xref: /sqlite-3.40.0/src/select.c (revision f5ed7ad6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
58 };
59 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
60 
61 /*
62 ** Delete all the content of a Select structure.  Deallocate the structure
63 ** itself only if bFree is true.
64 */
65 static void clearSelect(sqlite3 *db, Select *p, int bFree){
66   while( p ){
67     Select *pPrior = p->pPrior;
68     sqlite3ExprListDelete(db, p->pEList);
69     sqlite3SrcListDelete(db, p->pSrc);
70     sqlite3ExprDelete(db, p->pWhere);
71     sqlite3ExprListDelete(db, p->pGroupBy);
72     sqlite3ExprDelete(db, p->pHaving);
73     sqlite3ExprListDelete(db, p->pOrderBy);
74     sqlite3ExprDelete(db, p->pLimit);
75     sqlite3ExprDelete(db, p->pOffset);
76     sqlite3WithDelete(db, p->pWith);
77     if( bFree ) sqlite3DbFree(db, p);
78     p = pPrior;
79     bFree = 1;
80   }
81 }
82 
83 /*
84 ** Initialize a SelectDest structure.
85 */
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87   pDest->eDest = (u8)eDest;
88   pDest->iSDParm = iParm;
89   pDest->affSdst = 0;
90   pDest->iSdst = 0;
91   pDest->nSdst = 0;
92 }
93 
94 
95 /*
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
98 */
99 Select *sqlite3SelectNew(
100   Parse *pParse,        /* Parsing context */
101   ExprList *pEList,     /* which columns to include in the result */
102   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
103   Expr *pWhere,         /* the WHERE clause */
104   ExprList *pGroupBy,   /* the GROUP BY clause */
105   Expr *pHaving,        /* the HAVING clause */
106   ExprList *pOrderBy,   /* the ORDER BY clause */
107   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
108   Expr *pLimit,         /* LIMIT value.  NULL means not used */
109   Expr *pOffset         /* OFFSET value.  NULL means no offset */
110 ){
111   Select *pNew;
112   Select standin;
113   sqlite3 *db = pParse->db;
114   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     setJoinExpr(p->pLeft, iTable);
370     p = p->pRight;
371   }
372 }
373 
374 /*
375 ** This routine processes the join information for a SELECT statement.
376 ** ON and USING clauses are converted into extra terms of the WHERE clause.
377 ** NATURAL joins also create extra WHERE clause terms.
378 **
379 ** The terms of a FROM clause are contained in the Select.pSrc structure.
380 ** The left most table is the first entry in Select.pSrc.  The right-most
381 ** table is the last entry.  The join operator is held in the entry to
382 ** the left.  Thus entry 0 contains the join operator for the join between
383 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
384 ** also attached to the left entry.
385 **
386 ** This routine returns the number of errors encountered.
387 */
388 static int sqliteProcessJoin(Parse *pParse, Select *p){
389   SrcList *pSrc;                  /* All tables in the FROM clause */
390   int i, j;                       /* Loop counters */
391   struct SrcList_item *pLeft;     /* Left table being joined */
392   struct SrcList_item *pRight;    /* Right table being joined */
393 
394   pSrc = p->pSrc;
395   pLeft = &pSrc->a[0];
396   pRight = &pLeft[1];
397   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
398     Table *pLeftTab = pLeft->pTab;
399     Table *pRightTab = pRight->pTab;
400     int isOuter;
401 
402     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
403     isOuter = (pRight->jointype & JT_OUTER)!=0;
404 
405     /* When the NATURAL keyword is present, add WHERE clause terms for
406     ** every column that the two tables have in common.
407     */
408     if( pRight->jointype & JT_NATURAL ){
409       if( pRight->pOn || pRight->pUsing ){
410         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
411            "an ON or USING clause", 0);
412         return 1;
413       }
414       for(j=0; j<pRightTab->nCol; j++){
415         char *zName;   /* Name of column in the right table */
416         int iLeft;     /* Matching left table */
417         int iLeftCol;  /* Matching column in the left table */
418 
419         zName = pRightTab->aCol[j].zName;
420         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
421           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
422                        isOuter, &p->pWhere);
423         }
424       }
425     }
426 
427     /* Disallow both ON and USING clauses in the same join
428     */
429     if( pRight->pOn && pRight->pUsing ){
430       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
431         "clauses in the same join");
432       return 1;
433     }
434 
435     /* Add the ON clause to the end of the WHERE clause, connected by
436     ** an AND operator.
437     */
438     if( pRight->pOn ){
439       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
440       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
441       pRight->pOn = 0;
442     }
443 
444     /* Create extra terms on the WHERE clause for each column named
445     ** in the USING clause.  Example: If the two tables to be joined are
446     ** A and B and the USING clause names X, Y, and Z, then add this
447     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
448     ** Report an error if any column mentioned in the USING clause is
449     ** not contained in both tables to be joined.
450     */
451     if( pRight->pUsing ){
452       IdList *pList = pRight->pUsing;
453       for(j=0; j<pList->nId; j++){
454         char *zName;     /* Name of the term in the USING clause */
455         int iLeft;       /* Table on the left with matching column name */
456         int iLeftCol;    /* Column number of matching column on the left */
457         int iRightCol;   /* Column number of matching column on the right */
458 
459         zName = pList->a[j].zName;
460         iRightCol = columnIndex(pRightTab, zName);
461         if( iRightCol<0
462          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
463         ){
464           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
465             "not present in both tables", zName);
466           return 1;
467         }
468         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
469                      isOuter, &p->pWhere);
470       }
471     }
472   }
473   return 0;
474 }
475 
476 /* Forward reference */
477 static KeyInfo *keyInfoFromExprList(
478   Parse *pParse,       /* Parsing context */
479   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
480   int iStart,          /* Begin with this column of pList */
481   int nExtra           /* Add this many extra columns to the end */
482 );
483 
484 /*
485 ** Generate code that will push the record in registers regData
486 ** through regData+nData-1 onto the sorter.
487 */
488 static void pushOntoSorter(
489   Parse *pParse,         /* Parser context */
490   SortCtx *pSort,        /* Information about the ORDER BY clause */
491   Select *pSelect,       /* The whole SELECT statement */
492   int regData,           /* First register holding data to be sorted */
493   int nData,             /* Number of elements in the data array */
494   int nPrefixReg         /* No. of reg prior to regData available for use */
495 ){
496   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
497   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
498   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
499   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
500   int regBase;                                     /* Regs for sorter record */
501   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
502   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
503   int op;                            /* Opcode to add sorter record to sorter */
504 
505   assert( bSeq==0 || bSeq==1 );
506   if( nPrefixReg ){
507     assert( nPrefixReg==nExpr+bSeq );
508     regBase = regData - nExpr - bSeq;
509   }else{
510     regBase = pParse->nMem + 1;
511     pParse->nMem += nBase;
512   }
513   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
514   if( bSeq ){
515     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
516   }
517   if( nPrefixReg==0 ){
518     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
519   }
520 
521   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
522   if( nOBSat>0 ){
523     int regPrevKey;   /* The first nOBSat columns of the previous row */
524     int addrFirst;    /* Address of the OP_IfNot opcode */
525     int addrJmp;      /* Address of the OP_Jump opcode */
526     VdbeOp *pOp;      /* Opcode that opens the sorter */
527     int nKey;         /* Number of sorting key columns, including OP_Sequence */
528     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
529 
530     regPrevKey = pParse->nMem+1;
531     pParse->nMem += pSort->nOBSat;
532     nKey = nExpr - pSort->nOBSat + bSeq;
533     if( bSeq ){
534       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
535     }else{
536       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
537     }
538     VdbeCoverage(v);
539     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
540     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
541     if( pParse->db->mallocFailed ) return;
542     pOp->p2 = nKey + nData;
543     pKI = pOp->p4.pKeyInfo;
544     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
545     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
546     testcase( pKI->nXField>2 );
547     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
548                                            pKI->nXField-1);
549     addrJmp = sqlite3VdbeCurrentAddr(v);
550     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
551     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
552     pSort->regReturn = ++pParse->nMem;
553     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
554     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
555     sqlite3VdbeJumpHere(v, addrFirst);
556     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
557     sqlite3VdbeJumpHere(v, addrJmp);
558   }
559   if( pSort->sortFlags & SORTFLAG_UseSorter ){
560     op = OP_SorterInsert;
561   }else{
562     op = OP_IdxInsert;
563   }
564   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
565   if( pSelect->iLimit ){
566     int addr;
567     int iLimit;
568     if( pSelect->iOffset ){
569       iLimit = pSelect->iOffset+1;
570     }else{
571       iLimit = pSelect->iLimit;
572     }
573     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);
574     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
575     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
576     sqlite3VdbeJumpHere(v, addr);
577   }
578 }
579 
580 /*
581 ** Add code to implement the OFFSET
582 */
583 static void codeOffset(
584   Vdbe *v,          /* Generate code into this VM */
585   int iOffset,      /* Register holding the offset counter */
586   int iContinue     /* Jump here to skip the current record */
587 ){
588   if( iOffset>0 ){
589     int addr;
590     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
591     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
592     VdbeComment((v, "skip OFFSET records"));
593     sqlite3VdbeJumpHere(v, addr);
594   }
595 }
596 
597 /*
598 ** Add code that will check to make sure the N registers starting at iMem
599 ** form a distinct entry.  iTab is a sorting index that holds previously
600 ** seen combinations of the N values.  A new entry is made in iTab
601 ** if the current N values are new.
602 **
603 ** A jump to addrRepeat is made and the N+1 values are popped from the
604 ** stack if the top N elements are not distinct.
605 */
606 static void codeDistinct(
607   Parse *pParse,     /* Parsing and code generating context */
608   int iTab,          /* A sorting index used to test for distinctness */
609   int addrRepeat,    /* Jump to here if not distinct */
610   int N,             /* Number of elements */
611   int iMem           /* First element */
612 ){
613   Vdbe *v;
614   int r1;
615 
616   v = pParse->pVdbe;
617   r1 = sqlite3GetTempReg(pParse);
618   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
619   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
620   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
621   sqlite3ReleaseTempReg(pParse, r1);
622 }
623 
624 #ifndef SQLITE_OMIT_SUBQUERY
625 /*
626 ** Generate an error message when a SELECT is used within a subexpression
627 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
628 ** column.  We do this in a subroutine because the error used to occur
629 ** in multiple places.  (The error only occurs in one place now, but we
630 ** retain the subroutine to minimize code disruption.)
631 */
632 static int checkForMultiColumnSelectError(
633   Parse *pParse,       /* Parse context. */
634   SelectDest *pDest,   /* Destination of SELECT results */
635   int nExpr            /* Number of result columns returned by SELECT */
636 ){
637   int eDest = pDest->eDest;
638   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
639     sqlite3ErrorMsg(pParse, "only a single result allowed for "
640        "a SELECT that is part of an expression");
641     return 1;
642   }else{
643     return 0;
644   }
645 }
646 #endif
647 
648 /*
649 ** This routine generates the code for the inside of the inner loop
650 ** of a SELECT.
651 **
652 ** If srcTab is negative, then the pEList expressions
653 ** are evaluated in order to get the data for this row.  If srcTab is
654 ** zero or more, then data is pulled from srcTab and pEList is used only
655 ** to get number columns and the datatype for each column.
656 */
657 static void selectInnerLoop(
658   Parse *pParse,          /* The parser context */
659   Select *p,              /* The complete select statement being coded */
660   ExprList *pEList,       /* List of values being extracted */
661   int srcTab,             /* Pull data from this table */
662   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
663   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
664   SelectDest *pDest,      /* How to dispose of the results */
665   int iContinue,          /* Jump here to continue with next row */
666   int iBreak              /* Jump here to break out of the inner loop */
667 ){
668   Vdbe *v = pParse->pVdbe;
669   int i;
670   int hasDistinct;        /* True if the DISTINCT keyword is present */
671   int regResult;              /* Start of memory holding result set */
672   int eDest = pDest->eDest;   /* How to dispose of results */
673   int iParm = pDest->iSDParm; /* First argument to disposal method */
674   int nResultCol;             /* Number of result columns */
675   int nPrefixReg = 0;         /* Number of extra registers before regResult */
676 
677   assert( v );
678   assert( pEList!=0 );
679   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
680   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
681   if( pSort==0 && !hasDistinct ){
682     assert( iContinue!=0 );
683     codeOffset(v, p->iOffset, iContinue);
684   }
685 
686   /* Pull the requested columns.
687   */
688   nResultCol = pEList->nExpr;
689 
690   if( pDest->iSdst==0 ){
691     if( pSort ){
692       nPrefixReg = pSort->pOrderBy->nExpr;
693       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
694       pParse->nMem += nPrefixReg;
695     }
696     pDest->iSdst = pParse->nMem+1;
697     pParse->nMem += nResultCol;
698   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
699     /* This is an error condition that can result, for example, when a SELECT
700     ** on the right-hand side of an INSERT contains more result columns than
701     ** there are columns in the table on the left.  The error will be caught
702     ** and reported later.  But we need to make sure enough memory is allocated
703     ** to avoid other spurious errors in the meantime. */
704     pParse->nMem += nResultCol;
705   }
706   pDest->nSdst = nResultCol;
707   regResult = pDest->iSdst;
708   if( srcTab>=0 ){
709     for(i=0; i<nResultCol; i++){
710       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
711       VdbeComment((v, "%s", pEList->a[i].zName));
712     }
713   }else if( eDest!=SRT_Exists ){
714     /* If the destination is an EXISTS(...) expression, the actual
715     ** values returned by the SELECT are not required.
716     */
717     u8 ecelFlags;
718     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
719       ecelFlags = SQLITE_ECEL_DUP;
720     }else{
721       ecelFlags = 0;
722     }
723     sqlite3ExprCodeExprList(pParse, pEList, regResult, ecelFlags);
724   }
725 
726   /* If the DISTINCT keyword was present on the SELECT statement
727   ** and this row has been seen before, then do not make this row
728   ** part of the result.
729   */
730   if( hasDistinct ){
731     switch( pDistinct->eTnctType ){
732       case WHERE_DISTINCT_ORDERED: {
733         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
734         int iJump;              /* Jump destination */
735         int regPrev;            /* Previous row content */
736 
737         /* Allocate space for the previous row */
738         regPrev = pParse->nMem+1;
739         pParse->nMem += nResultCol;
740 
741         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
742         ** sets the MEM_Cleared bit on the first register of the
743         ** previous value.  This will cause the OP_Ne below to always
744         ** fail on the first iteration of the loop even if the first
745         ** row is all NULLs.
746         */
747         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
748         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
749         pOp->opcode = OP_Null;
750         pOp->p1 = 1;
751         pOp->p2 = regPrev;
752 
753         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
754         for(i=0; i<nResultCol; i++){
755           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
756           if( i<nResultCol-1 ){
757             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
758             VdbeCoverage(v);
759           }else{
760             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
761             VdbeCoverage(v);
762            }
763           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
764           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
765         }
766         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
767         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
768         break;
769       }
770 
771       case WHERE_DISTINCT_UNIQUE: {
772         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
773         break;
774       }
775 
776       default: {
777         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
778         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
779                      regResult);
780         break;
781       }
782     }
783     if( pSort==0 ){
784       codeOffset(v, p->iOffset, iContinue);
785     }
786   }
787 
788   switch( eDest ){
789     /* In this mode, write each query result to the key of the temporary
790     ** table iParm.
791     */
792 #ifndef SQLITE_OMIT_COMPOUND_SELECT
793     case SRT_Union: {
794       int r1;
795       r1 = sqlite3GetTempReg(pParse);
796       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
797       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
798       sqlite3ReleaseTempReg(pParse, r1);
799       break;
800     }
801 
802     /* Construct a record from the query result, but instead of
803     ** saving that record, use it as a key to delete elements from
804     ** the temporary table iParm.
805     */
806     case SRT_Except: {
807       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
808       break;
809     }
810 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
811 
812     /* Store the result as data using a unique key.
813     */
814     case SRT_Fifo:
815     case SRT_DistFifo:
816     case SRT_Table:
817     case SRT_EphemTab: {
818       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
819       testcase( eDest==SRT_Table );
820       testcase( eDest==SRT_EphemTab );
821       testcase( eDest==SRT_Fifo );
822       testcase( eDest==SRT_DistFifo );
823       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
824 #ifndef SQLITE_OMIT_CTE
825       if( eDest==SRT_DistFifo ){
826         /* If the destination is DistFifo, then cursor (iParm+1) is open
827         ** on an ephemeral index. If the current row is already present
828         ** in the index, do not write it to the output. If not, add the
829         ** current row to the index and proceed with writing it to the
830         ** output table as well.  */
831         int addr = sqlite3VdbeCurrentAddr(v) + 4;
832         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
833         VdbeCoverage(v);
834         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
835         assert( pSort==0 );
836       }
837 #endif
838       if( pSort ){
839         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
840       }else{
841         int r2 = sqlite3GetTempReg(pParse);
842         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
843         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
844         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
845         sqlite3ReleaseTempReg(pParse, r2);
846       }
847       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
848       break;
849     }
850 
851 #ifndef SQLITE_OMIT_SUBQUERY
852     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
853     ** then there should be a single item on the stack.  Write this
854     ** item into the set table with bogus data.
855     */
856     case SRT_Set: {
857       assert( nResultCol==1 );
858       pDest->affSdst =
859                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
860       if( pSort ){
861         /* At first glance you would think we could optimize out the
862         ** ORDER BY in this case since the order of entries in the set
863         ** does not matter.  But there might be a LIMIT clause, in which
864         ** case the order does matter */
865         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
866       }else{
867         int r1 = sqlite3GetTempReg(pParse);
868         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
869         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
870         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
871         sqlite3ReleaseTempReg(pParse, r1);
872       }
873       break;
874     }
875 
876     /* If any row exist in the result set, record that fact and abort.
877     */
878     case SRT_Exists: {
879       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
880       /* The LIMIT clause will terminate the loop for us */
881       break;
882     }
883 
884     /* If this is a scalar select that is part of an expression, then
885     ** store the results in the appropriate memory cell and break out
886     ** of the scan loop.
887     */
888     case SRT_Mem: {
889       assert( nResultCol==1 );
890       if( pSort ){
891         pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
892       }else{
893         assert( regResult==iParm );
894         /* The LIMIT clause will jump out of the loop for us */
895       }
896       break;
897     }
898 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
899 
900     case SRT_Coroutine:       /* Send data to a co-routine */
901     case SRT_Output: {        /* Return the results */
902       testcase( eDest==SRT_Coroutine );
903       testcase( eDest==SRT_Output );
904       if( pSort ){
905         pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
906       }else if( eDest==SRT_Coroutine ){
907         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
908       }else{
909         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
910         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
911       }
912       break;
913     }
914 
915 #ifndef SQLITE_OMIT_CTE
916     /* Write the results into a priority queue that is order according to
917     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
918     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
919     ** pSO->nExpr columns, then make sure all keys are unique by adding a
920     ** final OP_Sequence column.  The last column is the record as a blob.
921     */
922     case SRT_DistQueue:
923     case SRT_Queue: {
924       int nKey;
925       int r1, r2, r3;
926       int addrTest = 0;
927       ExprList *pSO;
928       pSO = pDest->pOrderBy;
929       assert( pSO );
930       nKey = pSO->nExpr;
931       r1 = sqlite3GetTempReg(pParse);
932       r2 = sqlite3GetTempRange(pParse, nKey+2);
933       r3 = r2+nKey+1;
934       if( eDest==SRT_DistQueue ){
935         /* If the destination is DistQueue, then cursor (iParm+1) is open
936         ** on a second ephemeral index that holds all values every previously
937         ** added to the queue. */
938         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
939                                         regResult, nResultCol);
940         VdbeCoverage(v);
941       }
942       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
943       if( eDest==SRT_DistQueue ){
944         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
945         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
946       }
947       for(i=0; i<nKey; i++){
948         sqlite3VdbeAddOp2(v, OP_SCopy,
949                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
950                           r2+i);
951       }
952       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
953       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
954       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
955       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
956       sqlite3ReleaseTempReg(pParse, r1);
957       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
958       break;
959     }
960 #endif /* SQLITE_OMIT_CTE */
961 
962 
963 
964 #if !defined(SQLITE_OMIT_TRIGGER)
965     /* Discard the results.  This is used for SELECT statements inside
966     ** the body of a TRIGGER.  The purpose of such selects is to call
967     ** user-defined functions that have side effects.  We do not care
968     ** about the actual results of the select.
969     */
970     default: {
971       assert( eDest==SRT_Discard );
972       break;
973     }
974 #endif
975   }
976 
977   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
978   ** there is a sorter, in which case the sorter has already limited
979   ** the output for us.
980   */
981   if( pSort==0 && p->iLimit ){
982     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
983   }
984 }
985 
986 /*
987 ** Allocate a KeyInfo object sufficient for an index of N key columns and
988 ** X extra columns.
989 */
990 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
991   KeyInfo *p = sqlite3DbMallocZero(0,
992                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
993   if( p ){
994     p->aSortOrder = (u8*)&p->aColl[N+X];
995     p->nField = (u16)N;
996     p->nXField = (u16)X;
997     p->enc = ENC(db);
998     p->db = db;
999     p->nRef = 1;
1000   }else{
1001     db->mallocFailed = 1;
1002   }
1003   return p;
1004 }
1005 
1006 /*
1007 ** Deallocate a KeyInfo object
1008 */
1009 void sqlite3KeyInfoUnref(KeyInfo *p){
1010   if( p ){
1011     assert( p->nRef>0 );
1012     p->nRef--;
1013     if( p->nRef==0 ) sqlite3DbFree(0, p);
1014   }
1015 }
1016 
1017 /*
1018 ** Make a new pointer to a KeyInfo object
1019 */
1020 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1021   if( p ){
1022     assert( p->nRef>0 );
1023     p->nRef++;
1024   }
1025   return p;
1026 }
1027 
1028 #ifdef SQLITE_DEBUG
1029 /*
1030 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1031 ** can only be changed if this is just a single reference to the object.
1032 **
1033 ** This routine is used only inside of assert() statements.
1034 */
1035 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1036 #endif /* SQLITE_DEBUG */
1037 
1038 /*
1039 ** Given an expression list, generate a KeyInfo structure that records
1040 ** the collating sequence for each expression in that expression list.
1041 **
1042 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1043 ** KeyInfo structure is appropriate for initializing a virtual index to
1044 ** implement that clause.  If the ExprList is the result set of a SELECT
1045 ** then the KeyInfo structure is appropriate for initializing a virtual
1046 ** index to implement a DISTINCT test.
1047 **
1048 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1049 ** function is responsible for seeing that this structure is eventually
1050 ** freed.
1051 */
1052 static KeyInfo *keyInfoFromExprList(
1053   Parse *pParse,       /* Parsing context */
1054   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1055   int iStart,          /* Begin with this column of pList */
1056   int nExtra           /* Add this many extra columns to the end */
1057 ){
1058   int nExpr;
1059   KeyInfo *pInfo;
1060   struct ExprList_item *pItem;
1061   sqlite3 *db = pParse->db;
1062   int i;
1063 
1064   nExpr = pList->nExpr;
1065   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1066   if( pInfo ){
1067     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1068     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1069       CollSeq *pColl;
1070       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1071       if( !pColl ) pColl = db->pDfltColl;
1072       pInfo->aColl[i-iStart] = pColl;
1073       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1074     }
1075   }
1076   return pInfo;
1077 }
1078 
1079 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1080 /*
1081 ** Name of the connection operator, used for error messages.
1082 */
1083 static const char *selectOpName(int id){
1084   char *z;
1085   switch( id ){
1086     case TK_ALL:       z = "UNION ALL";   break;
1087     case TK_INTERSECT: z = "INTERSECT";   break;
1088     case TK_EXCEPT:    z = "EXCEPT";      break;
1089     default:           z = "UNION";       break;
1090   }
1091   return z;
1092 }
1093 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1094 
1095 #ifndef SQLITE_OMIT_EXPLAIN
1096 /*
1097 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1098 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1099 ** where the caption is of the form:
1100 **
1101 **   "USE TEMP B-TREE FOR xxx"
1102 **
1103 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1104 ** is determined by the zUsage argument.
1105 */
1106 static void explainTempTable(Parse *pParse, const char *zUsage){
1107   if( pParse->explain==2 ){
1108     Vdbe *v = pParse->pVdbe;
1109     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1110     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1111   }
1112 }
1113 
1114 /*
1115 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1116 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1117 ** in sqlite3Select() to assign values to structure member variables that
1118 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1119 ** code with #ifndef directives.
1120 */
1121 # define explainSetInteger(a, b) a = b
1122 
1123 #else
1124 /* No-op versions of the explainXXX() functions and macros. */
1125 # define explainTempTable(y,z)
1126 # define explainSetInteger(y,z)
1127 #endif
1128 
1129 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1130 /*
1131 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1132 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1133 ** where the caption is of one of the two forms:
1134 **
1135 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1136 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1137 **
1138 ** where iSub1 and iSub2 are the integers passed as the corresponding
1139 ** function parameters, and op is the text representation of the parameter
1140 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1141 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1142 ** false, or the second form if it is true.
1143 */
1144 static void explainComposite(
1145   Parse *pParse,                  /* Parse context */
1146   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1147   int iSub1,                      /* Subquery id 1 */
1148   int iSub2,                      /* Subquery id 2 */
1149   int bUseTmp                     /* True if a temp table was used */
1150 ){
1151   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1152   if( pParse->explain==2 ){
1153     Vdbe *v = pParse->pVdbe;
1154     char *zMsg = sqlite3MPrintf(
1155         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1156         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1157     );
1158     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1159   }
1160 }
1161 #else
1162 /* No-op versions of the explainXXX() functions and macros. */
1163 # define explainComposite(v,w,x,y,z)
1164 #endif
1165 
1166 /*
1167 ** If the inner loop was generated using a non-null pOrderBy argument,
1168 ** then the results were placed in a sorter.  After the loop is terminated
1169 ** we need to run the sorter and output the results.  The following
1170 ** routine generates the code needed to do that.
1171 */
1172 static void generateSortTail(
1173   Parse *pParse,    /* Parsing context */
1174   Select *p,        /* The SELECT statement */
1175   SortCtx *pSort,   /* Information on the ORDER BY clause */
1176   int nColumn,      /* Number of columns of data */
1177   SelectDest *pDest /* Write the sorted results here */
1178 ){
1179   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1180   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1181   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1182   int addr;
1183   int addrOnce = 0;
1184   int iTab;
1185   ExprList *pOrderBy = pSort->pOrderBy;
1186   int eDest = pDest->eDest;
1187   int iParm = pDest->iSDParm;
1188   int regRow;
1189   int regRowid;
1190   int nKey;
1191   int iSortTab;                   /* Sorter cursor to read from */
1192   int nSortData;                  /* Trailing values to read from sorter */
1193   int i;
1194   int bSeq;                       /* True if sorter record includes seq. no. */
1195 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1196   struct ExprList_item *aOutEx = p->pEList->a;
1197 #endif
1198 
1199   if( pSort->labelBkOut ){
1200     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1201     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1202     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1203   }
1204   iTab = pSort->iECursor;
1205   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1206     regRowid = 0;
1207     regRow = pDest->iSdst;
1208     nSortData = nColumn;
1209   }else{
1210     regRowid = sqlite3GetTempReg(pParse);
1211     regRow = sqlite3GetTempReg(pParse);
1212     nSortData = 1;
1213   }
1214   nKey = pOrderBy->nExpr - pSort->nOBSat;
1215   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1216     int regSortOut = ++pParse->nMem;
1217     iSortTab = pParse->nTab++;
1218     if( pSort->labelBkOut ){
1219       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1220     }
1221     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1222     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1223     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1224     VdbeCoverage(v);
1225     codeOffset(v, p->iOffset, addrContinue);
1226     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1227     bSeq = 0;
1228   }else{
1229     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1230     codeOffset(v, p->iOffset, addrContinue);
1231     iSortTab = iTab;
1232     bSeq = 1;
1233   }
1234   for(i=0; i<nSortData; i++){
1235     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1236     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1237   }
1238   switch( eDest ){
1239     case SRT_EphemTab: {
1240       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1241       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1242       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1243       break;
1244     }
1245 #ifndef SQLITE_OMIT_SUBQUERY
1246     case SRT_Set: {
1247       assert( nColumn==1 );
1248       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1249                         &pDest->affSdst, 1);
1250       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1251       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1252       break;
1253     }
1254     case SRT_Mem: {
1255       assert( nColumn==1 );
1256       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1257       /* The LIMIT clause will terminate the loop for us */
1258       break;
1259     }
1260 #endif
1261     default: {
1262       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1263       testcase( eDest==SRT_Output );
1264       testcase( eDest==SRT_Coroutine );
1265       if( eDest==SRT_Output ){
1266         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1267         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1268       }else{
1269         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1270       }
1271       break;
1272     }
1273   }
1274   if( regRowid ){
1275     sqlite3ReleaseTempReg(pParse, regRow);
1276     sqlite3ReleaseTempReg(pParse, regRowid);
1277   }
1278   /* The bottom of the loop
1279   */
1280   sqlite3VdbeResolveLabel(v, addrContinue);
1281   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1282     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1283   }else{
1284     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1285   }
1286   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1287   sqlite3VdbeResolveLabel(v, addrBreak);
1288 }
1289 
1290 /*
1291 ** Return a pointer to a string containing the 'declaration type' of the
1292 ** expression pExpr. The string may be treated as static by the caller.
1293 **
1294 ** Also try to estimate the size of the returned value and return that
1295 ** result in *pEstWidth.
1296 **
1297 ** The declaration type is the exact datatype definition extracted from the
1298 ** original CREATE TABLE statement if the expression is a column. The
1299 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1300 ** is considered a column can be complex in the presence of subqueries. The
1301 ** result-set expression in all of the following SELECT statements is
1302 ** considered a column by this function.
1303 **
1304 **   SELECT col FROM tbl;
1305 **   SELECT (SELECT col FROM tbl;
1306 **   SELECT (SELECT col FROM tbl);
1307 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1308 **
1309 ** The declaration type for any expression other than a column is NULL.
1310 **
1311 ** This routine has either 3 or 6 parameters depending on whether or not
1312 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1313 */
1314 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1315 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1316 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1317 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1318 #endif
1319 static const char *columnTypeImpl(
1320   NameContext *pNC,
1321   Expr *pExpr,
1322 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1323   const char **pzOrigDb,
1324   const char **pzOrigTab,
1325   const char **pzOrigCol,
1326 #endif
1327   u8 *pEstWidth
1328 ){
1329   char const *zType = 0;
1330   int j;
1331   u8 estWidth = 1;
1332 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1333   char const *zOrigDb = 0;
1334   char const *zOrigTab = 0;
1335   char const *zOrigCol = 0;
1336 #endif
1337 
1338   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1339   switch( pExpr->op ){
1340     case TK_AGG_COLUMN:
1341     case TK_COLUMN: {
1342       /* The expression is a column. Locate the table the column is being
1343       ** extracted from in NameContext.pSrcList. This table may be real
1344       ** database table or a subquery.
1345       */
1346       Table *pTab = 0;            /* Table structure column is extracted from */
1347       Select *pS = 0;             /* Select the column is extracted from */
1348       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1349       testcase( pExpr->op==TK_AGG_COLUMN );
1350       testcase( pExpr->op==TK_COLUMN );
1351       while( pNC && !pTab ){
1352         SrcList *pTabList = pNC->pSrcList;
1353         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1354         if( j<pTabList->nSrc ){
1355           pTab = pTabList->a[j].pTab;
1356           pS = pTabList->a[j].pSelect;
1357         }else{
1358           pNC = pNC->pNext;
1359         }
1360       }
1361 
1362       if( pTab==0 ){
1363         /* At one time, code such as "SELECT new.x" within a trigger would
1364         ** cause this condition to run.  Since then, we have restructured how
1365         ** trigger code is generated and so this condition is no longer
1366         ** possible. However, it can still be true for statements like
1367         ** the following:
1368         **
1369         **   CREATE TABLE t1(col INTEGER);
1370         **   SELECT (SELECT t1.col) FROM FROM t1;
1371         **
1372         ** when columnType() is called on the expression "t1.col" in the
1373         ** sub-select. In this case, set the column type to NULL, even
1374         ** though it should really be "INTEGER".
1375         **
1376         ** This is not a problem, as the column type of "t1.col" is never
1377         ** used. When columnType() is called on the expression
1378         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1379         ** branch below.  */
1380         break;
1381       }
1382 
1383       assert( pTab && pExpr->pTab==pTab );
1384       if( pS ){
1385         /* The "table" is actually a sub-select or a view in the FROM clause
1386         ** of the SELECT statement. Return the declaration type and origin
1387         ** data for the result-set column of the sub-select.
1388         */
1389         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1390           /* If iCol is less than zero, then the expression requests the
1391           ** rowid of the sub-select or view. This expression is legal (see
1392           ** test case misc2.2.2) - it always evaluates to NULL.
1393           */
1394           NameContext sNC;
1395           Expr *p = pS->pEList->a[iCol].pExpr;
1396           sNC.pSrcList = pS->pSrc;
1397           sNC.pNext = pNC;
1398           sNC.pParse = pNC->pParse;
1399           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1400         }
1401       }else if( pTab->pSchema ){
1402         /* A real table */
1403         assert( !pS );
1404         if( iCol<0 ) iCol = pTab->iPKey;
1405         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1406 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1407         if( iCol<0 ){
1408           zType = "INTEGER";
1409           zOrigCol = "rowid";
1410         }else{
1411           zType = pTab->aCol[iCol].zType;
1412           zOrigCol = pTab->aCol[iCol].zName;
1413           estWidth = pTab->aCol[iCol].szEst;
1414         }
1415         zOrigTab = pTab->zName;
1416         if( pNC->pParse ){
1417           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1418           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1419         }
1420 #else
1421         if( iCol<0 ){
1422           zType = "INTEGER";
1423         }else{
1424           zType = pTab->aCol[iCol].zType;
1425           estWidth = pTab->aCol[iCol].szEst;
1426         }
1427 #endif
1428       }
1429       break;
1430     }
1431 #ifndef SQLITE_OMIT_SUBQUERY
1432     case TK_SELECT: {
1433       /* The expression is a sub-select. Return the declaration type and
1434       ** origin info for the single column in the result set of the SELECT
1435       ** statement.
1436       */
1437       NameContext sNC;
1438       Select *pS = pExpr->x.pSelect;
1439       Expr *p = pS->pEList->a[0].pExpr;
1440       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1441       sNC.pSrcList = pS->pSrc;
1442       sNC.pNext = pNC;
1443       sNC.pParse = pNC->pParse;
1444       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1445       break;
1446     }
1447 #endif
1448   }
1449 
1450 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1451   if( pzOrigDb ){
1452     assert( pzOrigTab && pzOrigCol );
1453     *pzOrigDb = zOrigDb;
1454     *pzOrigTab = zOrigTab;
1455     *pzOrigCol = zOrigCol;
1456   }
1457 #endif
1458   if( pEstWidth ) *pEstWidth = estWidth;
1459   return zType;
1460 }
1461 
1462 /*
1463 ** Generate code that will tell the VDBE the declaration types of columns
1464 ** in the result set.
1465 */
1466 static void generateColumnTypes(
1467   Parse *pParse,      /* Parser context */
1468   SrcList *pTabList,  /* List of tables */
1469   ExprList *pEList    /* Expressions defining the result set */
1470 ){
1471 #ifndef SQLITE_OMIT_DECLTYPE
1472   Vdbe *v = pParse->pVdbe;
1473   int i;
1474   NameContext sNC;
1475   sNC.pSrcList = pTabList;
1476   sNC.pParse = pParse;
1477   for(i=0; i<pEList->nExpr; i++){
1478     Expr *p = pEList->a[i].pExpr;
1479     const char *zType;
1480 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1481     const char *zOrigDb = 0;
1482     const char *zOrigTab = 0;
1483     const char *zOrigCol = 0;
1484     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1485 
1486     /* The vdbe must make its own copy of the column-type and other
1487     ** column specific strings, in case the schema is reset before this
1488     ** virtual machine is deleted.
1489     */
1490     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1491     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1492     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1493 #else
1494     zType = columnType(&sNC, p, 0, 0, 0, 0);
1495 #endif
1496     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1497   }
1498 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1499 }
1500 
1501 /*
1502 ** Generate code that will tell the VDBE the names of columns
1503 ** in the result set.  This information is used to provide the
1504 ** azCol[] values in the callback.
1505 */
1506 static void generateColumnNames(
1507   Parse *pParse,      /* Parser context */
1508   SrcList *pTabList,  /* List of tables */
1509   ExprList *pEList    /* Expressions defining the result set */
1510 ){
1511   Vdbe *v = pParse->pVdbe;
1512   int i, j;
1513   sqlite3 *db = pParse->db;
1514   int fullNames, shortNames;
1515 
1516 #ifndef SQLITE_OMIT_EXPLAIN
1517   /* If this is an EXPLAIN, skip this step */
1518   if( pParse->explain ){
1519     return;
1520   }
1521 #endif
1522 
1523   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1524   pParse->colNamesSet = 1;
1525   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1526   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1527   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1528   for(i=0; i<pEList->nExpr; i++){
1529     Expr *p;
1530     p = pEList->a[i].pExpr;
1531     if( NEVER(p==0) ) continue;
1532     if( pEList->a[i].zName ){
1533       char *zName = pEList->a[i].zName;
1534       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1535     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1536       Table *pTab;
1537       char *zCol;
1538       int iCol = p->iColumn;
1539       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1540         if( pTabList->a[j].iCursor==p->iTable ) break;
1541       }
1542       assert( j<pTabList->nSrc );
1543       pTab = pTabList->a[j].pTab;
1544       if( iCol<0 ) iCol = pTab->iPKey;
1545       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1546       if( iCol<0 ){
1547         zCol = "rowid";
1548       }else{
1549         zCol = pTab->aCol[iCol].zName;
1550       }
1551       if( !shortNames && !fullNames ){
1552         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1553             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1554       }else if( fullNames ){
1555         char *zName = 0;
1556         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1557         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1558       }else{
1559         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1560       }
1561     }else{
1562       const char *z = pEList->a[i].zSpan;
1563       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1564       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1565     }
1566   }
1567   generateColumnTypes(pParse, pTabList, pEList);
1568 }
1569 
1570 /*
1571 ** Given an expression list (which is really the list of expressions
1572 ** that form the result set of a SELECT statement) compute appropriate
1573 ** column names for a table that would hold the expression list.
1574 **
1575 ** All column names will be unique.
1576 **
1577 ** Only the column names are computed.  Column.zType, Column.zColl,
1578 ** and other fields of Column are zeroed.
1579 **
1580 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1581 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1582 */
1583 static int selectColumnsFromExprList(
1584   Parse *pParse,          /* Parsing context */
1585   ExprList *pEList,       /* Expr list from which to derive column names */
1586   i16 *pnCol,             /* Write the number of columns here */
1587   Column **paCol          /* Write the new column list here */
1588 ){
1589   sqlite3 *db = pParse->db;   /* Database connection */
1590   int i, j;                   /* Loop counters */
1591   int cnt;                    /* Index added to make the name unique */
1592   Column *aCol, *pCol;        /* For looping over result columns */
1593   int nCol;                   /* Number of columns in the result set */
1594   Expr *p;                    /* Expression for a single result column */
1595   char *zName;                /* Column name */
1596   int nName;                  /* Size of name in zName[] */
1597 
1598   if( pEList ){
1599     nCol = pEList->nExpr;
1600     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1601     testcase( aCol==0 );
1602   }else{
1603     nCol = 0;
1604     aCol = 0;
1605   }
1606   *pnCol = nCol;
1607   *paCol = aCol;
1608 
1609   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1610     /* Get an appropriate name for the column
1611     */
1612     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1613     if( (zName = pEList->a[i].zName)!=0 ){
1614       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1615       zName = sqlite3DbStrDup(db, zName);
1616     }else{
1617       Expr *pColExpr = p;  /* The expression that is the result column name */
1618       Table *pTab;         /* Table associated with this expression */
1619       while( pColExpr->op==TK_DOT ){
1620         pColExpr = pColExpr->pRight;
1621         assert( pColExpr!=0 );
1622       }
1623       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1624         /* For columns use the column name name */
1625         int iCol = pColExpr->iColumn;
1626         pTab = pColExpr->pTab;
1627         if( iCol<0 ) iCol = pTab->iPKey;
1628         zName = sqlite3MPrintf(db, "%s",
1629                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1630       }else if( pColExpr->op==TK_ID ){
1631         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1632         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1633       }else{
1634         /* Use the original text of the column expression as its name */
1635         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1636       }
1637     }
1638     if( db->mallocFailed ){
1639       sqlite3DbFree(db, zName);
1640       break;
1641     }
1642 
1643     /* Make sure the column name is unique.  If the name is not unique,
1644     ** append an integer to the name so that it becomes unique.
1645     */
1646     nName = sqlite3Strlen30(zName);
1647     for(j=cnt=0; j<i; j++){
1648       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1649         char *zNewName;
1650         int k;
1651         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1652         if( k>=0 && zName[k]==':' ) nName = k;
1653         zName[nName] = 0;
1654         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1655         sqlite3DbFree(db, zName);
1656         zName = zNewName;
1657         j = -1;
1658         if( zName==0 ) break;
1659       }
1660     }
1661     pCol->zName = zName;
1662   }
1663   if( db->mallocFailed ){
1664     for(j=0; j<i; j++){
1665       sqlite3DbFree(db, aCol[j].zName);
1666     }
1667     sqlite3DbFree(db, aCol);
1668     *paCol = 0;
1669     *pnCol = 0;
1670     return SQLITE_NOMEM;
1671   }
1672   return SQLITE_OK;
1673 }
1674 
1675 /*
1676 ** Add type and collation information to a column list based on
1677 ** a SELECT statement.
1678 **
1679 ** The column list presumably came from selectColumnNamesFromExprList().
1680 ** The column list has only names, not types or collations.  This
1681 ** routine goes through and adds the types and collations.
1682 **
1683 ** This routine requires that all identifiers in the SELECT
1684 ** statement be resolved.
1685 */
1686 static void selectAddColumnTypeAndCollation(
1687   Parse *pParse,        /* Parsing contexts */
1688   Table *pTab,          /* Add column type information to this table */
1689   Select *pSelect       /* SELECT used to determine types and collations */
1690 ){
1691   sqlite3 *db = pParse->db;
1692   NameContext sNC;
1693   Column *pCol;
1694   CollSeq *pColl;
1695   int i;
1696   Expr *p;
1697   struct ExprList_item *a;
1698   u64 szAll = 0;
1699 
1700   assert( pSelect!=0 );
1701   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1702   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1703   if( db->mallocFailed ) return;
1704   memset(&sNC, 0, sizeof(sNC));
1705   sNC.pSrcList = pSelect->pSrc;
1706   a = pSelect->pEList->a;
1707   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1708     p = a[i].pExpr;
1709     if( pCol->zType==0 ){
1710       pCol->zType = sqlite3DbStrDup(db,
1711                         columnType(&sNC, p,0,0,0, &pCol->szEst));
1712     }
1713     szAll += pCol->szEst;
1714     pCol->affinity = sqlite3ExprAffinity(p);
1715     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1716     pColl = sqlite3ExprCollSeq(pParse, p);
1717     if( pColl && pCol->zColl==0 ){
1718       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1719     }
1720   }
1721   pTab->szTabRow = sqlite3LogEst(szAll*4);
1722 }
1723 
1724 /*
1725 ** Given a SELECT statement, generate a Table structure that describes
1726 ** the result set of that SELECT.
1727 */
1728 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1729   Table *pTab;
1730   sqlite3 *db = pParse->db;
1731   int savedFlags;
1732 
1733   savedFlags = db->flags;
1734   db->flags &= ~SQLITE_FullColNames;
1735   db->flags |= SQLITE_ShortColNames;
1736   sqlite3SelectPrep(pParse, pSelect, 0);
1737   if( pParse->nErr ) return 0;
1738   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1739   db->flags = savedFlags;
1740   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1741   if( pTab==0 ){
1742     return 0;
1743   }
1744   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1745   ** is disabled */
1746   assert( db->lookaside.bEnabled==0 );
1747   pTab->nRef = 1;
1748   pTab->zName = 0;
1749   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1750   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1751   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1752   pTab->iPKey = -1;
1753   if( db->mallocFailed ){
1754     sqlite3DeleteTable(db, pTab);
1755     return 0;
1756   }
1757   return pTab;
1758 }
1759 
1760 /*
1761 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1762 ** If an error occurs, return NULL and leave a message in pParse.
1763 */
1764 Vdbe *sqlite3GetVdbe(Parse *pParse){
1765   Vdbe *v = pParse->pVdbe;
1766   if( v==0 ){
1767     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1768     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1769     if( pParse->pToplevel==0
1770      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1771     ){
1772       pParse->okConstFactor = 1;
1773     }
1774 
1775   }
1776   return v;
1777 }
1778 
1779 
1780 /*
1781 ** Compute the iLimit and iOffset fields of the SELECT based on the
1782 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1783 ** that appear in the original SQL statement after the LIMIT and OFFSET
1784 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1785 ** are the integer memory register numbers for counters used to compute
1786 ** the limit and offset.  If there is no limit and/or offset, then
1787 ** iLimit and iOffset are negative.
1788 **
1789 ** This routine changes the values of iLimit and iOffset only if
1790 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1791 ** iOffset should have been preset to appropriate default values (zero)
1792 ** prior to calling this routine.
1793 **
1794 ** The iOffset register (if it exists) is initialized to the value
1795 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1796 ** iOffset+1 is initialized to LIMIT+OFFSET.
1797 **
1798 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1799 ** redefined.  The UNION ALL operator uses this property to force
1800 ** the reuse of the same limit and offset registers across multiple
1801 ** SELECT statements.
1802 */
1803 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1804   Vdbe *v = 0;
1805   int iLimit = 0;
1806   int iOffset;
1807   int addr1, n;
1808   if( p->iLimit ) return;
1809 
1810   /*
1811   ** "LIMIT -1" always shows all rows.  There is some
1812   ** controversy about what the correct behavior should be.
1813   ** The current implementation interprets "LIMIT 0" to mean
1814   ** no rows.
1815   */
1816   sqlite3ExprCacheClear(pParse);
1817   assert( p->pOffset==0 || p->pLimit!=0 );
1818   if( p->pLimit ){
1819     p->iLimit = iLimit = ++pParse->nMem;
1820     v = sqlite3GetVdbe(pParse);
1821     assert( v!=0 );
1822     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1823       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1824       VdbeComment((v, "LIMIT counter"));
1825       if( n==0 ){
1826         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1827       }else if( n>=0 && p->nSelectRow>(u64)n ){
1828         p->nSelectRow = n;
1829       }
1830     }else{
1831       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1832       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1833       VdbeComment((v, "LIMIT counter"));
1834       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1835     }
1836     if( p->pOffset ){
1837       p->iOffset = iOffset = ++pParse->nMem;
1838       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1839       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1840       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1841       VdbeComment((v, "OFFSET counter"));
1842       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1843       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1844       sqlite3VdbeJumpHere(v, addr1);
1845       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1846       VdbeComment((v, "LIMIT+OFFSET"));
1847       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1848       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1849       sqlite3VdbeJumpHere(v, addr1);
1850     }
1851   }
1852 }
1853 
1854 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1855 /*
1856 ** Return the appropriate collating sequence for the iCol-th column of
1857 ** the result set for the compound-select statement "p".  Return NULL if
1858 ** the column has no default collating sequence.
1859 **
1860 ** The collating sequence for the compound select is taken from the
1861 ** left-most term of the select that has a collating sequence.
1862 */
1863 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1864   CollSeq *pRet;
1865   if( p->pPrior ){
1866     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1867   }else{
1868     pRet = 0;
1869   }
1870   assert( iCol>=0 );
1871   if( pRet==0 && iCol<p->pEList->nExpr ){
1872     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1873   }
1874   return pRet;
1875 }
1876 
1877 /*
1878 ** The select statement passed as the second parameter is a compound SELECT
1879 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1880 ** structure suitable for implementing the ORDER BY.
1881 **
1882 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1883 ** function is responsible for ensuring that this structure is eventually
1884 ** freed.
1885 */
1886 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1887   ExprList *pOrderBy = p->pOrderBy;
1888   int nOrderBy = p->pOrderBy->nExpr;
1889   sqlite3 *db = pParse->db;
1890   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1891   if( pRet ){
1892     int i;
1893     for(i=0; i<nOrderBy; i++){
1894       struct ExprList_item *pItem = &pOrderBy->a[i];
1895       Expr *pTerm = pItem->pExpr;
1896       CollSeq *pColl;
1897 
1898       if( pTerm->flags & EP_Collate ){
1899         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1900       }else{
1901         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1902         if( pColl==0 ) pColl = db->pDfltColl;
1903         pOrderBy->a[i].pExpr =
1904           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1905       }
1906       assert( sqlite3KeyInfoIsWriteable(pRet) );
1907       pRet->aColl[i] = pColl;
1908       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1909     }
1910   }
1911 
1912   return pRet;
1913 }
1914 
1915 #ifndef SQLITE_OMIT_CTE
1916 /*
1917 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1918 ** query of the form:
1919 **
1920 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1921 **                         \___________/             \_______________/
1922 **                           p->pPrior                      p
1923 **
1924 **
1925 ** There is exactly one reference to the recursive-table in the FROM clause
1926 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1927 **
1928 ** The setup-query runs once to generate an initial set of rows that go
1929 ** into a Queue table.  Rows are extracted from the Queue table one by
1930 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1931 ** extracted row (now in the iCurrent table) becomes the content of the
1932 ** recursive-table for a recursive-query run.  The output of the recursive-query
1933 ** is added back into the Queue table.  Then another row is extracted from Queue
1934 ** and the iteration continues until the Queue table is empty.
1935 **
1936 ** If the compound query operator is UNION then no duplicate rows are ever
1937 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1938 ** that have ever been inserted into Queue and causes duplicates to be
1939 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1940 **
1941 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1942 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1943 ** an ORDER BY, the Queue table is just a FIFO.
1944 **
1945 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1946 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1947 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1948 ** with a positive value, then the first OFFSET outputs are discarded rather
1949 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1950 ** rows have been skipped.
1951 */
1952 static void generateWithRecursiveQuery(
1953   Parse *pParse,        /* Parsing context */
1954   Select *p,            /* The recursive SELECT to be coded */
1955   SelectDest *pDest     /* What to do with query results */
1956 ){
1957   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1958   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1959   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1960   Select *pSetup = p->pPrior;   /* The setup query */
1961   int addrTop;                  /* Top of the loop */
1962   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1963   int iCurrent = 0;             /* The Current table */
1964   int regCurrent;               /* Register holding Current table */
1965   int iQueue;                   /* The Queue table */
1966   int iDistinct = 0;            /* To ensure unique results if UNION */
1967   int eDest = SRT_Fifo;         /* How to write to Queue */
1968   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1969   int i;                        /* Loop counter */
1970   int rc;                       /* Result code */
1971   ExprList *pOrderBy;           /* The ORDER BY clause */
1972   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1973   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1974 
1975   /* Obtain authorization to do a recursive query */
1976   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1977 
1978   /* Process the LIMIT and OFFSET clauses, if they exist */
1979   addrBreak = sqlite3VdbeMakeLabel(v);
1980   computeLimitRegisters(pParse, p, addrBreak);
1981   pLimit = p->pLimit;
1982   pOffset = p->pOffset;
1983   regLimit = p->iLimit;
1984   regOffset = p->iOffset;
1985   p->pLimit = p->pOffset = 0;
1986   p->iLimit = p->iOffset = 0;
1987   pOrderBy = p->pOrderBy;
1988 
1989   /* Locate the cursor number of the Current table */
1990   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1991     if( pSrc->a[i].isRecursive ){
1992       iCurrent = pSrc->a[i].iCursor;
1993       break;
1994     }
1995   }
1996 
1997   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1998   ** the Distinct table must be exactly one greater than Queue in order
1999   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2000   iQueue = pParse->nTab++;
2001   if( p->op==TK_UNION ){
2002     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2003     iDistinct = pParse->nTab++;
2004   }else{
2005     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2006   }
2007   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2008 
2009   /* Allocate cursors for Current, Queue, and Distinct. */
2010   regCurrent = ++pParse->nMem;
2011   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2012   if( pOrderBy ){
2013     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2014     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2015                       (char*)pKeyInfo, P4_KEYINFO);
2016     destQueue.pOrderBy = pOrderBy;
2017   }else{
2018     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2019   }
2020   VdbeComment((v, "Queue table"));
2021   if( iDistinct ){
2022     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2023     p->selFlags |= SF_UsesEphemeral;
2024   }
2025 
2026   /* Detach the ORDER BY clause from the compound SELECT */
2027   p->pOrderBy = 0;
2028 
2029   /* Store the results of the setup-query in Queue. */
2030   pSetup->pNext = 0;
2031   rc = sqlite3Select(pParse, pSetup, &destQueue);
2032   pSetup->pNext = p;
2033   if( rc ) goto end_of_recursive_query;
2034 
2035   /* Find the next row in the Queue and output that row */
2036   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2037 
2038   /* Transfer the next row in Queue over to Current */
2039   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2040   if( pOrderBy ){
2041     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2042   }else{
2043     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2044   }
2045   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2046 
2047   /* Output the single row in Current */
2048   addrCont = sqlite3VdbeMakeLabel(v);
2049   codeOffset(v, regOffset, addrCont);
2050   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2051       0, 0, pDest, addrCont, addrBreak);
2052   if( regLimit ){
2053     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2054     VdbeCoverage(v);
2055   }
2056   sqlite3VdbeResolveLabel(v, addrCont);
2057 
2058   /* Execute the recursive SELECT taking the single row in Current as
2059   ** the value for the recursive-table. Store the results in the Queue.
2060   */
2061   p->pPrior = 0;
2062   sqlite3Select(pParse, p, &destQueue);
2063   assert( p->pPrior==0 );
2064   p->pPrior = pSetup;
2065 
2066   /* Keep running the loop until the Queue is empty */
2067   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2068   sqlite3VdbeResolveLabel(v, addrBreak);
2069 
2070 end_of_recursive_query:
2071   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2072   p->pOrderBy = pOrderBy;
2073   p->pLimit = pLimit;
2074   p->pOffset = pOffset;
2075   return;
2076 }
2077 #endif /* SQLITE_OMIT_CTE */
2078 
2079 /* Forward references */
2080 static int multiSelectOrderBy(
2081   Parse *pParse,        /* Parsing context */
2082   Select *p,            /* The right-most of SELECTs to be coded */
2083   SelectDest *pDest     /* What to do with query results */
2084 );
2085 
2086 /*
2087 ** Error message for when two or more terms of a compound select have different
2088 ** size result sets.
2089 */
2090 static void selectWrongNumTermsError(Parse *pParse, Select *p){
2091   if( p->selFlags & SF_Values ){
2092     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2093   }else{
2094     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2095       " do not have the same number of result columns", selectOpName(p->op));
2096   }
2097 }
2098 
2099 /*
2100 ** Handle the special case of a compound-select that originates from a
2101 ** VALUES clause.  By handling this as a special case, we avoid deep
2102 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2103 ** on a VALUES clause.
2104 **
2105 ** Because the Select object originates from a VALUES clause:
2106 **   (1) It has no LIMIT or OFFSET
2107 **   (2) All terms are UNION ALL
2108 **   (3) There is no ORDER BY clause
2109 */
2110 static int multiSelectValues(
2111   Parse *pParse,        /* Parsing context */
2112   Select *p,            /* The right-most of SELECTs to be coded */
2113   SelectDest *pDest     /* What to do with query results */
2114 ){
2115   Select *pPrior;
2116   int nExpr = p->pEList->nExpr;
2117   int nRow = 1;
2118   int rc = 0;
2119   assert( p->selFlags & SF_MultiValue );
2120   do{
2121     assert( p->selFlags & SF_Values );
2122     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2123     assert( p->pLimit==0 );
2124     assert( p->pOffset==0 );
2125     if( p->pEList->nExpr!=nExpr ){
2126       selectWrongNumTermsError(pParse, p);
2127       return 1;
2128     }
2129     if( p->pPrior==0 ) break;
2130     assert( p->pPrior->pNext==p );
2131     p = p->pPrior;
2132     nRow++;
2133   }while(1);
2134   while( p ){
2135     pPrior = p->pPrior;
2136     p->pPrior = 0;
2137     rc = sqlite3Select(pParse, p, pDest);
2138     p->pPrior = pPrior;
2139     if( rc ) break;
2140     p->nSelectRow = nRow;
2141     p = p->pNext;
2142   }
2143   return rc;
2144 }
2145 
2146 /*
2147 ** This routine is called to process a compound query form from
2148 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2149 ** INTERSECT
2150 **
2151 ** "p" points to the right-most of the two queries.  the query on the
2152 ** left is p->pPrior.  The left query could also be a compound query
2153 ** in which case this routine will be called recursively.
2154 **
2155 ** The results of the total query are to be written into a destination
2156 ** of type eDest with parameter iParm.
2157 **
2158 ** Example 1:  Consider a three-way compound SQL statement.
2159 **
2160 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2161 **
2162 ** This statement is parsed up as follows:
2163 **
2164 **     SELECT c FROM t3
2165 **      |
2166 **      `----->  SELECT b FROM t2
2167 **                |
2168 **                `------>  SELECT a FROM t1
2169 **
2170 ** The arrows in the diagram above represent the Select.pPrior pointer.
2171 ** So if this routine is called with p equal to the t3 query, then
2172 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2173 **
2174 ** Notice that because of the way SQLite parses compound SELECTs, the
2175 ** individual selects always group from left to right.
2176 */
2177 static int multiSelect(
2178   Parse *pParse,        /* Parsing context */
2179   Select *p,            /* The right-most of SELECTs to be coded */
2180   SelectDest *pDest     /* What to do with query results */
2181 ){
2182   int rc = SQLITE_OK;   /* Success code from a subroutine */
2183   Select *pPrior;       /* Another SELECT immediately to our left */
2184   Vdbe *v;              /* Generate code to this VDBE */
2185   SelectDest dest;      /* Alternative data destination */
2186   Select *pDelete = 0;  /* Chain of simple selects to delete */
2187   sqlite3 *db;          /* Database connection */
2188 #ifndef SQLITE_OMIT_EXPLAIN
2189   int iSub1 = 0;        /* EQP id of left-hand query */
2190   int iSub2 = 0;        /* EQP id of right-hand query */
2191 #endif
2192 
2193   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2194   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2195   */
2196   assert( p && p->pPrior );  /* Calling function guarantees this much */
2197   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2198   db = pParse->db;
2199   pPrior = p->pPrior;
2200   dest = *pDest;
2201   if( pPrior->pOrderBy ){
2202     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2203       selectOpName(p->op));
2204     rc = 1;
2205     goto multi_select_end;
2206   }
2207   if( pPrior->pLimit ){
2208     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2209       selectOpName(p->op));
2210     rc = 1;
2211     goto multi_select_end;
2212   }
2213 
2214   v = sqlite3GetVdbe(pParse);
2215   assert( v!=0 );  /* The VDBE already created by calling function */
2216 
2217   /* Create the destination temporary table if necessary
2218   */
2219   if( dest.eDest==SRT_EphemTab ){
2220     assert( p->pEList );
2221     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2222     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2223     dest.eDest = SRT_Table;
2224   }
2225 
2226   /* Special handling for a compound-select that originates as a VALUES clause.
2227   */
2228   if( p->selFlags & SF_MultiValue ){
2229     rc = multiSelectValues(pParse, p, &dest);
2230     goto multi_select_end;
2231   }
2232 
2233   /* Make sure all SELECTs in the statement have the same number of elements
2234   ** in their result sets.
2235   */
2236   assert( p->pEList && pPrior->pEList );
2237   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2238     selectWrongNumTermsError(pParse, p);
2239     rc = 1;
2240     goto multi_select_end;
2241   }
2242 
2243 #ifndef SQLITE_OMIT_CTE
2244   if( p->selFlags & SF_Recursive ){
2245     generateWithRecursiveQuery(pParse, p, &dest);
2246   }else
2247 #endif
2248 
2249   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2250   */
2251   if( p->pOrderBy ){
2252     return multiSelectOrderBy(pParse, p, pDest);
2253   }else
2254 
2255   /* Generate code for the left and right SELECT statements.
2256   */
2257   switch( p->op ){
2258     case TK_ALL: {
2259       int addr = 0;
2260       int nLimit;
2261       assert( !pPrior->pLimit );
2262       pPrior->iLimit = p->iLimit;
2263       pPrior->iOffset = p->iOffset;
2264       pPrior->pLimit = p->pLimit;
2265       pPrior->pOffset = p->pOffset;
2266       explainSetInteger(iSub1, pParse->iNextSelectId);
2267       rc = sqlite3Select(pParse, pPrior, &dest);
2268       p->pLimit = 0;
2269       p->pOffset = 0;
2270       if( rc ){
2271         goto multi_select_end;
2272       }
2273       p->pPrior = 0;
2274       p->iLimit = pPrior->iLimit;
2275       p->iOffset = pPrior->iOffset;
2276       if( p->iLimit ){
2277         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2278         VdbeComment((v, "Jump ahead if LIMIT reached"));
2279       }
2280       explainSetInteger(iSub2, pParse->iNextSelectId);
2281       rc = sqlite3Select(pParse, p, &dest);
2282       testcase( rc!=SQLITE_OK );
2283       pDelete = p->pPrior;
2284       p->pPrior = pPrior;
2285       p->nSelectRow += pPrior->nSelectRow;
2286       if( pPrior->pLimit
2287        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2288        && nLimit>0 && p->nSelectRow > (u64)nLimit
2289       ){
2290         p->nSelectRow = nLimit;
2291       }
2292       if( addr ){
2293         sqlite3VdbeJumpHere(v, addr);
2294       }
2295       break;
2296     }
2297     case TK_EXCEPT:
2298     case TK_UNION: {
2299       int unionTab;    /* Cursor number of the temporary table holding result */
2300       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2301       int priorOp;     /* The SRT_ operation to apply to prior selects */
2302       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2303       int addr;
2304       SelectDest uniondest;
2305 
2306       testcase( p->op==TK_EXCEPT );
2307       testcase( p->op==TK_UNION );
2308       priorOp = SRT_Union;
2309       if( dest.eDest==priorOp ){
2310         /* We can reuse a temporary table generated by a SELECT to our
2311         ** right.
2312         */
2313         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2314         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2315         unionTab = dest.iSDParm;
2316       }else{
2317         /* We will need to create our own temporary table to hold the
2318         ** intermediate results.
2319         */
2320         unionTab = pParse->nTab++;
2321         assert( p->pOrderBy==0 );
2322         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2323         assert( p->addrOpenEphm[0] == -1 );
2324         p->addrOpenEphm[0] = addr;
2325         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2326         assert( p->pEList );
2327       }
2328 
2329       /* Code the SELECT statements to our left
2330       */
2331       assert( !pPrior->pOrderBy );
2332       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2333       explainSetInteger(iSub1, pParse->iNextSelectId);
2334       rc = sqlite3Select(pParse, pPrior, &uniondest);
2335       if( rc ){
2336         goto multi_select_end;
2337       }
2338 
2339       /* Code the current SELECT statement
2340       */
2341       if( p->op==TK_EXCEPT ){
2342         op = SRT_Except;
2343       }else{
2344         assert( p->op==TK_UNION );
2345         op = SRT_Union;
2346       }
2347       p->pPrior = 0;
2348       pLimit = p->pLimit;
2349       p->pLimit = 0;
2350       pOffset = p->pOffset;
2351       p->pOffset = 0;
2352       uniondest.eDest = op;
2353       explainSetInteger(iSub2, pParse->iNextSelectId);
2354       rc = sqlite3Select(pParse, p, &uniondest);
2355       testcase( rc!=SQLITE_OK );
2356       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2357       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2358       sqlite3ExprListDelete(db, p->pOrderBy);
2359       pDelete = p->pPrior;
2360       p->pPrior = pPrior;
2361       p->pOrderBy = 0;
2362       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2363       sqlite3ExprDelete(db, p->pLimit);
2364       p->pLimit = pLimit;
2365       p->pOffset = pOffset;
2366       p->iLimit = 0;
2367       p->iOffset = 0;
2368 
2369       /* Convert the data in the temporary table into whatever form
2370       ** it is that we currently need.
2371       */
2372       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2373       if( dest.eDest!=priorOp ){
2374         int iCont, iBreak, iStart;
2375         assert( p->pEList );
2376         if( dest.eDest==SRT_Output ){
2377           Select *pFirst = p;
2378           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2379           generateColumnNames(pParse, 0, pFirst->pEList);
2380         }
2381         iBreak = sqlite3VdbeMakeLabel(v);
2382         iCont = sqlite3VdbeMakeLabel(v);
2383         computeLimitRegisters(pParse, p, iBreak);
2384         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2385         iStart = sqlite3VdbeCurrentAddr(v);
2386         selectInnerLoop(pParse, p, p->pEList, unionTab,
2387                         0, 0, &dest, iCont, iBreak);
2388         sqlite3VdbeResolveLabel(v, iCont);
2389         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2390         sqlite3VdbeResolveLabel(v, iBreak);
2391         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2392       }
2393       break;
2394     }
2395     default: assert( p->op==TK_INTERSECT ); {
2396       int tab1, tab2;
2397       int iCont, iBreak, iStart;
2398       Expr *pLimit, *pOffset;
2399       int addr;
2400       SelectDest intersectdest;
2401       int r1;
2402 
2403       /* INTERSECT is different from the others since it requires
2404       ** two temporary tables.  Hence it has its own case.  Begin
2405       ** by allocating the tables we will need.
2406       */
2407       tab1 = pParse->nTab++;
2408       tab2 = pParse->nTab++;
2409       assert( p->pOrderBy==0 );
2410 
2411       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2412       assert( p->addrOpenEphm[0] == -1 );
2413       p->addrOpenEphm[0] = addr;
2414       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2415       assert( p->pEList );
2416 
2417       /* Code the SELECTs to our left into temporary table "tab1".
2418       */
2419       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2420       explainSetInteger(iSub1, pParse->iNextSelectId);
2421       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2422       if( rc ){
2423         goto multi_select_end;
2424       }
2425 
2426       /* Code the current SELECT into temporary table "tab2"
2427       */
2428       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2429       assert( p->addrOpenEphm[1] == -1 );
2430       p->addrOpenEphm[1] = addr;
2431       p->pPrior = 0;
2432       pLimit = p->pLimit;
2433       p->pLimit = 0;
2434       pOffset = p->pOffset;
2435       p->pOffset = 0;
2436       intersectdest.iSDParm = tab2;
2437       explainSetInteger(iSub2, pParse->iNextSelectId);
2438       rc = sqlite3Select(pParse, p, &intersectdest);
2439       testcase( rc!=SQLITE_OK );
2440       pDelete = p->pPrior;
2441       p->pPrior = pPrior;
2442       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2443       sqlite3ExprDelete(db, p->pLimit);
2444       p->pLimit = pLimit;
2445       p->pOffset = pOffset;
2446 
2447       /* Generate code to take the intersection of the two temporary
2448       ** tables.
2449       */
2450       assert( p->pEList );
2451       if( dest.eDest==SRT_Output ){
2452         Select *pFirst = p;
2453         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2454         generateColumnNames(pParse, 0, pFirst->pEList);
2455       }
2456       iBreak = sqlite3VdbeMakeLabel(v);
2457       iCont = sqlite3VdbeMakeLabel(v);
2458       computeLimitRegisters(pParse, p, iBreak);
2459       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2460       r1 = sqlite3GetTempReg(pParse);
2461       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2462       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2463       sqlite3ReleaseTempReg(pParse, r1);
2464       selectInnerLoop(pParse, p, p->pEList, tab1,
2465                       0, 0, &dest, iCont, iBreak);
2466       sqlite3VdbeResolveLabel(v, iCont);
2467       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2468       sqlite3VdbeResolveLabel(v, iBreak);
2469       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2470       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2471       break;
2472     }
2473   }
2474 
2475   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2476 
2477   /* Compute collating sequences used by
2478   ** temporary tables needed to implement the compound select.
2479   ** Attach the KeyInfo structure to all temporary tables.
2480   **
2481   ** This section is run by the right-most SELECT statement only.
2482   ** SELECT statements to the left always skip this part.  The right-most
2483   ** SELECT might also skip this part if it has no ORDER BY clause and
2484   ** no temp tables are required.
2485   */
2486   if( p->selFlags & SF_UsesEphemeral ){
2487     int i;                        /* Loop counter */
2488     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2489     Select *pLoop;                /* For looping through SELECT statements */
2490     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2491     int nCol;                     /* Number of columns in result set */
2492 
2493     assert( p->pNext==0 );
2494     nCol = p->pEList->nExpr;
2495     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2496     if( !pKeyInfo ){
2497       rc = SQLITE_NOMEM;
2498       goto multi_select_end;
2499     }
2500     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2501       *apColl = multiSelectCollSeq(pParse, p, i);
2502       if( 0==*apColl ){
2503         *apColl = db->pDfltColl;
2504       }
2505     }
2506 
2507     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2508       for(i=0; i<2; i++){
2509         int addr = pLoop->addrOpenEphm[i];
2510         if( addr<0 ){
2511           /* If [0] is unused then [1] is also unused.  So we can
2512           ** always safely abort as soon as the first unused slot is found */
2513           assert( pLoop->addrOpenEphm[1]<0 );
2514           break;
2515         }
2516         sqlite3VdbeChangeP2(v, addr, nCol);
2517         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2518                             P4_KEYINFO);
2519         pLoop->addrOpenEphm[i] = -1;
2520       }
2521     }
2522     sqlite3KeyInfoUnref(pKeyInfo);
2523   }
2524 
2525 multi_select_end:
2526   pDest->iSdst = dest.iSdst;
2527   pDest->nSdst = dest.nSdst;
2528   sqlite3SelectDelete(db, pDelete);
2529   return rc;
2530 }
2531 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2532 
2533 /*
2534 ** Code an output subroutine for a coroutine implementation of a
2535 ** SELECT statment.
2536 **
2537 ** The data to be output is contained in pIn->iSdst.  There are
2538 ** pIn->nSdst columns to be output.  pDest is where the output should
2539 ** be sent.
2540 **
2541 ** regReturn is the number of the register holding the subroutine
2542 ** return address.
2543 **
2544 ** If regPrev>0 then it is the first register in a vector that
2545 ** records the previous output.  mem[regPrev] is a flag that is false
2546 ** if there has been no previous output.  If regPrev>0 then code is
2547 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2548 ** keys.
2549 **
2550 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2551 ** iBreak.
2552 */
2553 static int generateOutputSubroutine(
2554   Parse *pParse,          /* Parsing context */
2555   Select *p,              /* The SELECT statement */
2556   SelectDest *pIn,        /* Coroutine supplying data */
2557   SelectDest *pDest,      /* Where to send the data */
2558   int regReturn,          /* The return address register */
2559   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2560   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2561   int iBreak              /* Jump here if we hit the LIMIT */
2562 ){
2563   Vdbe *v = pParse->pVdbe;
2564   int iContinue;
2565   int addr;
2566 
2567   addr = sqlite3VdbeCurrentAddr(v);
2568   iContinue = sqlite3VdbeMakeLabel(v);
2569 
2570   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2571   */
2572   if( regPrev ){
2573     int j1, j2;
2574     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2575     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2576                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2577     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2578     sqlite3VdbeJumpHere(v, j1);
2579     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2580     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2581   }
2582   if( pParse->db->mallocFailed ) return 0;
2583 
2584   /* Suppress the first OFFSET entries if there is an OFFSET clause
2585   */
2586   codeOffset(v, p->iOffset, iContinue);
2587 
2588   assert( pDest->eDest!=SRT_Exists );
2589   assert( pDest->eDest!=SRT_Table );
2590   switch( pDest->eDest ){
2591     /* Store the result as data using a unique key.
2592     */
2593     case SRT_EphemTab: {
2594       int r1 = sqlite3GetTempReg(pParse);
2595       int r2 = sqlite3GetTempReg(pParse);
2596       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2597       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2598       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2599       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2600       sqlite3ReleaseTempReg(pParse, r2);
2601       sqlite3ReleaseTempReg(pParse, r1);
2602       break;
2603     }
2604 
2605 #ifndef SQLITE_OMIT_SUBQUERY
2606     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2607     ** then there should be a single item on the stack.  Write this
2608     ** item into the set table with bogus data.
2609     */
2610     case SRT_Set: {
2611       int r1;
2612       assert( pIn->nSdst==1 || pParse->nErr>0 );
2613       pDest->affSdst =
2614          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2615       r1 = sqlite3GetTempReg(pParse);
2616       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2617       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2618       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2619       sqlite3ReleaseTempReg(pParse, r1);
2620       break;
2621     }
2622 
2623     /* If this is a scalar select that is part of an expression, then
2624     ** store the results in the appropriate memory cell and break out
2625     ** of the scan loop.
2626     */
2627     case SRT_Mem: {
2628       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2629       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2630       /* The LIMIT clause will jump out of the loop for us */
2631       break;
2632     }
2633 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2634 
2635     /* The results are stored in a sequence of registers
2636     ** starting at pDest->iSdst.  Then the co-routine yields.
2637     */
2638     case SRT_Coroutine: {
2639       if( pDest->iSdst==0 ){
2640         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2641         pDest->nSdst = pIn->nSdst;
2642       }
2643       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2644       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2645       break;
2646     }
2647 
2648     /* If none of the above, then the result destination must be
2649     ** SRT_Output.  This routine is never called with any other
2650     ** destination other than the ones handled above or SRT_Output.
2651     **
2652     ** For SRT_Output, results are stored in a sequence of registers.
2653     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2654     ** return the next row of result.
2655     */
2656     default: {
2657       assert( pDest->eDest==SRT_Output );
2658       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2659       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2660       break;
2661     }
2662   }
2663 
2664   /* Jump to the end of the loop if the LIMIT is reached.
2665   */
2666   if( p->iLimit ){
2667     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2668   }
2669 
2670   /* Generate the subroutine return
2671   */
2672   sqlite3VdbeResolveLabel(v, iContinue);
2673   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2674 
2675   return addr;
2676 }
2677 
2678 /*
2679 ** Alternative compound select code generator for cases when there
2680 ** is an ORDER BY clause.
2681 **
2682 ** We assume a query of the following form:
2683 **
2684 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2685 **
2686 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2687 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2688 ** co-routines.  Then run the co-routines in parallel and merge the results
2689 ** into the output.  In addition to the two coroutines (called selectA and
2690 ** selectB) there are 7 subroutines:
2691 **
2692 **    outA:    Move the output of the selectA coroutine into the output
2693 **             of the compound query.
2694 **
2695 **    outB:    Move the output of the selectB coroutine into the output
2696 **             of the compound query.  (Only generated for UNION and
2697 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2698 **             appears only in B.)
2699 **
2700 **    AltB:    Called when there is data from both coroutines and A<B.
2701 **
2702 **    AeqB:    Called when there is data from both coroutines and A==B.
2703 **
2704 **    AgtB:    Called when there is data from both coroutines and A>B.
2705 **
2706 **    EofA:    Called when data is exhausted from selectA.
2707 **
2708 **    EofB:    Called when data is exhausted from selectB.
2709 **
2710 ** The implementation of the latter five subroutines depend on which
2711 ** <operator> is used:
2712 **
2713 **
2714 **             UNION ALL         UNION            EXCEPT          INTERSECT
2715 **          -------------  -----------------  --------------  -----------------
2716 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2717 **
2718 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2719 **
2720 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2721 **
2722 **   EofA:   outB, nextB      outB, nextB          halt             halt
2723 **
2724 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2725 **
2726 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2727 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2728 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2729 ** following nextX causes a jump to the end of the select processing.
2730 **
2731 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2732 ** within the output subroutine.  The regPrev register set holds the previously
2733 ** output value.  A comparison is made against this value and the output
2734 ** is skipped if the next results would be the same as the previous.
2735 **
2736 ** The implementation plan is to implement the two coroutines and seven
2737 ** subroutines first, then put the control logic at the bottom.  Like this:
2738 **
2739 **          goto Init
2740 **     coA: coroutine for left query (A)
2741 **     coB: coroutine for right query (B)
2742 **    outA: output one row of A
2743 **    outB: output one row of B (UNION and UNION ALL only)
2744 **    EofA: ...
2745 **    EofB: ...
2746 **    AltB: ...
2747 **    AeqB: ...
2748 **    AgtB: ...
2749 **    Init: initialize coroutine registers
2750 **          yield coA
2751 **          if eof(A) goto EofA
2752 **          yield coB
2753 **          if eof(B) goto EofB
2754 **    Cmpr: Compare A, B
2755 **          Jump AltB, AeqB, AgtB
2756 **     End: ...
2757 **
2758 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2759 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2760 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2761 ** and AgtB jump to either L2 or to one of EofA or EofB.
2762 */
2763 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2764 static int multiSelectOrderBy(
2765   Parse *pParse,        /* Parsing context */
2766   Select *p,            /* The right-most of SELECTs to be coded */
2767   SelectDest *pDest     /* What to do with query results */
2768 ){
2769   int i, j;             /* Loop counters */
2770   Select *pPrior;       /* Another SELECT immediately to our left */
2771   Vdbe *v;              /* Generate code to this VDBE */
2772   SelectDest destA;     /* Destination for coroutine A */
2773   SelectDest destB;     /* Destination for coroutine B */
2774   int regAddrA;         /* Address register for select-A coroutine */
2775   int regAddrB;         /* Address register for select-B coroutine */
2776   int addrSelectA;      /* Address of the select-A coroutine */
2777   int addrSelectB;      /* Address of the select-B coroutine */
2778   int regOutA;          /* Address register for the output-A subroutine */
2779   int regOutB;          /* Address register for the output-B subroutine */
2780   int addrOutA;         /* Address of the output-A subroutine */
2781   int addrOutB = 0;     /* Address of the output-B subroutine */
2782   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2783   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2784   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2785   int addrAltB;         /* Address of the A<B subroutine */
2786   int addrAeqB;         /* Address of the A==B subroutine */
2787   int addrAgtB;         /* Address of the A>B subroutine */
2788   int regLimitA;        /* Limit register for select-A */
2789   int regLimitB;        /* Limit register for select-A */
2790   int regPrev;          /* A range of registers to hold previous output */
2791   int savedLimit;       /* Saved value of p->iLimit */
2792   int savedOffset;      /* Saved value of p->iOffset */
2793   int labelCmpr;        /* Label for the start of the merge algorithm */
2794   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2795   int j1;               /* Jump instructions that get retargetted */
2796   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2797   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2798   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2799   sqlite3 *db;          /* Database connection */
2800   ExprList *pOrderBy;   /* The ORDER BY clause */
2801   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2802   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2803 #ifndef SQLITE_OMIT_EXPLAIN
2804   int iSub1;            /* EQP id of left-hand query */
2805   int iSub2;            /* EQP id of right-hand query */
2806 #endif
2807 
2808   assert( p->pOrderBy!=0 );
2809   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2810   db = pParse->db;
2811   v = pParse->pVdbe;
2812   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2813   labelEnd = sqlite3VdbeMakeLabel(v);
2814   labelCmpr = sqlite3VdbeMakeLabel(v);
2815 
2816 
2817   /* Patch up the ORDER BY clause
2818   */
2819   op = p->op;
2820   pPrior = p->pPrior;
2821   assert( pPrior->pOrderBy==0 );
2822   pOrderBy = p->pOrderBy;
2823   assert( pOrderBy );
2824   nOrderBy = pOrderBy->nExpr;
2825 
2826   /* For operators other than UNION ALL we have to make sure that
2827   ** the ORDER BY clause covers every term of the result set.  Add
2828   ** terms to the ORDER BY clause as necessary.
2829   */
2830   if( op!=TK_ALL ){
2831     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2832       struct ExprList_item *pItem;
2833       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2834         assert( pItem->u.x.iOrderByCol>0 );
2835         if( pItem->u.x.iOrderByCol==i ) break;
2836       }
2837       if( j==nOrderBy ){
2838         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2839         if( pNew==0 ) return SQLITE_NOMEM;
2840         pNew->flags |= EP_IntValue;
2841         pNew->u.iValue = i;
2842         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2843         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2844       }
2845     }
2846   }
2847 
2848   /* Compute the comparison permutation and keyinfo that is used with
2849   ** the permutation used to determine if the next
2850   ** row of results comes from selectA or selectB.  Also add explicit
2851   ** collations to the ORDER BY clause terms so that when the subqueries
2852   ** to the right and the left are evaluated, they use the correct
2853   ** collation.
2854   */
2855   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2856   if( aPermute ){
2857     struct ExprList_item *pItem;
2858     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2859       assert( pItem->u.x.iOrderByCol>0 );
2860       /* assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ) is also true
2861       ** but only for well-formed SELECT statements. */
2862       testcase( pItem->u.x.iOrderByCol > p->pEList->nExpr );
2863       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2864     }
2865     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2866   }else{
2867     pKeyMerge = 0;
2868   }
2869 
2870   /* Reattach the ORDER BY clause to the query.
2871   */
2872   p->pOrderBy = pOrderBy;
2873   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2874 
2875   /* Allocate a range of temporary registers and the KeyInfo needed
2876   ** for the logic that removes duplicate result rows when the
2877   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2878   */
2879   if( op==TK_ALL ){
2880     regPrev = 0;
2881   }else{
2882     int nExpr = p->pEList->nExpr;
2883     assert( nOrderBy>=nExpr || db->mallocFailed );
2884     regPrev = pParse->nMem+1;
2885     pParse->nMem += nExpr+1;
2886     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2887     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2888     if( pKeyDup ){
2889       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2890       for(i=0; i<nExpr; i++){
2891         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2892         pKeyDup->aSortOrder[i] = 0;
2893       }
2894     }
2895   }
2896 
2897   /* Separate the left and the right query from one another
2898   */
2899   p->pPrior = 0;
2900   pPrior->pNext = 0;
2901   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2902   if( pPrior->pPrior==0 ){
2903     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2904   }
2905 
2906   /* Compute the limit registers */
2907   computeLimitRegisters(pParse, p, labelEnd);
2908   if( p->iLimit && op==TK_ALL ){
2909     regLimitA = ++pParse->nMem;
2910     regLimitB = ++pParse->nMem;
2911     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2912                                   regLimitA);
2913     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2914   }else{
2915     regLimitA = regLimitB = 0;
2916   }
2917   sqlite3ExprDelete(db, p->pLimit);
2918   p->pLimit = 0;
2919   sqlite3ExprDelete(db, p->pOffset);
2920   p->pOffset = 0;
2921 
2922   regAddrA = ++pParse->nMem;
2923   regAddrB = ++pParse->nMem;
2924   regOutA = ++pParse->nMem;
2925   regOutB = ++pParse->nMem;
2926   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2927   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2928 
2929   /* Generate a coroutine to evaluate the SELECT statement to the
2930   ** left of the compound operator - the "A" select.
2931   */
2932   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2933   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2934   VdbeComment((v, "left SELECT"));
2935   pPrior->iLimit = regLimitA;
2936   explainSetInteger(iSub1, pParse->iNextSelectId);
2937   sqlite3Select(pParse, pPrior, &destA);
2938   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2939   sqlite3VdbeJumpHere(v, j1);
2940 
2941   /* Generate a coroutine to evaluate the SELECT statement on
2942   ** the right - the "B" select
2943   */
2944   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2945   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2946   VdbeComment((v, "right SELECT"));
2947   savedLimit = p->iLimit;
2948   savedOffset = p->iOffset;
2949   p->iLimit = regLimitB;
2950   p->iOffset = 0;
2951   explainSetInteger(iSub2, pParse->iNextSelectId);
2952   sqlite3Select(pParse, p, &destB);
2953   p->iLimit = savedLimit;
2954   p->iOffset = savedOffset;
2955   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2956 
2957   /* Generate a subroutine that outputs the current row of the A
2958   ** select as the next output row of the compound select.
2959   */
2960   VdbeNoopComment((v, "Output routine for A"));
2961   addrOutA = generateOutputSubroutine(pParse,
2962                  p, &destA, pDest, regOutA,
2963                  regPrev, pKeyDup, labelEnd);
2964 
2965   /* Generate a subroutine that outputs the current row of the B
2966   ** select as the next output row of the compound select.
2967   */
2968   if( op==TK_ALL || op==TK_UNION ){
2969     VdbeNoopComment((v, "Output routine for B"));
2970     addrOutB = generateOutputSubroutine(pParse,
2971                  p, &destB, pDest, regOutB,
2972                  regPrev, pKeyDup, labelEnd);
2973   }
2974   sqlite3KeyInfoUnref(pKeyDup);
2975 
2976   /* Generate a subroutine to run when the results from select A
2977   ** are exhausted and only data in select B remains.
2978   */
2979   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2980     addrEofA_noB = addrEofA = labelEnd;
2981   }else{
2982     VdbeNoopComment((v, "eof-A subroutine"));
2983     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2984     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2985                                      VdbeCoverage(v);
2986     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2987     p->nSelectRow += pPrior->nSelectRow;
2988   }
2989 
2990   /* Generate a subroutine to run when the results from select B
2991   ** are exhausted and only data in select A remains.
2992   */
2993   if( op==TK_INTERSECT ){
2994     addrEofB = addrEofA;
2995     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2996   }else{
2997     VdbeNoopComment((v, "eof-B subroutine"));
2998     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2999     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3000     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
3001   }
3002 
3003   /* Generate code to handle the case of A<B
3004   */
3005   VdbeNoopComment((v, "A-lt-B subroutine"));
3006   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3007   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3008   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3009 
3010   /* Generate code to handle the case of A==B
3011   */
3012   if( op==TK_ALL ){
3013     addrAeqB = addrAltB;
3014   }else if( op==TK_INTERSECT ){
3015     addrAeqB = addrAltB;
3016     addrAltB++;
3017   }else{
3018     VdbeNoopComment((v, "A-eq-B subroutine"));
3019     addrAeqB =
3020     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3021     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3022   }
3023 
3024   /* Generate code to handle the case of A>B
3025   */
3026   VdbeNoopComment((v, "A-gt-B subroutine"));
3027   addrAgtB = sqlite3VdbeCurrentAddr(v);
3028   if( op==TK_ALL || op==TK_UNION ){
3029     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3030   }
3031   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3032   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
3033 
3034   /* This code runs once to initialize everything.
3035   */
3036   sqlite3VdbeJumpHere(v, j1);
3037   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3038   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3039 
3040   /* Implement the main merge loop
3041   */
3042   sqlite3VdbeResolveLabel(v, labelCmpr);
3043   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3044   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3045                          (char*)pKeyMerge, P4_KEYINFO);
3046   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3047   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3048 
3049   /* Jump to the this point in order to terminate the query.
3050   */
3051   sqlite3VdbeResolveLabel(v, labelEnd);
3052 
3053   /* Set the number of output columns
3054   */
3055   if( pDest->eDest==SRT_Output ){
3056     Select *pFirst = pPrior;
3057     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3058     generateColumnNames(pParse, 0, pFirst->pEList);
3059   }
3060 
3061   /* Reassembly the compound query so that it will be freed correctly
3062   ** by the calling function */
3063   if( p->pPrior ){
3064     sqlite3SelectDelete(db, p->pPrior);
3065   }
3066   p->pPrior = pPrior;
3067   pPrior->pNext = p;
3068 
3069   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3070   **** subqueries ****/
3071   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3072   return pParse->nErr!=0;
3073 }
3074 #endif
3075 
3076 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3077 /* Forward Declarations */
3078 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3079 static void substSelect(sqlite3*, Select *, int, ExprList *);
3080 
3081 /*
3082 ** Scan through the expression pExpr.  Replace every reference to
3083 ** a column in table number iTable with a copy of the iColumn-th
3084 ** entry in pEList.  (But leave references to the ROWID column
3085 ** unchanged.)
3086 **
3087 ** This routine is part of the flattening procedure.  A subquery
3088 ** whose result set is defined by pEList appears as entry in the
3089 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3090 ** FORM clause entry is iTable.  This routine make the necessary
3091 ** changes to pExpr so that it refers directly to the source table
3092 ** of the subquery rather the result set of the subquery.
3093 */
3094 static Expr *substExpr(
3095   sqlite3 *db,        /* Report malloc errors to this connection */
3096   Expr *pExpr,        /* Expr in which substitution occurs */
3097   int iTable,         /* Table to be substituted */
3098   ExprList *pEList    /* Substitute expressions */
3099 ){
3100   if( pExpr==0 ) return 0;
3101   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3102     if( pExpr->iColumn<0 ){
3103       pExpr->op = TK_NULL;
3104     }else{
3105       Expr *pNew;
3106       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3107       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3108       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3109       sqlite3ExprDelete(db, pExpr);
3110       pExpr = pNew;
3111     }
3112   }else{
3113     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3114     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3115     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3116       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3117     }else{
3118       substExprList(db, pExpr->x.pList, iTable, pEList);
3119     }
3120   }
3121   return pExpr;
3122 }
3123 static void substExprList(
3124   sqlite3 *db,         /* Report malloc errors here */
3125   ExprList *pList,     /* List to scan and in which to make substitutes */
3126   int iTable,          /* Table to be substituted */
3127   ExprList *pEList     /* Substitute values */
3128 ){
3129   int i;
3130   if( pList==0 ) return;
3131   for(i=0; i<pList->nExpr; i++){
3132     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3133   }
3134 }
3135 static void substSelect(
3136   sqlite3 *db,         /* Report malloc errors here */
3137   Select *p,           /* SELECT statement in which to make substitutions */
3138   int iTable,          /* Table to be replaced */
3139   ExprList *pEList     /* Substitute values */
3140 ){
3141   SrcList *pSrc;
3142   struct SrcList_item *pItem;
3143   int i;
3144   if( !p ) return;
3145   substExprList(db, p->pEList, iTable, pEList);
3146   substExprList(db, p->pGroupBy, iTable, pEList);
3147   substExprList(db, p->pOrderBy, iTable, pEList);
3148   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3149   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3150   substSelect(db, p->pPrior, iTable, pEList);
3151   pSrc = p->pSrc;
3152   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3153   if( ALWAYS(pSrc) ){
3154     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3155       substSelect(db, pItem->pSelect, iTable, pEList);
3156     }
3157   }
3158 }
3159 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3160 
3161 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3162 /*
3163 ** This routine attempts to flatten subqueries as a performance optimization.
3164 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3165 **
3166 ** To understand the concept of flattening, consider the following
3167 ** query:
3168 **
3169 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3170 **
3171 ** The default way of implementing this query is to execute the
3172 ** subquery first and store the results in a temporary table, then
3173 ** run the outer query on that temporary table.  This requires two
3174 ** passes over the data.  Furthermore, because the temporary table
3175 ** has no indices, the WHERE clause on the outer query cannot be
3176 ** optimized.
3177 **
3178 ** This routine attempts to rewrite queries such as the above into
3179 ** a single flat select, like this:
3180 **
3181 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3182 **
3183 ** The code generated for this simplification gives the same result
3184 ** but only has to scan the data once.  And because indices might
3185 ** exist on the table t1, a complete scan of the data might be
3186 ** avoided.
3187 **
3188 ** Flattening is only attempted if all of the following are true:
3189 **
3190 **   (1)  The subquery and the outer query do not both use aggregates.
3191 **
3192 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3193 **        and (2b) the outer query does not use subqueries other than the one
3194 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3195 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3196 **
3197 **   (3)  The subquery is not the right operand of a left outer join
3198 **        (Originally ticket #306.  Strengthened by ticket #3300)
3199 **
3200 **   (4)  The subquery is not DISTINCT.
3201 **
3202 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3203 **        sub-queries that were excluded from this optimization. Restriction
3204 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3205 **
3206 **   (6)  The subquery does not use aggregates or the outer query is not
3207 **        DISTINCT.
3208 **
3209 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3210 **        A FROM clause, consider adding a FROM close with the special
3211 **        table sqlite_once that consists of a single row containing a
3212 **        single NULL.
3213 **
3214 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3215 **
3216 **   (9)  The subquery does not use LIMIT or the outer query does not use
3217 **        aggregates.
3218 **
3219 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3220 **        accidently carried the comment forward until 2014-09-15.  Original
3221 **        text: "The subquery does not use aggregates or the outer query
3222 **        does not use LIMIT."
3223 **
3224 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3225 **
3226 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3227 **        a separate restriction deriving from ticket #350.
3228 **
3229 **  (13)  The subquery and outer query do not both use LIMIT.
3230 **
3231 **  (14)  The subquery does not use OFFSET.
3232 **
3233 **  (15)  The outer query is not part of a compound select or the
3234 **        subquery does not have a LIMIT clause.
3235 **        (See ticket #2339 and ticket [02a8e81d44]).
3236 **
3237 **  (16)  The outer query is not an aggregate or the subquery does
3238 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3239 **        until we introduced the group_concat() function.
3240 **
3241 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3242 **        compound clause made up entirely of non-aggregate queries, and
3243 **        the parent query:
3244 **
3245 **          * is not itself part of a compound select,
3246 **          * is not an aggregate or DISTINCT query, and
3247 **          * is not a join
3248 **
3249 **        The parent and sub-query may contain WHERE clauses. Subject to
3250 **        rules (11), (13) and (14), they may also contain ORDER BY,
3251 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3252 **        operator other than UNION ALL because all the other compound
3253 **        operators have an implied DISTINCT which is disallowed by
3254 **        restriction (4).
3255 **
3256 **        Also, each component of the sub-query must return the same number
3257 **        of result columns. This is actually a requirement for any compound
3258 **        SELECT statement, but all the code here does is make sure that no
3259 **        such (illegal) sub-query is flattened. The caller will detect the
3260 **        syntax error and return a detailed message.
3261 **
3262 **  (18)  If the sub-query is a compound select, then all terms of the
3263 **        ORDER by clause of the parent must be simple references to
3264 **        columns of the sub-query.
3265 **
3266 **  (19)  The subquery does not use LIMIT or the outer query does not
3267 **        have a WHERE clause.
3268 **
3269 **  (20)  If the sub-query is a compound select, then it must not use
3270 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3271 **        somewhat by saying that the terms of the ORDER BY clause must
3272 **        appear as unmodified result columns in the outer query.  But we
3273 **        have other optimizations in mind to deal with that case.
3274 **
3275 **  (21)  The subquery does not use LIMIT or the outer query is not
3276 **        DISTINCT.  (See ticket [752e1646fc]).
3277 **
3278 **  (22)  The subquery is not a recursive CTE.
3279 **
3280 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3281 **        compound query. This restriction is because transforming the
3282 **        parent to a compound query confuses the code that handles
3283 **        recursive queries in multiSelect().
3284 **
3285 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3286 **        or max() functions.  (Without this restriction, a query like:
3287 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3288 **        return the value X for which Y was maximal.)
3289 **
3290 **
3291 ** In this routine, the "p" parameter is a pointer to the outer query.
3292 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3293 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3294 **
3295 ** If flattening is not attempted, this routine is a no-op and returns 0.
3296 ** If flattening is attempted this routine returns 1.
3297 **
3298 ** All of the expression analysis must occur on both the outer query and
3299 ** the subquery before this routine runs.
3300 */
3301 static int flattenSubquery(
3302   Parse *pParse,       /* Parsing context */
3303   Select *p,           /* The parent or outer SELECT statement */
3304   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3305   int isAgg,           /* True if outer SELECT uses aggregate functions */
3306   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3307 ){
3308   const char *zSavedAuthContext = pParse->zAuthContext;
3309   Select *pParent;
3310   Select *pSub;       /* The inner query or "subquery" */
3311   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3312   SrcList *pSrc;      /* The FROM clause of the outer query */
3313   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3314   ExprList *pList;    /* The result set of the outer query */
3315   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3316   int i;              /* Loop counter */
3317   Expr *pWhere;                    /* The WHERE clause */
3318   struct SrcList_item *pSubitem;   /* The subquery */
3319   sqlite3 *db = pParse->db;
3320 
3321   /* Check to see if flattening is permitted.  Return 0 if not.
3322   */
3323   assert( p!=0 );
3324   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3325   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3326   pSrc = p->pSrc;
3327   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3328   pSubitem = &pSrc->a[iFrom];
3329   iParent = pSubitem->iCursor;
3330   pSub = pSubitem->pSelect;
3331   assert( pSub!=0 );
3332   if( subqueryIsAgg ){
3333     if( isAgg ) return 0;                                /* Restriction (1)   */
3334     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3335     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3336      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3337      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3338     ){
3339       return 0;                                          /* Restriction (2b)  */
3340     }
3341   }
3342 
3343   pSubSrc = pSub->pSrc;
3344   assert( pSubSrc );
3345   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3346   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3347   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3348   ** became arbitrary expressions, we were forced to add restrictions (13)
3349   ** and (14). */
3350   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3351   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3352   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3353     return 0;                                            /* Restriction (15) */
3354   }
3355   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3356   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3357   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3358      return 0;         /* Restrictions (8)(9) */
3359   }
3360   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3361      return 0;         /* Restriction (6)  */
3362   }
3363   if( p->pOrderBy && pSub->pOrderBy ){
3364      return 0;                                           /* Restriction (11) */
3365   }
3366   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3367   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3368   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3369      return 0;         /* Restriction (21) */
3370   }
3371   testcase( pSub->selFlags & SF_Recursive );
3372   testcase( pSub->selFlags & SF_MinMaxAgg );
3373   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3374     return 0; /* Restrictions (22) and (24) */
3375   }
3376   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3377     return 0; /* Restriction (23) */
3378   }
3379 
3380   /* OBSOLETE COMMENT 1:
3381   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3382   ** not used as the right operand of an outer join.  Examples of why this
3383   ** is not allowed:
3384   **
3385   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3386   **
3387   ** If we flatten the above, we would get
3388   **
3389   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3390   **
3391   ** which is not at all the same thing.
3392   **
3393   ** OBSOLETE COMMENT 2:
3394   ** Restriction 12:  If the subquery is the right operand of a left outer
3395   ** join, make sure the subquery has no WHERE clause.
3396   ** An examples of why this is not allowed:
3397   **
3398   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3399   **
3400   ** If we flatten the above, we would get
3401   **
3402   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3403   **
3404   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3405   ** effectively converts the OUTER JOIN into an INNER JOIN.
3406   **
3407   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3408   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3409   ** is fraught with danger.  Best to avoid the whole thing.  If the
3410   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3411   */
3412   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3413     return 0;
3414   }
3415 
3416   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3417   ** use only the UNION ALL operator. And none of the simple select queries
3418   ** that make up the compound SELECT are allowed to be aggregate or distinct
3419   ** queries.
3420   */
3421   if( pSub->pPrior ){
3422     if( pSub->pOrderBy ){
3423       return 0;  /* Restriction 20 */
3424     }
3425     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3426       return 0;
3427     }
3428     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3429       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3430       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3431       assert( pSub->pSrc!=0 );
3432       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3433        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3434        || pSub1->pSrc->nSrc<1
3435        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3436       ){
3437         return 0;
3438       }
3439       testcase( pSub1->pSrc->nSrc>1 );
3440     }
3441 
3442     /* Restriction 18. */
3443     if( p->pOrderBy ){
3444       int ii;
3445       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3446         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3447       }
3448     }
3449   }
3450 
3451   /***** If we reach this point, flattening is permitted. *****/
3452   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3453                    pSub->zSelName, pSub, iFrom));
3454 
3455   /* Authorize the subquery */
3456   pParse->zAuthContext = pSubitem->zName;
3457   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3458   testcase( i==SQLITE_DENY );
3459   pParse->zAuthContext = zSavedAuthContext;
3460 
3461   /* If the sub-query is a compound SELECT statement, then (by restrictions
3462   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3463   ** be of the form:
3464   **
3465   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3466   **
3467   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3468   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3469   ** OFFSET clauses and joins them to the left-hand-side of the original
3470   ** using UNION ALL operators. In this case N is the number of simple
3471   ** select statements in the compound sub-query.
3472   **
3473   ** Example:
3474   **
3475   **     SELECT a+1 FROM (
3476   **        SELECT x FROM tab
3477   **        UNION ALL
3478   **        SELECT y FROM tab
3479   **        UNION ALL
3480   **        SELECT abs(z*2) FROM tab2
3481   **     ) WHERE a!=5 ORDER BY 1
3482   **
3483   ** Transformed into:
3484   **
3485   **     SELECT x+1 FROM tab WHERE x+1!=5
3486   **     UNION ALL
3487   **     SELECT y+1 FROM tab WHERE y+1!=5
3488   **     UNION ALL
3489   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3490   **     ORDER BY 1
3491   **
3492   ** We call this the "compound-subquery flattening".
3493   */
3494   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3495     Select *pNew;
3496     ExprList *pOrderBy = p->pOrderBy;
3497     Expr *pLimit = p->pLimit;
3498     Expr *pOffset = p->pOffset;
3499     Select *pPrior = p->pPrior;
3500     p->pOrderBy = 0;
3501     p->pSrc = 0;
3502     p->pPrior = 0;
3503     p->pLimit = 0;
3504     p->pOffset = 0;
3505     pNew = sqlite3SelectDup(db, p, 0);
3506     sqlite3SelectSetName(pNew, pSub->zSelName);
3507     p->pOffset = pOffset;
3508     p->pLimit = pLimit;
3509     p->pOrderBy = pOrderBy;
3510     p->pSrc = pSrc;
3511     p->op = TK_ALL;
3512     if( pNew==0 ){
3513       p->pPrior = pPrior;
3514     }else{
3515       pNew->pPrior = pPrior;
3516       if( pPrior ) pPrior->pNext = pNew;
3517       pNew->pNext = p;
3518       p->pPrior = pNew;
3519       SELECTTRACE(2,pParse,p,
3520          ("compound-subquery flattener creates %s.%p as peer\n",
3521          pNew->zSelName, pNew));
3522     }
3523     if( db->mallocFailed ) return 1;
3524   }
3525 
3526   /* Begin flattening the iFrom-th entry of the FROM clause
3527   ** in the outer query.
3528   */
3529   pSub = pSub1 = pSubitem->pSelect;
3530 
3531   /* Delete the transient table structure associated with the
3532   ** subquery
3533   */
3534   sqlite3DbFree(db, pSubitem->zDatabase);
3535   sqlite3DbFree(db, pSubitem->zName);
3536   sqlite3DbFree(db, pSubitem->zAlias);
3537   pSubitem->zDatabase = 0;
3538   pSubitem->zName = 0;
3539   pSubitem->zAlias = 0;
3540   pSubitem->pSelect = 0;
3541 
3542   /* Defer deleting the Table object associated with the
3543   ** subquery until code generation is
3544   ** complete, since there may still exist Expr.pTab entries that
3545   ** refer to the subquery even after flattening.  Ticket #3346.
3546   **
3547   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3548   */
3549   if( ALWAYS(pSubitem->pTab!=0) ){
3550     Table *pTabToDel = pSubitem->pTab;
3551     if( pTabToDel->nRef==1 ){
3552       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3553       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3554       pToplevel->pZombieTab = pTabToDel;
3555     }else{
3556       pTabToDel->nRef--;
3557     }
3558     pSubitem->pTab = 0;
3559   }
3560 
3561   /* The following loop runs once for each term in a compound-subquery
3562   ** flattening (as described above).  If we are doing a different kind
3563   ** of flattening - a flattening other than a compound-subquery flattening -
3564   ** then this loop only runs once.
3565   **
3566   ** This loop moves all of the FROM elements of the subquery into the
3567   ** the FROM clause of the outer query.  Before doing this, remember
3568   ** the cursor number for the original outer query FROM element in
3569   ** iParent.  The iParent cursor will never be used.  Subsequent code
3570   ** will scan expressions looking for iParent references and replace
3571   ** those references with expressions that resolve to the subquery FROM
3572   ** elements we are now copying in.
3573   */
3574   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3575     int nSubSrc;
3576     u8 jointype = 0;
3577     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3578     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3579     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3580 
3581     if( pSrc ){
3582       assert( pParent==p );  /* First time through the loop */
3583       jointype = pSubitem->jointype;
3584     }else{
3585       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3586       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3587       if( pSrc==0 ){
3588         assert( db->mallocFailed );
3589         break;
3590       }
3591     }
3592 
3593     /* The subquery uses a single slot of the FROM clause of the outer
3594     ** query.  If the subquery has more than one element in its FROM clause,
3595     ** then expand the outer query to make space for it to hold all elements
3596     ** of the subquery.
3597     **
3598     ** Example:
3599     **
3600     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3601     **
3602     ** The outer query has 3 slots in its FROM clause.  One slot of the
3603     ** outer query (the middle slot) is used by the subquery.  The next
3604     ** block of code will expand the out query to 4 slots.  The middle
3605     ** slot is expanded to two slots in order to make space for the
3606     ** two elements in the FROM clause of the subquery.
3607     */
3608     if( nSubSrc>1 ){
3609       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3610       if( db->mallocFailed ){
3611         break;
3612       }
3613     }
3614 
3615     /* Transfer the FROM clause terms from the subquery into the
3616     ** outer query.
3617     */
3618     for(i=0; i<nSubSrc; i++){
3619       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3620       pSrc->a[i+iFrom] = pSubSrc->a[i];
3621       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3622     }
3623     pSrc->a[iFrom].jointype = jointype;
3624 
3625     /* Now begin substituting subquery result set expressions for
3626     ** references to the iParent in the outer query.
3627     **
3628     ** Example:
3629     **
3630     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3631     **   \                     \_____________ subquery __________/          /
3632     **    \_____________________ outer query ______________________________/
3633     **
3634     ** We look at every expression in the outer query and every place we see
3635     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3636     */
3637     pList = pParent->pEList;
3638     for(i=0; i<pList->nExpr; i++){
3639       if( pList->a[i].zName==0 ){
3640         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3641         sqlite3Dequote(zName);
3642         pList->a[i].zName = zName;
3643       }
3644     }
3645     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3646     if( isAgg ){
3647       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3648       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3649     }
3650     if( pSub->pOrderBy ){
3651       /* At this point, any non-zero iOrderByCol values indicate that the
3652       ** ORDER BY column expression is identical to the iOrderByCol'th
3653       ** expression returned by SELECT statement pSub. Since these values
3654       ** do not necessarily correspond to columns in SELECT statement pParent,
3655       ** zero them before transfering the ORDER BY clause.
3656       **
3657       ** Not doing this may cause an error if a subsequent call to this
3658       ** function attempts to flatten a compound sub-query into pParent
3659       ** (the only way this can happen is if the compound sub-query is
3660       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3661       ExprList *pOrderBy = pSub->pOrderBy;
3662       for(i=0; i<pOrderBy->nExpr; i++){
3663         pOrderBy->a[i].u.x.iOrderByCol = 0;
3664       }
3665       assert( pParent->pOrderBy==0 );
3666       assert( pSub->pPrior==0 );
3667       pParent->pOrderBy = pOrderBy;
3668       pSub->pOrderBy = 0;
3669     }else if( pParent->pOrderBy ){
3670       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3671     }
3672     if( pSub->pWhere ){
3673       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3674     }else{
3675       pWhere = 0;
3676     }
3677     if( subqueryIsAgg ){
3678       assert( pParent->pHaving==0 );
3679       pParent->pHaving = pParent->pWhere;
3680       pParent->pWhere = pWhere;
3681       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3682       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3683                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3684       assert( pParent->pGroupBy==0 );
3685       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3686     }else{
3687       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3688       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3689     }
3690 
3691     /* The flattened query is distinct if either the inner or the
3692     ** outer query is distinct.
3693     */
3694     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3695 
3696     /*
3697     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3698     **
3699     ** One is tempted to try to add a and b to combine the limits.  But this
3700     ** does not work if either limit is negative.
3701     */
3702     if( pSub->pLimit ){
3703       pParent->pLimit = pSub->pLimit;
3704       pSub->pLimit = 0;
3705     }
3706   }
3707 
3708   /* Finially, delete what is left of the subquery and return
3709   ** success.
3710   */
3711   sqlite3SelectDelete(db, pSub1);
3712 
3713 #if SELECTTRACE_ENABLED
3714   if( sqlite3SelectTrace & 0x100 ){
3715     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3716     sqlite3TreeViewSelect(0, p, 0);
3717   }
3718 #endif
3719 
3720   return 1;
3721 }
3722 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3723 
3724 
3725 
3726 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3727 /*
3728 ** Make copies of relevant WHERE clause terms of the outer query into
3729 ** the WHERE clause of subquery.  Example:
3730 **
3731 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3732 **
3733 ** Transformed into:
3734 **
3735 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3736 **     WHERE x=5 AND y=10;
3737 **
3738 ** The hope is that the terms added to the inner query will make it more
3739 ** efficient.
3740 **
3741 ** Do not attempt this optimization if:
3742 **
3743 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3744 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3745 **       inner query.  But they probably won't help there so do not bother.)
3746 **
3747 **   (2) The inner query is the recursive part of a common table expression.
3748 **
3749 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3750 **       close would change the meaning of the LIMIT).
3751 **
3752 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3753 **       enforces this restriction since this routine does not have enough
3754 **       information to know.)
3755 **
3756 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3757 ** terms are duplicated into the subquery.
3758 */
3759 static int pushDownWhereTerms(
3760   sqlite3 *db,          /* The database connection (for malloc()) */
3761   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3762   Expr *pWhere,         /* The WHERE clause of the outer query */
3763   int iCursor           /* Cursor number of the subquery */
3764 ){
3765   Expr *pNew;
3766   int nChng = 0;
3767   if( pWhere==0 ) return 0;
3768   if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3769      return 0; /* restrictions (1) and (2) */
3770   }
3771   if( pSubq->pLimit!=0 ){
3772      return 0; /* restriction (3) */
3773   }
3774   while( pWhere->op==TK_AND ){
3775     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3776     pWhere = pWhere->pLeft;
3777   }
3778   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3779     nChng++;
3780     while( pSubq ){
3781       pNew = sqlite3ExprDup(db, pWhere, 0);
3782       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3783       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3784       pSubq = pSubq->pPrior;
3785     }
3786   }
3787   return nChng;
3788 }
3789 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3790 
3791 /*
3792 ** Based on the contents of the AggInfo structure indicated by the first
3793 ** argument, this function checks if the following are true:
3794 **
3795 **    * the query contains just a single aggregate function,
3796 **    * the aggregate function is either min() or max(), and
3797 **    * the argument to the aggregate function is a column value.
3798 **
3799 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3800 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3801 ** list of arguments passed to the aggregate before returning.
3802 **
3803 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3804 ** WHERE_ORDERBY_NORMAL is returned.
3805 */
3806 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3807   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3808 
3809   *ppMinMax = 0;
3810   if( pAggInfo->nFunc==1 ){
3811     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3812     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3813 
3814     assert( pExpr->op==TK_AGG_FUNCTION );
3815     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3816       const char *zFunc = pExpr->u.zToken;
3817       if( sqlite3StrICmp(zFunc, "min")==0 ){
3818         eRet = WHERE_ORDERBY_MIN;
3819         *ppMinMax = pEList;
3820       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3821         eRet = WHERE_ORDERBY_MAX;
3822         *ppMinMax = pEList;
3823       }
3824     }
3825   }
3826 
3827   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3828   return eRet;
3829 }
3830 
3831 /*
3832 ** The select statement passed as the first argument is an aggregate query.
3833 ** The second argument is the associated aggregate-info object. This
3834 ** function tests if the SELECT is of the form:
3835 **
3836 **   SELECT count(*) FROM <tbl>
3837 **
3838 ** where table is a database table, not a sub-select or view. If the query
3839 ** does match this pattern, then a pointer to the Table object representing
3840 ** <tbl> is returned. Otherwise, 0 is returned.
3841 */
3842 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3843   Table *pTab;
3844   Expr *pExpr;
3845 
3846   assert( !p->pGroupBy );
3847 
3848   if( p->pWhere || p->pEList->nExpr!=1
3849    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3850   ){
3851     return 0;
3852   }
3853   pTab = p->pSrc->a[0].pTab;
3854   pExpr = p->pEList->a[0].pExpr;
3855   assert( pTab && !pTab->pSelect && pExpr );
3856 
3857   if( IsVirtual(pTab) ) return 0;
3858   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3859   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3860   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3861   if( pExpr->flags&EP_Distinct ) return 0;
3862 
3863   return pTab;
3864 }
3865 
3866 /*
3867 ** If the source-list item passed as an argument was augmented with an
3868 ** INDEXED BY clause, then try to locate the specified index. If there
3869 ** was such a clause and the named index cannot be found, return
3870 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3871 ** pFrom->pIndex and return SQLITE_OK.
3872 */
3873 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3874   if( pFrom->pTab && pFrom->zIndexedBy ){
3875     Table *pTab = pFrom->pTab;
3876     char *zIndexedBy = pFrom->zIndexedBy;
3877     Index *pIdx;
3878     for(pIdx=pTab->pIndex;
3879         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3880         pIdx=pIdx->pNext
3881     );
3882     if( !pIdx ){
3883       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3884       pParse->checkSchema = 1;
3885       return SQLITE_ERROR;
3886     }
3887     pFrom->pIndex = pIdx;
3888   }
3889   return SQLITE_OK;
3890 }
3891 /*
3892 ** Detect compound SELECT statements that use an ORDER BY clause with
3893 ** an alternative collating sequence.
3894 **
3895 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3896 **
3897 ** These are rewritten as a subquery:
3898 **
3899 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3900 **     ORDER BY ... COLLATE ...
3901 **
3902 ** This transformation is necessary because the multiSelectOrderBy() routine
3903 ** above that generates the code for a compound SELECT with an ORDER BY clause
3904 ** uses a merge algorithm that requires the same collating sequence on the
3905 ** result columns as on the ORDER BY clause.  See ticket
3906 ** http://www.sqlite.org/src/info/6709574d2a
3907 **
3908 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3909 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3910 ** there are COLLATE terms in the ORDER BY.
3911 */
3912 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3913   int i;
3914   Select *pNew;
3915   Select *pX;
3916   sqlite3 *db;
3917   struct ExprList_item *a;
3918   SrcList *pNewSrc;
3919   Parse *pParse;
3920   Token dummy;
3921 
3922   if( p->pPrior==0 ) return WRC_Continue;
3923   if( p->pOrderBy==0 ) return WRC_Continue;
3924   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3925   if( pX==0 ) return WRC_Continue;
3926   a = p->pOrderBy->a;
3927   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3928     if( a[i].pExpr->flags & EP_Collate ) break;
3929   }
3930   if( i<0 ) return WRC_Continue;
3931 
3932   /* If we reach this point, that means the transformation is required. */
3933 
3934   pParse = pWalker->pParse;
3935   db = pParse->db;
3936   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3937   if( pNew==0 ) return WRC_Abort;
3938   memset(&dummy, 0, sizeof(dummy));
3939   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3940   if( pNewSrc==0 ) return WRC_Abort;
3941   *pNew = *p;
3942   p->pSrc = pNewSrc;
3943   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3944   p->op = TK_SELECT;
3945   p->pWhere = 0;
3946   pNew->pGroupBy = 0;
3947   pNew->pHaving = 0;
3948   pNew->pOrderBy = 0;
3949   p->pPrior = 0;
3950   p->pNext = 0;
3951   p->pWith = 0;
3952   p->selFlags &= ~SF_Compound;
3953   assert( (p->selFlags & SF_Converted)==0 );
3954   p->selFlags |= SF_Converted;
3955   assert( pNew->pPrior!=0 );
3956   pNew->pPrior->pNext = pNew;
3957   pNew->pLimit = 0;
3958   pNew->pOffset = 0;
3959   return WRC_Continue;
3960 }
3961 
3962 #ifndef SQLITE_OMIT_CTE
3963 /*
3964 ** Argument pWith (which may be NULL) points to a linked list of nested
3965 ** WITH contexts, from inner to outermost. If the table identified by
3966 ** FROM clause element pItem is really a common-table-expression (CTE)
3967 ** then return a pointer to the CTE definition for that table. Otherwise
3968 ** return NULL.
3969 **
3970 ** If a non-NULL value is returned, set *ppContext to point to the With
3971 ** object that the returned CTE belongs to.
3972 */
3973 static struct Cte *searchWith(
3974   With *pWith,                    /* Current outermost WITH clause */
3975   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3976   With **ppContext                /* OUT: WITH clause return value belongs to */
3977 ){
3978   const char *zName;
3979   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3980     With *p;
3981     for(p=pWith; p; p=p->pOuter){
3982       int i;
3983       for(i=0; i<p->nCte; i++){
3984         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3985           *ppContext = p;
3986           return &p->a[i];
3987         }
3988       }
3989     }
3990   }
3991   return 0;
3992 }
3993 
3994 /* The code generator maintains a stack of active WITH clauses
3995 ** with the inner-most WITH clause being at the top of the stack.
3996 **
3997 ** This routine pushes the WITH clause passed as the second argument
3998 ** onto the top of the stack. If argument bFree is true, then this
3999 ** WITH clause will never be popped from the stack. In this case it
4000 ** should be freed along with the Parse object. In other cases, when
4001 ** bFree==0, the With object will be freed along with the SELECT
4002 ** statement with which it is associated.
4003 */
4004 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4005   assert( bFree==0 || pParse->pWith==0 );
4006   if( pWith ){
4007     pWith->pOuter = pParse->pWith;
4008     pParse->pWith = pWith;
4009     pParse->bFreeWith = bFree;
4010   }
4011 }
4012 
4013 /*
4014 ** This function checks if argument pFrom refers to a CTE declared by
4015 ** a WITH clause on the stack currently maintained by the parser. And,
4016 ** if currently processing a CTE expression, if it is a recursive
4017 ** reference to the current CTE.
4018 **
4019 ** If pFrom falls into either of the two categories above, pFrom->pTab
4020 ** and other fields are populated accordingly. The caller should check
4021 ** (pFrom->pTab!=0) to determine whether or not a successful match
4022 ** was found.
4023 **
4024 ** Whether or not a match is found, SQLITE_OK is returned if no error
4025 ** occurs. If an error does occur, an error message is stored in the
4026 ** parser and some error code other than SQLITE_OK returned.
4027 */
4028 static int withExpand(
4029   Walker *pWalker,
4030   struct SrcList_item *pFrom
4031 ){
4032   Parse *pParse = pWalker->pParse;
4033   sqlite3 *db = pParse->db;
4034   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4035   With *pWith;                    /* WITH clause that pCte belongs to */
4036 
4037   assert( pFrom->pTab==0 );
4038 
4039   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4040   if( pCte ){
4041     Table *pTab;
4042     ExprList *pEList;
4043     Select *pSel;
4044     Select *pLeft;                /* Left-most SELECT statement */
4045     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4046     With *pSavedWith;             /* Initial value of pParse->pWith */
4047 
4048     /* If pCte->zErr is non-NULL at this point, then this is an illegal
4049     ** recursive reference to CTE pCte. Leave an error in pParse and return
4050     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
4051     ** In this case, proceed.  */
4052     if( pCte->zErr ){
4053       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
4054       return SQLITE_ERROR;
4055     }
4056 
4057     assert( pFrom->pTab==0 );
4058     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4059     if( pTab==0 ) return WRC_Abort;
4060     pTab->nRef = 1;
4061     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4062     pTab->iPKey = -1;
4063     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4064     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4065     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4066     if( db->mallocFailed ) return SQLITE_NOMEM;
4067     assert( pFrom->pSelect );
4068 
4069     /* Check if this is a recursive CTE. */
4070     pSel = pFrom->pSelect;
4071     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4072     if( bMayRecursive ){
4073       int i;
4074       SrcList *pSrc = pFrom->pSelect->pSrc;
4075       for(i=0; i<pSrc->nSrc; i++){
4076         struct SrcList_item *pItem = &pSrc->a[i];
4077         if( pItem->zDatabase==0
4078          && pItem->zName!=0
4079          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4080           ){
4081           pItem->pTab = pTab;
4082           pItem->isRecursive = 1;
4083           pTab->nRef++;
4084           pSel->selFlags |= SF_Recursive;
4085         }
4086       }
4087     }
4088 
4089     /* Only one recursive reference is permitted. */
4090     if( pTab->nRef>2 ){
4091       sqlite3ErrorMsg(
4092           pParse, "multiple references to recursive table: %s", pCte->zName
4093       );
4094       return SQLITE_ERROR;
4095     }
4096     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4097 
4098     pCte->zErr = "circular reference: %s";
4099     pSavedWith = pParse->pWith;
4100     pParse->pWith = pWith;
4101     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4102 
4103     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4104     pEList = pLeft->pEList;
4105     if( pCte->pCols ){
4106       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4107         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4108             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4109         );
4110         pParse->pWith = pSavedWith;
4111         return SQLITE_ERROR;
4112       }
4113       pEList = pCte->pCols;
4114     }
4115 
4116     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4117     if( bMayRecursive ){
4118       if( pSel->selFlags & SF_Recursive ){
4119         pCte->zErr = "multiple recursive references: %s";
4120       }else{
4121         pCte->zErr = "recursive reference in a subquery: %s";
4122       }
4123       sqlite3WalkSelect(pWalker, pSel);
4124     }
4125     pCte->zErr = 0;
4126     pParse->pWith = pSavedWith;
4127   }
4128 
4129   return SQLITE_OK;
4130 }
4131 #endif
4132 
4133 #ifndef SQLITE_OMIT_CTE
4134 /*
4135 ** If the SELECT passed as the second argument has an associated WITH
4136 ** clause, pop it from the stack stored as part of the Parse object.
4137 **
4138 ** This function is used as the xSelectCallback2() callback by
4139 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4140 ** names and other FROM clause elements.
4141 */
4142 static void selectPopWith(Walker *pWalker, Select *p){
4143   Parse *pParse = pWalker->pParse;
4144   With *pWith = findRightmost(p)->pWith;
4145   if( pWith!=0 ){
4146     assert( pParse->pWith==pWith );
4147     pParse->pWith = pWith->pOuter;
4148   }
4149 }
4150 #else
4151 #define selectPopWith 0
4152 #endif
4153 
4154 /*
4155 ** This routine is a Walker callback for "expanding" a SELECT statement.
4156 ** "Expanding" means to do the following:
4157 **
4158 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4159 **         element of the FROM clause.
4160 **
4161 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4162 **         defines FROM clause.  When views appear in the FROM clause,
4163 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4164 **         that implements the view.  A copy is made of the view's SELECT
4165 **         statement so that we can freely modify or delete that statement
4166 **         without worrying about messing up the persistent representation
4167 **         of the view.
4168 **
4169 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4170 **         on joins and the ON and USING clause of joins.
4171 **
4172 **    (4)  Scan the list of columns in the result set (pEList) looking
4173 **         for instances of the "*" operator or the TABLE.* operator.
4174 **         If found, expand each "*" to be every column in every table
4175 **         and TABLE.* to be every column in TABLE.
4176 **
4177 */
4178 static int selectExpander(Walker *pWalker, Select *p){
4179   Parse *pParse = pWalker->pParse;
4180   int i, j, k;
4181   SrcList *pTabList;
4182   ExprList *pEList;
4183   struct SrcList_item *pFrom;
4184   sqlite3 *db = pParse->db;
4185   Expr *pE, *pRight, *pExpr;
4186   u16 selFlags = p->selFlags;
4187 
4188   p->selFlags |= SF_Expanded;
4189   if( db->mallocFailed  ){
4190     return WRC_Abort;
4191   }
4192   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4193     return WRC_Prune;
4194   }
4195   pTabList = p->pSrc;
4196   pEList = p->pEList;
4197   if( pWalker->xSelectCallback2==selectPopWith ){
4198     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4199   }
4200 
4201   /* Make sure cursor numbers have been assigned to all entries in
4202   ** the FROM clause of the SELECT statement.
4203   */
4204   sqlite3SrcListAssignCursors(pParse, pTabList);
4205 
4206   /* Look up every table named in the FROM clause of the select.  If
4207   ** an entry of the FROM clause is a subquery instead of a table or view,
4208   ** then create a transient table structure to describe the subquery.
4209   */
4210   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4211     Table *pTab;
4212     assert( pFrom->isRecursive==0 || pFrom->pTab );
4213     if( pFrom->isRecursive ) continue;
4214     if( pFrom->pTab!=0 ){
4215       /* This statement has already been prepared.  There is no need
4216       ** to go further. */
4217       assert( i==0 );
4218 #ifndef SQLITE_OMIT_CTE
4219       selectPopWith(pWalker, p);
4220 #endif
4221       return WRC_Prune;
4222     }
4223 #ifndef SQLITE_OMIT_CTE
4224     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4225     if( pFrom->pTab ) {} else
4226 #endif
4227     if( pFrom->zName==0 ){
4228 #ifndef SQLITE_OMIT_SUBQUERY
4229       Select *pSel = pFrom->pSelect;
4230       /* A sub-query in the FROM clause of a SELECT */
4231       assert( pSel!=0 );
4232       assert( pFrom->pTab==0 );
4233       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4234       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4235       if( pTab==0 ) return WRC_Abort;
4236       pTab->nRef = 1;
4237       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4238       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4239       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4240       pTab->iPKey = -1;
4241       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4242       pTab->tabFlags |= TF_Ephemeral;
4243 #endif
4244     }else{
4245       /* An ordinary table or view name in the FROM clause */
4246       assert( pFrom->pTab==0 );
4247       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4248       if( pTab==0 ) return WRC_Abort;
4249       if( pTab->nRef==0xffff ){
4250         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4251            pTab->zName);
4252         pFrom->pTab = 0;
4253         return WRC_Abort;
4254       }
4255       pTab->nRef++;
4256 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4257       if( pTab->pSelect || IsVirtual(pTab) ){
4258         /* We reach here if the named table is a really a view */
4259         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4260         assert( pFrom->pSelect==0 );
4261         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4262         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4263         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4264       }
4265 #endif
4266     }
4267 
4268     /* Locate the index named by the INDEXED BY clause, if any. */
4269     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4270       return WRC_Abort;
4271     }
4272   }
4273 
4274   /* Process NATURAL keywords, and ON and USING clauses of joins.
4275   */
4276   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4277     return WRC_Abort;
4278   }
4279 
4280   /* For every "*" that occurs in the column list, insert the names of
4281   ** all columns in all tables.  And for every TABLE.* insert the names
4282   ** of all columns in TABLE.  The parser inserted a special expression
4283   ** with the TK_ALL operator for each "*" that it found in the column list.
4284   ** The following code just has to locate the TK_ALL expressions and expand
4285   ** each one to the list of all columns in all tables.
4286   **
4287   ** The first loop just checks to see if there are any "*" operators
4288   ** that need expanding.
4289   */
4290   for(k=0; k<pEList->nExpr; k++){
4291     pE = pEList->a[k].pExpr;
4292     if( pE->op==TK_ALL ) break;
4293     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4294     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4295     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4296   }
4297   if( k<pEList->nExpr ){
4298     /*
4299     ** If we get here it means the result set contains one or more "*"
4300     ** operators that need to be expanded.  Loop through each expression
4301     ** in the result set and expand them one by one.
4302     */
4303     struct ExprList_item *a = pEList->a;
4304     ExprList *pNew = 0;
4305     int flags = pParse->db->flags;
4306     int longNames = (flags & SQLITE_FullColNames)!=0
4307                       && (flags & SQLITE_ShortColNames)==0;
4308 
4309     for(k=0; k<pEList->nExpr; k++){
4310       pE = a[k].pExpr;
4311       pRight = pE->pRight;
4312       assert( pE->op!=TK_DOT || pRight!=0 );
4313       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4314         /* This particular expression does not need to be expanded.
4315         */
4316         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4317         if( pNew ){
4318           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4319           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4320           a[k].zName = 0;
4321           a[k].zSpan = 0;
4322         }
4323         a[k].pExpr = 0;
4324       }else{
4325         /* This expression is a "*" or a "TABLE.*" and needs to be
4326         ** expanded. */
4327         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4328         char *zTName = 0;       /* text of name of TABLE */
4329         if( pE->op==TK_DOT ){
4330           assert( pE->pLeft!=0 );
4331           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4332           zTName = pE->pLeft->u.zToken;
4333         }
4334         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4335           Table *pTab = pFrom->pTab;
4336           Select *pSub = pFrom->pSelect;
4337           char *zTabName = pFrom->zAlias;
4338           const char *zSchemaName = 0;
4339           int iDb;
4340           if( zTabName==0 ){
4341             zTabName = pTab->zName;
4342           }
4343           if( db->mallocFailed ) break;
4344           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4345             pSub = 0;
4346             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4347               continue;
4348             }
4349             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4350             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4351           }
4352           for(j=0; j<pTab->nCol; j++){
4353             char *zName = pTab->aCol[j].zName;
4354             char *zColname;  /* The computed column name */
4355             char *zToFree;   /* Malloced string that needs to be freed */
4356             Token sColname;  /* Computed column name as a token */
4357 
4358             assert( zName );
4359             if( zTName && pSub
4360              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4361             ){
4362               continue;
4363             }
4364 
4365             /* If a column is marked as 'hidden' (currently only possible
4366             ** for virtual tables), do not include it in the expanded
4367             ** result-set list.
4368             */
4369             if( IsHiddenColumn(&pTab->aCol[j]) ){
4370               assert(IsVirtual(pTab));
4371               continue;
4372             }
4373             tableSeen = 1;
4374 
4375             if( i>0 && zTName==0 ){
4376               if( (pFrom->jointype & JT_NATURAL)!=0
4377                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4378               ){
4379                 /* In a NATURAL join, omit the join columns from the
4380                 ** table to the right of the join */
4381                 continue;
4382               }
4383               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4384                 /* In a join with a USING clause, omit columns in the
4385                 ** using clause from the table on the right. */
4386                 continue;
4387               }
4388             }
4389             pRight = sqlite3Expr(db, TK_ID, zName);
4390             zColname = zName;
4391             zToFree = 0;
4392             if( longNames || pTabList->nSrc>1 ){
4393               Expr *pLeft;
4394               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4395               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4396               if( zSchemaName ){
4397                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4398                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4399               }
4400               if( longNames ){
4401                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4402                 zToFree = zColname;
4403               }
4404             }else{
4405               pExpr = pRight;
4406             }
4407             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4408             sColname.z = zColname;
4409             sColname.n = sqlite3Strlen30(zColname);
4410             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4411             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4412               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4413               if( pSub ){
4414                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4415                 testcase( pX->zSpan==0 );
4416               }else{
4417                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4418                                            zSchemaName, zTabName, zColname);
4419                 testcase( pX->zSpan==0 );
4420               }
4421               pX->bSpanIsTab = 1;
4422             }
4423             sqlite3DbFree(db, zToFree);
4424           }
4425         }
4426         if( !tableSeen ){
4427           if( zTName ){
4428             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4429           }else{
4430             sqlite3ErrorMsg(pParse, "no tables specified");
4431           }
4432         }
4433       }
4434     }
4435     sqlite3ExprListDelete(db, pEList);
4436     p->pEList = pNew;
4437   }
4438 #if SQLITE_MAX_COLUMN
4439   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4440     sqlite3ErrorMsg(pParse, "too many columns in result set");
4441   }
4442 #endif
4443   return WRC_Continue;
4444 }
4445 
4446 /*
4447 ** No-op routine for the parse-tree walker.
4448 **
4449 ** When this routine is the Walker.xExprCallback then expression trees
4450 ** are walked without any actions being taken at each node.  Presumably,
4451 ** when this routine is used for Walker.xExprCallback then
4452 ** Walker.xSelectCallback is set to do something useful for every
4453 ** subquery in the parser tree.
4454 */
4455 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4456   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4457   return WRC_Continue;
4458 }
4459 
4460 /*
4461 ** This routine "expands" a SELECT statement and all of its subqueries.
4462 ** For additional information on what it means to "expand" a SELECT
4463 ** statement, see the comment on the selectExpand worker callback above.
4464 **
4465 ** Expanding a SELECT statement is the first step in processing a
4466 ** SELECT statement.  The SELECT statement must be expanded before
4467 ** name resolution is performed.
4468 **
4469 ** If anything goes wrong, an error message is written into pParse.
4470 ** The calling function can detect the problem by looking at pParse->nErr
4471 ** and/or pParse->db->mallocFailed.
4472 */
4473 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4474   Walker w;
4475   memset(&w, 0, sizeof(w));
4476   w.xExprCallback = exprWalkNoop;
4477   w.pParse = pParse;
4478   if( pParse->hasCompound ){
4479     w.xSelectCallback = convertCompoundSelectToSubquery;
4480     sqlite3WalkSelect(&w, pSelect);
4481   }
4482   w.xSelectCallback = selectExpander;
4483   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4484     w.xSelectCallback2 = selectPopWith;
4485   }
4486   sqlite3WalkSelect(&w, pSelect);
4487 }
4488 
4489 
4490 #ifndef SQLITE_OMIT_SUBQUERY
4491 /*
4492 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4493 ** interface.
4494 **
4495 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4496 ** information to the Table structure that represents the result set
4497 ** of that subquery.
4498 **
4499 ** The Table structure that represents the result set was constructed
4500 ** by selectExpander() but the type and collation information was omitted
4501 ** at that point because identifiers had not yet been resolved.  This
4502 ** routine is called after identifier resolution.
4503 */
4504 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4505   Parse *pParse;
4506   int i;
4507   SrcList *pTabList;
4508   struct SrcList_item *pFrom;
4509 
4510   assert( p->selFlags & SF_Resolved );
4511   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4512     p->selFlags |= SF_HasTypeInfo;
4513     pParse = pWalker->pParse;
4514     pTabList = p->pSrc;
4515     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4516       Table *pTab = pFrom->pTab;
4517       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4518         /* A sub-query in the FROM clause of a SELECT */
4519         Select *pSel = pFrom->pSelect;
4520         if( pSel ){
4521           while( pSel->pPrior ) pSel = pSel->pPrior;
4522           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4523         }
4524       }
4525     }
4526   }
4527 }
4528 #endif
4529 
4530 
4531 /*
4532 ** This routine adds datatype and collating sequence information to
4533 ** the Table structures of all FROM-clause subqueries in a
4534 ** SELECT statement.
4535 **
4536 ** Use this routine after name resolution.
4537 */
4538 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4539 #ifndef SQLITE_OMIT_SUBQUERY
4540   Walker w;
4541   memset(&w, 0, sizeof(w));
4542   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4543   w.xExprCallback = exprWalkNoop;
4544   w.pParse = pParse;
4545   sqlite3WalkSelect(&w, pSelect);
4546 #endif
4547 }
4548 
4549 
4550 /*
4551 ** This routine sets up a SELECT statement for processing.  The
4552 ** following is accomplished:
4553 **
4554 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4555 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4556 **     *  ON and USING clauses are shifted into WHERE statements
4557 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4558 **     *  Identifiers in expression are matched to tables.
4559 **
4560 ** This routine acts recursively on all subqueries within the SELECT.
4561 */
4562 void sqlite3SelectPrep(
4563   Parse *pParse,         /* The parser context */
4564   Select *p,             /* The SELECT statement being coded. */
4565   NameContext *pOuterNC  /* Name context for container */
4566 ){
4567   sqlite3 *db;
4568   if( NEVER(p==0) ) return;
4569   db = pParse->db;
4570   if( db->mallocFailed ) return;
4571   if( p->selFlags & SF_HasTypeInfo ) return;
4572   sqlite3SelectExpand(pParse, p);
4573   if( pParse->nErr || db->mallocFailed ) return;
4574   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4575   if( pParse->nErr || db->mallocFailed ) return;
4576   sqlite3SelectAddTypeInfo(pParse, p);
4577 }
4578 
4579 /*
4580 ** Reset the aggregate accumulator.
4581 **
4582 ** The aggregate accumulator is a set of memory cells that hold
4583 ** intermediate results while calculating an aggregate.  This
4584 ** routine generates code that stores NULLs in all of those memory
4585 ** cells.
4586 */
4587 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4588   Vdbe *v = pParse->pVdbe;
4589   int i;
4590   struct AggInfo_func *pFunc;
4591   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4592   if( nReg==0 ) return;
4593 #ifdef SQLITE_DEBUG
4594   /* Verify that all AggInfo registers are within the range specified by
4595   ** AggInfo.mnReg..AggInfo.mxReg */
4596   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4597   for(i=0; i<pAggInfo->nColumn; i++){
4598     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4599          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4600   }
4601   for(i=0; i<pAggInfo->nFunc; i++){
4602     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4603          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4604   }
4605 #endif
4606   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4607   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4608     if( pFunc->iDistinct>=0 ){
4609       Expr *pE = pFunc->pExpr;
4610       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4611       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4612         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4613            "argument");
4614         pFunc->iDistinct = -1;
4615       }else{
4616         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4617         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4618                           (char*)pKeyInfo, P4_KEYINFO);
4619       }
4620     }
4621   }
4622 }
4623 
4624 /*
4625 ** Invoke the OP_AggFinalize opcode for every aggregate function
4626 ** in the AggInfo structure.
4627 */
4628 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4629   Vdbe *v = pParse->pVdbe;
4630   int i;
4631   struct AggInfo_func *pF;
4632   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4633     ExprList *pList = pF->pExpr->x.pList;
4634     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4635     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4636                       (void*)pF->pFunc, P4_FUNCDEF);
4637   }
4638 }
4639 
4640 /*
4641 ** Update the accumulator memory cells for an aggregate based on
4642 ** the current cursor position.
4643 */
4644 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4645   Vdbe *v = pParse->pVdbe;
4646   int i;
4647   int regHit = 0;
4648   int addrHitTest = 0;
4649   struct AggInfo_func *pF;
4650   struct AggInfo_col *pC;
4651 
4652   pAggInfo->directMode = 1;
4653   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4654     int nArg;
4655     int addrNext = 0;
4656     int regAgg;
4657     ExprList *pList = pF->pExpr->x.pList;
4658     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4659     if( pList ){
4660       nArg = pList->nExpr;
4661       regAgg = sqlite3GetTempRange(pParse, nArg);
4662       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4663     }else{
4664       nArg = 0;
4665       regAgg = 0;
4666     }
4667     if( pF->iDistinct>=0 ){
4668       addrNext = sqlite3VdbeMakeLabel(v);
4669       testcase( nArg==0 );  /* Error condition */
4670       testcase( nArg>1 );   /* Also an error */
4671       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4672     }
4673     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4674       CollSeq *pColl = 0;
4675       struct ExprList_item *pItem;
4676       int j;
4677       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4678       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4679         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4680       }
4681       if( !pColl ){
4682         pColl = pParse->db->pDfltColl;
4683       }
4684       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4685       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4686     }
4687     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4688                       (void*)pF->pFunc, P4_FUNCDEF);
4689     sqlite3VdbeChangeP5(v, (u8)nArg);
4690     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4691     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4692     if( addrNext ){
4693       sqlite3VdbeResolveLabel(v, addrNext);
4694       sqlite3ExprCacheClear(pParse);
4695     }
4696   }
4697 
4698   /* Before populating the accumulator registers, clear the column cache.
4699   ** Otherwise, if any of the required column values are already present
4700   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4701   ** to pC->iMem. But by the time the value is used, the original register
4702   ** may have been used, invalidating the underlying buffer holding the
4703   ** text or blob value. See ticket [883034dcb5].
4704   **
4705   ** Another solution would be to change the OP_SCopy used to copy cached
4706   ** values to an OP_Copy.
4707   */
4708   if( regHit ){
4709     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4710   }
4711   sqlite3ExprCacheClear(pParse);
4712   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4713     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4714   }
4715   pAggInfo->directMode = 0;
4716   sqlite3ExprCacheClear(pParse);
4717   if( addrHitTest ){
4718     sqlite3VdbeJumpHere(v, addrHitTest);
4719   }
4720 }
4721 
4722 /*
4723 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4724 ** count(*) query ("SELECT count(*) FROM pTab").
4725 */
4726 #ifndef SQLITE_OMIT_EXPLAIN
4727 static void explainSimpleCount(
4728   Parse *pParse,                  /* Parse context */
4729   Table *pTab,                    /* Table being queried */
4730   Index *pIdx                     /* Index used to optimize scan, or NULL */
4731 ){
4732   if( pParse->explain==2 ){
4733     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4734     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4735         pTab->zName,
4736         bCover ? " USING COVERING INDEX " : "",
4737         bCover ? pIdx->zName : ""
4738     );
4739     sqlite3VdbeAddOp4(
4740         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4741     );
4742   }
4743 }
4744 #else
4745 # define explainSimpleCount(a,b,c)
4746 #endif
4747 
4748 /*
4749 ** Generate code for the SELECT statement given in the p argument.
4750 **
4751 ** The results are returned according to the SelectDest structure.
4752 ** See comments in sqliteInt.h for further information.
4753 **
4754 ** This routine returns the number of errors.  If any errors are
4755 ** encountered, then an appropriate error message is left in
4756 ** pParse->zErrMsg.
4757 **
4758 ** This routine does NOT free the Select structure passed in.  The
4759 ** calling function needs to do that.
4760 */
4761 int sqlite3Select(
4762   Parse *pParse,         /* The parser context */
4763   Select *p,             /* The SELECT statement being coded. */
4764   SelectDest *pDest      /* What to do with the query results */
4765 ){
4766   int i, j;              /* Loop counters */
4767   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4768   Vdbe *v;               /* The virtual machine under construction */
4769   int isAgg;             /* True for select lists like "count(*)" */
4770   ExprList *pEList;      /* List of columns to extract. */
4771   SrcList *pTabList;     /* List of tables to select from */
4772   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4773   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4774   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4775   int rc = 1;            /* Value to return from this function */
4776   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4777   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4778   AggInfo sAggInfo;      /* Information used by aggregate queries */
4779   int iEnd;              /* Address of the end of the query */
4780   sqlite3 *db;           /* The database connection */
4781 
4782 #ifndef SQLITE_OMIT_EXPLAIN
4783   int iRestoreSelectId = pParse->iSelectId;
4784   pParse->iSelectId = pParse->iNextSelectId++;
4785 #endif
4786 
4787   db = pParse->db;
4788   if( p==0 || db->mallocFailed || pParse->nErr ){
4789     return 1;
4790   }
4791   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4792   memset(&sAggInfo, 0, sizeof(sAggInfo));
4793 #if SELECTTRACE_ENABLED
4794   pParse->nSelectIndent++;
4795   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4796   if( sqlite3SelectTrace & 0x100 ){
4797     sqlite3TreeViewSelect(0, p, 0);
4798   }
4799 #endif
4800 
4801   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4802   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4803   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4804   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4805   if( IgnorableOrderby(pDest) ){
4806     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4807            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4808            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4809            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4810     /* If ORDER BY makes no difference in the output then neither does
4811     ** DISTINCT so it can be removed too. */
4812     sqlite3ExprListDelete(db, p->pOrderBy);
4813     p->pOrderBy = 0;
4814     p->selFlags &= ~SF_Distinct;
4815   }
4816   sqlite3SelectPrep(pParse, p, 0);
4817   memset(&sSort, 0, sizeof(sSort));
4818   sSort.pOrderBy = p->pOrderBy;
4819   pTabList = p->pSrc;
4820   if( pParse->nErr || db->mallocFailed ){
4821     goto select_end;
4822   }
4823   assert( p->pEList!=0 );
4824   isAgg = (p->selFlags & SF_Aggregate)!=0;
4825 #if SELECTTRACE_ENABLED
4826   if( sqlite3SelectTrace & 0x100 ){
4827     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4828     sqlite3TreeViewSelect(0, p, 0);
4829   }
4830 #endif
4831 
4832 
4833   /* If writing to memory or generating a set
4834   ** only a single column may be output.
4835   */
4836 #ifndef SQLITE_OMIT_SUBQUERY
4837   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4838     goto select_end;
4839   }
4840 #endif
4841 
4842   /* Try to flatten subqueries in the FROM clause up into the main query
4843   */
4844 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4845   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4846     struct SrcList_item *pItem = &pTabList->a[i];
4847     Select *pSub = pItem->pSelect;
4848     int isAggSub;
4849     if( pSub==0 ) continue;
4850     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4851     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4852       /* This subquery can be absorbed into its parent. */
4853       if( isAggSub ){
4854         isAgg = 1;
4855         p->selFlags |= SF_Aggregate;
4856       }
4857       i = -1;
4858     }
4859     pTabList = p->pSrc;
4860     if( db->mallocFailed ) goto select_end;
4861     if( !IgnorableOrderby(pDest) ){
4862       sSort.pOrderBy = p->pOrderBy;
4863     }
4864   }
4865 #endif
4866 
4867   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4868   ** does not already exist */
4869   v = sqlite3GetVdbe(pParse);
4870   if( v==0 ) goto select_end;
4871 
4872 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4873   /* Handle compound SELECT statements using the separate multiSelect()
4874   ** procedure.
4875   */
4876   if( p->pPrior ){
4877     rc = multiSelect(pParse, p, pDest);
4878     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4879 #if SELECTTRACE_ENABLED
4880     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4881     pParse->nSelectIndent--;
4882 #endif
4883     return rc;
4884   }
4885 #endif
4886 
4887   /* Generate code for all sub-queries in the FROM clause
4888   */
4889 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4890   for(i=0; i<pTabList->nSrc; i++){
4891     struct SrcList_item *pItem = &pTabList->a[i];
4892     SelectDest dest;
4893     Select *pSub = pItem->pSelect;
4894     if( pSub==0 ) continue;
4895 
4896     /* Sometimes the code for a subquery will be generated more than
4897     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4898     ** for example.  In that case, do not regenerate the code to manifest
4899     ** a view or the co-routine to implement a view.  The first instance
4900     ** is sufficient, though the subroutine to manifest the view does need
4901     ** to be invoked again. */
4902     if( pItem->addrFillSub ){
4903       if( pItem->viaCoroutine==0 ){
4904         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4905       }
4906       continue;
4907     }
4908 
4909     /* Increment Parse.nHeight by the height of the largest expression
4910     ** tree referred to by this, the parent select. The child select
4911     ** may contain expression trees of at most
4912     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4913     ** more conservative than necessary, but much easier than enforcing
4914     ** an exact limit.
4915     */
4916     pParse->nHeight += sqlite3SelectExprHeight(p);
4917 
4918     /* Make copies of constant WHERE-clause terms in the outer query down
4919     ** inside the subquery.  This can help the subquery to run more efficiently.
4920     */
4921     if( (pItem->jointype & JT_OUTER)==0
4922      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4923     ){
4924 #if SELECTTRACE_ENABLED
4925       if( sqlite3SelectTrace & 0x100 ){
4926         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4927         sqlite3TreeViewSelect(0, p, 0);
4928       }
4929 #endif
4930     }
4931 
4932     /* Generate code to implement the subquery
4933     */
4934     if( pTabList->nSrc==1
4935      && (p->selFlags & SF_All)==0
4936      && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4937     ){
4938       /* Implement a co-routine that will return a single row of the result
4939       ** set on each invocation.
4940       */
4941       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4942       pItem->regReturn = ++pParse->nMem;
4943       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4944       VdbeComment((v, "%s", pItem->pTab->zName));
4945       pItem->addrFillSub = addrTop;
4946       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4947       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4948       sqlite3Select(pParse, pSub, &dest);
4949       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4950       pItem->viaCoroutine = 1;
4951       pItem->regResult = dest.iSdst;
4952       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4953       sqlite3VdbeJumpHere(v, addrTop-1);
4954       sqlite3ClearTempRegCache(pParse);
4955     }else{
4956       /* Generate a subroutine that will fill an ephemeral table with
4957       ** the content of this subquery.  pItem->addrFillSub will point
4958       ** to the address of the generated subroutine.  pItem->regReturn
4959       ** is a register allocated to hold the subroutine return address
4960       */
4961       int topAddr;
4962       int onceAddr = 0;
4963       int retAddr;
4964       assert( pItem->addrFillSub==0 );
4965       pItem->regReturn = ++pParse->nMem;
4966       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4967       pItem->addrFillSub = topAddr+1;
4968       if( pItem->isCorrelated==0 ){
4969         /* If the subquery is not correlated and if we are not inside of
4970         ** a trigger, then we only need to compute the value of the subquery
4971         ** once. */
4972         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4973         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4974       }else{
4975         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4976       }
4977       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4978       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4979       sqlite3Select(pParse, pSub, &dest);
4980       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4981       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4982       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4983       VdbeComment((v, "end %s", pItem->pTab->zName));
4984       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4985       sqlite3ClearTempRegCache(pParse);
4986     }
4987     if( db->mallocFailed ) goto select_end;
4988     pParse->nHeight -= sqlite3SelectExprHeight(p);
4989   }
4990 #endif
4991 
4992   /* Various elements of the SELECT copied into local variables for
4993   ** convenience */
4994   pEList = p->pEList;
4995   pWhere = p->pWhere;
4996   pGroupBy = p->pGroupBy;
4997   pHaving = p->pHaving;
4998   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4999 
5000 #if SELECTTRACE_ENABLED
5001   if( sqlite3SelectTrace & 0x400 ){
5002     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5003     sqlite3TreeViewSelect(0, p, 0);
5004   }
5005 #endif
5006 
5007   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5008   ** if the select-list is the same as the ORDER BY list, then this query
5009   ** can be rewritten as a GROUP BY. In other words, this:
5010   **
5011   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5012   **
5013   ** is transformed to:
5014   **
5015   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5016   **
5017   ** The second form is preferred as a single index (or temp-table) may be
5018   ** used for both the ORDER BY and DISTINCT processing. As originally
5019   ** written the query must use a temp-table for at least one of the ORDER
5020   ** BY and DISTINCT, and an index or separate temp-table for the other.
5021   */
5022   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5023    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5024   ){
5025     p->selFlags &= ~SF_Distinct;
5026     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5027     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5028     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5029     ** original setting of the SF_Distinct flag, not the current setting */
5030     assert( sDistinct.isTnct );
5031   }
5032 
5033   /* If there is an ORDER BY clause, then create an ephemeral index to
5034   ** do the sorting.  But this sorting ephemeral index might end up
5035   ** being unused if the data can be extracted in pre-sorted order.
5036   ** If that is the case, then the OP_OpenEphemeral instruction will be
5037   ** changed to an OP_Noop once we figure out that the sorting index is
5038   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5039   ** that change.
5040   */
5041   if( sSort.pOrderBy ){
5042     KeyInfo *pKeyInfo;
5043     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5044     sSort.iECursor = pParse->nTab++;
5045     sSort.addrSortIndex =
5046       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5047           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5048           (char*)pKeyInfo, P4_KEYINFO
5049       );
5050   }else{
5051     sSort.addrSortIndex = -1;
5052   }
5053 
5054   /* If the output is destined for a temporary table, open that table.
5055   */
5056   if( pDest->eDest==SRT_EphemTab ){
5057     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5058   }
5059 
5060   /* Set the limiter.
5061   */
5062   iEnd = sqlite3VdbeMakeLabel(v);
5063   p->nSelectRow = LARGEST_INT64;
5064   computeLimitRegisters(pParse, p, iEnd);
5065   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5066     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
5067     sSort.sortFlags |= SORTFLAG_UseSorter;
5068   }
5069 
5070   /* Open an ephemeral index to use for the distinct set.
5071   */
5072   if( p->selFlags & SF_Distinct ){
5073     sDistinct.tabTnct = pParse->nTab++;
5074     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5075                              sDistinct.tabTnct, 0, 0,
5076                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5077                              P4_KEYINFO);
5078     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5079     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5080   }else{
5081     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5082   }
5083 
5084   if( !isAgg && pGroupBy==0 ){
5085     /* No aggregate functions and no GROUP BY clause */
5086     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5087 
5088     /* Begin the database scan. */
5089     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5090                                p->pEList, wctrlFlags, 0);
5091     if( pWInfo==0 ) goto select_end;
5092     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5093       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5094     }
5095     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5096       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5097     }
5098     if( sSort.pOrderBy ){
5099       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5100       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5101         sSort.pOrderBy = 0;
5102       }
5103     }
5104 
5105     /* If sorting index that was created by a prior OP_OpenEphemeral
5106     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5107     ** into an OP_Noop.
5108     */
5109     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5110       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5111     }
5112 
5113     /* Use the standard inner loop. */
5114     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5115                     sqlite3WhereContinueLabel(pWInfo),
5116                     sqlite3WhereBreakLabel(pWInfo));
5117 
5118     /* End the database scan loop.
5119     */
5120     sqlite3WhereEnd(pWInfo);
5121   }else{
5122     /* This case when there exist aggregate functions or a GROUP BY clause
5123     ** or both */
5124     NameContext sNC;    /* Name context for processing aggregate information */
5125     int iAMem;          /* First Mem address for storing current GROUP BY */
5126     int iBMem;          /* First Mem address for previous GROUP BY */
5127     int iUseFlag;       /* Mem address holding flag indicating that at least
5128                         ** one row of the input to the aggregator has been
5129                         ** processed */
5130     int iAbortFlag;     /* Mem address which causes query abort if positive */
5131     int groupBySort;    /* Rows come from source in GROUP BY order */
5132     int addrEnd;        /* End of processing for this SELECT */
5133     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5134     int sortOut = 0;    /* Output register from the sorter */
5135     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5136 
5137     /* Remove any and all aliases between the result set and the
5138     ** GROUP BY clause.
5139     */
5140     if( pGroupBy ){
5141       int k;                        /* Loop counter */
5142       struct ExprList_item *pItem;  /* For looping over expression in a list */
5143 
5144       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5145         pItem->u.x.iAlias = 0;
5146       }
5147       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5148         pItem->u.x.iAlias = 0;
5149       }
5150       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5151     }else{
5152       p->nSelectRow = 1;
5153     }
5154 
5155     /* If there is both a GROUP BY and an ORDER BY clause and they are
5156     ** identical, then it may be possible to disable the ORDER BY clause
5157     ** on the grounds that the GROUP BY will cause elements to come out
5158     ** in the correct order. It also may not - the GROUP BY might use a
5159     ** database index that causes rows to be grouped together as required
5160     ** but not actually sorted. Either way, record the fact that the
5161     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5162     ** variable.  */
5163     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5164       orderByGrp = 1;
5165     }
5166 
5167     /* Create a label to jump to when we want to abort the query */
5168     addrEnd = sqlite3VdbeMakeLabel(v);
5169 
5170     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5171     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5172     ** SELECT statement.
5173     */
5174     memset(&sNC, 0, sizeof(sNC));
5175     sNC.pParse = pParse;
5176     sNC.pSrcList = pTabList;
5177     sNC.pAggInfo = &sAggInfo;
5178     sAggInfo.mnReg = pParse->nMem+1;
5179     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5180     sAggInfo.pGroupBy = pGroupBy;
5181     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5182     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5183     if( pHaving ){
5184       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5185     }
5186     sAggInfo.nAccumulator = sAggInfo.nColumn;
5187     for(i=0; i<sAggInfo.nFunc; i++){
5188       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5189       sNC.ncFlags |= NC_InAggFunc;
5190       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5191       sNC.ncFlags &= ~NC_InAggFunc;
5192     }
5193     sAggInfo.mxReg = pParse->nMem;
5194     if( db->mallocFailed ) goto select_end;
5195 
5196     /* Processing for aggregates with GROUP BY is very different and
5197     ** much more complex than aggregates without a GROUP BY.
5198     */
5199     if( pGroupBy ){
5200       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5201       int j1;             /* A-vs-B comparision jump */
5202       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5203       int regOutputRow;   /* Return address register for output subroutine */
5204       int addrSetAbort;   /* Set the abort flag and return */
5205       int addrTopOfLoop;  /* Top of the input loop */
5206       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5207       int addrReset;      /* Subroutine for resetting the accumulator */
5208       int regReset;       /* Return address register for reset subroutine */
5209 
5210       /* If there is a GROUP BY clause we might need a sorting index to
5211       ** implement it.  Allocate that sorting index now.  If it turns out
5212       ** that we do not need it after all, the OP_SorterOpen instruction
5213       ** will be converted into a Noop.
5214       */
5215       sAggInfo.sortingIdx = pParse->nTab++;
5216       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5217       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5218           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5219           0, (char*)pKeyInfo, P4_KEYINFO);
5220 
5221       /* Initialize memory locations used by GROUP BY aggregate processing
5222       */
5223       iUseFlag = ++pParse->nMem;
5224       iAbortFlag = ++pParse->nMem;
5225       regOutputRow = ++pParse->nMem;
5226       addrOutputRow = sqlite3VdbeMakeLabel(v);
5227       regReset = ++pParse->nMem;
5228       addrReset = sqlite3VdbeMakeLabel(v);
5229       iAMem = pParse->nMem + 1;
5230       pParse->nMem += pGroupBy->nExpr;
5231       iBMem = pParse->nMem + 1;
5232       pParse->nMem += pGroupBy->nExpr;
5233       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5234       VdbeComment((v, "clear abort flag"));
5235       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5236       VdbeComment((v, "indicate accumulator empty"));
5237       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5238 
5239       /* Begin a loop that will extract all source rows in GROUP BY order.
5240       ** This might involve two separate loops with an OP_Sort in between, or
5241       ** it might be a single loop that uses an index to extract information
5242       ** in the right order to begin with.
5243       */
5244       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5245       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5246           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5247       );
5248       if( pWInfo==0 ) goto select_end;
5249       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5250         /* The optimizer is able to deliver rows in group by order so
5251         ** we do not have to sort.  The OP_OpenEphemeral table will be
5252         ** cancelled later because we still need to use the pKeyInfo
5253         */
5254         groupBySort = 0;
5255       }else{
5256         /* Rows are coming out in undetermined order.  We have to push
5257         ** each row into a sorting index, terminate the first loop,
5258         ** then loop over the sorting index in order to get the output
5259         ** in sorted order
5260         */
5261         int regBase;
5262         int regRecord;
5263         int nCol;
5264         int nGroupBy;
5265 
5266         explainTempTable(pParse,
5267             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5268                     "DISTINCT" : "GROUP BY");
5269 
5270         groupBySort = 1;
5271         nGroupBy = pGroupBy->nExpr;
5272         nCol = nGroupBy;
5273         j = nGroupBy;
5274         for(i=0; i<sAggInfo.nColumn; i++){
5275           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5276             nCol++;
5277             j++;
5278           }
5279         }
5280         regBase = sqlite3GetTempRange(pParse, nCol);
5281         sqlite3ExprCacheClear(pParse);
5282         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5283         j = nGroupBy;
5284         for(i=0; i<sAggInfo.nColumn; i++){
5285           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5286           if( pCol->iSorterColumn>=j ){
5287             int r1 = j + regBase;
5288             int r2;
5289 
5290             r2 = sqlite3ExprCodeGetColumn(pParse,
5291                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5292             if( r1!=r2 ){
5293               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5294             }
5295             j++;
5296           }
5297         }
5298         regRecord = sqlite3GetTempReg(pParse);
5299         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5300         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5301         sqlite3ReleaseTempReg(pParse, regRecord);
5302         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5303         sqlite3WhereEnd(pWInfo);
5304         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5305         sortOut = sqlite3GetTempReg(pParse);
5306         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5307         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5308         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5309         sAggInfo.useSortingIdx = 1;
5310         sqlite3ExprCacheClear(pParse);
5311 
5312       }
5313 
5314       /* If the index or temporary table used by the GROUP BY sort
5315       ** will naturally deliver rows in the order required by the ORDER BY
5316       ** clause, cancel the ephemeral table open coded earlier.
5317       **
5318       ** This is an optimization - the correct answer should result regardless.
5319       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5320       ** disable this optimization for testing purposes.  */
5321       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5322        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5323       ){
5324         sSort.pOrderBy = 0;
5325         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5326       }
5327 
5328       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5329       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5330       ** Then compare the current GROUP BY terms against the GROUP BY terms
5331       ** from the previous row currently stored in a0, a1, a2...
5332       */
5333       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5334       sqlite3ExprCacheClear(pParse);
5335       if( groupBySort ){
5336         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5337                           sortOut, sortPTab);
5338       }
5339       for(j=0; j<pGroupBy->nExpr; j++){
5340         if( groupBySort ){
5341           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5342         }else{
5343           sAggInfo.directMode = 1;
5344           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5345         }
5346       }
5347       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5348                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5349       j1 = sqlite3VdbeCurrentAddr(v);
5350       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5351 
5352       /* Generate code that runs whenever the GROUP BY changes.
5353       ** Changes in the GROUP BY are detected by the previous code
5354       ** block.  If there were no changes, this block is skipped.
5355       **
5356       ** This code copies current group by terms in b0,b1,b2,...
5357       ** over to a0,a1,a2.  It then calls the output subroutine
5358       ** and resets the aggregate accumulator registers in preparation
5359       ** for the next GROUP BY batch.
5360       */
5361       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5362       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5363       VdbeComment((v, "output one row"));
5364       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5365       VdbeComment((v, "check abort flag"));
5366       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5367       VdbeComment((v, "reset accumulator"));
5368 
5369       /* Update the aggregate accumulators based on the content of
5370       ** the current row
5371       */
5372       sqlite3VdbeJumpHere(v, j1);
5373       updateAccumulator(pParse, &sAggInfo);
5374       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5375       VdbeComment((v, "indicate data in accumulator"));
5376 
5377       /* End of the loop
5378       */
5379       if( groupBySort ){
5380         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5381         VdbeCoverage(v);
5382       }else{
5383         sqlite3WhereEnd(pWInfo);
5384         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5385       }
5386 
5387       /* Output the final row of result
5388       */
5389       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5390       VdbeComment((v, "output final row"));
5391 
5392       /* Jump over the subroutines
5393       */
5394       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5395 
5396       /* Generate a subroutine that outputs a single row of the result
5397       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5398       ** is less than or equal to zero, the subroutine is a no-op.  If
5399       ** the processing calls for the query to abort, this subroutine
5400       ** increments the iAbortFlag memory location before returning in
5401       ** order to signal the caller to abort.
5402       */
5403       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5404       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5405       VdbeComment((v, "set abort flag"));
5406       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5407       sqlite3VdbeResolveLabel(v, addrOutputRow);
5408       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5409       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5410       VdbeCoverage(v);
5411       VdbeComment((v, "Groupby result generator entry point"));
5412       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5413       finalizeAggFunctions(pParse, &sAggInfo);
5414       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5415       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5416                       &sDistinct, pDest,
5417                       addrOutputRow+1, addrSetAbort);
5418       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5419       VdbeComment((v, "end groupby result generator"));
5420 
5421       /* Generate a subroutine that will reset the group-by accumulator
5422       */
5423       sqlite3VdbeResolveLabel(v, addrReset);
5424       resetAccumulator(pParse, &sAggInfo);
5425       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5426 
5427     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5428     else {
5429       ExprList *pDel = 0;
5430 #ifndef SQLITE_OMIT_BTREECOUNT
5431       Table *pTab;
5432       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5433         /* If isSimpleCount() returns a pointer to a Table structure, then
5434         ** the SQL statement is of the form:
5435         **
5436         **   SELECT count(*) FROM <tbl>
5437         **
5438         ** where the Table structure returned represents table <tbl>.
5439         **
5440         ** This statement is so common that it is optimized specially. The
5441         ** OP_Count instruction is executed either on the intkey table that
5442         ** contains the data for table <tbl> or on one of its indexes. It
5443         ** is better to execute the op on an index, as indexes are almost
5444         ** always spread across less pages than their corresponding tables.
5445         */
5446         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5447         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5448         Index *pIdx;                         /* Iterator variable */
5449         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5450         Index *pBest = 0;                    /* Best index found so far */
5451         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5452 
5453         sqlite3CodeVerifySchema(pParse, iDb);
5454         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5455 
5456         /* Search for the index that has the lowest scan cost.
5457         **
5458         ** (2011-04-15) Do not do a full scan of an unordered index.
5459         **
5460         ** (2013-10-03) Do not count the entries in a partial index.
5461         **
5462         ** In practice the KeyInfo structure will not be used. It is only
5463         ** passed to keep OP_OpenRead happy.
5464         */
5465         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5466         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5467           if( pIdx->bUnordered==0
5468            && pIdx->szIdxRow<pTab->szTabRow
5469            && pIdx->pPartIdxWhere==0
5470            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5471           ){
5472             pBest = pIdx;
5473           }
5474         }
5475         if( pBest ){
5476           iRoot = pBest->tnum;
5477           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5478         }
5479 
5480         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5481         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5482         if( pKeyInfo ){
5483           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5484         }
5485         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5486         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5487         explainSimpleCount(pParse, pTab, pBest);
5488       }else
5489 #endif /* SQLITE_OMIT_BTREECOUNT */
5490       {
5491         /* Check if the query is of one of the following forms:
5492         **
5493         **   SELECT min(x) FROM ...
5494         **   SELECT max(x) FROM ...
5495         **
5496         ** If it is, then ask the code in where.c to attempt to sort results
5497         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5498         ** If where.c is able to produce results sorted in this order, then
5499         ** add vdbe code to break out of the processing loop after the
5500         ** first iteration (since the first iteration of the loop is
5501         ** guaranteed to operate on the row with the minimum or maximum
5502         ** value of x, the only row required).
5503         **
5504         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5505         ** modify behavior as follows:
5506         **
5507         **   + If the query is a "SELECT min(x)", then the loop coded by
5508         **     where.c should not iterate over any values with a NULL value
5509         **     for x.
5510         **
5511         **   + The optimizer code in where.c (the thing that decides which
5512         **     index or indices to use) should place a different priority on
5513         **     satisfying the 'ORDER BY' clause than it does in other cases.
5514         **     Refer to code and comments in where.c for details.
5515         */
5516         ExprList *pMinMax = 0;
5517         u8 flag = WHERE_ORDERBY_NORMAL;
5518 
5519         assert( p->pGroupBy==0 );
5520         assert( flag==0 );
5521         if( p->pHaving==0 ){
5522           flag = minMaxQuery(&sAggInfo, &pMinMax);
5523         }
5524         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5525 
5526         if( flag ){
5527           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5528           pDel = pMinMax;
5529           if( pMinMax && !db->mallocFailed ){
5530             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5531             pMinMax->a[0].pExpr->op = TK_COLUMN;
5532           }
5533         }
5534 
5535         /* This case runs if the aggregate has no GROUP BY clause.  The
5536         ** processing is much simpler since there is only a single row
5537         ** of output.
5538         */
5539         resetAccumulator(pParse, &sAggInfo);
5540         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5541         if( pWInfo==0 ){
5542           sqlite3ExprListDelete(db, pDel);
5543           goto select_end;
5544         }
5545         updateAccumulator(pParse, &sAggInfo);
5546         assert( pMinMax==0 || pMinMax->nExpr==1 );
5547         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5548           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5549           VdbeComment((v, "%s() by index",
5550                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5551         }
5552         sqlite3WhereEnd(pWInfo);
5553         finalizeAggFunctions(pParse, &sAggInfo);
5554       }
5555 
5556       sSort.pOrderBy = 0;
5557       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5558       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5559                       pDest, addrEnd, addrEnd);
5560       sqlite3ExprListDelete(db, pDel);
5561     }
5562     sqlite3VdbeResolveLabel(v, addrEnd);
5563 
5564   } /* endif aggregate query */
5565 
5566   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5567     explainTempTable(pParse, "DISTINCT");
5568   }
5569 
5570   /* If there is an ORDER BY clause, then we need to sort the results
5571   ** and send them to the callback one by one.
5572   */
5573   if( sSort.pOrderBy ){
5574     explainTempTable(pParse,
5575                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5576     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5577   }
5578 
5579   /* Jump here to skip this query
5580   */
5581   sqlite3VdbeResolveLabel(v, iEnd);
5582 
5583   /* The SELECT has been coded. If there is an error in the Parse structure,
5584   ** set the return code to 1. Otherwise 0. */
5585   rc = (pParse->nErr>0);
5586 
5587   /* Control jumps to here if an error is encountered above, or upon
5588   ** successful coding of the SELECT.
5589   */
5590 select_end:
5591   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5592 
5593   /* Identify column names if results of the SELECT are to be output.
5594   */
5595   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5596     generateColumnNames(pParse, pTabList, pEList);
5597   }
5598 
5599   sqlite3DbFree(db, sAggInfo.aCol);
5600   sqlite3DbFree(db, sAggInfo.aFunc);
5601 #if SELECTTRACE_ENABLED
5602   SELECTTRACE(1,pParse,p,("end processing\n"));
5603   pParse->nSelectIndent--;
5604 #endif
5605   return rc;
5606 }
5607