1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%s/%p: ",(S)->zSelName,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 }; 82 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 83 84 /* 85 ** Delete all the content of a Select structure. Deallocate the structure 86 ** itself only if bFree is true. 87 */ 88 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 89 while( p ){ 90 Select *pPrior = p->pPrior; 91 sqlite3ExprListDelete(db, p->pEList); 92 sqlite3SrcListDelete(db, p->pSrc); 93 sqlite3ExprDelete(db, p->pWhere); 94 sqlite3ExprListDelete(db, p->pGroupBy); 95 sqlite3ExprDelete(db, p->pHaving); 96 sqlite3ExprListDelete(db, p->pOrderBy); 97 sqlite3ExprDelete(db, p->pLimit); 98 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 99 if( bFree ) sqlite3DbFreeNN(db, p); 100 p = pPrior; 101 bFree = 1; 102 } 103 } 104 105 /* 106 ** Initialize a SelectDest structure. 107 */ 108 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 109 pDest->eDest = (u8)eDest; 110 pDest->iSDParm = iParm; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew; 133 Select standin; 134 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 #if SELECTTRACE_ENABLED 149 pNew->zSelName[0] = 0; 150 #endif 151 pNew->addrOpenEphm[0] = -1; 152 pNew->addrOpenEphm[1] = -1; 153 pNew->nSelectRow = 0; 154 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 155 pNew->pSrc = pSrc; 156 pNew->pWhere = pWhere; 157 pNew->pGroupBy = pGroupBy; 158 pNew->pHaving = pHaving; 159 pNew->pOrderBy = pOrderBy; 160 pNew->pPrior = 0; 161 pNew->pNext = 0; 162 pNew->pLimit = pLimit; 163 pNew->pWith = 0; 164 if( pParse->db->mallocFailed ) { 165 clearSelect(pParse->db, pNew, pNew!=&standin); 166 pNew = 0; 167 }else{ 168 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 169 } 170 assert( pNew!=&standin ); 171 return pNew; 172 } 173 174 #if SELECTTRACE_ENABLED 175 /* 176 ** Set the name of a Select object 177 */ 178 void sqlite3SelectSetName(Select *p, const char *zName){ 179 if( p && zName ){ 180 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 181 } 182 } 183 #endif 184 185 186 /* 187 ** Delete the given Select structure and all of its substructures. 188 */ 189 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 190 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 191 } 192 193 /* 194 ** Return a pointer to the right-most SELECT statement in a compound. 195 */ 196 static Select *findRightmost(Select *p){ 197 while( p->pNext ) p = p->pNext; 198 return p; 199 } 200 201 /* 202 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 203 ** type of join. Return an integer constant that expresses that type 204 ** in terms of the following bit values: 205 ** 206 ** JT_INNER 207 ** JT_CROSS 208 ** JT_OUTER 209 ** JT_NATURAL 210 ** JT_LEFT 211 ** JT_RIGHT 212 ** 213 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 214 ** 215 ** If an illegal or unsupported join type is seen, then still return 216 ** a join type, but put an error in the pParse structure. 217 */ 218 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 219 int jointype = 0; 220 Token *apAll[3]; 221 Token *p; 222 /* 0123456789 123456789 123456789 123 */ 223 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 224 static const struct { 225 u8 i; /* Beginning of keyword text in zKeyText[] */ 226 u8 nChar; /* Length of the keyword in characters */ 227 u8 code; /* Join type mask */ 228 } aKeyword[] = { 229 /* natural */ { 0, 7, JT_NATURAL }, 230 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 231 /* outer */ { 10, 5, JT_OUTER }, 232 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 233 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 234 /* inner */ { 23, 5, JT_INNER }, 235 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 236 }; 237 int i, j; 238 apAll[0] = pA; 239 apAll[1] = pB; 240 apAll[2] = pC; 241 for(i=0; i<3 && apAll[i]; i++){ 242 p = apAll[i]; 243 for(j=0; j<ArraySize(aKeyword); j++){ 244 if( p->n==aKeyword[j].nChar 245 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 246 jointype |= aKeyword[j].code; 247 break; 248 } 249 } 250 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 251 if( j>=ArraySize(aKeyword) ){ 252 jointype |= JT_ERROR; 253 break; 254 } 255 } 256 if( 257 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 258 (jointype & JT_ERROR)!=0 259 ){ 260 const char *zSp = " "; 261 assert( pB!=0 ); 262 if( pC==0 ){ zSp++; } 263 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 264 "%T %T%s%T", pA, pB, zSp, pC); 265 jointype = JT_INNER; 266 }else if( (jointype & JT_OUTER)!=0 267 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 268 sqlite3ErrorMsg(pParse, 269 "RIGHT and FULL OUTER JOINs are not currently supported"); 270 jointype = JT_INNER; 271 } 272 return jointype; 273 } 274 275 /* 276 ** Return the index of a column in a table. Return -1 if the column 277 ** is not contained in the table. 278 */ 279 static int columnIndex(Table *pTab, const char *zCol){ 280 int i; 281 for(i=0; i<pTab->nCol; i++){ 282 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 283 } 284 return -1; 285 } 286 287 /* 288 ** Search the first N tables in pSrc, from left to right, looking for a 289 ** table that has a column named zCol. 290 ** 291 ** When found, set *piTab and *piCol to the table index and column index 292 ** of the matching column and return TRUE. 293 ** 294 ** If not found, return FALSE. 295 */ 296 static int tableAndColumnIndex( 297 SrcList *pSrc, /* Array of tables to search */ 298 int N, /* Number of tables in pSrc->a[] to search */ 299 const char *zCol, /* Name of the column we are looking for */ 300 int *piTab, /* Write index of pSrc->a[] here */ 301 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 302 ){ 303 int i; /* For looping over tables in pSrc */ 304 int iCol; /* Index of column matching zCol */ 305 306 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 307 for(i=0; i<N; i++){ 308 iCol = columnIndex(pSrc->a[i].pTab, zCol); 309 if( iCol>=0 ){ 310 if( piTab ){ 311 *piTab = i; 312 *piCol = iCol; 313 } 314 return 1; 315 } 316 } 317 return 0; 318 } 319 320 /* 321 ** This function is used to add terms implied by JOIN syntax to the 322 ** WHERE clause expression of a SELECT statement. The new term, which 323 ** is ANDed with the existing WHERE clause, is of the form: 324 ** 325 ** (tab1.col1 = tab2.col2) 326 ** 327 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 328 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 329 ** column iColRight of tab2. 330 */ 331 static void addWhereTerm( 332 Parse *pParse, /* Parsing context */ 333 SrcList *pSrc, /* List of tables in FROM clause */ 334 int iLeft, /* Index of first table to join in pSrc */ 335 int iColLeft, /* Index of column in first table */ 336 int iRight, /* Index of second table in pSrc */ 337 int iColRight, /* Index of column in second table */ 338 int isOuterJoin, /* True if this is an OUTER join */ 339 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 340 ){ 341 sqlite3 *db = pParse->db; 342 Expr *pE1; 343 Expr *pE2; 344 Expr *pEq; 345 346 assert( iLeft<iRight ); 347 assert( pSrc->nSrc>iRight ); 348 assert( pSrc->a[iLeft].pTab ); 349 assert( pSrc->a[iRight].pTab ); 350 351 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 352 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 353 354 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 355 if( pEq && isOuterJoin ){ 356 ExprSetProperty(pEq, EP_FromJoin); 357 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 358 ExprSetVVAProperty(pEq, EP_NoReduce); 359 pEq->iRightJoinTable = (i16)pE2->iTable; 360 } 361 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 362 } 363 364 /* 365 ** Set the EP_FromJoin property on all terms of the given expression. 366 ** And set the Expr.iRightJoinTable to iTable for every term in the 367 ** expression. 368 ** 369 ** The EP_FromJoin property is used on terms of an expression to tell 370 ** the LEFT OUTER JOIN processing logic that this term is part of the 371 ** join restriction specified in the ON or USING clause and not a part 372 ** of the more general WHERE clause. These terms are moved over to the 373 ** WHERE clause during join processing but we need to remember that they 374 ** originated in the ON or USING clause. 375 ** 376 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 377 ** expression depends on table iRightJoinTable even if that table is not 378 ** explicitly mentioned in the expression. That information is needed 379 ** for cases like this: 380 ** 381 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 382 ** 383 ** The where clause needs to defer the handling of the t1.x=5 384 ** term until after the t2 loop of the join. In that way, a 385 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 386 ** defer the handling of t1.x=5, it will be processed immediately 387 ** after the t1 loop and rows with t1.x!=5 will never appear in 388 ** the output, which is incorrect. 389 */ 390 static void setJoinExpr(Expr *p, int iTable){ 391 while( p ){ 392 ExprSetProperty(p, EP_FromJoin); 393 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 394 ExprSetVVAProperty(p, EP_NoReduce); 395 p->iRightJoinTable = (i16)iTable; 396 if( p->op==TK_FUNCTION && p->x.pList ){ 397 int i; 398 for(i=0; i<p->x.pList->nExpr; i++){ 399 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 400 } 401 } 402 setJoinExpr(p->pLeft, iTable); 403 p = p->pRight; 404 } 405 } 406 407 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 408 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 409 ** an ordinary term that omits the EP_FromJoin mark. 410 ** 411 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 412 */ 413 static void unsetJoinExpr(Expr *p, int iTable){ 414 while( p ){ 415 if( ExprHasProperty(p, EP_FromJoin) 416 && (iTable<0 || p->iRightJoinTable==iTable) ){ 417 ExprClearProperty(p, EP_FromJoin); 418 } 419 if( p->op==TK_FUNCTION && p->x.pList ){ 420 int i; 421 for(i=0; i<p->x.pList->nExpr; i++){ 422 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 423 } 424 } 425 unsetJoinExpr(p->pLeft, iTable); 426 p = p->pRight; 427 } 428 } 429 430 /* 431 ** This routine processes the join information for a SELECT statement. 432 ** ON and USING clauses are converted into extra terms of the WHERE clause. 433 ** NATURAL joins also create extra WHERE clause terms. 434 ** 435 ** The terms of a FROM clause are contained in the Select.pSrc structure. 436 ** The left most table is the first entry in Select.pSrc. The right-most 437 ** table is the last entry. The join operator is held in the entry to 438 ** the left. Thus entry 0 contains the join operator for the join between 439 ** entries 0 and 1. Any ON or USING clauses associated with the join are 440 ** also attached to the left entry. 441 ** 442 ** This routine returns the number of errors encountered. 443 */ 444 static int sqliteProcessJoin(Parse *pParse, Select *p){ 445 SrcList *pSrc; /* All tables in the FROM clause */ 446 int i, j; /* Loop counters */ 447 struct SrcList_item *pLeft; /* Left table being joined */ 448 struct SrcList_item *pRight; /* Right table being joined */ 449 450 pSrc = p->pSrc; 451 pLeft = &pSrc->a[0]; 452 pRight = &pLeft[1]; 453 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 454 Table *pRightTab = pRight->pTab; 455 int isOuter; 456 457 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 458 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 459 460 /* When the NATURAL keyword is present, add WHERE clause terms for 461 ** every column that the two tables have in common. 462 */ 463 if( pRight->fg.jointype & JT_NATURAL ){ 464 if( pRight->pOn || pRight->pUsing ){ 465 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 466 "an ON or USING clause", 0); 467 return 1; 468 } 469 for(j=0; j<pRightTab->nCol; j++){ 470 char *zName; /* Name of column in the right table */ 471 int iLeft; /* Matching left table */ 472 int iLeftCol; /* Matching column in the left table */ 473 474 zName = pRightTab->aCol[j].zName; 475 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 476 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 477 isOuter, &p->pWhere); 478 } 479 } 480 } 481 482 /* Disallow both ON and USING clauses in the same join 483 */ 484 if( pRight->pOn && pRight->pUsing ){ 485 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 486 "clauses in the same join"); 487 return 1; 488 } 489 490 /* Add the ON clause to the end of the WHERE clause, connected by 491 ** an AND operator. 492 */ 493 if( pRight->pOn ){ 494 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 495 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 496 pRight->pOn = 0; 497 } 498 499 /* Create extra terms on the WHERE clause for each column named 500 ** in the USING clause. Example: If the two tables to be joined are 501 ** A and B and the USING clause names X, Y, and Z, then add this 502 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 503 ** Report an error if any column mentioned in the USING clause is 504 ** not contained in both tables to be joined. 505 */ 506 if( pRight->pUsing ){ 507 IdList *pList = pRight->pUsing; 508 for(j=0; j<pList->nId; j++){ 509 char *zName; /* Name of the term in the USING clause */ 510 int iLeft; /* Table on the left with matching column name */ 511 int iLeftCol; /* Column number of matching column on the left */ 512 int iRightCol; /* Column number of matching column on the right */ 513 514 zName = pList->a[j].zName; 515 iRightCol = columnIndex(pRightTab, zName); 516 if( iRightCol<0 517 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 518 ){ 519 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 520 "not present in both tables", zName); 521 return 1; 522 } 523 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 524 isOuter, &p->pWhere); 525 } 526 } 527 } 528 return 0; 529 } 530 531 /* Forward reference */ 532 static KeyInfo *keyInfoFromExprList( 533 Parse *pParse, /* Parsing context */ 534 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 535 int iStart, /* Begin with this column of pList */ 536 int nExtra /* Add this many extra columns to the end */ 537 ); 538 539 /* 540 ** Generate code that will push the record in registers regData 541 ** through regData+nData-1 onto the sorter. 542 */ 543 static void pushOntoSorter( 544 Parse *pParse, /* Parser context */ 545 SortCtx *pSort, /* Information about the ORDER BY clause */ 546 Select *pSelect, /* The whole SELECT statement */ 547 int regData, /* First register holding data to be sorted */ 548 int regOrigData, /* First register holding data before packing */ 549 int nData, /* Number of elements in the data array */ 550 int nPrefixReg /* No. of reg prior to regData available for use */ 551 ){ 552 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 553 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 554 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 555 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 556 int regBase; /* Regs for sorter record */ 557 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 558 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 559 int op; /* Opcode to add sorter record to sorter */ 560 int iLimit; /* LIMIT counter */ 561 562 assert( bSeq==0 || bSeq==1 ); 563 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 564 if( nPrefixReg ){ 565 assert( nPrefixReg==nExpr+bSeq ); 566 regBase = regData - nExpr - bSeq; 567 }else{ 568 regBase = pParse->nMem + 1; 569 pParse->nMem += nBase; 570 } 571 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 572 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 573 pSort->labelDone = sqlite3VdbeMakeLabel(v); 574 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 575 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 576 if( bSeq ){ 577 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 578 } 579 if( nPrefixReg==0 && nData>0 ){ 580 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 581 } 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 583 if( nOBSat>0 ){ 584 int regPrevKey; /* The first nOBSat columns of the previous row */ 585 int addrFirst; /* Address of the OP_IfNot opcode */ 586 int addrJmp; /* Address of the OP_Jump opcode */ 587 VdbeOp *pOp; /* Opcode that opens the sorter */ 588 int nKey; /* Number of sorting key columns, including OP_Sequence */ 589 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 590 591 regPrevKey = pParse->nMem+1; 592 pParse->nMem += pSort->nOBSat; 593 nKey = nExpr - pSort->nOBSat + bSeq; 594 if( bSeq ){ 595 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 596 }else{ 597 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 598 } 599 VdbeCoverage(v); 600 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 601 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 602 if( pParse->db->mallocFailed ) return; 603 pOp->p2 = nKey + nData; 604 pKI = pOp->p4.pKeyInfo; 605 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 606 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 607 testcase( pKI->nAllField > pKI->nKeyField+2 ); 608 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 609 pKI->nAllField-pKI->nKeyField-1); 610 addrJmp = sqlite3VdbeCurrentAddr(v); 611 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 612 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 613 pSort->regReturn = ++pParse->nMem; 614 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 615 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 616 if( iLimit ){ 617 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 618 VdbeCoverage(v); 619 } 620 sqlite3VdbeJumpHere(v, addrFirst); 621 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 622 sqlite3VdbeJumpHere(v, addrJmp); 623 } 624 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 625 op = OP_SorterInsert; 626 }else{ 627 op = OP_IdxInsert; 628 } 629 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 630 regBase+nOBSat, nBase-nOBSat); 631 if( iLimit ){ 632 int addr; 633 int r1 = 0; 634 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 635 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 636 ** fills up, delete the least entry in the sorter after each insert. 637 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 638 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 639 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 640 if( pSort->bOrderedInnerLoop ){ 641 r1 = ++pParse->nMem; 642 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 643 VdbeComment((v, "seq")); 644 } 645 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 646 if( pSort->bOrderedInnerLoop ){ 647 /* If the inner loop is driven by an index such that values from 648 ** the same iteration of the inner loop are in sorted order, then 649 ** immediately jump to the next iteration of an inner loop if the 650 ** entry from the current iteration does not fit into the top 651 ** LIMIT+OFFSET entries of the sorter. */ 652 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 653 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 654 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 655 VdbeCoverage(v); 656 } 657 sqlite3VdbeJumpHere(v, addr); 658 } 659 } 660 661 /* 662 ** Add code to implement the OFFSET 663 */ 664 static void codeOffset( 665 Vdbe *v, /* Generate code into this VM */ 666 int iOffset, /* Register holding the offset counter */ 667 int iContinue /* Jump here to skip the current record */ 668 ){ 669 if( iOffset>0 ){ 670 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 671 VdbeComment((v, "OFFSET")); 672 } 673 } 674 675 /* 676 ** Add code that will check to make sure the N registers starting at iMem 677 ** form a distinct entry. iTab is a sorting index that holds previously 678 ** seen combinations of the N values. A new entry is made in iTab 679 ** if the current N values are new. 680 ** 681 ** A jump to addrRepeat is made and the N+1 values are popped from the 682 ** stack if the top N elements are not distinct. 683 */ 684 static void codeDistinct( 685 Parse *pParse, /* Parsing and code generating context */ 686 int iTab, /* A sorting index used to test for distinctness */ 687 int addrRepeat, /* Jump to here if not distinct */ 688 int N, /* Number of elements */ 689 int iMem /* First element */ 690 ){ 691 Vdbe *v; 692 int r1; 693 694 v = pParse->pVdbe; 695 r1 = sqlite3GetTempReg(pParse); 696 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 697 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 698 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 699 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 700 sqlite3ReleaseTempReg(pParse, r1); 701 } 702 703 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 704 /* 705 ** This function is called as part of inner-loop generation for a SELECT 706 ** statement with an ORDER BY that is not optimized by an index. It 707 ** determines the expressions, if any, that the sorter-reference 708 ** optimization should be used for. The sorter-reference optimization 709 ** is used for SELECT queries like: 710 ** 711 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 712 ** 713 ** If the optimization is used for expression "bigblob", then instead of 714 ** storing values read from that column in the sorter records, the PK of 715 ** the row from table t1 is stored instead. Then, as records are extracted from 716 ** the sorter to return to the user, the required value of bigblob is 717 ** retrieved directly from table t1. If the values are very large, this 718 ** can be more efficient than storing them directly in the sorter records. 719 ** 720 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 721 ** for which the sorter-reference optimization should be enabled. 722 ** Additionally, the pSort->aDefer[] array is populated with entries 723 ** for all cursors required to evaluate all selected expressions. Finally. 724 ** output variable (*ppExtra) is set to an expression list containing 725 ** expressions for all extra PK values that should be stored in the 726 ** sorter records. 727 */ 728 static void selectExprDefer( 729 Parse *pParse, /* Leave any error here */ 730 SortCtx *pSort, /* Sorter context */ 731 ExprList *pEList, /* Expressions destined for sorter */ 732 ExprList **ppExtra /* Expressions to append to sorter record */ 733 ){ 734 int i; 735 int nDefer = 0; 736 ExprList *pExtra = 0; 737 for(i=0; i<pEList->nExpr; i++){ 738 struct ExprList_item *pItem = &pEList->a[i]; 739 if( pItem->u.x.iOrderByCol==0 ){ 740 Expr *pExpr = pItem->pExpr; 741 Table *pTab = pExpr->pTab; 742 if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab) 743 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 744 #if 0 745 && pTab->pSchema && pTab->pSelect==0 && !IsVirtual(pTab) 746 #endif 747 ){ 748 int j; 749 for(j=0; j<nDefer; j++){ 750 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 751 } 752 if( j==nDefer ){ 753 if( nDefer==ArraySize(pSort->aDefer) ){ 754 continue; 755 }else{ 756 int nKey = 1; 757 int k; 758 Index *pPk = 0; 759 if( !HasRowid(pTab) ){ 760 pPk = sqlite3PrimaryKeyIndex(pTab); 761 nKey = pPk->nKeyCol; 762 } 763 for(k=0; k<nKey; k++){ 764 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 765 if( pNew ){ 766 pNew->iTable = pExpr->iTable; 767 pNew->pTab = pExpr->pTab; 768 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 769 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 770 } 771 } 772 pSort->aDefer[nDefer].pTab = pExpr->pTab; 773 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 774 pSort->aDefer[nDefer].nKey = nKey; 775 nDefer++; 776 } 777 } 778 pItem->bSorterRef = 1; 779 } 780 } 781 } 782 pSort->nDefer = (u8)nDefer; 783 *ppExtra = pExtra; 784 } 785 #endif 786 787 /* 788 ** This routine generates the code for the inside of the inner loop 789 ** of a SELECT. 790 ** 791 ** If srcTab is negative, then the p->pEList expressions 792 ** are evaluated in order to get the data for this row. If srcTab is 793 ** zero or more, then data is pulled from srcTab and p->pEList is used only 794 ** to get the number of columns and the collation sequence for each column. 795 */ 796 static void selectInnerLoop( 797 Parse *pParse, /* The parser context */ 798 Select *p, /* The complete select statement being coded */ 799 int srcTab, /* Pull data from this table if non-negative */ 800 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 801 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 802 SelectDest *pDest, /* How to dispose of the results */ 803 int iContinue, /* Jump here to continue with next row */ 804 int iBreak /* Jump here to break out of the inner loop */ 805 ){ 806 Vdbe *v = pParse->pVdbe; 807 int i; 808 int hasDistinct; /* True if the DISTINCT keyword is present */ 809 int eDest = pDest->eDest; /* How to dispose of results */ 810 int iParm = pDest->iSDParm; /* First argument to disposal method */ 811 int nResultCol; /* Number of result columns */ 812 int nPrefixReg = 0; /* Number of extra registers before regResult */ 813 814 /* Usually, regResult is the first cell in an array of memory cells 815 ** containing the current result row. In this case regOrig is set to the 816 ** same value. However, if the results are being sent to the sorter, the 817 ** values for any expressions that are also part of the sort-key are omitted 818 ** from this array. In this case regOrig is set to zero. */ 819 int regResult; /* Start of memory holding current results */ 820 int regOrig; /* Start of memory holding full result (or 0) */ 821 822 assert( v ); 823 assert( p->pEList!=0 ); 824 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 825 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 826 if( pSort==0 && !hasDistinct ){ 827 assert( iContinue!=0 ); 828 codeOffset(v, p->iOffset, iContinue); 829 } 830 831 /* Pull the requested columns. 832 */ 833 nResultCol = p->pEList->nExpr; 834 835 if( pDest->iSdst==0 ){ 836 if( pSort ){ 837 nPrefixReg = pSort->pOrderBy->nExpr; 838 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 839 pParse->nMem += nPrefixReg; 840 } 841 pDest->iSdst = pParse->nMem+1; 842 pParse->nMem += nResultCol; 843 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 844 /* This is an error condition that can result, for example, when a SELECT 845 ** on the right-hand side of an INSERT contains more result columns than 846 ** there are columns in the table on the left. The error will be caught 847 ** and reported later. But we need to make sure enough memory is allocated 848 ** to avoid other spurious errors in the meantime. */ 849 pParse->nMem += nResultCol; 850 } 851 pDest->nSdst = nResultCol; 852 regOrig = regResult = pDest->iSdst; 853 if( srcTab>=0 ){ 854 for(i=0; i<nResultCol; i++){ 855 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 856 VdbeComment((v, "%s", p->pEList->a[i].zName)); 857 } 858 }else if( eDest!=SRT_Exists ){ 859 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 860 ExprList *pExtra = 0; 861 #endif 862 /* If the destination is an EXISTS(...) expression, the actual 863 ** values returned by the SELECT are not required. 864 */ 865 u8 ecelFlags; 866 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 867 ecelFlags = SQLITE_ECEL_DUP; 868 }else{ 869 ecelFlags = 0; 870 } 871 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 872 /* For each expression in p->pEList that is a copy of an expression in 873 ** the ORDER BY clause (pSort->pOrderBy), set the associated 874 ** iOrderByCol value to one more than the index of the ORDER BY 875 ** expression within the sort-key that pushOntoSorter() will generate. 876 ** This allows the p->pEList field to be omitted from the sorted record, 877 ** saving space and CPU cycles. */ 878 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 879 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 880 int j; 881 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 882 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 883 } 884 } 885 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 886 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 887 if( pExtra && pParse->db->mallocFailed==0 ){ 888 /* If there are any extra PK columns to add to the sorter records, 889 ** allocate extra memory cells and adjust the OpenEphemeral 890 ** instruction to account for the larger records. This is only 891 ** required if there are one or more WITHOUT ROWID tables with 892 ** composite primary keys in the SortCtx.aDefer[] array. */ 893 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 894 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 895 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 896 pParse->nMem += pExtra->nExpr; 897 } 898 #endif 899 regOrig = 0; 900 assert( eDest==SRT_Set || eDest==SRT_Mem 901 || eDest==SRT_Coroutine || eDest==SRT_Output ); 902 } 903 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult, 904 0,ecelFlags); 905 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 906 if( pExtra ){ 907 nResultCol += sqlite3ExprCodeExprList( 908 pParse, pExtra, regResult + nResultCol, 0, 0 909 ); 910 sqlite3ExprListDelete(pParse->db, pExtra); 911 } 912 #endif 913 } 914 915 /* If the DISTINCT keyword was present on the SELECT statement 916 ** and this row has been seen before, then do not make this row 917 ** part of the result. 918 */ 919 if( hasDistinct ){ 920 switch( pDistinct->eTnctType ){ 921 case WHERE_DISTINCT_ORDERED: { 922 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 923 int iJump; /* Jump destination */ 924 int regPrev; /* Previous row content */ 925 926 /* Allocate space for the previous row */ 927 regPrev = pParse->nMem+1; 928 pParse->nMem += nResultCol; 929 930 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 931 ** sets the MEM_Cleared bit on the first register of the 932 ** previous value. This will cause the OP_Ne below to always 933 ** fail on the first iteration of the loop even if the first 934 ** row is all NULLs. 935 */ 936 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 937 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 938 pOp->opcode = OP_Null; 939 pOp->p1 = 1; 940 pOp->p2 = regPrev; 941 942 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 943 for(i=0; i<nResultCol; i++){ 944 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 945 if( i<nResultCol-1 ){ 946 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 947 VdbeCoverage(v); 948 }else{ 949 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 950 VdbeCoverage(v); 951 } 952 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 953 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 954 } 955 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 956 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 957 break; 958 } 959 960 case WHERE_DISTINCT_UNIQUE: { 961 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 962 break; 963 } 964 965 default: { 966 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 967 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 968 regResult); 969 break; 970 } 971 } 972 if( pSort==0 ){ 973 codeOffset(v, p->iOffset, iContinue); 974 } 975 } 976 977 switch( eDest ){ 978 /* In this mode, write each query result to the key of the temporary 979 ** table iParm. 980 */ 981 #ifndef SQLITE_OMIT_COMPOUND_SELECT 982 case SRT_Union: { 983 int r1; 984 r1 = sqlite3GetTempReg(pParse); 985 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 986 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 987 sqlite3ReleaseTempReg(pParse, r1); 988 break; 989 } 990 991 /* Construct a record from the query result, but instead of 992 ** saving that record, use it as a key to delete elements from 993 ** the temporary table iParm. 994 */ 995 case SRT_Except: { 996 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 997 break; 998 } 999 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1000 1001 /* Store the result as data using a unique key. 1002 */ 1003 case SRT_Fifo: 1004 case SRT_DistFifo: 1005 case SRT_Table: 1006 case SRT_EphemTab: { 1007 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1008 testcase( eDest==SRT_Table ); 1009 testcase( eDest==SRT_EphemTab ); 1010 testcase( eDest==SRT_Fifo ); 1011 testcase( eDest==SRT_DistFifo ); 1012 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1013 #ifndef SQLITE_OMIT_CTE 1014 if( eDest==SRT_DistFifo ){ 1015 /* If the destination is DistFifo, then cursor (iParm+1) is open 1016 ** on an ephemeral index. If the current row is already present 1017 ** in the index, do not write it to the output. If not, add the 1018 ** current row to the index and proceed with writing it to the 1019 ** output table as well. */ 1020 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1021 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1022 VdbeCoverage(v); 1023 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1024 assert( pSort==0 ); 1025 } 1026 #endif 1027 if( pSort ){ 1028 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 1029 }else{ 1030 int r2 = sqlite3GetTempReg(pParse); 1031 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1032 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1033 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1034 sqlite3ReleaseTempReg(pParse, r2); 1035 } 1036 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1037 break; 1038 } 1039 1040 #ifndef SQLITE_OMIT_SUBQUERY 1041 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1042 ** then there should be a single item on the stack. Write this 1043 ** item into the set table with bogus data. 1044 */ 1045 case SRT_Set: { 1046 if( pSort ){ 1047 /* At first glance you would think we could optimize out the 1048 ** ORDER BY in this case since the order of entries in the set 1049 ** does not matter. But there might be a LIMIT clause, in which 1050 ** case the order does matter */ 1051 pushOntoSorter( 1052 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1053 }else{ 1054 int r1 = sqlite3GetTempReg(pParse); 1055 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1056 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1057 r1, pDest->zAffSdst, nResultCol); 1058 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1059 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1060 sqlite3ReleaseTempReg(pParse, r1); 1061 } 1062 break; 1063 } 1064 1065 /* If any row exist in the result set, record that fact and abort. 1066 */ 1067 case SRT_Exists: { 1068 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1069 /* The LIMIT clause will terminate the loop for us */ 1070 break; 1071 } 1072 1073 /* If this is a scalar select that is part of an expression, then 1074 ** store the results in the appropriate memory cell or array of 1075 ** memory cells and break out of the scan loop. 1076 */ 1077 case SRT_Mem: { 1078 if( pSort ){ 1079 assert( nResultCol<=pDest->nSdst ); 1080 pushOntoSorter( 1081 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1082 }else{ 1083 assert( nResultCol==pDest->nSdst ); 1084 assert( regResult==iParm ); 1085 /* The LIMIT clause will jump out of the loop for us */ 1086 } 1087 break; 1088 } 1089 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1090 1091 case SRT_Coroutine: /* Send data to a co-routine */ 1092 case SRT_Output: { /* Return the results */ 1093 testcase( eDest==SRT_Coroutine ); 1094 testcase( eDest==SRT_Output ); 1095 if( pSort ){ 1096 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1097 nPrefixReg); 1098 }else if( eDest==SRT_Coroutine ){ 1099 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1100 }else{ 1101 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1102 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1103 } 1104 break; 1105 } 1106 1107 #ifndef SQLITE_OMIT_CTE 1108 /* Write the results into a priority queue that is order according to 1109 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1110 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1111 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1112 ** final OP_Sequence column. The last column is the record as a blob. 1113 */ 1114 case SRT_DistQueue: 1115 case SRT_Queue: { 1116 int nKey; 1117 int r1, r2, r3; 1118 int addrTest = 0; 1119 ExprList *pSO; 1120 pSO = pDest->pOrderBy; 1121 assert( pSO ); 1122 nKey = pSO->nExpr; 1123 r1 = sqlite3GetTempReg(pParse); 1124 r2 = sqlite3GetTempRange(pParse, nKey+2); 1125 r3 = r2+nKey+1; 1126 if( eDest==SRT_DistQueue ){ 1127 /* If the destination is DistQueue, then cursor (iParm+1) is open 1128 ** on a second ephemeral index that holds all values every previously 1129 ** added to the queue. */ 1130 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1131 regResult, nResultCol); 1132 VdbeCoverage(v); 1133 } 1134 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1135 if( eDest==SRT_DistQueue ){ 1136 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1137 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1138 } 1139 for(i=0; i<nKey; i++){ 1140 sqlite3VdbeAddOp2(v, OP_SCopy, 1141 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1142 r2+i); 1143 } 1144 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1145 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1146 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1147 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1148 sqlite3ReleaseTempReg(pParse, r1); 1149 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1150 break; 1151 } 1152 #endif /* SQLITE_OMIT_CTE */ 1153 1154 1155 1156 #if !defined(SQLITE_OMIT_TRIGGER) 1157 /* Discard the results. This is used for SELECT statements inside 1158 ** the body of a TRIGGER. The purpose of such selects is to call 1159 ** user-defined functions that have side effects. We do not care 1160 ** about the actual results of the select. 1161 */ 1162 default: { 1163 assert( eDest==SRT_Discard ); 1164 break; 1165 } 1166 #endif 1167 } 1168 1169 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1170 ** there is a sorter, in which case the sorter has already limited 1171 ** the output for us. 1172 */ 1173 if( pSort==0 && p->iLimit ){ 1174 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1175 } 1176 } 1177 1178 /* 1179 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1180 ** X extra columns. 1181 */ 1182 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1183 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1184 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1185 if( p ){ 1186 p->aSortOrder = (u8*)&p->aColl[N+X]; 1187 p->nKeyField = (u16)N; 1188 p->nAllField = (u16)(N+X); 1189 p->enc = ENC(db); 1190 p->db = db; 1191 p->nRef = 1; 1192 memset(&p[1], 0, nExtra); 1193 }else{ 1194 sqlite3OomFault(db); 1195 } 1196 return p; 1197 } 1198 1199 /* 1200 ** Deallocate a KeyInfo object 1201 */ 1202 void sqlite3KeyInfoUnref(KeyInfo *p){ 1203 if( p ){ 1204 assert( p->nRef>0 ); 1205 p->nRef--; 1206 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1207 } 1208 } 1209 1210 /* 1211 ** Make a new pointer to a KeyInfo object 1212 */ 1213 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1214 if( p ){ 1215 assert( p->nRef>0 ); 1216 p->nRef++; 1217 } 1218 return p; 1219 } 1220 1221 #ifdef SQLITE_DEBUG 1222 /* 1223 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1224 ** can only be changed if this is just a single reference to the object. 1225 ** 1226 ** This routine is used only inside of assert() statements. 1227 */ 1228 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1229 #endif /* SQLITE_DEBUG */ 1230 1231 /* 1232 ** Given an expression list, generate a KeyInfo structure that records 1233 ** the collating sequence for each expression in that expression list. 1234 ** 1235 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1236 ** KeyInfo structure is appropriate for initializing a virtual index to 1237 ** implement that clause. If the ExprList is the result set of a SELECT 1238 ** then the KeyInfo structure is appropriate for initializing a virtual 1239 ** index to implement a DISTINCT test. 1240 ** 1241 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1242 ** function is responsible for seeing that this structure is eventually 1243 ** freed. 1244 */ 1245 static KeyInfo *keyInfoFromExprList( 1246 Parse *pParse, /* Parsing context */ 1247 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1248 int iStart, /* Begin with this column of pList */ 1249 int nExtra /* Add this many extra columns to the end */ 1250 ){ 1251 int nExpr; 1252 KeyInfo *pInfo; 1253 struct ExprList_item *pItem; 1254 sqlite3 *db = pParse->db; 1255 int i; 1256 1257 nExpr = pList->nExpr; 1258 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1259 if( pInfo ){ 1260 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1261 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1262 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1263 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1264 } 1265 } 1266 return pInfo; 1267 } 1268 1269 /* 1270 ** Name of the connection operator, used for error messages. 1271 */ 1272 static const char *selectOpName(int id){ 1273 char *z; 1274 switch( id ){ 1275 case TK_ALL: z = "UNION ALL"; break; 1276 case TK_INTERSECT: z = "INTERSECT"; break; 1277 case TK_EXCEPT: z = "EXCEPT"; break; 1278 default: z = "UNION"; break; 1279 } 1280 return z; 1281 } 1282 1283 #ifndef SQLITE_OMIT_EXPLAIN 1284 /* 1285 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1286 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1287 ** where the caption is of the form: 1288 ** 1289 ** "USE TEMP B-TREE FOR xxx" 1290 ** 1291 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1292 ** is determined by the zUsage argument. 1293 */ 1294 static void explainTempTable(Parse *pParse, const char *zUsage){ 1295 if( pParse->explain==2 ){ 1296 Vdbe *v = pParse->pVdbe; 1297 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1298 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1299 } 1300 } 1301 1302 /* 1303 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1304 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1305 ** in sqlite3Select() to assign values to structure member variables that 1306 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1307 ** code with #ifndef directives. 1308 */ 1309 # define explainSetInteger(a, b) a = b 1310 1311 #else 1312 /* No-op versions of the explainXXX() functions and macros. */ 1313 # define explainTempTable(y,z) 1314 # define explainSetInteger(y,z) 1315 #endif 1316 1317 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1318 /* 1319 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1320 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1321 ** where the caption is of one of the two forms: 1322 ** 1323 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1324 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1325 ** 1326 ** where iSub1 and iSub2 are the integers passed as the corresponding 1327 ** function parameters, and op is the text representation of the parameter 1328 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1329 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1330 ** false, or the second form if it is true. 1331 */ 1332 static void explainComposite( 1333 Parse *pParse, /* Parse context */ 1334 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1335 int iSub1, /* Subquery id 1 */ 1336 int iSub2, /* Subquery id 2 */ 1337 int bUseTmp /* True if a temp table was used */ 1338 ){ 1339 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1340 if( pParse->explain==2 ){ 1341 Vdbe *v = pParse->pVdbe; 1342 char *zMsg = sqlite3MPrintf( 1343 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1344 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1345 ); 1346 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1347 } 1348 } 1349 #else 1350 /* No-op versions of the explainXXX() functions and macros. */ 1351 # define explainComposite(v,w,x,y,z) 1352 #endif 1353 1354 /* 1355 ** If the inner loop was generated using a non-null pOrderBy argument, 1356 ** then the results were placed in a sorter. After the loop is terminated 1357 ** we need to run the sorter and output the results. The following 1358 ** routine generates the code needed to do that. 1359 */ 1360 static void generateSortTail( 1361 Parse *pParse, /* Parsing context */ 1362 Select *p, /* The SELECT statement */ 1363 SortCtx *pSort, /* Information on the ORDER BY clause */ 1364 int nColumn, /* Number of columns of data */ 1365 SelectDest *pDest /* Write the sorted results here */ 1366 ){ 1367 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1368 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1369 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1370 int addr; /* Top of output loop. Jump for Next. */ 1371 int addrOnce = 0; 1372 int iTab; 1373 ExprList *pOrderBy = pSort->pOrderBy; 1374 int eDest = pDest->eDest; 1375 int iParm = pDest->iSDParm; 1376 int regRow; 1377 int regRowid; 1378 int iCol; 1379 int nKey; /* Number of key columns in sorter record */ 1380 int iSortTab; /* Sorter cursor to read from */ 1381 int i; 1382 int bSeq; /* True if sorter record includes seq. no. */ 1383 int nRefKey = 0; 1384 struct ExprList_item *aOutEx = p->pEList->a; 1385 1386 assert( addrBreak<0 ); 1387 if( pSort->labelBkOut ){ 1388 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1389 sqlite3VdbeGoto(v, addrBreak); 1390 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1391 } 1392 1393 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1394 /* Open any cursors needed for sorter-reference expressions */ 1395 for(i=0; i<pSort->nDefer; i++){ 1396 Table *pTab = pSort->aDefer[i].pTab; 1397 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1398 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1399 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1400 } 1401 #endif 1402 1403 iTab = pSort->iECursor; 1404 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1405 regRowid = 0; 1406 regRow = pDest->iSdst; 1407 }else{ 1408 regRowid = sqlite3GetTempReg(pParse); 1409 regRow = sqlite3GetTempRange(pParse, nColumn); 1410 } 1411 nKey = pOrderBy->nExpr - pSort->nOBSat; 1412 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1413 int regSortOut = ++pParse->nMem; 1414 iSortTab = pParse->nTab++; 1415 if( pSort->labelBkOut ){ 1416 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1417 } 1418 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1419 nKey+1+nColumn+nRefKey); 1420 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1421 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1422 VdbeCoverage(v); 1423 codeOffset(v, p->iOffset, addrContinue); 1424 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1425 bSeq = 0; 1426 }else{ 1427 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1428 codeOffset(v, p->iOffset, addrContinue); 1429 iSortTab = iTab; 1430 bSeq = 1; 1431 } 1432 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1433 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1434 if( aOutEx[i].bSorterRef ) continue; 1435 #endif 1436 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1437 } 1438 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1439 if( pSort->nDefer ){ 1440 int iKey = iCol+1; 1441 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1442 1443 for(i=0; i<pSort->nDefer; i++){ 1444 int iCsr = pSort->aDefer[i].iCsr; 1445 Table *pTab = pSort->aDefer[i].pTab; 1446 int nKey = pSort->aDefer[i].nKey; 1447 1448 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1449 if( HasRowid(pTab) ){ 1450 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1451 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1452 sqlite3VdbeCurrentAddr(v)+1, regKey); 1453 }else{ 1454 int k; 1455 int iJmp; 1456 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1457 for(k=0; k<nKey; k++){ 1458 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1459 } 1460 iJmp = sqlite3VdbeCurrentAddr(v); 1461 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1462 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1463 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1464 } 1465 } 1466 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1467 } 1468 #endif 1469 for(i=nColumn-1; i>=0; i--){ 1470 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1471 if( aOutEx[i].bSorterRef ){ 1472 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1473 }else 1474 #endif 1475 { 1476 int iRead; 1477 if( aOutEx[i].u.x.iOrderByCol ){ 1478 iRead = aOutEx[i].u.x.iOrderByCol-1; 1479 }else{ 1480 iRead = iCol--; 1481 } 1482 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1483 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1484 } 1485 } 1486 switch( eDest ){ 1487 case SRT_Table: 1488 case SRT_EphemTab: { 1489 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1490 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1491 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1492 break; 1493 } 1494 #ifndef SQLITE_OMIT_SUBQUERY 1495 case SRT_Set: { 1496 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1497 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1498 pDest->zAffSdst, nColumn); 1499 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1500 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1501 break; 1502 } 1503 case SRT_Mem: { 1504 /* The LIMIT clause will terminate the loop for us */ 1505 break; 1506 } 1507 #endif 1508 default: { 1509 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1510 testcase( eDest==SRT_Output ); 1511 testcase( eDest==SRT_Coroutine ); 1512 if( eDest==SRT_Output ){ 1513 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1514 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1515 }else{ 1516 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1517 } 1518 break; 1519 } 1520 } 1521 if( regRowid ){ 1522 if( eDest==SRT_Set ){ 1523 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1524 }else{ 1525 sqlite3ReleaseTempReg(pParse, regRow); 1526 } 1527 sqlite3ReleaseTempReg(pParse, regRowid); 1528 } 1529 /* The bottom of the loop 1530 */ 1531 sqlite3VdbeResolveLabel(v, addrContinue); 1532 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1533 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1534 }else{ 1535 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1536 } 1537 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1538 sqlite3VdbeResolveLabel(v, addrBreak); 1539 } 1540 1541 /* 1542 ** Return a pointer to a string containing the 'declaration type' of the 1543 ** expression pExpr. The string may be treated as static by the caller. 1544 ** 1545 ** Also try to estimate the size of the returned value and return that 1546 ** result in *pEstWidth. 1547 ** 1548 ** The declaration type is the exact datatype definition extracted from the 1549 ** original CREATE TABLE statement if the expression is a column. The 1550 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1551 ** is considered a column can be complex in the presence of subqueries. The 1552 ** result-set expression in all of the following SELECT statements is 1553 ** considered a column by this function. 1554 ** 1555 ** SELECT col FROM tbl; 1556 ** SELECT (SELECT col FROM tbl; 1557 ** SELECT (SELECT col FROM tbl); 1558 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1559 ** 1560 ** The declaration type for any expression other than a column is NULL. 1561 ** 1562 ** This routine has either 3 or 6 parameters depending on whether or not 1563 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1564 */ 1565 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1566 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1567 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1568 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1569 #endif 1570 static const char *columnTypeImpl( 1571 NameContext *pNC, 1572 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1573 Expr *pExpr 1574 #else 1575 Expr *pExpr, 1576 const char **pzOrigDb, 1577 const char **pzOrigTab, 1578 const char **pzOrigCol 1579 #endif 1580 ){ 1581 char const *zType = 0; 1582 int j; 1583 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1584 char const *zOrigDb = 0; 1585 char const *zOrigTab = 0; 1586 char const *zOrigCol = 0; 1587 #endif 1588 1589 assert( pExpr!=0 ); 1590 assert( pNC->pSrcList!=0 ); 1591 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1592 ** are processed */ 1593 switch( pExpr->op ){ 1594 case TK_COLUMN: { 1595 /* The expression is a column. Locate the table the column is being 1596 ** extracted from in NameContext.pSrcList. This table may be real 1597 ** database table or a subquery. 1598 */ 1599 Table *pTab = 0; /* Table structure column is extracted from */ 1600 Select *pS = 0; /* Select the column is extracted from */ 1601 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1602 while( pNC && !pTab ){ 1603 SrcList *pTabList = pNC->pSrcList; 1604 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1605 if( j<pTabList->nSrc ){ 1606 pTab = pTabList->a[j].pTab; 1607 pS = pTabList->a[j].pSelect; 1608 }else{ 1609 pNC = pNC->pNext; 1610 } 1611 } 1612 1613 if( pTab==0 ){ 1614 /* At one time, code such as "SELECT new.x" within a trigger would 1615 ** cause this condition to run. Since then, we have restructured how 1616 ** trigger code is generated and so this condition is no longer 1617 ** possible. However, it can still be true for statements like 1618 ** the following: 1619 ** 1620 ** CREATE TABLE t1(col INTEGER); 1621 ** SELECT (SELECT t1.col) FROM FROM t1; 1622 ** 1623 ** when columnType() is called on the expression "t1.col" in the 1624 ** sub-select. In this case, set the column type to NULL, even 1625 ** though it should really be "INTEGER". 1626 ** 1627 ** This is not a problem, as the column type of "t1.col" is never 1628 ** used. When columnType() is called on the expression 1629 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1630 ** branch below. */ 1631 break; 1632 } 1633 1634 assert( pTab && pExpr->pTab==pTab ); 1635 if( pS ){ 1636 /* The "table" is actually a sub-select or a view in the FROM clause 1637 ** of the SELECT statement. Return the declaration type and origin 1638 ** data for the result-set column of the sub-select. 1639 */ 1640 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1641 /* If iCol is less than zero, then the expression requests the 1642 ** rowid of the sub-select or view. This expression is legal (see 1643 ** test case misc2.2.2) - it always evaluates to NULL. 1644 */ 1645 NameContext sNC; 1646 Expr *p = pS->pEList->a[iCol].pExpr; 1647 sNC.pSrcList = pS->pSrc; 1648 sNC.pNext = pNC; 1649 sNC.pParse = pNC->pParse; 1650 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1651 } 1652 }else{ 1653 /* A real table or a CTE table */ 1654 assert( !pS ); 1655 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1656 if( iCol<0 ) iCol = pTab->iPKey; 1657 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1658 if( iCol<0 ){ 1659 zType = "INTEGER"; 1660 zOrigCol = "rowid"; 1661 }else{ 1662 zOrigCol = pTab->aCol[iCol].zName; 1663 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1664 } 1665 zOrigTab = pTab->zName; 1666 if( pNC->pParse && pTab->pSchema ){ 1667 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1668 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1669 } 1670 #else 1671 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1672 if( iCol<0 ){ 1673 zType = "INTEGER"; 1674 }else{ 1675 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1676 } 1677 #endif 1678 } 1679 break; 1680 } 1681 #ifndef SQLITE_OMIT_SUBQUERY 1682 case TK_SELECT: { 1683 /* The expression is a sub-select. Return the declaration type and 1684 ** origin info for the single column in the result set of the SELECT 1685 ** statement. 1686 */ 1687 NameContext sNC; 1688 Select *pS = pExpr->x.pSelect; 1689 Expr *p = pS->pEList->a[0].pExpr; 1690 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1691 sNC.pSrcList = pS->pSrc; 1692 sNC.pNext = pNC; 1693 sNC.pParse = pNC->pParse; 1694 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1695 break; 1696 } 1697 #endif 1698 } 1699 1700 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1701 if( pzOrigDb ){ 1702 assert( pzOrigTab && pzOrigCol ); 1703 *pzOrigDb = zOrigDb; 1704 *pzOrigTab = zOrigTab; 1705 *pzOrigCol = zOrigCol; 1706 } 1707 #endif 1708 return zType; 1709 } 1710 1711 /* 1712 ** Generate code that will tell the VDBE the declaration types of columns 1713 ** in the result set. 1714 */ 1715 static void generateColumnTypes( 1716 Parse *pParse, /* Parser context */ 1717 SrcList *pTabList, /* List of tables */ 1718 ExprList *pEList /* Expressions defining the result set */ 1719 ){ 1720 #ifndef SQLITE_OMIT_DECLTYPE 1721 Vdbe *v = pParse->pVdbe; 1722 int i; 1723 NameContext sNC; 1724 sNC.pSrcList = pTabList; 1725 sNC.pParse = pParse; 1726 sNC.pNext = 0; 1727 for(i=0; i<pEList->nExpr; i++){ 1728 Expr *p = pEList->a[i].pExpr; 1729 const char *zType; 1730 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1731 const char *zOrigDb = 0; 1732 const char *zOrigTab = 0; 1733 const char *zOrigCol = 0; 1734 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1735 1736 /* The vdbe must make its own copy of the column-type and other 1737 ** column specific strings, in case the schema is reset before this 1738 ** virtual machine is deleted. 1739 */ 1740 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1741 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1742 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1743 #else 1744 zType = columnType(&sNC, p, 0, 0, 0); 1745 #endif 1746 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1747 } 1748 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1749 } 1750 1751 1752 /* 1753 ** Compute the column names for a SELECT statement. 1754 ** 1755 ** The only guarantee that SQLite makes about column names is that if the 1756 ** column has an AS clause assigning it a name, that will be the name used. 1757 ** That is the only documented guarantee. However, countless applications 1758 ** developed over the years have made baseless assumptions about column names 1759 ** and will break if those assumptions changes. Hence, use extreme caution 1760 ** when modifying this routine to avoid breaking legacy. 1761 ** 1762 ** See Also: sqlite3ColumnsFromExprList() 1763 ** 1764 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1765 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1766 ** applications should operate this way. Nevertheless, we need to support the 1767 ** other modes for legacy: 1768 ** 1769 ** short=OFF, full=OFF: Column name is the text of the expression has it 1770 ** originally appears in the SELECT statement. In 1771 ** other words, the zSpan of the result expression. 1772 ** 1773 ** short=ON, full=OFF: (This is the default setting). If the result 1774 ** refers directly to a table column, then the 1775 ** result column name is just the table column 1776 ** name: COLUMN. Otherwise use zSpan. 1777 ** 1778 ** full=ON, short=ANY: If the result refers directly to a table column, 1779 ** then the result column name with the table name 1780 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1781 */ 1782 static void generateColumnNames( 1783 Parse *pParse, /* Parser context */ 1784 Select *pSelect /* Generate column names for this SELECT statement */ 1785 ){ 1786 Vdbe *v = pParse->pVdbe; 1787 int i; 1788 Table *pTab; 1789 SrcList *pTabList; 1790 ExprList *pEList; 1791 sqlite3 *db = pParse->db; 1792 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1793 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1794 1795 #ifndef SQLITE_OMIT_EXPLAIN 1796 /* If this is an EXPLAIN, skip this step */ 1797 if( pParse->explain ){ 1798 return; 1799 } 1800 #endif 1801 1802 if( pParse->colNamesSet || db->mallocFailed ) return; 1803 /* Column names are determined by the left-most term of a compound select */ 1804 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1805 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1806 pTabList = pSelect->pSrc; 1807 pEList = pSelect->pEList; 1808 assert( v!=0 ); 1809 assert( pTabList!=0 ); 1810 pParse->colNamesSet = 1; 1811 fullName = (db->flags & SQLITE_FullColNames)!=0; 1812 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1813 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1814 for(i=0; i<pEList->nExpr; i++){ 1815 Expr *p = pEList->a[i].pExpr; 1816 1817 assert( p!=0 ); 1818 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1819 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1820 if( pEList->a[i].zName ){ 1821 /* An AS clause always takes first priority */ 1822 char *zName = pEList->a[i].zName; 1823 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1824 }else if( srcName && p->op==TK_COLUMN ){ 1825 char *zCol; 1826 int iCol = p->iColumn; 1827 pTab = p->pTab; 1828 assert( pTab!=0 ); 1829 if( iCol<0 ) iCol = pTab->iPKey; 1830 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1831 if( iCol<0 ){ 1832 zCol = "rowid"; 1833 }else{ 1834 zCol = pTab->aCol[iCol].zName; 1835 } 1836 if( fullName ){ 1837 char *zName = 0; 1838 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1839 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1840 }else{ 1841 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1842 } 1843 }else{ 1844 const char *z = pEList->a[i].zSpan; 1845 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1846 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1847 } 1848 } 1849 generateColumnTypes(pParse, pTabList, pEList); 1850 } 1851 1852 /* 1853 ** Given an expression list (which is really the list of expressions 1854 ** that form the result set of a SELECT statement) compute appropriate 1855 ** column names for a table that would hold the expression list. 1856 ** 1857 ** All column names will be unique. 1858 ** 1859 ** Only the column names are computed. Column.zType, Column.zColl, 1860 ** and other fields of Column are zeroed. 1861 ** 1862 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1863 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1864 ** 1865 ** The only guarantee that SQLite makes about column names is that if the 1866 ** column has an AS clause assigning it a name, that will be the name used. 1867 ** That is the only documented guarantee. However, countless applications 1868 ** developed over the years have made baseless assumptions about column names 1869 ** and will break if those assumptions changes. Hence, use extreme caution 1870 ** when modifying this routine to avoid breaking legacy. 1871 ** 1872 ** See Also: generateColumnNames() 1873 */ 1874 int sqlite3ColumnsFromExprList( 1875 Parse *pParse, /* Parsing context */ 1876 ExprList *pEList, /* Expr list from which to derive column names */ 1877 i16 *pnCol, /* Write the number of columns here */ 1878 Column **paCol /* Write the new column list here */ 1879 ){ 1880 sqlite3 *db = pParse->db; /* Database connection */ 1881 int i, j; /* Loop counters */ 1882 u32 cnt; /* Index added to make the name unique */ 1883 Column *aCol, *pCol; /* For looping over result columns */ 1884 int nCol; /* Number of columns in the result set */ 1885 char *zName; /* Column name */ 1886 int nName; /* Size of name in zName[] */ 1887 Hash ht; /* Hash table of column names */ 1888 1889 sqlite3HashInit(&ht); 1890 if( pEList ){ 1891 nCol = pEList->nExpr; 1892 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1893 testcase( aCol==0 ); 1894 if( nCol>32767 ) nCol = 32767; 1895 }else{ 1896 nCol = 0; 1897 aCol = 0; 1898 } 1899 assert( nCol==(i16)nCol ); 1900 *pnCol = nCol; 1901 *paCol = aCol; 1902 1903 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1904 /* Get an appropriate name for the column 1905 */ 1906 if( (zName = pEList->a[i].zName)!=0 ){ 1907 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1908 }else{ 1909 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1910 while( pColExpr->op==TK_DOT ){ 1911 pColExpr = pColExpr->pRight; 1912 assert( pColExpr!=0 ); 1913 } 1914 assert( pColExpr->op!=TK_AGG_COLUMN ); 1915 if( pColExpr->op==TK_COLUMN ){ 1916 /* For columns use the column name name */ 1917 int iCol = pColExpr->iColumn; 1918 Table *pTab = pColExpr->pTab; 1919 assert( pTab!=0 ); 1920 if( iCol<0 ) iCol = pTab->iPKey; 1921 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1922 }else if( pColExpr->op==TK_ID ){ 1923 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1924 zName = pColExpr->u.zToken; 1925 }else{ 1926 /* Use the original text of the column expression as its name */ 1927 zName = pEList->a[i].zSpan; 1928 } 1929 } 1930 if( zName ){ 1931 zName = sqlite3DbStrDup(db, zName); 1932 }else{ 1933 zName = sqlite3MPrintf(db,"column%d",i+1); 1934 } 1935 1936 /* Make sure the column name is unique. If the name is not unique, 1937 ** append an integer to the name so that it becomes unique. 1938 */ 1939 cnt = 0; 1940 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1941 nName = sqlite3Strlen30(zName); 1942 if( nName>0 ){ 1943 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1944 if( zName[j]==':' ) nName = j; 1945 } 1946 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1947 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1948 } 1949 pCol->zName = zName; 1950 sqlite3ColumnPropertiesFromName(0, pCol); 1951 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1952 sqlite3OomFault(db); 1953 } 1954 } 1955 sqlite3HashClear(&ht); 1956 if( db->mallocFailed ){ 1957 for(j=0; j<i; j++){ 1958 sqlite3DbFree(db, aCol[j].zName); 1959 } 1960 sqlite3DbFree(db, aCol); 1961 *paCol = 0; 1962 *pnCol = 0; 1963 return SQLITE_NOMEM_BKPT; 1964 } 1965 return SQLITE_OK; 1966 } 1967 1968 /* 1969 ** Add type and collation information to a column list based on 1970 ** a SELECT statement. 1971 ** 1972 ** The column list presumably came from selectColumnNamesFromExprList(). 1973 ** The column list has only names, not types or collations. This 1974 ** routine goes through and adds the types and collations. 1975 ** 1976 ** This routine requires that all identifiers in the SELECT 1977 ** statement be resolved. 1978 */ 1979 void sqlite3SelectAddColumnTypeAndCollation( 1980 Parse *pParse, /* Parsing contexts */ 1981 Table *pTab, /* Add column type information to this table */ 1982 Select *pSelect /* SELECT used to determine types and collations */ 1983 ){ 1984 sqlite3 *db = pParse->db; 1985 NameContext sNC; 1986 Column *pCol; 1987 CollSeq *pColl; 1988 int i; 1989 Expr *p; 1990 struct ExprList_item *a; 1991 1992 assert( pSelect!=0 ); 1993 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1994 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1995 if( db->mallocFailed ) return; 1996 memset(&sNC, 0, sizeof(sNC)); 1997 sNC.pSrcList = pSelect->pSrc; 1998 a = pSelect->pEList->a; 1999 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2000 const char *zType; 2001 int n, m; 2002 p = a[i].pExpr; 2003 zType = columnType(&sNC, p, 0, 0, 0); 2004 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2005 pCol->affinity = sqlite3ExprAffinity(p); 2006 if( zType ){ 2007 m = sqlite3Strlen30(zType); 2008 n = sqlite3Strlen30(pCol->zName); 2009 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2010 if( pCol->zName ){ 2011 memcpy(&pCol->zName[n+1], zType, m+1); 2012 pCol->colFlags |= COLFLAG_HASTYPE; 2013 } 2014 } 2015 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2016 pColl = sqlite3ExprCollSeq(pParse, p); 2017 if( pColl && pCol->zColl==0 ){ 2018 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2019 } 2020 } 2021 pTab->szTabRow = 1; /* Any non-zero value works */ 2022 } 2023 2024 /* 2025 ** Given a SELECT statement, generate a Table structure that describes 2026 ** the result set of that SELECT. 2027 */ 2028 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2029 Table *pTab; 2030 sqlite3 *db = pParse->db; 2031 int savedFlags; 2032 2033 savedFlags = db->flags; 2034 db->flags &= ~SQLITE_FullColNames; 2035 db->flags |= SQLITE_ShortColNames; 2036 sqlite3SelectPrep(pParse, pSelect, 0); 2037 if( pParse->nErr ) return 0; 2038 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2039 db->flags = savedFlags; 2040 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2041 if( pTab==0 ){ 2042 return 0; 2043 } 2044 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2045 ** is disabled */ 2046 assert( db->lookaside.bDisable ); 2047 pTab->nTabRef = 1; 2048 pTab->zName = 0; 2049 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2050 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2051 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2052 pTab->iPKey = -1; 2053 if( db->mallocFailed ){ 2054 sqlite3DeleteTable(db, pTab); 2055 return 0; 2056 } 2057 return pTab; 2058 } 2059 2060 /* 2061 ** Get a VDBE for the given parser context. Create a new one if necessary. 2062 ** If an error occurs, return NULL and leave a message in pParse. 2063 */ 2064 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2065 if( pParse->pVdbe ){ 2066 return pParse->pVdbe; 2067 } 2068 if( pParse->pToplevel==0 2069 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2070 ){ 2071 pParse->okConstFactor = 1; 2072 } 2073 return sqlite3VdbeCreate(pParse); 2074 } 2075 2076 2077 /* 2078 ** Compute the iLimit and iOffset fields of the SELECT based on the 2079 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2080 ** that appear in the original SQL statement after the LIMIT and OFFSET 2081 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2082 ** are the integer memory register numbers for counters used to compute 2083 ** the limit and offset. If there is no limit and/or offset, then 2084 ** iLimit and iOffset are negative. 2085 ** 2086 ** This routine changes the values of iLimit and iOffset only if 2087 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2088 ** and iOffset should have been preset to appropriate default values (zero) 2089 ** prior to calling this routine. 2090 ** 2091 ** The iOffset register (if it exists) is initialized to the value 2092 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2093 ** iOffset+1 is initialized to LIMIT+OFFSET. 2094 ** 2095 ** Only if pLimit->pLeft!=0 do the limit registers get 2096 ** redefined. The UNION ALL operator uses this property to force 2097 ** the reuse of the same limit and offset registers across multiple 2098 ** SELECT statements. 2099 */ 2100 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2101 Vdbe *v = 0; 2102 int iLimit = 0; 2103 int iOffset; 2104 int n; 2105 Expr *pLimit = p->pLimit; 2106 2107 if( p->iLimit ) return; 2108 2109 /* 2110 ** "LIMIT -1" always shows all rows. There is some 2111 ** controversy about what the correct behavior should be. 2112 ** The current implementation interprets "LIMIT 0" to mean 2113 ** no rows. 2114 */ 2115 sqlite3ExprCacheClear(pParse); 2116 if( pLimit ){ 2117 assert( pLimit->op==TK_LIMIT ); 2118 assert( pLimit->pLeft!=0 ); 2119 p->iLimit = iLimit = ++pParse->nMem; 2120 v = sqlite3GetVdbe(pParse); 2121 assert( v!=0 ); 2122 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2123 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2124 VdbeComment((v, "LIMIT counter")); 2125 if( n==0 ){ 2126 sqlite3VdbeGoto(v, iBreak); 2127 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2128 p->nSelectRow = sqlite3LogEst((u64)n); 2129 p->selFlags |= SF_FixedLimit; 2130 } 2131 }else{ 2132 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2133 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2134 VdbeComment((v, "LIMIT counter")); 2135 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2136 } 2137 if( pLimit->pRight ){ 2138 p->iOffset = iOffset = ++pParse->nMem; 2139 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2140 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2141 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2142 VdbeComment((v, "OFFSET counter")); 2143 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2144 VdbeComment((v, "LIMIT+OFFSET")); 2145 } 2146 } 2147 } 2148 2149 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2150 /* 2151 ** Return the appropriate collating sequence for the iCol-th column of 2152 ** the result set for the compound-select statement "p". Return NULL if 2153 ** the column has no default collating sequence. 2154 ** 2155 ** The collating sequence for the compound select is taken from the 2156 ** left-most term of the select that has a collating sequence. 2157 */ 2158 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2159 CollSeq *pRet; 2160 if( p->pPrior ){ 2161 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2162 }else{ 2163 pRet = 0; 2164 } 2165 assert( iCol>=0 ); 2166 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2167 ** have been thrown during name resolution and we would not have gotten 2168 ** this far */ 2169 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2170 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2171 } 2172 return pRet; 2173 } 2174 2175 /* 2176 ** The select statement passed as the second parameter is a compound SELECT 2177 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2178 ** structure suitable for implementing the ORDER BY. 2179 ** 2180 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2181 ** function is responsible for ensuring that this structure is eventually 2182 ** freed. 2183 */ 2184 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2185 ExprList *pOrderBy = p->pOrderBy; 2186 int nOrderBy = p->pOrderBy->nExpr; 2187 sqlite3 *db = pParse->db; 2188 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2189 if( pRet ){ 2190 int i; 2191 for(i=0; i<nOrderBy; i++){ 2192 struct ExprList_item *pItem = &pOrderBy->a[i]; 2193 Expr *pTerm = pItem->pExpr; 2194 CollSeq *pColl; 2195 2196 if( pTerm->flags & EP_Collate ){ 2197 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2198 }else{ 2199 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2200 if( pColl==0 ) pColl = db->pDfltColl; 2201 pOrderBy->a[i].pExpr = 2202 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2203 } 2204 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2205 pRet->aColl[i] = pColl; 2206 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2207 } 2208 } 2209 2210 return pRet; 2211 } 2212 2213 #ifndef SQLITE_OMIT_CTE 2214 /* 2215 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2216 ** query of the form: 2217 ** 2218 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2219 ** \___________/ \_______________/ 2220 ** p->pPrior p 2221 ** 2222 ** 2223 ** There is exactly one reference to the recursive-table in the FROM clause 2224 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2225 ** 2226 ** The setup-query runs once to generate an initial set of rows that go 2227 ** into a Queue table. Rows are extracted from the Queue table one by 2228 ** one. Each row extracted from Queue is output to pDest. Then the single 2229 ** extracted row (now in the iCurrent table) becomes the content of the 2230 ** recursive-table for a recursive-query run. The output of the recursive-query 2231 ** is added back into the Queue table. Then another row is extracted from Queue 2232 ** and the iteration continues until the Queue table is empty. 2233 ** 2234 ** If the compound query operator is UNION then no duplicate rows are ever 2235 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2236 ** that have ever been inserted into Queue and causes duplicates to be 2237 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2238 ** 2239 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2240 ** ORDER BY order and the first entry is extracted for each cycle. Without 2241 ** an ORDER BY, the Queue table is just a FIFO. 2242 ** 2243 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2244 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2245 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2246 ** with a positive value, then the first OFFSET outputs are discarded rather 2247 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2248 ** rows have been skipped. 2249 */ 2250 static void generateWithRecursiveQuery( 2251 Parse *pParse, /* Parsing context */ 2252 Select *p, /* The recursive SELECT to be coded */ 2253 SelectDest *pDest /* What to do with query results */ 2254 ){ 2255 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2256 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2257 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2258 Select *pSetup = p->pPrior; /* The setup query */ 2259 int addrTop; /* Top of the loop */ 2260 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2261 int iCurrent = 0; /* The Current table */ 2262 int regCurrent; /* Register holding Current table */ 2263 int iQueue; /* The Queue table */ 2264 int iDistinct = 0; /* To ensure unique results if UNION */ 2265 int eDest = SRT_Fifo; /* How to write to Queue */ 2266 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2267 int i; /* Loop counter */ 2268 int rc; /* Result code */ 2269 ExprList *pOrderBy; /* The ORDER BY clause */ 2270 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2271 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2272 2273 /* Obtain authorization to do a recursive query */ 2274 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2275 2276 /* Process the LIMIT and OFFSET clauses, if they exist */ 2277 addrBreak = sqlite3VdbeMakeLabel(v); 2278 p->nSelectRow = 320; /* 4 billion rows */ 2279 computeLimitRegisters(pParse, p, addrBreak); 2280 pLimit = p->pLimit; 2281 regLimit = p->iLimit; 2282 regOffset = p->iOffset; 2283 p->pLimit = 0; 2284 p->iLimit = p->iOffset = 0; 2285 pOrderBy = p->pOrderBy; 2286 2287 /* Locate the cursor number of the Current table */ 2288 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2289 if( pSrc->a[i].fg.isRecursive ){ 2290 iCurrent = pSrc->a[i].iCursor; 2291 break; 2292 } 2293 } 2294 2295 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2296 ** the Distinct table must be exactly one greater than Queue in order 2297 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2298 iQueue = pParse->nTab++; 2299 if( p->op==TK_UNION ){ 2300 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2301 iDistinct = pParse->nTab++; 2302 }else{ 2303 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2304 } 2305 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2306 2307 /* Allocate cursors for Current, Queue, and Distinct. */ 2308 regCurrent = ++pParse->nMem; 2309 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2310 if( pOrderBy ){ 2311 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2312 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2313 (char*)pKeyInfo, P4_KEYINFO); 2314 destQueue.pOrderBy = pOrderBy; 2315 }else{ 2316 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2317 } 2318 VdbeComment((v, "Queue table")); 2319 if( iDistinct ){ 2320 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2321 p->selFlags |= SF_UsesEphemeral; 2322 } 2323 2324 /* Detach the ORDER BY clause from the compound SELECT */ 2325 p->pOrderBy = 0; 2326 2327 /* Store the results of the setup-query in Queue. */ 2328 pSetup->pNext = 0; 2329 rc = sqlite3Select(pParse, pSetup, &destQueue); 2330 pSetup->pNext = p; 2331 if( rc ) goto end_of_recursive_query; 2332 2333 /* Find the next row in the Queue and output that row */ 2334 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2335 2336 /* Transfer the next row in Queue over to Current */ 2337 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2338 if( pOrderBy ){ 2339 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2340 }else{ 2341 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2342 } 2343 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2344 2345 /* Output the single row in Current */ 2346 addrCont = sqlite3VdbeMakeLabel(v); 2347 codeOffset(v, regOffset, addrCont); 2348 selectInnerLoop(pParse, p, iCurrent, 2349 0, 0, pDest, addrCont, addrBreak); 2350 if( regLimit ){ 2351 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2352 VdbeCoverage(v); 2353 } 2354 sqlite3VdbeResolveLabel(v, addrCont); 2355 2356 /* Execute the recursive SELECT taking the single row in Current as 2357 ** the value for the recursive-table. Store the results in the Queue. 2358 */ 2359 if( p->selFlags & SF_Aggregate ){ 2360 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2361 }else{ 2362 p->pPrior = 0; 2363 sqlite3Select(pParse, p, &destQueue); 2364 assert( p->pPrior==0 ); 2365 p->pPrior = pSetup; 2366 } 2367 2368 /* Keep running the loop until the Queue is empty */ 2369 sqlite3VdbeGoto(v, addrTop); 2370 sqlite3VdbeResolveLabel(v, addrBreak); 2371 2372 end_of_recursive_query: 2373 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2374 p->pOrderBy = pOrderBy; 2375 p->pLimit = pLimit; 2376 return; 2377 } 2378 #endif /* SQLITE_OMIT_CTE */ 2379 2380 /* Forward references */ 2381 static int multiSelectOrderBy( 2382 Parse *pParse, /* Parsing context */ 2383 Select *p, /* The right-most of SELECTs to be coded */ 2384 SelectDest *pDest /* What to do with query results */ 2385 ); 2386 2387 /* 2388 ** Handle the special case of a compound-select that originates from a 2389 ** VALUES clause. By handling this as a special case, we avoid deep 2390 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2391 ** on a VALUES clause. 2392 ** 2393 ** Because the Select object originates from a VALUES clause: 2394 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2395 ** (2) All terms are UNION ALL 2396 ** (3) There is no ORDER BY clause 2397 ** 2398 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2399 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2400 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2401 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2402 */ 2403 static int multiSelectValues( 2404 Parse *pParse, /* Parsing context */ 2405 Select *p, /* The right-most of SELECTs to be coded */ 2406 SelectDest *pDest /* What to do with query results */ 2407 ){ 2408 Select *pPrior; 2409 Select *pRightmost = p; 2410 int nRow = 1; 2411 int rc = 0; 2412 assert( p->selFlags & SF_MultiValue ); 2413 do{ 2414 assert( p->selFlags & SF_Values ); 2415 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2416 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2417 if( p->pPrior==0 ) break; 2418 assert( p->pPrior->pNext==p ); 2419 p = p->pPrior; 2420 nRow++; 2421 }while(1); 2422 while( p ){ 2423 pPrior = p->pPrior; 2424 p->pPrior = 0; 2425 rc = sqlite3Select(pParse, p, pDest); 2426 p->pPrior = pPrior; 2427 if( rc || pRightmost->pLimit ) break; 2428 p->nSelectRow = nRow; 2429 p = p->pNext; 2430 } 2431 return rc; 2432 } 2433 2434 /* 2435 ** This routine is called to process a compound query form from 2436 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2437 ** INTERSECT 2438 ** 2439 ** "p" points to the right-most of the two queries. the query on the 2440 ** left is p->pPrior. The left query could also be a compound query 2441 ** in which case this routine will be called recursively. 2442 ** 2443 ** The results of the total query are to be written into a destination 2444 ** of type eDest with parameter iParm. 2445 ** 2446 ** Example 1: Consider a three-way compound SQL statement. 2447 ** 2448 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2449 ** 2450 ** This statement is parsed up as follows: 2451 ** 2452 ** SELECT c FROM t3 2453 ** | 2454 ** `-----> SELECT b FROM t2 2455 ** | 2456 ** `------> SELECT a FROM t1 2457 ** 2458 ** The arrows in the diagram above represent the Select.pPrior pointer. 2459 ** So if this routine is called with p equal to the t3 query, then 2460 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2461 ** 2462 ** Notice that because of the way SQLite parses compound SELECTs, the 2463 ** individual selects always group from left to right. 2464 */ 2465 static int multiSelect( 2466 Parse *pParse, /* Parsing context */ 2467 Select *p, /* The right-most of SELECTs to be coded */ 2468 SelectDest *pDest /* What to do with query results */ 2469 ){ 2470 int rc = SQLITE_OK; /* Success code from a subroutine */ 2471 Select *pPrior; /* Another SELECT immediately to our left */ 2472 Vdbe *v; /* Generate code to this VDBE */ 2473 SelectDest dest; /* Alternative data destination */ 2474 Select *pDelete = 0; /* Chain of simple selects to delete */ 2475 sqlite3 *db; /* Database connection */ 2476 #ifndef SQLITE_OMIT_EXPLAIN 2477 int iSub1 = 0; /* EQP id of left-hand query */ 2478 int iSub2 = 0; /* EQP id of right-hand query */ 2479 #endif 2480 2481 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2482 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2483 */ 2484 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2485 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2486 db = pParse->db; 2487 pPrior = p->pPrior; 2488 dest = *pDest; 2489 if( pPrior->pOrderBy || pPrior->pLimit ){ 2490 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2491 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2492 rc = 1; 2493 goto multi_select_end; 2494 } 2495 2496 v = sqlite3GetVdbe(pParse); 2497 assert( v!=0 ); /* The VDBE already created by calling function */ 2498 2499 /* Create the destination temporary table if necessary 2500 */ 2501 if( dest.eDest==SRT_EphemTab ){ 2502 assert( p->pEList ); 2503 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2504 dest.eDest = SRT_Table; 2505 } 2506 2507 /* Special handling for a compound-select that originates as a VALUES clause. 2508 */ 2509 if( p->selFlags & SF_MultiValue ){ 2510 rc = multiSelectValues(pParse, p, &dest); 2511 goto multi_select_end; 2512 } 2513 2514 /* Make sure all SELECTs in the statement have the same number of elements 2515 ** in their result sets. 2516 */ 2517 assert( p->pEList && pPrior->pEList ); 2518 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2519 2520 #ifndef SQLITE_OMIT_CTE 2521 if( p->selFlags & SF_Recursive ){ 2522 generateWithRecursiveQuery(pParse, p, &dest); 2523 }else 2524 #endif 2525 2526 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2527 */ 2528 if( p->pOrderBy ){ 2529 return multiSelectOrderBy(pParse, p, pDest); 2530 }else 2531 2532 /* Generate code for the left and right SELECT statements. 2533 */ 2534 switch( p->op ){ 2535 case TK_ALL: { 2536 int addr = 0; 2537 int nLimit; 2538 assert( !pPrior->pLimit ); 2539 pPrior->iLimit = p->iLimit; 2540 pPrior->iOffset = p->iOffset; 2541 pPrior->pLimit = p->pLimit; 2542 explainSetInteger(iSub1, pParse->iNextSelectId); 2543 rc = sqlite3Select(pParse, pPrior, &dest); 2544 p->pLimit = 0; 2545 if( rc ){ 2546 goto multi_select_end; 2547 } 2548 p->pPrior = 0; 2549 p->iLimit = pPrior->iLimit; 2550 p->iOffset = pPrior->iOffset; 2551 if( p->iLimit ){ 2552 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2553 VdbeComment((v, "Jump ahead if LIMIT reached")); 2554 if( p->iOffset ){ 2555 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2556 p->iLimit, p->iOffset+1, p->iOffset); 2557 } 2558 } 2559 explainSetInteger(iSub2, pParse->iNextSelectId); 2560 rc = sqlite3Select(pParse, p, &dest); 2561 testcase( rc!=SQLITE_OK ); 2562 pDelete = p->pPrior; 2563 p->pPrior = pPrior; 2564 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2565 if( pPrior->pLimit 2566 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2567 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2568 ){ 2569 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2570 } 2571 if( addr ){ 2572 sqlite3VdbeJumpHere(v, addr); 2573 } 2574 break; 2575 } 2576 case TK_EXCEPT: 2577 case TK_UNION: { 2578 int unionTab; /* Cursor number of the temporary table holding result */ 2579 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2580 int priorOp; /* The SRT_ operation to apply to prior selects */ 2581 Expr *pLimit; /* Saved values of p->nLimit */ 2582 int addr; 2583 SelectDest uniondest; 2584 2585 testcase( p->op==TK_EXCEPT ); 2586 testcase( p->op==TK_UNION ); 2587 priorOp = SRT_Union; 2588 if( dest.eDest==priorOp ){ 2589 /* We can reuse a temporary table generated by a SELECT to our 2590 ** right. 2591 */ 2592 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2593 unionTab = dest.iSDParm; 2594 }else{ 2595 /* We will need to create our own temporary table to hold the 2596 ** intermediate results. 2597 */ 2598 unionTab = pParse->nTab++; 2599 assert( p->pOrderBy==0 ); 2600 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2601 assert( p->addrOpenEphm[0] == -1 ); 2602 p->addrOpenEphm[0] = addr; 2603 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2604 assert( p->pEList ); 2605 } 2606 2607 /* Code the SELECT statements to our left 2608 */ 2609 assert( !pPrior->pOrderBy ); 2610 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2611 explainSetInteger(iSub1, pParse->iNextSelectId); 2612 rc = sqlite3Select(pParse, pPrior, &uniondest); 2613 if( rc ){ 2614 goto multi_select_end; 2615 } 2616 2617 /* Code the current SELECT statement 2618 */ 2619 if( p->op==TK_EXCEPT ){ 2620 op = SRT_Except; 2621 }else{ 2622 assert( p->op==TK_UNION ); 2623 op = SRT_Union; 2624 } 2625 p->pPrior = 0; 2626 pLimit = p->pLimit; 2627 p->pLimit = 0; 2628 uniondest.eDest = op; 2629 explainSetInteger(iSub2, pParse->iNextSelectId); 2630 rc = sqlite3Select(pParse, p, &uniondest); 2631 testcase( rc!=SQLITE_OK ); 2632 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2633 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2634 sqlite3ExprListDelete(db, p->pOrderBy); 2635 pDelete = p->pPrior; 2636 p->pPrior = pPrior; 2637 p->pOrderBy = 0; 2638 if( p->op==TK_UNION ){ 2639 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2640 } 2641 sqlite3ExprDelete(db, p->pLimit); 2642 p->pLimit = pLimit; 2643 p->iLimit = 0; 2644 p->iOffset = 0; 2645 2646 /* Convert the data in the temporary table into whatever form 2647 ** it is that we currently need. 2648 */ 2649 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2650 if( dest.eDest!=priorOp ){ 2651 int iCont, iBreak, iStart; 2652 assert( p->pEList ); 2653 iBreak = sqlite3VdbeMakeLabel(v); 2654 iCont = sqlite3VdbeMakeLabel(v); 2655 computeLimitRegisters(pParse, p, iBreak); 2656 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2657 iStart = sqlite3VdbeCurrentAddr(v); 2658 selectInnerLoop(pParse, p, unionTab, 2659 0, 0, &dest, iCont, iBreak); 2660 sqlite3VdbeResolveLabel(v, iCont); 2661 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2662 sqlite3VdbeResolveLabel(v, iBreak); 2663 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2664 } 2665 break; 2666 } 2667 default: assert( p->op==TK_INTERSECT ); { 2668 int tab1, tab2; 2669 int iCont, iBreak, iStart; 2670 Expr *pLimit; 2671 int addr; 2672 SelectDest intersectdest; 2673 int r1; 2674 2675 /* INTERSECT is different from the others since it requires 2676 ** two temporary tables. Hence it has its own case. Begin 2677 ** by allocating the tables we will need. 2678 */ 2679 tab1 = pParse->nTab++; 2680 tab2 = pParse->nTab++; 2681 assert( p->pOrderBy==0 ); 2682 2683 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2684 assert( p->addrOpenEphm[0] == -1 ); 2685 p->addrOpenEphm[0] = addr; 2686 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2687 assert( p->pEList ); 2688 2689 /* Code the SELECTs to our left into temporary table "tab1". 2690 */ 2691 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2692 explainSetInteger(iSub1, pParse->iNextSelectId); 2693 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2694 if( rc ){ 2695 goto multi_select_end; 2696 } 2697 2698 /* Code the current SELECT into temporary table "tab2" 2699 */ 2700 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2701 assert( p->addrOpenEphm[1] == -1 ); 2702 p->addrOpenEphm[1] = addr; 2703 p->pPrior = 0; 2704 pLimit = p->pLimit; 2705 p->pLimit = 0; 2706 intersectdest.iSDParm = tab2; 2707 explainSetInteger(iSub2, pParse->iNextSelectId); 2708 rc = sqlite3Select(pParse, p, &intersectdest); 2709 testcase( rc!=SQLITE_OK ); 2710 pDelete = p->pPrior; 2711 p->pPrior = pPrior; 2712 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2713 sqlite3ExprDelete(db, p->pLimit); 2714 p->pLimit = pLimit; 2715 2716 /* Generate code to take the intersection of the two temporary 2717 ** tables. 2718 */ 2719 assert( p->pEList ); 2720 iBreak = sqlite3VdbeMakeLabel(v); 2721 iCont = sqlite3VdbeMakeLabel(v); 2722 computeLimitRegisters(pParse, p, iBreak); 2723 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2724 r1 = sqlite3GetTempReg(pParse); 2725 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2726 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2727 sqlite3ReleaseTempReg(pParse, r1); 2728 selectInnerLoop(pParse, p, tab1, 2729 0, 0, &dest, iCont, iBreak); 2730 sqlite3VdbeResolveLabel(v, iCont); 2731 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2732 sqlite3VdbeResolveLabel(v, iBreak); 2733 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2734 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2735 break; 2736 } 2737 } 2738 2739 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2740 2741 /* Compute collating sequences used by 2742 ** temporary tables needed to implement the compound select. 2743 ** Attach the KeyInfo structure to all temporary tables. 2744 ** 2745 ** This section is run by the right-most SELECT statement only. 2746 ** SELECT statements to the left always skip this part. The right-most 2747 ** SELECT might also skip this part if it has no ORDER BY clause and 2748 ** no temp tables are required. 2749 */ 2750 if( p->selFlags & SF_UsesEphemeral ){ 2751 int i; /* Loop counter */ 2752 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2753 Select *pLoop; /* For looping through SELECT statements */ 2754 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2755 int nCol; /* Number of columns in result set */ 2756 2757 assert( p->pNext==0 ); 2758 nCol = p->pEList->nExpr; 2759 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2760 if( !pKeyInfo ){ 2761 rc = SQLITE_NOMEM_BKPT; 2762 goto multi_select_end; 2763 } 2764 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2765 *apColl = multiSelectCollSeq(pParse, p, i); 2766 if( 0==*apColl ){ 2767 *apColl = db->pDfltColl; 2768 } 2769 } 2770 2771 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2772 for(i=0; i<2; i++){ 2773 int addr = pLoop->addrOpenEphm[i]; 2774 if( addr<0 ){ 2775 /* If [0] is unused then [1] is also unused. So we can 2776 ** always safely abort as soon as the first unused slot is found */ 2777 assert( pLoop->addrOpenEphm[1]<0 ); 2778 break; 2779 } 2780 sqlite3VdbeChangeP2(v, addr, nCol); 2781 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2782 P4_KEYINFO); 2783 pLoop->addrOpenEphm[i] = -1; 2784 } 2785 } 2786 sqlite3KeyInfoUnref(pKeyInfo); 2787 } 2788 2789 multi_select_end: 2790 pDest->iSdst = dest.iSdst; 2791 pDest->nSdst = dest.nSdst; 2792 sqlite3SelectDelete(db, pDelete); 2793 return rc; 2794 } 2795 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2796 2797 /* 2798 ** Error message for when two or more terms of a compound select have different 2799 ** size result sets. 2800 */ 2801 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2802 if( p->selFlags & SF_Values ){ 2803 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2804 }else{ 2805 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2806 " do not have the same number of result columns", selectOpName(p->op)); 2807 } 2808 } 2809 2810 /* 2811 ** Code an output subroutine for a coroutine implementation of a 2812 ** SELECT statment. 2813 ** 2814 ** The data to be output is contained in pIn->iSdst. There are 2815 ** pIn->nSdst columns to be output. pDest is where the output should 2816 ** be sent. 2817 ** 2818 ** regReturn is the number of the register holding the subroutine 2819 ** return address. 2820 ** 2821 ** If regPrev>0 then it is the first register in a vector that 2822 ** records the previous output. mem[regPrev] is a flag that is false 2823 ** if there has been no previous output. If regPrev>0 then code is 2824 ** generated to suppress duplicates. pKeyInfo is used for comparing 2825 ** keys. 2826 ** 2827 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2828 ** iBreak. 2829 */ 2830 static int generateOutputSubroutine( 2831 Parse *pParse, /* Parsing context */ 2832 Select *p, /* The SELECT statement */ 2833 SelectDest *pIn, /* Coroutine supplying data */ 2834 SelectDest *pDest, /* Where to send the data */ 2835 int regReturn, /* The return address register */ 2836 int regPrev, /* Previous result register. No uniqueness if 0 */ 2837 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2838 int iBreak /* Jump here if we hit the LIMIT */ 2839 ){ 2840 Vdbe *v = pParse->pVdbe; 2841 int iContinue; 2842 int addr; 2843 2844 addr = sqlite3VdbeCurrentAddr(v); 2845 iContinue = sqlite3VdbeMakeLabel(v); 2846 2847 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2848 */ 2849 if( regPrev ){ 2850 int addr1, addr2; 2851 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2852 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2853 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2854 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2855 sqlite3VdbeJumpHere(v, addr1); 2856 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2857 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2858 } 2859 if( pParse->db->mallocFailed ) return 0; 2860 2861 /* Suppress the first OFFSET entries if there is an OFFSET clause 2862 */ 2863 codeOffset(v, p->iOffset, iContinue); 2864 2865 assert( pDest->eDest!=SRT_Exists ); 2866 assert( pDest->eDest!=SRT_Table ); 2867 switch( pDest->eDest ){ 2868 /* Store the result as data using a unique key. 2869 */ 2870 case SRT_EphemTab: { 2871 int r1 = sqlite3GetTempReg(pParse); 2872 int r2 = sqlite3GetTempReg(pParse); 2873 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2874 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2875 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2876 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2877 sqlite3ReleaseTempReg(pParse, r2); 2878 sqlite3ReleaseTempReg(pParse, r1); 2879 break; 2880 } 2881 2882 #ifndef SQLITE_OMIT_SUBQUERY 2883 /* If we are creating a set for an "expr IN (SELECT ...)". 2884 */ 2885 case SRT_Set: { 2886 int r1; 2887 testcase( pIn->nSdst>1 ); 2888 r1 = sqlite3GetTempReg(pParse); 2889 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2890 r1, pDest->zAffSdst, pIn->nSdst); 2891 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2892 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2893 pIn->iSdst, pIn->nSdst); 2894 sqlite3ReleaseTempReg(pParse, r1); 2895 break; 2896 } 2897 2898 /* If this is a scalar select that is part of an expression, then 2899 ** store the results in the appropriate memory cell and break out 2900 ** of the scan loop. 2901 */ 2902 case SRT_Mem: { 2903 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2904 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2905 /* The LIMIT clause will jump out of the loop for us */ 2906 break; 2907 } 2908 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2909 2910 /* The results are stored in a sequence of registers 2911 ** starting at pDest->iSdst. Then the co-routine yields. 2912 */ 2913 case SRT_Coroutine: { 2914 if( pDest->iSdst==0 ){ 2915 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2916 pDest->nSdst = pIn->nSdst; 2917 } 2918 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2919 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2920 break; 2921 } 2922 2923 /* If none of the above, then the result destination must be 2924 ** SRT_Output. This routine is never called with any other 2925 ** destination other than the ones handled above or SRT_Output. 2926 ** 2927 ** For SRT_Output, results are stored in a sequence of registers. 2928 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2929 ** return the next row of result. 2930 */ 2931 default: { 2932 assert( pDest->eDest==SRT_Output ); 2933 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2934 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2935 break; 2936 } 2937 } 2938 2939 /* Jump to the end of the loop if the LIMIT is reached. 2940 */ 2941 if( p->iLimit ){ 2942 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2943 } 2944 2945 /* Generate the subroutine return 2946 */ 2947 sqlite3VdbeResolveLabel(v, iContinue); 2948 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2949 2950 return addr; 2951 } 2952 2953 /* 2954 ** Alternative compound select code generator for cases when there 2955 ** is an ORDER BY clause. 2956 ** 2957 ** We assume a query of the following form: 2958 ** 2959 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2960 ** 2961 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2962 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2963 ** co-routines. Then run the co-routines in parallel and merge the results 2964 ** into the output. In addition to the two coroutines (called selectA and 2965 ** selectB) there are 7 subroutines: 2966 ** 2967 ** outA: Move the output of the selectA coroutine into the output 2968 ** of the compound query. 2969 ** 2970 ** outB: Move the output of the selectB coroutine into the output 2971 ** of the compound query. (Only generated for UNION and 2972 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2973 ** appears only in B.) 2974 ** 2975 ** AltB: Called when there is data from both coroutines and A<B. 2976 ** 2977 ** AeqB: Called when there is data from both coroutines and A==B. 2978 ** 2979 ** AgtB: Called when there is data from both coroutines and A>B. 2980 ** 2981 ** EofA: Called when data is exhausted from selectA. 2982 ** 2983 ** EofB: Called when data is exhausted from selectB. 2984 ** 2985 ** The implementation of the latter five subroutines depend on which 2986 ** <operator> is used: 2987 ** 2988 ** 2989 ** UNION ALL UNION EXCEPT INTERSECT 2990 ** ------------- ----------------- -------------- ----------------- 2991 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2992 ** 2993 ** AeqB: outA, nextA nextA nextA outA, nextA 2994 ** 2995 ** AgtB: outB, nextB outB, nextB nextB nextB 2996 ** 2997 ** EofA: outB, nextB outB, nextB halt halt 2998 ** 2999 ** EofB: outA, nextA outA, nextA outA, nextA halt 3000 ** 3001 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3002 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3003 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3004 ** following nextX causes a jump to the end of the select processing. 3005 ** 3006 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3007 ** within the output subroutine. The regPrev register set holds the previously 3008 ** output value. A comparison is made against this value and the output 3009 ** is skipped if the next results would be the same as the previous. 3010 ** 3011 ** The implementation plan is to implement the two coroutines and seven 3012 ** subroutines first, then put the control logic at the bottom. Like this: 3013 ** 3014 ** goto Init 3015 ** coA: coroutine for left query (A) 3016 ** coB: coroutine for right query (B) 3017 ** outA: output one row of A 3018 ** outB: output one row of B (UNION and UNION ALL only) 3019 ** EofA: ... 3020 ** EofB: ... 3021 ** AltB: ... 3022 ** AeqB: ... 3023 ** AgtB: ... 3024 ** Init: initialize coroutine registers 3025 ** yield coA 3026 ** if eof(A) goto EofA 3027 ** yield coB 3028 ** if eof(B) goto EofB 3029 ** Cmpr: Compare A, B 3030 ** Jump AltB, AeqB, AgtB 3031 ** End: ... 3032 ** 3033 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3034 ** actually called using Gosub and they do not Return. EofA and EofB loop 3035 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3036 ** and AgtB jump to either L2 or to one of EofA or EofB. 3037 */ 3038 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3039 static int multiSelectOrderBy( 3040 Parse *pParse, /* Parsing context */ 3041 Select *p, /* The right-most of SELECTs to be coded */ 3042 SelectDest *pDest /* What to do with query results */ 3043 ){ 3044 int i, j; /* Loop counters */ 3045 Select *pPrior; /* Another SELECT immediately to our left */ 3046 Vdbe *v; /* Generate code to this VDBE */ 3047 SelectDest destA; /* Destination for coroutine A */ 3048 SelectDest destB; /* Destination for coroutine B */ 3049 int regAddrA; /* Address register for select-A coroutine */ 3050 int regAddrB; /* Address register for select-B coroutine */ 3051 int addrSelectA; /* Address of the select-A coroutine */ 3052 int addrSelectB; /* Address of the select-B coroutine */ 3053 int regOutA; /* Address register for the output-A subroutine */ 3054 int regOutB; /* Address register for the output-B subroutine */ 3055 int addrOutA; /* Address of the output-A subroutine */ 3056 int addrOutB = 0; /* Address of the output-B subroutine */ 3057 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3058 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3059 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3060 int addrAltB; /* Address of the A<B subroutine */ 3061 int addrAeqB; /* Address of the A==B subroutine */ 3062 int addrAgtB; /* Address of the A>B subroutine */ 3063 int regLimitA; /* Limit register for select-A */ 3064 int regLimitB; /* Limit register for select-A */ 3065 int regPrev; /* A range of registers to hold previous output */ 3066 int savedLimit; /* Saved value of p->iLimit */ 3067 int savedOffset; /* Saved value of p->iOffset */ 3068 int labelCmpr; /* Label for the start of the merge algorithm */ 3069 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3070 int addr1; /* Jump instructions that get retargetted */ 3071 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3072 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3073 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3074 sqlite3 *db; /* Database connection */ 3075 ExprList *pOrderBy; /* The ORDER BY clause */ 3076 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3077 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3078 #ifndef SQLITE_OMIT_EXPLAIN 3079 int iSub1; /* EQP id of left-hand query */ 3080 int iSub2; /* EQP id of right-hand query */ 3081 #endif 3082 3083 assert( p->pOrderBy!=0 ); 3084 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3085 db = pParse->db; 3086 v = pParse->pVdbe; 3087 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3088 labelEnd = sqlite3VdbeMakeLabel(v); 3089 labelCmpr = sqlite3VdbeMakeLabel(v); 3090 3091 3092 /* Patch up the ORDER BY clause 3093 */ 3094 op = p->op; 3095 pPrior = p->pPrior; 3096 assert( pPrior->pOrderBy==0 ); 3097 pOrderBy = p->pOrderBy; 3098 assert( pOrderBy ); 3099 nOrderBy = pOrderBy->nExpr; 3100 3101 /* For operators other than UNION ALL we have to make sure that 3102 ** the ORDER BY clause covers every term of the result set. Add 3103 ** terms to the ORDER BY clause as necessary. 3104 */ 3105 if( op!=TK_ALL ){ 3106 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3107 struct ExprList_item *pItem; 3108 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3109 assert( pItem->u.x.iOrderByCol>0 ); 3110 if( pItem->u.x.iOrderByCol==i ) break; 3111 } 3112 if( j==nOrderBy ){ 3113 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3114 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3115 pNew->flags |= EP_IntValue; 3116 pNew->u.iValue = i; 3117 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3118 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3119 } 3120 } 3121 } 3122 3123 /* Compute the comparison permutation and keyinfo that is used with 3124 ** the permutation used to determine if the next 3125 ** row of results comes from selectA or selectB. Also add explicit 3126 ** collations to the ORDER BY clause terms so that when the subqueries 3127 ** to the right and the left are evaluated, they use the correct 3128 ** collation. 3129 */ 3130 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3131 if( aPermute ){ 3132 struct ExprList_item *pItem; 3133 aPermute[0] = nOrderBy; 3134 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3135 assert( pItem->u.x.iOrderByCol>0 ); 3136 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3137 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3138 } 3139 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3140 }else{ 3141 pKeyMerge = 0; 3142 } 3143 3144 /* Reattach the ORDER BY clause to the query. 3145 */ 3146 p->pOrderBy = pOrderBy; 3147 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3148 3149 /* Allocate a range of temporary registers and the KeyInfo needed 3150 ** for the logic that removes duplicate result rows when the 3151 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3152 */ 3153 if( op==TK_ALL ){ 3154 regPrev = 0; 3155 }else{ 3156 int nExpr = p->pEList->nExpr; 3157 assert( nOrderBy>=nExpr || db->mallocFailed ); 3158 regPrev = pParse->nMem+1; 3159 pParse->nMem += nExpr+1; 3160 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3161 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3162 if( pKeyDup ){ 3163 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3164 for(i=0; i<nExpr; i++){ 3165 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3166 pKeyDup->aSortOrder[i] = 0; 3167 } 3168 } 3169 } 3170 3171 /* Separate the left and the right query from one another 3172 */ 3173 p->pPrior = 0; 3174 pPrior->pNext = 0; 3175 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3176 if( pPrior->pPrior==0 ){ 3177 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3178 } 3179 3180 /* Compute the limit registers */ 3181 computeLimitRegisters(pParse, p, labelEnd); 3182 if( p->iLimit && op==TK_ALL ){ 3183 regLimitA = ++pParse->nMem; 3184 regLimitB = ++pParse->nMem; 3185 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3186 regLimitA); 3187 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3188 }else{ 3189 regLimitA = regLimitB = 0; 3190 } 3191 sqlite3ExprDelete(db, p->pLimit); 3192 p->pLimit = 0; 3193 3194 regAddrA = ++pParse->nMem; 3195 regAddrB = ++pParse->nMem; 3196 regOutA = ++pParse->nMem; 3197 regOutB = ++pParse->nMem; 3198 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3199 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3200 3201 /* Generate a coroutine to evaluate the SELECT statement to the 3202 ** left of the compound operator - the "A" select. 3203 */ 3204 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3205 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3206 VdbeComment((v, "left SELECT")); 3207 pPrior->iLimit = regLimitA; 3208 explainSetInteger(iSub1, pParse->iNextSelectId); 3209 sqlite3Select(pParse, pPrior, &destA); 3210 sqlite3VdbeEndCoroutine(v, regAddrA); 3211 sqlite3VdbeJumpHere(v, addr1); 3212 3213 /* Generate a coroutine to evaluate the SELECT statement on 3214 ** the right - the "B" select 3215 */ 3216 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3217 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3218 VdbeComment((v, "right SELECT")); 3219 savedLimit = p->iLimit; 3220 savedOffset = p->iOffset; 3221 p->iLimit = regLimitB; 3222 p->iOffset = 0; 3223 explainSetInteger(iSub2, pParse->iNextSelectId); 3224 sqlite3Select(pParse, p, &destB); 3225 p->iLimit = savedLimit; 3226 p->iOffset = savedOffset; 3227 sqlite3VdbeEndCoroutine(v, regAddrB); 3228 3229 /* Generate a subroutine that outputs the current row of the A 3230 ** select as the next output row of the compound select. 3231 */ 3232 VdbeNoopComment((v, "Output routine for A")); 3233 addrOutA = generateOutputSubroutine(pParse, 3234 p, &destA, pDest, regOutA, 3235 regPrev, pKeyDup, labelEnd); 3236 3237 /* Generate a subroutine that outputs the current row of the B 3238 ** select as the next output row of the compound select. 3239 */ 3240 if( op==TK_ALL || op==TK_UNION ){ 3241 VdbeNoopComment((v, "Output routine for B")); 3242 addrOutB = generateOutputSubroutine(pParse, 3243 p, &destB, pDest, regOutB, 3244 regPrev, pKeyDup, labelEnd); 3245 } 3246 sqlite3KeyInfoUnref(pKeyDup); 3247 3248 /* Generate a subroutine to run when the results from select A 3249 ** are exhausted and only data in select B remains. 3250 */ 3251 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3252 addrEofA_noB = addrEofA = labelEnd; 3253 }else{ 3254 VdbeNoopComment((v, "eof-A subroutine")); 3255 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3256 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3257 VdbeCoverage(v); 3258 sqlite3VdbeGoto(v, addrEofA); 3259 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3260 } 3261 3262 /* Generate a subroutine to run when the results from select B 3263 ** are exhausted and only data in select A remains. 3264 */ 3265 if( op==TK_INTERSECT ){ 3266 addrEofB = addrEofA; 3267 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3268 }else{ 3269 VdbeNoopComment((v, "eof-B subroutine")); 3270 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3271 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3272 sqlite3VdbeGoto(v, addrEofB); 3273 } 3274 3275 /* Generate code to handle the case of A<B 3276 */ 3277 VdbeNoopComment((v, "A-lt-B subroutine")); 3278 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3279 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3280 sqlite3VdbeGoto(v, labelCmpr); 3281 3282 /* Generate code to handle the case of A==B 3283 */ 3284 if( op==TK_ALL ){ 3285 addrAeqB = addrAltB; 3286 }else if( op==TK_INTERSECT ){ 3287 addrAeqB = addrAltB; 3288 addrAltB++; 3289 }else{ 3290 VdbeNoopComment((v, "A-eq-B subroutine")); 3291 addrAeqB = 3292 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3293 sqlite3VdbeGoto(v, labelCmpr); 3294 } 3295 3296 /* Generate code to handle the case of A>B 3297 */ 3298 VdbeNoopComment((v, "A-gt-B subroutine")); 3299 addrAgtB = sqlite3VdbeCurrentAddr(v); 3300 if( op==TK_ALL || op==TK_UNION ){ 3301 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3302 } 3303 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3304 sqlite3VdbeGoto(v, labelCmpr); 3305 3306 /* This code runs once to initialize everything. 3307 */ 3308 sqlite3VdbeJumpHere(v, addr1); 3309 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3310 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3311 3312 /* Implement the main merge loop 3313 */ 3314 sqlite3VdbeResolveLabel(v, labelCmpr); 3315 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3316 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3317 (char*)pKeyMerge, P4_KEYINFO); 3318 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3319 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3320 3321 /* Jump to the this point in order to terminate the query. 3322 */ 3323 sqlite3VdbeResolveLabel(v, labelEnd); 3324 3325 /* Reassembly the compound query so that it will be freed correctly 3326 ** by the calling function */ 3327 if( p->pPrior ){ 3328 sqlite3SelectDelete(db, p->pPrior); 3329 } 3330 p->pPrior = pPrior; 3331 pPrior->pNext = p; 3332 3333 /*** TBD: Insert subroutine calls to close cursors on incomplete 3334 **** subqueries ****/ 3335 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3336 return pParse->nErr!=0; 3337 } 3338 #endif 3339 3340 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3341 3342 /* An instance of the SubstContext object describes an substitution edit 3343 ** to be performed on a parse tree. 3344 ** 3345 ** All references to columns in table iTable are to be replaced by corresponding 3346 ** expressions in pEList. 3347 */ 3348 typedef struct SubstContext { 3349 Parse *pParse; /* The parsing context */ 3350 int iTable; /* Replace references to this table */ 3351 int iNewTable; /* New table number */ 3352 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3353 ExprList *pEList; /* Replacement expressions */ 3354 } SubstContext; 3355 3356 /* Forward Declarations */ 3357 static void substExprList(SubstContext*, ExprList*); 3358 static void substSelect(SubstContext*, Select*, int); 3359 3360 /* 3361 ** Scan through the expression pExpr. Replace every reference to 3362 ** a column in table number iTable with a copy of the iColumn-th 3363 ** entry in pEList. (But leave references to the ROWID column 3364 ** unchanged.) 3365 ** 3366 ** This routine is part of the flattening procedure. A subquery 3367 ** whose result set is defined by pEList appears as entry in the 3368 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3369 ** FORM clause entry is iTable. This routine makes the necessary 3370 ** changes to pExpr so that it refers directly to the source table 3371 ** of the subquery rather the result set of the subquery. 3372 */ 3373 static Expr *substExpr( 3374 SubstContext *pSubst, /* Description of the substitution */ 3375 Expr *pExpr /* Expr in which substitution occurs */ 3376 ){ 3377 if( pExpr==0 ) return 0; 3378 if( ExprHasProperty(pExpr, EP_FromJoin) 3379 && pExpr->iRightJoinTable==pSubst->iTable 3380 ){ 3381 pExpr->iRightJoinTable = pSubst->iNewTable; 3382 } 3383 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3384 if( pExpr->iColumn<0 ){ 3385 pExpr->op = TK_NULL; 3386 }else{ 3387 Expr *pNew; 3388 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3389 Expr ifNullRow; 3390 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3391 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3392 if( sqlite3ExprIsVector(pCopy) ){ 3393 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3394 }else{ 3395 sqlite3 *db = pSubst->pParse->db; 3396 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3397 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3398 ifNullRow.op = TK_IF_NULL_ROW; 3399 ifNullRow.pLeft = pCopy; 3400 ifNullRow.iTable = pSubst->iNewTable; 3401 pCopy = &ifNullRow; 3402 } 3403 pNew = sqlite3ExprDup(db, pCopy, 0); 3404 if( pNew && pSubst->isLeftJoin ){ 3405 ExprSetProperty(pNew, EP_CanBeNull); 3406 } 3407 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3408 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3409 ExprSetProperty(pNew, EP_FromJoin); 3410 } 3411 sqlite3ExprDelete(db, pExpr); 3412 pExpr = pNew; 3413 } 3414 } 3415 }else{ 3416 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3417 pExpr->iTable = pSubst->iNewTable; 3418 } 3419 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3420 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3421 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3422 substSelect(pSubst, pExpr->x.pSelect, 1); 3423 }else{ 3424 substExprList(pSubst, pExpr->x.pList); 3425 } 3426 } 3427 return pExpr; 3428 } 3429 static void substExprList( 3430 SubstContext *pSubst, /* Description of the substitution */ 3431 ExprList *pList /* List to scan and in which to make substitutes */ 3432 ){ 3433 int i; 3434 if( pList==0 ) return; 3435 for(i=0; i<pList->nExpr; i++){ 3436 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3437 } 3438 } 3439 static void substSelect( 3440 SubstContext *pSubst, /* Description of the substitution */ 3441 Select *p, /* SELECT statement in which to make substitutions */ 3442 int doPrior /* Do substitutes on p->pPrior too */ 3443 ){ 3444 SrcList *pSrc; 3445 struct SrcList_item *pItem; 3446 int i; 3447 if( !p ) return; 3448 do{ 3449 substExprList(pSubst, p->pEList); 3450 substExprList(pSubst, p->pGroupBy); 3451 substExprList(pSubst, p->pOrderBy); 3452 p->pHaving = substExpr(pSubst, p->pHaving); 3453 p->pWhere = substExpr(pSubst, p->pWhere); 3454 pSrc = p->pSrc; 3455 assert( pSrc!=0 ); 3456 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3457 substSelect(pSubst, pItem->pSelect, 1); 3458 if( pItem->fg.isTabFunc ){ 3459 substExprList(pSubst, pItem->u1.pFuncArg); 3460 } 3461 } 3462 }while( doPrior && (p = p->pPrior)!=0 ); 3463 } 3464 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3465 3466 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3467 /* 3468 ** This routine attempts to flatten subqueries as a performance optimization. 3469 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3470 ** 3471 ** To understand the concept of flattening, consider the following 3472 ** query: 3473 ** 3474 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3475 ** 3476 ** The default way of implementing this query is to execute the 3477 ** subquery first and store the results in a temporary table, then 3478 ** run the outer query on that temporary table. This requires two 3479 ** passes over the data. Furthermore, because the temporary table 3480 ** has no indices, the WHERE clause on the outer query cannot be 3481 ** optimized. 3482 ** 3483 ** This routine attempts to rewrite queries such as the above into 3484 ** a single flat select, like this: 3485 ** 3486 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3487 ** 3488 ** The code generated for this simplification gives the same result 3489 ** but only has to scan the data once. And because indices might 3490 ** exist on the table t1, a complete scan of the data might be 3491 ** avoided. 3492 ** 3493 ** Flattening is subject to the following constraints: 3494 ** 3495 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3496 ** The subquery and the outer query cannot both be aggregates. 3497 ** 3498 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3499 ** (2) If the subquery is an aggregate then 3500 ** (2a) the outer query must not be a join and 3501 ** (2b) the outer query must not use subqueries 3502 ** other than the one FROM-clause subquery that is a candidate 3503 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3504 ** from 2015-02-09.) 3505 ** 3506 ** (3) If the subquery is the right operand of a LEFT JOIN then 3507 ** (3a) the subquery may not be a join and 3508 ** (3b) the FROM clause of the subquery may not contain a virtual 3509 ** table and 3510 ** (3c) the outer query may not be an aggregate. 3511 ** 3512 ** (4) The subquery can not be DISTINCT. 3513 ** 3514 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3515 ** sub-queries that were excluded from this optimization. Restriction 3516 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3517 ** 3518 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3519 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3520 ** 3521 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3522 ** A FROM clause, consider adding a FROM clause with the special 3523 ** table sqlite_once that consists of a single row containing a 3524 ** single NULL. 3525 ** 3526 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3527 ** 3528 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3529 ** 3530 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3531 ** accidently carried the comment forward until 2014-09-15. Original 3532 ** constraint: "If the subquery is aggregate then the outer query 3533 ** may not use LIMIT." 3534 ** 3535 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3536 ** 3537 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3538 ** a separate restriction deriving from ticket #350. 3539 ** 3540 ** (13) The subquery and outer query may not both use LIMIT. 3541 ** 3542 ** (14) The subquery may not use OFFSET. 3543 ** 3544 ** (15) If the outer query is part of a compound select, then the 3545 ** subquery may not use LIMIT. 3546 ** (See ticket #2339 and ticket [02a8e81d44]). 3547 ** 3548 ** (16) If the outer query is aggregate, then the subquery may not 3549 ** use ORDER BY. (Ticket #2942) This used to not matter 3550 ** until we introduced the group_concat() function. 3551 ** 3552 ** (17) If the subquery is a compound select, then 3553 ** (17a) all compound operators must be a UNION ALL, and 3554 ** (17b) no terms within the subquery compound may be aggregate 3555 ** or DISTINCT, and 3556 ** (17c) every term within the subquery compound must have a FROM clause 3557 ** (17d) the outer query may not be 3558 ** (17d1) aggregate, or 3559 ** (17d2) DISTINCT, or 3560 ** (17d3) a join. 3561 ** 3562 ** The parent and sub-query may contain WHERE clauses. Subject to 3563 ** rules (11), (13) and (14), they may also contain ORDER BY, 3564 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3565 ** operator other than UNION ALL because all the other compound 3566 ** operators have an implied DISTINCT which is disallowed by 3567 ** restriction (4). 3568 ** 3569 ** Also, each component of the sub-query must return the same number 3570 ** of result columns. This is actually a requirement for any compound 3571 ** SELECT statement, but all the code here does is make sure that no 3572 ** such (illegal) sub-query is flattened. The caller will detect the 3573 ** syntax error and return a detailed message. 3574 ** 3575 ** (18) If the sub-query is a compound select, then all terms of the 3576 ** ORDER BY clause of the parent must be simple references to 3577 ** columns of the sub-query. 3578 ** 3579 ** (19) If the subquery uses LIMIT then the outer query may not 3580 ** have a WHERE clause. 3581 ** 3582 ** (20) If the sub-query is a compound select, then it must not use 3583 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3584 ** somewhat by saying that the terms of the ORDER BY clause must 3585 ** appear as unmodified result columns in the outer query. But we 3586 ** have other optimizations in mind to deal with that case. 3587 ** 3588 ** (21) If the subquery uses LIMIT then the outer query may not be 3589 ** DISTINCT. (See ticket [752e1646fc]). 3590 ** 3591 ** (22) The subquery may not be a recursive CTE. 3592 ** 3593 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3594 ** a recursive CTE, then the sub-query may not be a compound query. 3595 ** This restriction is because transforming the 3596 ** parent to a compound query confuses the code that handles 3597 ** recursive queries in multiSelect(). 3598 ** 3599 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3600 ** The subquery may not be an aggregate that uses the built-in min() or 3601 ** or max() functions. (Without this restriction, a query like: 3602 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3603 ** return the value X for which Y was maximal.) 3604 ** 3605 ** 3606 ** In this routine, the "p" parameter is a pointer to the outer query. 3607 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3608 ** uses aggregates. 3609 ** 3610 ** If flattening is not attempted, this routine is a no-op and returns 0. 3611 ** If flattening is attempted this routine returns 1. 3612 ** 3613 ** All of the expression analysis must occur on both the outer query and 3614 ** the subquery before this routine runs. 3615 */ 3616 static int flattenSubquery( 3617 Parse *pParse, /* Parsing context */ 3618 Select *p, /* The parent or outer SELECT statement */ 3619 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3620 int isAgg /* True if outer SELECT uses aggregate functions */ 3621 ){ 3622 const char *zSavedAuthContext = pParse->zAuthContext; 3623 Select *pParent; /* Current UNION ALL term of the other query */ 3624 Select *pSub; /* The inner query or "subquery" */ 3625 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3626 SrcList *pSrc; /* The FROM clause of the outer query */ 3627 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3628 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3629 int iNewParent = -1;/* Replacement table for iParent */ 3630 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3631 int i; /* Loop counter */ 3632 Expr *pWhere; /* The WHERE clause */ 3633 struct SrcList_item *pSubitem; /* The subquery */ 3634 sqlite3 *db = pParse->db; 3635 3636 /* Check to see if flattening is permitted. Return 0 if not. 3637 */ 3638 assert( p!=0 ); 3639 assert( p->pPrior==0 ); 3640 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3641 pSrc = p->pSrc; 3642 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3643 pSubitem = &pSrc->a[iFrom]; 3644 iParent = pSubitem->iCursor; 3645 pSub = pSubitem->pSelect; 3646 assert( pSub!=0 ); 3647 3648 pSubSrc = pSub->pSrc; 3649 assert( pSubSrc ); 3650 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3651 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3652 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3653 ** became arbitrary expressions, we were forced to add restrictions (13) 3654 ** and (14). */ 3655 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3656 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3657 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3658 return 0; /* Restriction (15) */ 3659 } 3660 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3661 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3662 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3663 return 0; /* Restrictions (8)(9) */ 3664 } 3665 if( p->pOrderBy && pSub->pOrderBy ){ 3666 return 0; /* Restriction (11) */ 3667 } 3668 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3669 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3670 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3671 return 0; /* Restriction (21) */ 3672 } 3673 if( pSub->selFlags & (SF_Recursive) ){ 3674 return 0; /* Restrictions (22) */ 3675 } 3676 3677 /* 3678 ** If the subquery is the right operand of a LEFT JOIN, then the 3679 ** subquery may not be a join itself (3a). Example of why this is not 3680 ** allowed: 3681 ** 3682 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3683 ** 3684 ** If we flatten the above, we would get 3685 ** 3686 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3687 ** 3688 ** which is not at all the same thing. 3689 ** 3690 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3691 ** query cannot be an aggregate. (3c) This is an artifact of the way 3692 ** aggregates are processed - there is no mechanism to determine if 3693 ** the LEFT JOIN table should be all-NULL. 3694 ** 3695 ** See also tickets #306, #350, and #3300. 3696 */ 3697 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3698 isLeftJoin = 1; 3699 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3700 /* (3a) (3c) (3b) */ 3701 return 0; 3702 } 3703 } 3704 #ifdef SQLITE_EXTRA_IFNULLROW 3705 else if( iFrom>0 && !isAgg ){ 3706 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3707 ** every reference to any result column from subquery in a join, even 3708 ** though they are not necessary. This will stress-test the OP_IfNullRow 3709 ** opcode. */ 3710 isLeftJoin = -1; 3711 } 3712 #endif 3713 3714 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3715 ** use only the UNION ALL operator. And none of the simple select queries 3716 ** that make up the compound SELECT are allowed to be aggregate or distinct 3717 ** queries. 3718 */ 3719 if( pSub->pPrior ){ 3720 if( pSub->pOrderBy ){ 3721 return 0; /* Restriction (20) */ 3722 } 3723 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3724 return 0; /* (17d1), (17d2), or (17d3) */ 3725 } 3726 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3727 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3728 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3729 assert( pSub->pSrc!=0 ); 3730 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3731 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3732 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3733 || pSub1->pSrc->nSrc<1 /* (17c) */ 3734 ){ 3735 return 0; 3736 } 3737 testcase( pSub1->pSrc->nSrc>1 ); 3738 } 3739 3740 /* Restriction (18). */ 3741 if( p->pOrderBy ){ 3742 int ii; 3743 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3744 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3745 } 3746 } 3747 } 3748 3749 /* Ex-restriction (23): 3750 ** The only way that the recursive part of a CTE can contain a compound 3751 ** subquery is for the subquery to be one term of a join. But if the 3752 ** subquery is a join, then the flattening has already been stopped by 3753 ** restriction (17d3) 3754 */ 3755 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3756 3757 /***** If we reach this point, flattening is permitted. *****/ 3758 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3759 pSub->zSelName, pSub, iFrom)); 3760 3761 /* Authorize the subquery */ 3762 pParse->zAuthContext = pSubitem->zName; 3763 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3764 testcase( i==SQLITE_DENY ); 3765 pParse->zAuthContext = zSavedAuthContext; 3766 3767 /* If the sub-query is a compound SELECT statement, then (by restrictions 3768 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3769 ** be of the form: 3770 ** 3771 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3772 ** 3773 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3774 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3775 ** OFFSET clauses and joins them to the left-hand-side of the original 3776 ** using UNION ALL operators. In this case N is the number of simple 3777 ** select statements in the compound sub-query. 3778 ** 3779 ** Example: 3780 ** 3781 ** SELECT a+1 FROM ( 3782 ** SELECT x FROM tab 3783 ** UNION ALL 3784 ** SELECT y FROM tab 3785 ** UNION ALL 3786 ** SELECT abs(z*2) FROM tab2 3787 ** ) WHERE a!=5 ORDER BY 1 3788 ** 3789 ** Transformed into: 3790 ** 3791 ** SELECT x+1 FROM tab WHERE x+1!=5 3792 ** UNION ALL 3793 ** SELECT y+1 FROM tab WHERE y+1!=5 3794 ** UNION ALL 3795 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3796 ** ORDER BY 1 3797 ** 3798 ** We call this the "compound-subquery flattening". 3799 */ 3800 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3801 Select *pNew; 3802 ExprList *pOrderBy = p->pOrderBy; 3803 Expr *pLimit = p->pLimit; 3804 Select *pPrior = p->pPrior; 3805 p->pOrderBy = 0; 3806 p->pSrc = 0; 3807 p->pPrior = 0; 3808 p->pLimit = 0; 3809 pNew = sqlite3SelectDup(db, p, 0); 3810 sqlite3SelectSetName(pNew, pSub->zSelName); 3811 p->pLimit = pLimit; 3812 p->pOrderBy = pOrderBy; 3813 p->pSrc = pSrc; 3814 p->op = TK_ALL; 3815 if( pNew==0 ){ 3816 p->pPrior = pPrior; 3817 }else{ 3818 pNew->pPrior = pPrior; 3819 if( pPrior ) pPrior->pNext = pNew; 3820 pNew->pNext = p; 3821 p->pPrior = pNew; 3822 SELECTTRACE(2,pParse,p, 3823 ("compound-subquery flattener creates %s.%p as peer\n", 3824 pNew->zSelName, pNew)); 3825 } 3826 if( db->mallocFailed ) return 1; 3827 } 3828 3829 /* Begin flattening the iFrom-th entry of the FROM clause 3830 ** in the outer query. 3831 */ 3832 pSub = pSub1 = pSubitem->pSelect; 3833 3834 /* Delete the transient table structure associated with the 3835 ** subquery 3836 */ 3837 sqlite3DbFree(db, pSubitem->zDatabase); 3838 sqlite3DbFree(db, pSubitem->zName); 3839 sqlite3DbFree(db, pSubitem->zAlias); 3840 pSubitem->zDatabase = 0; 3841 pSubitem->zName = 0; 3842 pSubitem->zAlias = 0; 3843 pSubitem->pSelect = 0; 3844 3845 /* Defer deleting the Table object associated with the 3846 ** subquery until code generation is 3847 ** complete, since there may still exist Expr.pTab entries that 3848 ** refer to the subquery even after flattening. Ticket #3346. 3849 ** 3850 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3851 */ 3852 if( ALWAYS(pSubitem->pTab!=0) ){ 3853 Table *pTabToDel = pSubitem->pTab; 3854 if( pTabToDel->nTabRef==1 ){ 3855 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3856 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3857 pToplevel->pZombieTab = pTabToDel; 3858 }else{ 3859 pTabToDel->nTabRef--; 3860 } 3861 pSubitem->pTab = 0; 3862 } 3863 3864 /* The following loop runs once for each term in a compound-subquery 3865 ** flattening (as described above). If we are doing a different kind 3866 ** of flattening - a flattening other than a compound-subquery flattening - 3867 ** then this loop only runs once. 3868 ** 3869 ** This loop moves all of the FROM elements of the subquery into the 3870 ** the FROM clause of the outer query. Before doing this, remember 3871 ** the cursor number for the original outer query FROM element in 3872 ** iParent. The iParent cursor will never be used. Subsequent code 3873 ** will scan expressions looking for iParent references and replace 3874 ** those references with expressions that resolve to the subquery FROM 3875 ** elements we are now copying in. 3876 */ 3877 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3878 int nSubSrc; 3879 u8 jointype = 0; 3880 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3881 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3882 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3883 3884 if( pSrc ){ 3885 assert( pParent==p ); /* First time through the loop */ 3886 jointype = pSubitem->fg.jointype; 3887 }else{ 3888 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3889 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3890 if( pSrc==0 ){ 3891 assert( db->mallocFailed ); 3892 break; 3893 } 3894 } 3895 3896 /* The subquery uses a single slot of the FROM clause of the outer 3897 ** query. If the subquery has more than one element in its FROM clause, 3898 ** then expand the outer query to make space for it to hold all elements 3899 ** of the subquery. 3900 ** 3901 ** Example: 3902 ** 3903 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3904 ** 3905 ** The outer query has 3 slots in its FROM clause. One slot of the 3906 ** outer query (the middle slot) is used by the subquery. The next 3907 ** block of code will expand the outer query FROM clause to 4 slots. 3908 ** The middle slot is expanded to two slots in order to make space 3909 ** for the two elements in the FROM clause of the subquery. 3910 */ 3911 if( nSubSrc>1 ){ 3912 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3913 if( db->mallocFailed ){ 3914 break; 3915 } 3916 } 3917 3918 /* Transfer the FROM clause terms from the subquery into the 3919 ** outer query. 3920 */ 3921 for(i=0; i<nSubSrc; i++){ 3922 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3923 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3924 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3925 iNewParent = pSubSrc->a[i].iCursor; 3926 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3927 } 3928 pSrc->a[iFrom].fg.jointype = jointype; 3929 3930 /* Now begin substituting subquery result set expressions for 3931 ** references to the iParent in the outer query. 3932 ** 3933 ** Example: 3934 ** 3935 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3936 ** \ \_____________ subquery __________/ / 3937 ** \_____________________ outer query ______________________________/ 3938 ** 3939 ** We look at every expression in the outer query and every place we see 3940 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3941 */ 3942 if( pSub->pOrderBy ){ 3943 /* At this point, any non-zero iOrderByCol values indicate that the 3944 ** ORDER BY column expression is identical to the iOrderByCol'th 3945 ** expression returned by SELECT statement pSub. Since these values 3946 ** do not necessarily correspond to columns in SELECT statement pParent, 3947 ** zero them before transfering the ORDER BY clause. 3948 ** 3949 ** Not doing this may cause an error if a subsequent call to this 3950 ** function attempts to flatten a compound sub-query into pParent 3951 ** (the only way this can happen is if the compound sub-query is 3952 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3953 ExprList *pOrderBy = pSub->pOrderBy; 3954 for(i=0; i<pOrderBy->nExpr; i++){ 3955 pOrderBy->a[i].u.x.iOrderByCol = 0; 3956 } 3957 assert( pParent->pOrderBy==0 ); 3958 pParent->pOrderBy = pOrderBy; 3959 pSub->pOrderBy = 0; 3960 } 3961 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3962 if( isLeftJoin>0 ){ 3963 setJoinExpr(pWhere, iNewParent); 3964 } 3965 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3966 if( db->mallocFailed==0 ){ 3967 SubstContext x; 3968 x.pParse = pParse; 3969 x.iTable = iParent; 3970 x.iNewTable = iNewParent; 3971 x.isLeftJoin = isLeftJoin; 3972 x.pEList = pSub->pEList; 3973 substSelect(&x, pParent, 0); 3974 } 3975 3976 /* The flattened query is distinct if either the inner or the 3977 ** outer query is distinct. 3978 */ 3979 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3980 3981 /* 3982 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3983 ** 3984 ** One is tempted to try to add a and b to combine the limits. But this 3985 ** does not work if either limit is negative. 3986 */ 3987 if( pSub->pLimit ){ 3988 pParent->pLimit = pSub->pLimit; 3989 pSub->pLimit = 0; 3990 } 3991 } 3992 3993 /* Finially, delete what is left of the subquery and return 3994 ** success. 3995 */ 3996 sqlite3SelectDelete(db, pSub1); 3997 3998 #if SELECTTRACE_ENABLED 3999 if( sqlite3SelectTrace & 0x100 ){ 4000 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4001 sqlite3TreeViewSelect(0, p, 0); 4002 } 4003 #endif 4004 4005 return 1; 4006 } 4007 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4008 4009 4010 4011 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4012 /* 4013 ** Make copies of relevant WHERE clause terms of the outer query into 4014 ** the WHERE clause of subquery. Example: 4015 ** 4016 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4017 ** 4018 ** Transformed into: 4019 ** 4020 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4021 ** WHERE x=5 AND y=10; 4022 ** 4023 ** The hope is that the terms added to the inner query will make it more 4024 ** efficient. 4025 ** 4026 ** Do not attempt this optimization if: 4027 ** 4028 ** (1) (** This restriction was removed on 2017-09-29. We used to 4029 ** disallow this optimization for aggregate subqueries, but now 4030 ** it is allowed by putting the extra terms on the HAVING clause. 4031 ** The added HAVING clause is pointless if the subquery lacks 4032 ** a GROUP BY clause. But such a HAVING clause is also harmless 4033 ** so there does not appear to be any reason to add extra logic 4034 ** to suppress it. **) 4035 ** 4036 ** (2) The inner query is the recursive part of a common table expression. 4037 ** 4038 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4039 ** close would change the meaning of the LIMIT). 4040 ** 4041 ** (4) The inner query is the right operand of a LEFT JOIN and the 4042 ** expression to be pushed down does not come from the ON clause 4043 ** on that LEFT JOIN. 4044 ** 4045 ** (5) The WHERE clause expression originates in the ON or USING clause 4046 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4047 ** left join. An example: 4048 ** 4049 ** SELECT * 4050 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4051 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4052 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4053 ** 4054 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4055 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4056 ** then the (1,1,NULL) row would be suppressed. 4057 ** 4058 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4059 ** terms are duplicated into the subquery. 4060 */ 4061 static int pushDownWhereTerms( 4062 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4063 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4064 Expr *pWhere, /* The WHERE clause of the outer query */ 4065 int iCursor, /* Cursor number of the subquery */ 4066 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4067 ){ 4068 Expr *pNew; 4069 int nChng = 0; 4070 if( pWhere==0 ) return 0; 4071 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4072 4073 #ifdef SQLITE_DEBUG 4074 /* Only the first term of a compound can have a WITH clause. But make 4075 ** sure no other terms are marked SF_Recursive in case something changes 4076 ** in the future. 4077 */ 4078 { 4079 Select *pX; 4080 for(pX=pSubq; pX; pX=pX->pPrior){ 4081 assert( (pX->selFlags & (SF_Recursive))==0 ); 4082 } 4083 } 4084 #endif 4085 4086 if( pSubq->pLimit!=0 ){ 4087 return 0; /* restriction (3) */ 4088 } 4089 while( pWhere->op==TK_AND ){ 4090 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4091 iCursor, isLeftJoin); 4092 pWhere = pWhere->pLeft; 4093 } 4094 if( isLeftJoin 4095 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4096 || pWhere->iRightJoinTable!=iCursor) 4097 ){ 4098 return 0; /* restriction (4) */ 4099 } 4100 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4101 return 0; /* restriction (5) */ 4102 } 4103 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4104 nChng++; 4105 while( pSubq ){ 4106 SubstContext x; 4107 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4108 unsetJoinExpr(pNew, -1); 4109 x.pParse = pParse; 4110 x.iTable = iCursor; 4111 x.iNewTable = iCursor; 4112 x.isLeftJoin = 0; 4113 x.pEList = pSubq->pEList; 4114 pNew = substExpr(&x, pNew); 4115 if( pSubq->selFlags & SF_Aggregate ){ 4116 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4117 }else{ 4118 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4119 } 4120 pSubq = pSubq->pPrior; 4121 } 4122 } 4123 return nChng; 4124 } 4125 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4126 4127 /* 4128 ** The pFunc is the only aggregate function in the query. Check to see 4129 ** if the query is a candidate for the min/max optimization. 4130 ** 4131 ** If the query is a candidate for the min/max optimization, then set 4132 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4133 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4134 ** whether pFunc is a min() or max() function. 4135 ** 4136 ** If the query is not a candidate for the min/max optimization, return 4137 ** WHERE_ORDERBY_NORMAL (which must be zero). 4138 ** 4139 ** This routine must be called after aggregate functions have been 4140 ** located but before their arguments have been subjected to aggregate 4141 ** analysis. 4142 */ 4143 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4144 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4145 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4146 const char *zFunc; /* Name of aggregate function pFunc */ 4147 ExprList *pOrderBy; 4148 u8 sortOrder; 4149 4150 assert( *ppMinMax==0 ); 4151 assert( pFunc->op==TK_AGG_FUNCTION ); 4152 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4153 zFunc = pFunc->u.zToken; 4154 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4155 eRet = WHERE_ORDERBY_MIN; 4156 sortOrder = SQLITE_SO_ASC; 4157 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4158 eRet = WHERE_ORDERBY_MAX; 4159 sortOrder = SQLITE_SO_DESC; 4160 }else{ 4161 return eRet; 4162 } 4163 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4164 assert( pOrderBy!=0 || db->mallocFailed ); 4165 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4166 return eRet; 4167 } 4168 4169 /* 4170 ** The select statement passed as the first argument is an aggregate query. 4171 ** The second argument is the associated aggregate-info object. This 4172 ** function tests if the SELECT is of the form: 4173 ** 4174 ** SELECT count(*) FROM <tbl> 4175 ** 4176 ** where table is a database table, not a sub-select or view. If the query 4177 ** does match this pattern, then a pointer to the Table object representing 4178 ** <tbl> is returned. Otherwise, 0 is returned. 4179 */ 4180 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4181 Table *pTab; 4182 Expr *pExpr; 4183 4184 assert( !p->pGroupBy ); 4185 4186 if( p->pWhere || p->pEList->nExpr!=1 4187 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4188 ){ 4189 return 0; 4190 } 4191 pTab = p->pSrc->a[0].pTab; 4192 pExpr = p->pEList->a[0].pExpr; 4193 assert( pTab && !pTab->pSelect && pExpr ); 4194 4195 if( IsVirtual(pTab) ) return 0; 4196 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4197 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4198 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4199 if( pExpr->flags&EP_Distinct ) return 0; 4200 4201 return pTab; 4202 } 4203 4204 /* 4205 ** If the source-list item passed as an argument was augmented with an 4206 ** INDEXED BY clause, then try to locate the specified index. If there 4207 ** was such a clause and the named index cannot be found, return 4208 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4209 ** pFrom->pIndex and return SQLITE_OK. 4210 */ 4211 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4212 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4213 Table *pTab = pFrom->pTab; 4214 char *zIndexedBy = pFrom->u1.zIndexedBy; 4215 Index *pIdx; 4216 for(pIdx=pTab->pIndex; 4217 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4218 pIdx=pIdx->pNext 4219 ); 4220 if( !pIdx ){ 4221 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4222 pParse->checkSchema = 1; 4223 return SQLITE_ERROR; 4224 } 4225 pFrom->pIBIndex = pIdx; 4226 } 4227 return SQLITE_OK; 4228 } 4229 /* 4230 ** Detect compound SELECT statements that use an ORDER BY clause with 4231 ** an alternative collating sequence. 4232 ** 4233 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4234 ** 4235 ** These are rewritten as a subquery: 4236 ** 4237 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4238 ** ORDER BY ... COLLATE ... 4239 ** 4240 ** This transformation is necessary because the multiSelectOrderBy() routine 4241 ** above that generates the code for a compound SELECT with an ORDER BY clause 4242 ** uses a merge algorithm that requires the same collating sequence on the 4243 ** result columns as on the ORDER BY clause. See ticket 4244 ** http://www.sqlite.org/src/info/6709574d2a 4245 ** 4246 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4247 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4248 ** there are COLLATE terms in the ORDER BY. 4249 */ 4250 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4251 int i; 4252 Select *pNew; 4253 Select *pX; 4254 sqlite3 *db; 4255 struct ExprList_item *a; 4256 SrcList *pNewSrc; 4257 Parse *pParse; 4258 Token dummy; 4259 4260 if( p->pPrior==0 ) return WRC_Continue; 4261 if( p->pOrderBy==0 ) return WRC_Continue; 4262 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4263 if( pX==0 ) return WRC_Continue; 4264 a = p->pOrderBy->a; 4265 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4266 if( a[i].pExpr->flags & EP_Collate ) break; 4267 } 4268 if( i<0 ) return WRC_Continue; 4269 4270 /* If we reach this point, that means the transformation is required. */ 4271 4272 pParse = pWalker->pParse; 4273 db = pParse->db; 4274 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4275 if( pNew==0 ) return WRC_Abort; 4276 memset(&dummy, 0, sizeof(dummy)); 4277 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4278 if( pNewSrc==0 ) return WRC_Abort; 4279 *pNew = *p; 4280 p->pSrc = pNewSrc; 4281 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4282 p->op = TK_SELECT; 4283 p->pWhere = 0; 4284 pNew->pGroupBy = 0; 4285 pNew->pHaving = 0; 4286 pNew->pOrderBy = 0; 4287 p->pPrior = 0; 4288 p->pNext = 0; 4289 p->pWith = 0; 4290 p->selFlags &= ~SF_Compound; 4291 assert( (p->selFlags & SF_Converted)==0 ); 4292 p->selFlags |= SF_Converted; 4293 assert( pNew->pPrior!=0 ); 4294 pNew->pPrior->pNext = pNew; 4295 pNew->pLimit = 0; 4296 return WRC_Continue; 4297 } 4298 4299 /* 4300 ** Check to see if the FROM clause term pFrom has table-valued function 4301 ** arguments. If it does, leave an error message in pParse and return 4302 ** non-zero, since pFrom is not allowed to be a table-valued function. 4303 */ 4304 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4305 if( pFrom->fg.isTabFunc ){ 4306 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4307 return 1; 4308 } 4309 return 0; 4310 } 4311 4312 #ifndef SQLITE_OMIT_CTE 4313 /* 4314 ** Argument pWith (which may be NULL) points to a linked list of nested 4315 ** WITH contexts, from inner to outermost. If the table identified by 4316 ** FROM clause element pItem is really a common-table-expression (CTE) 4317 ** then return a pointer to the CTE definition for that table. Otherwise 4318 ** return NULL. 4319 ** 4320 ** If a non-NULL value is returned, set *ppContext to point to the With 4321 ** object that the returned CTE belongs to. 4322 */ 4323 static struct Cte *searchWith( 4324 With *pWith, /* Current innermost WITH clause */ 4325 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4326 With **ppContext /* OUT: WITH clause return value belongs to */ 4327 ){ 4328 const char *zName; 4329 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4330 With *p; 4331 for(p=pWith; p; p=p->pOuter){ 4332 int i; 4333 for(i=0; i<p->nCte; i++){ 4334 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4335 *ppContext = p; 4336 return &p->a[i]; 4337 } 4338 } 4339 } 4340 } 4341 return 0; 4342 } 4343 4344 /* The code generator maintains a stack of active WITH clauses 4345 ** with the inner-most WITH clause being at the top of the stack. 4346 ** 4347 ** This routine pushes the WITH clause passed as the second argument 4348 ** onto the top of the stack. If argument bFree is true, then this 4349 ** WITH clause will never be popped from the stack. In this case it 4350 ** should be freed along with the Parse object. In other cases, when 4351 ** bFree==0, the With object will be freed along with the SELECT 4352 ** statement with which it is associated. 4353 */ 4354 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4355 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4356 if( pWith ){ 4357 assert( pParse->pWith!=pWith ); 4358 pWith->pOuter = pParse->pWith; 4359 pParse->pWith = pWith; 4360 if( bFree ) pParse->pWithToFree = pWith; 4361 } 4362 } 4363 4364 /* 4365 ** This function checks if argument pFrom refers to a CTE declared by 4366 ** a WITH clause on the stack currently maintained by the parser. And, 4367 ** if currently processing a CTE expression, if it is a recursive 4368 ** reference to the current CTE. 4369 ** 4370 ** If pFrom falls into either of the two categories above, pFrom->pTab 4371 ** and other fields are populated accordingly. The caller should check 4372 ** (pFrom->pTab!=0) to determine whether or not a successful match 4373 ** was found. 4374 ** 4375 ** Whether or not a match is found, SQLITE_OK is returned if no error 4376 ** occurs. If an error does occur, an error message is stored in the 4377 ** parser and some error code other than SQLITE_OK returned. 4378 */ 4379 static int withExpand( 4380 Walker *pWalker, 4381 struct SrcList_item *pFrom 4382 ){ 4383 Parse *pParse = pWalker->pParse; 4384 sqlite3 *db = pParse->db; 4385 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4386 With *pWith; /* WITH clause that pCte belongs to */ 4387 4388 assert( pFrom->pTab==0 ); 4389 4390 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4391 if( pCte ){ 4392 Table *pTab; 4393 ExprList *pEList; 4394 Select *pSel; 4395 Select *pLeft; /* Left-most SELECT statement */ 4396 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4397 With *pSavedWith; /* Initial value of pParse->pWith */ 4398 4399 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4400 ** recursive reference to CTE pCte. Leave an error in pParse and return 4401 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4402 ** In this case, proceed. */ 4403 if( pCte->zCteErr ){ 4404 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4405 return SQLITE_ERROR; 4406 } 4407 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4408 4409 assert( pFrom->pTab==0 ); 4410 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4411 if( pTab==0 ) return WRC_Abort; 4412 pTab->nTabRef = 1; 4413 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4414 pTab->iPKey = -1; 4415 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4416 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4417 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4418 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4419 assert( pFrom->pSelect ); 4420 4421 /* Check if this is a recursive CTE. */ 4422 pSel = pFrom->pSelect; 4423 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4424 if( bMayRecursive ){ 4425 int i; 4426 SrcList *pSrc = pFrom->pSelect->pSrc; 4427 for(i=0; i<pSrc->nSrc; i++){ 4428 struct SrcList_item *pItem = &pSrc->a[i]; 4429 if( pItem->zDatabase==0 4430 && pItem->zName!=0 4431 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4432 ){ 4433 pItem->pTab = pTab; 4434 pItem->fg.isRecursive = 1; 4435 pTab->nTabRef++; 4436 pSel->selFlags |= SF_Recursive; 4437 } 4438 } 4439 } 4440 4441 /* Only one recursive reference is permitted. */ 4442 if( pTab->nTabRef>2 ){ 4443 sqlite3ErrorMsg( 4444 pParse, "multiple references to recursive table: %s", pCte->zName 4445 ); 4446 return SQLITE_ERROR; 4447 } 4448 assert( pTab->nTabRef==1 || 4449 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4450 4451 pCte->zCteErr = "circular reference: %s"; 4452 pSavedWith = pParse->pWith; 4453 pParse->pWith = pWith; 4454 if( bMayRecursive ){ 4455 Select *pPrior = pSel->pPrior; 4456 assert( pPrior->pWith==0 ); 4457 pPrior->pWith = pSel->pWith; 4458 sqlite3WalkSelect(pWalker, pPrior); 4459 pPrior->pWith = 0; 4460 }else{ 4461 sqlite3WalkSelect(pWalker, pSel); 4462 } 4463 pParse->pWith = pWith; 4464 4465 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4466 pEList = pLeft->pEList; 4467 if( pCte->pCols ){ 4468 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4469 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4470 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4471 ); 4472 pParse->pWith = pSavedWith; 4473 return SQLITE_ERROR; 4474 } 4475 pEList = pCte->pCols; 4476 } 4477 4478 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4479 if( bMayRecursive ){ 4480 if( pSel->selFlags & SF_Recursive ){ 4481 pCte->zCteErr = "multiple recursive references: %s"; 4482 }else{ 4483 pCte->zCteErr = "recursive reference in a subquery: %s"; 4484 } 4485 sqlite3WalkSelect(pWalker, pSel); 4486 } 4487 pCte->zCteErr = 0; 4488 pParse->pWith = pSavedWith; 4489 } 4490 4491 return SQLITE_OK; 4492 } 4493 #endif 4494 4495 #ifndef SQLITE_OMIT_CTE 4496 /* 4497 ** If the SELECT passed as the second argument has an associated WITH 4498 ** clause, pop it from the stack stored as part of the Parse object. 4499 ** 4500 ** This function is used as the xSelectCallback2() callback by 4501 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4502 ** names and other FROM clause elements. 4503 */ 4504 static void selectPopWith(Walker *pWalker, Select *p){ 4505 Parse *pParse = pWalker->pParse; 4506 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4507 With *pWith = findRightmost(p)->pWith; 4508 if( pWith!=0 ){ 4509 assert( pParse->pWith==pWith ); 4510 pParse->pWith = pWith->pOuter; 4511 } 4512 } 4513 } 4514 #else 4515 #define selectPopWith 0 4516 #endif 4517 4518 /* 4519 ** This routine is a Walker callback for "expanding" a SELECT statement. 4520 ** "Expanding" means to do the following: 4521 ** 4522 ** (1) Make sure VDBE cursor numbers have been assigned to every 4523 ** element of the FROM clause. 4524 ** 4525 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4526 ** defines FROM clause. When views appear in the FROM clause, 4527 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4528 ** that implements the view. A copy is made of the view's SELECT 4529 ** statement so that we can freely modify or delete that statement 4530 ** without worrying about messing up the persistent representation 4531 ** of the view. 4532 ** 4533 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4534 ** on joins and the ON and USING clause of joins. 4535 ** 4536 ** (4) Scan the list of columns in the result set (pEList) looking 4537 ** for instances of the "*" operator or the TABLE.* operator. 4538 ** If found, expand each "*" to be every column in every table 4539 ** and TABLE.* to be every column in TABLE. 4540 ** 4541 */ 4542 static int selectExpander(Walker *pWalker, Select *p){ 4543 Parse *pParse = pWalker->pParse; 4544 int i, j, k; 4545 SrcList *pTabList; 4546 ExprList *pEList; 4547 struct SrcList_item *pFrom; 4548 sqlite3 *db = pParse->db; 4549 Expr *pE, *pRight, *pExpr; 4550 u16 selFlags = p->selFlags; 4551 u32 elistFlags = 0; 4552 4553 p->selFlags |= SF_Expanded; 4554 if( db->mallocFailed ){ 4555 return WRC_Abort; 4556 } 4557 assert( p->pSrc!=0 ); 4558 if( (selFlags & SF_Expanded)!=0 ){ 4559 return WRC_Prune; 4560 } 4561 pTabList = p->pSrc; 4562 pEList = p->pEList; 4563 sqlite3WithPush(pParse, p->pWith, 0); 4564 4565 /* Make sure cursor numbers have been assigned to all entries in 4566 ** the FROM clause of the SELECT statement. 4567 */ 4568 sqlite3SrcListAssignCursors(pParse, pTabList); 4569 4570 /* Look up every table named in the FROM clause of the select. If 4571 ** an entry of the FROM clause is a subquery instead of a table or view, 4572 ** then create a transient table structure to describe the subquery. 4573 */ 4574 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4575 Table *pTab; 4576 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4577 if( pFrom->fg.isRecursive ) continue; 4578 assert( pFrom->pTab==0 ); 4579 #ifndef SQLITE_OMIT_CTE 4580 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4581 if( pFrom->pTab ) {} else 4582 #endif 4583 if( pFrom->zName==0 ){ 4584 #ifndef SQLITE_OMIT_SUBQUERY 4585 Select *pSel = pFrom->pSelect; 4586 /* A sub-query in the FROM clause of a SELECT */ 4587 assert( pSel!=0 ); 4588 assert( pFrom->pTab==0 ); 4589 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4590 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4591 if( pTab==0 ) return WRC_Abort; 4592 pTab->nTabRef = 1; 4593 if( pFrom->zAlias ){ 4594 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias); 4595 }else{ 4596 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab); 4597 } 4598 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4599 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4600 pTab->iPKey = -1; 4601 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4602 pTab->tabFlags |= TF_Ephemeral; 4603 #endif 4604 }else{ 4605 /* An ordinary table or view name in the FROM clause */ 4606 assert( pFrom->pTab==0 ); 4607 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4608 if( pTab==0 ) return WRC_Abort; 4609 if( pTab->nTabRef>=0xffff ){ 4610 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4611 pTab->zName); 4612 pFrom->pTab = 0; 4613 return WRC_Abort; 4614 } 4615 pTab->nTabRef++; 4616 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4617 return WRC_Abort; 4618 } 4619 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4620 if( IsVirtual(pTab) || pTab->pSelect ){ 4621 i16 nCol; 4622 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4623 assert( pFrom->pSelect==0 ); 4624 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4625 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4626 nCol = pTab->nCol; 4627 pTab->nCol = -1; 4628 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4629 pTab->nCol = nCol; 4630 } 4631 #endif 4632 } 4633 4634 /* Locate the index named by the INDEXED BY clause, if any. */ 4635 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4636 return WRC_Abort; 4637 } 4638 } 4639 4640 /* Process NATURAL keywords, and ON and USING clauses of joins. 4641 */ 4642 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4643 return WRC_Abort; 4644 } 4645 4646 /* For every "*" that occurs in the column list, insert the names of 4647 ** all columns in all tables. And for every TABLE.* insert the names 4648 ** of all columns in TABLE. The parser inserted a special expression 4649 ** with the TK_ASTERISK operator for each "*" that it found in the column 4650 ** list. The following code just has to locate the TK_ASTERISK 4651 ** expressions and expand each one to the list of all columns in 4652 ** all tables. 4653 ** 4654 ** The first loop just checks to see if there are any "*" operators 4655 ** that need expanding. 4656 */ 4657 for(k=0; k<pEList->nExpr; k++){ 4658 pE = pEList->a[k].pExpr; 4659 if( pE->op==TK_ASTERISK ) break; 4660 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4661 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4662 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4663 elistFlags |= pE->flags; 4664 } 4665 if( k<pEList->nExpr ){ 4666 /* 4667 ** If we get here it means the result set contains one or more "*" 4668 ** operators that need to be expanded. Loop through each expression 4669 ** in the result set and expand them one by one. 4670 */ 4671 struct ExprList_item *a = pEList->a; 4672 ExprList *pNew = 0; 4673 int flags = pParse->db->flags; 4674 int longNames = (flags & SQLITE_FullColNames)!=0 4675 && (flags & SQLITE_ShortColNames)==0; 4676 4677 for(k=0; k<pEList->nExpr; k++){ 4678 pE = a[k].pExpr; 4679 elistFlags |= pE->flags; 4680 pRight = pE->pRight; 4681 assert( pE->op!=TK_DOT || pRight!=0 ); 4682 if( pE->op!=TK_ASTERISK 4683 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4684 ){ 4685 /* This particular expression does not need to be expanded. 4686 */ 4687 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4688 if( pNew ){ 4689 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4690 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4691 a[k].zName = 0; 4692 a[k].zSpan = 0; 4693 } 4694 a[k].pExpr = 0; 4695 }else{ 4696 /* This expression is a "*" or a "TABLE.*" and needs to be 4697 ** expanded. */ 4698 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4699 char *zTName = 0; /* text of name of TABLE */ 4700 if( pE->op==TK_DOT ){ 4701 assert( pE->pLeft!=0 ); 4702 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4703 zTName = pE->pLeft->u.zToken; 4704 } 4705 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4706 Table *pTab = pFrom->pTab; 4707 Select *pSub = pFrom->pSelect; 4708 char *zTabName = pFrom->zAlias; 4709 const char *zSchemaName = 0; 4710 int iDb; 4711 if( zTabName==0 ){ 4712 zTabName = pTab->zName; 4713 } 4714 if( db->mallocFailed ) break; 4715 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4716 pSub = 0; 4717 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4718 continue; 4719 } 4720 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4721 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4722 } 4723 for(j=0; j<pTab->nCol; j++){ 4724 char *zName = pTab->aCol[j].zName; 4725 char *zColname; /* The computed column name */ 4726 char *zToFree; /* Malloced string that needs to be freed */ 4727 Token sColname; /* Computed column name as a token */ 4728 4729 assert( zName ); 4730 if( zTName && pSub 4731 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4732 ){ 4733 continue; 4734 } 4735 4736 /* If a column is marked as 'hidden', omit it from the expanded 4737 ** result-set list unless the SELECT has the SF_IncludeHidden 4738 ** bit set. 4739 */ 4740 if( (p->selFlags & SF_IncludeHidden)==0 4741 && IsHiddenColumn(&pTab->aCol[j]) 4742 ){ 4743 continue; 4744 } 4745 tableSeen = 1; 4746 4747 if( i>0 && zTName==0 ){ 4748 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4749 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4750 ){ 4751 /* In a NATURAL join, omit the join columns from the 4752 ** table to the right of the join */ 4753 continue; 4754 } 4755 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4756 /* In a join with a USING clause, omit columns in the 4757 ** using clause from the table on the right. */ 4758 continue; 4759 } 4760 } 4761 pRight = sqlite3Expr(db, TK_ID, zName); 4762 zColname = zName; 4763 zToFree = 0; 4764 if( longNames || pTabList->nSrc>1 ){ 4765 Expr *pLeft; 4766 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4767 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4768 if( zSchemaName ){ 4769 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4770 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4771 } 4772 if( longNames ){ 4773 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4774 zToFree = zColname; 4775 } 4776 }else{ 4777 pExpr = pRight; 4778 } 4779 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4780 sqlite3TokenInit(&sColname, zColname); 4781 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4782 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4783 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4784 if( pSub ){ 4785 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4786 testcase( pX->zSpan==0 ); 4787 }else{ 4788 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4789 zSchemaName, zTabName, zColname); 4790 testcase( pX->zSpan==0 ); 4791 } 4792 pX->bSpanIsTab = 1; 4793 } 4794 sqlite3DbFree(db, zToFree); 4795 } 4796 } 4797 if( !tableSeen ){ 4798 if( zTName ){ 4799 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4800 }else{ 4801 sqlite3ErrorMsg(pParse, "no tables specified"); 4802 } 4803 } 4804 } 4805 } 4806 sqlite3ExprListDelete(db, pEList); 4807 p->pEList = pNew; 4808 } 4809 if( p->pEList ){ 4810 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4811 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4812 return WRC_Abort; 4813 } 4814 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4815 p->selFlags |= SF_ComplexResult; 4816 } 4817 } 4818 return WRC_Continue; 4819 } 4820 4821 /* 4822 ** No-op routine for the parse-tree walker. 4823 ** 4824 ** When this routine is the Walker.xExprCallback then expression trees 4825 ** are walked without any actions being taken at each node. Presumably, 4826 ** when this routine is used for Walker.xExprCallback then 4827 ** Walker.xSelectCallback is set to do something useful for every 4828 ** subquery in the parser tree. 4829 */ 4830 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4831 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4832 return WRC_Continue; 4833 } 4834 4835 /* 4836 ** No-op routine for the parse-tree walker for SELECT statements. 4837 ** subquery in the parser tree. 4838 */ 4839 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4840 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4841 return WRC_Continue; 4842 } 4843 4844 #if SQLITE_DEBUG 4845 /* 4846 ** Always assert. This xSelectCallback2 implementation proves that the 4847 ** xSelectCallback2 is never invoked. 4848 */ 4849 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4850 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4851 assert( 0 ); 4852 } 4853 #endif 4854 /* 4855 ** This routine "expands" a SELECT statement and all of its subqueries. 4856 ** For additional information on what it means to "expand" a SELECT 4857 ** statement, see the comment on the selectExpand worker callback above. 4858 ** 4859 ** Expanding a SELECT statement is the first step in processing a 4860 ** SELECT statement. The SELECT statement must be expanded before 4861 ** name resolution is performed. 4862 ** 4863 ** If anything goes wrong, an error message is written into pParse. 4864 ** The calling function can detect the problem by looking at pParse->nErr 4865 ** and/or pParse->db->mallocFailed. 4866 */ 4867 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4868 Walker w; 4869 w.xExprCallback = sqlite3ExprWalkNoop; 4870 w.pParse = pParse; 4871 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4872 w.xSelectCallback = convertCompoundSelectToSubquery; 4873 w.xSelectCallback2 = 0; 4874 sqlite3WalkSelect(&w, pSelect); 4875 } 4876 w.xSelectCallback = selectExpander; 4877 w.xSelectCallback2 = selectPopWith; 4878 sqlite3WalkSelect(&w, pSelect); 4879 } 4880 4881 4882 #ifndef SQLITE_OMIT_SUBQUERY 4883 /* 4884 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4885 ** interface. 4886 ** 4887 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4888 ** information to the Table structure that represents the result set 4889 ** of that subquery. 4890 ** 4891 ** The Table structure that represents the result set was constructed 4892 ** by selectExpander() but the type and collation information was omitted 4893 ** at that point because identifiers had not yet been resolved. This 4894 ** routine is called after identifier resolution. 4895 */ 4896 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4897 Parse *pParse; 4898 int i; 4899 SrcList *pTabList; 4900 struct SrcList_item *pFrom; 4901 4902 assert( p->selFlags & SF_Resolved ); 4903 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4904 p->selFlags |= SF_HasTypeInfo; 4905 pParse = pWalker->pParse; 4906 pTabList = p->pSrc; 4907 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4908 Table *pTab = pFrom->pTab; 4909 assert( pTab!=0 ); 4910 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4911 /* A sub-query in the FROM clause of a SELECT */ 4912 Select *pSel = pFrom->pSelect; 4913 if( pSel ){ 4914 while( pSel->pPrior ) pSel = pSel->pPrior; 4915 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4916 } 4917 } 4918 } 4919 } 4920 #endif 4921 4922 4923 /* 4924 ** This routine adds datatype and collating sequence information to 4925 ** the Table structures of all FROM-clause subqueries in a 4926 ** SELECT statement. 4927 ** 4928 ** Use this routine after name resolution. 4929 */ 4930 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4931 #ifndef SQLITE_OMIT_SUBQUERY 4932 Walker w; 4933 w.xSelectCallback = sqlite3SelectWalkNoop; 4934 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4935 w.xExprCallback = sqlite3ExprWalkNoop; 4936 w.pParse = pParse; 4937 sqlite3WalkSelect(&w, pSelect); 4938 #endif 4939 } 4940 4941 4942 /* 4943 ** This routine sets up a SELECT statement for processing. The 4944 ** following is accomplished: 4945 ** 4946 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4947 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4948 ** * ON and USING clauses are shifted into WHERE statements 4949 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4950 ** * Identifiers in expression are matched to tables. 4951 ** 4952 ** This routine acts recursively on all subqueries within the SELECT. 4953 */ 4954 void sqlite3SelectPrep( 4955 Parse *pParse, /* The parser context */ 4956 Select *p, /* The SELECT statement being coded. */ 4957 NameContext *pOuterNC /* Name context for container */ 4958 ){ 4959 assert( p!=0 || pParse->db->mallocFailed ); 4960 if( pParse->db->mallocFailed ) return; 4961 if( p->selFlags & SF_HasTypeInfo ) return; 4962 sqlite3SelectExpand(pParse, p); 4963 if( pParse->nErr || pParse->db->mallocFailed ) return; 4964 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4965 if( pParse->nErr || pParse->db->mallocFailed ) return; 4966 sqlite3SelectAddTypeInfo(pParse, p); 4967 } 4968 4969 /* 4970 ** Reset the aggregate accumulator. 4971 ** 4972 ** The aggregate accumulator is a set of memory cells that hold 4973 ** intermediate results while calculating an aggregate. This 4974 ** routine generates code that stores NULLs in all of those memory 4975 ** cells. 4976 */ 4977 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4978 Vdbe *v = pParse->pVdbe; 4979 int i; 4980 struct AggInfo_func *pFunc; 4981 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4982 if( nReg==0 ) return; 4983 #ifdef SQLITE_DEBUG 4984 /* Verify that all AggInfo registers are within the range specified by 4985 ** AggInfo.mnReg..AggInfo.mxReg */ 4986 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4987 for(i=0; i<pAggInfo->nColumn; i++){ 4988 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4989 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4990 } 4991 for(i=0; i<pAggInfo->nFunc; i++){ 4992 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4993 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4994 } 4995 #endif 4996 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4997 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4998 if( pFunc->iDistinct>=0 ){ 4999 Expr *pE = pFunc->pExpr; 5000 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5001 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5002 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5003 "argument"); 5004 pFunc->iDistinct = -1; 5005 }else{ 5006 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 5007 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5008 (char*)pKeyInfo, P4_KEYINFO); 5009 } 5010 } 5011 } 5012 } 5013 5014 /* 5015 ** Invoke the OP_AggFinalize opcode for every aggregate function 5016 ** in the AggInfo structure. 5017 */ 5018 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5019 Vdbe *v = pParse->pVdbe; 5020 int i; 5021 struct AggInfo_func *pF; 5022 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5023 ExprList *pList = pF->pExpr->x.pList; 5024 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5025 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5026 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5027 } 5028 } 5029 5030 /* 5031 ** Update the accumulator memory cells for an aggregate based on 5032 ** the current cursor position. 5033 */ 5034 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5035 Vdbe *v = pParse->pVdbe; 5036 int i; 5037 int regHit = 0; 5038 int addrHitTest = 0; 5039 struct AggInfo_func *pF; 5040 struct AggInfo_col *pC; 5041 5042 pAggInfo->directMode = 1; 5043 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5044 int nArg; 5045 int addrNext = 0; 5046 int regAgg; 5047 ExprList *pList = pF->pExpr->x.pList; 5048 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5049 if( pList ){ 5050 nArg = pList->nExpr; 5051 regAgg = sqlite3GetTempRange(pParse, nArg); 5052 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5053 }else{ 5054 nArg = 0; 5055 regAgg = 0; 5056 } 5057 if( pF->iDistinct>=0 ){ 5058 addrNext = sqlite3VdbeMakeLabel(v); 5059 testcase( nArg==0 ); /* Error condition */ 5060 testcase( nArg>1 ); /* Also an error */ 5061 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5062 } 5063 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5064 CollSeq *pColl = 0; 5065 struct ExprList_item *pItem; 5066 int j; 5067 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5068 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5069 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5070 } 5071 if( !pColl ){ 5072 pColl = pParse->db->pDfltColl; 5073 } 5074 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5075 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5076 } 5077 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 5078 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5079 sqlite3VdbeChangeP5(v, (u8)nArg); 5080 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 5081 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5082 if( addrNext ){ 5083 sqlite3VdbeResolveLabel(v, addrNext); 5084 sqlite3ExprCacheClear(pParse); 5085 } 5086 } 5087 5088 /* Before populating the accumulator registers, clear the column cache. 5089 ** Otherwise, if any of the required column values are already present 5090 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 5091 ** to pC->iMem. But by the time the value is used, the original register 5092 ** may have been used, invalidating the underlying buffer holding the 5093 ** text or blob value. See ticket [883034dcb5]. 5094 ** 5095 ** Another solution would be to change the OP_SCopy used to copy cached 5096 ** values to an OP_Copy. 5097 */ 5098 if( regHit ){ 5099 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5100 } 5101 sqlite3ExprCacheClear(pParse); 5102 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5103 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5104 } 5105 pAggInfo->directMode = 0; 5106 sqlite3ExprCacheClear(pParse); 5107 if( addrHitTest ){ 5108 sqlite3VdbeJumpHere(v, addrHitTest); 5109 } 5110 } 5111 5112 /* 5113 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5114 ** count(*) query ("SELECT count(*) FROM pTab"). 5115 */ 5116 #ifndef SQLITE_OMIT_EXPLAIN 5117 static void explainSimpleCount( 5118 Parse *pParse, /* Parse context */ 5119 Table *pTab, /* Table being queried */ 5120 Index *pIdx /* Index used to optimize scan, or NULL */ 5121 ){ 5122 if( pParse->explain==2 ){ 5123 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5124 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 5125 pTab->zName, 5126 bCover ? " USING COVERING INDEX " : "", 5127 bCover ? pIdx->zName : "" 5128 ); 5129 sqlite3VdbeAddOp4( 5130 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 5131 ); 5132 } 5133 } 5134 #else 5135 # define explainSimpleCount(a,b,c) 5136 #endif 5137 5138 /* 5139 ** sqlite3WalkExpr() callback used by havingToWhere(). 5140 ** 5141 ** If the node passed to the callback is a TK_AND node, return 5142 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5143 ** 5144 ** Otherwise, return WRC_Prune. In this case, also check if the 5145 ** sub-expression matches the criteria for being moved to the WHERE 5146 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5147 ** within the HAVING expression with a constant "1". 5148 */ 5149 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5150 if( pExpr->op!=TK_AND ){ 5151 Select *pS = pWalker->u.pSelect; 5152 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5153 sqlite3 *db = pWalker->pParse->db; 5154 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5155 if( pNew ){ 5156 Expr *pWhere = pS->pWhere; 5157 SWAP(Expr, *pNew, *pExpr); 5158 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5159 pS->pWhere = pNew; 5160 pWalker->eCode = 1; 5161 } 5162 } 5163 return WRC_Prune; 5164 } 5165 return WRC_Continue; 5166 } 5167 5168 /* 5169 ** Transfer eligible terms from the HAVING clause of a query, which is 5170 ** processed after grouping, to the WHERE clause, which is processed before 5171 ** grouping. For example, the query: 5172 ** 5173 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5174 ** 5175 ** can be rewritten as: 5176 ** 5177 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5178 ** 5179 ** A term of the HAVING expression is eligible for transfer if it consists 5180 ** entirely of constants and expressions that are also GROUP BY terms that 5181 ** use the "BINARY" collation sequence. 5182 */ 5183 static void havingToWhere(Parse *pParse, Select *p){ 5184 Walker sWalker; 5185 memset(&sWalker, 0, sizeof(sWalker)); 5186 sWalker.pParse = pParse; 5187 sWalker.xExprCallback = havingToWhereExprCb; 5188 sWalker.u.pSelect = p; 5189 sqlite3WalkExpr(&sWalker, p->pHaving); 5190 #if SELECTTRACE_ENABLED 5191 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5192 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5193 sqlite3TreeViewSelect(0, p, 0); 5194 } 5195 #endif 5196 } 5197 5198 /* 5199 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5200 ** If it is, then return the SrcList_item for the prior view. If it is not, 5201 ** then return 0. 5202 */ 5203 static struct SrcList_item *isSelfJoinView( 5204 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5205 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5206 ){ 5207 struct SrcList_item *pItem; 5208 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5209 if( pItem->pSelect==0 ) continue; 5210 if( pItem->fg.viaCoroutine ) continue; 5211 if( pItem->zName==0 ) continue; 5212 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5213 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5214 if( sqlite3ExprCompare(0, 5215 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5216 ){ 5217 /* The view was modified by some other optimization such as 5218 ** pushDownWhereTerms() */ 5219 continue; 5220 } 5221 return pItem; 5222 } 5223 return 0; 5224 } 5225 5226 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5227 /* 5228 ** Attempt to transform a query of the form 5229 ** 5230 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5231 ** 5232 ** Into this: 5233 ** 5234 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5235 ** 5236 ** The transformation only works if all of the following are true: 5237 ** 5238 ** * The subquery is a UNION ALL of two or more terms 5239 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5240 ** * The outer query is a simple count(*) 5241 ** 5242 ** Return TRUE if the optimization is undertaken. 5243 */ 5244 static int countOfViewOptimization(Parse *pParse, Select *p){ 5245 Select *pSub, *pPrior; 5246 Expr *pExpr; 5247 Expr *pCount; 5248 sqlite3 *db; 5249 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5250 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5251 pExpr = p->pEList->a[0].pExpr; 5252 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5253 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5254 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5255 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5256 pSub = p->pSrc->a[0].pSelect; 5257 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5258 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5259 do{ 5260 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5261 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5262 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5263 pSub = pSub->pPrior; /* Repeat over compound */ 5264 }while( pSub ); 5265 5266 /* If we reach this point then it is OK to perform the transformation */ 5267 5268 db = pParse->db; 5269 pCount = pExpr; 5270 pExpr = 0; 5271 pSub = p->pSrc->a[0].pSelect; 5272 p->pSrc->a[0].pSelect = 0; 5273 sqlite3SrcListDelete(db, p->pSrc); 5274 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5275 while( pSub ){ 5276 Expr *pTerm; 5277 pPrior = pSub->pPrior; 5278 pSub->pPrior = 0; 5279 pSub->pNext = 0; 5280 pSub->selFlags |= SF_Aggregate; 5281 pSub->selFlags &= ~SF_Compound; 5282 pSub->nSelectRow = 0; 5283 sqlite3ExprListDelete(db, pSub->pEList); 5284 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5285 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5286 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5287 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5288 if( pExpr==0 ){ 5289 pExpr = pTerm; 5290 }else{ 5291 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5292 } 5293 pSub = pPrior; 5294 } 5295 p->pEList->a[0].pExpr = pExpr; 5296 p->selFlags &= ~SF_Aggregate; 5297 5298 #if SELECTTRACE_ENABLED 5299 if( sqlite3SelectTrace & 0x400 ){ 5300 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5301 sqlite3TreeViewSelect(0, p, 0); 5302 } 5303 #endif 5304 return 1; 5305 } 5306 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5307 5308 /* 5309 ** Generate code for the SELECT statement given in the p argument. 5310 ** 5311 ** The results are returned according to the SelectDest structure. 5312 ** See comments in sqliteInt.h for further information. 5313 ** 5314 ** This routine returns the number of errors. If any errors are 5315 ** encountered, then an appropriate error message is left in 5316 ** pParse->zErrMsg. 5317 ** 5318 ** This routine does NOT free the Select structure passed in. The 5319 ** calling function needs to do that. 5320 */ 5321 int sqlite3Select( 5322 Parse *pParse, /* The parser context */ 5323 Select *p, /* The SELECT statement being coded. */ 5324 SelectDest *pDest /* What to do with the query results */ 5325 ){ 5326 int i, j; /* Loop counters */ 5327 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5328 Vdbe *v; /* The virtual machine under construction */ 5329 int isAgg; /* True for select lists like "count(*)" */ 5330 ExprList *pEList = 0; /* List of columns to extract. */ 5331 SrcList *pTabList; /* List of tables to select from */ 5332 Expr *pWhere; /* The WHERE clause. May be NULL */ 5333 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5334 Expr *pHaving; /* The HAVING clause. May be NULL */ 5335 int rc = 1; /* Value to return from this function */ 5336 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5337 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5338 AggInfo sAggInfo; /* Information used by aggregate queries */ 5339 int iEnd; /* Address of the end of the query */ 5340 sqlite3 *db; /* The database connection */ 5341 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5342 u8 minMaxFlag; /* Flag for min/max queries */ 5343 5344 #ifndef SQLITE_OMIT_EXPLAIN 5345 int iRestoreSelectId = pParse->iSelectId; 5346 pParse->iSelectId = pParse->iNextSelectId++; 5347 #endif 5348 5349 db = pParse->db; 5350 if( p==0 || db->mallocFailed || pParse->nErr ){ 5351 return 1; 5352 } 5353 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5354 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5355 #if SELECTTRACE_ENABLED 5356 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5357 if( sqlite3SelectTrace & 0x100 ){ 5358 sqlite3TreeViewSelect(0, p, 0); 5359 } 5360 #endif 5361 5362 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5363 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5364 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5365 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5366 if( IgnorableOrderby(pDest) ){ 5367 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5368 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5369 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5370 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5371 /* If ORDER BY makes no difference in the output then neither does 5372 ** DISTINCT so it can be removed too. */ 5373 sqlite3ExprListDelete(db, p->pOrderBy); 5374 p->pOrderBy = 0; 5375 p->selFlags &= ~SF_Distinct; 5376 } 5377 sqlite3SelectPrep(pParse, p, 0); 5378 memset(&sSort, 0, sizeof(sSort)); 5379 sSort.pOrderBy = p->pOrderBy; 5380 pTabList = p->pSrc; 5381 if( pParse->nErr || db->mallocFailed ){ 5382 goto select_end; 5383 } 5384 assert( p->pEList!=0 ); 5385 isAgg = (p->selFlags & SF_Aggregate)!=0; 5386 #if SELECTTRACE_ENABLED 5387 if( sqlite3SelectTrace & 0x100 ){ 5388 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5389 sqlite3TreeViewSelect(0, p, 0); 5390 } 5391 #endif 5392 5393 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5394 ** does not already exist */ 5395 v = sqlite3GetVdbe(pParse); 5396 if( v==0 ) goto select_end; 5397 if( pDest->eDest==SRT_Output ){ 5398 generateColumnNames(pParse, p); 5399 } 5400 5401 /* Try to various optimizations (flattening subqueries, and strength 5402 ** reduction of join operators) in the FROM clause up into the main query 5403 */ 5404 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5405 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5406 struct SrcList_item *pItem = &pTabList->a[i]; 5407 Select *pSub = pItem->pSelect; 5408 Table *pTab = pItem->pTab; 5409 5410 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5411 ** of the LEFT JOIN used in the WHERE clause. 5412 */ 5413 if( (pItem->fg.jointype & JT_LEFT)!=0 5414 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5415 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5416 ){ 5417 SELECTTRACE(0x100,pParse,p, 5418 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5419 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5420 unsetJoinExpr(p->pWhere, pItem->iCursor); 5421 } 5422 5423 /* No futher action if this term of the FROM clause is no a subquery */ 5424 if( pSub==0 ) continue; 5425 5426 /* Catch mismatch in the declared columns of a view and the number of 5427 ** columns in the SELECT on the RHS */ 5428 if( pTab->nCol!=pSub->pEList->nExpr ){ 5429 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5430 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5431 goto select_end; 5432 } 5433 5434 /* Do not try to flatten an aggregate subquery. 5435 ** 5436 ** Flattening an aggregate subquery is only possible if the outer query 5437 ** is not a join. But if the outer query is not a join, then the subquery 5438 ** will be implemented as a co-routine and there is no advantage to 5439 ** flattening in that case. 5440 */ 5441 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5442 assert( pSub->pGroupBy==0 ); 5443 5444 /* If the outer query contains a "complex" result set (that is, 5445 ** if the result set of the outer query uses functions or subqueries) 5446 ** and if the subquery contains an ORDER BY clause and if 5447 ** it will be implemented as a co-routine, then do not flatten. This 5448 ** restriction allows SQL constructs like this: 5449 ** 5450 ** SELECT expensive_function(x) 5451 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5452 ** 5453 ** The expensive_function() is only computed on the 10 rows that 5454 ** are output, rather than every row of the table. 5455 ** 5456 ** The requirement that the outer query have a complex result set 5457 ** means that flattening does occur on simpler SQL constraints without 5458 ** the expensive_function() like: 5459 ** 5460 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5461 */ 5462 if( pSub->pOrderBy!=0 5463 && i==0 5464 && (p->selFlags & SF_ComplexResult)!=0 5465 && (pTabList->nSrc==1 5466 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5467 ){ 5468 continue; 5469 } 5470 5471 if( flattenSubquery(pParse, p, i, isAgg) ){ 5472 /* This subquery can be absorbed into its parent. */ 5473 i = -1; 5474 } 5475 pTabList = p->pSrc; 5476 if( db->mallocFailed ) goto select_end; 5477 if( !IgnorableOrderby(pDest) ){ 5478 sSort.pOrderBy = p->pOrderBy; 5479 } 5480 } 5481 #endif 5482 5483 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5484 /* Handle compound SELECT statements using the separate multiSelect() 5485 ** procedure. 5486 */ 5487 if( p->pPrior ){ 5488 rc = multiSelect(pParse, p, pDest); 5489 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5490 #if SELECTTRACE_ENABLED 5491 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5492 #endif 5493 return rc; 5494 } 5495 #endif 5496 5497 /* For each term in the FROM clause, do two things: 5498 ** (1) Authorized unreferenced tables 5499 ** (2) Generate code for all sub-queries 5500 */ 5501 for(i=0; i<pTabList->nSrc; i++){ 5502 struct SrcList_item *pItem = &pTabList->a[i]; 5503 SelectDest dest; 5504 Select *pSub; 5505 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5506 const char *zSavedAuthContext; 5507 #endif 5508 5509 /* Issue SQLITE_READ authorizations with a fake column name for any 5510 ** tables that are referenced but from which no values are extracted. 5511 ** Examples of where these kinds of null SQLITE_READ authorizations 5512 ** would occur: 5513 ** 5514 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5515 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5516 ** 5517 ** The fake column name is an empty string. It is possible for a table to 5518 ** have a column named by the empty string, in which case there is no way to 5519 ** distinguish between an unreferenced table and an actual reference to the 5520 ** "" column. The original design was for the fake column name to be a NULL, 5521 ** which would be unambiguous. But legacy authorization callbacks might 5522 ** assume the column name is non-NULL and segfault. The use of an empty 5523 ** string for the fake column name seems safer. 5524 */ 5525 if( pItem->colUsed==0 ){ 5526 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5527 } 5528 5529 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5530 /* Generate code for all sub-queries in the FROM clause 5531 */ 5532 pSub = pItem->pSelect; 5533 if( pSub==0 ) continue; 5534 5535 /* Sometimes the code for a subquery will be generated more than 5536 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5537 ** for example. In that case, do not regenerate the code to manifest 5538 ** a view or the co-routine to implement a view. The first instance 5539 ** is sufficient, though the subroutine to manifest the view does need 5540 ** to be invoked again. */ 5541 if( pItem->addrFillSub ){ 5542 if( pItem->fg.viaCoroutine==0 ){ 5543 /* The subroutine that manifests the view might be a one-time routine, 5544 ** or it might need to be rerun on each iteration because it 5545 ** encodes a correlated subquery. */ 5546 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5547 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5548 } 5549 continue; 5550 } 5551 5552 /* Increment Parse.nHeight by the height of the largest expression 5553 ** tree referred to by this, the parent select. The child select 5554 ** may contain expression trees of at most 5555 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5556 ** more conservative than necessary, but much easier than enforcing 5557 ** an exact limit. 5558 */ 5559 pParse->nHeight += sqlite3SelectExprHeight(p); 5560 5561 /* Make copies of constant WHERE-clause terms in the outer query down 5562 ** inside the subquery. This can help the subquery to run more efficiently. 5563 */ 5564 if( OptimizationEnabled(db, SQLITE_PushDown) 5565 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5566 (pItem->fg.jointype & JT_OUTER)!=0) 5567 ){ 5568 #if SELECTTRACE_ENABLED 5569 if( sqlite3SelectTrace & 0x100 ){ 5570 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5571 sqlite3TreeViewSelect(0, p, 0); 5572 } 5573 #endif 5574 }else{ 5575 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5576 } 5577 5578 zSavedAuthContext = pParse->zAuthContext; 5579 pParse->zAuthContext = pItem->zName; 5580 5581 /* Generate code to implement the subquery 5582 ** 5583 ** The subquery is implemented as a co-routine if the subquery is 5584 ** guaranteed to be the outer loop (so that it does not need to be 5585 ** computed more than once) 5586 ** 5587 ** TODO: Are there other reasons beside (1) to use a co-routine 5588 ** implementation? 5589 */ 5590 if( i==0 5591 && (pTabList->nSrc==1 5592 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5593 ){ 5594 /* Implement a co-routine that will return a single row of the result 5595 ** set on each invocation. 5596 */ 5597 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5598 5599 pItem->regReturn = ++pParse->nMem; 5600 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5601 VdbeComment((v, "%s", pItem->pTab->zName)); 5602 pItem->addrFillSub = addrTop; 5603 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5604 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5605 sqlite3Select(pParse, pSub, &dest); 5606 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5607 pItem->fg.viaCoroutine = 1; 5608 pItem->regResult = dest.iSdst; 5609 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5610 sqlite3VdbeJumpHere(v, addrTop-1); 5611 sqlite3ClearTempRegCache(pParse); 5612 }else{ 5613 /* Generate a subroutine that will fill an ephemeral table with 5614 ** the content of this subquery. pItem->addrFillSub will point 5615 ** to the address of the generated subroutine. pItem->regReturn 5616 ** is a register allocated to hold the subroutine return address 5617 */ 5618 int topAddr; 5619 int onceAddr = 0; 5620 int retAddr; 5621 struct SrcList_item *pPrior; 5622 5623 assert( pItem->addrFillSub==0 ); 5624 pItem->regReturn = ++pParse->nMem; 5625 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5626 pItem->addrFillSub = topAddr+1; 5627 if( pItem->fg.isCorrelated==0 ){ 5628 /* If the subquery is not correlated and if we are not inside of 5629 ** a trigger, then we only need to compute the value of the subquery 5630 ** once. */ 5631 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5632 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5633 }else{ 5634 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5635 } 5636 pPrior = isSelfJoinView(pTabList, pItem); 5637 if( pPrior ){ 5638 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5639 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5640 assert( pPrior->pSelect!=0 ); 5641 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5642 }else{ 5643 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5644 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5645 sqlite3Select(pParse, pSub, &dest); 5646 } 5647 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5648 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5649 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5650 VdbeComment((v, "end %s", pItem->pTab->zName)); 5651 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5652 sqlite3ClearTempRegCache(pParse); 5653 } 5654 if( db->mallocFailed ) goto select_end; 5655 pParse->nHeight -= sqlite3SelectExprHeight(p); 5656 pParse->zAuthContext = zSavedAuthContext; 5657 #endif 5658 } 5659 5660 /* Various elements of the SELECT copied into local variables for 5661 ** convenience */ 5662 pEList = p->pEList; 5663 pWhere = p->pWhere; 5664 pGroupBy = p->pGroupBy; 5665 pHaving = p->pHaving; 5666 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5667 5668 #if SELECTTRACE_ENABLED 5669 if( sqlite3SelectTrace & 0x400 ){ 5670 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5671 sqlite3TreeViewSelect(0, p, 0); 5672 } 5673 #endif 5674 5675 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5676 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5677 && countOfViewOptimization(pParse, p) 5678 ){ 5679 if( db->mallocFailed ) goto select_end; 5680 pEList = p->pEList; 5681 pTabList = p->pSrc; 5682 } 5683 #endif 5684 5685 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5686 ** if the select-list is the same as the ORDER BY list, then this query 5687 ** can be rewritten as a GROUP BY. In other words, this: 5688 ** 5689 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5690 ** 5691 ** is transformed to: 5692 ** 5693 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5694 ** 5695 ** The second form is preferred as a single index (or temp-table) may be 5696 ** used for both the ORDER BY and DISTINCT processing. As originally 5697 ** written the query must use a temp-table for at least one of the ORDER 5698 ** BY and DISTINCT, and an index or separate temp-table for the other. 5699 */ 5700 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5701 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5702 ){ 5703 p->selFlags &= ~SF_Distinct; 5704 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5705 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5706 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5707 ** original setting of the SF_Distinct flag, not the current setting */ 5708 assert( sDistinct.isTnct ); 5709 5710 #if SELECTTRACE_ENABLED 5711 if( sqlite3SelectTrace & 0x400 ){ 5712 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5713 sqlite3TreeViewSelect(0, p, 0); 5714 } 5715 #endif 5716 } 5717 5718 /* If there is an ORDER BY clause, then create an ephemeral index to 5719 ** do the sorting. But this sorting ephemeral index might end up 5720 ** being unused if the data can be extracted in pre-sorted order. 5721 ** If that is the case, then the OP_OpenEphemeral instruction will be 5722 ** changed to an OP_Noop once we figure out that the sorting index is 5723 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5724 ** that change. 5725 */ 5726 if( sSort.pOrderBy ){ 5727 KeyInfo *pKeyInfo; 5728 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5729 sSort.iECursor = pParse->nTab++; 5730 sSort.addrSortIndex = 5731 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5732 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5733 (char*)pKeyInfo, P4_KEYINFO 5734 ); 5735 }else{ 5736 sSort.addrSortIndex = -1; 5737 } 5738 5739 /* If the output is destined for a temporary table, open that table. 5740 */ 5741 if( pDest->eDest==SRT_EphemTab ){ 5742 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5743 } 5744 5745 /* Set the limiter. 5746 */ 5747 iEnd = sqlite3VdbeMakeLabel(v); 5748 if( (p->selFlags & SF_FixedLimit)==0 ){ 5749 p->nSelectRow = 320; /* 4 billion rows */ 5750 } 5751 computeLimitRegisters(pParse, p, iEnd); 5752 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5753 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5754 sSort.sortFlags |= SORTFLAG_UseSorter; 5755 } 5756 5757 /* Open an ephemeral index to use for the distinct set. 5758 */ 5759 if( p->selFlags & SF_Distinct ){ 5760 sDistinct.tabTnct = pParse->nTab++; 5761 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5762 sDistinct.tabTnct, 0, 0, 5763 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5764 P4_KEYINFO); 5765 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5766 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5767 }else{ 5768 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5769 } 5770 5771 if( !isAgg && pGroupBy==0 ){ 5772 /* No aggregate functions and no GROUP BY clause */ 5773 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5774 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5775 wctrlFlags |= p->selFlags & SF_FixedLimit; 5776 5777 /* Begin the database scan. */ 5778 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5779 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5780 p->pEList, wctrlFlags, p->nSelectRow); 5781 if( pWInfo==0 ) goto select_end; 5782 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5783 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5784 } 5785 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5786 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5787 } 5788 if( sSort.pOrderBy ){ 5789 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5790 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5791 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5792 sSort.pOrderBy = 0; 5793 } 5794 } 5795 5796 /* If sorting index that was created by a prior OP_OpenEphemeral 5797 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5798 ** into an OP_Noop. 5799 */ 5800 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5801 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5802 } 5803 5804 /* Use the standard inner loop. */ 5805 assert( p->pEList==pEList ); 5806 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5807 sqlite3WhereContinueLabel(pWInfo), 5808 sqlite3WhereBreakLabel(pWInfo)); 5809 5810 /* End the database scan loop. 5811 */ 5812 sqlite3WhereEnd(pWInfo); 5813 }else{ 5814 /* This case when there exist aggregate functions or a GROUP BY clause 5815 ** or both */ 5816 NameContext sNC; /* Name context for processing aggregate information */ 5817 int iAMem; /* First Mem address for storing current GROUP BY */ 5818 int iBMem; /* First Mem address for previous GROUP BY */ 5819 int iUseFlag; /* Mem address holding flag indicating that at least 5820 ** one row of the input to the aggregator has been 5821 ** processed */ 5822 int iAbortFlag; /* Mem address which causes query abort if positive */ 5823 int groupBySort; /* Rows come from source in GROUP BY order */ 5824 int addrEnd; /* End of processing for this SELECT */ 5825 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5826 int sortOut = 0; /* Output register from the sorter */ 5827 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5828 5829 /* Remove any and all aliases between the result set and the 5830 ** GROUP BY clause. 5831 */ 5832 if( pGroupBy ){ 5833 int k; /* Loop counter */ 5834 struct ExprList_item *pItem; /* For looping over expression in a list */ 5835 5836 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5837 pItem->u.x.iAlias = 0; 5838 } 5839 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5840 pItem->u.x.iAlias = 0; 5841 } 5842 assert( 66==sqlite3LogEst(100) ); 5843 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5844 }else{ 5845 assert( 0==sqlite3LogEst(1) ); 5846 p->nSelectRow = 0; 5847 } 5848 5849 /* If there is both a GROUP BY and an ORDER BY clause and they are 5850 ** identical, then it may be possible to disable the ORDER BY clause 5851 ** on the grounds that the GROUP BY will cause elements to come out 5852 ** in the correct order. It also may not - the GROUP BY might use a 5853 ** database index that causes rows to be grouped together as required 5854 ** but not actually sorted. Either way, record the fact that the 5855 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5856 ** variable. */ 5857 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5858 orderByGrp = 1; 5859 } 5860 5861 /* Create a label to jump to when we want to abort the query */ 5862 addrEnd = sqlite3VdbeMakeLabel(v); 5863 5864 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5865 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5866 ** SELECT statement. 5867 */ 5868 memset(&sNC, 0, sizeof(sNC)); 5869 sNC.pParse = pParse; 5870 sNC.pSrcList = pTabList; 5871 sNC.uNC.pAggInfo = &sAggInfo; 5872 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 5873 sAggInfo.mnReg = pParse->nMem+1; 5874 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5875 sAggInfo.pGroupBy = pGroupBy; 5876 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5877 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5878 if( pHaving ){ 5879 if( pGroupBy ){ 5880 assert( pWhere==p->pWhere ); 5881 assert( pHaving==p->pHaving ); 5882 assert( pGroupBy==p->pGroupBy ); 5883 havingToWhere(pParse, p); 5884 pWhere = p->pWhere; 5885 } 5886 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5887 } 5888 sAggInfo.nAccumulator = sAggInfo.nColumn; 5889 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 5890 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 5891 }else{ 5892 minMaxFlag = WHERE_ORDERBY_NORMAL; 5893 } 5894 for(i=0; i<sAggInfo.nFunc; i++){ 5895 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5896 sNC.ncFlags |= NC_InAggFunc; 5897 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5898 sNC.ncFlags &= ~NC_InAggFunc; 5899 } 5900 sAggInfo.mxReg = pParse->nMem; 5901 if( db->mallocFailed ) goto select_end; 5902 #if SELECTTRACE_ENABLED 5903 if( sqlite3SelectTrace & 0x400 ){ 5904 int ii; 5905 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 5906 sqlite3TreeViewSelect(0, p, 0); 5907 for(ii=0; ii<sAggInfo.nColumn; ii++){ 5908 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 5909 ii, sAggInfo.aCol[ii].iMem); 5910 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 5911 } 5912 for(ii=0; ii<sAggInfo.nFunc; ii++){ 5913 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 5914 ii, sAggInfo.aFunc[ii].iMem); 5915 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 5916 } 5917 } 5918 #endif 5919 5920 5921 /* Processing for aggregates with GROUP BY is very different and 5922 ** much more complex than aggregates without a GROUP BY. 5923 */ 5924 if( pGroupBy ){ 5925 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5926 int addr1; /* A-vs-B comparision jump */ 5927 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5928 int regOutputRow; /* Return address register for output subroutine */ 5929 int addrSetAbort; /* Set the abort flag and return */ 5930 int addrTopOfLoop; /* Top of the input loop */ 5931 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5932 int addrReset; /* Subroutine for resetting the accumulator */ 5933 int regReset; /* Return address register for reset subroutine */ 5934 5935 /* If there is a GROUP BY clause we might need a sorting index to 5936 ** implement it. Allocate that sorting index now. If it turns out 5937 ** that we do not need it after all, the OP_SorterOpen instruction 5938 ** will be converted into a Noop. 5939 */ 5940 sAggInfo.sortingIdx = pParse->nTab++; 5941 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5942 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5943 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5944 0, (char*)pKeyInfo, P4_KEYINFO); 5945 5946 /* Initialize memory locations used by GROUP BY aggregate processing 5947 */ 5948 iUseFlag = ++pParse->nMem; 5949 iAbortFlag = ++pParse->nMem; 5950 regOutputRow = ++pParse->nMem; 5951 addrOutputRow = sqlite3VdbeMakeLabel(v); 5952 regReset = ++pParse->nMem; 5953 addrReset = sqlite3VdbeMakeLabel(v); 5954 iAMem = pParse->nMem + 1; 5955 pParse->nMem += pGroupBy->nExpr; 5956 iBMem = pParse->nMem + 1; 5957 pParse->nMem += pGroupBy->nExpr; 5958 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5959 VdbeComment((v, "clear abort flag")); 5960 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5961 VdbeComment((v, "indicate accumulator empty")); 5962 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5963 5964 /* Begin a loop that will extract all source rows in GROUP BY order. 5965 ** This might involve two separate loops with an OP_Sort in between, or 5966 ** it might be a single loop that uses an index to extract information 5967 ** in the right order to begin with. 5968 */ 5969 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5970 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5971 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5972 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5973 ); 5974 if( pWInfo==0 ) goto select_end; 5975 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5976 /* The optimizer is able to deliver rows in group by order so 5977 ** we do not have to sort. The OP_OpenEphemeral table will be 5978 ** cancelled later because we still need to use the pKeyInfo 5979 */ 5980 groupBySort = 0; 5981 }else{ 5982 /* Rows are coming out in undetermined order. We have to push 5983 ** each row into a sorting index, terminate the first loop, 5984 ** then loop over the sorting index in order to get the output 5985 ** in sorted order 5986 */ 5987 int regBase; 5988 int regRecord; 5989 int nCol; 5990 int nGroupBy; 5991 5992 explainTempTable(pParse, 5993 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5994 "DISTINCT" : "GROUP BY"); 5995 5996 groupBySort = 1; 5997 nGroupBy = pGroupBy->nExpr; 5998 nCol = nGroupBy; 5999 j = nGroupBy; 6000 for(i=0; i<sAggInfo.nColumn; i++){ 6001 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6002 nCol++; 6003 j++; 6004 } 6005 } 6006 regBase = sqlite3GetTempRange(pParse, nCol); 6007 sqlite3ExprCacheClear(pParse); 6008 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6009 j = nGroupBy; 6010 for(i=0; i<sAggInfo.nColumn; i++){ 6011 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6012 if( pCol->iSorterColumn>=j ){ 6013 int r1 = j + regBase; 6014 sqlite3ExprCodeGetColumnToReg(pParse, 6015 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 6016 j++; 6017 } 6018 } 6019 regRecord = sqlite3GetTempReg(pParse); 6020 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6021 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6022 sqlite3ReleaseTempReg(pParse, regRecord); 6023 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6024 sqlite3WhereEnd(pWInfo); 6025 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6026 sortOut = sqlite3GetTempReg(pParse); 6027 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6028 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6029 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6030 sAggInfo.useSortingIdx = 1; 6031 sqlite3ExprCacheClear(pParse); 6032 6033 } 6034 6035 /* If the index or temporary table used by the GROUP BY sort 6036 ** will naturally deliver rows in the order required by the ORDER BY 6037 ** clause, cancel the ephemeral table open coded earlier. 6038 ** 6039 ** This is an optimization - the correct answer should result regardless. 6040 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6041 ** disable this optimization for testing purposes. */ 6042 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6043 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6044 ){ 6045 sSort.pOrderBy = 0; 6046 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6047 } 6048 6049 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6050 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6051 ** Then compare the current GROUP BY terms against the GROUP BY terms 6052 ** from the previous row currently stored in a0, a1, a2... 6053 */ 6054 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6055 sqlite3ExprCacheClear(pParse); 6056 if( groupBySort ){ 6057 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6058 sortOut, sortPTab); 6059 } 6060 for(j=0; j<pGroupBy->nExpr; j++){ 6061 if( groupBySort ){ 6062 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6063 }else{ 6064 sAggInfo.directMode = 1; 6065 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6066 } 6067 } 6068 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6069 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6070 addr1 = sqlite3VdbeCurrentAddr(v); 6071 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6072 6073 /* Generate code that runs whenever the GROUP BY changes. 6074 ** Changes in the GROUP BY are detected by the previous code 6075 ** block. If there were no changes, this block is skipped. 6076 ** 6077 ** This code copies current group by terms in b0,b1,b2,... 6078 ** over to a0,a1,a2. It then calls the output subroutine 6079 ** and resets the aggregate accumulator registers in preparation 6080 ** for the next GROUP BY batch. 6081 */ 6082 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6083 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6084 VdbeComment((v, "output one row")); 6085 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6086 VdbeComment((v, "check abort flag")); 6087 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6088 VdbeComment((v, "reset accumulator")); 6089 6090 /* Update the aggregate accumulators based on the content of 6091 ** the current row 6092 */ 6093 sqlite3VdbeJumpHere(v, addr1); 6094 updateAccumulator(pParse, &sAggInfo); 6095 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6096 VdbeComment((v, "indicate data in accumulator")); 6097 6098 /* End of the loop 6099 */ 6100 if( groupBySort ){ 6101 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6102 VdbeCoverage(v); 6103 }else{ 6104 sqlite3WhereEnd(pWInfo); 6105 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6106 } 6107 6108 /* Output the final row of result 6109 */ 6110 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6111 VdbeComment((v, "output final row")); 6112 6113 /* Jump over the subroutines 6114 */ 6115 sqlite3VdbeGoto(v, addrEnd); 6116 6117 /* Generate a subroutine that outputs a single row of the result 6118 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6119 ** is less than or equal to zero, the subroutine is a no-op. If 6120 ** the processing calls for the query to abort, this subroutine 6121 ** increments the iAbortFlag memory location before returning in 6122 ** order to signal the caller to abort. 6123 */ 6124 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6125 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6126 VdbeComment((v, "set abort flag")); 6127 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6128 sqlite3VdbeResolveLabel(v, addrOutputRow); 6129 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6130 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6131 VdbeCoverage(v); 6132 VdbeComment((v, "Groupby result generator entry point")); 6133 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6134 finalizeAggFunctions(pParse, &sAggInfo); 6135 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6136 selectInnerLoop(pParse, p, -1, &sSort, 6137 &sDistinct, pDest, 6138 addrOutputRow+1, addrSetAbort); 6139 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6140 VdbeComment((v, "end groupby result generator")); 6141 6142 /* Generate a subroutine that will reset the group-by accumulator 6143 */ 6144 sqlite3VdbeResolveLabel(v, addrReset); 6145 resetAccumulator(pParse, &sAggInfo); 6146 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6147 6148 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6149 else { 6150 #ifndef SQLITE_OMIT_BTREECOUNT 6151 Table *pTab; 6152 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6153 /* If isSimpleCount() returns a pointer to a Table structure, then 6154 ** the SQL statement is of the form: 6155 ** 6156 ** SELECT count(*) FROM <tbl> 6157 ** 6158 ** where the Table structure returned represents table <tbl>. 6159 ** 6160 ** This statement is so common that it is optimized specially. The 6161 ** OP_Count instruction is executed either on the intkey table that 6162 ** contains the data for table <tbl> or on one of its indexes. It 6163 ** is better to execute the op on an index, as indexes are almost 6164 ** always spread across less pages than their corresponding tables. 6165 */ 6166 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6167 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6168 Index *pIdx; /* Iterator variable */ 6169 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6170 Index *pBest = 0; /* Best index found so far */ 6171 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6172 6173 sqlite3CodeVerifySchema(pParse, iDb); 6174 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6175 6176 /* Search for the index that has the lowest scan cost. 6177 ** 6178 ** (2011-04-15) Do not do a full scan of an unordered index. 6179 ** 6180 ** (2013-10-03) Do not count the entries in a partial index. 6181 ** 6182 ** In practice the KeyInfo structure will not be used. It is only 6183 ** passed to keep OP_OpenRead happy. 6184 */ 6185 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6186 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6187 if( pIdx->bUnordered==0 6188 && pIdx->szIdxRow<pTab->szTabRow 6189 && pIdx->pPartIdxWhere==0 6190 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6191 ){ 6192 pBest = pIdx; 6193 } 6194 } 6195 if( pBest ){ 6196 iRoot = pBest->tnum; 6197 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6198 } 6199 6200 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6201 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6202 if( pKeyInfo ){ 6203 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6204 } 6205 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6206 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6207 explainSimpleCount(pParse, pTab, pBest); 6208 }else 6209 #endif /* SQLITE_OMIT_BTREECOUNT */ 6210 { 6211 /* This case runs if the aggregate has no GROUP BY clause. The 6212 ** processing is much simpler since there is only a single row 6213 ** of output. 6214 */ 6215 assert( p->pGroupBy==0 ); 6216 resetAccumulator(pParse, &sAggInfo); 6217 6218 /* If this query is a candidate for the min/max optimization, then 6219 ** minMaxFlag will have been previously set to either 6220 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6221 ** be an appropriate ORDER BY expression for the optimization. 6222 */ 6223 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6224 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6225 6226 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6227 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6228 0, minMaxFlag, 0); 6229 if( pWInfo==0 ){ 6230 goto select_end; 6231 } 6232 updateAccumulator(pParse, &sAggInfo); 6233 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6234 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6235 VdbeComment((v, "%s() by index", 6236 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6237 } 6238 sqlite3WhereEnd(pWInfo); 6239 finalizeAggFunctions(pParse, &sAggInfo); 6240 } 6241 6242 sSort.pOrderBy = 0; 6243 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6244 selectInnerLoop(pParse, p, -1, 0, 0, 6245 pDest, addrEnd, addrEnd); 6246 } 6247 sqlite3VdbeResolveLabel(v, addrEnd); 6248 6249 } /* endif aggregate query */ 6250 6251 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6252 explainTempTable(pParse, "DISTINCT"); 6253 } 6254 6255 /* If there is an ORDER BY clause, then we need to sort the results 6256 ** and send them to the callback one by one. 6257 */ 6258 if( sSort.pOrderBy ){ 6259 explainTempTable(pParse, 6260 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6261 assert( p->pEList==pEList ); 6262 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6263 } 6264 6265 /* Jump here to skip this query 6266 */ 6267 sqlite3VdbeResolveLabel(v, iEnd); 6268 6269 /* The SELECT has been coded. If there is an error in the Parse structure, 6270 ** set the return code to 1. Otherwise 0. */ 6271 rc = (pParse->nErr>0); 6272 6273 /* Control jumps to here if an error is encountered above, or upon 6274 ** successful coding of the SELECT. 6275 */ 6276 select_end: 6277 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6278 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6279 sqlite3DbFree(db, sAggInfo.aCol); 6280 sqlite3DbFree(db, sAggInfo.aFunc); 6281 #if SELECTTRACE_ENABLED 6282 SELECTTRACE(1,pParse,p,("end processing\n")); 6283 #endif 6284 return rc; 6285 } 6286