdbeComment((v, "reset accumulator"));
6089 
6090       /* Update the aggregate accumulators based on the content of
6091       ** the current row
6092       */
6093       sqlite3VdbeJumpHere(v, addr1);
6094       updateAccumulator(pParse, &sAggInfo);
6095       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6096       VdbeComment((v, "indicate data in accumulator"));
6097 
6098       /* End of the loop
6099       */
6100       if( groupBySort ){
6101         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6102         VdbeCoverage(v);
6103       }else{
6104         sqlite3WhereEnd(pWInfo);
6105         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6106       }
6107 
6108       /* Output the final row of result
6109       */
6110       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6111       VdbeComment((v, "output final row"));
6112 
6113       /* Jump over the subroutines
6114       */
6115       sqlite3VdbeGoto(v, addrEnd);
6116 
6117       /* Generate a subroutine that outputs a single row of the result
6118       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6119       ** is less than or equal to zero, the subroutine is a no-op.  If
6120       ** the processing calls for the query to abort, this subroutine
6121       ** increments the iAbortFlag memory location before returning in
6122       ** order to signal the caller to abort.
6123       */
6124       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6125       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6126       VdbeComment((v, "set abort flag"));
6127       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6128       sqlite3VdbeResolveLabel(v, addrOutputRow);
6129       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6130       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6131       VdbeCoverage(v);
6132       VdbeComment((v, "Groupby result generator entry point"));
6133       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6134       finalizeAggFunctions(pParse, &sAggInfo);
6135       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6136       selectInnerLoop(pParse, p, -1, &sSort,
6137                       &sDistinct, pDest,
6138                       addrOutputRow+1, addrSetAbort);
6139       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6140       VdbeComment((v, "end groupby result generator"));
6141 
6142       /* Generate a subroutine that will reset the group-by accumulator
6143       */
6144       sqlite3VdbeResolveLabel(v, addrReset);
6145       resetAccumulator(pParse, &sAggInfo);
6146       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6147 
6148     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6149     else {
6150 #ifndef SQLITE_OMIT_BTREECOUNT
6151       Table *pTab;
6152       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6153         /* If isSimpleCount() returns a pointer to a Table structure, then
6154         ** the SQL statement is of the form:
6155         **
6156         **   SELECT count(*) FROM <tbl>
6157         **
6158         ** where the Table structure returned represents table <tbl>.
6159         **
6160         ** This statement is so common that it is optimized specially. The
6161         ** OP_Count instruction is executed either on the intkey table that
6162         ** contains the data for table <tbl> or on one of its indexes. It
6163         ** is better to execute the op on an index, as indexes are almost
6164         ** always spread across less pages than their corresponding tables.
6165         */
6166         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6167         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6168         Index *pIdx;                         /* Iterator variable */
6169         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6170         Index *pBest = 0;                    /* Best index found so far */
6171         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6172 
6173         sqlite3CodeVerifySchema(pParse, iDb);
6174         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6175 
6176         /* Search for the index that has the lowest scan cost.
6177         **
6178         ** (2011-04-15) Do not do a full scan of an unordered index.
6179         **
6180         ** (2013-10-03) Do not count the entries in a partial index.
6181         **
6182         ** In practice the KeyInfo structure will not be used. It is only
6183         ** passed to keep OP_OpenRead happy.
6184         */
6185         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6186         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6187           if( pIdx->bUnordered==0
6188            && pIdx->szIdxRow<pTab->szTabRow
6189            && pIdx->pPartIdxWhere==0
6190            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6191           ){
6192             pBest = pIdx;
6193           }
6194         }
6195         if( pBest ){
6196           iRoot = pBest->tnum;
6197           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6198         }
6199 
6200         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6201         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6202         if( pKeyInfo ){
6203           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6204         }
6205         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6206         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6207         explainSimpleCount(pParse, pTab, pBest);
6208       }else
6209 #endif /* SQLITE_OMIT_BTREECOUNT */
6210       {
6211         /* This case runs if the aggregate has no GROUP BY clause.  The
6212         ** processing is much simpler since there is only a single row
6213         ** of output.
6214         */
6215         assert( p->pGroupBy==0 );
6216         resetAccumulator(pParse, &sAggInfo);
6217 
6218         /* If this query is a candidate for the min/max optimization, then
6219         ** minMaxFlag will have been previously set to either
6220         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6221         ** be an appropriate ORDER BY expression for the optimization.
6222         */
6223         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6224         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6225 
6226         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6227         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6228                                    0, minMaxFlag, 0);
6229         if( pWInfo==0 ){
6230           goto select_end;
6231         }
6232         updateAccumulator(pParse, &sAggInfo);
6233         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6234           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6235           VdbeComment((v, "%s() by index",
6236                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6237         }
6238         sqlite3WhereEnd(pWInfo);
6239         finalizeAggFunctions(pParse, &sAggInfo);
6240       }
6241 
6242       sSort.pOrderBy = 0;
6243       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6244       selectInnerLoop(pParse, p, -1, 0, 0,
6245                       pDest, addrEnd, addrEnd);
6246     }
6247     sqlite3VdbeResolveLabel(v, addrEnd);
6248 
6249   } /* endif aggregate query */
6250 
6251   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6252     explainTempTable(pParse, "DISTINCT");
6253   }
6254 
6255   /* If there is an ORDER BY clause, then we need to sort the results
6256   ** and send them to the callback one by one.
6257   */
6258   if( sSort.pOrderBy ){
6259     explainTempTable(pParse,
6260                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6261     assert( p->pEList==pEList );
6262     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6263   }
6264 
6265   /* Jump here to skip this query
6266   */
6267   sqlite3VdbeResolveLabel(v, iEnd);
6268 
6269   /* The SELECT has been coded. If there is an error in the Parse structure,
6270   ** set the return code to 1. Otherwise 0. */
6271   rc = (pParse->nErr>0);
6272 
6273   /* Control jumps to here if an error is encountered above, or upon
6274   ** successful coding of the SELECT.
6275   */
6276 select_end:
6277   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6278   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6279   sqlite3DbFree(db, sAggInfo.aCol);
6280   sqlite3DbFree(db, sAggInfo.aFunc);
6281 #if SELECTTRACE_ENABLED
6282   SELECTTRACE(1,pParse,p,("end processing\n"));
6283 #endif
6284   return rc;
6285 }
6286