xref: /sqlite-3.40.0/src/select.c (revision f3d5a684)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   if( pEq && isOuterJoin ){
351     ExprSetProperty(pEq, EP_FromJoin);
352     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
353     ExprSetVVAProperty(pEq, EP_NoReduce);
354     pEq->iRightJoinTable = pE2->iTable;
355   }
356   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
357 }
358 
359 /*
360 ** Set the EP_FromJoin property on all terms of the given expression.
361 ** And set the Expr.iRightJoinTable to iTable for every term in the
362 ** expression.
363 **
364 ** The EP_FromJoin property is used on terms of an expression to tell
365 ** the LEFT OUTER JOIN processing logic that this term is part of the
366 ** join restriction specified in the ON or USING clause and not a part
367 ** of the more general WHERE clause.  These terms are moved over to the
368 ** WHERE clause during join processing but we need to remember that they
369 ** originated in the ON or USING clause.
370 **
371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
372 ** expression depends on table iRightJoinTable even if that table is not
373 ** explicitly mentioned in the expression.  That information is needed
374 ** for cases like this:
375 **
376 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
377 **
378 ** The where clause needs to defer the handling of the t1.x=5
379 ** term until after the t2 loop of the join.  In that way, a
380 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
381 ** defer the handling of t1.x=5, it will be processed immediately
382 ** after the t1 loop and rows with t1.x!=5 will never appear in
383 ** the output, which is incorrect.
384 */
385 void sqlite3SetJoinExpr(Expr *p, int iTable){
386   while( p ){
387     ExprSetProperty(p, EP_FromJoin);
388     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
389     ExprSetVVAProperty(p, EP_NoReduce);
390     p->iRightJoinTable = iTable;
391     if( p->op==TK_FUNCTION && p->x.pList ){
392       int i;
393       for(i=0; i<p->x.pList->nExpr; i++){
394         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
395       }
396     }
397     sqlite3SetJoinExpr(p->pLeft, iTable);
398     p = p->pRight;
399   }
400 }
401 
402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
404 ** an ordinary term that omits the EP_FromJoin mark.
405 **
406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
407 */
408 static void unsetJoinExpr(Expr *p, int iTable){
409   while( p ){
410     if( ExprHasProperty(p, EP_FromJoin)
411      && (iTable<0 || p->iRightJoinTable==iTable) ){
412       ExprClearProperty(p, EP_FromJoin);
413     }
414     if( p->op==TK_COLUMN && p->iTable==iTable ){
415       ExprClearProperty(p, EP_CanBeNull);
416     }
417     if( p->op==TK_FUNCTION && p->x.pList ){
418       int i;
419       for(i=0; i<p->x.pList->nExpr; i++){
420         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
421       }
422     }
423     unsetJoinExpr(p->pLeft, iTable);
424     p = p->pRight;
425   }
426 }
427 
428 /*
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
432 **
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc.  The right-most
435 ** table is the last entry.  The join operator is held in the entry to
436 ** the left.  Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
439 **
440 ** This routine returns the number of errors encountered.
441 */
442 static int sqliteProcessJoin(Parse *pParse, Select *p){
443   SrcList *pSrc;                  /* All tables in the FROM clause */
444   int i, j;                       /* Loop counters */
445   SrcItem *pLeft;                 /* Left table being joined */
446   SrcItem *pRight;                /* Right table being joined */
447 
448   pSrc = p->pSrc;
449   pLeft = &pSrc->a[0];
450   pRight = &pLeft[1];
451   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
452     Table *pRightTab = pRight->pTab;
453     int isOuter;
454 
455     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
456     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 
458     /* When the NATURAL keyword is present, add WHERE clause terms for
459     ** every column that the two tables have in common.
460     */
461     if( pRight->fg.jointype & JT_NATURAL ){
462       if( pRight->pOn || pRight->pUsing ){
463         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
464            "an ON or USING clause", 0);
465         return 1;
466       }
467       for(j=0; j<pRightTab->nCol; j++){
468         char *zName;   /* Name of column in the right table */
469         int iLeft;     /* Matching left table */
470         int iLeftCol;  /* Matching column in the left table */
471 
472         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
473         zName = pRightTab->aCol[j].zName;
474         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
475           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
476                 isOuter, &p->pWhere);
477         }
478       }
479     }
480 
481     /* Disallow both ON and USING clauses in the same join
482     */
483     if( pRight->pOn && pRight->pUsing ){
484       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
485         "clauses in the same join");
486       return 1;
487     }
488 
489     /* Add the ON clause to the end of the WHERE clause, connected by
490     ** an AND operator.
491     */
492     if( pRight->pOn ){
493       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
494       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
495       pRight->pOn = 0;
496     }
497 
498     /* Create extra terms on the WHERE clause for each column named
499     ** in the USING clause.  Example: If the two tables to be joined are
500     ** A and B and the USING clause names X, Y, and Z, then add this
501     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
502     ** Report an error if any column mentioned in the USING clause is
503     ** not contained in both tables to be joined.
504     */
505     if( pRight->pUsing ){
506       IdList *pList = pRight->pUsing;
507       for(j=0; j<pList->nId; j++){
508         char *zName;     /* Name of the term in the USING clause */
509         int iLeft;       /* Table on the left with matching column name */
510         int iLeftCol;    /* Column number of matching column on the left */
511         int iRightCol;   /* Column number of matching column on the right */
512 
513         zName = pList->a[j].zName;
514         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
515         if( iRightCol<0
516          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
517         ){
518           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
519             "not present in both tables", zName);
520           return 1;
521         }
522         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
523                      isOuter, &p->pWhere);
524       }
525     }
526   }
527   return 0;
528 }
529 
530 /*
531 ** An instance of this object holds information (beyond pParse and pSelect)
532 ** needed to load the next result row that is to be added to the sorter.
533 */
534 typedef struct RowLoadInfo RowLoadInfo;
535 struct RowLoadInfo {
536   int regResult;               /* Store results in array of registers here */
537   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
539   ExprList *pExtra;            /* Extra columns needed by sorter refs */
540   int regExtraResult;          /* Where to load the extra columns */
541 #endif
542 };
543 
544 /*
545 ** This routine does the work of loading query data into an array of
546 ** registers so that it can be added to the sorter.
547 */
548 static void innerLoopLoadRow(
549   Parse *pParse,             /* Statement under construction */
550   Select *pSelect,           /* The query being coded */
551   RowLoadInfo *pInfo         /* Info needed to complete the row load */
552 ){
553   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
554                           0, pInfo->ecelFlags);
555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
556   if( pInfo->pExtra ){
557     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
558     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
559   }
560 #endif
561 }
562 
563 /*
564 ** Code the OP_MakeRecord instruction that generates the entry to be
565 ** added into the sorter.
566 **
567 ** Return the register in which the result is stored.
568 */
569 static int makeSorterRecord(
570   Parse *pParse,
571   SortCtx *pSort,
572   Select *pSelect,
573   int regBase,
574   int nBase
575 ){
576   int nOBSat = pSort->nOBSat;
577   Vdbe *v = pParse->pVdbe;
578   int regOut = ++pParse->nMem;
579   if( pSort->pDeferredRowLoad ){
580     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
581   }
582   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
583   return regOut;
584 }
585 
586 /*
587 ** Generate code that will push the record in registers regData
588 ** through regData+nData-1 onto the sorter.
589 */
590 static void pushOntoSorter(
591   Parse *pParse,         /* Parser context */
592   SortCtx *pSort,        /* Information about the ORDER BY clause */
593   Select *pSelect,       /* The whole SELECT statement */
594   int regData,           /* First register holding data to be sorted */
595   int regOrigData,       /* First register holding data before packing */
596   int nData,             /* Number of elements in the regData data array */
597   int nPrefixReg         /* No. of reg prior to regData available for use */
598 ){
599   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
600   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
601   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
602   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
603   int regBase;                                     /* Regs for sorter record */
604   int regRecord = 0;                               /* Assembled sorter record */
605   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
606   int op;                            /* Opcode to add sorter record to sorter */
607   int iLimit;                        /* LIMIT counter */
608   int iSkip = 0;                     /* End of the sorter insert loop */
609 
610   assert( bSeq==0 || bSeq==1 );
611 
612   /* Three cases:
613   **   (1) The data to be sorted has already been packed into a Record
614   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
615   **       will be completely unrelated to regOrigData.
616   **   (2) All output columns are included in the sort record.  In that
617   **       case regData==regOrigData.
618   **   (3) Some output columns are omitted from the sort record due to
619   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
620   **       SQLITE_ECEL_OMITREF optimization, or due to the
621   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
622   **       regOrigData is 0 to prevent this routine from trying to copy
623   **       values that might not yet exist.
624   */
625   assert( nData==1 || regData==regOrigData || regOrigData==0 );
626 
627   if( nPrefixReg ){
628     assert( nPrefixReg==nExpr+bSeq );
629     regBase = regData - nPrefixReg;
630   }else{
631     regBase = pParse->nMem + 1;
632     pParse->nMem += nBase;
633   }
634   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
635   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
636   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
637   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
638                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
639   if( bSeq ){
640     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
641   }
642   if( nPrefixReg==0 && nData>0 ){
643     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
644   }
645   if( nOBSat>0 ){
646     int regPrevKey;   /* The first nOBSat columns of the previous row */
647     int addrFirst;    /* Address of the OP_IfNot opcode */
648     int addrJmp;      /* Address of the OP_Jump opcode */
649     VdbeOp *pOp;      /* Opcode that opens the sorter */
650     int nKey;         /* Number of sorting key columns, including OP_Sequence */
651     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
652 
653     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
654     regPrevKey = pParse->nMem+1;
655     pParse->nMem += pSort->nOBSat;
656     nKey = nExpr - pSort->nOBSat + bSeq;
657     if( bSeq ){
658       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
659     }else{
660       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
661     }
662     VdbeCoverage(v);
663     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
664     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
665     if( pParse->db->mallocFailed ) return;
666     pOp->p2 = nKey + nData;
667     pKI = pOp->p4.pKeyInfo;
668     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
669     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
670     testcase( pKI->nAllField > pKI->nKeyField+2 );
671     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
672                                            pKI->nAllField-pKI->nKeyField-1);
673     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
674     addrJmp = sqlite3VdbeCurrentAddr(v);
675     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
676     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
677     pSort->regReturn = ++pParse->nMem;
678     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
679     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
680     if( iLimit ){
681       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
682       VdbeCoverage(v);
683     }
684     sqlite3VdbeJumpHere(v, addrFirst);
685     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
686     sqlite3VdbeJumpHere(v, addrJmp);
687   }
688   if( iLimit ){
689     /* At this point the values for the new sorter entry are stored
690     ** in an array of registers. They need to be composed into a record
691     ** and inserted into the sorter if either (a) there are currently
692     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
693     ** the largest record currently in the sorter. If (b) is true and there
694     ** are already LIMIT+OFFSET items in the sorter, delete the largest
695     ** entry before inserting the new one. This way there are never more
696     ** than LIMIT+OFFSET items in the sorter.
697     **
698     ** If the new record does not need to be inserted into the sorter,
699     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
700     ** value is not zero, then it is a label of where to jump.  Otherwise,
701     ** just bypass the row insert logic.  See the header comment on the
702     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
703     */
704     int iCsr = pSort->iECursor;
705     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
706     VdbeCoverage(v);
707     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
708     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
709                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
710     VdbeCoverage(v);
711     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
712   }
713   if( regRecord==0 ){
714     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
715   }
716   if( pSort->sortFlags & SORTFLAG_UseSorter ){
717     op = OP_SorterInsert;
718   }else{
719     op = OP_IdxInsert;
720   }
721   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
722                        regBase+nOBSat, nBase-nOBSat);
723   if( iSkip ){
724     sqlite3VdbeChangeP2(v, iSkip,
725          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
726   }
727 }
728 
729 /*
730 ** Add code to implement the OFFSET
731 */
732 static void codeOffset(
733   Vdbe *v,          /* Generate code into this VM */
734   int iOffset,      /* Register holding the offset counter */
735   int iContinue     /* Jump here to skip the current record */
736 ){
737   if( iOffset>0 ){
738     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
739     VdbeComment((v, "OFFSET"));
740   }
741 }
742 
743 /*
744 ** Add code that will check to make sure the array of registers starting at
745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
747 ** are available. Which is used depends on the value of parameter eTnctType,
748 ** as follows:
749 **
750 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
751 **     Build an ephemeral table that contains all entries seen before and
752 **     skip entries which have been seen before.
753 **
754 **     Parameter iTab is the cursor number of an ephemeral table that must
755 **     be opened before the VM code generated by this routine is executed.
756 **     The ephemeral cursor table is queried for a record identical to the
757 **     record formed by the current array of registers. If one is found,
758 **     jump to VM address addrRepeat. Otherwise, insert a new record into
759 **     the ephemeral cursor and proceed.
760 **
761 **     The returned value in this case is a copy of parameter iTab.
762 **
763 **   WHERE_DISTINCT_ORDERED:
764 **     In this case rows are being delivered sorted order. The ephermal
765 **     table is not required. Instead, the current set of values
766 **     is compared against previous row. If they match, the new row
767 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
768 **     the VM program proceeds with processing the new row.
769 **
770 **     The returned value in this case is the register number of the first
771 **     in an array of registers used to store the previous result row so that
772 **     it can be compared to the next. The caller must ensure that this
773 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
774 **     will take care of this initialization.)
775 **
776 **   WHERE_DISTINCT_UNIQUE:
777 **     In this case it has already been determined that the rows are distinct.
778 **     No special action is required. The return value is zero.
779 **
780 ** Parameter pEList is the list of expressions used to generated the
781 ** contents of each row. It is used by this routine to determine (a)
782 ** how many elements there are in the array of registers and (b) the
783 ** collation sequences that should be used for the comparisons if
784 ** eTnctType is WHERE_DISTINCT_ORDERED.
785 */
786 static int codeDistinct(
787   Parse *pParse,     /* Parsing and code generating context */
788   int eTnctType,     /* WHERE_DISTINCT_* value */
789   int iTab,          /* A sorting index used to test for distinctness */
790   int addrRepeat,    /* Jump to here if not distinct */
791   ExprList *pEList,  /* Expression for each element */
792   int regElem        /* First element */
793 ){
794   int iRet = 0;
795   int nResultCol = pEList->nExpr;
796   Vdbe *v = pParse->pVdbe;
797 
798   switch( eTnctType ){
799     case WHERE_DISTINCT_ORDERED: {
800       int i;
801       int iJump;              /* Jump destination */
802       int regPrev;            /* Previous row content */
803 
804       /* Allocate space for the previous row */
805       iRet = regPrev = pParse->nMem+1;
806       pParse->nMem += nResultCol;
807 
808       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
809       for(i=0; i<nResultCol; i++){
810         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
811         if( i<nResultCol-1 ){
812           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
813           VdbeCoverage(v);
814         }else{
815           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
816           VdbeCoverage(v);
817          }
818         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
819         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
820       }
821       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
822       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
823       break;
824     }
825 
826     case WHERE_DISTINCT_UNIQUE: {
827       /* nothing to do */
828       break;
829     }
830 
831     default: {
832       int r1 = sqlite3GetTempReg(pParse);
833       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
834       VdbeCoverage(v);
835       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
836       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
837       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
838       sqlite3ReleaseTempReg(pParse, r1);
839       iRet = iTab;
840       break;
841     }
842   }
843 
844   return iRet;
845 }
846 
847 /*
848 ** This routine runs after codeDistinct().  It makes necessary
849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
850 ** routine made use of.  This processing must be done separately since
851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
852 ** laid down.
853 **
854 ** WHERE_DISTINCT_NOOP:
855 ** WHERE_DISTINCT_UNORDERED:
856 **
857 **     No adjustments necessary.  This function is a no-op.
858 **
859 ** WHERE_DISTINCT_UNIQUE:
860 **
861 **     The ephemeral table is not needed.  So change the
862 **     OP_OpenEphemeral opcode into an OP_Noop.
863 **
864 ** WHERE_DISTINCT_ORDERED:
865 **
866 **     The ephemeral table is not needed.  But we do need register
867 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
868 **     into an OP_Null on the iVal register.
869 */
870 static void fixDistinctOpenEph(
871   Parse *pParse,     /* Parsing and code generating context */
872   int eTnctType,     /* WHERE_DISTINCT_* value */
873   int iVal,          /* Value returned by codeDistinct() */
874   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
875 ){
876   if( eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED ){
877     Vdbe *v = pParse->pVdbe;
878     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
879     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
880       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
881     }
882     if( eTnctType==WHERE_DISTINCT_ORDERED ){
883       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
884       ** bit on the first register of the previous value.  This will cause the
885       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
886       ** the loop even if the first row is all NULLs.  */
887       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
888       pOp->opcode = OP_Null;
889       pOp->p1 = 1;
890       pOp->p2 = iVal;
891     }
892   }
893 }
894 
895 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
896 /*
897 ** This function is called as part of inner-loop generation for a SELECT
898 ** statement with an ORDER BY that is not optimized by an index. It
899 ** determines the expressions, if any, that the sorter-reference
900 ** optimization should be used for. The sorter-reference optimization
901 ** is used for SELECT queries like:
902 **
903 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
904 **
905 ** If the optimization is used for expression "bigblob", then instead of
906 ** storing values read from that column in the sorter records, the PK of
907 ** the row from table t1 is stored instead. Then, as records are extracted from
908 ** the sorter to return to the user, the required value of bigblob is
909 ** retrieved directly from table t1. If the values are very large, this
910 ** can be more efficient than storing them directly in the sorter records.
911 **
912 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
913 ** for which the sorter-reference optimization should be enabled.
914 ** Additionally, the pSort->aDefer[] array is populated with entries
915 ** for all cursors required to evaluate all selected expressions. Finally.
916 ** output variable (*ppExtra) is set to an expression list containing
917 ** expressions for all extra PK values that should be stored in the
918 ** sorter records.
919 */
920 static void selectExprDefer(
921   Parse *pParse,                  /* Leave any error here */
922   SortCtx *pSort,                 /* Sorter context */
923   ExprList *pEList,               /* Expressions destined for sorter */
924   ExprList **ppExtra              /* Expressions to append to sorter record */
925 ){
926   int i;
927   int nDefer = 0;
928   ExprList *pExtra = 0;
929   for(i=0; i<pEList->nExpr; i++){
930     struct ExprList_item *pItem = &pEList->a[i];
931     if( pItem->u.x.iOrderByCol==0 ){
932       Expr *pExpr = pItem->pExpr;
933       Table *pTab = pExpr->y.pTab;
934       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
935        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
936       ){
937         int j;
938         for(j=0; j<nDefer; j++){
939           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
940         }
941         if( j==nDefer ){
942           if( nDefer==ArraySize(pSort->aDefer) ){
943             continue;
944           }else{
945             int nKey = 1;
946             int k;
947             Index *pPk = 0;
948             if( !HasRowid(pTab) ){
949               pPk = sqlite3PrimaryKeyIndex(pTab);
950               nKey = pPk->nKeyCol;
951             }
952             for(k=0; k<nKey; k++){
953               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
954               if( pNew ){
955                 pNew->iTable = pExpr->iTable;
956                 pNew->y.pTab = pExpr->y.pTab;
957                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
958                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
959               }
960             }
961             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
962             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
963             pSort->aDefer[nDefer].nKey = nKey;
964             nDefer++;
965           }
966         }
967         pItem->bSorterRef = 1;
968       }
969     }
970   }
971   pSort->nDefer = (u8)nDefer;
972   *ppExtra = pExtra;
973 }
974 #endif
975 
976 /*
977 ** This routine generates the code for the inside of the inner loop
978 ** of a SELECT.
979 **
980 ** If srcTab is negative, then the p->pEList expressions
981 ** are evaluated in order to get the data for this row.  If srcTab is
982 ** zero or more, then data is pulled from srcTab and p->pEList is used only
983 ** to get the number of columns and the collation sequence for each column.
984 */
985 static void selectInnerLoop(
986   Parse *pParse,          /* The parser context */
987   Select *p,              /* The complete select statement being coded */
988   int srcTab,             /* Pull data from this table if non-negative */
989   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
990   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
991   SelectDest *pDest,      /* How to dispose of the results */
992   int iContinue,          /* Jump here to continue with next row */
993   int iBreak              /* Jump here to break out of the inner loop */
994 ){
995   Vdbe *v = pParse->pVdbe;
996   int i;
997   int hasDistinct;            /* True if the DISTINCT keyword is present */
998   int eDest = pDest->eDest;   /* How to dispose of results */
999   int iParm = pDest->iSDParm; /* First argument to disposal method */
1000   int nResultCol;             /* Number of result columns */
1001   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1002   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1003 
1004   /* Usually, regResult is the first cell in an array of memory cells
1005   ** containing the current result row. In this case regOrig is set to the
1006   ** same value. However, if the results are being sent to the sorter, the
1007   ** values for any expressions that are also part of the sort-key are omitted
1008   ** from this array. In this case regOrig is set to zero.  */
1009   int regResult;              /* Start of memory holding current results */
1010   int regOrig;                /* Start of memory holding full result (or 0) */
1011 
1012   assert( v );
1013   assert( p->pEList!=0 );
1014   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1015   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1016   if( pSort==0 && !hasDistinct ){
1017     assert( iContinue!=0 );
1018     codeOffset(v, p->iOffset, iContinue);
1019   }
1020 
1021   /* Pull the requested columns.
1022   */
1023   nResultCol = p->pEList->nExpr;
1024 
1025   if( pDest->iSdst==0 ){
1026     if( pSort ){
1027       nPrefixReg = pSort->pOrderBy->nExpr;
1028       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1029       pParse->nMem += nPrefixReg;
1030     }
1031     pDest->iSdst = pParse->nMem+1;
1032     pParse->nMem += nResultCol;
1033   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1034     /* This is an error condition that can result, for example, when a SELECT
1035     ** on the right-hand side of an INSERT contains more result columns than
1036     ** there are columns in the table on the left.  The error will be caught
1037     ** and reported later.  But we need to make sure enough memory is allocated
1038     ** to avoid other spurious errors in the meantime. */
1039     pParse->nMem += nResultCol;
1040   }
1041   pDest->nSdst = nResultCol;
1042   regOrig = regResult = pDest->iSdst;
1043   if( srcTab>=0 ){
1044     for(i=0; i<nResultCol; i++){
1045       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1046       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1047     }
1048   }else if( eDest!=SRT_Exists ){
1049 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1050     ExprList *pExtra = 0;
1051 #endif
1052     /* If the destination is an EXISTS(...) expression, the actual
1053     ** values returned by the SELECT are not required.
1054     */
1055     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1056     ExprList *pEList;
1057     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1058       ecelFlags = SQLITE_ECEL_DUP;
1059     }else{
1060       ecelFlags = 0;
1061     }
1062     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1063       /* For each expression in p->pEList that is a copy of an expression in
1064       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1065       ** iOrderByCol value to one more than the index of the ORDER BY
1066       ** expression within the sort-key that pushOntoSorter() will generate.
1067       ** This allows the p->pEList field to be omitted from the sorted record,
1068       ** saving space and CPU cycles.  */
1069       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1070 
1071       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1072         int j;
1073         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1074           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1075         }
1076       }
1077 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1078       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1079       if( pExtra && pParse->db->mallocFailed==0 ){
1080         /* If there are any extra PK columns to add to the sorter records,
1081         ** allocate extra memory cells and adjust the OpenEphemeral
1082         ** instruction to account for the larger records. This is only
1083         ** required if there are one or more WITHOUT ROWID tables with
1084         ** composite primary keys in the SortCtx.aDefer[] array.  */
1085         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1086         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1087         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1088         pParse->nMem += pExtra->nExpr;
1089       }
1090 #endif
1091 
1092       /* Adjust nResultCol to account for columns that are omitted
1093       ** from the sorter by the optimizations in this branch */
1094       pEList = p->pEList;
1095       for(i=0; i<pEList->nExpr; i++){
1096         if( pEList->a[i].u.x.iOrderByCol>0
1097 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1098          || pEList->a[i].bSorterRef
1099 #endif
1100         ){
1101           nResultCol--;
1102           regOrig = 0;
1103         }
1104       }
1105 
1106       testcase( regOrig );
1107       testcase( eDest==SRT_Set );
1108       testcase( eDest==SRT_Mem );
1109       testcase( eDest==SRT_Coroutine );
1110       testcase( eDest==SRT_Output );
1111       assert( eDest==SRT_Set || eDest==SRT_Mem
1112            || eDest==SRT_Coroutine || eDest==SRT_Output
1113            || eDest==SRT_Upfrom );
1114     }
1115     sRowLoadInfo.regResult = regResult;
1116     sRowLoadInfo.ecelFlags = ecelFlags;
1117 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1118     sRowLoadInfo.pExtra = pExtra;
1119     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1120     if( pExtra ) nResultCol += pExtra->nExpr;
1121 #endif
1122     if( p->iLimit
1123      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1124      && nPrefixReg>0
1125     ){
1126       assert( pSort!=0 );
1127       assert( hasDistinct==0 );
1128       pSort->pDeferredRowLoad = &sRowLoadInfo;
1129       regOrig = 0;
1130     }else{
1131       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1132     }
1133   }
1134 
1135   /* If the DISTINCT keyword was present on the SELECT statement
1136   ** and this row has been seen before, then do not make this row
1137   ** part of the result.
1138   */
1139   if( hasDistinct ){
1140     int eType = pDistinct->eTnctType;
1141     int iTab = pDistinct->tabTnct;
1142     assert( nResultCol==p->pEList->nExpr );
1143     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1144     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1145     if( pSort==0 ){
1146       codeOffset(v, p->iOffset, iContinue);
1147     }
1148   }
1149 
1150   switch( eDest ){
1151     /* In this mode, write each query result to the key of the temporary
1152     ** table iParm.
1153     */
1154 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1155     case SRT_Union: {
1156       int r1;
1157       r1 = sqlite3GetTempReg(pParse);
1158       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1159       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1160       sqlite3ReleaseTempReg(pParse, r1);
1161       break;
1162     }
1163 
1164     /* Construct a record from the query result, but instead of
1165     ** saving that record, use it as a key to delete elements from
1166     ** the temporary table iParm.
1167     */
1168     case SRT_Except: {
1169       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1170       break;
1171     }
1172 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1173 
1174     /* Store the result as data using a unique key.
1175     */
1176     case SRT_Fifo:
1177     case SRT_DistFifo:
1178     case SRT_Table:
1179     case SRT_EphemTab: {
1180       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1181       testcase( eDest==SRT_Table );
1182       testcase( eDest==SRT_EphemTab );
1183       testcase( eDest==SRT_Fifo );
1184       testcase( eDest==SRT_DistFifo );
1185       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1186 #ifndef SQLITE_OMIT_CTE
1187       if( eDest==SRT_DistFifo ){
1188         /* If the destination is DistFifo, then cursor (iParm+1) is open
1189         ** on an ephemeral index. If the current row is already present
1190         ** in the index, do not write it to the output. If not, add the
1191         ** current row to the index and proceed with writing it to the
1192         ** output table as well.  */
1193         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1194         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1195         VdbeCoverage(v);
1196         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1197         assert( pSort==0 );
1198       }
1199 #endif
1200       if( pSort ){
1201         assert( regResult==regOrig );
1202         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1203       }else{
1204         int r2 = sqlite3GetTempReg(pParse);
1205         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1206         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1207         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1208         sqlite3ReleaseTempReg(pParse, r2);
1209       }
1210       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1211       break;
1212     }
1213 
1214     case SRT_Upfrom: {
1215       if( pSort ){
1216         pushOntoSorter(
1217             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1218       }else{
1219         int i2 = pDest->iSDParm2;
1220         int r1 = sqlite3GetTempReg(pParse);
1221 
1222         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1223         ** might still be trying to return one row, because that is what
1224         ** aggregates do.  Don't record that empty row in the output table. */
1225         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1226 
1227         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1228                           regResult+(i2<0), nResultCol-(i2<0), r1);
1229         if( i2<0 ){
1230           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1231         }else{
1232           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1233         }
1234       }
1235       break;
1236     }
1237 
1238 #ifndef SQLITE_OMIT_SUBQUERY
1239     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1240     ** then there should be a single item on the stack.  Write this
1241     ** item into the set table with bogus data.
1242     */
1243     case SRT_Set: {
1244       if( pSort ){
1245         /* At first glance you would think we could optimize out the
1246         ** ORDER BY in this case since the order of entries in the set
1247         ** does not matter.  But there might be a LIMIT clause, in which
1248         ** case the order does matter */
1249         pushOntoSorter(
1250             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1251       }else{
1252         int r1 = sqlite3GetTempReg(pParse);
1253         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1254         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1255             r1, pDest->zAffSdst, nResultCol);
1256         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1257         sqlite3ReleaseTempReg(pParse, r1);
1258       }
1259       break;
1260     }
1261 
1262 
1263     /* If any row exist in the result set, record that fact and abort.
1264     */
1265     case SRT_Exists: {
1266       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1267       /* The LIMIT clause will terminate the loop for us */
1268       break;
1269     }
1270 
1271     /* If this is a scalar select that is part of an expression, then
1272     ** store the results in the appropriate memory cell or array of
1273     ** memory cells and break out of the scan loop.
1274     */
1275     case SRT_Mem: {
1276       if( pSort ){
1277         assert( nResultCol<=pDest->nSdst );
1278         pushOntoSorter(
1279             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1280       }else{
1281         assert( nResultCol==pDest->nSdst );
1282         assert( regResult==iParm );
1283         /* The LIMIT clause will jump out of the loop for us */
1284       }
1285       break;
1286     }
1287 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1288 
1289     case SRT_Coroutine:       /* Send data to a co-routine */
1290     case SRT_Output: {        /* Return the results */
1291       testcase( eDest==SRT_Coroutine );
1292       testcase( eDest==SRT_Output );
1293       if( pSort ){
1294         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1295                        nPrefixReg);
1296       }else if( eDest==SRT_Coroutine ){
1297         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1298       }else{
1299         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1300       }
1301       break;
1302     }
1303 
1304 #ifndef SQLITE_OMIT_CTE
1305     /* Write the results into a priority queue that is order according to
1306     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1307     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1308     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1309     ** final OP_Sequence column.  The last column is the record as a blob.
1310     */
1311     case SRT_DistQueue:
1312     case SRT_Queue: {
1313       int nKey;
1314       int r1, r2, r3;
1315       int addrTest = 0;
1316       ExprList *pSO;
1317       pSO = pDest->pOrderBy;
1318       assert( pSO );
1319       nKey = pSO->nExpr;
1320       r1 = sqlite3GetTempReg(pParse);
1321       r2 = sqlite3GetTempRange(pParse, nKey+2);
1322       r3 = r2+nKey+1;
1323       if( eDest==SRT_DistQueue ){
1324         /* If the destination is DistQueue, then cursor (iParm+1) is open
1325         ** on a second ephemeral index that holds all values every previously
1326         ** added to the queue. */
1327         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1328                                         regResult, nResultCol);
1329         VdbeCoverage(v);
1330       }
1331       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1332       if( eDest==SRT_DistQueue ){
1333         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1334         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1335       }
1336       for(i=0; i<nKey; i++){
1337         sqlite3VdbeAddOp2(v, OP_SCopy,
1338                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1339                           r2+i);
1340       }
1341       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1342       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1343       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1344       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1345       sqlite3ReleaseTempReg(pParse, r1);
1346       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1347       break;
1348     }
1349 #endif /* SQLITE_OMIT_CTE */
1350 
1351 
1352 
1353 #if !defined(SQLITE_OMIT_TRIGGER)
1354     /* Discard the results.  This is used for SELECT statements inside
1355     ** the body of a TRIGGER.  The purpose of such selects is to call
1356     ** user-defined functions that have side effects.  We do not care
1357     ** about the actual results of the select.
1358     */
1359     default: {
1360       assert( eDest==SRT_Discard );
1361       break;
1362     }
1363 #endif
1364   }
1365 
1366   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1367   ** there is a sorter, in which case the sorter has already limited
1368   ** the output for us.
1369   */
1370   if( pSort==0 && p->iLimit ){
1371     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1372   }
1373 }
1374 
1375 /*
1376 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1377 ** X extra columns.
1378 */
1379 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1380   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1381   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1382   if( p ){
1383     p->aSortFlags = (u8*)&p->aColl[N+X];
1384     p->nKeyField = (u16)N;
1385     p->nAllField = (u16)(N+X);
1386     p->enc = ENC(db);
1387     p->db = db;
1388     p->nRef = 1;
1389     memset(&p[1], 0, nExtra);
1390   }else{
1391     sqlite3OomFault(db);
1392   }
1393   return p;
1394 }
1395 
1396 /*
1397 ** Deallocate a KeyInfo object
1398 */
1399 void sqlite3KeyInfoUnref(KeyInfo *p){
1400   if( p ){
1401     assert( p->nRef>0 );
1402     p->nRef--;
1403     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1404   }
1405 }
1406 
1407 /*
1408 ** Make a new pointer to a KeyInfo object
1409 */
1410 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1411   if( p ){
1412     assert( p->nRef>0 );
1413     p->nRef++;
1414   }
1415   return p;
1416 }
1417 
1418 #ifdef SQLITE_DEBUG
1419 /*
1420 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1421 ** can only be changed if this is just a single reference to the object.
1422 **
1423 ** This routine is used only inside of assert() statements.
1424 */
1425 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1426 #endif /* SQLITE_DEBUG */
1427 
1428 /*
1429 ** Given an expression list, generate a KeyInfo structure that records
1430 ** the collating sequence for each expression in that expression list.
1431 **
1432 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1433 ** KeyInfo structure is appropriate for initializing a virtual index to
1434 ** implement that clause.  If the ExprList is the result set of a SELECT
1435 ** then the KeyInfo structure is appropriate for initializing a virtual
1436 ** index to implement a DISTINCT test.
1437 **
1438 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1439 ** function is responsible for seeing that this structure is eventually
1440 ** freed.
1441 */
1442 KeyInfo *sqlite3KeyInfoFromExprList(
1443   Parse *pParse,       /* Parsing context */
1444   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1445   int iStart,          /* Begin with this column of pList */
1446   int nExtra           /* Add this many extra columns to the end */
1447 ){
1448   int nExpr;
1449   KeyInfo *pInfo;
1450   struct ExprList_item *pItem;
1451   sqlite3 *db = pParse->db;
1452   int i;
1453 
1454   nExpr = pList->nExpr;
1455   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1456   if( pInfo ){
1457     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1458     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1459       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1460       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1461     }
1462   }
1463   return pInfo;
1464 }
1465 
1466 /*
1467 ** Name of the connection operator, used for error messages.
1468 */
1469 const char *sqlite3SelectOpName(int id){
1470   char *z;
1471   switch( id ){
1472     case TK_ALL:       z = "UNION ALL";   break;
1473     case TK_INTERSECT: z = "INTERSECT";   break;
1474     case TK_EXCEPT:    z = "EXCEPT";      break;
1475     default:           z = "UNION";       break;
1476   }
1477   return z;
1478 }
1479 
1480 #ifndef SQLITE_OMIT_EXPLAIN
1481 /*
1482 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1483 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1484 ** where the caption is of the form:
1485 **
1486 **   "USE TEMP B-TREE FOR xxx"
1487 **
1488 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1489 ** is determined by the zUsage argument.
1490 */
1491 static void explainTempTable(Parse *pParse, const char *zUsage){
1492   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1493 }
1494 
1495 /*
1496 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1497 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1498 ** in sqlite3Select() to assign values to structure member variables that
1499 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1500 ** code with #ifndef directives.
1501 */
1502 # define explainSetInteger(a, b) a = b
1503 
1504 #else
1505 /* No-op versions of the explainXXX() functions and macros. */
1506 # define explainTempTable(y,z)
1507 # define explainSetInteger(y,z)
1508 #endif
1509 
1510 
1511 /*
1512 ** If the inner loop was generated using a non-null pOrderBy argument,
1513 ** then the results were placed in a sorter.  After the loop is terminated
1514 ** we need to run the sorter and output the results.  The following
1515 ** routine generates the code needed to do that.
1516 */
1517 static void generateSortTail(
1518   Parse *pParse,    /* Parsing context */
1519   Select *p,        /* The SELECT statement */
1520   SortCtx *pSort,   /* Information on the ORDER BY clause */
1521   int nColumn,      /* Number of columns of data */
1522   SelectDest *pDest /* Write the sorted results here */
1523 ){
1524   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1525   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1526   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1527   int addr;                       /* Top of output loop. Jump for Next. */
1528   int addrOnce = 0;
1529   int iTab;
1530   ExprList *pOrderBy = pSort->pOrderBy;
1531   int eDest = pDest->eDest;
1532   int iParm = pDest->iSDParm;
1533   int regRow;
1534   int regRowid;
1535   int iCol;
1536   int nKey;                       /* Number of key columns in sorter record */
1537   int iSortTab;                   /* Sorter cursor to read from */
1538   int i;
1539   int bSeq;                       /* True if sorter record includes seq. no. */
1540   int nRefKey = 0;
1541   struct ExprList_item *aOutEx = p->pEList->a;
1542 
1543   assert( addrBreak<0 );
1544   if( pSort->labelBkOut ){
1545     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1546     sqlite3VdbeGoto(v, addrBreak);
1547     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1548   }
1549 
1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1551   /* Open any cursors needed for sorter-reference expressions */
1552   for(i=0; i<pSort->nDefer; i++){
1553     Table *pTab = pSort->aDefer[i].pTab;
1554     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1555     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1556     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1557   }
1558 #endif
1559 
1560   iTab = pSort->iECursor;
1561   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1562     regRowid = 0;
1563     regRow = pDest->iSdst;
1564   }else{
1565     regRowid = sqlite3GetTempReg(pParse);
1566     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1567       regRow = sqlite3GetTempReg(pParse);
1568       nColumn = 0;
1569     }else{
1570       regRow = sqlite3GetTempRange(pParse, nColumn);
1571     }
1572   }
1573   nKey = pOrderBy->nExpr - pSort->nOBSat;
1574   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1575     int regSortOut = ++pParse->nMem;
1576     iSortTab = pParse->nTab++;
1577     if( pSort->labelBkOut ){
1578       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1579     }
1580     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1581         nKey+1+nColumn+nRefKey);
1582     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1583     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1584     VdbeCoverage(v);
1585     codeOffset(v, p->iOffset, addrContinue);
1586     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1587     bSeq = 0;
1588   }else{
1589     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1590     codeOffset(v, p->iOffset, addrContinue);
1591     iSortTab = iTab;
1592     bSeq = 1;
1593   }
1594   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1595 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1596     if( aOutEx[i].bSorterRef ) continue;
1597 #endif
1598     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1599   }
1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1601   if( pSort->nDefer ){
1602     int iKey = iCol+1;
1603     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1604 
1605     for(i=0; i<pSort->nDefer; i++){
1606       int iCsr = pSort->aDefer[i].iCsr;
1607       Table *pTab = pSort->aDefer[i].pTab;
1608       int nKey = pSort->aDefer[i].nKey;
1609 
1610       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1611       if( HasRowid(pTab) ){
1612         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1613         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1614             sqlite3VdbeCurrentAddr(v)+1, regKey);
1615       }else{
1616         int k;
1617         int iJmp;
1618         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1619         for(k=0; k<nKey; k++){
1620           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1621         }
1622         iJmp = sqlite3VdbeCurrentAddr(v);
1623         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1624         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1625         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1626       }
1627     }
1628     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1629   }
1630 #endif
1631   for(i=nColumn-1; i>=0; i--){
1632 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1633     if( aOutEx[i].bSorterRef ){
1634       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1635     }else
1636 #endif
1637     {
1638       int iRead;
1639       if( aOutEx[i].u.x.iOrderByCol ){
1640         iRead = aOutEx[i].u.x.iOrderByCol-1;
1641       }else{
1642         iRead = iCol--;
1643       }
1644       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1645       VdbeComment((v, "%s", aOutEx[i].zEName));
1646     }
1647   }
1648   switch( eDest ){
1649     case SRT_Table:
1650     case SRT_EphemTab: {
1651       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1652       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1653       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1654       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1655       break;
1656     }
1657 #ifndef SQLITE_OMIT_SUBQUERY
1658     case SRT_Set: {
1659       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1660       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1661                         pDest->zAffSdst, nColumn);
1662       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1663       break;
1664     }
1665     case SRT_Mem: {
1666       /* The LIMIT clause will terminate the loop for us */
1667       break;
1668     }
1669 #endif
1670     case SRT_Upfrom: {
1671       int i2 = pDest->iSDParm2;
1672       int r1 = sqlite3GetTempReg(pParse);
1673       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1674       if( i2<0 ){
1675         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1676       }else{
1677         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1678       }
1679       break;
1680     }
1681     default: {
1682       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1683       testcase( eDest==SRT_Output );
1684       testcase( eDest==SRT_Coroutine );
1685       if( eDest==SRT_Output ){
1686         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1687       }else{
1688         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1689       }
1690       break;
1691     }
1692   }
1693   if( regRowid ){
1694     if( eDest==SRT_Set ){
1695       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1696     }else{
1697       sqlite3ReleaseTempReg(pParse, regRow);
1698     }
1699     sqlite3ReleaseTempReg(pParse, regRowid);
1700   }
1701   /* The bottom of the loop
1702   */
1703   sqlite3VdbeResolveLabel(v, addrContinue);
1704   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1705     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1706   }else{
1707     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1708   }
1709   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1710   sqlite3VdbeResolveLabel(v, addrBreak);
1711 }
1712 
1713 /*
1714 ** Return a pointer to a string containing the 'declaration type' of the
1715 ** expression pExpr. The string may be treated as static by the caller.
1716 **
1717 ** Also try to estimate the size of the returned value and return that
1718 ** result in *pEstWidth.
1719 **
1720 ** The declaration type is the exact datatype definition extracted from the
1721 ** original CREATE TABLE statement if the expression is a column. The
1722 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1723 ** is considered a column can be complex in the presence of subqueries. The
1724 ** result-set expression in all of the following SELECT statements is
1725 ** considered a column by this function.
1726 **
1727 **   SELECT col FROM tbl;
1728 **   SELECT (SELECT col FROM tbl;
1729 **   SELECT (SELECT col FROM tbl);
1730 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1731 **
1732 ** The declaration type for any expression other than a column is NULL.
1733 **
1734 ** This routine has either 3 or 6 parameters depending on whether or not
1735 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1736 */
1737 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1738 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1739 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1741 #endif
1742 static const char *columnTypeImpl(
1743   NameContext *pNC,
1744 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1745   Expr *pExpr
1746 #else
1747   Expr *pExpr,
1748   const char **pzOrigDb,
1749   const char **pzOrigTab,
1750   const char **pzOrigCol
1751 #endif
1752 ){
1753   char const *zType = 0;
1754   int j;
1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1756   char const *zOrigDb = 0;
1757   char const *zOrigTab = 0;
1758   char const *zOrigCol = 0;
1759 #endif
1760 
1761   assert( pExpr!=0 );
1762   assert( pNC->pSrcList!=0 );
1763   switch( pExpr->op ){
1764     case TK_COLUMN: {
1765       /* The expression is a column. Locate the table the column is being
1766       ** extracted from in NameContext.pSrcList. This table may be real
1767       ** database table or a subquery.
1768       */
1769       Table *pTab = 0;            /* Table structure column is extracted from */
1770       Select *pS = 0;             /* Select the column is extracted from */
1771       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1772       while( pNC && !pTab ){
1773         SrcList *pTabList = pNC->pSrcList;
1774         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1775         if( j<pTabList->nSrc ){
1776           pTab = pTabList->a[j].pTab;
1777           pS = pTabList->a[j].pSelect;
1778         }else{
1779           pNC = pNC->pNext;
1780         }
1781       }
1782 
1783       if( pTab==0 ){
1784         /* At one time, code such as "SELECT new.x" within a trigger would
1785         ** cause this condition to run.  Since then, we have restructured how
1786         ** trigger code is generated and so this condition is no longer
1787         ** possible. However, it can still be true for statements like
1788         ** the following:
1789         **
1790         **   CREATE TABLE t1(col INTEGER);
1791         **   SELECT (SELECT t1.col) FROM FROM t1;
1792         **
1793         ** when columnType() is called on the expression "t1.col" in the
1794         ** sub-select. In this case, set the column type to NULL, even
1795         ** though it should really be "INTEGER".
1796         **
1797         ** This is not a problem, as the column type of "t1.col" is never
1798         ** used. When columnType() is called on the expression
1799         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1800         ** branch below.  */
1801         break;
1802       }
1803 
1804       assert( pTab && pExpr->y.pTab==pTab );
1805       if( pS ){
1806         /* The "table" is actually a sub-select or a view in the FROM clause
1807         ** of the SELECT statement. Return the declaration type and origin
1808         ** data for the result-set column of the sub-select.
1809         */
1810         if( iCol<pS->pEList->nExpr
1811 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1812          && iCol>=0
1813 #else
1814          && ALWAYS(iCol>=0)
1815 #endif
1816         ){
1817           /* If iCol is less than zero, then the expression requests the
1818           ** rowid of the sub-select or view. This expression is legal (see
1819           ** test case misc2.2.2) - it always evaluates to NULL.
1820           */
1821           NameContext sNC;
1822           Expr *p = pS->pEList->a[iCol].pExpr;
1823           sNC.pSrcList = pS->pSrc;
1824           sNC.pNext = pNC;
1825           sNC.pParse = pNC->pParse;
1826           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1827         }
1828       }else{
1829         /* A real table or a CTE table */
1830         assert( !pS );
1831 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1832         if( iCol<0 ) iCol = pTab->iPKey;
1833         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1834         if( iCol<0 ){
1835           zType = "INTEGER";
1836           zOrigCol = "rowid";
1837         }else{
1838           zOrigCol = pTab->aCol[iCol].zName;
1839           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1840         }
1841         zOrigTab = pTab->zName;
1842         if( pNC->pParse && pTab->pSchema ){
1843           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1844           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1845         }
1846 #else
1847         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1848         if( iCol<0 ){
1849           zType = "INTEGER";
1850         }else{
1851           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1852         }
1853 #endif
1854       }
1855       break;
1856     }
1857 #ifndef SQLITE_OMIT_SUBQUERY
1858     case TK_SELECT: {
1859       /* The expression is a sub-select. Return the declaration type and
1860       ** origin info for the single column in the result set of the SELECT
1861       ** statement.
1862       */
1863       NameContext sNC;
1864       Select *pS = pExpr->x.pSelect;
1865       Expr *p = pS->pEList->a[0].pExpr;
1866       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1867       sNC.pSrcList = pS->pSrc;
1868       sNC.pNext = pNC;
1869       sNC.pParse = pNC->pParse;
1870       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1871       break;
1872     }
1873 #endif
1874   }
1875 
1876 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1877   if( pzOrigDb ){
1878     assert( pzOrigTab && pzOrigCol );
1879     *pzOrigDb = zOrigDb;
1880     *pzOrigTab = zOrigTab;
1881     *pzOrigCol = zOrigCol;
1882   }
1883 #endif
1884   return zType;
1885 }
1886 
1887 /*
1888 ** Generate code that will tell the VDBE the declaration types of columns
1889 ** in the result set.
1890 */
1891 static void generateColumnTypes(
1892   Parse *pParse,      /* Parser context */
1893   SrcList *pTabList,  /* List of tables */
1894   ExprList *pEList    /* Expressions defining the result set */
1895 ){
1896 #ifndef SQLITE_OMIT_DECLTYPE
1897   Vdbe *v = pParse->pVdbe;
1898   int i;
1899   NameContext sNC;
1900   sNC.pSrcList = pTabList;
1901   sNC.pParse = pParse;
1902   sNC.pNext = 0;
1903   for(i=0; i<pEList->nExpr; i++){
1904     Expr *p = pEList->a[i].pExpr;
1905     const char *zType;
1906 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1907     const char *zOrigDb = 0;
1908     const char *zOrigTab = 0;
1909     const char *zOrigCol = 0;
1910     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1911 
1912     /* The vdbe must make its own copy of the column-type and other
1913     ** column specific strings, in case the schema is reset before this
1914     ** virtual machine is deleted.
1915     */
1916     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1917     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1918     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1919 #else
1920     zType = columnType(&sNC, p, 0, 0, 0);
1921 #endif
1922     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1923   }
1924 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1925 }
1926 
1927 
1928 /*
1929 ** Compute the column names for a SELECT statement.
1930 **
1931 ** The only guarantee that SQLite makes about column names is that if the
1932 ** column has an AS clause assigning it a name, that will be the name used.
1933 ** That is the only documented guarantee.  However, countless applications
1934 ** developed over the years have made baseless assumptions about column names
1935 ** and will break if those assumptions changes.  Hence, use extreme caution
1936 ** when modifying this routine to avoid breaking legacy.
1937 **
1938 ** See Also: sqlite3ColumnsFromExprList()
1939 **
1940 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1941 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1942 ** applications should operate this way.  Nevertheless, we need to support the
1943 ** other modes for legacy:
1944 **
1945 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1946 **                              originally appears in the SELECT statement.  In
1947 **                              other words, the zSpan of the result expression.
1948 **
1949 **    short=ON, full=OFF:       (This is the default setting).  If the result
1950 **                              refers directly to a table column, then the
1951 **                              result column name is just the table column
1952 **                              name: COLUMN.  Otherwise use zSpan.
1953 **
1954 **    full=ON, short=ANY:       If the result refers directly to a table column,
1955 **                              then the result column name with the table name
1956 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1957 */
1958 static void generateColumnNames(
1959   Parse *pParse,      /* Parser context */
1960   Select *pSelect     /* Generate column names for this SELECT statement */
1961 ){
1962   Vdbe *v = pParse->pVdbe;
1963   int i;
1964   Table *pTab;
1965   SrcList *pTabList;
1966   ExprList *pEList;
1967   sqlite3 *db = pParse->db;
1968   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1969   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1970 
1971 #ifndef SQLITE_OMIT_EXPLAIN
1972   /* If this is an EXPLAIN, skip this step */
1973   if( pParse->explain ){
1974     return;
1975   }
1976 #endif
1977 
1978   if( pParse->colNamesSet ) return;
1979   /* Column names are determined by the left-most term of a compound select */
1980   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1981   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1982   pTabList = pSelect->pSrc;
1983   pEList = pSelect->pEList;
1984   assert( v!=0 );
1985   assert( pTabList!=0 );
1986   pParse->colNamesSet = 1;
1987   fullName = (db->flags & SQLITE_FullColNames)!=0;
1988   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1989   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1990   for(i=0; i<pEList->nExpr; i++){
1991     Expr *p = pEList->a[i].pExpr;
1992 
1993     assert( p!=0 );
1994     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1995     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1996     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1997       /* An AS clause always takes first priority */
1998       char *zName = pEList->a[i].zEName;
1999       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2000     }else if( srcName && p->op==TK_COLUMN ){
2001       char *zCol;
2002       int iCol = p->iColumn;
2003       pTab = p->y.pTab;
2004       assert( pTab!=0 );
2005       if( iCol<0 ) iCol = pTab->iPKey;
2006       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2007       if( iCol<0 ){
2008         zCol = "rowid";
2009       }else{
2010         zCol = pTab->aCol[iCol].zName;
2011       }
2012       if( fullName ){
2013         char *zName = 0;
2014         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2015         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2016       }else{
2017         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2018       }
2019     }else{
2020       const char *z = pEList->a[i].zEName;
2021       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2022       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2023     }
2024   }
2025   generateColumnTypes(pParse, pTabList, pEList);
2026 }
2027 
2028 /*
2029 ** Given an expression list (which is really the list of expressions
2030 ** that form the result set of a SELECT statement) compute appropriate
2031 ** column names for a table that would hold the expression list.
2032 **
2033 ** All column names will be unique.
2034 **
2035 ** Only the column names are computed.  Column.zType, Column.zColl,
2036 ** and other fields of Column are zeroed.
2037 **
2038 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2039 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2040 **
2041 ** The only guarantee that SQLite makes about column names is that if the
2042 ** column has an AS clause assigning it a name, that will be the name used.
2043 ** That is the only documented guarantee.  However, countless applications
2044 ** developed over the years have made baseless assumptions about column names
2045 ** and will break if those assumptions changes.  Hence, use extreme caution
2046 ** when modifying this routine to avoid breaking legacy.
2047 **
2048 ** See Also: generateColumnNames()
2049 */
2050 int sqlite3ColumnsFromExprList(
2051   Parse *pParse,          /* Parsing context */
2052   ExprList *pEList,       /* Expr list from which to derive column names */
2053   i16 *pnCol,             /* Write the number of columns here */
2054   Column **paCol          /* Write the new column list here */
2055 ){
2056   sqlite3 *db = pParse->db;   /* Database connection */
2057   int i, j;                   /* Loop counters */
2058   u32 cnt;                    /* Index added to make the name unique */
2059   Column *aCol, *pCol;        /* For looping over result columns */
2060   int nCol;                   /* Number of columns in the result set */
2061   char *zName;                /* Column name */
2062   int nName;                  /* Size of name in zName[] */
2063   Hash ht;                    /* Hash table of column names */
2064   Table *pTab;
2065 
2066   sqlite3HashInit(&ht);
2067   if( pEList ){
2068     nCol = pEList->nExpr;
2069     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2070     testcase( aCol==0 );
2071     if( NEVER(nCol>32767) ) nCol = 32767;
2072   }else{
2073     nCol = 0;
2074     aCol = 0;
2075   }
2076   assert( nCol==(i16)nCol );
2077   *pnCol = nCol;
2078   *paCol = aCol;
2079 
2080   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2081     /* Get an appropriate name for the column
2082     */
2083     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2084       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2085     }else{
2086       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2087       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2088         pColExpr = pColExpr->pRight;
2089         assert( pColExpr!=0 );
2090       }
2091       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2092         /* For columns use the column name name */
2093         int iCol = pColExpr->iColumn;
2094         if( iCol<0 ) iCol = pTab->iPKey;
2095         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2096       }else if( pColExpr->op==TK_ID ){
2097         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2098         zName = pColExpr->u.zToken;
2099       }else{
2100         /* Use the original text of the column expression as its name */
2101         zName = pEList->a[i].zEName;
2102       }
2103     }
2104     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2105       zName = sqlite3DbStrDup(db, zName);
2106     }else{
2107       zName = sqlite3MPrintf(db,"column%d",i+1);
2108     }
2109 
2110     /* Make sure the column name is unique.  If the name is not unique,
2111     ** append an integer to the name so that it becomes unique.
2112     */
2113     cnt = 0;
2114     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2115       nName = sqlite3Strlen30(zName);
2116       if( nName>0 ){
2117         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2118         if( zName[j]==':' ) nName = j;
2119       }
2120       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2121       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2122     }
2123     pCol->zName = zName;
2124     pCol->hName = sqlite3StrIHash(zName);
2125     sqlite3ColumnPropertiesFromName(0, pCol);
2126     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2127       sqlite3OomFault(db);
2128     }
2129   }
2130   sqlite3HashClear(&ht);
2131   if( db->mallocFailed ){
2132     for(j=0; j<i; j++){
2133       sqlite3DbFree(db, aCol[j].zName);
2134     }
2135     sqlite3DbFree(db, aCol);
2136     *paCol = 0;
2137     *pnCol = 0;
2138     return SQLITE_NOMEM_BKPT;
2139   }
2140   return SQLITE_OK;
2141 }
2142 
2143 /*
2144 ** Add type and collation information to a column list based on
2145 ** a SELECT statement.
2146 **
2147 ** The column list presumably came from selectColumnNamesFromExprList().
2148 ** The column list has only names, not types or collations.  This
2149 ** routine goes through and adds the types and collations.
2150 **
2151 ** This routine requires that all identifiers in the SELECT
2152 ** statement be resolved.
2153 */
2154 void sqlite3SelectAddColumnTypeAndCollation(
2155   Parse *pParse,        /* Parsing contexts */
2156   Table *pTab,          /* Add column type information to this table */
2157   Select *pSelect,      /* SELECT used to determine types and collations */
2158   char aff              /* Default affinity for columns */
2159 ){
2160   sqlite3 *db = pParse->db;
2161   NameContext sNC;
2162   Column *pCol;
2163   CollSeq *pColl;
2164   int i;
2165   Expr *p;
2166   struct ExprList_item *a;
2167 
2168   assert( pSelect!=0 );
2169   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2170   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2171   if( db->mallocFailed ) return;
2172   memset(&sNC, 0, sizeof(sNC));
2173   sNC.pSrcList = pSelect->pSrc;
2174   a = pSelect->pEList->a;
2175   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2176     const char *zType;
2177     int n, m;
2178     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2179     p = a[i].pExpr;
2180     zType = columnType(&sNC, p, 0, 0, 0);
2181     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2182     pCol->affinity = sqlite3ExprAffinity(p);
2183     if( zType ){
2184       m = sqlite3Strlen30(zType);
2185       n = sqlite3Strlen30(pCol->zName);
2186       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2187       if( pCol->zName ){
2188         memcpy(&pCol->zName[n+1], zType, m+1);
2189         pCol->colFlags |= COLFLAG_HASTYPE;
2190       }
2191     }
2192     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2193     pColl = sqlite3ExprCollSeq(pParse, p);
2194     if( pColl && pCol->zColl==0 ){
2195       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2196     }
2197   }
2198   pTab->szTabRow = 1; /* Any non-zero value works */
2199 }
2200 
2201 /*
2202 ** Given a SELECT statement, generate a Table structure that describes
2203 ** the result set of that SELECT.
2204 */
2205 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2206   Table *pTab;
2207   sqlite3 *db = pParse->db;
2208   u64 savedFlags;
2209 
2210   savedFlags = db->flags;
2211   db->flags &= ~(u64)SQLITE_FullColNames;
2212   db->flags |= SQLITE_ShortColNames;
2213   sqlite3SelectPrep(pParse, pSelect, 0);
2214   db->flags = savedFlags;
2215   if( pParse->nErr ) return 0;
2216   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2217   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2218   if( pTab==0 ){
2219     return 0;
2220   }
2221   pTab->nTabRef = 1;
2222   pTab->zName = 0;
2223   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2224   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2225   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2226   pTab->iPKey = -1;
2227   if( db->mallocFailed ){
2228     sqlite3DeleteTable(db, pTab);
2229     return 0;
2230   }
2231   return pTab;
2232 }
2233 
2234 /*
2235 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2236 ** If an error occurs, return NULL and leave a message in pParse.
2237 */
2238 Vdbe *sqlite3GetVdbe(Parse *pParse){
2239   if( pParse->pVdbe ){
2240     return pParse->pVdbe;
2241   }
2242   if( pParse->pToplevel==0
2243    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2244   ){
2245     pParse->okConstFactor = 1;
2246   }
2247   return sqlite3VdbeCreate(pParse);
2248 }
2249 
2250 
2251 /*
2252 ** Compute the iLimit and iOffset fields of the SELECT based on the
2253 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2254 ** that appear in the original SQL statement after the LIMIT and OFFSET
2255 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2256 ** are the integer memory register numbers for counters used to compute
2257 ** the limit and offset.  If there is no limit and/or offset, then
2258 ** iLimit and iOffset are negative.
2259 **
2260 ** This routine changes the values of iLimit and iOffset only if
2261 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2262 ** and iOffset should have been preset to appropriate default values (zero)
2263 ** prior to calling this routine.
2264 **
2265 ** The iOffset register (if it exists) is initialized to the value
2266 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2267 ** iOffset+1 is initialized to LIMIT+OFFSET.
2268 **
2269 ** Only if pLimit->pLeft!=0 do the limit registers get
2270 ** redefined.  The UNION ALL operator uses this property to force
2271 ** the reuse of the same limit and offset registers across multiple
2272 ** SELECT statements.
2273 */
2274 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2275   Vdbe *v = 0;
2276   int iLimit = 0;
2277   int iOffset;
2278   int n;
2279   Expr *pLimit = p->pLimit;
2280 
2281   if( p->iLimit ) return;
2282 
2283   /*
2284   ** "LIMIT -1" always shows all rows.  There is some
2285   ** controversy about what the correct behavior should be.
2286   ** The current implementation interprets "LIMIT 0" to mean
2287   ** no rows.
2288   */
2289   if( pLimit ){
2290     assert( pLimit->op==TK_LIMIT );
2291     assert( pLimit->pLeft!=0 );
2292     p->iLimit = iLimit = ++pParse->nMem;
2293     v = sqlite3GetVdbe(pParse);
2294     assert( v!=0 );
2295     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2296       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2297       VdbeComment((v, "LIMIT counter"));
2298       if( n==0 ){
2299         sqlite3VdbeGoto(v, iBreak);
2300       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2301         p->nSelectRow = sqlite3LogEst((u64)n);
2302         p->selFlags |= SF_FixedLimit;
2303       }
2304     }else{
2305       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2306       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2307       VdbeComment((v, "LIMIT counter"));
2308       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2309     }
2310     if( pLimit->pRight ){
2311       p->iOffset = iOffset = ++pParse->nMem;
2312       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2313       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2314       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2315       VdbeComment((v, "OFFSET counter"));
2316       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2317       VdbeComment((v, "LIMIT+OFFSET"));
2318     }
2319   }
2320 }
2321 
2322 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2323 /*
2324 ** Return the appropriate collating sequence for the iCol-th column of
2325 ** the result set for the compound-select statement "p".  Return NULL if
2326 ** the column has no default collating sequence.
2327 **
2328 ** The collating sequence for the compound select is taken from the
2329 ** left-most term of the select that has a collating sequence.
2330 */
2331 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2332   CollSeq *pRet;
2333   if( p->pPrior ){
2334     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2335   }else{
2336     pRet = 0;
2337   }
2338   assert( iCol>=0 );
2339   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2340   ** have been thrown during name resolution and we would not have gotten
2341   ** this far */
2342   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2343     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2344   }
2345   return pRet;
2346 }
2347 
2348 /*
2349 ** The select statement passed as the second parameter is a compound SELECT
2350 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2351 ** structure suitable for implementing the ORDER BY.
2352 **
2353 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2354 ** function is responsible for ensuring that this structure is eventually
2355 ** freed.
2356 */
2357 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2358   ExprList *pOrderBy = p->pOrderBy;
2359   int nOrderBy = p->pOrderBy->nExpr;
2360   sqlite3 *db = pParse->db;
2361   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2362   if( pRet ){
2363     int i;
2364     for(i=0; i<nOrderBy; i++){
2365       struct ExprList_item *pItem = &pOrderBy->a[i];
2366       Expr *pTerm = pItem->pExpr;
2367       CollSeq *pColl;
2368 
2369       if( pTerm->flags & EP_Collate ){
2370         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2371       }else{
2372         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2373         if( pColl==0 ) pColl = db->pDfltColl;
2374         pOrderBy->a[i].pExpr =
2375           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2376       }
2377       assert( sqlite3KeyInfoIsWriteable(pRet) );
2378       pRet->aColl[i] = pColl;
2379       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2380     }
2381   }
2382 
2383   return pRet;
2384 }
2385 
2386 #ifndef SQLITE_OMIT_CTE
2387 /*
2388 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2389 ** query of the form:
2390 **
2391 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2392 **                         \___________/             \_______________/
2393 **                           p->pPrior                      p
2394 **
2395 **
2396 ** There is exactly one reference to the recursive-table in the FROM clause
2397 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2398 **
2399 ** The setup-query runs once to generate an initial set of rows that go
2400 ** into a Queue table.  Rows are extracted from the Queue table one by
2401 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2402 ** extracted row (now in the iCurrent table) becomes the content of the
2403 ** recursive-table for a recursive-query run.  The output of the recursive-query
2404 ** is added back into the Queue table.  Then another row is extracted from Queue
2405 ** and the iteration continues until the Queue table is empty.
2406 **
2407 ** If the compound query operator is UNION then no duplicate rows are ever
2408 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2409 ** that have ever been inserted into Queue and causes duplicates to be
2410 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2411 **
2412 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2413 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2414 ** an ORDER BY, the Queue table is just a FIFO.
2415 **
2416 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2417 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2418 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2419 ** with a positive value, then the first OFFSET outputs are discarded rather
2420 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2421 ** rows have been skipped.
2422 */
2423 static void generateWithRecursiveQuery(
2424   Parse *pParse,        /* Parsing context */
2425   Select *p,            /* The recursive SELECT to be coded */
2426   SelectDest *pDest     /* What to do with query results */
2427 ){
2428   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2429   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2430   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2431   Select *pSetup = p->pPrior;   /* The setup query */
2432   Select *pFirstRec;            /* Left-most recursive term */
2433   int addrTop;                  /* Top of the loop */
2434   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2435   int iCurrent = 0;             /* The Current table */
2436   int regCurrent;               /* Register holding Current table */
2437   int iQueue;                   /* The Queue table */
2438   int iDistinct = 0;            /* To ensure unique results if UNION */
2439   int eDest = SRT_Fifo;         /* How to write to Queue */
2440   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2441   int i;                        /* Loop counter */
2442   int rc;                       /* Result code */
2443   ExprList *pOrderBy;           /* The ORDER BY clause */
2444   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2445   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2446 
2447 #ifndef SQLITE_OMIT_WINDOWFUNC
2448   if( p->pWin ){
2449     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2450     return;
2451   }
2452 #endif
2453 
2454   /* Obtain authorization to do a recursive query */
2455   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2456 
2457   /* Process the LIMIT and OFFSET clauses, if they exist */
2458   addrBreak = sqlite3VdbeMakeLabel(pParse);
2459   p->nSelectRow = 320;  /* 4 billion rows */
2460   computeLimitRegisters(pParse, p, addrBreak);
2461   pLimit = p->pLimit;
2462   regLimit = p->iLimit;
2463   regOffset = p->iOffset;
2464   p->pLimit = 0;
2465   p->iLimit = p->iOffset = 0;
2466   pOrderBy = p->pOrderBy;
2467 
2468   /* Locate the cursor number of the Current table */
2469   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2470     if( pSrc->a[i].fg.isRecursive ){
2471       iCurrent = pSrc->a[i].iCursor;
2472       break;
2473     }
2474   }
2475 
2476   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2477   ** the Distinct table must be exactly one greater than Queue in order
2478   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2479   iQueue = pParse->nTab++;
2480   if( p->op==TK_UNION ){
2481     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2482     iDistinct = pParse->nTab++;
2483   }else{
2484     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2485   }
2486   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2487 
2488   /* Allocate cursors for Current, Queue, and Distinct. */
2489   regCurrent = ++pParse->nMem;
2490   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2491   if( pOrderBy ){
2492     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2493     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2494                       (char*)pKeyInfo, P4_KEYINFO);
2495     destQueue.pOrderBy = pOrderBy;
2496   }else{
2497     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2498   }
2499   VdbeComment((v, "Queue table"));
2500   if( iDistinct ){
2501     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2502     p->selFlags |= SF_UsesEphemeral;
2503   }
2504 
2505   /* Detach the ORDER BY clause from the compound SELECT */
2506   p->pOrderBy = 0;
2507 
2508   /* Figure out how many elements of the compound SELECT are part of the
2509   ** recursive query.  Make sure no recursive elements use aggregate
2510   ** functions.  Mark the recursive elements as UNION ALL even if they
2511   ** are really UNION because the distinctness will be enforced by the
2512   ** iDistinct table.  pFirstRec is left pointing to the left-most
2513   ** recursive term of the CTE.
2514   */
2515   pFirstRec = p;
2516   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2517     if( pFirstRec->selFlags & SF_Aggregate ){
2518       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2519       goto end_of_recursive_query;
2520     }
2521     pFirstRec->op = TK_ALL;
2522     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2523   }
2524 
2525   /* Store the results of the setup-query in Queue. */
2526   pSetup = pFirstRec->pPrior;
2527   pSetup->pNext = 0;
2528   ExplainQueryPlan((pParse, 1, "SETUP"));
2529   rc = sqlite3Select(pParse, pSetup, &destQueue);
2530   pSetup->pNext = p;
2531   if( rc ) goto end_of_recursive_query;
2532 
2533   /* Find the next row in the Queue and output that row */
2534   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2535 
2536   /* Transfer the next row in Queue over to Current */
2537   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2538   if( pOrderBy ){
2539     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2540   }else{
2541     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2542   }
2543   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2544 
2545   /* Output the single row in Current */
2546   addrCont = sqlite3VdbeMakeLabel(pParse);
2547   codeOffset(v, regOffset, addrCont);
2548   selectInnerLoop(pParse, p, iCurrent,
2549       0, 0, pDest, addrCont, addrBreak);
2550   if( regLimit ){
2551     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2552     VdbeCoverage(v);
2553   }
2554   sqlite3VdbeResolveLabel(v, addrCont);
2555 
2556   /* Execute the recursive SELECT taking the single row in Current as
2557   ** the value for the recursive-table. Store the results in the Queue.
2558   */
2559   pFirstRec->pPrior = 0;
2560   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2561   sqlite3Select(pParse, p, &destQueue);
2562   assert( pFirstRec->pPrior==0 );
2563   pFirstRec->pPrior = pSetup;
2564 
2565   /* Keep running the loop until the Queue is empty */
2566   sqlite3VdbeGoto(v, addrTop);
2567   sqlite3VdbeResolveLabel(v, addrBreak);
2568 
2569 end_of_recursive_query:
2570   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2571   p->pOrderBy = pOrderBy;
2572   p->pLimit = pLimit;
2573   return;
2574 }
2575 #endif /* SQLITE_OMIT_CTE */
2576 
2577 /* Forward references */
2578 static int multiSelectOrderBy(
2579   Parse *pParse,        /* Parsing context */
2580   Select *p,            /* The right-most of SELECTs to be coded */
2581   SelectDest *pDest     /* What to do with query results */
2582 );
2583 
2584 /*
2585 ** Handle the special case of a compound-select that originates from a
2586 ** VALUES clause.  By handling this as a special case, we avoid deep
2587 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2588 ** on a VALUES clause.
2589 **
2590 ** Because the Select object originates from a VALUES clause:
2591 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2592 **   (2) All terms are UNION ALL
2593 **   (3) There is no ORDER BY clause
2594 **
2595 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2596 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2597 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2598 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2599 */
2600 static int multiSelectValues(
2601   Parse *pParse,        /* Parsing context */
2602   Select *p,            /* The right-most of SELECTs to be coded */
2603   SelectDest *pDest     /* What to do with query results */
2604 ){
2605   int nRow = 1;
2606   int rc = 0;
2607   int bShowAll = p->pLimit==0;
2608   assert( p->selFlags & SF_MultiValue );
2609   do{
2610     assert( p->selFlags & SF_Values );
2611     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2612     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2613 #ifndef SQLITE_OMIT_WINDOWFUNC
2614     if( p->pWin ) return -1;
2615 #endif
2616     if( p->pPrior==0 ) break;
2617     assert( p->pPrior->pNext==p );
2618     p = p->pPrior;
2619     nRow += bShowAll;
2620   }while(1);
2621   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2622                     nRow==1 ? "" : "S"));
2623   while( p ){
2624     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2625     if( !bShowAll ) break;
2626     p->nSelectRow = nRow;
2627     p = p->pNext;
2628   }
2629   return rc;
2630 }
2631 
2632 /*
2633 ** Return true if the SELECT statement which is known to be the recursive
2634 ** part of a recursive CTE still has its anchor terms attached.  If the
2635 ** anchor terms have already been removed, then return false.
2636 */
2637 static int hasAnchor(Select *p){
2638   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2639   return p!=0;
2640 }
2641 
2642 /*
2643 ** This routine is called to process a compound query form from
2644 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2645 ** INTERSECT
2646 **
2647 ** "p" points to the right-most of the two queries.  the query on the
2648 ** left is p->pPrior.  The left query could also be a compound query
2649 ** in which case this routine will be called recursively.
2650 **
2651 ** The results of the total query are to be written into a destination
2652 ** of type eDest with parameter iParm.
2653 **
2654 ** Example 1:  Consider a three-way compound SQL statement.
2655 **
2656 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2657 **
2658 ** This statement is parsed up as follows:
2659 **
2660 **     SELECT c FROM t3
2661 **      |
2662 **      `----->  SELECT b FROM t2
2663 **                |
2664 **                `------>  SELECT a FROM t1
2665 **
2666 ** The arrows in the diagram above represent the Select.pPrior pointer.
2667 ** So if this routine is called with p equal to the t3 query, then
2668 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2669 **
2670 ** Notice that because of the way SQLite parses compound SELECTs, the
2671 ** individual selects always group from left to right.
2672 */
2673 static int multiSelect(
2674   Parse *pParse,        /* Parsing context */
2675   Select *p,            /* The right-most of SELECTs to be coded */
2676   SelectDest *pDest     /* What to do with query results */
2677 ){
2678   int rc = SQLITE_OK;   /* Success code from a subroutine */
2679   Select *pPrior;       /* Another SELECT immediately to our left */
2680   Vdbe *v;              /* Generate code to this VDBE */
2681   SelectDest dest;      /* Alternative data destination */
2682   Select *pDelete = 0;  /* Chain of simple selects to delete */
2683   sqlite3 *db;          /* Database connection */
2684 
2685   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2686   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2687   */
2688   assert( p && p->pPrior );  /* Calling function guarantees this much */
2689   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2690   assert( p->selFlags & SF_Compound );
2691   db = pParse->db;
2692   pPrior = p->pPrior;
2693   dest = *pDest;
2694   assert( pPrior->pOrderBy==0 );
2695   assert( pPrior->pLimit==0 );
2696 
2697   v = sqlite3GetVdbe(pParse);
2698   assert( v!=0 );  /* The VDBE already created by calling function */
2699 
2700   /* Create the destination temporary table if necessary
2701   */
2702   if( dest.eDest==SRT_EphemTab ){
2703     assert( p->pEList );
2704     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2705     dest.eDest = SRT_Table;
2706   }
2707 
2708   /* Special handling for a compound-select that originates as a VALUES clause.
2709   */
2710   if( p->selFlags & SF_MultiValue ){
2711     rc = multiSelectValues(pParse, p, &dest);
2712     if( rc>=0 ) goto multi_select_end;
2713     rc = SQLITE_OK;
2714   }
2715 
2716   /* Make sure all SELECTs in the statement have the same number of elements
2717   ** in their result sets.
2718   */
2719   assert( p->pEList && pPrior->pEList );
2720   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2721 
2722 #ifndef SQLITE_OMIT_CTE
2723   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2724     generateWithRecursiveQuery(pParse, p, &dest);
2725   }else
2726 #endif
2727 
2728   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2729   */
2730   if( p->pOrderBy ){
2731     return multiSelectOrderBy(pParse, p, pDest);
2732   }else{
2733 
2734 #ifndef SQLITE_OMIT_EXPLAIN
2735     if( pPrior->pPrior==0 ){
2736       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2737       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2738     }
2739 #endif
2740 
2741     /* Generate code for the left and right SELECT statements.
2742     */
2743     switch( p->op ){
2744       case TK_ALL: {
2745         int addr = 0;
2746         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2747         assert( !pPrior->pLimit );
2748         pPrior->iLimit = p->iLimit;
2749         pPrior->iOffset = p->iOffset;
2750         pPrior->pLimit = p->pLimit;
2751         rc = sqlite3Select(pParse, pPrior, &dest);
2752         pPrior->pLimit = 0;
2753         if( rc ){
2754           goto multi_select_end;
2755         }
2756         p->pPrior = 0;
2757         p->iLimit = pPrior->iLimit;
2758         p->iOffset = pPrior->iOffset;
2759         if( p->iLimit ){
2760           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2761           VdbeComment((v, "Jump ahead if LIMIT reached"));
2762           if( p->iOffset ){
2763             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2764                               p->iLimit, p->iOffset+1, p->iOffset);
2765           }
2766         }
2767         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2768         rc = sqlite3Select(pParse, p, &dest);
2769         testcase( rc!=SQLITE_OK );
2770         pDelete = p->pPrior;
2771         p->pPrior = pPrior;
2772         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2773         if( p->pLimit
2774          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2775          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2776         ){
2777           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2778         }
2779         if( addr ){
2780           sqlite3VdbeJumpHere(v, addr);
2781         }
2782         break;
2783       }
2784       case TK_EXCEPT:
2785       case TK_UNION: {
2786         int unionTab;    /* Cursor number of the temp table holding result */
2787         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2788         int priorOp;     /* The SRT_ operation to apply to prior selects */
2789         Expr *pLimit;    /* Saved values of p->nLimit  */
2790         int addr;
2791         SelectDest uniondest;
2792 
2793         testcase( p->op==TK_EXCEPT );
2794         testcase( p->op==TK_UNION );
2795         priorOp = SRT_Union;
2796         if( dest.eDest==priorOp ){
2797           /* We can reuse a temporary table generated by a SELECT to our
2798           ** right.
2799           */
2800           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2801           unionTab = dest.iSDParm;
2802         }else{
2803           /* We will need to create our own temporary table to hold the
2804           ** intermediate results.
2805           */
2806           unionTab = pParse->nTab++;
2807           assert( p->pOrderBy==0 );
2808           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2809           assert( p->addrOpenEphm[0] == -1 );
2810           p->addrOpenEphm[0] = addr;
2811           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2812           assert( p->pEList );
2813         }
2814 
2815 
2816         /* Code the SELECT statements to our left
2817         */
2818         assert( !pPrior->pOrderBy );
2819         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2820         rc = sqlite3Select(pParse, pPrior, &uniondest);
2821         if( rc ){
2822           goto multi_select_end;
2823         }
2824 
2825         /* Code the current SELECT statement
2826         */
2827         if( p->op==TK_EXCEPT ){
2828           op = SRT_Except;
2829         }else{
2830           assert( p->op==TK_UNION );
2831           op = SRT_Union;
2832         }
2833         p->pPrior = 0;
2834         pLimit = p->pLimit;
2835         p->pLimit = 0;
2836         uniondest.eDest = op;
2837         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2838                           sqlite3SelectOpName(p->op)));
2839         rc = sqlite3Select(pParse, p, &uniondest);
2840         testcase( rc!=SQLITE_OK );
2841         assert( p->pOrderBy==0 );
2842         pDelete = p->pPrior;
2843         p->pPrior = pPrior;
2844         p->pOrderBy = 0;
2845         if( p->op==TK_UNION ){
2846           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2847         }
2848         sqlite3ExprDelete(db, p->pLimit);
2849         p->pLimit = pLimit;
2850         p->iLimit = 0;
2851         p->iOffset = 0;
2852 
2853         /* Convert the data in the temporary table into whatever form
2854         ** it is that we currently need.
2855         */
2856         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2857         assert( p->pEList || db->mallocFailed );
2858         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2859           int iCont, iBreak, iStart;
2860           iBreak = sqlite3VdbeMakeLabel(pParse);
2861           iCont = sqlite3VdbeMakeLabel(pParse);
2862           computeLimitRegisters(pParse, p, iBreak);
2863           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2864           iStart = sqlite3VdbeCurrentAddr(v);
2865           selectInnerLoop(pParse, p, unionTab,
2866                           0, 0, &dest, iCont, iBreak);
2867           sqlite3VdbeResolveLabel(v, iCont);
2868           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2869           sqlite3VdbeResolveLabel(v, iBreak);
2870           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2871         }
2872         break;
2873       }
2874       default: assert( p->op==TK_INTERSECT ); {
2875         int tab1, tab2;
2876         int iCont, iBreak, iStart;
2877         Expr *pLimit;
2878         int addr;
2879         SelectDest intersectdest;
2880         int r1;
2881 
2882         /* INTERSECT is different from the others since it requires
2883         ** two temporary tables.  Hence it has its own case.  Begin
2884         ** by allocating the tables we will need.
2885         */
2886         tab1 = pParse->nTab++;
2887         tab2 = pParse->nTab++;
2888         assert( p->pOrderBy==0 );
2889 
2890         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2891         assert( p->addrOpenEphm[0] == -1 );
2892         p->addrOpenEphm[0] = addr;
2893         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2894         assert( p->pEList );
2895 
2896         /* Code the SELECTs to our left into temporary table "tab1".
2897         */
2898         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2899         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2900         if( rc ){
2901           goto multi_select_end;
2902         }
2903 
2904         /* Code the current SELECT into temporary table "tab2"
2905         */
2906         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2907         assert( p->addrOpenEphm[1] == -1 );
2908         p->addrOpenEphm[1] = addr;
2909         p->pPrior = 0;
2910         pLimit = p->pLimit;
2911         p->pLimit = 0;
2912         intersectdest.iSDParm = tab2;
2913         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2914                           sqlite3SelectOpName(p->op)));
2915         rc = sqlite3Select(pParse, p, &intersectdest);
2916         testcase( rc!=SQLITE_OK );
2917         pDelete = p->pPrior;
2918         p->pPrior = pPrior;
2919         if( p->nSelectRow>pPrior->nSelectRow ){
2920           p->nSelectRow = pPrior->nSelectRow;
2921         }
2922         sqlite3ExprDelete(db, p->pLimit);
2923         p->pLimit = pLimit;
2924 
2925         /* Generate code to take the intersection of the two temporary
2926         ** tables.
2927         */
2928         if( rc ) break;
2929         assert( p->pEList );
2930         iBreak = sqlite3VdbeMakeLabel(pParse);
2931         iCont = sqlite3VdbeMakeLabel(pParse);
2932         computeLimitRegisters(pParse, p, iBreak);
2933         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2934         r1 = sqlite3GetTempReg(pParse);
2935         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2936         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2937         VdbeCoverage(v);
2938         sqlite3ReleaseTempReg(pParse, r1);
2939         selectInnerLoop(pParse, p, tab1,
2940                         0, 0, &dest, iCont, iBreak);
2941         sqlite3VdbeResolveLabel(v, iCont);
2942         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2943         sqlite3VdbeResolveLabel(v, iBreak);
2944         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2945         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2946         break;
2947       }
2948     }
2949 
2950   #ifndef SQLITE_OMIT_EXPLAIN
2951     if( p->pNext==0 ){
2952       ExplainQueryPlanPop(pParse);
2953     }
2954   #endif
2955   }
2956   if( pParse->nErr ) goto multi_select_end;
2957 
2958   /* Compute collating sequences used by
2959   ** temporary tables needed to implement the compound select.
2960   ** Attach the KeyInfo structure to all temporary tables.
2961   **
2962   ** This section is run by the right-most SELECT statement only.
2963   ** SELECT statements to the left always skip this part.  The right-most
2964   ** SELECT might also skip this part if it has no ORDER BY clause and
2965   ** no temp tables are required.
2966   */
2967   if( p->selFlags & SF_UsesEphemeral ){
2968     int i;                        /* Loop counter */
2969     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2970     Select *pLoop;                /* For looping through SELECT statements */
2971     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2972     int nCol;                     /* Number of columns in result set */
2973 
2974     assert( p->pNext==0 );
2975     nCol = p->pEList->nExpr;
2976     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2977     if( !pKeyInfo ){
2978       rc = SQLITE_NOMEM_BKPT;
2979       goto multi_select_end;
2980     }
2981     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2982       *apColl = multiSelectCollSeq(pParse, p, i);
2983       if( 0==*apColl ){
2984         *apColl = db->pDfltColl;
2985       }
2986     }
2987 
2988     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2989       for(i=0; i<2; i++){
2990         int addr = pLoop->addrOpenEphm[i];
2991         if( addr<0 ){
2992           /* If [0] is unused then [1] is also unused.  So we can
2993           ** always safely abort as soon as the first unused slot is found */
2994           assert( pLoop->addrOpenEphm[1]<0 );
2995           break;
2996         }
2997         sqlite3VdbeChangeP2(v, addr, nCol);
2998         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2999                             P4_KEYINFO);
3000         pLoop->addrOpenEphm[i] = -1;
3001       }
3002     }
3003     sqlite3KeyInfoUnref(pKeyInfo);
3004   }
3005 
3006 multi_select_end:
3007   pDest->iSdst = dest.iSdst;
3008   pDest->nSdst = dest.nSdst;
3009   sqlite3SelectDelete(db, pDelete);
3010   return rc;
3011 }
3012 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3013 
3014 /*
3015 ** Error message for when two or more terms of a compound select have different
3016 ** size result sets.
3017 */
3018 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3019   if( p->selFlags & SF_Values ){
3020     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3021   }else{
3022     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3023       " do not have the same number of result columns",
3024       sqlite3SelectOpName(p->op));
3025   }
3026 }
3027 
3028 /*
3029 ** Code an output subroutine for a coroutine implementation of a
3030 ** SELECT statment.
3031 **
3032 ** The data to be output is contained in pIn->iSdst.  There are
3033 ** pIn->nSdst columns to be output.  pDest is where the output should
3034 ** be sent.
3035 **
3036 ** regReturn is the number of the register holding the subroutine
3037 ** return address.
3038 **
3039 ** If regPrev>0 then it is the first register in a vector that
3040 ** records the previous output.  mem[regPrev] is a flag that is false
3041 ** if there has been no previous output.  If regPrev>0 then code is
3042 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3043 ** keys.
3044 **
3045 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3046 ** iBreak.
3047 */
3048 static int generateOutputSubroutine(
3049   Parse *pParse,          /* Parsing context */
3050   Select *p,              /* The SELECT statement */
3051   SelectDest *pIn,        /* Coroutine supplying data */
3052   SelectDest *pDest,      /* Where to send the data */
3053   int regReturn,          /* The return address register */
3054   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3055   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3056   int iBreak              /* Jump here if we hit the LIMIT */
3057 ){
3058   Vdbe *v = pParse->pVdbe;
3059   int iContinue;
3060   int addr;
3061 
3062   addr = sqlite3VdbeCurrentAddr(v);
3063   iContinue = sqlite3VdbeMakeLabel(pParse);
3064 
3065   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3066   */
3067   if( regPrev ){
3068     int addr1, addr2;
3069     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3070     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3071                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3072     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3073     sqlite3VdbeJumpHere(v, addr1);
3074     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3075     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3076   }
3077   if( pParse->db->mallocFailed ) return 0;
3078 
3079   /* Suppress the first OFFSET entries if there is an OFFSET clause
3080   */
3081   codeOffset(v, p->iOffset, iContinue);
3082 
3083   assert( pDest->eDest!=SRT_Exists );
3084   assert( pDest->eDest!=SRT_Table );
3085   switch( pDest->eDest ){
3086     /* Store the result as data using a unique key.
3087     */
3088     case SRT_EphemTab: {
3089       int r1 = sqlite3GetTempReg(pParse);
3090       int r2 = sqlite3GetTempReg(pParse);
3091       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3092       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3093       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3094       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3095       sqlite3ReleaseTempReg(pParse, r2);
3096       sqlite3ReleaseTempReg(pParse, r1);
3097       break;
3098     }
3099 
3100 #ifndef SQLITE_OMIT_SUBQUERY
3101     /* If we are creating a set for an "expr IN (SELECT ...)".
3102     */
3103     case SRT_Set: {
3104       int r1;
3105       testcase( pIn->nSdst>1 );
3106       r1 = sqlite3GetTempReg(pParse);
3107       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3108           r1, pDest->zAffSdst, pIn->nSdst);
3109       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3110                            pIn->iSdst, pIn->nSdst);
3111       sqlite3ReleaseTempReg(pParse, r1);
3112       break;
3113     }
3114 
3115     /* If this is a scalar select that is part of an expression, then
3116     ** store the results in the appropriate memory cell and break out
3117     ** of the scan loop.  Note that the select might return multiple columns
3118     ** if it is the RHS of a row-value IN operator.
3119     */
3120     case SRT_Mem: {
3121       testcase( pIn->nSdst>1 );
3122       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3123       /* The LIMIT clause will jump out of the loop for us */
3124       break;
3125     }
3126 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3127 
3128     /* The results are stored in a sequence of registers
3129     ** starting at pDest->iSdst.  Then the co-routine yields.
3130     */
3131     case SRT_Coroutine: {
3132       if( pDest->iSdst==0 ){
3133         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3134         pDest->nSdst = pIn->nSdst;
3135       }
3136       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3137       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3138       break;
3139     }
3140 
3141     /* If none of the above, then the result destination must be
3142     ** SRT_Output.  This routine is never called with any other
3143     ** destination other than the ones handled above or SRT_Output.
3144     **
3145     ** For SRT_Output, results are stored in a sequence of registers.
3146     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3147     ** return the next row of result.
3148     */
3149     default: {
3150       assert( pDest->eDest==SRT_Output );
3151       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3152       break;
3153     }
3154   }
3155 
3156   /* Jump to the end of the loop if the LIMIT is reached.
3157   */
3158   if( p->iLimit ){
3159     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3160   }
3161 
3162   /* Generate the subroutine return
3163   */
3164   sqlite3VdbeResolveLabel(v, iContinue);
3165   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3166 
3167   return addr;
3168 }
3169 
3170 /*
3171 ** Alternative compound select code generator for cases when there
3172 ** is an ORDER BY clause.
3173 **
3174 ** We assume a query of the following form:
3175 **
3176 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3177 **
3178 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3179 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3180 ** co-routines.  Then run the co-routines in parallel and merge the results
3181 ** into the output.  In addition to the two coroutines (called selectA and
3182 ** selectB) there are 7 subroutines:
3183 **
3184 **    outA:    Move the output of the selectA coroutine into the output
3185 **             of the compound query.
3186 **
3187 **    outB:    Move the output of the selectB coroutine into the output
3188 **             of the compound query.  (Only generated for UNION and
3189 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3190 **             appears only in B.)
3191 **
3192 **    AltB:    Called when there is data from both coroutines and A<B.
3193 **
3194 **    AeqB:    Called when there is data from both coroutines and A==B.
3195 **
3196 **    AgtB:    Called when there is data from both coroutines and A>B.
3197 **
3198 **    EofA:    Called when data is exhausted from selectA.
3199 **
3200 **    EofB:    Called when data is exhausted from selectB.
3201 **
3202 ** The implementation of the latter five subroutines depend on which
3203 ** <operator> is used:
3204 **
3205 **
3206 **             UNION ALL         UNION            EXCEPT          INTERSECT
3207 **          -------------  -----------------  --------------  -----------------
3208 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3209 **
3210 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3211 **
3212 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3213 **
3214 **   EofA:   outB, nextB      outB, nextB          halt             halt
3215 **
3216 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3217 **
3218 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3219 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3220 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3221 ** following nextX causes a jump to the end of the select processing.
3222 **
3223 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3224 ** within the output subroutine.  The regPrev register set holds the previously
3225 ** output value.  A comparison is made against this value and the output
3226 ** is skipped if the next results would be the same as the previous.
3227 **
3228 ** The implementation plan is to implement the two coroutines and seven
3229 ** subroutines first, then put the control logic at the bottom.  Like this:
3230 **
3231 **          goto Init
3232 **     coA: coroutine for left query (A)
3233 **     coB: coroutine for right query (B)
3234 **    outA: output one row of A
3235 **    outB: output one row of B (UNION and UNION ALL only)
3236 **    EofA: ...
3237 **    EofB: ...
3238 **    AltB: ...
3239 **    AeqB: ...
3240 **    AgtB: ...
3241 **    Init: initialize coroutine registers
3242 **          yield coA
3243 **          if eof(A) goto EofA
3244 **          yield coB
3245 **          if eof(B) goto EofB
3246 **    Cmpr: Compare A, B
3247 **          Jump AltB, AeqB, AgtB
3248 **     End: ...
3249 **
3250 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3251 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3252 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3253 ** and AgtB jump to either L2 or to one of EofA or EofB.
3254 */
3255 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3256 static int multiSelectOrderBy(
3257   Parse *pParse,        /* Parsing context */
3258   Select *p,            /* The right-most of SELECTs to be coded */
3259   SelectDest *pDest     /* What to do with query results */
3260 ){
3261   int i, j;             /* Loop counters */
3262   Select *pPrior;       /* Another SELECT immediately to our left */
3263   Vdbe *v;              /* Generate code to this VDBE */
3264   SelectDest destA;     /* Destination for coroutine A */
3265   SelectDest destB;     /* Destination for coroutine B */
3266   int regAddrA;         /* Address register for select-A coroutine */
3267   int regAddrB;         /* Address register for select-B coroutine */
3268   int addrSelectA;      /* Address of the select-A coroutine */
3269   int addrSelectB;      /* Address of the select-B coroutine */
3270   int regOutA;          /* Address register for the output-A subroutine */
3271   int regOutB;          /* Address register for the output-B subroutine */
3272   int addrOutA;         /* Address of the output-A subroutine */
3273   int addrOutB = 0;     /* Address of the output-B subroutine */
3274   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3275   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3276   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3277   int addrAltB;         /* Address of the A<B subroutine */
3278   int addrAeqB;         /* Address of the A==B subroutine */
3279   int addrAgtB;         /* Address of the A>B subroutine */
3280   int regLimitA;        /* Limit register for select-A */
3281   int regLimitB;        /* Limit register for select-A */
3282   int regPrev;          /* A range of registers to hold previous output */
3283   int savedLimit;       /* Saved value of p->iLimit */
3284   int savedOffset;      /* Saved value of p->iOffset */
3285   int labelCmpr;        /* Label for the start of the merge algorithm */
3286   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3287   int addr1;            /* Jump instructions that get retargetted */
3288   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3289   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3290   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3291   sqlite3 *db;          /* Database connection */
3292   ExprList *pOrderBy;   /* The ORDER BY clause */
3293   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3294   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3295 
3296   assert( p->pOrderBy!=0 );
3297   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3298   db = pParse->db;
3299   v = pParse->pVdbe;
3300   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3301   labelEnd = sqlite3VdbeMakeLabel(pParse);
3302   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3303 
3304 
3305   /* Patch up the ORDER BY clause
3306   */
3307   op = p->op;
3308   pPrior = p->pPrior;
3309   assert( pPrior->pOrderBy==0 );
3310   pOrderBy = p->pOrderBy;
3311   assert( pOrderBy );
3312   nOrderBy = pOrderBy->nExpr;
3313 
3314   /* For operators other than UNION ALL we have to make sure that
3315   ** the ORDER BY clause covers every term of the result set.  Add
3316   ** terms to the ORDER BY clause as necessary.
3317   */
3318   if( op!=TK_ALL ){
3319     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3320       struct ExprList_item *pItem;
3321       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3322         assert( pItem->u.x.iOrderByCol>0 );
3323         if( pItem->u.x.iOrderByCol==i ) break;
3324       }
3325       if( j==nOrderBy ){
3326         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3327         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3328         pNew->flags |= EP_IntValue;
3329         pNew->u.iValue = i;
3330         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3331         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3332       }
3333     }
3334   }
3335 
3336   /* Compute the comparison permutation and keyinfo that is used with
3337   ** the permutation used to determine if the next
3338   ** row of results comes from selectA or selectB.  Also add explicit
3339   ** collations to the ORDER BY clause terms so that when the subqueries
3340   ** to the right and the left are evaluated, they use the correct
3341   ** collation.
3342   */
3343   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3344   if( aPermute ){
3345     struct ExprList_item *pItem;
3346     aPermute[0] = nOrderBy;
3347     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3348       assert( pItem->u.x.iOrderByCol>0 );
3349       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3350       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3351     }
3352     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3353   }else{
3354     pKeyMerge = 0;
3355   }
3356 
3357   /* Reattach the ORDER BY clause to the query.
3358   */
3359   p->pOrderBy = pOrderBy;
3360   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3361 
3362   /* Allocate a range of temporary registers and the KeyInfo needed
3363   ** for the logic that removes duplicate result rows when the
3364   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3365   */
3366   if( op==TK_ALL ){
3367     regPrev = 0;
3368   }else{
3369     int nExpr = p->pEList->nExpr;
3370     assert( nOrderBy>=nExpr || db->mallocFailed );
3371     regPrev = pParse->nMem+1;
3372     pParse->nMem += nExpr+1;
3373     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3374     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3375     if( pKeyDup ){
3376       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3377       for(i=0; i<nExpr; i++){
3378         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3379         pKeyDup->aSortFlags[i] = 0;
3380       }
3381     }
3382   }
3383 
3384   /* Separate the left and the right query from one another
3385   */
3386   p->pPrior = 0;
3387   pPrior->pNext = 0;
3388   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3389   if( pPrior->pPrior==0 ){
3390     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3391   }
3392 
3393   /* Compute the limit registers */
3394   computeLimitRegisters(pParse, p, labelEnd);
3395   if( p->iLimit && op==TK_ALL ){
3396     regLimitA = ++pParse->nMem;
3397     regLimitB = ++pParse->nMem;
3398     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3399                                   regLimitA);
3400     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3401   }else{
3402     regLimitA = regLimitB = 0;
3403   }
3404   sqlite3ExprDelete(db, p->pLimit);
3405   p->pLimit = 0;
3406 
3407   regAddrA = ++pParse->nMem;
3408   regAddrB = ++pParse->nMem;
3409   regOutA = ++pParse->nMem;
3410   regOutB = ++pParse->nMem;
3411   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3412   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3413 
3414   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3415 
3416   /* Generate a coroutine to evaluate the SELECT statement to the
3417   ** left of the compound operator - the "A" select.
3418   */
3419   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3420   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3421   VdbeComment((v, "left SELECT"));
3422   pPrior->iLimit = regLimitA;
3423   ExplainQueryPlan((pParse, 1, "LEFT"));
3424   sqlite3Select(pParse, pPrior, &destA);
3425   sqlite3VdbeEndCoroutine(v, regAddrA);
3426   sqlite3VdbeJumpHere(v, addr1);
3427 
3428   /* Generate a coroutine to evaluate the SELECT statement on
3429   ** the right - the "B" select
3430   */
3431   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3432   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3433   VdbeComment((v, "right SELECT"));
3434   savedLimit = p->iLimit;
3435   savedOffset = p->iOffset;
3436   p->iLimit = regLimitB;
3437   p->iOffset = 0;
3438   ExplainQueryPlan((pParse, 1, "RIGHT"));
3439   sqlite3Select(pParse, p, &destB);
3440   p->iLimit = savedLimit;
3441   p->iOffset = savedOffset;
3442   sqlite3VdbeEndCoroutine(v, regAddrB);
3443 
3444   /* Generate a subroutine that outputs the current row of the A
3445   ** select as the next output row of the compound select.
3446   */
3447   VdbeNoopComment((v, "Output routine for A"));
3448   addrOutA = generateOutputSubroutine(pParse,
3449                  p, &destA, pDest, regOutA,
3450                  regPrev, pKeyDup, labelEnd);
3451 
3452   /* Generate a subroutine that outputs the current row of the B
3453   ** select as the next output row of the compound select.
3454   */
3455   if( op==TK_ALL || op==TK_UNION ){
3456     VdbeNoopComment((v, "Output routine for B"));
3457     addrOutB = generateOutputSubroutine(pParse,
3458                  p, &destB, pDest, regOutB,
3459                  regPrev, pKeyDup, labelEnd);
3460   }
3461   sqlite3KeyInfoUnref(pKeyDup);
3462 
3463   /* Generate a subroutine to run when the results from select A
3464   ** are exhausted and only data in select B remains.
3465   */
3466   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3467     addrEofA_noB = addrEofA = labelEnd;
3468   }else{
3469     VdbeNoopComment((v, "eof-A subroutine"));
3470     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3471     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3472                                      VdbeCoverage(v);
3473     sqlite3VdbeGoto(v, addrEofA);
3474     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3475   }
3476 
3477   /* Generate a subroutine to run when the results from select B
3478   ** are exhausted and only data in select A remains.
3479   */
3480   if( op==TK_INTERSECT ){
3481     addrEofB = addrEofA;
3482     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3483   }else{
3484     VdbeNoopComment((v, "eof-B subroutine"));
3485     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3486     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3487     sqlite3VdbeGoto(v, addrEofB);
3488   }
3489 
3490   /* Generate code to handle the case of A<B
3491   */
3492   VdbeNoopComment((v, "A-lt-B subroutine"));
3493   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3494   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3495   sqlite3VdbeGoto(v, labelCmpr);
3496 
3497   /* Generate code to handle the case of A==B
3498   */
3499   if( op==TK_ALL ){
3500     addrAeqB = addrAltB;
3501   }else if( op==TK_INTERSECT ){
3502     addrAeqB = addrAltB;
3503     addrAltB++;
3504   }else{
3505     VdbeNoopComment((v, "A-eq-B subroutine"));
3506     addrAeqB =
3507     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3508     sqlite3VdbeGoto(v, labelCmpr);
3509   }
3510 
3511   /* Generate code to handle the case of A>B
3512   */
3513   VdbeNoopComment((v, "A-gt-B subroutine"));
3514   addrAgtB = sqlite3VdbeCurrentAddr(v);
3515   if( op==TK_ALL || op==TK_UNION ){
3516     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3517   }
3518   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3519   sqlite3VdbeGoto(v, labelCmpr);
3520 
3521   /* This code runs once to initialize everything.
3522   */
3523   sqlite3VdbeJumpHere(v, addr1);
3524   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3525   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3526 
3527   /* Implement the main merge loop
3528   */
3529   sqlite3VdbeResolveLabel(v, labelCmpr);
3530   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3531   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3532                          (char*)pKeyMerge, P4_KEYINFO);
3533   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3534   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3535 
3536   /* Jump to the this point in order to terminate the query.
3537   */
3538   sqlite3VdbeResolveLabel(v, labelEnd);
3539 
3540   /* Reassembly the compound query so that it will be freed correctly
3541   ** by the calling function */
3542   if( p->pPrior ){
3543     sqlite3SelectDelete(db, p->pPrior);
3544   }
3545   p->pPrior = pPrior;
3546   pPrior->pNext = p;
3547 
3548   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3549   pPrior->pOrderBy = 0;
3550 
3551   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3552   **** subqueries ****/
3553   ExplainQueryPlanPop(pParse);
3554   return pParse->nErr!=0;
3555 }
3556 #endif
3557 
3558 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3559 
3560 /* An instance of the SubstContext object describes an substitution edit
3561 ** to be performed on a parse tree.
3562 **
3563 ** All references to columns in table iTable are to be replaced by corresponding
3564 ** expressions in pEList.
3565 */
3566 typedef struct SubstContext {
3567   Parse *pParse;            /* The parsing context */
3568   int iTable;               /* Replace references to this table */
3569   int iNewTable;            /* New table number */
3570   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3571   ExprList *pEList;         /* Replacement expressions */
3572 } SubstContext;
3573 
3574 /* Forward Declarations */
3575 static void substExprList(SubstContext*, ExprList*);
3576 static void substSelect(SubstContext*, Select*, int);
3577 
3578 /*
3579 ** Scan through the expression pExpr.  Replace every reference to
3580 ** a column in table number iTable with a copy of the iColumn-th
3581 ** entry in pEList.  (But leave references to the ROWID column
3582 ** unchanged.)
3583 **
3584 ** This routine is part of the flattening procedure.  A subquery
3585 ** whose result set is defined by pEList appears as entry in the
3586 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3587 ** FORM clause entry is iTable.  This routine makes the necessary
3588 ** changes to pExpr so that it refers directly to the source table
3589 ** of the subquery rather the result set of the subquery.
3590 */
3591 static Expr *substExpr(
3592   SubstContext *pSubst,  /* Description of the substitution */
3593   Expr *pExpr            /* Expr in which substitution occurs */
3594 ){
3595   if( pExpr==0 ) return 0;
3596   if( ExprHasProperty(pExpr, EP_FromJoin)
3597    && pExpr->iRightJoinTable==pSubst->iTable
3598   ){
3599     pExpr->iRightJoinTable = pSubst->iNewTable;
3600   }
3601   if( pExpr->op==TK_COLUMN
3602    && pExpr->iTable==pSubst->iTable
3603    && !ExprHasProperty(pExpr, EP_FixedCol)
3604   ){
3605 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3606     if( pExpr->iColumn<0 ){
3607       pExpr->op = TK_NULL;
3608     }else
3609 #endif
3610     {
3611       Expr *pNew;
3612       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3613       Expr ifNullRow;
3614       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3615       assert( pExpr->pRight==0 );
3616       if( sqlite3ExprIsVector(pCopy) ){
3617         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3618       }else{
3619         sqlite3 *db = pSubst->pParse->db;
3620         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3621           memset(&ifNullRow, 0, sizeof(ifNullRow));
3622           ifNullRow.op = TK_IF_NULL_ROW;
3623           ifNullRow.pLeft = pCopy;
3624           ifNullRow.iTable = pSubst->iNewTable;
3625           ifNullRow.flags = EP_IfNullRow;
3626           pCopy = &ifNullRow;
3627         }
3628         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3629         pNew = sqlite3ExprDup(db, pCopy, 0);
3630         if( db->mallocFailed ){
3631           sqlite3ExprDelete(db, pNew);
3632           return pExpr;
3633         }
3634         if( pSubst->isLeftJoin ){
3635           ExprSetProperty(pNew, EP_CanBeNull);
3636         }
3637         if( ExprHasProperty(pExpr,EP_FromJoin) ){
3638           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3639         }
3640         sqlite3ExprDelete(db, pExpr);
3641         pExpr = pNew;
3642 
3643         /* Ensure that the expression now has an implicit collation sequence,
3644         ** just as it did when it was a column of a view or sub-query. */
3645         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3646           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3647           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3648               (pColl ? pColl->zName : "BINARY")
3649           );
3650         }
3651         ExprClearProperty(pExpr, EP_Collate);
3652       }
3653     }
3654   }else{
3655     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3656       pExpr->iTable = pSubst->iNewTable;
3657     }
3658     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3659     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3660     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3661       substSelect(pSubst, pExpr->x.pSelect, 1);
3662     }else{
3663       substExprList(pSubst, pExpr->x.pList);
3664     }
3665 #ifndef SQLITE_OMIT_WINDOWFUNC
3666     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3667       Window *pWin = pExpr->y.pWin;
3668       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3669       substExprList(pSubst, pWin->pPartition);
3670       substExprList(pSubst, pWin->pOrderBy);
3671     }
3672 #endif
3673   }
3674   return pExpr;
3675 }
3676 static void substExprList(
3677   SubstContext *pSubst, /* Description of the substitution */
3678   ExprList *pList       /* List to scan and in which to make substitutes */
3679 ){
3680   int i;
3681   if( pList==0 ) return;
3682   for(i=0; i<pList->nExpr; i++){
3683     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3684   }
3685 }
3686 static void substSelect(
3687   SubstContext *pSubst, /* Description of the substitution */
3688   Select *p,            /* SELECT statement in which to make substitutions */
3689   int doPrior           /* Do substitutes on p->pPrior too */
3690 ){
3691   SrcList *pSrc;
3692   SrcItem *pItem;
3693   int i;
3694   if( !p ) return;
3695   do{
3696     substExprList(pSubst, p->pEList);
3697     substExprList(pSubst, p->pGroupBy);
3698     substExprList(pSubst, p->pOrderBy);
3699     p->pHaving = substExpr(pSubst, p->pHaving);
3700     p->pWhere = substExpr(pSubst, p->pWhere);
3701     pSrc = p->pSrc;
3702     assert( pSrc!=0 );
3703     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3704       substSelect(pSubst, pItem->pSelect, 1);
3705       if( pItem->fg.isTabFunc ){
3706         substExprList(pSubst, pItem->u1.pFuncArg);
3707       }
3708     }
3709   }while( doPrior && (p = p->pPrior)!=0 );
3710 }
3711 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3712 
3713 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3714 /*
3715 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3716 ** clause of that SELECT.
3717 **
3718 ** This routine scans the entire SELECT statement and recomputes the
3719 ** pSrcItem->colUsed mask.
3720 */
3721 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3722   SrcItem *pItem;
3723   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3724   pItem = pWalker->u.pSrcItem;
3725   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3726   if( pExpr->iColumn<0 ) return WRC_Continue;
3727   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3728   return WRC_Continue;
3729 }
3730 static void recomputeColumnsUsed(
3731   Select *pSelect,                 /* The complete SELECT statement */
3732   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3733 ){
3734   Walker w;
3735   if( NEVER(pSrcItem->pTab==0) ) return;
3736   memset(&w, 0, sizeof(w));
3737   w.xExprCallback = recomputeColumnsUsedExpr;
3738   w.xSelectCallback = sqlite3SelectWalkNoop;
3739   w.u.pSrcItem = pSrcItem;
3740   pSrcItem->colUsed = 0;
3741   sqlite3WalkSelect(&w, pSelect);
3742 }
3743 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3744 
3745 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3746 /*
3747 ** Assign new cursor numbers to each of the items in pSrc. For each
3748 ** new cursor number assigned, set an entry in the aCsrMap[] array
3749 ** to map the old cursor number to the new:
3750 **
3751 **     aCsrMap[iOld] = iNew;
3752 **
3753 ** The array is guaranteed by the caller to be large enough for all
3754 ** existing cursor numbers in pSrc.
3755 **
3756 ** If pSrc contains any sub-selects, call this routine recursively
3757 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3758 */
3759 static void srclistRenumberCursors(
3760   Parse *pParse,                  /* Parse context */
3761   int *aCsrMap,                   /* Array to store cursor mappings in */
3762   SrcList *pSrc,                  /* FROM clause to renumber */
3763   int iExcept                     /* FROM clause item to skip */
3764 ){
3765   int i;
3766   SrcItem *pItem;
3767   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3768     if( i!=iExcept ){
3769       Select *p;
3770       pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++;
3771       for(p=pItem->pSelect; p; p=p->pPrior){
3772         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3773       }
3774     }
3775   }
3776 }
3777 
3778 /*
3779 ** Expression walker callback used by renumberCursors() to update
3780 ** Expr objects to match newly assigned cursor numbers.
3781 */
3782 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3783   int *aCsrMap = pWalker->u.aiCol;
3784   int op = pExpr->op;
3785   if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){
3786     pExpr->iTable = aCsrMap[pExpr->iTable];
3787   }
3788   if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){
3789     pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable];
3790   }
3791   return WRC_Continue;
3792 }
3793 
3794 /*
3795 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3796 ** of the SELECT statement passed as the second argument, and to each
3797 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3798 ** Except, do not assign a new cursor number to the iExcept'th element in
3799 ** the FROM clause of (*p). Update all expressions and other references
3800 ** to refer to the new cursor numbers.
3801 **
3802 ** Argument aCsrMap is an array that may be used for temporary working
3803 ** space. Two guarantees are made by the caller:
3804 **
3805 **   * the array is larger than the largest cursor number used within the
3806 **     select statement passed as an argument, and
3807 **
3808 **   * the array entries for all cursor numbers that do *not* appear in
3809 **     FROM clauses of the select statement as described above are
3810 **     initialized to zero.
3811 */
3812 static void renumberCursors(
3813   Parse *pParse,                  /* Parse context */
3814   Select *p,                      /* Select to renumber cursors within */
3815   int iExcept,                    /* FROM clause item to skip */
3816   int *aCsrMap                    /* Working space */
3817 ){
3818   Walker w;
3819   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3820   memset(&w, 0, sizeof(w));
3821   w.u.aiCol = aCsrMap;
3822   w.xExprCallback = renumberCursorsCb;
3823   w.xSelectCallback = sqlite3SelectWalkNoop;
3824   sqlite3WalkSelect(&w, p);
3825 }
3826 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3827 
3828 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3829 /*
3830 ** This routine attempts to flatten subqueries as a performance optimization.
3831 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3832 **
3833 ** To understand the concept of flattening, consider the following
3834 ** query:
3835 **
3836 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3837 **
3838 ** The default way of implementing this query is to execute the
3839 ** subquery first and store the results in a temporary table, then
3840 ** run the outer query on that temporary table.  This requires two
3841 ** passes over the data.  Furthermore, because the temporary table
3842 ** has no indices, the WHERE clause on the outer query cannot be
3843 ** optimized.
3844 **
3845 ** This routine attempts to rewrite queries such as the above into
3846 ** a single flat select, like this:
3847 **
3848 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3849 **
3850 ** The code generated for this simplification gives the same result
3851 ** but only has to scan the data once.  And because indices might
3852 ** exist on the table t1, a complete scan of the data might be
3853 ** avoided.
3854 **
3855 ** Flattening is subject to the following constraints:
3856 **
3857 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3858 **        The subquery and the outer query cannot both be aggregates.
3859 **
3860 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3861 **        (2) If the subquery is an aggregate then
3862 **        (2a) the outer query must not be a join and
3863 **        (2b) the outer query must not use subqueries
3864 **             other than the one FROM-clause subquery that is a candidate
3865 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3866 **             from 2015-02-09.)
3867 **
3868 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3869 **        (3a) the subquery may not be a join and
3870 **        (3b) the FROM clause of the subquery may not contain a virtual
3871 **             table and
3872 **        (3c) the outer query may not be an aggregate.
3873 **        (3d) the outer query may not be DISTINCT.
3874 **
3875 **   (4)  The subquery can not be DISTINCT.
3876 **
3877 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3878 **        sub-queries that were excluded from this optimization. Restriction
3879 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3880 **
3881 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3882 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3883 **
3884 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3885 **        A FROM clause, consider adding a FROM clause with the special
3886 **        table sqlite_once that consists of a single row containing a
3887 **        single NULL.
3888 **
3889 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3890 **
3891 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3892 **
3893 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3894 **        accidently carried the comment forward until 2014-09-15.  Original
3895 **        constraint: "If the subquery is aggregate then the outer query
3896 **        may not use LIMIT."
3897 **
3898 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3899 **
3900 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3901 **        a separate restriction deriving from ticket #350.
3902 **
3903 **  (13)  The subquery and outer query may not both use LIMIT.
3904 **
3905 **  (14)  The subquery may not use OFFSET.
3906 **
3907 **  (15)  If the outer query is part of a compound select, then the
3908 **        subquery may not use LIMIT.
3909 **        (See ticket #2339 and ticket [02a8e81d44]).
3910 **
3911 **  (16)  If the outer query is aggregate, then the subquery may not
3912 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3913 **        until we introduced the group_concat() function.
3914 **
3915 **  (17)  If the subquery is a compound select, then
3916 **        (17a) all compound operators must be a UNION ALL, and
3917 **        (17b) no terms within the subquery compound may be aggregate
3918 **              or DISTINCT, and
3919 **        (17c) every term within the subquery compound must have a FROM clause
3920 **        (17d) the outer query may not be
3921 **              (17d1) aggregate, or
3922 **              (17d2) DISTINCT
3923 **        (17e) the subquery may not contain window functions, and
3924 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3925 **
3926 **        The parent and sub-query may contain WHERE clauses. Subject to
3927 **        rules (11), (13) and (14), they may also contain ORDER BY,
3928 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3929 **        operator other than UNION ALL because all the other compound
3930 **        operators have an implied DISTINCT which is disallowed by
3931 **        restriction (4).
3932 **
3933 **        Also, each component of the sub-query must return the same number
3934 **        of result columns. This is actually a requirement for any compound
3935 **        SELECT statement, but all the code here does is make sure that no
3936 **        such (illegal) sub-query is flattened. The caller will detect the
3937 **        syntax error and return a detailed message.
3938 **
3939 **  (18)  If the sub-query is a compound select, then all terms of the
3940 **        ORDER BY clause of the parent must be copies of a term returned
3941 **        by the parent query.
3942 **
3943 **  (19)  If the subquery uses LIMIT then the outer query may not
3944 **        have a WHERE clause.
3945 **
3946 **  (20)  If the sub-query is a compound select, then it must not use
3947 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3948 **        somewhat by saying that the terms of the ORDER BY clause must
3949 **        appear as unmodified result columns in the outer query.  But we
3950 **        have other optimizations in mind to deal with that case.
3951 **
3952 **  (21)  If the subquery uses LIMIT then the outer query may not be
3953 **        DISTINCT.  (See ticket [752e1646fc]).
3954 **
3955 **  (22)  The subquery may not be a recursive CTE.
3956 **
3957 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3958 **        a compound query.  This restriction is because transforming the
3959 **        parent to a compound query confuses the code that handles
3960 **        recursive queries in multiSelect().
3961 **
3962 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3963 **        The subquery may not be an aggregate that uses the built-in min() or
3964 **        or max() functions.  (Without this restriction, a query like:
3965 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3966 **        return the value X for which Y was maximal.)
3967 **
3968 **  (25)  If either the subquery or the parent query contains a window
3969 **        function in the select list or ORDER BY clause, flattening
3970 **        is not attempted.
3971 **
3972 **
3973 ** In this routine, the "p" parameter is a pointer to the outer query.
3974 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3975 ** uses aggregates.
3976 **
3977 ** If flattening is not attempted, this routine is a no-op and returns 0.
3978 ** If flattening is attempted this routine returns 1.
3979 **
3980 ** All of the expression analysis must occur on both the outer query and
3981 ** the subquery before this routine runs.
3982 */
3983 static int flattenSubquery(
3984   Parse *pParse,       /* Parsing context */
3985   Select *p,           /* The parent or outer SELECT statement */
3986   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3987   int isAgg            /* True if outer SELECT uses aggregate functions */
3988 ){
3989   const char *zSavedAuthContext = pParse->zAuthContext;
3990   Select *pParent;    /* Current UNION ALL term of the other query */
3991   Select *pSub;       /* The inner query or "subquery" */
3992   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3993   SrcList *pSrc;      /* The FROM clause of the outer query */
3994   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3995   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3996   int iNewParent = -1;/* Replacement table for iParent */
3997   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3998   int i;              /* Loop counter */
3999   Expr *pWhere;                    /* The WHERE clause */
4000   SrcItem *pSubitem;               /* The subquery */
4001   sqlite3 *db = pParse->db;
4002   Walker w;                        /* Walker to persist agginfo data */
4003   int *aCsrMap = 0;
4004 
4005   /* Check to see if flattening is permitted.  Return 0 if not.
4006   */
4007   assert( p!=0 );
4008   assert( p->pPrior==0 );
4009   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4010   pSrc = p->pSrc;
4011   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4012   pSubitem = &pSrc->a[iFrom];
4013   iParent = pSubitem->iCursor;
4014   pSub = pSubitem->pSelect;
4015   assert( pSub!=0 );
4016 
4017 #ifndef SQLITE_OMIT_WINDOWFUNC
4018   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4019 #endif
4020 
4021   pSubSrc = pSub->pSrc;
4022   assert( pSubSrc );
4023   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4024   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4025   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4026   ** became arbitrary expressions, we were forced to add restrictions (13)
4027   ** and (14). */
4028   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4029   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4030   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4031     return 0;                                            /* Restriction (15) */
4032   }
4033   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4034   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4035   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4036      return 0;         /* Restrictions (8)(9) */
4037   }
4038   if( p->pOrderBy && pSub->pOrderBy ){
4039      return 0;                                           /* Restriction (11) */
4040   }
4041   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4042   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4043   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4044      return 0;         /* Restriction (21) */
4045   }
4046   if( pSub->selFlags & (SF_Recursive) ){
4047     return 0; /* Restrictions (22) */
4048   }
4049 
4050   /*
4051   ** If the subquery is the right operand of a LEFT JOIN, then the
4052   ** subquery may not be a join itself (3a). Example of why this is not
4053   ** allowed:
4054   **
4055   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4056   **
4057   ** If we flatten the above, we would get
4058   **
4059   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4060   **
4061   ** which is not at all the same thing.
4062   **
4063   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4064   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4065   ** aggregates are processed - there is no mechanism to determine if
4066   ** the LEFT JOIN table should be all-NULL.
4067   **
4068   ** See also tickets #306, #350, and #3300.
4069   */
4070   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4071     isLeftJoin = 1;
4072     if( pSubSrc->nSrc>1                   /* (3a) */
4073      || isAgg                             /* (3b) */
4074      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4075      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4076     ){
4077       return 0;
4078     }
4079   }
4080 #ifdef SQLITE_EXTRA_IFNULLROW
4081   else if( iFrom>0 && !isAgg ){
4082     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4083     ** every reference to any result column from subquery in a join, even
4084     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4085     ** opcode. */
4086     isLeftJoin = -1;
4087   }
4088 #endif
4089 
4090   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4091   ** use only the UNION ALL operator. And none of the simple select queries
4092   ** that make up the compound SELECT are allowed to be aggregate or distinct
4093   ** queries.
4094   */
4095   if( pSub->pPrior ){
4096     if( pSub->pOrderBy ){
4097       return 0;  /* Restriction (20) */
4098     }
4099     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4100       return 0; /* (17d1), (17d2), or (17f) */
4101     }
4102     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4103       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4104       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4105       assert( pSub->pSrc!=0 );
4106       assert( (pSub->selFlags & SF_Recursive)==0 );
4107       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4108       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4109        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4110        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4111 #ifndef SQLITE_OMIT_WINDOWFUNC
4112        || pSub1->pWin                                          /* (17e) */
4113 #endif
4114       ){
4115         return 0;
4116       }
4117       testcase( pSub1->pSrc->nSrc>1 );
4118     }
4119 
4120     /* Restriction (18). */
4121     if( p->pOrderBy ){
4122       int ii;
4123       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4124         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4125       }
4126     }
4127 
4128     /* Restriction (23) */
4129     if( (p->selFlags & SF_Recursive) ) return 0;
4130 
4131     if( pSrc->nSrc>1 ){
4132       if( pParse->nSelect>500 ) return 0;
4133       aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int));
4134     }
4135   }
4136 
4137   /***** If we reach this point, flattening is permitted. *****/
4138   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4139                    pSub->selId, pSub, iFrom));
4140 
4141   /* Authorize the subquery */
4142   pParse->zAuthContext = pSubitem->zName;
4143   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4144   testcase( i==SQLITE_DENY );
4145   pParse->zAuthContext = zSavedAuthContext;
4146 
4147   /* Delete the transient structures associated with thesubquery */
4148   pSub1 = pSubitem->pSelect;
4149   sqlite3DbFree(db, pSubitem->zDatabase);
4150   sqlite3DbFree(db, pSubitem->zName);
4151   sqlite3DbFree(db, pSubitem->zAlias);
4152   pSubitem->zDatabase = 0;
4153   pSubitem->zName = 0;
4154   pSubitem->zAlias = 0;
4155   pSubitem->pSelect = 0;
4156   assert( pSubitem->pOn==0 );
4157 
4158   /* If the sub-query is a compound SELECT statement, then (by restrictions
4159   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4160   ** be of the form:
4161   **
4162   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4163   **
4164   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4165   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4166   ** OFFSET clauses and joins them to the left-hand-side of the original
4167   ** using UNION ALL operators. In this case N is the number of simple
4168   ** select statements in the compound sub-query.
4169   **
4170   ** Example:
4171   **
4172   **     SELECT a+1 FROM (
4173   **        SELECT x FROM tab
4174   **        UNION ALL
4175   **        SELECT y FROM tab
4176   **        UNION ALL
4177   **        SELECT abs(z*2) FROM tab2
4178   **     ) WHERE a!=5 ORDER BY 1
4179   **
4180   ** Transformed into:
4181   **
4182   **     SELECT x+1 FROM tab WHERE x+1!=5
4183   **     UNION ALL
4184   **     SELECT y+1 FROM tab WHERE y+1!=5
4185   **     UNION ALL
4186   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4187   **     ORDER BY 1
4188   **
4189   ** We call this the "compound-subquery flattening".
4190   */
4191   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4192     Select *pNew;
4193     ExprList *pOrderBy = p->pOrderBy;
4194     Expr *pLimit = p->pLimit;
4195     Select *pPrior = p->pPrior;
4196     Table *pItemTab = pSubitem->pTab;
4197     pSubitem->pTab = 0;
4198     p->pOrderBy = 0;
4199     p->pPrior = 0;
4200     p->pLimit = 0;
4201     pNew = sqlite3SelectDup(db, p, 0);
4202     p->pLimit = pLimit;
4203     p->pOrderBy = pOrderBy;
4204     p->op = TK_ALL;
4205     pSubitem->pTab = pItemTab;
4206     if( pNew==0 ){
4207       p->pPrior = pPrior;
4208     }else{
4209       pNew->selId = ++pParse->nSelect;
4210       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4211         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4212       }
4213       pNew->pPrior = pPrior;
4214       if( pPrior ) pPrior->pNext = pNew;
4215       pNew->pNext = p;
4216       p->pPrior = pNew;
4217       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4218                               " creates %u as peer\n",pNew->selId));
4219     }
4220     assert( pSubitem->pSelect==0 );
4221   }
4222   sqlite3DbFree(db, aCsrMap);
4223   if( db->mallocFailed ){
4224     pSubitem->pSelect = pSub1;
4225     return 1;
4226   }
4227 
4228   /* Defer deleting the Table object associated with the
4229   ** subquery until code generation is
4230   ** complete, since there may still exist Expr.pTab entries that
4231   ** refer to the subquery even after flattening.  Ticket #3346.
4232   **
4233   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4234   */
4235   if( ALWAYS(pSubitem->pTab!=0) ){
4236     Table *pTabToDel = pSubitem->pTab;
4237     if( pTabToDel->nTabRef==1 ){
4238       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4239       sqlite3ParserAddCleanup(pToplevel,
4240          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4241          pTabToDel);
4242       testcase( pToplevel->earlyCleanup );
4243     }else{
4244       pTabToDel->nTabRef--;
4245     }
4246     pSubitem->pTab = 0;
4247   }
4248 
4249   /* The following loop runs once for each term in a compound-subquery
4250   ** flattening (as described above).  If we are doing a different kind
4251   ** of flattening - a flattening other than a compound-subquery flattening -
4252   ** then this loop only runs once.
4253   **
4254   ** This loop moves all of the FROM elements of the subquery into the
4255   ** the FROM clause of the outer query.  Before doing this, remember
4256   ** the cursor number for the original outer query FROM element in
4257   ** iParent.  The iParent cursor will never be used.  Subsequent code
4258   ** will scan expressions looking for iParent references and replace
4259   ** those references with expressions that resolve to the subquery FROM
4260   ** elements we are now copying in.
4261   */
4262   pSub = pSub1;
4263   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4264     int nSubSrc;
4265     u8 jointype = 0;
4266     assert( pSub!=0 );
4267     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4268     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4269     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4270 
4271     if( pParent==p ){
4272       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4273     }
4274 
4275     /* The subquery uses a single slot of the FROM clause of the outer
4276     ** query.  If the subquery has more than one element in its FROM clause,
4277     ** then expand the outer query to make space for it to hold all elements
4278     ** of the subquery.
4279     **
4280     ** Example:
4281     **
4282     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4283     **
4284     ** The outer query has 3 slots in its FROM clause.  One slot of the
4285     ** outer query (the middle slot) is used by the subquery.  The next
4286     ** block of code will expand the outer query FROM clause to 4 slots.
4287     ** The middle slot is expanded to two slots in order to make space
4288     ** for the two elements in the FROM clause of the subquery.
4289     */
4290     if( nSubSrc>1 ){
4291       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4292       if( pSrc==0 ) break;
4293       pParent->pSrc = pSrc;
4294     }
4295 
4296     /* Transfer the FROM clause terms from the subquery into the
4297     ** outer query.
4298     */
4299     for(i=0; i<nSubSrc; i++){
4300       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4301       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4302       pSrc->a[i+iFrom] = pSubSrc->a[i];
4303       iNewParent = pSubSrc->a[i].iCursor;
4304       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4305     }
4306     pSrc->a[iFrom].fg.jointype = jointype;
4307 
4308     /* Now begin substituting subquery result set expressions for
4309     ** references to the iParent in the outer query.
4310     **
4311     ** Example:
4312     **
4313     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4314     **   \                     \_____________ subquery __________/          /
4315     **    \_____________________ outer query ______________________________/
4316     **
4317     ** We look at every expression in the outer query and every place we see
4318     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4319     */
4320     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4321       /* At this point, any non-zero iOrderByCol values indicate that the
4322       ** ORDER BY column expression is identical to the iOrderByCol'th
4323       ** expression returned by SELECT statement pSub. Since these values
4324       ** do not necessarily correspond to columns in SELECT statement pParent,
4325       ** zero them before transfering the ORDER BY clause.
4326       **
4327       ** Not doing this may cause an error if a subsequent call to this
4328       ** function attempts to flatten a compound sub-query into pParent
4329       ** (the only way this can happen is if the compound sub-query is
4330       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4331       ExprList *pOrderBy = pSub->pOrderBy;
4332       for(i=0; i<pOrderBy->nExpr; i++){
4333         pOrderBy->a[i].u.x.iOrderByCol = 0;
4334       }
4335       assert( pParent->pOrderBy==0 );
4336       pParent->pOrderBy = pOrderBy;
4337       pSub->pOrderBy = 0;
4338     }
4339     pWhere = pSub->pWhere;
4340     pSub->pWhere = 0;
4341     if( isLeftJoin>0 ){
4342       sqlite3SetJoinExpr(pWhere, iNewParent);
4343     }
4344     if( pWhere ){
4345       if( pParent->pWhere ){
4346         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4347       }else{
4348         pParent->pWhere = pWhere;
4349       }
4350     }
4351     if( db->mallocFailed==0 ){
4352       SubstContext x;
4353       x.pParse = pParse;
4354       x.iTable = iParent;
4355       x.iNewTable = iNewParent;
4356       x.isLeftJoin = isLeftJoin;
4357       x.pEList = pSub->pEList;
4358       substSelect(&x, pParent, 0);
4359     }
4360 
4361     /* The flattened query is a compound if either the inner or the
4362     ** outer query is a compound. */
4363     pParent->selFlags |= pSub->selFlags & SF_Compound;
4364     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4365 
4366     /*
4367     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4368     **
4369     ** One is tempted to try to add a and b to combine the limits.  But this
4370     ** does not work if either limit is negative.
4371     */
4372     if( pSub->pLimit ){
4373       pParent->pLimit = pSub->pLimit;
4374       pSub->pLimit = 0;
4375     }
4376 
4377     /* Recompute the SrcList_item.colUsed masks for the flattened
4378     ** tables. */
4379     for(i=0; i<nSubSrc; i++){
4380       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4381     }
4382   }
4383 
4384   /* Finially, delete what is left of the subquery and return
4385   ** success.
4386   */
4387   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4388   sqlite3WalkSelect(&w,pSub1);
4389   sqlite3SelectDelete(db, pSub1);
4390 
4391 #if SELECTTRACE_ENABLED
4392   if( sqlite3SelectTrace & 0x100 ){
4393     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4394     sqlite3TreeViewSelect(0, p, 0);
4395   }
4396 #endif
4397 
4398   return 1;
4399 }
4400 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4401 
4402 /*
4403 ** A structure to keep track of all of the column values that are fixed to
4404 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4405 */
4406 typedef struct WhereConst WhereConst;
4407 struct WhereConst {
4408   Parse *pParse;   /* Parsing context */
4409   int nConst;      /* Number for COLUMN=CONSTANT terms */
4410   int nChng;       /* Number of times a constant is propagated */
4411   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4412 };
4413 
4414 /*
4415 ** Add a new entry to the pConst object.  Except, do not add duplicate
4416 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4417 **
4418 ** The caller guarantees the pColumn is a column and pValue is a constant.
4419 ** This routine has to do some additional checks before completing the
4420 ** insert.
4421 */
4422 static void constInsert(
4423   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4424   Expr *pColumn,       /* The COLUMN part of the constraint */
4425   Expr *pValue,        /* The VALUE part of the constraint */
4426   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4427 ){
4428   int i;
4429   assert( pColumn->op==TK_COLUMN );
4430   assert( sqlite3ExprIsConstant(pValue) );
4431 
4432   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4433   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4434   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4435     return;
4436   }
4437 
4438   /* 2018-10-25 ticket [cf5ed20f]
4439   ** Make sure the same pColumn is not inserted more than once */
4440   for(i=0; i<pConst->nConst; i++){
4441     const Expr *pE2 = pConst->apExpr[i*2];
4442     assert( pE2->op==TK_COLUMN );
4443     if( pE2->iTable==pColumn->iTable
4444      && pE2->iColumn==pColumn->iColumn
4445     ){
4446       return;  /* Already present.  Return without doing anything. */
4447     }
4448   }
4449 
4450   pConst->nConst++;
4451   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4452                          pConst->nConst*2*sizeof(Expr*));
4453   if( pConst->apExpr==0 ){
4454     pConst->nConst = 0;
4455   }else{
4456     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4457     pConst->apExpr[pConst->nConst*2-1] = pValue;
4458   }
4459 }
4460 
4461 /*
4462 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4463 ** is a constant expression and where the term must be true because it
4464 ** is part of the AND-connected terms of the expression.  For each term
4465 ** found, add it to the pConst structure.
4466 */
4467 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4468   Expr *pRight, *pLeft;
4469   if( pExpr==0 ) return;
4470   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4471   if( pExpr->op==TK_AND ){
4472     findConstInWhere(pConst, pExpr->pRight);
4473     findConstInWhere(pConst, pExpr->pLeft);
4474     return;
4475   }
4476   if( pExpr->op!=TK_EQ ) return;
4477   pRight = pExpr->pRight;
4478   pLeft = pExpr->pLeft;
4479   assert( pRight!=0 );
4480   assert( pLeft!=0 );
4481   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4482     constInsert(pConst,pRight,pLeft,pExpr);
4483   }
4484   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4485     constInsert(pConst,pLeft,pRight,pExpr);
4486   }
4487 }
4488 
4489 /*
4490 ** This is a Walker expression callback.  pExpr is a candidate expression
4491 ** to be replaced by a value.  If pExpr is equivalent to one of the
4492 ** columns named in pWalker->u.pConst, then overwrite it with its
4493 ** corresponding value.
4494 */
4495 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4496   int i;
4497   WhereConst *pConst;
4498   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4499   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4500     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4501     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4502     return WRC_Continue;
4503   }
4504   pConst = pWalker->u.pConst;
4505   for(i=0; i<pConst->nConst; i++){
4506     Expr *pColumn = pConst->apExpr[i*2];
4507     if( pColumn==pExpr ) continue;
4508     if( pColumn->iTable!=pExpr->iTable ) continue;
4509     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4510     /* A match is found.  Add the EP_FixedCol property */
4511     pConst->nChng++;
4512     ExprClearProperty(pExpr, EP_Leaf);
4513     ExprSetProperty(pExpr, EP_FixedCol);
4514     assert( pExpr->pLeft==0 );
4515     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4516     break;
4517   }
4518   return WRC_Prune;
4519 }
4520 
4521 /*
4522 ** The WHERE-clause constant propagation optimization.
4523 **
4524 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4525 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4526 ** part of a ON clause from a LEFT JOIN, then throughout the query
4527 ** replace all other occurrences of COLUMN with CONSTANT.
4528 **
4529 ** For example, the query:
4530 **
4531 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4532 **
4533 ** Is transformed into
4534 **
4535 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4536 **
4537 ** Return true if any transformations where made and false if not.
4538 **
4539 ** Implementation note:  Constant propagation is tricky due to affinity
4540 ** and collating sequence interactions.  Consider this example:
4541 **
4542 **    CREATE TABLE t1(a INT,b TEXT);
4543 **    INSERT INTO t1 VALUES(123,'0123');
4544 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4545 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4546 **
4547 ** The two SELECT statements above should return different answers.  b=a
4548 ** is alway true because the comparison uses numeric affinity, but b=123
4549 ** is false because it uses text affinity and '0123' is not the same as '123'.
4550 ** To work around this, the expression tree is not actually changed from
4551 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4552 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4553 ** routines know to generate the constant "123" instead of looking up the
4554 ** column value.  Also, to avoid collation problems, this optimization is
4555 ** only attempted if the "a=123" term uses the default BINARY collation.
4556 */
4557 static int propagateConstants(
4558   Parse *pParse,   /* The parsing context */
4559   Select *p        /* The query in which to propagate constants */
4560 ){
4561   WhereConst x;
4562   Walker w;
4563   int nChng = 0;
4564   x.pParse = pParse;
4565   do{
4566     x.nConst = 0;
4567     x.nChng = 0;
4568     x.apExpr = 0;
4569     findConstInWhere(&x, p->pWhere);
4570     if( x.nConst ){
4571       memset(&w, 0, sizeof(w));
4572       w.pParse = pParse;
4573       w.xExprCallback = propagateConstantExprRewrite;
4574       w.xSelectCallback = sqlite3SelectWalkNoop;
4575       w.xSelectCallback2 = 0;
4576       w.walkerDepth = 0;
4577       w.u.pConst = &x;
4578       sqlite3WalkExpr(&w, p->pWhere);
4579       sqlite3DbFree(x.pParse->db, x.apExpr);
4580       nChng += x.nChng;
4581     }
4582   }while( x.nChng );
4583   return nChng;
4584 }
4585 
4586 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4587 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4588 /*
4589 ** This function is called to determine whether or not it is safe to
4590 ** push WHERE clause expression pExpr down to FROM clause sub-query
4591 ** pSubq, which contains at least one window function. Return 1
4592 ** if it is safe and the expression should be pushed down, or 0
4593 ** otherwise.
4594 **
4595 ** It is only safe to push the expression down if it consists only
4596 ** of constants and copies of expressions that appear in the PARTITION
4597 ** BY clause of all window function used by the sub-query. It is safe
4598 ** to filter out entire partitions, but not rows within partitions, as
4599 ** this may change the results of the window functions.
4600 **
4601 ** At the time this function is called it is guaranteed that
4602 **
4603 **   * the sub-query uses only one distinct window frame, and
4604 **   * that the window frame has a PARTITION BY clase.
4605 */
4606 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4607   assert( pSubq->pWin->pPartition );
4608   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4609   assert( pSubq->pPrior==0 );
4610   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4611 }
4612 # endif /* SQLITE_OMIT_WINDOWFUNC */
4613 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4614 
4615 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4616 /*
4617 ** Make copies of relevant WHERE clause terms of the outer query into
4618 ** the WHERE clause of subquery.  Example:
4619 **
4620 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4621 **
4622 ** Transformed into:
4623 **
4624 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4625 **     WHERE x=5 AND y=10;
4626 **
4627 ** The hope is that the terms added to the inner query will make it more
4628 ** efficient.
4629 **
4630 ** Do not attempt this optimization if:
4631 **
4632 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4633 **           disallow this optimization for aggregate subqueries, but now
4634 **           it is allowed by putting the extra terms on the HAVING clause.
4635 **           The added HAVING clause is pointless if the subquery lacks
4636 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4637 **           so there does not appear to be any reason to add extra logic
4638 **           to suppress it. **)
4639 **
4640 **   (2) The inner query is the recursive part of a common table expression.
4641 **
4642 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4643 **       clause would change the meaning of the LIMIT).
4644 **
4645 **   (4) The inner query is the right operand of a LEFT JOIN and the
4646 **       expression to be pushed down does not come from the ON clause
4647 **       on that LEFT JOIN.
4648 **
4649 **   (5) The WHERE clause expression originates in the ON or USING clause
4650 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4651 **       left join.  An example:
4652 **
4653 **           SELECT *
4654 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4655 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4656 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4657 **
4658 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4659 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4660 **       then the (1,1,NULL) row would be suppressed.
4661 **
4662 **   (6) Window functions make things tricky as changes to the WHERE clause
4663 **       of the inner query could change the window over which window
4664 **       functions are calculated. Therefore, do not attempt the optimization
4665 **       if:
4666 **
4667 **     (6a) The inner query uses multiple incompatible window partitions.
4668 **
4669 **     (6b) The inner query is a compound and uses window-functions.
4670 **
4671 **     (6c) The WHERE clause does not consist entirely of constants and
4672 **          copies of expressions found in the PARTITION BY clause of
4673 **          all window-functions used by the sub-query. It is safe to
4674 **          filter out entire partitions, as this does not change the
4675 **          window over which any window-function is calculated.
4676 **
4677 **   (7) The inner query is a Common Table Expression (CTE) that should
4678 **       be materialized.  (This restriction is implemented in the calling
4679 **       routine.)
4680 **
4681 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4682 ** terms are duplicated into the subquery.
4683 */
4684 static int pushDownWhereTerms(
4685   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4686   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4687   Expr *pWhere,         /* The WHERE clause of the outer query */
4688   int iCursor,          /* Cursor number of the subquery */
4689   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4690 ){
4691   Expr *pNew;
4692   int nChng = 0;
4693   if( pWhere==0 ) return 0;
4694   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4695 
4696 #ifndef SQLITE_OMIT_WINDOWFUNC
4697   if( pSubq->pPrior ){
4698     Select *pSel;
4699     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4700       if( pSel->pWin ) return 0;    /* restriction (6b) */
4701     }
4702   }else{
4703     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4704   }
4705 #endif
4706 
4707 #ifdef SQLITE_DEBUG
4708   /* Only the first term of a compound can have a WITH clause.  But make
4709   ** sure no other terms are marked SF_Recursive in case something changes
4710   ** in the future.
4711   */
4712   {
4713     Select *pX;
4714     for(pX=pSubq; pX; pX=pX->pPrior){
4715       assert( (pX->selFlags & (SF_Recursive))==0 );
4716     }
4717   }
4718 #endif
4719 
4720   if( pSubq->pLimit!=0 ){
4721     return 0; /* restriction (3) */
4722   }
4723   while( pWhere->op==TK_AND ){
4724     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4725                                 iCursor, isLeftJoin);
4726     pWhere = pWhere->pLeft;
4727   }
4728   if( isLeftJoin
4729    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4730          || pWhere->iRightJoinTable!=iCursor)
4731   ){
4732     return 0; /* restriction (4) */
4733   }
4734   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4735     return 0; /* restriction (5) */
4736   }
4737   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4738     nChng++;
4739     pSubq->selFlags |= SF_PushDown;
4740     while( pSubq ){
4741       SubstContext x;
4742       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4743       unsetJoinExpr(pNew, -1);
4744       x.pParse = pParse;
4745       x.iTable = iCursor;
4746       x.iNewTable = iCursor;
4747       x.isLeftJoin = 0;
4748       x.pEList = pSubq->pEList;
4749       pNew = substExpr(&x, pNew);
4750 #ifndef SQLITE_OMIT_WINDOWFUNC
4751       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4752         /* Restriction 6c has prevented push-down in this case */
4753         sqlite3ExprDelete(pParse->db, pNew);
4754         nChng--;
4755         break;
4756       }
4757 #endif
4758       if( pSubq->selFlags & SF_Aggregate ){
4759         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4760       }else{
4761         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4762       }
4763       pSubq = pSubq->pPrior;
4764     }
4765   }
4766   return nChng;
4767 }
4768 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4769 
4770 /*
4771 ** The pFunc is the only aggregate function in the query.  Check to see
4772 ** if the query is a candidate for the min/max optimization.
4773 **
4774 ** If the query is a candidate for the min/max optimization, then set
4775 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4776 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4777 ** whether pFunc is a min() or max() function.
4778 **
4779 ** If the query is not a candidate for the min/max optimization, return
4780 ** WHERE_ORDERBY_NORMAL (which must be zero).
4781 **
4782 ** This routine must be called after aggregate functions have been
4783 ** located but before their arguments have been subjected to aggregate
4784 ** analysis.
4785 */
4786 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4787   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4788   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4789   const char *zFunc;                    /* Name of aggregate function pFunc */
4790   ExprList *pOrderBy;
4791   u8 sortFlags = 0;
4792 
4793   assert( *ppMinMax==0 );
4794   assert( pFunc->op==TK_AGG_FUNCTION );
4795   assert( !IsWindowFunc(pFunc) );
4796   if( pEList==0
4797    || pEList->nExpr!=1
4798    || ExprHasProperty(pFunc, EP_WinFunc)
4799    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4800   ){
4801     return eRet;
4802   }
4803   zFunc = pFunc->u.zToken;
4804   if( sqlite3StrICmp(zFunc, "min")==0 ){
4805     eRet = WHERE_ORDERBY_MIN;
4806     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4807       sortFlags = KEYINFO_ORDER_BIGNULL;
4808     }
4809   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4810     eRet = WHERE_ORDERBY_MAX;
4811     sortFlags = KEYINFO_ORDER_DESC;
4812   }else{
4813     return eRet;
4814   }
4815   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4816   assert( pOrderBy!=0 || db->mallocFailed );
4817   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4818   return eRet;
4819 }
4820 
4821 /*
4822 ** The select statement passed as the first argument is an aggregate query.
4823 ** The second argument is the associated aggregate-info object. This
4824 ** function tests if the SELECT is of the form:
4825 **
4826 **   SELECT count(*) FROM <tbl>
4827 **
4828 ** where table is a database table, not a sub-select or view. If the query
4829 ** does match this pattern, then a pointer to the Table object representing
4830 ** <tbl> is returned. Otherwise, 0 is returned.
4831 */
4832 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4833   Table *pTab;
4834   Expr *pExpr;
4835 
4836   assert( !p->pGroupBy );
4837 
4838   if( p->pWhere || p->pEList->nExpr!=1
4839    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4840   ){
4841     return 0;
4842   }
4843   pTab = p->pSrc->a[0].pTab;
4844   pExpr = p->pEList->a[0].pExpr;
4845   assert( pTab && !pTab->pSelect && pExpr );
4846 
4847   if( IsVirtual(pTab) ) return 0;
4848   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4849   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4850   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4851   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4852 
4853   return pTab;
4854 }
4855 
4856 /*
4857 ** If the source-list item passed as an argument was augmented with an
4858 ** INDEXED BY clause, then try to locate the specified index. If there
4859 ** was such a clause and the named index cannot be found, return
4860 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4861 ** pFrom->pIndex and return SQLITE_OK.
4862 */
4863 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4864   Table *pTab = pFrom->pTab;
4865   char *zIndexedBy = pFrom->u1.zIndexedBy;
4866   Index *pIdx;
4867   assert( pTab!=0 );
4868   assert( pFrom->fg.isIndexedBy!=0 );
4869 
4870   for(pIdx=pTab->pIndex;
4871       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4872       pIdx=pIdx->pNext
4873   );
4874   if( !pIdx ){
4875     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4876     pParse->checkSchema = 1;
4877     return SQLITE_ERROR;
4878   }
4879   pFrom->u2.pIBIndex = pIdx;
4880   return SQLITE_OK;
4881 }
4882 
4883 /*
4884 ** Detect compound SELECT statements that use an ORDER BY clause with
4885 ** an alternative collating sequence.
4886 **
4887 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4888 **
4889 ** These are rewritten as a subquery:
4890 **
4891 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4892 **     ORDER BY ... COLLATE ...
4893 **
4894 ** This transformation is necessary because the multiSelectOrderBy() routine
4895 ** above that generates the code for a compound SELECT with an ORDER BY clause
4896 ** uses a merge algorithm that requires the same collating sequence on the
4897 ** result columns as on the ORDER BY clause.  See ticket
4898 ** http://www.sqlite.org/src/info/6709574d2a
4899 **
4900 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4901 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4902 ** there are COLLATE terms in the ORDER BY.
4903 */
4904 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4905   int i;
4906   Select *pNew;
4907   Select *pX;
4908   sqlite3 *db;
4909   struct ExprList_item *a;
4910   SrcList *pNewSrc;
4911   Parse *pParse;
4912   Token dummy;
4913 
4914   if( p->pPrior==0 ) return WRC_Continue;
4915   if( p->pOrderBy==0 ) return WRC_Continue;
4916   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4917   if( pX==0 ) return WRC_Continue;
4918   a = p->pOrderBy->a;
4919 #ifndef SQLITE_OMIT_WINDOWFUNC
4920   /* If iOrderByCol is already non-zero, then it has already been matched
4921   ** to a result column of the SELECT statement. This occurs when the
4922   ** SELECT is rewritten for window-functions processing and then passed
4923   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4924   ** by this function is not required in this case. */
4925   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4926 #endif
4927   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4928     if( a[i].pExpr->flags & EP_Collate ) break;
4929   }
4930   if( i<0 ) return WRC_Continue;
4931 
4932   /* If we reach this point, that means the transformation is required. */
4933 
4934   pParse = pWalker->pParse;
4935   db = pParse->db;
4936   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4937   if( pNew==0 ) return WRC_Abort;
4938   memset(&dummy, 0, sizeof(dummy));
4939   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4940   if( pNewSrc==0 ) return WRC_Abort;
4941   *pNew = *p;
4942   p->pSrc = pNewSrc;
4943   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4944   p->op = TK_SELECT;
4945   p->pWhere = 0;
4946   pNew->pGroupBy = 0;
4947   pNew->pHaving = 0;
4948   pNew->pOrderBy = 0;
4949   p->pPrior = 0;
4950   p->pNext = 0;
4951   p->pWith = 0;
4952 #ifndef SQLITE_OMIT_WINDOWFUNC
4953   p->pWinDefn = 0;
4954 #endif
4955   p->selFlags &= ~SF_Compound;
4956   assert( (p->selFlags & SF_Converted)==0 );
4957   p->selFlags |= SF_Converted;
4958   assert( pNew->pPrior!=0 );
4959   pNew->pPrior->pNext = pNew;
4960   pNew->pLimit = 0;
4961   return WRC_Continue;
4962 }
4963 
4964 /*
4965 ** Check to see if the FROM clause term pFrom has table-valued function
4966 ** arguments.  If it does, leave an error message in pParse and return
4967 ** non-zero, since pFrom is not allowed to be a table-valued function.
4968 */
4969 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
4970   if( pFrom->fg.isTabFunc ){
4971     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4972     return 1;
4973   }
4974   return 0;
4975 }
4976 
4977 #ifndef SQLITE_OMIT_CTE
4978 /*
4979 ** Argument pWith (which may be NULL) points to a linked list of nested
4980 ** WITH contexts, from inner to outermost. If the table identified by
4981 ** FROM clause element pItem is really a common-table-expression (CTE)
4982 ** then return a pointer to the CTE definition for that table. Otherwise
4983 ** return NULL.
4984 **
4985 ** If a non-NULL value is returned, set *ppContext to point to the With
4986 ** object that the returned CTE belongs to.
4987 */
4988 static struct Cte *searchWith(
4989   With *pWith,                    /* Current innermost WITH clause */
4990   SrcItem *pItem,                 /* FROM clause element to resolve */
4991   With **ppContext                /* OUT: WITH clause return value belongs to */
4992 ){
4993   const char *zName = pItem->zName;
4994   With *p;
4995   assert( pItem->zDatabase==0 );
4996   assert( zName!=0 );
4997   for(p=pWith; p; p=p->pOuter){
4998     int i;
4999     for(i=0; i<p->nCte; i++){
5000       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5001         *ppContext = p;
5002         return &p->a[i];
5003       }
5004     }
5005   }
5006   return 0;
5007 }
5008 
5009 /* The code generator maintains a stack of active WITH clauses
5010 ** with the inner-most WITH clause being at the top of the stack.
5011 **
5012 ** This routine pushes the WITH clause passed as the second argument
5013 ** onto the top of the stack. If argument bFree is true, then this
5014 ** WITH clause will never be popped from the stack. In this case it
5015 ** should be freed along with the Parse object. In other cases, when
5016 ** bFree==0, the With object will be freed along with the SELECT
5017 ** statement with which it is associated.
5018 */
5019 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5020   if( pWith ){
5021     assert( pParse->pWith!=pWith );
5022     pWith->pOuter = pParse->pWith;
5023     pParse->pWith = pWith;
5024     if( bFree ){
5025       sqlite3ParserAddCleanup(pParse,
5026          (void(*)(sqlite3*,void*))sqlite3WithDelete,
5027          pWith);
5028       testcase( pParse->earlyCleanup );
5029     }
5030   }
5031 }
5032 
5033 /*
5034 ** This function checks if argument pFrom refers to a CTE declared by
5035 ** a WITH clause on the stack currently maintained by the parser (on the
5036 ** pParse->pWith linked list).  And if currently processing a CTE
5037 ** CTE expression, through routine checks to see if the reference is
5038 ** a recursive reference to the CTE.
5039 **
5040 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5041 ** and other fields are populated accordingly.
5042 **
5043 ** Return 0 if no match is found.
5044 ** Return 1 if a match is found.
5045 ** Return 2 if an error condition is detected.
5046 */
5047 static int resolveFromTermToCte(
5048   Parse *pParse,                  /* The parsing context */
5049   Walker *pWalker,                /* Current tree walker */
5050   SrcItem *pFrom                  /* The FROM clause term to check */
5051 ){
5052   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5053   With *pWith;             /* The matching WITH */
5054 
5055   assert( pFrom->pTab==0 );
5056   if( pParse->pWith==0 ){
5057     /* There are no WITH clauses in the stack.  No match is possible */
5058     return 0;
5059   }
5060   if( pFrom->zDatabase!=0 ){
5061     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5062     ** it cannot possibly be a CTE reference. */
5063     return 0;
5064   }
5065   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5066   if( pCte ){
5067     sqlite3 *db = pParse->db;
5068     Table *pTab;
5069     ExprList *pEList;
5070     Select *pSel;
5071     Select *pLeft;                /* Left-most SELECT statement */
5072     Select *pRecTerm;             /* Left-most recursive term */
5073     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5074     With *pSavedWith;             /* Initial value of pParse->pWith */
5075     int iRecTab = -1;             /* Cursor for recursive table */
5076     CteUse *pCteUse;
5077 
5078     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5079     ** recursive reference to CTE pCte. Leave an error in pParse and return
5080     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5081     ** In this case, proceed.  */
5082     if( pCte->zCteErr ){
5083       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5084       return 2;
5085     }
5086     if( cannotBeFunction(pParse, pFrom) ) return 2;
5087 
5088     assert( pFrom->pTab==0 );
5089     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5090     if( pTab==0 ) return 2;
5091     pCteUse = pCte->pUse;
5092     if( pCteUse==0 ){
5093       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5094       if( pCteUse==0
5095        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5096       ){
5097         sqlite3DbFree(db, pTab);
5098         return 2;
5099       }
5100       pCteUse->eM10d = pCte->eM10d;
5101     }
5102     pFrom->pTab = pTab;
5103     pTab->nTabRef = 1;
5104     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5105     pTab->iPKey = -1;
5106     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5107     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5108     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5109     if( db->mallocFailed ) return 2;
5110     assert( pFrom->pSelect );
5111     pFrom->fg.isCte = 1;
5112     pFrom->u2.pCteUse = pCteUse;
5113     pCteUse->nUse++;
5114     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5115       pCteUse->eM10d = M10d_Yes;
5116     }
5117 
5118     /* Check if this is a recursive CTE. */
5119     pRecTerm = pSel = pFrom->pSelect;
5120     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5121     while( bMayRecursive && pRecTerm->op==pSel->op ){
5122       int i;
5123       SrcList *pSrc = pRecTerm->pSrc;
5124       assert( pRecTerm->pPrior!=0 );
5125       for(i=0; i<pSrc->nSrc; i++){
5126         SrcItem *pItem = &pSrc->a[i];
5127         if( pItem->zDatabase==0
5128          && pItem->zName!=0
5129          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5130         ){
5131           pItem->pTab = pTab;
5132           pTab->nTabRef++;
5133           pItem->fg.isRecursive = 1;
5134           if( pRecTerm->selFlags & SF_Recursive ){
5135             sqlite3ErrorMsg(pParse,
5136                "multiple references to recursive table: %s", pCte->zName
5137             );
5138             return 2;
5139           }
5140           pRecTerm->selFlags |= SF_Recursive;
5141           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5142           pItem->iCursor = iRecTab;
5143         }
5144       }
5145       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5146       pRecTerm = pRecTerm->pPrior;
5147     }
5148 
5149     pCte->zCteErr = "circular reference: %s";
5150     pSavedWith = pParse->pWith;
5151     pParse->pWith = pWith;
5152     if( pSel->selFlags & SF_Recursive ){
5153       int rc;
5154       assert( pRecTerm!=0 );
5155       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5156       assert( pRecTerm->pNext!=0 );
5157       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5158       assert( pRecTerm->pWith==0 );
5159       pRecTerm->pWith = pSel->pWith;
5160       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5161       pRecTerm->pWith = 0;
5162       if( rc ){
5163         pParse->pWith = pSavedWith;
5164         return 2;
5165       }
5166     }else{
5167       if( sqlite3WalkSelect(pWalker, pSel) ){
5168         pParse->pWith = pSavedWith;
5169         return 2;
5170       }
5171     }
5172     pParse->pWith = pWith;
5173 
5174     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5175     pEList = pLeft->pEList;
5176     if( pCte->pCols ){
5177       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5178         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5179             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5180         );
5181         pParse->pWith = pSavedWith;
5182         return 2;
5183       }
5184       pEList = pCte->pCols;
5185     }
5186 
5187     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5188     if( bMayRecursive ){
5189       if( pSel->selFlags & SF_Recursive ){
5190         pCte->zCteErr = "multiple recursive references: %s";
5191       }else{
5192         pCte->zCteErr = "recursive reference in a subquery: %s";
5193       }
5194       sqlite3WalkSelect(pWalker, pSel);
5195     }
5196     pCte->zCteErr = 0;
5197     pParse->pWith = pSavedWith;
5198     return 1;  /* Success */
5199   }
5200   return 0;  /* No match */
5201 }
5202 #endif
5203 
5204 #ifndef SQLITE_OMIT_CTE
5205 /*
5206 ** If the SELECT passed as the second argument has an associated WITH
5207 ** clause, pop it from the stack stored as part of the Parse object.
5208 **
5209 ** This function is used as the xSelectCallback2() callback by
5210 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5211 ** names and other FROM clause elements.
5212 */
5213 static void selectPopWith(Walker *pWalker, Select *p){
5214   Parse *pParse = pWalker->pParse;
5215   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5216     With *pWith = findRightmost(p)->pWith;
5217     if( pWith!=0 ){
5218       assert( pParse->pWith==pWith || pParse->nErr );
5219       pParse->pWith = pWith->pOuter;
5220     }
5221   }
5222 }
5223 #else
5224 #define selectPopWith 0
5225 #endif
5226 
5227 /*
5228 ** The SrcList_item structure passed as the second argument represents a
5229 ** sub-query in the FROM clause of a SELECT statement. This function
5230 ** allocates and populates the SrcList_item.pTab object. If successful,
5231 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5232 ** SQLITE_NOMEM.
5233 */
5234 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5235   Select *pSel = pFrom->pSelect;
5236   Table *pTab;
5237 
5238   assert( pSel );
5239   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5240   if( pTab==0 ) return SQLITE_NOMEM;
5241   pTab->nTabRef = 1;
5242   if( pFrom->zAlias ){
5243     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5244   }else{
5245     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5246   }
5247   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5248   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5249   pTab->iPKey = -1;
5250   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5251 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5252   /* The usual case - do not allow ROWID on a subquery */
5253   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5254 #else
5255   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5256 #endif
5257 
5258 
5259   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5260 }
5261 
5262 /*
5263 ** This routine is a Walker callback for "expanding" a SELECT statement.
5264 ** "Expanding" means to do the following:
5265 **
5266 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5267 **         element of the FROM clause.
5268 **
5269 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5270 **         defines FROM clause.  When views appear in the FROM clause,
5271 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5272 **         that implements the view.  A copy is made of the view's SELECT
5273 **         statement so that we can freely modify or delete that statement
5274 **         without worrying about messing up the persistent representation
5275 **         of the view.
5276 **
5277 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5278 **         on joins and the ON and USING clause of joins.
5279 **
5280 **    (4)  Scan the list of columns in the result set (pEList) looking
5281 **         for instances of the "*" operator or the TABLE.* operator.
5282 **         If found, expand each "*" to be every column in every table
5283 **         and TABLE.* to be every column in TABLE.
5284 **
5285 */
5286 static int selectExpander(Walker *pWalker, Select *p){
5287   Parse *pParse = pWalker->pParse;
5288   int i, j, k, rc;
5289   SrcList *pTabList;
5290   ExprList *pEList;
5291   SrcItem *pFrom;
5292   sqlite3 *db = pParse->db;
5293   Expr *pE, *pRight, *pExpr;
5294   u16 selFlags = p->selFlags;
5295   u32 elistFlags = 0;
5296 
5297   p->selFlags |= SF_Expanded;
5298   if( db->mallocFailed  ){
5299     return WRC_Abort;
5300   }
5301   assert( p->pSrc!=0 );
5302   if( (selFlags & SF_Expanded)!=0 ){
5303     return WRC_Prune;
5304   }
5305   if( pWalker->eCode ){
5306     /* Renumber selId because it has been copied from a view */
5307     p->selId = ++pParse->nSelect;
5308   }
5309   pTabList = p->pSrc;
5310   pEList = p->pEList;
5311   sqlite3WithPush(pParse, p->pWith, 0);
5312 
5313   /* Make sure cursor numbers have been assigned to all entries in
5314   ** the FROM clause of the SELECT statement.
5315   */
5316   sqlite3SrcListAssignCursors(pParse, pTabList);
5317 
5318   /* Look up every table named in the FROM clause of the select.  If
5319   ** an entry of the FROM clause is a subquery instead of a table or view,
5320   ** then create a transient table structure to describe the subquery.
5321   */
5322   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5323     Table *pTab;
5324     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5325     if( pFrom->pTab ) continue;
5326     assert( pFrom->fg.isRecursive==0 );
5327     if( pFrom->zName==0 ){
5328 #ifndef SQLITE_OMIT_SUBQUERY
5329       Select *pSel = pFrom->pSelect;
5330       /* A sub-query in the FROM clause of a SELECT */
5331       assert( pSel!=0 );
5332       assert( pFrom->pTab==0 );
5333       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5334       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5335 #endif
5336 #ifndef SQLITE_OMIT_CTE
5337     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5338       if( rc>1 ) return WRC_Abort;
5339       pTab = pFrom->pTab;
5340       assert( pTab!=0 );
5341 #endif
5342     }else{
5343       /* An ordinary table or view name in the FROM clause */
5344       assert( pFrom->pTab==0 );
5345       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5346       if( pTab==0 ) return WRC_Abort;
5347       if( pTab->nTabRef>=0xffff ){
5348         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5349            pTab->zName);
5350         pFrom->pTab = 0;
5351         return WRC_Abort;
5352       }
5353       pTab->nTabRef++;
5354       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5355         return WRC_Abort;
5356       }
5357 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5358       if( IsVirtual(pTab) || pTab->pSelect ){
5359         i16 nCol;
5360         u8 eCodeOrig = pWalker->eCode;
5361         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5362         assert( pFrom->pSelect==0 );
5363         if( pTab->pSelect
5364          && (db->flags & SQLITE_EnableView)==0
5365          && pTab->pSchema!=db->aDb[1].pSchema
5366         ){
5367           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5368             pTab->zName);
5369         }
5370 #ifndef SQLITE_OMIT_VIRTUALTABLE
5371         if( IsVirtual(pTab)
5372          && pFrom->fg.fromDDL
5373          && ALWAYS(pTab->pVTable!=0)
5374          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5375         ){
5376           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5377                                   pTab->zName);
5378         }
5379 #endif
5380         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5381         nCol = pTab->nCol;
5382         pTab->nCol = -1;
5383         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5384         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5385         pWalker->eCode = eCodeOrig;
5386         pTab->nCol = nCol;
5387       }
5388 #endif
5389     }
5390 
5391     /* Locate the index named by the INDEXED BY clause, if any. */
5392     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5393       return WRC_Abort;
5394     }
5395   }
5396 
5397   /* Process NATURAL keywords, and ON and USING clauses of joins.
5398   */
5399   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5400     return WRC_Abort;
5401   }
5402 
5403   /* For every "*" that occurs in the column list, insert the names of
5404   ** all columns in all tables.  And for every TABLE.* insert the names
5405   ** of all columns in TABLE.  The parser inserted a special expression
5406   ** with the TK_ASTERISK operator for each "*" that it found in the column
5407   ** list.  The following code just has to locate the TK_ASTERISK
5408   ** expressions and expand each one to the list of all columns in
5409   ** all tables.
5410   **
5411   ** The first loop just checks to see if there are any "*" operators
5412   ** that need expanding.
5413   */
5414   for(k=0; k<pEList->nExpr; k++){
5415     pE = pEList->a[k].pExpr;
5416     if( pE->op==TK_ASTERISK ) break;
5417     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5418     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5419     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5420     elistFlags |= pE->flags;
5421   }
5422   if( k<pEList->nExpr ){
5423     /*
5424     ** If we get here it means the result set contains one or more "*"
5425     ** operators that need to be expanded.  Loop through each expression
5426     ** in the result set and expand them one by one.
5427     */
5428     struct ExprList_item *a = pEList->a;
5429     ExprList *pNew = 0;
5430     int flags = pParse->db->flags;
5431     int longNames = (flags & SQLITE_FullColNames)!=0
5432                       && (flags & SQLITE_ShortColNames)==0;
5433 
5434     for(k=0; k<pEList->nExpr; k++){
5435       pE = a[k].pExpr;
5436       elistFlags |= pE->flags;
5437       pRight = pE->pRight;
5438       assert( pE->op!=TK_DOT || pRight!=0 );
5439       if( pE->op!=TK_ASTERISK
5440        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5441       ){
5442         /* This particular expression does not need to be expanded.
5443         */
5444         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5445         if( pNew ){
5446           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5447           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5448           a[k].zEName = 0;
5449         }
5450         a[k].pExpr = 0;
5451       }else{
5452         /* This expression is a "*" or a "TABLE.*" and needs to be
5453         ** expanded. */
5454         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5455         char *zTName = 0;       /* text of name of TABLE */
5456         if( pE->op==TK_DOT ){
5457           assert( pE->pLeft!=0 );
5458           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5459           zTName = pE->pLeft->u.zToken;
5460         }
5461         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5462           Table *pTab = pFrom->pTab;
5463           Select *pSub = pFrom->pSelect;
5464           char *zTabName = pFrom->zAlias;
5465           const char *zSchemaName = 0;
5466           int iDb;
5467           if( zTabName==0 ){
5468             zTabName = pTab->zName;
5469           }
5470           if( db->mallocFailed ) break;
5471           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5472             pSub = 0;
5473             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5474               continue;
5475             }
5476             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5477             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5478           }
5479           for(j=0; j<pTab->nCol; j++){
5480             char *zName = pTab->aCol[j].zName;
5481             char *zColname;  /* The computed column name */
5482             char *zToFree;   /* Malloced string that needs to be freed */
5483             Token sColname;  /* Computed column name as a token */
5484 
5485             assert( zName );
5486             if( zTName && pSub
5487              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5488             ){
5489               continue;
5490             }
5491 
5492             /* If a column is marked as 'hidden', omit it from the expanded
5493             ** result-set list unless the SELECT has the SF_IncludeHidden
5494             ** bit set.
5495             */
5496             if( (p->selFlags & SF_IncludeHidden)==0
5497              && IsHiddenColumn(&pTab->aCol[j])
5498             ){
5499               continue;
5500             }
5501             tableSeen = 1;
5502 
5503             if( i>0 && zTName==0 ){
5504               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5505                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5506               ){
5507                 /* In a NATURAL join, omit the join columns from the
5508                 ** table to the right of the join */
5509                 continue;
5510               }
5511               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5512                 /* In a join with a USING clause, omit columns in the
5513                 ** using clause from the table on the right. */
5514                 continue;
5515               }
5516             }
5517             pRight = sqlite3Expr(db, TK_ID, zName);
5518             zColname = zName;
5519             zToFree = 0;
5520             if( longNames || pTabList->nSrc>1 ){
5521               Expr *pLeft;
5522               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5523               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5524               if( zSchemaName ){
5525                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5526                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5527               }
5528               if( longNames ){
5529                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5530                 zToFree = zColname;
5531               }
5532             }else{
5533               pExpr = pRight;
5534             }
5535             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5536             sqlite3TokenInit(&sColname, zColname);
5537             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5538             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5539               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5540               sqlite3DbFree(db, pX->zEName);
5541               if( pSub ){
5542                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5543                 testcase( pX->zEName==0 );
5544               }else{
5545                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5546                                            zSchemaName, zTabName, zColname);
5547                 testcase( pX->zEName==0 );
5548               }
5549               pX->eEName = ENAME_TAB;
5550             }
5551             sqlite3DbFree(db, zToFree);
5552           }
5553         }
5554         if( !tableSeen ){
5555           if( zTName ){
5556             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5557           }else{
5558             sqlite3ErrorMsg(pParse, "no tables specified");
5559           }
5560         }
5561       }
5562     }
5563     sqlite3ExprListDelete(db, pEList);
5564     p->pEList = pNew;
5565   }
5566   if( p->pEList ){
5567     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5568       sqlite3ErrorMsg(pParse, "too many columns in result set");
5569       return WRC_Abort;
5570     }
5571     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5572       p->selFlags |= SF_ComplexResult;
5573     }
5574   }
5575   return WRC_Continue;
5576 }
5577 
5578 #if SQLITE_DEBUG
5579 /*
5580 ** Always assert.  This xSelectCallback2 implementation proves that the
5581 ** xSelectCallback2 is never invoked.
5582 */
5583 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5584   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5585   assert( 0 );
5586 }
5587 #endif
5588 /*
5589 ** This routine "expands" a SELECT statement and all of its subqueries.
5590 ** For additional information on what it means to "expand" a SELECT
5591 ** statement, see the comment on the selectExpand worker callback above.
5592 **
5593 ** Expanding a SELECT statement is the first step in processing a
5594 ** SELECT statement.  The SELECT statement must be expanded before
5595 ** name resolution is performed.
5596 **
5597 ** If anything goes wrong, an error message is written into pParse.
5598 ** The calling function can detect the problem by looking at pParse->nErr
5599 ** and/or pParse->db->mallocFailed.
5600 */
5601 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5602   Walker w;
5603   w.xExprCallback = sqlite3ExprWalkNoop;
5604   w.pParse = pParse;
5605   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5606     w.xSelectCallback = convertCompoundSelectToSubquery;
5607     w.xSelectCallback2 = 0;
5608     sqlite3WalkSelect(&w, pSelect);
5609   }
5610   w.xSelectCallback = selectExpander;
5611   w.xSelectCallback2 = selectPopWith;
5612   w.eCode = 0;
5613   sqlite3WalkSelect(&w, pSelect);
5614 }
5615 
5616 
5617 #ifndef SQLITE_OMIT_SUBQUERY
5618 /*
5619 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5620 ** interface.
5621 **
5622 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5623 ** information to the Table structure that represents the result set
5624 ** of that subquery.
5625 **
5626 ** The Table structure that represents the result set was constructed
5627 ** by selectExpander() but the type and collation information was omitted
5628 ** at that point because identifiers had not yet been resolved.  This
5629 ** routine is called after identifier resolution.
5630 */
5631 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5632   Parse *pParse;
5633   int i;
5634   SrcList *pTabList;
5635   SrcItem *pFrom;
5636 
5637   assert( p->selFlags & SF_Resolved );
5638   if( p->selFlags & SF_HasTypeInfo ) return;
5639   p->selFlags |= SF_HasTypeInfo;
5640   pParse = pWalker->pParse;
5641   pTabList = p->pSrc;
5642   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5643     Table *pTab = pFrom->pTab;
5644     assert( pTab!=0 );
5645     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5646       /* A sub-query in the FROM clause of a SELECT */
5647       Select *pSel = pFrom->pSelect;
5648       if( pSel ){
5649         while( pSel->pPrior ) pSel = pSel->pPrior;
5650         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5651                                                SQLITE_AFF_NONE);
5652       }
5653     }
5654   }
5655 }
5656 #endif
5657 
5658 
5659 /*
5660 ** This routine adds datatype and collating sequence information to
5661 ** the Table structures of all FROM-clause subqueries in a
5662 ** SELECT statement.
5663 **
5664 ** Use this routine after name resolution.
5665 */
5666 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5667 #ifndef SQLITE_OMIT_SUBQUERY
5668   Walker w;
5669   w.xSelectCallback = sqlite3SelectWalkNoop;
5670   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5671   w.xExprCallback = sqlite3ExprWalkNoop;
5672   w.pParse = pParse;
5673   sqlite3WalkSelect(&w, pSelect);
5674 #endif
5675 }
5676 
5677 
5678 /*
5679 ** This routine sets up a SELECT statement for processing.  The
5680 ** following is accomplished:
5681 **
5682 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5683 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5684 **     *  ON and USING clauses are shifted into WHERE statements
5685 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5686 **     *  Identifiers in expression are matched to tables.
5687 **
5688 ** This routine acts recursively on all subqueries within the SELECT.
5689 */
5690 void sqlite3SelectPrep(
5691   Parse *pParse,         /* The parser context */
5692   Select *p,             /* The SELECT statement being coded. */
5693   NameContext *pOuterNC  /* Name context for container */
5694 ){
5695   assert( p!=0 || pParse->db->mallocFailed );
5696   if( pParse->db->mallocFailed ) return;
5697   if( p->selFlags & SF_HasTypeInfo ) return;
5698   sqlite3SelectExpand(pParse, p);
5699   if( pParse->nErr || pParse->db->mallocFailed ) return;
5700   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5701   if( pParse->nErr || pParse->db->mallocFailed ) return;
5702   sqlite3SelectAddTypeInfo(pParse, p);
5703 }
5704 
5705 /*
5706 ** Reset the aggregate accumulator.
5707 **
5708 ** The aggregate accumulator is a set of memory cells that hold
5709 ** intermediate results while calculating an aggregate.  This
5710 ** routine generates code that stores NULLs in all of those memory
5711 ** cells.
5712 */
5713 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5714   Vdbe *v = pParse->pVdbe;
5715   int i;
5716   struct AggInfo_func *pFunc;
5717   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5718   if( nReg==0 ) return;
5719   if( pParse->nErr || pParse->db->mallocFailed ) return;
5720 #ifdef SQLITE_DEBUG
5721   /* Verify that all AggInfo registers are within the range specified by
5722   ** AggInfo.mnReg..AggInfo.mxReg */
5723   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5724   for(i=0; i<pAggInfo->nColumn; i++){
5725     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5726          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5727   }
5728   for(i=0; i<pAggInfo->nFunc; i++){
5729     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5730          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5731   }
5732 #endif
5733   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5734   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5735     if( pFunc->iDistinct>=0 ){
5736       Expr *pE = pFunc->pFExpr;
5737       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5738       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5739         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5740            "argument");
5741         pFunc->iDistinct = -1;
5742       }else{
5743         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5744         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5745             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5746         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5747                           pFunc->pFunc->zName));
5748       }
5749     }
5750   }
5751 }
5752 
5753 /*
5754 ** Invoke the OP_AggFinalize opcode for every aggregate function
5755 ** in the AggInfo structure.
5756 */
5757 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5758   Vdbe *v = pParse->pVdbe;
5759   int i;
5760   struct AggInfo_func *pF;
5761   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5762     ExprList *pList = pF->pFExpr->x.pList;
5763     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5764     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5765     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5766   }
5767 }
5768 
5769 
5770 /*
5771 ** Update the accumulator memory cells for an aggregate based on
5772 ** the current cursor position.
5773 **
5774 ** If regAcc is non-zero and there are no min() or max() aggregates
5775 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5776 ** registers if register regAcc contains 0. The caller will take care
5777 ** of setting and clearing regAcc.
5778 */
5779 static void updateAccumulator(
5780   Parse *pParse,
5781   int regAcc,
5782   AggInfo *pAggInfo,
5783   int eDistinctType
5784 ){
5785   Vdbe *v = pParse->pVdbe;
5786   int i;
5787   int regHit = 0;
5788   int addrHitTest = 0;
5789   struct AggInfo_func *pF;
5790   struct AggInfo_col *pC;
5791 
5792   pAggInfo->directMode = 1;
5793   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5794     int nArg;
5795     int addrNext = 0;
5796     int regAgg;
5797     ExprList *pList = pF->pFExpr->x.pList;
5798     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5799     assert( !IsWindowFunc(pF->pFExpr) );
5800     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5801       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5802       if( pAggInfo->nAccumulator
5803        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5804        && regAcc
5805       ){
5806         /* If regAcc==0, there there exists some min() or max() function
5807         ** without a FILTER clause that will ensure the magnet registers
5808         ** are populated. */
5809         if( regHit==0 ) regHit = ++pParse->nMem;
5810         /* If this is the first row of the group (regAcc contains 0), clear the
5811         ** "magnet" register regHit so that the accumulator registers
5812         ** are populated if the FILTER clause jumps over the the
5813         ** invocation of min() or max() altogether. Or, if this is not
5814         ** the first row (regAcc contains 1), set the magnet register so that
5815         ** the accumulators are not populated unless the min()/max() is invoked
5816         ** and indicates that they should be.  */
5817         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5818       }
5819       addrNext = sqlite3VdbeMakeLabel(pParse);
5820       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5821     }
5822     if( pList ){
5823       nArg = pList->nExpr;
5824       regAgg = sqlite3GetTempRange(pParse, nArg);
5825       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5826     }else{
5827       nArg = 0;
5828       regAgg = 0;
5829     }
5830     if( pF->iDistinct>=0 && pList ){
5831       if( addrNext==0 ){
5832         addrNext = sqlite3VdbeMakeLabel(pParse);
5833       }
5834       pF->iDistinct = codeDistinct(pParse, eDistinctType,
5835           pF->iDistinct, addrNext, pList, regAgg);
5836     }
5837     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5838       CollSeq *pColl = 0;
5839       struct ExprList_item *pItem;
5840       int j;
5841       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5842       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5843         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5844       }
5845       if( !pColl ){
5846         pColl = pParse->db->pDfltColl;
5847       }
5848       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5849       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5850     }
5851     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5852     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5853     sqlite3VdbeChangeP5(v, (u8)nArg);
5854     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5855     if( addrNext ){
5856       sqlite3VdbeResolveLabel(v, addrNext);
5857     }
5858   }
5859   if( regHit==0 && pAggInfo->nAccumulator ){
5860     regHit = regAcc;
5861   }
5862   if( regHit ){
5863     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5864   }
5865   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5866     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5867   }
5868 
5869   pAggInfo->directMode = 0;
5870   if( addrHitTest ){
5871     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5872   }
5873 }
5874 
5875 /*
5876 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5877 ** count(*) query ("SELECT count(*) FROM pTab").
5878 */
5879 #ifndef SQLITE_OMIT_EXPLAIN
5880 static void explainSimpleCount(
5881   Parse *pParse,                  /* Parse context */
5882   Table *pTab,                    /* Table being queried */
5883   Index *pIdx                     /* Index used to optimize scan, or NULL */
5884 ){
5885   if( pParse->explain==2 ){
5886     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5887     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
5888         pTab->zName,
5889         bCover ? " USING COVERING INDEX " : "",
5890         bCover ? pIdx->zName : ""
5891     );
5892   }
5893 }
5894 #else
5895 # define explainSimpleCount(a,b,c)
5896 #endif
5897 
5898 /*
5899 ** sqlite3WalkExpr() callback used by havingToWhere().
5900 **
5901 ** If the node passed to the callback is a TK_AND node, return
5902 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5903 **
5904 ** Otherwise, return WRC_Prune. In this case, also check if the
5905 ** sub-expression matches the criteria for being moved to the WHERE
5906 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5907 ** within the HAVING expression with a constant "1".
5908 */
5909 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5910   if( pExpr->op!=TK_AND ){
5911     Select *pS = pWalker->u.pSelect;
5912     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
5913      && ExprAlwaysFalse(pExpr)==0
5914     ){
5915       sqlite3 *db = pWalker->pParse->db;
5916       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5917       if( pNew ){
5918         Expr *pWhere = pS->pWhere;
5919         SWAP(Expr, *pNew, *pExpr);
5920         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5921         pS->pWhere = pNew;
5922         pWalker->eCode = 1;
5923       }
5924     }
5925     return WRC_Prune;
5926   }
5927   return WRC_Continue;
5928 }
5929 
5930 /*
5931 ** Transfer eligible terms from the HAVING clause of a query, which is
5932 ** processed after grouping, to the WHERE clause, which is processed before
5933 ** grouping. For example, the query:
5934 **
5935 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5936 **
5937 ** can be rewritten as:
5938 **
5939 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5940 **
5941 ** A term of the HAVING expression is eligible for transfer if it consists
5942 ** entirely of constants and expressions that are also GROUP BY terms that
5943 ** use the "BINARY" collation sequence.
5944 */
5945 static void havingToWhere(Parse *pParse, Select *p){
5946   Walker sWalker;
5947   memset(&sWalker, 0, sizeof(sWalker));
5948   sWalker.pParse = pParse;
5949   sWalker.xExprCallback = havingToWhereExprCb;
5950   sWalker.u.pSelect = p;
5951   sqlite3WalkExpr(&sWalker, p->pHaving);
5952 #if SELECTTRACE_ENABLED
5953   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5954     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5955     sqlite3TreeViewSelect(0, p, 0);
5956   }
5957 #endif
5958 }
5959 
5960 /*
5961 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5962 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5963 ** then return 0.
5964 */
5965 static SrcItem *isSelfJoinView(
5966   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5967   SrcItem *pThis               /* Search for prior reference to this subquery */
5968 ){
5969   SrcItem *pItem;
5970   assert( pThis->pSelect!=0 );
5971   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
5972   for(pItem = pTabList->a; pItem<pThis; pItem++){
5973     Select *pS1;
5974     if( pItem->pSelect==0 ) continue;
5975     if( pItem->fg.viaCoroutine ) continue;
5976     if( pItem->zName==0 ) continue;
5977     assert( pItem->pTab!=0 );
5978     assert( pThis->pTab!=0 );
5979     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5980     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5981     pS1 = pItem->pSelect;
5982     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5983       /* The query flattener left two different CTE tables with identical
5984       ** names in the same FROM clause. */
5985       continue;
5986     }
5987     if( pItem->pSelect->selFlags & SF_PushDown ){
5988       /* The view was modified by some other optimization such as
5989       ** pushDownWhereTerms() */
5990       continue;
5991     }
5992     return pItem;
5993   }
5994   return 0;
5995 }
5996 
5997 /*
5998 ** Deallocate a single AggInfo object
5999 */
6000 static void agginfoFree(sqlite3 *db, AggInfo *p){
6001   sqlite3DbFree(db, p->aCol);
6002   sqlite3DbFree(db, p->aFunc);
6003   sqlite3DbFreeNN(db, p);
6004 }
6005 
6006 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6007 /*
6008 ** Attempt to transform a query of the form
6009 **
6010 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6011 **
6012 ** Into this:
6013 **
6014 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6015 **
6016 ** The transformation only works if all of the following are true:
6017 **
6018 **   *  The subquery is a UNION ALL of two or more terms
6019 **   *  The subquery does not have a LIMIT clause
6020 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6021 **   *  The outer query is a simple count(*) with no WHERE clause or other
6022 **      extraneous syntax.
6023 **
6024 ** Return TRUE if the optimization is undertaken.
6025 */
6026 static int countOfViewOptimization(Parse *pParse, Select *p){
6027   Select *pSub, *pPrior;
6028   Expr *pExpr;
6029   Expr *pCount;
6030   sqlite3 *db;
6031   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6032   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6033   if( p->pWhere ) return 0;
6034   if( p->pGroupBy ) return 0;
6035   pExpr = p->pEList->a[0].pExpr;
6036   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6037   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6038   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6039   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6040   pSub = p->pSrc->a[0].pSelect;
6041   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6042   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6043   do{
6044     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6045     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6046     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6047     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6048     pSub = pSub->pPrior;                              /* Repeat over compound */
6049   }while( pSub );
6050 
6051   /* If we reach this point then it is OK to perform the transformation */
6052 
6053   db = pParse->db;
6054   pCount = pExpr;
6055   pExpr = 0;
6056   pSub = p->pSrc->a[0].pSelect;
6057   p->pSrc->a[0].pSelect = 0;
6058   sqlite3SrcListDelete(db, p->pSrc);
6059   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6060   while( pSub ){
6061     Expr *pTerm;
6062     pPrior = pSub->pPrior;
6063     pSub->pPrior = 0;
6064     pSub->pNext = 0;
6065     pSub->selFlags |= SF_Aggregate;
6066     pSub->selFlags &= ~SF_Compound;
6067     pSub->nSelectRow = 0;
6068     sqlite3ExprListDelete(db, pSub->pEList);
6069     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6070     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6071     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6072     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6073     if( pExpr==0 ){
6074       pExpr = pTerm;
6075     }else{
6076       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6077     }
6078     pSub = pPrior;
6079   }
6080   p->pEList->a[0].pExpr = pExpr;
6081   p->selFlags &= ~SF_Aggregate;
6082 
6083 #if SELECTTRACE_ENABLED
6084   if( sqlite3SelectTrace & 0x400 ){
6085     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6086     sqlite3TreeViewSelect(0, p, 0);
6087   }
6088 #endif
6089   return 1;
6090 }
6091 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6092 
6093 /*
6094 ** Generate code for the SELECT statement given in the p argument.
6095 **
6096 ** The results are returned according to the SelectDest structure.
6097 ** See comments in sqliteInt.h for further information.
6098 **
6099 ** This routine returns the number of errors.  If any errors are
6100 ** encountered, then an appropriate error message is left in
6101 ** pParse->zErrMsg.
6102 **
6103 ** This routine does NOT free the Select structure passed in.  The
6104 ** calling function needs to do that.
6105 */
6106 int sqlite3Select(
6107   Parse *pParse,         /* The parser context */
6108   Select *p,             /* The SELECT statement being coded. */
6109   SelectDest *pDest      /* What to do with the query results */
6110 ){
6111   int i, j;              /* Loop counters */
6112   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6113   Vdbe *v;               /* The virtual machine under construction */
6114   int isAgg;             /* True for select lists like "count(*)" */
6115   ExprList *pEList = 0;  /* List of columns to extract. */
6116   SrcList *pTabList;     /* List of tables to select from */
6117   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6118   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6119   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6120   AggInfo *pAggInfo = 0; /* Aggregate information */
6121   int rc = 1;            /* Value to return from this function */
6122   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6123   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6124   int iEnd;              /* Address of the end of the query */
6125   sqlite3 *db;           /* The database connection */
6126   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6127   u8 minMaxFlag;                 /* Flag for min/max queries */
6128 
6129   db = pParse->db;
6130   v = sqlite3GetVdbe(pParse);
6131   if( p==0 || db->mallocFailed || pParse->nErr ){
6132     return 1;
6133   }
6134   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6135 #if SELECTTRACE_ENABLED
6136   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6137   if( sqlite3SelectTrace & 0x100 ){
6138     sqlite3TreeViewSelect(0, p, 0);
6139   }
6140 #endif
6141 
6142   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6143   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6144   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6145   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6146   if( IgnorableDistinct(pDest) ){
6147     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6148            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6149            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6150     /* All of these destinations are also able to ignore the ORDER BY clause */
6151     if( p->pOrderBy ){
6152 #if SELECTTRACE_ENABLED
6153       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6154       if( sqlite3SelectTrace & 0x100 ){
6155         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6156       }
6157 #endif
6158       sqlite3ParserAddCleanup(pParse,
6159         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6160         p->pOrderBy);
6161       testcase( pParse->earlyCleanup );
6162       p->pOrderBy = 0;
6163     }
6164     p->selFlags &= ~SF_Distinct;
6165     p->selFlags |= SF_NoopOrderBy;
6166   }
6167   sqlite3SelectPrep(pParse, p, 0);
6168   if( pParse->nErr || db->mallocFailed ){
6169     goto select_end;
6170   }
6171   assert( p->pEList!=0 );
6172 #if SELECTTRACE_ENABLED
6173   if( sqlite3SelectTrace & 0x104 ){
6174     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6175     sqlite3TreeViewSelect(0, p, 0);
6176   }
6177 #endif
6178 
6179   /* If the SF_UpdateFrom flag is set, then this function is being called
6180   ** as part of populating the temp table for an UPDATE...FROM statement.
6181   ** In this case, it is an error if the target object (pSrc->a[0]) name
6182   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  */
6183   if( p->selFlags & SF_UpdateFrom ){
6184     SrcItem *p0 = &p->pSrc->a[0];
6185     for(i=1; i<p->pSrc->nSrc; i++){
6186       SrcItem *p1 = &p->pSrc->a[i];
6187       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6188         sqlite3ErrorMsg(pParse,
6189             "target object/alias may not appear in FROM clause: %s",
6190             p0->zAlias ? p0->zAlias : p0->pTab->zName
6191         );
6192         goto select_end;
6193       }
6194     }
6195   }
6196 
6197   if( pDest->eDest==SRT_Output ){
6198     generateColumnNames(pParse, p);
6199   }
6200 
6201 #ifndef SQLITE_OMIT_WINDOWFUNC
6202   if( sqlite3WindowRewrite(pParse, p) ){
6203     assert( db->mallocFailed || pParse->nErr>0 );
6204     goto select_end;
6205   }
6206 #if SELECTTRACE_ENABLED
6207   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6208     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6209     sqlite3TreeViewSelect(0, p, 0);
6210   }
6211 #endif
6212 #endif /* SQLITE_OMIT_WINDOWFUNC */
6213   pTabList = p->pSrc;
6214   isAgg = (p->selFlags & SF_Aggregate)!=0;
6215   memset(&sSort, 0, sizeof(sSort));
6216   sSort.pOrderBy = p->pOrderBy;
6217 
6218   /* Try to do various optimizations (flattening subqueries, and strength
6219   ** reduction of join operators) in the FROM clause up into the main query
6220   */
6221 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6222   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6223     SrcItem *pItem = &pTabList->a[i];
6224     Select *pSub = pItem->pSelect;
6225     Table *pTab = pItem->pTab;
6226 
6227     /* The expander should have already created transient Table objects
6228     ** even for FROM clause elements such as subqueries that do not correspond
6229     ** to a real table */
6230     assert( pTab!=0 );
6231 
6232     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6233     ** of the LEFT JOIN used in the WHERE clause.
6234     */
6235     if( (pItem->fg.jointype & JT_LEFT)!=0
6236      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6237      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6238     ){
6239       SELECTTRACE(0x100,pParse,p,
6240                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6241       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6242       unsetJoinExpr(p->pWhere, pItem->iCursor);
6243     }
6244 
6245     /* No futher action if this term of the FROM clause is no a subquery */
6246     if( pSub==0 ) continue;
6247 
6248     /* Catch mismatch in the declared columns of a view and the number of
6249     ** columns in the SELECT on the RHS */
6250     if( pTab->nCol!=pSub->pEList->nExpr ){
6251       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6252                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6253       goto select_end;
6254     }
6255 
6256     /* Do not try to flatten an aggregate subquery.
6257     **
6258     ** Flattening an aggregate subquery is only possible if the outer query
6259     ** is not a join.  But if the outer query is not a join, then the subquery
6260     ** will be implemented as a co-routine and there is no advantage to
6261     ** flattening in that case.
6262     */
6263     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6264     assert( pSub->pGroupBy==0 );
6265 
6266     /* If the outer query contains a "complex" result set (that is,
6267     ** if the result set of the outer query uses functions or subqueries)
6268     ** and if the subquery contains an ORDER BY clause and if
6269     ** it will be implemented as a co-routine, then do not flatten.  This
6270     ** restriction allows SQL constructs like this:
6271     **
6272     **  SELECT expensive_function(x)
6273     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6274     **
6275     ** The expensive_function() is only computed on the 10 rows that
6276     ** are output, rather than every row of the table.
6277     **
6278     ** The requirement that the outer query have a complex result set
6279     ** means that flattening does occur on simpler SQL constraints without
6280     ** the expensive_function() like:
6281     **
6282     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6283     */
6284     if( pSub->pOrderBy!=0
6285      && i==0
6286      && (p->selFlags & SF_ComplexResult)!=0
6287      && (pTabList->nSrc==1
6288          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6289     ){
6290       continue;
6291     }
6292 
6293     if( flattenSubquery(pParse, p, i, isAgg) ){
6294       if( pParse->nErr ) goto select_end;
6295       /* This subquery can be absorbed into its parent. */
6296       i = -1;
6297     }
6298     pTabList = p->pSrc;
6299     if( db->mallocFailed ) goto select_end;
6300     if( !IgnorableOrderby(pDest) ){
6301       sSort.pOrderBy = p->pOrderBy;
6302     }
6303   }
6304 #endif
6305 
6306 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6307   /* Handle compound SELECT statements using the separate multiSelect()
6308   ** procedure.
6309   */
6310   if( p->pPrior ){
6311     rc = multiSelect(pParse, p, pDest);
6312 #if SELECTTRACE_ENABLED
6313     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6314     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6315       sqlite3TreeViewSelect(0, p, 0);
6316     }
6317 #endif
6318     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6319     return rc;
6320   }
6321 #endif
6322 
6323   /* Do the WHERE-clause constant propagation optimization if this is
6324   ** a join.  No need to speed time on this operation for non-join queries
6325   ** as the equivalent optimization will be handled by query planner in
6326   ** sqlite3WhereBegin().
6327   */
6328   if( pTabList->nSrc>1
6329    && OptimizationEnabled(db, SQLITE_PropagateConst)
6330    && propagateConstants(pParse, p)
6331   ){
6332 #if SELECTTRACE_ENABLED
6333     if( sqlite3SelectTrace & 0x100 ){
6334       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6335       sqlite3TreeViewSelect(0, p, 0);
6336     }
6337 #endif
6338   }else{
6339     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6340   }
6341 
6342 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6343   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6344    && countOfViewOptimization(pParse, p)
6345   ){
6346     if( db->mallocFailed ) goto select_end;
6347     pEList = p->pEList;
6348     pTabList = p->pSrc;
6349   }
6350 #endif
6351 
6352   /* For each term in the FROM clause, do two things:
6353   ** (1) Authorized unreferenced tables
6354   ** (2) Generate code for all sub-queries
6355   */
6356   for(i=0; i<pTabList->nSrc; i++){
6357     SrcItem *pItem = &pTabList->a[i];
6358     SrcItem *pPrior;
6359     SelectDest dest;
6360     Select *pSub;
6361 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6362     const char *zSavedAuthContext;
6363 #endif
6364 
6365     /* Issue SQLITE_READ authorizations with a fake column name for any
6366     ** tables that are referenced but from which no values are extracted.
6367     ** Examples of where these kinds of null SQLITE_READ authorizations
6368     ** would occur:
6369     **
6370     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6371     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6372     **
6373     ** The fake column name is an empty string.  It is possible for a table to
6374     ** have a column named by the empty string, in which case there is no way to
6375     ** distinguish between an unreferenced table and an actual reference to the
6376     ** "" column. The original design was for the fake column name to be a NULL,
6377     ** which would be unambiguous.  But legacy authorization callbacks might
6378     ** assume the column name is non-NULL and segfault.  The use of an empty
6379     ** string for the fake column name seems safer.
6380     */
6381     if( pItem->colUsed==0 && pItem->zName!=0 ){
6382       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6383     }
6384 
6385 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6386     /* Generate code for all sub-queries in the FROM clause
6387     */
6388     pSub = pItem->pSelect;
6389     if( pSub==0 ) continue;
6390 
6391     /* The code for a subquery should only be generated once, though it is
6392     ** technically harmless for it to be generated multiple times. The
6393     ** following assert() will detect if something changes to cause
6394     ** the same subquery to be coded multiple times, as a signal to the
6395     ** developers to try to optimize the situation.
6396     **
6397     ** Update 2019-07-24:
6398     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6399     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6400     ** coded twice.  So this assert() now becomes a testcase().  It should
6401     ** be very rare, though.
6402     */
6403     testcase( pItem->addrFillSub!=0 );
6404 
6405     /* Increment Parse.nHeight by the height of the largest expression
6406     ** tree referred to by this, the parent select. The child select
6407     ** may contain expression trees of at most
6408     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6409     ** more conservative than necessary, but much easier than enforcing
6410     ** an exact limit.
6411     */
6412     pParse->nHeight += sqlite3SelectExprHeight(p);
6413 
6414     /* Make copies of constant WHERE-clause terms in the outer query down
6415     ** inside the subquery.  This can help the subquery to run more efficiently.
6416     */
6417     if( OptimizationEnabled(db, SQLITE_PushDown)
6418      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)
6419      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6420                            (pItem->fg.jointype & JT_OUTER)!=0)
6421     ){
6422 #if SELECTTRACE_ENABLED
6423       if( sqlite3SelectTrace & 0x100 ){
6424         SELECTTRACE(0x100,pParse,p,
6425             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6426         sqlite3TreeViewSelect(0, p, 0);
6427       }
6428 #endif
6429       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6430     }else{
6431       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6432     }
6433 
6434     zSavedAuthContext = pParse->zAuthContext;
6435     pParse->zAuthContext = pItem->zName;
6436 
6437     /* Generate code to implement the subquery
6438     **
6439     ** The subquery is implemented as a co-routine if:
6440     **    (1)  the subquery is guaranteed to be the outer loop (so that
6441     **         it does not need to be computed more than once), and
6442     **    (2)  the subquery is not a CTE that should be materialized
6443     **
6444     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6445     ** implementation?
6446     */
6447     if( i==0
6448      && (pTabList->nSrc==1
6449             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6450      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6451     ){
6452       /* Implement a co-routine that will return a single row of the result
6453       ** set on each invocation.
6454       */
6455       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6456 
6457       pItem->regReturn = ++pParse->nMem;
6458       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6459       VdbeComment((v, "%!S", pItem));
6460       pItem->addrFillSub = addrTop;
6461       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6462       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6463       sqlite3Select(pParse, pSub, &dest);
6464       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6465       pItem->fg.viaCoroutine = 1;
6466       pItem->regResult = dest.iSdst;
6467       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6468       sqlite3VdbeJumpHere(v, addrTop-1);
6469       sqlite3ClearTempRegCache(pParse);
6470     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6471       /* This is a CTE for which materialization code has already been
6472       ** generated.  Invoke the subroutine to compute the materialization,
6473       ** the make the pItem->iCursor be a copy of the ephemerial table that
6474       ** holds the result of the materialization. */
6475       CteUse *pCteUse = pItem->u2.pCteUse;
6476       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6477       if( pItem->iCursor!=pCteUse->iCur ){
6478         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6479       }
6480       pSub->nSelectRow = pCteUse->nRowEst;
6481     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6482       /* This view has already been materialized by a prior entry in
6483       ** this same FROM clause.  Reuse it. */
6484       if( pPrior->addrFillSub ){
6485         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6486       }
6487       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6488       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6489     }else{
6490       /* Materalize the view.  If the view is not correlated, generate a
6491       ** subroutine to do the materialization so that subsequent uses of
6492       ** the same view can reuse the materialization. */
6493       int topAddr;
6494       int onceAddr = 0;
6495       int retAddr;
6496 
6497       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6498       pItem->regReturn = ++pParse->nMem;
6499       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6500       pItem->addrFillSub = topAddr+1;
6501       if( pItem->fg.isCorrelated==0 ){
6502         /* If the subquery is not correlated and if we are not inside of
6503         ** a trigger, then we only need to compute the value of the subquery
6504         ** once. */
6505         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6506         VdbeComment((v, "materialize %!S", pItem));
6507       }else{
6508         VdbeNoopComment((v, "materialize %!S", pItem));
6509       }
6510       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6511       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6512       sqlite3Select(pParse, pSub, &dest);
6513       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6514       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6515       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6516       VdbeComment((v, "end %!S", pItem));
6517       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6518       sqlite3ClearTempRegCache(pParse);
6519       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6520         CteUse *pCteUse = pItem->u2.pCteUse;
6521         pCteUse->addrM9e = pItem->addrFillSub;
6522         pCteUse->regRtn = pItem->regReturn;
6523         pCteUse->iCur = pItem->iCursor;
6524         pCteUse->nRowEst = pSub->nSelectRow;
6525       }
6526     }
6527     if( db->mallocFailed ) goto select_end;
6528     pParse->nHeight -= sqlite3SelectExprHeight(p);
6529     pParse->zAuthContext = zSavedAuthContext;
6530 #endif
6531   }
6532 
6533   /* Various elements of the SELECT copied into local variables for
6534   ** convenience */
6535   pEList = p->pEList;
6536   pWhere = p->pWhere;
6537   pGroupBy = p->pGroupBy;
6538   pHaving = p->pHaving;
6539   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6540 
6541 #if SELECTTRACE_ENABLED
6542   if( sqlite3SelectTrace & 0x400 ){
6543     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6544     sqlite3TreeViewSelect(0, p, 0);
6545   }
6546 #endif
6547 
6548   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6549   ** if the select-list is the same as the ORDER BY list, then this query
6550   ** can be rewritten as a GROUP BY. In other words, this:
6551   **
6552   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6553   **
6554   ** is transformed to:
6555   **
6556   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6557   **
6558   ** The second form is preferred as a single index (or temp-table) may be
6559   ** used for both the ORDER BY and DISTINCT processing. As originally
6560   ** written the query must use a temp-table for at least one of the ORDER
6561   ** BY and DISTINCT, and an index or separate temp-table for the other.
6562   */
6563   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6564    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6565 #ifndef SQLITE_OMIT_WINDOWFUNC
6566    && p->pWin==0
6567 #endif
6568   ){
6569     p->selFlags &= ~SF_Distinct;
6570     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6571     p->selFlags |= SF_Aggregate;
6572     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6573     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6574     ** original setting of the SF_Distinct flag, not the current setting */
6575     assert( sDistinct.isTnct );
6576 
6577 #if SELECTTRACE_ENABLED
6578     if( sqlite3SelectTrace & 0x400 ){
6579       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6580       sqlite3TreeViewSelect(0, p, 0);
6581     }
6582 #endif
6583   }
6584 
6585   /* If there is an ORDER BY clause, then create an ephemeral index to
6586   ** do the sorting.  But this sorting ephemeral index might end up
6587   ** being unused if the data can be extracted in pre-sorted order.
6588   ** If that is the case, then the OP_OpenEphemeral instruction will be
6589   ** changed to an OP_Noop once we figure out that the sorting index is
6590   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6591   ** that change.
6592   */
6593   if( sSort.pOrderBy ){
6594     KeyInfo *pKeyInfo;
6595     pKeyInfo = sqlite3KeyInfoFromExprList(
6596         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6597     sSort.iECursor = pParse->nTab++;
6598     sSort.addrSortIndex =
6599       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6600           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6601           (char*)pKeyInfo, P4_KEYINFO
6602       );
6603   }else{
6604     sSort.addrSortIndex = -1;
6605   }
6606 
6607   /* If the output is destined for a temporary table, open that table.
6608   */
6609   if( pDest->eDest==SRT_EphemTab ){
6610     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6611   }
6612 
6613   /* Set the limiter.
6614   */
6615   iEnd = sqlite3VdbeMakeLabel(pParse);
6616   if( (p->selFlags & SF_FixedLimit)==0 ){
6617     p->nSelectRow = 320;  /* 4 billion rows */
6618   }
6619   computeLimitRegisters(pParse, p, iEnd);
6620   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6621     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6622     sSort.sortFlags |= SORTFLAG_UseSorter;
6623   }
6624 
6625   /* Open an ephemeral index to use for the distinct set.
6626   */
6627   if( p->selFlags & SF_Distinct ){
6628     sDistinct.tabTnct = pParse->nTab++;
6629     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6630                        sDistinct.tabTnct, 0, 0,
6631                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6632                        P4_KEYINFO);
6633     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6634     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6635   }else{
6636     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6637   }
6638 
6639   if( !isAgg && pGroupBy==0 ){
6640     /* No aggregate functions and no GROUP BY clause */
6641     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6642                    | (p->selFlags & SF_FixedLimit);
6643 #ifndef SQLITE_OMIT_WINDOWFUNC
6644     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6645     if( pWin ){
6646       sqlite3WindowCodeInit(pParse, p);
6647     }
6648 #endif
6649     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6650 
6651 
6652     /* Begin the database scan. */
6653     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6654     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6655                                p->pEList, wctrlFlags, p->nSelectRow);
6656     if( pWInfo==0 ) goto select_end;
6657     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6658       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6659     }
6660     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6661       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6662     }
6663     if( sSort.pOrderBy ){
6664       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6665       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6666       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6667         sSort.pOrderBy = 0;
6668       }
6669     }
6670     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6671 
6672     /* If sorting index that was created by a prior OP_OpenEphemeral
6673     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6674     ** into an OP_Noop.
6675     */
6676     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6677       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6678     }
6679 
6680     assert( p->pEList==pEList );
6681 #ifndef SQLITE_OMIT_WINDOWFUNC
6682     if( pWin ){
6683       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6684       int iCont = sqlite3VdbeMakeLabel(pParse);
6685       int iBreak = sqlite3VdbeMakeLabel(pParse);
6686       int regGosub = ++pParse->nMem;
6687 
6688       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6689 
6690       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6691       sqlite3VdbeResolveLabel(v, addrGosub);
6692       VdbeNoopComment((v, "inner-loop subroutine"));
6693       sSort.labelOBLopt = 0;
6694       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6695       sqlite3VdbeResolveLabel(v, iCont);
6696       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6697       VdbeComment((v, "end inner-loop subroutine"));
6698       sqlite3VdbeResolveLabel(v, iBreak);
6699     }else
6700 #endif /* SQLITE_OMIT_WINDOWFUNC */
6701     {
6702       /* Use the standard inner loop. */
6703       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6704           sqlite3WhereContinueLabel(pWInfo),
6705           sqlite3WhereBreakLabel(pWInfo));
6706 
6707       /* End the database scan loop.
6708       */
6709       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6710       sqlite3WhereEnd(pWInfo);
6711     }
6712   }else{
6713     /* This case when there exist aggregate functions or a GROUP BY clause
6714     ** or both */
6715     NameContext sNC;    /* Name context for processing aggregate information */
6716     int iAMem;          /* First Mem address for storing current GROUP BY */
6717     int iBMem;          /* First Mem address for previous GROUP BY */
6718     int iUseFlag;       /* Mem address holding flag indicating that at least
6719                         ** one row of the input to the aggregator has been
6720                         ** processed */
6721     int iAbortFlag;     /* Mem address which causes query abort if positive */
6722     int groupBySort;    /* Rows come from source in GROUP BY order */
6723     int addrEnd;        /* End of processing for this SELECT */
6724     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6725     int sortOut = 0;    /* Output register from the sorter */
6726     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6727 
6728     /* Remove any and all aliases between the result set and the
6729     ** GROUP BY clause.
6730     */
6731     if( pGroupBy ){
6732       int k;                        /* Loop counter */
6733       struct ExprList_item *pItem;  /* For looping over expression in a list */
6734 
6735       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6736         pItem->u.x.iAlias = 0;
6737       }
6738       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6739         pItem->u.x.iAlias = 0;
6740       }
6741       assert( 66==sqlite3LogEst(100) );
6742       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6743 
6744       /* If there is both a GROUP BY and an ORDER BY clause and they are
6745       ** identical, then it may be possible to disable the ORDER BY clause
6746       ** on the grounds that the GROUP BY will cause elements to come out
6747       ** in the correct order. It also may not - the GROUP BY might use a
6748       ** database index that causes rows to be grouped together as required
6749       ** but not actually sorted. Either way, record the fact that the
6750       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6751       ** variable.  */
6752       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6753         int ii;
6754         /* The GROUP BY processing doesn't care whether rows are delivered in
6755         ** ASC or DESC order - only that each group is returned contiguously.
6756         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6757         ** ORDER BY to maximize the chances of rows being delivered in an
6758         ** order that makes the ORDER BY redundant.  */
6759         for(ii=0; ii<pGroupBy->nExpr; ii++){
6760           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6761           pGroupBy->a[ii].sortFlags = sortFlags;
6762         }
6763         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6764           orderByGrp = 1;
6765         }
6766       }
6767     }else{
6768       assert( 0==sqlite3LogEst(1) );
6769       p->nSelectRow = 0;
6770     }
6771 
6772     /* Create a label to jump to when we want to abort the query */
6773     addrEnd = sqlite3VdbeMakeLabel(pParse);
6774 
6775     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6776     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6777     ** SELECT statement.
6778     */
6779     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6780     if( pAggInfo ){
6781       sqlite3ParserAddCleanup(pParse,
6782           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6783       testcase( pParse->earlyCleanup );
6784     }
6785     if( db->mallocFailed ){
6786       goto select_end;
6787     }
6788     pAggInfo->selId = p->selId;
6789     memset(&sNC, 0, sizeof(sNC));
6790     sNC.pParse = pParse;
6791     sNC.pSrcList = pTabList;
6792     sNC.uNC.pAggInfo = pAggInfo;
6793     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6794     pAggInfo->mnReg = pParse->nMem+1;
6795     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6796     pAggInfo->pGroupBy = pGroupBy;
6797     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6798     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6799     if( pHaving ){
6800       if( pGroupBy ){
6801         assert( pWhere==p->pWhere );
6802         assert( pHaving==p->pHaving );
6803         assert( pGroupBy==p->pGroupBy );
6804         havingToWhere(pParse, p);
6805         pWhere = p->pWhere;
6806       }
6807       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6808     }
6809     pAggInfo->nAccumulator = pAggInfo->nColumn;
6810     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6811       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6812     }else{
6813       minMaxFlag = WHERE_ORDERBY_NORMAL;
6814     }
6815     for(i=0; i<pAggInfo->nFunc; i++){
6816       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6817       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6818       sNC.ncFlags |= NC_InAggFunc;
6819       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6820 #ifndef SQLITE_OMIT_WINDOWFUNC
6821       assert( !IsWindowFunc(pExpr) );
6822       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6823         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6824       }
6825 #endif
6826       sNC.ncFlags &= ~NC_InAggFunc;
6827     }
6828     pAggInfo->mxReg = pParse->nMem;
6829     if( db->mallocFailed ) goto select_end;
6830 #if SELECTTRACE_ENABLED
6831     if( sqlite3SelectTrace & 0x400 ){
6832       int ii;
6833       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6834       sqlite3TreeViewSelect(0, p, 0);
6835       if( minMaxFlag ){
6836         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
6837         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
6838       }
6839       for(ii=0; ii<pAggInfo->nColumn; ii++){
6840         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6841             ii, pAggInfo->aCol[ii].iMem);
6842         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6843       }
6844       for(ii=0; ii<pAggInfo->nFunc; ii++){
6845         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6846             ii, pAggInfo->aFunc[ii].iMem);
6847         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6848       }
6849     }
6850 #endif
6851 
6852 
6853     /* Processing for aggregates with GROUP BY is very different and
6854     ** much more complex than aggregates without a GROUP BY.
6855     */
6856     if( pGroupBy ){
6857       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6858       int addr1;          /* A-vs-B comparision jump */
6859       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6860       int regOutputRow;   /* Return address register for output subroutine */
6861       int addrSetAbort;   /* Set the abort flag and return */
6862       int addrTopOfLoop;  /* Top of the input loop */
6863       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6864       int addrReset;      /* Subroutine for resetting the accumulator */
6865       int regReset;       /* Return address register for reset subroutine */
6866       ExprList *pDistinct = 0;
6867       u16 distFlag = 0;
6868       int eDist = WHERE_DISTINCT_NOOP;
6869 
6870       if( pAggInfo->nFunc==1
6871        && pAggInfo->aFunc[0].iDistinct>=0
6872        && pAggInfo->aFunc[0].pFExpr->x.pList
6873       ){
6874         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
6875         pExpr = sqlite3ExprDup(db, pExpr, 0);
6876         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
6877         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
6878         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
6879       }
6880 
6881       /* If there is a GROUP BY clause we might need a sorting index to
6882       ** implement it.  Allocate that sorting index now.  If it turns out
6883       ** that we do not need it after all, the OP_SorterOpen instruction
6884       ** will be converted into a Noop.
6885       */
6886       pAggInfo->sortingIdx = pParse->nTab++;
6887       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6888                                             0, pAggInfo->nColumn);
6889       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6890           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6891           0, (char*)pKeyInfo, P4_KEYINFO);
6892 
6893       /* Initialize memory locations used by GROUP BY aggregate processing
6894       */
6895       iUseFlag = ++pParse->nMem;
6896       iAbortFlag = ++pParse->nMem;
6897       regOutputRow = ++pParse->nMem;
6898       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6899       regReset = ++pParse->nMem;
6900       addrReset = sqlite3VdbeMakeLabel(pParse);
6901       iAMem = pParse->nMem + 1;
6902       pParse->nMem += pGroupBy->nExpr;
6903       iBMem = pParse->nMem + 1;
6904       pParse->nMem += pGroupBy->nExpr;
6905       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6906       VdbeComment((v, "clear abort flag"));
6907       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6908 
6909       /* Begin a loop that will extract all source rows in GROUP BY order.
6910       ** This might involve two separate loops with an OP_Sort in between, or
6911       ** it might be a single loop that uses an index to extract information
6912       ** in the right order to begin with.
6913       */
6914       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6915       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6916       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
6917           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
6918       );
6919       if( pWInfo==0 ){
6920         sqlite3ExprListDelete(db, pDistinct);
6921         goto select_end;
6922       }
6923       eDist = sqlite3WhereIsDistinct(pWInfo);
6924       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6925       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6926         /* The optimizer is able to deliver rows in group by order so
6927         ** we do not have to sort.  The OP_OpenEphemeral table will be
6928         ** cancelled later because we still need to use the pKeyInfo
6929         */
6930         groupBySort = 0;
6931       }else{
6932         /* Rows are coming out in undetermined order.  We have to push
6933         ** each row into a sorting index, terminate the first loop,
6934         ** then loop over the sorting index in order to get the output
6935         ** in sorted order
6936         */
6937         int regBase;
6938         int regRecord;
6939         int nCol;
6940         int nGroupBy;
6941 
6942         explainTempTable(pParse,
6943             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6944                     "DISTINCT" : "GROUP BY");
6945 
6946         groupBySort = 1;
6947         nGroupBy = pGroupBy->nExpr;
6948         nCol = nGroupBy;
6949         j = nGroupBy;
6950         for(i=0; i<pAggInfo->nColumn; i++){
6951           if( pAggInfo->aCol[i].iSorterColumn>=j ){
6952             nCol++;
6953             j++;
6954           }
6955         }
6956         regBase = sqlite3GetTempRange(pParse, nCol);
6957         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6958         j = nGroupBy;
6959         for(i=0; i<pAggInfo->nColumn; i++){
6960           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6961           if( pCol->iSorterColumn>=j ){
6962             int r1 = j + regBase;
6963             sqlite3ExprCodeGetColumnOfTable(v,
6964                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6965             j++;
6966           }
6967         }
6968         regRecord = sqlite3GetTempReg(pParse);
6969         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6970         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6971         sqlite3ReleaseTempReg(pParse, regRecord);
6972         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6973         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6974         sqlite3WhereEnd(pWInfo);
6975         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6976         sortOut = sqlite3GetTempReg(pParse);
6977         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6978         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6979         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6980         pAggInfo->useSortingIdx = 1;
6981       }
6982 
6983       /* If the index or temporary table used by the GROUP BY sort
6984       ** will naturally deliver rows in the order required by the ORDER BY
6985       ** clause, cancel the ephemeral table open coded earlier.
6986       **
6987       ** This is an optimization - the correct answer should result regardless.
6988       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6989       ** disable this optimization for testing purposes.  */
6990       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6991        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6992       ){
6993         sSort.pOrderBy = 0;
6994         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6995       }
6996 
6997       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6998       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6999       ** Then compare the current GROUP BY terms against the GROUP BY terms
7000       ** from the previous row currently stored in a0, a1, a2...
7001       */
7002       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7003       if( groupBySort ){
7004         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7005                           sortOut, sortPTab);
7006       }
7007       for(j=0; j<pGroupBy->nExpr; j++){
7008         if( groupBySort ){
7009           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7010         }else{
7011           pAggInfo->directMode = 1;
7012           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7013         }
7014       }
7015       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7016                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7017       addr1 = sqlite3VdbeCurrentAddr(v);
7018       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7019 
7020       /* Generate code that runs whenever the GROUP BY changes.
7021       ** Changes in the GROUP BY are detected by the previous code
7022       ** block.  If there were no changes, this block is skipped.
7023       **
7024       ** This code copies current group by terms in b0,b1,b2,...
7025       ** over to a0,a1,a2.  It then calls the output subroutine
7026       ** and resets the aggregate accumulator registers in preparation
7027       ** for the next GROUP BY batch.
7028       */
7029       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7030       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7031       VdbeComment((v, "output one row"));
7032       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7033       VdbeComment((v, "check abort flag"));
7034       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7035       VdbeComment((v, "reset accumulator"));
7036 
7037       /* Update the aggregate accumulators based on the content of
7038       ** the current row
7039       */
7040       sqlite3VdbeJumpHere(v, addr1);
7041       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7042       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7043       VdbeComment((v, "indicate data in accumulator"));
7044 
7045       /* End of the loop
7046       */
7047       if( groupBySort ){
7048         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7049         VdbeCoverage(v);
7050       }else{
7051         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7052         sqlite3WhereEnd(pWInfo);
7053         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7054       }
7055       sqlite3ExprListDelete(db, pDistinct);
7056 
7057       /* Output the final row of result
7058       */
7059       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7060       VdbeComment((v, "output final row"));
7061 
7062       /* Jump over the subroutines
7063       */
7064       sqlite3VdbeGoto(v, addrEnd);
7065 
7066       /* Generate a subroutine that outputs a single row of the result
7067       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7068       ** is less than or equal to zero, the subroutine is a no-op.  If
7069       ** the processing calls for the query to abort, this subroutine
7070       ** increments the iAbortFlag memory location before returning in
7071       ** order to signal the caller to abort.
7072       */
7073       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7074       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7075       VdbeComment((v, "set abort flag"));
7076       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7077       sqlite3VdbeResolveLabel(v, addrOutputRow);
7078       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7079       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7080       VdbeCoverage(v);
7081       VdbeComment((v, "Groupby result generator entry point"));
7082       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7083       finalizeAggFunctions(pParse, pAggInfo);
7084       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7085       selectInnerLoop(pParse, p, -1, &sSort,
7086                       &sDistinct, pDest,
7087                       addrOutputRow+1, addrSetAbort);
7088       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7089       VdbeComment((v, "end groupby result generator"));
7090 
7091       /* Generate a subroutine that will reset the group-by accumulator
7092       */
7093       sqlite3VdbeResolveLabel(v, addrReset);
7094       resetAccumulator(pParse, pAggInfo);
7095       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7096       VdbeComment((v, "indicate accumulator empty"));
7097       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7098 
7099       if( eDist!=WHERE_DISTINCT_NOOP ){
7100         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7101         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7102       }
7103     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7104     else {
7105       Table *pTab;
7106       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7107         /* If isSimpleCount() returns a pointer to a Table structure, then
7108         ** the SQL statement is of the form:
7109         **
7110         **   SELECT count(*) FROM <tbl>
7111         **
7112         ** where the Table structure returned represents table <tbl>.
7113         **
7114         ** This statement is so common that it is optimized specially. The
7115         ** OP_Count instruction is executed either on the intkey table that
7116         ** contains the data for table <tbl> or on one of its indexes. It
7117         ** is better to execute the op on an index, as indexes are almost
7118         ** always spread across less pages than their corresponding tables.
7119         */
7120         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7121         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7122         Index *pIdx;                         /* Iterator variable */
7123         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7124         Index *pBest = 0;                    /* Best index found so far */
7125         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7126 
7127         sqlite3CodeVerifySchema(pParse, iDb);
7128         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7129 
7130         /* Search for the index that has the lowest scan cost.
7131         **
7132         ** (2011-04-15) Do not do a full scan of an unordered index.
7133         **
7134         ** (2013-10-03) Do not count the entries in a partial index.
7135         **
7136         ** In practice the KeyInfo structure will not be used. It is only
7137         ** passed to keep OP_OpenRead happy.
7138         */
7139         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7140         if( !p->pSrc->a[0].fg.notIndexed ){
7141           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7142             if( pIdx->bUnordered==0
7143              && pIdx->szIdxRow<pTab->szTabRow
7144              && pIdx->pPartIdxWhere==0
7145              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7146             ){
7147               pBest = pIdx;
7148             }
7149           }
7150         }
7151         if( pBest ){
7152           iRoot = pBest->tnum;
7153           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7154         }
7155 
7156         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7157         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7158         if( pKeyInfo ){
7159           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7160         }
7161         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7162         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7163         explainSimpleCount(pParse, pTab, pBest);
7164       }else{
7165         int regAcc = 0;           /* "populate accumulators" flag */
7166         ExprList *pDistinct = 0;
7167         u16 distFlag = 0;
7168         int eDist;
7169 
7170         /* If there are accumulator registers but no min() or max() functions
7171         ** without FILTER clauses, allocate register regAcc. Register regAcc
7172         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7173         ** The code generated by updateAccumulator() uses this to ensure
7174         ** that the accumulator registers are (a) updated only once if
7175         ** there are no min() or max functions or (b) always updated for the
7176         ** first row visited by the aggregate, so that they are updated at
7177         ** least once even if the FILTER clause means the min() or max()
7178         ** function visits zero rows.  */
7179         if( pAggInfo->nAccumulator ){
7180           for(i=0; i<pAggInfo->nFunc; i++){
7181             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7182               continue;
7183             }
7184             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7185               break;
7186             }
7187           }
7188           if( i==pAggInfo->nFunc ){
7189             regAcc = ++pParse->nMem;
7190             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7191           }
7192         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7193           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7194           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7195         }
7196 
7197         /* This case runs if the aggregate has no GROUP BY clause.  The
7198         ** processing is much simpler since there is only a single row
7199         ** of output.
7200         */
7201         assert( p->pGroupBy==0 );
7202         resetAccumulator(pParse, pAggInfo);
7203 
7204         /* If this query is a candidate for the min/max optimization, then
7205         ** minMaxFlag will have been previously set to either
7206         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7207         ** be an appropriate ORDER BY expression for the optimization.
7208         */
7209         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7210         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7211 
7212         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7213         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7214                                    pDistinct, minMaxFlag|distFlag, 0);
7215         if( pWInfo==0 ){
7216           goto select_end;
7217         }
7218         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7219         eDist = sqlite3WhereIsDistinct(pWInfo);
7220         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7221         if( eDist!=WHERE_DISTINCT_NOOP ){
7222           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7223           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7224         }
7225 
7226         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7227         if( minMaxFlag ){
7228           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7229         }
7230         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7231         sqlite3WhereEnd(pWInfo);
7232         finalizeAggFunctions(pParse, pAggInfo);
7233       }
7234 
7235       sSort.pOrderBy = 0;
7236       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7237       selectInnerLoop(pParse, p, -1, 0, 0,
7238                       pDest, addrEnd, addrEnd);
7239     }
7240     sqlite3VdbeResolveLabel(v, addrEnd);
7241 
7242   } /* endif aggregate query */
7243 
7244   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7245     explainTempTable(pParse, "DISTINCT");
7246   }
7247 
7248   /* If there is an ORDER BY clause, then we need to sort the results
7249   ** and send them to the callback one by one.
7250   */
7251   if( sSort.pOrderBy ){
7252     explainTempTable(pParse,
7253                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7254     assert( p->pEList==pEList );
7255     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7256   }
7257 
7258   /* Jump here to skip this query
7259   */
7260   sqlite3VdbeResolveLabel(v, iEnd);
7261 
7262   /* The SELECT has been coded. If there is an error in the Parse structure,
7263   ** set the return code to 1. Otherwise 0. */
7264   rc = (pParse->nErr>0);
7265 
7266   /* Control jumps to here if an error is encountered above, or upon
7267   ** successful coding of the SELECT.
7268   */
7269 select_end:
7270   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7271   pParse->nErr += db->mallocFailed;
7272   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7273 #ifdef SQLITE_DEBUG
7274   if( pAggInfo && !db->mallocFailed ){
7275     for(i=0; i<pAggInfo->nColumn; i++){
7276       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7277       assert( pExpr!=0 );
7278       assert( pExpr->pAggInfo==pAggInfo );
7279       assert( pExpr->iAgg==i );
7280     }
7281     for(i=0; i<pAggInfo->nFunc; i++){
7282       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7283       assert( pExpr!=0 );
7284       assert( pExpr->pAggInfo==pAggInfo );
7285       assert( pExpr->iAgg==i );
7286     }
7287   }
7288 #endif
7289 
7290 #if SELECTTRACE_ENABLED
7291   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7292   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7293     sqlite3TreeViewSelect(0, p, 0);
7294   }
7295 #endif
7296   ExplainQueryPlanPop(pParse);
7297   return rc;
7298 }
7299