1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 assert( db!=0 ); 80 while( p ){ 81 Select *pPrior = p->pPrior; 82 sqlite3ExprListDelete(db, p->pEList); 83 sqlite3SrcListDelete(db, p->pSrc); 84 sqlite3ExprDelete(db, p->pWhere); 85 sqlite3ExprListDelete(db, p->pGroupBy); 86 sqlite3ExprDelete(db, p->pHaving); 87 sqlite3ExprListDelete(db, p->pOrderBy); 88 sqlite3ExprDelete(db, p->pLimit); 89 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 90 #ifndef SQLITE_OMIT_WINDOWFUNC 91 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 92 sqlite3WindowListDelete(db, p->pWinDefn); 93 } 94 while( p->pWin ){ 95 assert( p->pWin->ppThis==&p->pWin ); 96 sqlite3WindowUnlinkFromSelect(p->pWin); 97 } 98 #endif 99 if( bFree ) sqlite3DbNNFreeNN(db, p); 100 p = pPrior; 101 bFree = 1; 102 } 103 } 104 105 /* 106 ** Initialize a SelectDest structure. 107 */ 108 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 109 pDest->eDest = (u8)eDest; 110 pDest->iSDParm = iParm; 111 pDest->iSDParm2 = 0; 112 pDest->zAffSdst = 0; 113 pDest->iSdst = 0; 114 pDest->nSdst = 0; 115 } 116 117 118 /* 119 ** Allocate a new Select structure and return a pointer to that 120 ** structure. 121 */ 122 Select *sqlite3SelectNew( 123 Parse *pParse, /* Parsing context */ 124 ExprList *pEList, /* which columns to include in the result */ 125 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 126 Expr *pWhere, /* the WHERE clause */ 127 ExprList *pGroupBy, /* the GROUP BY clause */ 128 Expr *pHaving, /* the HAVING clause */ 129 ExprList *pOrderBy, /* the ORDER BY clause */ 130 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 131 Expr *pLimit /* LIMIT value. NULL means not used */ 132 ){ 133 Select *pNew, *pAllocated; 134 Select standin; 135 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 136 if( pNew==0 ){ 137 assert( pParse->db->mallocFailed ); 138 pNew = &standin; 139 } 140 if( pEList==0 ){ 141 pEList = sqlite3ExprListAppend(pParse, 0, 142 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 143 } 144 pNew->pEList = pEList; 145 pNew->op = TK_SELECT; 146 pNew->selFlags = selFlags; 147 pNew->iLimit = 0; 148 pNew->iOffset = 0; 149 pNew->selId = ++pParse->nSelect; 150 pNew->addrOpenEphm[0] = -1; 151 pNew->addrOpenEphm[1] = -1; 152 pNew->nSelectRow = 0; 153 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 154 pNew->pSrc = pSrc; 155 pNew->pWhere = pWhere; 156 pNew->pGroupBy = pGroupBy; 157 pNew->pHaving = pHaving; 158 pNew->pOrderBy = pOrderBy; 159 pNew->pPrior = 0; 160 pNew->pNext = 0; 161 pNew->pLimit = pLimit; 162 pNew->pWith = 0; 163 #ifndef SQLITE_OMIT_WINDOWFUNC 164 pNew->pWin = 0; 165 pNew->pWinDefn = 0; 166 #endif 167 if( pParse->db->mallocFailed ) { 168 clearSelect(pParse->db, pNew, pNew!=&standin); 169 pAllocated = 0; 170 }else{ 171 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 172 } 173 return pAllocated; 174 } 175 176 177 /* 178 ** Delete the given Select structure and all of its substructures. 179 */ 180 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 181 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 182 } 183 184 /* 185 ** Return a pointer to the right-most SELECT statement in a compound. 186 */ 187 static Select *findRightmost(Select *p){ 188 while( p->pNext ) p = p->pNext; 189 return p; 190 } 191 192 /* 193 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 194 ** type of join. Return an integer constant that expresses that type 195 ** in terms of the following bit values: 196 ** 197 ** JT_INNER 198 ** JT_CROSS 199 ** JT_OUTER 200 ** JT_NATURAL 201 ** JT_LEFT 202 ** JT_RIGHT 203 ** 204 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 205 ** 206 ** If an illegal or unsupported join type is seen, then still return 207 ** a join type, but put an error in the pParse structure. 208 ** 209 ** These are the valid join types: 210 ** 211 ** 212 ** pA pB pC Return Value 213 ** ------- ----- ----- ------------ 214 ** CROSS - - JT_CROSS 215 ** INNER - - JT_INNER 216 ** LEFT - - JT_LEFT|JT_OUTER 217 ** LEFT OUTER - JT_LEFT|JT_OUTER 218 ** RIGHT - - JT_RIGHT|JT_OUTER 219 ** RIGHT OUTER - JT_RIGHT|JT_OUTER 220 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER 221 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER 222 ** NATURAL INNER - JT_NATURAL|JT_INNER 223 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER 224 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER 225 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER 226 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER 227 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT 228 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT 229 ** 230 ** To preserve historical compatibly, SQLite also accepts a variety 231 ** of other non-standard and in many cases non-sensical join types. 232 ** This routine makes as much sense at it can from the nonsense join 233 ** type and returns a result. Examples of accepted nonsense join types 234 ** include but are not limited to: 235 ** 236 ** INNER CROSS JOIN -> same as JOIN 237 ** NATURAL CROSS JOIN -> same as NATURAL JOIN 238 ** OUTER LEFT JOIN -> same as LEFT JOIN 239 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN 240 ** LEFT RIGHT JOIN -> same as FULL JOIN 241 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN 242 ** CROSS CROSS CROSS JOIN -> same as JOIN 243 ** 244 ** The only restrictions on the join type name are: 245 ** 246 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", 247 ** or "FULL". 248 ** 249 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, 250 ** or "FULL". 251 ** 252 ** * If "OUTER" is present then there must also be one of 253 ** "LEFT", "RIGHT", or "FULL" 254 */ 255 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 256 int jointype = 0; 257 Token *apAll[3]; 258 Token *p; 259 /* 0123456789 123456789 123456789 123 */ 260 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 261 static const struct { 262 u8 i; /* Beginning of keyword text in zKeyText[] */ 263 u8 nChar; /* Length of the keyword in characters */ 264 u8 code; /* Join type mask */ 265 } aKeyword[] = { 266 /* (0) natural */ { 0, 7, JT_NATURAL }, 267 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, 268 /* (2) outer */ { 10, 5, JT_OUTER }, 269 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, 270 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 271 /* (5) inner */ { 23, 5, JT_INNER }, 272 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, 273 }; 274 int i, j; 275 apAll[0] = pA; 276 apAll[1] = pB; 277 apAll[2] = pC; 278 for(i=0; i<3 && apAll[i]; i++){ 279 p = apAll[i]; 280 for(j=0; j<ArraySize(aKeyword); j++){ 281 if( p->n==aKeyword[j].nChar 282 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 283 jointype |= aKeyword[j].code; 284 break; 285 } 286 } 287 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 288 if( j>=ArraySize(aKeyword) ){ 289 jointype |= JT_ERROR; 290 break; 291 } 292 } 293 if( 294 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 295 (jointype & JT_ERROR)!=0 || 296 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER 297 ){ 298 const char *zSp1 = " "; 299 const char *zSp2 = " "; 300 if( pB==0 ){ zSp1++; } 301 if( pC==0 ){ zSp2++; } 302 sqlite3ErrorMsg(pParse, "unknown join type: " 303 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 304 jointype = JT_INNER; 305 } 306 return jointype; 307 } 308 309 /* 310 ** Return the index of a column in a table. Return -1 if the column 311 ** is not contained in the table. 312 */ 313 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 314 int i; 315 u8 h = sqlite3StrIHash(zCol); 316 Column *pCol; 317 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 318 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 319 } 320 return -1; 321 } 322 323 /* 324 ** Mark a subquery result column as having been used. 325 */ 326 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ 327 assert( pItem!=0 ); 328 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); 329 if( pItem->fg.isNestedFrom ){ 330 ExprList *pResults; 331 assert( pItem->pSelect!=0 ); 332 pResults = pItem->pSelect->pEList; 333 assert( pResults!=0 ); 334 assert( iCol>=0 && iCol<pResults->nExpr ); 335 pResults->a[iCol].fg.bUsed = 1; 336 } 337 } 338 339 /* 340 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a 341 ** table that has a column named zCol. The search is left-to-right. 342 ** The first match found is returned. 343 ** 344 ** When found, set *piTab and *piCol to the table index and column index 345 ** of the matching column and return TRUE. 346 ** 347 ** If not found, return FALSE. 348 */ 349 static int tableAndColumnIndex( 350 SrcList *pSrc, /* Array of tables to search */ 351 int iStart, /* First member of pSrc->a[] to check */ 352 int iEnd, /* Last member of pSrc->a[] to check */ 353 const char *zCol, /* Name of the column we are looking for */ 354 int *piTab, /* Write index of pSrc->a[] here */ 355 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 356 int bIgnoreHidden /* Ignore hidden columns */ 357 ){ 358 int i; /* For looping over tables in pSrc */ 359 int iCol; /* Index of column matching zCol */ 360 361 assert( iEnd<pSrc->nSrc ); 362 assert( iStart>=0 ); 363 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 364 365 for(i=iStart; i<=iEnd; i++){ 366 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 367 if( iCol>=0 368 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 369 ){ 370 if( piTab ){ 371 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); 372 *piTab = i; 373 *piCol = iCol; 374 } 375 return 1; 376 } 377 } 378 return 0; 379 } 380 381 /* 382 ** Set the EP_OuterON property on all terms of the given expression. 383 ** And set the Expr.w.iJoin to iTable for every term in the 384 ** expression. 385 ** 386 ** The EP_OuterON property is used on terms of an expression to tell 387 ** the OUTER JOIN processing logic that this term is part of the 388 ** join restriction specified in the ON or USING clause and not a part 389 ** of the more general WHERE clause. These terms are moved over to the 390 ** WHERE clause during join processing but we need to remember that they 391 ** originated in the ON or USING clause. 392 ** 393 ** The Expr.w.iJoin tells the WHERE clause processing that the 394 ** expression depends on table w.iJoin even if that table is not 395 ** explicitly mentioned in the expression. That information is needed 396 ** for cases like this: 397 ** 398 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 399 ** 400 ** The where clause needs to defer the handling of the t1.x=5 401 ** term until after the t2 loop of the join. In that way, a 402 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 403 ** defer the handling of t1.x=5, it will be processed immediately 404 ** after the t1 loop and rows with t1.x!=5 will never appear in 405 ** the output, which is incorrect. 406 */ 407 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ 408 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); 409 while( p ){ 410 ExprSetProperty(p, joinFlag); 411 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 412 ExprSetVVAProperty(p, EP_NoReduce); 413 p->w.iJoin = iTable; 414 if( p->op==TK_FUNCTION ){ 415 assert( ExprUseXList(p) ); 416 if( p->x.pList ){ 417 int i; 418 for(i=0; i<p->x.pList->nExpr; i++){ 419 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); 420 } 421 } 422 } 423 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); 424 p = p->pRight; 425 } 426 } 427 428 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN 429 ** is simplified into an ordinary JOIN, and when an ON expression is 430 ** "pushed down" into the WHERE clause of a subquery. 431 ** 432 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into 433 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then 434 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. 435 ** 436 ** If nullable is true, that means that Expr p might evaluate to NULL even 437 ** if it is a reference to a NOT NULL column. This can happen, for example, 438 ** if the table that p references is on the left side of a RIGHT JOIN. 439 ** If nullable is true, then take care to not remove the EP_CanBeNull bit. 440 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c 441 */ 442 static void unsetJoinExpr(Expr *p, int iTable, int nullable){ 443 while( p ){ 444 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ 445 ExprClearProperty(p, EP_OuterON|EP_InnerON); 446 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); 447 } 448 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ 449 ExprClearProperty(p, EP_CanBeNull); 450 } 451 if( p->op==TK_FUNCTION ){ 452 assert( ExprUseXList(p) ); 453 if( p->x.pList ){ 454 int i; 455 for(i=0; i<p->x.pList->nExpr; i++){ 456 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); 457 } 458 } 459 } 460 unsetJoinExpr(p->pLeft, iTable, nullable); 461 p = p->pRight; 462 } 463 } 464 465 /* 466 ** This routine processes the join information for a SELECT statement. 467 ** 468 ** * A NATURAL join is converted into a USING join. After that, we 469 ** do not need to be concerned with NATURAL joins and we only have 470 ** think about USING joins. 471 ** 472 ** * ON and USING clauses result in extra terms being added to the 473 ** WHERE clause to enforce the specified constraints. The extra 474 ** WHERE clause terms will be tagged with EP_OuterON or 475 ** EP_InnerON so that we know that they originated in ON/USING. 476 ** 477 ** The terms of a FROM clause are contained in the Select.pSrc structure. 478 ** The left most table is the first entry in Select.pSrc. The right-most 479 ** table is the last entry. The join operator is held in the entry to 480 ** the right. Thus entry 1 contains the join operator for the join between 481 ** entries 0 and 1. Any ON or USING clauses associated with the join are 482 ** also attached to the right entry. 483 ** 484 ** This routine returns the number of errors encountered. 485 */ 486 static int sqlite3ProcessJoin(Parse *pParse, Select *p){ 487 SrcList *pSrc; /* All tables in the FROM clause */ 488 int i, j; /* Loop counters */ 489 SrcItem *pLeft; /* Left table being joined */ 490 SrcItem *pRight; /* Right table being joined */ 491 492 pSrc = p->pSrc; 493 pLeft = &pSrc->a[0]; 494 pRight = &pLeft[1]; 495 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 496 Table *pRightTab = pRight->pTab; 497 u32 joinType; 498 499 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 500 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; 501 502 /* If this is a NATURAL join, synthesize an approprate USING clause 503 ** to specify which columns should be joined. 504 */ 505 if( pRight->fg.jointype & JT_NATURAL ){ 506 IdList *pUsing = 0; 507 if( pRight->fg.isUsing || pRight->u3.pOn ){ 508 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 509 "an ON or USING clause", 0); 510 return 1; 511 } 512 for(j=0; j<pRightTab->nCol; j++){ 513 char *zName; /* Name of column in the right table */ 514 515 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 516 zName = pRightTab->aCol[j].zCnName; 517 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ 518 pUsing = sqlite3IdListAppend(pParse, pUsing, 0); 519 if( pUsing ){ 520 assert( pUsing->nId>0 ); 521 assert( pUsing->a[pUsing->nId-1].zName==0 ); 522 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); 523 } 524 } 525 } 526 if( pUsing ){ 527 pRight->fg.isUsing = 1; 528 pRight->fg.isSynthUsing = 1; 529 pRight->u3.pUsing = pUsing; 530 } 531 if( pParse->nErr ) return 1; 532 } 533 534 /* Create extra terms on the WHERE clause for each column named 535 ** in the USING clause. Example: If the two tables to be joined are 536 ** A and B and the USING clause names X, Y, and Z, then add this 537 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 538 ** Report an error if any column mentioned in the USING clause is 539 ** not contained in both tables to be joined. 540 */ 541 if( pRight->fg.isUsing ){ 542 IdList *pList = pRight->u3.pUsing; 543 sqlite3 *db = pParse->db; 544 assert( pList!=0 ); 545 for(j=0; j<pList->nId; j++){ 546 char *zName; /* Name of the term in the USING clause */ 547 int iLeft; /* Table on the left with matching column name */ 548 int iLeftCol; /* Column number of matching column on the left */ 549 int iRightCol; /* Column number of matching column on the right */ 550 Expr *pE1; /* Reference to the column on the LEFT of the join */ 551 Expr *pE2; /* Reference to the column on the RIGHT of the join */ 552 Expr *pEq; /* Equality constraint. pE1 == pE2 */ 553 554 zName = pList->a[j].zName; 555 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 556 if( iRightCol<0 557 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, 558 pRight->fg.isSynthUsing)==0 559 ){ 560 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 561 "not present in both tables", zName); 562 return 1; 563 } 564 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 565 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 566 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 567 /* This branch runs if the query contains one or more RIGHT or FULL 568 ** JOINs. If only a single table on the left side of this join 569 ** contains the zName column, then this branch is a no-op. 570 ** But if there are two or more tables on the left side 571 ** of the join, construct a coalesce() function that gathers all 572 ** such tables. Raise an error if more than one of those references 573 ** to zName is not also within a prior USING clause. 574 ** 575 ** We really ought to raise an error if there are two or more 576 ** non-USING references to zName on the left of an INNER or LEFT 577 ** JOIN. But older versions of SQLite do not do that, so we avoid 578 ** adding a new error so as to not break legacy applications. 579 */ 580 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ 581 static const Token tkCoalesce = { "coalesce", 8 }; 582 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, 583 pRight->fg.isSynthUsing)!=0 ){ 584 if( pSrc->a[iLeft].fg.isUsing==0 585 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 586 ){ 587 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", 588 zName); 589 break; 590 } 591 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 592 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 593 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 594 } 595 if( pFuncArgs ){ 596 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 597 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); 598 } 599 } 600 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); 601 sqlite3SrcItemColumnUsed(pRight, iRightCol); 602 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 603 assert( pE2!=0 || pEq==0 ); 604 if( pEq ){ 605 ExprSetProperty(pEq, joinType); 606 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 607 ExprSetVVAProperty(pEq, EP_NoReduce); 608 pEq->w.iJoin = pE2->iTable; 609 } 610 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); 611 } 612 } 613 614 /* Add the ON clause to the end of the WHERE clause, connected by 615 ** an AND operator. 616 */ 617 else if( pRight->u3.pOn ){ 618 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); 619 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 620 pRight->u3.pOn = 0; 621 pRight->fg.isOn = 1; 622 } 623 } 624 return 0; 625 } 626 627 /* 628 ** An instance of this object holds information (beyond pParse and pSelect) 629 ** needed to load the next result row that is to be added to the sorter. 630 */ 631 typedef struct RowLoadInfo RowLoadInfo; 632 struct RowLoadInfo { 633 int regResult; /* Store results in array of registers here */ 634 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 635 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 636 ExprList *pExtra; /* Extra columns needed by sorter refs */ 637 int regExtraResult; /* Where to load the extra columns */ 638 #endif 639 }; 640 641 /* 642 ** This routine does the work of loading query data into an array of 643 ** registers so that it can be added to the sorter. 644 */ 645 static void innerLoopLoadRow( 646 Parse *pParse, /* Statement under construction */ 647 Select *pSelect, /* The query being coded */ 648 RowLoadInfo *pInfo /* Info needed to complete the row load */ 649 ){ 650 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 651 0, pInfo->ecelFlags); 652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 653 if( pInfo->pExtra ){ 654 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 655 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 656 } 657 #endif 658 } 659 660 /* 661 ** Code the OP_MakeRecord instruction that generates the entry to be 662 ** added into the sorter. 663 ** 664 ** Return the register in which the result is stored. 665 */ 666 static int makeSorterRecord( 667 Parse *pParse, 668 SortCtx *pSort, 669 Select *pSelect, 670 int regBase, 671 int nBase 672 ){ 673 int nOBSat = pSort->nOBSat; 674 Vdbe *v = pParse->pVdbe; 675 int regOut = ++pParse->nMem; 676 if( pSort->pDeferredRowLoad ){ 677 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 678 } 679 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 680 return regOut; 681 } 682 683 /* 684 ** Generate code that will push the record in registers regData 685 ** through regData+nData-1 onto the sorter. 686 */ 687 static void pushOntoSorter( 688 Parse *pParse, /* Parser context */ 689 SortCtx *pSort, /* Information about the ORDER BY clause */ 690 Select *pSelect, /* The whole SELECT statement */ 691 int regData, /* First register holding data to be sorted */ 692 int regOrigData, /* First register holding data before packing */ 693 int nData, /* Number of elements in the regData data array */ 694 int nPrefixReg /* No. of reg prior to regData available for use */ 695 ){ 696 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 697 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 698 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 699 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 700 int regBase; /* Regs for sorter record */ 701 int regRecord = 0; /* Assembled sorter record */ 702 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 703 int op; /* Opcode to add sorter record to sorter */ 704 int iLimit; /* LIMIT counter */ 705 int iSkip = 0; /* End of the sorter insert loop */ 706 707 assert( bSeq==0 || bSeq==1 ); 708 709 /* Three cases: 710 ** (1) The data to be sorted has already been packed into a Record 711 ** by a prior OP_MakeRecord. In this case nData==1 and regData 712 ** will be completely unrelated to regOrigData. 713 ** (2) All output columns are included in the sort record. In that 714 ** case regData==regOrigData. 715 ** (3) Some output columns are omitted from the sort record due to 716 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 717 ** SQLITE_ECEL_OMITREF optimization, or due to the 718 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 719 ** regOrigData is 0 to prevent this routine from trying to copy 720 ** values that might not yet exist. 721 */ 722 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 723 724 if( nPrefixReg ){ 725 assert( nPrefixReg==nExpr+bSeq ); 726 regBase = regData - nPrefixReg; 727 }else{ 728 regBase = pParse->nMem + 1; 729 pParse->nMem += nBase; 730 } 731 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 732 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 733 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 734 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 735 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 736 if( bSeq ){ 737 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 738 } 739 if( nPrefixReg==0 && nData>0 ){ 740 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 741 } 742 if( nOBSat>0 ){ 743 int regPrevKey; /* The first nOBSat columns of the previous row */ 744 int addrFirst; /* Address of the OP_IfNot opcode */ 745 int addrJmp; /* Address of the OP_Jump opcode */ 746 VdbeOp *pOp; /* Opcode that opens the sorter */ 747 int nKey; /* Number of sorting key columns, including OP_Sequence */ 748 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 749 750 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 751 regPrevKey = pParse->nMem+1; 752 pParse->nMem += pSort->nOBSat; 753 nKey = nExpr - pSort->nOBSat + bSeq; 754 if( bSeq ){ 755 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 756 }else{ 757 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 758 } 759 VdbeCoverage(v); 760 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 761 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 762 if( pParse->db->mallocFailed ) return; 763 pOp->p2 = nKey + nData; 764 pKI = pOp->p4.pKeyInfo; 765 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 766 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 767 testcase( pKI->nAllField > pKI->nKeyField+2 ); 768 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 769 pKI->nAllField-pKI->nKeyField-1); 770 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 771 addrJmp = sqlite3VdbeCurrentAddr(v); 772 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 773 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 774 pSort->regReturn = ++pParse->nMem; 775 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 776 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 777 if( iLimit ){ 778 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 779 VdbeCoverage(v); 780 } 781 sqlite3VdbeJumpHere(v, addrFirst); 782 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 783 sqlite3VdbeJumpHere(v, addrJmp); 784 } 785 if( iLimit ){ 786 /* At this point the values for the new sorter entry are stored 787 ** in an array of registers. They need to be composed into a record 788 ** and inserted into the sorter if either (a) there are currently 789 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 790 ** the largest record currently in the sorter. If (b) is true and there 791 ** are already LIMIT+OFFSET items in the sorter, delete the largest 792 ** entry before inserting the new one. This way there are never more 793 ** than LIMIT+OFFSET items in the sorter. 794 ** 795 ** If the new record does not need to be inserted into the sorter, 796 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 797 ** value is not zero, then it is a label of where to jump. Otherwise, 798 ** just bypass the row insert logic. See the header comment on the 799 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 800 */ 801 int iCsr = pSort->iECursor; 802 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 803 VdbeCoverage(v); 804 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 805 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 806 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 807 VdbeCoverage(v); 808 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 809 } 810 if( regRecord==0 ){ 811 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 812 } 813 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 814 op = OP_SorterInsert; 815 }else{ 816 op = OP_IdxInsert; 817 } 818 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 819 regBase+nOBSat, nBase-nOBSat); 820 if( iSkip ){ 821 sqlite3VdbeChangeP2(v, iSkip, 822 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 823 } 824 } 825 826 /* 827 ** Add code to implement the OFFSET 828 */ 829 static void codeOffset( 830 Vdbe *v, /* Generate code into this VM */ 831 int iOffset, /* Register holding the offset counter */ 832 int iContinue /* Jump here to skip the current record */ 833 ){ 834 if( iOffset>0 ){ 835 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 836 VdbeComment((v, "OFFSET")); 837 } 838 } 839 840 /* 841 ** Add code that will check to make sure the array of registers starting at 842 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 843 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 844 ** are available. Which is used depends on the value of parameter eTnctType, 845 ** as follows: 846 ** 847 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 848 ** Build an ephemeral table that contains all entries seen before and 849 ** skip entries which have been seen before. 850 ** 851 ** Parameter iTab is the cursor number of an ephemeral table that must 852 ** be opened before the VM code generated by this routine is executed. 853 ** The ephemeral cursor table is queried for a record identical to the 854 ** record formed by the current array of registers. If one is found, 855 ** jump to VM address addrRepeat. Otherwise, insert a new record into 856 ** the ephemeral cursor and proceed. 857 ** 858 ** The returned value in this case is a copy of parameter iTab. 859 ** 860 ** WHERE_DISTINCT_ORDERED: 861 ** In this case rows are being delivered sorted order. The ephermal 862 ** table is not required. Instead, the current set of values 863 ** is compared against previous row. If they match, the new row 864 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 865 ** the VM program proceeds with processing the new row. 866 ** 867 ** The returned value in this case is the register number of the first 868 ** in an array of registers used to store the previous result row so that 869 ** it can be compared to the next. The caller must ensure that this 870 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 871 ** will take care of this initialization.) 872 ** 873 ** WHERE_DISTINCT_UNIQUE: 874 ** In this case it has already been determined that the rows are distinct. 875 ** No special action is required. The return value is zero. 876 ** 877 ** Parameter pEList is the list of expressions used to generated the 878 ** contents of each row. It is used by this routine to determine (a) 879 ** how many elements there are in the array of registers and (b) the 880 ** collation sequences that should be used for the comparisons if 881 ** eTnctType is WHERE_DISTINCT_ORDERED. 882 */ 883 static int codeDistinct( 884 Parse *pParse, /* Parsing and code generating context */ 885 int eTnctType, /* WHERE_DISTINCT_* value */ 886 int iTab, /* A sorting index used to test for distinctness */ 887 int addrRepeat, /* Jump to here if not distinct */ 888 ExprList *pEList, /* Expression for each element */ 889 int regElem /* First element */ 890 ){ 891 int iRet = 0; 892 int nResultCol = pEList->nExpr; 893 Vdbe *v = pParse->pVdbe; 894 895 switch( eTnctType ){ 896 case WHERE_DISTINCT_ORDERED: { 897 int i; 898 int iJump; /* Jump destination */ 899 int regPrev; /* Previous row content */ 900 901 /* Allocate space for the previous row */ 902 iRet = regPrev = pParse->nMem+1; 903 pParse->nMem += nResultCol; 904 905 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 906 for(i=0; i<nResultCol; i++){ 907 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 908 if( i<nResultCol-1 ){ 909 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 910 VdbeCoverage(v); 911 }else{ 912 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 913 VdbeCoverage(v); 914 } 915 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 916 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 917 } 918 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 919 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 920 break; 921 } 922 923 case WHERE_DISTINCT_UNIQUE: { 924 /* nothing to do */ 925 break; 926 } 927 928 default: { 929 int r1 = sqlite3GetTempReg(pParse); 930 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 931 VdbeCoverage(v); 932 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 933 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 934 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 935 sqlite3ReleaseTempReg(pParse, r1); 936 iRet = iTab; 937 break; 938 } 939 } 940 941 return iRet; 942 } 943 944 /* 945 ** This routine runs after codeDistinct(). It makes necessary 946 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 947 ** routine made use of. This processing must be done separately since 948 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 949 ** laid down. 950 ** 951 ** WHERE_DISTINCT_NOOP: 952 ** WHERE_DISTINCT_UNORDERED: 953 ** 954 ** No adjustments necessary. This function is a no-op. 955 ** 956 ** WHERE_DISTINCT_UNIQUE: 957 ** 958 ** The ephemeral table is not needed. So change the 959 ** OP_OpenEphemeral opcode into an OP_Noop. 960 ** 961 ** WHERE_DISTINCT_ORDERED: 962 ** 963 ** The ephemeral table is not needed. But we do need register 964 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 965 ** into an OP_Null on the iVal register. 966 */ 967 static void fixDistinctOpenEph( 968 Parse *pParse, /* Parsing and code generating context */ 969 int eTnctType, /* WHERE_DISTINCT_* value */ 970 int iVal, /* Value returned by codeDistinct() */ 971 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 972 ){ 973 if( pParse->nErr==0 974 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 975 ){ 976 Vdbe *v = pParse->pVdbe; 977 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 978 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 979 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 980 } 981 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 982 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 983 ** bit on the first register of the previous value. This will cause the 984 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 985 ** the loop even if the first row is all NULLs. */ 986 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 987 pOp->opcode = OP_Null; 988 pOp->p1 = 1; 989 pOp->p2 = iVal; 990 } 991 } 992 } 993 994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 995 /* 996 ** This function is called as part of inner-loop generation for a SELECT 997 ** statement with an ORDER BY that is not optimized by an index. It 998 ** determines the expressions, if any, that the sorter-reference 999 ** optimization should be used for. The sorter-reference optimization 1000 ** is used for SELECT queries like: 1001 ** 1002 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 1003 ** 1004 ** If the optimization is used for expression "bigblob", then instead of 1005 ** storing values read from that column in the sorter records, the PK of 1006 ** the row from table t1 is stored instead. Then, as records are extracted from 1007 ** the sorter to return to the user, the required value of bigblob is 1008 ** retrieved directly from table t1. If the values are very large, this 1009 ** can be more efficient than storing them directly in the sorter records. 1010 ** 1011 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList 1012 ** for which the sorter-reference optimization should be enabled. 1013 ** Additionally, the pSort->aDefer[] array is populated with entries 1014 ** for all cursors required to evaluate all selected expressions. Finally. 1015 ** output variable (*ppExtra) is set to an expression list containing 1016 ** expressions for all extra PK values that should be stored in the 1017 ** sorter records. 1018 */ 1019 static void selectExprDefer( 1020 Parse *pParse, /* Leave any error here */ 1021 SortCtx *pSort, /* Sorter context */ 1022 ExprList *pEList, /* Expressions destined for sorter */ 1023 ExprList **ppExtra /* Expressions to append to sorter record */ 1024 ){ 1025 int i; 1026 int nDefer = 0; 1027 ExprList *pExtra = 0; 1028 for(i=0; i<pEList->nExpr; i++){ 1029 struct ExprList_item *pItem = &pEList->a[i]; 1030 if( pItem->u.x.iOrderByCol==0 ){ 1031 Expr *pExpr = pItem->pExpr; 1032 Table *pTab; 1033 if( pExpr->op==TK_COLUMN 1034 && pExpr->iColumn>=0 1035 && ALWAYS( ExprUseYTab(pExpr) ) 1036 && (pTab = pExpr->y.pTab)!=0 1037 && IsOrdinaryTable(pTab) 1038 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 1039 ){ 1040 int j; 1041 for(j=0; j<nDefer; j++){ 1042 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 1043 } 1044 if( j==nDefer ){ 1045 if( nDefer==ArraySize(pSort->aDefer) ){ 1046 continue; 1047 }else{ 1048 int nKey = 1; 1049 int k; 1050 Index *pPk = 0; 1051 if( !HasRowid(pTab) ){ 1052 pPk = sqlite3PrimaryKeyIndex(pTab); 1053 nKey = pPk->nKeyCol; 1054 } 1055 for(k=0; k<nKey; k++){ 1056 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 1057 if( pNew ){ 1058 pNew->iTable = pExpr->iTable; 1059 assert( ExprUseYTab(pNew) ); 1060 pNew->y.pTab = pExpr->y.pTab; 1061 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 1062 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 1063 } 1064 } 1065 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 1066 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 1067 pSort->aDefer[nDefer].nKey = nKey; 1068 nDefer++; 1069 } 1070 } 1071 pItem->fg.bSorterRef = 1; 1072 } 1073 } 1074 } 1075 pSort->nDefer = (u8)nDefer; 1076 *ppExtra = pExtra; 1077 } 1078 #endif 1079 1080 /* 1081 ** This routine generates the code for the inside of the inner loop 1082 ** of a SELECT. 1083 ** 1084 ** If srcTab is negative, then the p->pEList expressions 1085 ** are evaluated in order to get the data for this row. If srcTab is 1086 ** zero or more, then data is pulled from srcTab and p->pEList is used only 1087 ** to get the number of columns and the collation sequence for each column. 1088 */ 1089 static void selectInnerLoop( 1090 Parse *pParse, /* The parser context */ 1091 Select *p, /* The complete select statement being coded */ 1092 int srcTab, /* Pull data from this table if non-negative */ 1093 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1094 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1095 SelectDest *pDest, /* How to dispose of the results */ 1096 int iContinue, /* Jump here to continue with next row */ 1097 int iBreak /* Jump here to break out of the inner loop */ 1098 ){ 1099 Vdbe *v = pParse->pVdbe; 1100 int i; 1101 int hasDistinct; /* True if the DISTINCT keyword is present */ 1102 int eDest = pDest->eDest; /* How to dispose of results */ 1103 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1104 int nResultCol; /* Number of result columns */ 1105 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1106 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1107 1108 /* Usually, regResult is the first cell in an array of memory cells 1109 ** containing the current result row. In this case regOrig is set to the 1110 ** same value. However, if the results are being sent to the sorter, the 1111 ** values for any expressions that are also part of the sort-key are omitted 1112 ** from this array. In this case regOrig is set to zero. */ 1113 int regResult; /* Start of memory holding current results */ 1114 int regOrig; /* Start of memory holding full result (or 0) */ 1115 1116 assert( v ); 1117 assert( p->pEList!=0 ); 1118 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1119 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1120 if( pSort==0 && !hasDistinct ){ 1121 assert( iContinue!=0 ); 1122 codeOffset(v, p->iOffset, iContinue); 1123 } 1124 1125 /* Pull the requested columns. 1126 */ 1127 nResultCol = p->pEList->nExpr; 1128 1129 if( pDest->iSdst==0 ){ 1130 if( pSort ){ 1131 nPrefixReg = pSort->pOrderBy->nExpr; 1132 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1133 pParse->nMem += nPrefixReg; 1134 } 1135 pDest->iSdst = pParse->nMem+1; 1136 pParse->nMem += nResultCol; 1137 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1138 /* This is an error condition that can result, for example, when a SELECT 1139 ** on the right-hand side of an INSERT contains more result columns than 1140 ** there are columns in the table on the left. The error will be caught 1141 ** and reported later. But we need to make sure enough memory is allocated 1142 ** to avoid other spurious errors in the meantime. */ 1143 pParse->nMem += nResultCol; 1144 } 1145 pDest->nSdst = nResultCol; 1146 regOrig = regResult = pDest->iSdst; 1147 if( srcTab>=0 ){ 1148 for(i=0; i<nResultCol; i++){ 1149 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1150 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1151 } 1152 }else if( eDest!=SRT_Exists ){ 1153 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1154 ExprList *pExtra = 0; 1155 #endif 1156 /* If the destination is an EXISTS(...) expression, the actual 1157 ** values returned by the SELECT are not required. 1158 */ 1159 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1160 ExprList *pEList; 1161 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1162 ecelFlags = SQLITE_ECEL_DUP; 1163 }else{ 1164 ecelFlags = 0; 1165 } 1166 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1167 /* For each expression in p->pEList that is a copy of an expression in 1168 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1169 ** iOrderByCol value to one more than the index of the ORDER BY 1170 ** expression within the sort-key that pushOntoSorter() will generate. 1171 ** This allows the p->pEList field to be omitted from the sorted record, 1172 ** saving space and CPU cycles. */ 1173 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1174 1175 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1176 int j; 1177 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1178 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1179 } 1180 } 1181 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1182 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1183 if( pExtra && pParse->db->mallocFailed==0 ){ 1184 /* If there are any extra PK columns to add to the sorter records, 1185 ** allocate extra memory cells and adjust the OpenEphemeral 1186 ** instruction to account for the larger records. This is only 1187 ** required if there are one or more WITHOUT ROWID tables with 1188 ** composite primary keys in the SortCtx.aDefer[] array. */ 1189 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1190 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1191 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1192 pParse->nMem += pExtra->nExpr; 1193 } 1194 #endif 1195 1196 /* Adjust nResultCol to account for columns that are omitted 1197 ** from the sorter by the optimizations in this branch */ 1198 pEList = p->pEList; 1199 for(i=0; i<pEList->nExpr; i++){ 1200 if( pEList->a[i].u.x.iOrderByCol>0 1201 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1202 || pEList->a[i].fg.bSorterRef 1203 #endif 1204 ){ 1205 nResultCol--; 1206 regOrig = 0; 1207 } 1208 } 1209 1210 testcase( regOrig ); 1211 testcase( eDest==SRT_Set ); 1212 testcase( eDest==SRT_Mem ); 1213 testcase( eDest==SRT_Coroutine ); 1214 testcase( eDest==SRT_Output ); 1215 assert( eDest==SRT_Set || eDest==SRT_Mem 1216 || eDest==SRT_Coroutine || eDest==SRT_Output 1217 || eDest==SRT_Upfrom ); 1218 } 1219 sRowLoadInfo.regResult = regResult; 1220 sRowLoadInfo.ecelFlags = ecelFlags; 1221 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1222 sRowLoadInfo.pExtra = pExtra; 1223 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1224 if( pExtra ) nResultCol += pExtra->nExpr; 1225 #endif 1226 if( p->iLimit 1227 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1228 && nPrefixReg>0 1229 ){ 1230 assert( pSort!=0 ); 1231 assert( hasDistinct==0 ); 1232 pSort->pDeferredRowLoad = &sRowLoadInfo; 1233 regOrig = 0; 1234 }else{ 1235 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1236 } 1237 } 1238 1239 /* If the DISTINCT keyword was present on the SELECT statement 1240 ** and this row has been seen before, then do not make this row 1241 ** part of the result. 1242 */ 1243 if( hasDistinct ){ 1244 int eType = pDistinct->eTnctType; 1245 int iTab = pDistinct->tabTnct; 1246 assert( nResultCol==p->pEList->nExpr ); 1247 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1248 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1249 if( pSort==0 ){ 1250 codeOffset(v, p->iOffset, iContinue); 1251 } 1252 } 1253 1254 switch( eDest ){ 1255 /* In this mode, write each query result to the key of the temporary 1256 ** table iParm. 1257 */ 1258 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1259 case SRT_Union: { 1260 int r1; 1261 r1 = sqlite3GetTempReg(pParse); 1262 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1263 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1264 sqlite3ReleaseTempReg(pParse, r1); 1265 break; 1266 } 1267 1268 /* Construct a record from the query result, but instead of 1269 ** saving that record, use it as a key to delete elements from 1270 ** the temporary table iParm. 1271 */ 1272 case SRT_Except: { 1273 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1274 break; 1275 } 1276 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1277 1278 /* Store the result as data using a unique key. 1279 */ 1280 case SRT_Fifo: 1281 case SRT_DistFifo: 1282 case SRT_Table: 1283 case SRT_EphemTab: { 1284 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1285 testcase( eDest==SRT_Table ); 1286 testcase( eDest==SRT_EphemTab ); 1287 testcase( eDest==SRT_Fifo ); 1288 testcase( eDest==SRT_DistFifo ); 1289 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1290 #ifndef SQLITE_OMIT_CTE 1291 if( eDest==SRT_DistFifo ){ 1292 /* If the destination is DistFifo, then cursor (iParm+1) is open 1293 ** on an ephemeral index. If the current row is already present 1294 ** in the index, do not write it to the output. If not, add the 1295 ** current row to the index and proceed with writing it to the 1296 ** output table as well. */ 1297 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1298 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1299 VdbeCoverage(v); 1300 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1301 assert( pSort==0 ); 1302 } 1303 #endif 1304 if( pSort ){ 1305 assert( regResult==regOrig ); 1306 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1307 }else{ 1308 int r2 = sqlite3GetTempReg(pParse); 1309 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1310 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1311 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1312 sqlite3ReleaseTempReg(pParse, r2); 1313 } 1314 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1315 break; 1316 } 1317 1318 case SRT_Upfrom: { 1319 if( pSort ){ 1320 pushOntoSorter( 1321 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1322 }else{ 1323 int i2 = pDest->iSDParm2; 1324 int r1 = sqlite3GetTempReg(pParse); 1325 1326 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1327 ** might still be trying to return one row, because that is what 1328 ** aggregates do. Don't record that empty row in the output table. */ 1329 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1330 1331 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1332 regResult+(i2<0), nResultCol-(i2<0), r1); 1333 if( i2<0 ){ 1334 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1335 }else{ 1336 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1337 } 1338 } 1339 break; 1340 } 1341 1342 #ifndef SQLITE_OMIT_SUBQUERY 1343 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1344 ** then there should be a single item on the stack. Write this 1345 ** item into the set table with bogus data. 1346 */ 1347 case SRT_Set: { 1348 if( pSort ){ 1349 /* At first glance you would think we could optimize out the 1350 ** ORDER BY in this case since the order of entries in the set 1351 ** does not matter. But there might be a LIMIT clause, in which 1352 ** case the order does matter */ 1353 pushOntoSorter( 1354 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1355 }else{ 1356 int r1 = sqlite3GetTempReg(pParse); 1357 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1358 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1359 r1, pDest->zAffSdst, nResultCol); 1360 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1361 sqlite3ReleaseTempReg(pParse, r1); 1362 } 1363 break; 1364 } 1365 1366 1367 /* If any row exist in the result set, record that fact and abort. 1368 */ 1369 case SRT_Exists: { 1370 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1371 /* The LIMIT clause will terminate the loop for us */ 1372 break; 1373 } 1374 1375 /* If this is a scalar select that is part of an expression, then 1376 ** store the results in the appropriate memory cell or array of 1377 ** memory cells and break out of the scan loop. 1378 */ 1379 case SRT_Mem: { 1380 if( pSort ){ 1381 assert( nResultCol<=pDest->nSdst ); 1382 pushOntoSorter( 1383 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1384 }else{ 1385 assert( nResultCol==pDest->nSdst ); 1386 assert( regResult==iParm ); 1387 /* The LIMIT clause will jump out of the loop for us */ 1388 } 1389 break; 1390 } 1391 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1392 1393 case SRT_Coroutine: /* Send data to a co-routine */ 1394 case SRT_Output: { /* Return the results */ 1395 testcase( eDest==SRT_Coroutine ); 1396 testcase( eDest==SRT_Output ); 1397 if( pSort ){ 1398 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1399 nPrefixReg); 1400 }else if( eDest==SRT_Coroutine ){ 1401 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1402 }else{ 1403 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1404 } 1405 break; 1406 } 1407 1408 #ifndef SQLITE_OMIT_CTE 1409 /* Write the results into a priority queue that is order according to 1410 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1411 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1412 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1413 ** final OP_Sequence column. The last column is the record as a blob. 1414 */ 1415 case SRT_DistQueue: 1416 case SRT_Queue: { 1417 int nKey; 1418 int r1, r2, r3; 1419 int addrTest = 0; 1420 ExprList *pSO; 1421 pSO = pDest->pOrderBy; 1422 assert( pSO ); 1423 nKey = pSO->nExpr; 1424 r1 = sqlite3GetTempReg(pParse); 1425 r2 = sqlite3GetTempRange(pParse, nKey+2); 1426 r3 = r2+nKey+1; 1427 if( eDest==SRT_DistQueue ){ 1428 /* If the destination is DistQueue, then cursor (iParm+1) is open 1429 ** on a second ephemeral index that holds all values every previously 1430 ** added to the queue. */ 1431 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1432 regResult, nResultCol); 1433 VdbeCoverage(v); 1434 } 1435 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1436 if( eDest==SRT_DistQueue ){ 1437 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1438 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1439 } 1440 for(i=0; i<nKey; i++){ 1441 sqlite3VdbeAddOp2(v, OP_SCopy, 1442 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1443 r2+i); 1444 } 1445 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1446 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1447 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1448 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1449 sqlite3ReleaseTempReg(pParse, r1); 1450 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1451 break; 1452 } 1453 #endif /* SQLITE_OMIT_CTE */ 1454 1455 1456 1457 #if !defined(SQLITE_OMIT_TRIGGER) 1458 /* Discard the results. This is used for SELECT statements inside 1459 ** the body of a TRIGGER. The purpose of such selects is to call 1460 ** user-defined functions that have side effects. We do not care 1461 ** about the actual results of the select. 1462 */ 1463 default: { 1464 assert( eDest==SRT_Discard ); 1465 break; 1466 } 1467 #endif 1468 } 1469 1470 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1471 ** there is a sorter, in which case the sorter has already limited 1472 ** the output for us. 1473 */ 1474 if( pSort==0 && p->iLimit ){ 1475 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1476 } 1477 } 1478 1479 /* 1480 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1481 ** X extra columns. 1482 */ 1483 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1484 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1485 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1486 if( p ){ 1487 p->aSortFlags = (u8*)&p->aColl[N+X]; 1488 p->nKeyField = (u16)N; 1489 p->nAllField = (u16)(N+X); 1490 p->enc = ENC(db); 1491 p->db = db; 1492 p->nRef = 1; 1493 memset(&p[1], 0, nExtra); 1494 }else{ 1495 return (KeyInfo*)sqlite3OomFault(db); 1496 } 1497 return p; 1498 } 1499 1500 /* 1501 ** Deallocate a KeyInfo object 1502 */ 1503 void sqlite3KeyInfoUnref(KeyInfo *p){ 1504 if( p ){ 1505 assert( p->db!=0 ); 1506 assert( p->nRef>0 ); 1507 p->nRef--; 1508 if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p); 1509 } 1510 } 1511 1512 /* 1513 ** Make a new pointer to a KeyInfo object 1514 */ 1515 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1516 if( p ){ 1517 assert( p->nRef>0 ); 1518 p->nRef++; 1519 } 1520 return p; 1521 } 1522 1523 #ifdef SQLITE_DEBUG 1524 /* 1525 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1526 ** can only be changed if this is just a single reference to the object. 1527 ** 1528 ** This routine is used only inside of assert() statements. 1529 */ 1530 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1531 #endif /* SQLITE_DEBUG */ 1532 1533 /* 1534 ** Given an expression list, generate a KeyInfo structure that records 1535 ** the collating sequence for each expression in that expression list. 1536 ** 1537 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1538 ** KeyInfo structure is appropriate for initializing a virtual index to 1539 ** implement that clause. If the ExprList is the result set of a SELECT 1540 ** then the KeyInfo structure is appropriate for initializing a virtual 1541 ** index to implement a DISTINCT test. 1542 ** 1543 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1544 ** function is responsible for seeing that this structure is eventually 1545 ** freed. 1546 */ 1547 KeyInfo *sqlite3KeyInfoFromExprList( 1548 Parse *pParse, /* Parsing context */ 1549 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1550 int iStart, /* Begin with this column of pList */ 1551 int nExtra /* Add this many extra columns to the end */ 1552 ){ 1553 int nExpr; 1554 KeyInfo *pInfo; 1555 struct ExprList_item *pItem; 1556 sqlite3 *db = pParse->db; 1557 int i; 1558 1559 nExpr = pList->nExpr; 1560 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1561 if( pInfo ){ 1562 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1563 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1564 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1565 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; 1566 } 1567 } 1568 return pInfo; 1569 } 1570 1571 /* 1572 ** Name of the connection operator, used for error messages. 1573 */ 1574 const char *sqlite3SelectOpName(int id){ 1575 char *z; 1576 switch( id ){ 1577 case TK_ALL: z = "UNION ALL"; break; 1578 case TK_INTERSECT: z = "INTERSECT"; break; 1579 case TK_EXCEPT: z = "EXCEPT"; break; 1580 default: z = "UNION"; break; 1581 } 1582 return z; 1583 } 1584 1585 #ifndef SQLITE_OMIT_EXPLAIN 1586 /* 1587 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1588 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1589 ** where the caption is of the form: 1590 ** 1591 ** "USE TEMP B-TREE FOR xxx" 1592 ** 1593 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1594 ** is determined by the zUsage argument. 1595 */ 1596 static void explainTempTable(Parse *pParse, const char *zUsage){ 1597 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1598 } 1599 1600 /* 1601 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1602 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1603 ** in sqlite3Select() to assign values to structure member variables that 1604 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1605 ** code with #ifndef directives. 1606 */ 1607 # define explainSetInteger(a, b) a = b 1608 1609 #else 1610 /* No-op versions of the explainXXX() functions and macros. */ 1611 # define explainTempTable(y,z) 1612 # define explainSetInteger(y,z) 1613 #endif 1614 1615 1616 /* 1617 ** If the inner loop was generated using a non-null pOrderBy argument, 1618 ** then the results were placed in a sorter. After the loop is terminated 1619 ** we need to run the sorter and output the results. The following 1620 ** routine generates the code needed to do that. 1621 */ 1622 static void generateSortTail( 1623 Parse *pParse, /* Parsing context */ 1624 Select *p, /* The SELECT statement */ 1625 SortCtx *pSort, /* Information on the ORDER BY clause */ 1626 int nColumn, /* Number of columns of data */ 1627 SelectDest *pDest /* Write the sorted results here */ 1628 ){ 1629 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1630 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1631 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1632 int addr; /* Top of output loop. Jump for Next. */ 1633 int addrOnce = 0; 1634 int iTab; 1635 ExprList *pOrderBy = pSort->pOrderBy; 1636 int eDest = pDest->eDest; 1637 int iParm = pDest->iSDParm; 1638 int regRow; 1639 int regRowid; 1640 int iCol; 1641 int nKey; /* Number of key columns in sorter record */ 1642 int iSortTab; /* Sorter cursor to read from */ 1643 int i; 1644 int bSeq; /* True if sorter record includes seq. no. */ 1645 int nRefKey = 0; 1646 struct ExprList_item *aOutEx = p->pEList->a; 1647 1648 assert( addrBreak<0 ); 1649 if( pSort->labelBkOut ){ 1650 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1651 sqlite3VdbeGoto(v, addrBreak); 1652 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1653 } 1654 1655 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1656 /* Open any cursors needed for sorter-reference expressions */ 1657 for(i=0; i<pSort->nDefer; i++){ 1658 Table *pTab = pSort->aDefer[i].pTab; 1659 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1660 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1661 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1662 } 1663 #endif 1664 1665 iTab = pSort->iECursor; 1666 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1667 if( eDest==SRT_Mem && p->iOffset ){ 1668 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1669 } 1670 regRowid = 0; 1671 regRow = pDest->iSdst; 1672 }else{ 1673 regRowid = sqlite3GetTempReg(pParse); 1674 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1675 regRow = sqlite3GetTempReg(pParse); 1676 nColumn = 0; 1677 }else{ 1678 regRow = sqlite3GetTempRange(pParse, nColumn); 1679 } 1680 } 1681 nKey = pOrderBy->nExpr - pSort->nOBSat; 1682 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1683 int regSortOut = ++pParse->nMem; 1684 iSortTab = pParse->nTab++; 1685 if( pSort->labelBkOut ){ 1686 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1687 } 1688 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1689 nKey+1+nColumn+nRefKey); 1690 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1691 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1692 VdbeCoverage(v); 1693 assert( p->iLimit==0 && p->iOffset==0 ); 1694 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1695 bSeq = 0; 1696 }else{ 1697 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1698 codeOffset(v, p->iOffset, addrContinue); 1699 iSortTab = iTab; 1700 bSeq = 1; 1701 if( p->iOffset>0 ){ 1702 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1703 } 1704 } 1705 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1707 if( aOutEx[i].fg.bSorterRef ) continue; 1708 #endif 1709 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1710 } 1711 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1712 if( pSort->nDefer ){ 1713 int iKey = iCol+1; 1714 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1715 1716 for(i=0; i<pSort->nDefer; i++){ 1717 int iCsr = pSort->aDefer[i].iCsr; 1718 Table *pTab = pSort->aDefer[i].pTab; 1719 int nKey = pSort->aDefer[i].nKey; 1720 1721 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1722 if( HasRowid(pTab) ){ 1723 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1724 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1725 sqlite3VdbeCurrentAddr(v)+1, regKey); 1726 }else{ 1727 int k; 1728 int iJmp; 1729 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1730 for(k=0; k<nKey; k++){ 1731 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1732 } 1733 iJmp = sqlite3VdbeCurrentAddr(v); 1734 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1735 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1736 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1737 } 1738 } 1739 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1740 } 1741 #endif 1742 for(i=nColumn-1; i>=0; i--){ 1743 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1744 if( aOutEx[i].fg.bSorterRef ){ 1745 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1746 }else 1747 #endif 1748 { 1749 int iRead; 1750 if( aOutEx[i].u.x.iOrderByCol ){ 1751 iRead = aOutEx[i].u.x.iOrderByCol-1; 1752 }else{ 1753 iRead = iCol--; 1754 } 1755 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1756 VdbeComment((v, "%s", aOutEx[i].zEName)); 1757 } 1758 } 1759 switch( eDest ){ 1760 case SRT_Table: 1761 case SRT_EphemTab: { 1762 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1763 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1764 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1765 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1766 break; 1767 } 1768 #ifndef SQLITE_OMIT_SUBQUERY 1769 case SRT_Set: { 1770 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1771 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1772 pDest->zAffSdst, nColumn); 1773 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1774 break; 1775 } 1776 case SRT_Mem: { 1777 /* The LIMIT clause will terminate the loop for us */ 1778 break; 1779 } 1780 #endif 1781 case SRT_Upfrom: { 1782 int i2 = pDest->iSDParm2; 1783 int r1 = sqlite3GetTempReg(pParse); 1784 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1785 if( i2<0 ){ 1786 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1787 }else{ 1788 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1789 } 1790 break; 1791 } 1792 default: { 1793 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1794 testcase( eDest==SRT_Output ); 1795 testcase( eDest==SRT_Coroutine ); 1796 if( eDest==SRT_Output ){ 1797 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1798 }else{ 1799 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1800 } 1801 break; 1802 } 1803 } 1804 if( regRowid ){ 1805 if( eDest==SRT_Set ){ 1806 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1807 }else{ 1808 sqlite3ReleaseTempReg(pParse, regRow); 1809 } 1810 sqlite3ReleaseTempReg(pParse, regRowid); 1811 } 1812 /* The bottom of the loop 1813 */ 1814 sqlite3VdbeResolveLabel(v, addrContinue); 1815 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1816 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1817 }else{ 1818 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1819 } 1820 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1821 sqlite3VdbeResolveLabel(v, addrBreak); 1822 } 1823 1824 /* 1825 ** Return a pointer to a string containing the 'declaration type' of the 1826 ** expression pExpr. The string may be treated as static by the caller. 1827 ** 1828 ** The declaration type is the exact datatype definition extracted from the 1829 ** original CREATE TABLE statement if the expression is a column. The 1830 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1831 ** is considered a column can be complex in the presence of subqueries. The 1832 ** result-set expression in all of the following SELECT statements is 1833 ** considered a column by this function. 1834 ** 1835 ** SELECT col FROM tbl; 1836 ** SELECT (SELECT col FROM tbl; 1837 ** SELECT (SELECT col FROM tbl); 1838 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1839 ** 1840 ** The declaration type for any expression other than a column is NULL. 1841 ** 1842 ** This routine has either 3 or 6 parameters depending on whether or not 1843 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1844 */ 1845 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1846 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1847 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1848 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1849 #endif 1850 static const char *columnTypeImpl( 1851 NameContext *pNC, 1852 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1853 Expr *pExpr 1854 #else 1855 Expr *pExpr, 1856 const char **pzOrigDb, 1857 const char **pzOrigTab, 1858 const char **pzOrigCol 1859 #endif 1860 ){ 1861 char const *zType = 0; 1862 int j; 1863 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1864 char const *zOrigDb = 0; 1865 char const *zOrigTab = 0; 1866 char const *zOrigCol = 0; 1867 #endif 1868 1869 assert( pExpr!=0 ); 1870 assert( pNC->pSrcList!=0 ); 1871 switch( pExpr->op ){ 1872 case TK_COLUMN: { 1873 /* The expression is a column. Locate the table the column is being 1874 ** extracted from in NameContext.pSrcList. This table may be real 1875 ** database table or a subquery. 1876 */ 1877 Table *pTab = 0; /* Table structure column is extracted from */ 1878 Select *pS = 0; /* Select the column is extracted from */ 1879 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1880 while( pNC && !pTab ){ 1881 SrcList *pTabList = pNC->pSrcList; 1882 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1883 if( j<pTabList->nSrc ){ 1884 pTab = pTabList->a[j].pTab; 1885 pS = pTabList->a[j].pSelect; 1886 }else{ 1887 pNC = pNC->pNext; 1888 } 1889 } 1890 1891 if( pTab==0 ){ 1892 /* At one time, code such as "SELECT new.x" within a trigger would 1893 ** cause this condition to run. Since then, we have restructured how 1894 ** trigger code is generated and so this condition is no longer 1895 ** possible. However, it can still be true for statements like 1896 ** the following: 1897 ** 1898 ** CREATE TABLE t1(col INTEGER); 1899 ** SELECT (SELECT t1.col) FROM FROM t1; 1900 ** 1901 ** when columnType() is called on the expression "t1.col" in the 1902 ** sub-select. In this case, set the column type to NULL, even 1903 ** though it should really be "INTEGER". 1904 ** 1905 ** This is not a problem, as the column type of "t1.col" is never 1906 ** used. When columnType() is called on the expression 1907 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1908 ** branch below. */ 1909 break; 1910 } 1911 1912 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1913 if( pS ){ 1914 /* The "table" is actually a sub-select or a view in the FROM clause 1915 ** of the SELECT statement. Return the declaration type and origin 1916 ** data for the result-set column of the sub-select. 1917 */ 1918 if( iCol<pS->pEList->nExpr 1919 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1920 && iCol>=0 1921 #else 1922 && ALWAYS(iCol>=0) 1923 #endif 1924 ){ 1925 /* If iCol is less than zero, then the expression requests the 1926 ** rowid of the sub-select or view. This expression is legal (see 1927 ** test case misc2.2.2) - it always evaluates to NULL. 1928 */ 1929 NameContext sNC; 1930 Expr *p = pS->pEList->a[iCol].pExpr; 1931 sNC.pSrcList = pS->pSrc; 1932 sNC.pNext = pNC; 1933 sNC.pParse = pNC->pParse; 1934 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1935 } 1936 }else{ 1937 /* A real table or a CTE table */ 1938 assert( !pS ); 1939 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1940 if( iCol<0 ) iCol = pTab->iPKey; 1941 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1942 if( iCol<0 ){ 1943 zType = "INTEGER"; 1944 zOrigCol = "rowid"; 1945 }else{ 1946 zOrigCol = pTab->aCol[iCol].zCnName; 1947 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1948 } 1949 zOrigTab = pTab->zName; 1950 if( pNC->pParse && pTab->pSchema ){ 1951 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1952 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1953 } 1954 #else 1955 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1956 if( iCol<0 ){ 1957 zType = "INTEGER"; 1958 }else{ 1959 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1960 } 1961 #endif 1962 } 1963 break; 1964 } 1965 #ifndef SQLITE_OMIT_SUBQUERY 1966 case TK_SELECT: { 1967 /* The expression is a sub-select. Return the declaration type and 1968 ** origin info for the single column in the result set of the SELECT 1969 ** statement. 1970 */ 1971 NameContext sNC; 1972 Select *pS; 1973 Expr *p; 1974 assert( ExprUseXSelect(pExpr) ); 1975 pS = pExpr->x.pSelect; 1976 p = pS->pEList->a[0].pExpr; 1977 sNC.pSrcList = pS->pSrc; 1978 sNC.pNext = pNC; 1979 sNC.pParse = pNC->pParse; 1980 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1981 break; 1982 } 1983 #endif 1984 } 1985 1986 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1987 if( pzOrigDb ){ 1988 assert( pzOrigTab && pzOrigCol ); 1989 *pzOrigDb = zOrigDb; 1990 *pzOrigTab = zOrigTab; 1991 *pzOrigCol = zOrigCol; 1992 } 1993 #endif 1994 return zType; 1995 } 1996 1997 /* 1998 ** Generate code that will tell the VDBE the declaration types of columns 1999 ** in the result set. 2000 */ 2001 static void generateColumnTypes( 2002 Parse *pParse, /* Parser context */ 2003 SrcList *pTabList, /* List of tables */ 2004 ExprList *pEList /* Expressions defining the result set */ 2005 ){ 2006 #ifndef SQLITE_OMIT_DECLTYPE 2007 Vdbe *v = pParse->pVdbe; 2008 int i; 2009 NameContext sNC; 2010 sNC.pSrcList = pTabList; 2011 sNC.pParse = pParse; 2012 sNC.pNext = 0; 2013 for(i=0; i<pEList->nExpr; i++){ 2014 Expr *p = pEList->a[i].pExpr; 2015 const char *zType; 2016 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2017 const char *zOrigDb = 0; 2018 const char *zOrigTab = 0; 2019 const char *zOrigCol = 0; 2020 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 2021 2022 /* The vdbe must make its own copy of the column-type and other 2023 ** column specific strings, in case the schema is reset before this 2024 ** virtual machine is deleted. 2025 */ 2026 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 2027 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 2028 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 2029 #else 2030 zType = columnType(&sNC, p, 0, 0, 0); 2031 #endif 2032 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 2033 } 2034 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 2035 } 2036 2037 2038 /* 2039 ** Compute the column names for a SELECT statement. 2040 ** 2041 ** The only guarantee that SQLite makes about column names is that if the 2042 ** column has an AS clause assigning it a name, that will be the name used. 2043 ** That is the only documented guarantee. However, countless applications 2044 ** developed over the years have made baseless assumptions about column names 2045 ** and will break if those assumptions changes. Hence, use extreme caution 2046 ** when modifying this routine to avoid breaking legacy. 2047 ** 2048 ** See Also: sqlite3ColumnsFromExprList() 2049 ** 2050 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 2051 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 2052 ** applications should operate this way. Nevertheless, we need to support the 2053 ** other modes for legacy: 2054 ** 2055 ** short=OFF, full=OFF: Column name is the text of the expression has it 2056 ** originally appears in the SELECT statement. In 2057 ** other words, the zSpan of the result expression. 2058 ** 2059 ** short=ON, full=OFF: (This is the default setting). If the result 2060 ** refers directly to a table column, then the 2061 ** result column name is just the table column 2062 ** name: COLUMN. Otherwise use zSpan. 2063 ** 2064 ** full=ON, short=ANY: If the result refers directly to a table column, 2065 ** then the result column name with the table name 2066 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 2067 */ 2068 void sqlite3GenerateColumnNames( 2069 Parse *pParse, /* Parser context */ 2070 Select *pSelect /* Generate column names for this SELECT statement */ 2071 ){ 2072 Vdbe *v = pParse->pVdbe; 2073 int i; 2074 Table *pTab; 2075 SrcList *pTabList; 2076 ExprList *pEList; 2077 sqlite3 *db = pParse->db; 2078 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 2079 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 2080 2081 #ifndef SQLITE_OMIT_EXPLAIN 2082 /* If this is an EXPLAIN, skip this step */ 2083 if( pParse->explain ){ 2084 return; 2085 } 2086 #endif 2087 2088 if( pParse->colNamesSet ) return; 2089 /* Column names are determined by the left-most term of a compound select */ 2090 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2091 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2092 pTabList = pSelect->pSrc; 2093 pEList = pSelect->pEList; 2094 assert( v!=0 ); 2095 assert( pTabList!=0 ); 2096 pParse->colNamesSet = 1; 2097 fullName = (db->flags & SQLITE_FullColNames)!=0; 2098 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2099 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2100 for(i=0; i<pEList->nExpr; i++){ 2101 Expr *p = pEList->a[i].pExpr; 2102 2103 assert( p!=0 ); 2104 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2105 assert( p->op!=TK_COLUMN 2106 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2107 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ 2108 /* An AS clause always takes first priority */ 2109 char *zName = pEList->a[i].zEName; 2110 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2111 }else if( srcName && p->op==TK_COLUMN ){ 2112 char *zCol; 2113 int iCol = p->iColumn; 2114 pTab = p->y.pTab; 2115 assert( pTab!=0 ); 2116 if( iCol<0 ) iCol = pTab->iPKey; 2117 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2118 if( iCol<0 ){ 2119 zCol = "rowid"; 2120 }else{ 2121 zCol = pTab->aCol[iCol].zCnName; 2122 } 2123 if( fullName ){ 2124 char *zName = 0; 2125 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2126 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2127 }else{ 2128 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2129 } 2130 }else{ 2131 const char *z = pEList->a[i].zEName; 2132 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2133 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2134 } 2135 } 2136 generateColumnTypes(pParse, pTabList, pEList); 2137 } 2138 2139 /* 2140 ** Given an expression list (which is really the list of expressions 2141 ** that form the result set of a SELECT statement) compute appropriate 2142 ** column names for a table that would hold the expression list. 2143 ** 2144 ** All column names will be unique. 2145 ** 2146 ** Only the column names are computed. Column.zType, Column.zColl, 2147 ** and other fields of Column are zeroed. 2148 ** 2149 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2150 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2151 ** 2152 ** The only guarantee that SQLite makes about column names is that if the 2153 ** column has an AS clause assigning it a name, that will be the name used. 2154 ** That is the only documented guarantee. However, countless applications 2155 ** developed over the years have made baseless assumptions about column names 2156 ** and will break if those assumptions changes. Hence, use extreme caution 2157 ** when modifying this routine to avoid breaking legacy. 2158 ** 2159 ** See Also: sqlite3GenerateColumnNames() 2160 */ 2161 int sqlite3ColumnsFromExprList( 2162 Parse *pParse, /* Parsing context */ 2163 ExprList *pEList, /* Expr list from which to derive column names */ 2164 i16 *pnCol, /* Write the number of columns here */ 2165 Column **paCol /* Write the new column list here */ 2166 ){ 2167 sqlite3 *db = pParse->db; /* Database connection */ 2168 int i, j; /* Loop counters */ 2169 u32 cnt; /* Index added to make the name unique */ 2170 Column *aCol, *pCol; /* For looping over result columns */ 2171 int nCol; /* Number of columns in the result set */ 2172 char *zName; /* Column name */ 2173 int nName; /* Size of name in zName[] */ 2174 Hash ht; /* Hash table of column names */ 2175 Table *pTab; 2176 2177 sqlite3HashInit(&ht); 2178 if( pEList ){ 2179 nCol = pEList->nExpr; 2180 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2181 testcase( aCol==0 ); 2182 if( NEVER(nCol>32767) ) nCol = 32767; 2183 }else{ 2184 nCol = 0; 2185 aCol = 0; 2186 } 2187 assert( nCol==(i16)nCol ); 2188 *pnCol = nCol; 2189 *paCol = aCol; 2190 2191 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2192 struct ExprList_item *pX = &pEList->a[i]; 2193 struct ExprList_item *pCollide; 2194 /* Get an appropriate name for the column 2195 */ 2196 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ 2197 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2198 }else{ 2199 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); 2200 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2201 pColExpr = pColExpr->pRight; 2202 assert( pColExpr!=0 ); 2203 } 2204 if( pColExpr->op==TK_COLUMN 2205 && ALWAYS( ExprUseYTab(pColExpr) ) 2206 && ALWAYS( pColExpr->y.pTab!=0 ) 2207 ){ 2208 /* For columns use the column name name */ 2209 int iCol = pColExpr->iColumn; 2210 pTab = pColExpr->y.pTab; 2211 if( iCol<0 ) iCol = pTab->iPKey; 2212 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2213 }else if( pColExpr->op==TK_ID ){ 2214 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2215 zName = pColExpr->u.zToken; 2216 }else{ 2217 /* Use the original text of the column expression as its name */ 2218 assert( zName==pX->zEName ); /* pointer comparison intended */ 2219 } 2220 } 2221 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2222 zName = sqlite3DbStrDup(db, zName); 2223 }else{ 2224 zName = sqlite3MPrintf(db,"column%d",i+1); 2225 } 2226 2227 /* Make sure the column name is unique. If the name is not unique, 2228 ** append an integer to the name so that it becomes unique. 2229 */ 2230 cnt = 0; 2231 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ 2232 if( pCollide->fg.bUsingTerm ){ 2233 pCol->colFlags |= COLFLAG_NOEXPAND; 2234 } 2235 nName = sqlite3Strlen30(zName); 2236 if( nName>0 ){ 2237 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2238 if( zName[j]==':' ) nName = j; 2239 } 2240 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2241 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2242 } 2243 pCol->zCnName = zName; 2244 pCol->hName = sqlite3StrIHash(zName); 2245 if( pX->fg.bNoExpand ){ 2246 pCol->colFlags |= COLFLAG_NOEXPAND; 2247 } 2248 sqlite3ColumnPropertiesFromName(0, pCol); 2249 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ 2250 sqlite3OomFault(db); 2251 } 2252 } 2253 sqlite3HashClear(&ht); 2254 if( db->mallocFailed ){ 2255 for(j=0; j<i; j++){ 2256 sqlite3DbFree(db, aCol[j].zCnName); 2257 } 2258 sqlite3DbFree(db, aCol); 2259 *paCol = 0; 2260 *pnCol = 0; 2261 return SQLITE_NOMEM_BKPT; 2262 } 2263 return SQLITE_OK; 2264 } 2265 2266 /* 2267 ** Add type and collation information to a column list based on 2268 ** a SELECT statement. 2269 ** 2270 ** The column list presumably came from selectColumnNamesFromExprList(). 2271 ** The column list has only names, not types or collations. This 2272 ** routine goes through and adds the types and collations. 2273 ** 2274 ** This routine requires that all identifiers in the SELECT 2275 ** statement be resolved. 2276 */ 2277 void sqlite3SelectAddColumnTypeAndCollation( 2278 Parse *pParse, /* Parsing contexts */ 2279 Table *pTab, /* Add column type information to this table */ 2280 Select *pSelect, /* SELECT used to determine types and collations */ 2281 char aff /* Default affinity for columns */ 2282 ){ 2283 sqlite3 *db = pParse->db; 2284 NameContext sNC; 2285 Column *pCol; 2286 CollSeq *pColl; 2287 int i; 2288 Expr *p; 2289 struct ExprList_item *a; 2290 2291 assert( pSelect!=0 ); 2292 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2293 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2294 if( db->mallocFailed ) return; 2295 memset(&sNC, 0, sizeof(sNC)); 2296 sNC.pSrcList = pSelect->pSrc; 2297 a = pSelect->pEList->a; 2298 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2299 const char *zType; 2300 i64 n, m; 2301 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2302 p = a[i].pExpr; 2303 zType = columnType(&sNC, p, 0, 0, 0); 2304 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2305 pCol->affinity = sqlite3ExprAffinity(p); 2306 if( zType ){ 2307 m = sqlite3Strlen30(zType); 2308 n = sqlite3Strlen30(pCol->zCnName); 2309 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2310 if( pCol->zCnName ){ 2311 memcpy(&pCol->zCnName[n+1], zType, m+1); 2312 pCol->colFlags |= COLFLAG_HASTYPE; 2313 }else{ 2314 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2315 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2316 } 2317 } 2318 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2319 pColl = sqlite3ExprCollSeq(pParse, p); 2320 if( pColl ){ 2321 assert( pTab->pIndex==0 ); 2322 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2323 } 2324 } 2325 pTab->szTabRow = 1; /* Any non-zero value works */ 2326 } 2327 2328 /* 2329 ** Given a SELECT statement, generate a Table structure that describes 2330 ** the result set of that SELECT. 2331 */ 2332 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2333 Table *pTab; 2334 sqlite3 *db = pParse->db; 2335 u64 savedFlags; 2336 2337 savedFlags = db->flags; 2338 db->flags &= ~(u64)SQLITE_FullColNames; 2339 db->flags |= SQLITE_ShortColNames; 2340 sqlite3SelectPrep(pParse, pSelect, 0); 2341 db->flags = savedFlags; 2342 if( pParse->nErr ) return 0; 2343 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2344 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2345 if( pTab==0 ){ 2346 return 0; 2347 } 2348 pTab->nTabRef = 1; 2349 pTab->zName = 0; 2350 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2351 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2352 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2353 pTab->iPKey = -1; 2354 if( db->mallocFailed ){ 2355 sqlite3DeleteTable(db, pTab); 2356 return 0; 2357 } 2358 return pTab; 2359 } 2360 2361 /* 2362 ** Get a VDBE for the given parser context. Create a new one if necessary. 2363 ** If an error occurs, return NULL and leave a message in pParse. 2364 */ 2365 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2366 if( pParse->pVdbe ){ 2367 return pParse->pVdbe; 2368 } 2369 if( pParse->pToplevel==0 2370 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2371 ){ 2372 pParse->okConstFactor = 1; 2373 } 2374 return sqlite3VdbeCreate(pParse); 2375 } 2376 2377 2378 /* 2379 ** Compute the iLimit and iOffset fields of the SELECT based on the 2380 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2381 ** that appear in the original SQL statement after the LIMIT and OFFSET 2382 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2383 ** are the integer memory register numbers for counters used to compute 2384 ** the limit and offset. If there is no limit and/or offset, then 2385 ** iLimit and iOffset are negative. 2386 ** 2387 ** This routine changes the values of iLimit and iOffset only if 2388 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2389 ** and iOffset should have been preset to appropriate default values (zero) 2390 ** prior to calling this routine. 2391 ** 2392 ** The iOffset register (if it exists) is initialized to the value 2393 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2394 ** iOffset+1 is initialized to LIMIT+OFFSET. 2395 ** 2396 ** Only if pLimit->pLeft!=0 do the limit registers get 2397 ** redefined. The UNION ALL operator uses this property to force 2398 ** the reuse of the same limit and offset registers across multiple 2399 ** SELECT statements. 2400 */ 2401 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2402 Vdbe *v = 0; 2403 int iLimit = 0; 2404 int iOffset; 2405 int n; 2406 Expr *pLimit = p->pLimit; 2407 2408 if( p->iLimit ) return; 2409 2410 /* 2411 ** "LIMIT -1" always shows all rows. There is some 2412 ** controversy about what the correct behavior should be. 2413 ** The current implementation interprets "LIMIT 0" to mean 2414 ** no rows. 2415 */ 2416 if( pLimit ){ 2417 assert( pLimit->op==TK_LIMIT ); 2418 assert( pLimit->pLeft!=0 ); 2419 p->iLimit = iLimit = ++pParse->nMem; 2420 v = sqlite3GetVdbe(pParse); 2421 assert( v!=0 ); 2422 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2423 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2424 VdbeComment((v, "LIMIT counter")); 2425 if( n==0 ){ 2426 sqlite3VdbeGoto(v, iBreak); 2427 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2428 p->nSelectRow = sqlite3LogEst((u64)n); 2429 p->selFlags |= SF_FixedLimit; 2430 } 2431 }else{ 2432 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2433 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2434 VdbeComment((v, "LIMIT counter")); 2435 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2436 } 2437 if( pLimit->pRight ){ 2438 p->iOffset = iOffset = ++pParse->nMem; 2439 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2440 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2441 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2442 VdbeComment((v, "OFFSET counter")); 2443 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2444 VdbeComment((v, "LIMIT+OFFSET")); 2445 } 2446 } 2447 } 2448 2449 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2450 /* 2451 ** Return the appropriate collating sequence for the iCol-th column of 2452 ** the result set for the compound-select statement "p". Return NULL if 2453 ** the column has no default collating sequence. 2454 ** 2455 ** The collating sequence for the compound select is taken from the 2456 ** left-most term of the select that has a collating sequence. 2457 */ 2458 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2459 CollSeq *pRet; 2460 if( p->pPrior ){ 2461 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2462 }else{ 2463 pRet = 0; 2464 } 2465 assert( iCol>=0 ); 2466 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2467 ** have been thrown during name resolution and we would not have gotten 2468 ** this far */ 2469 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2470 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2471 } 2472 return pRet; 2473 } 2474 2475 /* 2476 ** The select statement passed as the second parameter is a compound SELECT 2477 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2478 ** structure suitable for implementing the ORDER BY. 2479 ** 2480 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2481 ** function is responsible for ensuring that this structure is eventually 2482 ** freed. 2483 */ 2484 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2485 ExprList *pOrderBy = p->pOrderBy; 2486 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2487 sqlite3 *db = pParse->db; 2488 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2489 if( pRet ){ 2490 int i; 2491 for(i=0; i<nOrderBy; i++){ 2492 struct ExprList_item *pItem = &pOrderBy->a[i]; 2493 Expr *pTerm = pItem->pExpr; 2494 CollSeq *pColl; 2495 2496 if( pTerm->flags & EP_Collate ){ 2497 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2498 }else{ 2499 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2500 if( pColl==0 ) pColl = db->pDfltColl; 2501 pOrderBy->a[i].pExpr = 2502 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2503 } 2504 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2505 pRet->aColl[i] = pColl; 2506 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; 2507 } 2508 } 2509 2510 return pRet; 2511 } 2512 2513 #ifndef SQLITE_OMIT_CTE 2514 /* 2515 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2516 ** query of the form: 2517 ** 2518 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2519 ** \___________/ \_______________/ 2520 ** p->pPrior p 2521 ** 2522 ** 2523 ** There is exactly one reference to the recursive-table in the FROM clause 2524 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2525 ** 2526 ** The setup-query runs once to generate an initial set of rows that go 2527 ** into a Queue table. Rows are extracted from the Queue table one by 2528 ** one. Each row extracted from Queue is output to pDest. Then the single 2529 ** extracted row (now in the iCurrent table) becomes the content of the 2530 ** recursive-table for a recursive-query run. The output of the recursive-query 2531 ** is added back into the Queue table. Then another row is extracted from Queue 2532 ** and the iteration continues until the Queue table is empty. 2533 ** 2534 ** If the compound query operator is UNION then no duplicate rows are ever 2535 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2536 ** that have ever been inserted into Queue and causes duplicates to be 2537 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2538 ** 2539 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2540 ** ORDER BY order and the first entry is extracted for each cycle. Without 2541 ** an ORDER BY, the Queue table is just a FIFO. 2542 ** 2543 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2544 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2545 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2546 ** with a positive value, then the first OFFSET outputs are discarded rather 2547 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2548 ** rows have been skipped. 2549 */ 2550 static void generateWithRecursiveQuery( 2551 Parse *pParse, /* Parsing context */ 2552 Select *p, /* The recursive SELECT to be coded */ 2553 SelectDest *pDest /* What to do with query results */ 2554 ){ 2555 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2556 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2557 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2558 Select *pSetup; /* The setup query */ 2559 Select *pFirstRec; /* Left-most recursive term */ 2560 int addrTop; /* Top of the loop */ 2561 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2562 int iCurrent = 0; /* The Current table */ 2563 int regCurrent; /* Register holding Current table */ 2564 int iQueue; /* The Queue table */ 2565 int iDistinct = 0; /* To ensure unique results if UNION */ 2566 int eDest = SRT_Fifo; /* How to write to Queue */ 2567 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2568 int i; /* Loop counter */ 2569 int rc; /* Result code */ 2570 ExprList *pOrderBy; /* The ORDER BY clause */ 2571 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2572 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2573 2574 #ifndef SQLITE_OMIT_WINDOWFUNC 2575 if( p->pWin ){ 2576 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2577 return; 2578 } 2579 #endif 2580 2581 /* Obtain authorization to do a recursive query */ 2582 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2583 2584 /* Process the LIMIT and OFFSET clauses, if they exist */ 2585 addrBreak = sqlite3VdbeMakeLabel(pParse); 2586 p->nSelectRow = 320; /* 4 billion rows */ 2587 computeLimitRegisters(pParse, p, addrBreak); 2588 pLimit = p->pLimit; 2589 regLimit = p->iLimit; 2590 regOffset = p->iOffset; 2591 p->pLimit = 0; 2592 p->iLimit = p->iOffset = 0; 2593 pOrderBy = p->pOrderBy; 2594 2595 /* Locate the cursor number of the Current table */ 2596 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2597 if( pSrc->a[i].fg.isRecursive ){ 2598 iCurrent = pSrc->a[i].iCursor; 2599 break; 2600 } 2601 } 2602 2603 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2604 ** the Distinct table must be exactly one greater than Queue in order 2605 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2606 iQueue = pParse->nTab++; 2607 if( p->op==TK_UNION ){ 2608 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2609 iDistinct = pParse->nTab++; 2610 }else{ 2611 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2612 } 2613 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2614 2615 /* Allocate cursors for Current, Queue, and Distinct. */ 2616 regCurrent = ++pParse->nMem; 2617 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2618 if( pOrderBy ){ 2619 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2620 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2621 (char*)pKeyInfo, P4_KEYINFO); 2622 destQueue.pOrderBy = pOrderBy; 2623 }else{ 2624 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2625 } 2626 VdbeComment((v, "Queue table")); 2627 if( iDistinct ){ 2628 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2629 p->selFlags |= SF_UsesEphemeral; 2630 } 2631 2632 /* Detach the ORDER BY clause from the compound SELECT */ 2633 p->pOrderBy = 0; 2634 2635 /* Figure out how many elements of the compound SELECT are part of the 2636 ** recursive query. Make sure no recursive elements use aggregate 2637 ** functions. Mark the recursive elements as UNION ALL even if they 2638 ** are really UNION because the distinctness will be enforced by the 2639 ** iDistinct table. pFirstRec is left pointing to the left-most 2640 ** recursive term of the CTE. 2641 */ 2642 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2643 if( pFirstRec->selFlags & SF_Aggregate ){ 2644 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2645 goto end_of_recursive_query; 2646 } 2647 pFirstRec->op = TK_ALL; 2648 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2649 } 2650 2651 /* Store the results of the setup-query in Queue. */ 2652 pSetup = pFirstRec->pPrior; 2653 pSetup->pNext = 0; 2654 ExplainQueryPlan((pParse, 1, "SETUP")); 2655 rc = sqlite3Select(pParse, pSetup, &destQueue); 2656 pSetup->pNext = p; 2657 if( rc ) goto end_of_recursive_query; 2658 2659 /* Find the next row in the Queue and output that row */ 2660 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2661 2662 /* Transfer the next row in Queue over to Current */ 2663 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2664 if( pOrderBy ){ 2665 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2666 }else{ 2667 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2668 } 2669 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2670 2671 /* Output the single row in Current */ 2672 addrCont = sqlite3VdbeMakeLabel(pParse); 2673 codeOffset(v, regOffset, addrCont); 2674 selectInnerLoop(pParse, p, iCurrent, 2675 0, 0, pDest, addrCont, addrBreak); 2676 if( regLimit ){ 2677 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2678 VdbeCoverage(v); 2679 } 2680 sqlite3VdbeResolveLabel(v, addrCont); 2681 2682 /* Execute the recursive SELECT taking the single row in Current as 2683 ** the value for the recursive-table. Store the results in the Queue. 2684 */ 2685 pFirstRec->pPrior = 0; 2686 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2687 sqlite3Select(pParse, p, &destQueue); 2688 assert( pFirstRec->pPrior==0 ); 2689 pFirstRec->pPrior = pSetup; 2690 2691 /* Keep running the loop until the Queue is empty */ 2692 sqlite3VdbeGoto(v, addrTop); 2693 sqlite3VdbeResolveLabel(v, addrBreak); 2694 2695 end_of_recursive_query: 2696 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2697 p->pOrderBy = pOrderBy; 2698 p->pLimit = pLimit; 2699 return; 2700 } 2701 #endif /* SQLITE_OMIT_CTE */ 2702 2703 /* Forward references */ 2704 static int multiSelectOrderBy( 2705 Parse *pParse, /* Parsing context */ 2706 Select *p, /* The right-most of SELECTs to be coded */ 2707 SelectDest *pDest /* What to do with query results */ 2708 ); 2709 2710 /* 2711 ** Handle the special case of a compound-select that originates from a 2712 ** VALUES clause. By handling this as a special case, we avoid deep 2713 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2714 ** on a VALUES clause. 2715 ** 2716 ** Because the Select object originates from a VALUES clause: 2717 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2718 ** (2) All terms are UNION ALL 2719 ** (3) There is no ORDER BY clause 2720 ** 2721 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2722 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2723 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2724 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2725 */ 2726 static int multiSelectValues( 2727 Parse *pParse, /* Parsing context */ 2728 Select *p, /* The right-most of SELECTs to be coded */ 2729 SelectDest *pDest /* What to do with query results */ 2730 ){ 2731 int nRow = 1; 2732 int rc = 0; 2733 int bShowAll = p->pLimit==0; 2734 assert( p->selFlags & SF_MultiValue ); 2735 do{ 2736 assert( p->selFlags & SF_Values ); 2737 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2738 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2739 #ifndef SQLITE_OMIT_WINDOWFUNC 2740 if( p->pWin ) return -1; 2741 #endif 2742 if( p->pPrior==0 ) break; 2743 assert( p->pPrior->pNext==p ); 2744 p = p->pPrior; 2745 nRow += bShowAll; 2746 }while(1); 2747 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2748 nRow==1 ? "" : "S")); 2749 while( p ){ 2750 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2751 if( !bShowAll ) break; 2752 p->nSelectRow = nRow; 2753 p = p->pNext; 2754 } 2755 return rc; 2756 } 2757 2758 /* 2759 ** Return true if the SELECT statement which is known to be the recursive 2760 ** part of a recursive CTE still has its anchor terms attached. If the 2761 ** anchor terms have already been removed, then return false. 2762 */ 2763 static int hasAnchor(Select *p){ 2764 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2765 return p!=0; 2766 } 2767 2768 /* 2769 ** This routine is called to process a compound query form from 2770 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2771 ** INTERSECT 2772 ** 2773 ** "p" points to the right-most of the two queries. the query on the 2774 ** left is p->pPrior. The left query could also be a compound query 2775 ** in which case this routine will be called recursively. 2776 ** 2777 ** The results of the total query are to be written into a destination 2778 ** of type eDest with parameter iParm. 2779 ** 2780 ** Example 1: Consider a three-way compound SQL statement. 2781 ** 2782 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2783 ** 2784 ** This statement is parsed up as follows: 2785 ** 2786 ** SELECT c FROM t3 2787 ** | 2788 ** `-----> SELECT b FROM t2 2789 ** | 2790 ** `------> SELECT a FROM t1 2791 ** 2792 ** The arrows in the diagram above represent the Select.pPrior pointer. 2793 ** So if this routine is called with p equal to the t3 query, then 2794 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2795 ** 2796 ** Notice that because of the way SQLite parses compound SELECTs, the 2797 ** individual selects always group from left to right. 2798 */ 2799 static int multiSelect( 2800 Parse *pParse, /* Parsing context */ 2801 Select *p, /* The right-most of SELECTs to be coded */ 2802 SelectDest *pDest /* What to do with query results */ 2803 ){ 2804 int rc = SQLITE_OK; /* Success code from a subroutine */ 2805 Select *pPrior; /* Another SELECT immediately to our left */ 2806 Vdbe *v; /* Generate code to this VDBE */ 2807 SelectDest dest; /* Alternative data destination */ 2808 Select *pDelete = 0; /* Chain of simple selects to delete */ 2809 sqlite3 *db; /* Database connection */ 2810 2811 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2812 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2813 */ 2814 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2815 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2816 assert( p->selFlags & SF_Compound ); 2817 db = pParse->db; 2818 pPrior = p->pPrior; 2819 dest = *pDest; 2820 assert( pPrior->pOrderBy==0 ); 2821 assert( pPrior->pLimit==0 ); 2822 2823 v = sqlite3GetVdbe(pParse); 2824 assert( v!=0 ); /* The VDBE already created by calling function */ 2825 2826 /* Create the destination temporary table if necessary 2827 */ 2828 if( dest.eDest==SRT_EphemTab ){ 2829 assert( p->pEList ); 2830 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2831 dest.eDest = SRT_Table; 2832 } 2833 2834 /* Special handling for a compound-select that originates as a VALUES clause. 2835 */ 2836 if( p->selFlags & SF_MultiValue ){ 2837 rc = multiSelectValues(pParse, p, &dest); 2838 if( rc>=0 ) goto multi_select_end; 2839 rc = SQLITE_OK; 2840 } 2841 2842 /* Make sure all SELECTs in the statement have the same number of elements 2843 ** in their result sets. 2844 */ 2845 assert( p->pEList && pPrior->pEList ); 2846 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2847 2848 #ifndef SQLITE_OMIT_CTE 2849 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2850 generateWithRecursiveQuery(pParse, p, &dest); 2851 }else 2852 #endif 2853 2854 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2855 */ 2856 if( p->pOrderBy ){ 2857 return multiSelectOrderBy(pParse, p, pDest); 2858 }else{ 2859 2860 #ifndef SQLITE_OMIT_EXPLAIN 2861 if( pPrior->pPrior==0 ){ 2862 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2863 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2864 } 2865 #endif 2866 2867 /* Generate code for the left and right SELECT statements. 2868 */ 2869 switch( p->op ){ 2870 case TK_ALL: { 2871 int addr = 0; 2872 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2873 assert( !pPrior->pLimit ); 2874 pPrior->iLimit = p->iLimit; 2875 pPrior->iOffset = p->iOffset; 2876 pPrior->pLimit = p->pLimit; 2877 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2878 rc = sqlite3Select(pParse, pPrior, &dest); 2879 pPrior->pLimit = 0; 2880 if( rc ){ 2881 goto multi_select_end; 2882 } 2883 p->pPrior = 0; 2884 p->iLimit = pPrior->iLimit; 2885 p->iOffset = pPrior->iOffset; 2886 if( p->iLimit ){ 2887 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2888 VdbeComment((v, "Jump ahead if LIMIT reached")); 2889 if( p->iOffset ){ 2890 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2891 p->iLimit, p->iOffset+1, p->iOffset); 2892 } 2893 } 2894 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2895 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2896 rc = sqlite3Select(pParse, p, &dest); 2897 testcase( rc!=SQLITE_OK ); 2898 pDelete = p->pPrior; 2899 p->pPrior = pPrior; 2900 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2901 if( p->pLimit 2902 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2903 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2904 ){ 2905 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2906 } 2907 if( addr ){ 2908 sqlite3VdbeJumpHere(v, addr); 2909 } 2910 break; 2911 } 2912 case TK_EXCEPT: 2913 case TK_UNION: { 2914 int unionTab; /* Cursor number of the temp table holding result */ 2915 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2916 int priorOp; /* The SRT_ operation to apply to prior selects */ 2917 Expr *pLimit; /* Saved values of p->nLimit */ 2918 int addr; 2919 SelectDest uniondest; 2920 2921 testcase( p->op==TK_EXCEPT ); 2922 testcase( p->op==TK_UNION ); 2923 priorOp = SRT_Union; 2924 if( dest.eDest==priorOp ){ 2925 /* We can reuse a temporary table generated by a SELECT to our 2926 ** right. 2927 */ 2928 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2929 unionTab = dest.iSDParm; 2930 }else{ 2931 /* We will need to create our own temporary table to hold the 2932 ** intermediate results. 2933 */ 2934 unionTab = pParse->nTab++; 2935 assert( p->pOrderBy==0 ); 2936 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2937 assert( p->addrOpenEphm[0] == -1 ); 2938 p->addrOpenEphm[0] = addr; 2939 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2940 assert( p->pEList ); 2941 } 2942 2943 2944 /* Code the SELECT statements to our left 2945 */ 2946 assert( !pPrior->pOrderBy ); 2947 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2948 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2949 rc = sqlite3Select(pParse, pPrior, &uniondest); 2950 if( rc ){ 2951 goto multi_select_end; 2952 } 2953 2954 /* Code the current SELECT statement 2955 */ 2956 if( p->op==TK_EXCEPT ){ 2957 op = SRT_Except; 2958 }else{ 2959 assert( p->op==TK_UNION ); 2960 op = SRT_Union; 2961 } 2962 p->pPrior = 0; 2963 pLimit = p->pLimit; 2964 p->pLimit = 0; 2965 uniondest.eDest = op; 2966 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2967 sqlite3SelectOpName(p->op))); 2968 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2969 rc = sqlite3Select(pParse, p, &uniondest); 2970 testcase( rc!=SQLITE_OK ); 2971 assert( p->pOrderBy==0 ); 2972 pDelete = p->pPrior; 2973 p->pPrior = pPrior; 2974 p->pOrderBy = 0; 2975 if( p->op==TK_UNION ){ 2976 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2977 } 2978 sqlite3ExprDelete(db, p->pLimit); 2979 p->pLimit = pLimit; 2980 p->iLimit = 0; 2981 p->iOffset = 0; 2982 2983 /* Convert the data in the temporary table into whatever form 2984 ** it is that we currently need. 2985 */ 2986 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2987 assert( p->pEList || db->mallocFailed ); 2988 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2989 int iCont, iBreak, iStart; 2990 iBreak = sqlite3VdbeMakeLabel(pParse); 2991 iCont = sqlite3VdbeMakeLabel(pParse); 2992 computeLimitRegisters(pParse, p, iBreak); 2993 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2994 iStart = sqlite3VdbeCurrentAddr(v); 2995 selectInnerLoop(pParse, p, unionTab, 2996 0, 0, &dest, iCont, iBreak); 2997 sqlite3VdbeResolveLabel(v, iCont); 2998 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2999 sqlite3VdbeResolveLabel(v, iBreak); 3000 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 3001 } 3002 break; 3003 } 3004 default: assert( p->op==TK_INTERSECT ); { 3005 int tab1, tab2; 3006 int iCont, iBreak, iStart; 3007 Expr *pLimit; 3008 int addr; 3009 SelectDest intersectdest; 3010 int r1; 3011 3012 /* INTERSECT is different from the others since it requires 3013 ** two temporary tables. Hence it has its own case. Begin 3014 ** by allocating the tables we will need. 3015 */ 3016 tab1 = pParse->nTab++; 3017 tab2 = pParse->nTab++; 3018 assert( p->pOrderBy==0 ); 3019 3020 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 3021 assert( p->addrOpenEphm[0] == -1 ); 3022 p->addrOpenEphm[0] = addr; 3023 findRightmost(p)->selFlags |= SF_UsesEphemeral; 3024 assert( p->pEList ); 3025 3026 /* Code the SELECTs to our left into temporary table "tab1". 3027 */ 3028 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 3029 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 3030 rc = sqlite3Select(pParse, pPrior, &intersectdest); 3031 if( rc ){ 3032 goto multi_select_end; 3033 } 3034 3035 /* Code the current SELECT into temporary table "tab2" 3036 */ 3037 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 3038 assert( p->addrOpenEphm[1] == -1 ); 3039 p->addrOpenEphm[1] = addr; 3040 p->pPrior = 0; 3041 pLimit = p->pLimit; 3042 p->pLimit = 0; 3043 intersectdest.iSDParm = tab2; 3044 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 3045 sqlite3SelectOpName(p->op))); 3046 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 3047 rc = sqlite3Select(pParse, p, &intersectdest); 3048 testcase( rc!=SQLITE_OK ); 3049 pDelete = p->pPrior; 3050 p->pPrior = pPrior; 3051 if( p->nSelectRow>pPrior->nSelectRow ){ 3052 p->nSelectRow = pPrior->nSelectRow; 3053 } 3054 sqlite3ExprDelete(db, p->pLimit); 3055 p->pLimit = pLimit; 3056 3057 /* Generate code to take the intersection of the two temporary 3058 ** tables. 3059 */ 3060 if( rc ) break; 3061 assert( p->pEList ); 3062 iBreak = sqlite3VdbeMakeLabel(pParse); 3063 iCont = sqlite3VdbeMakeLabel(pParse); 3064 computeLimitRegisters(pParse, p, iBreak); 3065 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 3066 r1 = sqlite3GetTempReg(pParse); 3067 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 3068 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 3069 VdbeCoverage(v); 3070 sqlite3ReleaseTempReg(pParse, r1); 3071 selectInnerLoop(pParse, p, tab1, 3072 0, 0, &dest, iCont, iBreak); 3073 sqlite3VdbeResolveLabel(v, iCont); 3074 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 3075 sqlite3VdbeResolveLabel(v, iBreak); 3076 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 3077 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 3078 break; 3079 } 3080 } 3081 3082 #ifndef SQLITE_OMIT_EXPLAIN 3083 if( p->pNext==0 ){ 3084 ExplainQueryPlanPop(pParse); 3085 } 3086 #endif 3087 } 3088 if( pParse->nErr ) goto multi_select_end; 3089 3090 /* Compute collating sequences used by 3091 ** temporary tables needed to implement the compound select. 3092 ** Attach the KeyInfo structure to all temporary tables. 3093 ** 3094 ** This section is run by the right-most SELECT statement only. 3095 ** SELECT statements to the left always skip this part. The right-most 3096 ** SELECT might also skip this part if it has no ORDER BY clause and 3097 ** no temp tables are required. 3098 */ 3099 if( p->selFlags & SF_UsesEphemeral ){ 3100 int i; /* Loop counter */ 3101 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3102 Select *pLoop; /* For looping through SELECT statements */ 3103 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3104 int nCol; /* Number of columns in result set */ 3105 3106 assert( p->pNext==0 ); 3107 assert( p->pEList!=0 ); 3108 nCol = p->pEList->nExpr; 3109 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3110 if( !pKeyInfo ){ 3111 rc = SQLITE_NOMEM_BKPT; 3112 goto multi_select_end; 3113 } 3114 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3115 *apColl = multiSelectCollSeq(pParse, p, i); 3116 if( 0==*apColl ){ 3117 *apColl = db->pDfltColl; 3118 } 3119 } 3120 3121 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3122 for(i=0; i<2; i++){ 3123 int addr = pLoop->addrOpenEphm[i]; 3124 if( addr<0 ){ 3125 /* If [0] is unused then [1] is also unused. So we can 3126 ** always safely abort as soon as the first unused slot is found */ 3127 assert( pLoop->addrOpenEphm[1]<0 ); 3128 break; 3129 } 3130 sqlite3VdbeChangeP2(v, addr, nCol); 3131 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3132 P4_KEYINFO); 3133 pLoop->addrOpenEphm[i] = -1; 3134 } 3135 } 3136 sqlite3KeyInfoUnref(pKeyInfo); 3137 } 3138 3139 multi_select_end: 3140 pDest->iSdst = dest.iSdst; 3141 pDest->nSdst = dest.nSdst; 3142 if( pDelete ){ 3143 sqlite3ParserAddCleanup(pParse, 3144 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3145 pDelete); 3146 } 3147 return rc; 3148 } 3149 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3150 3151 /* 3152 ** Error message for when two or more terms of a compound select have different 3153 ** size result sets. 3154 */ 3155 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3156 if( p->selFlags & SF_Values ){ 3157 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3158 }else{ 3159 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3160 " do not have the same number of result columns", 3161 sqlite3SelectOpName(p->op)); 3162 } 3163 } 3164 3165 /* 3166 ** Code an output subroutine for a coroutine implementation of a 3167 ** SELECT statment. 3168 ** 3169 ** The data to be output is contained in pIn->iSdst. There are 3170 ** pIn->nSdst columns to be output. pDest is where the output should 3171 ** be sent. 3172 ** 3173 ** regReturn is the number of the register holding the subroutine 3174 ** return address. 3175 ** 3176 ** If regPrev>0 then it is the first register in a vector that 3177 ** records the previous output. mem[regPrev] is a flag that is false 3178 ** if there has been no previous output. If regPrev>0 then code is 3179 ** generated to suppress duplicates. pKeyInfo is used for comparing 3180 ** keys. 3181 ** 3182 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3183 ** iBreak. 3184 */ 3185 static int generateOutputSubroutine( 3186 Parse *pParse, /* Parsing context */ 3187 Select *p, /* The SELECT statement */ 3188 SelectDest *pIn, /* Coroutine supplying data */ 3189 SelectDest *pDest, /* Where to send the data */ 3190 int regReturn, /* The return address register */ 3191 int regPrev, /* Previous result register. No uniqueness if 0 */ 3192 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3193 int iBreak /* Jump here if we hit the LIMIT */ 3194 ){ 3195 Vdbe *v = pParse->pVdbe; 3196 int iContinue; 3197 int addr; 3198 3199 addr = sqlite3VdbeCurrentAddr(v); 3200 iContinue = sqlite3VdbeMakeLabel(pParse); 3201 3202 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3203 */ 3204 if( regPrev ){ 3205 int addr1, addr2; 3206 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3207 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3208 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3209 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3210 sqlite3VdbeJumpHere(v, addr1); 3211 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3212 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3213 } 3214 if( pParse->db->mallocFailed ) return 0; 3215 3216 /* Suppress the first OFFSET entries if there is an OFFSET clause 3217 */ 3218 codeOffset(v, p->iOffset, iContinue); 3219 3220 assert( pDest->eDest!=SRT_Exists ); 3221 assert( pDest->eDest!=SRT_Table ); 3222 switch( pDest->eDest ){ 3223 /* Store the result as data using a unique key. 3224 */ 3225 case SRT_EphemTab: { 3226 int r1 = sqlite3GetTempReg(pParse); 3227 int r2 = sqlite3GetTempReg(pParse); 3228 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3229 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3230 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3231 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3232 sqlite3ReleaseTempReg(pParse, r2); 3233 sqlite3ReleaseTempReg(pParse, r1); 3234 break; 3235 } 3236 3237 #ifndef SQLITE_OMIT_SUBQUERY 3238 /* If we are creating a set for an "expr IN (SELECT ...)". 3239 */ 3240 case SRT_Set: { 3241 int r1; 3242 testcase( pIn->nSdst>1 ); 3243 r1 = sqlite3GetTempReg(pParse); 3244 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3245 r1, pDest->zAffSdst, pIn->nSdst); 3246 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3247 pIn->iSdst, pIn->nSdst); 3248 sqlite3ReleaseTempReg(pParse, r1); 3249 break; 3250 } 3251 3252 /* If this is a scalar select that is part of an expression, then 3253 ** store the results in the appropriate memory cell and break out 3254 ** of the scan loop. Note that the select might return multiple columns 3255 ** if it is the RHS of a row-value IN operator. 3256 */ 3257 case SRT_Mem: { 3258 testcase( pIn->nSdst>1 ); 3259 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3260 /* The LIMIT clause will jump out of the loop for us */ 3261 break; 3262 } 3263 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3264 3265 /* The results are stored in a sequence of registers 3266 ** starting at pDest->iSdst. Then the co-routine yields. 3267 */ 3268 case SRT_Coroutine: { 3269 if( pDest->iSdst==0 ){ 3270 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3271 pDest->nSdst = pIn->nSdst; 3272 } 3273 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3274 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3275 break; 3276 } 3277 3278 /* If none of the above, then the result destination must be 3279 ** SRT_Output. This routine is never called with any other 3280 ** destination other than the ones handled above or SRT_Output. 3281 ** 3282 ** For SRT_Output, results are stored in a sequence of registers. 3283 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3284 ** return the next row of result. 3285 */ 3286 default: { 3287 assert( pDest->eDest==SRT_Output ); 3288 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3289 break; 3290 } 3291 } 3292 3293 /* Jump to the end of the loop if the LIMIT is reached. 3294 */ 3295 if( p->iLimit ){ 3296 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3297 } 3298 3299 /* Generate the subroutine return 3300 */ 3301 sqlite3VdbeResolveLabel(v, iContinue); 3302 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3303 3304 return addr; 3305 } 3306 3307 /* 3308 ** Alternative compound select code generator for cases when there 3309 ** is an ORDER BY clause. 3310 ** 3311 ** We assume a query of the following form: 3312 ** 3313 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3314 ** 3315 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3316 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3317 ** co-routines. Then run the co-routines in parallel and merge the results 3318 ** into the output. In addition to the two coroutines (called selectA and 3319 ** selectB) there are 7 subroutines: 3320 ** 3321 ** outA: Move the output of the selectA coroutine into the output 3322 ** of the compound query. 3323 ** 3324 ** outB: Move the output of the selectB coroutine into the output 3325 ** of the compound query. (Only generated for UNION and 3326 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3327 ** appears only in B.) 3328 ** 3329 ** AltB: Called when there is data from both coroutines and A<B. 3330 ** 3331 ** AeqB: Called when there is data from both coroutines and A==B. 3332 ** 3333 ** AgtB: Called when there is data from both coroutines and A>B. 3334 ** 3335 ** EofA: Called when data is exhausted from selectA. 3336 ** 3337 ** EofB: Called when data is exhausted from selectB. 3338 ** 3339 ** The implementation of the latter five subroutines depend on which 3340 ** <operator> is used: 3341 ** 3342 ** 3343 ** UNION ALL UNION EXCEPT INTERSECT 3344 ** ------------- ----------------- -------------- ----------------- 3345 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3346 ** 3347 ** AeqB: outA, nextA nextA nextA outA, nextA 3348 ** 3349 ** AgtB: outB, nextB outB, nextB nextB nextB 3350 ** 3351 ** EofA: outB, nextB outB, nextB halt halt 3352 ** 3353 ** EofB: outA, nextA outA, nextA outA, nextA halt 3354 ** 3355 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3356 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3357 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3358 ** following nextX causes a jump to the end of the select processing. 3359 ** 3360 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3361 ** within the output subroutine. The regPrev register set holds the previously 3362 ** output value. A comparison is made against this value and the output 3363 ** is skipped if the next results would be the same as the previous. 3364 ** 3365 ** The implementation plan is to implement the two coroutines and seven 3366 ** subroutines first, then put the control logic at the bottom. Like this: 3367 ** 3368 ** goto Init 3369 ** coA: coroutine for left query (A) 3370 ** coB: coroutine for right query (B) 3371 ** outA: output one row of A 3372 ** outB: output one row of B (UNION and UNION ALL only) 3373 ** EofA: ... 3374 ** EofB: ... 3375 ** AltB: ... 3376 ** AeqB: ... 3377 ** AgtB: ... 3378 ** Init: initialize coroutine registers 3379 ** yield coA 3380 ** if eof(A) goto EofA 3381 ** yield coB 3382 ** if eof(B) goto EofB 3383 ** Cmpr: Compare A, B 3384 ** Jump AltB, AeqB, AgtB 3385 ** End: ... 3386 ** 3387 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3388 ** actually called using Gosub and they do not Return. EofA and EofB loop 3389 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3390 ** and AgtB jump to either L2 or to one of EofA or EofB. 3391 */ 3392 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3393 static int multiSelectOrderBy( 3394 Parse *pParse, /* Parsing context */ 3395 Select *p, /* The right-most of SELECTs to be coded */ 3396 SelectDest *pDest /* What to do with query results */ 3397 ){ 3398 int i, j; /* Loop counters */ 3399 Select *pPrior; /* Another SELECT immediately to our left */ 3400 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3401 int nSelect; /* Number of SELECT statements in the compound */ 3402 Vdbe *v; /* Generate code to this VDBE */ 3403 SelectDest destA; /* Destination for coroutine A */ 3404 SelectDest destB; /* Destination for coroutine B */ 3405 int regAddrA; /* Address register for select-A coroutine */ 3406 int regAddrB; /* Address register for select-B coroutine */ 3407 int addrSelectA; /* Address of the select-A coroutine */ 3408 int addrSelectB; /* Address of the select-B coroutine */ 3409 int regOutA; /* Address register for the output-A subroutine */ 3410 int regOutB; /* Address register for the output-B subroutine */ 3411 int addrOutA; /* Address of the output-A subroutine */ 3412 int addrOutB = 0; /* Address of the output-B subroutine */ 3413 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3414 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3415 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3416 int addrAltB; /* Address of the A<B subroutine */ 3417 int addrAeqB; /* Address of the A==B subroutine */ 3418 int addrAgtB; /* Address of the A>B subroutine */ 3419 int regLimitA; /* Limit register for select-A */ 3420 int regLimitB; /* Limit register for select-A */ 3421 int regPrev; /* A range of registers to hold previous output */ 3422 int savedLimit; /* Saved value of p->iLimit */ 3423 int savedOffset; /* Saved value of p->iOffset */ 3424 int labelCmpr; /* Label for the start of the merge algorithm */ 3425 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3426 int addr1; /* Jump instructions that get retargetted */ 3427 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3428 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3429 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3430 sqlite3 *db; /* Database connection */ 3431 ExprList *pOrderBy; /* The ORDER BY clause */ 3432 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3433 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3434 3435 assert( p->pOrderBy!=0 ); 3436 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3437 db = pParse->db; 3438 v = pParse->pVdbe; 3439 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3440 labelEnd = sqlite3VdbeMakeLabel(pParse); 3441 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3442 3443 3444 /* Patch up the ORDER BY clause 3445 */ 3446 op = p->op; 3447 assert( p->pPrior->pOrderBy==0 ); 3448 pOrderBy = p->pOrderBy; 3449 assert( pOrderBy ); 3450 nOrderBy = pOrderBy->nExpr; 3451 3452 /* For operators other than UNION ALL we have to make sure that 3453 ** the ORDER BY clause covers every term of the result set. Add 3454 ** terms to the ORDER BY clause as necessary. 3455 */ 3456 if( op!=TK_ALL ){ 3457 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3458 struct ExprList_item *pItem; 3459 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3460 assert( pItem!=0 ); 3461 assert( pItem->u.x.iOrderByCol>0 ); 3462 if( pItem->u.x.iOrderByCol==i ) break; 3463 } 3464 if( j==nOrderBy ){ 3465 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3466 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3467 pNew->flags |= EP_IntValue; 3468 pNew->u.iValue = i; 3469 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3470 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3471 } 3472 } 3473 } 3474 3475 /* Compute the comparison permutation and keyinfo that is used with 3476 ** the permutation used to determine if the next 3477 ** row of results comes from selectA or selectB. Also add explicit 3478 ** collations to the ORDER BY clause terms so that when the subqueries 3479 ** to the right and the left are evaluated, they use the correct 3480 ** collation. 3481 */ 3482 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3483 if( aPermute ){ 3484 struct ExprList_item *pItem; 3485 aPermute[0] = nOrderBy; 3486 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3487 assert( pItem!=0 ); 3488 assert( pItem->u.x.iOrderByCol>0 ); 3489 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3490 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3491 } 3492 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3493 }else{ 3494 pKeyMerge = 0; 3495 } 3496 3497 /* Allocate a range of temporary registers and the KeyInfo needed 3498 ** for the logic that removes duplicate result rows when the 3499 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3500 */ 3501 if( op==TK_ALL ){ 3502 regPrev = 0; 3503 }else{ 3504 int nExpr = p->pEList->nExpr; 3505 assert( nOrderBy>=nExpr || db->mallocFailed ); 3506 regPrev = pParse->nMem+1; 3507 pParse->nMem += nExpr+1; 3508 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3509 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3510 if( pKeyDup ){ 3511 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3512 for(i=0; i<nExpr; i++){ 3513 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3514 pKeyDup->aSortFlags[i] = 0; 3515 } 3516 } 3517 } 3518 3519 /* Separate the left and the right query from one another 3520 */ 3521 nSelect = 1; 3522 if( (op==TK_ALL || op==TK_UNION) 3523 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3524 ){ 3525 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3526 nSelect++; 3527 assert( pSplit->pPrior->pNext==pSplit ); 3528 } 3529 } 3530 if( nSelect<=3 ){ 3531 pSplit = p; 3532 }else{ 3533 pSplit = p; 3534 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3535 } 3536 pPrior = pSplit->pPrior; 3537 assert( pPrior!=0 ); 3538 pSplit->pPrior = 0; 3539 pPrior->pNext = 0; 3540 assert( p->pOrderBy == pOrderBy ); 3541 assert( pOrderBy!=0 || db->mallocFailed ); 3542 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3543 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3544 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3545 3546 /* Compute the limit registers */ 3547 computeLimitRegisters(pParse, p, labelEnd); 3548 if( p->iLimit && op==TK_ALL ){ 3549 regLimitA = ++pParse->nMem; 3550 regLimitB = ++pParse->nMem; 3551 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3552 regLimitA); 3553 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3554 }else{ 3555 regLimitA = regLimitB = 0; 3556 } 3557 sqlite3ExprDelete(db, p->pLimit); 3558 p->pLimit = 0; 3559 3560 regAddrA = ++pParse->nMem; 3561 regAddrB = ++pParse->nMem; 3562 regOutA = ++pParse->nMem; 3563 regOutB = ++pParse->nMem; 3564 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3565 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3566 3567 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3568 3569 /* Generate a coroutine to evaluate the SELECT statement to the 3570 ** left of the compound operator - the "A" select. 3571 */ 3572 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3573 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3574 VdbeComment((v, "left SELECT")); 3575 pPrior->iLimit = regLimitA; 3576 ExplainQueryPlan((pParse, 1, "LEFT")); 3577 sqlite3Select(pParse, pPrior, &destA); 3578 sqlite3VdbeEndCoroutine(v, regAddrA); 3579 sqlite3VdbeJumpHere(v, addr1); 3580 3581 /* Generate a coroutine to evaluate the SELECT statement on 3582 ** the right - the "B" select 3583 */ 3584 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3585 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3586 VdbeComment((v, "right SELECT")); 3587 savedLimit = p->iLimit; 3588 savedOffset = p->iOffset; 3589 p->iLimit = regLimitB; 3590 p->iOffset = 0; 3591 ExplainQueryPlan((pParse, 1, "RIGHT")); 3592 sqlite3Select(pParse, p, &destB); 3593 p->iLimit = savedLimit; 3594 p->iOffset = savedOffset; 3595 sqlite3VdbeEndCoroutine(v, regAddrB); 3596 3597 /* Generate a subroutine that outputs the current row of the A 3598 ** select as the next output row of the compound select. 3599 */ 3600 VdbeNoopComment((v, "Output routine for A")); 3601 addrOutA = generateOutputSubroutine(pParse, 3602 p, &destA, pDest, regOutA, 3603 regPrev, pKeyDup, labelEnd); 3604 3605 /* Generate a subroutine that outputs the current row of the B 3606 ** select as the next output row of the compound select. 3607 */ 3608 if( op==TK_ALL || op==TK_UNION ){ 3609 VdbeNoopComment((v, "Output routine for B")); 3610 addrOutB = generateOutputSubroutine(pParse, 3611 p, &destB, pDest, regOutB, 3612 regPrev, pKeyDup, labelEnd); 3613 } 3614 sqlite3KeyInfoUnref(pKeyDup); 3615 3616 /* Generate a subroutine to run when the results from select A 3617 ** are exhausted and only data in select B remains. 3618 */ 3619 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3620 addrEofA_noB = addrEofA = labelEnd; 3621 }else{ 3622 VdbeNoopComment((v, "eof-A subroutine")); 3623 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3624 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3625 VdbeCoverage(v); 3626 sqlite3VdbeGoto(v, addrEofA); 3627 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3628 } 3629 3630 /* Generate a subroutine to run when the results from select B 3631 ** are exhausted and only data in select A remains. 3632 */ 3633 if( op==TK_INTERSECT ){ 3634 addrEofB = addrEofA; 3635 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3636 }else{ 3637 VdbeNoopComment((v, "eof-B subroutine")); 3638 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3639 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3640 sqlite3VdbeGoto(v, addrEofB); 3641 } 3642 3643 /* Generate code to handle the case of A<B 3644 */ 3645 VdbeNoopComment((v, "A-lt-B subroutine")); 3646 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3647 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3648 sqlite3VdbeGoto(v, labelCmpr); 3649 3650 /* Generate code to handle the case of A==B 3651 */ 3652 if( op==TK_ALL ){ 3653 addrAeqB = addrAltB; 3654 }else if( op==TK_INTERSECT ){ 3655 addrAeqB = addrAltB; 3656 addrAltB++; 3657 }else{ 3658 VdbeNoopComment((v, "A-eq-B subroutine")); 3659 addrAeqB = 3660 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3661 sqlite3VdbeGoto(v, labelCmpr); 3662 } 3663 3664 /* Generate code to handle the case of A>B 3665 */ 3666 VdbeNoopComment((v, "A-gt-B subroutine")); 3667 addrAgtB = sqlite3VdbeCurrentAddr(v); 3668 if( op==TK_ALL || op==TK_UNION ){ 3669 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3670 } 3671 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3672 sqlite3VdbeGoto(v, labelCmpr); 3673 3674 /* This code runs once to initialize everything. 3675 */ 3676 sqlite3VdbeJumpHere(v, addr1); 3677 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3678 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3679 3680 /* Implement the main merge loop 3681 */ 3682 sqlite3VdbeResolveLabel(v, labelCmpr); 3683 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3684 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3685 (char*)pKeyMerge, P4_KEYINFO); 3686 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3687 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3688 3689 /* Jump to the this point in order to terminate the query. 3690 */ 3691 sqlite3VdbeResolveLabel(v, labelEnd); 3692 3693 /* Reassemble the compound query so that it will be freed correctly 3694 ** by the calling function */ 3695 if( pSplit->pPrior ){ 3696 sqlite3ParserAddCleanup(pParse, 3697 (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior); 3698 } 3699 pSplit->pPrior = pPrior; 3700 pPrior->pNext = pSplit; 3701 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3702 pPrior->pOrderBy = 0; 3703 3704 /*** TBD: Insert subroutine calls to close cursors on incomplete 3705 **** subqueries ****/ 3706 ExplainQueryPlanPop(pParse); 3707 return pParse->nErr!=0; 3708 } 3709 #endif 3710 3711 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3712 3713 /* An instance of the SubstContext object describes an substitution edit 3714 ** to be performed on a parse tree. 3715 ** 3716 ** All references to columns in table iTable are to be replaced by corresponding 3717 ** expressions in pEList. 3718 ** 3719 ** ## About "isOuterJoin": 3720 ** 3721 ** The isOuterJoin column indicates that the replacement will occur into a 3722 ** position in the parent that NULL-able due to an OUTER JOIN. Either the 3723 ** target slot in the parent is the right operand of a LEFT JOIN, or one of 3724 ** the left operands of a RIGHT JOIN. In either case, we need to potentially 3725 ** bypass the substituted expression with OP_IfNullRow. 3726 ** 3727 ** Suppose the original expression is an integer constant. Even though the table 3728 ** has the nullRow flag set, because the expression is an integer constant, 3729 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode 3730 ** that checks to see if the nullRow flag is set on the table. If the nullRow 3731 ** flag is set, then the value in the register is set to NULL and the original 3732 ** expression is bypassed. If the nullRow flag is not set, then the original 3733 ** expression runs to populate the register. 3734 ** 3735 ** Example where this is needed: 3736 ** 3737 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); 3738 ** CREATE TABLE t2(x INT UNIQUE); 3739 ** 3740 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; 3741 ** 3742 ** When the subquery on the right side of the LEFT JOIN is flattened, we 3743 ** have to add OP_IfNullRow in front of the OP_Integer that implements the 3744 ** "m" value of the subquery so that a NULL will be loaded instead of 59 3745 ** when processing a non-matched row of the left. 3746 */ 3747 typedef struct SubstContext { 3748 Parse *pParse; /* The parsing context */ 3749 int iTable; /* Replace references to this table */ 3750 int iNewTable; /* New table number */ 3751 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3752 ExprList *pEList; /* Replacement expressions */ 3753 ExprList *pCList; /* Collation sequences for replacement expr */ 3754 } SubstContext; 3755 3756 /* Forward Declarations */ 3757 static void substExprList(SubstContext*, ExprList*); 3758 static void substSelect(SubstContext*, Select*, int); 3759 3760 /* 3761 ** Scan through the expression pExpr. Replace every reference to 3762 ** a column in table number iTable with a copy of the iColumn-th 3763 ** entry in pEList. (But leave references to the ROWID column 3764 ** unchanged.) 3765 ** 3766 ** This routine is part of the flattening procedure. A subquery 3767 ** whose result set is defined by pEList appears as entry in the 3768 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3769 ** FORM clause entry is iTable. This routine makes the necessary 3770 ** changes to pExpr so that it refers directly to the source table 3771 ** of the subquery rather the result set of the subquery. 3772 */ 3773 static Expr *substExpr( 3774 SubstContext *pSubst, /* Description of the substitution */ 3775 Expr *pExpr /* Expr in which substitution occurs */ 3776 ){ 3777 if( pExpr==0 ) return 0; 3778 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) 3779 && pExpr->w.iJoin==pSubst->iTable 3780 ){ 3781 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 3782 pExpr->w.iJoin = pSubst->iNewTable; 3783 } 3784 if( pExpr->op==TK_COLUMN 3785 && pExpr->iTable==pSubst->iTable 3786 && !ExprHasProperty(pExpr, EP_FixedCol) 3787 ){ 3788 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3789 if( pExpr->iColumn<0 ){ 3790 pExpr->op = TK_NULL; 3791 }else 3792 #endif 3793 { 3794 Expr *pNew; 3795 int iColumn = pExpr->iColumn; 3796 Expr *pCopy = pSubst->pEList->a[iColumn].pExpr; 3797 Expr ifNullRow; 3798 assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr ); 3799 assert( pExpr->pRight==0 ); 3800 if( sqlite3ExprIsVector(pCopy) ){ 3801 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3802 }else{ 3803 sqlite3 *db = pSubst->pParse->db; 3804 if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){ 3805 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3806 ifNullRow.op = TK_IF_NULL_ROW; 3807 ifNullRow.pLeft = pCopy; 3808 ifNullRow.iTable = pSubst->iNewTable; 3809 ifNullRow.iColumn = -99; 3810 ifNullRow.flags = EP_IfNullRow; 3811 pCopy = &ifNullRow; 3812 } 3813 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3814 pNew = sqlite3ExprDup(db, pCopy, 0); 3815 if( db->mallocFailed ){ 3816 sqlite3ExprDelete(db, pNew); 3817 return pExpr; 3818 } 3819 if( pSubst->isOuterJoin ){ 3820 ExprSetProperty(pNew, EP_CanBeNull); 3821 } 3822 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ 3823 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, 3824 pExpr->flags & (EP_OuterON|EP_InnerON)); 3825 } 3826 sqlite3ExprDelete(db, pExpr); 3827 pExpr = pNew; 3828 if( pExpr->op==TK_TRUEFALSE ){ 3829 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); 3830 pExpr->op = TK_INTEGER; 3831 ExprSetProperty(pExpr, EP_IntValue); 3832 } 3833 3834 /* Ensure that the expression now has an implicit collation sequence, 3835 ** just as it did when it was a column of a view or sub-query. */ 3836 { 3837 CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3838 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, 3839 pSubst->pCList->a[iColumn].pExpr 3840 ); 3841 if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){ 3842 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3843 (pColl ? pColl->zName : "BINARY") 3844 ); 3845 } 3846 } 3847 ExprClearProperty(pExpr, EP_Collate); 3848 } 3849 } 3850 }else{ 3851 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3852 pExpr->iTable = pSubst->iNewTable; 3853 } 3854 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3855 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3856 if( ExprUseXSelect(pExpr) ){ 3857 substSelect(pSubst, pExpr->x.pSelect, 1); 3858 }else{ 3859 substExprList(pSubst, pExpr->x.pList); 3860 } 3861 #ifndef SQLITE_OMIT_WINDOWFUNC 3862 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3863 Window *pWin = pExpr->y.pWin; 3864 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3865 substExprList(pSubst, pWin->pPartition); 3866 substExprList(pSubst, pWin->pOrderBy); 3867 } 3868 #endif 3869 } 3870 return pExpr; 3871 } 3872 static void substExprList( 3873 SubstContext *pSubst, /* Description of the substitution */ 3874 ExprList *pList /* List to scan and in which to make substitutes */ 3875 ){ 3876 int i; 3877 if( pList==0 ) return; 3878 for(i=0; i<pList->nExpr; i++){ 3879 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3880 } 3881 } 3882 static void substSelect( 3883 SubstContext *pSubst, /* Description of the substitution */ 3884 Select *p, /* SELECT statement in which to make substitutions */ 3885 int doPrior /* Do substitutes on p->pPrior too */ 3886 ){ 3887 SrcList *pSrc; 3888 SrcItem *pItem; 3889 int i; 3890 if( !p ) return; 3891 do{ 3892 substExprList(pSubst, p->pEList); 3893 substExprList(pSubst, p->pGroupBy); 3894 substExprList(pSubst, p->pOrderBy); 3895 p->pHaving = substExpr(pSubst, p->pHaving); 3896 p->pWhere = substExpr(pSubst, p->pWhere); 3897 pSrc = p->pSrc; 3898 assert( pSrc!=0 ); 3899 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3900 substSelect(pSubst, pItem->pSelect, 1); 3901 if( pItem->fg.isTabFunc ){ 3902 substExprList(pSubst, pItem->u1.pFuncArg); 3903 } 3904 } 3905 }while( doPrior && (p = p->pPrior)!=0 ); 3906 } 3907 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3908 3909 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3910 /* 3911 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3912 ** clause of that SELECT. 3913 ** 3914 ** This routine scans the entire SELECT statement and recomputes the 3915 ** pSrcItem->colUsed mask. 3916 */ 3917 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3918 SrcItem *pItem; 3919 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3920 pItem = pWalker->u.pSrcItem; 3921 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3922 if( pExpr->iColumn<0 ) return WRC_Continue; 3923 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3924 return WRC_Continue; 3925 } 3926 static void recomputeColumnsUsed( 3927 Select *pSelect, /* The complete SELECT statement */ 3928 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3929 ){ 3930 Walker w; 3931 if( NEVER(pSrcItem->pTab==0) ) return; 3932 memset(&w, 0, sizeof(w)); 3933 w.xExprCallback = recomputeColumnsUsedExpr; 3934 w.xSelectCallback = sqlite3SelectWalkNoop; 3935 w.u.pSrcItem = pSrcItem; 3936 pSrcItem->colUsed = 0; 3937 sqlite3WalkSelect(&w, pSelect); 3938 } 3939 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3940 3941 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3942 /* 3943 ** Assign new cursor numbers to each of the items in pSrc. For each 3944 ** new cursor number assigned, set an entry in the aCsrMap[] array 3945 ** to map the old cursor number to the new: 3946 ** 3947 ** aCsrMap[iOld+1] = iNew; 3948 ** 3949 ** The array is guaranteed by the caller to be large enough for all 3950 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3951 ** 3952 ** If pSrc contains any sub-selects, call this routine recursively 3953 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3954 */ 3955 static void srclistRenumberCursors( 3956 Parse *pParse, /* Parse context */ 3957 int *aCsrMap, /* Array to store cursor mappings in */ 3958 SrcList *pSrc, /* FROM clause to renumber */ 3959 int iExcept /* FROM clause item to skip */ 3960 ){ 3961 int i; 3962 SrcItem *pItem; 3963 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3964 if( i!=iExcept ){ 3965 Select *p; 3966 assert( pItem->iCursor < aCsrMap[0] ); 3967 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3968 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3969 } 3970 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3971 for(p=pItem->pSelect; p; p=p->pPrior){ 3972 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3973 } 3974 } 3975 } 3976 } 3977 3978 /* 3979 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3980 */ 3981 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3982 int *aCsrMap = pWalker->u.aiCol; 3983 int iCsr = *piCursor; 3984 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3985 *piCursor = aCsrMap[iCsr+1]; 3986 } 3987 } 3988 3989 /* 3990 ** Expression walker callback used by renumberCursors() to update 3991 ** Expr objects to match newly assigned cursor numbers. 3992 */ 3993 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3994 int op = pExpr->op; 3995 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3996 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3997 } 3998 if( ExprHasProperty(pExpr, EP_OuterON) ){ 3999 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); 4000 } 4001 return WRC_Continue; 4002 } 4003 4004 /* 4005 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 4006 ** of the SELECT statement passed as the second argument, and to each 4007 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 4008 ** Except, do not assign a new cursor number to the iExcept'th element in 4009 ** the FROM clause of (*p). Update all expressions and other references 4010 ** to refer to the new cursor numbers. 4011 ** 4012 ** Argument aCsrMap is an array that may be used for temporary working 4013 ** space. Two guarantees are made by the caller: 4014 ** 4015 ** * the array is larger than the largest cursor number used within the 4016 ** select statement passed as an argument, and 4017 ** 4018 ** * the array entries for all cursor numbers that do *not* appear in 4019 ** FROM clauses of the select statement as described above are 4020 ** initialized to zero. 4021 */ 4022 static void renumberCursors( 4023 Parse *pParse, /* Parse context */ 4024 Select *p, /* Select to renumber cursors within */ 4025 int iExcept, /* FROM clause item to skip */ 4026 int *aCsrMap /* Working space */ 4027 ){ 4028 Walker w; 4029 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 4030 memset(&w, 0, sizeof(w)); 4031 w.u.aiCol = aCsrMap; 4032 w.xExprCallback = renumberCursorsCb; 4033 w.xSelectCallback = sqlite3SelectWalkNoop; 4034 sqlite3WalkSelect(&w, p); 4035 } 4036 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4037 4038 /* 4039 ** If pSel is not part of a compound SELECT, return a pointer to its 4040 ** expression list. Otherwise, return a pointer to the expression list 4041 ** of the leftmost SELECT in the compound. 4042 */ 4043 static ExprList *findLeftmostExprlist(Select *pSel){ 4044 while( pSel->pPrior ){ 4045 pSel = pSel->pPrior; 4046 } 4047 return pSel->pEList; 4048 } 4049 4050 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4051 /* 4052 ** This routine attempts to flatten subqueries as a performance optimization. 4053 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 4054 ** 4055 ** To understand the concept of flattening, consider the following 4056 ** query: 4057 ** 4058 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 4059 ** 4060 ** The default way of implementing this query is to execute the 4061 ** subquery first and store the results in a temporary table, then 4062 ** run the outer query on that temporary table. This requires two 4063 ** passes over the data. Furthermore, because the temporary table 4064 ** has no indices, the WHERE clause on the outer query cannot be 4065 ** optimized. 4066 ** 4067 ** This routine attempts to rewrite queries such as the above into 4068 ** a single flat select, like this: 4069 ** 4070 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 4071 ** 4072 ** The code generated for this simplification gives the same result 4073 ** but only has to scan the data once. And because indices might 4074 ** exist on the table t1, a complete scan of the data might be 4075 ** avoided. 4076 ** 4077 ** Flattening is subject to the following constraints: 4078 ** 4079 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4080 ** The subquery and the outer query cannot both be aggregates. 4081 ** 4082 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4083 ** (2) If the subquery is an aggregate then 4084 ** (2a) the outer query must not be a join and 4085 ** (2b) the outer query must not use subqueries 4086 ** other than the one FROM-clause subquery that is a candidate 4087 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 4088 ** from 2015-02-09.) 4089 ** 4090 ** (3) If the subquery is the right operand of a LEFT JOIN then 4091 ** (3a) the subquery may not be a join and 4092 ** (3b) the FROM clause of the subquery may not contain a virtual 4093 ** table and 4094 ** (**) Was: "The outer query may not have a GROUP BY." This case 4095 ** is now managed correctly 4096 ** (3d) the outer query may not be DISTINCT. 4097 ** See also (26) for restrictions on RIGHT JOIN. 4098 ** 4099 ** (4) The subquery can not be DISTINCT. 4100 ** 4101 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 4102 ** sub-queries that were excluded from this optimization. Restriction 4103 ** (4) has since been expanded to exclude all DISTINCT subqueries. 4104 ** 4105 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4106 ** If the subquery is aggregate, the outer query may not be DISTINCT. 4107 ** 4108 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 4109 ** A FROM clause, consider adding a FROM clause with the special 4110 ** table sqlite_once that consists of a single row containing a 4111 ** single NULL. 4112 ** 4113 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 4114 ** 4115 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 4116 ** 4117 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 4118 ** accidently carried the comment forward until 2014-09-15. Original 4119 ** constraint: "If the subquery is aggregate then the outer query 4120 ** may not use LIMIT." 4121 ** 4122 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 4123 ** 4124 ** (**) Not implemented. Subsumed into restriction (3). Was previously 4125 ** a separate restriction deriving from ticket #350. 4126 ** 4127 ** (13) The subquery and outer query may not both use LIMIT. 4128 ** 4129 ** (14) The subquery may not use OFFSET. 4130 ** 4131 ** (15) If the outer query is part of a compound select, then the 4132 ** subquery may not use LIMIT. 4133 ** (See ticket #2339 and ticket [02a8e81d44]). 4134 ** 4135 ** (16) If the outer query is aggregate, then the subquery may not 4136 ** use ORDER BY. (Ticket #2942) This used to not matter 4137 ** until we introduced the group_concat() function. 4138 ** 4139 ** (17) If the subquery is a compound select, then 4140 ** (17a) all compound operators must be a UNION ALL, and 4141 ** (17b) no terms within the subquery compound may be aggregate 4142 ** or DISTINCT, and 4143 ** (17c) every term within the subquery compound must have a FROM clause 4144 ** (17d) the outer query may not be 4145 ** (17d1) aggregate, or 4146 ** (17d2) DISTINCT 4147 ** (17e) the subquery may not contain window functions, and 4148 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 4149 ** (17g) either the subquery is the first element of the outer 4150 ** query or there are no RIGHT or FULL JOINs in any arm 4151 ** of the subquery. (This is a duplicate of condition (27b).) 4152 ** 4153 ** The parent and sub-query may contain WHERE clauses. Subject to 4154 ** rules (11), (13) and (14), they may also contain ORDER BY, 4155 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 4156 ** operator other than UNION ALL because all the other compound 4157 ** operators have an implied DISTINCT which is disallowed by 4158 ** restriction (4). 4159 ** 4160 ** Also, each component of the sub-query must return the same number 4161 ** of result columns. This is actually a requirement for any compound 4162 ** SELECT statement, but all the code here does is make sure that no 4163 ** such (illegal) sub-query is flattened. The caller will detect the 4164 ** syntax error and return a detailed message. 4165 ** 4166 ** (18) If the sub-query is a compound select, then all terms of the 4167 ** ORDER BY clause of the parent must be copies of a term returned 4168 ** by the parent query. 4169 ** 4170 ** (19) If the subquery uses LIMIT then the outer query may not 4171 ** have a WHERE clause. 4172 ** 4173 ** (20) If the sub-query is a compound select, then it must not use 4174 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4175 ** somewhat by saying that the terms of the ORDER BY clause must 4176 ** appear as unmodified result columns in the outer query. But we 4177 ** have other optimizations in mind to deal with that case. 4178 ** 4179 ** (21) If the subquery uses LIMIT then the outer query may not be 4180 ** DISTINCT. (See ticket [752e1646fc]). 4181 ** 4182 ** (22) The subquery may not be a recursive CTE. 4183 ** 4184 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4185 ** a compound query. This restriction is because transforming the 4186 ** parent to a compound query confuses the code that handles 4187 ** recursive queries in multiSelect(). 4188 ** 4189 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4190 ** The subquery may not be an aggregate that uses the built-in min() or 4191 ** or max() functions. (Without this restriction, a query like: 4192 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4193 ** return the value X for which Y was maximal.) 4194 ** 4195 ** (25) If either the subquery or the parent query contains a window 4196 ** function in the select list or ORDER BY clause, flattening 4197 ** is not attempted. 4198 ** 4199 ** (26) The subquery may not be the right operand of a RIGHT JOIN. 4200 ** See also (3) for restrictions on LEFT JOIN. 4201 ** 4202 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it 4203 ** is the first element of the parent query. Two subcases: 4204 ** (27a) the subquery is not a compound query. 4205 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs 4206 ** in any arm of the compound query. (See also (17g).) 4207 ** 4208 ** (28) The subquery is not a MATERIALIZED CTE. 4209 ** 4210 ** 4211 ** In this routine, the "p" parameter is a pointer to the outer query. 4212 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4213 ** uses aggregates. 4214 ** 4215 ** If flattening is not attempted, this routine is a no-op and returns 0. 4216 ** If flattening is attempted this routine returns 1. 4217 ** 4218 ** All of the expression analysis must occur on both the outer query and 4219 ** the subquery before this routine runs. 4220 */ 4221 static int flattenSubquery( 4222 Parse *pParse, /* Parsing context */ 4223 Select *p, /* The parent or outer SELECT statement */ 4224 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4225 int isAgg /* True if outer SELECT uses aggregate functions */ 4226 ){ 4227 const char *zSavedAuthContext = pParse->zAuthContext; 4228 Select *pParent; /* Current UNION ALL term of the other query */ 4229 Select *pSub; /* The inner query or "subquery" */ 4230 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4231 SrcList *pSrc; /* The FROM clause of the outer query */ 4232 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4233 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4234 int iNewParent = -1;/* Replacement table for iParent */ 4235 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4236 int i; /* Loop counter */ 4237 Expr *pWhere; /* The WHERE clause */ 4238 SrcItem *pSubitem; /* The subquery */ 4239 sqlite3 *db = pParse->db; 4240 Walker w; /* Walker to persist agginfo data */ 4241 int *aCsrMap = 0; 4242 4243 /* Check to see if flattening is permitted. Return 0 if not. 4244 */ 4245 assert( p!=0 ); 4246 assert( p->pPrior==0 ); 4247 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4248 pSrc = p->pSrc; 4249 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4250 pSubitem = &pSrc->a[iFrom]; 4251 iParent = pSubitem->iCursor; 4252 pSub = pSubitem->pSelect; 4253 assert( pSub!=0 ); 4254 4255 #ifndef SQLITE_OMIT_WINDOWFUNC 4256 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4257 #endif 4258 4259 pSubSrc = pSub->pSrc; 4260 assert( pSubSrc ); 4261 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4262 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4263 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4264 ** became arbitrary expressions, we were forced to add restrictions (13) 4265 ** and (14). */ 4266 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4267 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4268 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4269 return 0; /* Restriction (15) */ 4270 } 4271 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4272 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4273 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4274 return 0; /* Restrictions (8)(9) */ 4275 } 4276 if( p->pOrderBy && pSub->pOrderBy ){ 4277 return 0; /* Restriction (11) */ 4278 } 4279 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4280 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4281 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4282 return 0; /* Restriction (21) */ 4283 } 4284 if( pSub->selFlags & (SF_Recursive) ){ 4285 return 0; /* Restrictions (22) */ 4286 } 4287 4288 /* 4289 ** If the subquery is the right operand of a LEFT JOIN, then the 4290 ** subquery may not be a join itself (3a). Example of why this is not 4291 ** allowed: 4292 ** 4293 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4294 ** 4295 ** If we flatten the above, we would get 4296 ** 4297 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4298 ** 4299 ** which is not at all the same thing. 4300 ** 4301 ** See also tickets #306, #350, and #3300. 4302 */ 4303 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ 4304 if( pSubSrc->nSrc>1 /* (3a) */ 4305 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */ 4306 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4307 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ 4308 ){ 4309 return 0; 4310 } 4311 isOuterJoin = 1; 4312 } 4313 4314 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ 4315 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4316 return 0; /* Restriction (27a) */ 4317 } 4318 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){ 4319 return 0; /* (28) */ 4320 } 4321 4322 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4323 ** use only the UNION ALL operator. And none of the simple select queries 4324 ** that make up the compound SELECT are allowed to be aggregate or distinct 4325 ** queries. 4326 */ 4327 if( pSub->pPrior ){ 4328 if( pSub->pOrderBy ){ 4329 return 0; /* Restriction (20) */ 4330 } 4331 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ 4332 return 0; /* (17d1), (17d2), or (17f) */ 4333 } 4334 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4335 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4336 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4337 assert( pSub->pSrc!=0 ); 4338 assert( (pSub->selFlags & SF_Recursive)==0 ); 4339 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4340 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4341 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4342 || pSub1->pSrc->nSrc<1 /* (17c) */ 4343 #ifndef SQLITE_OMIT_WINDOWFUNC 4344 || pSub1->pWin /* (17e) */ 4345 #endif 4346 ){ 4347 return 0; 4348 } 4349 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4350 /* Without this restriction, the JT_LTORJ flag would end up being 4351 ** omitted on left-hand tables of the right join that is being 4352 ** flattened. */ 4353 return 0; /* Restrictions (17g), (27b) */ 4354 } 4355 testcase( pSub1->pSrc->nSrc>1 ); 4356 } 4357 4358 /* Restriction (18). */ 4359 if( p->pOrderBy ){ 4360 int ii; 4361 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4362 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4363 } 4364 } 4365 4366 /* Restriction (23) */ 4367 if( (p->selFlags & SF_Recursive) ) return 0; 4368 4369 if( pSrc->nSrc>1 ){ 4370 if( pParse->nSelect>500 ) return 0; 4371 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; 4372 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4373 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4374 } 4375 } 4376 4377 /***** If we reach this point, flattening is permitted. *****/ 4378 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4379 pSub->selId, pSub, iFrom)); 4380 4381 /* Authorize the subquery */ 4382 pParse->zAuthContext = pSubitem->zName; 4383 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4384 testcase( i==SQLITE_DENY ); 4385 pParse->zAuthContext = zSavedAuthContext; 4386 4387 /* Delete the transient structures associated with thesubquery */ 4388 pSub1 = pSubitem->pSelect; 4389 sqlite3DbFree(db, pSubitem->zDatabase); 4390 sqlite3DbFree(db, pSubitem->zName); 4391 sqlite3DbFree(db, pSubitem->zAlias); 4392 pSubitem->zDatabase = 0; 4393 pSubitem->zName = 0; 4394 pSubitem->zAlias = 0; 4395 pSubitem->pSelect = 0; 4396 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4397 4398 /* If the sub-query is a compound SELECT statement, then (by restrictions 4399 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4400 ** be of the form: 4401 ** 4402 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4403 ** 4404 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4405 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4406 ** OFFSET clauses and joins them to the left-hand-side of the original 4407 ** using UNION ALL operators. In this case N is the number of simple 4408 ** select statements in the compound sub-query. 4409 ** 4410 ** Example: 4411 ** 4412 ** SELECT a+1 FROM ( 4413 ** SELECT x FROM tab 4414 ** UNION ALL 4415 ** SELECT y FROM tab 4416 ** UNION ALL 4417 ** SELECT abs(z*2) FROM tab2 4418 ** ) WHERE a!=5 ORDER BY 1 4419 ** 4420 ** Transformed into: 4421 ** 4422 ** SELECT x+1 FROM tab WHERE x+1!=5 4423 ** UNION ALL 4424 ** SELECT y+1 FROM tab WHERE y+1!=5 4425 ** UNION ALL 4426 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4427 ** ORDER BY 1 4428 ** 4429 ** We call this the "compound-subquery flattening". 4430 */ 4431 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4432 Select *pNew; 4433 ExprList *pOrderBy = p->pOrderBy; 4434 Expr *pLimit = p->pLimit; 4435 Select *pPrior = p->pPrior; 4436 Table *pItemTab = pSubitem->pTab; 4437 pSubitem->pTab = 0; 4438 p->pOrderBy = 0; 4439 p->pPrior = 0; 4440 p->pLimit = 0; 4441 pNew = sqlite3SelectDup(db, p, 0); 4442 p->pLimit = pLimit; 4443 p->pOrderBy = pOrderBy; 4444 p->op = TK_ALL; 4445 pSubitem->pTab = pItemTab; 4446 if( pNew==0 ){ 4447 p->pPrior = pPrior; 4448 }else{ 4449 pNew->selId = ++pParse->nSelect; 4450 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4451 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4452 } 4453 pNew->pPrior = pPrior; 4454 if( pPrior ) pPrior->pNext = pNew; 4455 pNew->pNext = p; 4456 p->pPrior = pNew; 4457 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4458 " creates %u as peer\n",pNew->selId)); 4459 } 4460 assert( pSubitem->pSelect==0 ); 4461 } 4462 sqlite3DbFree(db, aCsrMap); 4463 if( db->mallocFailed ){ 4464 pSubitem->pSelect = pSub1; 4465 return 1; 4466 } 4467 4468 /* Defer deleting the Table object associated with the 4469 ** subquery until code generation is 4470 ** complete, since there may still exist Expr.pTab entries that 4471 ** refer to the subquery even after flattening. Ticket #3346. 4472 ** 4473 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4474 */ 4475 if( ALWAYS(pSubitem->pTab!=0) ){ 4476 Table *pTabToDel = pSubitem->pTab; 4477 if( pTabToDel->nTabRef==1 ){ 4478 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4479 sqlite3ParserAddCleanup(pToplevel, 4480 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4481 pTabToDel); 4482 testcase( pToplevel->earlyCleanup ); 4483 }else{ 4484 pTabToDel->nTabRef--; 4485 } 4486 pSubitem->pTab = 0; 4487 } 4488 4489 /* The following loop runs once for each term in a compound-subquery 4490 ** flattening (as described above). If we are doing a different kind 4491 ** of flattening - a flattening other than a compound-subquery flattening - 4492 ** then this loop only runs once. 4493 ** 4494 ** This loop moves all of the FROM elements of the subquery into the 4495 ** the FROM clause of the outer query. Before doing this, remember 4496 ** the cursor number for the original outer query FROM element in 4497 ** iParent. The iParent cursor will never be used. Subsequent code 4498 ** will scan expressions looking for iParent references and replace 4499 ** those references with expressions that resolve to the subquery FROM 4500 ** elements we are now copying in. 4501 */ 4502 pSub = pSub1; 4503 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4504 int nSubSrc; 4505 u8 jointype = 0; 4506 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; 4507 assert( pSub!=0 ); 4508 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4509 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4510 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4511 4512 if( pParent==p ){ 4513 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4514 } 4515 4516 /* The subquery uses a single slot of the FROM clause of the outer 4517 ** query. If the subquery has more than one element in its FROM clause, 4518 ** then expand the outer query to make space for it to hold all elements 4519 ** of the subquery. 4520 ** 4521 ** Example: 4522 ** 4523 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4524 ** 4525 ** The outer query has 3 slots in its FROM clause. One slot of the 4526 ** outer query (the middle slot) is used by the subquery. The next 4527 ** block of code will expand the outer query FROM clause to 4 slots. 4528 ** The middle slot is expanded to two slots in order to make space 4529 ** for the two elements in the FROM clause of the subquery. 4530 */ 4531 if( nSubSrc>1 ){ 4532 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4533 if( pSrc==0 ) break; 4534 pParent->pSrc = pSrc; 4535 } 4536 4537 /* Transfer the FROM clause terms from the subquery into the 4538 ** outer query. 4539 */ 4540 for(i=0; i<nSubSrc; i++){ 4541 SrcItem *pItem = &pSrc->a[i+iFrom]; 4542 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4543 assert( pItem->fg.isTabFunc==0 ); 4544 *pItem = pSubSrc->a[i]; 4545 pItem->fg.jointype |= ltorj; 4546 iNewParent = pSubSrc->a[i].iCursor; 4547 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4548 } 4549 pSrc->a[iFrom].fg.jointype &= JT_LTORJ; 4550 pSrc->a[iFrom].fg.jointype |= jointype | ltorj; 4551 4552 /* Now begin substituting subquery result set expressions for 4553 ** references to the iParent in the outer query. 4554 ** 4555 ** Example: 4556 ** 4557 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4558 ** \ \_____________ subquery __________/ / 4559 ** \_____________________ outer query ______________________________/ 4560 ** 4561 ** We look at every expression in the outer query and every place we see 4562 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4563 */ 4564 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4565 /* At this point, any non-zero iOrderByCol values indicate that the 4566 ** ORDER BY column expression is identical to the iOrderByCol'th 4567 ** expression returned by SELECT statement pSub. Since these values 4568 ** do not necessarily correspond to columns in SELECT statement pParent, 4569 ** zero them before transfering the ORDER BY clause. 4570 ** 4571 ** Not doing this may cause an error if a subsequent call to this 4572 ** function attempts to flatten a compound sub-query into pParent 4573 ** (the only way this can happen is if the compound sub-query is 4574 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4575 ExprList *pOrderBy = pSub->pOrderBy; 4576 for(i=0; i<pOrderBy->nExpr; i++){ 4577 pOrderBy->a[i].u.x.iOrderByCol = 0; 4578 } 4579 assert( pParent->pOrderBy==0 ); 4580 pParent->pOrderBy = pOrderBy; 4581 pSub->pOrderBy = 0; 4582 } 4583 pWhere = pSub->pWhere; 4584 pSub->pWhere = 0; 4585 if( isOuterJoin>0 ){ 4586 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); 4587 } 4588 if( pWhere ){ 4589 if( pParent->pWhere ){ 4590 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4591 }else{ 4592 pParent->pWhere = pWhere; 4593 } 4594 } 4595 if( db->mallocFailed==0 ){ 4596 SubstContext x; 4597 x.pParse = pParse; 4598 x.iTable = iParent; 4599 x.iNewTable = iNewParent; 4600 x.isOuterJoin = isOuterJoin; 4601 x.pEList = pSub->pEList; 4602 x.pCList = findLeftmostExprlist(pSub); 4603 substSelect(&x, pParent, 0); 4604 } 4605 4606 /* The flattened query is a compound if either the inner or the 4607 ** outer query is a compound. */ 4608 pParent->selFlags |= pSub->selFlags & SF_Compound; 4609 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4610 4611 /* 4612 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4613 ** 4614 ** One is tempted to try to add a and b to combine the limits. But this 4615 ** does not work if either limit is negative. 4616 */ 4617 if( pSub->pLimit ){ 4618 pParent->pLimit = pSub->pLimit; 4619 pSub->pLimit = 0; 4620 } 4621 4622 /* Recompute the SrcItem.colUsed masks for the flattened 4623 ** tables. */ 4624 for(i=0; i<nSubSrc; i++){ 4625 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4626 } 4627 } 4628 4629 /* Finially, delete what is left of the subquery and return 4630 ** success. 4631 */ 4632 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4633 sqlite3WalkSelect(&w,pSub1); 4634 sqlite3SelectDelete(db, pSub1); 4635 4636 #if TREETRACE_ENABLED 4637 if( sqlite3TreeTrace & 0x100 ){ 4638 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4639 sqlite3TreeViewSelect(0, p, 0); 4640 } 4641 #endif 4642 4643 return 1; 4644 } 4645 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4646 4647 /* 4648 ** A structure to keep track of all of the column values that are fixed to 4649 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4650 */ 4651 typedef struct WhereConst WhereConst; 4652 struct WhereConst { 4653 Parse *pParse; /* Parsing context */ 4654 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4655 int nConst; /* Number for COLUMN=CONSTANT terms */ 4656 int nChng; /* Number of times a constant is propagated */ 4657 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4658 u32 mExcludeOn; /* Which ON expressions to exclude from considertion. 4659 ** Either EP_OuterON or EP_InnerON|EP_OuterON */ 4660 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4661 }; 4662 4663 /* 4664 ** Add a new entry to the pConst object. Except, do not add duplicate 4665 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4666 ** 4667 ** The caller guarantees the pColumn is a column and pValue is a constant. 4668 ** This routine has to do some additional checks before completing the 4669 ** insert. 4670 */ 4671 static void constInsert( 4672 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4673 Expr *pColumn, /* The COLUMN part of the constraint */ 4674 Expr *pValue, /* The VALUE part of the constraint */ 4675 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4676 ){ 4677 int i; 4678 assert( pColumn->op==TK_COLUMN ); 4679 assert( sqlite3ExprIsConstant(pValue) ); 4680 4681 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4682 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4683 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4684 return; 4685 } 4686 4687 /* 2018-10-25 ticket [cf5ed20f] 4688 ** Make sure the same pColumn is not inserted more than once */ 4689 for(i=0; i<pConst->nConst; i++){ 4690 const Expr *pE2 = pConst->apExpr[i*2]; 4691 assert( pE2->op==TK_COLUMN ); 4692 if( pE2->iTable==pColumn->iTable 4693 && pE2->iColumn==pColumn->iColumn 4694 ){ 4695 return; /* Already present. Return without doing anything. */ 4696 } 4697 } 4698 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4699 pConst->bHasAffBlob = 1; 4700 } 4701 4702 pConst->nConst++; 4703 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4704 pConst->nConst*2*sizeof(Expr*)); 4705 if( pConst->apExpr==0 ){ 4706 pConst->nConst = 0; 4707 }else{ 4708 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4709 pConst->apExpr[pConst->nConst*2-1] = pValue; 4710 } 4711 } 4712 4713 /* 4714 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4715 ** is a constant expression and where the term must be true because it 4716 ** is part of the AND-connected terms of the expression. For each term 4717 ** found, add it to the pConst structure. 4718 */ 4719 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4720 Expr *pRight, *pLeft; 4721 if( NEVER(pExpr==0) ) return; 4722 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ 4723 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4724 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4725 return; 4726 } 4727 if( pExpr->op==TK_AND ){ 4728 findConstInWhere(pConst, pExpr->pRight); 4729 findConstInWhere(pConst, pExpr->pLeft); 4730 return; 4731 } 4732 if( pExpr->op!=TK_EQ ) return; 4733 pRight = pExpr->pRight; 4734 pLeft = pExpr->pLeft; 4735 assert( pRight!=0 ); 4736 assert( pLeft!=0 ); 4737 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4738 constInsert(pConst,pRight,pLeft,pExpr); 4739 } 4740 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4741 constInsert(pConst,pLeft,pRight,pExpr); 4742 } 4743 } 4744 4745 /* 4746 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4747 ** 4748 ** Argument pExpr is a candidate expression to be replaced by a value. If 4749 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4750 ** then overwrite it with the corresponding value. Except, do not do so 4751 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4752 ** is SQLITE_AFF_BLOB. 4753 */ 4754 static int propagateConstantExprRewriteOne( 4755 WhereConst *pConst, 4756 Expr *pExpr, 4757 int bIgnoreAffBlob 4758 ){ 4759 int i; 4760 if( pConst->pOomFault[0] ) return WRC_Prune; 4761 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4762 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ 4763 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4764 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4765 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4766 return WRC_Continue; 4767 } 4768 for(i=0; i<pConst->nConst; i++){ 4769 Expr *pColumn = pConst->apExpr[i*2]; 4770 if( pColumn==pExpr ) continue; 4771 if( pColumn->iTable!=pExpr->iTable ) continue; 4772 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4773 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4774 break; 4775 } 4776 /* A match is found. Add the EP_FixedCol property */ 4777 pConst->nChng++; 4778 ExprClearProperty(pExpr, EP_Leaf); 4779 ExprSetProperty(pExpr, EP_FixedCol); 4780 assert( pExpr->pLeft==0 ); 4781 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4782 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4783 break; 4784 } 4785 return WRC_Prune; 4786 } 4787 4788 /* 4789 ** This is a Walker expression callback. pExpr is a node from the WHERE 4790 ** clause of a SELECT statement. This function examines pExpr to see if 4791 ** any substitutions based on the contents of pWalker->u.pConst should 4792 ** be made to pExpr or its immediate children. 4793 ** 4794 ** A substitution is made if: 4795 ** 4796 ** + pExpr is a column with an affinity other than BLOB that matches 4797 ** one of the columns in pWalker->u.pConst, or 4798 ** 4799 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4800 ** uses an affinity other than TEXT and one of its immediate 4801 ** children is a column that matches one of the columns in 4802 ** pWalker->u.pConst. 4803 */ 4804 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4805 WhereConst *pConst = pWalker->u.pConst; 4806 assert( TK_GT==TK_EQ+1 ); 4807 assert( TK_LE==TK_EQ+2 ); 4808 assert( TK_LT==TK_EQ+3 ); 4809 assert( TK_GE==TK_EQ+4 ); 4810 if( pConst->bHasAffBlob ){ 4811 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4812 || pExpr->op==TK_IS 4813 ){ 4814 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4815 if( pConst->pOomFault[0] ) return WRC_Prune; 4816 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4817 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4818 } 4819 } 4820 } 4821 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4822 } 4823 4824 /* 4825 ** The WHERE-clause constant propagation optimization. 4826 ** 4827 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4828 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4829 ** part of a ON clause from a LEFT JOIN, then throughout the query 4830 ** replace all other occurrences of COLUMN with CONSTANT. 4831 ** 4832 ** For example, the query: 4833 ** 4834 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4835 ** 4836 ** Is transformed into 4837 ** 4838 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4839 ** 4840 ** Return true if any transformations where made and false if not. 4841 ** 4842 ** Implementation note: Constant propagation is tricky due to affinity 4843 ** and collating sequence interactions. Consider this example: 4844 ** 4845 ** CREATE TABLE t1(a INT,b TEXT); 4846 ** INSERT INTO t1 VALUES(123,'0123'); 4847 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4848 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4849 ** 4850 ** The two SELECT statements above should return different answers. b=a 4851 ** is alway true because the comparison uses numeric affinity, but b=123 4852 ** is false because it uses text affinity and '0123' is not the same as '123'. 4853 ** To work around this, the expression tree is not actually changed from 4854 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4855 ** and the "123" value is hung off of the pLeft pointer. Code generator 4856 ** routines know to generate the constant "123" instead of looking up the 4857 ** column value. Also, to avoid collation problems, this optimization is 4858 ** only attempted if the "a=123" term uses the default BINARY collation. 4859 ** 4860 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4861 ** 4862 ** CREATE TABLE t1(x); 4863 ** INSERT INTO t1 VALUES(10.0); 4864 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4865 ** 4866 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4867 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4868 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4869 ** resulting in a false positive. To avoid this, constant propagation for 4870 ** columns with BLOB affinity is only allowed if the constant is used with 4871 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4872 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4873 ** for details. 4874 */ 4875 static int propagateConstants( 4876 Parse *pParse, /* The parsing context */ 4877 Select *p /* The query in which to propagate constants */ 4878 ){ 4879 WhereConst x; 4880 Walker w; 4881 int nChng = 0; 4882 x.pParse = pParse; 4883 x.pOomFault = &pParse->db->mallocFailed; 4884 do{ 4885 x.nConst = 0; 4886 x.nChng = 0; 4887 x.apExpr = 0; 4888 x.bHasAffBlob = 0; 4889 if( ALWAYS(p->pSrc!=0) 4890 && p->pSrc->nSrc>0 4891 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 4892 ){ 4893 /* Do not propagate constants on any ON clause if there is a 4894 ** RIGHT JOIN anywhere in the query */ 4895 x.mExcludeOn = EP_InnerON | EP_OuterON; 4896 }else{ 4897 /* Do not propagate constants through the ON clause of a LEFT JOIN */ 4898 x.mExcludeOn = EP_OuterON; 4899 } 4900 findConstInWhere(&x, p->pWhere); 4901 if( x.nConst ){ 4902 memset(&w, 0, sizeof(w)); 4903 w.pParse = pParse; 4904 w.xExprCallback = propagateConstantExprRewrite; 4905 w.xSelectCallback = sqlite3SelectWalkNoop; 4906 w.xSelectCallback2 = 0; 4907 w.walkerDepth = 0; 4908 w.u.pConst = &x; 4909 sqlite3WalkExpr(&w, p->pWhere); 4910 sqlite3DbFree(x.pParse->db, x.apExpr); 4911 nChng += x.nChng; 4912 } 4913 }while( x.nChng ); 4914 return nChng; 4915 } 4916 4917 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4918 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4919 /* 4920 ** This function is called to determine whether or not it is safe to 4921 ** push WHERE clause expression pExpr down to FROM clause sub-query 4922 ** pSubq, which contains at least one window function. Return 1 4923 ** if it is safe and the expression should be pushed down, or 0 4924 ** otherwise. 4925 ** 4926 ** It is only safe to push the expression down if it consists only 4927 ** of constants and copies of expressions that appear in the PARTITION 4928 ** BY clause of all window function used by the sub-query. It is safe 4929 ** to filter out entire partitions, but not rows within partitions, as 4930 ** this may change the results of the window functions. 4931 ** 4932 ** At the time this function is called it is guaranteed that 4933 ** 4934 ** * the sub-query uses only one distinct window frame, and 4935 ** * that the window frame has a PARTITION BY clase. 4936 */ 4937 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4938 assert( pSubq->pWin->pPartition ); 4939 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4940 assert( pSubq->pPrior==0 ); 4941 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4942 } 4943 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4944 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4945 4946 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4947 /* 4948 ** Make copies of relevant WHERE clause terms of the outer query into 4949 ** the WHERE clause of subquery. Example: 4950 ** 4951 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4952 ** 4953 ** Transformed into: 4954 ** 4955 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4956 ** WHERE x=5 AND y=10; 4957 ** 4958 ** The hope is that the terms added to the inner query will make it more 4959 ** efficient. 4960 ** 4961 ** Do not attempt this optimization if: 4962 ** 4963 ** (1) (** This restriction was removed on 2017-09-29. We used to 4964 ** disallow this optimization for aggregate subqueries, but now 4965 ** it is allowed by putting the extra terms on the HAVING clause. 4966 ** The added HAVING clause is pointless if the subquery lacks 4967 ** a GROUP BY clause. But such a HAVING clause is also harmless 4968 ** so there does not appear to be any reason to add extra logic 4969 ** to suppress it. **) 4970 ** 4971 ** (2) The inner query is the recursive part of a common table expression. 4972 ** 4973 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4974 ** clause would change the meaning of the LIMIT). 4975 ** 4976 ** (4) The inner query is the right operand of a LEFT JOIN and the 4977 ** expression to be pushed down does not come from the ON clause 4978 ** on that LEFT JOIN. 4979 ** 4980 ** (5) The WHERE clause expression originates in the ON or USING clause 4981 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4982 ** left join. An example: 4983 ** 4984 ** SELECT * 4985 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4986 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4987 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4988 ** 4989 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4990 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4991 ** then the (1,1,NULL) row would be suppressed. 4992 ** 4993 ** (6) Window functions make things tricky as changes to the WHERE clause 4994 ** of the inner query could change the window over which window 4995 ** functions are calculated. Therefore, do not attempt the optimization 4996 ** if: 4997 ** 4998 ** (6a) The inner query uses multiple incompatible window partitions. 4999 ** 5000 ** (6b) The inner query is a compound and uses window-functions. 5001 ** 5002 ** (6c) The WHERE clause does not consist entirely of constants and 5003 ** copies of expressions found in the PARTITION BY clause of 5004 ** all window-functions used by the sub-query. It is safe to 5005 ** filter out entire partitions, as this does not change the 5006 ** window over which any window-function is calculated. 5007 ** 5008 ** (7) The inner query is a Common Table Expression (CTE) that should 5009 ** be materialized. (This restriction is implemented in the calling 5010 ** routine.) 5011 ** 5012 ** (8) The subquery may not be a compound that uses UNION, INTERSECT, 5013 ** or EXCEPT. (We could, perhaps, relax this restriction to allow 5014 ** this case if none of the comparisons operators between left and 5015 ** right arms of the compound use a collation other than BINARY. 5016 ** But it is a lot of work to check that case for an obscure and 5017 ** minor optimization, so we omit it for now.) 5018 ** 5019 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 5020 ** terms are duplicated into the subquery. 5021 */ 5022 static int pushDownWhereTerms( 5023 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 5024 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 5025 Expr *pWhere, /* The WHERE clause of the outer query */ 5026 SrcItem *pSrc /* The subquery term of the outer FROM clause */ 5027 ){ 5028 Expr *pNew; 5029 int nChng = 0; 5030 if( pWhere==0 ) return 0; 5031 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 5032 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0; 5033 5034 #ifndef SQLITE_OMIT_WINDOWFUNC 5035 if( pSubq->pPrior ){ 5036 Select *pSel; 5037 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 5038 u8 op = pSel->op; 5039 assert( op==TK_ALL || op==TK_SELECT 5040 || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT ); 5041 if( op!=TK_ALL && op!=TK_SELECT ) return 0; /* restriction (8) */ 5042 if( pSel->pWin ) return 0; /* restriction (6b) */ 5043 } 5044 }else{ 5045 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 5046 } 5047 #endif 5048 5049 #ifdef SQLITE_DEBUG 5050 /* Only the first term of a compound can have a WITH clause. But make 5051 ** sure no other terms are marked SF_Recursive in case something changes 5052 ** in the future. 5053 */ 5054 { 5055 Select *pX; 5056 for(pX=pSubq; pX; pX=pX->pPrior){ 5057 assert( (pX->selFlags & (SF_Recursive))==0 ); 5058 } 5059 } 5060 #endif 5061 5062 if( pSubq->pLimit!=0 ){ 5063 return 0; /* restriction (3) */ 5064 } 5065 while( pWhere->op==TK_AND ){ 5066 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc); 5067 pWhere = pWhere->pLeft; 5068 } 5069 5070 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */ 5071 if( isLeftJoin 5072 && (ExprHasProperty(pWhere,EP_OuterON)==0 5073 || pWhere->w.iJoin!=iCursor) 5074 ){ 5075 return 0; /* restriction (4) */ 5076 } 5077 if( ExprHasProperty(pWhere,EP_OuterON) 5078 && pWhere->w.iJoin!=iCursor 5079 ){ 5080 return 0; /* restriction (5) */ 5081 } 5082 #endif 5083 5084 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){ 5085 nChng++; 5086 pSubq->selFlags |= SF_PushDown; 5087 while( pSubq ){ 5088 SubstContext x; 5089 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 5090 unsetJoinExpr(pNew, -1, 1); 5091 x.pParse = pParse; 5092 x.iTable = pSrc->iCursor; 5093 x.iNewTable = pSrc->iCursor; 5094 x.isOuterJoin = 0; 5095 x.pEList = pSubq->pEList; 5096 x.pCList = findLeftmostExprlist(pSubq); 5097 pNew = substExpr(&x, pNew); 5098 #ifndef SQLITE_OMIT_WINDOWFUNC 5099 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 5100 /* Restriction 6c has prevented push-down in this case */ 5101 sqlite3ExprDelete(pParse->db, pNew); 5102 nChng--; 5103 break; 5104 } 5105 #endif 5106 if( pSubq->selFlags & SF_Aggregate ){ 5107 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 5108 }else{ 5109 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 5110 } 5111 pSubq = pSubq->pPrior; 5112 } 5113 } 5114 return nChng; 5115 } 5116 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 5117 5118 /* 5119 ** The pFunc is the only aggregate function in the query. Check to see 5120 ** if the query is a candidate for the min/max optimization. 5121 ** 5122 ** If the query is a candidate for the min/max optimization, then set 5123 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 5124 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 5125 ** whether pFunc is a min() or max() function. 5126 ** 5127 ** If the query is not a candidate for the min/max optimization, return 5128 ** WHERE_ORDERBY_NORMAL (which must be zero). 5129 ** 5130 ** This routine must be called after aggregate functions have been 5131 ** located but before their arguments have been subjected to aggregate 5132 ** analysis. 5133 */ 5134 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 5135 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 5136 ExprList *pEList; /* Arguments to agg function */ 5137 const char *zFunc; /* Name of aggregate function pFunc */ 5138 ExprList *pOrderBy; 5139 u8 sortFlags = 0; 5140 5141 assert( *ppMinMax==0 ); 5142 assert( pFunc->op==TK_AGG_FUNCTION ); 5143 assert( !IsWindowFunc(pFunc) ); 5144 assert( ExprUseXList(pFunc) ); 5145 pEList = pFunc->x.pList; 5146 if( pEList==0 5147 || pEList->nExpr!=1 5148 || ExprHasProperty(pFunc, EP_WinFunc) 5149 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 5150 ){ 5151 return eRet; 5152 } 5153 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 5154 zFunc = pFunc->u.zToken; 5155 if( sqlite3StrICmp(zFunc, "min")==0 ){ 5156 eRet = WHERE_ORDERBY_MIN; 5157 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 5158 sortFlags = KEYINFO_ORDER_BIGNULL; 5159 } 5160 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 5161 eRet = WHERE_ORDERBY_MAX; 5162 sortFlags = KEYINFO_ORDER_DESC; 5163 }else{ 5164 return eRet; 5165 } 5166 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 5167 assert( pOrderBy!=0 || db->mallocFailed ); 5168 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; 5169 return eRet; 5170 } 5171 5172 /* 5173 ** The select statement passed as the first argument is an aggregate query. 5174 ** The second argument is the associated aggregate-info object. This 5175 ** function tests if the SELECT is of the form: 5176 ** 5177 ** SELECT count(*) FROM <tbl> 5178 ** 5179 ** where table is a database table, not a sub-select or view. If the query 5180 ** does match this pattern, then a pointer to the Table object representing 5181 ** <tbl> is returned. Otherwise, NULL is returned. 5182 ** 5183 ** This routine checks to see if it is safe to use the count optimization. 5184 ** A correct answer is still obtained (though perhaps more slowly) if 5185 ** this routine returns NULL when it could have returned a table pointer. 5186 ** But returning the pointer when NULL should have been returned can 5187 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 5188 */ 5189 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 5190 Table *pTab; 5191 Expr *pExpr; 5192 5193 assert( !p->pGroupBy ); 5194 5195 if( p->pWhere 5196 || p->pEList->nExpr!=1 5197 || p->pSrc->nSrc!=1 5198 || p->pSrc->a[0].pSelect 5199 || pAggInfo->nFunc!=1 5200 || p->pHaving 5201 ){ 5202 return 0; 5203 } 5204 pTab = p->pSrc->a[0].pTab; 5205 assert( pTab!=0 ); 5206 assert( !IsView(pTab) ); 5207 if( !IsOrdinaryTable(pTab) ) return 0; 5208 pExpr = p->pEList->a[0].pExpr; 5209 assert( pExpr!=0 ); 5210 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5211 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5212 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5213 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5214 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5215 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5216 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5217 5218 return pTab; 5219 } 5220 5221 /* 5222 ** If the source-list item passed as an argument was augmented with an 5223 ** INDEXED BY clause, then try to locate the specified index. If there 5224 ** was such a clause and the named index cannot be found, return 5225 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5226 ** pFrom->pIndex and return SQLITE_OK. 5227 */ 5228 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5229 Table *pTab = pFrom->pTab; 5230 char *zIndexedBy = pFrom->u1.zIndexedBy; 5231 Index *pIdx; 5232 assert( pTab!=0 ); 5233 assert( pFrom->fg.isIndexedBy!=0 ); 5234 5235 for(pIdx=pTab->pIndex; 5236 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5237 pIdx=pIdx->pNext 5238 ); 5239 if( !pIdx ){ 5240 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5241 pParse->checkSchema = 1; 5242 return SQLITE_ERROR; 5243 } 5244 assert( pFrom->fg.isCte==0 ); 5245 pFrom->u2.pIBIndex = pIdx; 5246 return SQLITE_OK; 5247 } 5248 5249 /* 5250 ** Detect compound SELECT statements that use an ORDER BY clause with 5251 ** an alternative collating sequence. 5252 ** 5253 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5254 ** 5255 ** These are rewritten as a subquery: 5256 ** 5257 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5258 ** ORDER BY ... COLLATE ... 5259 ** 5260 ** This transformation is necessary because the multiSelectOrderBy() routine 5261 ** above that generates the code for a compound SELECT with an ORDER BY clause 5262 ** uses a merge algorithm that requires the same collating sequence on the 5263 ** result columns as on the ORDER BY clause. See ticket 5264 ** http://www.sqlite.org/src/info/6709574d2a 5265 ** 5266 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5267 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5268 ** there are COLLATE terms in the ORDER BY. 5269 */ 5270 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5271 int i; 5272 Select *pNew; 5273 Select *pX; 5274 sqlite3 *db; 5275 struct ExprList_item *a; 5276 SrcList *pNewSrc; 5277 Parse *pParse; 5278 Token dummy; 5279 5280 if( p->pPrior==0 ) return WRC_Continue; 5281 if( p->pOrderBy==0 ) return WRC_Continue; 5282 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5283 if( pX==0 ) return WRC_Continue; 5284 a = p->pOrderBy->a; 5285 #ifndef SQLITE_OMIT_WINDOWFUNC 5286 /* If iOrderByCol is already non-zero, then it has already been matched 5287 ** to a result column of the SELECT statement. This occurs when the 5288 ** SELECT is rewritten for window-functions processing and then passed 5289 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5290 ** by this function is not required in this case. */ 5291 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5292 #endif 5293 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5294 if( a[i].pExpr->flags & EP_Collate ) break; 5295 } 5296 if( i<0 ) return WRC_Continue; 5297 5298 /* If we reach this point, that means the transformation is required. */ 5299 5300 pParse = pWalker->pParse; 5301 db = pParse->db; 5302 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5303 if( pNew==0 ) return WRC_Abort; 5304 memset(&dummy, 0, sizeof(dummy)); 5305 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5306 if( pNewSrc==0 ) return WRC_Abort; 5307 *pNew = *p; 5308 p->pSrc = pNewSrc; 5309 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5310 p->op = TK_SELECT; 5311 p->pWhere = 0; 5312 pNew->pGroupBy = 0; 5313 pNew->pHaving = 0; 5314 pNew->pOrderBy = 0; 5315 p->pPrior = 0; 5316 p->pNext = 0; 5317 p->pWith = 0; 5318 #ifndef SQLITE_OMIT_WINDOWFUNC 5319 p->pWinDefn = 0; 5320 #endif 5321 p->selFlags &= ~SF_Compound; 5322 assert( (p->selFlags & SF_Converted)==0 ); 5323 p->selFlags |= SF_Converted; 5324 assert( pNew->pPrior!=0 ); 5325 pNew->pPrior->pNext = pNew; 5326 pNew->pLimit = 0; 5327 return WRC_Continue; 5328 } 5329 5330 /* 5331 ** Check to see if the FROM clause term pFrom has table-valued function 5332 ** arguments. If it does, leave an error message in pParse and return 5333 ** non-zero, since pFrom is not allowed to be a table-valued function. 5334 */ 5335 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5336 if( pFrom->fg.isTabFunc ){ 5337 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5338 return 1; 5339 } 5340 return 0; 5341 } 5342 5343 #ifndef SQLITE_OMIT_CTE 5344 /* 5345 ** Argument pWith (which may be NULL) points to a linked list of nested 5346 ** WITH contexts, from inner to outermost. If the table identified by 5347 ** FROM clause element pItem is really a common-table-expression (CTE) 5348 ** then return a pointer to the CTE definition for that table. Otherwise 5349 ** return NULL. 5350 ** 5351 ** If a non-NULL value is returned, set *ppContext to point to the With 5352 ** object that the returned CTE belongs to. 5353 */ 5354 static struct Cte *searchWith( 5355 With *pWith, /* Current innermost WITH clause */ 5356 SrcItem *pItem, /* FROM clause element to resolve */ 5357 With **ppContext /* OUT: WITH clause return value belongs to */ 5358 ){ 5359 const char *zName = pItem->zName; 5360 With *p; 5361 assert( pItem->zDatabase==0 ); 5362 assert( zName!=0 ); 5363 for(p=pWith; p; p=p->pOuter){ 5364 int i; 5365 for(i=0; i<p->nCte; i++){ 5366 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5367 *ppContext = p; 5368 return &p->a[i]; 5369 } 5370 } 5371 if( p->bView ) break; 5372 } 5373 return 0; 5374 } 5375 5376 /* The code generator maintains a stack of active WITH clauses 5377 ** with the inner-most WITH clause being at the top of the stack. 5378 ** 5379 ** This routine pushes the WITH clause passed as the second argument 5380 ** onto the top of the stack. If argument bFree is true, then this 5381 ** WITH clause will never be popped from the stack but should instead 5382 ** be freed along with the Parse object. In other cases, when 5383 ** bFree==0, the With object will be freed along with the SELECT 5384 ** statement with which it is associated. 5385 ** 5386 ** This routine returns a copy of pWith. Or, if bFree is true and 5387 ** the pWith object is destroyed immediately due to an OOM condition, 5388 ** then this routine return NULL. 5389 ** 5390 ** If bFree is true, do not continue to use the pWith pointer after 5391 ** calling this routine, Instead, use only the return value. 5392 */ 5393 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5394 if( pWith ){ 5395 if( bFree ){ 5396 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5397 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5398 pWith); 5399 if( pWith==0 ) return 0; 5400 } 5401 if( pParse->nErr==0 ){ 5402 assert( pParse->pWith!=pWith ); 5403 pWith->pOuter = pParse->pWith; 5404 pParse->pWith = pWith; 5405 } 5406 } 5407 return pWith; 5408 } 5409 5410 /* 5411 ** This function checks if argument pFrom refers to a CTE declared by 5412 ** a WITH clause on the stack currently maintained by the parser (on the 5413 ** pParse->pWith linked list). And if currently processing a CTE 5414 ** CTE expression, through routine checks to see if the reference is 5415 ** a recursive reference to the CTE. 5416 ** 5417 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5418 ** and other fields are populated accordingly. 5419 ** 5420 ** Return 0 if no match is found. 5421 ** Return 1 if a match is found. 5422 ** Return 2 if an error condition is detected. 5423 */ 5424 static int resolveFromTermToCte( 5425 Parse *pParse, /* The parsing context */ 5426 Walker *pWalker, /* Current tree walker */ 5427 SrcItem *pFrom /* The FROM clause term to check */ 5428 ){ 5429 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5430 With *pWith; /* The matching WITH */ 5431 5432 assert( pFrom->pTab==0 ); 5433 if( pParse->pWith==0 ){ 5434 /* There are no WITH clauses in the stack. No match is possible */ 5435 return 0; 5436 } 5437 if( pParse->nErr ){ 5438 /* Prior errors might have left pParse->pWith in a goofy state, so 5439 ** go no further. */ 5440 return 0; 5441 } 5442 if( pFrom->zDatabase!=0 ){ 5443 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5444 ** it cannot possibly be a CTE reference. */ 5445 return 0; 5446 } 5447 if( pFrom->fg.notCte ){ 5448 /* The FROM term is specifically excluded from matching a CTE. 5449 ** (1) It is part of a trigger that used to have zDatabase but had 5450 ** zDatabase removed by sqlite3FixTriggerStep(). 5451 ** (2) This is the first term in the FROM clause of an UPDATE. 5452 */ 5453 return 0; 5454 } 5455 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5456 if( pCte ){ 5457 sqlite3 *db = pParse->db; 5458 Table *pTab; 5459 ExprList *pEList; 5460 Select *pSel; 5461 Select *pLeft; /* Left-most SELECT statement */ 5462 Select *pRecTerm; /* Left-most recursive term */ 5463 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5464 With *pSavedWith; /* Initial value of pParse->pWith */ 5465 int iRecTab = -1; /* Cursor for recursive table */ 5466 CteUse *pCteUse; 5467 5468 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5469 ** recursive reference to CTE pCte. Leave an error in pParse and return 5470 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5471 ** In this case, proceed. */ 5472 if( pCte->zCteErr ){ 5473 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5474 return 2; 5475 } 5476 if( cannotBeFunction(pParse, pFrom) ) return 2; 5477 5478 assert( pFrom->pTab==0 ); 5479 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5480 if( pTab==0 ) return 2; 5481 pCteUse = pCte->pUse; 5482 if( pCteUse==0 ){ 5483 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5484 if( pCteUse==0 5485 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5486 ){ 5487 sqlite3DbFree(db, pTab); 5488 return 2; 5489 } 5490 pCteUse->eM10d = pCte->eM10d; 5491 } 5492 pFrom->pTab = pTab; 5493 pTab->nTabRef = 1; 5494 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5495 pTab->iPKey = -1; 5496 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5497 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5498 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5499 if( db->mallocFailed ) return 2; 5500 pFrom->pSelect->selFlags |= SF_CopyCte; 5501 assert( pFrom->pSelect ); 5502 if( pFrom->fg.isIndexedBy ){ 5503 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5504 return 2; 5505 } 5506 pFrom->fg.isCte = 1; 5507 pFrom->u2.pCteUse = pCteUse; 5508 pCteUse->nUse++; 5509 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5510 pCteUse->eM10d = M10d_Yes; 5511 } 5512 5513 /* Check if this is a recursive CTE. */ 5514 pRecTerm = pSel = pFrom->pSelect; 5515 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5516 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5517 int i; 5518 SrcList *pSrc = pRecTerm->pSrc; 5519 assert( pRecTerm->pPrior!=0 ); 5520 for(i=0; i<pSrc->nSrc; i++){ 5521 SrcItem *pItem = &pSrc->a[i]; 5522 if( pItem->zDatabase==0 5523 && pItem->zName!=0 5524 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5525 ){ 5526 pItem->pTab = pTab; 5527 pTab->nTabRef++; 5528 pItem->fg.isRecursive = 1; 5529 if( pRecTerm->selFlags & SF_Recursive ){ 5530 sqlite3ErrorMsg(pParse, 5531 "multiple references to recursive table: %s", pCte->zName 5532 ); 5533 return 2; 5534 } 5535 pRecTerm->selFlags |= SF_Recursive; 5536 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5537 pItem->iCursor = iRecTab; 5538 } 5539 } 5540 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5541 pRecTerm = pRecTerm->pPrior; 5542 } 5543 5544 pCte->zCteErr = "circular reference: %s"; 5545 pSavedWith = pParse->pWith; 5546 pParse->pWith = pWith; 5547 if( pSel->selFlags & SF_Recursive ){ 5548 int rc; 5549 assert( pRecTerm!=0 ); 5550 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5551 assert( pRecTerm->pNext!=0 ); 5552 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5553 assert( pRecTerm->pWith==0 ); 5554 pRecTerm->pWith = pSel->pWith; 5555 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5556 pRecTerm->pWith = 0; 5557 if( rc ){ 5558 pParse->pWith = pSavedWith; 5559 return 2; 5560 } 5561 }else{ 5562 if( sqlite3WalkSelect(pWalker, pSel) ){ 5563 pParse->pWith = pSavedWith; 5564 return 2; 5565 } 5566 } 5567 pParse->pWith = pWith; 5568 5569 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5570 pEList = pLeft->pEList; 5571 if( pCte->pCols ){ 5572 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5573 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5574 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5575 ); 5576 pParse->pWith = pSavedWith; 5577 return 2; 5578 } 5579 pEList = pCte->pCols; 5580 } 5581 5582 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5583 if( bMayRecursive ){ 5584 if( pSel->selFlags & SF_Recursive ){ 5585 pCte->zCteErr = "multiple recursive references: %s"; 5586 }else{ 5587 pCte->zCteErr = "recursive reference in a subquery: %s"; 5588 } 5589 sqlite3WalkSelect(pWalker, pSel); 5590 } 5591 pCte->zCteErr = 0; 5592 pParse->pWith = pSavedWith; 5593 return 1; /* Success */ 5594 } 5595 return 0; /* No match */ 5596 } 5597 #endif 5598 5599 #ifndef SQLITE_OMIT_CTE 5600 /* 5601 ** If the SELECT passed as the second argument has an associated WITH 5602 ** clause, pop it from the stack stored as part of the Parse object. 5603 ** 5604 ** This function is used as the xSelectCallback2() callback by 5605 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5606 ** names and other FROM clause elements. 5607 */ 5608 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5609 Parse *pParse = pWalker->pParse; 5610 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5611 With *pWith = findRightmost(p)->pWith; 5612 if( pWith!=0 ){ 5613 assert( pParse->pWith==pWith || pParse->nErr ); 5614 pParse->pWith = pWith->pOuter; 5615 } 5616 } 5617 } 5618 #endif 5619 5620 /* 5621 ** The SrcItem structure passed as the second argument represents a 5622 ** sub-query in the FROM clause of a SELECT statement. This function 5623 ** allocates and populates the SrcItem.pTab object. If successful, 5624 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5625 ** SQLITE_NOMEM. 5626 */ 5627 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5628 Select *pSel = pFrom->pSelect; 5629 Table *pTab; 5630 5631 assert( pSel ); 5632 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5633 if( pTab==0 ) return SQLITE_NOMEM; 5634 pTab->nTabRef = 1; 5635 if( pFrom->zAlias ){ 5636 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5637 }else{ 5638 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); 5639 } 5640 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5641 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5642 pTab->iPKey = -1; 5643 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5644 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5645 /* The usual case - do not allow ROWID on a subquery */ 5646 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5647 #else 5648 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5649 #endif 5650 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5651 } 5652 5653 5654 /* 5655 ** Check the N SrcItem objects to the right of pBase. (N might be zero!) 5656 ** If any of those SrcItem objects have a USING clause containing zName 5657 ** then return true. 5658 ** 5659 ** If N is zero, or none of the N SrcItem objects to the right of pBase 5660 ** contains a USING clause, or if none of the USING clauses contain zName, 5661 ** then return false. 5662 */ 5663 static int inAnyUsingClause( 5664 const char *zName, /* Name we are looking for */ 5665 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ 5666 int N /* How many SrcItems to check */ 5667 ){ 5668 while( N>0 ){ 5669 N--; 5670 pBase++; 5671 if( pBase->fg.isUsing==0 ) continue; 5672 if( NEVER(pBase->u3.pUsing==0) ) continue; 5673 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; 5674 } 5675 return 0; 5676 } 5677 5678 5679 /* 5680 ** This routine is a Walker callback for "expanding" a SELECT statement. 5681 ** "Expanding" means to do the following: 5682 ** 5683 ** (1) Make sure VDBE cursor numbers have been assigned to every 5684 ** element of the FROM clause. 5685 ** 5686 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5687 ** defines FROM clause. When views appear in the FROM clause, 5688 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5689 ** that implements the view. A copy is made of the view's SELECT 5690 ** statement so that we can freely modify or delete that statement 5691 ** without worrying about messing up the persistent representation 5692 ** of the view. 5693 ** 5694 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5695 ** on joins and the ON and USING clause of joins. 5696 ** 5697 ** (4) Scan the list of columns in the result set (pEList) looking 5698 ** for instances of the "*" operator or the TABLE.* operator. 5699 ** If found, expand each "*" to be every column in every table 5700 ** and TABLE.* to be every column in TABLE. 5701 ** 5702 */ 5703 static int selectExpander(Walker *pWalker, Select *p){ 5704 Parse *pParse = pWalker->pParse; 5705 int i, j, k, rc; 5706 SrcList *pTabList; 5707 ExprList *pEList; 5708 SrcItem *pFrom; 5709 sqlite3 *db = pParse->db; 5710 Expr *pE, *pRight, *pExpr; 5711 u16 selFlags = p->selFlags; 5712 u32 elistFlags = 0; 5713 5714 p->selFlags |= SF_Expanded; 5715 if( db->mallocFailed ){ 5716 return WRC_Abort; 5717 } 5718 assert( p->pSrc!=0 ); 5719 if( (selFlags & SF_Expanded)!=0 ){ 5720 return WRC_Prune; 5721 } 5722 if( pWalker->eCode ){ 5723 /* Renumber selId because it has been copied from a view */ 5724 p->selId = ++pParse->nSelect; 5725 } 5726 pTabList = p->pSrc; 5727 pEList = p->pEList; 5728 if( pParse->pWith && (p->selFlags & SF_View) ){ 5729 if( p->pWith==0 ){ 5730 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5731 if( p->pWith==0 ){ 5732 return WRC_Abort; 5733 } 5734 } 5735 p->pWith->bView = 1; 5736 } 5737 sqlite3WithPush(pParse, p->pWith, 0); 5738 5739 /* Make sure cursor numbers have been assigned to all entries in 5740 ** the FROM clause of the SELECT statement. 5741 */ 5742 sqlite3SrcListAssignCursors(pParse, pTabList); 5743 5744 /* Look up every table named in the FROM clause of the select. If 5745 ** an entry of the FROM clause is a subquery instead of a table or view, 5746 ** then create a transient table structure to describe the subquery. 5747 */ 5748 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5749 Table *pTab; 5750 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5751 if( pFrom->pTab ) continue; 5752 assert( pFrom->fg.isRecursive==0 ); 5753 if( pFrom->zName==0 ){ 5754 #ifndef SQLITE_OMIT_SUBQUERY 5755 Select *pSel = pFrom->pSelect; 5756 /* A sub-query in the FROM clause of a SELECT */ 5757 assert( pSel!=0 ); 5758 assert( pFrom->pTab==0 ); 5759 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5760 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5761 #endif 5762 #ifndef SQLITE_OMIT_CTE 5763 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5764 if( rc>1 ) return WRC_Abort; 5765 pTab = pFrom->pTab; 5766 assert( pTab!=0 ); 5767 #endif 5768 }else{ 5769 /* An ordinary table or view name in the FROM clause */ 5770 assert( pFrom->pTab==0 ); 5771 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5772 if( pTab==0 ) return WRC_Abort; 5773 if( pTab->nTabRef>=0xffff ){ 5774 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5775 pTab->zName); 5776 pFrom->pTab = 0; 5777 return WRC_Abort; 5778 } 5779 pTab->nTabRef++; 5780 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5781 return WRC_Abort; 5782 } 5783 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5784 if( !IsOrdinaryTable(pTab) ){ 5785 i16 nCol; 5786 u8 eCodeOrig = pWalker->eCode; 5787 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5788 assert( pFrom->pSelect==0 ); 5789 if( IsView(pTab) ){ 5790 if( (db->flags & SQLITE_EnableView)==0 5791 && pTab->pSchema!=db->aDb[1].pSchema 5792 ){ 5793 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5794 pTab->zName); 5795 } 5796 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5797 } 5798 #ifndef SQLITE_OMIT_VIRTUALTABLE 5799 else if( ALWAYS(IsVirtual(pTab)) 5800 && pFrom->fg.fromDDL 5801 && ALWAYS(pTab->u.vtab.p!=0) 5802 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5803 ){ 5804 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5805 pTab->zName); 5806 } 5807 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5808 #endif 5809 nCol = pTab->nCol; 5810 pTab->nCol = -1; 5811 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5812 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5813 pWalker->eCode = eCodeOrig; 5814 pTab->nCol = nCol; 5815 } 5816 #endif 5817 } 5818 5819 /* Locate the index named by the INDEXED BY clause, if any. */ 5820 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5821 return WRC_Abort; 5822 } 5823 } 5824 5825 /* Process NATURAL keywords, and ON and USING clauses of joins. 5826 */ 5827 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5828 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ 5829 return WRC_Abort; 5830 } 5831 5832 /* For every "*" that occurs in the column list, insert the names of 5833 ** all columns in all tables. And for every TABLE.* insert the names 5834 ** of all columns in TABLE. The parser inserted a special expression 5835 ** with the TK_ASTERISK operator for each "*" that it found in the column 5836 ** list. The following code just has to locate the TK_ASTERISK 5837 ** expressions and expand each one to the list of all columns in 5838 ** all tables. 5839 ** 5840 ** The first loop just checks to see if there are any "*" operators 5841 ** that need expanding. 5842 */ 5843 for(k=0; k<pEList->nExpr; k++){ 5844 pE = pEList->a[k].pExpr; 5845 if( pE->op==TK_ASTERISK ) break; 5846 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5847 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5848 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5849 elistFlags |= pE->flags; 5850 } 5851 if( k<pEList->nExpr ){ 5852 /* 5853 ** If we get here it means the result set contains one or more "*" 5854 ** operators that need to be expanded. Loop through each expression 5855 ** in the result set and expand them one by one. 5856 */ 5857 struct ExprList_item *a = pEList->a; 5858 ExprList *pNew = 0; 5859 int flags = pParse->db->flags; 5860 int longNames = (flags & SQLITE_FullColNames)!=0 5861 && (flags & SQLITE_ShortColNames)==0; 5862 5863 for(k=0; k<pEList->nExpr; k++){ 5864 pE = a[k].pExpr; 5865 elistFlags |= pE->flags; 5866 pRight = pE->pRight; 5867 assert( pE->op!=TK_DOT || pRight!=0 ); 5868 if( pE->op!=TK_ASTERISK 5869 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5870 ){ 5871 /* This particular expression does not need to be expanded. 5872 */ 5873 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5874 if( pNew ){ 5875 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5876 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; 5877 a[k].zEName = 0; 5878 } 5879 a[k].pExpr = 0; 5880 }else{ 5881 /* This expression is a "*" or a "TABLE.*" and needs to be 5882 ** expanded. */ 5883 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5884 char *zTName = 0; /* text of name of TABLE */ 5885 if( pE->op==TK_DOT ){ 5886 assert( pE->pLeft!=0 ); 5887 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5888 zTName = pE->pLeft->u.zToken; 5889 } 5890 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5891 Table *pTab = pFrom->pTab; /* Table for this data source */ 5892 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ 5893 char *zTabName; /* AS name for this data source */ 5894 const char *zSchemaName = 0; /* Schema name for this data source */ 5895 int iDb; /* Schema index for this data src */ 5896 IdList *pUsing; /* USING clause for pFrom[1] */ 5897 5898 if( (zTabName = pFrom->zAlias)==0 ){ 5899 zTabName = pTab->zName; 5900 } 5901 if( db->mallocFailed ) break; 5902 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); 5903 if( pFrom->fg.isNestedFrom ){ 5904 assert( pFrom->pSelect!=0 ); 5905 pNestedFrom = pFrom->pSelect->pEList; 5906 assert( pNestedFrom!=0 ); 5907 assert( pNestedFrom->nExpr==pTab->nCol ); 5908 }else{ 5909 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5910 continue; 5911 } 5912 pNestedFrom = 0; 5913 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5914 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5915 } 5916 if( i+1<pTabList->nSrc 5917 && pFrom[1].fg.isUsing 5918 && (selFlags & SF_NestedFrom)!=0 5919 ){ 5920 int ii; 5921 pUsing = pFrom[1].u3.pUsing; 5922 for(ii=0; ii<pUsing->nId; ii++){ 5923 const char *zUName = pUsing->a[ii].zName; 5924 pRight = sqlite3Expr(db, TK_ID, zUName); 5925 pNew = sqlite3ExprListAppend(pParse, pNew, pRight); 5926 if( pNew ){ 5927 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5928 assert( pX->zEName==0 ); 5929 pX->zEName = sqlite3MPrintf(db,"..%s", zUName); 5930 pX->fg.eEName = ENAME_TAB; 5931 pX->fg.bUsingTerm = 1; 5932 } 5933 } 5934 }else{ 5935 pUsing = 0; 5936 } 5937 for(j=0; j<pTab->nCol; j++){ 5938 char *zName = pTab->aCol[j].zCnName; 5939 struct ExprList_item *pX; /* Newly added ExprList term */ 5940 5941 assert( zName ); 5942 if( zTName 5943 && pNestedFrom 5944 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 5945 ){ 5946 continue; 5947 } 5948 5949 /* If a column is marked as 'hidden', omit it from the expanded 5950 ** result-set list unless the SELECT has the SF_IncludeHidden 5951 ** bit set. 5952 */ 5953 if( (p->selFlags & SF_IncludeHidden)==0 5954 && IsHiddenColumn(&pTab->aCol[j]) 5955 ){ 5956 continue; 5957 } 5958 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 5959 && zTName==0 5960 && (selFlags & (SF_NestedFrom))==0 5961 ){ 5962 continue; 5963 } 5964 tableSeen = 1; 5965 5966 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ 5967 if( pFrom->fg.isUsing 5968 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5969 ){ 5970 /* In a join with a USING clause, omit columns in the 5971 ** using clause from the table on the right. */ 5972 continue; 5973 } 5974 } 5975 pRight = sqlite3Expr(db, TK_ID, zName); 5976 if( (pTabList->nSrc>1 5977 && ( (pFrom->fg.jointype & JT_LTORJ)==0 5978 || (selFlags & SF_NestedFrom)!=0 5979 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) 5980 ) 5981 ) 5982 || IN_RENAME_OBJECT 5983 ){ 5984 Expr *pLeft; 5985 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5986 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5987 if( IN_RENAME_OBJECT && pE->pLeft ){ 5988 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); 5989 } 5990 if( zSchemaName ){ 5991 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5992 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5993 } 5994 }else{ 5995 pExpr = pRight; 5996 } 5997 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5998 if( pNew==0 ){ 5999 break; /* OOM */ 6000 } 6001 pX = &pNew->a[pNew->nExpr-1]; 6002 assert( pX->zEName==0 ); 6003 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 6004 if( pNestedFrom ){ 6005 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); 6006 testcase( pX->zEName==0 ); 6007 }else{ 6008 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 6009 zSchemaName, zTabName, zName); 6010 testcase( pX->zEName==0 ); 6011 } 6012 pX->fg.eEName = ENAME_TAB; 6013 if( (pFrom->fg.isUsing 6014 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) 6015 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) 6016 || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 6017 ){ 6018 pX->fg.bNoExpand = 1; 6019 } 6020 }else if( longNames ){ 6021 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 6022 pX->fg.eEName = ENAME_NAME; 6023 }else{ 6024 pX->zEName = sqlite3DbStrDup(db, zName); 6025 pX->fg.eEName = ENAME_NAME; 6026 } 6027 } 6028 } 6029 if( !tableSeen ){ 6030 if( zTName ){ 6031 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 6032 }else{ 6033 sqlite3ErrorMsg(pParse, "no tables specified"); 6034 } 6035 } 6036 } 6037 } 6038 sqlite3ExprListDelete(db, pEList); 6039 p->pEList = pNew; 6040 } 6041 if( p->pEList ){ 6042 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 6043 sqlite3ErrorMsg(pParse, "too many columns in result set"); 6044 return WRC_Abort; 6045 } 6046 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 6047 p->selFlags |= SF_ComplexResult; 6048 } 6049 } 6050 #if TREETRACE_ENABLED 6051 if( sqlite3TreeTrace & 0x100 ){ 6052 SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n")); 6053 sqlite3TreeViewSelect(0, p, 0); 6054 } 6055 #endif 6056 return WRC_Continue; 6057 } 6058 6059 #if SQLITE_DEBUG 6060 /* 6061 ** Always assert. This xSelectCallback2 implementation proves that the 6062 ** xSelectCallback2 is never invoked. 6063 */ 6064 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 6065 UNUSED_PARAMETER2(NotUsed, NotUsed2); 6066 assert( 0 ); 6067 } 6068 #endif 6069 /* 6070 ** This routine "expands" a SELECT statement and all of its subqueries. 6071 ** For additional information on what it means to "expand" a SELECT 6072 ** statement, see the comment on the selectExpand worker callback above. 6073 ** 6074 ** Expanding a SELECT statement is the first step in processing a 6075 ** SELECT statement. The SELECT statement must be expanded before 6076 ** name resolution is performed. 6077 ** 6078 ** If anything goes wrong, an error message is written into pParse. 6079 ** The calling function can detect the problem by looking at pParse->nErr 6080 ** and/or pParse->db->mallocFailed. 6081 */ 6082 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 6083 Walker w; 6084 w.xExprCallback = sqlite3ExprWalkNoop; 6085 w.pParse = pParse; 6086 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 6087 w.xSelectCallback = convertCompoundSelectToSubquery; 6088 w.xSelectCallback2 = 0; 6089 sqlite3WalkSelect(&w, pSelect); 6090 } 6091 w.xSelectCallback = selectExpander; 6092 w.xSelectCallback2 = sqlite3SelectPopWith; 6093 w.eCode = 0; 6094 sqlite3WalkSelect(&w, pSelect); 6095 } 6096 6097 6098 #ifndef SQLITE_OMIT_SUBQUERY 6099 /* 6100 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 6101 ** interface. 6102 ** 6103 ** For each FROM-clause subquery, add Column.zType and Column.zColl 6104 ** information to the Table structure that represents the result set 6105 ** of that subquery. 6106 ** 6107 ** The Table structure that represents the result set was constructed 6108 ** by selectExpander() but the type and collation information was omitted 6109 ** at that point because identifiers had not yet been resolved. This 6110 ** routine is called after identifier resolution. 6111 */ 6112 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 6113 Parse *pParse; 6114 int i; 6115 SrcList *pTabList; 6116 SrcItem *pFrom; 6117 6118 assert( p->selFlags & SF_Resolved ); 6119 if( p->selFlags & SF_HasTypeInfo ) return; 6120 p->selFlags |= SF_HasTypeInfo; 6121 pParse = pWalker->pParse; 6122 pTabList = p->pSrc; 6123 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 6124 Table *pTab = pFrom->pTab; 6125 assert( pTab!=0 ); 6126 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 6127 /* A sub-query in the FROM clause of a SELECT */ 6128 Select *pSel = pFrom->pSelect; 6129 if( pSel ){ 6130 while( pSel->pPrior ) pSel = pSel->pPrior; 6131 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 6132 SQLITE_AFF_NONE); 6133 } 6134 } 6135 } 6136 } 6137 #endif 6138 6139 6140 /* 6141 ** This routine adds datatype and collating sequence information to 6142 ** the Table structures of all FROM-clause subqueries in a 6143 ** SELECT statement. 6144 ** 6145 ** Use this routine after name resolution. 6146 */ 6147 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 6148 #ifndef SQLITE_OMIT_SUBQUERY 6149 Walker w; 6150 w.xSelectCallback = sqlite3SelectWalkNoop; 6151 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 6152 w.xExprCallback = sqlite3ExprWalkNoop; 6153 w.pParse = pParse; 6154 sqlite3WalkSelect(&w, pSelect); 6155 #endif 6156 } 6157 6158 6159 /* 6160 ** This routine sets up a SELECT statement for processing. The 6161 ** following is accomplished: 6162 ** 6163 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 6164 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 6165 ** * ON and USING clauses are shifted into WHERE statements 6166 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 6167 ** * Identifiers in expression are matched to tables. 6168 ** 6169 ** This routine acts recursively on all subqueries within the SELECT. 6170 */ 6171 void sqlite3SelectPrep( 6172 Parse *pParse, /* The parser context */ 6173 Select *p, /* The SELECT statement being coded. */ 6174 NameContext *pOuterNC /* Name context for container */ 6175 ){ 6176 assert( p!=0 || pParse->db->mallocFailed ); 6177 assert( pParse->db->pParse==pParse ); 6178 if( pParse->db->mallocFailed ) return; 6179 if( p->selFlags & SF_HasTypeInfo ) return; 6180 sqlite3SelectExpand(pParse, p); 6181 if( pParse->nErr ) return; 6182 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 6183 if( pParse->nErr ) return; 6184 sqlite3SelectAddTypeInfo(pParse, p); 6185 } 6186 6187 /* 6188 ** Reset the aggregate accumulator. 6189 ** 6190 ** The aggregate accumulator is a set of memory cells that hold 6191 ** intermediate results while calculating an aggregate. This 6192 ** routine generates code that stores NULLs in all of those memory 6193 ** cells. 6194 */ 6195 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 6196 Vdbe *v = pParse->pVdbe; 6197 int i; 6198 struct AggInfo_func *pFunc; 6199 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 6200 assert( pParse->db->pParse==pParse ); 6201 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 6202 if( nReg==0 ) return; 6203 if( pParse->nErr ) return; 6204 #ifdef SQLITE_DEBUG 6205 /* Verify that all AggInfo registers are within the range specified by 6206 ** AggInfo.mnReg..AggInfo.mxReg */ 6207 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 6208 for(i=0; i<pAggInfo->nColumn; i++){ 6209 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 6210 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 6211 } 6212 for(i=0; i<pAggInfo->nFunc; i++){ 6213 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 6214 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 6215 } 6216 #endif 6217 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 6218 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 6219 if( pFunc->iDistinct>=0 ){ 6220 Expr *pE = pFunc->pFExpr; 6221 assert( ExprUseXList(pE) ); 6222 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 6223 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 6224 "argument"); 6225 pFunc->iDistinct = -1; 6226 }else{ 6227 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 6228 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6229 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 6230 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 6231 pFunc->pFunc->zName)); 6232 } 6233 } 6234 } 6235 } 6236 6237 /* 6238 ** Invoke the OP_AggFinalize opcode for every aggregate function 6239 ** in the AggInfo structure. 6240 */ 6241 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 6242 Vdbe *v = pParse->pVdbe; 6243 int i; 6244 struct AggInfo_func *pF; 6245 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6246 ExprList *pList; 6247 assert( ExprUseXList(pF->pFExpr) ); 6248 pList = pF->pFExpr->x.pList; 6249 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 6250 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6251 } 6252 } 6253 6254 6255 /* 6256 ** Update the accumulator memory cells for an aggregate based on 6257 ** the current cursor position. 6258 ** 6259 ** If regAcc is non-zero and there are no min() or max() aggregates 6260 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 6261 ** registers if register regAcc contains 0. The caller will take care 6262 ** of setting and clearing regAcc. 6263 */ 6264 static void updateAccumulator( 6265 Parse *pParse, 6266 int regAcc, 6267 AggInfo *pAggInfo, 6268 int eDistinctType 6269 ){ 6270 Vdbe *v = pParse->pVdbe; 6271 int i; 6272 int regHit = 0; 6273 int addrHitTest = 0; 6274 struct AggInfo_func *pF; 6275 struct AggInfo_col *pC; 6276 6277 pAggInfo->directMode = 1; 6278 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6279 int nArg; 6280 int addrNext = 0; 6281 int regAgg; 6282 ExprList *pList; 6283 assert( ExprUseXList(pF->pFExpr) ); 6284 assert( !IsWindowFunc(pF->pFExpr) ); 6285 pList = pF->pFExpr->x.pList; 6286 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6287 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6288 if( pAggInfo->nAccumulator 6289 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6290 && regAcc 6291 ){ 6292 /* If regAcc==0, there there exists some min() or max() function 6293 ** without a FILTER clause that will ensure the magnet registers 6294 ** are populated. */ 6295 if( regHit==0 ) regHit = ++pParse->nMem; 6296 /* If this is the first row of the group (regAcc contains 0), clear the 6297 ** "magnet" register regHit so that the accumulator registers 6298 ** are populated if the FILTER clause jumps over the the 6299 ** invocation of min() or max() altogether. Or, if this is not 6300 ** the first row (regAcc contains 1), set the magnet register so that 6301 ** the accumulators are not populated unless the min()/max() is invoked 6302 ** and indicates that they should be. */ 6303 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6304 } 6305 addrNext = sqlite3VdbeMakeLabel(pParse); 6306 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6307 } 6308 if( pList ){ 6309 nArg = pList->nExpr; 6310 regAgg = sqlite3GetTempRange(pParse, nArg); 6311 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6312 }else{ 6313 nArg = 0; 6314 regAgg = 0; 6315 } 6316 if( pF->iDistinct>=0 && pList ){ 6317 if( addrNext==0 ){ 6318 addrNext = sqlite3VdbeMakeLabel(pParse); 6319 } 6320 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6321 pF->iDistinct, addrNext, pList, regAgg); 6322 } 6323 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6324 CollSeq *pColl = 0; 6325 struct ExprList_item *pItem; 6326 int j; 6327 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6328 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6329 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6330 } 6331 if( !pColl ){ 6332 pColl = pParse->db->pDfltColl; 6333 } 6334 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6335 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6336 } 6337 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6338 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6339 sqlite3VdbeChangeP5(v, (u8)nArg); 6340 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6341 if( addrNext ){ 6342 sqlite3VdbeResolveLabel(v, addrNext); 6343 } 6344 } 6345 if( regHit==0 && pAggInfo->nAccumulator ){ 6346 regHit = regAcc; 6347 } 6348 if( regHit ){ 6349 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6350 } 6351 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6352 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6353 } 6354 6355 pAggInfo->directMode = 0; 6356 if( addrHitTest ){ 6357 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6358 } 6359 } 6360 6361 /* 6362 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6363 ** count(*) query ("SELECT count(*) FROM pTab"). 6364 */ 6365 #ifndef SQLITE_OMIT_EXPLAIN 6366 static void explainSimpleCount( 6367 Parse *pParse, /* Parse context */ 6368 Table *pTab, /* Table being queried */ 6369 Index *pIdx /* Index used to optimize scan, or NULL */ 6370 ){ 6371 if( pParse->explain==2 ){ 6372 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6373 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6374 pTab->zName, 6375 bCover ? " USING COVERING INDEX " : "", 6376 bCover ? pIdx->zName : "" 6377 ); 6378 } 6379 } 6380 #else 6381 # define explainSimpleCount(a,b,c) 6382 #endif 6383 6384 /* 6385 ** sqlite3WalkExpr() callback used by havingToWhere(). 6386 ** 6387 ** If the node passed to the callback is a TK_AND node, return 6388 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6389 ** 6390 ** Otherwise, return WRC_Prune. In this case, also check if the 6391 ** sub-expression matches the criteria for being moved to the WHERE 6392 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6393 ** within the HAVING expression with a constant "1". 6394 */ 6395 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6396 if( pExpr->op!=TK_AND ){ 6397 Select *pS = pWalker->u.pSelect; 6398 /* This routine is called before the HAVING clause of the current 6399 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6400 ** here, it indicates that the expression is a correlated reference to a 6401 ** column from an outer aggregate query, or an aggregate function that 6402 ** belongs to an outer query. Do not move the expression to the WHERE 6403 ** clause in this obscure case, as doing so may corrupt the outer Select 6404 ** statements AggInfo structure. */ 6405 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6406 && ExprAlwaysFalse(pExpr)==0 6407 && pExpr->pAggInfo==0 6408 ){ 6409 sqlite3 *db = pWalker->pParse->db; 6410 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6411 if( pNew ){ 6412 Expr *pWhere = pS->pWhere; 6413 SWAP(Expr, *pNew, *pExpr); 6414 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6415 pS->pWhere = pNew; 6416 pWalker->eCode = 1; 6417 } 6418 } 6419 return WRC_Prune; 6420 } 6421 return WRC_Continue; 6422 } 6423 6424 /* 6425 ** Transfer eligible terms from the HAVING clause of a query, which is 6426 ** processed after grouping, to the WHERE clause, which is processed before 6427 ** grouping. For example, the query: 6428 ** 6429 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6430 ** 6431 ** can be rewritten as: 6432 ** 6433 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6434 ** 6435 ** A term of the HAVING expression is eligible for transfer if it consists 6436 ** entirely of constants and expressions that are also GROUP BY terms that 6437 ** use the "BINARY" collation sequence. 6438 */ 6439 static void havingToWhere(Parse *pParse, Select *p){ 6440 Walker sWalker; 6441 memset(&sWalker, 0, sizeof(sWalker)); 6442 sWalker.pParse = pParse; 6443 sWalker.xExprCallback = havingToWhereExprCb; 6444 sWalker.u.pSelect = p; 6445 sqlite3WalkExpr(&sWalker, p->pHaving); 6446 #if TREETRACE_ENABLED 6447 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6448 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6449 sqlite3TreeViewSelect(0, p, 0); 6450 } 6451 #endif 6452 } 6453 6454 /* 6455 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6456 ** If it is, then return the SrcItem for the prior view. If it is not, 6457 ** then return 0. 6458 */ 6459 static SrcItem *isSelfJoinView( 6460 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6461 SrcItem *pThis /* Search for prior reference to this subquery */ 6462 ){ 6463 SrcItem *pItem; 6464 assert( pThis->pSelect!=0 ); 6465 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6466 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6467 Select *pS1; 6468 if( pItem->pSelect==0 ) continue; 6469 if( pItem->fg.viaCoroutine ) continue; 6470 if( pItem->zName==0 ) continue; 6471 assert( pItem->pTab!=0 ); 6472 assert( pThis->pTab!=0 ); 6473 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6474 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6475 pS1 = pItem->pSelect; 6476 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6477 /* The query flattener left two different CTE tables with identical 6478 ** names in the same FROM clause. */ 6479 continue; 6480 } 6481 if( pItem->pSelect->selFlags & SF_PushDown ){ 6482 /* The view was modified by some other optimization such as 6483 ** pushDownWhereTerms() */ 6484 continue; 6485 } 6486 return pItem; 6487 } 6488 return 0; 6489 } 6490 6491 /* 6492 ** Deallocate a single AggInfo object 6493 */ 6494 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6495 sqlite3DbFree(db, p->aCol); 6496 sqlite3DbFree(db, p->aFunc); 6497 sqlite3DbFreeNN(db, p); 6498 } 6499 6500 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6501 /* 6502 ** Attempt to transform a query of the form 6503 ** 6504 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6505 ** 6506 ** Into this: 6507 ** 6508 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6509 ** 6510 ** The transformation only works if all of the following are true: 6511 ** 6512 ** * The subquery is a UNION ALL of two or more terms 6513 ** * The subquery does not have a LIMIT clause 6514 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6515 ** * The outer query is a simple count(*) with no WHERE clause or other 6516 ** extraneous syntax. 6517 ** 6518 ** Return TRUE if the optimization is undertaken. 6519 */ 6520 static int countOfViewOptimization(Parse *pParse, Select *p){ 6521 Select *pSub, *pPrior; 6522 Expr *pExpr; 6523 Expr *pCount; 6524 sqlite3 *db; 6525 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6526 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6527 if( p->pWhere ) return 0; 6528 if( p->pGroupBy ) return 0; 6529 pExpr = p->pEList->a[0].pExpr; 6530 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6531 assert( ExprUseUToken(pExpr) ); 6532 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6533 assert( ExprUseXList(pExpr) ); 6534 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6535 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6536 pSub = p->pSrc->a[0].pSelect; 6537 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6538 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6539 do{ 6540 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6541 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6542 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6543 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6544 pSub = pSub->pPrior; /* Repeat over compound */ 6545 }while( pSub ); 6546 6547 /* If we reach this point then it is OK to perform the transformation */ 6548 6549 db = pParse->db; 6550 pCount = pExpr; 6551 pExpr = 0; 6552 pSub = p->pSrc->a[0].pSelect; 6553 p->pSrc->a[0].pSelect = 0; 6554 sqlite3SrcListDelete(db, p->pSrc); 6555 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6556 while( pSub ){ 6557 Expr *pTerm; 6558 pPrior = pSub->pPrior; 6559 pSub->pPrior = 0; 6560 pSub->pNext = 0; 6561 pSub->selFlags |= SF_Aggregate; 6562 pSub->selFlags &= ~SF_Compound; 6563 pSub->nSelectRow = 0; 6564 sqlite3ExprListDelete(db, pSub->pEList); 6565 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6566 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6567 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6568 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6569 if( pExpr==0 ){ 6570 pExpr = pTerm; 6571 }else{ 6572 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6573 } 6574 pSub = pPrior; 6575 } 6576 p->pEList->a[0].pExpr = pExpr; 6577 p->selFlags &= ~SF_Aggregate; 6578 6579 #if TREETRACE_ENABLED 6580 if( sqlite3TreeTrace & 0x400 ){ 6581 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6582 sqlite3TreeViewSelect(0, p, 0); 6583 } 6584 #endif 6585 return 1; 6586 } 6587 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6588 6589 /* 6590 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same 6591 ** as pSrcItem but has the same alias as p0, then return true. 6592 ** Otherwise return false. 6593 */ 6594 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ 6595 int i; 6596 for(i=0; i<pSrc->nSrc; i++){ 6597 SrcItem *p1 = &pSrc->a[i]; 6598 if( p1==p0 ) continue; 6599 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6600 return 1; 6601 } 6602 if( p1->pSelect 6603 && (p1->pSelect->selFlags & SF_NestedFrom)!=0 6604 && sameSrcAlias(p0, p1->pSelect->pSrc) 6605 ){ 6606 return 1; 6607 } 6608 } 6609 return 0; 6610 } 6611 6612 /* 6613 ** Generate code for the SELECT statement given in the p argument. 6614 ** 6615 ** The results are returned according to the SelectDest structure. 6616 ** See comments in sqliteInt.h for further information. 6617 ** 6618 ** This routine returns the number of errors. If any errors are 6619 ** encountered, then an appropriate error message is left in 6620 ** pParse->zErrMsg. 6621 ** 6622 ** This routine does NOT free the Select structure passed in. The 6623 ** calling function needs to do that. 6624 */ 6625 int sqlite3Select( 6626 Parse *pParse, /* The parser context */ 6627 Select *p, /* The SELECT statement being coded. */ 6628 SelectDest *pDest /* What to do with the query results */ 6629 ){ 6630 int i, j; /* Loop counters */ 6631 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6632 Vdbe *v; /* The virtual machine under construction */ 6633 int isAgg; /* True for select lists like "count(*)" */ 6634 ExprList *pEList = 0; /* List of columns to extract. */ 6635 SrcList *pTabList; /* List of tables to select from */ 6636 Expr *pWhere; /* The WHERE clause. May be NULL */ 6637 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6638 Expr *pHaving; /* The HAVING clause. May be NULL */ 6639 AggInfo *pAggInfo = 0; /* Aggregate information */ 6640 int rc = 1; /* Value to return from this function */ 6641 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6642 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6643 int iEnd; /* Address of the end of the query */ 6644 sqlite3 *db; /* The database connection */ 6645 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6646 u8 minMaxFlag; /* Flag for min/max queries */ 6647 6648 db = pParse->db; 6649 assert( pParse==db->pParse ); 6650 v = sqlite3GetVdbe(pParse); 6651 if( p==0 || pParse->nErr ){ 6652 return 1; 6653 } 6654 assert( db->mallocFailed==0 ); 6655 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6656 #if TREETRACE_ENABLED 6657 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6658 if( sqlite3TreeTrace & 0x10100 ){ 6659 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6660 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6661 __FILE__, __LINE__); 6662 } 6663 sqlite3ShowSelect(p); 6664 } 6665 #endif 6666 6667 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6668 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6669 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6670 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6671 if( IgnorableDistinct(pDest) ){ 6672 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6673 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6674 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6675 /* All of these destinations are also able to ignore the ORDER BY clause */ 6676 if( p->pOrderBy ){ 6677 #if TREETRACE_ENABLED 6678 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6679 if( sqlite3TreeTrace & 0x100 ){ 6680 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6681 } 6682 #endif 6683 sqlite3ParserAddCleanup(pParse, 6684 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6685 p->pOrderBy); 6686 testcase( pParse->earlyCleanup ); 6687 p->pOrderBy = 0; 6688 } 6689 p->selFlags &= ~SF_Distinct; 6690 p->selFlags |= SF_NoopOrderBy; 6691 } 6692 sqlite3SelectPrep(pParse, p, 0); 6693 if( pParse->nErr ){ 6694 goto select_end; 6695 } 6696 assert( db->mallocFailed==0 ); 6697 assert( p->pEList!=0 ); 6698 #if TREETRACE_ENABLED 6699 if( sqlite3TreeTrace & 0x104 ){ 6700 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6701 sqlite3TreeViewSelect(0, p, 0); 6702 } 6703 #endif 6704 6705 /* If the SF_UFSrcCheck flag is set, then this function is being called 6706 ** as part of populating the temp table for an UPDATE...FROM statement. 6707 ** In this case, it is an error if the target object (pSrc->a[0]) name 6708 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6709 ** 6710 ** Postgres disallows this case too. The reason is that some other 6711 ** systems handle this case differently, and not all the same way, 6712 ** which is just confusing. To avoid this, we follow PG's lead and 6713 ** disallow it altogether. */ 6714 if( p->selFlags & SF_UFSrcCheck ){ 6715 SrcItem *p0 = &p->pSrc->a[0]; 6716 if( sameSrcAlias(p0, p->pSrc) ){ 6717 sqlite3ErrorMsg(pParse, 6718 "target object/alias may not appear in FROM clause: %s", 6719 p0->zAlias ? p0->zAlias : p0->pTab->zName 6720 ); 6721 goto select_end; 6722 } 6723 6724 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6725 ** and leaving this flag set can cause errors if a compound sub-query 6726 ** in p->pSrc is flattened into this query and this function called 6727 ** again as part of compound SELECT processing. */ 6728 p->selFlags &= ~SF_UFSrcCheck; 6729 } 6730 6731 if( pDest->eDest==SRT_Output ){ 6732 sqlite3GenerateColumnNames(pParse, p); 6733 } 6734 6735 #ifndef SQLITE_OMIT_WINDOWFUNC 6736 if( sqlite3WindowRewrite(pParse, p) ){ 6737 assert( pParse->nErr ); 6738 goto select_end; 6739 } 6740 #if TREETRACE_ENABLED 6741 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6742 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6743 sqlite3TreeViewSelect(0, p, 0); 6744 } 6745 #endif 6746 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6747 pTabList = p->pSrc; 6748 isAgg = (p->selFlags & SF_Aggregate)!=0; 6749 memset(&sSort, 0, sizeof(sSort)); 6750 sSort.pOrderBy = p->pOrderBy; 6751 6752 /* Try to do various optimizations (flattening subqueries, and strength 6753 ** reduction of join operators) in the FROM clause up into the main query 6754 */ 6755 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6756 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6757 SrcItem *pItem = &pTabList->a[i]; 6758 Select *pSub = pItem->pSelect; 6759 Table *pTab = pItem->pTab; 6760 6761 /* The expander should have already created transient Table objects 6762 ** even for FROM clause elements such as subqueries that do not correspond 6763 ** to a real table */ 6764 assert( pTab!=0 ); 6765 6766 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6767 ** of the LEFT JOIN used in the WHERE clause. 6768 */ 6769 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT 6770 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6771 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6772 ){ 6773 SELECTTRACE(0x100,pParse,p, 6774 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6775 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6776 assert( pItem->iCursor>=0 ); 6777 unsetJoinExpr(p->pWhere, pItem->iCursor, 6778 pTabList->a[0].fg.jointype & JT_LTORJ); 6779 } 6780 6781 /* No futher action if this term of the FROM clause is no a subquery */ 6782 if( pSub==0 ) continue; 6783 6784 /* Catch mismatch in the declared columns of a view and the number of 6785 ** columns in the SELECT on the RHS */ 6786 if( pTab->nCol!=pSub->pEList->nExpr ){ 6787 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6788 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6789 goto select_end; 6790 } 6791 6792 /* Do not try to flatten an aggregate subquery. 6793 ** 6794 ** Flattening an aggregate subquery is only possible if the outer query 6795 ** is not a join. But if the outer query is not a join, then the subquery 6796 ** will be implemented as a co-routine and there is no advantage to 6797 ** flattening in that case. 6798 */ 6799 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6800 assert( pSub->pGroupBy==0 ); 6801 6802 /* If a FROM-clause subquery has an ORDER BY clause that is not 6803 ** really doing anything, then delete it now so that it does not 6804 ** interfere with query flattening. See the discussion at 6805 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6806 ** 6807 ** Beware of these cases where the ORDER BY clause may not be safely 6808 ** omitted: 6809 ** 6810 ** (1) There is also a LIMIT clause 6811 ** (2) The subquery was added to help with window-function 6812 ** processing 6813 ** (3) The subquery is in the FROM clause of an UPDATE 6814 ** (4) The outer query uses an aggregate function other than 6815 ** the built-in count(), min(), or max(). 6816 ** (5) The ORDER BY isn't going to accomplish anything because 6817 ** one of: 6818 ** (a) The outer query has a different ORDER BY clause 6819 ** (b) The subquery is part of a join 6820 ** See forum post 062d576715d277c8 6821 */ 6822 if( pSub->pOrderBy!=0 6823 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6824 && pSub->pLimit==0 /* Condition (1) */ 6825 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6826 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6827 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6828 ){ 6829 SELECTTRACE(0x100,pParse,p, 6830 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6831 sqlite3ParserAddCleanup(pParse, 6832 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6833 pSub->pOrderBy); 6834 pSub->pOrderBy = 0; 6835 } 6836 6837 /* If the outer query contains a "complex" result set (that is, 6838 ** if the result set of the outer query uses functions or subqueries) 6839 ** and if the subquery contains an ORDER BY clause and if 6840 ** it will be implemented as a co-routine, then do not flatten. This 6841 ** restriction allows SQL constructs like this: 6842 ** 6843 ** SELECT expensive_function(x) 6844 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6845 ** 6846 ** The expensive_function() is only computed on the 10 rows that 6847 ** are output, rather than every row of the table. 6848 ** 6849 ** The requirement that the outer query have a complex result set 6850 ** means that flattening does occur on simpler SQL constraints without 6851 ** the expensive_function() like: 6852 ** 6853 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6854 */ 6855 if( pSub->pOrderBy!=0 6856 && i==0 6857 && (p->selFlags & SF_ComplexResult)!=0 6858 && (pTabList->nSrc==1 6859 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) 6860 ){ 6861 continue; 6862 } 6863 6864 if( flattenSubquery(pParse, p, i, isAgg) ){ 6865 if( pParse->nErr ) goto select_end; 6866 /* This subquery can be absorbed into its parent. */ 6867 i = -1; 6868 } 6869 pTabList = p->pSrc; 6870 if( db->mallocFailed ) goto select_end; 6871 if( !IgnorableOrderby(pDest) ){ 6872 sSort.pOrderBy = p->pOrderBy; 6873 } 6874 } 6875 #endif 6876 6877 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6878 /* Handle compound SELECT statements using the separate multiSelect() 6879 ** procedure. 6880 */ 6881 if( p->pPrior ){ 6882 rc = multiSelect(pParse, p, pDest); 6883 #if TREETRACE_ENABLED 6884 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6885 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6886 sqlite3TreeViewSelect(0, p, 0); 6887 } 6888 #endif 6889 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6890 return rc; 6891 } 6892 #endif 6893 6894 /* Do the WHERE-clause constant propagation optimization if this is 6895 ** a join. No need to speed time on this operation for non-join queries 6896 ** as the equivalent optimization will be handled by query planner in 6897 ** sqlite3WhereBegin(). 6898 */ 6899 if( p->pWhere!=0 6900 && p->pWhere->op==TK_AND 6901 && OptimizationEnabled(db, SQLITE_PropagateConst) 6902 && propagateConstants(pParse, p) 6903 ){ 6904 #if TREETRACE_ENABLED 6905 if( sqlite3TreeTrace & 0x100 ){ 6906 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6907 sqlite3TreeViewSelect(0, p, 0); 6908 } 6909 #endif 6910 }else{ 6911 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6912 } 6913 6914 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6915 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6916 && countOfViewOptimization(pParse, p) 6917 ){ 6918 if( db->mallocFailed ) goto select_end; 6919 pEList = p->pEList; 6920 pTabList = p->pSrc; 6921 } 6922 #endif 6923 6924 /* For each term in the FROM clause, do two things: 6925 ** (1) Authorized unreferenced tables 6926 ** (2) Generate code for all sub-queries 6927 */ 6928 for(i=0; i<pTabList->nSrc; i++){ 6929 SrcItem *pItem = &pTabList->a[i]; 6930 SrcItem *pPrior; 6931 SelectDest dest; 6932 Select *pSub; 6933 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6934 const char *zSavedAuthContext; 6935 #endif 6936 6937 /* Issue SQLITE_READ authorizations with a fake column name for any 6938 ** tables that are referenced but from which no values are extracted. 6939 ** Examples of where these kinds of null SQLITE_READ authorizations 6940 ** would occur: 6941 ** 6942 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6943 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6944 ** 6945 ** The fake column name is an empty string. It is possible for a table to 6946 ** have a column named by the empty string, in which case there is no way to 6947 ** distinguish between an unreferenced table and an actual reference to the 6948 ** "" column. The original design was for the fake column name to be a NULL, 6949 ** which would be unambiguous. But legacy authorization callbacks might 6950 ** assume the column name is non-NULL and segfault. The use of an empty 6951 ** string for the fake column name seems safer. 6952 */ 6953 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6954 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6955 } 6956 6957 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6958 /* Generate code for all sub-queries in the FROM clause 6959 */ 6960 pSub = pItem->pSelect; 6961 if( pSub==0 ) continue; 6962 6963 /* The code for a subquery should only be generated once. */ 6964 assert( pItem->addrFillSub==0 ); 6965 6966 /* Increment Parse.nHeight by the height of the largest expression 6967 ** tree referred to by this, the parent select. The child select 6968 ** may contain expression trees of at most 6969 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6970 ** more conservative than necessary, but much easier than enforcing 6971 ** an exact limit. 6972 */ 6973 pParse->nHeight += sqlite3SelectExprHeight(p); 6974 6975 /* Make copies of constant WHERE-clause terms in the outer query down 6976 ** inside the subquery. This can help the subquery to run more efficiently. 6977 */ 6978 if( OptimizationEnabled(db, SQLITE_PushDown) 6979 && (pItem->fg.isCte==0 6980 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6981 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem) 6982 ){ 6983 #if TREETRACE_ENABLED 6984 if( sqlite3TreeTrace & 0x100 ){ 6985 SELECTTRACE(0x100,pParse,p, 6986 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6987 sqlite3TreeViewSelect(0, p, 0); 6988 } 6989 #endif 6990 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6991 }else{ 6992 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6993 } 6994 6995 zSavedAuthContext = pParse->zAuthContext; 6996 pParse->zAuthContext = pItem->zName; 6997 6998 /* Generate code to implement the subquery 6999 ** 7000 ** The subquery is implemented as a co-routine if all of the following are 7001 ** true: 7002 ** 7003 ** (1) the subquery is guaranteed to be the outer loop (so that 7004 ** it does not need to be computed more than once), and 7005 ** (2) the subquery is not a CTE that should be materialized 7006 ** (3) the subquery is not part of a left operand for a RIGHT JOIN 7007 */ 7008 if( i==0 7009 && (pTabList->nSrc==1 7010 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */ 7011 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 7012 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */ 7013 ){ 7014 /* Implement a co-routine that will return a single row of the result 7015 ** set on each invocation. 7016 */ 7017 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 7018 7019 pItem->regReturn = ++pParse->nMem; 7020 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 7021 VdbeComment((v, "%!S", pItem)); 7022 pItem->addrFillSub = addrTop; 7023 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 7024 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 7025 sqlite3Select(pParse, pSub, &dest); 7026 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7027 pItem->fg.viaCoroutine = 1; 7028 pItem->regResult = dest.iSdst; 7029 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 7030 sqlite3VdbeJumpHere(v, addrTop-1); 7031 sqlite3ClearTempRegCache(pParse); 7032 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 7033 /* This is a CTE for which materialization code has already been 7034 ** generated. Invoke the subroutine to compute the materialization, 7035 ** the make the pItem->iCursor be a copy of the ephemerial table that 7036 ** holds the result of the materialization. */ 7037 CteUse *pCteUse = pItem->u2.pCteUse; 7038 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 7039 if( pItem->iCursor!=pCteUse->iCur ){ 7040 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 7041 VdbeComment((v, "%!S", pItem)); 7042 } 7043 pSub->nSelectRow = pCteUse->nRowEst; 7044 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 7045 /* This view has already been materialized by a prior entry in 7046 ** this same FROM clause. Reuse it. */ 7047 if( pPrior->addrFillSub ){ 7048 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 7049 } 7050 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 7051 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 7052 }else{ 7053 /* Materialize the view. If the view is not correlated, generate a 7054 ** subroutine to do the materialization so that subsequent uses of 7055 ** the same view can reuse the materialization. */ 7056 int topAddr; 7057 int onceAddr = 0; 7058 7059 pItem->regReturn = ++pParse->nMem; 7060 topAddr = sqlite3VdbeAddOp0(v, OP_Goto); 7061 pItem->addrFillSub = topAddr+1; 7062 pItem->fg.isMaterialized = 1; 7063 if( pItem->fg.isCorrelated==0 ){ 7064 /* If the subquery is not correlated and if we are not inside of 7065 ** a trigger, then we only need to compute the value of the subquery 7066 ** once. */ 7067 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 7068 VdbeComment((v, "materialize %!S", pItem)); 7069 }else{ 7070 VdbeNoopComment((v, "materialize %!S", pItem)); 7071 } 7072 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 7073 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 7074 sqlite3Select(pParse, pSub, &dest); 7075 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7076 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 7077 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); 7078 VdbeComment((v, "end %!S", pItem)); 7079 sqlite3VdbeJumpHere(v, topAddr); 7080 sqlite3ClearTempRegCache(pParse); 7081 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 7082 CteUse *pCteUse = pItem->u2.pCteUse; 7083 pCteUse->addrM9e = pItem->addrFillSub; 7084 pCteUse->regRtn = pItem->regReturn; 7085 pCteUse->iCur = pItem->iCursor; 7086 pCteUse->nRowEst = pSub->nSelectRow; 7087 } 7088 } 7089 if( db->mallocFailed ) goto select_end; 7090 pParse->nHeight -= sqlite3SelectExprHeight(p); 7091 pParse->zAuthContext = zSavedAuthContext; 7092 #endif 7093 } 7094 7095 /* Various elements of the SELECT copied into local variables for 7096 ** convenience */ 7097 pEList = p->pEList; 7098 pWhere = p->pWhere; 7099 pGroupBy = p->pGroupBy; 7100 pHaving = p->pHaving; 7101 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 7102 7103 #if TREETRACE_ENABLED 7104 if( sqlite3TreeTrace & 0x400 ){ 7105 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 7106 sqlite3TreeViewSelect(0, p, 0); 7107 } 7108 #endif 7109 7110 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 7111 ** if the select-list is the same as the ORDER BY list, then this query 7112 ** can be rewritten as a GROUP BY. In other words, this: 7113 ** 7114 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 7115 ** 7116 ** is transformed to: 7117 ** 7118 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 7119 ** 7120 ** The second form is preferred as a single index (or temp-table) may be 7121 ** used for both the ORDER BY and DISTINCT processing. As originally 7122 ** written the query must use a temp-table for at least one of the ORDER 7123 ** BY and DISTINCT, and an index or separate temp-table for the other. 7124 */ 7125 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 7126 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 7127 #ifndef SQLITE_OMIT_WINDOWFUNC 7128 && p->pWin==0 7129 #endif 7130 ){ 7131 p->selFlags &= ~SF_Distinct; 7132 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 7133 p->selFlags |= SF_Aggregate; 7134 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 7135 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 7136 ** original setting of the SF_Distinct flag, not the current setting */ 7137 assert( sDistinct.isTnct ); 7138 sDistinct.isTnct = 2; 7139 7140 #if TREETRACE_ENABLED 7141 if( sqlite3TreeTrace & 0x400 ){ 7142 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 7143 sqlite3TreeViewSelect(0, p, 0); 7144 } 7145 #endif 7146 } 7147 7148 /* If there is an ORDER BY clause, then create an ephemeral index to 7149 ** do the sorting. But this sorting ephemeral index might end up 7150 ** being unused if the data can be extracted in pre-sorted order. 7151 ** If that is the case, then the OP_OpenEphemeral instruction will be 7152 ** changed to an OP_Noop once we figure out that the sorting index is 7153 ** not needed. The sSort.addrSortIndex variable is used to facilitate 7154 ** that change. 7155 */ 7156 if( sSort.pOrderBy ){ 7157 KeyInfo *pKeyInfo; 7158 pKeyInfo = sqlite3KeyInfoFromExprList( 7159 pParse, sSort.pOrderBy, 0, pEList->nExpr); 7160 sSort.iECursor = pParse->nTab++; 7161 sSort.addrSortIndex = 7162 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7163 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 7164 (char*)pKeyInfo, P4_KEYINFO 7165 ); 7166 }else{ 7167 sSort.addrSortIndex = -1; 7168 } 7169 7170 /* If the output is destined for a temporary table, open that table. 7171 */ 7172 if( pDest->eDest==SRT_EphemTab ){ 7173 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 7174 if( p->selFlags & SF_NestedFrom ){ 7175 /* Delete or NULL-out result columns that will never be used */ 7176 int ii; 7177 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ 7178 sqlite3ExprDelete(db, pEList->a[ii].pExpr); 7179 sqlite3DbFree(db, pEList->a[ii].zEName); 7180 pEList->nExpr--; 7181 } 7182 for(ii=0; ii<pEList->nExpr; ii++){ 7183 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; 7184 } 7185 } 7186 } 7187 7188 /* Set the limiter. 7189 */ 7190 iEnd = sqlite3VdbeMakeLabel(pParse); 7191 if( (p->selFlags & SF_FixedLimit)==0 ){ 7192 p->nSelectRow = 320; /* 4 billion rows */ 7193 } 7194 if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd); 7195 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 7196 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 7197 sSort.sortFlags |= SORTFLAG_UseSorter; 7198 } 7199 7200 /* Open an ephemeral index to use for the distinct set. 7201 */ 7202 if( p->selFlags & SF_Distinct ){ 7203 sDistinct.tabTnct = pParse->nTab++; 7204 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7205 sDistinct.tabTnct, 0, 0, 7206 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 7207 P4_KEYINFO); 7208 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 7209 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 7210 }else{ 7211 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 7212 } 7213 7214 if( !isAgg && pGroupBy==0 ){ 7215 /* No aggregate functions and no GROUP BY clause */ 7216 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 7217 | (p->selFlags & SF_FixedLimit); 7218 #ifndef SQLITE_OMIT_WINDOWFUNC 7219 Window *pWin = p->pWin; /* Main window object (or NULL) */ 7220 if( pWin ){ 7221 sqlite3WindowCodeInit(pParse, p); 7222 } 7223 #endif 7224 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 7225 7226 7227 /* Begin the database scan. */ 7228 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7229 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 7230 p->pEList, p, wctrlFlags, p->nSelectRow); 7231 if( pWInfo==0 ) goto select_end; 7232 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 7233 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 7234 } 7235 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 7236 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 7237 } 7238 if( sSort.pOrderBy ){ 7239 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 7240 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 7241 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 7242 sSort.pOrderBy = 0; 7243 } 7244 } 7245 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7246 7247 /* If sorting index that was created by a prior OP_OpenEphemeral 7248 ** instruction ended up not being needed, then change the OP_OpenEphemeral 7249 ** into an OP_Noop. 7250 */ 7251 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 7252 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7253 } 7254 7255 assert( p->pEList==pEList ); 7256 #ifndef SQLITE_OMIT_WINDOWFUNC 7257 if( pWin ){ 7258 int addrGosub = sqlite3VdbeMakeLabel(pParse); 7259 int iCont = sqlite3VdbeMakeLabel(pParse); 7260 int iBreak = sqlite3VdbeMakeLabel(pParse); 7261 int regGosub = ++pParse->nMem; 7262 7263 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 7264 7265 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 7266 sqlite3VdbeResolveLabel(v, addrGosub); 7267 VdbeNoopComment((v, "inner-loop subroutine")); 7268 sSort.labelOBLopt = 0; 7269 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 7270 sqlite3VdbeResolveLabel(v, iCont); 7271 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 7272 VdbeComment((v, "end inner-loop subroutine")); 7273 sqlite3VdbeResolveLabel(v, iBreak); 7274 }else 7275 #endif /* SQLITE_OMIT_WINDOWFUNC */ 7276 { 7277 /* Use the standard inner loop. */ 7278 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 7279 sqlite3WhereContinueLabel(pWInfo), 7280 sqlite3WhereBreakLabel(pWInfo)); 7281 7282 /* End the database scan loop. 7283 */ 7284 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7285 sqlite3WhereEnd(pWInfo); 7286 } 7287 }else{ 7288 /* This case when there exist aggregate functions or a GROUP BY clause 7289 ** or both */ 7290 NameContext sNC; /* Name context for processing aggregate information */ 7291 int iAMem; /* First Mem address for storing current GROUP BY */ 7292 int iBMem; /* First Mem address for previous GROUP BY */ 7293 int iUseFlag; /* Mem address holding flag indicating that at least 7294 ** one row of the input to the aggregator has been 7295 ** processed */ 7296 int iAbortFlag; /* Mem address which causes query abort if positive */ 7297 int groupBySort; /* Rows come from source in GROUP BY order */ 7298 int addrEnd; /* End of processing for this SELECT */ 7299 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 7300 int sortOut = 0; /* Output register from the sorter */ 7301 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 7302 7303 /* Remove any and all aliases between the result set and the 7304 ** GROUP BY clause. 7305 */ 7306 if( pGroupBy ){ 7307 int k; /* Loop counter */ 7308 struct ExprList_item *pItem; /* For looping over expression in a list */ 7309 7310 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 7311 pItem->u.x.iAlias = 0; 7312 } 7313 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 7314 pItem->u.x.iAlias = 0; 7315 } 7316 assert( 66==sqlite3LogEst(100) ); 7317 if( p->nSelectRow>66 ) p->nSelectRow = 66; 7318 7319 /* If there is both a GROUP BY and an ORDER BY clause and they are 7320 ** identical, then it may be possible to disable the ORDER BY clause 7321 ** on the grounds that the GROUP BY will cause elements to come out 7322 ** in the correct order. It also may not - the GROUP BY might use a 7323 ** database index that causes rows to be grouped together as required 7324 ** but not actually sorted. Either way, record the fact that the 7325 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7326 ** variable. */ 7327 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7328 int ii; 7329 /* The GROUP BY processing doesn't care whether rows are delivered in 7330 ** ASC or DESC order - only that each group is returned contiguously. 7331 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7332 ** ORDER BY to maximize the chances of rows being delivered in an 7333 ** order that makes the ORDER BY redundant. */ 7334 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7335 u8 sortFlags; 7336 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; 7337 pGroupBy->a[ii].fg.sortFlags = sortFlags; 7338 } 7339 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7340 orderByGrp = 1; 7341 } 7342 } 7343 }else{ 7344 assert( 0==sqlite3LogEst(1) ); 7345 p->nSelectRow = 0; 7346 } 7347 7348 /* Create a label to jump to when we want to abort the query */ 7349 addrEnd = sqlite3VdbeMakeLabel(pParse); 7350 7351 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7352 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7353 ** SELECT statement. 7354 */ 7355 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7356 if( pAggInfo ){ 7357 sqlite3ParserAddCleanup(pParse, 7358 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7359 testcase( pParse->earlyCleanup ); 7360 } 7361 if( db->mallocFailed ){ 7362 goto select_end; 7363 } 7364 pAggInfo->selId = p->selId; 7365 memset(&sNC, 0, sizeof(sNC)); 7366 sNC.pParse = pParse; 7367 sNC.pSrcList = pTabList; 7368 sNC.uNC.pAggInfo = pAggInfo; 7369 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7370 pAggInfo->mnReg = pParse->nMem+1; 7371 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7372 pAggInfo->pGroupBy = pGroupBy; 7373 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7374 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7375 if( pHaving ){ 7376 if( pGroupBy ){ 7377 assert( pWhere==p->pWhere ); 7378 assert( pHaving==p->pHaving ); 7379 assert( pGroupBy==p->pGroupBy ); 7380 havingToWhere(pParse, p); 7381 pWhere = p->pWhere; 7382 } 7383 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7384 } 7385 pAggInfo->nAccumulator = pAggInfo->nColumn; 7386 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7387 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7388 }else{ 7389 minMaxFlag = WHERE_ORDERBY_NORMAL; 7390 } 7391 for(i=0; i<pAggInfo->nFunc; i++){ 7392 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7393 assert( ExprUseXList(pExpr) ); 7394 sNC.ncFlags |= NC_InAggFunc; 7395 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7396 #ifndef SQLITE_OMIT_WINDOWFUNC 7397 assert( !IsWindowFunc(pExpr) ); 7398 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7399 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7400 } 7401 #endif 7402 sNC.ncFlags &= ~NC_InAggFunc; 7403 } 7404 pAggInfo->mxReg = pParse->nMem; 7405 if( db->mallocFailed ) goto select_end; 7406 #if TREETRACE_ENABLED 7407 if( sqlite3TreeTrace & 0x400 ){ 7408 int ii; 7409 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7410 sqlite3TreeViewSelect(0, p, 0); 7411 if( minMaxFlag ){ 7412 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7413 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7414 } 7415 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7416 struct AggInfo_col *pCol = &pAggInfo->aCol[ii]; 7417 sqlite3DebugPrintf( 7418 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d" 7419 " iSorterColumn=%d\n", 7420 ii, pCol->pTab ? pCol->pTab->zName : "NULL", 7421 pCol->iTable, pCol->iColumn, pCol->iMem, 7422 pCol->iSorterColumn); 7423 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7424 } 7425 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7426 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7427 ii, pAggInfo->aFunc[ii].iMem); 7428 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7429 } 7430 } 7431 #endif 7432 7433 7434 /* Processing for aggregates with GROUP BY is very different and 7435 ** much more complex than aggregates without a GROUP BY. 7436 */ 7437 if( pGroupBy ){ 7438 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7439 int addr1; /* A-vs-B comparision jump */ 7440 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7441 int regOutputRow; /* Return address register for output subroutine */ 7442 int addrSetAbort; /* Set the abort flag and return */ 7443 int addrTopOfLoop; /* Top of the input loop */ 7444 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7445 int addrReset; /* Subroutine for resetting the accumulator */ 7446 int regReset; /* Return address register for reset subroutine */ 7447 ExprList *pDistinct = 0; 7448 u16 distFlag = 0; 7449 int eDist = WHERE_DISTINCT_NOOP; 7450 7451 if( pAggInfo->nFunc==1 7452 && pAggInfo->aFunc[0].iDistinct>=0 7453 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7454 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7455 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7456 ){ 7457 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7458 pExpr = sqlite3ExprDup(db, pExpr, 0); 7459 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7460 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7461 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7462 } 7463 7464 /* If there is a GROUP BY clause we might need a sorting index to 7465 ** implement it. Allocate that sorting index now. If it turns out 7466 ** that we do not need it after all, the OP_SorterOpen instruction 7467 ** will be converted into a Noop. 7468 */ 7469 pAggInfo->sortingIdx = pParse->nTab++; 7470 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7471 0, pAggInfo->nColumn); 7472 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7473 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7474 0, (char*)pKeyInfo, P4_KEYINFO); 7475 7476 /* Initialize memory locations used by GROUP BY aggregate processing 7477 */ 7478 iUseFlag = ++pParse->nMem; 7479 iAbortFlag = ++pParse->nMem; 7480 regOutputRow = ++pParse->nMem; 7481 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7482 regReset = ++pParse->nMem; 7483 addrReset = sqlite3VdbeMakeLabel(pParse); 7484 iAMem = pParse->nMem + 1; 7485 pParse->nMem += pGroupBy->nExpr; 7486 iBMem = pParse->nMem + 1; 7487 pParse->nMem += pGroupBy->nExpr; 7488 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7489 VdbeComment((v, "clear abort flag")); 7490 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7491 7492 /* Begin a loop that will extract all source rows in GROUP BY order. 7493 ** This might involve two separate loops with an OP_Sort in between, or 7494 ** it might be a single loop that uses an index to extract information 7495 ** in the right order to begin with. 7496 */ 7497 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7498 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7499 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7500 p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7501 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7502 ); 7503 if( pWInfo==0 ){ 7504 sqlite3ExprListDelete(db, pDistinct); 7505 goto select_end; 7506 } 7507 eDist = sqlite3WhereIsDistinct(pWInfo); 7508 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7509 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7510 /* The optimizer is able to deliver rows in group by order so 7511 ** we do not have to sort. The OP_OpenEphemeral table will be 7512 ** cancelled later because we still need to use the pKeyInfo 7513 */ 7514 groupBySort = 0; 7515 }else{ 7516 /* Rows are coming out in undetermined order. We have to push 7517 ** each row into a sorting index, terminate the first loop, 7518 ** then loop over the sorting index in order to get the output 7519 ** in sorted order 7520 */ 7521 int regBase; 7522 int regRecord; 7523 int nCol; 7524 int nGroupBy; 7525 7526 explainTempTable(pParse, 7527 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7528 "DISTINCT" : "GROUP BY"); 7529 7530 groupBySort = 1; 7531 nGroupBy = pGroupBy->nExpr; 7532 nCol = nGroupBy; 7533 j = nGroupBy; 7534 for(i=0; i<pAggInfo->nColumn; i++){ 7535 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7536 nCol++; 7537 j++; 7538 } 7539 } 7540 regBase = sqlite3GetTempRange(pParse, nCol); 7541 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7542 j = nGroupBy; 7543 pAggInfo->directMode = 1; 7544 for(i=0; i<pAggInfo->nColumn; i++){ 7545 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7546 if( pCol->iSorterColumn>=j ){ 7547 sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); 7548 j++; 7549 } 7550 } 7551 pAggInfo->directMode = 0; 7552 regRecord = sqlite3GetTempReg(pParse); 7553 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7554 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7555 sqlite3ReleaseTempReg(pParse, regRecord); 7556 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7557 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7558 sqlite3WhereEnd(pWInfo); 7559 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7560 sortOut = sqlite3GetTempReg(pParse); 7561 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7562 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7563 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7564 pAggInfo->useSortingIdx = 1; 7565 } 7566 7567 /* If the index or temporary table used by the GROUP BY sort 7568 ** will naturally deliver rows in the order required by the ORDER BY 7569 ** clause, cancel the ephemeral table open coded earlier. 7570 ** 7571 ** This is an optimization - the correct answer should result regardless. 7572 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7573 ** disable this optimization for testing purposes. */ 7574 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7575 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7576 ){ 7577 sSort.pOrderBy = 0; 7578 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7579 } 7580 7581 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7582 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7583 ** Then compare the current GROUP BY terms against the GROUP BY terms 7584 ** from the previous row currently stored in a0, a1, a2... 7585 */ 7586 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7587 if( groupBySort ){ 7588 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7589 sortOut, sortPTab); 7590 } 7591 for(j=0; j<pGroupBy->nExpr; j++){ 7592 if( groupBySort ){ 7593 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7594 }else{ 7595 pAggInfo->directMode = 1; 7596 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7597 } 7598 } 7599 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7600 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7601 addr1 = sqlite3VdbeCurrentAddr(v); 7602 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7603 7604 /* Generate code that runs whenever the GROUP BY changes. 7605 ** Changes in the GROUP BY are detected by the previous code 7606 ** block. If there were no changes, this block is skipped. 7607 ** 7608 ** This code copies current group by terms in b0,b1,b2,... 7609 ** over to a0,a1,a2. It then calls the output subroutine 7610 ** and resets the aggregate accumulator registers in preparation 7611 ** for the next GROUP BY batch. 7612 */ 7613 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7614 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7615 VdbeComment((v, "output one row")); 7616 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7617 VdbeComment((v, "check abort flag")); 7618 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7619 VdbeComment((v, "reset accumulator")); 7620 7621 /* Update the aggregate accumulators based on the content of 7622 ** the current row 7623 */ 7624 sqlite3VdbeJumpHere(v, addr1); 7625 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7626 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7627 VdbeComment((v, "indicate data in accumulator")); 7628 7629 /* End of the loop 7630 */ 7631 if( groupBySort ){ 7632 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7633 VdbeCoverage(v); 7634 }else{ 7635 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7636 sqlite3WhereEnd(pWInfo); 7637 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7638 } 7639 sqlite3ExprListDelete(db, pDistinct); 7640 7641 /* Output the final row of result 7642 */ 7643 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7644 VdbeComment((v, "output final row")); 7645 7646 /* Jump over the subroutines 7647 */ 7648 sqlite3VdbeGoto(v, addrEnd); 7649 7650 /* Generate a subroutine that outputs a single row of the result 7651 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7652 ** is less than or equal to zero, the subroutine is a no-op. If 7653 ** the processing calls for the query to abort, this subroutine 7654 ** increments the iAbortFlag memory location before returning in 7655 ** order to signal the caller to abort. 7656 */ 7657 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7658 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7659 VdbeComment((v, "set abort flag")); 7660 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7661 sqlite3VdbeResolveLabel(v, addrOutputRow); 7662 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7663 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7664 VdbeCoverage(v); 7665 VdbeComment((v, "Groupby result generator entry point")); 7666 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7667 finalizeAggFunctions(pParse, pAggInfo); 7668 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7669 selectInnerLoop(pParse, p, -1, &sSort, 7670 &sDistinct, pDest, 7671 addrOutputRow+1, addrSetAbort); 7672 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7673 VdbeComment((v, "end groupby result generator")); 7674 7675 /* Generate a subroutine that will reset the group-by accumulator 7676 */ 7677 sqlite3VdbeResolveLabel(v, addrReset); 7678 resetAccumulator(pParse, pAggInfo); 7679 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7680 VdbeComment((v, "indicate accumulator empty")); 7681 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7682 7683 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7684 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7685 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7686 } 7687 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7688 else { 7689 Table *pTab; 7690 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7691 /* If isSimpleCount() returns a pointer to a Table structure, then 7692 ** the SQL statement is of the form: 7693 ** 7694 ** SELECT count(*) FROM <tbl> 7695 ** 7696 ** where the Table structure returned represents table <tbl>. 7697 ** 7698 ** This statement is so common that it is optimized specially. The 7699 ** OP_Count instruction is executed either on the intkey table that 7700 ** contains the data for table <tbl> or on one of its indexes. It 7701 ** is better to execute the op on an index, as indexes are almost 7702 ** always spread across less pages than their corresponding tables. 7703 */ 7704 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7705 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7706 Index *pIdx; /* Iterator variable */ 7707 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7708 Index *pBest = 0; /* Best index found so far */ 7709 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7710 7711 sqlite3CodeVerifySchema(pParse, iDb); 7712 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7713 7714 /* Search for the index that has the lowest scan cost. 7715 ** 7716 ** (2011-04-15) Do not do a full scan of an unordered index. 7717 ** 7718 ** (2013-10-03) Do not count the entries in a partial index. 7719 ** 7720 ** In practice the KeyInfo structure will not be used. It is only 7721 ** passed to keep OP_OpenRead happy. 7722 */ 7723 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7724 if( !p->pSrc->a[0].fg.notIndexed ){ 7725 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7726 if( pIdx->bUnordered==0 7727 && pIdx->szIdxRow<pTab->szTabRow 7728 && pIdx->pPartIdxWhere==0 7729 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7730 ){ 7731 pBest = pIdx; 7732 } 7733 } 7734 } 7735 if( pBest ){ 7736 iRoot = pBest->tnum; 7737 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7738 } 7739 7740 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7741 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7742 if( pKeyInfo ){ 7743 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7744 } 7745 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7746 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7747 explainSimpleCount(pParse, pTab, pBest); 7748 }else{ 7749 int regAcc = 0; /* "populate accumulators" flag */ 7750 ExprList *pDistinct = 0; 7751 u16 distFlag = 0; 7752 int eDist; 7753 7754 /* If there are accumulator registers but no min() or max() functions 7755 ** without FILTER clauses, allocate register regAcc. Register regAcc 7756 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7757 ** The code generated by updateAccumulator() uses this to ensure 7758 ** that the accumulator registers are (a) updated only once if 7759 ** there are no min() or max functions or (b) always updated for the 7760 ** first row visited by the aggregate, so that they are updated at 7761 ** least once even if the FILTER clause means the min() or max() 7762 ** function visits zero rows. */ 7763 if( pAggInfo->nAccumulator ){ 7764 for(i=0; i<pAggInfo->nFunc; i++){ 7765 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7766 continue; 7767 } 7768 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7769 break; 7770 } 7771 } 7772 if( i==pAggInfo->nFunc ){ 7773 regAcc = ++pParse->nMem; 7774 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7775 } 7776 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7777 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7778 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7779 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7780 } 7781 7782 /* This case runs if the aggregate has no GROUP BY clause. The 7783 ** processing is much simpler since there is only a single row 7784 ** of output. 7785 */ 7786 assert( p->pGroupBy==0 ); 7787 resetAccumulator(pParse, pAggInfo); 7788 7789 /* If this query is a candidate for the min/max optimization, then 7790 ** minMaxFlag will have been previously set to either 7791 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7792 ** be an appropriate ORDER BY expression for the optimization. 7793 */ 7794 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7795 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7796 7797 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7798 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7799 pDistinct, p, minMaxFlag|distFlag, 0); 7800 if( pWInfo==0 ){ 7801 goto select_end; 7802 } 7803 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7804 eDist = sqlite3WhereIsDistinct(pWInfo); 7805 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7806 if( eDist!=WHERE_DISTINCT_NOOP ){ 7807 struct AggInfo_func *pF = pAggInfo->aFunc; 7808 if( pF ){ 7809 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7810 } 7811 } 7812 7813 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7814 if( minMaxFlag ){ 7815 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7816 } 7817 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7818 sqlite3WhereEnd(pWInfo); 7819 finalizeAggFunctions(pParse, pAggInfo); 7820 } 7821 7822 sSort.pOrderBy = 0; 7823 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7824 selectInnerLoop(pParse, p, -1, 0, 0, 7825 pDest, addrEnd, addrEnd); 7826 } 7827 sqlite3VdbeResolveLabel(v, addrEnd); 7828 7829 } /* endif aggregate query */ 7830 7831 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7832 explainTempTable(pParse, "DISTINCT"); 7833 } 7834 7835 /* If there is an ORDER BY clause, then we need to sort the results 7836 ** and send them to the callback one by one. 7837 */ 7838 if( sSort.pOrderBy ){ 7839 explainTempTable(pParse, 7840 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7841 assert( p->pEList==pEList ); 7842 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7843 } 7844 7845 /* Jump here to skip this query 7846 */ 7847 sqlite3VdbeResolveLabel(v, iEnd); 7848 7849 /* The SELECT has been coded. If there is an error in the Parse structure, 7850 ** set the return code to 1. Otherwise 0. */ 7851 rc = (pParse->nErr>0); 7852 7853 /* Control jumps to here if an error is encountered above, or upon 7854 ** successful coding of the SELECT. 7855 */ 7856 select_end: 7857 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7858 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7859 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7860 #ifdef SQLITE_DEBUG 7861 if( pAggInfo && !db->mallocFailed ){ 7862 for(i=0; i<pAggInfo->nColumn; i++){ 7863 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7864 assert( pExpr!=0 ); 7865 assert( pExpr->pAggInfo==pAggInfo ); 7866 assert( pExpr->iAgg==i ); 7867 } 7868 for(i=0; i<pAggInfo->nFunc; i++){ 7869 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7870 assert( pExpr!=0 ); 7871 assert( pExpr->pAggInfo==pAggInfo ); 7872 assert( pExpr->iAgg==i ); 7873 } 7874 } 7875 #endif 7876 7877 #if TREETRACE_ENABLED 7878 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7879 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7880 sqlite3TreeViewSelect(0, p, 0); 7881 } 7882 #endif 7883 ExplainQueryPlanPop(pParse); 7884 return rc; 7885 } 7886