xref: /sqlite-3.40.0/src/select.c (revision f71a243a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103 #endif
104     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105     assert( p->pWin==0 );
106     if( bFree ) sqlite3DbFreeNN(db, p);
107     p = pPrior;
108     bFree = 1;
109   }
110 }
111 
112 /*
113 ** Initialize a SelectDest structure.
114 */
115 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
116   pDest->eDest = (u8)eDest;
117   pDest->iSDParm = iParm;
118   pDest->zAffSdst = 0;
119   pDest->iSdst = 0;
120   pDest->nSdst = 0;
121 }
122 
123 
124 /*
125 ** Allocate a new Select structure and return a pointer to that
126 ** structure.
127 */
128 Select *sqlite3SelectNew(
129   Parse *pParse,        /* Parsing context */
130   ExprList *pEList,     /* which columns to include in the result */
131   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
132   Expr *pWhere,         /* the WHERE clause */
133   ExprList *pGroupBy,   /* the GROUP BY clause */
134   Expr *pHaving,        /* the HAVING clause */
135   ExprList *pOrderBy,   /* the ORDER BY clause */
136   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
137   Expr *pLimit          /* LIMIT value.  NULL means not used */
138 ){
139   Select *pNew;
140   Select standin;
141   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
142   if( pNew==0 ){
143     assert( pParse->db->mallocFailed );
144     pNew = &standin;
145   }
146   if( pEList==0 ){
147     pEList = sqlite3ExprListAppend(pParse, 0,
148                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
149   }
150   pNew->pEList = pEList;
151   pNew->op = TK_SELECT;
152   pNew->selFlags = selFlags;
153   pNew->iLimit = 0;
154   pNew->iOffset = 0;
155   pNew->selId = ++pParse->nSelect;
156   pNew->addrOpenEphm[0] = -1;
157   pNew->addrOpenEphm[1] = -1;
158   pNew->nSelectRow = 0;
159   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
160   pNew->pSrc = pSrc;
161   pNew->pWhere = pWhere;
162   pNew->pGroupBy = pGroupBy;
163   pNew->pHaving = pHaving;
164   pNew->pOrderBy = pOrderBy;
165   pNew->pPrior = 0;
166   pNew->pNext = 0;
167   pNew->pLimit = pLimit;
168   pNew->pWith = 0;
169 #ifndef SQLITE_OMIT_WINDOWFUNC
170   pNew->pWin = 0;
171   pNew->pWinDefn = 0;
172 #endif
173   if( pParse->db->mallocFailed ) {
174     clearSelect(pParse->db, pNew, pNew!=&standin);
175     pNew = 0;
176   }else{
177     assert( pNew->pSrc!=0 || pParse->nErr>0 );
178   }
179   assert( pNew!=&standin );
180   return pNew;
181 }
182 
183 
184 /*
185 ** Delete the given Select structure and all of its substructures.
186 */
187 void sqlite3SelectDelete(sqlite3 *db, Select *p){
188   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
189 }
190 
191 /*
192 ** Return a pointer to the right-most SELECT statement in a compound.
193 */
194 static Select *findRightmost(Select *p){
195   while( p->pNext ) p = p->pNext;
196   return p;
197 }
198 
199 /*
200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
201 ** type of join.  Return an integer constant that expresses that type
202 ** in terms of the following bit values:
203 **
204 **     JT_INNER
205 **     JT_CROSS
206 **     JT_OUTER
207 **     JT_NATURAL
208 **     JT_LEFT
209 **     JT_RIGHT
210 **
211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
212 **
213 ** If an illegal or unsupported join type is seen, then still return
214 ** a join type, but put an error in the pParse structure.
215 */
216 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
217   int jointype = 0;
218   Token *apAll[3];
219   Token *p;
220                              /*   0123456789 123456789 123456789 123 */
221   static const char zKeyText[] = "naturaleftouterightfullinnercross";
222   static const struct {
223     u8 i;        /* Beginning of keyword text in zKeyText[] */
224     u8 nChar;    /* Length of the keyword in characters */
225     u8 code;     /* Join type mask */
226   } aKeyword[] = {
227     /* natural */ { 0,  7, JT_NATURAL                },
228     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
229     /* outer   */ { 10, 5, JT_OUTER                  },
230     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
231     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
232     /* inner   */ { 23, 5, JT_INNER                  },
233     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
234   };
235   int i, j;
236   apAll[0] = pA;
237   apAll[1] = pB;
238   apAll[2] = pC;
239   for(i=0; i<3 && apAll[i]; i++){
240     p = apAll[i];
241     for(j=0; j<ArraySize(aKeyword); j++){
242       if( p->n==aKeyword[j].nChar
243           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
244         jointype |= aKeyword[j].code;
245         break;
246       }
247     }
248     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
249     if( j>=ArraySize(aKeyword) ){
250       jointype |= JT_ERROR;
251       break;
252     }
253   }
254   if(
255      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
256      (jointype & JT_ERROR)!=0
257   ){
258     const char *zSp = " ";
259     assert( pB!=0 );
260     if( pC==0 ){ zSp++; }
261     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
262        "%T %T%s%T", pA, pB, zSp, pC);
263     jointype = JT_INNER;
264   }else if( (jointype & JT_OUTER)!=0
265          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
266     sqlite3ErrorMsg(pParse,
267       "RIGHT and FULL OUTER JOINs are not currently supported");
268     jointype = JT_INNER;
269   }
270   return jointype;
271 }
272 
273 /*
274 ** Return the index of a column in a table.  Return -1 if the column
275 ** is not contained in the table.
276 */
277 static int columnIndex(Table *pTab, const char *zCol){
278   int i;
279   for(i=0; i<pTab->nCol; i++){
280     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
281   }
282   return -1;
283 }
284 
285 /*
286 ** Search the first N tables in pSrc, from left to right, looking for a
287 ** table that has a column named zCol.
288 **
289 ** When found, set *piTab and *piCol to the table index and column index
290 ** of the matching column and return TRUE.
291 **
292 ** If not found, return FALSE.
293 */
294 static int tableAndColumnIndex(
295   SrcList *pSrc,       /* Array of tables to search */
296   int N,               /* Number of tables in pSrc->a[] to search */
297   const char *zCol,    /* Name of the column we are looking for */
298   int *piTab,          /* Write index of pSrc->a[] here */
299   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
300 ){
301   int i;               /* For looping over tables in pSrc */
302   int iCol;            /* Index of column matching zCol */
303 
304   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
305   for(i=0; i<N; i++){
306     iCol = columnIndex(pSrc->a[i].pTab, zCol);
307     if( iCol>=0 ){
308       if( piTab ){
309         *piTab = i;
310         *piCol = iCol;
311       }
312       return 1;
313     }
314   }
315   return 0;
316 }
317 
318 /*
319 ** This function is used to add terms implied by JOIN syntax to the
320 ** WHERE clause expression of a SELECT statement. The new term, which
321 ** is ANDed with the existing WHERE clause, is of the form:
322 **
323 **    (tab1.col1 = tab2.col2)
324 **
325 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
326 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
327 ** column iColRight of tab2.
328 */
329 static void addWhereTerm(
330   Parse *pParse,                  /* Parsing context */
331   SrcList *pSrc,                  /* List of tables in FROM clause */
332   int iLeft,                      /* Index of first table to join in pSrc */
333   int iColLeft,                   /* Index of column in first table */
334   int iRight,                     /* Index of second table in pSrc */
335   int iColRight,                  /* Index of column in second table */
336   int isOuterJoin,                /* True if this is an OUTER join */
337   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
338 ){
339   sqlite3 *db = pParse->db;
340   Expr *pE1;
341   Expr *pE2;
342   Expr *pEq;
343 
344   assert( iLeft<iRight );
345   assert( pSrc->nSrc>iRight );
346   assert( pSrc->a[iLeft].pTab );
347   assert( pSrc->a[iRight].pTab );
348 
349   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
350   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
351 
352   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
353   if( pEq && isOuterJoin ){
354     ExprSetProperty(pEq, EP_FromJoin);
355     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
356     ExprSetVVAProperty(pEq, EP_NoReduce);
357     pEq->iRightJoinTable = (i16)pE2->iTable;
358   }
359   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
360 }
361 
362 /*
363 ** Set the EP_FromJoin property on all terms of the given expression.
364 ** And set the Expr.iRightJoinTable to iTable for every term in the
365 ** expression.
366 **
367 ** The EP_FromJoin property is used on terms of an expression to tell
368 ** the LEFT OUTER JOIN processing logic that this term is part of the
369 ** join restriction specified in the ON or USING clause and not a part
370 ** of the more general WHERE clause.  These terms are moved over to the
371 ** WHERE clause during join processing but we need to remember that they
372 ** originated in the ON or USING clause.
373 **
374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
375 ** expression depends on table iRightJoinTable even if that table is not
376 ** explicitly mentioned in the expression.  That information is needed
377 ** for cases like this:
378 **
379 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 **
381 ** The where clause needs to defer the handling of the t1.x=5
382 ** term until after the t2 loop of the join.  In that way, a
383 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
384 ** defer the handling of t1.x=5, it will be processed immediately
385 ** after the t1 loop and rows with t1.x!=5 will never appear in
386 ** the output, which is incorrect.
387 */
388 static void setJoinExpr(Expr *p, int iTable){
389   while( p ){
390     ExprSetProperty(p, EP_FromJoin);
391     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
392     ExprSetVVAProperty(p, EP_NoReduce);
393     p->iRightJoinTable = (i16)iTable;
394     if( p->op==TK_FUNCTION && p->x.pList ){
395       int i;
396       for(i=0; i<p->x.pList->nExpr; i++){
397         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
398       }
399     }
400     setJoinExpr(p->pLeft, iTable);
401     p = p->pRight;
402   }
403 }
404 
405 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
406 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
407 ** an ordinary term that omits the EP_FromJoin mark.
408 **
409 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
410 */
411 static void unsetJoinExpr(Expr *p, int iTable){
412   while( p ){
413     if( ExprHasProperty(p, EP_FromJoin)
414      && (iTable<0 || p->iRightJoinTable==iTable) ){
415       ExprClearProperty(p, EP_FromJoin);
416     }
417     if( p->op==TK_FUNCTION && p->x.pList ){
418       int i;
419       for(i=0; i<p->x.pList->nExpr; i++){
420         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
421       }
422     }
423     unsetJoinExpr(p->pLeft, iTable);
424     p = p->pRight;
425   }
426 }
427 
428 /*
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
432 **
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc.  The right-most
435 ** table is the last entry.  The join operator is held in the entry to
436 ** the left.  Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
439 **
440 ** This routine returns the number of errors encountered.
441 */
442 static int sqliteProcessJoin(Parse *pParse, Select *p){
443   SrcList *pSrc;                  /* All tables in the FROM clause */
444   int i, j;                       /* Loop counters */
445   struct SrcList_item *pLeft;     /* Left table being joined */
446   struct SrcList_item *pRight;    /* Right table being joined */
447 
448   pSrc = p->pSrc;
449   pLeft = &pSrc->a[0];
450   pRight = &pLeft[1];
451   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
452     Table *pRightTab = pRight->pTab;
453     int isOuter;
454 
455     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
456     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 
458     /* When the NATURAL keyword is present, add WHERE clause terms for
459     ** every column that the two tables have in common.
460     */
461     if( pRight->fg.jointype & JT_NATURAL ){
462       if( pRight->pOn || pRight->pUsing ){
463         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
464            "an ON or USING clause", 0);
465         return 1;
466       }
467       for(j=0; j<pRightTab->nCol; j++){
468         char *zName;   /* Name of column in the right table */
469         int iLeft;     /* Matching left table */
470         int iLeftCol;  /* Matching column in the left table */
471 
472         zName = pRightTab->aCol[j].zName;
473         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
474           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
475                        isOuter, &p->pWhere);
476         }
477       }
478     }
479 
480     /* Disallow both ON and USING clauses in the same join
481     */
482     if( pRight->pOn && pRight->pUsing ){
483       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
484         "clauses in the same join");
485       return 1;
486     }
487 
488     /* Add the ON clause to the end of the WHERE clause, connected by
489     ** an AND operator.
490     */
491     if( pRight->pOn ){
492       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
493       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
494       pRight->pOn = 0;
495     }
496 
497     /* Create extra terms on the WHERE clause for each column named
498     ** in the USING clause.  Example: If the two tables to be joined are
499     ** A and B and the USING clause names X, Y, and Z, then add this
500     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
501     ** Report an error if any column mentioned in the USING clause is
502     ** not contained in both tables to be joined.
503     */
504     if( pRight->pUsing ){
505       IdList *pList = pRight->pUsing;
506       for(j=0; j<pList->nId; j++){
507         char *zName;     /* Name of the term in the USING clause */
508         int iLeft;       /* Table on the left with matching column name */
509         int iLeftCol;    /* Column number of matching column on the left */
510         int iRightCol;   /* Column number of matching column on the right */
511 
512         zName = pList->a[j].zName;
513         iRightCol = columnIndex(pRightTab, zName);
514         if( iRightCol<0
515          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
516         ){
517           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
518             "not present in both tables", zName);
519           return 1;
520         }
521         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
522                      isOuter, &p->pWhere);
523       }
524     }
525   }
526   return 0;
527 }
528 
529 /*
530 ** An instance of this object holds information (beyond pParse and pSelect)
531 ** needed to load the next result row that is to be added to the sorter.
532 */
533 typedef struct RowLoadInfo RowLoadInfo;
534 struct RowLoadInfo {
535   int regResult;               /* Store results in array of registers here */
536   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
537 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
538   ExprList *pExtra;            /* Extra columns needed by sorter refs */
539   int regExtraResult;          /* Where to load the extra columns */
540 #endif
541 };
542 
543 /*
544 ** This routine does the work of loading query data into an array of
545 ** registers so that it can be added to the sorter.
546 */
547 static void innerLoopLoadRow(
548   Parse *pParse,             /* Statement under construction */
549   Select *pSelect,           /* The query being coded */
550   RowLoadInfo *pInfo         /* Info needed to complete the row load */
551 ){
552   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
553                           0, pInfo->ecelFlags);
554 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
555   if( pInfo->pExtra ){
556     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
557     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
558   }
559 #endif
560 }
561 
562 /*
563 ** Code the OP_MakeRecord instruction that generates the entry to be
564 ** added into the sorter.
565 **
566 ** Return the register in which the result is stored.
567 */
568 static int makeSorterRecord(
569   Parse *pParse,
570   SortCtx *pSort,
571   Select *pSelect,
572   int regBase,
573   int nBase
574 ){
575   int nOBSat = pSort->nOBSat;
576   Vdbe *v = pParse->pVdbe;
577   int regOut = ++pParse->nMem;
578   if( pSort->pDeferredRowLoad ){
579     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
580   }
581   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
582   return regOut;
583 }
584 
585 /*
586 ** Generate code that will push the record in registers regData
587 ** through regData+nData-1 onto the sorter.
588 */
589 static void pushOntoSorter(
590   Parse *pParse,         /* Parser context */
591   SortCtx *pSort,        /* Information about the ORDER BY clause */
592   Select *pSelect,       /* The whole SELECT statement */
593   int regData,           /* First register holding data to be sorted */
594   int regOrigData,       /* First register holding data before packing */
595   int nData,             /* Number of elements in the regData data array */
596   int nPrefixReg         /* No. of reg prior to regData available for use */
597 ){
598   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
599   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
600   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
601   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
602   int regBase;                                     /* Regs for sorter record */
603   int regRecord = 0;                               /* Assembled sorter record */
604   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
605   int op;                            /* Opcode to add sorter record to sorter */
606   int iLimit;                        /* LIMIT counter */
607   int iSkip = 0;                     /* End of the sorter insert loop */
608 
609   assert( bSeq==0 || bSeq==1 );
610 
611   /* Three cases:
612   **   (1) The data to be sorted has already been packed into a Record
613   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
614   **       will be completely unrelated to regOrigData.
615   **   (2) All output columns are included in the sort record.  In that
616   **       case regData==regOrigData.
617   **   (3) Some output columns are omitted from the sort record due to
618   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
619   **       SQLITE_ECEL_OMITREF optimization, or due to the
620   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
621   **       regOrigData is 0 to prevent this routine from trying to copy
622   **       values that might not yet exist.
623   */
624   assert( nData==1 || regData==regOrigData || regOrigData==0 );
625 
626   if( nPrefixReg ){
627     assert( nPrefixReg==nExpr+bSeq );
628     regBase = regData - nPrefixReg;
629   }else{
630     regBase = pParse->nMem + 1;
631     pParse->nMem += nBase;
632   }
633   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
634   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
635   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
636   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
637                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
638   if( bSeq ){
639     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
640   }
641   if( nPrefixReg==0 && nData>0 ){
642     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
643   }
644   if( nOBSat>0 ){
645     int regPrevKey;   /* The first nOBSat columns of the previous row */
646     int addrFirst;    /* Address of the OP_IfNot opcode */
647     int addrJmp;      /* Address of the OP_Jump opcode */
648     VdbeOp *pOp;      /* Opcode that opens the sorter */
649     int nKey;         /* Number of sorting key columns, including OP_Sequence */
650     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
651 
652     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
653     regPrevKey = pParse->nMem+1;
654     pParse->nMem += pSort->nOBSat;
655     nKey = nExpr - pSort->nOBSat + bSeq;
656     if( bSeq ){
657       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
658     }else{
659       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
660     }
661     VdbeCoverage(v);
662     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
663     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
664     if( pParse->db->mallocFailed ) return;
665     pOp->p2 = nKey + nData;
666     pKI = pOp->p4.pKeyInfo;
667     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
668     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
669     testcase( pKI->nAllField > pKI->nKeyField+2 );
670     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
671                                            pKI->nAllField-pKI->nKeyField-1);
672     addrJmp = sqlite3VdbeCurrentAddr(v);
673     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
674     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
675     pSort->regReturn = ++pParse->nMem;
676     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
677     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
678     if( iLimit ){
679       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
680       VdbeCoverage(v);
681     }
682     sqlite3VdbeJumpHere(v, addrFirst);
683     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
684     sqlite3VdbeJumpHere(v, addrJmp);
685   }
686   if( iLimit ){
687     /* At this point the values for the new sorter entry are stored
688     ** in an array of registers. They need to be composed into a record
689     ** and inserted into the sorter if either (a) there are currently
690     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
691     ** the largest record currently in the sorter. If (b) is true and there
692     ** are already LIMIT+OFFSET items in the sorter, delete the largest
693     ** entry before inserting the new one. This way there are never more
694     ** than LIMIT+OFFSET items in the sorter.
695     **
696     ** If the new record does not need to be inserted into the sorter,
697     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
698     ** value is not zero, then it is a label of where to jump.  Otherwise,
699     ** just bypass the row insert logic.  See the header comment on the
700     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
701     */
702     int iCsr = pSort->iECursor;
703     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
704     VdbeCoverage(v);
705     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
706     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
707                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
708     VdbeCoverage(v);
709     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
710   }
711   if( regRecord==0 ){
712     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
713   }
714   if( pSort->sortFlags & SORTFLAG_UseSorter ){
715     op = OP_SorterInsert;
716   }else{
717     op = OP_IdxInsert;
718   }
719   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
720                        regBase+nOBSat, nBase-nOBSat);
721   if( iSkip ){
722     sqlite3VdbeChangeP2(v, iSkip,
723          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
724   }
725 }
726 
727 /*
728 ** Add code to implement the OFFSET
729 */
730 static void codeOffset(
731   Vdbe *v,          /* Generate code into this VM */
732   int iOffset,      /* Register holding the offset counter */
733   int iContinue     /* Jump here to skip the current record */
734 ){
735   if( iOffset>0 ){
736     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
737     VdbeComment((v, "OFFSET"));
738   }
739 }
740 
741 /*
742 ** Add code that will check to make sure the N registers starting at iMem
743 ** form a distinct entry.  iTab is a sorting index that holds previously
744 ** seen combinations of the N values.  A new entry is made in iTab
745 ** if the current N values are new.
746 **
747 ** A jump to addrRepeat is made and the N+1 values are popped from the
748 ** stack if the top N elements are not distinct.
749 */
750 static void codeDistinct(
751   Parse *pParse,     /* Parsing and code generating context */
752   int iTab,          /* A sorting index used to test for distinctness */
753   int addrRepeat,    /* Jump to here if not distinct */
754   int N,             /* Number of elements */
755   int iMem           /* First element */
756 ){
757   Vdbe *v;
758   int r1;
759 
760   v = pParse->pVdbe;
761   r1 = sqlite3GetTempReg(pParse);
762   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
763   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
764   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
765   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
766   sqlite3ReleaseTempReg(pParse, r1);
767 }
768 
769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
770 /*
771 ** This function is called as part of inner-loop generation for a SELECT
772 ** statement with an ORDER BY that is not optimized by an index. It
773 ** determines the expressions, if any, that the sorter-reference
774 ** optimization should be used for. The sorter-reference optimization
775 ** is used for SELECT queries like:
776 **
777 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
778 **
779 ** If the optimization is used for expression "bigblob", then instead of
780 ** storing values read from that column in the sorter records, the PK of
781 ** the row from table t1 is stored instead. Then, as records are extracted from
782 ** the sorter to return to the user, the required value of bigblob is
783 ** retrieved directly from table t1. If the values are very large, this
784 ** can be more efficient than storing them directly in the sorter records.
785 **
786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
787 ** for which the sorter-reference optimization should be enabled.
788 ** Additionally, the pSort->aDefer[] array is populated with entries
789 ** for all cursors required to evaluate all selected expressions. Finally.
790 ** output variable (*ppExtra) is set to an expression list containing
791 ** expressions for all extra PK values that should be stored in the
792 ** sorter records.
793 */
794 static void selectExprDefer(
795   Parse *pParse,                  /* Leave any error here */
796   SortCtx *pSort,                 /* Sorter context */
797   ExprList *pEList,               /* Expressions destined for sorter */
798   ExprList **ppExtra              /* Expressions to append to sorter record */
799 ){
800   int i;
801   int nDefer = 0;
802   ExprList *pExtra = 0;
803   for(i=0; i<pEList->nExpr; i++){
804     struct ExprList_item *pItem = &pEList->a[i];
805     if( pItem->u.x.iOrderByCol==0 ){
806       Expr *pExpr = pItem->pExpr;
807       Table *pTab = pExpr->y.pTab;
808       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
809        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
810       ){
811         int j;
812         for(j=0; j<nDefer; j++){
813           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
814         }
815         if( j==nDefer ){
816           if( nDefer==ArraySize(pSort->aDefer) ){
817             continue;
818           }else{
819             int nKey = 1;
820             int k;
821             Index *pPk = 0;
822             if( !HasRowid(pTab) ){
823               pPk = sqlite3PrimaryKeyIndex(pTab);
824               nKey = pPk->nKeyCol;
825             }
826             for(k=0; k<nKey; k++){
827               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
828               if( pNew ){
829                 pNew->iTable = pExpr->iTable;
830                 pNew->y.pTab = pExpr->y.pTab;
831                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
832                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
833               }
834             }
835             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
836             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
837             pSort->aDefer[nDefer].nKey = nKey;
838             nDefer++;
839           }
840         }
841         pItem->bSorterRef = 1;
842       }
843     }
844   }
845   pSort->nDefer = (u8)nDefer;
846   *ppExtra = pExtra;
847 }
848 #endif
849 
850 /*
851 ** This routine generates the code for the inside of the inner loop
852 ** of a SELECT.
853 **
854 ** If srcTab is negative, then the p->pEList expressions
855 ** are evaluated in order to get the data for this row.  If srcTab is
856 ** zero or more, then data is pulled from srcTab and p->pEList is used only
857 ** to get the number of columns and the collation sequence for each column.
858 */
859 static void selectInnerLoop(
860   Parse *pParse,          /* The parser context */
861   Select *p,              /* The complete select statement being coded */
862   int srcTab,             /* Pull data from this table if non-negative */
863   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
864   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
865   SelectDest *pDest,      /* How to dispose of the results */
866   int iContinue,          /* Jump here to continue with next row */
867   int iBreak              /* Jump here to break out of the inner loop */
868 ){
869   Vdbe *v = pParse->pVdbe;
870   int i;
871   int hasDistinct;            /* True if the DISTINCT keyword is present */
872   int eDest = pDest->eDest;   /* How to dispose of results */
873   int iParm = pDest->iSDParm; /* First argument to disposal method */
874   int nResultCol;             /* Number of result columns */
875   int nPrefixReg = 0;         /* Number of extra registers before regResult */
876   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
877 
878   /* Usually, regResult is the first cell in an array of memory cells
879   ** containing the current result row. In this case regOrig is set to the
880   ** same value. However, if the results are being sent to the sorter, the
881   ** values for any expressions that are also part of the sort-key are omitted
882   ** from this array. In this case regOrig is set to zero.  */
883   int regResult;              /* Start of memory holding current results */
884   int regOrig;                /* Start of memory holding full result (or 0) */
885 
886   assert( v );
887   assert( p->pEList!=0 );
888   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
889   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
890   if( pSort==0 && !hasDistinct ){
891     assert( iContinue!=0 );
892     codeOffset(v, p->iOffset, iContinue);
893   }
894 
895   /* Pull the requested columns.
896   */
897   nResultCol = p->pEList->nExpr;
898 
899   if( pDest->iSdst==0 ){
900     if( pSort ){
901       nPrefixReg = pSort->pOrderBy->nExpr;
902       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
903       pParse->nMem += nPrefixReg;
904     }
905     pDest->iSdst = pParse->nMem+1;
906     pParse->nMem += nResultCol;
907   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
908     /* This is an error condition that can result, for example, when a SELECT
909     ** on the right-hand side of an INSERT contains more result columns than
910     ** there are columns in the table on the left.  The error will be caught
911     ** and reported later.  But we need to make sure enough memory is allocated
912     ** to avoid other spurious errors in the meantime. */
913     pParse->nMem += nResultCol;
914   }
915   pDest->nSdst = nResultCol;
916   regOrig = regResult = pDest->iSdst;
917   if( srcTab>=0 ){
918     for(i=0; i<nResultCol; i++){
919       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
920       VdbeComment((v, "%s", p->pEList->a[i].zName));
921     }
922   }else if( eDest!=SRT_Exists ){
923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
924     ExprList *pExtra = 0;
925 #endif
926     /* If the destination is an EXISTS(...) expression, the actual
927     ** values returned by the SELECT are not required.
928     */
929     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
930     ExprList *pEList;
931     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
932       ecelFlags = SQLITE_ECEL_DUP;
933     }else{
934       ecelFlags = 0;
935     }
936     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
937       /* For each expression in p->pEList that is a copy of an expression in
938       ** the ORDER BY clause (pSort->pOrderBy), set the associated
939       ** iOrderByCol value to one more than the index of the ORDER BY
940       ** expression within the sort-key that pushOntoSorter() will generate.
941       ** This allows the p->pEList field to be omitted from the sorted record,
942       ** saving space and CPU cycles.  */
943       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
944 
945       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
946         int j;
947         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
948           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
949         }
950       }
951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
952       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
953       if( pExtra && pParse->db->mallocFailed==0 ){
954         /* If there are any extra PK columns to add to the sorter records,
955         ** allocate extra memory cells and adjust the OpenEphemeral
956         ** instruction to account for the larger records. This is only
957         ** required if there are one or more WITHOUT ROWID tables with
958         ** composite primary keys in the SortCtx.aDefer[] array.  */
959         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
960         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
961         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
962         pParse->nMem += pExtra->nExpr;
963       }
964 #endif
965 
966       /* Adjust nResultCol to account for columns that are omitted
967       ** from the sorter by the optimizations in this branch */
968       pEList = p->pEList;
969       for(i=0; i<pEList->nExpr; i++){
970         if( pEList->a[i].u.x.iOrderByCol>0
971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
972          || pEList->a[i].bSorterRef
973 #endif
974         ){
975           nResultCol--;
976           regOrig = 0;
977         }
978       }
979 
980       testcase( regOrig );
981       testcase( eDest==SRT_Set );
982       testcase( eDest==SRT_Mem );
983       testcase( eDest==SRT_Coroutine );
984       testcase( eDest==SRT_Output );
985       assert( eDest==SRT_Set || eDest==SRT_Mem
986            || eDest==SRT_Coroutine || eDest==SRT_Output );
987     }
988     sRowLoadInfo.regResult = regResult;
989     sRowLoadInfo.ecelFlags = ecelFlags;
990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
991     sRowLoadInfo.pExtra = pExtra;
992     sRowLoadInfo.regExtraResult = regResult + nResultCol;
993     if( pExtra ) nResultCol += pExtra->nExpr;
994 #endif
995     if( p->iLimit
996      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
997      && nPrefixReg>0
998     ){
999       assert( pSort!=0 );
1000       assert( hasDistinct==0 );
1001       pSort->pDeferredRowLoad = &sRowLoadInfo;
1002       regOrig = 0;
1003     }else{
1004       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1005     }
1006   }
1007 
1008   /* If the DISTINCT keyword was present on the SELECT statement
1009   ** and this row has been seen before, then do not make this row
1010   ** part of the result.
1011   */
1012   if( hasDistinct ){
1013     switch( pDistinct->eTnctType ){
1014       case WHERE_DISTINCT_ORDERED: {
1015         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1016         int iJump;              /* Jump destination */
1017         int regPrev;            /* Previous row content */
1018 
1019         /* Allocate space for the previous row */
1020         regPrev = pParse->nMem+1;
1021         pParse->nMem += nResultCol;
1022 
1023         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1024         ** sets the MEM_Cleared bit on the first register of the
1025         ** previous value.  This will cause the OP_Ne below to always
1026         ** fail on the first iteration of the loop even if the first
1027         ** row is all NULLs.
1028         */
1029         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1030         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1031         pOp->opcode = OP_Null;
1032         pOp->p1 = 1;
1033         pOp->p2 = regPrev;
1034 
1035         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1036         for(i=0; i<nResultCol; i++){
1037           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1038           if( i<nResultCol-1 ){
1039             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1040             VdbeCoverage(v);
1041           }else{
1042             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1043             VdbeCoverage(v);
1044            }
1045           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1046           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1047         }
1048         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1049         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1050         break;
1051       }
1052 
1053       case WHERE_DISTINCT_UNIQUE: {
1054         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1055         break;
1056       }
1057 
1058       default: {
1059         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1060         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1061                      regResult);
1062         break;
1063       }
1064     }
1065     if( pSort==0 ){
1066       codeOffset(v, p->iOffset, iContinue);
1067     }
1068   }
1069 
1070   switch( eDest ){
1071     /* In this mode, write each query result to the key of the temporary
1072     ** table iParm.
1073     */
1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1075     case SRT_Union: {
1076       int r1;
1077       r1 = sqlite3GetTempReg(pParse);
1078       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1079       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1080       sqlite3ReleaseTempReg(pParse, r1);
1081       break;
1082     }
1083 
1084     /* Construct a record from the query result, but instead of
1085     ** saving that record, use it as a key to delete elements from
1086     ** the temporary table iParm.
1087     */
1088     case SRT_Except: {
1089       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1090       break;
1091     }
1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1093 
1094     /* Store the result as data using a unique key.
1095     */
1096     case SRT_Fifo:
1097     case SRT_DistFifo:
1098     case SRT_Table:
1099     case SRT_EphemTab: {
1100       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1101       testcase( eDest==SRT_Table );
1102       testcase( eDest==SRT_EphemTab );
1103       testcase( eDest==SRT_Fifo );
1104       testcase( eDest==SRT_DistFifo );
1105       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1106 #ifndef SQLITE_OMIT_CTE
1107       if( eDest==SRT_DistFifo ){
1108         /* If the destination is DistFifo, then cursor (iParm+1) is open
1109         ** on an ephemeral index. If the current row is already present
1110         ** in the index, do not write it to the output. If not, add the
1111         ** current row to the index and proceed with writing it to the
1112         ** output table as well.  */
1113         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1114         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1115         VdbeCoverage(v);
1116         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1117         assert( pSort==0 );
1118       }
1119 #endif
1120       if( pSort ){
1121         assert( regResult==regOrig );
1122         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1123       }else{
1124         int r2 = sqlite3GetTempReg(pParse);
1125         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1126         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1127         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1128         sqlite3ReleaseTempReg(pParse, r2);
1129       }
1130       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1131       break;
1132     }
1133 
1134 #ifndef SQLITE_OMIT_SUBQUERY
1135     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1136     ** then there should be a single item on the stack.  Write this
1137     ** item into the set table with bogus data.
1138     */
1139     case SRT_Set: {
1140       if( pSort ){
1141         /* At first glance you would think we could optimize out the
1142         ** ORDER BY in this case since the order of entries in the set
1143         ** does not matter.  But there might be a LIMIT clause, in which
1144         ** case the order does matter */
1145         pushOntoSorter(
1146             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1147       }else{
1148         int r1 = sqlite3GetTempReg(pParse);
1149         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1150         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1151             r1, pDest->zAffSdst, nResultCol);
1152         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1153         sqlite3ReleaseTempReg(pParse, r1);
1154       }
1155       break;
1156     }
1157 
1158     /* If any row exist in the result set, record that fact and abort.
1159     */
1160     case SRT_Exists: {
1161       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1162       /* The LIMIT clause will terminate the loop for us */
1163       break;
1164     }
1165 
1166     /* If this is a scalar select that is part of an expression, then
1167     ** store the results in the appropriate memory cell or array of
1168     ** memory cells and break out of the scan loop.
1169     */
1170     case SRT_Mem: {
1171       if( pSort ){
1172         assert( nResultCol<=pDest->nSdst );
1173         pushOntoSorter(
1174             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1175       }else{
1176         assert( nResultCol==pDest->nSdst );
1177         assert( regResult==iParm );
1178         /* The LIMIT clause will jump out of the loop for us */
1179       }
1180       break;
1181     }
1182 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1183 
1184     case SRT_Coroutine:       /* Send data to a co-routine */
1185     case SRT_Output: {        /* Return the results */
1186       testcase( eDest==SRT_Coroutine );
1187       testcase( eDest==SRT_Output );
1188       if( pSort ){
1189         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1190                        nPrefixReg);
1191       }else if( eDest==SRT_Coroutine ){
1192         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1193       }else{
1194         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1195       }
1196       break;
1197     }
1198 
1199 #ifndef SQLITE_OMIT_CTE
1200     /* Write the results into a priority queue that is order according to
1201     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1202     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1203     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1204     ** final OP_Sequence column.  The last column is the record as a blob.
1205     */
1206     case SRT_DistQueue:
1207     case SRT_Queue: {
1208       int nKey;
1209       int r1, r2, r3;
1210       int addrTest = 0;
1211       ExprList *pSO;
1212       pSO = pDest->pOrderBy;
1213       assert( pSO );
1214       nKey = pSO->nExpr;
1215       r1 = sqlite3GetTempReg(pParse);
1216       r2 = sqlite3GetTempRange(pParse, nKey+2);
1217       r3 = r2+nKey+1;
1218       if( eDest==SRT_DistQueue ){
1219         /* If the destination is DistQueue, then cursor (iParm+1) is open
1220         ** on a second ephemeral index that holds all values every previously
1221         ** added to the queue. */
1222         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1223                                         regResult, nResultCol);
1224         VdbeCoverage(v);
1225       }
1226       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1227       if( eDest==SRT_DistQueue ){
1228         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1229         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1230       }
1231       for(i=0; i<nKey; i++){
1232         sqlite3VdbeAddOp2(v, OP_SCopy,
1233                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1234                           r2+i);
1235       }
1236       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1237       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1238       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1239       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1240       sqlite3ReleaseTempReg(pParse, r1);
1241       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1242       break;
1243     }
1244 #endif /* SQLITE_OMIT_CTE */
1245 
1246 
1247 
1248 #if !defined(SQLITE_OMIT_TRIGGER)
1249     /* Discard the results.  This is used for SELECT statements inside
1250     ** the body of a TRIGGER.  The purpose of such selects is to call
1251     ** user-defined functions that have side effects.  We do not care
1252     ** about the actual results of the select.
1253     */
1254     default: {
1255       assert( eDest==SRT_Discard );
1256       break;
1257     }
1258 #endif
1259   }
1260 
1261   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1262   ** there is a sorter, in which case the sorter has already limited
1263   ** the output for us.
1264   */
1265   if( pSort==0 && p->iLimit ){
1266     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1267   }
1268 }
1269 
1270 /*
1271 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1272 ** X extra columns.
1273 */
1274 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1275   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1276   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1277   if( p ){
1278     p->aSortOrder = (u8*)&p->aColl[N+X];
1279     p->nKeyField = (u16)N;
1280     p->nAllField = (u16)(N+X);
1281     p->enc = ENC(db);
1282     p->db = db;
1283     p->nRef = 1;
1284     memset(&p[1], 0, nExtra);
1285   }else{
1286     sqlite3OomFault(db);
1287   }
1288   return p;
1289 }
1290 
1291 /*
1292 ** Deallocate a KeyInfo object
1293 */
1294 void sqlite3KeyInfoUnref(KeyInfo *p){
1295   if( p ){
1296     assert( p->nRef>0 );
1297     p->nRef--;
1298     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1299   }
1300 }
1301 
1302 /*
1303 ** Make a new pointer to a KeyInfo object
1304 */
1305 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1306   if( p ){
1307     assert( p->nRef>0 );
1308     p->nRef++;
1309   }
1310   return p;
1311 }
1312 
1313 #ifdef SQLITE_DEBUG
1314 /*
1315 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1316 ** can only be changed if this is just a single reference to the object.
1317 **
1318 ** This routine is used only inside of assert() statements.
1319 */
1320 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1321 #endif /* SQLITE_DEBUG */
1322 
1323 /*
1324 ** Given an expression list, generate a KeyInfo structure that records
1325 ** the collating sequence for each expression in that expression list.
1326 **
1327 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1328 ** KeyInfo structure is appropriate for initializing a virtual index to
1329 ** implement that clause.  If the ExprList is the result set of a SELECT
1330 ** then the KeyInfo structure is appropriate for initializing a virtual
1331 ** index to implement a DISTINCT test.
1332 **
1333 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1334 ** function is responsible for seeing that this structure is eventually
1335 ** freed.
1336 */
1337 KeyInfo *sqlite3KeyInfoFromExprList(
1338   Parse *pParse,       /* Parsing context */
1339   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1340   int iStart,          /* Begin with this column of pList */
1341   int nExtra           /* Add this many extra columns to the end */
1342 ){
1343   int nExpr;
1344   KeyInfo *pInfo;
1345   struct ExprList_item *pItem;
1346   sqlite3 *db = pParse->db;
1347   int i;
1348 
1349   nExpr = pList->nExpr;
1350   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1351   if( pInfo ){
1352     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1353     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1354       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1355       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1356     }
1357   }
1358   return pInfo;
1359 }
1360 
1361 /*
1362 ** Name of the connection operator, used for error messages.
1363 */
1364 static const char *selectOpName(int id){
1365   char *z;
1366   switch( id ){
1367     case TK_ALL:       z = "UNION ALL";   break;
1368     case TK_INTERSECT: z = "INTERSECT";   break;
1369     case TK_EXCEPT:    z = "EXCEPT";      break;
1370     default:           z = "UNION";       break;
1371   }
1372   return z;
1373 }
1374 
1375 #ifndef SQLITE_OMIT_EXPLAIN
1376 /*
1377 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1378 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1379 ** where the caption is of the form:
1380 **
1381 **   "USE TEMP B-TREE FOR xxx"
1382 **
1383 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1384 ** is determined by the zUsage argument.
1385 */
1386 static void explainTempTable(Parse *pParse, const char *zUsage){
1387   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1388 }
1389 
1390 /*
1391 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1392 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1393 ** in sqlite3Select() to assign values to structure member variables that
1394 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1395 ** code with #ifndef directives.
1396 */
1397 # define explainSetInteger(a, b) a = b
1398 
1399 #else
1400 /* No-op versions of the explainXXX() functions and macros. */
1401 # define explainTempTable(y,z)
1402 # define explainSetInteger(y,z)
1403 #endif
1404 
1405 
1406 /*
1407 ** If the inner loop was generated using a non-null pOrderBy argument,
1408 ** then the results were placed in a sorter.  After the loop is terminated
1409 ** we need to run the sorter and output the results.  The following
1410 ** routine generates the code needed to do that.
1411 */
1412 static void generateSortTail(
1413   Parse *pParse,    /* Parsing context */
1414   Select *p,        /* The SELECT statement */
1415   SortCtx *pSort,   /* Information on the ORDER BY clause */
1416   int nColumn,      /* Number of columns of data */
1417   SelectDest *pDest /* Write the sorted results here */
1418 ){
1419   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1420   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1421   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1422   int addr;                       /* Top of output loop. Jump for Next. */
1423   int addrOnce = 0;
1424   int iTab;
1425   ExprList *pOrderBy = pSort->pOrderBy;
1426   int eDest = pDest->eDest;
1427   int iParm = pDest->iSDParm;
1428   int regRow;
1429   int regRowid;
1430   int iCol;
1431   int nKey;                       /* Number of key columns in sorter record */
1432   int iSortTab;                   /* Sorter cursor to read from */
1433   int i;
1434   int bSeq;                       /* True if sorter record includes seq. no. */
1435   int nRefKey = 0;
1436   struct ExprList_item *aOutEx = p->pEList->a;
1437 
1438   assert( addrBreak<0 );
1439   if( pSort->labelBkOut ){
1440     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1441     sqlite3VdbeGoto(v, addrBreak);
1442     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1443   }
1444 
1445 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1446   /* Open any cursors needed for sorter-reference expressions */
1447   for(i=0; i<pSort->nDefer; i++){
1448     Table *pTab = pSort->aDefer[i].pTab;
1449     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1450     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1451     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1452   }
1453 #endif
1454 
1455   iTab = pSort->iECursor;
1456   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1457     regRowid = 0;
1458     regRow = pDest->iSdst;
1459   }else{
1460     regRowid = sqlite3GetTempReg(pParse);
1461     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1462       regRow = sqlite3GetTempReg(pParse);
1463       nColumn = 0;
1464     }else{
1465       regRow = sqlite3GetTempRange(pParse, nColumn);
1466     }
1467   }
1468   nKey = pOrderBy->nExpr - pSort->nOBSat;
1469   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1470     int regSortOut = ++pParse->nMem;
1471     iSortTab = pParse->nTab++;
1472     if( pSort->labelBkOut ){
1473       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1474     }
1475     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1476         nKey+1+nColumn+nRefKey);
1477     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1478     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1479     VdbeCoverage(v);
1480     codeOffset(v, p->iOffset, addrContinue);
1481     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1482     bSeq = 0;
1483   }else{
1484     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1485     codeOffset(v, p->iOffset, addrContinue);
1486     iSortTab = iTab;
1487     bSeq = 1;
1488   }
1489   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1490 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1491     if( aOutEx[i].bSorterRef ) continue;
1492 #endif
1493     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1494   }
1495 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1496   if( pSort->nDefer ){
1497     int iKey = iCol+1;
1498     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1499 
1500     for(i=0; i<pSort->nDefer; i++){
1501       int iCsr = pSort->aDefer[i].iCsr;
1502       Table *pTab = pSort->aDefer[i].pTab;
1503       int nKey = pSort->aDefer[i].nKey;
1504 
1505       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1506       if( HasRowid(pTab) ){
1507         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1508         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1509             sqlite3VdbeCurrentAddr(v)+1, regKey);
1510       }else{
1511         int k;
1512         int iJmp;
1513         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1514         for(k=0; k<nKey; k++){
1515           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1516         }
1517         iJmp = sqlite3VdbeCurrentAddr(v);
1518         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1519         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1520         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1521       }
1522     }
1523     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1524   }
1525 #endif
1526   for(i=nColumn-1; i>=0; i--){
1527 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1528     if( aOutEx[i].bSorterRef ){
1529       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1530     }else
1531 #endif
1532     {
1533       int iRead;
1534       if( aOutEx[i].u.x.iOrderByCol ){
1535         iRead = aOutEx[i].u.x.iOrderByCol-1;
1536       }else{
1537         iRead = iCol--;
1538       }
1539       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1540       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1541     }
1542   }
1543   switch( eDest ){
1544     case SRT_Table:
1545     case SRT_EphemTab: {
1546       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1547       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1548       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1549       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1550       break;
1551     }
1552 #ifndef SQLITE_OMIT_SUBQUERY
1553     case SRT_Set: {
1554       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1555       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1556                         pDest->zAffSdst, nColumn);
1557       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1558       break;
1559     }
1560     case SRT_Mem: {
1561       /* The LIMIT clause will terminate the loop for us */
1562       break;
1563     }
1564 #endif
1565     default: {
1566       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1567       testcase( eDest==SRT_Output );
1568       testcase( eDest==SRT_Coroutine );
1569       if( eDest==SRT_Output ){
1570         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1571       }else{
1572         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1573       }
1574       break;
1575     }
1576   }
1577   if( regRowid ){
1578     if( eDest==SRT_Set ){
1579       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1580     }else{
1581       sqlite3ReleaseTempReg(pParse, regRow);
1582     }
1583     sqlite3ReleaseTempReg(pParse, regRowid);
1584   }
1585   /* The bottom of the loop
1586   */
1587   sqlite3VdbeResolveLabel(v, addrContinue);
1588   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1589     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1590   }else{
1591     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1592   }
1593   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1594   sqlite3VdbeResolveLabel(v, addrBreak);
1595 }
1596 
1597 /*
1598 ** Return a pointer to a string containing the 'declaration type' of the
1599 ** expression pExpr. The string may be treated as static by the caller.
1600 **
1601 ** Also try to estimate the size of the returned value and return that
1602 ** result in *pEstWidth.
1603 **
1604 ** The declaration type is the exact datatype definition extracted from the
1605 ** original CREATE TABLE statement if the expression is a column. The
1606 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1607 ** is considered a column can be complex in the presence of subqueries. The
1608 ** result-set expression in all of the following SELECT statements is
1609 ** considered a column by this function.
1610 **
1611 **   SELECT col FROM tbl;
1612 **   SELECT (SELECT col FROM tbl;
1613 **   SELECT (SELECT col FROM tbl);
1614 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1615 **
1616 ** The declaration type for any expression other than a column is NULL.
1617 **
1618 ** This routine has either 3 or 6 parameters depending on whether or not
1619 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1620 */
1621 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1622 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1623 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1624 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1625 #endif
1626 static const char *columnTypeImpl(
1627   NameContext *pNC,
1628 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1629   Expr *pExpr
1630 #else
1631   Expr *pExpr,
1632   const char **pzOrigDb,
1633   const char **pzOrigTab,
1634   const char **pzOrigCol
1635 #endif
1636 ){
1637   char const *zType = 0;
1638   int j;
1639 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1640   char const *zOrigDb = 0;
1641   char const *zOrigTab = 0;
1642   char const *zOrigCol = 0;
1643 #endif
1644 
1645   assert( pExpr!=0 );
1646   assert( pNC->pSrcList!=0 );
1647   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1648                                        ** are processed */
1649   switch( pExpr->op ){
1650     case TK_COLUMN: {
1651       /* The expression is a column. Locate the table the column is being
1652       ** extracted from in NameContext.pSrcList. This table may be real
1653       ** database table or a subquery.
1654       */
1655       Table *pTab = 0;            /* Table structure column is extracted from */
1656       Select *pS = 0;             /* Select the column is extracted from */
1657       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1658       while( pNC && !pTab ){
1659         SrcList *pTabList = pNC->pSrcList;
1660         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1661         if( j<pTabList->nSrc ){
1662           pTab = pTabList->a[j].pTab;
1663           pS = pTabList->a[j].pSelect;
1664         }else{
1665           pNC = pNC->pNext;
1666         }
1667       }
1668 
1669       if( pTab==0 ){
1670         /* At one time, code such as "SELECT new.x" within a trigger would
1671         ** cause this condition to run.  Since then, we have restructured how
1672         ** trigger code is generated and so this condition is no longer
1673         ** possible. However, it can still be true for statements like
1674         ** the following:
1675         **
1676         **   CREATE TABLE t1(col INTEGER);
1677         **   SELECT (SELECT t1.col) FROM FROM t1;
1678         **
1679         ** when columnType() is called on the expression "t1.col" in the
1680         ** sub-select. In this case, set the column type to NULL, even
1681         ** though it should really be "INTEGER".
1682         **
1683         ** This is not a problem, as the column type of "t1.col" is never
1684         ** used. When columnType() is called on the expression
1685         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1686         ** branch below.  */
1687         break;
1688       }
1689 
1690       assert( pTab && pExpr->y.pTab==pTab );
1691       if( pS ){
1692         /* The "table" is actually a sub-select or a view in the FROM clause
1693         ** of the SELECT statement. Return the declaration type and origin
1694         ** data for the result-set column of the sub-select.
1695         */
1696         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1697           /* If iCol is less than zero, then the expression requests the
1698           ** rowid of the sub-select or view. This expression is legal (see
1699           ** test case misc2.2.2) - it always evaluates to NULL.
1700           */
1701           NameContext sNC;
1702           Expr *p = pS->pEList->a[iCol].pExpr;
1703           sNC.pSrcList = pS->pSrc;
1704           sNC.pNext = pNC;
1705           sNC.pParse = pNC->pParse;
1706           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1707         }
1708       }else{
1709         /* A real table or a CTE table */
1710         assert( !pS );
1711 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1712         if( iCol<0 ) iCol = pTab->iPKey;
1713         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1714         if( iCol<0 ){
1715           zType = "INTEGER";
1716           zOrigCol = "rowid";
1717         }else{
1718           zOrigCol = pTab->aCol[iCol].zName;
1719           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1720         }
1721         zOrigTab = pTab->zName;
1722         if( pNC->pParse && pTab->pSchema ){
1723           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1724           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1725         }
1726 #else
1727         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1728         if( iCol<0 ){
1729           zType = "INTEGER";
1730         }else{
1731           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1732         }
1733 #endif
1734       }
1735       break;
1736     }
1737 #ifndef SQLITE_OMIT_SUBQUERY
1738     case TK_SELECT: {
1739       /* The expression is a sub-select. Return the declaration type and
1740       ** origin info for the single column in the result set of the SELECT
1741       ** statement.
1742       */
1743       NameContext sNC;
1744       Select *pS = pExpr->x.pSelect;
1745       Expr *p = pS->pEList->a[0].pExpr;
1746       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1747       sNC.pSrcList = pS->pSrc;
1748       sNC.pNext = pNC;
1749       sNC.pParse = pNC->pParse;
1750       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1751       break;
1752     }
1753 #endif
1754   }
1755 
1756 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1757   if( pzOrigDb ){
1758     assert( pzOrigTab && pzOrigCol );
1759     *pzOrigDb = zOrigDb;
1760     *pzOrigTab = zOrigTab;
1761     *pzOrigCol = zOrigCol;
1762   }
1763 #endif
1764   return zType;
1765 }
1766 
1767 /*
1768 ** Generate code that will tell the VDBE the declaration types of columns
1769 ** in the result set.
1770 */
1771 static void generateColumnTypes(
1772   Parse *pParse,      /* Parser context */
1773   SrcList *pTabList,  /* List of tables */
1774   ExprList *pEList    /* Expressions defining the result set */
1775 ){
1776 #ifndef SQLITE_OMIT_DECLTYPE
1777   Vdbe *v = pParse->pVdbe;
1778   int i;
1779   NameContext sNC;
1780   sNC.pSrcList = pTabList;
1781   sNC.pParse = pParse;
1782   sNC.pNext = 0;
1783   for(i=0; i<pEList->nExpr; i++){
1784     Expr *p = pEList->a[i].pExpr;
1785     const char *zType;
1786 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1787     const char *zOrigDb = 0;
1788     const char *zOrigTab = 0;
1789     const char *zOrigCol = 0;
1790     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1791 
1792     /* The vdbe must make its own copy of the column-type and other
1793     ** column specific strings, in case the schema is reset before this
1794     ** virtual machine is deleted.
1795     */
1796     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1797     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1798     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1799 #else
1800     zType = columnType(&sNC, p, 0, 0, 0);
1801 #endif
1802     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1803   }
1804 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1805 }
1806 
1807 
1808 /*
1809 ** Compute the column names for a SELECT statement.
1810 **
1811 ** The only guarantee that SQLite makes about column names is that if the
1812 ** column has an AS clause assigning it a name, that will be the name used.
1813 ** That is the only documented guarantee.  However, countless applications
1814 ** developed over the years have made baseless assumptions about column names
1815 ** and will break if those assumptions changes.  Hence, use extreme caution
1816 ** when modifying this routine to avoid breaking legacy.
1817 **
1818 ** See Also: sqlite3ColumnsFromExprList()
1819 **
1820 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1821 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1822 ** applications should operate this way.  Nevertheless, we need to support the
1823 ** other modes for legacy:
1824 **
1825 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1826 **                              originally appears in the SELECT statement.  In
1827 **                              other words, the zSpan of the result expression.
1828 **
1829 **    short=ON, full=OFF:       (This is the default setting).  If the result
1830 **                              refers directly to a table column, then the
1831 **                              result column name is just the table column
1832 **                              name: COLUMN.  Otherwise use zSpan.
1833 **
1834 **    full=ON, short=ANY:       If the result refers directly to a table column,
1835 **                              then the result column name with the table name
1836 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1837 */
1838 static void generateColumnNames(
1839   Parse *pParse,      /* Parser context */
1840   Select *pSelect     /* Generate column names for this SELECT statement */
1841 ){
1842   Vdbe *v = pParse->pVdbe;
1843   int i;
1844   Table *pTab;
1845   SrcList *pTabList;
1846   ExprList *pEList;
1847   sqlite3 *db = pParse->db;
1848   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1849   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1850 
1851 #ifndef SQLITE_OMIT_EXPLAIN
1852   /* If this is an EXPLAIN, skip this step */
1853   if( pParse->explain ){
1854     return;
1855   }
1856 #endif
1857 
1858   if( pParse->colNamesSet ) return;
1859   /* Column names are determined by the left-most term of a compound select */
1860   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1861   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1862   pTabList = pSelect->pSrc;
1863   pEList = pSelect->pEList;
1864   assert( v!=0 );
1865   assert( pTabList!=0 );
1866   pParse->colNamesSet = 1;
1867   fullName = (db->flags & SQLITE_FullColNames)!=0;
1868   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1869   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1870   for(i=0; i<pEList->nExpr; i++){
1871     Expr *p = pEList->a[i].pExpr;
1872 
1873     assert( p!=0 );
1874     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1875     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1876     if( pEList->a[i].zName ){
1877       /* An AS clause always takes first priority */
1878       char *zName = pEList->a[i].zName;
1879       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1880     }else if( srcName && p->op==TK_COLUMN ){
1881       char *zCol;
1882       int iCol = p->iColumn;
1883       pTab = p->y.pTab;
1884       assert( pTab!=0 );
1885       if( iCol<0 ) iCol = pTab->iPKey;
1886       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1887       if( iCol<0 ){
1888         zCol = "rowid";
1889       }else{
1890         zCol = pTab->aCol[iCol].zName;
1891       }
1892       if( fullName ){
1893         char *zName = 0;
1894         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1895         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1896       }else{
1897         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1898       }
1899     }else{
1900       const char *z = pEList->a[i].zSpan;
1901       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1902       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1903     }
1904   }
1905   generateColumnTypes(pParse, pTabList, pEList);
1906 }
1907 
1908 /*
1909 ** Given an expression list (which is really the list of expressions
1910 ** that form the result set of a SELECT statement) compute appropriate
1911 ** column names for a table that would hold the expression list.
1912 **
1913 ** All column names will be unique.
1914 **
1915 ** Only the column names are computed.  Column.zType, Column.zColl,
1916 ** and other fields of Column are zeroed.
1917 **
1918 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1919 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1920 **
1921 ** The only guarantee that SQLite makes about column names is that if the
1922 ** column has an AS clause assigning it a name, that will be the name used.
1923 ** That is the only documented guarantee.  However, countless applications
1924 ** developed over the years have made baseless assumptions about column names
1925 ** and will break if those assumptions changes.  Hence, use extreme caution
1926 ** when modifying this routine to avoid breaking legacy.
1927 **
1928 ** See Also: generateColumnNames()
1929 */
1930 int sqlite3ColumnsFromExprList(
1931   Parse *pParse,          /* Parsing context */
1932   ExprList *pEList,       /* Expr list from which to derive column names */
1933   i16 *pnCol,             /* Write the number of columns here */
1934   Column **paCol          /* Write the new column list here */
1935 ){
1936   sqlite3 *db = pParse->db;   /* Database connection */
1937   int i, j;                   /* Loop counters */
1938   u32 cnt;                    /* Index added to make the name unique */
1939   Column *aCol, *pCol;        /* For looping over result columns */
1940   int nCol;                   /* Number of columns in the result set */
1941   char *zName;                /* Column name */
1942   int nName;                  /* Size of name in zName[] */
1943   Hash ht;                    /* Hash table of column names */
1944 
1945   sqlite3HashInit(&ht);
1946   if( pEList ){
1947     nCol = pEList->nExpr;
1948     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1949     testcase( aCol==0 );
1950     if( nCol>32767 ) nCol = 32767;
1951   }else{
1952     nCol = 0;
1953     aCol = 0;
1954   }
1955   assert( nCol==(i16)nCol );
1956   *pnCol = nCol;
1957   *paCol = aCol;
1958 
1959   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1960     /* Get an appropriate name for the column
1961     */
1962     if( (zName = pEList->a[i].zName)!=0 ){
1963       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1964     }else{
1965       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1966       while( pColExpr->op==TK_DOT ){
1967         pColExpr = pColExpr->pRight;
1968         assert( pColExpr!=0 );
1969       }
1970       assert( pColExpr->op!=TK_AGG_COLUMN );
1971       if( pColExpr->op==TK_COLUMN ){
1972         /* For columns use the column name name */
1973         int iCol = pColExpr->iColumn;
1974         Table *pTab = pColExpr->y.pTab;
1975         assert( pTab!=0 );
1976         if( iCol<0 ) iCol = pTab->iPKey;
1977         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1978       }else if( pColExpr->op==TK_ID ){
1979         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1980         zName = pColExpr->u.zToken;
1981       }else{
1982         /* Use the original text of the column expression as its name */
1983         zName = pEList->a[i].zSpan;
1984       }
1985     }
1986     if( zName ){
1987       zName = sqlite3DbStrDup(db, zName);
1988     }else{
1989       zName = sqlite3MPrintf(db,"column%d",i+1);
1990     }
1991 
1992     /* Make sure the column name is unique.  If the name is not unique,
1993     ** append an integer to the name so that it becomes unique.
1994     */
1995     cnt = 0;
1996     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1997       nName = sqlite3Strlen30(zName);
1998       if( nName>0 ){
1999         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2000         if( zName[j]==':' ) nName = j;
2001       }
2002       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2003       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2004     }
2005     pCol->zName = zName;
2006     sqlite3ColumnPropertiesFromName(0, pCol);
2007     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2008       sqlite3OomFault(db);
2009     }
2010   }
2011   sqlite3HashClear(&ht);
2012   if( db->mallocFailed ){
2013     for(j=0; j<i; j++){
2014       sqlite3DbFree(db, aCol[j].zName);
2015     }
2016     sqlite3DbFree(db, aCol);
2017     *paCol = 0;
2018     *pnCol = 0;
2019     return SQLITE_NOMEM_BKPT;
2020   }
2021   return SQLITE_OK;
2022 }
2023 
2024 /*
2025 ** Add type and collation information to a column list based on
2026 ** a SELECT statement.
2027 **
2028 ** The column list presumably came from selectColumnNamesFromExprList().
2029 ** The column list has only names, not types or collations.  This
2030 ** routine goes through and adds the types and collations.
2031 **
2032 ** This routine requires that all identifiers in the SELECT
2033 ** statement be resolved.
2034 */
2035 void sqlite3SelectAddColumnTypeAndCollation(
2036   Parse *pParse,        /* Parsing contexts */
2037   Table *pTab,          /* Add column type information to this table */
2038   Select *pSelect       /* SELECT used to determine types and collations */
2039 ){
2040   sqlite3 *db = pParse->db;
2041   NameContext sNC;
2042   Column *pCol;
2043   CollSeq *pColl;
2044   int i;
2045   Expr *p;
2046   struct ExprList_item *a;
2047 
2048   assert( pSelect!=0 );
2049   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2050   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2051   if( db->mallocFailed ) return;
2052   memset(&sNC, 0, sizeof(sNC));
2053   sNC.pSrcList = pSelect->pSrc;
2054   a = pSelect->pEList->a;
2055   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2056     const char *zType;
2057     int n, m;
2058     p = a[i].pExpr;
2059     zType = columnType(&sNC, p, 0, 0, 0);
2060     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2061     pCol->affinity = sqlite3ExprAffinity(p);
2062     if( zType ){
2063       m = sqlite3Strlen30(zType);
2064       n = sqlite3Strlen30(pCol->zName);
2065       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2066       if( pCol->zName ){
2067         memcpy(&pCol->zName[n+1], zType, m+1);
2068         pCol->colFlags |= COLFLAG_HASTYPE;
2069       }
2070     }
2071     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2072     pColl = sqlite3ExprCollSeq(pParse, p);
2073     if( pColl && pCol->zColl==0 ){
2074       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2075     }
2076   }
2077   pTab->szTabRow = 1; /* Any non-zero value works */
2078 }
2079 
2080 /*
2081 ** Given a SELECT statement, generate a Table structure that describes
2082 ** the result set of that SELECT.
2083 */
2084 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2085   Table *pTab;
2086   sqlite3 *db = pParse->db;
2087   u64 savedFlags;
2088 
2089   savedFlags = db->flags;
2090   db->flags &= ~(u64)SQLITE_FullColNames;
2091   db->flags |= SQLITE_ShortColNames;
2092   sqlite3SelectPrep(pParse, pSelect, 0);
2093   db->flags = savedFlags;
2094   if( pParse->nErr ) return 0;
2095   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2096   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2097   if( pTab==0 ){
2098     return 0;
2099   }
2100   pTab->nTabRef = 1;
2101   pTab->zName = 0;
2102   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2103   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2104   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2105   pTab->iPKey = -1;
2106   if( db->mallocFailed ){
2107     sqlite3DeleteTable(db, pTab);
2108     return 0;
2109   }
2110   return pTab;
2111 }
2112 
2113 /*
2114 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2115 ** If an error occurs, return NULL and leave a message in pParse.
2116 */
2117 Vdbe *sqlite3GetVdbe(Parse *pParse){
2118   if( pParse->pVdbe ){
2119     return pParse->pVdbe;
2120   }
2121   if( pParse->pToplevel==0
2122    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2123   ){
2124     pParse->okConstFactor = 1;
2125   }
2126   return sqlite3VdbeCreate(pParse);
2127 }
2128 
2129 
2130 /*
2131 ** Compute the iLimit and iOffset fields of the SELECT based on the
2132 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2133 ** that appear in the original SQL statement after the LIMIT and OFFSET
2134 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2135 ** are the integer memory register numbers for counters used to compute
2136 ** the limit and offset.  If there is no limit and/or offset, then
2137 ** iLimit and iOffset are negative.
2138 **
2139 ** This routine changes the values of iLimit and iOffset only if
2140 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2141 ** and iOffset should have been preset to appropriate default values (zero)
2142 ** prior to calling this routine.
2143 **
2144 ** The iOffset register (if it exists) is initialized to the value
2145 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2146 ** iOffset+1 is initialized to LIMIT+OFFSET.
2147 **
2148 ** Only if pLimit->pLeft!=0 do the limit registers get
2149 ** redefined.  The UNION ALL operator uses this property to force
2150 ** the reuse of the same limit and offset registers across multiple
2151 ** SELECT statements.
2152 */
2153 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2154   Vdbe *v = 0;
2155   int iLimit = 0;
2156   int iOffset;
2157   int n;
2158   Expr *pLimit = p->pLimit;
2159 
2160   if( p->iLimit ) return;
2161 
2162   /*
2163   ** "LIMIT -1" always shows all rows.  There is some
2164   ** controversy about what the correct behavior should be.
2165   ** The current implementation interprets "LIMIT 0" to mean
2166   ** no rows.
2167   */
2168   if( pLimit ){
2169     assert( pLimit->op==TK_LIMIT );
2170     assert( pLimit->pLeft!=0 );
2171     p->iLimit = iLimit = ++pParse->nMem;
2172     v = sqlite3GetVdbe(pParse);
2173     assert( v!=0 );
2174     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2175       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2176       VdbeComment((v, "LIMIT counter"));
2177       if( n==0 ){
2178         sqlite3VdbeGoto(v, iBreak);
2179       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2180         p->nSelectRow = sqlite3LogEst((u64)n);
2181         p->selFlags |= SF_FixedLimit;
2182       }
2183     }else{
2184       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2185       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2186       VdbeComment((v, "LIMIT counter"));
2187       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2188     }
2189     if( pLimit->pRight ){
2190       p->iOffset = iOffset = ++pParse->nMem;
2191       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2192       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2193       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2194       VdbeComment((v, "OFFSET counter"));
2195       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2196       VdbeComment((v, "LIMIT+OFFSET"));
2197     }
2198   }
2199 }
2200 
2201 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2202 /*
2203 ** Return the appropriate collating sequence for the iCol-th column of
2204 ** the result set for the compound-select statement "p".  Return NULL if
2205 ** the column has no default collating sequence.
2206 **
2207 ** The collating sequence for the compound select is taken from the
2208 ** left-most term of the select that has a collating sequence.
2209 */
2210 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2211   CollSeq *pRet;
2212   if( p->pPrior ){
2213     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2214   }else{
2215     pRet = 0;
2216   }
2217   assert( iCol>=0 );
2218   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2219   ** have been thrown during name resolution and we would not have gotten
2220   ** this far */
2221   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2222     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2223   }
2224   return pRet;
2225 }
2226 
2227 /*
2228 ** The select statement passed as the second parameter is a compound SELECT
2229 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2230 ** structure suitable for implementing the ORDER BY.
2231 **
2232 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2233 ** function is responsible for ensuring that this structure is eventually
2234 ** freed.
2235 */
2236 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2237   ExprList *pOrderBy = p->pOrderBy;
2238   int nOrderBy = p->pOrderBy->nExpr;
2239   sqlite3 *db = pParse->db;
2240   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2241   if( pRet ){
2242     int i;
2243     for(i=0; i<nOrderBy; i++){
2244       struct ExprList_item *pItem = &pOrderBy->a[i];
2245       Expr *pTerm = pItem->pExpr;
2246       CollSeq *pColl;
2247 
2248       if( pTerm->flags & EP_Collate ){
2249         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2250       }else{
2251         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2252         if( pColl==0 ) pColl = db->pDfltColl;
2253         pOrderBy->a[i].pExpr =
2254           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2255       }
2256       assert( sqlite3KeyInfoIsWriteable(pRet) );
2257       pRet->aColl[i] = pColl;
2258       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2259     }
2260   }
2261 
2262   return pRet;
2263 }
2264 
2265 #ifndef SQLITE_OMIT_CTE
2266 /*
2267 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2268 ** query of the form:
2269 **
2270 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2271 **                         \___________/             \_______________/
2272 **                           p->pPrior                      p
2273 **
2274 **
2275 ** There is exactly one reference to the recursive-table in the FROM clause
2276 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2277 **
2278 ** The setup-query runs once to generate an initial set of rows that go
2279 ** into a Queue table.  Rows are extracted from the Queue table one by
2280 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2281 ** extracted row (now in the iCurrent table) becomes the content of the
2282 ** recursive-table for a recursive-query run.  The output of the recursive-query
2283 ** is added back into the Queue table.  Then another row is extracted from Queue
2284 ** and the iteration continues until the Queue table is empty.
2285 **
2286 ** If the compound query operator is UNION then no duplicate rows are ever
2287 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2288 ** that have ever been inserted into Queue and causes duplicates to be
2289 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2290 **
2291 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2292 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2293 ** an ORDER BY, the Queue table is just a FIFO.
2294 **
2295 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2296 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2297 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2298 ** with a positive value, then the first OFFSET outputs are discarded rather
2299 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2300 ** rows have been skipped.
2301 */
2302 static void generateWithRecursiveQuery(
2303   Parse *pParse,        /* Parsing context */
2304   Select *p,            /* The recursive SELECT to be coded */
2305   SelectDest *pDest     /* What to do with query results */
2306 ){
2307   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2308   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2309   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2310   Select *pSetup = p->pPrior;   /* The setup query */
2311   int addrTop;                  /* Top of the loop */
2312   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2313   int iCurrent = 0;             /* The Current table */
2314   int regCurrent;               /* Register holding Current table */
2315   int iQueue;                   /* The Queue table */
2316   int iDistinct = 0;            /* To ensure unique results if UNION */
2317   int eDest = SRT_Fifo;         /* How to write to Queue */
2318   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2319   int i;                        /* Loop counter */
2320   int rc;                       /* Result code */
2321   ExprList *pOrderBy;           /* The ORDER BY clause */
2322   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2323   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2324 
2325 #ifndef SQLITE_OMIT_WINDOWFUNC
2326   if( p->pWin ){
2327     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2328     return;
2329   }
2330 #endif
2331 
2332   /* Obtain authorization to do a recursive query */
2333   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2334 
2335   /* Process the LIMIT and OFFSET clauses, if they exist */
2336   addrBreak = sqlite3VdbeMakeLabel(pParse);
2337   p->nSelectRow = 320;  /* 4 billion rows */
2338   computeLimitRegisters(pParse, p, addrBreak);
2339   pLimit = p->pLimit;
2340   regLimit = p->iLimit;
2341   regOffset = p->iOffset;
2342   p->pLimit = 0;
2343   p->iLimit = p->iOffset = 0;
2344   pOrderBy = p->pOrderBy;
2345 
2346   /* Locate the cursor number of the Current table */
2347   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2348     if( pSrc->a[i].fg.isRecursive ){
2349       iCurrent = pSrc->a[i].iCursor;
2350       break;
2351     }
2352   }
2353 
2354   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2355   ** the Distinct table must be exactly one greater than Queue in order
2356   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2357   iQueue = pParse->nTab++;
2358   if( p->op==TK_UNION ){
2359     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2360     iDistinct = pParse->nTab++;
2361   }else{
2362     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2363   }
2364   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2365 
2366   /* Allocate cursors for Current, Queue, and Distinct. */
2367   regCurrent = ++pParse->nMem;
2368   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2369   if( pOrderBy ){
2370     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2371     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2372                       (char*)pKeyInfo, P4_KEYINFO);
2373     destQueue.pOrderBy = pOrderBy;
2374   }else{
2375     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2376   }
2377   VdbeComment((v, "Queue table"));
2378   if( iDistinct ){
2379     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2380     p->selFlags |= SF_UsesEphemeral;
2381   }
2382 
2383   /* Detach the ORDER BY clause from the compound SELECT */
2384   p->pOrderBy = 0;
2385 
2386   /* Store the results of the setup-query in Queue. */
2387   pSetup->pNext = 0;
2388   ExplainQueryPlan((pParse, 1, "SETUP"));
2389   rc = sqlite3Select(pParse, pSetup, &destQueue);
2390   pSetup->pNext = p;
2391   if( rc ) goto end_of_recursive_query;
2392 
2393   /* Find the next row in the Queue and output that row */
2394   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2395 
2396   /* Transfer the next row in Queue over to Current */
2397   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2398   if( pOrderBy ){
2399     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2400   }else{
2401     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2402   }
2403   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2404 
2405   /* Output the single row in Current */
2406   addrCont = sqlite3VdbeMakeLabel(pParse);
2407   codeOffset(v, regOffset, addrCont);
2408   selectInnerLoop(pParse, p, iCurrent,
2409       0, 0, pDest, addrCont, addrBreak);
2410   if( regLimit ){
2411     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2412     VdbeCoverage(v);
2413   }
2414   sqlite3VdbeResolveLabel(v, addrCont);
2415 
2416   /* Execute the recursive SELECT taking the single row in Current as
2417   ** the value for the recursive-table. Store the results in the Queue.
2418   */
2419   if( p->selFlags & SF_Aggregate ){
2420     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2421   }else{
2422     p->pPrior = 0;
2423     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2424     sqlite3Select(pParse, p, &destQueue);
2425     assert( p->pPrior==0 );
2426     p->pPrior = pSetup;
2427   }
2428 
2429   /* Keep running the loop until the Queue is empty */
2430   sqlite3VdbeGoto(v, addrTop);
2431   sqlite3VdbeResolveLabel(v, addrBreak);
2432 
2433 end_of_recursive_query:
2434   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2435   p->pOrderBy = pOrderBy;
2436   p->pLimit = pLimit;
2437   return;
2438 }
2439 #endif /* SQLITE_OMIT_CTE */
2440 
2441 /* Forward references */
2442 static int multiSelectOrderBy(
2443   Parse *pParse,        /* Parsing context */
2444   Select *p,            /* The right-most of SELECTs to be coded */
2445   SelectDest *pDest     /* What to do with query results */
2446 );
2447 
2448 /*
2449 ** Handle the special case of a compound-select that originates from a
2450 ** VALUES clause.  By handling this as a special case, we avoid deep
2451 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2452 ** on a VALUES clause.
2453 **
2454 ** Because the Select object originates from a VALUES clause:
2455 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2456 **   (2) All terms are UNION ALL
2457 **   (3) There is no ORDER BY clause
2458 **
2459 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2460 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2461 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2462 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2463 */
2464 static int multiSelectValues(
2465   Parse *pParse,        /* Parsing context */
2466   Select *p,            /* The right-most of SELECTs to be coded */
2467   SelectDest *pDest     /* What to do with query results */
2468 ){
2469   int nRow = 1;
2470   int rc = 0;
2471   int bShowAll = p->pLimit==0;
2472   assert( p->selFlags & SF_MultiValue );
2473   do{
2474     assert( p->selFlags & SF_Values );
2475     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2476     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2477     if( p->pPrior==0 ) break;
2478     assert( p->pPrior->pNext==p );
2479     p = p->pPrior;
2480     nRow += bShowAll;
2481   }while(1);
2482   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2483                     nRow==1 ? "" : "S"));
2484   while( p ){
2485     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2486     if( !bShowAll ) break;
2487     p->nSelectRow = nRow;
2488     p = p->pNext;
2489   }
2490   return rc;
2491 }
2492 
2493 /*
2494 ** This routine is called to process a compound query form from
2495 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2496 ** INTERSECT
2497 **
2498 ** "p" points to the right-most of the two queries.  the query on the
2499 ** left is p->pPrior.  The left query could also be a compound query
2500 ** in which case this routine will be called recursively.
2501 **
2502 ** The results of the total query are to be written into a destination
2503 ** of type eDest with parameter iParm.
2504 **
2505 ** Example 1:  Consider a three-way compound SQL statement.
2506 **
2507 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2508 **
2509 ** This statement is parsed up as follows:
2510 **
2511 **     SELECT c FROM t3
2512 **      |
2513 **      `----->  SELECT b FROM t2
2514 **                |
2515 **                `------>  SELECT a FROM t1
2516 **
2517 ** The arrows in the diagram above represent the Select.pPrior pointer.
2518 ** So if this routine is called with p equal to the t3 query, then
2519 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2520 **
2521 ** Notice that because of the way SQLite parses compound SELECTs, the
2522 ** individual selects always group from left to right.
2523 */
2524 static int multiSelect(
2525   Parse *pParse,        /* Parsing context */
2526   Select *p,            /* The right-most of SELECTs to be coded */
2527   SelectDest *pDest     /* What to do with query results */
2528 ){
2529   int rc = SQLITE_OK;   /* Success code from a subroutine */
2530   Select *pPrior;       /* Another SELECT immediately to our left */
2531   Vdbe *v;              /* Generate code to this VDBE */
2532   SelectDest dest;      /* Alternative data destination */
2533   Select *pDelete = 0;  /* Chain of simple selects to delete */
2534   sqlite3 *db;          /* Database connection */
2535 
2536   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2537   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2538   */
2539   assert( p && p->pPrior );  /* Calling function guarantees this much */
2540   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2541   assert( p->selFlags & SF_Compound );
2542   db = pParse->db;
2543   pPrior = p->pPrior;
2544   dest = *pDest;
2545   if( pPrior->pOrderBy || pPrior->pLimit ){
2546     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2547       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2548     rc = 1;
2549     goto multi_select_end;
2550   }
2551 
2552   v = sqlite3GetVdbe(pParse);
2553   assert( v!=0 );  /* The VDBE already created by calling function */
2554 
2555   /* Create the destination temporary table if necessary
2556   */
2557   if( dest.eDest==SRT_EphemTab ){
2558     assert( p->pEList );
2559     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2560     dest.eDest = SRT_Table;
2561   }
2562 
2563   /* Special handling for a compound-select that originates as a VALUES clause.
2564   */
2565   if( p->selFlags & SF_MultiValue ){
2566     rc = multiSelectValues(pParse, p, &dest);
2567     goto multi_select_end;
2568   }
2569 
2570   /* Make sure all SELECTs in the statement have the same number of elements
2571   ** in their result sets.
2572   */
2573   assert( p->pEList && pPrior->pEList );
2574   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2575 
2576 #ifndef SQLITE_OMIT_CTE
2577   if( p->selFlags & SF_Recursive ){
2578     generateWithRecursiveQuery(pParse, p, &dest);
2579   }else
2580 #endif
2581 
2582   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2583   */
2584   if( p->pOrderBy ){
2585     return multiSelectOrderBy(pParse, p, pDest);
2586   }else{
2587 
2588 #ifndef SQLITE_OMIT_EXPLAIN
2589     if( pPrior->pPrior==0 ){
2590       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2591       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2592     }
2593 #endif
2594 
2595     /* Generate code for the left and right SELECT statements.
2596     */
2597     switch( p->op ){
2598       case TK_ALL: {
2599         int addr = 0;
2600         int nLimit;
2601         assert( !pPrior->pLimit );
2602         pPrior->iLimit = p->iLimit;
2603         pPrior->iOffset = p->iOffset;
2604         pPrior->pLimit = p->pLimit;
2605         rc = sqlite3Select(pParse, pPrior, &dest);
2606         p->pLimit = 0;
2607         if( rc ){
2608           goto multi_select_end;
2609         }
2610         p->pPrior = 0;
2611         p->iLimit = pPrior->iLimit;
2612         p->iOffset = pPrior->iOffset;
2613         if( p->iLimit ){
2614           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2615           VdbeComment((v, "Jump ahead if LIMIT reached"));
2616           if( p->iOffset ){
2617             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2618                               p->iLimit, p->iOffset+1, p->iOffset);
2619           }
2620         }
2621         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2622         rc = sqlite3Select(pParse, p, &dest);
2623         testcase( rc!=SQLITE_OK );
2624         pDelete = p->pPrior;
2625         p->pPrior = pPrior;
2626         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2627         if( pPrior->pLimit
2628          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2629          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2630         ){
2631           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2632         }
2633         if( addr ){
2634           sqlite3VdbeJumpHere(v, addr);
2635         }
2636         break;
2637       }
2638       case TK_EXCEPT:
2639       case TK_UNION: {
2640         int unionTab;    /* Cursor number of the temp table holding result */
2641         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2642         int priorOp;     /* The SRT_ operation to apply to prior selects */
2643         Expr *pLimit;    /* Saved values of p->nLimit  */
2644         int addr;
2645         SelectDest uniondest;
2646 
2647         testcase( p->op==TK_EXCEPT );
2648         testcase( p->op==TK_UNION );
2649         priorOp = SRT_Union;
2650         if( dest.eDest==priorOp ){
2651           /* We can reuse a temporary table generated by a SELECT to our
2652           ** right.
2653           */
2654           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2655           unionTab = dest.iSDParm;
2656         }else{
2657           /* We will need to create our own temporary table to hold the
2658           ** intermediate results.
2659           */
2660           unionTab = pParse->nTab++;
2661           assert( p->pOrderBy==0 );
2662           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2663           assert( p->addrOpenEphm[0] == -1 );
2664           p->addrOpenEphm[0] = addr;
2665           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2666           assert( p->pEList );
2667         }
2668 
2669         /* Code the SELECT statements to our left
2670         */
2671         assert( !pPrior->pOrderBy );
2672         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2673         rc = sqlite3Select(pParse, pPrior, &uniondest);
2674         if( rc ){
2675           goto multi_select_end;
2676         }
2677 
2678         /* Code the current SELECT statement
2679         */
2680         if( p->op==TK_EXCEPT ){
2681           op = SRT_Except;
2682         }else{
2683           assert( p->op==TK_UNION );
2684           op = SRT_Union;
2685         }
2686         p->pPrior = 0;
2687         pLimit = p->pLimit;
2688         p->pLimit = 0;
2689         uniondest.eDest = op;
2690         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2691                           selectOpName(p->op)));
2692         rc = sqlite3Select(pParse, p, &uniondest);
2693         testcase( rc!=SQLITE_OK );
2694         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2695         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2696         sqlite3ExprListDelete(db, p->pOrderBy);
2697         pDelete = p->pPrior;
2698         p->pPrior = pPrior;
2699         p->pOrderBy = 0;
2700         if( p->op==TK_UNION ){
2701           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2702         }
2703         sqlite3ExprDelete(db, p->pLimit);
2704         p->pLimit = pLimit;
2705         p->iLimit = 0;
2706         p->iOffset = 0;
2707 
2708         /* Convert the data in the temporary table into whatever form
2709         ** it is that we currently need.
2710         */
2711         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2712         if( dest.eDest!=priorOp ){
2713           int iCont, iBreak, iStart;
2714           assert( p->pEList );
2715           iBreak = sqlite3VdbeMakeLabel(pParse);
2716           iCont = sqlite3VdbeMakeLabel(pParse);
2717           computeLimitRegisters(pParse, p, iBreak);
2718           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2719           iStart = sqlite3VdbeCurrentAddr(v);
2720           selectInnerLoop(pParse, p, unionTab,
2721                           0, 0, &dest, iCont, iBreak);
2722           sqlite3VdbeResolveLabel(v, iCont);
2723           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2724           sqlite3VdbeResolveLabel(v, iBreak);
2725           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2726         }
2727         break;
2728       }
2729       default: assert( p->op==TK_INTERSECT ); {
2730         int tab1, tab2;
2731         int iCont, iBreak, iStart;
2732         Expr *pLimit;
2733         int addr;
2734         SelectDest intersectdest;
2735         int r1;
2736 
2737         /* INTERSECT is different from the others since it requires
2738         ** two temporary tables.  Hence it has its own case.  Begin
2739         ** by allocating the tables we will need.
2740         */
2741         tab1 = pParse->nTab++;
2742         tab2 = pParse->nTab++;
2743         assert( p->pOrderBy==0 );
2744 
2745         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2746         assert( p->addrOpenEphm[0] == -1 );
2747         p->addrOpenEphm[0] = addr;
2748         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2749         assert( p->pEList );
2750 
2751         /* Code the SELECTs to our left into temporary table "tab1".
2752         */
2753         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2754         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2755         if( rc ){
2756           goto multi_select_end;
2757         }
2758 
2759         /* Code the current SELECT into temporary table "tab2"
2760         */
2761         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2762         assert( p->addrOpenEphm[1] == -1 );
2763         p->addrOpenEphm[1] = addr;
2764         p->pPrior = 0;
2765         pLimit = p->pLimit;
2766         p->pLimit = 0;
2767         intersectdest.iSDParm = tab2;
2768         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2769                           selectOpName(p->op)));
2770         rc = sqlite3Select(pParse, p, &intersectdest);
2771         testcase( rc!=SQLITE_OK );
2772         pDelete = p->pPrior;
2773         p->pPrior = pPrior;
2774         if( p->nSelectRow>pPrior->nSelectRow ){
2775           p->nSelectRow = pPrior->nSelectRow;
2776         }
2777         sqlite3ExprDelete(db, p->pLimit);
2778         p->pLimit = pLimit;
2779 
2780         /* Generate code to take the intersection of the two temporary
2781         ** tables.
2782         */
2783         assert( p->pEList );
2784         iBreak = sqlite3VdbeMakeLabel(pParse);
2785         iCont = sqlite3VdbeMakeLabel(pParse);
2786         computeLimitRegisters(pParse, p, iBreak);
2787         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2788         r1 = sqlite3GetTempReg(pParse);
2789         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2790         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2791         VdbeCoverage(v);
2792         sqlite3ReleaseTempReg(pParse, r1);
2793         selectInnerLoop(pParse, p, tab1,
2794                         0, 0, &dest, iCont, iBreak);
2795         sqlite3VdbeResolveLabel(v, iCont);
2796         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2797         sqlite3VdbeResolveLabel(v, iBreak);
2798         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2799         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2800         break;
2801       }
2802     }
2803 
2804   #ifndef SQLITE_OMIT_EXPLAIN
2805     if( p->pNext==0 ){
2806       ExplainQueryPlanPop(pParse);
2807     }
2808   #endif
2809   }
2810 
2811   /* Compute collating sequences used by
2812   ** temporary tables needed to implement the compound select.
2813   ** Attach the KeyInfo structure to all temporary tables.
2814   **
2815   ** This section is run by the right-most SELECT statement only.
2816   ** SELECT statements to the left always skip this part.  The right-most
2817   ** SELECT might also skip this part if it has no ORDER BY clause and
2818   ** no temp tables are required.
2819   */
2820   if( p->selFlags & SF_UsesEphemeral ){
2821     int i;                        /* Loop counter */
2822     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2823     Select *pLoop;                /* For looping through SELECT statements */
2824     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2825     int nCol;                     /* Number of columns in result set */
2826 
2827     assert( p->pNext==0 );
2828     nCol = p->pEList->nExpr;
2829     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2830     if( !pKeyInfo ){
2831       rc = SQLITE_NOMEM_BKPT;
2832       goto multi_select_end;
2833     }
2834     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2835       *apColl = multiSelectCollSeq(pParse, p, i);
2836       if( 0==*apColl ){
2837         *apColl = db->pDfltColl;
2838       }
2839     }
2840 
2841     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2842       for(i=0; i<2; i++){
2843         int addr = pLoop->addrOpenEphm[i];
2844         if( addr<0 ){
2845           /* If [0] is unused then [1] is also unused.  So we can
2846           ** always safely abort as soon as the first unused slot is found */
2847           assert( pLoop->addrOpenEphm[1]<0 );
2848           break;
2849         }
2850         sqlite3VdbeChangeP2(v, addr, nCol);
2851         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2852                             P4_KEYINFO);
2853         pLoop->addrOpenEphm[i] = -1;
2854       }
2855     }
2856     sqlite3KeyInfoUnref(pKeyInfo);
2857   }
2858 
2859 multi_select_end:
2860   pDest->iSdst = dest.iSdst;
2861   pDest->nSdst = dest.nSdst;
2862   sqlite3SelectDelete(db, pDelete);
2863   return rc;
2864 }
2865 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2866 
2867 /*
2868 ** Error message for when two or more terms of a compound select have different
2869 ** size result sets.
2870 */
2871 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2872   if( p->selFlags & SF_Values ){
2873     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2874   }else{
2875     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2876       " do not have the same number of result columns", selectOpName(p->op));
2877   }
2878 }
2879 
2880 /*
2881 ** Code an output subroutine for a coroutine implementation of a
2882 ** SELECT statment.
2883 **
2884 ** The data to be output is contained in pIn->iSdst.  There are
2885 ** pIn->nSdst columns to be output.  pDest is where the output should
2886 ** be sent.
2887 **
2888 ** regReturn is the number of the register holding the subroutine
2889 ** return address.
2890 **
2891 ** If regPrev>0 then it is the first register in a vector that
2892 ** records the previous output.  mem[regPrev] is a flag that is false
2893 ** if there has been no previous output.  If regPrev>0 then code is
2894 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2895 ** keys.
2896 **
2897 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2898 ** iBreak.
2899 */
2900 static int generateOutputSubroutine(
2901   Parse *pParse,          /* Parsing context */
2902   Select *p,              /* The SELECT statement */
2903   SelectDest *pIn,        /* Coroutine supplying data */
2904   SelectDest *pDest,      /* Where to send the data */
2905   int regReturn,          /* The return address register */
2906   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2907   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2908   int iBreak              /* Jump here if we hit the LIMIT */
2909 ){
2910   Vdbe *v = pParse->pVdbe;
2911   int iContinue;
2912   int addr;
2913 
2914   addr = sqlite3VdbeCurrentAddr(v);
2915   iContinue = sqlite3VdbeMakeLabel(pParse);
2916 
2917   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2918   */
2919   if( regPrev ){
2920     int addr1, addr2;
2921     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2922     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2923                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2924     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2925     sqlite3VdbeJumpHere(v, addr1);
2926     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2927     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2928   }
2929   if( pParse->db->mallocFailed ) return 0;
2930 
2931   /* Suppress the first OFFSET entries if there is an OFFSET clause
2932   */
2933   codeOffset(v, p->iOffset, iContinue);
2934 
2935   assert( pDest->eDest!=SRT_Exists );
2936   assert( pDest->eDest!=SRT_Table );
2937   switch( pDest->eDest ){
2938     /* Store the result as data using a unique key.
2939     */
2940     case SRT_EphemTab: {
2941       int r1 = sqlite3GetTempReg(pParse);
2942       int r2 = sqlite3GetTempReg(pParse);
2943       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2944       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2945       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2946       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2947       sqlite3ReleaseTempReg(pParse, r2);
2948       sqlite3ReleaseTempReg(pParse, r1);
2949       break;
2950     }
2951 
2952 #ifndef SQLITE_OMIT_SUBQUERY
2953     /* If we are creating a set for an "expr IN (SELECT ...)".
2954     */
2955     case SRT_Set: {
2956       int r1;
2957       testcase( pIn->nSdst>1 );
2958       r1 = sqlite3GetTempReg(pParse);
2959       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2960           r1, pDest->zAffSdst, pIn->nSdst);
2961       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2962                            pIn->iSdst, pIn->nSdst);
2963       sqlite3ReleaseTempReg(pParse, r1);
2964       break;
2965     }
2966 
2967     /* If this is a scalar select that is part of an expression, then
2968     ** store the results in the appropriate memory cell and break out
2969     ** of the scan loop.
2970     */
2971     case SRT_Mem: {
2972       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2973       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2974       /* The LIMIT clause will jump out of the loop for us */
2975       break;
2976     }
2977 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2978 
2979     /* The results are stored in a sequence of registers
2980     ** starting at pDest->iSdst.  Then the co-routine yields.
2981     */
2982     case SRT_Coroutine: {
2983       if( pDest->iSdst==0 ){
2984         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2985         pDest->nSdst = pIn->nSdst;
2986       }
2987       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2988       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2989       break;
2990     }
2991 
2992     /* If none of the above, then the result destination must be
2993     ** SRT_Output.  This routine is never called with any other
2994     ** destination other than the ones handled above or SRT_Output.
2995     **
2996     ** For SRT_Output, results are stored in a sequence of registers.
2997     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2998     ** return the next row of result.
2999     */
3000     default: {
3001       assert( pDest->eDest==SRT_Output );
3002       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3003       break;
3004     }
3005   }
3006 
3007   /* Jump to the end of the loop if the LIMIT is reached.
3008   */
3009   if( p->iLimit ){
3010     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3011   }
3012 
3013   /* Generate the subroutine return
3014   */
3015   sqlite3VdbeResolveLabel(v, iContinue);
3016   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3017 
3018   return addr;
3019 }
3020 
3021 /*
3022 ** Alternative compound select code generator for cases when there
3023 ** is an ORDER BY clause.
3024 **
3025 ** We assume a query of the following form:
3026 **
3027 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3028 **
3029 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3030 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3031 ** co-routines.  Then run the co-routines in parallel and merge the results
3032 ** into the output.  In addition to the two coroutines (called selectA and
3033 ** selectB) there are 7 subroutines:
3034 **
3035 **    outA:    Move the output of the selectA coroutine into the output
3036 **             of the compound query.
3037 **
3038 **    outB:    Move the output of the selectB coroutine into the output
3039 **             of the compound query.  (Only generated for UNION and
3040 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3041 **             appears only in B.)
3042 **
3043 **    AltB:    Called when there is data from both coroutines and A<B.
3044 **
3045 **    AeqB:    Called when there is data from both coroutines and A==B.
3046 **
3047 **    AgtB:    Called when there is data from both coroutines and A>B.
3048 **
3049 **    EofA:    Called when data is exhausted from selectA.
3050 **
3051 **    EofB:    Called when data is exhausted from selectB.
3052 **
3053 ** The implementation of the latter five subroutines depend on which
3054 ** <operator> is used:
3055 **
3056 **
3057 **             UNION ALL         UNION            EXCEPT          INTERSECT
3058 **          -------------  -----------------  --------------  -----------------
3059 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3060 **
3061 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3062 **
3063 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3064 **
3065 **   EofA:   outB, nextB      outB, nextB          halt             halt
3066 **
3067 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3068 **
3069 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3070 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3071 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3072 ** following nextX causes a jump to the end of the select processing.
3073 **
3074 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3075 ** within the output subroutine.  The regPrev register set holds the previously
3076 ** output value.  A comparison is made against this value and the output
3077 ** is skipped if the next results would be the same as the previous.
3078 **
3079 ** The implementation plan is to implement the two coroutines and seven
3080 ** subroutines first, then put the control logic at the bottom.  Like this:
3081 **
3082 **          goto Init
3083 **     coA: coroutine for left query (A)
3084 **     coB: coroutine for right query (B)
3085 **    outA: output one row of A
3086 **    outB: output one row of B (UNION and UNION ALL only)
3087 **    EofA: ...
3088 **    EofB: ...
3089 **    AltB: ...
3090 **    AeqB: ...
3091 **    AgtB: ...
3092 **    Init: initialize coroutine registers
3093 **          yield coA
3094 **          if eof(A) goto EofA
3095 **          yield coB
3096 **          if eof(B) goto EofB
3097 **    Cmpr: Compare A, B
3098 **          Jump AltB, AeqB, AgtB
3099 **     End: ...
3100 **
3101 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3102 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3103 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3104 ** and AgtB jump to either L2 or to one of EofA or EofB.
3105 */
3106 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3107 static int multiSelectOrderBy(
3108   Parse *pParse,        /* Parsing context */
3109   Select *p,            /* The right-most of SELECTs to be coded */
3110   SelectDest *pDest     /* What to do with query results */
3111 ){
3112   int i, j;             /* Loop counters */
3113   Select *pPrior;       /* Another SELECT immediately to our left */
3114   Vdbe *v;              /* Generate code to this VDBE */
3115   SelectDest destA;     /* Destination for coroutine A */
3116   SelectDest destB;     /* Destination for coroutine B */
3117   int regAddrA;         /* Address register for select-A coroutine */
3118   int regAddrB;         /* Address register for select-B coroutine */
3119   int addrSelectA;      /* Address of the select-A coroutine */
3120   int addrSelectB;      /* Address of the select-B coroutine */
3121   int regOutA;          /* Address register for the output-A subroutine */
3122   int regOutB;          /* Address register for the output-B subroutine */
3123   int addrOutA;         /* Address of the output-A subroutine */
3124   int addrOutB = 0;     /* Address of the output-B subroutine */
3125   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3126   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3127   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3128   int addrAltB;         /* Address of the A<B subroutine */
3129   int addrAeqB;         /* Address of the A==B subroutine */
3130   int addrAgtB;         /* Address of the A>B subroutine */
3131   int regLimitA;        /* Limit register for select-A */
3132   int regLimitB;        /* Limit register for select-A */
3133   int regPrev;          /* A range of registers to hold previous output */
3134   int savedLimit;       /* Saved value of p->iLimit */
3135   int savedOffset;      /* Saved value of p->iOffset */
3136   int labelCmpr;        /* Label for the start of the merge algorithm */
3137   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3138   int addr1;            /* Jump instructions that get retargetted */
3139   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3140   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3141   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3142   sqlite3 *db;          /* Database connection */
3143   ExprList *pOrderBy;   /* The ORDER BY clause */
3144   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3145   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3146 
3147   assert( p->pOrderBy!=0 );
3148   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3149   db = pParse->db;
3150   v = pParse->pVdbe;
3151   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3152   labelEnd = sqlite3VdbeMakeLabel(pParse);
3153   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3154 
3155 
3156   /* Patch up the ORDER BY clause
3157   */
3158   op = p->op;
3159   pPrior = p->pPrior;
3160   assert( pPrior->pOrderBy==0 );
3161   pOrderBy = p->pOrderBy;
3162   assert( pOrderBy );
3163   nOrderBy = pOrderBy->nExpr;
3164 
3165   /* For operators other than UNION ALL we have to make sure that
3166   ** the ORDER BY clause covers every term of the result set.  Add
3167   ** terms to the ORDER BY clause as necessary.
3168   */
3169   if( op!=TK_ALL ){
3170     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3171       struct ExprList_item *pItem;
3172       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3173         assert( pItem->u.x.iOrderByCol>0 );
3174         if( pItem->u.x.iOrderByCol==i ) break;
3175       }
3176       if( j==nOrderBy ){
3177         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3178         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3179         pNew->flags |= EP_IntValue;
3180         pNew->u.iValue = i;
3181         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3182         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3183       }
3184     }
3185   }
3186 
3187   /* Compute the comparison permutation and keyinfo that is used with
3188   ** the permutation used to determine if the next
3189   ** row of results comes from selectA or selectB.  Also add explicit
3190   ** collations to the ORDER BY clause terms so that when the subqueries
3191   ** to the right and the left are evaluated, they use the correct
3192   ** collation.
3193   */
3194   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3195   if( aPermute ){
3196     struct ExprList_item *pItem;
3197     aPermute[0] = nOrderBy;
3198     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3199       assert( pItem->u.x.iOrderByCol>0 );
3200       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3201       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3202     }
3203     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3204   }else{
3205     pKeyMerge = 0;
3206   }
3207 
3208   /* Reattach the ORDER BY clause to the query.
3209   */
3210   p->pOrderBy = pOrderBy;
3211   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3212 
3213   /* Allocate a range of temporary registers and the KeyInfo needed
3214   ** for the logic that removes duplicate result rows when the
3215   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3216   */
3217   if( op==TK_ALL ){
3218     regPrev = 0;
3219   }else{
3220     int nExpr = p->pEList->nExpr;
3221     assert( nOrderBy>=nExpr || db->mallocFailed );
3222     regPrev = pParse->nMem+1;
3223     pParse->nMem += nExpr+1;
3224     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3225     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3226     if( pKeyDup ){
3227       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3228       for(i=0; i<nExpr; i++){
3229         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3230         pKeyDup->aSortOrder[i] = 0;
3231       }
3232     }
3233   }
3234 
3235   /* Separate the left and the right query from one another
3236   */
3237   p->pPrior = 0;
3238   pPrior->pNext = 0;
3239   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3240   if( pPrior->pPrior==0 ){
3241     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3242   }
3243 
3244   /* Compute the limit registers */
3245   computeLimitRegisters(pParse, p, labelEnd);
3246   if( p->iLimit && op==TK_ALL ){
3247     regLimitA = ++pParse->nMem;
3248     regLimitB = ++pParse->nMem;
3249     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3250                                   regLimitA);
3251     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3252   }else{
3253     regLimitA = regLimitB = 0;
3254   }
3255   sqlite3ExprDelete(db, p->pLimit);
3256   p->pLimit = 0;
3257 
3258   regAddrA = ++pParse->nMem;
3259   regAddrB = ++pParse->nMem;
3260   regOutA = ++pParse->nMem;
3261   regOutB = ++pParse->nMem;
3262   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3263   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3264 
3265   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3266 
3267   /* Generate a coroutine to evaluate the SELECT statement to the
3268   ** left of the compound operator - the "A" select.
3269   */
3270   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3271   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3272   VdbeComment((v, "left SELECT"));
3273   pPrior->iLimit = regLimitA;
3274   ExplainQueryPlan((pParse, 1, "LEFT"));
3275   sqlite3Select(pParse, pPrior, &destA);
3276   sqlite3VdbeEndCoroutine(v, regAddrA);
3277   sqlite3VdbeJumpHere(v, addr1);
3278 
3279   /* Generate a coroutine to evaluate the SELECT statement on
3280   ** the right - the "B" select
3281   */
3282   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3283   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3284   VdbeComment((v, "right SELECT"));
3285   savedLimit = p->iLimit;
3286   savedOffset = p->iOffset;
3287   p->iLimit = regLimitB;
3288   p->iOffset = 0;
3289   ExplainQueryPlan((pParse, 1, "RIGHT"));
3290   sqlite3Select(pParse, p, &destB);
3291   p->iLimit = savedLimit;
3292   p->iOffset = savedOffset;
3293   sqlite3VdbeEndCoroutine(v, regAddrB);
3294 
3295   /* Generate a subroutine that outputs the current row of the A
3296   ** select as the next output row of the compound select.
3297   */
3298   VdbeNoopComment((v, "Output routine for A"));
3299   addrOutA = generateOutputSubroutine(pParse,
3300                  p, &destA, pDest, regOutA,
3301                  regPrev, pKeyDup, labelEnd);
3302 
3303   /* Generate a subroutine that outputs the current row of the B
3304   ** select as the next output row of the compound select.
3305   */
3306   if( op==TK_ALL || op==TK_UNION ){
3307     VdbeNoopComment((v, "Output routine for B"));
3308     addrOutB = generateOutputSubroutine(pParse,
3309                  p, &destB, pDest, regOutB,
3310                  regPrev, pKeyDup, labelEnd);
3311   }
3312   sqlite3KeyInfoUnref(pKeyDup);
3313 
3314   /* Generate a subroutine to run when the results from select A
3315   ** are exhausted and only data in select B remains.
3316   */
3317   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3318     addrEofA_noB = addrEofA = labelEnd;
3319   }else{
3320     VdbeNoopComment((v, "eof-A subroutine"));
3321     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3322     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3323                                      VdbeCoverage(v);
3324     sqlite3VdbeGoto(v, addrEofA);
3325     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3326   }
3327 
3328   /* Generate a subroutine to run when the results from select B
3329   ** are exhausted and only data in select A remains.
3330   */
3331   if( op==TK_INTERSECT ){
3332     addrEofB = addrEofA;
3333     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3334   }else{
3335     VdbeNoopComment((v, "eof-B subroutine"));
3336     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3337     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3338     sqlite3VdbeGoto(v, addrEofB);
3339   }
3340 
3341   /* Generate code to handle the case of A<B
3342   */
3343   VdbeNoopComment((v, "A-lt-B subroutine"));
3344   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3345   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3346   sqlite3VdbeGoto(v, labelCmpr);
3347 
3348   /* Generate code to handle the case of A==B
3349   */
3350   if( op==TK_ALL ){
3351     addrAeqB = addrAltB;
3352   }else if( op==TK_INTERSECT ){
3353     addrAeqB = addrAltB;
3354     addrAltB++;
3355   }else{
3356     VdbeNoopComment((v, "A-eq-B subroutine"));
3357     addrAeqB =
3358     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3359     sqlite3VdbeGoto(v, labelCmpr);
3360   }
3361 
3362   /* Generate code to handle the case of A>B
3363   */
3364   VdbeNoopComment((v, "A-gt-B subroutine"));
3365   addrAgtB = sqlite3VdbeCurrentAddr(v);
3366   if( op==TK_ALL || op==TK_UNION ){
3367     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3368   }
3369   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3370   sqlite3VdbeGoto(v, labelCmpr);
3371 
3372   /* This code runs once to initialize everything.
3373   */
3374   sqlite3VdbeJumpHere(v, addr1);
3375   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3376   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3377 
3378   /* Implement the main merge loop
3379   */
3380   sqlite3VdbeResolveLabel(v, labelCmpr);
3381   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3382   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3383                          (char*)pKeyMerge, P4_KEYINFO);
3384   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3385   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3386 
3387   /* Jump to the this point in order to terminate the query.
3388   */
3389   sqlite3VdbeResolveLabel(v, labelEnd);
3390 
3391   /* Reassembly the compound query so that it will be freed correctly
3392   ** by the calling function */
3393   if( p->pPrior ){
3394     sqlite3SelectDelete(db, p->pPrior);
3395   }
3396   p->pPrior = pPrior;
3397   pPrior->pNext = p;
3398 
3399   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3400   **** subqueries ****/
3401   ExplainQueryPlanPop(pParse);
3402   return pParse->nErr!=0;
3403 }
3404 #endif
3405 
3406 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3407 
3408 /* An instance of the SubstContext object describes an substitution edit
3409 ** to be performed on a parse tree.
3410 **
3411 ** All references to columns in table iTable are to be replaced by corresponding
3412 ** expressions in pEList.
3413 */
3414 typedef struct SubstContext {
3415   Parse *pParse;            /* The parsing context */
3416   int iTable;               /* Replace references to this table */
3417   int iNewTable;            /* New table number */
3418   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3419   ExprList *pEList;         /* Replacement expressions */
3420 } SubstContext;
3421 
3422 /* Forward Declarations */
3423 static void substExprList(SubstContext*, ExprList*);
3424 static void substSelect(SubstContext*, Select*, int);
3425 
3426 /*
3427 ** Scan through the expression pExpr.  Replace every reference to
3428 ** a column in table number iTable with a copy of the iColumn-th
3429 ** entry in pEList.  (But leave references to the ROWID column
3430 ** unchanged.)
3431 **
3432 ** This routine is part of the flattening procedure.  A subquery
3433 ** whose result set is defined by pEList appears as entry in the
3434 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3435 ** FORM clause entry is iTable.  This routine makes the necessary
3436 ** changes to pExpr so that it refers directly to the source table
3437 ** of the subquery rather the result set of the subquery.
3438 */
3439 static Expr *substExpr(
3440   SubstContext *pSubst,  /* Description of the substitution */
3441   Expr *pExpr            /* Expr in which substitution occurs */
3442 ){
3443   if( pExpr==0 ) return 0;
3444   if( ExprHasProperty(pExpr, EP_FromJoin)
3445    && pExpr->iRightJoinTable==pSubst->iTable
3446   ){
3447     pExpr->iRightJoinTable = pSubst->iNewTable;
3448   }
3449   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3450     if( pExpr->iColumn<0 ){
3451       pExpr->op = TK_NULL;
3452     }else{
3453       Expr *pNew;
3454       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3455       Expr ifNullRow;
3456       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3457       assert( pExpr->pRight==0 );
3458       if( sqlite3ExprIsVector(pCopy) ){
3459         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3460       }else{
3461         sqlite3 *db = pSubst->pParse->db;
3462         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3463           memset(&ifNullRow, 0, sizeof(ifNullRow));
3464           ifNullRow.op = TK_IF_NULL_ROW;
3465           ifNullRow.pLeft = pCopy;
3466           ifNullRow.iTable = pSubst->iNewTable;
3467           pCopy = &ifNullRow;
3468         }
3469         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3470         pNew = sqlite3ExprDup(db, pCopy, 0);
3471         if( pNew && pSubst->isLeftJoin ){
3472           ExprSetProperty(pNew, EP_CanBeNull);
3473         }
3474         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3475           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3476           ExprSetProperty(pNew, EP_FromJoin);
3477         }
3478         sqlite3ExprDelete(db, pExpr);
3479         pExpr = pNew;
3480       }
3481     }
3482   }else{
3483     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3484       pExpr->iTable = pSubst->iNewTable;
3485     }
3486     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3487     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3488     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3489       substSelect(pSubst, pExpr->x.pSelect, 1);
3490     }else{
3491       substExprList(pSubst, pExpr->x.pList);
3492     }
3493   }
3494   return pExpr;
3495 }
3496 static void substExprList(
3497   SubstContext *pSubst, /* Description of the substitution */
3498   ExprList *pList       /* List to scan and in which to make substitutes */
3499 ){
3500   int i;
3501   if( pList==0 ) return;
3502   for(i=0; i<pList->nExpr; i++){
3503     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3504   }
3505 }
3506 static void substSelect(
3507   SubstContext *pSubst, /* Description of the substitution */
3508   Select *p,            /* SELECT statement in which to make substitutions */
3509   int doPrior           /* Do substitutes on p->pPrior too */
3510 ){
3511   SrcList *pSrc;
3512   struct SrcList_item *pItem;
3513   int i;
3514   if( !p ) return;
3515   do{
3516     substExprList(pSubst, p->pEList);
3517     substExprList(pSubst, p->pGroupBy);
3518     substExprList(pSubst, p->pOrderBy);
3519     p->pHaving = substExpr(pSubst, p->pHaving);
3520     p->pWhere = substExpr(pSubst, p->pWhere);
3521     pSrc = p->pSrc;
3522     assert( pSrc!=0 );
3523     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3524       substSelect(pSubst, pItem->pSelect, 1);
3525       if( pItem->fg.isTabFunc ){
3526         substExprList(pSubst, pItem->u1.pFuncArg);
3527       }
3528     }
3529   }while( doPrior && (p = p->pPrior)!=0 );
3530 }
3531 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3532 
3533 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3534 /*
3535 ** This routine attempts to flatten subqueries as a performance optimization.
3536 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3537 **
3538 ** To understand the concept of flattening, consider the following
3539 ** query:
3540 **
3541 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3542 **
3543 ** The default way of implementing this query is to execute the
3544 ** subquery first and store the results in a temporary table, then
3545 ** run the outer query on that temporary table.  This requires two
3546 ** passes over the data.  Furthermore, because the temporary table
3547 ** has no indices, the WHERE clause on the outer query cannot be
3548 ** optimized.
3549 **
3550 ** This routine attempts to rewrite queries such as the above into
3551 ** a single flat select, like this:
3552 **
3553 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3554 **
3555 ** The code generated for this simplification gives the same result
3556 ** but only has to scan the data once.  And because indices might
3557 ** exist on the table t1, a complete scan of the data might be
3558 ** avoided.
3559 **
3560 ** Flattening is subject to the following constraints:
3561 **
3562 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3563 **        The subquery and the outer query cannot both be aggregates.
3564 **
3565 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3566 **        (2) If the subquery is an aggregate then
3567 **        (2a) the outer query must not be a join and
3568 **        (2b) the outer query must not use subqueries
3569 **             other than the one FROM-clause subquery that is a candidate
3570 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3571 **             from 2015-02-09.)
3572 **
3573 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3574 **        (3a) the subquery may not be a join and
3575 **        (3b) the FROM clause of the subquery may not contain a virtual
3576 **             table and
3577 **        (3c) the outer query may not be an aggregate.
3578 **
3579 **   (4)  The subquery can not be DISTINCT.
3580 **
3581 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3582 **        sub-queries that were excluded from this optimization. Restriction
3583 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3584 **
3585 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3586 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3587 **
3588 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3589 **        A FROM clause, consider adding a FROM clause with the special
3590 **        table sqlite_once that consists of a single row containing a
3591 **        single NULL.
3592 **
3593 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3594 **
3595 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3596 **
3597 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3598 **        accidently carried the comment forward until 2014-09-15.  Original
3599 **        constraint: "If the subquery is aggregate then the outer query
3600 **        may not use LIMIT."
3601 **
3602 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3603 **
3604 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3605 **        a separate restriction deriving from ticket #350.
3606 **
3607 **  (13)  The subquery and outer query may not both use LIMIT.
3608 **
3609 **  (14)  The subquery may not use OFFSET.
3610 **
3611 **  (15)  If the outer query is part of a compound select, then the
3612 **        subquery may not use LIMIT.
3613 **        (See ticket #2339 and ticket [02a8e81d44]).
3614 **
3615 **  (16)  If the outer query is aggregate, then the subquery may not
3616 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3617 **        until we introduced the group_concat() function.
3618 **
3619 **  (17)  If the subquery is a compound select, then
3620 **        (17a) all compound operators must be a UNION ALL, and
3621 **        (17b) no terms within the subquery compound may be aggregate
3622 **              or DISTINCT, and
3623 **        (17c) every term within the subquery compound must have a FROM clause
3624 **        (17d) the outer query may not be
3625 **              (17d1) aggregate, or
3626 **              (17d2) DISTINCT, or
3627 **              (17d3) a join.
3628 **
3629 **        The parent and sub-query may contain WHERE clauses. Subject to
3630 **        rules (11), (13) and (14), they may also contain ORDER BY,
3631 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3632 **        operator other than UNION ALL because all the other compound
3633 **        operators have an implied DISTINCT which is disallowed by
3634 **        restriction (4).
3635 **
3636 **        Also, each component of the sub-query must return the same number
3637 **        of result columns. This is actually a requirement for any compound
3638 **        SELECT statement, but all the code here does is make sure that no
3639 **        such (illegal) sub-query is flattened. The caller will detect the
3640 **        syntax error and return a detailed message.
3641 **
3642 **  (18)  If the sub-query is a compound select, then all terms of the
3643 **        ORDER BY clause of the parent must be simple references to
3644 **        columns of the sub-query.
3645 **
3646 **  (19)  If the subquery uses LIMIT then the outer query may not
3647 **        have a WHERE clause.
3648 **
3649 **  (20)  If the sub-query is a compound select, then it must not use
3650 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3651 **        somewhat by saying that the terms of the ORDER BY clause must
3652 **        appear as unmodified result columns in the outer query.  But we
3653 **        have other optimizations in mind to deal with that case.
3654 **
3655 **  (21)  If the subquery uses LIMIT then the outer query may not be
3656 **        DISTINCT.  (See ticket [752e1646fc]).
3657 **
3658 **  (22)  The subquery may not be a recursive CTE.
3659 **
3660 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3661 **        a recursive CTE, then the sub-query may not be a compound query.
3662 **        This restriction is because transforming the
3663 **        parent to a compound query confuses the code that handles
3664 **        recursive queries in multiSelect().
3665 **
3666 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3667 **        The subquery may not be an aggregate that uses the built-in min() or
3668 **        or max() functions.  (Without this restriction, a query like:
3669 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3670 **        return the value X for which Y was maximal.)
3671 **
3672 **  (25)  If either the subquery or the parent query contains a window
3673 **        function in the select list or ORDER BY clause, flattening
3674 **        is not attempted.
3675 **
3676 **
3677 ** In this routine, the "p" parameter is a pointer to the outer query.
3678 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3679 ** uses aggregates.
3680 **
3681 ** If flattening is not attempted, this routine is a no-op and returns 0.
3682 ** If flattening is attempted this routine returns 1.
3683 **
3684 ** All of the expression analysis must occur on both the outer query and
3685 ** the subquery before this routine runs.
3686 */
3687 static int flattenSubquery(
3688   Parse *pParse,       /* Parsing context */
3689   Select *p,           /* The parent or outer SELECT statement */
3690   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3691   int isAgg            /* True if outer SELECT uses aggregate functions */
3692 ){
3693   const char *zSavedAuthContext = pParse->zAuthContext;
3694   Select *pParent;    /* Current UNION ALL term of the other query */
3695   Select *pSub;       /* The inner query or "subquery" */
3696   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3697   SrcList *pSrc;      /* The FROM clause of the outer query */
3698   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3699   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3700   int iNewParent = -1;/* Replacement table for iParent */
3701   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3702   int i;              /* Loop counter */
3703   Expr *pWhere;                    /* The WHERE clause */
3704   struct SrcList_item *pSubitem;   /* The subquery */
3705   sqlite3 *db = pParse->db;
3706 
3707   /* Check to see if flattening is permitted.  Return 0 if not.
3708   */
3709   assert( p!=0 );
3710   assert( p->pPrior==0 );
3711   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3712   pSrc = p->pSrc;
3713   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3714   pSubitem = &pSrc->a[iFrom];
3715   iParent = pSubitem->iCursor;
3716   pSub = pSubitem->pSelect;
3717   assert( pSub!=0 );
3718 
3719 #ifndef SQLITE_OMIT_WINDOWFUNC
3720   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3721 #endif
3722 
3723   pSubSrc = pSub->pSrc;
3724   assert( pSubSrc );
3725   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3726   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3727   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3728   ** became arbitrary expressions, we were forced to add restrictions (13)
3729   ** and (14). */
3730   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3731   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3732   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3733     return 0;                                            /* Restriction (15) */
3734   }
3735   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3736   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3737   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3738      return 0;         /* Restrictions (8)(9) */
3739   }
3740   if( p->pOrderBy && pSub->pOrderBy ){
3741      return 0;                                           /* Restriction (11) */
3742   }
3743   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3744   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3745   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3746      return 0;         /* Restriction (21) */
3747   }
3748   if( pSub->selFlags & (SF_Recursive) ){
3749     return 0; /* Restrictions (22) */
3750   }
3751 
3752   /*
3753   ** If the subquery is the right operand of a LEFT JOIN, then the
3754   ** subquery may not be a join itself (3a). Example of why this is not
3755   ** allowed:
3756   **
3757   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3758   **
3759   ** If we flatten the above, we would get
3760   **
3761   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3762   **
3763   ** which is not at all the same thing.
3764   **
3765   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3766   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3767   ** aggregates are processed - there is no mechanism to determine if
3768   ** the LEFT JOIN table should be all-NULL.
3769   **
3770   ** See also tickets #306, #350, and #3300.
3771   */
3772   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3773     isLeftJoin = 1;
3774     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3775       /*  (3a)             (3c)     (3b) */
3776       return 0;
3777     }
3778   }
3779 #ifdef SQLITE_EXTRA_IFNULLROW
3780   else if( iFrom>0 && !isAgg ){
3781     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3782     ** every reference to any result column from subquery in a join, even
3783     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3784     ** opcode. */
3785     isLeftJoin = -1;
3786   }
3787 #endif
3788 
3789   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3790   ** use only the UNION ALL operator. And none of the simple select queries
3791   ** that make up the compound SELECT are allowed to be aggregate or distinct
3792   ** queries.
3793   */
3794   if( pSub->pPrior ){
3795     if( pSub->pOrderBy ){
3796       return 0;  /* Restriction (20) */
3797     }
3798     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3799       return 0; /* (17d1), (17d2), or (17d3) */
3800     }
3801     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3802       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3803       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3804       assert( pSub->pSrc!=0 );
3805       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3806       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3807        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3808        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3809       ){
3810         return 0;
3811       }
3812       testcase( pSub1->pSrc->nSrc>1 );
3813     }
3814 
3815     /* Restriction (18). */
3816     if( p->pOrderBy ){
3817       int ii;
3818       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3819         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3820       }
3821     }
3822   }
3823 
3824   /* Ex-restriction (23):
3825   ** The only way that the recursive part of a CTE can contain a compound
3826   ** subquery is for the subquery to be one term of a join.  But if the
3827   ** subquery is a join, then the flattening has already been stopped by
3828   ** restriction (17d3)
3829   */
3830   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3831 
3832   /***** If we reach this point, flattening is permitted. *****/
3833   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3834                    pSub->selId, pSub, iFrom));
3835 
3836   /* Authorize the subquery */
3837   pParse->zAuthContext = pSubitem->zName;
3838   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3839   testcase( i==SQLITE_DENY );
3840   pParse->zAuthContext = zSavedAuthContext;
3841 
3842   /* If the sub-query is a compound SELECT statement, then (by restrictions
3843   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3844   ** be of the form:
3845   **
3846   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3847   **
3848   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3849   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3850   ** OFFSET clauses and joins them to the left-hand-side of the original
3851   ** using UNION ALL operators. In this case N is the number of simple
3852   ** select statements in the compound sub-query.
3853   **
3854   ** Example:
3855   **
3856   **     SELECT a+1 FROM (
3857   **        SELECT x FROM tab
3858   **        UNION ALL
3859   **        SELECT y FROM tab
3860   **        UNION ALL
3861   **        SELECT abs(z*2) FROM tab2
3862   **     ) WHERE a!=5 ORDER BY 1
3863   **
3864   ** Transformed into:
3865   **
3866   **     SELECT x+1 FROM tab WHERE x+1!=5
3867   **     UNION ALL
3868   **     SELECT y+1 FROM tab WHERE y+1!=5
3869   **     UNION ALL
3870   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3871   **     ORDER BY 1
3872   **
3873   ** We call this the "compound-subquery flattening".
3874   */
3875   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3876     Select *pNew;
3877     ExprList *pOrderBy = p->pOrderBy;
3878     Expr *pLimit = p->pLimit;
3879     Select *pPrior = p->pPrior;
3880     p->pOrderBy = 0;
3881     p->pSrc = 0;
3882     p->pPrior = 0;
3883     p->pLimit = 0;
3884     pNew = sqlite3SelectDup(db, p, 0);
3885     p->pLimit = pLimit;
3886     p->pOrderBy = pOrderBy;
3887     p->pSrc = pSrc;
3888     p->op = TK_ALL;
3889     if( pNew==0 ){
3890       p->pPrior = pPrior;
3891     }else{
3892       pNew->pPrior = pPrior;
3893       if( pPrior ) pPrior->pNext = pNew;
3894       pNew->pNext = p;
3895       p->pPrior = pNew;
3896       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3897                               " creates %u as peer\n",pNew->selId));
3898     }
3899     if( db->mallocFailed ) return 1;
3900   }
3901 
3902   /* Begin flattening the iFrom-th entry of the FROM clause
3903   ** in the outer query.
3904   */
3905   pSub = pSub1 = pSubitem->pSelect;
3906 
3907   /* Delete the transient table structure associated with the
3908   ** subquery
3909   */
3910   sqlite3DbFree(db, pSubitem->zDatabase);
3911   sqlite3DbFree(db, pSubitem->zName);
3912   sqlite3DbFree(db, pSubitem->zAlias);
3913   pSubitem->zDatabase = 0;
3914   pSubitem->zName = 0;
3915   pSubitem->zAlias = 0;
3916   pSubitem->pSelect = 0;
3917 
3918   /* Defer deleting the Table object associated with the
3919   ** subquery until code generation is
3920   ** complete, since there may still exist Expr.pTab entries that
3921   ** refer to the subquery even after flattening.  Ticket #3346.
3922   **
3923   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3924   */
3925   if( ALWAYS(pSubitem->pTab!=0) ){
3926     Table *pTabToDel = pSubitem->pTab;
3927     if( pTabToDel->nTabRef==1 ){
3928       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3929       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3930       pToplevel->pZombieTab = pTabToDel;
3931     }else{
3932       pTabToDel->nTabRef--;
3933     }
3934     pSubitem->pTab = 0;
3935   }
3936 
3937   /* The following loop runs once for each term in a compound-subquery
3938   ** flattening (as described above).  If we are doing a different kind
3939   ** of flattening - a flattening other than a compound-subquery flattening -
3940   ** then this loop only runs once.
3941   **
3942   ** This loop moves all of the FROM elements of the subquery into the
3943   ** the FROM clause of the outer query.  Before doing this, remember
3944   ** the cursor number for the original outer query FROM element in
3945   ** iParent.  The iParent cursor will never be used.  Subsequent code
3946   ** will scan expressions looking for iParent references and replace
3947   ** those references with expressions that resolve to the subquery FROM
3948   ** elements we are now copying in.
3949   */
3950   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3951     int nSubSrc;
3952     u8 jointype = 0;
3953     assert( pSub!=0 );
3954     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3955     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3956     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3957 
3958     if( pSrc ){
3959       assert( pParent==p );  /* First time through the loop */
3960       jointype = pSubitem->fg.jointype;
3961     }else{
3962       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3963       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
3964       if( pSrc==0 ) break;
3965       pParent->pSrc = pSrc;
3966     }
3967 
3968     /* The subquery uses a single slot of the FROM clause of the outer
3969     ** query.  If the subquery has more than one element in its FROM clause,
3970     ** then expand the outer query to make space for it to hold all elements
3971     ** of the subquery.
3972     **
3973     ** Example:
3974     **
3975     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3976     **
3977     ** The outer query has 3 slots in its FROM clause.  One slot of the
3978     ** outer query (the middle slot) is used by the subquery.  The next
3979     ** block of code will expand the outer query FROM clause to 4 slots.
3980     ** The middle slot is expanded to two slots in order to make space
3981     ** for the two elements in the FROM clause of the subquery.
3982     */
3983     if( nSubSrc>1 ){
3984       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
3985       if( pSrc==0 ) break;
3986       pParent->pSrc = pSrc;
3987     }
3988 
3989     /* Transfer the FROM clause terms from the subquery into the
3990     ** outer query.
3991     */
3992     for(i=0; i<nSubSrc; i++){
3993       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3994       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3995       pSrc->a[i+iFrom] = pSubSrc->a[i];
3996       iNewParent = pSubSrc->a[i].iCursor;
3997       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3998     }
3999     pSrc->a[iFrom].fg.jointype = jointype;
4000 
4001     /* Now begin substituting subquery result set expressions for
4002     ** references to the iParent in the outer query.
4003     **
4004     ** Example:
4005     **
4006     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4007     **   \                     \_____________ subquery __________/          /
4008     **    \_____________________ outer query ______________________________/
4009     **
4010     ** We look at every expression in the outer query and every place we see
4011     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4012     */
4013     if( pSub->pOrderBy ){
4014       /* At this point, any non-zero iOrderByCol values indicate that the
4015       ** ORDER BY column expression is identical to the iOrderByCol'th
4016       ** expression returned by SELECT statement pSub. Since these values
4017       ** do not necessarily correspond to columns in SELECT statement pParent,
4018       ** zero them before transfering the ORDER BY clause.
4019       **
4020       ** Not doing this may cause an error if a subsequent call to this
4021       ** function attempts to flatten a compound sub-query into pParent
4022       ** (the only way this can happen is if the compound sub-query is
4023       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4024       ExprList *pOrderBy = pSub->pOrderBy;
4025       for(i=0; i<pOrderBy->nExpr; i++){
4026         pOrderBy->a[i].u.x.iOrderByCol = 0;
4027       }
4028       assert( pParent->pOrderBy==0 );
4029       pParent->pOrderBy = pOrderBy;
4030       pSub->pOrderBy = 0;
4031     }
4032     pWhere = pSub->pWhere;
4033     pSub->pWhere = 0;
4034     if( isLeftJoin>0 ){
4035       setJoinExpr(pWhere, iNewParent);
4036     }
4037     pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
4038     if( db->mallocFailed==0 ){
4039       SubstContext x;
4040       x.pParse = pParse;
4041       x.iTable = iParent;
4042       x.iNewTable = iNewParent;
4043       x.isLeftJoin = isLeftJoin;
4044       x.pEList = pSub->pEList;
4045       substSelect(&x, pParent, 0);
4046     }
4047 
4048     /* The flattened query is a compound if either the inner or the
4049     ** outer query is a compound. */
4050     pParent->selFlags |= pSub->selFlags & SF_Compound;
4051     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4052 
4053     /*
4054     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4055     **
4056     ** One is tempted to try to add a and b to combine the limits.  But this
4057     ** does not work if either limit is negative.
4058     */
4059     if( pSub->pLimit ){
4060       pParent->pLimit = pSub->pLimit;
4061       pSub->pLimit = 0;
4062     }
4063   }
4064 
4065   /* Finially, delete what is left of the subquery and return
4066   ** success.
4067   */
4068   sqlite3SelectDelete(db, pSub1);
4069 
4070 #if SELECTTRACE_ENABLED
4071   if( sqlite3SelectTrace & 0x100 ){
4072     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4073     sqlite3TreeViewSelect(0, p, 0);
4074   }
4075 #endif
4076 
4077   return 1;
4078 }
4079 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4080 
4081 /*
4082 ** A structure to keep track of all of the column values that are fixed to
4083 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4084 */
4085 typedef struct WhereConst WhereConst;
4086 struct WhereConst {
4087   Parse *pParse;   /* Parsing context */
4088   int nConst;      /* Number for COLUMN=CONSTANT terms */
4089   int nChng;       /* Number of times a constant is propagated */
4090   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4091 };
4092 
4093 /*
4094 ** Add a new entry to the pConst object.  Except, do not add duplicate
4095 ** pColumn entires.
4096 */
4097 static void constInsert(
4098   WhereConst *pConst,      /* The WhereConst into which we are inserting */
4099   Expr *pColumn,           /* The COLUMN part of the constraint */
4100   Expr *pValue             /* The VALUE part of the constraint */
4101 ){
4102   int i;
4103   assert( pColumn->op==TK_COLUMN );
4104 
4105   /* 2018-10-25 ticket [cf5ed20f]
4106   ** Make sure the same pColumn is not inserted more than once */
4107   for(i=0; i<pConst->nConst; i++){
4108     const Expr *pExpr = pConst->apExpr[i*2];
4109     assert( pExpr->op==TK_COLUMN );
4110     if( pExpr->iTable==pColumn->iTable
4111      && pExpr->iColumn==pColumn->iColumn
4112     ){
4113       return;  /* Already present.  Return without doing anything. */
4114     }
4115   }
4116 
4117   pConst->nConst++;
4118   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4119                          pConst->nConst*2*sizeof(Expr*));
4120   if( pConst->apExpr==0 ){
4121     pConst->nConst = 0;
4122   }else{
4123     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4124     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4125     pConst->apExpr[pConst->nConst*2-1] = pValue;
4126   }
4127 }
4128 
4129 /*
4130 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4131 ** is a constant expression and where the term must be true because it
4132 ** is part of the AND-connected terms of the expression.  For each term
4133 ** found, add it to the pConst structure.
4134 */
4135 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4136   Expr *pRight, *pLeft;
4137   if( pExpr==0 ) return;
4138   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4139   if( pExpr->op==TK_AND ){
4140     findConstInWhere(pConst, pExpr->pRight);
4141     findConstInWhere(pConst, pExpr->pLeft);
4142     return;
4143   }
4144   if( pExpr->op!=TK_EQ ) return;
4145   pRight = pExpr->pRight;
4146   pLeft = pExpr->pLeft;
4147   assert( pRight!=0 );
4148   assert( pLeft!=0 );
4149   if( pRight->op==TK_COLUMN
4150    && !ExprHasProperty(pRight, EP_FixedCol)
4151    && sqlite3ExprIsConstant(pLeft)
4152    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4153   ){
4154     constInsert(pConst, pRight, pLeft);
4155   }else
4156   if( pLeft->op==TK_COLUMN
4157    && !ExprHasProperty(pLeft, EP_FixedCol)
4158    && sqlite3ExprIsConstant(pRight)
4159    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4160   ){
4161     constInsert(pConst, pLeft, pRight);
4162   }
4163 }
4164 
4165 /*
4166 ** This is a Walker expression callback.  pExpr is a candidate expression
4167 ** to be replaced by a value.  If pExpr is equivalent to one of the
4168 ** columns named in pWalker->u.pConst, then overwrite it with its
4169 ** corresponding value.
4170 */
4171 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4172   int i;
4173   WhereConst *pConst;
4174   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4175   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4176   pConst = pWalker->u.pConst;
4177   for(i=0; i<pConst->nConst; i++){
4178     Expr *pColumn = pConst->apExpr[i*2];
4179     if( pColumn==pExpr ) continue;
4180     if( pColumn->iTable!=pExpr->iTable ) continue;
4181     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4182     /* A match is found.  Add the EP_FixedCol property */
4183     pConst->nChng++;
4184     ExprClearProperty(pExpr, EP_Leaf);
4185     ExprSetProperty(pExpr, EP_FixedCol);
4186     assert( pExpr->pLeft==0 );
4187     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4188     break;
4189   }
4190   return WRC_Prune;
4191 }
4192 
4193 /*
4194 ** The WHERE-clause constant propagation optimization.
4195 **
4196 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4197 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4198 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4199 ** then throughout the query replace all other occurrences of COLUMN
4200 ** with CONSTANT within the WHERE clause.
4201 **
4202 ** For example, the query:
4203 **
4204 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4205 **
4206 ** Is transformed into
4207 **
4208 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4209 **
4210 ** Return true if any transformations where made and false if not.
4211 **
4212 ** Implementation note:  Constant propagation is tricky due to affinity
4213 ** and collating sequence interactions.  Consider this example:
4214 **
4215 **    CREATE TABLE t1(a INT,b TEXT);
4216 **    INSERT INTO t1 VALUES(123,'0123');
4217 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4218 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4219 **
4220 ** The two SELECT statements above should return different answers.  b=a
4221 ** is alway true because the comparison uses numeric affinity, but b=123
4222 ** is false because it uses text affinity and '0123' is not the same as '123'.
4223 ** To work around this, the expression tree is not actually changed from
4224 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4225 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4226 ** routines know to generate the constant "123" instead of looking up the
4227 ** column value.  Also, to avoid collation problems, this optimization is
4228 ** only attempted if the "a=123" term uses the default BINARY collation.
4229 */
4230 static int propagateConstants(
4231   Parse *pParse,   /* The parsing context */
4232   Select *p        /* The query in which to propagate constants */
4233 ){
4234   WhereConst x;
4235   Walker w;
4236   int nChng = 0;
4237   x.pParse = pParse;
4238   do{
4239     x.nConst = 0;
4240     x.nChng = 0;
4241     x.apExpr = 0;
4242     findConstInWhere(&x, p->pWhere);
4243     if( x.nConst ){
4244       memset(&w, 0, sizeof(w));
4245       w.pParse = pParse;
4246       w.xExprCallback = propagateConstantExprRewrite;
4247       w.xSelectCallback = sqlite3SelectWalkNoop;
4248       w.xSelectCallback2 = 0;
4249       w.walkerDepth = 0;
4250       w.u.pConst = &x;
4251       sqlite3WalkExpr(&w, p->pWhere);
4252       sqlite3DbFree(x.pParse->db, x.apExpr);
4253       nChng += x.nChng;
4254     }
4255   }while( x.nChng );
4256   return nChng;
4257 }
4258 
4259 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4260 /*
4261 ** Make copies of relevant WHERE clause terms of the outer query into
4262 ** the WHERE clause of subquery.  Example:
4263 **
4264 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4265 **
4266 ** Transformed into:
4267 **
4268 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4269 **     WHERE x=5 AND y=10;
4270 **
4271 ** The hope is that the terms added to the inner query will make it more
4272 ** efficient.
4273 **
4274 ** Do not attempt this optimization if:
4275 **
4276 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4277 **           disallow this optimization for aggregate subqueries, but now
4278 **           it is allowed by putting the extra terms on the HAVING clause.
4279 **           The added HAVING clause is pointless if the subquery lacks
4280 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4281 **           so there does not appear to be any reason to add extra logic
4282 **           to suppress it. **)
4283 **
4284 **   (2) The inner query is the recursive part of a common table expression.
4285 **
4286 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4287 **       clause would change the meaning of the LIMIT).
4288 **
4289 **   (4) The inner query is the right operand of a LEFT JOIN and the
4290 **       expression to be pushed down does not come from the ON clause
4291 **       on that LEFT JOIN.
4292 **
4293 **   (5) The WHERE clause expression originates in the ON or USING clause
4294 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4295 **       left join.  An example:
4296 **
4297 **           SELECT *
4298 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4299 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4300 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4301 **
4302 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4303 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4304 **       then the (1,1,NULL) row would be suppressed.
4305 **
4306 **   (6) The inner query features one or more window-functions (since
4307 **       changes to the WHERE clause of the inner query could change the
4308 **       window over which window functions are calculated).
4309 **
4310 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4311 ** terms are duplicated into the subquery.
4312 */
4313 static int pushDownWhereTerms(
4314   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4315   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4316   Expr *pWhere,         /* The WHERE clause of the outer query */
4317   int iCursor,          /* Cursor number of the subquery */
4318   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4319 ){
4320   Expr *pNew;
4321   int nChng = 0;
4322   if( pWhere==0 ) return 0;
4323   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4324 
4325 #ifndef SQLITE_OMIT_WINDOWFUNC
4326   if( pSubq->pWin ) return 0;    /* restriction (6) */
4327 #endif
4328 
4329 #ifdef SQLITE_DEBUG
4330   /* Only the first term of a compound can have a WITH clause.  But make
4331   ** sure no other terms are marked SF_Recursive in case something changes
4332   ** in the future.
4333   */
4334   {
4335     Select *pX;
4336     for(pX=pSubq; pX; pX=pX->pPrior){
4337       assert( (pX->selFlags & (SF_Recursive))==0 );
4338     }
4339   }
4340 #endif
4341 
4342   if( pSubq->pLimit!=0 ){
4343     return 0; /* restriction (3) */
4344   }
4345   while( pWhere->op==TK_AND ){
4346     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4347                                 iCursor, isLeftJoin);
4348     pWhere = pWhere->pLeft;
4349   }
4350   if( isLeftJoin
4351    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4352          || pWhere->iRightJoinTable!=iCursor)
4353   ){
4354     return 0; /* restriction (4) */
4355   }
4356   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4357     return 0; /* restriction (5) */
4358   }
4359   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4360     nChng++;
4361     while( pSubq ){
4362       SubstContext x;
4363       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4364       unsetJoinExpr(pNew, -1);
4365       x.pParse = pParse;
4366       x.iTable = iCursor;
4367       x.iNewTable = iCursor;
4368       x.isLeftJoin = 0;
4369       x.pEList = pSubq->pEList;
4370       pNew = substExpr(&x, pNew);
4371       if( pSubq->selFlags & SF_Aggregate ){
4372         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4373       }else{
4374         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4375       }
4376       pSubq = pSubq->pPrior;
4377     }
4378   }
4379   return nChng;
4380 }
4381 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4382 
4383 /*
4384 ** The pFunc is the only aggregate function in the query.  Check to see
4385 ** if the query is a candidate for the min/max optimization.
4386 **
4387 ** If the query is a candidate for the min/max optimization, then set
4388 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4389 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4390 ** whether pFunc is a min() or max() function.
4391 **
4392 ** If the query is not a candidate for the min/max optimization, return
4393 ** WHERE_ORDERBY_NORMAL (which must be zero).
4394 **
4395 ** This routine must be called after aggregate functions have been
4396 ** located but before their arguments have been subjected to aggregate
4397 ** analysis.
4398 */
4399 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4400   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4401   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4402   const char *zFunc;                    /* Name of aggregate function pFunc */
4403   ExprList *pOrderBy;
4404   u8 sortOrder;
4405 
4406   assert( *ppMinMax==0 );
4407   assert( pFunc->op==TK_AGG_FUNCTION );
4408   assert( !IsWindowFunc(pFunc) );
4409   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4410     return eRet;
4411   }
4412   zFunc = pFunc->u.zToken;
4413   if( sqlite3StrICmp(zFunc, "min")==0 ){
4414     eRet = WHERE_ORDERBY_MIN;
4415     sortOrder = SQLITE_SO_ASC;
4416   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4417     eRet = WHERE_ORDERBY_MAX;
4418     sortOrder = SQLITE_SO_DESC;
4419   }else{
4420     return eRet;
4421   }
4422   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4423   assert( pOrderBy!=0 || db->mallocFailed );
4424   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4425   return eRet;
4426 }
4427 
4428 /*
4429 ** The select statement passed as the first argument is an aggregate query.
4430 ** The second argument is the associated aggregate-info object. This
4431 ** function tests if the SELECT is of the form:
4432 **
4433 **   SELECT count(*) FROM <tbl>
4434 **
4435 ** where table is a database table, not a sub-select or view. If the query
4436 ** does match this pattern, then a pointer to the Table object representing
4437 ** <tbl> is returned. Otherwise, 0 is returned.
4438 */
4439 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4440   Table *pTab;
4441   Expr *pExpr;
4442 
4443   assert( !p->pGroupBy );
4444 
4445   if( p->pWhere || p->pEList->nExpr!=1
4446    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4447   ){
4448     return 0;
4449   }
4450   pTab = p->pSrc->a[0].pTab;
4451   pExpr = p->pEList->a[0].pExpr;
4452   assert( pTab && !pTab->pSelect && pExpr );
4453 
4454   if( IsVirtual(pTab) ) return 0;
4455   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4456   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4457   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4458   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4459 
4460   return pTab;
4461 }
4462 
4463 /*
4464 ** If the source-list item passed as an argument was augmented with an
4465 ** INDEXED BY clause, then try to locate the specified index. If there
4466 ** was such a clause and the named index cannot be found, return
4467 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4468 ** pFrom->pIndex and return SQLITE_OK.
4469 */
4470 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4471   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4472     Table *pTab = pFrom->pTab;
4473     char *zIndexedBy = pFrom->u1.zIndexedBy;
4474     Index *pIdx;
4475     for(pIdx=pTab->pIndex;
4476         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4477         pIdx=pIdx->pNext
4478     );
4479     if( !pIdx ){
4480       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4481       pParse->checkSchema = 1;
4482       return SQLITE_ERROR;
4483     }
4484     pFrom->pIBIndex = pIdx;
4485   }
4486   return SQLITE_OK;
4487 }
4488 /*
4489 ** Detect compound SELECT statements that use an ORDER BY clause with
4490 ** an alternative collating sequence.
4491 **
4492 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4493 **
4494 ** These are rewritten as a subquery:
4495 **
4496 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4497 **     ORDER BY ... COLLATE ...
4498 **
4499 ** This transformation is necessary because the multiSelectOrderBy() routine
4500 ** above that generates the code for a compound SELECT with an ORDER BY clause
4501 ** uses a merge algorithm that requires the same collating sequence on the
4502 ** result columns as on the ORDER BY clause.  See ticket
4503 ** http://www.sqlite.org/src/info/6709574d2a
4504 **
4505 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4506 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4507 ** there are COLLATE terms in the ORDER BY.
4508 */
4509 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4510   int i;
4511   Select *pNew;
4512   Select *pX;
4513   sqlite3 *db;
4514   struct ExprList_item *a;
4515   SrcList *pNewSrc;
4516   Parse *pParse;
4517   Token dummy;
4518 
4519   if( p->pPrior==0 ) return WRC_Continue;
4520   if( p->pOrderBy==0 ) return WRC_Continue;
4521   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4522   if( pX==0 ) return WRC_Continue;
4523   a = p->pOrderBy->a;
4524   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4525     if( a[i].pExpr->flags & EP_Collate ) break;
4526   }
4527   if( i<0 ) return WRC_Continue;
4528 
4529   /* If we reach this point, that means the transformation is required. */
4530 
4531   pParse = pWalker->pParse;
4532   db = pParse->db;
4533   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4534   if( pNew==0 ) return WRC_Abort;
4535   memset(&dummy, 0, sizeof(dummy));
4536   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4537   if( pNewSrc==0 ) return WRC_Abort;
4538   *pNew = *p;
4539   p->pSrc = pNewSrc;
4540   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4541   p->op = TK_SELECT;
4542   p->pWhere = 0;
4543   pNew->pGroupBy = 0;
4544   pNew->pHaving = 0;
4545   pNew->pOrderBy = 0;
4546   p->pPrior = 0;
4547   p->pNext = 0;
4548   p->pWith = 0;
4549   p->selFlags &= ~SF_Compound;
4550   assert( (p->selFlags & SF_Converted)==0 );
4551   p->selFlags |= SF_Converted;
4552   assert( pNew->pPrior!=0 );
4553   pNew->pPrior->pNext = pNew;
4554   pNew->pLimit = 0;
4555   return WRC_Continue;
4556 }
4557 
4558 /*
4559 ** Check to see if the FROM clause term pFrom has table-valued function
4560 ** arguments.  If it does, leave an error message in pParse and return
4561 ** non-zero, since pFrom is not allowed to be a table-valued function.
4562 */
4563 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4564   if( pFrom->fg.isTabFunc ){
4565     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4566     return 1;
4567   }
4568   return 0;
4569 }
4570 
4571 #ifndef SQLITE_OMIT_CTE
4572 /*
4573 ** Argument pWith (which may be NULL) points to a linked list of nested
4574 ** WITH contexts, from inner to outermost. If the table identified by
4575 ** FROM clause element pItem is really a common-table-expression (CTE)
4576 ** then return a pointer to the CTE definition for that table. Otherwise
4577 ** return NULL.
4578 **
4579 ** If a non-NULL value is returned, set *ppContext to point to the With
4580 ** object that the returned CTE belongs to.
4581 */
4582 static struct Cte *searchWith(
4583   With *pWith,                    /* Current innermost WITH clause */
4584   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4585   With **ppContext                /* OUT: WITH clause return value belongs to */
4586 ){
4587   const char *zName;
4588   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4589     With *p;
4590     for(p=pWith; p; p=p->pOuter){
4591       int i;
4592       for(i=0; i<p->nCte; i++){
4593         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4594           *ppContext = p;
4595           return &p->a[i];
4596         }
4597       }
4598     }
4599   }
4600   return 0;
4601 }
4602 
4603 /* The code generator maintains a stack of active WITH clauses
4604 ** with the inner-most WITH clause being at the top of the stack.
4605 **
4606 ** This routine pushes the WITH clause passed as the second argument
4607 ** onto the top of the stack. If argument bFree is true, then this
4608 ** WITH clause will never be popped from the stack. In this case it
4609 ** should be freed along with the Parse object. In other cases, when
4610 ** bFree==0, the With object will be freed along with the SELECT
4611 ** statement with which it is associated.
4612 */
4613 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4614   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4615   if( pWith ){
4616     assert( pParse->pWith!=pWith );
4617     pWith->pOuter = pParse->pWith;
4618     pParse->pWith = pWith;
4619     if( bFree ) pParse->pWithToFree = pWith;
4620   }
4621 }
4622 
4623 /*
4624 ** This function checks if argument pFrom refers to a CTE declared by
4625 ** a WITH clause on the stack currently maintained by the parser. And,
4626 ** if currently processing a CTE expression, if it is a recursive
4627 ** reference to the current CTE.
4628 **
4629 ** If pFrom falls into either of the two categories above, pFrom->pTab
4630 ** and other fields are populated accordingly. The caller should check
4631 ** (pFrom->pTab!=0) to determine whether or not a successful match
4632 ** was found.
4633 **
4634 ** Whether or not a match is found, SQLITE_OK is returned if no error
4635 ** occurs. If an error does occur, an error message is stored in the
4636 ** parser and some error code other than SQLITE_OK returned.
4637 */
4638 static int withExpand(
4639   Walker *pWalker,
4640   struct SrcList_item *pFrom
4641 ){
4642   Parse *pParse = pWalker->pParse;
4643   sqlite3 *db = pParse->db;
4644   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4645   With *pWith;                    /* WITH clause that pCte belongs to */
4646 
4647   assert( pFrom->pTab==0 );
4648 
4649   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4650   if( pCte ){
4651     Table *pTab;
4652     ExprList *pEList;
4653     Select *pSel;
4654     Select *pLeft;                /* Left-most SELECT statement */
4655     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4656     With *pSavedWith;             /* Initial value of pParse->pWith */
4657 
4658     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4659     ** recursive reference to CTE pCte. Leave an error in pParse and return
4660     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4661     ** In this case, proceed.  */
4662     if( pCte->zCteErr ){
4663       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4664       return SQLITE_ERROR;
4665     }
4666     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4667 
4668     assert( pFrom->pTab==0 );
4669     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4670     if( pTab==0 ) return WRC_Abort;
4671     pTab->nTabRef = 1;
4672     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4673     pTab->iPKey = -1;
4674     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4675     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4676     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4677     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4678     assert( pFrom->pSelect );
4679 
4680     /* Check if this is a recursive CTE. */
4681     pSel = pFrom->pSelect;
4682     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4683     if( bMayRecursive ){
4684       int i;
4685       SrcList *pSrc = pFrom->pSelect->pSrc;
4686       for(i=0; i<pSrc->nSrc; i++){
4687         struct SrcList_item *pItem = &pSrc->a[i];
4688         if( pItem->zDatabase==0
4689          && pItem->zName!=0
4690          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4691           ){
4692           pItem->pTab = pTab;
4693           pItem->fg.isRecursive = 1;
4694           pTab->nTabRef++;
4695           pSel->selFlags |= SF_Recursive;
4696         }
4697       }
4698     }
4699 
4700     /* Only one recursive reference is permitted. */
4701     if( pTab->nTabRef>2 ){
4702       sqlite3ErrorMsg(
4703           pParse, "multiple references to recursive table: %s", pCte->zName
4704       );
4705       return SQLITE_ERROR;
4706     }
4707     assert( pTab->nTabRef==1 ||
4708             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4709 
4710     pCte->zCteErr = "circular reference: %s";
4711     pSavedWith = pParse->pWith;
4712     pParse->pWith = pWith;
4713     if( bMayRecursive ){
4714       Select *pPrior = pSel->pPrior;
4715       assert( pPrior->pWith==0 );
4716       pPrior->pWith = pSel->pWith;
4717       sqlite3WalkSelect(pWalker, pPrior);
4718       pPrior->pWith = 0;
4719     }else{
4720       sqlite3WalkSelect(pWalker, pSel);
4721     }
4722     pParse->pWith = pWith;
4723 
4724     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4725     pEList = pLeft->pEList;
4726     if( pCte->pCols ){
4727       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4728         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4729             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4730         );
4731         pParse->pWith = pSavedWith;
4732         return SQLITE_ERROR;
4733       }
4734       pEList = pCte->pCols;
4735     }
4736 
4737     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4738     if( bMayRecursive ){
4739       if( pSel->selFlags & SF_Recursive ){
4740         pCte->zCteErr = "multiple recursive references: %s";
4741       }else{
4742         pCte->zCteErr = "recursive reference in a subquery: %s";
4743       }
4744       sqlite3WalkSelect(pWalker, pSel);
4745     }
4746     pCte->zCteErr = 0;
4747     pParse->pWith = pSavedWith;
4748   }
4749 
4750   return SQLITE_OK;
4751 }
4752 #endif
4753 
4754 #ifndef SQLITE_OMIT_CTE
4755 /*
4756 ** If the SELECT passed as the second argument has an associated WITH
4757 ** clause, pop it from the stack stored as part of the Parse object.
4758 **
4759 ** This function is used as the xSelectCallback2() callback by
4760 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4761 ** names and other FROM clause elements.
4762 */
4763 static void selectPopWith(Walker *pWalker, Select *p){
4764   Parse *pParse = pWalker->pParse;
4765   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4766     With *pWith = findRightmost(p)->pWith;
4767     if( pWith!=0 ){
4768       assert( pParse->pWith==pWith );
4769       pParse->pWith = pWith->pOuter;
4770     }
4771   }
4772 }
4773 #else
4774 #define selectPopWith 0
4775 #endif
4776 
4777 /*
4778 ** The SrcList_item structure passed as the second argument represents a
4779 ** sub-query in the FROM clause of a SELECT statement. This function
4780 ** allocates and populates the SrcList_item.pTab object. If successful,
4781 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4782 ** SQLITE_NOMEM.
4783 */
4784 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4785   Select *pSel = pFrom->pSelect;
4786   Table *pTab;
4787 
4788   assert( pSel );
4789   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4790   if( pTab==0 ) return SQLITE_NOMEM;
4791   pTab->nTabRef = 1;
4792   if( pFrom->zAlias ){
4793     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4794   }else{
4795     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4796   }
4797   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4798   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4799   pTab->iPKey = -1;
4800   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4801   pTab->tabFlags |= TF_Ephemeral;
4802 
4803   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4804 }
4805 
4806 /*
4807 ** This routine is a Walker callback for "expanding" a SELECT statement.
4808 ** "Expanding" means to do the following:
4809 **
4810 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4811 **         element of the FROM clause.
4812 **
4813 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4814 **         defines FROM clause.  When views appear in the FROM clause,
4815 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4816 **         that implements the view.  A copy is made of the view's SELECT
4817 **         statement so that we can freely modify or delete that statement
4818 **         without worrying about messing up the persistent representation
4819 **         of the view.
4820 **
4821 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4822 **         on joins and the ON and USING clause of joins.
4823 **
4824 **    (4)  Scan the list of columns in the result set (pEList) looking
4825 **         for instances of the "*" operator or the TABLE.* operator.
4826 **         If found, expand each "*" to be every column in every table
4827 **         and TABLE.* to be every column in TABLE.
4828 **
4829 */
4830 static int selectExpander(Walker *pWalker, Select *p){
4831   Parse *pParse = pWalker->pParse;
4832   int i, j, k;
4833   SrcList *pTabList;
4834   ExprList *pEList;
4835   struct SrcList_item *pFrom;
4836   sqlite3 *db = pParse->db;
4837   Expr *pE, *pRight, *pExpr;
4838   u16 selFlags = p->selFlags;
4839   u32 elistFlags = 0;
4840 
4841   p->selFlags |= SF_Expanded;
4842   if( db->mallocFailed  ){
4843     return WRC_Abort;
4844   }
4845   assert( p->pSrc!=0 );
4846   if( (selFlags & SF_Expanded)!=0 ){
4847     return WRC_Prune;
4848   }
4849   if( pWalker->eCode ){
4850     /* Renumber selId because it has been copied from a view */
4851     p->selId = ++pParse->nSelect;
4852   }
4853   pTabList = p->pSrc;
4854   pEList = p->pEList;
4855   sqlite3WithPush(pParse, p->pWith, 0);
4856 
4857   /* Make sure cursor numbers have been assigned to all entries in
4858   ** the FROM clause of the SELECT statement.
4859   */
4860   sqlite3SrcListAssignCursors(pParse, pTabList);
4861 
4862   /* Look up every table named in the FROM clause of the select.  If
4863   ** an entry of the FROM clause is a subquery instead of a table or view,
4864   ** then create a transient table structure to describe the subquery.
4865   */
4866   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4867     Table *pTab;
4868     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4869     if( pFrom->fg.isRecursive ) continue;
4870     assert( pFrom->pTab==0 );
4871 #ifndef SQLITE_OMIT_CTE
4872     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4873     if( pFrom->pTab ) {} else
4874 #endif
4875     if( pFrom->zName==0 ){
4876 #ifndef SQLITE_OMIT_SUBQUERY
4877       Select *pSel = pFrom->pSelect;
4878       /* A sub-query in the FROM clause of a SELECT */
4879       assert( pSel!=0 );
4880       assert( pFrom->pTab==0 );
4881       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4882       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4883 #endif
4884     }else{
4885       /* An ordinary table or view name in the FROM clause */
4886       assert( pFrom->pTab==0 );
4887       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4888       if( pTab==0 ) return WRC_Abort;
4889       if( pTab->nTabRef>=0xffff ){
4890         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4891            pTab->zName);
4892         pFrom->pTab = 0;
4893         return WRC_Abort;
4894       }
4895       pTab->nTabRef++;
4896       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4897         return WRC_Abort;
4898       }
4899 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4900       if( IsVirtual(pTab) || pTab->pSelect ){
4901         i16 nCol;
4902         u8 eCodeOrig = pWalker->eCode;
4903         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4904         assert( pFrom->pSelect==0 );
4905         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4906         nCol = pTab->nCol;
4907         pTab->nCol = -1;
4908         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
4909         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4910         pWalker->eCode = eCodeOrig;
4911         pTab->nCol = nCol;
4912       }
4913 #endif
4914     }
4915 
4916     /* Locate the index named by the INDEXED BY clause, if any. */
4917     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4918       return WRC_Abort;
4919     }
4920   }
4921 
4922   /* Process NATURAL keywords, and ON and USING clauses of joins.
4923   */
4924   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4925     return WRC_Abort;
4926   }
4927 
4928   /* For every "*" that occurs in the column list, insert the names of
4929   ** all columns in all tables.  And for every TABLE.* insert the names
4930   ** of all columns in TABLE.  The parser inserted a special expression
4931   ** with the TK_ASTERISK operator for each "*" that it found in the column
4932   ** list.  The following code just has to locate the TK_ASTERISK
4933   ** expressions and expand each one to the list of all columns in
4934   ** all tables.
4935   **
4936   ** The first loop just checks to see if there are any "*" operators
4937   ** that need expanding.
4938   */
4939   for(k=0; k<pEList->nExpr; k++){
4940     pE = pEList->a[k].pExpr;
4941     if( pE->op==TK_ASTERISK ) break;
4942     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4943     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4944     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4945     elistFlags |= pE->flags;
4946   }
4947   if( k<pEList->nExpr ){
4948     /*
4949     ** If we get here it means the result set contains one or more "*"
4950     ** operators that need to be expanded.  Loop through each expression
4951     ** in the result set and expand them one by one.
4952     */
4953     struct ExprList_item *a = pEList->a;
4954     ExprList *pNew = 0;
4955     int flags = pParse->db->flags;
4956     int longNames = (flags & SQLITE_FullColNames)!=0
4957                       && (flags & SQLITE_ShortColNames)==0;
4958 
4959     for(k=0; k<pEList->nExpr; k++){
4960       pE = a[k].pExpr;
4961       elistFlags |= pE->flags;
4962       pRight = pE->pRight;
4963       assert( pE->op!=TK_DOT || pRight!=0 );
4964       if( pE->op!=TK_ASTERISK
4965        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4966       ){
4967         /* This particular expression does not need to be expanded.
4968         */
4969         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4970         if( pNew ){
4971           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4972           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4973           a[k].zName = 0;
4974           a[k].zSpan = 0;
4975         }
4976         a[k].pExpr = 0;
4977       }else{
4978         /* This expression is a "*" or a "TABLE.*" and needs to be
4979         ** expanded. */
4980         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4981         char *zTName = 0;       /* text of name of TABLE */
4982         if( pE->op==TK_DOT ){
4983           assert( pE->pLeft!=0 );
4984           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4985           zTName = pE->pLeft->u.zToken;
4986         }
4987         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4988           Table *pTab = pFrom->pTab;
4989           Select *pSub = pFrom->pSelect;
4990           char *zTabName = pFrom->zAlias;
4991           const char *zSchemaName = 0;
4992           int iDb;
4993           if( zTabName==0 ){
4994             zTabName = pTab->zName;
4995           }
4996           if( db->mallocFailed ) break;
4997           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4998             pSub = 0;
4999             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5000               continue;
5001             }
5002             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5003             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5004           }
5005           for(j=0; j<pTab->nCol; j++){
5006             char *zName = pTab->aCol[j].zName;
5007             char *zColname;  /* The computed column name */
5008             char *zToFree;   /* Malloced string that needs to be freed */
5009             Token sColname;  /* Computed column name as a token */
5010 
5011             assert( zName );
5012             if( zTName && pSub
5013              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
5014             ){
5015               continue;
5016             }
5017 
5018             /* If a column is marked as 'hidden', omit it from the expanded
5019             ** result-set list unless the SELECT has the SF_IncludeHidden
5020             ** bit set.
5021             */
5022             if( (p->selFlags & SF_IncludeHidden)==0
5023              && IsHiddenColumn(&pTab->aCol[j])
5024             ){
5025               continue;
5026             }
5027             tableSeen = 1;
5028 
5029             if( i>0 && zTName==0 ){
5030               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5031                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
5032               ){
5033                 /* In a NATURAL join, omit the join columns from the
5034                 ** table to the right of the join */
5035                 continue;
5036               }
5037               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5038                 /* In a join with a USING clause, omit columns in the
5039                 ** using clause from the table on the right. */
5040                 continue;
5041               }
5042             }
5043             pRight = sqlite3Expr(db, TK_ID, zName);
5044             zColname = zName;
5045             zToFree = 0;
5046             if( longNames || pTabList->nSrc>1 ){
5047               Expr *pLeft;
5048               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5049               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5050               if( zSchemaName ){
5051                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5052                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5053               }
5054               if( longNames ){
5055                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5056                 zToFree = zColname;
5057               }
5058             }else{
5059               pExpr = pRight;
5060             }
5061             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5062             sqlite3TokenInit(&sColname, zColname);
5063             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5064             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5065               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5066               if( pSub ){
5067                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5068                 testcase( pX->zSpan==0 );
5069               }else{
5070                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5071                                            zSchemaName, zTabName, zColname);
5072                 testcase( pX->zSpan==0 );
5073               }
5074               pX->bSpanIsTab = 1;
5075             }
5076             sqlite3DbFree(db, zToFree);
5077           }
5078         }
5079         if( !tableSeen ){
5080           if( zTName ){
5081             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5082           }else{
5083             sqlite3ErrorMsg(pParse, "no tables specified");
5084           }
5085         }
5086       }
5087     }
5088     sqlite3ExprListDelete(db, pEList);
5089     p->pEList = pNew;
5090   }
5091   if( p->pEList ){
5092     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5093       sqlite3ErrorMsg(pParse, "too many columns in result set");
5094       return WRC_Abort;
5095     }
5096     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5097       p->selFlags |= SF_ComplexResult;
5098     }
5099   }
5100   return WRC_Continue;
5101 }
5102 
5103 /*
5104 ** No-op routine for the parse-tree walker.
5105 **
5106 ** When this routine is the Walker.xExprCallback then expression trees
5107 ** are walked without any actions being taken at each node.  Presumably,
5108 ** when this routine is used for Walker.xExprCallback then
5109 ** Walker.xSelectCallback is set to do something useful for every
5110 ** subquery in the parser tree.
5111 */
5112 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5113   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5114   return WRC_Continue;
5115 }
5116 
5117 /*
5118 ** No-op routine for the parse-tree walker for SELECT statements.
5119 ** subquery in the parser tree.
5120 */
5121 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5122   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5123   return WRC_Continue;
5124 }
5125 
5126 #if SQLITE_DEBUG
5127 /*
5128 ** Always assert.  This xSelectCallback2 implementation proves that the
5129 ** xSelectCallback2 is never invoked.
5130 */
5131 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5132   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5133   assert( 0 );
5134 }
5135 #endif
5136 /*
5137 ** This routine "expands" a SELECT statement and all of its subqueries.
5138 ** For additional information on what it means to "expand" a SELECT
5139 ** statement, see the comment on the selectExpand worker callback above.
5140 **
5141 ** Expanding a SELECT statement is the first step in processing a
5142 ** SELECT statement.  The SELECT statement must be expanded before
5143 ** name resolution is performed.
5144 **
5145 ** If anything goes wrong, an error message is written into pParse.
5146 ** The calling function can detect the problem by looking at pParse->nErr
5147 ** and/or pParse->db->mallocFailed.
5148 */
5149 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5150   Walker w;
5151   w.xExprCallback = sqlite3ExprWalkNoop;
5152   w.pParse = pParse;
5153   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5154     w.xSelectCallback = convertCompoundSelectToSubquery;
5155     w.xSelectCallback2 = 0;
5156     sqlite3WalkSelect(&w, pSelect);
5157   }
5158   w.xSelectCallback = selectExpander;
5159   w.xSelectCallback2 = selectPopWith;
5160   w.eCode = 0;
5161   sqlite3WalkSelect(&w, pSelect);
5162 }
5163 
5164 
5165 #ifndef SQLITE_OMIT_SUBQUERY
5166 /*
5167 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5168 ** interface.
5169 **
5170 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5171 ** information to the Table structure that represents the result set
5172 ** of that subquery.
5173 **
5174 ** The Table structure that represents the result set was constructed
5175 ** by selectExpander() but the type and collation information was omitted
5176 ** at that point because identifiers had not yet been resolved.  This
5177 ** routine is called after identifier resolution.
5178 */
5179 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5180   Parse *pParse;
5181   int i;
5182   SrcList *pTabList;
5183   struct SrcList_item *pFrom;
5184 
5185   assert( p->selFlags & SF_Resolved );
5186   if( p->selFlags & SF_HasTypeInfo ) return;
5187   p->selFlags |= SF_HasTypeInfo;
5188   pParse = pWalker->pParse;
5189   pTabList = p->pSrc;
5190   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5191     Table *pTab = pFrom->pTab;
5192     assert( pTab!=0 );
5193     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5194       /* A sub-query in the FROM clause of a SELECT */
5195       Select *pSel = pFrom->pSelect;
5196       if( pSel ){
5197         while( pSel->pPrior ) pSel = pSel->pPrior;
5198         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5199       }
5200     }
5201   }
5202 }
5203 #endif
5204 
5205 
5206 /*
5207 ** This routine adds datatype and collating sequence information to
5208 ** the Table structures of all FROM-clause subqueries in a
5209 ** SELECT statement.
5210 **
5211 ** Use this routine after name resolution.
5212 */
5213 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5214 #ifndef SQLITE_OMIT_SUBQUERY
5215   Walker w;
5216   w.xSelectCallback = sqlite3SelectWalkNoop;
5217   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5218   w.xExprCallback = sqlite3ExprWalkNoop;
5219   w.pParse = pParse;
5220   sqlite3WalkSelect(&w, pSelect);
5221 #endif
5222 }
5223 
5224 
5225 /*
5226 ** This routine sets up a SELECT statement for processing.  The
5227 ** following is accomplished:
5228 **
5229 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5230 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5231 **     *  ON and USING clauses are shifted into WHERE statements
5232 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5233 **     *  Identifiers in expression are matched to tables.
5234 **
5235 ** This routine acts recursively on all subqueries within the SELECT.
5236 */
5237 void sqlite3SelectPrep(
5238   Parse *pParse,         /* The parser context */
5239   Select *p,             /* The SELECT statement being coded. */
5240   NameContext *pOuterNC  /* Name context for container */
5241 ){
5242   assert( p!=0 || pParse->db->mallocFailed );
5243   if( pParse->db->mallocFailed ) return;
5244   if( p->selFlags & SF_HasTypeInfo ) return;
5245   sqlite3SelectExpand(pParse, p);
5246   if( pParse->nErr || pParse->db->mallocFailed ) return;
5247   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5248   if( pParse->nErr || pParse->db->mallocFailed ) return;
5249   sqlite3SelectAddTypeInfo(pParse, p);
5250 }
5251 
5252 /*
5253 ** Reset the aggregate accumulator.
5254 **
5255 ** The aggregate accumulator is a set of memory cells that hold
5256 ** intermediate results while calculating an aggregate.  This
5257 ** routine generates code that stores NULLs in all of those memory
5258 ** cells.
5259 */
5260 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5261   Vdbe *v = pParse->pVdbe;
5262   int i;
5263   struct AggInfo_func *pFunc;
5264   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5265   if( nReg==0 ) return;
5266 #ifdef SQLITE_DEBUG
5267   /* Verify that all AggInfo registers are within the range specified by
5268   ** AggInfo.mnReg..AggInfo.mxReg */
5269   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5270   for(i=0; i<pAggInfo->nColumn; i++){
5271     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5272          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5273   }
5274   for(i=0; i<pAggInfo->nFunc; i++){
5275     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5276          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5277   }
5278 #endif
5279   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5280   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5281     if( pFunc->iDistinct>=0 ){
5282       Expr *pE = pFunc->pExpr;
5283       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5284       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5285         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5286            "argument");
5287         pFunc->iDistinct = -1;
5288       }else{
5289         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5290         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5291                           (char*)pKeyInfo, P4_KEYINFO);
5292       }
5293     }
5294   }
5295 }
5296 
5297 /*
5298 ** Invoke the OP_AggFinalize opcode for every aggregate function
5299 ** in the AggInfo structure.
5300 */
5301 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5302   Vdbe *v = pParse->pVdbe;
5303   int i;
5304   struct AggInfo_func *pF;
5305   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5306     ExprList *pList = pF->pExpr->x.pList;
5307     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5308     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5309     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5310   }
5311 }
5312 
5313 
5314 /*
5315 ** Update the accumulator memory cells for an aggregate based on
5316 ** the current cursor position.
5317 **
5318 ** If regAcc is non-zero and there are no min() or max() aggregates
5319 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5320 ** registers if register regAcc contains 0. The caller will take care
5321 ** of setting and clearing regAcc.
5322 */
5323 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5324   Vdbe *v = pParse->pVdbe;
5325   int i;
5326   int regHit = 0;
5327   int addrHitTest = 0;
5328   struct AggInfo_func *pF;
5329   struct AggInfo_col *pC;
5330 
5331   pAggInfo->directMode = 1;
5332   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5333     int nArg;
5334     int addrNext = 0;
5335     int regAgg;
5336     ExprList *pList = pF->pExpr->x.pList;
5337     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5338     assert( !IsWindowFunc(pF->pExpr) );
5339     if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
5340       Expr *pFilter = pF->pExpr->y.pWin->pFilter;
5341       addrNext = sqlite3VdbeMakeLabel(pParse);
5342       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5343     }
5344     if( pList ){
5345       nArg = pList->nExpr;
5346       regAgg = sqlite3GetTempRange(pParse, nArg);
5347       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5348     }else{
5349       nArg = 0;
5350       regAgg = 0;
5351     }
5352     if( pF->iDistinct>=0 ){
5353       if( addrNext==0 ){
5354         addrNext = sqlite3VdbeMakeLabel(pParse);
5355       }
5356       testcase( nArg==0 );  /* Error condition */
5357       testcase( nArg>1 );   /* Also an error */
5358       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5359     }
5360     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5361       CollSeq *pColl = 0;
5362       struct ExprList_item *pItem;
5363       int j;
5364       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5365       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5366         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5367       }
5368       if( !pColl ){
5369         pColl = pParse->db->pDfltColl;
5370       }
5371       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5372       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5373     }
5374     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5375     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5376     sqlite3VdbeChangeP5(v, (u8)nArg);
5377     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5378     if( addrNext ){
5379       sqlite3VdbeResolveLabel(v, addrNext);
5380     }
5381   }
5382   if( regHit==0 && pAggInfo->nAccumulator ){
5383     regHit = regAcc;
5384   }
5385   if( regHit ){
5386     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5387   }
5388   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5389     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5390   }
5391   pAggInfo->directMode = 0;
5392   if( addrHitTest ){
5393     sqlite3VdbeJumpHere(v, addrHitTest);
5394   }
5395 }
5396 
5397 /*
5398 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5399 ** count(*) query ("SELECT count(*) FROM pTab").
5400 */
5401 #ifndef SQLITE_OMIT_EXPLAIN
5402 static void explainSimpleCount(
5403   Parse *pParse,                  /* Parse context */
5404   Table *pTab,                    /* Table being queried */
5405   Index *pIdx                     /* Index used to optimize scan, or NULL */
5406 ){
5407   if( pParse->explain==2 ){
5408     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5409     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5410         pTab->zName,
5411         bCover ? " USING COVERING INDEX " : "",
5412         bCover ? pIdx->zName : ""
5413     );
5414   }
5415 }
5416 #else
5417 # define explainSimpleCount(a,b,c)
5418 #endif
5419 
5420 /*
5421 ** sqlite3WalkExpr() callback used by havingToWhere().
5422 **
5423 ** If the node passed to the callback is a TK_AND node, return
5424 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5425 **
5426 ** Otherwise, return WRC_Prune. In this case, also check if the
5427 ** sub-expression matches the criteria for being moved to the WHERE
5428 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5429 ** within the HAVING expression with a constant "1".
5430 */
5431 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5432   if( pExpr->op!=TK_AND ){
5433     Select *pS = pWalker->u.pSelect;
5434     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5435       sqlite3 *db = pWalker->pParse->db;
5436       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5437       if( pNew ){
5438         Expr *pWhere = pS->pWhere;
5439         SWAP(Expr, *pNew, *pExpr);
5440         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5441         pS->pWhere = pNew;
5442         pWalker->eCode = 1;
5443       }
5444     }
5445     return WRC_Prune;
5446   }
5447   return WRC_Continue;
5448 }
5449 
5450 /*
5451 ** Transfer eligible terms from the HAVING clause of a query, which is
5452 ** processed after grouping, to the WHERE clause, which is processed before
5453 ** grouping. For example, the query:
5454 **
5455 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5456 **
5457 ** can be rewritten as:
5458 **
5459 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5460 **
5461 ** A term of the HAVING expression is eligible for transfer if it consists
5462 ** entirely of constants and expressions that are also GROUP BY terms that
5463 ** use the "BINARY" collation sequence.
5464 */
5465 static void havingToWhere(Parse *pParse, Select *p){
5466   Walker sWalker;
5467   memset(&sWalker, 0, sizeof(sWalker));
5468   sWalker.pParse = pParse;
5469   sWalker.xExprCallback = havingToWhereExprCb;
5470   sWalker.u.pSelect = p;
5471   sqlite3WalkExpr(&sWalker, p->pHaving);
5472 #if SELECTTRACE_ENABLED
5473   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5474     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5475     sqlite3TreeViewSelect(0, p, 0);
5476   }
5477 #endif
5478 }
5479 
5480 /*
5481 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5482 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5483 ** then return 0.
5484 */
5485 static struct SrcList_item *isSelfJoinView(
5486   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5487   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5488 ){
5489   struct SrcList_item *pItem;
5490   for(pItem = pTabList->a; pItem<pThis; pItem++){
5491     Select *pS1;
5492     if( pItem->pSelect==0 ) continue;
5493     if( pItem->fg.viaCoroutine ) continue;
5494     if( pItem->zName==0 ) continue;
5495     assert( pItem->pTab!=0 );
5496     assert( pThis->pTab!=0 );
5497     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5498     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5499     pS1 = pItem->pSelect;
5500     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5501       /* The query flattener left two different CTE tables with identical
5502       ** names in the same FROM clause. */
5503       continue;
5504     }
5505     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5506      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5507     ){
5508       /* The view was modified by some other optimization such as
5509       ** pushDownWhereTerms() */
5510       continue;
5511     }
5512     return pItem;
5513   }
5514   return 0;
5515 }
5516 
5517 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5518 /*
5519 ** Attempt to transform a query of the form
5520 **
5521 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5522 **
5523 ** Into this:
5524 **
5525 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5526 **
5527 ** The transformation only works if all of the following are true:
5528 **
5529 **   *  The subquery is a UNION ALL of two or more terms
5530 **   *  The subquery does not have a LIMIT clause
5531 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5532 **   *  The outer query is a simple count(*) with no WHERE clause or other
5533 **      extraneous syntax.
5534 **
5535 ** Return TRUE if the optimization is undertaken.
5536 */
5537 static int countOfViewOptimization(Parse *pParse, Select *p){
5538   Select *pSub, *pPrior;
5539   Expr *pExpr;
5540   Expr *pCount;
5541   sqlite3 *db;
5542   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5543   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5544   if( p->pWhere ) return 0;
5545   if( p->pGroupBy ) return 0;
5546   pExpr = p->pEList->a[0].pExpr;
5547   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5548   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5549   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5550   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5551   pSub = p->pSrc->a[0].pSelect;
5552   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5553   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5554   do{
5555     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5556     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5557     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5558     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5559     pSub = pSub->pPrior;                              /* Repeat over compound */
5560   }while( pSub );
5561 
5562   /* If we reach this point then it is OK to perform the transformation */
5563 
5564   db = pParse->db;
5565   pCount = pExpr;
5566   pExpr = 0;
5567   pSub = p->pSrc->a[0].pSelect;
5568   p->pSrc->a[0].pSelect = 0;
5569   sqlite3SrcListDelete(db, p->pSrc);
5570   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5571   while( pSub ){
5572     Expr *pTerm;
5573     pPrior = pSub->pPrior;
5574     pSub->pPrior = 0;
5575     pSub->pNext = 0;
5576     pSub->selFlags |= SF_Aggregate;
5577     pSub->selFlags &= ~SF_Compound;
5578     pSub->nSelectRow = 0;
5579     sqlite3ExprListDelete(db, pSub->pEList);
5580     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5581     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5582     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5583     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5584     if( pExpr==0 ){
5585       pExpr = pTerm;
5586     }else{
5587       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5588     }
5589     pSub = pPrior;
5590   }
5591   p->pEList->a[0].pExpr = pExpr;
5592   p->selFlags &= ~SF_Aggregate;
5593 
5594 #if SELECTTRACE_ENABLED
5595   if( sqlite3SelectTrace & 0x400 ){
5596     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5597     sqlite3TreeViewSelect(0, p, 0);
5598   }
5599 #endif
5600   return 1;
5601 }
5602 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5603 
5604 /*
5605 ** Generate code for the SELECT statement given in the p argument.
5606 **
5607 ** The results are returned according to the SelectDest structure.
5608 ** See comments in sqliteInt.h for further information.
5609 **
5610 ** This routine returns the number of errors.  If any errors are
5611 ** encountered, then an appropriate error message is left in
5612 ** pParse->zErrMsg.
5613 **
5614 ** This routine does NOT free the Select structure passed in.  The
5615 ** calling function needs to do that.
5616 */
5617 int sqlite3Select(
5618   Parse *pParse,         /* The parser context */
5619   Select *p,             /* The SELECT statement being coded. */
5620   SelectDest *pDest      /* What to do with the query results */
5621 ){
5622   int i, j;              /* Loop counters */
5623   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5624   Vdbe *v;               /* The virtual machine under construction */
5625   int isAgg;             /* True for select lists like "count(*)" */
5626   ExprList *pEList = 0;  /* List of columns to extract. */
5627   SrcList *pTabList;     /* List of tables to select from */
5628   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5629   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5630   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5631   int rc = 1;            /* Value to return from this function */
5632   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5633   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5634   AggInfo sAggInfo;      /* Information used by aggregate queries */
5635   int iEnd;              /* Address of the end of the query */
5636   sqlite3 *db;           /* The database connection */
5637   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5638   u8 minMaxFlag;                 /* Flag for min/max queries */
5639 
5640   db = pParse->db;
5641   v = sqlite3GetVdbe(pParse);
5642   if( p==0 || db->mallocFailed || pParse->nErr ){
5643     return 1;
5644   }
5645   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5646   memset(&sAggInfo, 0, sizeof(sAggInfo));
5647 #if SELECTTRACE_ENABLED
5648   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5649   if( sqlite3SelectTrace & 0x100 ){
5650     sqlite3TreeViewSelect(0, p, 0);
5651   }
5652 #endif
5653 
5654   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5655   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5656   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5657   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5658   if( IgnorableOrderby(pDest) ){
5659     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5660            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5661            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5662            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5663     /* If ORDER BY makes no difference in the output then neither does
5664     ** DISTINCT so it can be removed too. */
5665     sqlite3ExprListDelete(db, p->pOrderBy);
5666     p->pOrderBy = 0;
5667     p->selFlags &= ~SF_Distinct;
5668   }
5669   sqlite3SelectPrep(pParse, p, 0);
5670   if( pParse->nErr || db->mallocFailed ){
5671     goto select_end;
5672   }
5673   assert( p->pEList!=0 );
5674 #if SELECTTRACE_ENABLED
5675   if( sqlite3SelectTrace & 0x104 ){
5676     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5677     sqlite3TreeViewSelect(0, p, 0);
5678   }
5679 #endif
5680 
5681   if( pDest->eDest==SRT_Output ){
5682     generateColumnNames(pParse, p);
5683   }
5684 
5685 #ifndef SQLITE_OMIT_WINDOWFUNC
5686   if( sqlite3WindowRewrite(pParse, p) ){
5687     goto select_end;
5688   }
5689 #if SELECTTRACE_ENABLED
5690   if( sqlite3SelectTrace & 0x108 ){
5691     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5692     sqlite3TreeViewSelect(0, p, 0);
5693   }
5694 #endif
5695 #endif /* SQLITE_OMIT_WINDOWFUNC */
5696   pTabList = p->pSrc;
5697   isAgg = (p->selFlags & SF_Aggregate)!=0;
5698   memset(&sSort, 0, sizeof(sSort));
5699   sSort.pOrderBy = p->pOrderBy;
5700 
5701   /* Try to various optimizations (flattening subqueries, and strength
5702   ** reduction of join operators) in the FROM clause up into the main query
5703   */
5704 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5705   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5706     struct SrcList_item *pItem = &pTabList->a[i];
5707     Select *pSub = pItem->pSelect;
5708     Table *pTab = pItem->pTab;
5709 
5710     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5711     ** of the LEFT JOIN used in the WHERE clause.
5712     */
5713     if( (pItem->fg.jointype & JT_LEFT)!=0
5714      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5715      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5716     ){
5717       SELECTTRACE(0x100,pParse,p,
5718                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5719       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5720       unsetJoinExpr(p->pWhere, pItem->iCursor);
5721     }
5722 
5723     /* No futher action if this term of the FROM clause is no a subquery */
5724     if( pSub==0 ) continue;
5725 
5726     /* Catch mismatch in the declared columns of a view and the number of
5727     ** columns in the SELECT on the RHS */
5728     if( pTab->nCol!=pSub->pEList->nExpr ){
5729       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5730                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5731       goto select_end;
5732     }
5733 
5734     /* Do not try to flatten an aggregate subquery.
5735     **
5736     ** Flattening an aggregate subquery is only possible if the outer query
5737     ** is not a join.  But if the outer query is not a join, then the subquery
5738     ** will be implemented as a co-routine and there is no advantage to
5739     ** flattening in that case.
5740     */
5741     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5742     assert( pSub->pGroupBy==0 );
5743 
5744     /* If the outer query contains a "complex" result set (that is,
5745     ** if the result set of the outer query uses functions or subqueries)
5746     ** and if the subquery contains an ORDER BY clause and if
5747     ** it will be implemented as a co-routine, then do not flatten.  This
5748     ** restriction allows SQL constructs like this:
5749     **
5750     **  SELECT expensive_function(x)
5751     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5752     **
5753     ** The expensive_function() is only computed on the 10 rows that
5754     ** are output, rather than every row of the table.
5755     **
5756     ** The requirement that the outer query have a complex result set
5757     ** means that flattening does occur on simpler SQL constraints without
5758     ** the expensive_function() like:
5759     **
5760     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5761     */
5762     if( pSub->pOrderBy!=0
5763      && i==0
5764      && (p->selFlags & SF_ComplexResult)!=0
5765      && (pTabList->nSrc==1
5766          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5767     ){
5768       continue;
5769     }
5770 
5771     if( flattenSubquery(pParse, p, i, isAgg) ){
5772       if( pParse->nErr ) goto select_end;
5773       /* This subquery can be absorbed into its parent. */
5774       i = -1;
5775     }
5776     pTabList = p->pSrc;
5777     if( db->mallocFailed ) goto select_end;
5778     if( !IgnorableOrderby(pDest) ){
5779       sSort.pOrderBy = p->pOrderBy;
5780     }
5781   }
5782 #endif
5783 
5784 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5785   /* Handle compound SELECT statements using the separate multiSelect()
5786   ** procedure.
5787   */
5788   if( p->pPrior ){
5789     rc = multiSelect(pParse, p, pDest);
5790 #if SELECTTRACE_ENABLED
5791     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5792     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5793       sqlite3TreeViewSelect(0, p, 0);
5794     }
5795 #endif
5796     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5797     return rc;
5798   }
5799 #endif
5800 
5801   /* Do the WHERE-clause constant propagation optimization if this is
5802   ** a join.  No need to speed time on this operation for non-join queries
5803   ** as the equivalent optimization will be handled by query planner in
5804   ** sqlite3WhereBegin().
5805   */
5806   if( pTabList->nSrc>1
5807    && OptimizationEnabled(db, SQLITE_PropagateConst)
5808    && propagateConstants(pParse, p)
5809   ){
5810 #if SELECTTRACE_ENABLED
5811     if( sqlite3SelectTrace & 0x100 ){
5812       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5813       sqlite3TreeViewSelect(0, p, 0);
5814     }
5815 #endif
5816   }else{
5817     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5818   }
5819 
5820 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5821   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5822    && countOfViewOptimization(pParse, p)
5823   ){
5824     if( db->mallocFailed ) goto select_end;
5825     pEList = p->pEList;
5826     pTabList = p->pSrc;
5827   }
5828 #endif
5829 
5830   /* For each term in the FROM clause, do two things:
5831   ** (1) Authorized unreferenced tables
5832   ** (2) Generate code for all sub-queries
5833   */
5834   for(i=0; i<pTabList->nSrc; i++){
5835     struct SrcList_item *pItem = &pTabList->a[i];
5836     SelectDest dest;
5837     Select *pSub;
5838 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5839     const char *zSavedAuthContext;
5840 #endif
5841 
5842     /* Issue SQLITE_READ authorizations with a fake column name for any
5843     ** tables that are referenced but from which no values are extracted.
5844     ** Examples of where these kinds of null SQLITE_READ authorizations
5845     ** would occur:
5846     **
5847     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5848     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5849     **
5850     ** The fake column name is an empty string.  It is possible for a table to
5851     ** have a column named by the empty string, in which case there is no way to
5852     ** distinguish between an unreferenced table and an actual reference to the
5853     ** "" column. The original design was for the fake column name to be a NULL,
5854     ** which would be unambiguous.  But legacy authorization callbacks might
5855     ** assume the column name is non-NULL and segfault.  The use of an empty
5856     ** string for the fake column name seems safer.
5857     */
5858     if( pItem->colUsed==0 ){
5859       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5860     }
5861 
5862 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5863     /* Generate code for all sub-queries in the FROM clause
5864     */
5865     pSub = pItem->pSelect;
5866     if( pSub==0 ) continue;
5867 
5868     /* The code for a subquery should only be generated once, though it is
5869     ** technically harmless for it to be generated multiple times. The
5870     ** following assert() will detect if something changes to cause
5871     ** the same subquery to be coded multiple times, as a signal to the
5872     ** developers to try to optimize the situation.
5873     **
5874     ** Update 2019-07-24:
5875     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
5876     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
5877     ** coded twice.  So this assert() now becomes a testcase().  It should
5878     ** be very rare, though.
5879     */
5880     testcase( pItem->addrFillSub!=0 );
5881 
5882     /* Increment Parse.nHeight by the height of the largest expression
5883     ** tree referred to by this, the parent select. The child select
5884     ** may contain expression trees of at most
5885     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5886     ** more conservative than necessary, but much easier than enforcing
5887     ** an exact limit.
5888     */
5889     pParse->nHeight += sqlite3SelectExprHeight(p);
5890 
5891     /* Make copies of constant WHERE-clause terms in the outer query down
5892     ** inside the subquery.  This can help the subquery to run more efficiently.
5893     */
5894     if( OptimizationEnabled(db, SQLITE_PushDown)
5895      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5896                            (pItem->fg.jointype & JT_OUTER)!=0)
5897     ){
5898 #if SELECTTRACE_ENABLED
5899       if( sqlite3SelectTrace & 0x100 ){
5900         SELECTTRACE(0x100,pParse,p,
5901             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5902         sqlite3TreeViewSelect(0, p, 0);
5903       }
5904 #endif
5905     }else{
5906       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5907     }
5908 
5909     zSavedAuthContext = pParse->zAuthContext;
5910     pParse->zAuthContext = pItem->zName;
5911 
5912     /* Generate code to implement the subquery
5913     **
5914     ** The subquery is implemented as a co-routine if the subquery is
5915     ** guaranteed to be the outer loop (so that it does not need to be
5916     ** computed more than once)
5917     **
5918     ** TODO: Are there other reasons beside (1) to use a co-routine
5919     ** implementation?
5920     */
5921     if( i==0
5922      && (pTabList->nSrc==1
5923             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5924     ){
5925       /* Implement a co-routine that will return a single row of the result
5926       ** set on each invocation.
5927       */
5928       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5929 
5930       pItem->regReturn = ++pParse->nMem;
5931       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5932       VdbeComment((v, "%s", pItem->pTab->zName));
5933       pItem->addrFillSub = addrTop;
5934       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5935       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5936       sqlite3Select(pParse, pSub, &dest);
5937       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5938       pItem->fg.viaCoroutine = 1;
5939       pItem->regResult = dest.iSdst;
5940       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5941       sqlite3VdbeJumpHere(v, addrTop-1);
5942       sqlite3ClearTempRegCache(pParse);
5943     }else{
5944       /* Generate a subroutine that will fill an ephemeral table with
5945       ** the content of this subquery.  pItem->addrFillSub will point
5946       ** to the address of the generated subroutine.  pItem->regReturn
5947       ** is a register allocated to hold the subroutine return address
5948       */
5949       int topAddr;
5950       int onceAddr = 0;
5951       int retAddr;
5952       struct SrcList_item *pPrior;
5953 
5954       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
5955       pItem->regReturn = ++pParse->nMem;
5956       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5957       pItem->addrFillSub = topAddr+1;
5958       if( pItem->fg.isCorrelated==0 ){
5959         /* If the subquery is not correlated and if we are not inside of
5960         ** a trigger, then we only need to compute the value of the subquery
5961         ** once. */
5962         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5963         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5964       }else{
5965         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5966       }
5967       pPrior = isSelfJoinView(pTabList, pItem);
5968       if( pPrior ){
5969         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5970         assert( pPrior->pSelect!=0 );
5971         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5972       }else{
5973         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5974         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5975         sqlite3Select(pParse, pSub, &dest);
5976       }
5977       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5978       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5979       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5980       VdbeComment((v, "end %s", pItem->pTab->zName));
5981       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5982       sqlite3ClearTempRegCache(pParse);
5983     }
5984     if( db->mallocFailed ) goto select_end;
5985     pParse->nHeight -= sqlite3SelectExprHeight(p);
5986     pParse->zAuthContext = zSavedAuthContext;
5987 #endif
5988   }
5989 
5990   /* Various elements of the SELECT copied into local variables for
5991   ** convenience */
5992   pEList = p->pEList;
5993   pWhere = p->pWhere;
5994   pGroupBy = p->pGroupBy;
5995   pHaving = p->pHaving;
5996   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5997 
5998 #if SELECTTRACE_ENABLED
5999   if( sqlite3SelectTrace & 0x400 ){
6000     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6001     sqlite3TreeViewSelect(0, p, 0);
6002   }
6003 #endif
6004 
6005   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6006   ** if the select-list is the same as the ORDER BY list, then this query
6007   ** can be rewritten as a GROUP BY. In other words, this:
6008   **
6009   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6010   **
6011   ** is transformed to:
6012   **
6013   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6014   **
6015   ** The second form is preferred as a single index (or temp-table) may be
6016   ** used for both the ORDER BY and DISTINCT processing. As originally
6017   ** written the query must use a temp-table for at least one of the ORDER
6018   ** BY and DISTINCT, and an index or separate temp-table for the other.
6019   */
6020   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6021    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6022   ){
6023     p->selFlags &= ~SF_Distinct;
6024     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6025     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6026     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6027     ** original setting of the SF_Distinct flag, not the current setting */
6028     assert( sDistinct.isTnct );
6029 
6030 #if SELECTTRACE_ENABLED
6031     if( sqlite3SelectTrace & 0x400 ){
6032       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6033       sqlite3TreeViewSelect(0, p, 0);
6034     }
6035 #endif
6036   }
6037 
6038   /* If there is an ORDER BY clause, then create an ephemeral index to
6039   ** do the sorting.  But this sorting ephemeral index might end up
6040   ** being unused if the data can be extracted in pre-sorted order.
6041   ** If that is the case, then the OP_OpenEphemeral instruction will be
6042   ** changed to an OP_Noop once we figure out that the sorting index is
6043   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6044   ** that change.
6045   */
6046   if( sSort.pOrderBy ){
6047     KeyInfo *pKeyInfo;
6048     pKeyInfo = sqlite3KeyInfoFromExprList(
6049         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6050     sSort.iECursor = pParse->nTab++;
6051     sSort.addrSortIndex =
6052       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6053           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6054           (char*)pKeyInfo, P4_KEYINFO
6055       );
6056   }else{
6057     sSort.addrSortIndex = -1;
6058   }
6059 
6060   /* If the output is destined for a temporary table, open that table.
6061   */
6062   if( pDest->eDest==SRT_EphemTab ){
6063     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6064   }
6065 
6066   /* Set the limiter.
6067   */
6068   iEnd = sqlite3VdbeMakeLabel(pParse);
6069   if( (p->selFlags & SF_FixedLimit)==0 ){
6070     p->nSelectRow = 320;  /* 4 billion rows */
6071   }
6072   computeLimitRegisters(pParse, p, iEnd);
6073   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6074     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6075     sSort.sortFlags |= SORTFLAG_UseSorter;
6076   }
6077 
6078   /* Open an ephemeral index to use for the distinct set.
6079   */
6080   if( p->selFlags & SF_Distinct ){
6081     sDistinct.tabTnct = pParse->nTab++;
6082     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6083                        sDistinct.tabTnct, 0, 0,
6084                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6085                        P4_KEYINFO);
6086     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6087     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6088   }else{
6089     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6090   }
6091 
6092   if( !isAgg && pGroupBy==0 ){
6093     /* No aggregate functions and no GROUP BY clause */
6094     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6095                    | (p->selFlags & SF_FixedLimit);
6096 #ifndef SQLITE_OMIT_WINDOWFUNC
6097     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6098     if( pWin ){
6099       sqlite3WindowCodeInit(pParse, pWin);
6100     }
6101 #endif
6102     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6103 
6104 
6105     /* Begin the database scan. */
6106     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6107     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6108                                p->pEList, wctrlFlags, p->nSelectRow);
6109     if( pWInfo==0 ) goto select_end;
6110     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6111       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6112     }
6113     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6114       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6115     }
6116     if( sSort.pOrderBy ){
6117       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6118       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6119       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6120         sSort.pOrderBy = 0;
6121       }
6122     }
6123 
6124     /* If sorting index that was created by a prior OP_OpenEphemeral
6125     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6126     ** into an OP_Noop.
6127     */
6128     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6129       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6130     }
6131 
6132     assert( p->pEList==pEList );
6133 #ifndef SQLITE_OMIT_WINDOWFUNC
6134     if( pWin ){
6135       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6136       int iCont = sqlite3VdbeMakeLabel(pParse);
6137       int iBreak = sqlite3VdbeMakeLabel(pParse);
6138       int regGosub = ++pParse->nMem;
6139 
6140       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6141 
6142       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6143       sqlite3VdbeResolveLabel(v, addrGosub);
6144       VdbeNoopComment((v, "inner-loop subroutine"));
6145       sSort.labelOBLopt = 0;
6146       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6147       sqlite3VdbeResolveLabel(v, iCont);
6148       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6149       VdbeComment((v, "end inner-loop subroutine"));
6150       sqlite3VdbeResolveLabel(v, iBreak);
6151     }else
6152 #endif /* SQLITE_OMIT_WINDOWFUNC */
6153     {
6154       /* Use the standard inner loop. */
6155       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6156           sqlite3WhereContinueLabel(pWInfo),
6157           sqlite3WhereBreakLabel(pWInfo));
6158 
6159       /* End the database scan loop.
6160       */
6161       sqlite3WhereEnd(pWInfo);
6162     }
6163   }else{
6164     /* This case when there exist aggregate functions or a GROUP BY clause
6165     ** or both */
6166     NameContext sNC;    /* Name context for processing aggregate information */
6167     int iAMem;          /* First Mem address for storing current GROUP BY */
6168     int iBMem;          /* First Mem address for previous GROUP BY */
6169     int iUseFlag;       /* Mem address holding flag indicating that at least
6170                         ** one row of the input to the aggregator has been
6171                         ** processed */
6172     int iAbortFlag;     /* Mem address which causes query abort if positive */
6173     int groupBySort;    /* Rows come from source in GROUP BY order */
6174     int addrEnd;        /* End of processing for this SELECT */
6175     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6176     int sortOut = 0;    /* Output register from the sorter */
6177     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6178 
6179     /* Remove any and all aliases between the result set and the
6180     ** GROUP BY clause.
6181     */
6182     if( pGroupBy ){
6183       int k;                        /* Loop counter */
6184       struct ExprList_item *pItem;  /* For looping over expression in a list */
6185 
6186       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6187         pItem->u.x.iAlias = 0;
6188       }
6189       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6190         pItem->u.x.iAlias = 0;
6191       }
6192       assert( 66==sqlite3LogEst(100) );
6193       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6194     }else{
6195       assert( 0==sqlite3LogEst(1) );
6196       p->nSelectRow = 0;
6197     }
6198 
6199     /* If there is both a GROUP BY and an ORDER BY clause and they are
6200     ** identical, then it may be possible to disable the ORDER BY clause
6201     ** on the grounds that the GROUP BY will cause elements to come out
6202     ** in the correct order. It also may not - the GROUP BY might use a
6203     ** database index that causes rows to be grouped together as required
6204     ** but not actually sorted. Either way, record the fact that the
6205     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6206     ** variable.  */
6207     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6208       orderByGrp = 1;
6209     }
6210 
6211     /* Create a label to jump to when we want to abort the query */
6212     addrEnd = sqlite3VdbeMakeLabel(pParse);
6213 
6214     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6215     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6216     ** SELECT statement.
6217     */
6218     memset(&sNC, 0, sizeof(sNC));
6219     sNC.pParse = pParse;
6220     sNC.pSrcList = pTabList;
6221     sNC.uNC.pAggInfo = &sAggInfo;
6222     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6223     sAggInfo.mnReg = pParse->nMem+1;
6224     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6225     sAggInfo.pGroupBy = pGroupBy;
6226     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6227     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6228     if( pHaving ){
6229       if( pGroupBy ){
6230         assert( pWhere==p->pWhere );
6231         assert( pHaving==p->pHaving );
6232         assert( pGroupBy==p->pGroupBy );
6233         havingToWhere(pParse, p);
6234         pWhere = p->pWhere;
6235       }
6236       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6237     }
6238     sAggInfo.nAccumulator = sAggInfo.nColumn;
6239     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6240       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6241     }else{
6242       minMaxFlag = WHERE_ORDERBY_NORMAL;
6243     }
6244     for(i=0; i<sAggInfo.nFunc; i++){
6245       Expr *pExpr = sAggInfo.aFunc[i].pExpr;
6246       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6247       sNC.ncFlags |= NC_InAggFunc;
6248       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6249 #ifndef SQLITE_OMIT_WINDOWFUNC
6250       assert( !IsWindowFunc(pExpr) );
6251       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6252         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6253       }
6254 #endif
6255       sNC.ncFlags &= ~NC_InAggFunc;
6256     }
6257     sAggInfo.mxReg = pParse->nMem;
6258     if( db->mallocFailed ) goto select_end;
6259 #if SELECTTRACE_ENABLED
6260     if( sqlite3SelectTrace & 0x400 ){
6261       int ii;
6262       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6263       sqlite3TreeViewSelect(0, p, 0);
6264       for(ii=0; ii<sAggInfo.nColumn; ii++){
6265         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6266             ii, sAggInfo.aCol[ii].iMem);
6267         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6268       }
6269       for(ii=0; ii<sAggInfo.nFunc; ii++){
6270         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6271             ii, sAggInfo.aFunc[ii].iMem);
6272         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6273       }
6274     }
6275 #endif
6276 
6277 
6278     /* Processing for aggregates with GROUP BY is very different and
6279     ** much more complex than aggregates without a GROUP BY.
6280     */
6281     if( pGroupBy ){
6282       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6283       int addr1;          /* A-vs-B comparision jump */
6284       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6285       int regOutputRow;   /* Return address register for output subroutine */
6286       int addrSetAbort;   /* Set the abort flag and return */
6287       int addrTopOfLoop;  /* Top of the input loop */
6288       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6289       int addrReset;      /* Subroutine for resetting the accumulator */
6290       int regReset;       /* Return address register for reset subroutine */
6291 
6292       /* If there is a GROUP BY clause we might need a sorting index to
6293       ** implement it.  Allocate that sorting index now.  If it turns out
6294       ** that we do not need it after all, the OP_SorterOpen instruction
6295       ** will be converted into a Noop.
6296       */
6297       sAggInfo.sortingIdx = pParse->nTab++;
6298       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6299       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6300           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6301           0, (char*)pKeyInfo, P4_KEYINFO);
6302 
6303       /* Initialize memory locations used by GROUP BY aggregate processing
6304       */
6305       iUseFlag = ++pParse->nMem;
6306       iAbortFlag = ++pParse->nMem;
6307       regOutputRow = ++pParse->nMem;
6308       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6309       regReset = ++pParse->nMem;
6310       addrReset = sqlite3VdbeMakeLabel(pParse);
6311       iAMem = pParse->nMem + 1;
6312       pParse->nMem += pGroupBy->nExpr;
6313       iBMem = pParse->nMem + 1;
6314       pParse->nMem += pGroupBy->nExpr;
6315       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6316       VdbeComment((v, "clear abort flag"));
6317       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6318 
6319       /* Begin a loop that will extract all source rows in GROUP BY order.
6320       ** This might involve two separate loops with an OP_Sort in between, or
6321       ** it might be a single loop that uses an index to extract information
6322       ** in the right order to begin with.
6323       */
6324       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6325       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6326       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6327           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6328       );
6329       if( pWInfo==0 ) goto select_end;
6330       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6331         /* The optimizer is able to deliver rows in group by order so
6332         ** we do not have to sort.  The OP_OpenEphemeral table will be
6333         ** cancelled later because we still need to use the pKeyInfo
6334         */
6335         groupBySort = 0;
6336       }else{
6337         /* Rows are coming out in undetermined order.  We have to push
6338         ** each row into a sorting index, terminate the first loop,
6339         ** then loop over the sorting index in order to get the output
6340         ** in sorted order
6341         */
6342         int regBase;
6343         int regRecord;
6344         int nCol;
6345         int nGroupBy;
6346 
6347         explainTempTable(pParse,
6348             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6349                     "DISTINCT" : "GROUP BY");
6350 
6351         groupBySort = 1;
6352         nGroupBy = pGroupBy->nExpr;
6353         nCol = nGroupBy;
6354         j = nGroupBy;
6355         for(i=0; i<sAggInfo.nColumn; i++){
6356           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6357             nCol++;
6358             j++;
6359           }
6360         }
6361         regBase = sqlite3GetTempRange(pParse, nCol);
6362         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6363         j = nGroupBy;
6364         for(i=0; i<sAggInfo.nColumn; i++){
6365           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6366           if( pCol->iSorterColumn>=j ){
6367             int r1 = j + regBase;
6368             sqlite3ExprCodeGetColumnOfTable(v,
6369                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6370             j++;
6371           }
6372         }
6373         regRecord = sqlite3GetTempReg(pParse);
6374         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6375         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6376         sqlite3ReleaseTempReg(pParse, regRecord);
6377         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6378         sqlite3WhereEnd(pWInfo);
6379         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6380         sortOut = sqlite3GetTempReg(pParse);
6381         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6382         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6383         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6384         sAggInfo.useSortingIdx = 1;
6385       }
6386 
6387       /* If the index or temporary table used by the GROUP BY sort
6388       ** will naturally deliver rows in the order required by the ORDER BY
6389       ** clause, cancel the ephemeral table open coded earlier.
6390       **
6391       ** This is an optimization - the correct answer should result regardless.
6392       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6393       ** disable this optimization for testing purposes.  */
6394       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6395        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6396       ){
6397         sSort.pOrderBy = 0;
6398         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6399       }
6400 
6401       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6402       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6403       ** Then compare the current GROUP BY terms against the GROUP BY terms
6404       ** from the previous row currently stored in a0, a1, a2...
6405       */
6406       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6407       if( groupBySort ){
6408         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6409                           sortOut, sortPTab);
6410       }
6411       for(j=0; j<pGroupBy->nExpr; j++){
6412         if( groupBySort ){
6413           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6414         }else{
6415           sAggInfo.directMode = 1;
6416           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6417         }
6418       }
6419       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6420                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6421       addr1 = sqlite3VdbeCurrentAddr(v);
6422       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6423 
6424       /* Generate code that runs whenever the GROUP BY changes.
6425       ** Changes in the GROUP BY are detected by the previous code
6426       ** block.  If there were no changes, this block is skipped.
6427       **
6428       ** This code copies current group by terms in b0,b1,b2,...
6429       ** over to a0,a1,a2.  It then calls the output subroutine
6430       ** and resets the aggregate accumulator registers in preparation
6431       ** for the next GROUP BY batch.
6432       */
6433       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6434       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6435       VdbeComment((v, "output one row"));
6436       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6437       VdbeComment((v, "check abort flag"));
6438       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6439       VdbeComment((v, "reset accumulator"));
6440 
6441       /* Update the aggregate accumulators based on the content of
6442       ** the current row
6443       */
6444       sqlite3VdbeJumpHere(v, addr1);
6445       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6446       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6447       VdbeComment((v, "indicate data in accumulator"));
6448 
6449       /* End of the loop
6450       */
6451       if( groupBySort ){
6452         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6453         VdbeCoverage(v);
6454       }else{
6455         sqlite3WhereEnd(pWInfo);
6456         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6457       }
6458 
6459       /* Output the final row of result
6460       */
6461       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6462       VdbeComment((v, "output final row"));
6463 
6464       /* Jump over the subroutines
6465       */
6466       sqlite3VdbeGoto(v, addrEnd);
6467 
6468       /* Generate a subroutine that outputs a single row of the result
6469       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6470       ** is less than or equal to zero, the subroutine is a no-op.  If
6471       ** the processing calls for the query to abort, this subroutine
6472       ** increments the iAbortFlag memory location before returning in
6473       ** order to signal the caller to abort.
6474       */
6475       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6476       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6477       VdbeComment((v, "set abort flag"));
6478       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6479       sqlite3VdbeResolveLabel(v, addrOutputRow);
6480       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6481       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6482       VdbeCoverage(v);
6483       VdbeComment((v, "Groupby result generator entry point"));
6484       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6485       finalizeAggFunctions(pParse, &sAggInfo);
6486       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6487       selectInnerLoop(pParse, p, -1, &sSort,
6488                       &sDistinct, pDest,
6489                       addrOutputRow+1, addrSetAbort);
6490       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6491       VdbeComment((v, "end groupby result generator"));
6492 
6493       /* Generate a subroutine that will reset the group-by accumulator
6494       */
6495       sqlite3VdbeResolveLabel(v, addrReset);
6496       resetAccumulator(pParse, &sAggInfo);
6497       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6498       VdbeComment((v, "indicate accumulator empty"));
6499       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6500 
6501     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6502     else {
6503 #ifndef SQLITE_OMIT_BTREECOUNT
6504       Table *pTab;
6505       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6506         /* If isSimpleCount() returns a pointer to a Table structure, then
6507         ** the SQL statement is of the form:
6508         **
6509         **   SELECT count(*) FROM <tbl>
6510         **
6511         ** where the Table structure returned represents table <tbl>.
6512         **
6513         ** This statement is so common that it is optimized specially. The
6514         ** OP_Count instruction is executed either on the intkey table that
6515         ** contains the data for table <tbl> or on one of its indexes. It
6516         ** is better to execute the op on an index, as indexes are almost
6517         ** always spread across less pages than their corresponding tables.
6518         */
6519         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6520         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6521         Index *pIdx;                         /* Iterator variable */
6522         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6523         Index *pBest = 0;                    /* Best index found so far */
6524         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6525 
6526         sqlite3CodeVerifySchema(pParse, iDb);
6527         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6528 
6529         /* Search for the index that has the lowest scan cost.
6530         **
6531         ** (2011-04-15) Do not do a full scan of an unordered index.
6532         **
6533         ** (2013-10-03) Do not count the entries in a partial index.
6534         **
6535         ** In practice the KeyInfo structure will not be used. It is only
6536         ** passed to keep OP_OpenRead happy.
6537         */
6538         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6539         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6540           if( pIdx->bUnordered==0
6541            && pIdx->szIdxRow<pTab->szTabRow
6542            && pIdx->pPartIdxWhere==0
6543            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6544           ){
6545             pBest = pIdx;
6546           }
6547         }
6548         if( pBest ){
6549           iRoot = pBest->tnum;
6550           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6551         }
6552 
6553         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6554         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6555         if( pKeyInfo ){
6556           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6557         }
6558         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6559         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6560         explainSimpleCount(pParse, pTab, pBest);
6561       }else
6562 #endif /* SQLITE_OMIT_BTREECOUNT */
6563       {
6564         int regAcc = 0;           /* "populate accumulators" flag */
6565 
6566         /* If there are accumulator registers but no min() or max() functions,
6567         ** allocate register regAcc. Register regAcc will contain 0 the first
6568         ** time the inner loop runs, and 1 thereafter. The code generated
6569         ** by updateAccumulator() only updates the accumulator registers if
6570         ** regAcc contains 0.  */
6571         if( sAggInfo.nAccumulator ){
6572           for(i=0; i<sAggInfo.nFunc; i++){
6573             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6574           }
6575           if( i==sAggInfo.nFunc ){
6576             regAcc = ++pParse->nMem;
6577             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6578           }
6579         }
6580 
6581         /* This case runs if the aggregate has no GROUP BY clause.  The
6582         ** processing is much simpler since there is only a single row
6583         ** of output.
6584         */
6585         assert( p->pGroupBy==0 );
6586         resetAccumulator(pParse, &sAggInfo);
6587 
6588         /* If this query is a candidate for the min/max optimization, then
6589         ** minMaxFlag will have been previously set to either
6590         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6591         ** be an appropriate ORDER BY expression for the optimization.
6592         */
6593         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6594         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6595 
6596         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6597         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6598                                    0, minMaxFlag, 0);
6599         if( pWInfo==0 ){
6600           goto select_end;
6601         }
6602         updateAccumulator(pParse, regAcc, &sAggInfo);
6603         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6604         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6605           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6606           VdbeComment((v, "%s() by index",
6607                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6608         }
6609         sqlite3WhereEnd(pWInfo);
6610         finalizeAggFunctions(pParse, &sAggInfo);
6611       }
6612 
6613       sSort.pOrderBy = 0;
6614       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6615       selectInnerLoop(pParse, p, -1, 0, 0,
6616                       pDest, addrEnd, addrEnd);
6617     }
6618     sqlite3VdbeResolveLabel(v, addrEnd);
6619 
6620   } /* endif aggregate query */
6621 
6622   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6623     explainTempTable(pParse, "DISTINCT");
6624   }
6625 
6626   /* If there is an ORDER BY clause, then we need to sort the results
6627   ** and send them to the callback one by one.
6628   */
6629   if( sSort.pOrderBy ){
6630     explainTempTable(pParse,
6631                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6632     assert( p->pEList==pEList );
6633     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6634   }
6635 
6636   /* Jump here to skip this query
6637   */
6638   sqlite3VdbeResolveLabel(v, iEnd);
6639 
6640   /* The SELECT has been coded. If there is an error in the Parse structure,
6641   ** set the return code to 1. Otherwise 0. */
6642   rc = (pParse->nErr>0);
6643 
6644   /* Control jumps to here if an error is encountered above, or upon
6645   ** successful coding of the SELECT.
6646   */
6647 select_end:
6648   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6649   sqlite3DbFree(db, sAggInfo.aCol);
6650   sqlite3DbFree(db, sAggInfo.aFunc);
6651 #if SELECTTRACE_ENABLED
6652   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6653   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6654     sqlite3TreeViewSelect(0, p, 0);
6655   }
6656 #endif
6657   ExplainQueryPlanPop(pParse);
6658   return rc;
6659 }
6660