1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 assert( p->pWin==0 ); 104 #endif 105 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 106 if( bFree ) sqlite3DbFreeNN(db, p); 107 p = pPrior; 108 bFree = 1; 109 } 110 } 111 112 /* 113 ** Initialize a SelectDest structure. 114 */ 115 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 116 pDest->eDest = (u8)eDest; 117 pDest->iSDParm = iParm; 118 pDest->zAffSdst = 0; 119 pDest->iSdst = 0; 120 pDest->nSdst = 0; 121 } 122 123 124 /* 125 ** Allocate a new Select structure and return a pointer to that 126 ** structure. 127 */ 128 Select *sqlite3SelectNew( 129 Parse *pParse, /* Parsing context */ 130 ExprList *pEList, /* which columns to include in the result */ 131 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 132 Expr *pWhere, /* the WHERE clause */ 133 ExprList *pGroupBy, /* the GROUP BY clause */ 134 Expr *pHaving, /* the HAVING clause */ 135 ExprList *pOrderBy, /* the ORDER BY clause */ 136 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 137 Expr *pLimit /* LIMIT value. NULL means not used */ 138 ){ 139 Select *pNew; 140 Select standin; 141 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 142 if( pNew==0 ){ 143 assert( pParse->db->mallocFailed ); 144 pNew = &standin; 145 } 146 if( pEList==0 ){ 147 pEList = sqlite3ExprListAppend(pParse, 0, 148 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 149 } 150 pNew->pEList = pEList; 151 pNew->op = TK_SELECT; 152 pNew->selFlags = selFlags; 153 pNew->iLimit = 0; 154 pNew->iOffset = 0; 155 pNew->selId = ++pParse->nSelect; 156 pNew->addrOpenEphm[0] = -1; 157 pNew->addrOpenEphm[1] = -1; 158 pNew->nSelectRow = 0; 159 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 160 pNew->pSrc = pSrc; 161 pNew->pWhere = pWhere; 162 pNew->pGroupBy = pGroupBy; 163 pNew->pHaving = pHaving; 164 pNew->pOrderBy = pOrderBy; 165 pNew->pPrior = 0; 166 pNew->pNext = 0; 167 pNew->pLimit = pLimit; 168 pNew->pWith = 0; 169 #ifndef SQLITE_OMIT_WINDOWFUNC 170 pNew->pWin = 0; 171 pNew->pWinDefn = 0; 172 #endif 173 if( pParse->db->mallocFailed ) { 174 clearSelect(pParse->db, pNew, pNew!=&standin); 175 pNew = 0; 176 }else{ 177 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 178 } 179 assert( pNew!=&standin ); 180 return pNew; 181 } 182 183 184 /* 185 ** Delete the given Select structure and all of its substructures. 186 */ 187 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 188 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 189 } 190 191 /* 192 ** Return a pointer to the right-most SELECT statement in a compound. 193 */ 194 static Select *findRightmost(Select *p){ 195 while( p->pNext ) p = p->pNext; 196 return p; 197 } 198 199 /* 200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 201 ** type of join. Return an integer constant that expresses that type 202 ** in terms of the following bit values: 203 ** 204 ** JT_INNER 205 ** JT_CROSS 206 ** JT_OUTER 207 ** JT_NATURAL 208 ** JT_LEFT 209 ** JT_RIGHT 210 ** 211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 212 ** 213 ** If an illegal or unsupported join type is seen, then still return 214 ** a join type, but put an error in the pParse structure. 215 */ 216 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 217 int jointype = 0; 218 Token *apAll[3]; 219 Token *p; 220 /* 0123456789 123456789 123456789 123 */ 221 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 222 static const struct { 223 u8 i; /* Beginning of keyword text in zKeyText[] */ 224 u8 nChar; /* Length of the keyword in characters */ 225 u8 code; /* Join type mask */ 226 } aKeyword[] = { 227 /* natural */ { 0, 7, JT_NATURAL }, 228 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 229 /* outer */ { 10, 5, JT_OUTER }, 230 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 231 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 232 /* inner */ { 23, 5, JT_INNER }, 233 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 234 }; 235 int i, j; 236 apAll[0] = pA; 237 apAll[1] = pB; 238 apAll[2] = pC; 239 for(i=0; i<3 && apAll[i]; i++){ 240 p = apAll[i]; 241 for(j=0; j<ArraySize(aKeyword); j++){ 242 if( p->n==aKeyword[j].nChar 243 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 244 jointype |= aKeyword[j].code; 245 break; 246 } 247 } 248 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 249 if( j>=ArraySize(aKeyword) ){ 250 jointype |= JT_ERROR; 251 break; 252 } 253 } 254 if( 255 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 256 (jointype & JT_ERROR)!=0 257 ){ 258 const char *zSp = " "; 259 assert( pB!=0 ); 260 if( pC==0 ){ zSp++; } 261 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 262 "%T %T%s%T", pA, pB, zSp, pC); 263 jointype = JT_INNER; 264 }else if( (jointype & JT_OUTER)!=0 265 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 266 sqlite3ErrorMsg(pParse, 267 "RIGHT and FULL OUTER JOINs are not currently supported"); 268 jointype = JT_INNER; 269 } 270 return jointype; 271 } 272 273 /* 274 ** Return the index of a column in a table. Return -1 if the column 275 ** is not contained in the table. 276 */ 277 static int columnIndex(Table *pTab, const char *zCol){ 278 int i; 279 for(i=0; i<pTab->nCol; i++){ 280 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 281 } 282 return -1; 283 } 284 285 /* 286 ** Search the first N tables in pSrc, from left to right, looking for a 287 ** table that has a column named zCol. 288 ** 289 ** When found, set *piTab and *piCol to the table index and column index 290 ** of the matching column and return TRUE. 291 ** 292 ** If not found, return FALSE. 293 */ 294 static int tableAndColumnIndex( 295 SrcList *pSrc, /* Array of tables to search */ 296 int N, /* Number of tables in pSrc->a[] to search */ 297 const char *zCol, /* Name of the column we are looking for */ 298 int *piTab, /* Write index of pSrc->a[] here */ 299 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 300 ){ 301 int i; /* For looping over tables in pSrc */ 302 int iCol; /* Index of column matching zCol */ 303 304 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 305 for(i=0; i<N; i++){ 306 iCol = columnIndex(pSrc->a[i].pTab, zCol); 307 if( iCol>=0 ){ 308 if( piTab ){ 309 *piTab = i; 310 *piCol = iCol; 311 } 312 return 1; 313 } 314 } 315 return 0; 316 } 317 318 /* 319 ** This function is used to add terms implied by JOIN syntax to the 320 ** WHERE clause expression of a SELECT statement. The new term, which 321 ** is ANDed with the existing WHERE clause, is of the form: 322 ** 323 ** (tab1.col1 = tab2.col2) 324 ** 325 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 326 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 327 ** column iColRight of tab2. 328 */ 329 static void addWhereTerm( 330 Parse *pParse, /* Parsing context */ 331 SrcList *pSrc, /* List of tables in FROM clause */ 332 int iLeft, /* Index of first table to join in pSrc */ 333 int iColLeft, /* Index of column in first table */ 334 int iRight, /* Index of second table in pSrc */ 335 int iColRight, /* Index of column in second table */ 336 int isOuterJoin, /* True if this is an OUTER join */ 337 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 338 ){ 339 sqlite3 *db = pParse->db; 340 Expr *pE1; 341 Expr *pE2; 342 Expr *pEq; 343 344 assert( iLeft<iRight ); 345 assert( pSrc->nSrc>iRight ); 346 assert( pSrc->a[iLeft].pTab ); 347 assert( pSrc->a[iRight].pTab ); 348 349 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 350 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 351 352 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->iRightJoinTable = (i16)pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 void sqlite3SetJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->iRightJoinTable = (i16)iTable; 394 if( p->op==TK_FUNCTION && p->x.pList ){ 395 int i; 396 for(i=0; i<p->x.pList->nExpr; i++){ 397 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 398 } 399 } 400 sqlite3SetJoinExpr(p->pLeft, iTable); 401 p = p->pRight; 402 } 403 } 404 405 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 406 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 407 ** an ordinary term that omits the EP_FromJoin mark. 408 ** 409 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 410 */ 411 static void unsetJoinExpr(Expr *p, int iTable){ 412 while( p ){ 413 if( ExprHasProperty(p, EP_FromJoin) 414 && (iTable<0 || p->iRightJoinTable==iTable) ){ 415 ExprClearProperty(p, EP_FromJoin); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 struct SrcList_item *pLeft; /* Left table being joined */ 446 struct SrcList_item *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 zName = pRightTab->aCol[j].zName; 473 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 474 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 475 isOuter, &p->pWhere); 476 } 477 } 478 } 479 480 /* Disallow both ON and USING clauses in the same join 481 */ 482 if( pRight->pOn && pRight->pUsing ){ 483 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 484 "clauses in the same join"); 485 return 1; 486 } 487 488 /* Add the ON clause to the end of the WHERE clause, connected by 489 ** an AND operator. 490 */ 491 if( pRight->pOn ){ 492 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 493 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 494 pRight->pOn = 0; 495 } 496 497 /* Create extra terms on the WHERE clause for each column named 498 ** in the USING clause. Example: If the two tables to be joined are 499 ** A and B and the USING clause names X, Y, and Z, then add this 500 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 501 ** Report an error if any column mentioned in the USING clause is 502 ** not contained in both tables to be joined. 503 */ 504 if( pRight->pUsing ){ 505 IdList *pList = pRight->pUsing; 506 for(j=0; j<pList->nId; j++){ 507 char *zName; /* Name of the term in the USING clause */ 508 int iLeft; /* Table on the left with matching column name */ 509 int iLeftCol; /* Column number of matching column on the left */ 510 int iRightCol; /* Column number of matching column on the right */ 511 512 zName = pList->a[j].zName; 513 iRightCol = columnIndex(pRightTab, zName); 514 if( iRightCol<0 515 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 516 ){ 517 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 518 "not present in both tables", zName); 519 return 1; 520 } 521 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 522 isOuter, &p->pWhere); 523 } 524 } 525 } 526 return 0; 527 } 528 529 /* 530 ** An instance of this object holds information (beyond pParse and pSelect) 531 ** needed to load the next result row that is to be added to the sorter. 532 */ 533 typedef struct RowLoadInfo RowLoadInfo; 534 struct RowLoadInfo { 535 int regResult; /* Store results in array of registers here */ 536 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 537 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 538 ExprList *pExtra; /* Extra columns needed by sorter refs */ 539 int regExtraResult; /* Where to load the extra columns */ 540 #endif 541 }; 542 543 /* 544 ** This routine does the work of loading query data into an array of 545 ** registers so that it can be added to the sorter. 546 */ 547 static void innerLoopLoadRow( 548 Parse *pParse, /* Statement under construction */ 549 Select *pSelect, /* The query being coded */ 550 RowLoadInfo *pInfo /* Info needed to complete the row load */ 551 ){ 552 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 553 0, pInfo->ecelFlags); 554 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 555 if( pInfo->pExtra ){ 556 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 557 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 558 } 559 #endif 560 } 561 562 /* 563 ** Code the OP_MakeRecord instruction that generates the entry to be 564 ** added into the sorter. 565 ** 566 ** Return the register in which the result is stored. 567 */ 568 static int makeSorterRecord( 569 Parse *pParse, 570 SortCtx *pSort, 571 Select *pSelect, 572 int regBase, 573 int nBase 574 ){ 575 int nOBSat = pSort->nOBSat; 576 Vdbe *v = pParse->pVdbe; 577 int regOut = ++pParse->nMem; 578 if( pSort->pDeferredRowLoad ){ 579 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 580 } 581 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 582 return regOut; 583 } 584 585 /* 586 ** Generate code that will push the record in registers regData 587 ** through regData+nData-1 onto the sorter. 588 */ 589 static void pushOntoSorter( 590 Parse *pParse, /* Parser context */ 591 SortCtx *pSort, /* Information about the ORDER BY clause */ 592 Select *pSelect, /* The whole SELECT statement */ 593 int regData, /* First register holding data to be sorted */ 594 int regOrigData, /* First register holding data before packing */ 595 int nData, /* Number of elements in the regData data array */ 596 int nPrefixReg /* No. of reg prior to regData available for use */ 597 ){ 598 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 599 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 600 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 601 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 602 int regBase; /* Regs for sorter record */ 603 int regRecord = 0; /* Assembled sorter record */ 604 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 605 int op; /* Opcode to add sorter record to sorter */ 606 int iLimit; /* LIMIT counter */ 607 int iSkip = 0; /* End of the sorter insert loop */ 608 609 assert( bSeq==0 || bSeq==1 ); 610 611 /* Three cases: 612 ** (1) The data to be sorted has already been packed into a Record 613 ** by a prior OP_MakeRecord. In this case nData==1 and regData 614 ** will be completely unrelated to regOrigData. 615 ** (2) All output columns are included in the sort record. In that 616 ** case regData==regOrigData. 617 ** (3) Some output columns are omitted from the sort record due to 618 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 619 ** SQLITE_ECEL_OMITREF optimization, or due to the 620 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 621 ** regOrigData is 0 to prevent this routine from trying to copy 622 ** values that might not yet exist. 623 */ 624 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 625 626 if( nPrefixReg ){ 627 assert( nPrefixReg==nExpr+bSeq ); 628 regBase = regData - nPrefixReg; 629 }else{ 630 regBase = pParse->nMem + 1; 631 pParse->nMem += nBase; 632 } 633 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 634 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 635 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 636 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 637 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 638 if( bSeq ){ 639 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 640 } 641 if( nPrefixReg==0 && nData>0 ){ 642 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 643 } 644 if( nOBSat>0 ){ 645 int regPrevKey; /* The first nOBSat columns of the previous row */ 646 int addrFirst; /* Address of the OP_IfNot opcode */ 647 int addrJmp; /* Address of the OP_Jump opcode */ 648 VdbeOp *pOp; /* Opcode that opens the sorter */ 649 int nKey; /* Number of sorting key columns, including OP_Sequence */ 650 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 651 652 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 653 regPrevKey = pParse->nMem+1; 654 pParse->nMem += pSort->nOBSat; 655 nKey = nExpr - pSort->nOBSat + bSeq; 656 if( bSeq ){ 657 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 658 }else{ 659 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 660 } 661 VdbeCoverage(v); 662 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 663 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 664 if( pParse->db->mallocFailed ) return; 665 pOp->p2 = nKey + nData; 666 pKI = pOp->p4.pKeyInfo; 667 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 668 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 669 testcase( pKI->nAllField > pKI->nKeyField+2 ); 670 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 671 pKI->nAllField-pKI->nKeyField-1); 672 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 673 addrJmp = sqlite3VdbeCurrentAddr(v); 674 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 675 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 676 pSort->regReturn = ++pParse->nMem; 677 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 678 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 679 if( iLimit ){ 680 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 681 VdbeCoverage(v); 682 } 683 sqlite3VdbeJumpHere(v, addrFirst); 684 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 685 sqlite3VdbeJumpHere(v, addrJmp); 686 } 687 if( iLimit ){ 688 /* At this point the values for the new sorter entry are stored 689 ** in an array of registers. They need to be composed into a record 690 ** and inserted into the sorter if either (a) there are currently 691 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 692 ** the largest record currently in the sorter. If (b) is true and there 693 ** are already LIMIT+OFFSET items in the sorter, delete the largest 694 ** entry before inserting the new one. This way there are never more 695 ** than LIMIT+OFFSET items in the sorter. 696 ** 697 ** If the new record does not need to be inserted into the sorter, 698 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 699 ** value is not zero, then it is a label of where to jump. Otherwise, 700 ** just bypass the row insert logic. See the header comment on the 701 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 702 */ 703 int iCsr = pSort->iECursor; 704 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 705 VdbeCoverage(v); 706 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 707 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 708 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 709 VdbeCoverage(v); 710 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 711 } 712 if( regRecord==0 ){ 713 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 714 } 715 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 716 op = OP_SorterInsert; 717 }else{ 718 op = OP_IdxInsert; 719 } 720 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 721 regBase+nOBSat, nBase-nOBSat); 722 if( iSkip ){ 723 sqlite3VdbeChangeP2(v, iSkip, 724 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 725 } 726 } 727 728 /* 729 ** Add code to implement the OFFSET 730 */ 731 static void codeOffset( 732 Vdbe *v, /* Generate code into this VM */ 733 int iOffset, /* Register holding the offset counter */ 734 int iContinue /* Jump here to skip the current record */ 735 ){ 736 if( iOffset>0 ){ 737 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 738 VdbeComment((v, "OFFSET")); 739 } 740 } 741 742 /* 743 ** Add code that will check to make sure the N registers starting at iMem 744 ** form a distinct entry. iTab is a sorting index that holds previously 745 ** seen combinations of the N values. A new entry is made in iTab 746 ** if the current N values are new. 747 ** 748 ** A jump to addrRepeat is made and the N+1 values are popped from the 749 ** stack if the top N elements are not distinct. 750 */ 751 static void codeDistinct( 752 Parse *pParse, /* Parsing and code generating context */ 753 int iTab, /* A sorting index used to test for distinctness */ 754 int addrRepeat, /* Jump to here if not distinct */ 755 int N, /* Number of elements */ 756 int iMem /* First element */ 757 ){ 758 Vdbe *v; 759 int r1; 760 761 v = pParse->pVdbe; 762 r1 = sqlite3GetTempReg(pParse); 763 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 764 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 765 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 766 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 767 sqlite3ReleaseTempReg(pParse, r1); 768 } 769 770 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 771 /* 772 ** This function is called as part of inner-loop generation for a SELECT 773 ** statement with an ORDER BY that is not optimized by an index. It 774 ** determines the expressions, if any, that the sorter-reference 775 ** optimization should be used for. The sorter-reference optimization 776 ** is used for SELECT queries like: 777 ** 778 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 779 ** 780 ** If the optimization is used for expression "bigblob", then instead of 781 ** storing values read from that column in the sorter records, the PK of 782 ** the row from table t1 is stored instead. Then, as records are extracted from 783 ** the sorter to return to the user, the required value of bigblob is 784 ** retrieved directly from table t1. If the values are very large, this 785 ** can be more efficient than storing them directly in the sorter records. 786 ** 787 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 788 ** for which the sorter-reference optimization should be enabled. 789 ** Additionally, the pSort->aDefer[] array is populated with entries 790 ** for all cursors required to evaluate all selected expressions. Finally. 791 ** output variable (*ppExtra) is set to an expression list containing 792 ** expressions for all extra PK values that should be stored in the 793 ** sorter records. 794 */ 795 static void selectExprDefer( 796 Parse *pParse, /* Leave any error here */ 797 SortCtx *pSort, /* Sorter context */ 798 ExprList *pEList, /* Expressions destined for sorter */ 799 ExprList **ppExtra /* Expressions to append to sorter record */ 800 ){ 801 int i; 802 int nDefer = 0; 803 ExprList *pExtra = 0; 804 for(i=0; i<pEList->nExpr; i++){ 805 struct ExprList_item *pItem = &pEList->a[i]; 806 if( pItem->u.x.iOrderByCol==0 ){ 807 Expr *pExpr = pItem->pExpr; 808 Table *pTab = pExpr->y.pTab; 809 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 810 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 811 ){ 812 int j; 813 for(j=0; j<nDefer; j++){ 814 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 815 } 816 if( j==nDefer ){ 817 if( nDefer==ArraySize(pSort->aDefer) ){ 818 continue; 819 }else{ 820 int nKey = 1; 821 int k; 822 Index *pPk = 0; 823 if( !HasRowid(pTab) ){ 824 pPk = sqlite3PrimaryKeyIndex(pTab); 825 nKey = pPk->nKeyCol; 826 } 827 for(k=0; k<nKey; k++){ 828 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 829 if( pNew ){ 830 pNew->iTable = pExpr->iTable; 831 pNew->y.pTab = pExpr->y.pTab; 832 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 833 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 834 } 835 } 836 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 837 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 838 pSort->aDefer[nDefer].nKey = nKey; 839 nDefer++; 840 } 841 } 842 pItem->bSorterRef = 1; 843 } 844 } 845 } 846 pSort->nDefer = (u8)nDefer; 847 *ppExtra = pExtra; 848 } 849 #endif 850 851 /* 852 ** This routine generates the code for the inside of the inner loop 853 ** of a SELECT. 854 ** 855 ** If srcTab is negative, then the p->pEList expressions 856 ** are evaluated in order to get the data for this row. If srcTab is 857 ** zero or more, then data is pulled from srcTab and p->pEList is used only 858 ** to get the number of columns and the collation sequence for each column. 859 */ 860 static void selectInnerLoop( 861 Parse *pParse, /* The parser context */ 862 Select *p, /* The complete select statement being coded */ 863 int srcTab, /* Pull data from this table if non-negative */ 864 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 865 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 866 SelectDest *pDest, /* How to dispose of the results */ 867 int iContinue, /* Jump here to continue with next row */ 868 int iBreak /* Jump here to break out of the inner loop */ 869 ){ 870 Vdbe *v = pParse->pVdbe; 871 int i; 872 int hasDistinct; /* True if the DISTINCT keyword is present */ 873 int eDest = pDest->eDest; /* How to dispose of results */ 874 int iParm = pDest->iSDParm; /* First argument to disposal method */ 875 int nResultCol; /* Number of result columns */ 876 int nPrefixReg = 0; /* Number of extra registers before regResult */ 877 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 878 879 /* Usually, regResult is the first cell in an array of memory cells 880 ** containing the current result row. In this case regOrig is set to the 881 ** same value. However, if the results are being sent to the sorter, the 882 ** values for any expressions that are also part of the sort-key are omitted 883 ** from this array. In this case regOrig is set to zero. */ 884 int regResult; /* Start of memory holding current results */ 885 int regOrig; /* Start of memory holding full result (or 0) */ 886 887 assert( v ); 888 assert( p->pEList!=0 ); 889 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 890 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 891 if( pSort==0 && !hasDistinct ){ 892 assert( iContinue!=0 ); 893 codeOffset(v, p->iOffset, iContinue); 894 } 895 896 /* Pull the requested columns. 897 */ 898 nResultCol = p->pEList->nExpr; 899 900 if( pDest->iSdst==0 ){ 901 if( pSort ){ 902 nPrefixReg = pSort->pOrderBy->nExpr; 903 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 904 pParse->nMem += nPrefixReg; 905 } 906 pDest->iSdst = pParse->nMem+1; 907 pParse->nMem += nResultCol; 908 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 909 /* This is an error condition that can result, for example, when a SELECT 910 ** on the right-hand side of an INSERT contains more result columns than 911 ** there are columns in the table on the left. The error will be caught 912 ** and reported later. But we need to make sure enough memory is allocated 913 ** to avoid other spurious errors in the meantime. */ 914 pParse->nMem += nResultCol; 915 } 916 pDest->nSdst = nResultCol; 917 regOrig = regResult = pDest->iSdst; 918 if( srcTab>=0 ){ 919 for(i=0; i<nResultCol; i++){ 920 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 921 VdbeComment((v, "%s", p->pEList->a[i].zName)); 922 } 923 }else if( eDest!=SRT_Exists ){ 924 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 925 ExprList *pExtra = 0; 926 #endif 927 /* If the destination is an EXISTS(...) expression, the actual 928 ** values returned by the SELECT are not required. 929 */ 930 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 931 ExprList *pEList; 932 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 933 ecelFlags = SQLITE_ECEL_DUP; 934 }else{ 935 ecelFlags = 0; 936 } 937 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 938 /* For each expression in p->pEList that is a copy of an expression in 939 ** the ORDER BY clause (pSort->pOrderBy), set the associated 940 ** iOrderByCol value to one more than the index of the ORDER BY 941 ** expression within the sort-key that pushOntoSorter() will generate. 942 ** This allows the p->pEList field to be omitted from the sorted record, 943 ** saving space and CPU cycles. */ 944 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 945 946 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 947 int j; 948 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 949 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 950 } 951 } 952 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 953 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 954 if( pExtra && pParse->db->mallocFailed==0 ){ 955 /* If there are any extra PK columns to add to the sorter records, 956 ** allocate extra memory cells and adjust the OpenEphemeral 957 ** instruction to account for the larger records. This is only 958 ** required if there are one or more WITHOUT ROWID tables with 959 ** composite primary keys in the SortCtx.aDefer[] array. */ 960 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 961 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 962 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 963 pParse->nMem += pExtra->nExpr; 964 } 965 #endif 966 967 /* Adjust nResultCol to account for columns that are omitted 968 ** from the sorter by the optimizations in this branch */ 969 pEList = p->pEList; 970 for(i=0; i<pEList->nExpr; i++){ 971 if( pEList->a[i].u.x.iOrderByCol>0 972 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 973 || pEList->a[i].bSorterRef 974 #endif 975 ){ 976 nResultCol--; 977 regOrig = 0; 978 } 979 } 980 981 testcase( regOrig ); 982 testcase( eDest==SRT_Set ); 983 testcase( eDest==SRT_Mem ); 984 testcase( eDest==SRT_Coroutine ); 985 testcase( eDest==SRT_Output ); 986 assert( eDest==SRT_Set || eDest==SRT_Mem 987 || eDest==SRT_Coroutine || eDest==SRT_Output ); 988 } 989 sRowLoadInfo.regResult = regResult; 990 sRowLoadInfo.ecelFlags = ecelFlags; 991 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 992 sRowLoadInfo.pExtra = pExtra; 993 sRowLoadInfo.regExtraResult = regResult + nResultCol; 994 if( pExtra ) nResultCol += pExtra->nExpr; 995 #endif 996 if( p->iLimit 997 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 998 && nPrefixReg>0 999 ){ 1000 assert( pSort!=0 ); 1001 assert( hasDistinct==0 ); 1002 pSort->pDeferredRowLoad = &sRowLoadInfo; 1003 regOrig = 0; 1004 }else{ 1005 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1006 } 1007 } 1008 1009 /* If the DISTINCT keyword was present on the SELECT statement 1010 ** and this row has been seen before, then do not make this row 1011 ** part of the result. 1012 */ 1013 if( hasDistinct ){ 1014 switch( pDistinct->eTnctType ){ 1015 case WHERE_DISTINCT_ORDERED: { 1016 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1017 int iJump; /* Jump destination */ 1018 int regPrev; /* Previous row content */ 1019 1020 /* Allocate space for the previous row */ 1021 regPrev = pParse->nMem+1; 1022 pParse->nMem += nResultCol; 1023 1024 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1025 ** sets the MEM_Cleared bit on the first register of the 1026 ** previous value. This will cause the OP_Ne below to always 1027 ** fail on the first iteration of the loop even if the first 1028 ** row is all NULLs. 1029 */ 1030 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1031 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1032 pOp->opcode = OP_Null; 1033 pOp->p1 = 1; 1034 pOp->p2 = regPrev; 1035 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1036 1037 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1038 for(i=0; i<nResultCol; i++){ 1039 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1040 if( i<nResultCol-1 ){ 1041 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1042 VdbeCoverage(v); 1043 }else{ 1044 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1045 VdbeCoverage(v); 1046 } 1047 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1048 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1049 } 1050 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1051 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1052 break; 1053 } 1054 1055 case WHERE_DISTINCT_UNIQUE: { 1056 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1057 break; 1058 } 1059 1060 default: { 1061 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1062 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1063 regResult); 1064 break; 1065 } 1066 } 1067 if( pSort==0 ){ 1068 codeOffset(v, p->iOffset, iContinue); 1069 } 1070 } 1071 1072 switch( eDest ){ 1073 /* In this mode, write each query result to the key of the temporary 1074 ** table iParm. 1075 */ 1076 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1077 case SRT_Union: { 1078 int r1; 1079 r1 = sqlite3GetTempReg(pParse); 1080 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1081 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1082 sqlite3ReleaseTempReg(pParse, r1); 1083 break; 1084 } 1085 1086 /* Construct a record from the query result, but instead of 1087 ** saving that record, use it as a key to delete elements from 1088 ** the temporary table iParm. 1089 */ 1090 case SRT_Except: { 1091 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1092 break; 1093 } 1094 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1095 1096 /* Store the result as data using a unique key. 1097 */ 1098 case SRT_Fifo: 1099 case SRT_DistFifo: 1100 case SRT_Table: 1101 case SRT_EphemTab: { 1102 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1103 testcase( eDest==SRT_Table ); 1104 testcase( eDest==SRT_EphemTab ); 1105 testcase( eDest==SRT_Fifo ); 1106 testcase( eDest==SRT_DistFifo ); 1107 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1108 #ifndef SQLITE_OMIT_CTE 1109 if( eDest==SRT_DistFifo ){ 1110 /* If the destination is DistFifo, then cursor (iParm+1) is open 1111 ** on an ephemeral index. If the current row is already present 1112 ** in the index, do not write it to the output. If not, add the 1113 ** current row to the index and proceed with writing it to the 1114 ** output table as well. */ 1115 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1116 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1117 VdbeCoverage(v); 1118 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1119 assert( pSort==0 ); 1120 } 1121 #endif 1122 if( pSort ){ 1123 assert( regResult==regOrig ); 1124 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1125 }else{ 1126 int r2 = sqlite3GetTempReg(pParse); 1127 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1128 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1129 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1130 sqlite3ReleaseTempReg(pParse, r2); 1131 } 1132 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1133 break; 1134 } 1135 1136 #ifndef SQLITE_OMIT_SUBQUERY 1137 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1138 ** then there should be a single item on the stack. Write this 1139 ** item into the set table with bogus data. 1140 */ 1141 case SRT_Set: { 1142 if( pSort ){ 1143 /* At first glance you would think we could optimize out the 1144 ** ORDER BY in this case since the order of entries in the set 1145 ** does not matter. But there might be a LIMIT clause, in which 1146 ** case the order does matter */ 1147 pushOntoSorter( 1148 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1149 }else{ 1150 int r1 = sqlite3GetTempReg(pParse); 1151 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1152 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1153 r1, pDest->zAffSdst, nResultCol); 1154 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1155 sqlite3ReleaseTempReg(pParse, r1); 1156 } 1157 break; 1158 } 1159 1160 /* If any row exist in the result set, record that fact and abort. 1161 */ 1162 case SRT_Exists: { 1163 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1164 /* The LIMIT clause will terminate the loop for us */ 1165 break; 1166 } 1167 1168 /* If this is a scalar select that is part of an expression, then 1169 ** store the results in the appropriate memory cell or array of 1170 ** memory cells and break out of the scan loop. 1171 */ 1172 case SRT_Mem: { 1173 if( pSort ){ 1174 assert( nResultCol<=pDest->nSdst ); 1175 pushOntoSorter( 1176 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1177 }else{ 1178 assert( nResultCol==pDest->nSdst ); 1179 assert( regResult==iParm ); 1180 /* The LIMIT clause will jump out of the loop for us */ 1181 } 1182 break; 1183 } 1184 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1185 1186 case SRT_Coroutine: /* Send data to a co-routine */ 1187 case SRT_Output: { /* Return the results */ 1188 testcase( eDest==SRT_Coroutine ); 1189 testcase( eDest==SRT_Output ); 1190 if( pSort ){ 1191 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1192 nPrefixReg); 1193 }else if( eDest==SRT_Coroutine ){ 1194 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1195 }else{ 1196 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1197 } 1198 break; 1199 } 1200 1201 #ifndef SQLITE_OMIT_CTE 1202 /* Write the results into a priority queue that is order according to 1203 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1204 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1205 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1206 ** final OP_Sequence column. The last column is the record as a blob. 1207 */ 1208 case SRT_DistQueue: 1209 case SRT_Queue: { 1210 int nKey; 1211 int r1, r2, r3; 1212 int addrTest = 0; 1213 ExprList *pSO; 1214 pSO = pDest->pOrderBy; 1215 assert( pSO ); 1216 nKey = pSO->nExpr; 1217 r1 = sqlite3GetTempReg(pParse); 1218 r2 = sqlite3GetTempRange(pParse, nKey+2); 1219 r3 = r2+nKey+1; 1220 if( eDest==SRT_DistQueue ){ 1221 /* If the destination is DistQueue, then cursor (iParm+1) is open 1222 ** on a second ephemeral index that holds all values every previously 1223 ** added to the queue. */ 1224 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1225 regResult, nResultCol); 1226 VdbeCoverage(v); 1227 } 1228 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1229 if( eDest==SRT_DistQueue ){ 1230 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1231 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1232 } 1233 for(i=0; i<nKey; i++){ 1234 sqlite3VdbeAddOp2(v, OP_SCopy, 1235 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1236 r2+i); 1237 } 1238 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1239 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1240 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1241 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1242 sqlite3ReleaseTempReg(pParse, r1); 1243 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1244 break; 1245 } 1246 #endif /* SQLITE_OMIT_CTE */ 1247 1248 1249 1250 #if !defined(SQLITE_OMIT_TRIGGER) 1251 /* Discard the results. This is used for SELECT statements inside 1252 ** the body of a TRIGGER. The purpose of such selects is to call 1253 ** user-defined functions that have side effects. We do not care 1254 ** about the actual results of the select. 1255 */ 1256 default: { 1257 assert( eDest==SRT_Discard ); 1258 break; 1259 } 1260 #endif 1261 } 1262 1263 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1264 ** there is a sorter, in which case the sorter has already limited 1265 ** the output for us. 1266 */ 1267 if( pSort==0 && p->iLimit ){ 1268 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1269 } 1270 } 1271 1272 /* 1273 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1274 ** X extra columns. 1275 */ 1276 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1277 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1278 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1279 if( p ){ 1280 p->aSortFlags = (u8*)&p->aColl[N+X]; 1281 p->nKeyField = (u16)N; 1282 p->nAllField = (u16)(N+X); 1283 p->enc = ENC(db); 1284 p->db = db; 1285 p->nRef = 1; 1286 memset(&p[1], 0, nExtra); 1287 }else{ 1288 sqlite3OomFault(db); 1289 } 1290 return p; 1291 } 1292 1293 /* 1294 ** Deallocate a KeyInfo object 1295 */ 1296 void sqlite3KeyInfoUnref(KeyInfo *p){ 1297 if( p ){ 1298 assert( p->nRef>0 ); 1299 p->nRef--; 1300 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1301 } 1302 } 1303 1304 /* 1305 ** Make a new pointer to a KeyInfo object 1306 */ 1307 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1308 if( p ){ 1309 assert( p->nRef>0 ); 1310 p->nRef++; 1311 } 1312 return p; 1313 } 1314 1315 #ifdef SQLITE_DEBUG 1316 /* 1317 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1318 ** can only be changed if this is just a single reference to the object. 1319 ** 1320 ** This routine is used only inside of assert() statements. 1321 */ 1322 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1323 #endif /* SQLITE_DEBUG */ 1324 1325 /* 1326 ** Given an expression list, generate a KeyInfo structure that records 1327 ** the collating sequence for each expression in that expression list. 1328 ** 1329 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1330 ** KeyInfo structure is appropriate for initializing a virtual index to 1331 ** implement that clause. If the ExprList is the result set of a SELECT 1332 ** then the KeyInfo structure is appropriate for initializing a virtual 1333 ** index to implement a DISTINCT test. 1334 ** 1335 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1336 ** function is responsible for seeing that this structure is eventually 1337 ** freed. 1338 */ 1339 KeyInfo *sqlite3KeyInfoFromExprList( 1340 Parse *pParse, /* Parsing context */ 1341 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1342 int iStart, /* Begin with this column of pList */ 1343 int nExtra /* Add this many extra columns to the end */ 1344 ){ 1345 int nExpr; 1346 KeyInfo *pInfo; 1347 struct ExprList_item *pItem; 1348 sqlite3 *db = pParse->db; 1349 int i; 1350 1351 nExpr = pList->nExpr; 1352 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1353 if( pInfo ){ 1354 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1355 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1356 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1357 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1358 } 1359 } 1360 return pInfo; 1361 } 1362 1363 /* 1364 ** Name of the connection operator, used for error messages. 1365 */ 1366 static const char *selectOpName(int id){ 1367 char *z; 1368 switch( id ){ 1369 case TK_ALL: z = "UNION ALL"; break; 1370 case TK_INTERSECT: z = "INTERSECT"; break; 1371 case TK_EXCEPT: z = "EXCEPT"; break; 1372 default: z = "UNION"; break; 1373 } 1374 return z; 1375 } 1376 1377 #ifndef SQLITE_OMIT_EXPLAIN 1378 /* 1379 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1380 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1381 ** where the caption is of the form: 1382 ** 1383 ** "USE TEMP B-TREE FOR xxx" 1384 ** 1385 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1386 ** is determined by the zUsage argument. 1387 */ 1388 static void explainTempTable(Parse *pParse, const char *zUsage){ 1389 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1390 } 1391 1392 /* 1393 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1394 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1395 ** in sqlite3Select() to assign values to structure member variables that 1396 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1397 ** code with #ifndef directives. 1398 */ 1399 # define explainSetInteger(a, b) a = b 1400 1401 #else 1402 /* No-op versions of the explainXXX() functions and macros. */ 1403 # define explainTempTable(y,z) 1404 # define explainSetInteger(y,z) 1405 #endif 1406 1407 1408 /* 1409 ** If the inner loop was generated using a non-null pOrderBy argument, 1410 ** then the results were placed in a sorter. After the loop is terminated 1411 ** we need to run the sorter and output the results. The following 1412 ** routine generates the code needed to do that. 1413 */ 1414 static void generateSortTail( 1415 Parse *pParse, /* Parsing context */ 1416 Select *p, /* The SELECT statement */ 1417 SortCtx *pSort, /* Information on the ORDER BY clause */ 1418 int nColumn, /* Number of columns of data */ 1419 SelectDest *pDest /* Write the sorted results here */ 1420 ){ 1421 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1422 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1423 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1424 int addr; /* Top of output loop. Jump for Next. */ 1425 int addrOnce = 0; 1426 int iTab; 1427 ExprList *pOrderBy = pSort->pOrderBy; 1428 int eDest = pDest->eDest; 1429 int iParm = pDest->iSDParm; 1430 int regRow; 1431 int regRowid; 1432 int iCol; 1433 int nKey; /* Number of key columns in sorter record */ 1434 int iSortTab; /* Sorter cursor to read from */ 1435 int i; 1436 int bSeq; /* True if sorter record includes seq. no. */ 1437 int nRefKey = 0; 1438 struct ExprList_item *aOutEx = p->pEList->a; 1439 1440 assert( addrBreak<0 ); 1441 if( pSort->labelBkOut ){ 1442 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1443 sqlite3VdbeGoto(v, addrBreak); 1444 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1445 } 1446 1447 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1448 /* Open any cursors needed for sorter-reference expressions */ 1449 for(i=0; i<pSort->nDefer; i++){ 1450 Table *pTab = pSort->aDefer[i].pTab; 1451 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1452 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1453 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1454 } 1455 #endif 1456 1457 iTab = pSort->iECursor; 1458 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1459 regRowid = 0; 1460 regRow = pDest->iSdst; 1461 }else{ 1462 regRowid = sqlite3GetTempReg(pParse); 1463 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1464 regRow = sqlite3GetTempReg(pParse); 1465 nColumn = 0; 1466 }else{ 1467 regRow = sqlite3GetTempRange(pParse, nColumn); 1468 } 1469 } 1470 nKey = pOrderBy->nExpr - pSort->nOBSat; 1471 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1472 int regSortOut = ++pParse->nMem; 1473 iSortTab = pParse->nTab++; 1474 if( pSort->labelBkOut ){ 1475 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1476 } 1477 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1478 nKey+1+nColumn+nRefKey); 1479 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1480 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1481 VdbeCoverage(v); 1482 codeOffset(v, p->iOffset, addrContinue); 1483 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1484 bSeq = 0; 1485 }else{ 1486 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1487 codeOffset(v, p->iOffset, addrContinue); 1488 iSortTab = iTab; 1489 bSeq = 1; 1490 } 1491 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1492 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1493 if( aOutEx[i].bSorterRef ) continue; 1494 #endif 1495 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1496 } 1497 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1498 if( pSort->nDefer ){ 1499 int iKey = iCol+1; 1500 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1501 1502 for(i=0; i<pSort->nDefer; i++){ 1503 int iCsr = pSort->aDefer[i].iCsr; 1504 Table *pTab = pSort->aDefer[i].pTab; 1505 int nKey = pSort->aDefer[i].nKey; 1506 1507 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1508 if( HasRowid(pTab) ){ 1509 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1510 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1511 sqlite3VdbeCurrentAddr(v)+1, regKey); 1512 }else{ 1513 int k; 1514 int iJmp; 1515 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1516 for(k=0; k<nKey; k++){ 1517 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1518 } 1519 iJmp = sqlite3VdbeCurrentAddr(v); 1520 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1521 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1522 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1523 } 1524 } 1525 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1526 } 1527 #endif 1528 for(i=nColumn-1; i>=0; i--){ 1529 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1530 if( aOutEx[i].bSorterRef ){ 1531 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1532 }else 1533 #endif 1534 { 1535 int iRead; 1536 if( aOutEx[i].u.x.iOrderByCol ){ 1537 iRead = aOutEx[i].u.x.iOrderByCol-1; 1538 }else{ 1539 iRead = iCol--; 1540 } 1541 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1542 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1543 } 1544 } 1545 switch( eDest ){ 1546 case SRT_Table: 1547 case SRT_EphemTab: { 1548 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1549 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1550 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1551 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1552 break; 1553 } 1554 #ifndef SQLITE_OMIT_SUBQUERY 1555 case SRT_Set: { 1556 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1557 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1558 pDest->zAffSdst, nColumn); 1559 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1560 break; 1561 } 1562 case SRT_Mem: { 1563 /* The LIMIT clause will terminate the loop for us */ 1564 break; 1565 } 1566 #endif 1567 default: { 1568 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1569 testcase( eDest==SRT_Output ); 1570 testcase( eDest==SRT_Coroutine ); 1571 if( eDest==SRT_Output ){ 1572 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1573 }else{ 1574 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1575 } 1576 break; 1577 } 1578 } 1579 if( regRowid ){ 1580 if( eDest==SRT_Set ){ 1581 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1582 }else{ 1583 sqlite3ReleaseTempReg(pParse, regRow); 1584 } 1585 sqlite3ReleaseTempReg(pParse, regRowid); 1586 } 1587 /* The bottom of the loop 1588 */ 1589 sqlite3VdbeResolveLabel(v, addrContinue); 1590 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1591 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1592 }else{ 1593 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1594 } 1595 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1596 sqlite3VdbeResolveLabel(v, addrBreak); 1597 } 1598 1599 /* 1600 ** Return a pointer to a string containing the 'declaration type' of the 1601 ** expression pExpr. The string may be treated as static by the caller. 1602 ** 1603 ** Also try to estimate the size of the returned value and return that 1604 ** result in *pEstWidth. 1605 ** 1606 ** The declaration type is the exact datatype definition extracted from the 1607 ** original CREATE TABLE statement if the expression is a column. The 1608 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1609 ** is considered a column can be complex in the presence of subqueries. The 1610 ** result-set expression in all of the following SELECT statements is 1611 ** considered a column by this function. 1612 ** 1613 ** SELECT col FROM tbl; 1614 ** SELECT (SELECT col FROM tbl; 1615 ** SELECT (SELECT col FROM tbl); 1616 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1617 ** 1618 ** The declaration type for any expression other than a column is NULL. 1619 ** 1620 ** This routine has either 3 or 6 parameters depending on whether or not 1621 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1622 */ 1623 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1624 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1625 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1626 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1627 #endif 1628 static const char *columnTypeImpl( 1629 NameContext *pNC, 1630 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1631 Expr *pExpr 1632 #else 1633 Expr *pExpr, 1634 const char **pzOrigDb, 1635 const char **pzOrigTab, 1636 const char **pzOrigCol 1637 #endif 1638 ){ 1639 char const *zType = 0; 1640 int j; 1641 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1642 char const *zOrigDb = 0; 1643 char const *zOrigTab = 0; 1644 char const *zOrigCol = 0; 1645 #endif 1646 1647 assert( pExpr!=0 ); 1648 assert( pNC->pSrcList!=0 ); 1649 switch( pExpr->op ){ 1650 case TK_COLUMN: { 1651 /* The expression is a column. Locate the table the column is being 1652 ** extracted from in NameContext.pSrcList. This table may be real 1653 ** database table or a subquery. 1654 */ 1655 Table *pTab = 0; /* Table structure column is extracted from */ 1656 Select *pS = 0; /* Select the column is extracted from */ 1657 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1658 while( pNC && !pTab ){ 1659 SrcList *pTabList = pNC->pSrcList; 1660 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1661 if( j<pTabList->nSrc ){ 1662 pTab = pTabList->a[j].pTab; 1663 pS = pTabList->a[j].pSelect; 1664 }else{ 1665 pNC = pNC->pNext; 1666 } 1667 } 1668 1669 if( pTab==0 ){ 1670 /* At one time, code such as "SELECT new.x" within a trigger would 1671 ** cause this condition to run. Since then, we have restructured how 1672 ** trigger code is generated and so this condition is no longer 1673 ** possible. However, it can still be true for statements like 1674 ** the following: 1675 ** 1676 ** CREATE TABLE t1(col INTEGER); 1677 ** SELECT (SELECT t1.col) FROM FROM t1; 1678 ** 1679 ** when columnType() is called on the expression "t1.col" in the 1680 ** sub-select. In this case, set the column type to NULL, even 1681 ** though it should really be "INTEGER". 1682 ** 1683 ** This is not a problem, as the column type of "t1.col" is never 1684 ** used. When columnType() is called on the expression 1685 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1686 ** branch below. */ 1687 break; 1688 } 1689 1690 assert( pTab && pExpr->y.pTab==pTab ); 1691 if( pS ){ 1692 /* The "table" is actually a sub-select or a view in the FROM clause 1693 ** of the SELECT statement. Return the declaration type and origin 1694 ** data for the result-set column of the sub-select. 1695 */ 1696 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1697 /* If iCol is less than zero, then the expression requests the 1698 ** rowid of the sub-select or view. This expression is legal (see 1699 ** test case misc2.2.2) - it always evaluates to NULL. 1700 */ 1701 NameContext sNC; 1702 Expr *p = pS->pEList->a[iCol].pExpr; 1703 sNC.pSrcList = pS->pSrc; 1704 sNC.pNext = pNC; 1705 sNC.pParse = pNC->pParse; 1706 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1707 } 1708 }else{ 1709 /* A real table or a CTE table */ 1710 assert( !pS ); 1711 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1712 if( iCol<0 ) iCol = pTab->iPKey; 1713 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1714 if( iCol<0 ){ 1715 zType = "INTEGER"; 1716 zOrigCol = "rowid"; 1717 }else{ 1718 zOrigCol = pTab->aCol[iCol].zName; 1719 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1720 } 1721 zOrigTab = pTab->zName; 1722 if( pNC->pParse && pTab->pSchema ){ 1723 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1724 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1725 } 1726 #else 1727 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1728 if( iCol<0 ){ 1729 zType = "INTEGER"; 1730 }else{ 1731 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1732 } 1733 #endif 1734 } 1735 break; 1736 } 1737 #ifndef SQLITE_OMIT_SUBQUERY 1738 case TK_SELECT: { 1739 /* The expression is a sub-select. Return the declaration type and 1740 ** origin info for the single column in the result set of the SELECT 1741 ** statement. 1742 */ 1743 NameContext sNC; 1744 Select *pS = pExpr->x.pSelect; 1745 Expr *p = pS->pEList->a[0].pExpr; 1746 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1747 sNC.pSrcList = pS->pSrc; 1748 sNC.pNext = pNC; 1749 sNC.pParse = pNC->pParse; 1750 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1751 break; 1752 } 1753 #endif 1754 } 1755 1756 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1757 if( pzOrigDb ){ 1758 assert( pzOrigTab && pzOrigCol ); 1759 *pzOrigDb = zOrigDb; 1760 *pzOrigTab = zOrigTab; 1761 *pzOrigCol = zOrigCol; 1762 } 1763 #endif 1764 return zType; 1765 } 1766 1767 /* 1768 ** Generate code that will tell the VDBE the declaration types of columns 1769 ** in the result set. 1770 */ 1771 static void generateColumnTypes( 1772 Parse *pParse, /* Parser context */ 1773 SrcList *pTabList, /* List of tables */ 1774 ExprList *pEList /* Expressions defining the result set */ 1775 ){ 1776 #ifndef SQLITE_OMIT_DECLTYPE 1777 Vdbe *v = pParse->pVdbe; 1778 int i; 1779 NameContext sNC; 1780 sNC.pSrcList = pTabList; 1781 sNC.pParse = pParse; 1782 sNC.pNext = 0; 1783 for(i=0; i<pEList->nExpr; i++){ 1784 Expr *p = pEList->a[i].pExpr; 1785 const char *zType; 1786 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1787 const char *zOrigDb = 0; 1788 const char *zOrigTab = 0; 1789 const char *zOrigCol = 0; 1790 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1791 1792 /* The vdbe must make its own copy of the column-type and other 1793 ** column specific strings, in case the schema is reset before this 1794 ** virtual machine is deleted. 1795 */ 1796 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1797 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1798 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1799 #else 1800 zType = columnType(&sNC, p, 0, 0, 0); 1801 #endif 1802 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1803 } 1804 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1805 } 1806 1807 1808 /* 1809 ** Compute the column names for a SELECT statement. 1810 ** 1811 ** The only guarantee that SQLite makes about column names is that if the 1812 ** column has an AS clause assigning it a name, that will be the name used. 1813 ** That is the only documented guarantee. However, countless applications 1814 ** developed over the years have made baseless assumptions about column names 1815 ** and will break if those assumptions changes. Hence, use extreme caution 1816 ** when modifying this routine to avoid breaking legacy. 1817 ** 1818 ** See Also: sqlite3ColumnsFromExprList() 1819 ** 1820 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1821 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1822 ** applications should operate this way. Nevertheless, we need to support the 1823 ** other modes for legacy: 1824 ** 1825 ** short=OFF, full=OFF: Column name is the text of the expression has it 1826 ** originally appears in the SELECT statement. In 1827 ** other words, the zSpan of the result expression. 1828 ** 1829 ** short=ON, full=OFF: (This is the default setting). If the result 1830 ** refers directly to a table column, then the 1831 ** result column name is just the table column 1832 ** name: COLUMN. Otherwise use zSpan. 1833 ** 1834 ** full=ON, short=ANY: If the result refers directly to a table column, 1835 ** then the result column name with the table name 1836 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1837 */ 1838 static void generateColumnNames( 1839 Parse *pParse, /* Parser context */ 1840 Select *pSelect /* Generate column names for this SELECT statement */ 1841 ){ 1842 Vdbe *v = pParse->pVdbe; 1843 int i; 1844 Table *pTab; 1845 SrcList *pTabList; 1846 ExprList *pEList; 1847 sqlite3 *db = pParse->db; 1848 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1849 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1850 1851 #ifndef SQLITE_OMIT_EXPLAIN 1852 /* If this is an EXPLAIN, skip this step */ 1853 if( pParse->explain ){ 1854 return; 1855 } 1856 #endif 1857 1858 if( pParse->colNamesSet ) return; 1859 /* Column names are determined by the left-most term of a compound select */ 1860 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1861 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1862 pTabList = pSelect->pSrc; 1863 pEList = pSelect->pEList; 1864 assert( v!=0 ); 1865 assert( pTabList!=0 ); 1866 pParse->colNamesSet = 1; 1867 fullName = (db->flags & SQLITE_FullColNames)!=0; 1868 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1869 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1870 for(i=0; i<pEList->nExpr; i++){ 1871 Expr *p = pEList->a[i].pExpr; 1872 1873 assert( p!=0 ); 1874 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1875 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1876 if( pEList->a[i].zName ){ 1877 /* An AS clause always takes first priority */ 1878 char *zName = pEList->a[i].zName; 1879 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1880 }else if( srcName && p->op==TK_COLUMN ){ 1881 char *zCol; 1882 int iCol = p->iColumn; 1883 pTab = p->y.pTab; 1884 assert( pTab!=0 ); 1885 if( iCol<0 ) iCol = pTab->iPKey; 1886 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1887 if( iCol<0 ){ 1888 zCol = "rowid"; 1889 }else{ 1890 zCol = pTab->aCol[iCol].zName; 1891 } 1892 if( fullName ){ 1893 char *zName = 0; 1894 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1895 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1896 }else{ 1897 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1898 } 1899 }else{ 1900 const char *z = pEList->a[i].zSpan; 1901 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1902 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1903 } 1904 } 1905 generateColumnTypes(pParse, pTabList, pEList); 1906 } 1907 1908 /* 1909 ** Given an expression list (which is really the list of expressions 1910 ** that form the result set of a SELECT statement) compute appropriate 1911 ** column names for a table that would hold the expression list. 1912 ** 1913 ** All column names will be unique. 1914 ** 1915 ** Only the column names are computed. Column.zType, Column.zColl, 1916 ** and other fields of Column are zeroed. 1917 ** 1918 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1919 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1920 ** 1921 ** The only guarantee that SQLite makes about column names is that if the 1922 ** column has an AS clause assigning it a name, that will be the name used. 1923 ** That is the only documented guarantee. However, countless applications 1924 ** developed over the years have made baseless assumptions about column names 1925 ** and will break if those assumptions changes. Hence, use extreme caution 1926 ** when modifying this routine to avoid breaking legacy. 1927 ** 1928 ** See Also: generateColumnNames() 1929 */ 1930 int sqlite3ColumnsFromExprList( 1931 Parse *pParse, /* Parsing context */ 1932 ExprList *pEList, /* Expr list from which to derive column names */ 1933 i16 *pnCol, /* Write the number of columns here */ 1934 Column **paCol /* Write the new column list here */ 1935 ){ 1936 sqlite3 *db = pParse->db; /* Database connection */ 1937 int i, j; /* Loop counters */ 1938 u32 cnt; /* Index added to make the name unique */ 1939 Column *aCol, *pCol; /* For looping over result columns */ 1940 int nCol; /* Number of columns in the result set */ 1941 char *zName; /* Column name */ 1942 int nName; /* Size of name in zName[] */ 1943 Hash ht; /* Hash table of column names */ 1944 1945 sqlite3HashInit(&ht); 1946 if( pEList ){ 1947 nCol = pEList->nExpr; 1948 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1949 testcase( aCol==0 ); 1950 if( nCol>32767 ) nCol = 32767; 1951 }else{ 1952 nCol = 0; 1953 aCol = 0; 1954 } 1955 assert( nCol==(i16)nCol ); 1956 *pnCol = nCol; 1957 *paCol = aCol; 1958 1959 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1960 /* Get an appropriate name for the column 1961 */ 1962 if( (zName = pEList->a[i].zName)!=0 ){ 1963 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1964 }else{ 1965 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1966 while( pColExpr->op==TK_DOT ){ 1967 pColExpr = pColExpr->pRight; 1968 assert( pColExpr!=0 ); 1969 } 1970 if( pColExpr->op==TK_COLUMN ){ 1971 /* For columns use the column name name */ 1972 int iCol = pColExpr->iColumn; 1973 Table *pTab = pColExpr->y.pTab; 1974 assert( pTab!=0 ); 1975 if( iCol<0 ) iCol = pTab->iPKey; 1976 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1977 }else if( pColExpr->op==TK_ID ){ 1978 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1979 zName = pColExpr->u.zToken; 1980 }else{ 1981 /* Use the original text of the column expression as its name */ 1982 zName = pEList->a[i].zSpan; 1983 } 1984 } 1985 if( zName ){ 1986 zName = sqlite3DbStrDup(db, zName); 1987 }else{ 1988 zName = sqlite3MPrintf(db,"column%d",i+1); 1989 } 1990 1991 /* Make sure the column name is unique. If the name is not unique, 1992 ** append an integer to the name so that it becomes unique. 1993 */ 1994 cnt = 0; 1995 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1996 nName = sqlite3Strlen30(zName); 1997 if( nName>0 ){ 1998 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1999 if( zName[j]==':' ) nName = j; 2000 } 2001 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2002 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2003 } 2004 pCol->zName = zName; 2005 sqlite3ColumnPropertiesFromName(0, pCol); 2006 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2007 sqlite3OomFault(db); 2008 } 2009 } 2010 sqlite3HashClear(&ht); 2011 if( db->mallocFailed ){ 2012 for(j=0; j<i; j++){ 2013 sqlite3DbFree(db, aCol[j].zName); 2014 } 2015 sqlite3DbFree(db, aCol); 2016 *paCol = 0; 2017 *pnCol = 0; 2018 return SQLITE_NOMEM_BKPT; 2019 } 2020 return SQLITE_OK; 2021 } 2022 2023 /* 2024 ** Add type and collation information to a column list based on 2025 ** a SELECT statement. 2026 ** 2027 ** The column list presumably came from selectColumnNamesFromExprList(). 2028 ** The column list has only names, not types or collations. This 2029 ** routine goes through and adds the types and collations. 2030 ** 2031 ** This routine requires that all identifiers in the SELECT 2032 ** statement be resolved. 2033 */ 2034 void sqlite3SelectAddColumnTypeAndCollation( 2035 Parse *pParse, /* Parsing contexts */ 2036 Table *pTab, /* Add column type information to this table */ 2037 Select *pSelect, /* SELECT used to determine types and collations */ 2038 char aff /* Default affinity for columns */ 2039 ){ 2040 sqlite3 *db = pParse->db; 2041 NameContext sNC; 2042 Column *pCol; 2043 CollSeq *pColl; 2044 int i; 2045 Expr *p; 2046 struct ExprList_item *a; 2047 2048 assert( pSelect!=0 ); 2049 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2050 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2051 if( db->mallocFailed ) return; 2052 memset(&sNC, 0, sizeof(sNC)); 2053 sNC.pSrcList = pSelect->pSrc; 2054 a = pSelect->pEList->a; 2055 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2056 const char *zType; 2057 int n, m; 2058 p = a[i].pExpr; 2059 zType = columnType(&sNC, p, 0, 0, 0); 2060 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2061 pCol->affinity = sqlite3ExprAffinity(p); 2062 if( zType ){ 2063 m = sqlite3Strlen30(zType); 2064 n = sqlite3Strlen30(pCol->zName); 2065 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2066 if( pCol->zName ){ 2067 memcpy(&pCol->zName[n+1], zType, m+1); 2068 pCol->colFlags |= COLFLAG_HASTYPE; 2069 } 2070 } 2071 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2072 pColl = sqlite3ExprCollSeq(pParse, p); 2073 if( pColl && pCol->zColl==0 ){ 2074 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2075 } 2076 } 2077 pTab->szTabRow = 1; /* Any non-zero value works */ 2078 } 2079 2080 /* 2081 ** Given a SELECT statement, generate a Table structure that describes 2082 ** the result set of that SELECT. 2083 */ 2084 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2085 Table *pTab; 2086 sqlite3 *db = pParse->db; 2087 u64 savedFlags; 2088 2089 savedFlags = db->flags; 2090 db->flags &= ~(u64)SQLITE_FullColNames; 2091 db->flags |= SQLITE_ShortColNames; 2092 sqlite3SelectPrep(pParse, pSelect, 0); 2093 db->flags = savedFlags; 2094 if( pParse->nErr ) return 0; 2095 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2096 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2097 if( pTab==0 ){ 2098 return 0; 2099 } 2100 pTab->nTabRef = 1; 2101 pTab->zName = 0; 2102 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2103 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2104 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2105 pTab->iPKey = -1; 2106 if( db->mallocFailed ){ 2107 sqlite3DeleteTable(db, pTab); 2108 return 0; 2109 } 2110 return pTab; 2111 } 2112 2113 /* 2114 ** Get a VDBE for the given parser context. Create a new one if necessary. 2115 ** If an error occurs, return NULL and leave a message in pParse. 2116 */ 2117 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2118 if( pParse->pVdbe ){ 2119 return pParse->pVdbe; 2120 } 2121 if( pParse->pToplevel==0 2122 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2123 ){ 2124 pParse->okConstFactor = 1; 2125 } 2126 return sqlite3VdbeCreate(pParse); 2127 } 2128 2129 2130 /* 2131 ** Compute the iLimit and iOffset fields of the SELECT based on the 2132 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2133 ** that appear in the original SQL statement after the LIMIT and OFFSET 2134 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2135 ** are the integer memory register numbers for counters used to compute 2136 ** the limit and offset. If there is no limit and/or offset, then 2137 ** iLimit and iOffset are negative. 2138 ** 2139 ** This routine changes the values of iLimit and iOffset only if 2140 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2141 ** and iOffset should have been preset to appropriate default values (zero) 2142 ** prior to calling this routine. 2143 ** 2144 ** The iOffset register (if it exists) is initialized to the value 2145 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2146 ** iOffset+1 is initialized to LIMIT+OFFSET. 2147 ** 2148 ** Only if pLimit->pLeft!=0 do the limit registers get 2149 ** redefined. The UNION ALL operator uses this property to force 2150 ** the reuse of the same limit and offset registers across multiple 2151 ** SELECT statements. 2152 */ 2153 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2154 Vdbe *v = 0; 2155 int iLimit = 0; 2156 int iOffset; 2157 int n; 2158 Expr *pLimit = p->pLimit; 2159 2160 if( p->iLimit ) return; 2161 2162 /* 2163 ** "LIMIT -1" always shows all rows. There is some 2164 ** controversy about what the correct behavior should be. 2165 ** The current implementation interprets "LIMIT 0" to mean 2166 ** no rows. 2167 */ 2168 if( pLimit ){ 2169 assert( pLimit->op==TK_LIMIT ); 2170 assert( pLimit->pLeft!=0 ); 2171 p->iLimit = iLimit = ++pParse->nMem; 2172 v = sqlite3GetVdbe(pParse); 2173 assert( v!=0 ); 2174 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2175 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2176 VdbeComment((v, "LIMIT counter")); 2177 if( n==0 ){ 2178 sqlite3VdbeGoto(v, iBreak); 2179 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2180 p->nSelectRow = sqlite3LogEst((u64)n); 2181 p->selFlags |= SF_FixedLimit; 2182 } 2183 }else{ 2184 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2185 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2186 VdbeComment((v, "LIMIT counter")); 2187 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2188 } 2189 if( pLimit->pRight ){ 2190 p->iOffset = iOffset = ++pParse->nMem; 2191 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2192 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2193 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2194 VdbeComment((v, "OFFSET counter")); 2195 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2196 VdbeComment((v, "LIMIT+OFFSET")); 2197 } 2198 } 2199 } 2200 2201 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2202 /* 2203 ** Return the appropriate collating sequence for the iCol-th column of 2204 ** the result set for the compound-select statement "p". Return NULL if 2205 ** the column has no default collating sequence. 2206 ** 2207 ** The collating sequence for the compound select is taken from the 2208 ** left-most term of the select that has a collating sequence. 2209 */ 2210 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2211 CollSeq *pRet; 2212 if( p->pPrior ){ 2213 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2214 }else{ 2215 pRet = 0; 2216 } 2217 assert( iCol>=0 ); 2218 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2219 ** have been thrown during name resolution and we would not have gotten 2220 ** this far */ 2221 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2222 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2223 } 2224 return pRet; 2225 } 2226 2227 /* 2228 ** The select statement passed as the second parameter is a compound SELECT 2229 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2230 ** structure suitable for implementing the ORDER BY. 2231 ** 2232 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2233 ** function is responsible for ensuring that this structure is eventually 2234 ** freed. 2235 */ 2236 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2237 ExprList *pOrderBy = p->pOrderBy; 2238 int nOrderBy = p->pOrderBy->nExpr; 2239 sqlite3 *db = pParse->db; 2240 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2241 if( pRet ){ 2242 int i; 2243 for(i=0; i<nOrderBy; i++){ 2244 struct ExprList_item *pItem = &pOrderBy->a[i]; 2245 Expr *pTerm = pItem->pExpr; 2246 CollSeq *pColl; 2247 2248 if( pTerm->flags & EP_Collate ){ 2249 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2250 }else{ 2251 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2252 if( pColl==0 ) pColl = db->pDfltColl; 2253 pOrderBy->a[i].pExpr = 2254 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2255 } 2256 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2257 pRet->aColl[i] = pColl; 2258 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2259 } 2260 } 2261 2262 return pRet; 2263 } 2264 2265 #ifndef SQLITE_OMIT_CTE 2266 /* 2267 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2268 ** query of the form: 2269 ** 2270 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2271 ** \___________/ \_______________/ 2272 ** p->pPrior p 2273 ** 2274 ** 2275 ** There is exactly one reference to the recursive-table in the FROM clause 2276 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2277 ** 2278 ** The setup-query runs once to generate an initial set of rows that go 2279 ** into a Queue table. Rows are extracted from the Queue table one by 2280 ** one. Each row extracted from Queue is output to pDest. Then the single 2281 ** extracted row (now in the iCurrent table) becomes the content of the 2282 ** recursive-table for a recursive-query run. The output of the recursive-query 2283 ** is added back into the Queue table. Then another row is extracted from Queue 2284 ** and the iteration continues until the Queue table is empty. 2285 ** 2286 ** If the compound query operator is UNION then no duplicate rows are ever 2287 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2288 ** that have ever been inserted into Queue and causes duplicates to be 2289 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2290 ** 2291 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2292 ** ORDER BY order and the first entry is extracted for each cycle. Without 2293 ** an ORDER BY, the Queue table is just a FIFO. 2294 ** 2295 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2296 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2297 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2298 ** with a positive value, then the first OFFSET outputs are discarded rather 2299 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2300 ** rows have been skipped. 2301 */ 2302 static void generateWithRecursiveQuery( 2303 Parse *pParse, /* Parsing context */ 2304 Select *p, /* The recursive SELECT to be coded */ 2305 SelectDest *pDest /* What to do with query results */ 2306 ){ 2307 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2308 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2309 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2310 Select *pSetup = p->pPrior; /* The setup query */ 2311 int addrTop; /* Top of the loop */ 2312 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2313 int iCurrent = 0; /* The Current table */ 2314 int regCurrent; /* Register holding Current table */ 2315 int iQueue; /* The Queue table */ 2316 int iDistinct = 0; /* To ensure unique results if UNION */ 2317 int eDest = SRT_Fifo; /* How to write to Queue */ 2318 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2319 int i; /* Loop counter */ 2320 int rc; /* Result code */ 2321 ExprList *pOrderBy; /* The ORDER BY clause */ 2322 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2323 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2324 2325 #ifndef SQLITE_OMIT_WINDOWFUNC 2326 if( p->pWin ){ 2327 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2328 return; 2329 } 2330 #endif 2331 2332 /* Obtain authorization to do a recursive query */ 2333 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2334 2335 /* Process the LIMIT and OFFSET clauses, if they exist */ 2336 addrBreak = sqlite3VdbeMakeLabel(pParse); 2337 p->nSelectRow = 320; /* 4 billion rows */ 2338 computeLimitRegisters(pParse, p, addrBreak); 2339 pLimit = p->pLimit; 2340 regLimit = p->iLimit; 2341 regOffset = p->iOffset; 2342 p->pLimit = 0; 2343 p->iLimit = p->iOffset = 0; 2344 pOrderBy = p->pOrderBy; 2345 2346 /* Locate the cursor number of the Current table */ 2347 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2348 if( pSrc->a[i].fg.isRecursive ){ 2349 iCurrent = pSrc->a[i].iCursor; 2350 break; 2351 } 2352 } 2353 2354 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2355 ** the Distinct table must be exactly one greater than Queue in order 2356 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2357 iQueue = pParse->nTab++; 2358 if( p->op==TK_UNION ){ 2359 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2360 iDistinct = pParse->nTab++; 2361 }else{ 2362 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2363 } 2364 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2365 2366 /* Allocate cursors for Current, Queue, and Distinct. */ 2367 regCurrent = ++pParse->nMem; 2368 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2369 if( pOrderBy ){ 2370 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2371 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2372 (char*)pKeyInfo, P4_KEYINFO); 2373 destQueue.pOrderBy = pOrderBy; 2374 }else{ 2375 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2376 } 2377 VdbeComment((v, "Queue table")); 2378 if( iDistinct ){ 2379 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2380 p->selFlags |= SF_UsesEphemeral; 2381 } 2382 2383 /* Detach the ORDER BY clause from the compound SELECT */ 2384 p->pOrderBy = 0; 2385 2386 /* Store the results of the setup-query in Queue. */ 2387 pSetup->pNext = 0; 2388 ExplainQueryPlan((pParse, 1, "SETUP")); 2389 rc = sqlite3Select(pParse, pSetup, &destQueue); 2390 pSetup->pNext = p; 2391 if( rc ) goto end_of_recursive_query; 2392 2393 /* Find the next row in the Queue and output that row */ 2394 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2395 2396 /* Transfer the next row in Queue over to Current */ 2397 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2398 if( pOrderBy ){ 2399 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2400 }else{ 2401 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2402 } 2403 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2404 2405 /* Output the single row in Current */ 2406 addrCont = sqlite3VdbeMakeLabel(pParse); 2407 codeOffset(v, regOffset, addrCont); 2408 selectInnerLoop(pParse, p, iCurrent, 2409 0, 0, pDest, addrCont, addrBreak); 2410 if( regLimit ){ 2411 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2412 VdbeCoverage(v); 2413 } 2414 sqlite3VdbeResolveLabel(v, addrCont); 2415 2416 /* Execute the recursive SELECT taking the single row in Current as 2417 ** the value for the recursive-table. Store the results in the Queue. 2418 */ 2419 if( p->selFlags & SF_Aggregate ){ 2420 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2421 }else{ 2422 p->pPrior = 0; 2423 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2424 sqlite3Select(pParse, p, &destQueue); 2425 assert( p->pPrior==0 ); 2426 p->pPrior = pSetup; 2427 } 2428 2429 /* Keep running the loop until the Queue is empty */ 2430 sqlite3VdbeGoto(v, addrTop); 2431 sqlite3VdbeResolveLabel(v, addrBreak); 2432 2433 end_of_recursive_query: 2434 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2435 p->pOrderBy = pOrderBy; 2436 p->pLimit = pLimit; 2437 return; 2438 } 2439 #endif /* SQLITE_OMIT_CTE */ 2440 2441 /* Forward references */ 2442 static int multiSelectOrderBy( 2443 Parse *pParse, /* Parsing context */ 2444 Select *p, /* The right-most of SELECTs to be coded */ 2445 SelectDest *pDest /* What to do with query results */ 2446 ); 2447 2448 /* 2449 ** Handle the special case of a compound-select that originates from a 2450 ** VALUES clause. By handling this as a special case, we avoid deep 2451 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2452 ** on a VALUES clause. 2453 ** 2454 ** Because the Select object originates from a VALUES clause: 2455 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2456 ** (2) All terms are UNION ALL 2457 ** (3) There is no ORDER BY clause 2458 ** 2459 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2460 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2461 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2462 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2463 */ 2464 static int multiSelectValues( 2465 Parse *pParse, /* Parsing context */ 2466 Select *p, /* The right-most of SELECTs to be coded */ 2467 SelectDest *pDest /* What to do with query results */ 2468 ){ 2469 int nRow = 1; 2470 int rc = 0; 2471 int bShowAll = p->pLimit==0; 2472 assert( p->selFlags & SF_MultiValue ); 2473 do{ 2474 assert( p->selFlags & SF_Values ); 2475 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2476 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2477 if( p->pWin ) return -1; 2478 if( p->pPrior==0 ) break; 2479 assert( p->pPrior->pNext==p ); 2480 p = p->pPrior; 2481 nRow += bShowAll; 2482 }while(1); 2483 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2484 nRow==1 ? "" : "S")); 2485 while( p ){ 2486 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2487 if( !bShowAll ) break; 2488 p->nSelectRow = nRow; 2489 p = p->pNext; 2490 } 2491 return rc; 2492 } 2493 2494 /* 2495 ** This routine is called to process a compound query form from 2496 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2497 ** INTERSECT 2498 ** 2499 ** "p" points to the right-most of the two queries. the query on the 2500 ** left is p->pPrior. The left query could also be a compound query 2501 ** in which case this routine will be called recursively. 2502 ** 2503 ** The results of the total query are to be written into a destination 2504 ** of type eDest with parameter iParm. 2505 ** 2506 ** Example 1: Consider a three-way compound SQL statement. 2507 ** 2508 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2509 ** 2510 ** This statement is parsed up as follows: 2511 ** 2512 ** SELECT c FROM t3 2513 ** | 2514 ** `-----> SELECT b FROM t2 2515 ** | 2516 ** `------> SELECT a FROM t1 2517 ** 2518 ** The arrows in the diagram above represent the Select.pPrior pointer. 2519 ** So if this routine is called with p equal to the t3 query, then 2520 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2521 ** 2522 ** Notice that because of the way SQLite parses compound SELECTs, the 2523 ** individual selects always group from left to right. 2524 */ 2525 static int multiSelect( 2526 Parse *pParse, /* Parsing context */ 2527 Select *p, /* The right-most of SELECTs to be coded */ 2528 SelectDest *pDest /* What to do with query results */ 2529 ){ 2530 int rc = SQLITE_OK; /* Success code from a subroutine */ 2531 Select *pPrior; /* Another SELECT immediately to our left */ 2532 Vdbe *v; /* Generate code to this VDBE */ 2533 SelectDest dest; /* Alternative data destination */ 2534 Select *pDelete = 0; /* Chain of simple selects to delete */ 2535 sqlite3 *db; /* Database connection */ 2536 2537 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2538 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2539 */ 2540 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2541 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2542 assert( p->selFlags & SF_Compound ); 2543 db = pParse->db; 2544 pPrior = p->pPrior; 2545 dest = *pDest; 2546 if( pPrior->pOrderBy || pPrior->pLimit ){ 2547 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2548 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2549 rc = 1; 2550 goto multi_select_end; 2551 } 2552 2553 v = sqlite3GetVdbe(pParse); 2554 assert( v!=0 ); /* The VDBE already created by calling function */ 2555 2556 /* Create the destination temporary table if necessary 2557 */ 2558 if( dest.eDest==SRT_EphemTab ){ 2559 assert( p->pEList ); 2560 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2561 dest.eDest = SRT_Table; 2562 } 2563 2564 /* Special handling for a compound-select that originates as a VALUES clause. 2565 */ 2566 if( p->selFlags & SF_MultiValue ){ 2567 rc = multiSelectValues(pParse, p, &dest); 2568 if( rc>=0 ) goto multi_select_end; 2569 rc = SQLITE_OK; 2570 } 2571 2572 /* Make sure all SELECTs in the statement have the same number of elements 2573 ** in their result sets. 2574 */ 2575 assert( p->pEList && pPrior->pEList ); 2576 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2577 2578 #ifndef SQLITE_OMIT_CTE 2579 if( p->selFlags & SF_Recursive ){ 2580 generateWithRecursiveQuery(pParse, p, &dest); 2581 }else 2582 #endif 2583 2584 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2585 */ 2586 if( p->pOrderBy ){ 2587 return multiSelectOrderBy(pParse, p, pDest); 2588 }else{ 2589 2590 #ifndef SQLITE_OMIT_EXPLAIN 2591 if( pPrior->pPrior==0 ){ 2592 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2593 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2594 } 2595 #endif 2596 2597 /* Generate code for the left and right SELECT statements. 2598 */ 2599 switch( p->op ){ 2600 case TK_ALL: { 2601 int addr = 0; 2602 int nLimit; 2603 assert( !pPrior->pLimit ); 2604 pPrior->iLimit = p->iLimit; 2605 pPrior->iOffset = p->iOffset; 2606 pPrior->pLimit = p->pLimit; 2607 rc = sqlite3Select(pParse, pPrior, &dest); 2608 p->pLimit = 0; 2609 if( rc ){ 2610 goto multi_select_end; 2611 } 2612 p->pPrior = 0; 2613 p->iLimit = pPrior->iLimit; 2614 p->iOffset = pPrior->iOffset; 2615 if( p->iLimit ){ 2616 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2617 VdbeComment((v, "Jump ahead if LIMIT reached")); 2618 if( p->iOffset ){ 2619 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2620 p->iLimit, p->iOffset+1, p->iOffset); 2621 } 2622 } 2623 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2624 rc = sqlite3Select(pParse, p, &dest); 2625 testcase( rc!=SQLITE_OK ); 2626 pDelete = p->pPrior; 2627 p->pPrior = pPrior; 2628 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2629 if( pPrior->pLimit 2630 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2631 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2632 ){ 2633 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2634 } 2635 if( addr ){ 2636 sqlite3VdbeJumpHere(v, addr); 2637 } 2638 break; 2639 } 2640 case TK_EXCEPT: 2641 case TK_UNION: { 2642 int unionTab; /* Cursor number of the temp table holding result */ 2643 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2644 int priorOp; /* The SRT_ operation to apply to prior selects */ 2645 Expr *pLimit; /* Saved values of p->nLimit */ 2646 int addr; 2647 SelectDest uniondest; 2648 2649 testcase( p->op==TK_EXCEPT ); 2650 testcase( p->op==TK_UNION ); 2651 priorOp = SRT_Union; 2652 if( dest.eDest==priorOp ){ 2653 /* We can reuse a temporary table generated by a SELECT to our 2654 ** right. 2655 */ 2656 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2657 unionTab = dest.iSDParm; 2658 }else{ 2659 /* We will need to create our own temporary table to hold the 2660 ** intermediate results. 2661 */ 2662 unionTab = pParse->nTab++; 2663 assert( p->pOrderBy==0 ); 2664 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2665 assert( p->addrOpenEphm[0] == -1 ); 2666 p->addrOpenEphm[0] = addr; 2667 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2668 assert( p->pEList ); 2669 } 2670 2671 /* Code the SELECT statements to our left 2672 */ 2673 assert( !pPrior->pOrderBy ); 2674 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2675 rc = sqlite3Select(pParse, pPrior, &uniondest); 2676 if( rc ){ 2677 goto multi_select_end; 2678 } 2679 2680 /* Code the current SELECT statement 2681 */ 2682 if( p->op==TK_EXCEPT ){ 2683 op = SRT_Except; 2684 }else{ 2685 assert( p->op==TK_UNION ); 2686 op = SRT_Union; 2687 } 2688 p->pPrior = 0; 2689 pLimit = p->pLimit; 2690 p->pLimit = 0; 2691 uniondest.eDest = op; 2692 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2693 selectOpName(p->op))); 2694 rc = sqlite3Select(pParse, p, &uniondest); 2695 testcase( rc!=SQLITE_OK ); 2696 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2697 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2698 sqlite3ExprListDelete(db, p->pOrderBy); 2699 pDelete = p->pPrior; 2700 p->pPrior = pPrior; 2701 p->pOrderBy = 0; 2702 if( p->op==TK_UNION ){ 2703 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2704 } 2705 sqlite3ExprDelete(db, p->pLimit); 2706 p->pLimit = pLimit; 2707 p->iLimit = 0; 2708 p->iOffset = 0; 2709 2710 /* Convert the data in the temporary table into whatever form 2711 ** it is that we currently need. 2712 */ 2713 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2714 if( dest.eDest!=priorOp ){ 2715 int iCont, iBreak, iStart; 2716 assert( p->pEList ); 2717 iBreak = sqlite3VdbeMakeLabel(pParse); 2718 iCont = sqlite3VdbeMakeLabel(pParse); 2719 computeLimitRegisters(pParse, p, iBreak); 2720 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2721 iStart = sqlite3VdbeCurrentAddr(v); 2722 selectInnerLoop(pParse, p, unionTab, 2723 0, 0, &dest, iCont, iBreak); 2724 sqlite3VdbeResolveLabel(v, iCont); 2725 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2726 sqlite3VdbeResolveLabel(v, iBreak); 2727 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2728 } 2729 break; 2730 } 2731 default: assert( p->op==TK_INTERSECT ); { 2732 int tab1, tab2; 2733 int iCont, iBreak, iStart; 2734 Expr *pLimit; 2735 int addr; 2736 SelectDest intersectdest; 2737 int r1; 2738 2739 /* INTERSECT is different from the others since it requires 2740 ** two temporary tables. Hence it has its own case. Begin 2741 ** by allocating the tables we will need. 2742 */ 2743 tab1 = pParse->nTab++; 2744 tab2 = pParse->nTab++; 2745 assert( p->pOrderBy==0 ); 2746 2747 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2748 assert( p->addrOpenEphm[0] == -1 ); 2749 p->addrOpenEphm[0] = addr; 2750 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2751 assert( p->pEList ); 2752 2753 /* Code the SELECTs to our left into temporary table "tab1". 2754 */ 2755 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2756 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2757 if( rc ){ 2758 goto multi_select_end; 2759 } 2760 2761 /* Code the current SELECT into temporary table "tab2" 2762 */ 2763 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2764 assert( p->addrOpenEphm[1] == -1 ); 2765 p->addrOpenEphm[1] = addr; 2766 p->pPrior = 0; 2767 pLimit = p->pLimit; 2768 p->pLimit = 0; 2769 intersectdest.iSDParm = tab2; 2770 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2771 selectOpName(p->op))); 2772 rc = sqlite3Select(pParse, p, &intersectdest); 2773 testcase( rc!=SQLITE_OK ); 2774 pDelete = p->pPrior; 2775 p->pPrior = pPrior; 2776 if( p->nSelectRow>pPrior->nSelectRow ){ 2777 p->nSelectRow = pPrior->nSelectRow; 2778 } 2779 sqlite3ExprDelete(db, p->pLimit); 2780 p->pLimit = pLimit; 2781 2782 /* Generate code to take the intersection of the two temporary 2783 ** tables. 2784 */ 2785 assert( p->pEList ); 2786 iBreak = sqlite3VdbeMakeLabel(pParse); 2787 iCont = sqlite3VdbeMakeLabel(pParse); 2788 computeLimitRegisters(pParse, p, iBreak); 2789 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2790 r1 = sqlite3GetTempReg(pParse); 2791 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2792 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2793 VdbeCoverage(v); 2794 sqlite3ReleaseTempReg(pParse, r1); 2795 selectInnerLoop(pParse, p, tab1, 2796 0, 0, &dest, iCont, iBreak); 2797 sqlite3VdbeResolveLabel(v, iCont); 2798 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2799 sqlite3VdbeResolveLabel(v, iBreak); 2800 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2801 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2802 break; 2803 } 2804 } 2805 2806 #ifndef SQLITE_OMIT_EXPLAIN 2807 if( p->pNext==0 ){ 2808 ExplainQueryPlanPop(pParse); 2809 } 2810 #endif 2811 } 2812 if( pParse->nErr ) goto multi_select_end; 2813 2814 /* Compute collating sequences used by 2815 ** temporary tables needed to implement the compound select. 2816 ** Attach the KeyInfo structure to all temporary tables. 2817 ** 2818 ** This section is run by the right-most SELECT statement only. 2819 ** SELECT statements to the left always skip this part. The right-most 2820 ** SELECT might also skip this part if it has no ORDER BY clause and 2821 ** no temp tables are required. 2822 */ 2823 if( p->selFlags & SF_UsesEphemeral ){ 2824 int i; /* Loop counter */ 2825 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2826 Select *pLoop; /* For looping through SELECT statements */ 2827 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2828 int nCol; /* Number of columns in result set */ 2829 2830 assert( p->pNext==0 ); 2831 nCol = p->pEList->nExpr; 2832 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2833 if( !pKeyInfo ){ 2834 rc = SQLITE_NOMEM_BKPT; 2835 goto multi_select_end; 2836 } 2837 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2838 *apColl = multiSelectCollSeq(pParse, p, i); 2839 if( 0==*apColl ){ 2840 *apColl = db->pDfltColl; 2841 } 2842 } 2843 2844 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2845 for(i=0; i<2; i++){ 2846 int addr = pLoop->addrOpenEphm[i]; 2847 if( addr<0 ){ 2848 /* If [0] is unused then [1] is also unused. So we can 2849 ** always safely abort as soon as the first unused slot is found */ 2850 assert( pLoop->addrOpenEphm[1]<0 ); 2851 break; 2852 } 2853 sqlite3VdbeChangeP2(v, addr, nCol); 2854 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2855 P4_KEYINFO); 2856 pLoop->addrOpenEphm[i] = -1; 2857 } 2858 } 2859 sqlite3KeyInfoUnref(pKeyInfo); 2860 } 2861 2862 multi_select_end: 2863 pDest->iSdst = dest.iSdst; 2864 pDest->nSdst = dest.nSdst; 2865 sqlite3SelectDelete(db, pDelete); 2866 return rc; 2867 } 2868 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2869 2870 /* 2871 ** Error message for when two or more terms of a compound select have different 2872 ** size result sets. 2873 */ 2874 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2875 if( p->selFlags & SF_Values ){ 2876 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2877 }else{ 2878 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2879 " do not have the same number of result columns", selectOpName(p->op)); 2880 } 2881 } 2882 2883 /* 2884 ** Code an output subroutine for a coroutine implementation of a 2885 ** SELECT statment. 2886 ** 2887 ** The data to be output is contained in pIn->iSdst. There are 2888 ** pIn->nSdst columns to be output. pDest is where the output should 2889 ** be sent. 2890 ** 2891 ** regReturn is the number of the register holding the subroutine 2892 ** return address. 2893 ** 2894 ** If regPrev>0 then it is the first register in a vector that 2895 ** records the previous output. mem[regPrev] is a flag that is false 2896 ** if there has been no previous output. If regPrev>0 then code is 2897 ** generated to suppress duplicates. pKeyInfo is used for comparing 2898 ** keys. 2899 ** 2900 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2901 ** iBreak. 2902 */ 2903 static int generateOutputSubroutine( 2904 Parse *pParse, /* Parsing context */ 2905 Select *p, /* The SELECT statement */ 2906 SelectDest *pIn, /* Coroutine supplying data */ 2907 SelectDest *pDest, /* Where to send the data */ 2908 int regReturn, /* The return address register */ 2909 int regPrev, /* Previous result register. No uniqueness if 0 */ 2910 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2911 int iBreak /* Jump here if we hit the LIMIT */ 2912 ){ 2913 Vdbe *v = pParse->pVdbe; 2914 int iContinue; 2915 int addr; 2916 2917 addr = sqlite3VdbeCurrentAddr(v); 2918 iContinue = sqlite3VdbeMakeLabel(pParse); 2919 2920 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2921 */ 2922 if( regPrev ){ 2923 int addr1, addr2; 2924 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2925 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2926 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2927 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2928 sqlite3VdbeJumpHere(v, addr1); 2929 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2930 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2931 } 2932 if( pParse->db->mallocFailed ) return 0; 2933 2934 /* Suppress the first OFFSET entries if there is an OFFSET clause 2935 */ 2936 codeOffset(v, p->iOffset, iContinue); 2937 2938 assert( pDest->eDest!=SRT_Exists ); 2939 assert( pDest->eDest!=SRT_Table ); 2940 switch( pDest->eDest ){ 2941 /* Store the result as data using a unique key. 2942 */ 2943 case SRT_EphemTab: { 2944 int r1 = sqlite3GetTempReg(pParse); 2945 int r2 = sqlite3GetTempReg(pParse); 2946 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2947 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2948 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2949 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2950 sqlite3ReleaseTempReg(pParse, r2); 2951 sqlite3ReleaseTempReg(pParse, r1); 2952 break; 2953 } 2954 2955 #ifndef SQLITE_OMIT_SUBQUERY 2956 /* If we are creating a set for an "expr IN (SELECT ...)". 2957 */ 2958 case SRT_Set: { 2959 int r1; 2960 testcase( pIn->nSdst>1 ); 2961 r1 = sqlite3GetTempReg(pParse); 2962 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2963 r1, pDest->zAffSdst, pIn->nSdst); 2964 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2965 pIn->iSdst, pIn->nSdst); 2966 sqlite3ReleaseTempReg(pParse, r1); 2967 break; 2968 } 2969 2970 /* If this is a scalar select that is part of an expression, then 2971 ** store the results in the appropriate memory cell and break out 2972 ** of the scan loop. Note that the select might return multiple columns 2973 ** if it is the RHS of a row-value IN operator. 2974 */ 2975 case SRT_Mem: { 2976 if( pParse->nErr==0 ){ 2977 testcase( pIn->nSdst>1 ); 2978 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 2979 } 2980 /* The LIMIT clause will jump out of the loop for us */ 2981 break; 2982 } 2983 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2984 2985 /* The results are stored in a sequence of registers 2986 ** starting at pDest->iSdst. Then the co-routine yields. 2987 */ 2988 case SRT_Coroutine: { 2989 if( pDest->iSdst==0 ){ 2990 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2991 pDest->nSdst = pIn->nSdst; 2992 } 2993 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2994 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2995 break; 2996 } 2997 2998 /* If none of the above, then the result destination must be 2999 ** SRT_Output. This routine is never called with any other 3000 ** destination other than the ones handled above or SRT_Output. 3001 ** 3002 ** For SRT_Output, results are stored in a sequence of registers. 3003 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3004 ** return the next row of result. 3005 */ 3006 default: { 3007 assert( pDest->eDest==SRT_Output ); 3008 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3009 break; 3010 } 3011 } 3012 3013 /* Jump to the end of the loop if the LIMIT is reached. 3014 */ 3015 if( p->iLimit ){ 3016 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3017 } 3018 3019 /* Generate the subroutine return 3020 */ 3021 sqlite3VdbeResolveLabel(v, iContinue); 3022 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3023 3024 return addr; 3025 } 3026 3027 /* 3028 ** Alternative compound select code generator for cases when there 3029 ** is an ORDER BY clause. 3030 ** 3031 ** We assume a query of the following form: 3032 ** 3033 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3034 ** 3035 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3036 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3037 ** co-routines. Then run the co-routines in parallel and merge the results 3038 ** into the output. In addition to the two coroutines (called selectA and 3039 ** selectB) there are 7 subroutines: 3040 ** 3041 ** outA: Move the output of the selectA coroutine into the output 3042 ** of the compound query. 3043 ** 3044 ** outB: Move the output of the selectB coroutine into the output 3045 ** of the compound query. (Only generated for UNION and 3046 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3047 ** appears only in B.) 3048 ** 3049 ** AltB: Called when there is data from both coroutines and A<B. 3050 ** 3051 ** AeqB: Called when there is data from both coroutines and A==B. 3052 ** 3053 ** AgtB: Called when there is data from both coroutines and A>B. 3054 ** 3055 ** EofA: Called when data is exhausted from selectA. 3056 ** 3057 ** EofB: Called when data is exhausted from selectB. 3058 ** 3059 ** The implementation of the latter five subroutines depend on which 3060 ** <operator> is used: 3061 ** 3062 ** 3063 ** UNION ALL UNION EXCEPT INTERSECT 3064 ** ------------- ----------------- -------------- ----------------- 3065 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3066 ** 3067 ** AeqB: outA, nextA nextA nextA outA, nextA 3068 ** 3069 ** AgtB: outB, nextB outB, nextB nextB nextB 3070 ** 3071 ** EofA: outB, nextB outB, nextB halt halt 3072 ** 3073 ** EofB: outA, nextA outA, nextA outA, nextA halt 3074 ** 3075 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3076 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3077 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3078 ** following nextX causes a jump to the end of the select processing. 3079 ** 3080 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3081 ** within the output subroutine. The regPrev register set holds the previously 3082 ** output value. A comparison is made against this value and the output 3083 ** is skipped if the next results would be the same as the previous. 3084 ** 3085 ** The implementation plan is to implement the two coroutines and seven 3086 ** subroutines first, then put the control logic at the bottom. Like this: 3087 ** 3088 ** goto Init 3089 ** coA: coroutine for left query (A) 3090 ** coB: coroutine for right query (B) 3091 ** outA: output one row of A 3092 ** outB: output one row of B (UNION and UNION ALL only) 3093 ** EofA: ... 3094 ** EofB: ... 3095 ** AltB: ... 3096 ** AeqB: ... 3097 ** AgtB: ... 3098 ** Init: initialize coroutine registers 3099 ** yield coA 3100 ** if eof(A) goto EofA 3101 ** yield coB 3102 ** if eof(B) goto EofB 3103 ** Cmpr: Compare A, B 3104 ** Jump AltB, AeqB, AgtB 3105 ** End: ... 3106 ** 3107 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3108 ** actually called using Gosub and they do not Return. EofA and EofB loop 3109 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3110 ** and AgtB jump to either L2 or to one of EofA or EofB. 3111 */ 3112 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3113 static int multiSelectOrderBy( 3114 Parse *pParse, /* Parsing context */ 3115 Select *p, /* The right-most of SELECTs to be coded */ 3116 SelectDest *pDest /* What to do with query results */ 3117 ){ 3118 int i, j; /* Loop counters */ 3119 Select *pPrior; /* Another SELECT immediately to our left */ 3120 Vdbe *v; /* Generate code to this VDBE */ 3121 SelectDest destA; /* Destination for coroutine A */ 3122 SelectDest destB; /* Destination for coroutine B */ 3123 int regAddrA; /* Address register for select-A coroutine */ 3124 int regAddrB; /* Address register for select-B coroutine */ 3125 int addrSelectA; /* Address of the select-A coroutine */ 3126 int addrSelectB; /* Address of the select-B coroutine */ 3127 int regOutA; /* Address register for the output-A subroutine */ 3128 int regOutB; /* Address register for the output-B subroutine */ 3129 int addrOutA; /* Address of the output-A subroutine */ 3130 int addrOutB = 0; /* Address of the output-B subroutine */ 3131 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3132 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3133 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3134 int addrAltB; /* Address of the A<B subroutine */ 3135 int addrAeqB; /* Address of the A==B subroutine */ 3136 int addrAgtB; /* Address of the A>B subroutine */ 3137 int regLimitA; /* Limit register for select-A */ 3138 int regLimitB; /* Limit register for select-A */ 3139 int regPrev; /* A range of registers to hold previous output */ 3140 int savedLimit; /* Saved value of p->iLimit */ 3141 int savedOffset; /* Saved value of p->iOffset */ 3142 int labelCmpr; /* Label for the start of the merge algorithm */ 3143 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3144 int addr1; /* Jump instructions that get retargetted */ 3145 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3146 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3147 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3148 sqlite3 *db; /* Database connection */ 3149 ExprList *pOrderBy; /* The ORDER BY clause */ 3150 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3151 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3152 3153 assert( p->pOrderBy!=0 ); 3154 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3155 db = pParse->db; 3156 v = pParse->pVdbe; 3157 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3158 labelEnd = sqlite3VdbeMakeLabel(pParse); 3159 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3160 3161 3162 /* Patch up the ORDER BY clause 3163 */ 3164 op = p->op; 3165 pPrior = p->pPrior; 3166 assert( pPrior->pOrderBy==0 ); 3167 pOrderBy = p->pOrderBy; 3168 assert( pOrderBy ); 3169 nOrderBy = pOrderBy->nExpr; 3170 3171 /* For operators other than UNION ALL we have to make sure that 3172 ** the ORDER BY clause covers every term of the result set. Add 3173 ** terms to the ORDER BY clause as necessary. 3174 */ 3175 if( op!=TK_ALL ){ 3176 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3177 struct ExprList_item *pItem; 3178 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3179 assert( pItem->u.x.iOrderByCol>0 ); 3180 if( pItem->u.x.iOrderByCol==i ) break; 3181 } 3182 if( j==nOrderBy ){ 3183 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3184 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3185 pNew->flags |= EP_IntValue; 3186 pNew->u.iValue = i; 3187 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3188 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3189 } 3190 } 3191 } 3192 3193 /* Compute the comparison permutation and keyinfo that is used with 3194 ** the permutation used to determine if the next 3195 ** row of results comes from selectA or selectB. Also add explicit 3196 ** collations to the ORDER BY clause terms so that when the subqueries 3197 ** to the right and the left are evaluated, they use the correct 3198 ** collation. 3199 */ 3200 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3201 if( aPermute ){ 3202 struct ExprList_item *pItem; 3203 aPermute[0] = nOrderBy; 3204 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3205 assert( pItem->u.x.iOrderByCol>0 ); 3206 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3207 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3208 } 3209 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3210 }else{ 3211 pKeyMerge = 0; 3212 } 3213 3214 /* Reattach the ORDER BY clause to the query. 3215 */ 3216 p->pOrderBy = pOrderBy; 3217 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3218 3219 /* Allocate a range of temporary registers and the KeyInfo needed 3220 ** for the logic that removes duplicate result rows when the 3221 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3222 */ 3223 if( op==TK_ALL ){ 3224 regPrev = 0; 3225 }else{ 3226 int nExpr = p->pEList->nExpr; 3227 assert( nOrderBy>=nExpr || db->mallocFailed ); 3228 regPrev = pParse->nMem+1; 3229 pParse->nMem += nExpr+1; 3230 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3231 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3232 if( pKeyDup ){ 3233 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3234 for(i=0; i<nExpr; i++){ 3235 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3236 pKeyDup->aSortFlags[i] = 0; 3237 } 3238 } 3239 } 3240 3241 /* Separate the left and the right query from one another 3242 */ 3243 p->pPrior = 0; 3244 pPrior->pNext = 0; 3245 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3246 if( pPrior->pPrior==0 ){ 3247 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3248 } 3249 3250 /* Compute the limit registers */ 3251 computeLimitRegisters(pParse, p, labelEnd); 3252 if( p->iLimit && op==TK_ALL ){ 3253 regLimitA = ++pParse->nMem; 3254 regLimitB = ++pParse->nMem; 3255 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3256 regLimitA); 3257 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3258 }else{ 3259 regLimitA = regLimitB = 0; 3260 } 3261 sqlite3ExprDelete(db, p->pLimit); 3262 p->pLimit = 0; 3263 3264 regAddrA = ++pParse->nMem; 3265 regAddrB = ++pParse->nMem; 3266 regOutA = ++pParse->nMem; 3267 regOutB = ++pParse->nMem; 3268 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3269 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3270 3271 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3272 3273 /* Generate a coroutine to evaluate the SELECT statement to the 3274 ** left of the compound operator - the "A" select. 3275 */ 3276 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3277 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3278 VdbeComment((v, "left SELECT")); 3279 pPrior->iLimit = regLimitA; 3280 ExplainQueryPlan((pParse, 1, "LEFT")); 3281 sqlite3Select(pParse, pPrior, &destA); 3282 sqlite3VdbeEndCoroutine(v, regAddrA); 3283 sqlite3VdbeJumpHere(v, addr1); 3284 3285 /* Generate a coroutine to evaluate the SELECT statement on 3286 ** the right - the "B" select 3287 */ 3288 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3289 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3290 VdbeComment((v, "right SELECT")); 3291 savedLimit = p->iLimit; 3292 savedOffset = p->iOffset; 3293 p->iLimit = regLimitB; 3294 p->iOffset = 0; 3295 ExplainQueryPlan((pParse, 1, "RIGHT")); 3296 sqlite3Select(pParse, p, &destB); 3297 p->iLimit = savedLimit; 3298 p->iOffset = savedOffset; 3299 sqlite3VdbeEndCoroutine(v, regAddrB); 3300 3301 /* Generate a subroutine that outputs the current row of the A 3302 ** select as the next output row of the compound select. 3303 */ 3304 VdbeNoopComment((v, "Output routine for A")); 3305 addrOutA = generateOutputSubroutine(pParse, 3306 p, &destA, pDest, regOutA, 3307 regPrev, pKeyDup, labelEnd); 3308 3309 /* Generate a subroutine that outputs the current row of the B 3310 ** select as the next output row of the compound select. 3311 */ 3312 if( op==TK_ALL || op==TK_UNION ){ 3313 VdbeNoopComment((v, "Output routine for B")); 3314 addrOutB = generateOutputSubroutine(pParse, 3315 p, &destB, pDest, regOutB, 3316 regPrev, pKeyDup, labelEnd); 3317 } 3318 sqlite3KeyInfoUnref(pKeyDup); 3319 3320 /* Generate a subroutine to run when the results from select A 3321 ** are exhausted and only data in select B remains. 3322 */ 3323 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3324 addrEofA_noB = addrEofA = labelEnd; 3325 }else{ 3326 VdbeNoopComment((v, "eof-A subroutine")); 3327 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3328 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3329 VdbeCoverage(v); 3330 sqlite3VdbeGoto(v, addrEofA); 3331 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3332 } 3333 3334 /* Generate a subroutine to run when the results from select B 3335 ** are exhausted and only data in select A remains. 3336 */ 3337 if( op==TK_INTERSECT ){ 3338 addrEofB = addrEofA; 3339 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3340 }else{ 3341 VdbeNoopComment((v, "eof-B subroutine")); 3342 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3343 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3344 sqlite3VdbeGoto(v, addrEofB); 3345 } 3346 3347 /* Generate code to handle the case of A<B 3348 */ 3349 VdbeNoopComment((v, "A-lt-B subroutine")); 3350 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3351 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3352 sqlite3VdbeGoto(v, labelCmpr); 3353 3354 /* Generate code to handle the case of A==B 3355 */ 3356 if( op==TK_ALL ){ 3357 addrAeqB = addrAltB; 3358 }else if( op==TK_INTERSECT ){ 3359 addrAeqB = addrAltB; 3360 addrAltB++; 3361 }else{ 3362 VdbeNoopComment((v, "A-eq-B subroutine")); 3363 addrAeqB = 3364 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3365 sqlite3VdbeGoto(v, labelCmpr); 3366 } 3367 3368 /* Generate code to handle the case of A>B 3369 */ 3370 VdbeNoopComment((v, "A-gt-B subroutine")); 3371 addrAgtB = sqlite3VdbeCurrentAddr(v); 3372 if( op==TK_ALL || op==TK_UNION ){ 3373 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3374 } 3375 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3376 sqlite3VdbeGoto(v, labelCmpr); 3377 3378 /* This code runs once to initialize everything. 3379 */ 3380 sqlite3VdbeJumpHere(v, addr1); 3381 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3382 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3383 3384 /* Implement the main merge loop 3385 */ 3386 sqlite3VdbeResolveLabel(v, labelCmpr); 3387 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3388 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3389 (char*)pKeyMerge, P4_KEYINFO); 3390 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3391 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3392 3393 /* Jump to the this point in order to terminate the query. 3394 */ 3395 sqlite3VdbeResolveLabel(v, labelEnd); 3396 3397 /* Reassembly the compound query so that it will be freed correctly 3398 ** by the calling function */ 3399 if( p->pPrior ){ 3400 sqlite3SelectDelete(db, p->pPrior); 3401 } 3402 p->pPrior = pPrior; 3403 pPrior->pNext = p; 3404 3405 /*** TBD: Insert subroutine calls to close cursors on incomplete 3406 **** subqueries ****/ 3407 ExplainQueryPlanPop(pParse); 3408 return pParse->nErr!=0; 3409 } 3410 #endif 3411 3412 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3413 3414 /* An instance of the SubstContext object describes an substitution edit 3415 ** to be performed on a parse tree. 3416 ** 3417 ** All references to columns in table iTable are to be replaced by corresponding 3418 ** expressions in pEList. 3419 */ 3420 typedef struct SubstContext { 3421 Parse *pParse; /* The parsing context */ 3422 int iTable; /* Replace references to this table */ 3423 int iNewTable; /* New table number */ 3424 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3425 ExprList *pEList; /* Replacement expressions */ 3426 } SubstContext; 3427 3428 /* Forward Declarations */ 3429 static void substExprList(SubstContext*, ExprList*); 3430 static void substSelect(SubstContext*, Select*, int); 3431 3432 /* 3433 ** Scan through the expression pExpr. Replace every reference to 3434 ** a column in table number iTable with a copy of the iColumn-th 3435 ** entry in pEList. (But leave references to the ROWID column 3436 ** unchanged.) 3437 ** 3438 ** This routine is part of the flattening procedure. A subquery 3439 ** whose result set is defined by pEList appears as entry in the 3440 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3441 ** FORM clause entry is iTable. This routine makes the necessary 3442 ** changes to pExpr so that it refers directly to the source table 3443 ** of the subquery rather the result set of the subquery. 3444 */ 3445 static Expr *substExpr( 3446 SubstContext *pSubst, /* Description of the substitution */ 3447 Expr *pExpr /* Expr in which substitution occurs */ 3448 ){ 3449 if( pExpr==0 ) return 0; 3450 if( ExprHasProperty(pExpr, EP_FromJoin) 3451 && pExpr->iRightJoinTable==pSubst->iTable 3452 ){ 3453 pExpr->iRightJoinTable = pSubst->iNewTable; 3454 } 3455 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3456 if( pExpr->iColumn<0 ){ 3457 pExpr->op = TK_NULL; 3458 }else{ 3459 Expr *pNew; 3460 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3461 Expr ifNullRow; 3462 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3463 assert( pExpr->pRight==0 ); 3464 if( sqlite3ExprIsVector(pCopy) ){ 3465 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3466 }else{ 3467 sqlite3 *db = pSubst->pParse->db; 3468 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3469 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3470 ifNullRow.op = TK_IF_NULL_ROW; 3471 ifNullRow.pLeft = pCopy; 3472 ifNullRow.iTable = pSubst->iNewTable; 3473 pCopy = &ifNullRow; 3474 } 3475 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3476 pNew = sqlite3ExprDup(db, pCopy, 0); 3477 if( pNew && pSubst->isLeftJoin ){ 3478 ExprSetProperty(pNew, EP_CanBeNull); 3479 } 3480 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3481 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3482 ExprSetProperty(pNew, EP_FromJoin); 3483 } 3484 sqlite3ExprDelete(db, pExpr); 3485 pExpr = pNew; 3486 3487 /* Ensure that the expression now has an implicit collation sequence, 3488 ** just as it did when it was a column of a view or sub-query. */ 3489 if( pExpr ){ 3490 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3491 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3492 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3493 (pColl ? pColl->zName : "BINARY") 3494 ); 3495 } 3496 ExprClearProperty(pExpr, EP_Collate); 3497 } 3498 } 3499 } 3500 }else{ 3501 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3502 pExpr->iTable = pSubst->iNewTable; 3503 } 3504 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3505 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3506 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3507 substSelect(pSubst, pExpr->x.pSelect, 1); 3508 }else{ 3509 substExprList(pSubst, pExpr->x.pList); 3510 } 3511 #ifndef SQLITE_OMIT_WINDOWFUNC 3512 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3513 Window *pWin = pExpr->y.pWin; 3514 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3515 substExprList(pSubst, pWin->pPartition); 3516 substExprList(pSubst, pWin->pOrderBy); 3517 } 3518 #endif 3519 } 3520 return pExpr; 3521 } 3522 static void substExprList( 3523 SubstContext *pSubst, /* Description of the substitution */ 3524 ExprList *pList /* List to scan and in which to make substitutes */ 3525 ){ 3526 int i; 3527 if( pList==0 ) return; 3528 for(i=0; i<pList->nExpr; i++){ 3529 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3530 } 3531 } 3532 static void substSelect( 3533 SubstContext *pSubst, /* Description of the substitution */ 3534 Select *p, /* SELECT statement in which to make substitutions */ 3535 int doPrior /* Do substitutes on p->pPrior too */ 3536 ){ 3537 SrcList *pSrc; 3538 struct SrcList_item *pItem; 3539 int i; 3540 if( !p ) return; 3541 do{ 3542 substExprList(pSubst, p->pEList); 3543 substExprList(pSubst, p->pGroupBy); 3544 substExprList(pSubst, p->pOrderBy); 3545 p->pHaving = substExpr(pSubst, p->pHaving); 3546 p->pWhere = substExpr(pSubst, p->pWhere); 3547 pSrc = p->pSrc; 3548 assert( pSrc!=0 ); 3549 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3550 substSelect(pSubst, pItem->pSelect, 1); 3551 if( pItem->fg.isTabFunc ){ 3552 substExprList(pSubst, pItem->u1.pFuncArg); 3553 } 3554 } 3555 }while( doPrior && (p = p->pPrior)!=0 ); 3556 } 3557 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3558 3559 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3560 /* 3561 ** This routine attempts to flatten subqueries as a performance optimization. 3562 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3563 ** 3564 ** To understand the concept of flattening, consider the following 3565 ** query: 3566 ** 3567 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3568 ** 3569 ** The default way of implementing this query is to execute the 3570 ** subquery first and store the results in a temporary table, then 3571 ** run the outer query on that temporary table. This requires two 3572 ** passes over the data. Furthermore, because the temporary table 3573 ** has no indices, the WHERE clause on the outer query cannot be 3574 ** optimized. 3575 ** 3576 ** This routine attempts to rewrite queries such as the above into 3577 ** a single flat select, like this: 3578 ** 3579 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3580 ** 3581 ** The code generated for this simplification gives the same result 3582 ** but only has to scan the data once. And because indices might 3583 ** exist on the table t1, a complete scan of the data might be 3584 ** avoided. 3585 ** 3586 ** Flattening is subject to the following constraints: 3587 ** 3588 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3589 ** The subquery and the outer query cannot both be aggregates. 3590 ** 3591 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3592 ** (2) If the subquery is an aggregate then 3593 ** (2a) the outer query must not be a join and 3594 ** (2b) the outer query must not use subqueries 3595 ** other than the one FROM-clause subquery that is a candidate 3596 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3597 ** from 2015-02-09.) 3598 ** 3599 ** (3) If the subquery is the right operand of a LEFT JOIN then 3600 ** (3a) the subquery may not be a join and 3601 ** (3b) the FROM clause of the subquery may not contain a virtual 3602 ** table and 3603 ** (3c) the outer query may not be an aggregate. 3604 ** (3d) the outer query may not be DISTINCT. 3605 ** 3606 ** (4) The subquery can not be DISTINCT. 3607 ** 3608 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3609 ** sub-queries that were excluded from this optimization. Restriction 3610 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3611 ** 3612 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3613 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3614 ** 3615 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3616 ** A FROM clause, consider adding a FROM clause with the special 3617 ** table sqlite_once that consists of a single row containing a 3618 ** single NULL. 3619 ** 3620 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3621 ** 3622 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3623 ** 3624 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3625 ** accidently carried the comment forward until 2014-09-15. Original 3626 ** constraint: "If the subquery is aggregate then the outer query 3627 ** may not use LIMIT." 3628 ** 3629 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3630 ** 3631 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3632 ** a separate restriction deriving from ticket #350. 3633 ** 3634 ** (13) The subquery and outer query may not both use LIMIT. 3635 ** 3636 ** (14) The subquery may not use OFFSET. 3637 ** 3638 ** (15) If the outer query is part of a compound select, then the 3639 ** subquery may not use LIMIT. 3640 ** (See ticket #2339 and ticket [02a8e81d44]). 3641 ** 3642 ** (16) If the outer query is aggregate, then the subquery may not 3643 ** use ORDER BY. (Ticket #2942) This used to not matter 3644 ** until we introduced the group_concat() function. 3645 ** 3646 ** (17) If the subquery is a compound select, then 3647 ** (17a) all compound operators must be a UNION ALL, and 3648 ** (17b) no terms within the subquery compound may be aggregate 3649 ** or DISTINCT, and 3650 ** (17c) every term within the subquery compound must have a FROM clause 3651 ** (17d) the outer query may not be 3652 ** (17d1) aggregate, or 3653 ** (17d2) DISTINCT, or 3654 ** (17d3) a join. 3655 ** 3656 ** The parent and sub-query may contain WHERE clauses. Subject to 3657 ** rules (11), (13) and (14), they may also contain ORDER BY, 3658 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3659 ** operator other than UNION ALL because all the other compound 3660 ** operators have an implied DISTINCT which is disallowed by 3661 ** restriction (4). 3662 ** 3663 ** Also, each component of the sub-query must return the same number 3664 ** of result columns. This is actually a requirement for any compound 3665 ** SELECT statement, but all the code here does is make sure that no 3666 ** such (illegal) sub-query is flattened. The caller will detect the 3667 ** syntax error and return a detailed message. 3668 ** 3669 ** (18) If the sub-query is a compound select, then all terms of the 3670 ** ORDER BY clause of the parent must be simple references to 3671 ** columns of the sub-query. 3672 ** 3673 ** (19) If the subquery uses LIMIT then the outer query may not 3674 ** have a WHERE clause. 3675 ** 3676 ** (20) If the sub-query is a compound select, then it must not use 3677 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3678 ** somewhat by saying that the terms of the ORDER BY clause must 3679 ** appear as unmodified result columns in the outer query. But we 3680 ** have other optimizations in mind to deal with that case. 3681 ** 3682 ** (21) If the subquery uses LIMIT then the outer query may not be 3683 ** DISTINCT. (See ticket [752e1646fc]). 3684 ** 3685 ** (22) The subquery may not be a recursive CTE. 3686 ** 3687 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3688 ** a recursive CTE, then the sub-query may not be a compound query. 3689 ** This restriction is because transforming the 3690 ** parent to a compound query confuses the code that handles 3691 ** recursive queries in multiSelect(). 3692 ** 3693 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3694 ** The subquery may not be an aggregate that uses the built-in min() or 3695 ** or max() functions. (Without this restriction, a query like: 3696 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3697 ** return the value X for which Y was maximal.) 3698 ** 3699 ** (25) If either the subquery or the parent query contains a window 3700 ** function in the select list or ORDER BY clause, flattening 3701 ** is not attempted. 3702 ** 3703 ** 3704 ** In this routine, the "p" parameter is a pointer to the outer query. 3705 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3706 ** uses aggregates. 3707 ** 3708 ** If flattening is not attempted, this routine is a no-op and returns 0. 3709 ** If flattening is attempted this routine returns 1. 3710 ** 3711 ** All of the expression analysis must occur on both the outer query and 3712 ** the subquery before this routine runs. 3713 */ 3714 static int flattenSubquery( 3715 Parse *pParse, /* Parsing context */ 3716 Select *p, /* The parent or outer SELECT statement */ 3717 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3718 int isAgg /* True if outer SELECT uses aggregate functions */ 3719 ){ 3720 const char *zSavedAuthContext = pParse->zAuthContext; 3721 Select *pParent; /* Current UNION ALL term of the other query */ 3722 Select *pSub; /* The inner query or "subquery" */ 3723 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3724 SrcList *pSrc; /* The FROM clause of the outer query */ 3725 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3726 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3727 int iNewParent = -1;/* Replacement table for iParent */ 3728 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3729 int i; /* Loop counter */ 3730 Expr *pWhere; /* The WHERE clause */ 3731 struct SrcList_item *pSubitem; /* The subquery */ 3732 sqlite3 *db = pParse->db; 3733 3734 /* Check to see if flattening is permitted. Return 0 if not. 3735 */ 3736 assert( p!=0 ); 3737 assert( p->pPrior==0 ); 3738 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3739 pSrc = p->pSrc; 3740 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3741 pSubitem = &pSrc->a[iFrom]; 3742 iParent = pSubitem->iCursor; 3743 pSub = pSubitem->pSelect; 3744 assert( pSub!=0 ); 3745 3746 #ifndef SQLITE_OMIT_WINDOWFUNC 3747 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3748 #endif 3749 3750 pSubSrc = pSub->pSrc; 3751 assert( pSubSrc ); 3752 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3753 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3754 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3755 ** became arbitrary expressions, we were forced to add restrictions (13) 3756 ** and (14). */ 3757 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3758 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3759 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3760 return 0; /* Restriction (15) */ 3761 } 3762 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3763 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3764 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3765 return 0; /* Restrictions (8)(9) */ 3766 } 3767 if( p->pOrderBy && pSub->pOrderBy ){ 3768 return 0; /* Restriction (11) */ 3769 } 3770 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3771 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3772 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3773 return 0; /* Restriction (21) */ 3774 } 3775 if( pSub->selFlags & (SF_Recursive) ){ 3776 return 0; /* Restrictions (22) */ 3777 } 3778 3779 /* 3780 ** If the subquery is the right operand of a LEFT JOIN, then the 3781 ** subquery may not be a join itself (3a). Example of why this is not 3782 ** allowed: 3783 ** 3784 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3785 ** 3786 ** If we flatten the above, we would get 3787 ** 3788 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3789 ** 3790 ** which is not at all the same thing. 3791 ** 3792 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3793 ** query cannot be an aggregate. (3c) This is an artifact of the way 3794 ** aggregates are processed - there is no mechanism to determine if 3795 ** the LEFT JOIN table should be all-NULL. 3796 ** 3797 ** See also tickets #306, #350, and #3300. 3798 */ 3799 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3800 isLeftJoin = 1; 3801 if( pSubSrc->nSrc>1 /* (3a) */ 3802 || isAgg /* (3b) */ 3803 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3804 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3805 ){ 3806 return 0; 3807 } 3808 } 3809 #ifdef SQLITE_EXTRA_IFNULLROW 3810 else if( iFrom>0 && !isAgg ){ 3811 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3812 ** every reference to any result column from subquery in a join, even 3813 ** though they are not necessary. This will stress-test the OP_IfNullRow 3814 ** opcode. */ 3815 isLeftJoin = -1; 3816 } 3817 #endif 3818 3819 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3820 ** use only the UNION ALL operator. And none of the simple select queries 3821 ** that make up the compound SELECT are allowed to be aggregate or distinct 3822 ** queries. 3823 */ 3824 if( pSub->pPrior ){ 3825 if( pSub->pOrderBy ){ 3826 return 0; /* Restriction (20) */ 3827 } 3828 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3829 return 0; /* (17d1), (17d2), or (17d3) */ 3830 } 3831 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3832 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3833 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3834 assert( pSub->pSrc!=0 ); 3835 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3836 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3837 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3838 || pSub1->pSrc->nSrc<1 /* (17c) */ 3839 ){ 3840 return 0; 3841 } 3842 testcase( pSub1->pSrc->nSrc>1 ); 3843 } 3844 3845 /* Restriction (18). */ 3846 if( p->pOrderBy ){ 3847 int ii; 3848 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3849 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3850 } 3851 } 3852 } 3853 3854 /* Ex-restriction (23): 3855 ** The only way that the recursive part of a CTE can contain a compound 3856 ** subquery is for the subquery to be one term of a join. But if the 3857 ** subquery is a join, then the flattening has already been stopped by 3858 ** restriction (17d3) 3859 */ 3860 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3861 3862 /***** If we reach this point, flattening is permitted. *****/ 3863 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3864 pSub->selId, pSub, iFrom)); 3865 3866 /* Authorize the subquery */ 3867 pParse->zAuthContext = pSubitem->zName; 3868 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3869 testcase( i==SQLITE_DENY ); 3870 pParse->zAuthContext = zSavedAuthContext; 3871 3872 /* If the sub-query is a compound SELECT statement, then (by restrictions 3873 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3874 ** be of the form: 3875 ** 3876 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3877 ** 3878 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3879 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3880 ** OFFSET clauses and joins them to the left-hand-side of the original 3881 ** using UNION ALL operators. In this case N is the number of simple 3882 ** select statements in the compound sub-query. 3883 ** 3884 ** Example: 3885 ** 3886 ** SELECT a+1 FROM ( 3887 ** SELECT x FROM tab 3888 ** UNION ALL 3889 ** SELECT y FROM tab 3890 ** UNION ALL 3891 ** SELECT abs(z*2) FROM tab2 3892 ** ) WHERE a!=5 ORDER BY 1 3893 ** 3894 ** Transformed into: 3895 ** 3896 ** SELECT x+1 FROM tab WHERE x+1!=5 3897 ** UNION ALL 3898 ** SELECT y+1 FROM tab WHERE y+1!=5 3899 ** UNION ALL 3900 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3901 ** ORDER BY 1 3902 ** 3903 ** We call this the "compound-subquery flattening". 3904 */ 3905 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3906 Select *pNew; 3907 ExprList *pOrderBy = p->pOrderBy; 3908 Expr *pLimit = p->pLimit; 3909 Select *pPrior = p->pPrior; 3910 p->pOrderBy = 0; 3911 p->pSrc = 0; 3912 p->pPrior = 0; 3913 p->pLimit = 0; 3914 pNew = sqlite3SelectDup(db, p, 0); 3915 p->pLimit = pLimit; 3916 p->pOrderBy = pOrderBy; 3917 p->pSrc = pSrc; 3918 p->op = TK_ALL; 3919 if( pNew==0 ){ 3920 p->pPrior = pPrior; 3921 }else{ 3922 pNew->pPrior = pPrior; 3923 if( pPrior ) pPrior->pNext = pNew; 3924 pNew->pNext = p; 3925 p->pPrior = pNew; 3926 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3927 " creates %u as peer\n",pNew->selId)); 3928 } 3929 if( db->mallocFailed ) return 1; 3930 } 3931 3932 /* Begin flattening the iFrom-th entry of the FROM clause 3933 ** in the outer query. 3934 */ 3935 pSub = pSub1 = pSubitem->pSelect; 3936 3937 /* Delete the transient table structure associated with the 3938 ** subquery 3939 */ 3940 sqlite3DbFree(db, pSubitem->zDatabase); 3941 sqlite3DbFree(db, pSubitem->zName); 3942 sqlite3DbFree(db, pSubitem->zAlias); 3943 pSubitem->zDatabase = 0; 3944 pSubitem->zName = 0; 3945 pSubitem->zAlias = 0; 3946 pSubitem->pSelect = 0; 3947 3948 /* Defer deleting the Table object associated with the 3949 ** subquery until code generation is 3950 ** complete, since there may still exist Expr.pTab entries that 3951 ** refer to the subquery even after flattening. Ticket #3346. 3952 ** 3953 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3954 */ 3955 if( ALWAYS(pSubitem->pTab!=0) ){ 3956 Table *pTabToDel = pSubitem->pTab; 3957 if( pTabToDel->nTabRef==1 ){ 3958 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3959 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3960 pToplevel->pZombieTab = pTabToDel; 3961 }else{ 3962 pTabToDel->nTabRef--; 3963 } 3964 pSubitem->pTab = 0; 3965 } 3966 3967 /* The following loop runs once for each term in a compound-subquery 3968 ** flattening (as described above). If we are doing a different kind 3969 ** of flattening - a flattening other than a compound-subquery flattening - 3970 ** then this loop only runs once. 3971 ** 3972 ** This loop moves all of the FROM elements of the subquery into the 3973 ** the FROM clause of the outer query. Before doing this, remember 3974 ** the cursor number for the original outer query FROM element in 3975 ** iParent. The iParent cursor will never be used. Subsequent code 3976 ** will scan expressions looking for iParent references and replace 3977 ** those references with expressions that resolve to the subquery FROM 3978 ** elements we are now copying in. 3979 */ 3980 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3981 int nSubSrc; 3982 u8 jointype = 0; 3983 assert( pSub!=0 ); 3984 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3985 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3986 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3987 3988 if( pSrc ){ 3989 assert( pParent==p ); /* First time through the loop */ 3990 jointype = pSubitem->fg.jointype; 3991 }else{ 3992 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3993 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 3994 if( pSrc==0 ) break; 3995 pParent->pSrc = pSrc; 3996 } 3997 3998 /* The subquery uses a single slot of the FROM clause of the outer 3999 ** query. If the subquery has more than one element in its FROM clause, 4000 ** then expand the outer query to make space for it to hold all elements 4001 ** of the subquery. 4002 ** 4003 ** Example: 4004 ** 4005 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4006 ** 4007 ** The outer query has 3 slots in its FROM clause. One slot of the 4008 ** outer query (the middle slot) is used by the subquery. The next 4009 ** block of code will expand the outer query FROM clause to 4 slots. 4010 ** The middle slot is expanded to two slots in order to make space 4011 ** for the two elements in the FROM clause of the subquery. 4012 */ 4013 if( nSubSrc>1 ){ 4014 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4015 if( pSrc==0 ) break; 4016 pParent->pSrc = pSrc; 4017 } 4018 4019 /* Transfer the FROM clause terms from the subquery into the 4020 ** outer query. 4021 */ 4022 for(i=0; i<nSubSrc; i++){ 4023 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4024 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4025 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4026 iNewParent = pSubSrc->a[i].iCursor; 4027 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4028 } 4029 pSrc->a[iFrom].fg.jointype = jointype; 4030 4031 /* Now begin substituting subquery result set expressions for 4032 ** references to the iParent in the outer query. 4033 ** 4034 ** Example: 4035 ** 4036 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4037 ** \ \_____________ subquery __________/ / 4038 ** \_____________________ outer query ______________________________/ 4039 ** 4040 ** We look at every expression in the outer query and every place we see 4041 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4042 */ 4043 if( pSub->pOrderBy ){ 4044 /* At this point, any non-zero iOrderByCol values indicate that the 4045 ** ORDER BY column expression is identical to the iOrderByCol'th 4046 ** expression returned by SELECT statement pSub. Since these values 4047 ** do not necessarily correspond to columns in SELECT statement pParent, 4048 ** zero them before transfering the ORDER BY clause. 4049 ** 4050 ** Not doing this may cause an error if a subsequent call to this 4051 ** function attempts to flatten a compound sub-query into pParent 4052 ** (the only way this can happen is if the compound sub-query is 4053 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4054 ExprList *pOrderBy = pSub->pOrderBy; 4055 for(i=0; i<pOrderBy->nExpr; i++){ 4056 pOrderBy->a[i].u.x.iOrderByCol = 0; 4057 } 4058 assert( pParent->pOrderBy==0 ); 4059 pParent->pOrderBy = pOrderBy; 4060 pSub->pOrderBy = 0; 4061 } 4062 pWhere = pSub->pWhere; 4063 pSub->pWhere = 0; 4064 if( isLeftJoin>0 ){ 4065 sqlite3SetJoinExpr(pWhere, iNewParent); 4066 } 4067 pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere); 4068 if( db->mallocFailed==0 ){ 4069 SubstContext x; 4070 x.pParse = pParse; 4071 x.iTable = iParent; 4072 x.iNewTable = iNewParent; 4073 x.isLeftJoin = isLeftJoin; 4074 x.pEList = pSub->pEList; 4075 substSelect(&x, pParent, 0); 4076 } 4077 4078 /* The flattened query is a compound if either the inner or the 4079 ** outer query is a compound. */ 4080 pParent->selFlags |= pSub->selFlags & SF_Compound; 4081 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4082 4083 /* 4084 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4085 ** 4086 ** One is tempted to try to add a and b to combine the limits. But this 4087 ** does not work if either limit is negative. 4088 */ 4089 if( pSub->pLimit ){ 4090 pParent->pLimit = pSub->pLimit; 4091 pSub->pLimit = 0; 4092 } 4093 } 4094 4095 /* Finially, delete what is left of the subquery and return 4096 ** success. 4097 */ 4098 sqlite3SelectDelete(db, pSub1); 4099 4100 #if SELECTTRACE_ENABLED 4101 if( sqlite3SelectTrace & 0x100 ){ 4102 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4103 sqlite3TreeViewSelect(0, p, 0); 4104 } 4105 #endif 4106 4107 return 1; 4108 } 4109 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4110 4111 /* 4112 ** A structure to keep track of all of the column values that are fixed to 4113 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4114 */ 4115 typedef struct WhereConst WhereConst; 4116 struct WhereConst { 4117 Parse *pParse; /* Parsing context */ 4118 int nConst; /* Number for COLUMN=CONSTANT terms */ 4119 int nChng; /* Number of times a constant is propagated */ 4120 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4121 }; 4122 4123 /* 4124 ** Add a new entry to the pConst object. Except, do not add duplicate 4125 ** pColumn entires. 4126 */ 4127 static void constInsert( 4128 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4129 Expr *pColumn, /* The COLUMN part of the constraint */ 4130 Expr *pValue /* The VALUE part of the constraint */ 4131 ){ 4132 int i; 4133 assert( pColumn->op==TK_COLUMN ); 4134 4135 /* 2018-10-25 ticket [cf5ed20f] 4136 ** Make sure the same pColumn is not inserted more than once */ 4137 for(i=0; i<pConst->nConst; i++){ 4138 const Expr *pExpr = pConst->apExpr[i*2]; 4139 assert( pExpr->op==TK_COLUMN ); 4140 if( pExpr->iTable==pColumn->iTable 4141 && pExpr->iColumn==pColumn->iColumn 4142 ){ 4143 return; /* Already present. Return without doing anything. */ 4144 } 4145 } 4146 4147 pConst->nConst++; 4148 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4149 pConst->nConst*2*sizeof(Expr*)); 4150 if( pConst->apExpr==0 ){ 4151 pConst->nConst = 0; 4152 }else{ 4153 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft; 4154 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4155 pConst->apExpr[pConst->nConst*2-1] = pValue; 4156 } 4157 } 4158 4159 /* 4160 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4161 ** is a constant expression and where the term must be true because it 4162 ** is part of the AND-connected terms of the expression. For each term 4163 ** found, add it to the pConst structure. 4164 */ 4165 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4166 Expr *pRight, *pLeft; 4167 if( pExpr==0 ) return; 4168 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4169 if( pExpr->op==TK_AND ){ 4170 findConstInWhere(pConst, pExpr->pRight); 4171 findConstInWhere(pConst, pExpr->pLeft); 4172 return; 4173 } 4174 if( pExpr->op!=TK_EQ ) return; 4175 pRight = pExpr->pRight; 4176 pLeft = pExpr->pLeft; 4177 assert( pRight!=0 ); 4178 assert( pLeft!=0 ); 4179 if( pRight->op==TK_COLUMN 4180 && !ExprHasProperty(pRight, EP_FixedCol) 4181 && sqlite3ExprIsConstant(pLeft) 4182 && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) 4183 ){ 4184 constInsert(pConst, pRight, pLeft); 4185 }else 4186 if( pLeft->op==TK_COLUMN 4187 && !ExprHasProperty(pLeft, EP_FixedCol) 4188 && sqlite3ExprIsConstant(pRight) 4189 && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) 4190 ){ 4191 constInsert(pConst, pLeft, pRight); 4192 } 4193 } 4194 4195 /* 4196 ** This is a Walker expression callback. pExpr is a candidate expression 4197 ** to be replaced by a value. If pExpr is equivalent to one of the 4198 ** columns named in pWalker->u.pConst, then overwrite it with its 4199 ** corresponding value. 4200 */ 4201 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4202 int i; 4203 WhereConst *pConst; 4204 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4205 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4206 pConst = pWalker->u.pConst; 4207 for(i=0; i<pConst->nConst; i++){ 4208 Expr *pColumn = pConst->apExpr[i*2]; 4209 if( pColumn==pExpr ) continue; 4210 if( pColumn->iTable!=pExpr->iTable ) continue; 4211 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4212 /* A match is found. Add the EP_FixedCol property */ 4213 pConst->nChng++; 4214 ExprClearProperty(pExpr, EP_Leaf); 4215 ExprSetProperty(pExpr, EP_FixedCol); 4216 assert( pExpr->pLeft==0 ); 4217 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4218 break; 4219 } 4220 return WRC_Prune; 4221 } 4222 4223 /* 4224 ** The WHERE-clause constant propagation optimization. 4225 ** 4226 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4227 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level 4228 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN) 4229 ** then throughout the query replace all other occurrences of COLUMN 4230 ** with CONSTANT within the WHERE clause. 4231 ** 4232 ** For example, the query: 4233 ** 4234 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4235 ** 4236 ** Is transformed into 4237 ** 4238 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4239 ** 4240 ** Return true if any transformations where made and false if not. 4241 ** 4242 ** Implementation note: Constant propagation is tricky due to affinity 4243 ** and collating sequence interactions. Consider this example: 4244 ** 4245 ** CREATE TABLE t1(a INT,b TEXT); 4246 ** INSERT INTO t1 VALUES(123,'0123'); 4247 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4248 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4249 ** 4250 ** The two SELECT statements above should return different answers. b=a 4251 ** is alway true because the comparison uses numeric affinity, but b=123 4252 ** is false because it uses text affinity and '0123' is not the same as '123'. 4253 ** To work around this, the expression tree is not actually changed from 4254 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4255 ** and the "123" value is hung off of the pLeft pointer. Code generator 4256 ** routines know to generate the constant "123" instead of looking up the 4257 ** column value. Also, to avoid collation problems, this optimization is 4258 ** only attempted if the "a=123" term uses the default BINARY collation. 4259 */ 4260 static int propagateConstants( 4261 Parse *pParse, /* The parsing context */ 4262 Select *p /* The query in which to propagate constants */ 4263 ){ 4264 WhereConst x; 4265 Walker w; 4266 int nChng = 0; 4267 x.pParse = pParse; 4268 do{ 4269 x.nConst = 0; 4270 x.nChng = 0; 4271 x.apExpr = 0; 4272 findConstInWhere(&x, p->pWhere); 4273 if( x.nConst ){ 4274 memset(&w, 0, sizeof(w)); 4275 w.pParse = pParse; 4276 w.xExprCallback = propagateConstantExprRewrite; 4277 w.xSelectCallback = sqlite3SelectWalkNoop; 4278 w.xSelectCallback2 = 0; 4279 w.walkerDepth = 0; 4280 w.u.pConst = &x; 4281 sqlite3WalkExpr(&w, p->pWhere); 4282 sqlite3DbFree(x.pParse->db, x.apExpr); 4283 nChng += x.nChng; 4284 } 4285 }while( x.nChng ); 4286 return nChng; 4287 } 4288 4289 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4290 /* 4291 ** Make copies of relevant WHERE clause terms of the outer query into 4292 ** the WHERE clause of subquery. Example: 4293 ** 4294 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4295 ** 4296 ** Transformed into: 4297 ** 4298 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4299 ** WHERE x=5 AND y=10; 4300 ** 4301 ** The hope is that the terms added to the inner query will make it more 4302 ** efficient. 4303 ** 4304 ** Do not attempt this optimization if: 4305 ** 4306 ** (1) (** This restriction was removed on 2017-09-29. We used to 4307 ** disallow this optimization for aggregate subqueries, but now 4308 ** it is allowed by putting the extra terms on the HAVING clause. 4309 ** The added HAVING clause is pointless if the subquery lacks 4310 ** a GROUP BY clause. But such a HAVING clause is also harmless 4311 ** so there does not appear to be any reason to add extra logic 4312 ** to suppress it. **) 4313 ** 4314 ** (2) The inner query is the recursive part of a common table expression. 4315 ** 4316 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4317 ** clause would change the meaning of the LIMIT). 4318 ** 4319 ** (4) The inner query is the right operand of a LEFT JOIN and the 4320 ** expression to be pushed down does not come from the ON clause 4321 ** on that LEFT JOIN. 4322 ** 4323 ** (5) The WHERE clause expression originates in the ON or USING clause 4324 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4325 ** left join. An example: 4326 ** 4327 ** SELECT * 4328 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4329 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4330 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4331 ** 4332 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4333 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4334 ** then the (1,1,NULL) row would be suppressed. 4335 ** 4336 ** (6) The inner query features one or more window-functions (since 4337 ** changes to the WHERE clause of the inner query could change the 4338 ** window over which window functions are calculated). 4339 ** 4340 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4341 ** terms are duplicated into the subquery. 4342 */ 4343 static int pushDownWhereTerms( 4344 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4345 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4346 Expr *pWhere, /* The WHERE clause of the outer query */ 4347 int iCursor, /* Cursor number of the subquery */ 4348 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4349 ){ 4350 Expr *pNew; 4351 int nChng = 0; 4352 if( pWhere==0 ) return 0; 4353 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4354 4355 #ifndef SQLITE_OMIT_WINDOWFUNC 4356 if( pSubq->pWin ) return 0; /* restriction (6) */ 4357 #endif 4358 4359 #ifdef SQLITE_DEBUG 4360 /* Only the first term of a compound can have a WITH clause. But make 4361 ** sure no other terms are marked SF_Recursive in case something changes 4362 ** in the future. 4363 */ 4364 { 4365 Select *pX; 4366 for(pX=pSubq; pX; pX=pX->pPrior){ 4367 assert( (pX->selFlags & (SF_Recursive))==0 ); 4368 } 4369 } 4370 #endif 4371 4372 if( pSubq->pLimit!=0 ){ 4373 return 0; /* restriction (3) */ 4374 } 4375 while( pWhere->op==TK_AND ){ 4376 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4377 iCursor, isLeftJoin); 4378 pWhere = pWhere->pLeft; 4379 } 4380 if( isLeftJoin 4381 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4382 || pWhere->iRightJoinTable!=iCursor) 4383 ){ 4384 return 0; /* restriction (4) */ 4385 } 4386 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4387 return 0; /* restriction (5) */ 4388 } 4389 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4390 nChng++; 4391 while( pSubq ){ 4392 SubstContext x; 4393 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4394 unsetJoinExpr(pNew, -1); 4395 x.pParse = pParse; 4396 x.iTable = iCursor; 4397 x.iNewTable = iCursor; 4398 x.isLeftJoin = 0; 4399 x.pEList = pSubq->pEList; 4400 pNew = substExpr(&x, pNew); 4401 if( pSubq->selFlags & SF_Aggregate ){ 4402 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4403 }else{ 4404 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4405 } 4406 pSubq = pSubq->pPrior; 4407 } 4408 } 4409 return nChng; 4410 } 4411 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4412 4413 /* 4414 ** The pFunc is the only aggregate function in the query. Check to see 4415 ** if the query is a candidate for the min/max optimization. 4416 ** 4417 ** If the query is a candidate for the min/max optimization, then set 4418 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4419 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4420 ** whether pFunc is a min() or max() function. 4421 ** 4422 ** If the query is not a candidate for the min/max optimization, return 4423 ** WHERE_ORDERBY_NORMAL (which must be zero). 4424 ** 4425 ** This routine must be called after aggregate functions have been 4426 ** located but before their arguments have been subjected to aggregate 4427 ** analysis. 4428 */ 4429 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4430 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4431 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4432 const char *zFunc; /* Name of aggregate function pFunc */ 4433 ExprList *pOrderBy; 4434 u8 sortFlags; 4435 4436 assert( *ppMinMax==0 ); 4437 assert( pFunc->op==TK_AGG_FUNCTION ); 4438 assert( !IsWindowFunc(pFunc) ); 4439 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4440 return eRet; 4441 } 4442 zFunc = pFunc->u.zToken; 4443 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4444 eRet = WHERE_ORDERBY_MIN; 4445 sortFlags = KEYINFO_ORDER_BIGNULL; 4446 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4447 eRet = WHERE_ORDERBY_MAX; 4448 sortFlags = KEYINFO_ORDER_DESC; 4449 }else{ 4450 return eRet; 4451 } 4452 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4453 assert( pOrderBy!=0 || db->mallocFailed ); 4454 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4455 return eRet; 4456 } 4457 4458 /* 4459 ** The select statement passed as the first argument is an aggregate query. 4460 ** The second argument is the associated aggregate-info object. This 4461 ** function tests if the SELECT is of the form: 4462 ** 4463 ** SELECT count(*) FROM <tbl> 4464 ** 4465 ** where table is a database table, not a sub-select or view. If the query 4466 ** does match this pattern, then a pointer to the Table object representing 4467 ** <tbl> is returned. Otherwise, 0 is returned. 4468 */ 4469 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4470 Table *pTab; 4471 Expr *pExpr; 4472 4473 assert( !p->pGroupBy ); 4474 4475 if( p->pWhere || p->pEList->nExpr!=1 4476 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4477 ){ 4478 return 0; 4479 } 4480 pTab = p->pSrc->a[0].pTab; 4481 pExpr = p->pEList->a[0].pExpr; 4482 assert( pTab && !pTab->pSelect && pExpr ); 4483 4484 if( IsVirtual(pTab) ) return 0; 4485 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4486 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4487 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4488 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4489 4490 return pTab; 4491 } 4492 4493 /* 4494 ** If the source-list item passed as an argument was augmented with an 4495 ** INDEXED BY clause, then try to locate the specified index. If there 4496 ** was such a clause and the named index cannot be found, return 4497 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4498 ** pFrom->pIndex and return SQLITE_OK. 4499 */ 4500 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4501 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4502 Table *pTab = pFrom->pTab; 4503 char *zIndexedBy = pFrom->u1.zIndexedBy; 4504 Index *pIdx; 4505 for(pIdx=pTab->pIndex; 4506 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4507 pIdx=pIdx->pNext 4508 ); 4509 if( !pIdx ){ 4510 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4511 pParse->checkSchema = 1; 4512 return SQLITE_ERROR; 4513 } 4514 pFrom->pIBIndex = pIdx; 4515 } 4516 return SQLITE_OK; 4517 } 4518 /* 4519 ** Detect compound SELECT statements that use an ORDER BY clause with 4520 ** an alternative collating sequence. 4521 ** 4522 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4523 ** 4524 ** These are rewritten as a subquery: 4525 ** 4526 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4527 ** ORDER BY ... COLLATE ... 4528 ** 4529 ** This transformation is necessary because the multiSelectOrderBy() routine 4530 ** above that generates the code for a compound SELECT with an ORDER BY clause 4531 ** uses a merge algorithm that requires the same collating sequence on the 4532 ** result columns as on the ORDER BY clause. See ticket 4533 ** http://www.sqlite.org/src/info/6709574d2a 4534 ** 4535 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4536 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4537 ** there are COLLATE terms in the ORDER BY. 4538 */ 4539 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4540 int i; 4541 Select *pNew; 4542 Select *pX; 4543 sqlite3 *db; 4544 struct ExprList_item *a; 4545 SrcList *pNewSrc; 4546 Parse *pParse; 4547 Token dummy; 4548 4549 if( p->pPrior==0 ) return WRC_Continue; 4550 if( p->pOrderBy==0 ) return WRC_Continue; 4551 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4552 if( pX==0 ) return WRC_Continue; 4553 a = p->pOrderBy->a; 4554 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4555 if( a[i].pExpr->flags & EP_Collate ) break; 4556 } 4557 if( i<0 ) return WRC_Continue; 4558 4559 /* If we reach this point, that means the transformation is required. */ 4560 4561 pParse = pWalker->pParse; 4562 db = pParse->db; 4563 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4564 if( pNew==0 ) return WRC_Abort; 4565 memset(&dummy, 0, sizeof(dummy)); 4566 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4567 if( pNewSrc==0 ) return WRC_Abort; 4568 *pNew = *p; 4569 p->pSrc = pNewSrc; 4570 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4571 p->op = TK_SELECT; 4572 p->pWhere = 0; 4573 pNew->pGroupBy = 0; 4574 pNew->pHaving = 0; 4575 pNew->pOrderBy = 0; 4576 p->pPrior = 0; 4577 p->pNext = 0; 4578 p->pWith = 0; 4579 #ifndef SQLITE_OMIT_WINDOWFUNC 4580 p->pWinDefn = 0; 4581 #endif 4582 p->selFlags &= ~SF_Compound; 4583 assert( (p->selFlags & SF_Converted)==0 ); 4584 p->selFlags |= SF_Converted; 4585 assert( pNew->pPrior!=0 ); 4586 pNew->pPrior->pNext = pNew; 4587 pNew->pLimit = 0; 4588 return WRC_Continue; 4589 } 4590 4591 /* 4592 ** Check to see if the FROM clause term pFrom has table-valued function 4593 ** arguments. If it does, leave an error message in pParse and return 4594 ** non-zero, since pFrom is not allowed to be a table-valued function. 4595 */ 4596 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4597 if( pFrom->fg.isTabFunc ){ 4598 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4599 return 1; 4600 } 4601 return 0; 4602 } 4603 4604 #ifndef SQLITE_OMIT_CTE 4605 /* 4606 ** Argument pWith (which may be NULL) points to a linked list of nested 4607 ** WITH contexts, from inner to outermost. If the table identified by 4608 ** FROM clause element pItem is really a common-table-expression (CTE) 4609 ** then return a pointer to the CTE definition for that table. Otherwise 4610 ** return NULL. 4611 ** 4612 ** If a non-NULL value is returned, set *ppContext to point to the With 4613 ** object that the returned CTE belongs to. 4614 */ 4615 static struct Cte *searchWith( 4616 With *pWith, /* Current innermost WITH clause */ 4617 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4618 With **ppContext /* OUT: WITH clause return value belongs to */ 4619 ){ 4620 const char *zName; 4621 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4622 With *p; 4623 for(p=pWith; p; p=p->pOuter){ 4624 int i; 4625 for(i=0; i<p->nCte; i++){ 4626 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4627 *ppContext = p; 4628 return &p->a[i]; 4629 } 4630 } 4631 } 4632 } 4633 return 0; 4634 } 4635 4636 /* The code generator maintains a stack of active WITH clauses 4637 ** with the inner-most WITH clause being at the top of the stack. 4638 ** 4639 ** This routine pushes the WITH clause passed as the second argument 4640 ** onto the top of the stack. If argument bFree is true, then this 4641 ** WITH clause will never be popped from the stack. In this case it 4642 ** should be freed along with the Parse object. In other cases, when 4643 ** bFree==0, the With object will be freed along with the SELECT 4644 ** statement with which it is associated. 4645 */ 4646 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4647 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4648 if( pWith ){ 4649 assert( pParse->pWith!=pWith ); 4650 pWith->pOuter = pParse->pWith; 4651 pParse->pWith = pWith; 4652 if( bFree ) pParse->pWithToFree = pWith; 4653 } 4654 } 4655 4656 /* 4657 ** This function checks if argument pFrom refers to a CTE declared by 4658 ** a WITH clause on the stack currently maintained by the parser. And, 4659 ** if currently processing a CTE expression, if it is a recursive 4660 ** reference to the current CTE. 4661 ** 4662 ** If pFrom falls into either of the two categories above, pFrom->pTab 4663 ** and other fields are populated accordingly. The caller should check 4664 ** (pFrom->pTab!=0) to determine whether or not a successful match 4665 ** was found. 4666 ** 4667 ** Whether or not a match is found, SQLITE_OK is returned if no error 4668 ** occurs. If an error does occur, an error message is stored in the 4669 ** parser and some error code other than SQLITE_OK returned. 4670 */ 4671 static int withExpand( 4672 Walker *pWalker, 4673 struct SrcList_item *pFrom 4674 ){ 4675 Parse *pParse = pWalker->pParse; 4676 sqlite3 *db = pParse->db; 4677 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4678 With *pWith; /* WITH clause that pCte belongs to */ 4679 4680 assert( pFrom->pTab==0 ); 4681 if( pParse->nErr ){ 4682 return SQLITE_ERROR; 4683 } 4684 4685 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4686 if( pCte ){ 4687 Table *pTab; 4688 ExprList *pEList; 4689 Select *pSel; 4690 Select *pLeft; /* Left-most SELECT statement */ 4691 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4692 With *pSavedWith; /* Initial value of pParse->pWith */ 4693 4694 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4695 ** recursive reference to CTE pCte. Leave an error in pParse and return 4696 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4697 ** In this case, proceed. */ 4698 if( pCte->zCteErr ){ 4699 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4700 return SQLITE_ERROR; 4701 } 4702 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4703 4704 assert( pFrom->pTab==0 ); 4705 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4706 if( pTab==0 ) return WRC_Abort; 4707 pTab->nTabRef = 1; 4708 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4709 pTab->iPKey = -1; 4710 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4711 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4712 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4713 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4714 assert( pFrom->pSelect ); 4715 4716 /* Check if this is a recursive CTE. */ 4717 pSel = pFrom->pSelect; 4718 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4719 if( bMayRecursive ){ 4720 int i; 4721 SrcList *pSrc = pFrom->pSelect->pSrc; 4722 for(i=0; i<pSrc->nSrc; i++){ 4723 struct SrcList_item *pItem = &pSrc->a[i]; 4724 if( pItem->zDatabase==0 4725 && pItem->zName!=0 4726 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4727 ){ 4728 pItem->pTab = pTab; 4729 pItem->fg.isRecursive = 1; 4730 pTab->nTabRef++; 4731 pSel->selFlags |= SF_Recursive; 4732 } 4733 } 4734 } 4735 4736 /* Only one recursive reference is permitted. */ 4737 if( pTab->nTabRef>2 ){ 4738 sqlite3ErrorMsg( 4739 pParse, "multiple references to recursive table: %s", pCte->zName 4740 ); 4741 return SQLITE_ERROR; 4742 } 4743 assert( pTab->nTabRef==1 || 4744 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4745 4746 pCte->zCteErr = "circular reference: %s"; 4747 pSavedWith = pParse->pWith; 4748 pParse->pWith = pWith; 4749 if( bMayRecursive ){ 4750 Select *pPrior = pSel->pPrior; 4751 assert( pPrior->pWith==0 ); 4752 pPrior->pWith = pSel->pWith; 4753 sqlite3WalkSelect(pWalker, pPrior); 4754 pPrior->pWith = 0; 4755 }else{ 4756 sqlite3WalkSelect(pWalker, pSel); 4757 } 4758 pParse->pWith = pWith; 4759 4760 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4761 pEList = pLeft->pEList; 4762 if( pCte->pCols ){ 4763 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4764 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4765 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4766 ); 4767 pParse->pWith = pSavedWith; 4768 return SQLITE_ERROR; 4769 } 4770 pEList = pCte->pCols; 4771 } 4772 4773 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4774 if( bMayRecursive ){ 4775 if( pSel->selFlags & SF_Recursive ){ 4776 pCte->zCteErr = "multiple recursive references: %s"; 4777 }else{ 4778 pCte->zCteErr = "recursive reference in a subquery: %s"; 4779 } 4780 sqlite3WalkSelect(pWalker, pSel); 4781 } 4782 pCte->zCteErr = 0; 4783 pParse->pWith = pSavedWith; 4784 } 4785 4786 return SQLITE_OK; 4787 } 4788 #endif 4789 4790 #ifndef SQLITE_OMIT_CTE 4791 /* 4792 ** If the SELECT passed as the second argument has an associated WITH 4793 ** clause, pop it from the stack stored as part of the Parse object. 4794 ** 4795 ** This function is used as the xSelectCallback2() callback by 4796 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4797 ** names and other FROM clause elements. 4798 */ 4799 static void selectPopWith(Walker *pWalker, Select *p){ 4800 Parse *pParse = pWalker->pParse; 4801 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4802 With *pWith = findRightmost(p)->pWith; 4803 if( pWith!=0 ){ 4804 assert( pParse->pWith==pWith ); 4805 pParse->pWith = pWith->pOuter; 4806 } 4807 } 4808 } 4809 #else 4810 #define selectPopWith 0 4811 #endif 4812 4813 /* 4814 ** The SrcList_item structure passed as the second argument represents a 4815 ** sub-query in the FROM clause of a SELECT statement. This function 4816 ** allocates and populates the SrcList_item.pTab object. If successful, 4817 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4818 ** SQLITE_NOMEM. 4819 */ 4820 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4821 Select *pSel = pFrom->pSelect; 4822 Table *pTab; 4823 4824 assert( pSel ); 4825 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4826 if( pTab==0 ) return SQLITE_NOMEM; 4827 pTab->nTabRef = 1; 4828 if( pFrom->zAlias ){ 4829 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4830 }else{ 4831 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4832 } 4833 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4834 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4835 pTab->iPKey = -1; 4836 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4837 pTab->tabFlags |= TF_Ephemeral; 4838 4839 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4840 } 4841 4842 /* 4843 ** This routine is a Walker callback for "expanding" a SELECT statement. 4844 ** "Expanding" means to do the following: 4845 ** 4846 ** (1) Make sure VDBE cursor numbers have been assigned to every 4847 ** element of the FROM clause. 4848 ** 4849 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4850 ** defines FROM clause. When views appear in the FROM clause, 4851 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4852 ** that implements the view. A copy is made of the view's SELECT 4853 ** statement so that we can freely modify or delete that statement 4854 ** without worrying about messing up the persistent representation 4855 ** of the view. 4856 ** 4857 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4858 ** on joins and the ON and USING clause of joins. 4859 ** 4860 ** (4) Scan the list of columns in the result set (pEList) looking 4861 ** for instances of the "*" operator or the TABLE.* operator. 4862 ** If found, expand each "*" to be every column in every table 4863 ** and TABLE.* to be every column in TABLE. 4864 ** 4865 */ 4866 static int selectExpander(Walker *pWalker, Select *p){ 4867 Parse *pParse = pWalker->pParse; 4868 int i, j, k; 4869 SrcList *pTabList; 4870 ExprList *pEList; 4871 struct SrcList_item *pFrom; 4872 sqlite3 *db = pParse->db; 4873 Expr *pE, *pRight, *pExpr; 4874 u16 selFlags = p->selFlags; 4875 u32 elistFlags = 0; 4876 4877 p->selFlags |= SF_Expanded; 4878 if( db->mallocFailed ){ 4879 return WRC_Abort; 4880 } 4881 assert( p->pSrc!=0 ); 4882 if( (selFlags & SF_Expanded)!=0 ){ 4883 return WRC_Prune; 4884 } 4885 if( pWalker->eCode ){ 4886 /* Renumber selId because it has been copied from a view */ 4887 p->selId = ++pParse->nSelect; 4888 } 4889 pTabList = p->pSrc; 4890 pEList = p->pEList; 4891 sqlite3WithPush(pParse, p->pWith, 0); 4892 4893 /* Make sure cursor numbers have been assigned to all entries in 4894 ** the FROM clause of the SELECT statement. 4895 */ 4896 sqlite3SrcListAssignCursors(pParse, pTabList); 4897 4898 /* Look up every table named in the FROM clause of the select. If 4899 ** an entry of the FROM clause is a subquery instead of a table or view, 4900 ** then create a transient table structure to describe the subquery. 4901 */ 4902 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4903 Table *pTab; 4904 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4905 if( pFrom->fg.isRecursive ) continue; 4906 assert( pFrom->pTab==0 ); 4907 #ifndef SQLITE_OMIT_CTE 4908 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4909 if( pFrom->pTab ) {} else 4910 #endif 4911 if( pFrom->zName==0 ){ 4912 #ifndef SQLITE_OMIT_SUBQUERY 4913 Select *pSel = pFrom->pSelect; 4914 /* A sub-query in the FROM clause of a SELECT */ 4915 assert( pSel!=0 ); 4916 assert( pFrom->pTab==0 ); 4917 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4918 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4919 #endif 4920 }else{ 4921 /* An ordinary table or view name in the FROM clause */ 4922 assert( pFrom->pTab==0 ); 4923 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4924 if( pTab==0 ) return WRC_Abort; 4925 if( pTab->nTabRef>=0xffff ){ 4926 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4927 pTab->zName); 4928 pFrom->pTab = 0; 4929 return WRC_Abort; 4930 } 4931 pTab->nTabRef++; 4932 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4933 return WRC_Abort; 4934 } 4935 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4936 if( IsVirtual(pTab) || pTab->pSelect ){ 4937 i16 nCol; 4938 u8 eCodeOrig = pWalker->eCode; 4939 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4940 assert( pFrom->pSelect==0 ); 4941 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 4942 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 4943 pTab->zName); 4944 } 4945 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4946 nCol = pTab->nCol; 4947 pTab->nCol = -1; 4948 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 4949 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4950 pWalker->eCode = eCodeOrig; 4951 pTab->nCol = nCol; 4952 } 4953 #endif 4954 } 4955 4956 /* Locate the index named by the INDEXED BY clause, if any. */ 4957 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4958 return WRC_Abort; 4959 } 4960 } 4961 4962 /* Process NATURAL keywords, and ON and USING clauses of joins. 4963 */ 4964 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4965 return WRC_Abort; 4966 } 4967 4968 /* For every "*" that occurs in the column list, insert the names of 4969 ** all columns in all tables. And for every TABLE.* insert the names 4970 ** of all columns in TABLE. The parser inserted a special expression 4971 ** with the TK_ASTERISK operator for each "*" that it found in the column 4972 ** list. The following code just has to locate the TK_ASTERISK 4973 ** expressions and expand each one to the list of all columns in 4974 ** all tables. 4975 ** 4976 ** The first loop just checks to see if there are any "*" operators 4977 ** that need expanding. 4978 */ 4979 for(k=0; k<pEList->nExpr; k++){ 4980 pE = pEList->a[k].pExpr; 4981 if( pE->op==TK_ASTERISK ) break; 4982 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4983 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4984 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4985 elistFlags |= pE->flags; 4986 } 4987 if( k<pEList->nExpr ){ 4988 /* 4989 ** If we get here it means the result set contains one or more "*" 4990 ** operators that need to be expanded. Loop through each expression 4991 ** in the result set and expand them one by one. 4992 */ 4993 struct ExprList_item *a = pEList->a; 4994 ExprList *pNew = 0; 4995 int flags = pParse->db->flags; 4996 int longNames = (flags & SQLITE_FullColNames)!=0 4997 && (flags & SQLITE_ShortColNames)==0; 4998 4999 for(k=0; k<pEList->nExpr; k++){ 5000 pE = a[k].pExpr; 5001 elistFlags |= pE->flags; 5002 pRight = pE->pRight; 5003 assert( pE->op!=TK_DOT || pRight!=0 ); 5004 if( pE->op!=TK_ASTERISK 5005 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5006 ){ 5007 /* This particular expression does not need to be expanded. 5008 */ 5009 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5010 if( pNew ){ 5011 pNew->a[pNew->nExpr-1].zName = a[k].zName; 5012 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 5013 a[k].zName = 0; 5014 a[k].zSpan = 0; 5015 } 5016 a[k].pExpr = 0; 5017 }else{ 5018 /* This expression is a "*" or a "TABLE.*" and needs to be 5019 ** expanded. */ 5020 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5021 char *zTName = 0; /* text of name of TABLE */ 5022 if( pE->op==TK_DOT ){ 5023 assert( pE->pLeft!=0 ); 5024 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5025 zTName = pE->pLeft->u.zToken; 5026 } 5027 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5028 Table *pTab = pFrom->pTab; 5029 Select *pSub = pFrom->pSelect; 5030 char *zTabName = pFrom->zAlias; 5031 const char *zSchemaName = 0; 5032 int iDb; 5033 if( zTabName==0 ){ 5034 zTabName = pTab->zName; 5035 } 5036 if( db->mallocFailed ) break; 5037 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5038 pSub = 0; 5039 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5040 continue; 5041 } 5042 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5043 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5044 } 5045 for(j=0; j<pTab->nCol; j++){ 5046 char *zName = pTab->aCol[j].zName; 5047 char *zColname; /* The computed column name */ 5048 char *zToFree; /* Malloced string that needs to be freed */ 5049 Token sColname; /* Computed column name as a token */ 5050 5051 assert( zName ); 5052 if( zTName && pSub 5053 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 5054 ){ 5055 continue; 5056 } 5057 5058 /* If a column is marked as 'hidden', omit it from the expanded 5059 ** result-set list unless the SELECT has the SF_IncludeHidden 5060 ** bit set. 5061 */ 5062 if( (p->selFlags & SF_IncludeHidden)==0 5063 && IsHiddenColumn(&pTab->aCol[j]) 5064 ){ 5065 continue; 5066 } 5067 tableSeen = 1; 5068 5069 if( i>0 && zTName==0 ){ 5070 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5071 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 5072 ){ 5073 /* In a NATURAL join, omit the join columns from the 5074 ** table to the right of the join */ 5075 continue; 5076 } 5077 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5078 /* In a join with a USING clause, omit columns in the 5079 ** using clause from the table on the right. */ 5080 continue; 5081 } 5082 } 5083 pRight = sqlite3Expr(db, TK_ID, zName); 5084 zColname = zName; 5085 zToFree = 0; 5086 if( longNames || pTabList->nSrc>1 ){ 5087 Expr *pLeft; 5088 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5089 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5090 if( zSchemaName ){ 5091 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5092 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5093 } 5094 if( longNames ){ 5095 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5096 zToFree = zColname; 5097 } 5098 }else{ 5099 pExpr = pRight; 5100 } 5101 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5102 sqlite3TokenInit(&sColname, zColname); 5103 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5104 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5105 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5106 if( pSub ){ 5107 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 5108 testcase( pX->zSpan==0 ); 5109 }else{ 5110 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 5111 zSchemaName, zTabName, zColname); 5112 testcase( pX->zSpan==0 ); 5113 } 5114 pX->bSpanIsTab = 1; 5115 } 5116 sqlite3DbFree(db, zToFree); 5117 } 5118 } 5119 if( !tableSeen ){ 5120 if( zTName ){ 5121 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5122 }else{ 5123 sqlite3ErrorMsg(pParse, "no tables specified"); 5124 } 5125 } 5126 } 5127 } 5128 sqlite3ExprListDelete(db, pEList); 5129 p->pEList = pNew; 5130 } 5131 if( p->pEList ){ 5132 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5133 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5134 return WRC_Abort; 5135 } 5136 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5137 p->selFlags |= SF_ComplexResult; 5138 } 5139 } 5140 return WRC_Continue; 5141 } 5142 5143 /* 5144 ** No-op routine for the parse-tree walker. 5145 ** 5146 ** When this routine is the Walker.xExprCallback then expression trees 5147 ** are walked without any actions being taken at each node. Presumably, 5148 ** when this routine is used for Walker.xExprCallback then 5149 ** Walker.xSelectCallback is set to do something useful for every 5150 ** subquery in the parser tree. 5151 */ 5152 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5153 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5154 return WRC_Continue; 5155 } 5156 5157 /* 5158 ** No-op routine for the parse-tree walker for SELECT statements. 5159 ** subquery in the parser tree. 5160 */ 5161 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5162 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5163 return WRC_Continue; 5164 } 5165 5166 #if SQLITE_DEBUG 5167 /* 5168 ** Always assert. This xSelectCallback2 implementation proves that the 5169 ** xSelectCallback2 is never invoked. 5170 */ 5171 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5172 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5173 assert( 0 ); 5174 } 5175 #endif 5176 /* 5177 ** This routine "expands" a SELECT statement and all of its subqueries. 5178 ** For additional information on what it means to "expand" a SELECT 5179 ** statement, see the comment on the selectExpand worker callback above. 5180 ** 5181 ** Expanding a SELECT statement is the first step in processing a 5182 ** SELECT statement. The SELECT statement must be expanded before 5183 ** name resolution is performed. 5184 ** 5185 ** If anything goes wrong, an error message is written into pParse. 5186 ** The calling function can detect the problem by looking at pParse->nErr 5187 ** and/or pParse->db->mallocFailed. 5188 */ 5189 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5190 Walker w; 5191 w.xExprCallback = sqlite3ExprWalkNoop; 5192 w.pParse = pParse; 5193 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5194 w.xSelectCallback = convertCompoundSelectToSubquery; 5195 w.xSelectCallback2 = 0; 5196 sqlite3WalkSelect(&w, pSelect); 5197 } 5198 w.xSelectCallback = selectExpander; 5199 w.xSelectCallback2 = selectPopWith; 5200 w.eCode = 0; 5201 sqlite3WalkSelect(&w, pSelect); 5202 } 5203 5204 5205 #ifndef SQLITE_OMIT_SUBQUERY 5206 /* 5207 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5208 ** interface. 5209 ** 5210 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5211 ** information to the Table structure that represents the result set 5212 ** of that subquery. 5213 ** 5214 ** The Table structure that represents the result set was constructed 5215 ** by selectExpander() but the type and collation information was omitted 5216 ** at that point because identifiers had not yet been resolved. This 5217 ** routine is called after identifier resolution. 5218 */ 5219 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5220 Parse *pParse; 5221 int i; 5222 SrcList *pTabList; 5223 struct SrcList_item *pFrom; 5224 5225 assert( p->selFlags & SF_Resolved ); 5226 if( p->selFlags & SF_HasTypeInfo ) return; 5227 p->selFlags |= SF_HasTypeInfo; 5228 pParse = pWalker->pParse; 5229 pTabList = p->pSrc; 5230 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5231 Table *pTab = pFrom->pTab; 5232 assert( pTab!=0 ); 5233 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5234 /* A sub-query in the FROM clause of a SELECT */ 5235 Select *pSel = pFrom->pSelect; 5236 if( pSel ){ 5237 while( pSel->pPrior ) pSel = pSel->pPrior; 5238 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5239 SQLITE_AFF_NONE); 5240 } 5241 } 5242 } 5243 } 5244 #endif 5245 5246 5247 /* 5248 ** This routine adds datatype and collating sequence information to 5249 ** the Table structures of all FROM-clause subqueries in a 5250 ** SELECT statement. 5251 ** 5252 ** Use this routine after name resolution. 5253 */ 5254 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5255 #ifndef SQLITE_OMIT_SUBQUERY 5256 Walker w; 5257 w.xSelectCallback = sqlite3SelectWalkNoop; 5258 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5259 w.xExprCallback = sqlite3ExprWalkNoop; 5260 w.pParse = pParse; 5261 sqlite3WalkSelect(&w, pSelect); 5262 #endif 5263 } 5264 5265 5266 /* 5267 ** This routine sets up a SELECT statement for processing. The 5268 ** following is accomplished: 5269 ** 5270 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5271 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5272 ** * ON and USING clauses are shifted into WHERE statements 5273 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5274 ** * Identifiers in expression are matched to tables. 5275 ** 5276 ** This routine acts recursively on all subqueries within the SELECT. 5277 */ 5278 void sqlite3SelectPrep( 5279 Parse *pParse, /* The parser context */ 5280 Select *p, /* The SELECT statement being coded. */ 5281 NameContext *pOuterNC /* Name context for container */ 5282 ){ 5283 assert( p!=0 || pParse->db->mallocFailed ); 5284 if( pParse->db->mallocFailed ) return; 5285 if( p->selFlags & SF_HasTypeInfo ) return; 5286 sqlite3SelectExpand(pParse, p); 5287 if( pParse->nErr || pParse->db->mallocFailed ) return; 5288 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5289 if( pParse->nErr || pParse->db->mallocFailed ) return; 5290 sqlite3SelectAddTypeInfo(pParse, p); 5291 } 5292 5293 /* 5294 ** Reset the aggregate accumulator. 5295 ** 5296 ** The aggregate accumulator is a set of memory cells that hold 5297 ** intermediate results while calculating an aggregate. This 5298 ** routine generates code that stores NULLs in all of those memory 5299 ** cells. 5300 */ 5301 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5302 Vdbe *v = pParse->pVdbe; 5303 int i; 5304 struct AggInfo_func *pFunc; 5305 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5306 if( nReg==0 ) return; 5307 #ifdef SQLITE_DEBUG 5308 /* Verify that all AggInfo registers are within the range specified by 5309 ** AggInfo.mnReg..AggInfo.mxReg */ 5310 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5311 for(i=0; i<pAggInfo->nColumn; i++){ 5312 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5313 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5314 } 5315 for(i=0; i<pAggInfo->nFunc; i++){ 5316 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5317 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5318 } 5319 #endif 5320 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5321 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5322 if( pFunc->iDistinct>=0 ){ 5323 Expr *pE = pFunc->pExpr; 5324 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5325 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5326 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5327 "argument"); 5328 pFunc->iDistinct = -1; 5329 }else{ 5330 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5331 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5332 (char*)pKeyInfo, P4_KEYINFO); 5333 } 5334 } 5335 } 5336 } 5337 5338 /* 5339 ** Invoke the OP_AggFinalize opcode for every aggregate function 5340 ** in the AggInfo structure. 5341 */ 5342 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5343 Vdbe *v = pParse->pVdbe; 5344 int i; 5345 struct AggInfo_func *pF; 5346 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5347 ExprList *pList = pF->pExpr->x.pList; 5348 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5349 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5350 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5351 } 5352 } 5353 5354 5355 /* 5356 ** Update the accumulator memory cells for an aggregate based on 5357 ** the current cursor position. 5358 ** 5359 ** If regAcc is non-zero and there are no min() or max() aggregates 5360 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5361 ** registers if register regAcc contains 0. The caller will take care 5362 ** of setting and clearing regAcc. 5363 */ 5364 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5365 Vdbe *v = pParse->pVdbe; 5366 int i; 5367 int regHit = 0; 5368 int addrHitTest = 0; 5369 struct AggInfo_func *pF; 5370 struct AggInfo_col *pC; 5371 5372 pAggInfo->directMode = 1; 5373 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5374 int nArg; 5375 int addrNext = 0; 5376 int regAgg; 5377 ExprList *pList = pF->pExpr->x.pList; 5378 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5379 assert( !IsWindowFunc(pF->pExpr) ); 5380 if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){ 5381 Expr *pFilter = pF->pExpr->y.pWin->pFilter; 5382 if( pAggInfo->nAccumulator 5383 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5384 ){ 5385 if( regHit==0 ) regHit = ++pParse->nMem; 5386 /* If this is the first row of the group (regAcc==0), clear the 5387 ** "magnet" register regHit so that the accumulator registers 5388 ** are populated if the FILTER clause jumps over the the 5389 ** invocation of min() or max() altogether. Or, if this is not 5390 ** the first row (regAcc==1), set the magnet register so that the 5391 ** accumulators are not populated unless the min()/max() is invoked and 5392 ** indicates that they should be. */ 5393 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5394 } 5395 addrNext = sqlite3VdbeMakeLabel(pParse); 5396 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5397 } 5398 if( pList ){ 5399 nArg = pList->nExpr; 5400 regAgg = sqlite3GetTempRange(pParse, nArg); 5401 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5402 }else{ 5403 nArg = 0; 5404 regAgg = 0; 5405 } 5406 if( pF->iDistinct>=0 ){ 5407 if( addrNext==0 ){ 5408 addrNext = sqlite3VdbeMakeLabel(pParse); 5409 } 5410 testcase( nArg==0 ); /* Error condition */ 5411 testcase( nArg>1 ); /* Also an error */ 5412 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5413 } 5414 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5415 CollSeq *pColl = 0; 5416 struct ExprList_item *pItem; 5417 int j; 5418 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5419 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5420 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5421 } 5422 if( !pColl ){ 5423 pColl = pParse->db->pDfltColl; 5424 } 5425 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5426 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5427 } 5428 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5429 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5430 sqlite3VdbeChangeP5(v, (u8)nArg); 5431 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5432 if( addrNext ){ 5433 sqlite3VdbeResolveLabel(v, addrNext); 5434 } 5435 } 5436 if( regHit==0 && pAggInfo->nAccumulator ){ 5437 regHit = regAcc; 5438 } 5439 if( regHit ){ 5440 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5441 } 5442 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5443 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5444 } 5445 5446 pAggInfo->directMode = 0; 5447 if( addrHitTest ){ 5448 sqlite3VdbeJumpHere(v, addrHitTest); 5449 } 5450 } 5451 5452 /* 5453 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5454 ** count(*) query ("SELECT count(*) FROM pTab"). 5455 */ 5456 #ifndef SQLITE_OMIT_EXPLAIN 5457 static void explainSimpleCount( 5458 Parse *pParse, /* Parse context */ 5459 Table *pTab, /* Table being queried */ 5460 Index *pIdx /* Index used to optimize scan, or NULL */ 5461 ){ 5462 if( pParse->explain==2 ){ 5463 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5464 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5465 pTab->zName, 5466 bCover ? " USING COVERING INDEX " : "", 5467 bCover ? pIdx->zName : "" 5468 ); 5469 } 5470 } 5471 #else 5472 # define explainSimpleCount(a,b,c) 5473 #endif 5474 5475 /* 5476 ** sqlite3WalkExpr() callback used by havingToWhere(). 5477 ** 5478 ** If the node passed to the callback is a TK_AND node, return 5479 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5480 ** 5481 ** Otherwise, return WRC_Prune. In this case, also check if the 5482 ** sub-expression matches the criteria for being moved to the WHERE 5483 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5484 ** within the HAVING expression with a constant "1". 5485 */ 5486 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5487 if( pExpr->op!=TK_AND ){ 5488 Select *pS = pWalker->u.pSelect; 5489 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5490 sqlite3 *db = pWalker->pParse->db; 5491 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5492 if( pNew ){ 5493 Expr *pWhere = pS->pWhere; 5494 SWAP(Expr, *pNew, *pExpr); 5495 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5496 pS->pWhere = pNew; 5497 pWalker->eCode = 1; 5498 } 5499 } 5500 return WRC_Prune; 5501 } 5502 return WRC_Continue; 5503 } 5504 5505 /* 5506 ** Transfer eligible terms from the HAVING clause of a query, which is 5507 ** processed after grouping, to the WHERE clause, which is processed before 5508 ** grouping. For example, the query: 5509 ** 5510 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5511 ** 5512 ** can be rewritten as: 5513 ** 5514 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5515 ** 5516 ** A term of the HAVING expression is eligible for transfer if it consists 5517 ** entirely of constants and expressions that are also GROUP BY terms that 5518 ** use the "BINARY" collation sequence. 5519 */ 5520 static void havingToWhere(Parse *pParse, Select *p){ 5521 Walker sWalker; 5522 memset(&sWalker, 0, sizeof(sWalker)); 5523 sWalker.pParse = pParse; 5524 sWalker.xExprCallback = havingToWhereExprCb; 5525 sWalker.u.pSelect = p; 5526 sqlite3WalkExpr(&sWalker, p->pHaving); 5527 #if SELECTTRACE_ENABLED 5528 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5529 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5530 sqlite3TreeViewSelect(0, p, 0); 5531 } 5532 #endif 5533 } 5534 5535 /* 5536 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5537 ** If it is, then return the SrcList_item for the prior view. If it is not, 5538 ** then return 0. 5539 */ 5540 static struct SrcList_item *isSelfJoinView( 5541 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5542 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5543 ){ 5544 struct SrcList_item *pItem; 5545 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5546 Select *pS1; 5547 if( pItem->pSelect==0 ) continue; 5548 if( pItem->fg.viaCoroutine ) continue; 5549 if( pItem->zName==0 ) continue; 5550 assert( pItem->pTab!=0 ); 5551 assert( pThis->pTab!=0 ); 5552 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5553 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5554 pS1 = pItem->pSelect; 5555 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5556 /* The query flattener left two different CTE tables with identical 5557 ** names in the same FROM clause. */ 5558 continue; 5559 } 5560 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5561 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5562 ){ 5563 /* The view was modified by some other optimization such as 5564 ** pushDownWhereTerms() */ 5565 continue; 5566 } 5567 return pItem; 5568 } 5569 return 0; 5570 } 5571 5572 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5573 /* 5574 ** Attempt to transform a query of the form 5575 ** 5576 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5577 ** 5578 ** Into this: 5579 ** 5580 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5581 ** 5582 ** The transformation only works if all of the following are true: 5583 ** 5584 ** * The subquery is a UNION ALL of two or more terms 5585 ** * The subquery does not have a LIMIT clause 5586 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5587 ** * The outer query is a simple count(*) with no WHERE clause or other 5588 ** extraneous syntax. 5589 ** 5590 ** Return TRUE if the optimization is undertaken. 5591 */ 5592 static int countOfViewOptimization(Parse *pParse, Select *p){ 5593 Select *pSub, *pPrior; 5594 Expr *pExpr; 5595 Expr *pCount; 5596 sqlite3 *db; 5597 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5598 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5599 if( p->pWhere ) return 0; 5600 if( p->pGroupBy ) return 0; 5601 pExpr = p->pEList->a[0].pExpr; 5602 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5603 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5604 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5605 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5606 pSub = p->pSrc->a[0].pSelect; 5607 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5608 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5609 do{ 5610 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5611 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5612 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5613 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5614 pSub = pSub->pPrior; /* Repeat over compound */ 5615 }while( pSub ); 5616 5617 /* If we reach this point then it is OK to perform the transformation */ 5618 5619 db = pParse->db; 5620 pCount = pExpr; 5621 pExpr = 0; 5622 pSub = p->pSrc->a[0].pSelect; 5623 p->pSrc->a[0].pSelect = 0; 5624 sqlite3SrcListDelete(db, p->pSrc); 5625 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5626 while( pSub ){ 5627 Expr *pTerm; 5628 pPrior = pSub->pPrior; 5629 pSub->pPrior = 0; 5630 pSub->pNext = 0; 5631 pSub->selFlags |= SF_Aggregate; 5632 pSub->selFlags &= ~SF_Compound; 5633 pSub->nSelectRow = 0; 5634 sqlite3ExprListDelete(db, pSub->pEList); 5635 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5636 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5637 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5638 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5639 if( pExpr==0 ){ 5640 pExpr = pTerm; 5641 }else{ 5642 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5643 } 5644 pSub = pPrior; 5645 } 5646 p->pEList->a[0].pExpr = pExpr; 5647 p->selFlags &= ~SF_Aggregate; 5648 5649 #if SELECTTRACE_ENABLED 5650 if( sqlite3SelectTrace & 0x400 ){ 5651 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5652 sqlite3TreeViewSelect(0, p, 0); 5653 } 5654 #endif 5655 return 1; 5656 } 5657 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5658 5659 /* 5660 ** Generate code for the SELECT statement given in the p argument. 5661 ** 5662 ** The results are returned according to the SelectDest structure. 5663 ** See comments in sqliteInt.h for further information. 5664 ** 5665 ** This routine returns the number of errors. If any errors are 5666 ** encountered, then an appropriate error message is left in 5667 ** pParse->zErrMsg. 5668 ** 5669 ** This routine does NOT free the Select structure passed in. The 5670 ** calling function needs to do that. 5671 */ 5672 int sqlite3Select( 5673 Parse *pParse, /* The parser context */ 5674 Select *p, /* The SELECT statement being coded. */ 5675 SelectDest *pDest /* What to do with the query results */ 5676 ){ 5677 int i, j; /* Loop counters */ 5678 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5679 Vdbe *v; /* The virtual machine under construction */ 5680 int isAgg; /* True for select lists like "count(*)" */ 5681 ExprList *pEList = 0; /* List of columns to extract. */ 5682 SrcList *pTabList; /* List of tables to select from */ 5683 Expr *pWhere; /* The WHERE clause. May be NULL */ 5684 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5685 Expr *pHaving; /* The HAVING clause. May be NULL */ 5686 int rc = 1; /* Value to return from this function */ 5687 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5688 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5689 AggInfo sAggInfo; /* Information used by aggregate queries */ 5690 int iEnd; /* Address of the end of the query */ 5691 sqlite3 *db; /* The database connection */ 5692 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5693 u8 minMaxFlag; /* Flag for min/max queries */ 5694 5695 db = pParse->db; 5696 v = sqlite3GetVdbe(pParse); 5697 if( p==0 || db->mallocFailed || pParse->nErr ){ 5698 return 1; 5699 } 5700 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5701 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5702 #if SELECTTRACE_ENABLED 5703 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5704 if( sqlite3SelectTrace & 0x100 ){ 5705 sqlite3TreeViewSelect(0, p, 0); 5706 } 5707 #endif 5708 5709 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5710 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5711 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5712 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5713 if( IgnorableOrderby(pDest) ){ 5714 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5715 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5716 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5717 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5718 /* If ORDER BY makes no difference in the output then neither does 5719 ** DISTINCT so it can be removed too. */ 5720 sqlite3ExprListDelete(db, p->pOrderBy); 5721 p->pOrderBy = 0; 5722 p->selFlags &= ~SF_Distinct; 5723 } 5724 sqlite3SelectPrep(pParse, p, 0); 5725 if( pParse->nErr || db->mallocFailed ){ 5726 goto select_end; 5727 } 5728 assert( p->pEList!=0 ); 5729 #if SELECTTRACE_ENABLED 5730 if( sqlite3SelectTrace & 0x104 ){ 5731 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5732 sqlite3TreeViewSelect(0, p, 0); 5733 } 5734 #endif 5735 5736 if( pDest->eDest==SRT_Output ){ 5737 generateColumnNames(pParse, p); 5738 } 5739 5740 #ifndef SQLITE_OMIT_WINDOWFUNC 5741 if( sqlite3WindowRewrite(pParse, p) ){ 5742 goto select_end; 5743 } 5744 #if SELECTTRACE_ENABLED 5745 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 5746 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5747 sqlite3TreeViewSelect(0, p, 0); 5748 } 5749 #endif 5750 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5751 pTabList = p->pSrc; 5752 isAgg = (p->selFlags & SF_Aggregate)!=0; 5753 memset(&sSort, 0, sizeof(sSort)); 5754 sSort.pOrderBy = p->pOrderBy; 5755 5756 /* Try to various optimizations (flattening subqueries, and strength 5757 ** reduction of join operators) in the FROM clause up into the main query 5758 */ 5759 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5760 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5761 struct SrcList_item *pItem = &pTabList->a[i]; 5762 Select *pSub = pItem->pSelect; 5763 Table *pTab = pItem->pTab; 5764 5765 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5766 ** of the LEFT JOIN used in the WHERE clause. 5767 */ 5768 if( (pItem->fg.jointype & JT_LEFT)!=0 5769 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5770 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5771 ){ 5772 SELECTTRACE(0x100,pParse,p, 5773 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5774 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5775 unsetJoinExpr(p->pWhere, pItem->iCursor); 5776 } 5777 5778 /* No futher action if this term of the FROM clause is no a subquery */ 5779 if( pSub==0 ) continue; 5780 5781 /* Catch mismatch in the declared columns of a view and the number of 5782 ** columns in the SELECT on the RHS */ 5783 if( pTab->nCol!=pSub->pEList->nExpr ){ 5784 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5785 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5786 goto select_end; 5787 } 5788 5789 /* Do not try to flatten an aggregate subquery. 5790 ** 5791 ** Flattening an aggregate subquery is only possible if the outer query 5792 ** is not a join. But if the outer query is not a join, then the subquery 5793 ** will be implemented as a co-routine and there is no advantage to 5794 ** flattening in that case. 5795 */ 5796 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5797 assert( pSub->pGroupBy==0 ); 5798 5799 /* If the outer query contains a "complex" result set (that is, 5800 ** if the result set of the outer query uses functions or subqueries) 5801 ** and if the subquery contains an ORDER BY clause and if 5802 ** it will be implemented as a co-routine, then do not flatten. This 5803 ** restriction allows SQL constructs like this: 5804 ** 5805 ** SELECT expensive_function(x) 5806 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5807 ** 5808 ** The expensive_function() is only computed on the 10 rows that 5809 ** are output, rather than every row of the table. 5810 ** 5811 ** The requirement that the outer query have a complex result set 5812 ** means that flattening does occur on simpler SQL constraints without 5813 ** the expensive_function() like: 5814 ** 5815 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5816 */ 5817 if( pSub->pOrderBy!=0 5818 && i==0 5819 && (p->selFlags & SF_ComplexResult)!=0 5820 && (pTabList->nSrc==1 5821 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5822 ){ 5823 continue; 5824 } 5825 5826 if( flattenSubquery(pParse, p, i, isAgg) ){ 5827 if( pParse->nErr ) goto select_end; 5828 /* This subquery can be absorbed into its parent. */ 5829 i = -1; 5830 } 5831 pTabList = p->pSrc; 5832 if( db->mallocFailed ) goto select_end; 5833 if( !IgnorableOrderby(pDest) ){ 5834 sSort.pOrderBy = p->pOrderBy; 5835 } 5836 } 5837 #endif 5838 5839 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5840 /* Handle compound SELECT statements using the separate multiSelect() 5841 ** procedure. 5842 */ 5843 if( p->pPrior ){ 5844 rc = multiSelect(pParse, p, pDest); 5845 #if SELECTTRACE_ENABLED 5846 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5847 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5848 sqlite3TreeViewSelect(0, p, 0); 5849 } 5850 #endif 5851 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5852 return rc; 5853 } 5854 #endif 5855 5856 /* Do the WHERE-clause constant propagation optimization if this is 5857 ** a join. No need to speed time on this operation for non-join queries 5858 ** as the equivalent optimization will be handled by query planner in 5859 ** sqlite3WhereBegin(). 5860 */ 5861 if( pTabList->nSrc>1 5862 && OptimizationEnabled(db, SQLITE_PropagateConst) 5863 && propagateConstants(pParse, p) 5864 ){ 5865 #if SELECTTRACE_ENABLED 5866 if( sqlite3SelectTrace & 0x100 ){ 5867 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5868 sqlite3TreeViewSelect(0, p, 0); 5869 } 5870 #endif 5871 }else{ 5872 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5873 } 5874 5875 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5876 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5877 && countOfViewOptimization(pParse, p) 5878 ){ 5879 if( db->mallocFailed ) goto select_end; 5880 pEList = p->pEList; 5881 pTabList = p->pSrc; 5882 } 5883 #endif 5884 5885 /* For each term in the FROM clause, do two things: 5886 ** (1) Authorized unreferenced tables 5887 ** (2) Generate code for all sub-queries 5888 */ 5889 for(i=0; i<pTabList->nSrc; i++){ 5890 struct SrcList_item *pItem = &pTabList->a[i]; 5891 SelectDest dest; 5892 Select *pSub; 5893 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5894 const char *zSavedAuthContext; 5895 #endif 5896 5897 /* Issue SQLITE_READ authorizations with a fake column name for any 5898 ** tables that are referenced but from which no values are extracted. 5899 ** Examples of where these kinds of null SQLITE_READ authorizations 5900 ** would occur: 5901 ** 5902 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5903 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5904 ** 5905 ** The fake column name is an empty string. It is possible for a table to 5906 ** have a column named by the empty string, in which case there is no way to 5907 ** distinguish between an unreferenced table and an actual reference to the 5908 ** "" column. The original design was for the fake column name to be a NULL, 5909 ** which would be unambiguous. But legacy authorization callbacks might 5910 ** assume the column name is non-NULL and segfault. The use of an empty 5911 ** string for the fake column name seems safer. 5912 */ 5913 if( pItem->colUsed==0 && pItem->zName!=0 ){ 5914 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5915 } 5916 5917 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5918 /* Generate code for all sub-queries in the FROM clause 5919 */ 5920 pSub = pItem->pSelect; 5921 if( pSub==0 ) continue; 5922 5923 /* The code for a subquery should only be generated once, though it is 5924 ** technically harmless for it to be generated multiple times. The 5925 ** following assert() will detect if something changes to cause 5926 ** the same subquery to be coded multiple times, as a signal to the 5927 ** developers to try to optimize the situation. 5928 ** 5929 ** Update 2019-07-24: 5930 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 5931 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 5932 ** coded twice. So this assert() now becomes a testcase(). It should 5933 ** be very rare, though. 5934 */ 5935 testcase( pItem->addrFillSub!=0 ); 5936 5937 /* Increment Parse.nHeight by the height of the largest expression 5938 ** tree referred to by this, the parent select. The child select 5939 ** may contain expression trees of at most 5940 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5941 ** more conservative than necessary, but much easier than enforcing 5942 ** an exact limit. 5943 */ 5944 pParse->nHeight += sqlite3SelectExprHeight(p); 5945 5946 /* Make copies of constant WHERE-clause terms in the outer query down 5947 ** inside the subquery. This can help the subquery to run more efficiently. 5948 */ 5949 if( OptimizationEnabled(db, SQLITE_PushDown) 5950 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5951 (pItem->fg.jointype & JT_OUTER)!=0) 5952 ){ 5953 #if SELECTTRACE_ENABLED 5954 if( sqlite3SelectTrace & 0x100 ){ 5955 SELECTTRACE(0x100,pParse,p, 5956 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5957 sqlite3TreeViewSelect(0, p, 0); 5958 } 5959 #endif 5960 }else{ 5961 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5962 } 5963 5964 zSavedAuthContext = pParse->zAuthContext; 5965 pParse->zAuthContext = pItem->zName; 5966 5967 /* Generate code to implement the subquery 5968 ** 5969 ** The subquery is implemented as a co-routine if the subquery is 5970 ** guaranteed to be the outer loop (so that it does not need to be 5971 ** computed more than once) 5972 ** 5973 ** TODO: Are there other reasons beside (1) to use a co-routine 5974 ** implementation? 5975 */ 5976 if( i==0 5977 && (pTabList->nSrc==1 5978 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5979 ){ 5980 /* Implement a co-routine that will return a single row of the result 5981 ** set on each invocation. 5982 */ 5983 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5984 5985 pItem->regReturn = ++pParse->nMem; 5986 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5987 VdbeComment((v, "%s", pItem->pTab->zName)); 5988 pItem->addrFillSub = addrTop; 5989 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5990 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 5991 sqlite3Select(pParse, pSub, &dest); 5992 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5993 pItem->fg.viaCoroutine = 1; 5994 pItem->regResult = dest.iSdst; 5995 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5996 sqlite3VdbeJumpHere(v, addrTop-1); 5997 sqlite3ClearTempRegCache(pParse); 5998 }else{ 5999 /* Generate a subroutine that will fill an ephemeral table with 6000 ** the content of this subquery. pItem->addrFillSub will point 6001 ** to the address of the generated subroutine. pItem->regReturn 6002 ** is a register allocated to hold the subroutine return address 6003 */ 6004 int topAddr; 6005 int onceAddr = 0; 6006 int retAddr; 6007 struct SrcList_item *pPrior; 6008 6009 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6010 pItem->regReturn = ++pParse->nMem; 6011 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6012 pItem->addrFillSub = topAddr+1; 6013 if( pItem->fg.isCorrelated==0 ){ 6014 /* If the subquery is not correlated and if we are not inside of 6015 ** a trigger, then we only need to compute the value of the subquery 6016 ** once. */ 6017 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6018 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6019 }else{ 6020 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6021 } 6022 pPrior = isSelfJoinView(pTabList, pItem); 6023 if( pPrior ){ 6024 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6025 assert( pPrior->pSelect!=0 ); 6026 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6027 }else{ 6028 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6029 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6030 sqlite3Select(pParse, pSub, &dest); 6031 } 6032 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6033 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6034 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6035 VdbeComment((v, "end %s", pItem->pTab->zName)); 6036 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6037 sqlite3ClearTempRegCache(pParse); 6038 } 6039 if( db->mallocFailed ) goto select_end; 6040 pParse->nHeight -= sqlite3SelectExprHeight(p); 6041 pParse->zAuthContext = zSavedAuthContext; 6042 #endif 6043 } 6044 6045 /* Various elements of the SELECT copied into local variables for 6046 ** convenience */ 6047 pEList = p->pEList; 6048 pWhere = p->pWhere; 6049 pGroupBy = p->pGroupBy; 6050 pHaving = p->pHaving; 6051 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6052 6053 #if SELECTTRACE_ENABLED 6054 if( sqlite3SelectTrace & 0x400 ){ 6055 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6056 sqlite3TreeViewSelect(0, p, 0); 6057 } 6058 #endif 6059 6060 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6061 ** if the select-list is the same as the ORDER BY list, then this query 6062 ** can be rewritten as a GROUP BY. In other words, this: 6063 ** 6064 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6065 ** 6066 ** is transformed to: 6067 ** 6068 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6069 ** 6070 ** The second form is preferred as a single index (or temp-table) may be 6071 ** used for both the ORDER BY and DISTINCT processing. As originally 6072 ** written the query must use a temp-table for at least one of the ORDER 6073 ** BY and DISTINCT, and an index or separate temp-table for the other. 6074 */ 6075 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6076 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6077 && p->pWin==0 6078 ){ 6079 p->selFlags &= ~SF_Distinct; 6080 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6081 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6082 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6083 ** original setting of the SF_Distinct flag, not the current setting */ 6084 assert( sDistinct.isTnct ); 6085 6086 #if SELECTTRACE_ENABLED 6087 if( sqlite3SelectTrace & 0x400 ){ 6088 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6089 sqlite3TreeViewSelect(0, p, 0); 6090 } 6091 #endif 6092 } 6093 6094 /* If there is an ORDER BY clause, then create an ephemeral index to 6095 ** do the sorting. But this sorting ephemeral index might end up 6096 ** being unused if the data can be extracted in pre-sorted order. 6097 ** If that is the case, then the OP_OpenEphemeral instruction will be 6098 ** changed to an OP_Noop once we figure out that the sorting index is 6099 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6100 ** that change. 6101 */ 6102 if( sSort.pOrderBy ){ 6103 KeyInfo *pKeyInfo; 6104 pKeyInfo = sqlite3KeyInfoFromExprList( 6105 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6106 sSort.iECursor = pParse->nTab++; 6107 sSort.addrSortIndex = 6108 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6109 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6110 (char*)pKeyInfo, P4_KEYINFO 6111 ); 6112 }else{ 6113 sSort.addrSortIndex = -1; 6114 } 6115 6116 /* If the output is destined for a temporary table, open that table. 6117 */ 6118 if( pDest->eDest==SRT_EphemTab ){ 6119 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6120 } 6121 6122 /* Set the limiter. 6123 */ 6124 iEnd = sqlite3VdbeMakeLabel(pParse); 6125 if( (p->selFlags & SF_FixedLimit)==0 ){ 6126 p->nSelectRow = 320; /* 4 billion rows */ 6127 } 6128 computeLimitRegisters(pParse, p, iEnd); 6129 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6130 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6131 sSort.sortFlags |= SORTFLAG_UseSorter; 6132 } 6133 6134 /* Open an ephemeral index to use for the distinct set. 6135 */ 6136 if( p->selFlags & SF_Distinct ){ 6137 sDistinct.tabTnct = pParse->nTab++; 6138 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6139 sDistinct.tabTnct, 0, 0, 6140 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6141 P4_KEYINFO); 6142 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6143 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6144 }else{ 6145 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6146 } 6147 6148 if( !isAgg && pGroupBy==0 ){ 6149 /* No aggregate functions and no GROUP BY clause */ 6150 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6151 | (p->selFlags & SF_FixedLimit); 6152 #ifndef SQLITE_OMIT_WINDOWFUNC 6153 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6154 if( pWin ){ 6155 sqlite3WindowCodeInit(pParse, pWin); 6156 } 6157 #endif 6158 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6159 6160 6161 /* Begin the database scan. */ 6162 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6163 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6164 p->pEList, wctrlFlags, p->nSelectRow); 6165 if( pWInfo==0 ) goto select_end; 6166 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6167 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6168 } 6169 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6170 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6171 } 6172 if( sSort.pOrderBy ){ 6173 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6174 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6175 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6176 sSort.pOrderBy = 0; 6177 } 6178 } 6179 6180 /* If sorting index that was created by a prior OP_OpenEphemeral 6181 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6182 ** into an OP_Noop. 6183 */ 6184 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6185 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6186 } 6187 6188 assert( p->pEList==pEList ); 6189 #ifndef SQLITE_OMIT_WINDOWFUNC 6190 if( pWin ){ 6191 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6192 int iCont = sqlite3VdbeMakeLabel(pParse); 6193 int iBreak = sqlite3VdbeMakeLabel(pParse); 6194 int regGosub = ++pParse->nMem; 6195 6196 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6197 6198 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6199 sqlite3VdbeResolveLabel(v, addrGosub); 6200 VdbeNoopComment((v, "inner-loop subroutine")); 6201 sSort.labelOBLopt = 0; 6202 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6203 sqlite3VdbeResolveLabel(v, iCont); 6204 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6205 VdbeComment((v, "end inner-loop subroutine")); 6206 sqlite3VdbeResolveLabel(v, iBreak); 6207 }else 6208 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6209 { 6210 /* Use the standard inner loop. */ 6211 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6212 sqlite3WhereContinueLabel(pWInfo), 6213 sqlite3WhereBreakLabel(pWInfo)); 6214 6215 /* End the database scan loop. 6216 */ 6217 sqlite3WhereEnd(pWInfo); 6218 } 6219 }else{ 6220 /* This case when there exist aggregate functions or a GROUP BY clause 6221 ** or both */ 6222 NameContext sNC; /* Name context for processing aggregate information */ 6223 int iAMem; /* First Mem address for storing current GROUP BY */ 6224 int iBMem; /* First Mem address for previous GROUP BY */ 6225 int iUseFlag; /* Mem address holding flag indicating that at least 6226 ** one row of the input to the aggregator has been 6227 ** processed */ 6228 int iAbortFlag; /* Mem address which causes query abort if positive */ 6229 int groupBySort; /* Rows come from source in GROUP BY order */ 6230 int addrEnd; /* End of processing for this SELECT */ 6231 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6232 int sortOut = 0; /* Output register from the sorter */ 6233 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6234 6235 /* Remove any and all aliases between the result set and the 6236 ** GROUP BY clause. 6237 */ 6238 if( pGroupBy ){ 6239 int k; /* Loop counter */ 6240 struct ExprList_item *pItem; /* For looping over expression in a list */ 6241 6242 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6243 pItem->u.x.iAlias = 0; 6244 } 6245 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6246 pItem->u.x.iAlias = 0; 6247 } 6248 assert( 66==sqlite3LogEst(100) ); 6249 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6250 6251 /* If there is both a GROUP BY and an ORDER BY clause and they are 6252 ** identical, then it may be possible to disable the ORDER BY clause 6253 ** on the grounds that the GROUP BY will cause elements to come out 6254 ** in the correct order. It also may not - the GROUP BY might use a 6255 ** database index that causes rows to be grouped together as required 6256 ** but not actually sorted. Either way, record the fact that the 6257 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6258 ** variable. */ 6259 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6260 int ii; 6261 /* The GROUP BY processing doesn't care whether rows are delivered in 6262 ** ASC or DESC order - only that each group is returned contiguously. 6263 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6264 ** ORDER BY to maximize the chances of rows being delivered in an 6265 ** order that makes the ORDER BY redundant. */ 6266 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6267 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6268 pGroupBy->a[ii].sortFlags = sortFlags; 6269 } 6270 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6271 orderByGrp = 1; 6272 } 6273 } 6274 }else{ 6275 assert( 0==sqlite3LogEst(1) ); 6276 p->nSelectRow = 0; 6277 } 6278 6279 /* Create a label to jump to when we want to abort the query */ 6280 addrEnd = sqlite3VdbeMakeLabel(pParse); 6281 6282 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6283 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6284 ** SELECT statement. 6285 */ 6286 memset(&sNC, 0, sizeof(sNC)); 6287 sNC.pParse = pParse; 6288 sNC.pSrcList = pTabList; 6289 sNC.uNC.pAggInfo = &sAggInfo; 6290 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6291 sAggInfo.mnReg = pParse->nMem+1; 6292 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6293 sAggInfo.pGroupBy = pGroupBy; 6294 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6295 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6296 if( pHaving ){ 6297 if( pGroupBy ){ 6298 assert( pWhere==p->pWhere ); 6299 assert( pHaving==p->pHaving ); 6300 assert( pGroupBy==p->pGroupBy ); 6301 havingToWhere(pParse, p); 6302 pWhere = p->pWhere; 6303 } 6304 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6305 } 6306 sAggInfo.nAccumulator = sAggInfo.nColumn; 6307 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6308 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6309 }else{ 6310 minMaxFlag = WHERE_ORDERBY_NORMAL; 6311 } 6312 for(i=0; i<sAggInfo.nFunc; i++){ 6313 Expr *pExpr = sAggInfo.aFunc[i].pExpr; 6314 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6315 sNC.ncFlags |= NC_InAggFunc; 6316 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6317 #ifndef SQLITE_OMIT_WINDOWFUNC 6318 assert( !IsWindowFunc(pExpr) ); 6319 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6320 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6321 } 6322 #endif 6323 sNC.ncFlags &= ~NC_InAggFunc; 6324 } 6325 sAggInfo.mxReg = pParse->nMem; 6326 if( db->mallocFailed ) goto select_end; 6327 #if SELECTTRACE_ENABLED 6328 if( sqlite3SelectTrace & 0x400 ){ 6329 int ii; 6330 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6331 sqlite3TreeViewSelect(0, p, 0); 6332 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6333 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6334 ii, sAggInfo.aCol[ii].iMem); 6335 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6336 } 6337 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6338 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6339 ii, sAggInfo.aFunc[ii].iMem); 6340 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6341 } 6342 } 6343 #endif 6344 6345 6346 /* Processing for aggregates with GROUP BY is very different and 6347 ** much more complex than aggregates without a GROUP BY. 6348 */ 6349 if( pGroupBy ){ 6350 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6351 int addr1; /* A-vs-B comparision jump */ 6352 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6353 int regOutputRow; /* Return address register for output subroutine */ 6354 int addrSetAbort; /* Set the abort flag and return */ 6355 int addrTopOfLoop; /* Top of the input loop */ 6356 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6357 int addrReset; /* Subroutine for resetting the accumulator */ 6358 int regReset; /* Return address register for reset subroutine */ 6359 6360 /* If there is a GROUP BY clause we might need a sorting index to 6361 ** implement it. Allocate that sorting index now. If it turns out 6362 ** that we do not need it after all, the OP_SorterOpen instruction 6363 ** will be converted into a Noop. 6364 */ 6365 sAggInfo.sortingIdx = pParse->nTab++; 6366 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6367 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6368 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6369 0, (char*)pKeyInfo, P4_KEYINFO); 6370 6371 /* Initialize memory locations used by GROUP BY aggregate processing 6372 */ 6373 iUseFlag = ++pParse->nMem; 6374 iAbortFlag = ++pParse->nMem; 6375 regOutputRow = ++pParse->nMem; 6376 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6377 regReset = ++pParse->nMem; 6378 addrReset = sqlite3VdbeMakeLabel(pParse); 6379 iAMem = pParse->nMem + 1; 6380 pParse->nMem += pGroupBy->nExpr; 6381 iBMem = pParse->nMem + 1; 6382 pParse->nMem += pGroupBy->nExpr; 6383 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6384 VdbeComment((v, "clear abort flag")); 6385 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6386 6387 /* Begin a loop that will extract all source rows in GROUP BY order. 6388 ** This might involve two separate loops with an OP_Sort in between, or 6389 ** it might be a single loop that uses an index to extract information 6390 ** in the right order to begin with. 6391 */ 6392 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6393 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6394 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6395 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6396 ); 6397 if( pWInfo==0 ) goto select_end; 6398 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6399 /* The optimizer is able to deliver rows in group by order so 6400 ** we do not have to sort. The OP_OpenEphemeral table will be 6401 ** cancelled later because we still need to use the pKeyInfo 6402 */ 6403 groupBySort = 0; 6404 }else{ 6405 /* Rows are coming out in undetermined order. We have to push 6406 ** each row into a sorting index, terminate the first loop, 6407 ** then loop over the sorting index in order to get the output 6408 ** in sorted order 6409 */ 6410 int regBase; 6411 int regRecord; 6412 int nCol; 6413 int nGroupBy; 6414 6415 explainTempTable(pParse, 6416 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6417 "DISTINCT" : "GROUP BY"); 6418 6419 groupBySort = 1; 6420 nGroupBy = pGroupBy->nExpr; 6421 nCol = nGroupBy; 6422 j = nGroupBy; 6423 for(i=0; i<sAggInfo.nColumn; i++){ 6424 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6425 nCol++; 6426 j++; 6427 } 6428 } 6429 regBase = sqlite3GetTempRange(pParse, nCol); 6430 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6431 j = nGroupBy; 6432 for(i=0; i<sAggInfo.nColumn; i++){ 6433 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6434 if( pCol->iSorterColumn>=j ){ 6435 int r1 = j + regBase; 6436 sqlite3ExprCodeGetColumnOfTable(v, 6437 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6438 j++; 6439 } 6440 } 6441 regRecord = sqlite3GetTempReg(pParse); 6442 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6443 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6444 sqlite3ReleaseTempReg(pParse, regRecord); 6445 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6446 sqlite3WhereEnd(pWInfo); 6447 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6448 sortOut = sqlite3GetTempReg(pParse); 6449 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6450 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6451 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6452 sAggInfo.useSortingIdx = 1; 6453 } 6454 6455 /* If the index or temporary table used by the GROUP BY sort 6456 ** will naturally deliver rows in the order required by the ORDER BY 6457 ** clause, cancel the ephemeral table open coded earlier. 6458 ** 6459 ** This is an optimization - the correct answer should result regardless. 6460 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6461 ** disable this optimization for testing purposes. */ 6462 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6463 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6464 ){ 6465 sSort.pOrderBy = 0; 6466 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6467 } 6468 6469 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6470 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6471 ** Then compare the current GROUP BY terms against the GROUP BY terms 6472 ** from the previous row currently stored in a0, a1, a2... 6473 */ 6474 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6475 if( groupBySort ){ 6476 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6477 sortOut, sortPTab); 6478 } 6479 for(j=0; j<pGroupBy->nExpr; j++){ 6480 if( groupBySort ){ 6481 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6482 }else{ 6483 sAggInfo.directMode = 1; 6484 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6485 } 6486 } 6487 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6488 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6489 addr1 = sqlite3VdbeCurrentAddr(v); 6490 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6491 6492 /* Generate code that runs whenever the GROUP BY changes. 6493 ** Changes in the GROUP BY are detected by the previous code 6494 ** block. If there were no changes, this block is skipped. 6495 ** 6496 ** This code copies current group by terms in b0,b1,b2,... 6497 ** over to a0,a1,a2. It then calls the output subroutine 6498 ** and resets the aggregate accumulator registers in preparation 6499 ** for the next GROUP BY batch. 6500 */ 6501 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6502 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6503 VdbeComment((v, "output one row")); 6504 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6505 VdbeComment((v, "check abort flag")); 6506 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6507 VdbeComment((v, "reset accumulator")); 6508 6509 /* Update the aggregate accumulators based on the content of 6510 ** the current row 6511 */ 6512 sqlite3VdbeJumpHere(v, addr1); 6513 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6514 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6515 VdbeComment((v, "indicate data in accumulator")); 6516 6517 /* End of the loop 6518 */ 6519 if( groupBySort ){ 6520 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6521 VdbeCoverage(v); 6522 }else{ 6523 sqlite3WhereEnd(pWInfo); 6524 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6525 } 6526 6527 /* Output the final row of result 6528 */ 6529 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6530 VdbeComment((v, "output final row")); 6531 6532 /* Jump over the subroutines 6533 */ 6534 sqlite3VdbeGoto(v, addrEnd); 6535 6536 /* Generate a subroutine that outputs a single row of the result 6537 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6538 ** is less than or equal to zero, the subroutine is a no-op. If 6539 ** the processing calls for the query to abort, this subroutine 6540 ** increments the iAbortFlag memory location before returning in 6541 ** order to signal the caller to abort. 6542 */ 6543 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6544 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6545 VdbeComment((v, "set abort flag")); 6546 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6547 sqlite3VdbeResolveLabel(v, addrOutputRow); 6548 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6549 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6550 VdbeCoverage(v); 6551 VdbeComment((v, "Groupby result generator entry point")); 6552 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6553 finalizeAggFunctions(pParse, &sAggInfo); 6554 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6555 selectInnerLoop(pParse, p, -1, &sSort, 6556 &sDistinct, pDest, 6557 addrOutputRow+1, addrSetAbort); 6558 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6559 VdbeComment((v, "end groupby result generator")); 6560 6561 /* Generate a subroutine that will reset the group-by accumulator 6562 */ 6563 sqlite3VdbeResolveLabel(v, addrReset); 6564 resetAccumulator(pParse, &sAggInfo); 6565 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6566 VdbeComment((v, "indicate accumulator empty")); 6567 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6568 6569 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6570 else { 6571 #ifndef SQLITE_OMIT_BTREECOUNT 6572 Table *pTab; 6573 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6574 /* If isSimpleCount() returns a pointer to a Table structure, then 6575 ** the SQL statement is of the form: 6576 ** 6577 ** SELECT count(*) FROM <tbl> 6578 ** 6579 ** where the Table structure returned represents table <tbl>. 6580 ** 6581 ** This statement is so common that it is optimized specially. The 6582 ** OP_Count instruction is executed either on the intkey table that 6583 ** contains the data for table <tbl> or on one of its indexes. It 6584 ** is better to execute the op on an index, as indexes are almost 6585 ** always spread across less pages than their corresponding tables. 6586 */ 6587 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6588 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6589 Index *pIdx; /* Iterator variable */ 6590 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6591 Index *pBest = 0; /* Best index found so far */ 6592 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6593 6594 sqlite3CodeVerifySchema(pParse, iDb); 6595 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6596 6597 /* Search for the index that has the lowest scan cost. 6598 ** 6599 ** (2011-04-15) Do not do a full scan of an unordered index. 6600 ** 6601 ** (2013-10-03) Do not count the entries in a partial index. 6602 ** 6603 ** In practice the KeyInfo structure will not be used. It is only 6604 ** passed to keep OP_OpenRead happy. 6605 */ 6606 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6607 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6608 if( pIdx->bUnordered==0 6609 && pIdx->szIdxRow<pTab->szTabRow 6610 && pIdx->pPartIdxWhere==0 6611 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6612 ){ 6613 pBest = pIdx; 6614 } 6615 } 6616 if( pBest ){ 6617 iRoot = pBest->tnum; 6618 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6619 } 6620 6621 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6622 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6623 if( pKeyInfo ){ 6624 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6625 } 6626 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6627 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6628 explainSimpleCount(pParse, pTab, pBest); 6629 }else 6630 #endif /* SQLITE_OMIT_BTREECOUNT */ 6631 { 6632 int regAcc = 0; /* "populate accumulators" flag */ 6633 6634 /* If there are accumulator registers but no min() or max() functions 6635 ** without FILTER clauses, allocate register regAcc. Register regAcc 6636 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6637 ** The code generated by updateAccumulator() uses this to ensure 6638 ** that the accumulator registers are (a) updated only once if 6639 ** there are no min() or max functions or (b) always updated for the 6640 ** first row visited by the aggregate, so that they are updated at 6641 ** least once even if the FILTER clause means the min() or max() 6642 ** function visits zero rows. */ 6643 if( sAggInfo.nAccumulator ){ 6644 for(i=0; i<sAggInfo.nFunc; i++){ 6645 if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue; 6646 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6647 } 6648 if( i==sAggInfo.nFunc ){ 6649 regAcc = ++pParse->nMem; 6650 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6651 } 6652 } 6653 6654 /* This case runs if the aggregate has no GROUP BY clause. The 6655 ** processing is much simpler since there is only a single row 6656 ** of output. 6657 */ 6658 assert( p->pGroupBy==0 ); 6659 resetAccumulator(pParse, &sAggInfo); 6660 6661 /* If this query is a candidate for the min/max optimization, then 6662 ** minMaxFlag will have been previously set to either 6663 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6664 ** be an appropriate ORDER BY expression for the optimization. 6665 */ 6666 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6667 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6668 6669 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6670 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6671 0, minMaxFlag, 0); 6672 if( pWInfo==0 ){ 6673 goto select_end; 6674 } 6675 updateAccumulator(pParse, regAcc, &sAggInfo); 6676 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6677 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6678 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6679 VdbeComment((v, "%s() by index", 6680 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6681 } 6682 sqlite3WhereEnd(pWInfo); 6683 finalizeAggFunctions(pParse, &sAggInfo); 6684 } 6685 6686 sSort.pOrderBy = 0; 6687 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6688 selectInnerLoop(pParse, p, -1, 0, 0, 6689 pDest, addrEnd, addrEnd); 6690 } 6691 sqlite3VdbeResolveLabel(v, addrEnd); 6692 6693 } /* endif aggregate query */ 6694 6695 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6696 explainTempTable(pParse, "DISTINCT"); 6697 } 6698 6699 /* If there is an ORDER BY clause, then we need to sort the results 6700 ** and send them to the callback one by one. 6701 */ 6702 if( sSort.pOrderBy ){ 6703 explainTempTable(pParse, 6704 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6705 assert( p->pEList==pEList ); 6706 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6707 } 6708 6709 /* Jump here to skip this query 6710 */ 6711 sqlite3VdbeResolveLabel(v, iEnd); 6712 6713 /* The SELECT has been coded. If there is an error in the Parse structure, 6714 ** set the return code to 1. Otherwise 0. */ 6715 rc = (pParse->nErr>0); 6716 6717 /* Control jumps to here if an error is encountered above, or upon 6718 ** successful coding of the SELECT. 6719 */ 6720 select_end: 6721 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6722 sqlite3DbFree(db, sAggInfo.aCol); 6723 sqlite3DbFree(db, sAggInfo.aFunc); 6724 #if SELECTTRACE_ENABLED 6725 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6726 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6727 sqlite3TreeViewSelect(0, p, 0); 6728 } 6729 #endif 6730 ExplainQueryPlanPop(pParse); 6731 return rc; 6732 } 6733