1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 58 }; 59 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 60 61 /* 62 ** Delete all the content of a Select structure. Deallocate the structure 63 ** itself only if bFree is true. 64 */ 65 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 66 while( p ){ 67 Select *pPrior = p->pPrior; 68 sqlite3ExprListDelete(db, p->pEList); 69 sqlite3SrcListDelete(db, p->pSrc); 70 sqlite3ExprDelete(db, p->pWhere); 71 sqlite3ExprListDelete(db, p->pGroupBy); 72 sqlite3ExprDelete(db, p->pHaving); 73 sqlite3ExprListDelete(db, p->pOrderBy); 74 sqlite3ExprDelete(db, p->pLimit); 75 sqlite3ExprDelete(db, p->pOffset); 76 sqlite3WithDelete(db, p->pWith); 77 if( bFree ) sqlite3DbFree(db, p); 78 p = pPrior; 79 bFree = 1; 80 } 81 } 82 83 /* 84 ** Initialize a SelectDest structure. 85 */ 86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 87 pDest->eDest = (u8)eDest; 88 pDest->iSDParm = iParm; 89 pDest->affSdst = 0; 90 pDest->iSdst = 0; 91 pDest->nSdst = 0; 92 } 93 94 95 /* 96 ** Allocate a new Select structure and return a pointer to that 97 ** structure. 98 */ 99 Select *sqlite3SelectNew( 100 Parse *pParse, /* Parsing context */ 101 ExprList *pEList, /* which columns to include in the result */ 102 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 103 Expr *pWhere, /* the WHERE clause */ 104 ExprList *pGroupBy, /* the GROUP BY clause */ 105 Expr *pHaving, /* the HAVING clause */ 106 ExprList *pOrderBy, /* the ORDER BY clause */ 107 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 108 Expr *pLimit, /* LIMIT value. NULL means not used */ 109 Expr *pOffset /* OFFSET value. NULL means no offset */ 110 ){ 111 Select *pNew; 112 Select standin; 113 sqlite3 *db = pParse->db; 114 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 setJoinExpr(p->pLeft, iTable); 370 p = p->pRight; 371 } 372 } 373 374 /* 375 ** This routine processes the join information for a SELECT statement. 376 ** ON and USING clauses are converted into extra terms of the WHERE clause. 377 ** NATURAL joins also create extra WHERE clause terms. 378 ** 379 ** The terms of a FROM clause are contained in the Select.pSrc structure. 380 ** The left most table is the first entry in Select.pSrc. The right-most 381 ** table is the last entry. The join operator is held in the entry to 382 ** the left. Thus entry 0 contains the join operator for the join between 383 ** entries 0 and 1. Any ON or USING clauses associated with the join are 384 ** also attached to the left entry. 385 ** 386 ** This routine returns the number of errors encountered. 387 */ 388 static int sqliteProcessJoin(Parse *pParse, Select *p){ 389 SrcList *pSrc; /* All tables in the FROM clause */ 390 int i, j; /* Loop counters */ 391 struct SrcList_item *pLeft; /* Left table being joined */ 392 struct SrcList_item *pRight; /* Right table being joined */ 393 394 pSrc = p->pSrc; 395 pLeft = &pSrc->a[0]; 396 pRight = &pLeft[1]; 397 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 398 Table *pLeftTab = pLeft->pTab; 399 Table *pRightTab = pRight->pTab; 400 int isOuter; 401 402 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 403 isOuter = (pRight->jointype & JT_OUTER)!=0; 404 405 /* When the NATURAL keyword is present, add WHERE clause terms for 406 ** every column that the two tables have in common. 407 */ 408 if( pRight->jointype & JT_NATURAL ){ 409 if( pRight->pOn || pRight->pUsing ){ 410 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 411 "an ON or USING clause", 0); 412 return 1; 413 } 414 for(j=0; j<pRightTab->nCol; j++){ 415 char *zName; /* Name of column in the right table */ 416 int iLeft; /* Matching left table */ 417 int iLeftCol; /* Matching column in the left table */ 418 419 zName = pRightTab->aCol[j].zName; 420 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 421 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 422 isOuter, &p->pWhere); 423 } 424 } 425 } 426 427 /* Disallow both ON and USING clauses in the same join 428 */ 429 if( pRight->pOn && pRight->pUsing ){ 430 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 431 "clauses in the same join"); 432 return 1; 433 } 434 435 /* Add the ON clause to the end of the WHERE clause, connected by 436 ** an AND operator. 437 */ 438 if( pRight->pOn ){ 439 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 440 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 441 pRight->pOn = 0; 442 } 443 444 /* Create extra terms on the WHERE clause for each column named 445 ** in the USING clause. Example: If the two tables to be joined are 446 ** A and B and the USING clause names X, Y, and Z, then add this 447 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 448 ** Report an error if any column mentioned in the USING clause is 449 ** not contained in both tables to be joined. 450 */ 451 if( pRight->pUsing ){ 452 IdList *pList = pRight->pUsing; 453 for(j=0; j<pList->nId; j++){ 454 char *zName; /* Name of the term in the USING clause */ 455 int iLeft; /* Table on the left with matching column name */ 456 int iLeftCol; /* Column number of matching column on the left */ 457 int iRightCol; /* Column number of matching column on the right */ 458 459 zName = pList->a[j].zName; 460 iRightCol = columnIndex(pRightTab, zName); 461 if( iRightCol<0 462 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 463 ){ 464 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 465 "not present in both tables", zName); 466 return 1; 467 } 468 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 469 isOuter, &p->pWhere); 470 } 471 } 472 } 473 return 0; 474 } 475 476 /* Forward reference */ 477 static KeyInfo *keyInfoFromExprList( 478 Parse *pParse, /* Parsing context */ 479 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 480 int iStart, /* Begin with this column of pList */ 481 int nExtra /* Add this many extra columns to the end */ 482 ); 483 484 /* 485 ** Generate code that will push the record in registers regData 486 ** through regData+nData-1 onto the sorter. 487 */ 488 static void pushOntoSorter( 489 Parse *pParse, /* Parser context */ 490 SortCtx *pSort, /* Information about the ORDER BY clause */ 491 Select *pSelect, /* The whole SELECT statement */ 492 int regData, /* First register holding data to be sorted */ 493 int nData, /* Number of elements in the data array */ 494 int nPrefixReg /* No. of reg prior to regData available for use */ 495 ){ 496 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 497 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 498 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 499 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 500 int regBase; /* Regs for sorter record */ 501 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 502 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 503 int op; /* Opcode to add sorter record to sorter */ 504 505 assert( bSeq==0 || bSeq==1 ); 506 if( nPrefixReg ){ 507 assert( nPrefixReg==nExpr+bSeq ); 508 regBase = regData - nExpr - bSeq; 509 }else{ 510 regBase = pParse->nMem + 1; 511 pParse->nMem += nBase; 512 } 513 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); 514 if( bSeq ){ 515 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 516 } 517 if( nPrefixReg==0 ){ 518 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 519 } 520 521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 522 if( nOBSat>0 ){ 523 int regPrevKey; /* The first nOBSat columns of the previous row */ 524 int addrFirst; /* Address of the OP_IfNot opcode */ 525 int addrJmp; /* Address of the OP_Jump opcode */ 526 VdbeOp *pOp; /* Opcode that opens the sorter */ 527 int nKey; /* Number of sorting key columns, including OP_Sequence */ 528 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 529 530 regPrevKey = pParse->nMem+1; 531 pParse->nMem += pSort->nOBSat; 532 nKey = nExpr - pSort->nOBSat + bSeq; 533 if( bSeq ){ 534 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 535 }else{ 536 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 537 } 538 VdbeCoverage(v); 539 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 540 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 541 if( pParse->db->mallocFailed ) return; 542 pOp->p2 = nKey + nData; 543 pKI = pOp->p4.pKeyInfo; 544 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 545 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 546 testcase( pKI->nXField>2 ); 547 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 548 pKI->nXField-1); 549 addrJmp = sqlite3VdbeCurrentAddr(v); 550 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 551 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 552 pSort->regReturn = ++pParse->nMem; 553 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 554 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 555 sqlite3VdbeJumpHere(v, addrFirst); 556 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 557 sqlite3VdbeJumpHere(v, addrJmp); 558 } 559 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 560 op = OP_SorterInsert; 561 }else{ 562 op = OP_IdxInsert; 563 } 564 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 565 if( pSelect->iLimit ){ 566 int addr; 567 int iLimit; 568 if( pSelect->iOffset ){ 569 iLimit = pSelect->iOffset+1; 570 }else{ 571 iLimit = pSelect->iLimit; 572 } 573 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v); 574 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 575 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 576 sqlite3VdbeJumpHere(v, addr); 577 } 578 } 579 580 /* 581 ** Add code to implement the OFFSET 582 */ 583 static void codeOffset( 584 Vdbe *v, /* Generate code into this VM */ 585 int iOffset, /* Register holding the offset counter */ 586 int iContinue /* Jump here to skip the current record */ 587 ){ 588 if( iOffset>0 ){ 589 int addr; 590 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 591 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 592 VdbeComment((v, "skip OFFSET records")); 593 sqlite3VdbeJumpHere(v, addr); 594 } 595 } 596 597 /* 598 ** Add code that will check to make sure the N registers starting at iMem 599 ** form a distinct entry. iTab is a sorting index that holds previously 600 ** seen combinations of the N values. A new entry is made in iTab 601 ** if the current N values are new. 602 ** 603 ** A jump to addrRepeat is made and the N+1 values are popped from the 604 ** stack if the top N elements are not distinct. 605 */ 606 static void codeDistinct( 607 Parse *pParse, /* Parsing and code generating context */ 608 int iTab, /* A sorting index used to test for distinctness */ 609 int addrRepeat, /* Jump to here if not distinct */ 610 int N, /* Number of elements */ 611 int iMem /* First element */ 612 ){ 613 Vdbe *v; 614 int r1; 615 616 v = pParse->pVdbe; 617 r1 = sqlite3GetTempReg(pParse); 618 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 619 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 620 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 621 sqlite3ReleaseTempReg(pParse, r1); 622 } 623 624 #ifndef SQLITE_OMIT_SUBQUERY 625 /* 626 ** Generate an error message when a SELECT is used within a subexpression 627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 628 ** column. We do this in a subroutine because the error used to occur 629 ** in multiple places. (The error only occurs in one place now, but we 630 ** retain the subroutine to minimize code disruption.) 631 */ 632 static int checkForMultiColumnSelectError( 633 Parse *pParse, /* Parse context. */ 634 SelectDest *pDest, /* Destination of SELECT results */ 635 int nExpr /* Number of result columns returned by SELECT */ 636 ){ 637 int eDest = pDest->eDest; 638 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 639 sqlite3ErrorMsg(pParse, "only a single result allowed for " 640 "a SELECT that is part of an expression"); 641 return 1; 642 }else{ 643 return 0; 644 } 645 } 646 #endif 647 648 /* 649 ** This routine generates the code for the inside of the inner loop 650 ** of a SELECT. 651 ** 652 ** If srcTab is negative, then the pEList expressions 653 ** are evaluated in order to get the data for this row. If srcTab is 654 ** zero or more, then data is pulled from srcTab and pEList is used only 655 ** to get number columns and the datatype for each column. 656 */ 657 static void selectInnerLoop( 658 Parse *pParse, /* The parser context */ 659 Select *p, /* The complete select statement being coded */ 660 ExprList *pEList, /* List of values being extracted */ 661 int srcTab, /* Pull data from this table */ 662 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 663 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 664 SelectDest *pDest, /* How to dispose of the results */ 665 int iContinue, /* Jump here to continue with next row */ 666 int iBreak /* Jump here to break out of the inner loop */ 667 ){ 668 Vdbe *v = pParse->pVdbe; 669 int i; 670 int hasDistinct; /* True if the DISTINCT keyword is present */ 671 int regResult; /* Start of memory holding result set */ 672 int eDest = pDest->eDest; /* How to dispose of results */ 673 int iParm = pDest->iSDParm; /* First argument to disposal method */ 674 int nResultCol; /* Number of result columns */ 675 int nPrefixReg = 0; /* Number of extra registers before regResult */ 676 677 assert( v ); 678 assert( pEList!=0 ); 679 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 680 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 681 if( pSort==0 && !hasDistinct ){ 682 assert( iContinue!=0 ); 683 codeOffset(v, p->iOffset, iContinue); 684 } 685 686 /* Pull the requested columns. 687 */ 688 nResultCol = pEList->nExpr; 689 690 if( pDest->iSdst==0 ){ 691 if( pSort ){ 692 nPrefixReg = pSort->pOrderBy->nExpr; 693 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 694 pParse->nMem += nPrefixReg; 695 } 696 pDest->iSdst = pParse->nMem+1; 697 pParse->nMem += nResultCol; 698 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 699 /* This is an error condition that can result, for example, when a SELECT 700 ** on the right-hand side of an INSERT contains more result columns than 701 ** there are columns in the table on the left. The error will be caught 702 ** and reported later. But we need to make sure enough memory is allocated 703 ** to avoid other spurious errors in the meantime. */ 704 pParse->nMem += nResultCol; 705 } 706 pDest->nSdst = nResultCol; 707 regResult = pDest->iSdst; 708 if( srcTab>=0 ){ 709 for(i=0; i<nResultCol; i++){ 710 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 711 VdbeComment((v, "%s", pEList->a[i].zName)); 712 } 713 }else if( eDest!=SRT_Exists ){ 714 /* If the destination is an EXISTS(...) expression, the actual 715 ** values returned by the SELECT are not required. 716 */ 717 u8 ecelFlags; 718 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 719 ecelFlags = SQLITE_ECEL_DUP; 720 }else{ 721 ecelFlags = 0; 722 } 723 sqlite3ExprCodeExprList(pParse, pEList, regResult, ecelFlags); 724 } 725 726 /* If the DISTINCT keyword was present on the SELECT statement 727 ** and this row has been seen before, then do not make this row 728 ** part of the result. 729 */ 730 if( hasDistinct ){ 731 switch( pDistinct->eTnctType ){ 732 case WHERE_DISTINCT_ORDERED: { 733 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 734 int iJump; /* Jump destination */ 735 int regPrev; /* Previous row content */ 736 737 /* Allocate space for the previous row */ 738 regPrev = pParse->nMem+1; 739 pParse->nMem += nResultCol; 740 741 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 742 ** sets the MEM_Cleared bit on the first register of the 743 ** previous value. This will cause the OP_Ne below to always 744 ** fail on the first iteration of the loop even if the first 745 ** row is all NULLs. 746 */ 747 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 748 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 749 pOp->opcode = OP_Null; 750 pOp->p1 = 1; 751 pOp->p2 = regPrev; 752 753 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 754 for(i=0; i<nResultCol; i++){ 755 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 756 if( i<nResultCol-1 ){ 757 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 758 VdbeCoverage(v); 759 }else{ 760 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 761 VdbeCoverage(v); 762 } 763 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 764 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 765 } 766 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 767 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 768 break; 769 } 770 771 case WHERE_DISTINCT_UNIQUE: { 772 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 773 break; 774 } 775 776 default: { 777 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 778 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 779 regResult); 780 break; 781 } 782 } 783 if( pSort==0 ){ 784 codeOffset(v, p->iOffset, iContinue); 785 } 786 } 787 788 switch( eDest ){ 789 /* In this mode, write each query result to the key of the temporary 790 ** table iParm. 791 */ 792 #ifndef SQLITE_OMIT_COMPOUND_SELECT 793 case SRT_Union: { 794 int r1; 795 r1 = sqlite3GetTempReg(pParse); 796 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 797 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 798 sqlite3ReleaseTempReg(pParse, r1); 799 break; 800 } 801 802 /* Construct a record from the query result, but instead of 803 ** saving that record, use it as a key to delete elements from 804 ** the temporary table iParm. 805 */ 806 case SRT_Except: { 807 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 808 break; 809 } 810 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 811 812 /* Store the result as data using a unique key. 813 */ 814 case SRT_Fifo: 815 case SRT_DistFifo: 816 case SRT_Table: 817 case SRT_EphemTab: { 818 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 819 testcase( eDest==SRT_Table ); 820 testcase( eDest==SRT_EphemTab ); 821 testcase( eDest==SRT_Fifo ); 822 testcase( eDest==SRT_DistFifo ); 823 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 824 #ifndef SQLITE_OMIT_CTE 825 if( eDest==SRT_DistFifo ){ 826 /* If the destination is DistFifo, then cursor (iParm+1) is open 827 ** on an ephemeral index. If the current row is already present 828 ** in the index, do not write it to the output. If not, add the 829 ** current row to the index and proceed with writing it to the 830 ** output table as well. */ 831 int addr = sqlite3VdbeCurrentAddr(v) + 4; 832 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 833 VdbeCoverage(v); 834 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 835 assert( pSort==0 ); 836 } 837 #endif 838 if( pSort ){ 839 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); 840 }else{ 841 int r2 = sqlite3GetTempReg(pParse); 842 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 843 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 844 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 845 sqlite3ReleaseTempReg(pParse, r2); 846 } 847 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 848 break; 849 } 850 851 #ifndef SQLITE_OMIT_SUBQUERY 852 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 853 ** then there should be a single item on the stack. Write this 854 ** item into the set table with bogus data. 855 */ 856 case SRT_Set: { 857 assert( nResultCol==1 ); 858 pDest->affSdst = 859 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 860 if( pSort ){ 861 /* At first glance you would think we could optimize out the 862 ** ORDER BY in this case since the order of entries in the set 863 ** does not matter. But there might be a LIMIT clause, in which 864 ** case the order does matter */ 865 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 866 }else{ 867 int r1 = sqlite3GetTempReg(pParse); 868 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 869 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 870 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 871 sqlite3ReleaseTempReg(pParse, r1); 872 } 873 break; 874 } 875 876 /* If any row exist in the result set, record that fact and abort. 877 */ 878 case SRT_Exists: { 879 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 880 /* The LIMIT clause will terminate the loop for us */ 881 break; 882 } 883 884 /* If this is a scalar select that is part of an expression, then 885 ** store the results in the appropriate memory cell and break out 886 ** of the scan loop. 887 */ 888 case SRT_Mem: { 889 assert( nResultCol==1 ); 890 if( pSort ){ 891 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); 892 }else{ 893 assert( regResult==iParm ); 894 /* The LIMIT clause will jump out of the loop for us */ 895 } 896 break; 897 } 898 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 899 900 case SRT_Coroutine: /* Send data to a co-routine */ 901 case SRT_Output: { /* Return the results */ 902 testcase( eDest==SRT_Coroutine ); 903 testcase( eDest==SRT_Output ); 904 if( pSort ){ 905 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg); 906 }else if( eDest==SRT_Coroutine ){ 907 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 908 }else{ 909 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 910 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 911 } 912 break; 913 } 914 915 #ifndef SQLITE_OMIT_CTE 916 /* Write the results into a priority queue that is order according to 917 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 918 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 919 ** pSO->nExpr columns, then make sure all keys are unique by adding a 920 ** final OP_Sequence column. The last column is the record as a blob. 921 */ 922 case SRT_DistQueue: 923 case SRT_Queue: { 924 int nKey; 925 int r1, r2, r3; 926 int addrTest = 0; 927 ExprList *pSO; 928 pSO = pDest->pOrderBy; 929 assert( pSO ); 930 nKey = pSO->nExpr; 931 r1 = sqlite3GetTempReg(pParse); 932 r2 = sqlite3GetTempRange(pParse, nKey+2); 933 r3 = r2+nKey+1; 934 if( eDest==SRT_DistQueue ){ 935 /* If the destination is DistQueue, then cursor (iParm+1) is open 936 ** on a second ephemeral index that holds all values every previously 937 ** added to the queue. */ 938 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 939 regResult, nResultCol); 940 VdbeCoverage(v); 941 } 942 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 943 if( eDest==SRT_DistQueue ){ 944 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 945 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 946 } 947 for(i=0; i<nKey; i++){ 948 sqlite3VdbeAddOp2(v, OP_SCopy, 949 regResult + pSO->a[i].u.x.iOrderByCol - 1, 950 r2+i); 951 } 952 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 953 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 954 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 955 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 956 sqlite3ReleaseTempReg(pParse, r1); 957 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 958 break; 959 } 960 #endif /* SQLITE_OMIT_CTE */ 961 962 963 964 #if !defined(SQLITE_OMIT_TRIGGER) 965 /* Discard the results. This is used for SELECT statements inside 966 ** the body of a TRIGGER. The purpose of such selects is to call 967 ** user-defined functions that have side effects. We do not care 968 ** about the actual results of the select. 969 */ 970 default: { 971 assert( eDest==SRT_Discard ); 972 break; 973 } 974 #endif 975 } 976 977 /* Jump to the end of the loop if the LIMIT is reached. Except, if 978 ** there is a sorter, in which case the sorter has already limited 979 ** the output for us. 980 */ 981 if( pSort==0 && p->iLimit ){ 982 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 983 } 984 } 985 986 /* 987 ** Allocate a KeyInfo object sufficient for an index of N key columns and 988 ** X extra columns. 989 */ 990 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 991 KeyInfo *p = sqlite3DbMallocZero(0, 992 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 993 if( p ){ 994 p->aSortOrder = (u8*)&p->aColl[N+X]; 995 p->nField = (u16)N; 996 p->nXField = (u16)X; 997 p->enc = ENC(db); 998 p->db = db; 999 p->nRef = 1; 1000 }else{ 1001 db->mallocFailed = 1; 1002 } 1003 return p; 1004 } 1005 1006 /* 1007 ** Deallocate a KeyInfo object 1008 */ 1009 void sqlite3KeyInfoUnref(KeyInfo *p){ 1010 if( p ){ 1011 assert( p->nRef>0 ); 1012 p->nRef--; 1013 if( p->nRef==0 ) sqlite3DbFree(0, p); 1014 } 1015 } 1016 1017 /* 1018 ** Make a new pointer to a KeyInfo object 1019 */ 1020 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1021 if( p ){ 1022 assert( p->nRef>0 ); 1023 p->nRef++; 1024 } 1025 return p; 1026 } 1027 1028 #ifdef SQLITE_DEBUG 1029 /* 1030 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1031 ** can only be changed if this is just a single reference to the object. 1032 ** 1033 ** This routine is used only inside of assert() statements. 1034 */ 1035 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1036 #endif /* SQLITE_DEBUG */ 1037 1038 /* 1039 ** Given an expression list, generate a KeyInfo structure that records 1040 ** the collating sequence for each expression in that expression list. 1041 ** 1042 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1043 ** KeyInfo structure is appropriate for initializing a virtual index to 1044 ** implement that clause. If the ExprList is the result set of a SELECT 1045 ** then the KeyInfo structure is appropriate for initializing a virtual 1046 ** index to implement a DISTINCT test. 1047 ** 1048 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1049 ** function is responsible for seeing that this structure is eventually 1050 ** freed. 1051 */ 1052 static KeyInfo *keyInfoFromExprList( 1053 Parse *pParse, /* Parsing context */ 1054 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1055 int iStart, /* Begin with this column of pList */ 1056 int nExtra /* Add this many extra columns to the end */ 1057 ){ 1058 int nExpr; 1059 KeyInfo *pInfo; 1060 struct ExprList_item *pItem; 1061 sqlite3 *db = pParse->db; 1062 int i; 1063 1064 nExpr = pList->nExpr; 1065 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1066 if( pInfo ){ 1067 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1068 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1069 CollSeq *pColl; 1070 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1071 if( !pColl ) pColl = db->pDfltColl; 1072 pInfo->aColl[i-iStart] = pColl; 1073 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1074 } 1075 } 1076 return pInfo; 1077 } 1078 1079 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1080 /* 1081 ** Name of the connection operator, used for error messages. 1082 */ 1083 static const char *selectOpName(int id){ 1084 char *z; 1085 switch( id ){ 1086 case TK_ALL: z = "UNION ALL"; break; 1087 case TK_INTERSECT: z = "INTERSECT"; break; 1088 case TK_EXCEPT: z = "EXCEPT"; break; 1089 default: z = "UNION"; break; 1090 } 1091 return z; 1092 } 1093 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1094 1095 #ifndef SQLITE_OMIT_EXPLAIN 1096 /* 1097 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1098 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1099 ** where the caption is of the form: 1100 ** 1101 ** "USE TEMP B-TREE FOR xxx" 1102 ** 1103 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1104 ** is determined by the zUsage argument. 1105 */ 1106 static void explainTempTable(Parse *pParse, const char *zUsage){ 1107 if( pParse->explain==2 ){ 1108 Vdbe *v = pParse->pVdbe; 1109 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1110 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1111 } 1112 } 1113 1114 /* 1115 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1116 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1117 ** in sqlite3Select() to assign values to structure member variables that 1118 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1119 ** code with #ifndef directives. 1120 */ 1121 # define explainSetInteger(a, b) a = b 1122 1123 #else 1124 /* No-op versions of the explainXXX() functions and macros. */ 1125 # define explainTempTable(y,z) 1126 # define explainSetInteger(y,z) 1127 #endif 1128 1129 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1130 /* 1131 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1132 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1133 ** where the caption is of one of the two forms: 1134 ** 1135 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1136 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1137 ** 1138 ** where iSub1 and iSub2 are the integers passed as the corresponding 1139 ** function parameters, and op is the text representation of the parameter 1140 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1141 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1142 ** false, or the second form if it is true. 1143 */ 1144 static void explainComposite( 1145 Parse *pParse, /* Parse context */ 1146 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1147 int iSub1, /* Subquery id 1 */ 1148 int iSub2, /* Subquery id 2 */ 1149 int bUseTmp /* True if a temp table was used */ 1150 ){ 1151 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1152 if( pParse->explain==2 ){ 1153 Vdbe *v = pParse->pVdbe; 1154 char *zMsg = sqlite3MPrintf( 1155 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1156 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1157 ); 1158 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1159 } 1160 } 1161 #else 1162 /* No-op versions of the explainXXX() functions and macros. */ 1163 # define explainComposite(v,w,x,y,z) 1164 #endif 1165 1166 /* 1167 ** If the inner loop was generated using a non-null pOrderBy argument, 1168 ** then the results were placed in a sorter. After the loop is terminated 1169 ** we need to run the sorter and output the results. The following 1170 ** routine generates the code needed to do that. 1171 */ 1172 static void generateSortTail( 1173 Parse *pParse, /* Parsing context */ 1174 Select *p, /* The SELECT statement */ 1175 SortCtx *pSort, /* Information on the ORDER BY clause */ 1176 int nColumn, /* Number of columns of data */ 1177 SelectDest *pDest /* Write the sorted results here */ 1178 ){ 1179 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1180 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1181 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1182 int addr; 1183 int addrOnce = 0; 1184 int iTab; 1185 ExprList *pOrderBy = pSort->pOrderBy; 1186 int eDest = pDest->eDest; 1187 int iParm = pDest->iSDParm; 1188 int regRow; 1189 int regRowid; 1190 int nKey; 1191 int iSortTab; /* Sorter cursor to read from */ 1192 int nSortData; /* Trailing values to read from sorter */ 1193 int i; 1194 int bSeq; /* True if sorter record includes seq. no. */ 1195 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1196 struct ExprList_item *aOutEx = p->pEList->a; 1197 #endif 1198 1199 if( pSort->labelBkOut ){ 1200 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1201 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1202 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1203 } 1204 iTab = pSort->iECursor; 1205 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1206 regRowid = 0; 1207 regRow = pDest->iSdst; 1208 nSortData = nColumn; 1209 }else{ 1210 regRowid = sqlite3GetTempReg(pParse); 1211 regRow = sqlite3GetTempReg(pParse); 1212 nSortData = 1; 1213 } 1214 nKey = pOrderBy->nExpr - pSort->nOBSat; 1215 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1216 int regSortOut = ++pParse->nMem; 1217 iSortTab = pParse->nTab++; 1218 if( pSort->labelBkOut ){ 1219 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1220 } 1221 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1222 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1223 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1224 VdbeCoverage(v); 1225 codeOffset(v, p->iOffset, addrContinue); 1226 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1227 bSeq = 0; 1228 }else{ 1229 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1230 codeOffset(v, p->iOffset, addrContinue); 1231 iSortTab = iTab; 1232 bSeq = 1; 1233 } 1234 for(i=0; i<nSortData; i++){ 1235 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1236 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1237 } 1238 switch( eDest ){ 1239 case SRT_EphemTab: { 1240 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1241 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1242 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1243 break; 1244 } 1245 #ifndef SQLITE_OMIT_SUBQUERY 1246 case SRT_Set: { 1247 assert( nColumn==1 ); 1248 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1249 &pDest->affSdst, 1); 1250 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1251 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1252 break; 1253 } 1254 case SRT_Mem: { 1255 assert( nColumn==1 ); 1256 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1257 /* The LIMIT clause will terminate the loop for us */ 1258 break; 1259 } 1260 #endif 1261 default: { 1262 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1263 testcase( eDest==SRT_Output ); 1264 testcase( eDest==SRT_Coroutine ); 1265 if( eDest==SRT_Output ){ 1266 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1267 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1268 }else{ 1269 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1270 } 1271 break; 1272 } 1273 } 1274 if( regRowid ){ 1275 sqlite3ReleaseTempReg(pParse, regRow); 1276 sqlite3ReleaseTempReg(pParse, regRowid); 1277 } 1278 /* The bottom of the loop 1279 */ 1280 sqlite3VdbeResolveLabel(v, addrContinue); 1281 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1282 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1283 }else{ 1284 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1285 } 1286 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1287 sqlite3VdbeResolveLabel(v, addrBreak); 1288 } 1289 1290 /* 1291 ** Return a pointer to a string containing the 'declaration type' of the 1292 ** expression pExpr. The string may be treated as static by the caller. 1293 ** 1294 ** Also try to estimate the size of the returned value and return that 1295 ** result in *pEstWidth. 1296 ** 1297 ** The declaration type is the exact datatype definition extracted from the 1298 ** original CREATE TABLE statement if the expression is a column. The 1299 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1300 ** is considered a column can be complex in the presence of subqueries. The 1301 ** result-set expression in all of the following SELECT statements is 1302 ** considered a column by this function. 1303 ** 1304 ** SELECT col FROM tbl; 1305 ** SELECT (SELECT col FROM tbl; 1306 ** SELECT (SELECT col FROM tbl); 1307 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1308 ** 1309 ** The declaration type for any expression other than a column is NULL. 1310 ** 1311 ** This routine has either 3 or 6 parameters depending on whether or not 1312 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1313 */ 1314 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1315 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1316 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1317 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1318 #endif 1319 static const char *columnTypeImpl( 1320 NameContext *pNC, 1321 Expr *pExpr, 1322 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1323 const char **pzOrigDb, 1324 const char **pzOrigTab, 1325 const char **pzOrigCol, 1326 #endif 1327 u8 *pEstWidth 1328 ){ 1329 char const *zType = 0; 1330 int j; 1331 u8 estWidth = 1; 1332 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1333 char const *zOrigDb = 0; 1334 char const *zOrigTab = 0; 1335 char const *zOrigCol = 0; 1336 #endif 1337 1338 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1339 switch( pExpr->op ){ 1340 case TK_AGG_COLUMN: 1341 case TK_COLUMN: { 1342 /* The expression is a column. Locate the table the column is being 1343 ** extracted from in NameContext.pSrcList. This table may be real 1344 ** database table or a subquery. 1345 */ 1346 Table *pTab = 0; /* Table structure column is extracted from */ 1347 Select *pS = 0; /* Select the column is extracted from */ 1348 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1349 testcase( pExpr->op==TK_AGG_COLUMN ); 1350 testcase( pExpr->op==TK_COLUMN ); 1351 while( pNC && !pTab ){ 1352 SrcList *pTabList = pNC->pSrcList; 1353 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1354 if( j<pTabList->nSrc ){ 1355 pTab = pTabList->a[j].pTab; 1356 pS = pTabList->a[j].pSelect; 1357 }else{ 1358 pNC = pNC->pNext; 1359 } 1360 } 1361 1362 if( pTab==0 ){ 1363 /* At one time, code such as "SELECT new.x" within a trigger would 1364 ** cause this condition to run. Since then, we have restructured how 1365 ** trigger code is generated and so this condition is no longer 1366 ** possible. However, it can still be true for statements like 1367 ** the following: 1368 ** 1369 ** CREATE TABLE t1(col INTEGER); 1370 ** SELECT (SELECT t1.col) FROM FROM t1; 1371 ** 1372 ** when columnType() is called on the expression "t1.col" in the 1373 ** sub-select. In this case, set the column type to NULL, even 1374 ** though it should really be "INTEGER". 1375 ** 1376 ** This is not a problem, as the column type of "t1.col" is never 1377 ** used. When columnType() is called on the expression 1378 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1379 ** branch below. */ 1380 break; 1381 } 1382 1383 assert( pTab && pExpr->pTab==pTab ); 1384 if( pS ){ 1385 /* The "table" is actually a sub-select or a view in the FROM clause 1386 ** of the SELECT statement. Return the declaration type and origin 1387 ** data for the result-set column of the sub-select. 1388 */ 1389 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1390 /* If iCol is less than zero, then the expression requests the 1391 ** rowid of the sub-select or view. This expression is legal (see 1392 ** test case misc2.2.2) - it always evaluates to NULL. 1393 */ 1394 NameContext sNC; 1395 Expr *p = pS->pEList->a[iCol].pExpr; 1396 sNC.pSrcList = pS->pSrc; 1397 sNC.pNext = pNC; 1398 sNC.pParse = pNC->pParse; 1399 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1400 } 1401 }else if( pTab->pSchema ){ 1402 /* A real table */ 1403 assert( !pS ); 1404 if( iCol<0 ) iCol = pTab->iPKey; 1405 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1406 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1407 if( iCol<0 ){ 1408 zType = "INTEGER"; 1409 zOrigCol = "rowid"; 1410 }else{ 1411 zType = pTab->aCol[iCol].zType; 1412 zOrigCol = pTab->aCol[iCol].zName; 1413 estWidth = pTab->aCol[iCol].szEst; 1414 } 1415 zOrigTab = pTab->zName; 1416 if( pNC->pParse ){ 1417 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1418 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1419 } 1420 #else 1421 if( iCol<0 ){ 1422 zType = "INTEGER"; 1423 }else{ 1424 zType = pTab->aCol[iCol].zType; 1425 estWidth = pTab->aCol[iCol].szEst; 1426 } 1427 #endif 1428 } 1429 break; 1430 } 1431 #ifndef SQLITE_OMIT_SUBQUERY 1432 case TK_SELECT: { 1433 /* The expression is a sub-select. Return the declaration type and 1434 ** origin info for the single column in the result set of the SELECT 1435 ** statement. 1436 */ 1437 NameContext sNC; 1438 Select *pS = pExpr->x.pSelect; 1439 Expr *p = pS->pEList->a[0].pExpr; 1440 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1441 sNC.pSrcList = pS->pSrc; 1442 sNC.pNext = pNC; 1443 sNC.pParse = pNC->pParse; 1444 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1445 break; 1446 } 1447 #endif 1448 } 1449 1450 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1451 if( pzOrigDb ){ 1452 assert( pzOrigTab && pzOrigCol ); 1453 *pzOrigDb = zOrigDb; 1454 *pzOrigTab = zOrigTab; 1455 *pzOrigCol = zOrigCol; 1456 } 1457 #endif 1458 if( pEstWidth ) *pEstWidth = estWidth; 1459 return zType; 1460 } 1461 1462 /* 1463 ** Generate code that will tell the VDBE the declaration types of columns 1464 ** in the result set. 1465 */ 1466 static void generateColumnTypes( 1467 Parse *pParse, /* Parser context */ 1468 SrcList *pTabList, /* List of tables */ 1469 ExprList *pEList /* Expressions defining the result set */ 1470 ){ 1471 #ifndef SQLITE_OMIT_DECLTYPE 1472 Vdbe *v = pParse->pVdbe; 1473 int i; 1474 NameContext sNC; 1475 sNC.pSrcList = pTabList; 1476 sNC.pParse = pParse; 1477 for(i=0; i<pEList->nExpr; i++){ 1478 Expr *p = pEList->a[i].pExpr; 1479 const char *zType; 1480 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1481 const char *zOrigDb = 0; 1482 const char *zOrigTab = 0; 1483 const char *zOrigCol = 0; 1484 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1485 1486 /* The vdbe must make its own copy of the column-type and other 1487 ** column specific strings, in case the schema is reset before this 1488 ** virtual machine is deleted. 1489 */ 1490 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1491 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1492 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1493 #else 1494 zType = columnType(&sNC, p, 0, 0, 0, 0); 1495 #endif 1496 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1497 } 1498 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1499 } 1500 1501 /* 1502 ** Generate code that will tell the VDBE the names of columns 1503 ** in the result set. This information is used to provide the 1504 ** azCol[] values in the callback. 1505 */ 1506 static void generateColumnNames( 1507 Parse *pParse, /* Parser context */ 1508 SrcList *pTabList, /* List of tables */ 1509 ExprList *pEList /* Expressions defining the result set */ 1510 ){ 1511 Vdbe *v = pParse->pVdbe; 1512 int i, j; 1513 sqlite3 *db = pParse->db; 1514 int fullNames, shortNames; 1515 1516 #ifndef SQLITE_OMIT_EXPLAIN 1517 /* If this is an EXPLAIN, skip this step */ 1518 if( pParse->explain ){ 1519 return; 1520 } 1521 #endif 1522 1523 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1524 pParse->colNamesSet = 1; 1525 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1526 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1527 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1528 for(i=0; i<pEList->nExpr; i++){ 1529 Expr *p; 1530 p = pEList->a[i].pExpr; 1531 if( NEVER(p==0) ) continue; 1532 if( pEList->a[i].zName ){ 1533 char *zName = pEList->a[i].zName; 1534 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1535 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1536 Table *pTab; 1537 char *zCol; 1538 int iCol = p->iColumn; 1539 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1540 if( pTabList->a[j].iCursor==p->iTable ) break; 1541 } 1542 assert( j<pTabList->nSrc ); 1543 pTab = pTabList->a[j].pTab; 1544 if( iCol<0 ) iCol = pTab->iPKey; 1545 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1546 if( iCol<0 ){ 1547 zCol = "rowid"; 1548 }else{ 1549 zCol = pTab->aCol[iCol].zName; 1550 } 1551 if( !shortNames && !fullNames ){ 1552 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1553 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1554 }else if( fullNames ){ 1555 char *zName = 0; 1556 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1557 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1558 }else{ 1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1560 } 1561 }else{ 1562 const char *z = pEList->a[i].zSpan; 1563 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1564 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1565 } 1566 } 1567 generateColumnTypes(pParse, pTabList, pEList); 1568 } 1569 1570 /* 1571 ** Given an expression list (which is really the list of expressions 1572 ** that form the result set of a SELECT statement) compute appropriate 1573 ** column names for a table that would hold the expression list. 1574 ** 1575 ** All column names will be unique. 1576 ** 1577 ** Only the column names are computed. Column.zType, Column.zColl, 1578 ** and other fields of Column are zeroed. 1579 ** 1580 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1581 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1582 */ 1583 static int selectColumnsFromExprList( 1584 Parse *pParse, /* Parsing context */ 1585 ExprList *pEList, /* Expr list from which to derive column names */ 1586 i16 *pnCol, /* Write the number of columns here */ 1587 Column **paCol /* Write the new column list here */ 1588 ){ 1589 sqlite3 *db = pParse->db; /* Database connection */ 1590 int i, j; /* Loop counters */ 1591 int cnt; /* Index added to make the name unique */ 1592 Column *aCol, *pCol; /* For looping over result columns */ 1593 int nCol; /* Number of columns in the result set */ 1594 Expr *p; /* Expression for a single result column */ 1595 char *zName; /* Column name */ 1596 int nName; /* Size of name in zName[] */ 1597 1598 if( pEList ){ 1599 nCol = pEList->nExpr; 1600 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1601 testcase( aCol==0 ); 1602 }else{ 1603 nCol = 0; 1604 aCol = 0; 1605 } 1606 *pnCol = nCol; 1607 *paCol = aCol; 1608 1609 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1610 /* Get an appropriate name for the column 1611 */ 1612 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1613 if( (zName = pEList->a[i].zName)!=0 ){ 1614 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1615 zName = sqlite3DbStrDup(db, zName); 1616 }else{ 1617 Expr *pColExpr = p; /* The expression that is the result column name */ 1618 Table *pTab; /* Table associated with this expression */ 1619 while( pColExpr->op==TK_DOT ){ 1620 pColExpr = pColExpr->pRight; 1621 assert( pColExpr!=0 ); 1622 } 1623 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1624 /* For columns use the column name name */ 1625 int iCol = pColExpr->iColumn; 1626 pTab = pColExpr->pTab; 1627 if( iCol<0 ) iCol = pTab->iPKey; 1628 zName = sqlite3MPrintf(db, "%s", 1629 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1630 }else if( pColExpr->op==TK_ID ){ 1631 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1632 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1633 }else{ 1634 /* Use the original text of the column expression as its name */ 1635 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1636 } 1637 } 1638 if( db->mallocFailed ){ 1639 sqlite3DbFree(db, zName); 1640 break; 1641 } 1642 1643 /* Make sure the column name is unique. If the name is not unique, 1644 ** append an integer to the name so that it becomes unique. 1645 */ 1646 nName = sqlite3Strlen30(zName); 1647 for(j=cnt=0; j<i; j++){ 1648 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1649 char *zNewName; 1650 int k; 1651 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1652 if( k>=0 && zName[k]==':' ) nName = k; 1653 zName[nName] = 0; 1654 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1655 sqlite3DbFree(db, zName); 1656 zName = zNewName; 1657 j = -1; 1658 if( zName==0 ) break; 1659 } 1660 } 1661 pCol->zName = zName; 1662 } 1663 if( db->mallocFailed ){ 1664 for(j=0; j<i; j++){ 1665 sqlite3DbFree(db, aCol[j].zName); 1666 } 1667 sqlite3DbFree(db, aCol); 1668 *paCol = 0; 1669 *pnCol = 0; 1670 return SQLITE_NOMEM; 1671 } 1672 return SQLITE_OK; 1673 } 1674 1675 /* 1676 ** Add type and collation information to a column list based on 1677 ** a SELECT statement. 1678 ** 1679 ** The column list presumably came from selectColumnNamesFromExprList(). 1680 ** The column list has only names, not types or collations. This 1681 ** routine goes through and adds the types and collations. 1682 ** 1683 ** This routine requires that all identifiers in the SELECT 1684 ** statement be resolved. 1685 */ 1686 static void selectAddColumnTypeAndCollation( 1687 Parse *pParse, /* Parsing contexts */ 1688 Table *pTab, /* Add column type information to this table */ 1689 Select *pSelect /* SELECT used to determine types and collations */ 1690 ){ 1691 sqlite3 *db = pParse->db; 1692 NameContext sNC; 1693 Column *pCol; 1694 CollSeq *pColl; 1695 int i; 1696 Expr *p; 1697 struct ExprList_item *a; 1698 u64 szAll = 0; 1699 1700 assert( pSelect!=0 ); 1701 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1702 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1703 if( db->mallocFailed ) return; 1704 memset(&sNC, 0, sizeof(sNC)); 1705 sNC.pSrcList = pSelect->pSrc; 1706 a = pSelect->pEList->a; 1707 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1708 p = a[i].pExpr; 1709 if( pCol->zType==0 ){ 1710 pCol->zType = sqlite3DbStrDup(db, 1711 columnType(&sNC, p,0,0,0, &pCol->szEst)); 1712 } 1713 szAll += pCol->szEst; 1714 pCol->affinity = sqlite3ExprAffinity(p); 1715 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1716 pColl = sqlite3ExprCollSeq(pParse, p); 1717 if( pColl && pCol->zColl==0 ){ 1718 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1719 } 1720 } 1721 pTab->szTabRow = sqlite3LogEst(szAll*4); 1722 } 1723 1724 /* 1725 ** Given a SELECT statement, generate a Table structure that describes 1726 ** the result set of that SELECT. 1727 */ 1728 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1729 Table *pTab; 1730 sqlite3 *db = pParse->db; 1731 int savedFlags; 1732 1733 savedFlags = db->flags; 1734 db->flags &= ~SQLITE_FullColNames; 1735 db->flags |= SQLITE_ShortColNames; 1736 sqlite3SelectPrep(pParse, pSelect, 0); 1737 if( pParse->nErr ) return 0; 1738 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1739 db->flags = savedFlags; 1740 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1741 if( pTab==0 ){ 1742 return 0; 1743 } 1744 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1745 ** is disabled */ 1746 assert( db->lookaside.bEnabled==0 ); 1747 pTab->nRef = 1; 1748 pTab->zName = 0; 1749 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1750 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1751 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1752 pTab->iPKey = -1; 1753 if( db->mallocFailed ){ 1754 sqlite3DeleteTable(db, pTab); 1755 return 0; 1756 } 1757 return pTab; 1758 } 1759 1760 /* 1761 ** Get a VDBE for the given parser context. Create a new one if necessary. 1762 ** If an error occurs, return NULL and leave a message in pParse. 1763 */ 1764 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1765 Vdbe *v = pParse->pVdbe; 1766 if( v==0 ){ 1767 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1768 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1769 if( pParse->pToplevel==0 1770 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1771 ){ 1772 pParse->okConstFactor = 1; 1773 } 1774 1775 } 1776 return v; 1777 } 1778 1779 1780 /* 1781 ** Compute the iLimit and iOffset fields of the SELECT based on the 1782 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1783 ** that appear in the original SQL statement after the LIMIT and OFFSET 1784 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1785 ** are the integer memory register numbers for counters used to compute 1786 ** the limit and offset. If there is no limit and/or offset, then 1787 ** iLimit and iOffset are negative. 1788 ** 1789 ** This routine changes the values of iLimit and iOffset only if 1790 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1791 ** iOffset should have been preset to appropriate default values (zero) 1792 ** prior to calling this routine. 1793 ** 1794 ** The iOffset register (if it exists) is initialized to the value 1795 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1796 ** iOffset+1 is initialized to LIMIT+OFFSET. 1797 ** 1798 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1799 ** redefined. The UNION ALL operator uses this property to force 1800 ** the reuse of the same limit and offset registers across multiple 1801 ** SELECT statements. 1802 */ 1803 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1804 Vdbe *v = 0; 1805 int iLimit = 0; 1806 int iOffset; 1807 int addr1, n; 1808 if( p->iLimit ) return; 1809 1810 /* 1811 ** "LIMIT -1" always shows all rows. There is some 1812 ** controversy about what the correct behavior should be. 1813 ** The current implementation interprets "LIMIT 0" to mean 1814 ** no rows. 1815 */ 1816 sqlite3ExprCacheClear(pParse); 1817 assert( p->pOffset==0 || p->pLimit!=0 ); 1818 if( p->pLimit ){ 1819 p->iLimit = iLimit = ++pParse->nMem; 1820 v = sqlite3GetVdbe(pParse); 1821 assert( v!=0 ); 1822 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1823 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1824 VdbeComment((v, "LIMIT counter")); 1825 if( n==0 ){ 1826 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1827 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1828 p->nSelectRow = n; 1829 } 1830 }else{ 1831 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1832 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1833 VdbeComment((v, "LIMIT counter")); 1834 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1835 } 1836 if( p->pOffset ){ 1837 p->iOffset = iOffset = ++pParse->nMem; 1838 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1839 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1840 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1841 VdbeComment((v, "OFFSET counter")); 1842 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1843 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1844 sqlite3VdbeJumpHere(v, addr1); 1845 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1846 VdbeComment((v, "LIMIT+OFFSET")); 1847 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1848 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1849 sqlite3VdbeJumpHere(v, addr1); 1850 } 1851 } 1852 } 1853 1854 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1855 /* 1856 ** Return the appropriate collating sequence for the iCol-th column of 1857 ** the result set for the compound-select statement "p". Return NULL if 1858 ** the column has no default collating sequence. 1859 ** 1860 ** The collating sequence for the compound select is taken from the 1861 ** left-most term of the select that has a collating sequence. 1862 */ 1863 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1864 CollSeq *pRet; 1865 if( p->pPrior ){ 1866 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1867 }else{ 1868 pRet = 0; 1869 } 1870 assert( iCol>=0 ); 1871 if( pRet==0 && iCol<p->pEList->nExpr ){ 1872 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1873 } 1874 return pRet; 1875 } 1876 1877 /* 1878 ** The select statement passed as the second parameter is a compound SELECT 1879 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1880 ** structure suitable for implementing the ORDER BY. 1881 ** 1882 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1883 ** function is responsible for ensuring that this structure is eventually 1884 ** freed. 1885 */ 1886 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1887 ExprList *pOrderBy = p->pOrderBy; 1888 int nOrderBy = p->pOrderBy->nExpr; 1889 sqlite3 *db = pParse->db; 1890 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1891 if( pRet ){ 1892 int i; 1893 for(i=0; i<nOrderBy; i++){ 1894 struct ExprList_item *pItem = &pOrderBy->a[i]; 1895 Expr *pTerm = pItem->pExpr; 1896 CollSeq *pColl; 1897 1898 if( pTerm->flags & EP_Collate ){ 1899 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1900 }else{ 1901 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1902 if( pColl==0 ) pColl = db->pDfltColl; 1903 pOrderBy->a[i].pExpr = 1904 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1905 } 1906 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1907 pRet->aColl[i] = pColl; 1908 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1909 } 1910 } 1911 1912 return pRet; 1913 } 1914 1915 #ifndef SQLITE_OMIT_CTE 1916 /* 1917 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1918 ** query of the form: 1919 ** 1920 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1921 ** \___________/ \_______________/ 1922 ** p->pPrior p 1923 ** 1924 ** 1925 ** There is exactly one reference to the recursive-table in the FROM clause 1926 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1927 ** 1928 ** The setup-query runs once to generate an initial set of rows that go 1929 ** into a Queue table. Rows are extracted from the Queue table one by 1930 ** one. Each row extracted from Queue is output to pDest. Then the single 1931 ** extracted row (now in the iCurrent table) becomes the content of the 1932 ** recursive-table for a recursive-query run. The output of the recursive-query 1933 ** is added back into the Queue table. Then another row is extracted from Queue 1934 ** and the iteration continues until the Queue table is empty. 1935 ** 1936 ** If the compound query operator is UNION then no duplicate rows are ever 1937 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1938 ** that have ever been inserted into Queue and causes duplicates to be 1939 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1940 ** 1941 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1942 ** ORDER BY order and the first entry is extracted for each cycle. Without 1943 ** an ORDER BY, the Queue table is just a FIFO. 1944 ** 1945 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1946 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1947 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1948 ** with a positive value, then the first OFFSET outputs are discarded rather 1949 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1950 ** rows have been skipped. 1951 */ 1952 static void generateWithRecursiveQuery( 1953 Parse *pParse, /* Parsing context */ 1954 Select *p, /* The recursive SELECT to be coded */ 1955 SelectDest *pDest /* What to do with query results */ 1956 ){ 1957 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1958 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1959 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1960 Select *pSetup = p->pPrior; /* The setup query */ 1961 int addrTop; /* Top of the loop */ 1962 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1963 int iCurrent = 0; /* The Current table */ 1964 int regCurrent; /* Register holding Current table */ 1965 int iQueue; /* The Queue table */ 1966 int iDistinct = 0; /* To ensure unique results if UNION */ 1967 int eDest = SRT_Fifo; /* How to write to Queue */ 1968 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1969 int i; /* Loop counter */ 1970 int rc; /* Result code */ 1971 ExprList *pOrderBy; /* The ORDER BY clause */ 1972 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1973 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1974 1975 /* Obtain authorization to do a recursive query */ 1976 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1977 1978 /* Process the LIMIT and OFFSET clauses, if they exist */ 1979 addrBreak = sqlite3VdbeMakeLabel(v); 1980 computeLimitRegisters(pParse, p, addrBreak); 1981 pLimit = p->pLimit; 1982 pOffset = p->pOffset; 1983 regLimit = p->iLimit; 1984 regOffset = p->iOffset; 1985 p->pLimit = p->pOffset = 0; 1986 p->iLimit = p->iOffset = 0; 1987 pOrderBy = p->pOrderBy; 1988 1989 /* Locate the cursor number of the Current table */ 1990 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1991 if( pSrc->a[i].isRecursive ){ 1992 iCurrent = pSrc->a[i].iCursor; 1993 break; 1994 } 1995 } 1996 1997 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1998 ** the Distinct table must be exactly one greater than Queue in order 1999 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2000 iQueue = pParse->nTab++; 2001 if( p->op==TK_UNION ){ 2002 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2003 iDistinct = pParse->nTab++; 2004 }else{ 2005 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2006 } 2007 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2008 2009 /* Allocate cursors for Current, Queue, and Distinct. */ 2010 regCurrent = ++pParse->nMem; 2011 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2012 if( pOrderBy ){ 2013 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2014 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2015 (char*)pKeyInfo, P4_KEYINFO); 2016 destQueue.pOrderBy = pOrderBy; 2017 }else{ 2018 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2019 } 2020 VdbeComment((v, "Queue table")); 2021 if( iDistinct ){ 2022 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2023 p->selFlags |= SF_UsesEphemeral; 2024 } 2025 2026 /* Detach the ORDER BY clause from the compound SELECT */ 2027 p->pOrderBy = 0; 2028 2029 /* Store the results of the setup-query in Queue. */ 2030 pSetup->pNext = 0; 2031 rc = sqlite3Select(pParse, pSetup, &destQueue); 2032 pSetup->pNext = p; 2033 if( rc ) goto end_of_recursive_query; 2034 2035 /* Find the next row in the Queue and output that row */ 2036 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2037 2038 /* Transfer the next row in Queue over to Current */ 2039 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2040 if( pOrderBy ){ 2041 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2042 }else{ 2043 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2044 } 2045 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2046 2047 /* Output the single row in Current */ 2048 addrCont = sqlite3VdbeMakeLabel(v); 2049 codeOffset(v, regOffset, addrCont); 2050 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2051 0, 0, pDest, addrCont, addrBreak); 2052 if( regLimit ){ 2053 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2054 VdbeCoverage(v); 2055 } 2056 sqlite3VdbeResolveLabel(v, addrCont); 2057 2058 /* Execute the recursive SELECT taking the single row in Current as 2059 ** the value for the recursive-table. Store the results in the Queue. 2060 */ 2061 p->pPrior = 0; 2062 sqlite3Select(pParse, p, &destQueue); 2063 assert( p->pPrior==0 ); 2064 p->pPrior = pSetup; 2065 2066 /* Keep running the loop until the Queue is empty */ 2067 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2068 sqlite3VdbeResolveLabel(v, addrBreak); 2069 2070 end_of_recursive_query: 2071 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2072 p->pOrderBy = pOrderBy; 2073 p->pLimit = pLimit; 2074 p->pOffset = pOffset; 2075 return; 2076 } 2077 #endif /* SQLITE_OMIT_CTE */ 2078 2079 /* Forward references */ 2080 static int multiSelectOrderBy( 2081 Parse *pParse, /* Parsing context */ 2082 Select *p, /* The right-most of SELECTs to be coded */ 2083 SelectDest *pDest /* What to do with query results */ 2084 ); 2085 2086 /* 2087 ** Error message for when two or more terms of a compound select have different 2088 ** size result sets. 2089 */ 2090 static void selectWrongNumTermsError(Parse *pParse, Select *p){ 2091 if( p->selFlags & SF_Values ){ 2092 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2093 }else{ 2094 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2095 " do not have the same number of result columns", selectOpName(p->op)); 2096 } 2097 } 2098 2099 /* 2100 ** Handle the special case of a compound-select that originates from a 2101 ** VALUES clause. By handling this as a special case, we avoid deep 2102 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2103 ** on a VALUES clause. 2104 ** 2105 ** Because the Select object originates from a VALUES clause: 2106 ** (1) It has no LIMIT or OFFSET 2107 ** (2) All terms are UNION ALL 2108 ** (3) There is no ORDER BY clause 2109 */ 2110 static int multiSelectValues( 2111 Parse *pParse, /* Parsing context */ 2112 Select *p, /* The right-most of SELECTs to be coded */ 2113 SelectDest *pDest /* What to do with query results */ 2114 ){ 2115 Select *pPrior; 2116 int nExpr = p->pEList->nExpr; 2117 int nRow = 1; 2118 int rc = 0; 2119 assert( p->selFlags & SF_MultiValue ); 2120 do{ 2121 assert( p->selFlags & SF_Values ); 2122 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2123 assert( p->pLimit==0 ); 2124 assert( p->pOffset==0 ); 2125 if( p->pEList->nExpr!=nExpr ){ 2126 selectWrongNumTermsError(pParse, p); 2127 return 1; 2128 } 2129 if( p->pPrior==0 ) break; 2130 assert( p->pPrior->pNext==p ); 2131 p = p->pPrior; 2132 nRow++; 2133 }while(1); 2134 while( p ){ 2135 pPrior = p->pPrior; 2136 p->pPrior = 0; 2137 rc = sqlite3Select(pParse, p, pDest); 2138 p->pPrior = pPrior; 2139 if( rc ) break; 2140 p->nSelectRow = nRow; 2141 p = p->pNext; 2142 } 2143 return rc; 2144 } 2145 2146 /* 2147 ** This routine is called to process a compound query form from 2148 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2149 ** INTERSECT 2150 ** 2151 ** "p" points to the right-most of the two queries. the query on the 2152 ** left is p->pPrior. The left query could also be a compound query 2153 ** in which case this routine will be called recursively. 2154 ** 2155 ** The results of the total query are to be written into a destination 2156 ** of type eDest with parameter iParm. 2157 ** 2158 ** Example 1: Consider a three-way compound SQL statement. 2159 ** 2160 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2161 ** 2162 ** This statement is parsed up as follows: 2163 ** 2164 ** SELECT c FROM t3 2165 ** | 2166 ** `-----> SELECT b FROM t2 2167 ** | 2168 ** `------> SELECT a FROM t1 2169 ** 2170 ** The arrows in the diagram above represent the Select.pPrior pointer. 2171 ** So if this routine is called with p equal to the t3 query, then 2172 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2173 ** 2174 ** Notice that because of the way SQLite parses compound SELECTs, the 2175 ** individual selects always group from left to right. 2176 */ 2177 static int multiSelect( 2178 Parse *pParse, /* Parsing context */ 2179 Select *p, /* The right-most of SELECTs to be coded */ 2180 SelectDest *pDest /* What to do with query results */ 2181 ){ 2182 int rc = SQLITE_OK; /* Success code from a subroutine */ 2183 Select *pPrior; /* Another SELECT immediately to our left */ 2184 Vdbe *v; /* Generate code to this VDBE */ 2185 SelectDest dest; /* Alternative data destination */ 2186 Select *pDelete = 0; /* Chain of simple selects to delete */ 2187 sqlite3 *db; /* Database connection */ 2188 #ifndef SQLITE_OMIT_EXPLAIN 2189 int iSub1 = 0; /* EQP id of left-hand query */ 2190 int iSub2 = 0; /* EQP id of right-hand query */ 2191 #endif 2192 2193 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2194 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2195 */ 2196 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2197 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2198 db = pParse->db; 2199 pPrior = p->pPrior; 2200 dest = *pDest; 2201 if( pPrior->pOrderBy ){ 2202 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2203 selectOpName(p->op)); 2204 rc = 1; 2205 goto multi_select_end; 2206 } 2207 if( pPrior->pLimit ){ 2208 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2209 selectOpName(p->op)); 2210 rc = 1; 2211 goto multi_select_end; 2212 } 2213 2214 v = sqlite3GetVdbe(pParse); 2215 assert( v!=0 ); /* The VDBE already created by calling function */ 2216 2217 /* Create the destination temporary table if necessary 2218 */ 2219 if( dest.eDest==SRT_EphemTab ){ 2220 assert( p->pEList ); 2221 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2222 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2223 dest.eDest = SRT_Table; 2224 } 2225 2226 /* Special handling for a compound-select that originates as a VALUES clause. 2227 */ 2228 if( p->selFlags & SF_MultiValue ){ 2229 rc = multiSelectValues(pParse, p, &dest); 2230 goto multi_select_end; 2231 } 2232 2233 /* Make sure all SELECTs in the statement have the same number of elements 2234 ** in their result sets. 2235 */ 2236 assert( p->pEList && pPrior->pEList ); 2237 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2238 selectWrongNumTermsError(pParse, p); 2239 rc = 1; 2240 goto multi_select_end; 2241 } 2242 2243 #ifndef SQLITE_OMIT_CTE 2244 if( p->selFlags & SF_Recursive ){ 2245 generateWithRecursiveQuery(pParse, p, &dest); 2246 }else 2247 #endif 2248 2249 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2250 */ 2251 if( p->pOrderBy ){ 2252 return multiSelectOrderBy(pParse, p, pDest); 2253 }else 2254 2255 /* Generate code for the left and right SELECT statements. 2256 */ 2257 switch( p->op ){ 2258 case TK_ALL: { 2259 int addr = 0; 2260 int nLimit; 2261 assert( !pPrior->pLimit ); 2262 pPrior->iLimit = p->iLimit; 2263 pPrior->iOffset = p->iOffset; 2264 pPrior->pLimit = p->pLimit; 2265 pPrior->pOffset = p->pOffset; 2266 explainSetInteger(iSub1, pParse->iNextSelectId); 2267 rc = sqlite3Select(pParse, pPrior, &dest); 2268 p->pLimit = 0; 2269 p->pOffset = 0; 2270 if( rc ){ 2271 goto multi_select_end; 2272 } 2273 p->pPrior = 0; 2274 p->iLimit = pPrior->iLimit; 2275 p->iOffset = pPrior->iOffset; 2276 if( p->iLimit ){ 2277 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2278 VdbeComment((v, "Jump ahead if LIMIT reached")); 2279 } 2280 explainSetInteger(iSub2, pParse->iNextSelectId); 2281 rc = sqlite3Select(pParse, p, &dest); 2282 testcase( rc!=SQLITE_OK ); 2283 pDelete = p->pPrior; 2284 p->pPrior = pPrior; 2285 p->nSelectRow += pPrior->nSelectRow; 2286 if( pPrior->pLimit 2287 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2288 && nLimit>0 && p->nSelectRow > (u64)nLimit 2289 ){ 2290 p->nSelectRow = nLimit; 2291 } 2292 if( addr ){ 2293 sqlite3VdbeJumpHere(v, addr); 2294 } 2295 break; 2296 } 2297 case TK_EXCEPT: 2298 case TK_UNION: { 2299 int unionTab; /* Cursor number of the temporary table holding result */ 2300 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2301 int priorOp; /* The SRT_ operation to apply to prior selects */ 2302 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2303 int addr; 2304 SelectDest uniondest; 2305 2306 testcase( p->op==TK_EXCEPT ); 2307 testcase( p->op==TK_UNION ); 2308 priorOp = SRT_Union; 2309 if( dest.eDest==priorOp ){ 2310 /* We can reuse a temporary table generated by a SELECT to our 2311 ** right. 2312 */ 2313 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2314 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2315 unionTab = dest.iSDParm; 2316 }else{ 2317 /* We will need to create our own temporary table to hold the 2318 ** intermediate results. 2319 */ 2320 unionTab = pParse->nTab++; 2321 assert( p->pOrderBy==0 ); 2322 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2323 assert( p->addrOpenEphm[0] == -1 ); 2324 p->addrOpenEphm[0] = addr; 2325 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2326 assert( p->pEList ); 2327 } 2328 2329 /* Code the SELECT statements to our left 2330 */ 2331 assert( !pPrior->pOrderBy ); 2332 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2333 explainSetInteger(iSub1, pParse->iNextSelectId); 2334 rc = sqlite3Select(pParse, pPrior, &uniondest); 2335 if( rc ){ 2336 goto multi_select_end; 2337 } 2338 2339 /* Code the current SELECT statement 2340 */ 2341 if( p->op==TK_EXCEPT ){ 2342 op = SRT_Except; 2343 }else{ 2344 assert( p->op==TK_UNION ); 2345 op = SRT_Union; 2346 } 2347 p->pPrior = 0; 2348 pLimit = p->pLimit; 2349 p->pLimit = 0; 2350 pOffset = p->pOffset; 2351 p->pOffset = 0; 2352 uniondest.eDest = op; 2353 explainSetInteger(iSub2, pParse->iNextSelectId); 2354 rc = sqlite3Select(pParse, p, &uniondest); 2355 testcase( rc!=SQLITE_OK ); 2356 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2357 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2358 sqlite3ExprListDelete(db, p->pOrderBy); 2359 pDelete = p->pPrior; 2360 p->pPrior = pPrior; 2361 p->pOrderBy = 0; 2362 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2363 sqlite3ExprDelete(db, p->pLimit); 2364 p->pLimit = pLimit; 2365 p->pOffset = pOffset; 2366 p->iLimit = 0; 2367 p->iOffset = 0; 2368 2369 /* Convert the data in the temporary table into whatever form 2370 ** it is that we currently need. 2371 */ 2372 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2373 if( dest.eDest!=priorOp ){ 2374 int iCont, iBreak, iStart; 2375 assert( p->pEList ); 2376 if( dest.eDest==SRT_Output ){ 2377 Select *pFirst = p; 2378 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2379 generateColumnNames(pParse, 0, pFirst->pEList); 2380 } 2381 iBreak = sqlite3VdbeMakeLabel(v); 2382 iCont = sqlite3VdbeMakeLabel(v); 2383 computeLimitRegisters(pParse, p, iBreak); 2384 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2385 iStart = sqlite3VdbeCurrentAddr(v); 2386 selectInnerLoop(pParse, p, p->pEList, unionTab, 2387 0, 0, &dest, iCont, iBreak); 2388 sqlite3VdbeResolveLabel(v, iCont); 2389 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2390 sqlite3VdbeResolveLabel(v, iBreak); 2391 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2392 } 2393 break; 2394 } 2395 default: assert( p->op==TK_INTERSECT ); { 2396 int tab1, tab2; 2397 int iCont, iBreak, iStart; 2398 Expr *pLimit, *pOffset; 2399 int addr; 2400 SelectDest intersectdest; 2401 int r1; 2402 2403 /* INTERSECT is different from the others since it requires 2404 ** two temporary tables. Hence it has its own case. Begin 2405 ** by allocating the tables we will need. 2406 */ 2407 tab1 = pParse->nTab++; 2408 tab2 = pParse->nTab++; 2409 assert( p->pOrderBy==0 ); 2410 2411 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2412 assert( p->addrOpenEphm[0] == -1 ); 2413 p->addrOpenEphm[0] = addr; 2414 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2415 assert( p->pEList ); 2416 2417 /* Code the SELECTs to our left into temporary table "tab1". 2418 */ 2419 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2420 explainSetInteger(iSub1, pParse->iNextSelectId); 2421 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2422 if( rc ){ 2423 goto multi_select_end; 2424 } 2425 2426 /* Code the current SELECT into temporary table "tab2" 2427 */ 2428 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2429 assert( p->addrOpenEphm[1] == -1 ); 2430 p->addrOpenEphm[1] = addr; 2431 p->pPrior = 0; 2432 pLimit = p->pLimit; 2433 p->pLimit = 0; 2434 pOffset = p->pOffset; 2435 p->pOffset = 0; 2436 intersectdest.iSDParm = tab2; 2437 explainSetInteger(iSub2, pParse->iNextSelectId); 2438 rc = sqlite3Select(pParse, p, &intersectdest); 2439 testcase( rc!=SQLITE_OK ); 2440 pDelete = p->pPrior; 2441 p->pPrior = pPrior; 2442 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2443 sqlite3ExprDelete(db, p->pLimit); 2444 p->pLimit = pLimit; 2445 p->pOffset = pOffset; 2446 2447 /* Generate code to take the intersection of the two temporary 2448 ** tables. 2449 */ 2450 assert( p->pEList ); 2451 if( dest.eDest==SRT_Output ){ 2452 Select *pFirst = p; 2453 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2454 generateColumnNames(pParse, 0, pFirst->pEList); 2455 } 2456 iBreak = sqlite3VdbeMakeLabel(v); 2457 iCont = sqlite3VdbeMakeLabel(v); 2458 computeLimitRegisters(pParse, p, iBreak); 2459 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2460 r1 = sqlite3GetTempReg(pParse); 2461 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2462 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2463 sqlite3ReleaseTempReg(pParse, r1); 2464 selectInnerLoop(pParse, p, p->pEList, tab1, 2465 0, 0, &dest, iCont, iBreak); 2466 sqlite3VdbeResolveLabel(v, iCont); 2467 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2468 sqlite3VdbeResolveLabel(v, iBreak); 2469 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2470 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2471 break; 2472 } 2473 } 2474 2475 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2476 2477 /* Compute collating sequences used by 2478 ** temporary tables needed to implement the compound select. 2479 ** Attach the KeyInfo structure to all temporary tables. 2480 ** 2481 ** This section is run by the right-most SELECT statement only. 2482 ** SELECT statements to the left always skip this part. The right-most 2483 ** SELECT might also skip this part if it has no ORDER BY clause and 2484 ** no temp tables are required. 2485 */ 2486 if( p->selFlags & SF_UsesEphemeral ){ 2487 int i; /* Loop counter */ 2488 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2489 Select *pLoop; /* For looping through SELECT statements */ 2490 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2491 int nCol; /* Number of columns in result set */ 2492 2493 assert( p->pNext==0 ); 2494 nCol = p->pEList->nExpr; 2495 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2496 if( !pKeyInfo ){ 2497 rc = SQLITE_NOMEM; 2498 goto multi_select_end; 2499 } 2500 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2501 *apColl = multiSelectCollSeq(pParse, p, i); 2502 if( 0==*apColl ){ 2503 *apColl = db->pDfltColl; 2504 } 2505 } 2506 2507 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2508 for(i=0; i<2; i++){ 2509 int addr = pLoop->addrOpenEphm[i]; 2510 if( addr<0 ){ 2511 /* If [0] is unused then [1] is also unused. So we can 2512 ** always safely abort as soon as the first unused slot is found */ 2513 assert( pLoop->addrOpenEphm[1]<0 ); 2514 break; 2515 } 2516 sqlite3VdbeChangeP2(v, addr, nCol); 2517 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2518 P4_KEYINFO); 2519 pLoop->addrOpenEphm[i] = -1; 2520 } 2521 } 2522 sqlite3KeyInfoUnref(pKeyInfo); 2523 } 2524 2525 multi_select_end: 2526 pDest->iSdst = dest.iSdst; 2527 pDest->nSdst = dest.nSdst; 2528 sqlite3SelectDelete(db, pDelete); 2529 return rc; 2530 } 2531 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2532 2533 /* 2534 ** Code an output subroutine for a coroutine implementation of a 2535 ** SELECT statment. 2536 ** 2537 ** The data to be output is contained in pIn->iSdst. There are 2538 ** pIn->nSdst columns to be output. pDest is where the output should 2539 ** be sent. 2540 ** 2541 ** regReturn is the number of the register holding the subroutine 2542 ** return address. 2543 ** 2544 ** If regPrev>0 then it is the first register in a vector that 2545 ** records the previous output. mem[regPrev] is a flag that is false 2546 ** if there has been no previous output. If regPrev>0 then code is 2547 ** generated to suppress duplicates. pKeyInfo is used for comparing 2548 ** keys. 2549 ** 2550 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2551 ** iBreak. 2552 */ 2553 static int generateOutputSubroutine( 2554 Parse *pParse, /* Parsing context */ 2555 Select *p, /* The SELECT statement */ 2556 SelectDest *pIn, /* Coroutine supplying data */ 2557 SelectDest *pDest, /* Where to send the data */ 2558 int regReturn, /* The return address register */ 2559 int regPrev, /* Previous result register. No uniqueness if 0 */ 2560 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2561 int iBreak /* Jump here if we hit the LIMIT */ 2562 ){ 2563 Vdbe *v = pParse->pVdbe; 2564 int iContinue; 2565 int addr; 2566 2567 addr = sqlite3VdbeCurrentAddr(v); 2568 iContinue = sqlite3VdbeMakeLabel(v); 2569 2570 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2571 */ 2572 if( regPrev ){ 2573 int j1, j2; 2574 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2575 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2576 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2577 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2578 sqlite3VdbeJumpHere(v, j1); 2579 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2580 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2581 } 2582 if( pParse->db->mallocFailed ) return 0; 2583 2584 /* Suppress the first OFFSET entries if there is an OFFSET clause 2585 */ 2586 codeOffset(v, p->iOffset, iContinue); 2587 2588 assert( pDest->eDest!=SRT_Exists ); 2589 assert( pDest->eDest!=SRT_Table ); 2590 switch( pDest->eDest ){ 2591 /* Store the result as data using a unique key. 2592 */ 2593 case SRT_EphemTab: { 2594 int r1 = sqlite3GetTempReg(pParse); 2595 int r2 = sqlite3GetTempReg(pParse); 2596 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2597 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2598 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2599 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2600 sqlite3ReleaseTempReg(pParse, r2); 2601 sqlite3ReleaseTempReg(pParse, r1); 2602 break; 2603 } 2604 2605 #ifndef SQLITE_OMIT_SUBQUERY 2606 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2607 ** then there should be a single item on the stack. Write this 2608 ** item into the set table with bogus data. 2609 */ 2610 case SRT_Set: { 2611 int r1; 2612 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2613 pDest->affSdst = 2614 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2615 r1 = sqlite3GetTempReg(pParse); 2616 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2617 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2618 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2619 sqlite3ReleaseTempReg(pParse, r1); 2620 break; 2621 } 2622 2623 /* If this is a scalar select that is part of an expression, then 2624 ** store the results in the appropriate memory cell and break out 2625 ** of the scan loop. 2626 */ 2627 case SRT_Mem: { 2628 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2629 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2630 /* The LIMIT clause will jump out of the loop for us */ 2631 break; 2632 } 2633 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2634 2635 /* The results are stored in a sequence of registers 2636 ** starting at pDest->iSdst. Then the co-routine yields. 2637 */ 2638 case SRT_Coroutine: { 2639 if( pDest->iSdst==0 ){ 2640 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2641 pDest->nSdst = pIn->nSdst; 2642 } 2643 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2644 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2645 break; 2646 } 2647 2648 /* If none of the above, then the result destination must be 2649 ** SRT_Output. This routine is never called with any other 2650 ** destination other than the ones handled above or SRT_Output. 2651 ** 2652 ** For SRT_Output, results are stored in a sequence of registers. 2653 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2654 ** return the next row of result. 2655 */ 2656 default: { 2657 assert( pDest->eDest==SRT_Output ); 2658 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2659 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2660 break; 2661 } 2662 } 2663 2664 /* Jump to the end of the loop if the LIMIT is reached. 2665 */ 2666 if( p->iLimit ){ 2667 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2668 } 2669 2670 /* Generate the subroutine return 2671 */ 2672 sqlite3VdbeResolveLabel(v, iContinue); 2673 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2674 2675 return addr; 2676 } 2677 2678 /* 2679 ** Alternative compound select code generator for cases when there 2680 ** is an ORDER BY clause. 2681 ** 2682 ** We assume a query of the following form: 2683 ** 2684 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2685 ** 2686 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2687 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2688 ** co-routines. Then run the co-routines in parallel and merge the results 2689 ** into the output. In addition to the two coroutines (called selectA and 2690 ** selectB) there are 7 subroutines: 2691 ** 2692 ** outA: Move the output of the selectA coroutine into the output 2693 ** of the compound query. 2694 ** 2695 ** outB: Move the output of the selectB coroutine into the output 2696 ** of the compound query. (Only generated for UNION and 2697 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2698 ** appears only in B.) 2699 ** 2700 ** AltB: Called when there is data from both coroutines and A<B. 2701 ** 2702 ** AeqB: Called when there is data from both coroutines and A==B. 2703 ** 2704 ** AgtB: Called when there is data from both coroutines and A>B. 2705 ** 2706 ** EofA: Called when data is exhausted from selectA. 2707 ** 2708 ** EofB: Called when data is exhausted from selectB. 2709 ** 2710 ** The implementation of the latter five subroutines depend on which 2711 ** <operator> is used: 2712 ** 2713 ** 2714 ** UNION ALL UNION EXCEPT INTERSECT 2715 ** ------------- ----------------- -------------- ----------------- 2716 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2717 ** 2718 ** AeqB: outA, nextA nextA nextA outA, nextA 2719 ** 2720 ** AgtB: outB, nextB outB, nextB nextB nextB 2721 ** 2722 ** EofA: outB, nextB outB, nextB halt halt 2723 ** 2724 ** EofB: outA, nextA outA, nextA outA, nextA halt 2725 ** 2726 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2727 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2728 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2729 ** following nextX causes a jump to the end of the select processing. 2730 ** 2731 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2732 ** within the output subroutine. The regPrev register set holds the previously 2733 ** output value. A comparison is made against this value and the output 2734 ** is skipped if the next results would be the same as the previous. 2735 ** 2736 ** The implementation plan is to implement the two coroutines and seven 2737 ** subroutines first, then put the control logic at the bottom. Like this: 2738 ** 2739 ** goto Init 2740 ** coA: coroutine for left query (A) 2741 ** coB: coroutine for right query (B) 2742 ** outA: output one row of A 2743 ** outB: output one row of B (UNION and UNION ALL only) 2744 ** EofA: ... 2745 ** EofB: ... 2746 ** AltB: ... 2747 ** AeqB: ... 2748 ** AgtB: ... 2749 ** Init: initialize coroutine registers 2750 ** yield coA 2751 ** if eof(A) goto EofA 2752 ** yield coB 2753 ** if eof(B) goto EofB 2754 ** Cmpr: Compare A, B 2755 ** Jump AltB, AeqB, AgtB 2756 ** End: ... 2757 ** 2758 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2759 ** actually called using Gosub and they do not Return. EofA and EofB loop 2760 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2761 ** and AgtB jump to either L2 or to one of EofA or EofB. 2762 */ 2763 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2764 static int multiSelectOrderBy( 2765 Parse *pParse, /* Parsing context */ 2766 Select *p, /* The right-most of SELECTs to be coded */ 2767 SelectDest *pDest /* What to do with query results */ 2768 ){ 2769 int i, j; /* Loop counters */ 2770 Select *pPrior; /* Another SELECT immediately to our left */ 2771 Vdbe *v; /* Generate code to this VDBE */ 2772 SelectDest destA; /* Destination for coroutine A */ 2773 SelectDest destB; /* Destination for coroutine B */ 2774 int regAddrA; /* Address register for select-A coroutine */ 2775 int regAddrB; /* Address register for select-B coroutine */ 2776 int addrSelectA; /* Address of the select-A coroutine */ 2777 int addrSelectB; /* Address of the select-B coroutine */ 2778 int regOutA; /* Address register for the output-A subroutine */ 2779 int regOutB; /* Address register for the output-B subroutine */ 2780 int addrOutA; /* Address of the output-A subroutine */ 2781 int addrOutB = 0; /* Address of the output-B subroutine */ 2782 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2783 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2784 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2785 int addrAltB; /* Address of the A<B subroutine */ 2786 int addrAeqB; /* Address of the A==B subroutine */ 2787 int addrAgtB; /* Address of the A>B subroutine */ 2788 int regLimitA; /* Limit register for select-A */ 2789 int regLimitB; /* Limit register for select-A */ 2790 int regPrev; /* A range of registers to hold previous output */ 2791 int savedLimit; /* Saved value of p->iLimit */ 2792 int savedOffset; /* Saved value of p->iOffset */ 2793 int labelCmpr; /* Label for the start of the merge algorithm */ 2794 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2795 int j1; /* Jump instructions that get retargetted */ 2796 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2797 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2798 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2799 sqlite3 *db; /* Database connection */ 2800 ExprList *pOrderBy; /* The ORDER BY clause */ 2801 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2802 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2803 #ifndef SQLITE_OMIT_EXPLAIN 2804 int iSub1; /* EQP id of left-hand query */ 2805 int iSub2; /* EQP id of right-hand query */ 2806 #endif 2807 2808 assert( p->pOrderBy!=0 ); 2809 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2810 db = pParse->db; 2811 v = pParse->pVdbe; 2812 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2813 labelEnd = sqlite3VdbeMakeLabel(v); 2814 labelCmpr = sqlite3VdbeMakeLabel(v); 2815 2816 2817 /* Patch up the ORDER BY clause 2818 */ 2819 op = p->op; 2820 pPrior = p->pPrior; 2821 assert( pPrior->pOrderBy==0 ); 2822 pOrderBy = p->pOrderBy; 2823 assert( pOrderBy ); 2824 nOrderBy = pOrderBy->nExpr; 2825 2826 /* For operators other than UNION ALL we have to make sure that 2827 ** the ORDER BY clause covers every term of the result set. Add 2828 ** terms to the ORDER BY clause as necessary. 2829 */ 2830 if( op!=TK_ALL ){ 2831 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2832 struct ExprList_item *pItem; 2833 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2834 assert( pItem->u.x.iOrderByCol>0 ); 2835 if( pItem->u.x.iOrderByCol==i ) break; 2836 } 2837 if( j==nOrderBy ){ 2838 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2839 if( pNew==0 ) return SQLITE_NOMEM; 2840 pNew->flags |= EP_IntValue; 2841 pNew->u.iValue = i; 2842 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2843 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2844 } 2845 } 2846 } 2847 2848 /* Compute the comparison permutation and keyinfo that is used with 2849 ** the permutation used to determine if the next 2850 ** row of results comes from selectA or selectB. Also add explicit 2851 ** collations to the ORDER BY clause terms so that when the subqueries 2852 ** to the right and the left are evaluated, they use the correct 2853 ** collation. 2854 */ 2855 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2856 if( aPermute ){ 2857 struct ExprList_item *pItem; 2858 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2859 assert( pItem->u.x.iOrderByCol>0 ); 2860 /* assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ) is also true 2861 ** but only for well-formed SELECT statements. */ 2862 testcase( pItem->u.x.iOrderByCol > p->pEList->nExpr ); 2863 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2864 } 2865 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2866 }else{ 2867 pKeyMerge = 0; 2868 } 2869 2870 /* Reattach the ORDER BY clause to the query. 2871 */ 2872 p->pOrderBy = pOrderBy; 2873 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2874 2875 /* Allocate a range of temporary registers and the KeyInfo needed 2876 ** for the logic that removes duplicate result rows when the 2877 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2878 */ 2879 if( op==TK_ALL ){ 2880 regPrev = 0; 2881 }else{ 2882 int nExpr = p->pEList->nExpr; 2883 assert( nOrderBy>=nExpr || db->mallocFailed ); 2884 regPrev = pParse->nMem+1; 2885 pParse->nMem += nExpr+1; 2886 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2887 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2888 if( pKeyDup ){ 2889 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2890 for(i=0; i<nExpr; i++){ 2891 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2892 pKeyDup->aSortOrder[i] = 0; 2893 } 2894 } 2895 } 2896 2897 /* Separate the left and the right query from one another 2898 */ 2899 p->pPrior = 0; 2900 pPrior->pNext = 0; 2901 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2902 if( pPrior->pPrior==0 ){ 2903 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2904 } 2905 2906 /* Compute the limit registers */ 2907 computeLimitRegisters(pParse, p, labelEnd); 2908 if( p->iLimit && op==TK_ALL ){ 2909 regLimitA = ++pParse->nMem; 2910 regLimitB = ++pParse->nMem; 2911 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2912 regLimitA); 2913 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2914 }else{ 2915 regLimitA = regLimitB = 0; 2916 } 2917 sqlite3ExprDelete(db, p->pLimit); 2918 p->pLimit = 0; 2919 sqlite3ExprDelete(db, p->pOffset); 2920 p->pOffset = 0; 2921 2922 regAddrA = ++pParse->nMem; 2923 regAddrB = ++pParse->nMem; 2924 regOutA = ++pParse->nMem; 2925 regOutB = ++pParse->nMem; 2926 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2927 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2928 2929 /* Generate a coroutine to evaluate the SELECT statement to the 2930 ** left of the compound operator - the "A" select. 2931 */ 2932 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2933 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2934 VdbeComment((v, "left SELECT")); 2935 pPrior->iLimit = regLimitA; 2936 explainSetInteger(iSub1, pParse->iNextSelectId); 2937 sqlite3Select(pParse, pPrior, &destA); 2938 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2939 sqlite3VdbeJumpHere(v, j1); 2940 2941 /* Generate a coroutine to evaluate the SELECT statement on 2942 ** the right - the "B" select 2943 */ 2944 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2945 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2946 VdbeComment((v, "right SELECT")); 2947 savedLimit = p->iLimit; 2948 savedOffset = p->iOffset; 2949 p->iLimit = regLimitB; 2950 p->iOffset = 0; 2951 explainSetInteger(iSub2, pParse->iNextSelectId); 2952 sqlite3Select(pParse, p, &destB); 2953 p->iLimit = savedLimit; 2954 p->iOffset = savedOffset; 2955 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2956 2957 /* Generate a subroutine that outputs the current row of the A 2958 ** select as the next output row of the compound select. 2959 */ 2960 VdbeNoopComment((v, "Output routine for A")); 2961 addrOutA = generateOutputSubroutine(pParse, 2962 p, &destA, pDest, regOutA, 2963 regPrev, pKeyDup, labelEnd); 2964 2965 /* Generate a subroutine that outputs the current row of the B 2966 ** select as the next output row of the compound select. 2967 */ 2968 if( op==TK_ALL || op==TK_UNION ){ 2969 VdbeNoopComment((v, "Output routine for B")); 2970 addrOutB = generateOutputSubroutine(pParse, 2971 p, &destB, pDest, regOutB, 2972 regPrev, pKeyDup, labelEnd); 2973 } 2974 sqlite3KeyInfoUnref(pKeyDup); 2975 2976 /* Generate a subroutine to run when the results from select A 2977 ** are exhausted and only data in select B remains. 2978 */ 2979 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2980 addrEofA_noB = addrEofA = labelEnd; 2981 }else{ 2982 VdbeNoopComment((v, "eof-A subroutine")); 2983 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2984 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2985 VdbeCoverage(v); 2986 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2987 p->nSelectRow += pPrior->nSelectRow; 2988 } 2989 2990 /* Generate a subroutine to run when the results from select B 2991 ** are exhausted and only data in select A remains. 2992 */ 2993 if( op==TK_INTERSECT ){ 2994 addrEofB = addrEofA; 2995 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2996 }else{ 2997 VdbeNoopComment((v, "eof-B subroutine")); 2998 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2999 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3000 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 3001 } 3002 3003 /* Generate code to handle the case of A<B 3004 */ 3005 VdbeNoopComment((v, "A-lt-B subroutine")); 3006 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3007 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3008 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3009 3010 /* Generate code to handle the case of A==B 3011 */ 3012 if( op==TK_ALL ){ 3013 addrAeqB = addrAltB; 3014 }else if( op==TK_INTERSECT ){ 3015 addrAeqB = addrAltB; 3016 addrAltB++; 3017 }else{ 3018 VdbeNoopComment((v, "A-eq-B subroutine")); 3019 addrAeqB = 3020 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3021 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3022 } 3023 3024 /* Generate code to handle the case of A>B 3025 */ 3026 VdbeNoopComment((v, "A-gt-B subroutine")); 3027 addrAgtB = sqlite3VdbeCurrentAddr(v); 3028 if( op==TK_ALL || op==TK_UNION ){ 3029 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3030 } 3031 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3032 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 3033 3034 /* This code runs once to initialize everything. 3035 */ 3036 sqlite3VdbeJumpHere(v, j1); 3037 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3038 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3039 3040 /* Implement the main merge loop 3041 */ 3042 sqlite3VdbeResolveLabel(v, labelCmpr); 3043 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3044 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3045 (char*)pKeyMerge, P4_KEYINFO); 3046 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3047 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3048 3049 /* Jump to the this point in order to terminate the query. 3050 */ 3051 sqlite3VdbeResolveLabel(v, labelEnd); 3052 3053 /* Set the number of output columns 3054 */ 3055 if( pDest->eDest==SRT_Output ){ 3056 Select *pFirst = pPrior; 3057 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3058 generateColumnNames(pParse, 0, pFirst->pEList); 3059 } 3060 3061 /* Reassembly the compound query so that it will be freed correctly 3062 ** by the calling function */ 3063 if( p->pPrior ){ 3064 sqlite3SelectDelete(db, p->pPrior); 3065 } 3066 p->pPrior = pPrior; 3067 pPrior->pNext = p; 3068 3069 /*** TBD: Insert subroutine calls to close cursors on incomplete 3070 **** subqueries ****/ 3071 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3072 return pParse->nErr!=0; 3073 } 3074 #endif 3075 3076 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3077 /* Forward Declarations */ 3078 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3079 static void substSelect(sqlite3*, Select *, int, ExprList *); 3080 3081 /* 3082 ** Scan through the expression pExpr. Replace every reference to 3083 ** a column in table number iTable with a copy of the iColumn-th 3084 ** entry in pEList. (But leave references to the ROWID column 3085 ** unchanged.) 3086 ** 3087 ** This routine is part of the flattening procedure. A subquery 3088 ** whose result set is defined by pEList appears as entry in the 3089 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3090 ** FORM clause entry is iTable. This routine make the necessary 3091 ** changes to pExpr so that it refers directly to the source table 3092 ** of the subquery rather the result set of the subquery. 3093 */ 3094 static Expr *substExpr( 3095 sqlite3 *db, /* Report malloc errors to this connection */ 3096 Expr *pExpr, /* Expr in which substitution occurs */ 3097 int iTable, /* Table to be substituted */ 3098 ExprList *pEList /* Substitute expressions */ 3099 ){ 3100 if( pExpr==0 ) return 0; 3101 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3102 if( pExpr->iColumn<0 ){ 3103 pExpr->op = TK_NULL; 3104 }else{ 3105 Expr *pNew; 3106 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3107 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3108 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3109 sqlite3ExprDelete(db, pExpr); 3110 pExpr = pNew; 3111 } 3112 }else{ 3113 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3114 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3115 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3116 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3117 }else{ 3118 substExprList(db, pExpr->x.pList, iTable, pEList); 3119 } 3120 } 3121 return pExpr; 3122 } 3123 static void substExprList( 3124 sqlite3 *db, /* Report malloc errors here */ 3125 ExprList *pList, /* List to scan and in which to make substitutes */ 3126 int iTable, /* Table to be substituted */ 3127 ExprList *pEList /* Substitute values */ 3128 ){ 3129 int i; 3130 if( pList==0 ) return; 3131 for(i=0; i<pList->nExpr; i++){ 3132 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3133 } 3134 } 3135 static void substSelect( 3136 sqlite3 *db, /* Report malloc errors here */ 3137 Select *p, /* SELECT statement in which to make substitutions */ 3138 int iTable, /* Table to be replaced */ 3139 ExprList *pEList /* Substitute values */ 3140 ){ 3141 SrcList *pSrc; 3142 struct SrcList_item *pItem; 3143 int i; 3144 if( !p ) return; 3145 substExprList(db, p->pEList, iTable, pEList); 3146 substExprList(db, p->pGroupBy, iTable, pEList); 3147 substExprList(db, p->pOrderBy, iTable, pEList); 3148 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3149 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3150 substSelect(db, p->pPrior, iTable, pEList); 3151 pSrc = p->pSrc; 3152 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3153 if( ALWAYS(pSrc) ){ 3154 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3155 substSelect(db, pItem->pSelect, iTable, pEList); 3156 } 3157 } 3158 } 3159 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3160 3161 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3162 /* 3163 ** This routine attempts to flatten subqueries as a performance optimization. 3164 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3165 ** 3166 ** To understand the concept of flattening, consider the following 3167 ** query: 3168 ** 3169 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3170 ** 3171 ** The default way of implementing this query is to execute the 3172 ** subquery first and store the results in a temporary table, then 3173 ** run the outer query on that temporary table. This requires two 3174 ** passes over the data. Furthermore, because the temporary table 3175 ** has no indices, the WHERE clause on the outer query cannot be 3176 ** optimized. 3177 ** 3178 ** This routine attempts to rewrite queries such as the above into 3179 ** a single flat select, like this: 3180 ** 3181 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3182 ** 3183 ** The code generated for this simplification gives the same result 3184 ** but only has to scan the data once. And because indices might 3185 ** exist on the table t1, a complete scan of the data might be 3186 ** avoided. 3187 ** 3188 ** Flattening is only attempted if all of the following are true: 3189 ** 3190 ** (1) The subquery and the outer query do not both use aggregates. 3191 ** 3192 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3193 ** and (2b) the outer query does not use subqueries other than the one 3194 ** FROM-clause subquery that is a candidate for flattening. (2b is 3195 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3196 ** 3197 ** (3) The subquery is not the right operand of a left outer join 3198 ** (Originally ticket #306. Strengthened by ticket #3300) 3199 ** 3200 ** (4) The subquery is not DISTINCT. 3201 ** 3202 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3203 ** sub-queries that were excluded from this optimization. Restriction 3204 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3205 ** 3206 ** (6) The subquery does not use aggregates or the outer query is not 3207 ** DISTINCT. 3208 ** 3209 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3210 ** A FROM clause, consider adding a FROM close with the special 3211 ** table sqlite_once that consists of a single row containing a 3212 ** single NULL. 3213 ** 3214 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3215 ** 3216 ** (9) The subquery does not use LIMIT or the outer query does not use 3217 ** aggregates. 3218 ** 3219 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3220 ** accidently carried the comment forward until 2014-09-15. Original 3221 ** text: "The subquery does not use aggregates or the outer query 3222 ** does not use LIMIT." 3223 ** 3224 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3225 ** 3226 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3227 ** a separate restriction deriving from ticket #350. 3228 ** 3229 ** (13) The subquery and outer query do not both use LIMIT. 3230 ** 3231 ** (14) The subquery does not use OFFSET. 3232 ** 3233 ** (15) The outer query is not part of a compound select or the 3234 ** subquery does not have a LIMIT clause. 3235 ** (See ticket #2339 and ticket [02a8e81d44]). 3236 ** 3237 ** (16) The outer query is not an aggregate or the subquery does 3238 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3239 ** until we introduced the group_concat() function. 3240 ** 3241 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3242 ** compound clause made up entirely of non-aggregate queries, and 3243 ** the parent query: 3244 ** 3245 ** * is not itself part of a compound select, 3246 ** * is not an aggregate or DISTINCT query, and 3247 ** * is not a join 3248 ** 3249 ** The parent and sub-query may contain WHERE clauses. Subject to 3250 ** rules (11), (13) and (14), they may also contain ORDER BY, 3251 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3252 ** operator other than UNION ALL because all the other compound 3253 ** operators have an implied DISTINCT which is disallowed by 3254 ** restriction (4). 3255 ** 3256 ** Also, each component of the sub-query must return the same number 3257 ** of result columns. This is actually a requirement for any compound 3258 ** SELECT statement, but all the code here does is make sure that no 3259 ** such (illegal) sub-query is flattened. The caller will detect the 3260 ** syntax error and return a detailed message. 3261 ** 3262 ** (18) If the sub-query is a compound select, then all terms of the 3263 ** ORDER by clause of the parent must be simple references to 3264 ** columns of the sub-query. 3265 ** 3266 ** (19) The subquery does not use LIMIT or the outer query does not 3267 ** have a WHERE clause. 3268 ** 3269 ** (20) If the sub-query is a compound select, then it must not use 3270 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3271 ** somewhat by saying that the terms of the ORDER BY clause must 3272 ** appear as unmodified result columns in the outer query. But we 3273 ** have other optimizations in mind to deal with that case. 3274 ** 3275 ** (21) The subquery does not use LIMIT or the outer query is not 3276 ** DISTINCT. (See ticket [752e1646fc]). 3277 ** 3278 ** (22) The subquery is not a recursive CTE. 3279 ** 3280 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3281 ** compound query. This restriction is because transforming the 3282 ** parent to a compound query confuses the code that handles 3283 ** recursive queries in multiSelect(). 3284 ** 3285 ** (24) The subquery is not an aggregate that uses the built-in min() or 3286 ** or max() functions. (Without this restriction, a query like: 3287 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3288 ** return the value X for which Y was maximal.) 3289 ** 3290 ** 3291 ** In this routine, the "p" parameter is a pointer to the outer query. 3292 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3293 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3294 ** 3295 ** If flattening is not attempted, this routine is a no-op and returns 0. 3296 ** If flattening is attempted this routine returns 1. 3297 ** 3298 ** All of the expression analysis must occur on both the outer query and 3299 ** the subquery before this routine runs. 3300 */ 3301 static int flattenSubquery( 3302 Parse *pParse, /* Parsing context */ 3303 Select *p, /* The parent or outer SELECT statement */ 3304 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3305 int isAgg, /* True if outer SELECT uses aggregate functions */ 3306 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3307 ){ 3308 const char *zSavedAuthContext = pParse->zAuthContext; 3309 Select *pParent; 3310 Select *pSub; /* The inner query or "subquery" */ 3311 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3312 SrcList *pSrc; /* The FROM clause of the outer query */ 3313 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3314 ExprList *pList; /* The result set of the outer query */ 3315 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3316 int i; /* Loop counter */ 3317 Expr *pWhere; /* The WHERE clause */ 3318 struct SrcList_item *pSubitem; /* The subquery */ 3319 sqlite3 *db = pParse->db; 3320 3321 /* Check to see if flattening is permitted. Return 0 if not. 3322 */ 3323 assert( p!=0 ); 3324 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3325 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3326 pSrc = p->pSrc; 3327 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3328 pSubitem = &pSrc->a[iFrom]; 3329 iParent = pSubitem->iCursor; 3330 pSub = pSubitem->pSelect; 3331 assert( pSub!=0 ); 3332 if( subqueryIsAgg ){ 3333 if( isAgg ) return 0; /* Restriction (1) */ 3334 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3335 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3336 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3337 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3338 ){ 3339 return 0; /* Restriction (2b) */ 3340 } 3341 } 3342 3343 pSubSrc = pSub->pSrc; 3344 assert( pSubSrc ); 3345 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3346 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3347 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3348 ** became arbitrary expressions, we were forced to add restrictions (13) 3349 ** and (14). */ 3350 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3351 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3352 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3353 return 0; /* Restriction (15) */ 3354 } 3355 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3356 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3357 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3358 return 0; /* Restrictions (8)(9) */ 3359 } 3360 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3361 return 0; /* Restriction (6) */ 3362 } 3363 if( p->pOrderBy && pSub->pOrderBy ){ 3364 return 0; /* Restriction (11) */ 3365 } 3366 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3367 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3368 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3369 return 0; /* Restriction (21) */ 3370 } 3371 testcase( pSub->selFlags & SF_Recursive ); 3372 testcase( pSub->selFlags & SF_MinMaxAgg ); 3373 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3374 return 0; /* Restrictions (22) and (24) */ 3375 } 3376 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3377 return 0; /* Restriction (23) */ 3378 } 3379 3380 /* OBSOLETE COMMENT 1: 3381 ** Restriction 3: If the subquery is a join, make sure the subquery is 3382 ** not used as the right operand of an outer join. Examples of why this 3383 ** is not allowed: 3384 ** 3385 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3386 ** 3387 ** If we flatten the above, we would get 3388 ** 3389 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3390 ** 3391 ** which is not at all the same thing. 3392 ** 3393 ** OBSOLETE COMMENT 2: 3394 ** Restriction 12: If the subquery is the right operand of a left outer 3395 ** join, make sure the subquery has no WHERE clause. 3396 ** An examples of why this is not allowed: 3397 ** 3398 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3399 ** 3400 ** If we flatten the above, we would get 3401 ** 3402 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3403 ** 3404 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3405 ** effectively converts the OUTER JOIN into an INNER JOIN. 3406 ** 3407 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3408 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3409 ** is fraught with danger. Best to avoid the whole thing. If the 3410 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3411 */ 3412 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3413 return 0; 3414 } 3415 3416 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3417 ** use only the UNION ALL operator. And none of the simple select queries 3418 ** that make up the compound SELECT are allowed to be aggregate or distinct 3419 ** queries. 3420 */ 3421 if( pSub->pPrior ){ 3422 if( pSub->pOrderBy ){ 3423 return 0; /* Restriction 20 */ 3424 } 3425 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3426 return 0; 3427 } 3428 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3429 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3430 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3431 assert( pSub->pSrc!=0 ); 3432 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3433 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3434 || pSub1->pSrc->nSrc<1 3435 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3436 ){ 3437 return 0; 3438 } 3439 testcase( pSub1->pSrc->nSrc>1 ); 3440 } 3441 3442 /* Restriction 18. */ 3443 if( p->pOrderBy ){ 3444 int ii; 3445 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3446 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3447 } 3448 } 3449 } 3450 3451 /***** If we reach this point, flattening is permitted. *****/ 3452 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3453 pSub->zSelName, pSub, iFrom)); 3454 3455 /* Authorize the subquery */ 3456 pParse->zAuthContext = pSubitem->zName; 3457 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3458 testcase( i==SQLITE_DENY ); 3459 pParse->zAuthContext = zSavedAuthContext; 3460 3461 /* If the sub-query is a compound SELECT statement, then (by restrictions 3462 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3463 ** be of the form: 3464 ** 3465 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3466 ** 3467 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3468 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3469 ** OFFSET clauses and joins them to the left-hand-side of the original 3470 ** using UNION ALL operators. In this case N is the number of simple 3471 ** select statements in the compound sub-query. 3472 ** 3473 ** Example: 3474 ** 3475 ** SELECT a+1 FROM ( 3476 ** SELECT x FROM tab 3477 ** UNION ALL 3478 ** SELECT y FROM tab 3479 ** UNION ALL 3480 ** SELECT abs(z*2) FROM tab2 3481 ** ) WHERE a!=5 ORDER BY 1 3482 ** 3483 ** Transformed into: 3484 ** 3485 ** SELECT x+1 FROM tab WHERE x+1!=5 3486 ** UNION ALL 3487 ** SELECT y+1 FROM tab WHERE y+1!=5 3488 ** UNION ALL 3489 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3490 ** ORDER BY 1 3491 ** 3492 ** We call this the "compound-subquery flattening". 3493 */ 3494 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3495 Select *pNew; 3496 ExprList *pOrderBy = p->pOrderBy; 3497 Expr *pLimit = p->pLimit; 3498 Expr *pOffset = p->pOffset; 3499 Select *pPrior = p->pPrior; 3500 p->pOrderBy = 0; 3501 p->pSrc = 0; 3502 p->pPrior = 0; 3503 p->pLimit = 0; 3504 p->pOffset = 0; 3505 pNew = sqlite3SelectDup(db, p, 0); 3506 sqlite3SelectSetName(pNew, pSub->zSelName); 3507 p->pOffset = pOffset; 3508 p->pLimit = pLimit; 3509 p->pOrderBy = pOrderBy; 3510 p->pSrc = pSrc; 3511 p->op = TK_ALL; 3512 if( pNew==0 ){ 3513 p->pPrior = pPrior; 3514 }else{ 3515 pNew->pPrior = pPrior; 3516 if( pPrior ) pPrior->pNext = pNew; 3517 pNew->pNext = p; 3518 p->pPrior = pNew; 3519 SELECTTRACE(2,pParse,p, 3520 ("compound-subquery flattener creates %s.%p as peer\n", 3521 pNew->zSelName, pNew)); 3522 } 3523 if( db->mallocFailed ) return 1; 3524 } 3525 3526 /* Begin flattening the iFrom-th entry of the FROM clause 3527 ** in the outer query. 3528 */ 3529 pSub = pSub1 = pSubitem->pSelect; 3530 3531 /* Delete the transient table structure associated with the 3532 ** subquery 3533 */ 3534 sqlite3DbFree(db, pSubitem->zDatabase); 3535 sqlite3DbFree(db, pSubitem->zName); 3536 sqlite3DbFree(db, pSubitem->zAlias); 3537 pSubitem->zDatabase = 0; 3538 pSubitem->zName = 0; 3539 pSubitem->zAlias = 0; 3540 pSubitem->pSelect = 0; 3541 3542 /* Defer deleting the Table object associated with the 3543 ** subquery until code generation is 3544 ** complete, since there may still exist Expr.pTab entries that 3545 ** refer to the subquery even after flattening. Ticket #3346. 3546 ** 3547 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3548 */ 3549 if( ALWAYS(pSubitem->pTab!=0) ){ 3550 Table *pTabToDel = pSubitem->pTab; 3551 if( pTabToDel->nRef==1 ){ 3552 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3553 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3554 pToplevel->pZombieTab = pTabToDel; 3555 }else{ 3556 pTabToDel->nRef--; 3557 } 3558 pSubitem->pTab = 0; 3559 } 3560 3561 /* The following loop runs once for each term in a compound-subquery 3562 ** flattening (as described above). If we are doing a different kind 3563 ** of flattening - a flattening other than a compound-subquery flattening - 3564 ** then this loop only runs once. 3565 ** 3566 ** This loop moves all of the FROM elements of the subquery into the 3567 ** the FROM clause of the outer query. Before doing this, remember 3568 ** the cursor number for the original outer query FROM element in 3569 ** iParent. The iParent cursor will never be used. Subsequent code 3570 ** will scan expressions looking for iParent references and replace 3571 ** those references with expressions that resolve to the subquery FROM 3572 ** elements we are now copying in. 3573 */ 3574 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3575 int nSubSrc; 3576 u8 jointype = 0; 3577 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3578 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3579 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3580 3581 if( pSrc ){ 3582 assert( pParent==p ); /* First time through the loop */ 3583 jointype = pSubitem->jointype; 3584 }else{ 3585 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3586 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3587 if( pSrc==0 ){ 3588 assert( db->mallocFailed ); 3589 break; 3590 } 3591 } 3592 3593 /* The subquery uses a single slot of the FROM clause of the outer 3594 ** query. If the subquery has more than one element in its FROM clause, 3595 ** then expand the outer query to make space for it to hold all elements 3596 ** of the subquery. 3597 ** 3598 ** Example: 3599 ** 3600 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3601 ** 3602 ** The outer query has 3 slots in its FROM clause. One slot of the 3603 ** outer query (the middle slot) is used by the subquery. The next 3604 ** block of code will expand the out query to 4 slots. The middle 3605 ** slot is expanded to two slots in order to make space for the 3606 ** two elements in the FROM clause of the subquery. 3607 */ 3608 if( nSubSrc>1 ){ 3609 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3610 if( db->mallocFailed ){ 3611 break; 3612 } 3613 } 3614 3615 /* Transfer the FROM clause terms from the subquery into the 3616 ** outer query. 3617 */ 3618 for(i=0; i<nSubSrc; i++){ 3619 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3620 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3621 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3622 } 3623 pSrc->a[iFrom].jointype = jointype; 3624 3625 /* Now begin substituting subquery result set expressions for 3626 ** references to the iParent in the outer query. 3627 ** 3628 ** Example: 3629 ** 3630 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3631 ** \ \_____________ subquery __________/ / 3632 ** \_____________________ outer query ______________________________/ 3633 ** 3634 ** We look at every expression in the outer query and every place we see 3635 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3636 */ 3637 pList = pParent->pEList; 3638 for(i=0; i<pList->nExpr; i++){ 3639 if( pList->a[i].zName==0 ){ 3640 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3641 sqlite3Dequote(zName); 3642 pList->a[i].zName = zName; 3643 } 3644 } 3645 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3646 if( isAgg ){ 3647 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3648 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3649 } 3650 if( pSub->pOrderBy ){ 3651 /* At this point, any non-zero iOrderByCol values indicate that the 3652 ** ORDER BY column expression is identical to the iOrderByCol'th 3653 ** expression returned by SELECT statement pSub. Since these values 3654 ** do not necessarily correspond to columns in SELECT statement pParent, 3655 ** zero them before transfering the ORDER BY clause. 3656 ** 3657 ** Not doing this may cause an error if a subsequent call to this 3658 ** function attempts to flatten a compound sub-query into pParent 3659 ** (the only way this can happen is if the compound sub-query is 3660 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3661 ExprList *pOrderBy = pSub->pOrderBy; 3662 for(i=0; i<pOrderBy->nExpr; i++){ 3663 pOrderBy->a[i].u.x.iOrderByCol = 0; 3664 } 3665 assert( pParent->pOrderBy==0 ); 3666 assert( pSub->pPrior==0 ); 3667 pParent->pOrderBy = pOrderBy; 3668 pSub->pOrderBy = 0; 3669 }else if( pParent->pOrderBy ){ 3670 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3671 } 3672 if( pSub->pWhere ){ 3673 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3674 }else{ 3675 pWhere = 0; 3676 } 3677 if( subqueryIsAgg ){ 3678 assert( pParent->pHaving==0 ); 3679 pParent->pHaving = pParent->pWhere; 3680 pParent->pWhere = pWhere; 3681 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3682 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3683 sqlite3ExprDup(db, pSub->pHaving, 0)); 3684 assert( pParent->pGroupBy==0 ); 3685 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3686 }else{ 3687 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3688 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3689 } 3690 3691 /* The flattened query is distinct if either the inner or the 3692 ** outer query is distinct. 3693 */ 3694 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3695 3696 /* 3697 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3698 ** 3699 ** One is tempted to try to add a and b to combine the limits. But this 3700 ** does not work if either limit is negative. 3701 */ 3702 if( pSub->pLimit ){ 3703 pParent->pLimit = pSub->pLimit; 3704 pSub->pLimit = 0; 3705 } 3706 } 3707 3708 /* Finially, delete what is left of the subquery and return 3709 ** success. 3710 */ 3711 sqlite3SelectDelete(db, pSub1); 3712 3713 #if SELECTTRACE_ENABLED 3714 if( sqlite3SelectTrace & 0x100 ){ 3715 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3716 sqlite3TreeViewSelect(0, p, 0); 3717 } 3718 #endif 3719 3720 return 1; 3721 } 3722 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3723 3724 3725 3726 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3727 /* 3728 ** Make copies of relevant WHERE clause terms of the outer query into 3729 ** the WHERE clause of subquery. Example: 3730 ** 3731 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3732 ** 3733 ** Transformed into: 3734 ** 3735 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3736 ** WHERE x=5 AND y=10; 3737 ** 3738 ** The hope is that the terms added to the inner query will make it more 3739 ** efficient. 3740 ** 3741 ** Do not attempt this optimization if: 3742 ** 3743 ** (1) The inner query is an aggregate. (In that case, we'd really want 3744 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3745 ** inner query. But they probably won't help there so do not bother.) 3746 ** 3747 ** (2) The inner query is the recursive part of a common table expression. 3748 ** 3749 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3750 ** close would change the meaning of the LIMIT). 3751 ** 3752 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3753 ** enforces this restriction since this routine does not have enough 3754 ** information to know.) 3755 ** 3756 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3757 ** terms are duplicated into the subquery. 3758 */ 3759 static int pushDownWhereTerms( 3760 sqlite3 *db, /* The database connection (for malloc()) */ 3761 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3762 Expr *pWhere, /* The WHERE clause of the outer query */ 3763 int iCursor /* Cursor number of the subquery */ 3764 ){ 3765 Expr *pNew; 3766 int nChng = 0; 3767 if( pWhere==0 ) return 0; 3768 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3769 return 0; /* restrictions (1) and (2) */ 3770 } 3771 if( pSubq->pLimit!=0 ){ 3772 return 0; /* restriction (3) */ 3773 } 3774 while( pWhere->op==TK_AND ){ 3775 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3776 pWhere = pWhere->pLeft; 3777 } 3778 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3779 nChng++; 3780 while( pSubq ){ 3781 pNew = sqlite3ExprDup(db, pWhere, 0); 3782 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3783 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3784 pSubq = pSubq->pPrior; 3785 } 3786 } 3787 return nChng; 3788 } 3789 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3790 3791 /* 3792 ** Based on the contents of the AggInfo structure indicated by the first 3793 ** argument, this function checks if the following are true: 3794 ** 3795 ** * the query contains just a single aggregate function, 3796 ** * the aggregate function is either min() or max(), and 3797 ** * the argument to the aggregate function is a column value. 3798 ** 3799 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3800 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3801 ** list of arguments passed to the aggregate before returning. 3802 ** 3803 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3804 ** WHERE_ORDERBY_NORMAL is returned. 3805 */ 3806 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3807 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3808 3809 *ppMinMax = 0; 3810 if( pAggInfo->nFunc==1 ){ 3811 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3812 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3813 3814 assert( pExpr->op==TK_AGG_FUNCTION ); 3815 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3816 const char *zFunc = pExpr->u.zToken; 3817 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3818 eRet = WHERE_ORDERBY_MIN; 3819 *ppMinMax = pEList; 3820 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3821 eRet = WHERE_ORDERBY_MAX; 3822 *ppMinMax = pEList; 3823 } 3824 } 3825 } 3826 3827 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3828 return eRet; 3829 } 3830 3831 /* 3832 ** The select statement passed as the first argument is an aggregate query. 3833 ** The second argument is the associated aggregate-info object. This 3834 ** function tests if the SELECT is of the form: 3835 ** 3836 ** SELECT count(*) FROM <tbl> 3837 ** 3838 ** where table is a database table, not a sub-select or view. If the query 3839 ** does match this pattern, then a pointer to the Table object representing 3840 ** <tbl> is returned. Otherwise, 0 is returned. 3841 */ 3842 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3843 Table *pTab; 3844 Expr *pExpr; 3845 3846 assert( !p->pGroupBy ); 3847 3848 if( p->pWhere || p->pEList->nExpr!=1 3849 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3850 ){ 3851 return 0; 3852 } 3853 pTab = p->pSrc->a[0].pTab; 3854 pExpr = p->pEList->a[0].pExpr; 3855 assert( pTab && !pTab->pSelect && pExpr ); 3856 3857 if( IsVirtual(pTab) ) return 0; 3858 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3859 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3860 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3861 if( pExpr->flags&EP_Distinct ) return 0; 3862 3863 return pTab; 3864 } 3865 3866 /* 3867 ** If the source-list item passed as an argument was augmented with an 3868 ** INDEXED BY clause, then try to locate the specified index. If there 3869 ** was such a clause and the named index cannot be found, return 3870 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3871 ** pFrom->pIndex and return SQLITE_OK. 3872 */ 3873 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3874 if( pFrom->pTab && pFrom->zIndexedBy ){ 3875 Table *pTab = pFrom->pTab; 3876 char *zIndexedBy = pFrom->zIndexedBy; 3877 Index *pIdx; 3878 for(pIdx=pTab->pIndex; 3879 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3880 pIdx=pIdx->pNext 3881 ); 3882 if( !pIdx ){ 3883 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3884 pParse->checkSchema = 1; 3885 return SQLITE_ERROR; 3886 } 3887 pFrom->pIndex = pIdx; 3888 } 3889 return SQLITE_OK; 3890 } 3891 /* 3892 ** Detect compound SELECT statements that use an ORDER BY clause with 3893 ** an alternative collating sequence. 3894 ** 3895 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3896 ** 3897 ** These are rewritten as a subquery: 3898 ** 3899 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3900 ** ORDER BY ... COLLATE ... 3901 ** 3902 ** This transformation is necessary because the multiSelectOrderBy() routine 3903 ** above that generates the code for a compound SELECT with an ORDER BY clause 3904 ** uses a merge algorithm that requires the same collating sequence on the 3905 ** result columns as on the ORDER BY clause. See ticket 3906 ** http://www.sqlite.org/src/info/6709574d2a 3907 ** 3908 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3909 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3910 ** there are COLLATE terms in the ORDER BY. 3911 */ 3912 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3913 int i; 3914 Select *pNew; 3915 Select *pX; 3916 sqlite3 *db; 3917 struct ExprList_item *a; 3918 SrcList *pNewSrc; 3919 Parse *pParse; 3920 Token dummy; 3921 3922 if( p->pPrior==0 ) return WRC_Continue; 3923 if( p->pOrderBy==0 ) return WRC_Continue; 3924 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3925 if( pX==0 ) return WRC_Continue; 3926 a = p->pOrderBy->a; 3927 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3928 if( a[i].pExpr->flags & EP_Collate ) break; 3929 } 3930 if( i<0 ) return WRC_Continue; 3931 3932 /* If we reach this point, that means the transformation is required. */ 3933 3934 pParse = pWalker->pParse; 3935 db = pParse->db; 3936 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3937 if( pNew==0 ) return WRC_Abort; 3938 memset(&dummy, 0, sizeof(dummy)); 3939 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3940 if( pNewSrc==0 ) return WRC_Abort; 3941 *pNew = *p; 3942 p->pSrc = pNewSrc; 3943 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3944 p->op = TK_SELECT; 3945 p->pWhere = 0; 3946 pNew->pGroupBy = 0; 3947 pNew->pHaving = 0; 3948 pNew->pOrderBy = 0; 3949 p->pPrior = 0; 3950 p->pNext = 0; 3951 p->pWith = 0; 3952 p->selFlags &= ~SF_Compound; 3953 assert( (p->selFlags & SF_Converted)==0 ); 3954 p->selFlags |= SF_Converted; 3955 assert( pNew->pPrior!=0 ); 3956 pNew->pPrior->pNext = pNew; 3957 pNew->pLimit = 0; 3958 pNew->pOffset = 0; 3959 return WRC_Continue; 3960 } 3961 3962 #ifndef SQLITE_OMIT_CTE 3963 /* 3964 ** Argument pWith (which may be NULL) points to a linked list of nested 3965 ** WITH contexts, from inner to outermost. If the table identified by 3966 ** FROM clause element pItem is really a common-table-expression (CTE) 3967 ** then return a pointer to the CTE definition for that table. Otherwise 3968 ** return NULL. 3969 ** 3970 ** If a non-NULL value is returned, set *ppContext to point to the With 3971 ** object that the returned CTE belongs to. 3972 */ 3973 static struct Cte *searchWith( 3974 With *pWith, /* Current outermost WITH clause */ 3975 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3976 With **ppContext /* OUT: WITH clause return value belongs to */ 3977 ){ 3978 const char *zName; 3979 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3980 With *p; 3981 for(p=pWith; p; p=p->pOuter){ 3982 int i; 3983 for(i=0; i<p->nCte; i++){ 3984 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3985 *ppContext = p; 3986 return &p->a[i]; 3987 } 3988 } 3989 } 3990 } 3991 return 0; 3992 } 3993 3994 /* The code generator maintains a stack of active WITH clauses 3995 ** with the inner-most WITH clause being at the top of the stack. 3996 ** 3997 ** This routine pushes the WITH clause passed as the second argument 3998 ** onto the top of the stack. If argument bFree is true, then this 3999 ** WITH clause will never be popped from the stack. In this case it 4000 ** should be freed along with the Parse object. In other cases, when 4001 ** bFree==0, the With object will be freed along with the SELECT 4002 ** statement with which it is associated. 4003 */ 4004 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4005 assert( bFree==0 || pParse->pWith==0 ); 4006 if( pWith ){ 4007 pWith->pOuter = pParse->pWith; 4008 pParse->pWith = pWith; 4009 pParse->bFreeWith = bFree; 4010 } 4011 } 4012 4013 /* 4014 ** This function checks if argument pFrom refers to a CTE declared by 4015 ** a WITH clause on the stack currently maintained by the parser. And, 4016 ** if currently processing a CTE expression, if it is a recursive 4017 ** reference to the current CTE. 4018 ** 4019 ** If pFrom falls into either of the two categories above, pFrom->pTab 4020 ** and other fields are populated accordingly. The caller should check 4021 ** (pFrom->pTab!=0) to determine whether or not a successful match 4022 ** was found. 4023 ** 4024 ** Whether or not a match is found, SQLITE_OK is returned if no error 4025 ** occurs. If an error does occur, an error message is stored in the 4026 ** parser and some error code other than SQLITE_OK returned. 4027 */ 4028 static int withExpand( 4029 Walker *pWalker, 4030 struct SrcList_item *pFrom 4031 ){ 4032 Parse *pParse = pWalker->pParse; 4033 sqlite3 *db = pParse->db; 4034 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4035 With *pWith; /* WITH clause that pCte belongs to */ 4036 4037 assert( pFrom->pTab==0 ); 4038 4039 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4040 if( pCte ){ 4041 Table *pTab; 4042 ExprList *pEList; 4043 Select *pSel; 4044 Select *pLeft; /* Left-most SELECT statement */ 4045 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4046 With *pSavedWith; /* Initial value of pParse->pWith */ 4047 4048 /* If pCte->zErr is non-NULL at this point, then this is an illegal 4049 ** recursive reference to CTE pCte. Leave an error in pParse and return 4050 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 4051 ** In this case, proceed. */ 4052 if( pCte->zErr ){ 4053 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 4054 return SQLITE_ERROR; 4055 } 4056 4057 assert( pFrom->pTab==0 ); 4058 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4059 if( pTab==0 ) return WRC_Abort; 4060 pTab->nRef = 1; 4061 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4062 pTab->iPKey = -1; 4063 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4064 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4065 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4066 if( db->mallocFailed ) return SQLITE_NOMEM; 4067 assert( pFrom->pSelect ); 4068 4069 /* Check if this is a recursive CTE. */ 4070 pSel = pFrom->pSelect; 4071 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4072 if( bMayRecursive ){ 4073 int i; 4074 SrcList *pSrc = pFrom->pSelect->pSrc; 4075 for(i=0; i<pSrc->nSrc; i++){ 4076 struct SrcList_item *pItem = &pSrc->a[i]; 4077 if( pItem->zDatabase==0 4078 && pItem->zName!=0 4079 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4080 ){ 4081 pItem->pTab = pTab; 4082 pItem->isRecursive = 1; 4083 pTab->nRef++; 4084 pSel->selFlags |= SF_Recursive; 4085 } 4086 } 4087 } 4088 4089 /* Only one recursive reference is permitted. */ 4090 if( pTab->nRef>2 ){ 4091 sqlite3ErrorMsg( 4092 pParse, "multiple references to recursive table: %s", pCte->zName 4093 ); 4094 return SQLITE_ERROR; 4095 } 4096 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4097 4098 pCte->zErr = "circular reference: %s"; 4099 pSavedWith = pParse->pWith; 4100 pParse->pWith = pWith; 4101 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4102 4103 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4104 pEList = pLeft->pEList; 4105 if( pCte->pCols ){ 4106 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4107 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4108 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4109 ); 4110 pParse->pWith = pSavedWith; 4111 return SQLITE_ERROR; 4112 } 4113 pEList = pCte->pCols; 4114 } 4115 4116 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4117 if( bMayRecursive ){ 4118 if( pSel->selFlags & SF_Recursive ){ 4119 pCte->zErr = "multiple recursive references: %s"; 4120 }else{ 4121 pCte->zErr = "recursive reference in a subquery: %s"; 4122 } 4123 sqlite3WalkSelect(pWalker, pSel); 4124 } 4125 pCte->zErr = 0; 4126 pParse->pWith = pSavedWith; 4127 } 4128 4129 return SQLITE_OK; 4130 } 4131 #endif 4132 4133 #ifndef SQLITE_OMIT_CTE 4134 /* 4135 ** If the SELECT passed as the second argument has an associated WITH 4136 ** clause, pop it from the stack stored as part of the Parse object. 4137 ** 4138 ** This function is used as the xSelectCallback2() callback by 4139 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4140 ** names and other FROM clause elements. 4141 */ 4142 static void selectPopWith(Walker *pWalker, Select *p){ 4143 Parse *pParse = pWalker->pParse; 4144 With *pWith = findRightmost(p)->pWith; 4145 if( pWith!=0 ){ 4146 assert( pParse->pWith==pWith ); 4147 pParse->pWith = pWith->pOuter; 4148 } 4149 } 4150 #else 4151 #define selectPopWith 0 4152 #endif 4153 4154 /* 4155 ** This routine is a Walker callback for "expanding" a SELECT statement. 4156 ** "Expanding" means to do the following: 4157 ** 4158 ** (1) Make sure VDBE cursor numbers have been assigned to every 4159 ** element of the FROM clause. 4160 ** 4161 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4162 ** defines FROM clause. When views appear in the FROM clause, 4163 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4164 ** that implements the view. A copy is made of the view's SELECT 4165 ** statement so that we can freely modify or delete that statement 4166 ** without worrying about messing up the persistent representation 4167 ** of the view. 4168 ** 4169 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4170 ** on joins and the ON and USING clause of joins. 4171 ** 4172 ** (4) Scan the list of columns in the result set (pEList) looking 4173 ** for instances of the "*" operator or the TABLE.* operator. 4174 ** If found, expand each "*" to be every column in every table 4175 ** and TABLE.* to be every column in TABLE. 4176 ** 4177 */ 4178 static int selectExpander(Walker *pWalker, Select *p){ 4179 Parse *pParse = pWalker->pParse; 4180 int i, j, k; 4181 SrcList *pTabList; 4182 ExprList *pEList; 4183 struct SrcList_item *pFrom; 4184 sqlite3 *db = pParse->db; 4185 Expr *pE, *pRight, *pExpr; 4186 u16 selFlags = p->selFlags; 4187 4188 p->selFlags |= SF_Expanded; 4189 if( db->mallocFailed ){ 4190 return WRC_Abort; 4191 } 4192 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4193 return WRC_Prune; 4194 } 4195 pTabList = p->pSrc; 4196 pEList = p->pEList; 4197 if( pWalker->xSelectCallback2==selectPopWith ){ 4198 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4199 } 4200 4201 /* Make sure cursor numbers have been assigned to all entries in 4202 ** the FROM clause of the SELECT statement. 4203 */ 4204 sqlite3SrcListAssignCursors(pParse, pTabList); 4205 4206 /* Look up every table named in the FROM clause of the select. If 4207 ** an entry of the FROM clause is a subquery instead of a table or view, 4208 ** then create a transient table structure to describe the subquery. 4209 */ 4210 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4211 Table *pTab; 4212 assert( pFrom->isRecursive==0 || pFrom->pTab ); 4213 if( pFrom->isRecursive ) continue; 4214 if( pFrom->pTab!=0 ){ 4215 /* This statement has already been prepared. There is no need 4216 ** to go further. */ 4217 assert( i==0 ); 4218 #ifndef SQLITE_OMIT_CTE 4219 selectPopWith(pWalker, p); 4220 #endif 4221 return WRC_Prune; 4222 } 4223 #ifndef SQLITE_OMIT_CTE 4224 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4225 if( pFrom->pTab ) {} else 4226 #endif 4227 if( pFrom->zName==0 ){ 4228 #ifndef SQLITE_OMIT_SUBQUERY 4229 Select *pSel = pFrom->pSelect; 4230 /* A sub-query in the FROM clause of a SELECT */ 4231 assert( pSel!=0 ); 4232 assert( pFrom->pTab==0 ); 4233 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4234 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4235 if( pTab==0 ) return WRC_Abort; 4236 pTab->nRef = 1; 4237 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4238 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4239 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4240 pTab->iPKey = -1; 4241 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4242 pTab->tabFlags |= TF_Ephemeral; 4243 #endif 4244 }else{ 4245 /* An ordinary table or view name in the FROM clause */ 4246 assert( pFrom->pTab==0 ); 4247 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4248 if( pTab==0 ) return WRC_Abort; 4249 if( pTab->nRef==0xffff ){ 4250 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4251 pTab->zName); 4252 pFrom->pTab = 0; 4253 return WRC_Abort; 4254 } 4255 pTab->nRef++; 4256 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4257 if( pTab->pSelect || IsVirtual(pTab) ){ 4258 /* We reach here if the named table is a really a view */ 4259 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4260 assert( pFrom->pSelect==0 ); 4261 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4262 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4263 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4264 } 4265 #endif 4266 } 4267 4268 /* Locate the index named by the INDEXED BY clause, if any. */ 4269 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4270 return WRC_Abort; 4271 } 4272 } 4273 4274 /* Process NATURAL keywords, and ON and USING clauses of joins. 4275 */ 4276 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4277 return WRC_Abort; 4278 } 4279 4280 /* For every "*" that occurs in the column list, insert the names of 4281 ** all columns in all tables. And for every TABLE.* insert the names 4282 ** of all columns in TABLE. The parser inserted a special expression 4283 ** with the TK_ALL operator for each "*" that it found in the column list. 4284 ** The following code just has to locate the TK_ALL expressions and expand 4285 ** each one to the list of all columns in all tables. 4286 ** 4287 ** The first loop just checks to see if there are any "*" operators 4288 ** that need expanding. 4289 */ 4290 for(k=0; k<pEList->nExpr; k++){ 4291 pE = pEList->a[k].pExpr; 4292 if( pE->op==TK_ALL ) break; 4293 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4294 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4295 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4296 } 4297 if( k<pEList->nExpr ){ 4298 /* 4299 ** If we get here it means the result set contains one or more "*" 4300 ** operators that need to be expanded. Loop through each expression 4301 ** in the result set and expand them one by one. 4302 */ 4303 struct ExprList_item *a = pEList->a; 4304 ExprList *pNew = 0; 4305 int flags = pParse->db->flags; 4306 int longNames = (flags & SQLITE_FullColNames)!=0 4307 && (flags & SQLITE_ShortColNames)==0; 4308 4309 for(k=0; k<pEList->nExpr; k++){ 4310 pE = a[k].pExpr; 4311 pRight = pE->pRight; 4312 assert( pE->op!=TK_DOT || pRight!=0 ); 4313 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4314 /* This particular expression does not need to be expanded. 4315 */ 4316 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4317 if( pNew ){ 4318 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4319 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4320 a[k].zName = 0; 4321 a[k].zSpan = 0; 4322 } 4323 a[k].pExpr = 0; 4324 }else{ 4325 /* This expression is a "*" or a "TABLE.*" and needs to be 4326 ** expanded. */ 4327 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4328 char *zTName = 0; /* text of name of TABLE */ 4329 if( pE->op==TK_DOT ){ 4330 assert( pE->pLeft!=0 ); 4331 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4332 zTName = pE->pLeft->u.zToken; 4333 } 4334 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4335 Table *pTab = pFrom->pTab; 4336 Select *pSub = pFrom->pSelect; 4337 char *zTabName = pFrom->zAlias; 4338 const char *zSchemaName = 0; 4339 int iDb; 4340 if( zTabName==0 ){ 4341 zTabName = pTab->zName; 4342 } 4343 if( db->mallocFailed ) break; 4344 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4345 pSub = 0; 4346 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4347 continue; 4348 } 4349 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4350 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4351 } 4352 for(j=0; j<pTab->nCol; j++){ 4353 char *zName = pTab->aCol[j].zName; 4354 char *zColname; /* The computed column name */ 4355 char *zToFree; /* Malloced string that needs to be freed */ 4356 Token sColname; /* Computed column name as a token */ 4357 4358 assert( zName ); 4359 if( zTName && pSub 4360 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4361 ){ 4362 continue; 4363 } 4364 4365 /* If a column is marked as 'hidden' (currently only possible 4366 ** for virtual tables), do not include it in the expanded 4367 ** result-set list. 4368 */ 4369 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4370 assert(IsVirtual(pTab)); 4371 continue; 4372 } 4373 tableSeen = 1; 4374 4375 if( i>0 && zTName==0 ){ 4376 if( (pFrom->jointype & JT_NATURAL)!=0 4377 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4378 ){ 4379 /* In a NATURAL join, omit the join columns from the 4380 ** table to the right of the join */ 4381 continue; 4382 } 4383 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4384 /* In a join with a USING clause, omit columns in the 4385 ** using clause from the table on the right. */ 4386 continue; 4387 } 4388 } 4389 pRight = sqlite3Expr(db, TK_ID, zName); 4390 zColname = zName; 4391 zToFree = 0; 4392 if( longNames || pTabList->nSrc>1 ){ 4393 Expr *pLeft; 4394 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4395 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4396 if( zSchemaName ){ 4397 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4398 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4399 } 4400 if( longNames ){ 4401 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4402 zToFree = zColname; 4403 } 4404 }else{ 4405 pExpr = pRight; 4406 } 4407 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4408 sColname.z = zColname; 4409 sColname.n = sqlite3Strlen30(zColname); 4410 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4411 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4412 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4413 if( pSub ){ 4414 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4415 testcase( pX->zSpan==0 ); 4416 }else{ 4417 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4418 zSchemaName, zTabName, zColname); 4419 testcase( pX->zSpan==0 ); 4420 } 4421 pX->bSpanIsTab = 1; 4422 } 4423 sqlite3DbFree(db, zToFree); 4424 } 4425 } 4426 if( !tableSeen ){ 4427 if( zTName ){ 4428 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4429 }else{ 4430 sqlite3ErrorMsg(pParse, "no tables specified"); 4431 } 4432 } 4433 } 4434 } 4435 sqlite3ExprListDelete(db, pEList); 4436 p->pEList = pNew; 4437 } 4438 #if SQLITE_MAX_COLUMN 4439 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4440 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4441 } 4442 #endif 4443 return WRC_Continue; 4444 } 4445 4446 /* 4447 ** No-op routine for the parse-tree walker. 4448 ** 4449 ** When this routine is the Walker.xExprCallback then expression trees 4450 ** are walked without any actions being taken at each node. Presumably, 4451 ** when this routine is used for Walker.xExprCallback then 4452 ** Walker.xSelectCallback is set to do something useful for every 4453 ** subquery in the parser tree. 4454 */ 4455 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4456 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4457 return WRC_Continue; 4458 } 4459 4460 /* 4461 ** This routine "expands" a SELECT statement and all of its subqueries. 4462 ** For additional information on what it means to "expand" a SELECT 4463 ** statement, see the comment on the selectExpand worker callback above. 4464 ** 4465 ** Expanding a SELECT statement is the first step in processing a 4466 ** SELECT statement. The SELECT statement must be expanded before 4467 ** name resolution is performed. 4468 ** 4469 ** If anything goes wrong, an error message is written into pParse. 4470 ** The calling function can detect the problem by looking at pParse->nErr 4471 ** and/or pParse->db->mallocFailed. 4472 */ 4473 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4474 Walker w; 4475 memset(&w, 0, sizeof(w)); 4476 w.xExprCallback = exprWalkNoop; 4477 w.pParse = pParse; 4478 if( pParse->hasCompound ){ 4479 w.xSelectCallback = convertCompoundSelectToSubquery; 4480 sqlite3WalkSelect(&w, pSelect); 4481 } 4482 w.xSelectCallback = selectExpander; 4483 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4484 w.xSelectCallback2 = selectPopWith; 4485 } 4486 sqlite3WalkSelect(&w, pSelect); 4487 } 4488 4489 4490 #ifndef SQLITE_OMIT_SUBQUERY 4491 /* 4492 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4493 ** interface. 4494 ** 4495 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4496 ** information to the Table structure that represents the result set 4497 ** of that subquery. 4498 ** 4499 ** The Table structure that represents the result set was constructed 4500 ** by selectExpander() but the type and collation information was omitted 4501 ** at that point because identifiers had not yet been resolved. This 4502 ** routine is called after identifier resolution. 4503 */ 4504 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4505 Parse *pParse; 4506 int i; 4507 SrcList *pTabList; 4508 struct SrcList_item *pFrom; 4509 4510 assert( p->selFlags & SF_Resolved ); 4511 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4512 p->selFlags |= SF_HasTypeInfo; 4513 pParse = pWalker->pParse; 4514 pTabList = p->pSrc; 4515 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4516 Table *pTab = pFrom->pTab; 4517 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4518 /* A sub-query in the FROM clause of a SELECT */ 4519 Select *pSel = pFrom->pSelect; 4520 if( pSel ){ 4521 while( pSel->pPrior ) pSel = pSel->pPrior; 4522 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4523 } 4524 } 4525 } 4526 } 4527 } 4528 #endif 4529 4530 4531 /* 4532 ** This routine adds datatype and collating sequence information to 4533 ** the Table structures of all FROM-clause subqueries in a 4534 ** SELECT statement. 4535 ** 4536 ** Use this routine after name resolution. 4537 */ 4538 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4539 #ifndef SQLITE_OMIT_SUBQUERY 4540 Walker w; 4541 memset(&w, 0, sizeof(w)); 4542 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4543 w.xExprCallback = exprWalkNoop; 4544 w.pParse = pParse; 4545 sqlite3WalkSelect(&w, pSelect); 4546 #endif 4547 } 4548 4549 4550 /* 4551 ** This routine sets up a SELECT statement for processing. The 4552 ** following is accomplished: 4553 ** 4554 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4555 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4556 ** * ON and USING clauses are shifted into WHERE statements 4557 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4558 ** * Identifiers in expression are matched to tables. 4559 ** 4560 ** This routine acts recursively on all subqueries within the SELECT. 4561 */ 4562 void sqlite3SelectPrep( 4563 Parse *pParse, /* The parser context */ 4564 Select *p, /* The SELECT statement being coded. */ 4565 NameContext *pOuterNC /* Name context for container */ 4566 ){ 4567 sqlite3 *db; 4568 if( NEVER(p==0) ) return; 4569 db = pParse->db; 4570 if( db->mallocFailed ) return; 4571 if( p->selFlags & SF_HasTypeInfo ) return; 4572 sqlite3SelectExpand(pParse, p); 4573 if( pParse->nErr || db->mallocFailed ) return; 4574 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4575 if( pParse->nErr || db->mallocFailed ) return; 4576 sqlite3SelectAddTypeInfo(pParse, p); 4577 } 4578 4579 /* 4580 ** Reset the aggregate accumulator. 4581 ** 4582 ** The aggregate accumulator is a set of memory cells that hold 4583 ** intermediate results while calculating an aggregate. This 4584 ** routine generates code that stores NULLs in all of those memory 4585 ** cells. 4586 */ 4587 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4588 Vdbe *v = pParse->pVdbe; 4589 int i; 4590 struct AggInfo_func *pFunc; 4591 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4592 if( nReg==0 ) return; 4593 #ifdef SQLITE_DEBUG 4594 /* Verify that all AggInfo registers are within the range specified by 4595 ** AggInfo.mnReg..AggInfo.mxReg */ 4596 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4597 for(i=0; i<pAggInfo->nColumn; i++){ 4598 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4599 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4600 } 4601 for(i=0; i<pAggInfo->nFunc; i++){ 4602 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4603 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4604 } 4605 #endif 4606 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4607 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4608 if( pFunc->iDistinct>=0 ){ 4609 Expr *pE = pFunc->pExpr; 4610 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4611 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4612 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4613 "argument"); 4614 pFunc->iDistinct = -1; 4615 }else{ 4616 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4617 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4618 (char*)pKeyInfo, P4_KEYINFO); 4619 } 4620 } 4621 } 4622 } 4623 4624 /* 4625 ** Invoke the OP_AggFinalize opcode for every aggregate function 4626 ** in the AggInfo structure. 4627 */ 4628 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4629 Vdbe *v = pParse->pVdbe; 4630 int i; 4631 struct AggInfo_func *pF; 4632 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4633 ExprList *pList = pF->pExpr->x.pList; 4634 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4635 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4636 (void*)pF->pFunc, P4_FUNCDEF); 4637 } 4638 } 4639 4640 /* 4641 ** Update the accumulator memory cells for an aggregate based on 4642 ** the current cursor position. 4643 */ 4644 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4645 Vdbe *v = pParse->pVdbe; 4646 int i; 4647 int regHit = 0; 4648 int addrHitTest = 0; 4649 struct AggInfo_func *pF; 4650 struct AggInfo_col *pC; 4651 4652 pAggInfo->directMode = 1; 4653 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4654 int nArg; 4655 int addrNext = 0; 4656 int regAgg; 4657 ExprList *pList = pF->pExpr->x.pList; 4658 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4659 if( pList ){ 4660 nArg = pList->nExpr; 4661 regAgg = sqlite3GetTempRange(pParse, nArg); 4662 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4663 }else{ 4664 nArg = 0; 4665 regAgg = 0; 4666 } 4667 if( pF->iDistinct>=0 ){ 4668 addrNext = sqlite3VdbeMakeLabel(v); 4669 testcase( nArg==0 ); /* Error condition */ 4670 testcase( nArg>1 ); /* Also an error */ 4671 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4672 } 4673 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4674 CollSeq *pColl = 0; 4675 struct ExprList_item *pItem; 4676 int j; 4677 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4678 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4679 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4680 } 4681 if( !pColl ){ 4682 pColl = pParse->db->pDfltColl; 4683 } 4684 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4685 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4686 } 4687 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4688 (void*)pF->pFunc, P4_FUNCDEF); 4689 sqlite3VdbeChangeP5(v, (u8)nArg); 4690 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4691 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4692 if( addrNext ){ 4693 sqlite3VdbeResolveLabel(v, addrNext); 4694 sqlite3ExprCacheClear(pParse); 4695 } 4696 } 4697 4698 /* Before populating the accumulator registers, clear the column cache. 4699 ** Otherwise, if any of the required column values are already present 4700 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4701 ** to pC->iMem. But by the time the value is used, the original register 4702 ** may have been used, invalidating the underlying buffer holding the 4703 ** text or blob value. See ticket [883034dcb5]. 4704 ** 4705 ** Another solution would be to change the OP_SCopy used to copy cached 4706 ** values to an OP_Copy. 4707 */ 4708 if( regHit ){ 4709 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4710 } 4711 sqlite3ExprCacheClear(pParse); 4712 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4713 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4714 } 4715 pAggInfo->directMode = 0; 4716 sqlite3ExprCacheClear(pParse); 4717 if( addrHitTest ){ 4718 sqlite3VdbeJumpHere(v, addrHitTest); 4719 } 4720 } 4721 4722 /* 4723 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4724 ** count(*) query ("SELECT count(*) FROM pTab"). 4725 */ 4726 #ifndef SQLITE_OMIT_EXPLAIN 4727 static void explainSimpleCount( 4728 Parse *pParse, /* Parse context */ 4729 Table *pTab, /* Table being queried */ 4730 Index *pIdx /* Index used to optimize scan, or NULL */ 4731 ){ 4732 if( pParse->explain==2 ){ 4733 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4734 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4735 pTab->zName, 4736 bCover ? " USING COVERING INDEX " : "", 4737 bCover ? pIdx->zName : "" 4738 ); 4739 sqlite3VdbeAddOp4( 4740 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4741 ); 4742 } 4743 } 4744 #else 4745 # define explainSimpleCount(a,b,c) 4746 #endif 4747 4748 /* 4749 ** Generate code for the SELECT statement given in the p argument. 4750 ** 4751 ** The results are returned according to the SelectDest structure. 4752 ** See comments in sqliteInt.h for further information. 4753 ** 4754 ** This routine returns the number of errors. If any errors are 4755 ** encountered, then an appropriate error message is left in 4756 ** pParse->zErrMsg. 4757 ** 4758 ** This routine does NOT free the Select structure passed in. The 4759 ** calling function needs to do that. 4760 */ 4761 int sqlite3Select( 4762 Parse *pParse, /* The parser context */ 4763 Select *p, /* The SELECT statement being coded. */ 4764 SelectDest *pDest /* What to do with the query results */ 4765 ){ 4766 int i, j; /* Loop counters */ 4767 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4768 Vdbe *v; /* The virtual machine under construction */ 4769 int isAgg; /* True for select lists like "count(*)" */ 4770 ExprList *pEList; /* List of columns to extract. */ 4771 SrcList *pTabList; /* List of tables to select from */ 4772 Expr *pWhere; /* The WHERE clause. May be NULL */ 4773 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4774 Expr *pHaving; /* The HAVING clause. May be NULL */ 4775 int rc = 1; /* Value to return from this function */ 4776 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4777 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4778 AggInfo sAggInfo; /* Information used by aggregate queries */ 4779 int iEnd; /* Address of the end of the query */ 4780 sqlite3 *db; /* The database connection */ 4781 4782 #ifndef SQLITE_OMIT_EXPLAIN 4783 int iRestoreSelectId = pParse->iSelectId; 4784 pParse->iSelectId = pParse->iNextSelectId++; 4785 #endif 4786 4787 db = pParse->db; 4788 if( p==0 || db->mallocFailed || pParse->nErr ){ 4789 return 1; 4790 } 4791 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4792 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4793 #if SELECTTRACE_ENABLED 4794 pParse->nSelectIndent++; 4795 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4796 if( sqlite3SelectTrace & 0x100 ){ 4797 sqlite3TreeViewSelect(0, p, 0); 4798 } 4799 #endif 4800 4801 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4802 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4803 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4804 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4805 if( IgnorableOrderby(pDest) ){ 4806 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4807 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4808 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4809 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4810 /* If ORDER BY makes no difference in the output then neither does 4811 ** DISTINCT so it can be removed too. */ 4812 sqlite3ExprListDelete(db, p->pOrderBy); 4813 p->pOrderBy = 0; 4814 p->selFlags &= ~SF_Distinct; 4815 } 4816 sqlite3SelectPrep(pParse, p, 0); 4817 memset(&sSort, 0, sizeof(sSort)); 4818 sSort.pOrderBy = p->pOrderBy; 4819 pTabList = p->pSrc; 4820 if( pParse->nErr || db->mallocFailed ){ 4821 goto select_end; 4822 } 4823 assert( p->pEList!=0 ); 4824 isAgg = (p->selFlags & SF_Aggregate)!=0; 4825 #if SELECTTRACE_ENABLED 4826 if( sqlite3SelectTrace & 0x100 ){ 4827 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4828 sqlite3TreeViewSelect(0, p, 0); 4829 } 4830 #endif 4831 4832 4833 /* If writing to memory or generating a set 4834 ** only a single column may be output. 4835 */ 4836 #ifndef SQLITE_OMIT_SUBQUERY 4837 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4838 goto select_end; 4839 } 4840 #endif 4841 4842 /* Try to flatten subqueries in the FROM clause up into the main query 4843 */ 4844 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4845 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4846 struct SrcList_item *pItem = &pTabList->a[i]; 4847 Select *pSub = pItem->pSelect; 4848 int isAggSub; 4849 if( pSub==0 ) continue; 4850 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4851 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4852 /* This subquery can be absorbed into its parent. */ 4853 if( isAggSub ){ 4854 isAgg = 1; 4855 p->selFlags |= SF_Aggregate; 4856 } 4857 i = -1; 4858 } 4859 pTabList = p->pSrc; 4860 if( db->mallocFailed ) goto select_end; 4861 if( !IgnorableOrderby(pDest) ){ 4862 sSort.pOrderBy = p->pOrderBy; 4863 } 4864 } 4865 #endif 4866 4867 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4868 ** does not already exist */ 4869 v = sqlite3GetVdbe(pParse); 4870 if( v==0 ) goto select_end; 4871 4872 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4873 /* Handle compound SELECT statements using the separate multiSelect() 4874 ** procedure. 4875 */ 4876 if( p->pPrior ){ 4877 rc = multiSelect(pParse, p, pDest); 4878 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4879 #if SELECTTRACE_ENABLED 4880 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4881 pParse->nSelectIndent--; 4882 #endif 4883 return rc; 4884 } 4885 #endif 4886 4887 /* Generate code for all sub-queries in the FROM clause 4888 */ 4889 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4890 for(i=0; i<pTabList->nSrc; i++){ 4891 struct SrcList_item *pItem = &pTabList->a[i]; 4892 SelectDest dest; 4893 Select *pSub = pItem->pSelect; 4894 if( pSub==0 ) continue; 4895 4896 /* Sometimes the code for a subquery will be generated more than 4897 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4898 ** for example. In that case, do not regenerate the code to manifest 4899 ** a view or the co-routine to implement a view. The first instance 4900 ** is sufficient, though the subroutine to manifest the view does need 4901 ** to be invoked again. */ 4902 if( pItem->addrFillSub ){ 4903 if( pItem->viaCoroutine==0 ){ 4904 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4905 } 4906 continue; 4907 } 4908 4909 /* Increment Parse.nHeight by the height of the largest expression 4910 ** tree referred to by this, the parent select. The child select 4911 ** may contain expression trees of at most 4912 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4913 ** more conservative than necessary, but much easier than enforcing 4914 ** an exact limit. 4915 */ 4916 pParse->nHeight += sqlite3SelectExprHeight(p); 4917 4918 /* Make copies of constant WHERE-clause terms in the outer query down 4919 ** inside the subquery. This can help the subquery to run more efficiently. 4920 */ 4921 if( (pItem->jointype & JT_OUTER)==0 4922 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4923 ){ 4924 #if SELECTTRACE_ENABLED 4925 if( sqlite3SelectTrace & 0x100 ){ 4926 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4927 sqlite3TreeViewSelect(0, p, 0); 4928 } 4929 #endif 4930 } 4931 4932 /* Generate code to implement the subquery 4933 */ 4934 if( pTabList->nSrc==1 4935 && (p->selFlags & SF_All)==0 4936 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4937 ){ 4938 /* Implement a co-routine that will return a single row of the result 4939 ** set on each invocation. 4940 */ 4941 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4942 pItem->regReturn = ++pParse->nMem; 4943 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4944 VdbeComment((v, "%s", pItem->pTab->zName)); 4945 pItem->addrFillSub = addrTop; 4946 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4947 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4948 sqlite3Select(pParse, pSub, &dest); 4949 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4950 pItem->viaCoroutine = 1; 4951 pItem->regResult = dest.iSdst; 4952 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4953 sqlite3VdbeJumpHere(v, addrTop-1); 4954 sqlite3ClearTempRegCache(pParse); 4955 }else{ 4956 /* Generate a subroutine that will fill an ephemeral table with 4957 ** the content of this subquery. pItem->addrFillSub will point 4958 ** to the address of the generated subroutine. pItem->regReturn 4959 ** is a register allocated to hold the subroutine return address 4960 */ 4961 int topAddr; 4962 int onceAddr = 0; 4963 int retAddr; 4964 assert( pItem->addrFillSub==0 ); 4965 pItem->regReturn = ++pParse->nMem; 4966 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4967 pItem->addrFillSub = topAddr+1; 4968 if( pItem->isCorrelated==0 ){ 4969 /* If the subquery is not correlated and if we are not inside of 4970 ** a trigger, then we only need to compute the value of the subquery 4971 ** once. */ 4972 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4973 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4974 }else{ 4975 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4976 } 4977 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4978 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4979 sqlite3Select(pParse, pSub, &dest); 4980 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4981 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4982 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4983 VdbeComment((v, "end %s", pItem->pTab->zName)); 4984 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4985 sqlite3ClearTempRegCache(pParse); 4986 } 4987 if( db->mallocFailed ) goto select_end; 4988 pParse->nHeight -= sqlite3SelectExprHeight(p); 4989 } 4990 #endif 4991 4992 /* Various elements of the SELECT copied into local variables for 4993 ** convenience */ 4994 pEList = p->pEList; 4995 pWhere = p->pWhere; 4996 pGroupBy = p->pGroupBy; 4997 pHaving = p->pHaving; 4998 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4999 5000 #if SELECTTRACE_ENABLED 5001 if( sqlite3SelectTrace & 0x400 ){ 5002 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5003 sqlite3TreeViewSelect(0, p, 0); 5004 } 5005 #endif 5006 5007 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5008 ** if the select-list is the same as the ORDER BY list, then this query 5009 ** can be rewritten as a GROUP BY. In other words, this: 5010 ** 5011 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5012 ** 5013 ** is transformed to: 5014 ** 5015 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5016 ** 5017 ** The second form is preferred as a single index (or temp-table) may be 5018 ** used for both the ORDER BY and DISTINCT processing. As originally 5019 ** written the query must use a temp-table for at least one of the ORDER 5020 ** BY and DISTINCT, and an index or separate temp-table for the other. 5021 */ 5022 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5023 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5024 ){ 5025 p->selFlags &= ~SF_Distinct; 5026 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5027 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5028 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5029 ** original setting of the SF_Distinct flag, not the current setting */ 5030 assert( sDistinct.isTnct ); 5031 } 5032 5033 /* If there is an ORDER BY clause, then create an ephemeral index to 5034 ** do the sorting. But this sorting ephemeral index might end up 5035 ** being unused if the data can be extracted in pre-sorted order. 5036 ** If that is the case, then the OP_OpenEphemeral instruction will be 5037 ** changed to an OP_Noop once we figure out that the sorting index is 5038 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5039 ** that change. 5040 */ 5041 if( sSort.pOrderBy ){ 5042 KeyInfo *pKeyInfo; 5043 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5044 sSort.iECursor = pParse->nTab++; 5045 sSort.addrSortIndex = 5046 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5047 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5048 (char*)pKeyInfo, P4_KEYINFO 5049 ); 5050 }else{ 5051 sSort.addrSortIndex = -1; 5052 } 5053 5054 /* If the output is destined for a temporary table, open that table. 5055 */ 5056 if( pDest->eDest==SRT_EphemTab ){ 5057 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5058 } 5059 5060 /* Set the limiter. 5061 */ 5062 iEnd = sqlite3VdbeMakeLabel(v); 5063 p->nSelectRow = LARGEST_INT64; 5064 computeLimitRegisters(pParse, p, iEnd); 5065 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5066 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 5067 sSort.sortFlags |= SORTFLAG_UseSorter; 5068 } 5069 5070 /* Open an ephemeral index to use for the distinct set. 5071 */ 5072 if( p->selFlags & SF_Distinct ){ 5073 sDistinct.tabTnct = pParse->nTab++; 5074 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5075 sDistinct.tabTnct, 0, 0, 5076 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5077 P4_KEYINFO); 5078 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5079 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5080 }else{ 5081 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5082 } 5083 5084 if( !isAgg && pGroupBy==0 ){ 5085 /* No aggregate functions and no GROUP BY clause */ 5086 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5087 5088 /* Begin the database scan. */ 5089 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5090 p->pEList, wctrlFlags, 0); 5091 if( pWInfo==0 ) goto select_end; 5092 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5093 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5094 } 5095 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5096 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5097 } 5098 if( sSort.pOrderBy ){ 5099 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5100 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5101 sSort.pOrderBy = 0; 5102 } 5103 } 5104 5105 /* If sorting index that was created by a prior OP_OpenEphemeral 5106 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5107 ** into an OP_Noop. 5108 */ 5109 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5110 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5111 } 5112 5113 /* Use the standard inner loop. */ 5114 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5115 sqlite3WhereContinueLabel(pWInfo), 5116 sqlite3WhereBreakLabel(pWInfo)); 5117 5118 /* End the database scan loop. 5119 */ 5120 sqlite3WhereEnd(pWInfo); 5121 }else{ 5122 /* This case when there exist aggregate functions or a GROUP BY clause 5123 ** or both */ 5124 NameContext sNC; /* Name context for processing aggregate information */ 5125 int iAMem; /* First Mem address for storing current GROUP BY */ 5126 int iBMem; /* First Mem address for previous GROUP BY */ 5127 int iUseFlag; /* Mem address holding flag indicating that at least 5128 ** one row of the input to the aggregator has been 5129 ** processed */ 5130 int iAbortFlag; /* Mem address which causes query abort if positive */ 5131 int groupBySort; /* Rows come from source in GROUP BY order */ 5132 int addrEnd; /* End of processing for this SELECT */ 5133 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5134 int sortOut = 0; /* Output register from the sorter */ 5135 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5136 5137 /* Remove any and all aliases between the result set and the 5138 ** GROUP BY clause. 5139 */ 5140 if( pGroupBy ){ 5141 int k; /* Loop counter */ 5142 struct ExprList_item *pItem; /* For looping over expression in a list */ 5143 5144 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5145 pItem->u.x.iAlias = 0; 5146 } 5147 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5148 pItem->u.x.iAlias = 0; 5149 } 5150 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5151 }else{ 5152 p->nSelectRow = 1; 5153 } 5154 5155 /* If there is both a GROUP BY and an ORDER BY clause and they are 5156 ** identical, then it may be possible to disable the ORDER BY clause 5157 ** on the grounds that the GROUP BY will cause elements to come out 5158 ** in the correct order. It also may not - the GROUP BY might use a 5159 ** database index that causes rows to be grouped together as required 5160 ** but not actually sorted. Either way, record the fact that the 5161 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5162 ** variable. */ 5163 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5164 orderByGrp = 1; 5165 } 5166 5167 /* Create a label to jump to when we want to abort the query */ 5168 addrEnd = sqlite3VdbeMakeLabel(v); 5169 5170 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5171 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5172 ** SELECT statement. 5173 */ 5174 memset(&sNC, 0, sizeof(sNC)); 5175 sNC.pParse = pParse; 5176 sNC.pSrcList = pTabList; 5177 sNC.pAggInfo = &sAggInfo; 5178 sAggInfo.mnReg = pParse->nMem+1; 5179 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5180 sAggInfo.pGroupBy = pGroupBy; 5181 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5182 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5183 if( pHaving ){ 5184 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5185 } 5186 sAggInfo.nAccumulator = sAggInfo.nColumn; 5187 for(i=0; i<sAggInfo.nFunc; i++){ 5188 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5189 sNC.ncFlags |= NC_InAggFunc; 5190 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5191 sNC.ncFlags &= ~NC_InAggFunc; 5192 } 5193 sAggInfo.mxReg = pParse->nMem; 5194 if( db->mallocFailed ) goto select_end; 5195 5196 /* Processing for aggregates with GROUP BY is very different and 5197 ** much more complex than aggregates without a GROUP BY. 5198 */ 5199 if( pGroupBy ){ 5200 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5201 int j1; /* A-vs-B comparision jump */ 5202 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5203 int regOutputRow; /* Return address register for output subroutine */ 5204 int addrSetAbort; /* Set the abort flag and return */ 5205 int addrTopOfLoop; /* Top of the input loop */ 5206 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5207 int addrReset; /* Subroutine for resetting the accumulator */ 5208 int regReset; /* Return address register for reset subroutine */ 5209 5210 /* If there is a GROUP BY clause we might need a sorting index to 5211 ** implement it. Allocate that sorting index now. If it turns out 5212 ** that we do not need it after all, the OP_SorterOpen instruction 5213 ** will be converted into a Noop. 5214 */ 5215 sAggInfo.sortingIdx = pParse->nTab++; 5216 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5217 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5218 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5219 0, (char*)pKeyInfo, P4_KEYINFO); 5220 5221 /* Initialize memory locations used by GROUP BY aggregate processing 5222 */ 5223 iUseFlag = ++pParse->nMem; 5224 iAbortFlag = ++pParse->nMem; 5225 regOutputRow = ++pParse->nMem; 5226 addrOutputRow = sqlite3VdbeMakeLabel(v); 5227 regReset = ++pParse->nMem; 5228 addrReset = sqlite3VdbeMakeLabel(v); 5229 iAMem = pParse->nMem + 1; 5230 pParse->nMem += pGroupBy->nExpr; 5231 iBMem = pParse->nMem + 1; 5232 pParse->nMem += pGroupBy->nExpr; 5233 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5234 VdbeComment((v, "clear abort flag")); 5235 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5236 VdbeComment((v, "indicate accumulator empty")); 5237 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5238 5239 /* Begin a loop that will extract all source rows in GROUP BY order. 5240 ** This might involve two separate loops with an OP_Sort in between, or 5241 ** it might be a single loop that uses an index to extract information 5242 ** in the right order to begin with. 5243 */ 5244 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5245 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5246 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5247 ); 5248 if( pWInfo==0 ) goto select_end; 5249 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5250 /* The optimizer is able to deliver rows in group by order so 5251 ** we do not have to sort. The OP_OpenEphemeral table will be 5252 ** cancelled later because we still need to use the pKeyInfo 5253 */ 5254 groupBySort = 0; 5255 }else{ 5256 /* Rows are coming out in undetermined order. We have to push 5257 ** each row into a sorting index, terminate the first loop, 5258 ** then loop over the sorting index in order to get the output 5259 ** in sorted order 5260 */ 5261 int regBase; 5262 int regRecord; 5263 int nCol; 5264 int nGroupBy; 5265 5266 explainTempTable(pParse, 5267 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5268 "DISTINCT" : "GROUP BY"); 5269 5270 groupBySort = 1; 5271 nGroupBy = pGroupBy->nExpr; 5272 nCol = nGroupBy; 5273 j = nGroupBy; 5274 for(i=0; i<sAggInfo.nColumn; i++){ 5275 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5276 nCol++; 5277 j++; 5278 } 5279 } 5280 regBase = sqlite3GetTempRange(pParse, nCol); 5281 sqlite3ExprCacheClear(pParse); 5282 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 5283 j = nGroupBy; 5284 for(i=0; i<sAggInfo.nColumn; i++){ 5285 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5286 if( pCol->iSorterColumn>=j ){ 5287 int r1 = j + regBase; 5288 int r2; 5289 5290 r2 = sqlite3ExprCodeGetColumn(pParse, 5291 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5292 if( r1!=r2 ){ 5293 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5294 } 5295 j++; 5296 } 5297 } 5298 regRecord = sqlite3GetTempReg(pParse); 5299 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5300 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5301 sqlite3ReleaseTempReg(pParse, regRecord); 5302 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5303 sqlite3WhereEnd(pWInfo); 5304 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5305 sortOut = sqlite3GetTempReg(pParse); 5306 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5307 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5308 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5309 sAggInfo.useSortingIdx = 1; 5310 sqlite3ExprCacheClear(pParse); 5311 5312 } 5313 5314 /* If the index or temporary table used by the GROUP BY sort 5315 ** will naturally deliver rows in the order required by the ORDER BY 5316 ** clause, cancel the ephemeral table open coded earlier. 5317 ** 5318 ** This is an optimization - the correct answer should result regardless. 5319 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5320 ** disable this optimization for testing purposes. */ 5321 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5322 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5323 ){ 5324 sSort.pOrderBy = 0; 5325 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5326 } 5327 5328 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5329 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5330 ** Then compare the current GROUP BY terms against the GROUP BY terms 5331 ** from the previous row currently stored in a0, a1, a2... 5332 */ 5333 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5334 sqlite3ExprCacheClear(pParse); 5335 if( groupBySort ){ 5336 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5337 sortOut, sortPTab); 5338 } 5339 for(j=0; j<pGroupBy->nExpr; j++){ 5340 if( groupBySort ){ 5341 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5342 }else{ 5343 sAggInfo.directMode = 1; 5344 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5345 } 5346 } 5347 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5348 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5349 j1 = sqlite3VdbeCurrentAddr(v); 5350 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5351 5352 /* Generate code that runs whenever the GROUP BY changes. 5353 ** Changes in the GROUP BY are detected by the previous code 5354 ** block. If there were no changes, this block is skipped. 5355 ** 5356 ** This code copies current group by terms in b0,b1,b2,... 5357 ** over to a0,a1,a2. It then calls the output subroutine 5358 ** and resets the aggregate accumulator registers in preparation 5359 ** for the next GROUP BY batch. 5360 */ 5361 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5362 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5363 VdbeComment((v, "output one row")); 5364 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5365 VdbeComment((v, "check abort flag")); 5366 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5367 VdbeComment((v, "reset accumulator")); 5368 5369 /* Update the aggregate accumulators based on the content of 5370 ** the current row 5371 */ 5372 sqlite3VdbeJumpHere(v, j1); 5373 updateAccumulator(pParse, &sAggInfo); 5374 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5375 VdbeComment((v, "indicate data in accumulator")); 5376 5377 /* End of the loop 5378 */ 5379 if( groupBySort ){ 5380 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5381 VdbeCoverage(v); 5382 }else{ 5383 sqlite3WhereEnd(pWInfo); 5384 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5385 } 5386 5387 /* Output the final row of result 5388 */ 5389 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5390 VdbeComment((v, "output final row")); 5391 5392 /* Jump over the subroutines 5393 */ 5394 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5395 5396 /* Generate a subroutine that outputs a single row of the result 5397 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5398 ** is less than or equal to zero, the subroutine is a no-op. If 5399 ** the processing calls for the query to abort, this subroutine 5400 ** increments the iAbortFlag memory location before returning in 5401 ** order to signal the caller to abort. 5402 */ 5403 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5404 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5405 VdbeComment((v, "set abort flag")); 5406 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5407 sqlite3VdbeResolveLabel(v, addrOutputRow); 5408 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5409 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5410 VdbeCoverage(v); 5411 VdbeComment((v, "Groupby result generator entry point")); 5412 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5413 finalizeAggFunctions(pParse, &sAggInfo); 5414 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5415 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5416 &sDistinct, pDest, 5417 addrOutputRow+1, addrSetAbort); 5418 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5419 VdbeComment((v, "end groupby result generator")); 5420 5421 /* Generate a subroutine that will reset the group-by accumulator 5422 */ 5423 sqlite3VdbeResolveLabel(v, addrReset); 5424 resetAccumulator(pParse, &sAggInfo); 5425 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5426 5427 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5428 else { 5429 ExprList *pDel = 0; 5430 #ifndef SQLITE_OMIT_BTREECOUNT 5431 Table *pTab; 5432 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5433 /* If isSimpleCount() returns a pointer to a Table structure, then 5434 ** the SQL statement is of the form: 5435 ** 5436 ** SELECT count(*) FROM <tbl> 5437 ** 5438 ** where the Table structure returned represents table <tbl>. 5439 ** 5440 ** This statement is so common that it is optimized specially. The 5441 ** OP_Count instruction is executed either on the intkey table that 5442 ** contains the data for table <tbl> or on one of its indexes. It 5443 ** is better to execute the op on an index, as indexes are almost 5444 ** always spread across less pages than their corresponding tables. 5445 */ 5446 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5447 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5448 Index *pIdx; /* Iterator variable */ 5449 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5450 Index *pBest = 0; /* Best index found so far */ 5451 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5452 5453 sqlite3CodeVerifySchema(pParse, iDb); 5454 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5455 5456 /* Search for the index that has the lowest scan cost. 5457 ** 5458 ** (2011-04-15) Do not do a full scan of an unordered index. 5459 ** 5460 ** (2013-10-03) Do not count the entries in a partial index. 5461 ** 5462 ** In practice the KeyInfo structure will not be used. It is only 5463 ** passed to keep OP_OpenRead happy. 5464 */ 5465 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5466 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5467 if( pIdx->bUnordered==0 5468 && pIdx->szIdxRow<pTab->szTabRow 5469 && pIdx->pPartIdxWhere==0 5470 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5471 ){ 5472 pBest = pIdx; 5473 } 5474 } 5475 if( pBest ){ 5476 iRoot = pBest->tnum; 5477 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5478 } 5479 5480 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5481 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5482 if( pKeyInfo ){ 5483 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5484 } 5485 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5486 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5487 explainSimpleCount(pParse, pTab, pBest); 5488 }else 5489 #endif /* SQLITE_OMIT_BTREECOUNT */ 5490 { 5491 /* Check if the query is of one of the following forms: 5492 ** 5493 ** SELECT min(x) FROM ... 5494 ** SELECT max(x) FROM ... 5495 ** 5496 ** If it is, then ask the code in where.c to attempt to sort results 5497 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5498 ** If where.c is able to produce results sorted in this order, then 5499 ** add vdbe code to break out of the processing loop after the 5500 ** first iteration (since the first iteration of the loop is 5501 ** guaranteed to operate on the row with the minimum or maximum 5502 ** value of x, the only row required). 5503 ** 5504 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5505 ** modify behavior as follows: 5506 ** 5507 ** + If the query is a "SELECT min(x)", then the loop coded by 5508 ** where.c should not iterate over any values with a NULL value 5509 ** for x. 5510 ** 5511 ** + The optimizer code in where.c (the thing that decides which 5512 ** index or indices to use) should place a different priority on 5513 ** satisfying the 'ORDER BY' clause than it does in other cases. 5514 ** Refer to code and comments in where.c for details. 5515 */ 5516 ExprList *pMinMax = 0; 5517 u8 flag = WHERE_ORDERBY_NORMAL; 5518 5519 assert( p->pGroupBy==0 ); 5520 assert( flag==0 ); 5521 if( p->pHaving==0 ){ 5522 flag = minMaxQuery(&sAggInfo, &pMinMax); 5523 } 5524 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5525 5526 if( flag ){ 5527 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5528 pDel = pMinMax; 5529 if( pMinMax && !db->mallocFailed ){ 5530 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5531 pMinMax->a[0].pExpr->op = TK_COLUMN; 5532 } 5533 } 5534 5535 /* This case runs if the aggregate has no GROUP BY clause. The 5536 ** processing is much simpler since there is only a single row 5537 ** of output. 5538 */ 5539 resetAccumulator(pParse, &sAggInfo); 5540 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5541 if( pWInfo==0 ){ 5542 sqlite3ExprListDelete(db, pDel); 5543 goto select_end; 5544 } 5545 updateAccumulator(pParse, &sAggInfo); 5546 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5547 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5548 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5549 VdbeComment((v, "%s() by index", 5550 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5551 } 5552 sqlite3WhereEnd(pWInfo); 5553 finalizeAggFunctions(pParse, &sAggInfo); 5554 } 5555 5556 sSort.pOrderBy = 0; 5557 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5558 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5559 pDest, addrEnd, addrEnd); 5560 sqlite3ExprListDelete(db, pDel); 5561 } 5562 sqlite3VdbeResolveLabel(v, addrEnd); 5563 5564 } /* endif aggregate query */ 5565 5566 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5567 explainTempTable(pParse, "DISTINCT"); 5568 } 5569 5570 /* If there is an ORDER BY clause, then we need to sort the results 5571 ** and send them to the callback one by one. 5572 */ 5573 if( sSort.pOrderBy ){ 5574 explainTempTable(pParse, 5575 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5576 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5577 } 5578 5579 /* Jump here to skip this query 5580 */ 5581 sqlite3VdbeResolveLabel(v, iEnd); 5582 5583 /* The SELECT has been coded. If there is an error in the Parse structure, 5584 ** set the return code to 1. Otherwise 0. */ 5585 rc = (pParse->nErr>0); 5586 5587 /* Control jumps to here if an error is encountered above, or upon 5588 ** successful coding of the SELECT. 5589 */ 5590 select_end: 5591 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5592 5593 /* Identify column names if results of the SELECT are to be output. 5594 */ 5595 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5596 generateColumnNames(pParse, pTabList, pEList); 5597 } 5598 5599 sqlite3DbFree(db, sAggInfo.aCol); 5600 sqlite3DbFree(db, sAggInfo.aFunc); 5601 #if SELECTTRACE_ENABLED 5602 SELECTTRACE(1,pParse,p,("end processing\n")); 5603 pParse->nSelectIndent--; 5604 #endif 5605 return rc; 5606 } 5607