xref: /sqlite-3.40.0/src/select.c (revision e8f2c9dc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 */
34 typedef struct SortCtx SortCtx;
35 struct SortCtx {
36   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
37   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
38   int iECursor;         /* Cursor number for the sorter */
39   int regReturn;        /* Register holding block-output return address */
40   int labelBkOut;       /* Start label for the block-output subroutine */
41   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
42   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
43 };
44 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
45 
46 /*
47 ** Delete all the content of a Select structure but do not deallocate
48 ** the select structure itself.
49 */
50 static void clearSelect(sqlite3 *db, Select *p){
51   sqlite3ExprListDelete(db, p->pEList);
52   sqlite3SrcListDelete(db, p->pSrc);
53   sqlite3ExprDelete(db, p->pWhere);
54   sqlite3ExprListDelete(db, p->pGroupBy);
55   sqlite3ExprDelete(db, p->pHaving);
56   sqlite3ExprListDelete(db, p->pOrderBy);
57   sqlite3SelectDelete(db, p->pPrior);
58   sqlite3ExprDelete(db, p->pLimit);
59   sqlite3ExprDelete(db, p->pOffset);
60   sqlite3WithDelete(db, p->pWith);
61 }
62 
63 /*
64 ** Initialize a SelectDest structure.
65 */
66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
67   pDest->eDest = (u8)eDest;
68   pDest->iSDParm = iParm;
69   pDest->affSdst = 0;
70   pDest->iSdst = 0;
71   pDest->nSdst = 0;
72 }
73 
74 
75 /*
76 ** Allocate a new Select structure and return a pointer to that
77 ** structure.
78 */
79 Select *sqlite3SelectNew(
80   Parse *pParse,        /* Parsing context */
81   ExprList *pEList,     /* which columns to include in the result */
82   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
83   Expr *pWhere,         /* the WHERE clause */
84   ExprList *pGroupBy,   /* the GROUP BY clause */
85   Expr *pHaving,        /* the HAVING clause */
86   ExprList *pOrderBy,   /* the ORDER BY clause */
87   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
88   Expr *pLimit,         /* LIMIT value.  NULL means not used */
89   Expr *pOffset         /* OFFSET value.  NULL means no offset */
90 ){
91   Select *pNew;
92   Select standin;
93   sqlite3 *db = pParse->db;
94   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
95   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
96   if( pNew==0 ){
97     assert( db->mallocFailed );
98     pNew = &standin;
99     memset(pNew, 0, sizeof(*pNew));
100   }
101   if( pEList==0 ){
102     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
103   }
104   pNew->pEList = pEList;
105   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
106   pNew->pSrc = pSrc;
107   pNew->pWhere = pWhere;
108   pNew->pGroupBy = pGroupBy;
109   pNew->pHaving = pHaving;
110   pNew->pOrderBy = pOrderBy;
111   pNew->selFlags = selFlags;
112   pNew->op = TK_SELECT;
113   pNew->pLimit = pLimit;
114   pNew->pOffset = pOffset;
115   assert( pOffset==0 || pLimit!=0 );
116   pNew->addrOpenEphm[0] = -1;
117   pNew->addrOpenEphm[1] = -1;
118   if( db->mallocFailed ) {
119     clearSelect(db, pNew);
120     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
121     pNew = 0;
122   }else{
123     assert( pNew->pSrc!=0 || pParse->nErr>0 );
124   }
125   assert( pNew!=&standin );
126   return pNew;
127 }
128 
129 /*
130 ** Delete the given Select structure and all of its substructures.
131 */
132 void sqlite3SelectDelete(sqlite3 *db, Select *p){
133   if( p ){
134     clearSelect(db, p);
135     sqlite3DbFree(db, p);
136   }
137 }
138 
139 /*
140 ** Return a pointer to the right-most SELECT statement in a compound.
141 */
142 static Select *findRightmost(Select *p){
143   while( p->pNext ) p = p->pNext;
144   return p;
145 }
146 
147 /*
148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
149 ** type of join.  Return an integer constant that expresses that type
150 ** in terms of the following bit values:
151 **
152 **     JT_INNER
153 **     JT_CROSS
154 **     JT_OUTER
155 **     JT_NATURAL
156 **     JT_LEFT
157 **     JT_RIGHT
158 **
159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
160 **
161 ** If an illegal or unsupported join type is seen, then still return
162 ** a join type, but put an error in the pParse structure.
163 */
164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
165   int jointype = 0;
166   Token *apAll[3];
167   Token *p;
168                              /*   0123456789 123456789 123456789 123 */
169   static const char zKeyText[] = "naturaleftouterightfullinnercross";
170   static const struct {
171     u8 i;        /* Beginning of keyword text in zKeyText[] */
172     u8 nChar;    /* Length of the keyword in characters */
173     u8 code;     /* Join type mask */
174   } aKeyword[] = {
175     /* natural */ { 0,  7, JT_NATURAL                },
176     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
177     /* outer   */ { 10, 5, JT_OUTER                  },
178     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
179     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
180     /* inner   */ { 23, 5, JT_INNER                  },
181     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
182   };
183   int i, j;
184   apAll[0] = pA;
185   apAll[1] = pB;
186   apAll[2] = pC;
187   for(i=0; i<3 && apAll[i]; i++){
188     p = apAll[i];
189     for(j=0; j<ArraySize(aKeyword); j++){
190       if( p->n==aKeyword[j].nChar
191           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
192         jointype |= aKeyword[j].code;
193         break;
194       }
195     }
196     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
197     if( j>=ArraySize(aKeyword) ){
198       jointype |= JT_ERROR;
199       break;
200     }
201   }
202   if(
203      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
204      (jointype & JT_ERROR)!=0
205   ){
206     const char *zSp = " ";
207     assert( pB!=0 );
208     if( pC==0 ){ zSp++; }
209     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
210        "%T %T%s%T", pA, pB, zSp, pC);
211     jointype = JT_INNER;
212   }else if( (jointype & JT_OUTER)!=0
213          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
214     sqlite3ErrorMsg(pParse,
215       "RIGHT and FULL OUTER JOINs are not currently supported");
216     jointype = JT_INNER;
217   }
218   return jointype;
219 }
220 
221 /*
222 ** Return the index of a column in a table.  Return -1 if the column
223 ** is not contained in the table.
224 */
225 static int columnIndex(Table *pTab, const char *zCol){
226   int i;
227   for(i=0; i<pTab->nCol; i++){
228     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
229   }
230   return -1;
231 }
232 
233 /*
234 ** Search the first N tables in pSrc, from left to right, looking for a
235 ** table that has a column named zCol.
236 **
237 ** When found, set *piTab and *piCol to the table index and column index
238 ** of the matching column and return TRUE.
239 **
240 ** If not found, return FALSE.
241 */
242 static int tableAndColumnIndex(
243   SrcList *pSrc,       /* Array of tables to search */
244   int N,               /* Number of tables in pSrc->a[] to search */
245   const char *zCol,    /* Name of the column we are looking for */
246   int *piTab,          /* Write index of pSrc->a[] here */
247   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
248 ){
249   int i;               /* For looping over tables in pSrc */
250   int iCol;            /* Index of column matching zCol */
251 
252   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
253   for(i=0; i<N; i++){
254     iCol = columnIndex(pSrc->a[i].pTab, zCol);
255     if( iCol>=0 ){
256       if( piTab ){
257         *piTab = i;
258         *piCol = iCol;
259       }
260       return 1;
261     }
262   }
263   return 0;
264 }
265 
266 /*
267 ** This function is used to add terms implied by JOIN syntax to the
268 ** WHERE clause expression of a SELECT statement. The new term, which
269 ** is ANDed with the existing WHERE clause, is of the form:
270 **
271 **    (tab1.col1 = tab2.col2)
272 **
273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
275 ** column iColRight of tab2.
276 */
277 static void addWhereTerm(
278   Parse *pParse,                  /* Parsing context */
279   SrcList *pSrc,                  /* List of tables in FROM clause */
280   int iLeft,                      /* Index of first table to join in pSrc */
281   int iColLeft,                   /* Index of column in first table */
282   int iRight,                     /* Index of second table in pSrc */
283   int iColRight,                  /* Index of column in second table */
284   int isOuterJoin,                /* True if this is an OUTER join */
285   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
286 ){
287   sqlite3 *db = pParse->db;
288   Expr *pE1;
289   Expr *pE2;
290   Expr *pEq;
291 
292   assert( iLeft<iRight );
293   assert( pSrc->nSrc>iRight );
294   assert( pSrc->a[iLeft].pTab );
295   assert( pSrc->a[iRight].pTab );
296 
297   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
298   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
299 
300   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
301   if( pEq && isOuterJoin ){
302     ExprSetProperty(pEq, EP_FromJoin);
303     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
304     ExprSetVVAProperty(pEq, EP_NoReduce);
305     pEq->iRightJoinTable = (i16)pE2->iTable;
306   }
307   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
308 }
309 
310 /*
311 ** Set the EP_FromJoin property on all terms of the given expression.
312 ** And set the Expr.iRightJoinTable to iTable for every term in the
313 ** expression.
314 **
315 ** The EP_FromJoin property is used on terms of an expression to tell
316 ** the LEFT OUTER JOIN processing logic that this term is part of the
317 ** join restriction specified in the ON or USING clause and not a part
318 ** of the more general WHERE clause.  These terms are moved over to the
319 ** WHERE clause during join processing but we need to remember that they
320 ** originated in the ON or USING clause.
321 **
322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
323 ** expression depends on table iRightJoinTable even if that table is not
324 ** explicitly mentioned in the expression.  That information is needed
325 ** for cases like this:
326 **
327 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
328 **
329 ** The where clause needs to defer the handling of the t1.x=5
330 ** term until after the t2 loop of the join.  In that way, a
331 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
332 ** defer the handling of t1.x=5, it will be processed immediately
333 ** after the t1 loop and rows with t1.x!=5 will never appear in
334 ** the output, which is incorrect.
335 */
336 static void setJoinExpr(Expr *p, int iTable){
337   while( p ){
338     ExprSetProperty(p, EP_FromJoin);
339     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(p, EP_NoReduce);
341     p->iRightJoinTable = (i16)iTable;
342     setJoinExpr(p->pLeft, iTable);
343     p = p->pRight;
344   }
345 }
346 
347 /*
348 ** This routine processes the join information for a SELECT statement.
349 ** ON and USING clauses are converted into extra terms of the WHERE clause.
350 ** NATURAL joins also create extra WHERE clause terms.
351 **
352 ** The terms of a FROM clause are contained in the Select.pSrc structure.
353 ** The left most table is the first entry in Select.pSrc.  The right-most
354 ** table is the last entry.  The join operator is held in the entry to
355 ** the left.  Thus entry 0 contains the join operator for the join between
356 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
357 ** also attached to the left entry.
358 **
359 ** This routine returns the number of errors encountered.
360 */
361 static int sqliteProcessJoin(Parse *pParse, Select *p){
362   SrcList *pSrc;                  /* All tables in the FROM clause */
363   int i, j;                       /* Loop counters */
364   struct SrcList_item *pLeft;     /* Left table being joined */
365   struct SrcList_item *pRight;    /* Right table being joined */
366 
367   pSrc = p->pSrc;
368   pLeft = &pSrc->a[0];
369   pRight = &pLeft[1];
370   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
371     Table *pLeftTab = pLeft->pTab;
372     Table *pRightTab = pRight->pTab;
373     int isOuter;
374 
375     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
376     isOuter = (pRight->jointype & JT_OUTER)!=0;
377 
378     /* When the NATURAL keyword is present, add WHERE clause terms for
379     ** every column that the two tables have in common.
380     */
381     if( pRight->jointype & JT_NATURAL ){
382       if( pRight->pOn || pRight->pUsing ){
383         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
384            "an ON or USING clause", 0);
385         return 1;
386       }
387       for(j=0; j<pRightTab->nCol; j++){
388         char *zName;   /* Name of column in the right table */
389         int iLeft;     /* Matching left table */
390         int iLeftCol;  /* Matching column in the left table */
391 
392         zName = pRightTab->aCol[j].zName;
393         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
394           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
395                        isOuter, &p->pWhere);
396         }
397       }
398     }
399 
400     /* Disallow both ON and USING clauses in the same join
401     */
402     if( pRight->pOn && pRight->pUsing ){
403       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
404         "clauses in the same join");
405       return 1;
406     }
407 
408     /* Add the ON clause to the end of the WHERE clause, connected by
409     ** an AND operator.
410     */
411     if( pRight->pOn ){
412       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
413       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
414       pRight->pOn = 0;
415     }
416 
417     /* Create extra terms on the WHERE clause for each column named
418     ** in the USING clause.  Example: If the two tables to be joined are
419     ** A and B and the USING clause names X, Y, and Z, then add this
420     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
421     ** Report an error if any column mentioned in the USING clause is
422     ** not contained in both tables to be joined.
423     */
424     if( pRight->pUsing ){
425       IdList *pList = pRight->pUsing;
426       for(j=0; j<pList->nId; j++){
427         char *zName;     /* Name of the term in the USING clause */
428         int iLeft;       /* Table on the left with matching column name */
429         int iLeftCol;    /* Column number of matching column on the left */
430         int iRightCol;   /* Column number of matching column on the right */
431 
432         zName = pList->a[j].zName;
433         iRightCol = columnIndex(pRightTab, zName);
434         if( iRightCol<0
435          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
436         ){
437           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
438             "not present in both tables", zName);
439           return 1;
440         }
441         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
442                      isOuter, &p->pWhere);
443       }
444     }
445   }
446   return 0;
447 }
448 
449 /* Forward reference */
450 static KeyInfo *keyInfoFromExprList(
451   Parse *pParse,       /* Parsing context */
452   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
453   int iStart,          /* Begin with this column of pList */
454   int nExtra           /* Add this many extra columns to the end */
455 );
456 
457 /*
458 ** Insert code into "v" that will push the record in register regData
459 ** into the sorter.
460 */
461 static void pushOntoSorter(
462   Parse *pParse,         /* Parser context */
463   SortCtx *pSort,        /* Information about the ORDER BY clause */
464   Select *pSelect,       /* The whole SELECT statement */
465   int regData            /* Register holding data to be sorted */
466 ){
467   Vdbe *v = pParse->pVdbe;
468   int nExpr = pSort->pOrderBy->nExpr;
469   int regRecord = ++pParse->nMem;
470   int regBase = pParse->nMem+1;
471   int nOBSat = pSort->nOBSat;
472   int op;
473 
474   pParse->nMem += nExpr+2;        /* nExpr+2 registers allocated at regBase */
475   sqlite3ExprCacheClear(pParse);
476   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0);
477   sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
478   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
479   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat,regRecord);
480   if( nOBSat>0 ){
481     int regPrevKey;   /* The first nOBSat columns of the previous row */
482     int addrFirst;    /* Address of the OP_IfNot opcode */
483     int addrJmp;      /* Address of the OP_Jump opcode */
484     VdbeOp *pOp;      /* Opcode that opens the sorter */
485     int nKey;         /* Number of sorting key columns, including OP_Sequence */
486     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
487 
488     regPrevKey = pParse->nMem+1;
489     pParse->nMem += pSort->nOBSat;
490     nKey = nExpr - pSort->nOBSat + 1;
491     addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v);
492     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
493     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
494     if( pParse->db->mallocFailed ) return;
495     pOp->p2 = nKey + 1;
496     pKI = pOp->p4.pKeyInfo;
497     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
498     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
499     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
500     addrJmp = sqlite3VdbeCurrentAddr(v);
501     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
502     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
503     pSort->regReturn = ++pParse->nMem;
504     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
505     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
506     sqlite3VdbeJumpHere(v, addrFirst);
507     sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat);
508     sqlite3VdbeJumpHere(v, addrJmp);
509   }
510   if( pSort->sortFlags & SORTFLAG_UseSorter ){
511     op = OP_SorterInsert;
512   }else{
513     op = OP_IdxInsert;
514   }
515   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
516   if( pSelect->iLimit ){
517     int addr1, addr2;
518     int iLimit;
519     if( pSelect->iOffset ){
520       iLimit = pSelect->iOffset+1;
521     }else{
522       iLimit = pSelect->iLimit;
523     }
524     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
525     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
526     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
527     sqlite3VdbeJumpHere(v, addr1);
528     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
529     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
530     sqlite3VdbeJumpHere(v, addr2);
531   }
532 }
533 
534 /*
535 ** Add code to implement the OFFSET
536 */
537 static void codeOffset(
538   Vdbe *v,          /* Generate code into this VM */
539   int iOffset,      /* Register holding the offset counter */
540   int iContinue     /* Jump here to skip the current record */
541 ){
542   if( iOffset>0 ){
543     int addr;
544     addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
545     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
546     VdbeComment((v, "skip OFFSET records"));
547     sqlite3VdbeJumpHere(v, addr);
548   }
549 }
550 
551 /*
552 ** Add code that will check to make sure the N registers starting at iMem
553 ** form a distinct entry.  iTab is a sorting index that holds previously
554 ** seen combinations of the N values.  A new entry is made in iTab
555 ** if the current N values are new.
556 **
557 ** A jump to addrRepeat is made and the N+1 values are popped from the
558 ** stack if the top N elements are not distinct.
559 */
560 static void codeDistinct(
561   Parse *pParse,     /* Parsing and code generating context */
562   int iTab,          /* A sorting index used to test for distinctness */
563   int addrRepeat,    /* Jump to here if not distinct */
564   int N,             /* Number of elements */
565   int iMem           /* First element */
566 ){
567   Vdbe *v;
568   int r1;
569 
570   v = pParse->pVdbe;
571   r1 = sqlite3GetTempReg(pParse);
572   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
573   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
574   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
575   sqlite3ReleaseTempReg(pParse, r1);
576 }
577 
578 #ifndef SQLITE_OMIT_SUBQUERY
579 /*
580 ** Generate an error message when a SELECT is used within a subexpression
581 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
582 ** column.  We do this in a subroutine because the error used to occur
583 ** in multiple places.  (The error only occurs in one place now, but we
584 ** retain the subroutine to minimize code disruption.)
585 */
586 static int checkForMultiColumnSelectError(
587   Parse *pParse,       /* Parse context. */
588   SelectDest *pDest,   /* Destination of SELECT results */
589   int nExpr            /* Number of result columns returned by SELECT */
590 ){
591   int eDest = pDest->eDest;
592   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
593     sqlite3ErrorMsg(pParse, "only a single result allowed for "
594        "a SELECT that is part of an expression");
595     return 1;
596   }else{
597     return 0;
598   }
599 }
600 #endif
601 
602 /*
603 ** This routine generates the code for the inside of the inner loop
604 ** of a SELECT.
605 **
606 ** If srcTab is negative, then the pEList expressions
607 ** are evaluated in order to get the data for this row.  If srcTab is
608 ** zero or more, then data is pulled from srcTab and pEList is used only
609 ** to get number columns and the datatype for each column.
610 */
611 static void selectInnerLoop(
612   Parse *pParse,          /* The parser context */
613   Select *p,              /* The complete select statement being coded */
614   ExprList *pEList,       /* List of values being extracted */
615   int srcTab,             /* Pull data from this table */
616   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
617   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
618   SelectDest *pDest,      /* How to dispose of the results */
619   int iContinue,          /* Jump here to continue with next row */
620   int iBreak              /* Jump here to break out of the inner loop */
621 ){
622   Vdbe *v = pParse->pVdbe;
623   int i;
624   int hasDistinct;        /* True if the DISTINCT keyword is present */
625   int regResult;              /* Start of memory holding result set */
626   int eDest = pDest->eDest;   /* How to dispose of results */
627   int iParm = pDest->iSDParm; /* First argument to disposal method */
628   int nResultCol;             /* Number of result columns */
629 
630   assert( v );
631   assert( pEList!=0 );
632   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
633   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
634   if( pSort==0 && !hasDistinct ){
635     assert( iContinue!=0 );
636     codeOffset(v, p->iOffset, iContinue);
637   }
638 
639   /* Pull the requested columns.
640   */
641   nResultCol = pEList->nExpr;
642 
643   if( pDest->iSdst==0 ){
644     pDest->iSdst = pParse->nMem+1;
645     pParse->nMem += nResultCol;
646   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
647     /* This is an error condition that can result, for example, when a SELECT
648     ** on the right-hand side of an INSERT contains more result columns than
649     ** there are columns in the table on the left.  The error will be caught
650     ** and reported later.  But we need to make sure enough memory is allocated
651     ** to avoid other spurious errors in the meantime. */
652     pParse->nMem += nResultCol;
653   }
654   pDest->nSdst = nResultCol;
655   regResult = pDest->iSdst;
656   if( srcTab>=0 ){
657     for(i=0; i<nResultCol; i++){
658       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
659       VdbeComment((v, "%s", pEList->a[i].zName));
660     }
661   }else if( eDest!=SRT_Exists ){
662     /* If the destination is an EXISTS(...) expression, the actual
663     ** values returned by the SELECT are not required.
664     */
665     sqlite3ExprCodeExprList(pParse, pEList, regResult,
666                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
667   }
668 
669   /* If the DISTINCT keyword was present on the SELECT statement
670   ** and this row has been seen before, then do not make this row
671   ** part of the result.
672   */
673   if( hasDistinct ){
674     switch( pDistinct->eTnctType ){
675       case WHERE_DISTINCT_ORDERED: {
676         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
677         int iJump;              /* Jump destination */
678         int regPrev;            /* Previous row content */
679 
680         /* Allocate space for the previous row */
681         regPrev = pParse->nMem+1;
682         pParse->nMem += nResultCol;
683 
684         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
685         ** sets the MEM_Cleared bit on the first register of the
686         ** previous value.  This will cause the OP_Ne below to always
687         ** fail on the first iteration of the loop even if the first
688         ** row is all NULLs.
689         */
690         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
691         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
692         pOp->opcode = OP_Null;
693         pOp->p1 = 1;
694         pOp->p2 = regPrev;
695 
696         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
697         for(i=0; i<nResultCol; i++){
698           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
699           if( i<nResultCol-1 ){
700             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
701             VdbeCoverage(v);
702           }else{
703             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
704             VdbeCoverage(v);
705            }
706           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
707           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
708         }
709         assert( sqlite3VdbeCurrentAddr(v)==iJump );
710         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
711         break;
712       }
713 
714       case WHERE_DISTINCT_UNIQUE: {
715         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
716         break;
717       }
718 
719       default: {
720         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
721         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
722         break;
723       }
724     }
725     if( pSort==0 ){
726       codeOffset(v, p->iOffset, iContinue);
727     }
728   }
729 
730   switch( eDest ){
731     /* In this mode, write each query result to the key of the temporary
732     ** table iParm.
733     */
734 #ifndef SQLITE_OMIT_COMPOUND_SELECT
735     case SRT_Union: {
736       int r1;
737       r1 = sqlite3GetTempReg(pParse);
738       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
739       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
740       sqlite3ReleaseTempReg(pParse, r1);
741       break;
742     }
743 
744     /* Construct a record from the query result, but instead of
745     ** saving that record, use it as a key to delete elements from
746     ** the temporary table iParm.
747     */
748     case SRT_Except: {
749       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
750       break;
751     }
752 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
753 
754     /* Store the result as data using a unique key.
755     */
756     case SRT_Fifo:
757     case SRT_DistFifo:
758     case SRT_Table:
759     case SRT_EphemTab: {
760       int r1 = sqlite3GetTempReg(pParse);
761       testcase( eDest==SRT_Table );
762       testcase( eDest==SRT_EphemTab );
763       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
764 #ifndef SQLITE_OMIT_CTE
765       if( eDest==SRT_DistFifo ){
766         /* If the destination is DistFifo, then cursor (iParm+1) is open
767         ** on an ephemeral index. If the current row is already present
768         ** in the index, do not write it to the output. If not, add the
769         ** current row to the index and proceed with writing it to the
770         ** output table as well.  */
771         int addr = sqlite3VdbeCurrentAddr(v) + 4;
772         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
773         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
774         assert( pSort==0 );
775       }
776 #endif
777       if( pSort ){
778         pushOntoSorter(pParse, pSort, p, r1);
779       }else{
780         int r2 = sqlite3GetTempReg(pParse);
781         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
782         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
783         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
784         sqlite3ReleaseTempReg(pParse, r2);
785       }
786       sqlite3ReleaseTempReg(pParse, r1);
787       break;
788     }
789 
790 #ifndef SQLITE_OMIT_SUBQUERY
791     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
792     ** then there should be a single item on the stack.  Write this
793     ** item into the set table with bogus data.
794     */
795     case SRT_Set: {
796       assert( nResultCol==1 );
797       pDest->affSdst =
798                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
799       if( pSort ){
800         /* At first glance you would think we could optimize out the
801         ** ORDER BY in this case since the order of entries in the set
802         ** does not matter.  But there might be a LIMIT clause, in which
803         ** case the order does matter */
804         pushOntoSorter(pParse, pSort, p, regResult);
805       }else{
806         int r1 = sqlite3GetTempReg(pParse);
807         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
808         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
809         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
810         sqlite3ReleaseTempReg(pParse, r1);
811       }
812       break;
813     }
814 
815     /* If any row exist in the result set, record that fact and abort.
816     */
817     case SRT_Exists: {
818       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
819       /* The LIMIT clause will terminate the loop for us */
820       break;
821     }
822 
823     /* If this is a scalar select that is part of an expression, then
824     ** store the results in the appropriate memory cell and break out
825     ** of the scan loop.
826     */
827     case SRT_Mem: {
828       assert( nResultCol==1 );
829       if( pSort ){
830         pushOntoSorter(pParse, pSort, p, regResult);
831       }else{
832         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
833         /* The LIMIT clause will jump out of the loop for us */
834       }
835       break;
836     }
837 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
838 
839     case SRT_Coroutine:       /* Send data to a co-routine */
840     case SRT_Output: {        /* Return the results */
841       testcase( eDest==SRT_Coroutine );
842       testcase( eDest==SRT_Output );
843       if( pSort ){
844         int r1 = sqlite3GetTempReg(pParse);
845         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
846         pushOntoSorter(pParse, pSort, p, r1);
847         sqlite3ReleaseTempReg(pParse, r1);
848       }else if( eDest==SRT_Coroutine ){
849         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
850       }else{
851         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
852         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
853       }
854       break;
855     }
856 
857 #ifndef SQLITE_OMIT_CTE
858     /* Write the results into a priority queue that is order according to
859     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
860     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
861     ** pSO->nExpr columns, then make sure all keys are unique by adding a
862     ** final OP_Sequence column.  The last column is the record as a blob.
863     */
864     case SRT_DistQueue:
865     case SRT_Queue: {
866       int nKey;
867       int r1, r2, r3;
868       int addrTest = 0;
869       ExprList *pSO;
870       pSO = pDest->pOrderBy;
871       assert( pSO );
872       nKey = pSO->nExpr;
873       r1 = sqlite3GetTempReg(pParse);
874       r2 = sqlite3GetTempRange(pParse, nKey+2);
875       r3 = r2+nKey+1;
876       if( eDest==SRT_DistQueue ){
877         /* If the destination is DistQueue, then cursor (iParm+1) is open
878         ** on a second ephemeral index that holds all values every previously
879         ** added to the queue. */
880         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
881                                         regResult, nResultCol);
882         VdbeCoverage(v);
883       }
884       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
885       if( eDest==SRT_DistQueue ){
886         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
887         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
888       }
889       for(i=0; i<nKey; i++){
890         sqlite3VdbeAddOp2(v, OP_SCopy,
891                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
892                           r2+i);
893       }
894       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
895       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
896       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
897       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
898       sqlite3ReleaseTempReg(pParse, r1);
899       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
900       break;
901     }
902 #endif /* SQLITE_OMIT_CTE */
903 
904 
905 
906 #if !defined(SQLITE_OMIT_TRIGGER)
907     /* Discard the results.  This is used for SELECT statements inside
908     ** the body of a TRIGGER.  The purpose of such selects is to call
909     ** user-defined functions that have side effects.  We do not care
910     ** about the actual results of the select.
911     */
912     default: {
913       assert( eDest==SRT_Discard );
914       break;
915     }
916 #endif
917   }
918 
919   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
920   ** there is a sorter, in which case the sorter has already limited
921   ** the output for us.
922   */
923   if( pSort==0 && p->iLimit ){
924     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
925   }
926 }
927 
928 /*
929 ** Allocate a KeyInfo object sufficient for an index of N key columns and
930 ** X extra columns.
931 */
932 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
933   KeyInfo *p = sqlite3DbMallocZero(0,
934                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
935   if( p ){
936     p->aSortOrder = (u8*)&p->aColl[N+X];
937     p->nField = (u16)N;
938     p->nXField = (u16)X;
939     p->enc = ENC(db);
940     p->db = db;
941     p->nRef = 1;
942   }else{
943     db->mallocFailed = 1;
944   }
945   return p;
946 }
947 
948 /*
949 ** Deallocate a KeyInfo object
950 */
951 void sqlite3KeyInfoUnref(KeyInfo *p){
952   if( p ){
953     assert( p->nRef>0 );
954     p->nRef--;
955     if( p->nRef==0 ) sqlite3DbFree(0, p);
956   }
957 }
958 
959 /*
960 ** Make a new pointer to a KeyInfo object
961 */
962 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
963   if( p ){
964     assert( p->nRef>0 );
965     p->nRef++;
966   }
967   return p;
968 }
969 
970 #ifdef SQLITE_DEBUG
971 /*
972 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
973 ** can only be changed if this is just a single reference to the object.
974 **
975 ** This routine is used only inside of assert() statements.
976 */
977 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
978 #endif /* SQLITE_DEBUG */
979 
980 /*
981 ** Given an expression list, generate a KeyInfo structure that records
982 ** the collating sequence for each expression in that expression list.
983 **
984 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
985 ** KeyInfo structure is appropriate for initializing a virtual index to
986 ** implement that clause.  If the ExprList is the result set of a SELECT
987 ** then the KeyInfo structure is appropriate for initializing a virtual
988 ** index to implement a DISTINCT test.
989 **
990 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
991 ** function is responsible for seeing that this structure is eventually
992 ** freed.
993 */
994 static KeyInfo *keyInfoFromExprList(
995   Parse *pParse,       /* Parsing context */
996   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
997   int iStart,          /* Begin with this column of pList */
998   int nExtra           /* Add this many extra columns to the end */
999 ){
1000   int nExpr;
1001   KeyInfo *pInfo;
1002   struct ExprList_item *pItem;
1003   sqlite3 *db = pParse->db;
1004   int i;
1005 
1006   nExpr = pList->nExpr;
1007   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
1008   if( pInfo ){
1009     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1010     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1011       CollSeq *pColl;
1012       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1013       if( !pColl ) pColl = db->pDfltColl;
1014       pInfo->aColl[i-iStart] = pColl;
1015       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1016     }
1017   }
1018   return pInfo;
1019 }
1020 
1021 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1022 /*
1023 ** Name of the connection operator, used for error messages.
1024 */
1025 static const char *selectOpName(int id){
1026   char *z;
1027   switch( id ){
1028     case TK_ALL:       z = "UNION ALL";   break;
1029     case TK_INTERSECT: z = "INTERSECT";   break;
1030     case TK_EXCEPT:    z = "EXCEPT";      break;
1031     default:           z = "UNION";       break;
1032   }
1033   return z;
1034 }
1035 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1036 
1037 #ifndef SQLITE_OMIT_EXPLAIN
1038 /*
1039 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1040 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1041 ** where the caption is of the form:
1042 **
1043 **   "USE TEMP B-TREE FOR xxx"
1044 **
1045 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1046 ** is determined by the zUsage argument.
1047 */
1048 static void explainTempTable(Parse *pParse, const char *zUsage){
1049   if( pParse->explain==2 ){
1050     Vdbe *v = pParse->pVdbe;
1051     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1052     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1053   }
1054 }
1055 
1056 /*
1057 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1058 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1059 ** in sqlite3Select() to assign values to structure member variables that
1060 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1061 ** code with #ifndef directives.
1062 */
1063 # define explainSetInteger(a, b) a = b
1064 
1065 #else
1066 /* No-op versions of the explainXXX() functions and macros. */
1067 # define explainTempTable(y,z)
1068 # define explainSetInteger(y,z)
1069 #endif
1070 
1071 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1072 /*
1073 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1074 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1075 ** where the caption is of one of the two forms:
1076 **
1077 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1078 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1079 **
1080 ** where iSub1 and iSub2 are the integers passed as the corresponding
1081 ** function parameters, and op is the text representation of the parameter
1082 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1083 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1084 ** false, or the second form if it is true.
1085 */
1086 static void explainComposite(
1087   Parse *pParse,                  /* Parse context */
1088   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1089   int iSub1,                      /* Subquery id 1 */
1090   int iSub2,                      /* Subquery id 2 */
1091   int bUseTmp                     /* True if a temp table was used */
1092 ){
1093   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1094   if( pParse->explain==2 ){
1095     Vdbe *v = pParse->pVdbe;
1096     char *zMsg = sqlite3MPrintf(
1097         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1098         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1099     );
1100     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1101   }
1102 }
1103 #else
1104 /* No-op versions of the explainXXX() functions and macros. */
1105 # define explainComposite(v,w,x,y,z)
1106 #endif
1107 
1108 /*
1109 ** If the inner loop was generated using a non-null pOrderBy argument,
1110 ** then the results were placed in a sorter.  After the loop is terminated
1111 ** we need to run the sorter and output the results.  The following
1112 ** routine generates the code needed to do that.
1113 */
1114 static void generateSortTail(
1115   Parse *pParse,    /* Parsing context */
1116   Select *p,        /* The SELECT statement */
1117   SortCtx *pSort,   /* Information on the ORDER BY clause */
1118   int nColumn,      /* Number of columns of data */
1119   SelectDest *pDest /* Write the sorted results here */
1120 ){
1121   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1122   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1123   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1124   int addr;
1125   int addrOnce = 0;
1126   int iTab;
1127   int pseudoTab = 0;
1128   ExprList *pOrderBy = pSort->pOrderBy;
1129   int eDest = pDest->eDest;
1130   int iParm = pDest->iSDParm;
1131   int regRow;
1132   int regRowid;
1133   int nKey;
1134 
1135   if( pSort->labelBkOut ){
1136     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1137     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1138     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1139     addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1140   }
1141   iTab = pSort->iECursor;
1142   regRow = sqlite3GetTempReg(pParse);
1143   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1144     pseudoTab = pParse->nTab++;
1145     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
1146     regRowid = 0;
1147   }else{
1148     regRowid = sqlite3GetTempReg(pParse);
1149   }
1150   nKey = pOrderBy->nExpr - pSort->nOBSat;
1151   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1152     int regSortOut = ++pParse->nMem;
1153     int ptab2 = pParse->nTab++;
1154     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2);
1155     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1156     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1157     VdbeCoverage(v);
1158     codeOffset(v, p->iOffset, addrContinue);
1159     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
1160     sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow);
1161     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1162   }else{
1163     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1164     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1165     codeOffset(v, p->iOffset, addrContinue);
1166     sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow);
1167   }
1168   switch( eDest ){
1169     case SRT_Table:
1170     case SRT_EphemTab: {
1171       testcase( eDest==SRT_Table );
1172       testcase( eDest==SRT_EphemTab );
1173       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1174       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1175       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1176       break;
1177     }
1178 #ifndef SQLITE_OMIT_SUBQUERY
1179     case SRT_Set: {
1180       assert( nColumn==1 );
1181       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1182                         &pDest->affSdst, 1);
1183       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1184       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1185       break;
1186     }
1187     case SRT_Mem: {
1188       assert( nColumn==1 );
1189       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1190       /* The LIMIT clause will terminate the loop for us */
1191       break;
1192     }
1193 #endif
1194     default: {
1195       int i;
1196       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1197       testcase( eDest==SRT_Output );
1198       testcase( eDest==SRT_Coroutine );
1199       for(i=0; i<nColumn; i++){
1200         assert( regRow!=pDest->iSdst+i );
1201         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
1202         if( i==0 ){
1203           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1204         }
1205       }
1206       if( eDest==SRT_Output ){
1207         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1208         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1209       }else{
1210         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1211       }
1212       break;
1213     }
1214   }
1215   sqlite3ReleaseTempReg(pParse, regRow);
1216   sqlite3ReleaseTempReg(pParse, regRowid);
1217 
1218   /* The bottom of the loop
1219   */
1220   sqlite3VdbeResolveLabel(v, addrContinue);
1221   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1222     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1223   }else{
1224     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1225   }
1226   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1227   sqlite3VdbeResolveLabel(v, addrBreak);
1228 }
1229 
1230 /*
1231 ** Return a pointer to a string containing the 'declaration type' of the
1232 ** expression pExpr. The string may be treated as static by the caller.
1233 **
1234 ** Also try to estimate the size of the returned value and return that
1235 ** result in *pEstWidth.
1236 **
1237 ** The declaration type is the exact datatype definition extracted from the
1238 ** original CREATE TABLE statement if the expression is a column. The
1239 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1240 ** is considered a column can be complex in the presence of subqueries. The
1241 ** result-set expression in all of the following SELECT statements is
1242 ** considered a column by this function.
1243 **
1244 **   SELECT col FROM tbl;
1245 **   SELECT (SELECT col FROM tbl;
1246 **   SELECT (SELECT col FROM tbl);
1247 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1248 **
1249 ** The declaration type for any expression other than a column is NULL.
1250 **
1251 ** This routine has either 3 or 6 parameters depending on whether or not
1252 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1253 */
1254 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1255 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1256 static const char *columnTypeImpl(
1257   NameContext *pNC,
1258   Expr *pExpr,
1259   const char **pzOrigDb,
1260   const char **pzOrigTab,
1261   const char **pzOrigCol,
1262   u8 *pEstWidth
1263 ){
1264   char const *zOrigDb = 0;
1265   char const *zOrigTab = 0;
1266   char const *zOrigCol = 0;
1267 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1268 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1269 static const char *columnTypeImpl(
1270   NameContext *pNC,
1271   Expr *pExpr,
1272   u8 *pEstWidth
1273 ){
1274 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1275   char const *zType = 0;
1276   int j;
1277   u8 estWidth = 1;
1278 
1279   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1280   switch( pExpr->op ){
1281     case TK_AGG_COLUMN:
1282     case TK_COLUMN: {
1283       /* The expression is a column. Locate the table the column is being
1284       ** extracted from in NameContext.pSrcList. This table may be real
1285       ** database table or a subquery.
1286       */
1287       Table *pTab = 0;            /* Table structure column is extracted from */
1288       Select *pS = 0;             /* Select the column is extracted from */
1289       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1290       testcase( pExpr->op==TK_AGG_COLUMN );
1291       testcase( pExpr->op==TK_COLUMN );
1292       while( pNC && !pTab ){
1293         SrcList *pTabList = pNC->pSrcList;
1294         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1295         if( j<pTabList->nSrc ){
1296           pTab = pTabList->a[j].pTab;
1297           pS = pTabList->a[j].pSelect;
1298         }else{
1299           pNC = pNC->pNext;
1300         }
1301       }
1302 
1303       if( pTab==0 ){
1304         /* At one time, code such as "SELECT new.x" within a trigger would
1305         ** cause this condition to run.  Since then, we have restructured how
1306         ** trigger code is generated and so this condition is no longer
1307         ** possible. However, it can still be true for statements like
1308         ** the following:
1309         **
1310         **   CREATE TABLE t1(col INTEGER);
1311         **   SELECT (SELECT t1.col) FROM FROM t1;
1312         **
1313         ** when columnType() is called on the expression "t1.col" in the
1314         ** sub-select. In this case, set the column type to NULL, even
1315         ** though it should really be "INTEGER".
1316         **
1317         ** This is not a problem, as the column type of "t1.col" is never
1318         ** used. When columnType() is called on the expression
1319         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1320         ** branch below.  */
1321         break;
1322       }
1323 
1324       assert( pTab && pExpr->pTab==pTab );
1325       if( pS ){
1326         /* The "table" is actually a sub-select or a view in the FROM clause
1327         ** of the SELECT statement. Return the declaration type and origin
1328         ** data for the result-set column of the sub-select.
1329         */
1330         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1331           /* If iCol is less than zero, then the expression requests the
1332           ** rowid of the sub-select or view. This expression is legal (see
1333           ** test case misc2.2.2) - it always evaluates to NULL.
1334           */
1335           NameContext sNC;
1336           Expr *p = pS->pEList->a[iCol].pExpr;
1337           sNC.pSrcList = pS->pSrc;
1338           sNC.pNext = pNC;
1339           sNC.pParse = pNC->pParse;
1340           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1341         }
1342       }else if( pTab->pSchema ){
1343         /* A real table */
1344         assert( !pS );
1345         if( iCol<0 ) iCol = pTab->iPKey;
1346         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1347 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1348         if( iCol<0 ){
1349           zType = "INTEGER";
1350           zOrigCol = "rowid";
1351         }else{
1352           zType = pTab->aCol[iCol].zType;
1353           zOrigCol = pTab->aCol[iCol].zName;
1354           estWidth = pTab->aCol[iCol].szEst;
1355         }
1356         zOrigTab = pTab->zName;
1357         if( pNC->pParse ){
1358           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1359           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1360         }
1361 #else
1362         if( iCol<0 ){
1363           zType = "INTEGER";
1364         }else{
1365           zType = pTab->aCol[iCol].zType;
1366           estWidth = pTab->aCol[iCol].szEst;
1367         }
1368 #endif
1369       }
1370       break;
1371     }
1372 #ifndef SQLITE_OMIT_SUBQUERY
1373     case TK_SELECT: {
1374       /* The expression is a sub-select. Return the declaration type and
1375       ** origin info for the single column in the result set of the SELECT
1376       ** statement.
1377       */
1378       NameContext sNC;
1379       Select *pS = pExpr->x.pSelect;
1380       Expr *p = pS->pEList->a[0].pExpr;
1381       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1382       sNC.pSrcList = pS->pSrc;
1383       sNC.pNext = pNC;
1384       sNC.pParse = pNC->pParse;
1385       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1386       break;
1387     }
1388 #endif
1389   }
1390 
1391 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1392   if( pzOrigDb ){
1393     assert( pzOrigTab && pzOrigCol );
1394     *pzOrigDb = zOrigDb;
1395     *pzOrigTab = zOrigTab;
1396     *pzOrigCol = zOrigCol;
1397   }
1398 #endif
1399   if( pEstWidth ) *pEstWidth = estWidth;
1400   return zType;
1401 }
1402 
1403 /*
1404 ** Generate code that will tell the VDBE the declaration types of columns
1405 ** in the result set.
1406 */
1407 static void generateColumnTypes(
1408   Parse *pParse,      /* Parser context */
1409   SrcList *pTabList,  /* List of tables */
1410   ExprList *pEList    /* Expressions defining the result set */
1411 ){
1412 #ifndef SQLITE_OMIT_DECLTYPE
1413   Vdbe *v = pParse->pVdbe;
1414   int i;
1415   NameContext sNC;
1416   sNC.pSrcList = pTabList;
1417   sNC.pParse = pParse;
1418   for(i=0; i<pEList->nExpr; i++){
1419     Expr *p = pEList->a[i].pExpr;
1420     const char *zType;
1421 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1422     const char *zOrigDb = 0;
1423     const char *zOrigTab = 0;
1424     const char *zOrigCol = 0;
1425     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1426 
1427     /* The vdbe must make its own copy of the column-type and other
1428     ** column specific strings, in case the schema is reset before this
1429     ** virtual machine is deleted.
1430     */
1431     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1432     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1433     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1434 #else
1435     zType = columnType(&sNC, p, 0, 0, 0, 0);
1436 #endif
1437     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1438   }
1439 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1440 }
1441 
1442 /*
1443 ** Generate code that will tell the VDBE the names of columns
1444 ** in the result set.  This information is used to provide the
1445 ** azCol[] values in the callback.
1446 */
1447 static void generateColumnNames(
1448   Parse *pParse,      /* Parser context */
1449   SrcList *pTabList,  /* List of tables */
1450   ExprList *pEList    /* Expressions defining the result set */
1451 ){
1452   Vdbe *v = pParse->pVdbe;
1453   int i, j;
1454   sqlite3 *db = pParse->db;
1455   int fullNames, shortNames;
1456 
1457 #ifndef SQLITE_OMIT_EXPLAIN
1458   /* If this is an EXPLAIN, skip this step */
1459   if( pParse->explain ){
1460     return;
1461   }
1462 #endif
1463 
1464   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1465   pParse->colNamesSet = 1;
1466   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1467   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1468   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1469   for(i=0; i<pEList->nExpr; i++){
1470     Expr *p;
1471     p = pEList->a[i].pExpr;
1472     if( NEVER(p==0) ) continue;
1473     if( pEList->a[i].zName ){
1474       char *zName = pEList->a[i].zName;
1475       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1476     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1477       Table *pTab;
1478       char *zCol;
1479       int iCol = p->iColumn;
1480       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1481         if( pTabList->a[j].iCursor==p->iTable ) break;
1482       }
1483       assert( j<pTabList->nSrc );
1484       pTab = pTabList->a[j].pTab;
1485       if( iCol<0 ) iCol = pTab->iPKey;
1486       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1487       if( iCol<0 ){
1488         zCol = "rowid";
1489       }else{
1490         zCol = pTab->aCol[iCol].zName;
1491       }
1492       if( !shortNames && !fullNames ){
1493         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1494             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1495       }else if( fullNames ){
1496         char *zName = 0;
1497         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1498         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1499       }else{
1500         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1501       }
1502     }else{
1503       const char *z = pEList->a[i].zSpan;
1504       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1505       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1506     }
1507   }
1508   generateColumnTypes(pParse, pTabList, pEList);
1509 }
1510 
1511 /*
1512 ** Given a an expression list (which is really the list of expressions
1513 ** that form the result set of a SELECT statement) compute appropriate
1514 ** column names for a table that would hold the expression list.
1515 **
1516 ** All column names will be unique.
1517 **
1518 ** Only the column names are computed.  Column.zType, Column.zColl,
1519 ** and other fields of Column are zeroed.
1520 **
1521 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1522 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1523 */
1524 static int selectColumnsFromExprList(
1525   Parse *pParse,          /* Parsing context */
1526   ExprList *pEList,       /* Expr list from which to derive column names */
1527   i16 *pnCol,             /* Write the number of columns here */
1528   Column **paCol          /* Write the new column list here */
1529 ){
1530   sqlite3 *db = pParse->db;   /* Database connection */
1531   int i, j;                   /* Loop counters */
1532   int cnt;                    /* Index added to make the name unique */
1533   Column *aCol, *pCol;        /* For looping over result columns */
1534   int nCol;                   /* Number of columns in the result set */
1535   Expr *p;                    /* Expression for a single result column */
1536   char *zName;                /* Column name */
1537   int nName;                  /* Size of name in zName[] */
1538 
1539   if( pEList ){
1540     nCol = pEList->nExpr;
1541     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1542     testcase( aCol==0 );
1543   }else{
1544     nCol = 0;
1545     aCol = 0;
1546   }
1547   *pnCol = nCol;
1548   *paCol = aCol;
1549 
1550   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1551     /* Get an appropriate name for the column
1552     */
1553     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1554     if( (zName = pEList->a[i].zName)!=0 ){
1555       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1556       zName = sqlite3DbStrDup(db, zName);
1557     }else{
1558       Expr *pColExpr = p;  /* The expression that is the result column name */
1559       Table *pTab;         /* Table associated with this expression */
1560       while( pColExpr->op==TK_DOT ){
1561         pColExpr = pColExpr->pRight;
1562         assert( pColExpr!=0 );
1563       }
1564       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1565         /* For columns use the column name name */
1566         int iCol = pColExpr->iColumn;
1567         pTab = pColExpr->pTab;
1568         if( iCol<0 ) iCol = pTab->iPKey;
1569         zName = sqlite3MPrintf(db, "%s",
1570                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1571       }else if( pColExpr->op==TK_ID ){
1572         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1573         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1574       }else{
1575         /* Use the original text of the column expression as its name */
1576         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1577       }
1578     }
1579     if( db->mallocFailed ){
1580       sqlite3DbFree(db, zName);
1581       break;
1582     }
1583 
1584     /* Make sure the column name is unique.  If the name is not unique,
1585     ** append a integer to the name so that it becomes unique.
1586     */
1587     nName = sqlite3Strlen30(zName);
1588     for(j=cnt=0; j<i; j++){
1589       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1590         char *zNewName;
1591         int k;
1592         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1593         if( k>=0 && zName[k]==':' ) nName = k;
1594         zName[nName] = 0;
1595         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1596         sqlite3DbFree(db, zName);
1597         zName = zNewName;
1598         j = -1;
1599         if( zName==0 ) break;
1600       }
1601     }
1602     pCol->zName = zName;
1603   }
1604   if( db->mallocFailed ){
1605     for(j=0; j<i; j++){
1606       sqlite3DbFree(db, aCol[j].zName);
1607     }
1608     sqlite3DbFree(db, aCol);
1609     *paCol = 0;
1610     *pnCol = 0;
1611     return SQLITE_NOMEM;
1612   }
1613   return SQLITE_OK;
1614 }
1615 
1616 /*
1617 ** Add type and collation information to a column list based on
1618 ** a SELECT statement.
1619 **
1620 ** The column list presumably came from selectColumnNamesFromExprList().
1621 ** The column list has only names, not types or collations.  This
1622 ** routine goes through and adds the types and collations.
1623 **
1624 ** This routine requires that all identifiers in the SELECT
1625 ** statement be resolved.
1626 */
1627 static void selectAddColumnTypeAndCollation(
1628   Parse *pParse,        /* Parsing contexts */
1629   Table *pTab,          /* Add column type information to this table */
1630   Select *pSelect       /* SELECT used to determine types and collations */
1631 ){
1632   sqlite3 *db = pParse->db;
1633   NameContext sNC;
1634   Column *pCol;
1635   CollSeq *pColl;
1636   int i;
1637   Expr *p;
1638   struct ExprList_item *a;
1639   u64 szAll = 0;
1640 
1641   assert( pSelect!=0 );
1642   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1643   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1644   if( db->mallocFailed ) return;
1645   memset(&sNC, 0, sizeof(sNC));
1646   sNC.pSrcList = pSelect->pSrc;
1647   a = pSelect->pEList->a;
1648   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1649     p = a[i].pExpr;
1650     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1651     szAll += pCol->szEst;
1652     pCol->affinity = sqlite3ExprAffinity(p);
1653     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1654     pColl = sqlite3ExprCollSeq(pParse, p);
1655     if( pColl ){
1656       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1657     }
1658   }
1659   pTab->szTabRow = sqlite3LogEst(szAll*4);
1660 }
1661 
1662 /*
1663 ** Given a SELECT statement, generate a Table structure that describes
1664 ** the result set of that SELECT.
1665 */
1666 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1667   Table *pTab;
1668   sqlite3 *db = pParse->db;
1669   int savedFlags;
1670 
1671   savedFlags = db->flags;
1672   db->flags &= ~SQLITE_FullColNames;
1673   db->flags |= SQLITE_ShortColNames;
1674   sqlite3SelectPrep(pParse, pSelect, 0);
1675   if( pParse->nErr ) return 0;
1676   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1677   db->flags = savedFlags;
1678   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1679   if( pTab==0 ){
1680     return 0;
1681   }
1682   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1683   ** is disabled */
1684   assert( db->lookaside.bEnabled==0 );
1685   pTab->nRef = 1;
1686   pTab->zName = 0;
1687   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1688   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1689   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1690   pTab->iPKey = -1;
1691   if( db->mallocFailed ){
1692     sqlite3DeleteTable(db, pTab);
1693     return 0;
1694   }
1695   return pTab;
1696 }
1697 
1698 /*
1699 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1700 ** If an error occurs, return NULL and leave a message in pParse.
1701 */
1702 Vdbe *sqlite3GetVdbe(Parse *pParse){
1703   Vdbe *v = pParse->pVdbe;
1704   if( v==0 ){
1705     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1706     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1707     if( pParse->pToplevel==0
1708      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1709     ){
1710       pParse->okConstFactor = 1;
1711     }
1712 
1713   }
1714   return v;
1715 }
1716 
1717 
1718 /*
1719 ** Compute the iLimit and iOffset fields of the SELECT based on the
1720 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1721 ** that appear in the original SQL statement after the LIMIT and OFFSET
1722 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1723 ** are the integer memory register numbers for counters used to compute
1724 ** the limit and offset.  If there is no limit and/or offset, then
1725 ** iLimit and iOffset are negative.
1726 **
1727 ** This routine changes the values of iLimit and iOffset only if
1728 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1729 ** iOffset should have been preset to appropriate default values (zero)
1730 ** prior to calling this routine.
1731 **
1732 ** The iOffset register (if it exists) is initialized to the value
1733 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1734 ** iOffset+1 is initialized to LIMIT+OFFSET.
1735 **
1736 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1737 ** redefined.  The UNION ALL operator uses this property to force
1738 ** the reuse of the same limit and offset registers across multiple
1739 ** SELECT statements.
1740 */
1741 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1742   Vdbe *v = 0;
1743   int iLimit = 0;
1744   int iOffset;
1745   int addr1, n;
1746   if( p->iLimit ) return;
1747 
1748   /*
1749   ** "LIMIT -1" always shows all rows.  There is some
1750   ** controversy about what the correct behavior should be.
1751   ** The current implementation interprets "LIMIT 0" to mean
1752   ** no rows.
1753   */
1754   sqlite3ExprCacheClear(pParse);
1755   assert( p->pOffset==0 || p->pLimit!=0 );
1756   if( p->pLimit ){
1757     p->iLimit = iLimit = ++pParse->nMem;
1758     v = sqlite3GetVdbe(pParse);
1759     assert( v!=0 );
1760     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1761       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1762       VdbeComment((v, "LIMIT counter"));
1763       if( n==0 ){
1764         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1765       }else if( n>=0 && p->nSelectRow>(u64)n ){
1766         p->nSelectRow = n;
1767       }
1768     }else{
1769       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1770       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1771       VdbeComment((v, "LIMIT counter"));
1772       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1773     }
1774     if( p->pOffset ){
1775       p->iOffset = iOffset = ++pParse->nMem;
1776       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1777       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1778       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1779       VdbeComment((v, "OFFSET counter"));
1780       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1781       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1782       sqlite3VdbeJumpHere(v, addr1);
1783       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1784       VdbeComment((v, "LIMIT+OFFSET"));
1785       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1786       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1787       sqlite3VdbeJumpHere(v, addr1);
1788     }
1789   }
1790 }
1791 
1792 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1793 /*
1794 ** Return the appropriate collating sequence for the iCol-th column of
1795 ** the result set for the compound-select statement "p".  Return NULL if
1796 ** the column has no default collating sequence.
1797 **
1798 ** The collating sequence for the compound select is taken from the
1799 ** left-most term of the select that has a collating sequence.
1800 */
1801 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1802   CollSeq *pRet;
1803   if( p->pPrior ){
1804     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1805   }else{
1806     pRet = 0;
1807   }
1808   assert( iCol>=0 );
1809   if( pRet==0 && iCol<p->pEList->nExpr ){
1810     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1811   }
1812   return pRet;
1813 }
1814 
1815 /*
1816 ** The select statement passed as the second parameter is a compound SELECT
1817 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1818 ** structure suitable for implementing the ORDER BY.
1819 **
1820 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1821 ** function is responsible for ensuring that this structure is eventually
1822 ** freed.
1823 */
1824 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1825   ExprList *pOrderBy = p->pOrderBy;
1826   int nOrderBy = p->pOrderBy->nExpr;
1827   sqlite3 *db = pParse->db;
1828   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1829   if( pRet ){
1830     int i;
1831     for(i=0; i<nOrderBy; i++){
1832       struct ExprList_item *pItem = &pOrderBy->a[i];
1833       Expr *pTerm = pItem->pExpr;
1834       CollSeq *pColl;
1835 
1836       if( pTerm->flags & EP_Collate ){
1837         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1838       }else{
1839         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1840         if( pColl==0 ) pColl = db->pDfltColl;
1841         pOrderBy->a[i].pExpr =
1842           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1843       }
1844       assert( sqlite3KeyInfoIsWriteable(pRet) );
1845       pRet->aColl[i] = pColl;
1846       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1847     }
1848   }
1849 
1850   return pRet;
1851 }
1852 
1853 #ifndef SQLITE_OMIT_CTE
1854 /*
1855 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1856 ** query of the form:
1857 **
1858 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1859 **                         \___________/             \_______________/
1860 **                           p->pPrior                      p
1861 **
1862 **
1863 ** There is exactly one reference to the recursive-table in the FROM clause
1864 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1865 **
1866 ** The setup-query runs once to generate an initial set of rows that go
1867 ** into a Queue table.  Rows are extracted from the Queue table one by
1868 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1869 ** extracted row (now in the iCurrent table) becomes the content of the
1870 ** recursive-table for a recursive-query run.  The output of the recursive-query
1871 ** is added back into the Queue table.  Then another row is extracted from Queue
1872 ** and the iteration continues until the Queue table is empty.
1873 **
1874 ** If the compound query operator is UNION then no duplicate rows are ever
1875 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1876 ** that have ever been inserted into Queue and causes duplicates to be
1877 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1878 **
1879 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1880 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1881 ** an ORDER BY, the Queue table is just a FIFO.
1882 **
1883 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1884 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1885 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1886 ** with a positive value, then the first OFFSET outputs are discarded rather
1887 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1888 ** rows have been skipped.
1889 */
1890 static void generateWithRecursiveQuery(
1891   Parse *pParse,        /* Parsing context */
1892   Select *p,            /* The recursive SELECT to be coded */
1893   SelectDest *pDest     /* What to do with query results */
1894 ){
1895   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1896   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1897   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1898   Select *pSetup = p->pPrior;   /* The setup query */
1899   int addrTop;                  /* Top of the loop */
1900   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1901   int iCurrent = 0;             /* The Current table */
1902   int regCurrent;               /* Register holding Current table */
1903   int iQueue;                   /* The Queue table */
1904   int iDistinct = 0;            /* To ensure unique results if UNION */
1905   int eDest = SRT_Fifo;         /* How to write to Queue */
1906   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1907   int i;                        /* Loop counter */
1908   int rc;                       /* Result code */
1909   ExprList *pOrderBy;           /* The ORDER BY clause */
1910   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1911   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1912 
1913   /* Obtain authorization to do a recursive query */
1914   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1915 
1916   /* Process the LIMIT and OFFSET clauses, if they exist */
1917   addrBreak = sqlite3VdbeMakeLabel(v);
1918   computeLimitRegisters(pParse, p, addrBreak);
1919   pLimit = p->pLimit;
1920   pOffset = p->pOffset;
1921   regLimit = p->iLimit;
1922   regOffset = p->iOffset;
1923   p->pLimit = p->pOffset = 0;
1924   p->iLimit = p->iOffset = 0;
1925   pOrderBy = p->pOrderBy;
1926 
1927   /* Locate the cursor number of the Current table */
1928   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1929     if( pSrc->a[i].isRecursive ){
1930       iCurrent = pSrc->a[i].iCursor;
1931       break;
1932     }
1933   }
1934 
1935   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1936   ** the Distinct table must be exactly one greater than Queue in order
1937   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1938   iQueue = pParse->nTab++;
1939   if( p->op==TK_UNION ){
1940     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1941     iDistinct = pParse->nTab++;
1942   }else{
1943     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1944   }
1945   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
1946 
1947   /* Allocate cursors for Current, Queue, and Distinct. */
1948   regCurrent = ++pParse->nMem;
1949   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
1950   if( pOrderBy ){
1951     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
1952     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
1953                       (char*)pKeyInfo, P4_KEYINFO);
1954     destQueue.pOrderBy = pOrderBy;
1955   }else{
1956     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
1957   }
1958   VdbeComment((v, "Queue table"));
1959   if( iDistinct ){
1960     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
1961     p->selFlags |= SF_UsesEphemeral;
1962   }
1963 
1964   /* Detach the ORDER BY clause from the compound SELECT */
1965   p->pOrderBy = 0;
1966 
1967   /* Store the results of the setup-query in Queue. */
1968   pSetup->pNext = 0;
1969   rc = sqlite3Select(pParse, pSetup, &destQueue);
1970   pSetup->pNext = p;
1971   if( rc ) goto end_of_recursive_query;
1972 
1973   /* Find the next row in the Queue and output that row */
1974   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
1975 
1976   /* Transfer the next row in Queue over to Current */
1977   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
1978   if( pOrderBy ){
1979     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
1980   }else{
1981     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
1982   }
1983   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
1984 
1985   /* Output the single row in Current */
1986   addrCont = sqlite3VdbeMakeLabel(v);
1987   codeOffset(v, regOffset, addrCont);
1988   selectInnerLoop(pParse, p, p->pEList, iCurrent,
1989       0, 0, pDest, addrCont, addrBreak);
1990   if( regLimit ){
1991     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
1992     VdbeCoverage(v);
1993   }
1994   sqlite3VdbeResolveLabel(v, addrCont);
1995 
1996   /* Execute the recursive SELECT taking the single row in Current as
1997   ** the value for the recursive-table. Store the results in the Queue.
1998   */
1999   p->pPrior = 0;
2000   sqlite3Select(pParse, p, &destQueue);
2001   assert( p->pPrior==0 );
2002   p->pPrior = pSetup;
2003 
2004   /* Keep running the loop until the Queue is empty */
2005   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2006   sqlite3VdbeResolveLabel(v, addrBreak);
2007 
2008 end_of_recursive_query:
2009   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2010   p->pOrderBy = pOrderBy;
2011   p->pLimit = pLimit;
2012   p->pOffset = pOffset;
2013   return;
2014 }
2015 #endif /* SQLITE_OMIT_CTE */
2016 
2017 /* Forward references */
2018 static int multiSelectOrderBy(
2019   Parse *pParse,        /* Parsing context */
2020   Select *p,            /* The right-most of SELECTs to be coded */
2021   SelectDest *pDest     /* What to do with query results */
2022 );
2023 
2024 
2025 /*
2026 ** This routine is called to process a compound query form from
2027 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2028 ** INTERSECT
2029 **
2030 ** "p" points to the right-most of the two queries.  the query on the
2031 ** left is p->pPrior.  The left query could also be a compound query
2032 ** in which case this routine will be called recursively.
2033 **
2034 ** The results of the total query are to be written into a destination
2035 ** of type eDest with parameter iParm.
2036 **
2037 ** Example 1:  Consider a three-way compound SQL statement.
2038 **
2039 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2040 **
2041 ** This statement is parsed up as follows:
2042 **
2043 **     SELECT c FROM t3
2044 **      |
2045 **      `----->  SELECT b FROM t2
2046 **                |
2047 **                `------>  SELECT a FROM t1
2048 **
2049 ** The arrows in the diagram above represent the Select.pPrior pointer.
2050 ** So if this routine is called with p equal to the t3 query, then
2051 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2052 **
2053 ** Notice that because of the way SQLite parses compound SELECTs, the
2054 ** individual selects always group from left to right.
2055 */
2056 static int multiSelect(
2057   Parse *pParse,        /* Parsing context */
2058   Select *p,            /* The right-most of SELECTs to be coded */
2059   SelectDest *pDest     /* What to do with query results */
2060 ){
2061   int rc = SQLITE_OK;   /* Success code from a subroutine */
2062   Select *pPrior;       /* Another SELECT immediately to our left */
2063   Vdbe *v;              /* Generate code to this VDBE */
2064   SelectDest dest;      /* Alternative data destination */
2065   Select *pDelete = 0;  /* Chain of simple selects to delete */
2066   sqlite3 *db;          /* Database connection */
2067 #ifndef SQLITE_OMIT_EXPLAIN
2068   int iSub1 = 0;        /* EQP id of left-hand query */
2069   int iSub2 = 0;        /* EQP id of right-hand query */
2070 #endif
2071 
2072   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2073   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2074   */
2075   assert( p && p->pPrior );  /* Calling function guarantees this much */
2076   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2077   db = pParse->db;
2078   pPrior = p->pPrior;
2079   dest = *pDest;
2080   if( pPrior->pOrderBy ){
2081     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2082       selectOpName(p->op));
2083     rc = 1;
2084     goto multi_select_end;
2085   }
2086   if( pPrior->pLimit ){
2087     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2088       selectOpName(p->op));
2089     rc = 1;
2090     goto multi_select_end;
2091   }
2092 
2093   v = sqlite3GetVdbe(pParse);
2094   assert( v!=0 );  /* The VDBE already created by calling function */
2095 
2096   /* Create the destination temporary table if necessary
2097   */
2098   if( dest.eDest==SRT_EphemTab ){
2099     assert( p->pEList );
2100     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2101     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2102     dest.eDest = SRT_Table;
2103   }
2104 
2105   /* Make sure all SELECTs in the statement have the same number of elements
2106   ** in their result sets.
2107   */
2108   assert( p->pEList && pPrior->pEList );
2109   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2110     if( p->selFlags & SF_Values ){
2111       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2112     }else{
2113       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2114         " do not have the same number of result columns", selectOpName(p->op));
2115     }
2116     rc = 1;
2117     goto multi_select_end;
2118   }
2119 
2120 #ifndef SQLITE_OMIT_CTE
2121   if( p->selFlags & SF_Recursive ){
2122     generateWithRecursiveQuery(pParse, p, &dest);
2123   }else
2124 #endif
2125 
2126   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2127   */
2128   if( p->pOrderBy ){
2129     return multiSelectOrderBy(pParse, p, pDest);
2130   }else
2131 
2132   /* Generate code for the left and right SELECT statements.
2133   */
2134   switch( p->op ){
2135     case TK_ALL: {
2136       int addr = 0;
2137       int nLimit;
2138       assert( !pPrior->pLimit );
2139       pPrior->iLimit = p->iLimit;
2140       pPrior->iOffset = p->iOffset;
2141       pPrior->pLimit = p->pLimit;
2142       pPrior->pOffset = p->pOffset;
2143       explainSetInteger(iSub1, pParse->iNextSelectId);
2144       rc = sqlite3Select(pParse, pPrior, &dest);
2145       p->pLimit = 0;
2146       p->pOffset = 0;
2147       if( rc ){
2148         goto multi_select_end;
2149       }
2150       p->pPrior = 0;
2151       p->iLimit = pPrior->iLimit;
2152       p->iOffset = pPrior->iOffset;
2153       if( p->iLimit ){
2154         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2155         VdbeComment((v, "Jump ahead if LIMIT reached"));
2156       }
2157       explainSetInteger(iSub2, pParse->iNextSelectId);
2158       rc = sqlite3Select(pParse, p, &dest);
2159       testcase( rc!=SQLITE_OK );
2160       pDelete = p->pPrior;
2161       p->pPrior = pPrior;
2162       p->nSelectRow += pPrior->nSelectRow;
2163       if( pPrior->pLimit
2164        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2165        && nLimit>0 && p->nSelectRow > (u64)nLimit
2166       ){
2167         p->nSelectRow = nLimit;
2168       }
2169       if( addr ){
2170         sqlite3VdbeJumpHere(v, addr);
2171       }
2172       break;
2173     }
2174     case TK_EXCEPT:
2175     case TK_UNION: {
2176       int unionTab;    /* Cursor number of the temporary table holding result */
2177       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2178       int priorOp;     /* The SRT_ operation to apply to prior selects */
2179       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2180       int addr;
2181       SelectDest uniondest;
2182 
2183       testcase( p->op==TK_EXCEPT );
2184       testcase( p->op==TK_UNION );
2185       priorOp = SRT_Union;
2186       if( dest.eDest==priorOp ){
2187         /* We can reuse a temporary table generated by a SELECT to our
2188         ** right.
2189         */
2190         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2191         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2192         unionTab = dest.iSDParm;
2193       }else{
2194         /* We will need to create our own temporary table to hold the
2195         ** intermediate results.
2196         */
2197         unionTab = pParse->nTab++;
2198         assert( p->pOrderBy==0 );
2199         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2200         assert( p->addrOpenEphm[0] == -1 );
2201         p->addrOpenEphm[0] = addr;
2202         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2203         assert( p->pEList );
2204       }
2205 
2206       /* Code the SELECT statements to our left
2207       */
2208       assert( !pPrior->pOrderBy );
2209       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2210       explainSetInteger(iSub1, pParse->iNextSelectId);
2211       rc = sqlite3Select(pParse, pPrior, &uniondest);
2212       if( rc ){
2213         goto multi_select_end;
2214       }
2215 
2216       /* Code the current SELECT statement
2217       */
2218       if( p->op==TK_EXCEPT ){
2219         op = SRT_Except;
2220       }else{
2221         assert( p->op==TK_UNION );
2222         op = SRT_Union;
2223       }
2224       p->pPrior = 0;
2225       pLimit = p->pLimit;
2226       p->pLimit = 0;
2227       pOffset = p->pOffset;
2228       p->pOffset = 0;
2229       uniondest.eDest = op;
2230       explainSetInteger(iSub2, pParse->iNextSelectId);
2231       rc = sqlite3Select(pParse, p, &uniondest);
2232       testcase( rc!=SQLITE_OK );
2233       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2234       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2235       sqlite3ExprListDelete(db, p->pOrderBy);
2236       pDelete = p->pPrior;
2237       p->pPrior = pPrior;
2238       p->pOrderBy = 0;
2239       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2240       sqlite3ExprDelete(db, p->pLimit);
2241       p->pLimit = pLimit;
2242       p->pOffset = pOffset;
2243       p->iLimit = 0;
2244       p->iOffset = 0;
2245 
2246       /* Convert the data in the temporary table into whatever form
2247       ** it is that we currently need.
2248       */
2249       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2250       if( dest.eDest!=priorOp ){
2251         int iCont, iBreak, iStart;
2252         assert( p->pEList );
2253         if( dest.eDest==SRT_Output ){
2254           Select *pFirst = p;
2255           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2256           generateColumnNames(pParse, 0, pFirst->pEList);
2257         }
2258         iBreak = sqlite3VdbeMakeLabel(v);
2259         iCont = sqlite3VdbeMakeLabel(v);
2260         computeLimitRegisters(pParse, p, iBreak);
2261         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2262         iStart = sqlite3VdbeCurrentAddr(v);
2263         selectInnerLoop(pParse, p, p->pEList, unionTab,
2264                         0, 0, &dest, iCont, iBreak);
2265         sqlite3VdbeResolveLabel(v, iCont);
2266         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2267         sqlite3VdbeResolveLabel(v, iBreak);
2268         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2269       }
2270       break;
2271     }
2272     default: assert( p->op==TK_INTERSECT ); {
2273       int tab1, tab2;
2274       int iCont, iBreak, iStart;
2275       Expr *pLimit, *pOffset;
2276       int addr;
2277       SelectDest intersectdest;
2278       int r1;
2279 
2280       /* INTERSECT is different from the others since it requires
2281       ** two temporary tables.  Hence it has its own case.  Begin
2282       ** by allocating the tables we will need.
2283       */
2284       tab1 = pParse->nTab++;
2285       tab2 = pParse->nTab++;
2286       assert( p->pOrderBy==0 );
2287 
2288       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2289       assert( p->addrOpenEphm[0] == -1 );
2290       p->addrOpenEphm[0] = addr;
2291       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2292       assert( p->pEList );
2293 
2294       /* Code the SELECTs to our left into temporary table "tab1".
2295       */
2296       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2297       explainSetInteger(iSub1, pParse->iNextSelectId);
2298       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2299       if( rc ){
2300         goto multi_select_end;
2301       }
2302 
2303       /* Code the current SELECT into temporary table "tab2"
2304       */
2305       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2306       assert( p->addrOpenEphm[1] == -1 );
2307       p->addrOpenEphm[1] = addr;
2308       p->pPrior = 0;
2309       pLimit = p->pLimit;
2310       p->pLimit = 0;
2311       pOffset = p->pOffset;
2312       p->pOffset = 0;
2313       intersectdest.iSDParm = tab2;
2314       explainSetInteger(iSub2, pParse->iNextSelectId);
2315       rc = sqlite3Select(pParse, p, &intersectdest);
2316       testcase( rc!=SQLITE_OK );
2317       pDelete = p->pPrior;
2318       p->pPrior = pPrior;
2319       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2320       sqlite3ExprDelete(db, p->pLimit);
2321       p->pLimit = pLimit;
2322       p->pOffset = pOffset;
2323 
2324       /* Generate code to take the intersection of the two temporary
2325       ** tables.
2326       */
2327       assert( p->pEList );
2328       if( dest.eDest==SRT_Output ){
2329         Select *pFirst = p;
2330         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2331         generateColumnNames(pParse, 0, pFirst->pEList);
2332       }
2333       iBreak = sqlite3VdbeMakeLabel(v);
2334       iCont = sqlite3VdbeMakeLabel(v);
2335       computeLimitRegisters(pParse, p, iBreak);
2336       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2337       r1 = sqlite3GetTempReg(pParse);
2338       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2339       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2340       sqlite3ReleaseTempReg(pParse, r1);
2341       selectInnerLoop(pParse, p, p->pEList, tab1,
2342                       0, 0, &dest, iCont, iBreak);
2343       sqlite3VdbeResolveLabel(v, iCont);
2344       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2345       sqlite3VdbeResolveLabel(v, iBreak);
2346       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2347       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2348       break;
2349     }
2350   }
2351 
2352   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2353 
2354   /* Compute collating sequences used by
2355   ** temporary tables needed to implement the compound select.
2356   ** Attach the KeyInfo structure to all temporary tables.
2357   **
2358   ** This section is run by the right-most SELECT statement only.
2359   ** SELECT statements to the left always skip this part.  The right-most
2360   ** SELECT might also skip this part if it has no ORDER BY clause and
2361   ** no temp tables are required.
2362   */
2363   if( p->selFlags & SF_UsesEphemeral ){
2364     int i;                        /* Loop counter */
2365     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2366     Select *pLoop;                /* For looping through SELECT statements */
2367     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2368     int nCol;                     /* Number of columns in result set */
2369 
2370     assert( p->pNext==0 );
2371     nCol = p->pEList->nExpr;
2372     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2373     if( !pKeyInfo ){
2374       rc = SQLITE_NOMEM;
2375       goto multi_select_end;
2376     }
2377     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2378       *apColl = multiSelectCollSeq(pParse, p, i);
2379       if( 0==*apColl ){
2380         *apColl = db->pDfltColl;
2381       }
2382     }
2383 
2384     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2385       for(i=0; i<2; i++){
2386         int addr = pLoop->addrOpenEphm[i];
2387         if( addr<0 ){
2388           /* If [0] is unused then [1] is also unused.  So we can
2389           ** always safely abort as soon as the first unused slot is found */
2390           assert( pLoop->addrOpenEphm[1]<0 );
2391           break;
2392         }
2393         sqlite3VdbeChangeP2(v, addr, nCol);
2394         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2395                             P4_KEYINFO);
2396         pLoop->addrOpenEphm[i] = -1;
2397       }
2398     }
2399     sqlite3KeyInfoUnref(pKeyInfo);
2400   }
2401 
2402 multi_select_end:
2403   pDest->iSdst = dest.iSdst;
2404   pDest->nSdst = dest.nSdst;
2405   sqlite3SelectDelete(db, pDelete);
2406   return rc;
2407 }
2408 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2409 
2410 /*
2411 ** Code an output subroutine for a coroutine implementation of a
2412 ** SELECT statment.
2413 **
2414 ** The data to be output is contained in pIn->iSdst.  There are
2415 ** pIn->nSdst columns to be output.  pDest is where the output should
2416 ** be sent.
2417 **
2418 ** regReturn is the number of the register holding the subroutine
2419 ** return address.
2420 **
2421 ** If regPrev>0 then it is the first register in a vector that
2422 ** records the previous output.  mem[regPrev] is a flag that is false
2423 ** if there has been no previous output.  If regPrev>0 then code is
2424 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2425 ** keys.
2426 **
2427 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2428 ** iBreak.
2429 */
2430 static int generateOutputSubroutine(
2431   Parse *pParse,          /* Parsing context */
2432   Select *p,              /* The SELECT statement */
2433   SelectDest *pIn,        /* Coroutine supplying data */
2434   SelectDest *pDest,      /* Where to send the data */
2435   int regReturn,          /* The return address register */
2436   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2437   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2438   int iBreak              /* Jump here if we hit the LIMIT */
2439 ){
2440   Vdbe *v = pParse->pVdbe;
2441   int iContinue;
2442   int addr;
2443 
2444   addr = sqlite3VdbeCurrentAddr(v);
2445   iContinue = sqlite3VdbeMakeLabel(v);
2446 
2447   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2448   */
2449   if( regPrev ){
2450     int j1, j2;
2451     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2452     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2453                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2454     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2455     sqlite3VdbeJumpHere(v, j1);
2456     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2457     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2458   }
2459   if( pParse->db->mallocFailed ) return 0;
2460 
2461   /* Suppress the first OFFSET entries if there is an OFFSET clause
2462   */
2463   codeOffset(v, p->iOffset, iContinue);
2464 
2465   switch( pDest->eDest ){
2466     /* Store the result as data using a unique key.
2467     */
2468     case SRT_Table:
2469     case SRT_EphemTab: {
2470       int r1 = sqlite3GetTempReg(pParse);
2471       int r2 = sqlite3GetTempReg(pParse);
2472       testcase( pDest->eDest==SRT_Table );
2473       testcase( pDest->eDest==SRT_EphemTab );
2474       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2475       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2476       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2477       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2478       sqlite3ReleaseTempReg(pParse, r2);
2479       sqlite3ReleaseTempReg(pParse, r1);
2480       break;
2481     }
2482 
2483 #ifndef SQLITE_OMIT_SUBQUERY
2484     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2485     ** then there should be a single item on the stack.  Write this
2486     ** item into the set table with bogus data.
2487     */
2488     case SRT_Set: {
2489       int r1;
2490       assert( pIn->nSdst==1 );
2491       pDest->affSdst =
2492          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2493       r1 = sqlite3GetTempReg(pParse);
2494       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2495       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2496       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2497       sqlite3ReleaseTempReg(pParse, r1);
2498       break;
2499     }
2500 
2501 #if 0  /* Never occurs on an ORDER BY query */
2502     /* If any row exist in the result set, record that fact and abort.
2503     */
2504     case SRT_Exists: {
2505       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2506       /* The LIMIT clause will terminate the loop for us */
2507       break;
2508     }
2509 #endif
2510 
2511     /* If this is a scalar select that is part of an expression, then
2512     ** store the results in the appropriate memory cell and break out
2513     ** of the scan loop.
2514     */
2515     case SRT_Mem: {
2516       assert( pIn->nSdst==1 );
2517       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2518       /* The LIMIT clause will jump out of the loop for us */
2519       break;
2520     }
2521 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2522 
2523     /* The results are stored in a sequence of registers
2524     ** starting at pDest->iSdst.  Then the co-routine yields.
2525     */
2526     case SRT_Coroutine: {
2527       if( pDest->iSdst==0 ){
2528         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2529         pDest->nSdst = pIn->nSdst;
2530       }
2531       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2532       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2533       break;
2534     }
2535 
2536     /* If none of the above, then the result destination must be
2537     ** SRT_Output.  This routine is never called with any other
2538     ** destination other than the ones handled above or SRT_Output.
2539     **
2540     ** For SRT_Output, results are stored in a sequence of registers.
2541     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2542     ** return the next row of result.
2543     */
2544     default: {
2545       assert( pDest->eDest==SRT_Output );
2546       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2547       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2548       break;
2549     }
2550   }
2551 
2552   /* Jump to the end of the loop if the LIMIT is reached.
2553   */
2554   if( p->iLimit ){
2555     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2556   }
2557 
2558   /* Generate the subroutine return
2559   */
2560   sqlite3VdbeResolveLabel(v, iContinue);
2561   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2562 
2563   return addr;
2564 }
2565 
2566 /*
2567 ** Alternative compound select code generator for cases when there
2568 ** is an ORDER BY clause.
2569 **
2570 ** We assume a query of the following form:
2571 **
2572 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2573 **
2574 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2575 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2576 ** co-routines.  Then run the co-routines in parallel and merge the results
2577 ** into the output.  In addition to the two coroutines (called selectA and
2578 ** selectB) there are 7 subroutines:
2579 **
2580 **    outA:    Move the output of the selectA coroutine into the output
2581 **             of the compound query.
2582 **
2583 **    outB:    Move the output of the selectB coroutine into the output
2584 **             of the compound query.  (Only generated for UNION and
2585 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2586 **             appears only in B.)
2587 **
2588 **    AltB:    Called when there is data from both coroutines and A<B.
2589 **
2590 **    AeqB:    Called when there is data from both coroutines and A==B.
2591 **
2592 **    AgtB:    Called when there is data from both coroutines and A>B.
2593 **
2594 **    EofA:    Called when data is exhausted from selectA.
2595 **
2596 **    EofB:    Called when data is exhausted from selectB.
2597 **
2598 ** The implementation of the latter five subroutines depend on which
2599 ** <operator> is used:
2600 **
2601 **
2602 **             UNION ALL         UNION            EXCEPT          INTERSECT
2603 **          -------------  -----------------  --------------  -----------------
2604 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2605 **
2606 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2607 **
2608 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2609 **
2610 **   EofA:   outB, nextB      outB, nextB          halt             halt
2611 **
2612 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2613 **
2614 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2615 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2616 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2617 ** following nextX causes a jump to the end of the select processing.
2618 **
2619 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2620 ** within the output subroutine.  The regPrev register set holds the previously
2621 ** output value.  A comparison is made against this value and the output
2622 ** is skipped if the next results would be the same as the previous.
2623 **
2624 ** The implementation plan is to implement the two coroutines and seven
2625 ** subroutines first, then put the control logic at the bottom.  Like this:
2626 **
2627 **          goto Init
2628 **     coA: coroutine for left query (A)
2629 **     coB: coroutine for right query (B)
2630 **    outA: output one row of A
2631 **    outB: output one row of B (UNION and UNION ALL only)
2632 **    EofA: ...
2633 **    EofB: ...
2634 **    AltB: ...
2635 **    AeqB: ...
2636 **    AgtB: ...
2637 **    Init: initialize coroutine registers
2638 **          yield coA
2639 **          if eof(A) goto EofA
2640 **          yield coB
2641 **          if eof(B) goto EofB
2642 **    Cmpr: Compare A, B
2643 **          Jump AltB, AeqB, AgtB
2644 **     End: ...
2645 **
2646 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2647 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2648 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2649 ** and AgtB jump to either L2 or to one of EofA or EofB.
2650 */
2651 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2652 static int multiSelectOrderBy(
2653   Parse *pParse,        /* Parsing context */
2654   Select *p,            /* The right-most of SELECTs to be coded */
2655   SelectDest *pDest     /* What to do with query results */
2656 ){
2657   int i, j;             /* Loop counters */
2658   Select *pPrior;       /* Another SELECT immediately to our left */
2659   Vdbe *v;              /* Generate code to this VDBE */
2660   SelectDest destA;     /* Destination for coroutine A */
2661   SelectDest destB;     /* Destination for coroutine B */
2662   int regAddrA;         /* Address register for select-A coroutine */
2663   int regAddrB;         /* Address register for select-B coroutine */
2664   int addrSelectA;      /* Address of the select-A coroutine */
2665   int addrSelectB;      /* Address of the select-B coroutine */
2666   int regOutA;          /* Address register for the output-A subroutine */
2667   int regOutB;          /* Address register for the output-B subroutine */
2668   int addrOutA;         /* Address of the output-A subroutine */
2669   int addrOutB = 0;     /* Address of the output-B subroutine */
2670   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2671   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2672   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2673   int addrAltB;         /* Address of the A<B subroutine */
2674   int addrAeqB;         /* Address of the A==B subroutine */
2675   int addrAgtB;         /* Address of the A>B subroutine */
2676   int regLimitA;        /* Limit register for select-A */
2677   int regLimitB;        /* Limit register for select-A */
2678   int regPrev;          /* A range of registers to hold previous output */
2679   int savedLimit;       /* Saved value of p->iLimit */
2680   int savedOffset;      /* Saved value of p->iOffset */
2681   int labelCmpr;        /* Label for the start of the merge algorithm */
2682   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2683   int j1;               /* Jump instructions that get retargetted */
2684   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2685   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2686   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2687   sqlite3 *db;          /* Database connection */
2688   ExprList *pOrderBy;   /* The ORDER BY clause */
2689   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2690   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2691 #ifndef SQLITE_OMIT_EXPLAIN
2692   int iSub1;            /* EQP id of left-hand query */
2693   int iSub2;            /* EQP id of right-hand query */
2694 #endif
2695 
2696   assert( p->pOrderBy!=0 );
2697   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2698   db = pParse->db;
2699   v = pParse->pVdbe;
2700   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2701   labelEnd = sqlite3VdbeMakeLabel(v);
2702   labelCmpr = sqlite3VdbeMakeLabel(v);
2703 
2704 
2705   /* Patch up the ORDER BY clause
2706   */
2707   op = p->op;
2708   pPrior = p->pPrior;
2709   assert( pPrior->pOrderBy==0 );
2710   pOrderBy = p->pOrderBy;
2711   assert( pOrderBy );
2712   nOrderBy = pOrderBy->nExpr;
2713 
2714   /* For operators other than UNION ALL we have to make sure that
2715   ** the ORDER BY clause covers every term of the result set.  Add
2716   ** terms to the ORDER BY clause as necessary.
2717   */
2718   if( op!=TK_ALL ){
2719     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2720       struct ExprList_item *pItem;
2721       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2722         assert( pItem->u.x.iOrderByCol>0 );
2723         if( pItem->u.x.iOrderByCol==i ) break;
2724       }
2725       if( j==nOrderBy ){
2726         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2727         if( pNew==0 ) return SQLITE_NOMEM;
2728         pNew->flags |= EP_IntValue;
2729         pNew->u.iValue = i;
2730         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2731         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2732       }
2733     }
2734   }
2735 
2736   /* Compute the comparison permutation and keyinfo that is used with
2737   ** the permutation used to determine if the next
2738   ** row of results comes from selectA or selectB.  Also add explicit
2739   ** collations to the ORDER BY clause terms so that when the subqueries
2740   ** to the right and the left are evaluated, they use the correct
2741   ** collation.
2742   */
2743   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2744   if( aPermute ){
2745     struct ExprList_item *pItem;
2746     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2747       assert( pItem->u.x.iOrderByCol>0
2748           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2749       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2750     }
2751     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2752   }else{
2753     pKeyMerge = 0;
2754   }
2755 
2756   /* Reattach the ORDER BY clause to the query.
2757   */
2758   p->pOrderBy = pOrderBy;
2759   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2760 
2761   /* Allocate a range of temporary registers and the KeyInfo needed
2762   ** for the logic that removes duplicate result rows when the
2763   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2764   */
2765   if( op==TK_ALL ){
2766     regPrev = 0;
2767   }else{
2768     int nExpr = p->pEList->nExpr;
2769     assert( nOrderBy>=nExpr || db->mallocFailed );
2770     regPrev = pParse->nMem+1;
2771     pParse->nMem += nExpr+1;
2772     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2773     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2774     if( pKeyDup ){
2775       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2776       for(i=0; i<nExpr; i++){
2777         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2778         pKeyDup->aSortOrder[i] = 0;
2779       }
2780     }
2781   }
2782 
2783   /* Separate the left and the right query from one another
2784   */
2785   p->pPrior = 0;
2786   pPrior->pNext = 0;
2787   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2788   if( pPrior->pPrior==0 ){
2789     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2790   }
2791 
2792   /* Compute the limit registers */
2793   computeLimitRegisters(pParse, p, labelEnd);
2794   if( p->iLimit && op==TK_ALL ){
2795     regLimitA = ++pParse->nMem;
2796     regLimitB = ++pParse->nMem;
2797     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2798                                   regLimitA);
2799     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2800   }else{
2801     regLimitA = regLimitB = 0;
2802   }
2803   sqlite3ExprDelete(db, p->pLimit);
2804   p->pLimit = 0;
2805   sqlite3ExprDelete(db, p->pOffset);
2806   p->pOffset = 0;
2807 
2808   regAddrA = ++pParse->nMem;
2809   regAddrB = ++pParse->nMem;
2810   regOutA = ++pParse->nMem;
2811   regOutB = ++pParse->nMem;
2812   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2813   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2814 
2815   /* Generate a coroutine to evaluate the SELECT statement to the
2816   ** left of the compound operator - the "A" select.
2817   */
2818   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2819   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2820   VdbeComment((v, "left SELECT"));
2821   pPrior->iLimit = regLimitA;
2822   explainSetInteger(iSub1, pParse->iNextSelectId);
2823   sqlite3Select(pParse, pPrior, &destA);
2824   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2825   sqlite3VdbeJumpHere(v, j1);
2826 
2827   /* Generate a coroutine to evaluate the SELECT statement on
2828   ** the right - the "B" select
2829   */
2830   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2831   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2832   VdbeComment((v, "right SELECT"));
2833   savedLimit = p->iLimit;
2834   savedOffset = p->iOffset;
2835   p->iLimit = regLimitB;
2836   p->iOffset = 0;
2837   explainSetInteger(iSub2, pParse->iNextSelectId);
2838   sqlite3Select(pParse, p, &destB);
2839   p->iLimit = savedLimit;
2840   p->iOffset = savedOffset;
2841   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2842 
2843   /* Generate a subroutine that outputs the current row of the A
2844   ** select as the next output row of the compound select.
2845   */
2846   VdbeNoopComment((v, "Output routine for A"));
2847   addrOutA = generateOutputSubroutine(pParse,
2848                  p, &destA, pDest, regOutA,
2849                  regPrev, pKeyDup, labelEnd);
2850 
2851   /* Generate a subroutine that outputs the current row of the B
2852   ** select as the next output row of the compound select.
2853   */
2854   if( op==TK_ALL || op==TK_UNION ){
2855     VdbeNoopComment((v, "Output routine for B"));
2856     addrOutB = generateOutputSubroutine(pParse,
2857                  p, &destB, pDest, regOutB,
2858                  regPrev, pKeyDup, labelEnd);
2859   }
2860   sqlite3KeyInfoUnref(pKeyDup);
2861 
2862   /* Generate a subroutine to run when the results from select A
2863   ** are exhausted and only data in select B remains.
2864   */
2865   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2866     addrEofA_noB = addrEofA = labelEnd;
2867   }else{
2868     VdbeNoopComment((v, "eof-A subroutine"));
2869     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2870     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2871                                      VdbeCoverage(v);
2872     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2873     p->nSelectRow += pPrior->nSelectRow;
2874   }
2875 
2876   /* Generate a subroutine to run when the results from select B
2877   ** are exhausted and only data in select A remains.
2878   */
2879   if( op==TK_INTERSECT ){
2880     addrEofB = addrEofA;
2881     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2882   }else{
2883     VdbeNoopComment((v, "eof-B subroutine"));
2884     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2885     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
2886     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2887   }
2888 
2889   /* Generate code to handle the case of A<B
2890   */
2891   VdbeNoopComment((v, "A-lt-B subroutine"));
2892   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2893   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2894   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2895 
2896   /* Generate code to handle the case of A==B
2897   */
2898   if( op==TK_ALL ){
2899     addrAeqB = addrAltB;
2900   }else if( op==TK_INTERSECT ){
2901     addrAeqB = addrAltB;
2902     addrAltB++;
2903   }else{
2904     VdbeNoopComment((v, "A-eq-B subroutine"));
2905     addrAeqB =
2906     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2907     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2908   }
2909 
2910   /* Generate code to handle the case of A>B
2911   */
2912   VdbeNoopComment((v, "A-gt-B subroutine"));
2913   addrAgtB = sqlite3VdbeCurrentAddr(v);
2914   if( op==TK_ALL || op==TK_UNION ){
2915     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2916   }
2917   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2918   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2919 
2920   /* This code runs once to initialize everything.
2921   */
2922   sqlite3VdbeJumpHere(v, j1);
2923   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
2924   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2925 
2926   /* Implement the main merge loop
2927   */
2928   sqlite3VdbeResolveLabel(v, labelCmpr);
2929   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2930   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2931                          (char*)pKeyMerge, P4_KEYINFO);
2932   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2933   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
2934 
2935   /* Jump to the this point in order to terminate the query.
2936   */
2937   sqlite3VdbeResolveLabel(v, labelEnd);
2938 
2939   /* Set the number of output columns
2940   */
2941   if( pDest->eDest==SRT_Output ){
2942     Select *pFirst = pPrior;
2943     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2944     generateColumnNames(pParse, 0, pFirst->pEList);
2945   }
2946 
2947   /* Reassembly the compound query so that it will be freed correctly
2948   ** by the calling function */
2949   if( p->pPrior ){
2950     sqlite3SelectDelete(db, p->pPrior);
2951   }
2952   p->pPrior = pPrior;
2953   pPrior->pNext = p;
2954 
2955   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2956   **** subqueries ****/
2957   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2958   return SQLITE_OK;
2959 }
2960 #endif
2961 
2962 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2963 /* Forward Declarations */
2964 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2965 static void substSelect(sqlite3*, Select *, int, ExprList *);
2966 
2967 /*
2968 ** Scan through the expression pExpr.  Replace every reference to
2969 ** a column in table number iTable with a copy of the iColumn-th
2970 ** entry in pEList.  (But leave references to the ROWID column
2971 ** unchanged.)
2972 **
2973 ** This routine is part of the flattening procedure.  A subquery
2974 ** whose result set is defined by pEList appears as entry in the
2975 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2976 ** FORM clause entry is iTable.  This routine make the necessary
2977 ** changes to pExpr so that it refers directly to the source table
2978 ** of the subquery rather the result set of the subquery.
2979 */
2980 static Expr *substExpr(
2981   sqlite3 *db,        /* Report malloc errors to this connection */
2982   Expr *pExpr,        /* Expr in which substitution occurs */
2983   int iTable,         /* Table to be substituted */
2984   ExprList *pEList    /* Substitute expressions */
2985 ){
2986   if( pExpr==0 ) return 0;
2987   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2988     if( pExpr->iColumn<0 ){
2989       pExpr->op = TK_NULL;
2990     }else{
2991       Expr *pNew;
2992       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2993       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2994       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2995       sqlite3ExprDelete(db, pExpr);
2996       pExpr = pNew;
2997     }
2998   }else{
2999     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3000     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3001     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3002       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3003     }else{
3004       substExprList(db, pExpr->x.pList, iTable, pEList);
3005     }
3006   }
3007   return pExpr;
3008 }
3009 static void substExprList(
3010   sqlite3 *db,         /* Report malloc errors here */
3011   ExprList *pList,     /* List to scan and in which to make substitutes */
3012   int iTable,          /* Table to be substituted */
3013   ExprList *pEList     /* Substitute values */
3014 ){
3015   int i;
3016   if( pList==0 ) return;
3017   for(i=0; i<pList->nExpr; i++){
3018     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3019   }
3020 }
3021 static void substSelect(
3022   sqlite3 *db,         /* Report malloc errors here */
3023   Select *p,           /* SELECT statement in which to make substitutions */
3024   int iTable,          /* Table to be replaced */
3025   ExprList *pEList     /* Substitute values */
3026 ){
3027   SrcList *pSrc;
3028   struct SrcList_item *pItem;
3029   int i;
3030   if( !p ) return;
3031   substExprList(db, p->pEList, iTable, pEList);
3032   substExprList(db, p->pGroupBy, iTable, pEList);
3033   substExprList(db, p->pOrderBy, iTable, pEList);
3034   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3035   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3036   substSelect(db, p->pPrior, iTable, pEList);
3037   pSrc = p->pSrc;
3038   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3039   if( ALWAYS(pSrc) ){
3040     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3041       substSelect(db, pItem->pSelect, iTable, pEList);
3042     }
3043   }
3044 }
3045 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3046 
3047 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3048 /*
3049 ** This routine attempts to flatten subqueries as a performance optimization.
3050 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3051 **
3052 ** To understand the concept of flattening, consider the following
3053 ** query:
3054 **
3055 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3056 **
3057 ** The default way of implementing this query is to execute the
3058 ** subquery first and store the results in a temporary table, then
3059 ** run the outer query on that temporary table.  This requires two
3060 ** passes over the data.  Furthermore, because the temporary table
3061 ** has no indices, the WHERE clause on the outer query cannot be
3062 ** optimized.
3063 **
3064 ** This routine attempts to rewrite queries such as the above into
3065 ** a single flat select, like this:
3066 **
3067 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3068 **
3069 ** The code generated for this simpification gives the same result
3070 ** but only has to scan the data once.  And because indices might
3071 ** exist on the table t1, a complete scan of the data might be
3072 ** avoided.
3073 **
3074 ** Flattening is only attempted if all of the following are true:
3075 **
3076 **   (1)  The subquery and the outer query do not both use aggregates.
3077 **
3078 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3079 **
3080 **   (3)  The subquery is not the right operand of a left outer join
3081 **        (Originally ticket #306.  Strengthened by ticket #3300)
3082 **
3083 **   (4)  The subquery is not DISTINCT.
3084 **
3085 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3086 **        sub-queries that were excluded from this optimization. Restriction
3087 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3088 **
3089 **   (6)  The subquery does not use aggregates or the outer query is not
3090 **        DISTINCT.
3091 **
3092 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3093 **        A FROM clause, consider adding a FROM close with the special
3094 **        table sqlite_once that consists of a single row containing a
3095 **        single NULL.
3096 **
3097 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3098 **
3099 **   (9)  The subquery does not use LIMIT or the outer query does not use
3100 **        aggregates.
3101 **
3102 **  (10)  The subquery does not use aggregates or the outer query does not
3103 **        use LIMIT.
3104 **
3105 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3106 **
3107 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3108 **        a separate restriction deriving from ticket #350.
3109 **
3110 **  (13)  The subquery and outer query do not both use LIMIT.
3111 **
3112 **  (14)  The subquery does not use OFFSET.
3113 **
3114 **  (15)  The outer query is not part of a compound select or the
3115 **        subquery does not have a LIMIT clause.
3116 **        (See ticket #2339 and ticket [02a8e81d44]).
3117 **
3118 **  (16)  The outer query is not an aggregate or the subquery does
3119 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3120 **        until we introduced the group_concat() function.
3121 **
3122 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3123 **        compound clause made up entirely of non-aggregate queries, and
3124 **        the parent query:
3125 **
3126 **          * is not itself part of a compound select,
3127 **          * is not an aggregate or DISTINCT query, and
3128 **          * is not a join
3129 **
3130 **        The parent and sub-query may contain WHERE clauses. Subject to
3131 **        rules (11), (13) and (14), they may also contain ORDER BY,
3132 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3133 **        operator other than UNION ALL because all the other compound
3134 **        operators have an implied DISTINCT which is disallowed by
3135 **        restriction (4).
3136 **
3137 **        Also, each component of the sub-query must return the same number
3138 **        of result columns. This is actually a requirement for any compound
3139 **        SELECT statement, but all the code here does is make sure that no
3140 **        such (illegal) sub-query is flattened. The caller will detect the
3141 **        syntax error and return a detailed message.
3142 **
3143 **  (18)  If the sub-query is a compound select, then all terms of the
3144 **        ORDER by clause of the parent must be simple references to
3145 **        columns of the sub-query.
3146 **
3147 **  (19)  The subquery does not use LIMIT or the outer query does not
3148 **        have a WHERE clause.
3149 **
3150 **  (20)  If the sub-query is a compound select, then it must not use
3151 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3152 **        somewhat by saying that the terms of the ORDER BY clause must
3153 **        appear as unmodified result columns in the outer query.  But we
3154 **        have other optimizations in mind to deal with that case.
3155 **
3156 **  (21)  The subquery does not use LIMIT or the outer query is not
3157 **        DISTINCT.  (See ticket [752e1646fc]).
3158 **
3159 **  (22)  The subquery is not a recursive CTE.
3160 **
3161 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3162 **        compound query. This restriction is because transforming the
3163 **        parent to a compound query confuses the code that handles
3164 **        recursive queries in multiSelect().
3165 **
3166 **
3167 ** In this routine, the "p" parameter is a pointer to the outer query.
3168 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3169 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3170 **
3171 ** If flattening is not attempted, this routine is a no-op and returns 0.
3172 ** If flattening is attempted this routine returns 1.
3173 **
3174 ** All of the expression analysis must occur on both the outer query and
3175 ** the subquery before this routine runs.
3176 */
3177 static int flattenSubquery(
3178   Parse *pParse,       /* Parsing context */
3179   Select *p,           /* The parent or outer SELECT statement */
3180   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3181   int isAgg,           /* True if outer SELECT uses aggregate functions */
3182   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3183 ){
3184   const char *zSavedAuthContext = pParse->zAuthContext;
3185   Select *pParent;
3186   Select *pSub;       /* The inner query or "subquery" */
3187   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3188   SrcList *pSrc;      /* The FROM clause of the outer query */
3189   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3190   ExprList *pList;    /* The result set of the outer query */
3191   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3192   int i;              /* Loop counter */
3193   Expr *pWhere;                    /* The WHERE clause */
3194   struct SrcList_item *pSubitem;   /* The subquery */
3195   sqlite3 *db = pParse->db;
3196 
3197   /* Check to see if flattening is permitted.  Return 0 if not.
3198   */
3199   assert( p!=0 );
3200   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3201   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3202   pSrc = p->pSrc;
3203   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3204   pSubitem = &pSrc->a[iFrom];
3205   iParent = pSubitem->iCursor;
3206   pSub = pSubitem->pSelect;
3207   assert( pSub!=0 );
3208   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3209   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3210   pSubSrc = pSub->pSrc;
3211   assert( pSubSrc );
3212   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3213   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
3214   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3215   ** became arbitrary expressions, we were forced to add restrictions (13)
3216   ** and (14). */
3217   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3218   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3219   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3220     return 0;                                            /* Restriction (15) */
3221   }
3222   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3223   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3224   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3225      return 0;         /* Restrictions (8)(9) */
3226   }
3227   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3228      return 0;         /* Restriction (6)  */
3229   }
3230   if( p->pOrderBy && pSub->pOrderBy ){
3231      return 0;                                           /* Restriction (11) */
3232   }
3233   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3234   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3235   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3236      return 0;         /* Restriction (21) */
3237   }
3238   if( pSub->selFlags & SF_Recursive ) return 0;          /* Restriction (22)  */
3239   if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0;       /* (23)  */
3240 
3241   /* OBSOLETE COMMENT 1:
3242   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3243   ** not used as the right operand of an outer join.  Examples of why this
3244   ** is not allowed:
3245   **
3246   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3247   **
3248   ** If we flatten the above, we would get
3249   **
3250   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3251   **
3252   ** which is not at all the same thing.
3253   **
3254   ** OBSOLETE COMMENT 2:
3255   ** Restriction 12:  If the subquery is the right operand of a left outer
3256   ** join, make sure the subquery has no WHERE clause.
3257   ** An examples of why this is not allowed:
3258   **
3259   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3260   **
3261   ** If we flatten the above, we would get
3262   **
3263   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3264   **
3265   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3266   ** effectively converts the OUTER JOIN into an INNER JOIN.
3267   **
3268   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3269   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3270   ** is fraught with danger.  Best to avoid the whole thing.  If the
3271   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3272   */
3273   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3274     return 0;
3275   }
3276 
3277   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3278   ** use only the UNION ALL operator. And none of the simple select queries
3279   ** that make up the compound SELECT are allowed to be aggregate or distinct
3280   ** queries.
3281   */
3282   if( pSub->pPrior ){
3283     if( pSub->pOrderBy ){
3284       return 0;  /* Restriction 20 */
3285     }
3286     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3287       return 0;
3288     }
3289     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3290       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3291       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3292       assert( pSub->pSrc!=0 );
3293       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3294        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3295        || pSub1->pSrc->nSrc<1
3296        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3297       ){
3298         return 0;
3299       }
3300       testcase( pSub1->pSrc->nSrc>1 );
3301     }
3302 
3303     /* Restriction 18. */
3304     if( p->pOrderBy ){
3305       int ii;
3306       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3307         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3308       }
3309     }
3310   }
3311 
3312   /***** If we reach this point, flattening is permitted. *****/
3313 
3314   /* Authorize the subquery */
3315   pParse->zAuthContext = pSubitem->zName;
3316   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3317   testcase( i==SQLITE_DENY );
3318   pParse->zAuthContext = zSavedAuthContext;
3319 
3320   /* If the sub-query is a compound SELECT statement, then (by restrictions
3321   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3322   ** be of the form:
3323   **
3324   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3325   **
3326   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3327   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3328   ** OFFSET clauses and joins them to the left-hand-side of the original
3329   ** using UNION ALL operators. In this case N is the number of simple
3330   ** select statements in the compound sub-query.
3331   **
3332   ** Example:
3333   **
3334   **     SELECT a+1 FROM (
3335   **        SELECT x FROM tab
3336   **        UNION ALL
3337   **        SELECT y FROM tab
3338   **        UNION ALL
3339   **        SELECT abs(z*2) FROM tab2
3340   **     ) WHERE a!=5 ORDER BY 1
3341   **
3342   ** Transformed into:
3343   **
3344   **     SELECT x+1 FROM tab WHERE x+1!=5
3345   **     UNION ALL
3346   **     SELECT y+1 FROM tab WHERE y+1!=5
3347   **     UNION ALL
3348   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3349   **     ORDER BY 1
3350   **
3351   ** We call this the "compound-subquery flattening".
3352   */
3353   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3354     Select *pNew;
3355     ExprList *pOrderBy = p->pOrderBy;
3356     Expr *pLimit = p->pLimit;
3357     Expr *pOffset = p->pOffset;
3358     Select *pPrior = p->pPrior;
3359     p->pOrderBy = 0;
3360     p->pSrc = 0;
3361     p->pPrior = 0;
3362     p->pLimit = 0;
3363     p->pOffset = 0;
3364     pNew = sqlite3SelectDup(db, p, 0);
3365     p->pOffset = pOffset;
3366     p->pLimit = pLimit;
3367     p->pOrderBy = pOrderBy;
3368     p->pSrc = pSrc;
3369     p->op = TK_ALL;
3370     if( pNew==0 ){
3371       p->pPrior = pPrior;
3372     }else{
3373       pNew->pPrior = pPrior;
3374       if( pPrior ) pPrior->pNext = pNew;
3375       pNew->pNext = p;
3376       p->pPrior = pNew;
3377     }
3378     if( db->mallocFailed ) return 1;
3379   }
3380 
3381   /* Begin flattening the iFrom-th entry of the FROM clause
3382   ** in the outer query.
3383   */
3384   pSub = pSub1 = pSubitem->pSelect;
3385 
3386   /* Delete the transient table structure associated with the
3387   ** subquery
3388   */
3389   sqlite3DbFree(db, pSubitem->zDatabase);
3390   sqlite3DbFree(db, pSubitem->zName);
3391   sqlite3DbFree(db, pSubitem->zAlias);
3392   pSubitem->zDatabase = 0;
3393   pSubitem->zName = 0;
3394   pSubitem->zAlias = 0;
3395   pSubitem->pSelect = 0;
3396 
3397   /* Defer deleting the Table object associated with the
3398   ** subquery until code generation is
3399   ** complete, since there may still exist Expr.pTab entries that
3400   ** refer to the subquery even after flattening.  Ticket #3346.
3401   **
3402   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3403   */
3404   if( ALWAYS(pSubitem->pTab!=0) ){
3405     Table *pTabToDel = pSubitem->pTab;
3406     if( pTabToDel->nRef==1 ){
3407       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3408       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3409       pToplevel->pZombieTab = pTabToDel;
3410     }else{
3411       pTabToDel->nRef--;
3412     }
3413     pSubitem->pTab = 0;
3414   }
3415 
3416   /* The following loop runs once for each term in a compound-subquery
3417   ** flattening (as described above).  If we are doing a different kind
3418   ** of flattening - a flattening other than a compound-subquery flattening -
3419   ** then this loop only runs once.
3420   **
3421   ** This loop moves all of the FROM elements of the subquery into the
3422   ** the FROM clause of the outer query.  Before doing this, remember
3423   ** the cursor number for the original outer query FROM element in
3424   ** iParent.  The iParent cursor will never be used.  Subsequent code
3425   ** will scan expressions looking for iParent references and replace
3426   ** those references with expressions that resolve to the subquery FROM
3427   ** elements we are now copying in.
3428   */
3429   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3430     int nSubSrc;
3431     u8 jointype = 0;
3432     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3433     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3434     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3435 
3436     if( pSrc ){
3437       assert( pParent==p );  /* First time through the loop */
3438       jointype = pSubitem->jointype;
3439     }else{
3440       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3441       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3442       if( pSrc==0 ){
3443         assert( db->mallocFailed );
3444         break;
3445       }
3446     }
3447 
3448     /* The subquery uses a single slot of the FROM clause of the outer
3449     ** query.  If the subquery has more than one element in its FROM clause,
3450     ** then expand the outer query to make space for it to hold all elements
3451     ** of the subquery.
3452     **
3453     ** Example:
3454     **
3455     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3456     **
3457     ** The outer query has 3 slots in its FROM clause.  One slot of the
3458     ** outer query (the middle slot) is used by the subquery.  The next
3459     ** block of code will expand the out query to 4 slots.  The middle
3460     ** slot is expanded to two slots in order to make space for the
3461     ** two elements in the FROM clause of the subquery.
3462     */
3463     if( nSubSrc>1 ){
3464       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3465       if( db->mallocFailed ){
3466         break;
3467       }
3468     }
3469 
3470     /* Transfer the FROM clause terms from the subquery into the
3471     ** outer query.
3472     */
3473     for(i=0; i<nSubSrc; i++){
3474       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3475       pSrc->a[i+iFrom] = pSubSrc->a[i];
3476       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3477     }
3478     pSrc->a[iFrom].jointype = jointype;
3479 
3480     /* Now begin substituting subquery result set expressions for
3481     ** references to the iParent in the outer query.
3482     **
3483     ** Example:
3484     **
3485     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3486     **   \                     \_____________ subquery __________/          /
3487     **    \_____________________ outer query ______________________________/
3488     **
3489     ** We look at every expression in the outer query and every place we see
3490     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3491     */
3492     pList = pParent->pEList;
3493     for(i=0; i<pList->nExpr; i++){
3494       if( pList->a[i].zName==0 ){
3495         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3496         sqlite3Dequote(zName);
3497         pList->a[i].zName = zName;
3498       }
3499     }
3500     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3501     if( isAgg ){
3502       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3503       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3504     }
3505     if( pSub->pOrderBy ){
3506       assert( pParent->pOrderBy==0 );
3507       pParent->pOrderBy = pSub->pOrderBy;
3508       pSub->pOrderBy = 0;
3509     }else if( pParent->pOrderBy ){
3510       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3511     }
3512     if( pSub->pWhere ){
3513       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3514     }else{
3515       pWhere = 0;
3516     }
3517     if( subqueryIsAgg ){
3518       assert( pParent->pHaving==0 );
3519       pParent->pHaving = pParent->pWhere;
3520       pParent->pWhere = pWhere;
3521       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3522       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3523                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3524       assert( pParent->pGroupBy==0 );
3525       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3526     }else{
3527       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3528       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3529     }
3530 
3531     /* The flattened query is distinct if either the inner or the
3532     ** outer query is distinct.
3533     */
3534     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3535 
3536     /*
3537     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3538     **
3539     ** One is tempted to try to add a and b to combine the limits.  But this
3540     ** does not work if either limit is negative.
3541     */
3542     if( pSub->pLimit ){
3543       pParent->pLimit = pSub->pLimit;
3544       pSub->pLimit = 0;
3545     }
3546   }
3547 
3548   /* Finially, delete what is left of the subquery and return
3549   ** success.
3550   */
3551   sqlite3SelectDelete(db, pSub1);
3552 
3553   return 1;
3554 }
3555 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3556 
3557 /*
3558 ** Based on the contents of the AggInfo structure indicated by the first
3559 ** argument, this function checks if the following are true:
3560 **
3561 **    * the query contains just a single aggregate function,
3562 **    * the aggregate function is either min() or max(), and
3563 **    * the argument to the aggregate function is a column value.
3564 **
3565 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3566 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3567 ** list of arguments passed to the aggregate before returning.
3568 **
3569 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3570 ** WHERE_ORDERBY_NORMAL is returned.
3571 */
3572 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3573   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3574 
3575   *ppMinMax = 0;
3576   if( pAggInfo->nFunc==1 ){
3577     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3578     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3579 
3580     assert( pExpr->op==TK_AGG_FUNCTION );
3581     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3582       const char *zFunc = pExpr->u.zToken;
3583       if( sqlite3StrICmp(zFunc, "min")==0 ){
3584         eRet = WHERE_ORDERBY_MIN;
3585         *ppMinMax = pEList;
3586       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3587         eRet = WHERE_ORDERBY_MAX;
3588         *ppMinMax = pEList;
3589       }
3590     }
3591   }
3592 
3593   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3594   return eRet;
3595 }
3596 
3597 /*
3598 ** The select statement passed as the first argument is an aggregate query.
3599 ** The second argment is the associated aggregate-info object. This
3600 ** function tests if the SELECT is of the form:
3601 **
3602 **   SELECT count(*) FROM <tbl>
3603 **
3604 ** where table is a database table, not a sub-select or view. If the query
3605 ** does match this pattern, then a pointer to the Table object representing
3606 ** <tbl> is returned. Otherwise, 0 is returned.
3607 */
3608 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3609   Table *pTab;
3610   Expr *pExpr;
3611 
3612   assert( !p->pGroupBy );
3613 
3614   if( p->pWhere || p->pEList->nExpr!=1
3615    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3616   ){
3617     return 0;
3618   }
3619   pTab = p->pSrc->a[0].pTab;
3620   pExpr = p->pEList->a[0].pExpr;
3621   assert( pTab && !pTab->pSelect && pExpr );
3622 
3623   if( IsVirtual(pTab) ) return 0;
3624   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3625   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3626   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3627   if( pExpr->flags&EP_Distinct ) return 0;
3628 
3629   return pTab;
3630 }
3631 
3632 /*
3633 ** If the source-list item passed as an argument was augmented with an
3634 ** INDEXED BY clause, then try to locate the specified index. If there
3635 ** was such a clause and the named index cannot be found, return
3636 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3637 ** pFrom->pIndex and return SQLITE_OK.
3638 */
3639 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3640   if( pFrom->pTab && pFrom->zIndex ){
3641     Table *pTab = pFrom->pTab;
3642     char *zIndex = pFrom->zIndex;
3643     Index *pIdx;
3644     for(pIdx=pTab->pIndex;
3645         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3646         pIdx=pIdx->pNext
3647     );
3648     if( !pIdx ){
3649       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3650       pParse->checkSchema = 1;
3651       return SQLITE_ERROR;
3652     }
3653     pFrom->pIndex = pIdx;
3654   }
3655   return SQLITE_OK;
3656 }
3657 /*
3658 ** Detect compound SELECT statements that use an ORDER BY clause with
3659 ** an alternative collating sequence.
3660 **
3661 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3662 **
3663 ** These are rewritten as a subquery:
3664 **
3665 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3666 **     ORDER BY ... COLLATE ...
3667 **
3668 ** This transformation is necessary because the multiSelectOrderBy() routine
3669 ** above that generates the code for a compound SELECT with an ORDER BY clause
3670 ** uses a merge algorithm that requires the same collating sequence on the
3671 ** result columns as on the ORDER BY clause.  See ticket
3672 ** http://www.sqlite.org/src/info/6709574d2a
3673 **
3674 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3675 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3676 ** there are COLLATE terms in the ORDER BY.
3677 */
3678 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3679   int i;
3680   Select *pNew;
3681   Select *pX;
3682   sqlite3 *db;
3683   struct ExprList_item *a;
3684   SrcList *pNewSrc;
3685   Parse *pParse;
3686   Token dummy;
3687 
3688   if( p->pPrior==0 ) return WRC_Continue;
3689   if( p->pOrderBy==0 ) return WRC_Continue;
3690   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3691   if( pX==0 ) return WRC_Continue;
3692   a = p->pOrderBy->a;
3693   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3694     if( a[i].pExpr->flags & EP_Collate ) break;
3695   }
3696   if( i<0 ) return WRC_Continue;
3697 
3698   /* If we reach this point, that means the transformation is required. */
3699 
3700   pParse = pWalker->pParse;
3701   db = pParse->db;
3702   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3703   if( pNew==0 ) return WRC_Abort;
3704   memset(&dummy, 0, sizeof(dummy));
3705   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3706   if( pNewSrc==0 ) return WRC_Abort;
3707   *pNew = *p;
3708   p->pSrc = pNewSrc;
3709   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3710   p->op = TK_SELECT;
3711   p->pWhere = 0;
3712   pNew->pGroupBy = 0;
3713   pNew->pHaving = 0;
3714   pNew->pOrderBy = 0;
3715   p->pPrior = 0;
3716   p->pNext = 0;
3717   p->selFlags &= ~SF_Compound;
3718   assert( pNew->pPrior!=0 );
3719   pNew->pPrior->pNext = pNew;
3720   pNew->pLimit = 0;
3721   pNew->pOffset = 0;
3722   return WRC_Continue;
3723 }
3724 
3725 #ifndef SQLITE_OMIT_CTE
3726 /*
3727 ** Argument pWith (which may be NULL) points to a linked list of nested
3728 ** WITH contexts, from inner to outermost. If the table identified by
3729 ** FROM clause element pItem is really a common-table-expression (CTE)
3730 ** then return a pointer to the CTE definition for that table. Otherwise
3731 ** return NULL.
3732 **
3733 ** If a non-NULL value is returned, set *ppContext to point to the With
3734 ** object that the returned CTE belongs to.
3735 */
3736 static struct Cte *searchWith(
3737   With *pWith,                    /* Current outermost WITH clause */
3738   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3739   With **ppContext                /* OUT: WITH clause return value belongs to */
3740 ){
3741   const char *zName;
3742   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3743     With *p;
3744     for(p=pWith; p; p=p->pOuter){
3745       int i;
3746       for(i=0; i<p->nCte; i++){
3747         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3748           *ppContext = p;
3749           return &p->a[i];
3750         }
3751       }
3752     }
3753   }
3754   return 0;
3755 }
3756 
3757 /* The code generator maintains a stack of active WITH clauses
3758 ** with the inner-most WITH clause being at the top of the stack.
3759 **
3760 ** This routine pushes the WITH clause passed as the second argument
3761 ** onto the top of the stack. If argument bFree is true, then this
3762 ** WITH clause will never be popped from the stack. In this case it
3763 ** should be freed along with the Parse object. In other cases, when
3764 ** bFree==0, the With object will be freed along with the SELECT
3765 ** statement with which it is associated.
3766 */
3767 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3768   assert( bFree==0 || pParse->pWith==0 );
3769   if( pWith ){
3770     pWith->pOuter = pParse->pWith;
3771     pParse->pWith = pWith;
3772     pParse->bFreeWith = bFree;
3773   }
3774 }
3775 
3776 /*
3777 ** This function checks if argument pFrom refers to a CTE declared by
3778 ** a WITH clause on the stack currently maintained by the parser. And,
3779 ** if currently processing a CTE expression, if it is a recursive
3780 ** reference to the current CTE.
3781 **
3782 ** If pFrom falls into either of the two categories above, pFrom->pTab
3783 ** and other fields are populated accordingly. The caller should check
3784 ** (pFrom->pTab!=0) to determine whether or not a successful match
3785 ** was found.
3786 **
3787 ** Whether or not a match is found, SQLITE_OK is returned if no error
3788 ** occurs. If an error does occur, an error message is stored in the
3789 ** parser and some error code other than SQLITE_OK returned.
3790 */
3791 static int withExpand(
3792   Walker *pWalker,
3793   struct SrcList_item *pFrom
3794 ){
3795   Parse *pParse = pWalker->pParse;
3796   sqlite3 *db = pParse->db;
3797   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3798   With *pWith;                    /* WITH clause that pCte belongs to */
3799 
3800   assert( pFrom->pTab==0 );
3801 
3802   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3803   if( pCte ){
3804     Table *pTab;
3805     ExprList *pEList;
3806     Select *pSel;
3807     Select *pLeft;                /* Left-most SELECT statement */
3808     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3809     With *pSavedWith;             /* Initial value of pParse->pWith */
3810 
3811     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3812     ** recursive reference to CTE pCte. Leave an error in pParse and return
3813     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3814     ** In this case, proceed.  */
3815     if( pCte->zErr ){
3816       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3817       return SQLITE_ERROR;
3818     }
3819 
3820     assert( pFrom->pTab==0 );
3821     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3822     if( pTab==0 ) return WRC_Abort;
3823     pTab->nRef = 1;
3824     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3825     pTab->iPKey = -1;
3826     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3827     pTab->tabFlags |= TF_Ephemeral;
3828     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3829     if( db->mallocFailed ) return SQLITE_NOMEM;
3830     assert( pFrom->pSelect );
3831 
3832     /* Check if this is a recursive CTE. */
3833     pSel = pFrom->pSelect;
3834     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3835     if( bMayRecursive ){
3836       int i;
3837       SrcList *pSrc = pFrom->pSelect->pSrc;
3838       for(i=0; i<pSrc->nSrc; i++){
3839         struct SrcList_item *pItem = &pSrc->a[i];
3840         if( pItem->zDatabase==0
3841          && pItem->zName!=0
3842          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3843           ){
3844           pItem->pTab = pTab;
3845           pItem->isRecursive = 1;
3846           pTab->nRef++;
3847           pSel->selFlags |= SF_Recursive;
3848         }
3849       }
3850     }
3851 
3852     /* Only one recursive reference is permitted. */
3853     if( pTab->nRef>2 ){
3854       sqlite3ErrorMsg(
3855           pParse, "multiple references to recursive table: %s", pCte->zName
3856       );
3857       return SQLITE_ERROR;
3858     }
3859     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3860 
3861     pCte->zErr = "circular reference: %s";
3862     pSavedWith = pParse->pWith;
3863     pParse->pWith = pWith;
3864     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3865 
3866     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3867     pEList = pLeft->pEList;
3868     if( pCte->pCols ){
3869       if( pEList->nExpr!=pCte->pCols->nExpr ){
3870         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3871             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3872         );
3873         pParse->pWith = pSavedWith;
3874         return SQLITE_ERROR;
3875       }
3876       pEList = pCte->pCols;
3877     }
3878 
3879     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3880     if( bMayRecursive ){
3881       if( pSel->selFlags & SF_Recursive ){
3882         pCte->zErr = "multiple recursive references: %s";
3883       }else{
3884         pCte->zErr = "recursive reference in a subquery: %s";
3885       }
3886       sqlite3WalkSelect(pWalker, pSel);
3887     }
3888     pCte->zErr = 0;
3889     pParse->pWith = pSavedWith;
3890   }
3891 
3892   return SQLITE_OK;
3893 }
3894 #endif
3895 
3896 #ifndef SQLITE_OMIT_CTE
3897 /*
3898 ** If the SELECT passed as the second argument has an associated WITH
3899 ** clause, pop it from the stack stored as part of the Parse object.
3900 **
3901 ** This function is used as the xSelectCallback2() callback by
3902 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3903 ** names and other FROM clause elements.
3904 */
3905 static void selectPopWith(Walker *pWalker, Select *p){
3906   Parse *pParse = pWalker->pParse;
3907   With *pWith = findRightmost(p)->pWith;
3908   if( pWith!=0 ){
3909     assert( pParse->pWith==pWith );
3910     pParse->pWith = pWith->pOuter;
3911   }
3912 }
3913 #else
3914 #define selectPopWith 0
3915 #endif
3916 
3917 /*
3918 ** This routine is a Walker callback for "expanding" a SELECT statement.
3919 ** "Expanding" means to do the following:
3920 **
3921 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3922 **         element of the FROM clause.
3923 **
3924 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3925 **         defines FROM clause.  When views appear in the FROM clause,
3926 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3927 **         that implements the view.  A copy is made of the view's SELECT
3928 **         statement so that we can freely modify or delete that statement
3929 **         without worrying about messing up the presistent representation
3930 **         of the view.
3931 **
3932 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3933 **         on joins and the ON and USING clause of joins.
3934 **
3935 **    (4)  Scan the list of columns in the result set (pEList) looking
3936 **         for instances of the "*" operator or the TABLE.* operator.
3937 **         If found, expand each "*" to be every column in every table
3938 **         and TABLE.* to be every column in TABLE.
3939 **
3940 */
3941 static int selectExpander(Walker *pWalker, Select *p){
3942   Parse *pParse = pWalker->pParse;
3943   int i, j, k;
3944   SrcList *pTabList;
3945   ExprList *pEList;
3946   struct SrcList_item *pFrom;
3947   sqlite3 *db = pParse->db;
3948   Expr *pE, *pRight, *pExpr;
3949   u16 selFlags = p->selFlags;
3950 
3951   p->selFlags |= SF_Expanded;
3952   if( db->mallocFailed  ){
3953     return WRC_Abort;
3954   }
3955   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3956     return WRC_Prune;
3957   }
3958   pTabList = p->pSrc;
3959   pEList = p->pEList;
3960   sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
3961 
3962   /* Make sure cursor numbers have been assigned to all entries in
3963   ** the FROM clause of the SELECT statement.
3964   */
3965   sqlite3SrcListAssignCursors(pParse, pTabList);
3966 
3967   /* Look up every table named in the FROM clause of the select.  If
3968   ** an entry of the FROM clause is a subquery instead of a table or view,
3969   ** then create a transient table structure to describe the subquery.
3970   */
3971   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3972     Table *pTab;
3973     assert( pFrom->isRecursive==0 || pFrom->pTab );
3974     if( pFrom->isRecursive ) continue;
3975     if( pFrom->pTab!=0 ){
3976       /* This statement has already been prepared.  There is no need
3977       ** to go further. */
3978       assert( i==0 );
3979 #ifndef SQLITE_OMIT_CTE
3980       selectPopWith(pWalker, p);
3981 #endif
3982       return WRC_Prune;
3983     }
3984 #ifndef SQLITE_OMIT_CTE
3985     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
3986     if( pFrom->pTab ) {} else
3987 #endif
3988     if( pFrom->zName==0 ){
3989 #ifndef SQLITE_OMIT_SUBQUERY
3990       Select *pSel = pFrom->pSelect;
3991       /* A sub-query in the FROM clause of a SELECT */
3992       assert( pSel!=0 );
3993       assert( pFrom->pTab==0 );
3994       sqlite3WalkSelect(pWalker, pSel);
3995       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3996       if( pTab==0 ) return WRC_Abort;
3997       pTab->nRef = 1;
3998       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
3999       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4000       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4001       pTab->iPKey = -1;
4002       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4003       pTab->tabFlags |= TF_Ephemeral;
4004 #endif
4005     }else{
4006       /* An ordinary table or view name in the FROM clause */
4007       assert( pFrom->pTab==0 );
4008       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4009       if( pTab==0 ) return WRC_Abort;
4010       if( pTab->nRef==0xffff ){
4011         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4012            pTab->zName);
4013         pFrom->pTab = 0;
4014         return WRC_Abort;
4015       }
4016       pTab->nRef++;
4017 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4018       if( pTab->pSelect || IsVirtual(pTab) ){
4019         /* We reach here if the named table is a really a view */
4020         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4021         assert( pFrom->pSelect==0 );
4022         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4023         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4024       }
4025 #endif
4026     }
4027 
4028     /* Locate the index named by the INDEXED BY clause, if any. */
4029     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4030       return WRC_Abort;
4031     }
4032   }
4033 
4034   /* Process NATURAL keywords, and ON and USING clauses of joins.
4035   */
4036   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4037     return WRC_Abort;
4038   }
4039 
4040   /* For every "*" that occurs in the column list, insert the names of
4041   ** all columns in all tables.  And for every TABLE.* insert the names
4042   ** of all columns in TABLE.  The parser inserted a special expression
4043   ** with the TK_ALL operator for each "*" that it found in the column list.
4044   ** The following code just has to locate the TK_ALL expressions and expand
4045   ** each one to the list of all columns in all tables.
4046   **
4047   ** The first loop just checks to see if there are any "*" operators
4048   ** that need expanding.
4049   */
4050   for(k=0; k<pEList->nExpr; k++){
4051     pE = pEList->a[k].pExpr;
4052     if( pE->op==TK_ALL ) break;
4053     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4054     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4055     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4056   }
4057   if( k<pEList->nExpr ){
4058     /*
4059     ** If we get here it means the result set contains one or more "*"
4060     ** operators that need to be expanded.  Loop through each expression
4061     ** in the result set and expand them one by one.
4062     */
4063     struct ExprList_item *a = pEList->a;
4064     ExprList *pNew = 0;
4065     int flags = pParse->db->flags;
4066     int longNames = (flags & SQLITE_FullColNames)!=0
4067                       && (flags & SQLITE_ShortColNames)==0;
4068 
4069     /* When processing FROM-clause subqueries, it is always the case
4070     ** that full_column_names=OFF and short_column_names=ON.  The
4071     ** sqlite3ResultSetOfSelect() routine makes it so. */
4072     assert( (p->selFlags & SF_NestedFrom)==0
4073           || ((flags & SQLITE_FullColNames)==0 &&
4074               (flags & SQLITE_ShortColNames)!=0) );
4075 
4076     for(k=0; k<pEList->nExpr; k++){
4077       pE = a[k].pExpr;
4078       pRight = pE->pRight;
4079       assert( pE->op!=TK_DOT || pRight!=0 );
4080       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4081         /* This particular expression does not need to be expanded.
4082         */
4083         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4084         if( pNew ){
4085           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4086           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4087           a[k].zName = 0;
4088           a[k].zSpan = 0;
4089         }
4090         a[k].pExpr = 0;
4091       }else{
4092         /* This expression is a "*" or a "TABLE.*" and needs to be
4093         ** expanded. */
4094         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4095         char *zTName = 0;       /* text of name of TABLE */
4096         if( pE->op==TK_DOT ){
4097           assert( pE->pLeft!=0 );
4098           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4099           zTName = pE->pLeft->u.zToken;
4100         }
4101         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4102           Table *pTab = pFrom->pTab;
4103           Select *pSub = pFrom->pSelect;
4104           char *zTabName = pFrom->zAlias;
4105           const char *zSchemaName = 0;
4106           int iDb;
4107           if( zTabName==0 ){
4108             zTabName = pTab->zName;
4109           }
4110           if( db->mallocFailed ) break;
4111           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4112             pSub = 0;
4113             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4114               continue;
4115             }
4116             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4117             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4118           }
4119           for(j=0; j<pTab->nCol; j++){
4120             char *zName = pTab->aCol[j].zName;
4121             char *zColname;  /* The computed column name */
4122             char *zToFree;   /* Malloced string that needs to be freed */
4123             Token sColname;  /* Computed column name as a token */
4124 
4125             assert( zName );
4126             if( zTName && pSub
4127              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4128             ){
4129               continue;
4130             }
4131 
4132             /* If a column is marked as 'hidden' (currently only possible
4133             ** for virtual tables), do not include it in the expanded
4134             ** result-set list.
4135             */
4136             if( IsHiddenColumn(&pTab->aCol[j]) ){
4137               assert(IsVirtual(pTab));
4138               continue;
4139             }
4140             tableSeen = 1;
4141 
4142             if( i>0 && zTName==0 ){
4143               if( (pFrom->jointype & JT_NATURAL)!=0
4144                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4145               ){
4146                 /* In a NATURAL join, omit the join columns from the
4147                 ** table to the right of the join */
4148                 continue;
4149               }
4150               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4151                 /* In a join with a USING clause, omit columns in the
4152                 ** using clause from the table on the right. */
4153                 continue;
4154               }
4155             }
4156             pRight = sqlite3Expr(db, TK_ID, zName);
4157             zColname = zName;
4158             zToFree = 0;
4159             if( longNames || pTabList->nSrc>1 ){
4160               Expr *pLeft;
4161               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4162               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4163               if( zSchemaName ){
4164                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4165                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4166               }
4167               if( longNames ){
4168                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4169                 zToFree = zColname;
4170               }
4171             }else{
4172               pExpr = pRight;
4173             }
4174             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4175             sColname.z = zColname;
4176             sColname.n = sqlite3Strlen30(zColname);
4177             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4178             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4179               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4180               if( pSub ){
4181                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4182                 testcase( pX->zSpan==0 );
4183               }else{
4184                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4185                                            zSchemaName, zTabName, zColname);
4186                 testcase( pX->zSpan==0 );
4187               }
4188               pX->bSpanIsTab = 1;
4189             }
4190             sqlite3DbFree(db, zToFree);
4191           }
4192         }
4193         if( !tableSeen ){
4194           if( zTName ){
4195             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4196           }else{
4197             sqlite3ErrorMsg(pParse, "no tables specified");
4198           }
4199         }
4200       }
4201     }
4202     sqlite3ExprListDelete(db, pEList);
4203     p->pEList = pNew;
4204   }
4205 #if SQLITE_MAX_COLUMN
4206   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4207     sqlite3ErrorMsg(pParse, "too many columns in result set");
4208   }
4209 #endif
4210   return WRC_Continue;
4211 }
4212 
4213 /*
4214 ** No-op routine for the parse-tree walker.
4215 **
4216 ** When this routine is the Walker.xExprCallback then expression trees
4217 ** are walked without any actions being taken at each node.  Presumably,
4218 ** when this routine is used for Walker.xExprCallback then
4219 ** Walker.xSelectCallback is set to do something useful for every
4220 ** subquery in the parser tree.
4221 */
4222 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4223   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4224   return WRC_Continue;
4225 }
4226 
4227 /*
4228 ** This routine "expands" a SELECT statement and all of its subqueries.
4229 ** For additional information on what it means to "expand" a SELECT
4230 ** statement, see the comment on the selectExpand worker callback above.
4231 **
4232 ** Expanding a SELECT statement is the first step in processing a
4233 ** SELECT statement.  The SELECT statement must be expanded before
4234 ** name resolution is performed.
4235 **
4236 ** If anything goes wrong, an error message is written into pParse.
4237 ** The calling function can detect the problem by looking at pParse->nErr
4238 ** and/or pParse->db->mallocFailed.
4239 */
4240 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4241   Walker w;
4242   memset(&w, 0, sizeof(w));
4243   w.xExprCallback = exprWalkNoop;
4244   w.pParse = pParse;
4245   if( pParse->hasCompound ){
4246     w.xSelectCallback = convertCompoundSelectToSubquery;
4247     sqlite3WalkSelect(&w, pSelect);
4248   }
4249   w.xSelectCallback = selectExpander;
4250   w.xSelectCallback2 = selectPopWith;
4251   sqlite3WalkSelect(&w, pSelect);
4252 }
4253 
4254 
4255 #ifndef SQLITE_OMIT_SUBQUERY
4256 /*
4257 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4258 ** interface.
4259 **
4260 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4261 ** information to the Table structure that represents the result set
4262 ** of that subquery.
4263 **
4264 ** The Table structure that represents the result set was constructed
4265 ** by selectExpander() but the type and collation information was omitted
4266 ** at that point because identifiers had not yet been resolved.  This
4267 ** routine is called after identifier resolution.
4268 */
4269 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4270   Parse *pParse;
4271   int i;
4272   SrcList *pTabList;
4273   struct SrcList_item *pFrom;
4274 
4275   assert( p->selFlags & SF_Resolved );
4276   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4277     p->selFlags |= SF_HasTypeInfo;
4278     pParse = pWalker->pParse;
4279     pTabList = p->pSrc;
4280     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4281       Table *pTab = pFrom->pTab;
4282       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4283         /* A sub-query in the FROM clause of a SELECT */
4284         Select *pSel = pFrom->pSelect;
4285         if( pSel ){
4286           while( pSel->pPrior ) pSel = pSel->pPrior;
4287           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4288         }
4289       }
4290     }
4291   }
4292 }
4293 #endif
4294 
4295 
4296 /*
4297 ** This routine adds datatype and collating sequence information to
4298 ** the Table structures of all FROM-clause subqueries in a
4299 ** SELECT statement.
4300 **
4301 ** Use this routine after name resolution.
4302 */
4303 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4304 #ifndef SQLITE_OMIT_SUBQUERY
4305   Walker w;
4306   memset(&w, 0, sizeof(w));
4307   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4308   w.xExprCallback = exprWalkNoop;
4309   w.pParse = pParse;
4310   sqlite3WalkSelect(&w, pSelect);
4311 #endif
4312 }
4313 
4314 
4315 /*
4316 ** This routine sets up a SELECT statement for processing.  The
4317 ** following is accomplished:
4318 **
4319 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4320 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4321 **     *  ON and USING clauses are shifted into WHERE statements
4322 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4323 **     *  Identifiers in expression are matched to tables.
4324 **
4325 ** This routine acts recursively on all subqueries within the SELECT.
4326 */
4327 void sqlite3SelectPrep(
4328   Parse *pParse,         /* The parser context */
4329   Select *p,             /* The SELECT statement being coded. */
4330   NameContext *pOuterNC  /* Name context for container */
4331 ){
4332   sqlite3 *db;
4333   if( NEVER(p==0) ) return;
4334   db = pParse->db;
4335   if( db->mallocFailed ) return;
4336   if( p->selFlags & SF_HasTypeInfo ) return;
4337   sqlite3SelectExpand(pParse, p);
4338   if( pParse->nErr || db->mallocFailed ) return;
4339   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4340   if( pParse->nErr || db->mallocFailed ) return;
4341   sqlite3SelectAddTypeInfo(pParse, p);
4342 }
4343 
4344 /*
4345 ** Reset the aggregate accumulator.
4346 **
4347 ** The aggregate accumulator is a set of memory cells that hold
4348 ** intermediate results while calculating an aggregate.  This
4349 ** routine generates code that stores NULLs in all of those memory
4350 ** cells.
4351 */
4352 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4353   Vdbe *v = pParse->pVdbe;
4354   int i;
4355   struct AggInfo_func *pFunc;
4356   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4357   if( nReg==0 ) return;
4358 #ifdef SQLITE_DEBUG
4359   /* Verify that all AggInfo registers are within the range specified by
4360   ** AggInfo.mnReg..AggInfo.mxReg */
4361   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4362   for(i=0; i<pAggInfo->nColumn; i++){
4363     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4364          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4365   }
4366   for(i=0; i<pAggInfo->nFunc; i++){
4367     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4368          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4369   }
4370 #endif
4371   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4372   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4373     if( pFunc->iDistinct>=0 ){
4374       Expr *pE = pFunc->pExpr;
4375       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4376       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4377         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4378            "argument");
4379         pFunc->iDistinct = -1;
4380       }else{
4381         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4382         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4383                           (char*)pKeyInfo, P4_KEYINFO);
4384       }
4385     }
4386   }
4387 }
4388 
4389 /*
4390 ** Invoke the OP_AggFinalize opcode for every aggregate function
4391 ** in the AggInfo structure.
4392 */
4393 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4394   Vdbe *v = pParse->pVdbe;
4395   int i;
4396   struct AggInfo_func *pF;
4397   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4398     ExprList *pList = pF->pExpr->x.pList;
4399     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4400     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4401                       (void*)pF->pFunc, P4_FUNCDEF);
4402   }
4403 }
4404 
4405 /*
4406 ** Update the accumulator memory cells for an aggregate based on
4407 ** the current cursor position.
4408 */
4409 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4410   Vdbe *v = pParse->pVdbe;
4411   int i;
4412   int regHit = 0;
4413   int addrHitTest = 0;
4414   struct AggInfo_func *pF;
4415   struct AggInfo_col *pC;
4416 
4417   pAggInfo->directMode = 1;
4418   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4419     int nArg;
4420     int addrNext = 0;
4421     int regAgg;
4422     ExprList *pList = pF->pExpr->x.pList;
4423     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4424     if( pList ){
4425       nArg = pList->nExpr;
4426       regAgg = sqlite3GetTempRange(pParse, nArg);
4427       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4428     }else{
4429       nArg = 0;
4430       regAgg = 0;
4431     }
4432     if( pF->iDistinct>=0 ){
4433       addrNext = sqlite3VdbeMakeLabel(v);
4434       assert( nArg==1 );
4435       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4436     }
4437     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4438       CollSeq *pColl = 0;
4439       struct ExprList_item *pItem;
4440       int j;
4441       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4442       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4443         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4444       }
4445       if( !pColl ){
4446         pColl = pParse->db->pDfltColl;
4447       }
4448       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4449       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4450     }
4451     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4452                       (void*)pF->pFunc, P4_FUNCDEF);
4453     sqlite3VdbeChangeP5(v, (u8)nArg);
4454     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4455     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4456     if( addrNext ){
4457       sqlite3VdbeResolveLabel(v, addrNext);
4458       sqlite3ExprCacheClear(pParse);
4459     }
4460   }
4461 
4462   /* Before populating the accumulator registers, clear the column cache.
4463   ** Otherwise, if any of the required column values are already present
4464   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4465   ** to pC->iMem. But by the time the value is used, the original register
4466   ** may have been used, invalidating the underlying buffer holding the
4467   ** text or blob value. See ticket [883034dcb5].
4468   **
4469   ** Another solution would be to change the OP_SCopy used to copy cached
4470   ** values to an OP_Copy.
4471   */
4472   if( regHit ){
4473     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4474   }
4475   sqlite3ExprCacheClear(pParse);
4476   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4477     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4478   }
4479   pAggInfo->directMode = 0;
4480   sqlite3ExprCacheClear(pParse);
4481   if( addrHitTest ){
4482     sqlite3VdbeJumpHere(v, addrHitTest);
4483   }
4484 }
4485 
4486 /*
4487 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4488 ** count(*) query ("SELECT count(*) FROM pTab").
4489 */
4490 #ifndef SQLITE_OMIT_EXPLAIN
4491 static void explainSimpleCount(
4492   Parse *pParse,                  /* Parse context */
4493   Table *pTab,                    /* Table being queried */
4494   Index *pIdx                     /* Index used to optimize scan, or NULL */
4495 ){
4496   if( pParse->explain==2 ){
4497     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4498     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4499         pTab->zName,
4500         bCover ? " USING COVERING INDEX " : "",
4501         bCover ? pIdx->zName : ""
4502     );
4503     sqlite3VdbeAddOp4(
4504         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4505     );
4506   }
4507 }
4508 #else
4509 # define explainSimpleCount(a,b,c)
4510 #endif
4511 
4512 /*
4513 ** Generate code for the SELECT statement given in the p argument.
4514 **
4515 ** The results are returned according to the SelectDest structure.
4516 ** See comments in sqliteInt.h for further information.
4517 **
4518 ** This routine returns the number of errors.  If any errors are
4519 ** encountered, then an appropriate error message is left in
4520 ** pParse->zErrMsg.
4521 **
4522 ** This routine does NOT free the Select structure passed in.  The
4523 ** calling function needs to do that.
4524 */
4525 int sqlite3Select(
4526   Parse *pParse,         /* The parser context */
4527   Select *p,             /* The SELECT statement being coded. */
4528   SelectDest *pDest      /* What to do with the query results */
4529 ){
4530   int i, j;              /* Loop counters */
4531   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4532   Vdbe *v;               /* The virtual machine under construction */
4533   int isAgg;             /* True for select lists like "count(*)" */
4534   ExprList *pEList;      /* List of columns to extract. */
4535   SrcList *pTabList;     /* List of tables to select from */
4536   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4537   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4538   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4539   int rc = 1;            /* Value to return from this function */
4540   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4541   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4542   AggInfo sAggInfo;      /* Information used by aggregate queries */
4543   int iEnd;              /* Address of the end of the query */
4544   sqlite3 *db;           /* The database connection */
4545 
4546 #ifndef SQLITE_OMIT_EXPLAIN
4547   int iRestoreSelectId = pParse->iSelectId;
4548   pParse->iSelectId = pParse->iNextSelectId++;
4549 #endif
4550 
4551   db = pParse->db;
4552   if( p==0 || db->mallocFailed || pParse->nErr ){
4553     return 1;
4554   }
4555   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4556   memset(&sAggInfo, 0, sizeof(sAggInfo));
4557 
4558   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4559   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4560   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4561   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4562   if( IgnorableOrderby(pDest) ){
4563     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4564            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4565            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4566            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4567     /* If ORDER BY makes no difference in the output then neither does
4568     ** DISTINCT so it can be removed too. */
4569     sqlite3ExprListDelete(db, p->pOrderBy);
4570     p->pOrderBy = 0;
4571     p->selFlags &= ~SF_Distinct;
4572   }
4573   sqlite3SelectPrep(pParse, p, 0);
4574   memset(&sSort, 0, sizeof(sSort));
4575   sSort.pOrderBy = p->pOrderBy;
4576   pTabList = p->pSrc;
4577   pEList = p->pEList;
4578   if( pParse->nErr || db->mallocFailed ){
4579     goto select_end;
4580   }
4581   isAgg = (p->selFlags & SF_Aggregate)!=0;
4582   assert( pEList!=0 );
4583 
4584   /* Begin generating code.
4585   */
4586   v = sqlite3GetVdbe(pParse);
4587   if( v==0 ) goto select_end;
4588 
4589   /* If writing to memory or generating a set
4590   ** only a single column may be output.
4591   */
4592 #ifndef SQLITE_OMIT_SUBQUERY
4593   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4594     goto select_end;
4595   }
4596 #endif
4597 
4598   /* Generate code for all sub-queries in the FROM clause
4599   */
4600 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4601   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4602     struct SrcList_item *pItem = &pTabList->a[i];
4603     SelectDest dest;
4604     Select *pSub = pItem->pSelect;
4605     int isAggSub;
4606 
4607     if( pSub==0 ) continue;
4608 
4609     /* Sometimes the code for a subquery will be generated more than
4610     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4611     ** for example.  In that case, do not regenerate the code to manifest
4612     ** a view or the co-routine to implement a view.  The first instance
4613     ** is sufficient, though the subroutine to manifest the view does need
4614     ** to be invoked again. */
4615     if( pItem->addrFillSub ){
4616       if( pItem->viaCoroutine==0 ){
4617         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4618       }
4619       continue;
4620     }
4621 
4622     /* Increment Parse.nHeight by the height of the largest expression
4623     ** tree referred to by this, the parent select. The child select
4624     ** may contain expression trees of at most
4625     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4626     ** more conservative than necessary, but much easier than enforcing
4627     ** an exact limit.
4628     */
4629     pParse->nHeight += sqlite3SelectExprHeight(p);
4630 
4631     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4632     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4633       /* This subquery can be absorbed into its parent. */
4634       if( isAggSub ){
4635         isAgg = 1;
4636         p->selFlags |= SF_Aggregate;
4637       }
4638       i = -1;
4639     }else if( pTabList->nSrc==1
4640            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4641     ){
4642       /* Implement a co-routine that will return a single row of the result
4643       ** set on each invocation.
4644       */
4645       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4646       pItem->regReturn = ++pParse->nMem;
4647       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4648       VdbeComment((v, "%s", pItem->pTab->zName));
4649       pItem->addrFillSub = addrTop;
4650       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4651       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4652       sqlite3Select(pParse, pSub, &dest);
4653       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4654       pItem->viaCoroutine = 1;
4655       pItem->regResult = dest.iSdst;
4656       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4657       sqlite3VdbeJumpHere(v, addrTop-1);
4658       sqlite3ClearTempRegCache(pParse);
4659     }else{
4660       /* Generate a subroutine that will fill an ephemeral table with
4661       ** the content of this subquery.  pItem->addrFillSub will point
4662       ** to the address of the generated subroutine.  pItem->regReturn
4663       ** is a register allocated to hold the subroutine return address
4664       */
4665       int topAddr;
4666       int onceAddr = 0;
4667       int retAddr;
4668       assert( pItem->addrFillSub==0 );
4669       pItem->regReturn = ++pParse->nMem;
4670       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4671       pItem->addrFillSub = topAddr+1;
4672       if( pItem->isCorrelated==0 ){
4673         /* If the subquery is not correlated and if we are not inside of
4674         ** a trigger, then we only need to compute the value of the subquery
4675         ** once. */
4676         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4677         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4678       }else{
4679         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4680       }
4681       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4682       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4683       sqlite3Select(pParse, pSub, &dest);
4684       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4685       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4686       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4687       VdbeComment((v, "end %s", pItem->pTab->zName));
4688       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4689       sqlite3ClearTempRegCache(pParse);
4690     }
4691     if( /*pParse->nErr ||*/ db->mallocFailed ){
4692       goto select_end;
4693     }
4694     pParse->nHeight -= sqlite3SelectExprHeight(p);
4695     pTabList = p->pSrc;
4696     if( !IgnorableOrderby(pDest) ){
4697       sSort.pOrderBy = p->pOrderBy;
4698     }
4699   }
4700   pEList = p->pEList;
4701 #endif
4702   pWhere = p->pWhere;
4703   pGroupBy = p->pGroupBy;
4704   pHaving = p->pHaving;
4705   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4706 
4707 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4708   /* If there is are a sequence of queries, do the earlier ones first.
4709   */
4710   if( p->pPrior ){
4711     rc = multiSelect(pParse, p, pDest);
4712     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4713     return rc;
4714   }
4715 #endif
4716 
4717   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4718   ** if the select-list is the same as the ORDER BY list, then this query
4719   ** can be rewritten as a GROUP BY. In other words, this:
4720   **
4721   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4722   **
4723   ** is transformed to:
4724   **
4725   **     SELECT xyz FROM ... GROUP BY xyz
4726   **
4727   ** The second form is preferred as a single index (or temp-table) may be
4728   ** used for both the ORDER BY and DISTINCT processing. As originally
4729   ** written the query must use a temp-table for at least one of the ORDER
4730   ** BY and DISTINCT, and an index or separate temp-table for the other.
4731   */
4732   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4733    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4734   ){
4735     p->selFlags &= ~SF_Distinct;
4736     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4737     pGroupBy = p->pGroupBy;
4738     sSort.pOrderBy = 0;
4739     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4740     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4741     ** original setting of the SF_Distinct flag, not the current setting */
4742     assert( sDistinct.isTnct );
4743   }
4744 
4745   /* If there is an ORDER BY clause, then this sorting
4746   ** index might end up being unused if the data can be
4747   ** extracted in pre-sorted order.  If that is the case, then the
4748   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4749   ** we figure out that the sorting index is not needed.  The addrSortIndex
4750   ** variable is used to facilitate that change.
4751   */
4752   if( sSort.pOrderBy ){
4753     KeyInfo *pKeyInfo;
4754     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
4755     sSort.iECursor = pParse->nTab++;
4756     sSort.addrSortIndex =
4757       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4758                            sSort.iECursor, sSort.pOrderBy->nExpr+2, 0,
4759                            (char*)pKeyInfo, P4_KEYINFO);
4760   }else{
4761     sSort.addrSortIndex = -1;
4762   }
4763 
4764   /* If the output is destined for a temporary table, open that table.
4765   */
4766   if( pDest->eDest==SRT_EphemTab ){
4767     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4768   }
4769 
4770   /* Set the limiter.
4771   */
4772   iEnd = sqlite3VdbeMakeLabel(v);
4773   p->nSelectRow = LARGEST_INT64;
4774   computeLimitRegisters(pParse, p, iEnd);
4775   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4776     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4777     sSort.sortFlags |= SORTFLAG_UseSorter;
4778   }
4779 
4780   /* Open a virtual index to use for the distinct set.
4781   */
4782   if( p->selFlags & SF_Distinct ){
4783     sDistinct.tabTnct = pParse->nTab++;
4784     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4785                                 sDistinct.tabTnct, 0, 0,
4786                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4787                                 P4_KEYINFO);
4788     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4789     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4790   }else{
4791     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4792   }
4793 
4794   if( !isAgg && pGroupBy==0 ){
4795     /* No aggregate functions and no GROUP BY clause */
4796     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4797 
4798     /* Begin the database scan. */
4799     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4800                                p->pEList, wctrlFlags, 0);
4801     if( pWInfo==0 ) goto select_end;
4802     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4803       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4804     }
4805     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4806       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4807     }
4808     if( sSort.pOrderBy ){
4809       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4810       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4811         sSort.pOrderBy = 0;
4812       }
4813     }
4814 
4815     /* If sorting index that was created by a prior OP_OpenEphemeral
4816     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4817     ** into an OP_Noop.
4818     */
4819     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4820       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4821     }
4822 
4823     /* Use the standard inner loop. */
4824     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
4825                     sqlite3WhereContinueLabel(pWInfo),
4826                     sqlite3WhereBreakLabel(pWInfo));
4827 
4828     /* End the database scan loop.
4829     */
4830     sqlite3WhereEnd(pWInfo);
4831   }else{
4832     /* This case when there exist aggregate functions or a GROUP BY clause
4833     ** or both */
4834     NameContext sNC;    /* Name context for processing aggregate information */
4835     int iAMem;          /* First Mem address for storing current GROUP BY */
4836     int iBMem;          /* First Mem address for previous GROUP BY */
4837     int iUseFlag;       /* Mem address holding flag indicating that at least
4838                         ** one row of the input to the aggregator has been
4839                         ** processed */
4840     int iAbortFlag;     /* Mem address which causes query abort if positive */
4841     int groupBySort;    /* Rows come from source in GROUP BY order */
4842     int addrEnd;        /* End of processing for this SELECT */
4843     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4844     int sortOut = 0;    /* Output register from the sorter */
4845     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
4846 
4847     /* Remove any and all aliases between the result set and the
4848     ** GROUP BY clause.
4849     */
4850     if( pGroupBy ){
4851       int k;                        /* Loop counter */
4852       struct ExprList_item *pItem;  /* For looping over expression in a list */
4853 
4854       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4855         pItem->u.x.iAlias = 0;
4856       }
4857       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4858         pItem->u.x.iAlias = 0;
4859       }
4860       if( p->nSelectRow>100 ) p->nSelectRow = 100;
4861     }else{
4862       p->nSelectRow = 1;
4863     }
4864 
4865 
4866     /* If there is both a GROUP BY and an ORDER BY clause and they are
4867     ** identical, then it may be possible to disable the ORDER BY clause
4868     ** on the grounds that the GROUP BY will cause elements to come out
4869     ** in the correct order. It also may not - the GROUP BY may use a
4870     ** database index that causes rows to be grouped together as required
4871     ** but not actually sorted. Either way, record the fact that the
4872     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4873     ** variable.  */
4874     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
4875       orderByGrp = 1;
4876     }
4877 
4878     /* Create a label to jump to when we want to abort the query */
4879     addrEnd = sqlite3VdbeMakeLabel(v);
4880 
4881     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4882     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4883     ** SELECT statement.
4884     */
4885     memset(&sNC, 0, sizeof(sNC));
4886     sNC.pParse = pParse;
4887     sNC.pSrcList = pTabList;
4888     sNC.pAggInfo = &sAggInfo;
4889     sAggInfo.mnReg = pParse->nMem+1;
4890     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4891     sAggInfo.pGroupBy = pGroupBy;
4892     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4893     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
4894     if( pHaving ){
4895       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4896     }
4897     sAggInfo.nAccumulator = sAggInfo.nColumn;
4898     for(i=0; i<sAggInfo.nFunc; i++){
4899       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4900       sNC.ncFlags |= NC_InAggFunc;
4901       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4902       sNC.ncFlags &= ~NC_InAggFunc;
4903     }
4904     sAggInfo.mxReg = pParse->nMem;
4905     if( db->mallocFailed ) goto select_end;
4906 
4907     /* Processing for aggregates with GROUP BY is very different and
4908     ** much more complex than aggregates without a GROUP BY.
4909     */
4910     if( pGroupBy ){
4911       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4912       int j1;             /* A-vs-B comparision jump */
4913       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4914       int regOutputRow;   /* Return address register for output subroutine */
4915       int addrSetAbort;   /* Set the abort flag and return */
4916       int addrTopOfLoop;  /* Top of the input loop */
4917       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4918       int addrReset;      /* Subroutine for resetting the accumulator */
4919       int regReset;       /* Return address register for reset subroutine */
4920 
4921       /* If there is a GROUP BY clause we might need a sorting index to
4922       ** implement it.  Allocate that sorting index now.  If it turns out
4923       ** that we do not need it after all, the OP_SorterOpen instruction
4924       ** will be converted into a Noop.
4925       */
4926       sAggInfo.sortingIdx = pParse->nTab++;
4927       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
4928       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4929           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4930           0, (char*)pKeyInfo, P4_KEYINFO);
4931 
4932       /* Initialize memory locations used by GROUP BY aggregate processing
4933       */
4934       iUseFlag = ++pParse->nMem;
4935       iAbortFlag = ++pParse->nMem;
4936       regOutputRow = ++pParse->nMem;
4937       addrOutputRow = sqlite3VdbeMakeLabel(v);
4938       regReset = ++pParse->nMem;
4939       addrReset = sqlite3VdbeMakeLabel(v);
4940       iAMem = pParse->nMem + 1;
4941       pParse->nMem += pGroupBy->nExpr;
4942       iBMem = pParse->nMem + 1;
4943       pParse->nMem += pGroupBy->nExpr;
4944       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4945       VdbeComment((v, "clear abort flag"));
4946       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4947       VdbeComment((v, "indicate accumulator empty"));
4948       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4949 
4950       /* Begin a loop that will extract all source rows in GROUP BY order.
4951       ** This might involve two separate loops with an OP_Sort in between, or
4952       ** it might be a single loop that uses an index to extract information
4953       ** in the right order to begin with.
4954       */
4955       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4956       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
4957           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
4958       );
4959       if( pWInfo==0 ) goto select_end;
4960       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
4961         /* The optimizer is able to deliver rows in group by order so
4962         ** we do not have to sort.  The OP_OpenEphemeral table will be
4963         ** cancelled later because we still need to use the pKeyInfo
4964         */
4965         groupBySort = 0;
4966       }else{
4967         /* Rows are coming out in undetermined order.  We have to push
4968         ** each row into a sorting index, terminate the first loop,
4969         ** then loop over the sorting index in order to get the output
4970         ** in sorted order
4971         */
4972         int regBase;
4973         int regRecord;
4974         int nCol;
4975         int nGroupBy;
4976 
4977         explainTempTable(pParse,
4978             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
4979                     "DISTINCT" : "GROUP BY");
4980 
4981         groupBySort = 1;
4982         nGroupBy = pGroupBy->nExpr;
4983         nCol = nGroupBy + 1;
4984         j = nGroupBy+1;
4985         for(i=0; i<sAggInfo.nColumn; i++){
4986           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4987             nCol++;
4988             j++;
4989           }
4990         }
4991         regBase = sqlite3GetTempRange(pParse, nCol);
4992         sqlite3ExprCacheClear(pParse);
4993         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4994         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4995         j = nGroupBy+1;
4996         for(i=0; i<sAggInfo.nColumn; i++){
4997           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4998           if( pCol->iSorterColumn>=j ){
4999             int r1 = j + regBase;
5000             int r2;
5001 
5002             r2 = sqlite3ExprCodeGetColumn(pParse,
5003                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5004             if( r1!=r2 ){
5005               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5006             }
5007             j++;
5008           }
5009         }
5010         regRecord = sqlite3GetTempReg(pParse);
5011         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5012         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5013         sqlite3ReleaseTempReg(pParse, regRecord);
5014         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5015         sqlite3WhereEnd(pWInfo);
5016         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5017         sortOut = sqlite3GetTempReg(pParse);
5018         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5019         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5020         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5021         sAggInfo.useSortingIdx = 1;
5022         sqlite3ExprCacheClear(pParse);
5023 
5024       }
5025 
5026       /* If the index or temporary table used by the GROUP BY sort
5027       ** will naturally deliver rows in the order required by the ORDER BY
5028       ** clause, cancel the ephemeral table open coded earlier.
5029       **
5030       ** This is an optimization - the correct answer should result regardless.
5031       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5032       ** disable this optimization for testing purposes.  */
5033       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5034        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5035       ){
5036         sSort.pOrderBy = 0;
5037         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5038       }
5039 
5040       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5041       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5042       ** Then compare the current GROUP BY terms against the GROUP BY terms
5043       ** from the previous row currently stored in a0, a1, a2...
5044       */
5045       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5046       sqlite3ExprCacheClear(pParse);
5047       if( groupBySort ){
5048         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
5049       }
5050       for(j=0; j<pGroupBy->nExpr; j++){
5051         if( groupBySort ){
5052           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5053           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
5054         }else{
5055           sAggInfo.directMode = 1;
5056           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5057         }
5058       }
5059       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5060                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5061       j1 = sqlite3VdbeCurrentAddr(v);
5062       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5063 
5064       /* Generate code that runs whenever the GROUP BY changes.
5065       ** Changes in the GROUP BY are detected by the previous code
5066       ** block.  If there were no changes, this block is skipped.
5067       **
5068       ** This code copies current group by terms in b0,b1,b2,...
5069       ** over to a0,a1,a2.  It then calls the output subroutine
5070       ** and resets the aggregate accumulator registers in preparation
5071       ** for the next GROUP BY batch.
5072       */
5073       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5074       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5075       VdbeComment((v, "output one row"));
5076       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5077       VdbeComment((v, "check abort flag"));
5078       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5079       VdbeComment((v, "reset accumulator"));
5080 
5081       /* Update the aggregate accumulators based on the content of
5082       ** the current row
5083       */
5084       sqlite3VdbeJumpHere(v, j1);
5085       updateAccumulator(pParse, &sAggInfo);
5086       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5087       VdbeComment((v, "indicate data in accumulator"));
5088 
5089       /* End of the loop
5090       */
5091       if( groupBySort ){
5092         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5093         VdbeCoverage(v);
5094       }else{
5095         sqlite3WhereEnd(pWInfo);
5096         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5097       }
5098 
5099       /* Output the final row of result
5100       */
5101       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5102       VdbeComment((v, "output final row"));
5103 
5104       /* Jump over the subroutines
5105       */
5106       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5107 
5108       /* Generate a subroutine that outputs a single row of the result
5109       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5110       ** is less than or equal to zero, the subroutine is a no-op.  If
5111       ** the processing calls for the query to abort, this subroutine
5112       ** increments the iAbortFlag memory location before returning in
5113       ** order to signal the caller to abort.
5114       */
5115       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5116       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5117       VdbeComment((v, "set abort flag"));
5118       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5119       sqlite3VdbeResolveLabel(v, addrOutputRow);
5120       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5121       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5122       VdbeComment((v, "Groupby result generator entry point"));
5123       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5124       finalizeAggFunctions(pParse, &sAggInfo);
5125       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5126       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5127                       &sDistinct, pDest,
5128                       addrOutputRow+1, addrSetAbort);
5129       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5130       VdbeComment((v, "end groupby result generator"));
5131 
5132       /* Generate a subroutine that will reset the group-by accumulator
5133       */
5134       sqlite3VdbeResolveLabel(v, addrReset);
5135       resetAccumulator(pParse, &sAggInfo);
5136       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5137 
5138     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5139     else {
5140       ExprList *pDel = 0;
5141 #ifndef SQLITE_OMIT_BTREECOUNT
5142       Table *pTab;
5143       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5144         /* If isSimpleCount() returns a pointer to a Table structure, then
5145         ** the SQL statement is of the form:
5146         **
5147         **   SELECT count(*) FROM <tbl>
5148         **
5149         ** where the Table structure returned represents table <tbl>.
5150         **
5151         ** This statement is so common that it is optimized specially. The
5152         ** OP_Count instruction is executed either on the intkey table that
5153         ** contains the data for table <tbl> or on one of its indexes. It
5154         ** is better to execute the op on an index, as indexes are almost
5155         ** always spread across less pages than their corresponding tables.
5156         */
5157         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5158         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5159         Index *pIdx;                         /* Iterator variable */
5160         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5161         Index *pBest = 0;                    /* Best index found so far */
5162         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5163 
5164         sqlite3CodeVerifySchema(pParse, iDb);
5165         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5166 
5167         /* Search for the index that has the lowest scan cost.
5168         **
5169         ** (2011-04-15) Do not do a full scan of an unordered index.
5170         **
5171         ** (2013-10-03) Do not count the entries in a partial index.
5172         **
5173         ** In practice the KeyInfo structure will not be used. It is only
5174         ** passed to keep OP_OpenRead happy.
5175         */
5176         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5177         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5178           if( pIdx->bUnordered==0
5179            && pIdx->szIdxRow<pTab->szTabRow
5180            && pIdx->pPartIdxWhere==0
5181            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5182           ){
5183             pBest = pIdx;
5184           }
5185         }
5186         if( pBest ){
5187           iRoot = pBest->tnum;
5188           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5189         }
5190 
5191         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5192         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5193         if( pKeyInfo ){
5194           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5195         }
5196         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5197         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5198         explainSimpleCount(pParse, pTab, pBest);
5199       }else
5200 #endif /* SQLITE_OMIT_BTREECOUNT */
5201       {
5202         /* Check if the query is of one of the following forms:
5203         **
5204         **   SELECT min(x) FROM ...
5205         **   SELECT max(x) FROM ...
5206         **
5207         ** If it is, then ask the code in where.c to attempt to sort results
5208         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5209         ** If where.c is able to produce results sorted in this order, then
5210         ** add vdbe code to break out of the processing loop after the
5211         ** first iteration (since the first iteration of the loop is
5212         ** guaranteed to operate on the row with the minimum or maximum
5213         ** value of x, the only row required).
5214         **
5215         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5216         ** modify behavior as follows:
5217         **
5218         **   + If the query is a "SELECT min(x)", then the loop coded by
5219         **     where.c should not iterate over any values with a NULL value
5220         **     for x.
5221         **
5222         **   + The optimizer code in where.c (the thing that decides which
5223         **     index or indices to use) should place a different priority on
5224         **     satisfying the 'ORDER BY' clause than it does in other cases.
5225         **     Refer to code and comments in where.c for details.
5226         */
5227         ExprList *pMinMax = 0;
5228         u8 flag = WHERE_ORDERBY_NORMAL;
5229 
5230         assert( p->pGroupBy==0 );
5231         assert( flag==0 );
5232         if( p->pHaving==0 ){
5233           flag = minMaxQuery(&sAggInfo, &pMinMax);
5234         }
5235         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5236 
5237         if( flag ){
5238           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5239           pDel = pMinMax;
5240           if( pMinMax && !db->mallocFailed ){
5241             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5242             pMinMax->a[0].pExpr->op = TK_COLUMN;
5243           }
5244         }
5245 
5246         /* This case runs if the aggregate has no GROUP BY clause.  The
5247         ** processing is much simpler since there is only a single row
5248         ** of output.
5249         */
5250         resetAccumulator(pParse, &sAggInfo);
5251         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5252         if( pWInfo==0 ){
5253           sqlite3ExprListDelete(db, pDel);
5254           goto select_end;
5255         }
5256         updateAccumulator(pParse, &sAggInfo);
5257         assert( pMinMax==0 || pMinMax->nExpr==1 );
5258         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5259           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5260           VdbeComment((v, "%s() by index",
5261                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5262         }
5263         sqlite3WhereEnd(pWInfo);
5264         finalizeAggFunctions(pParse, &sAggInfo);
5265       }
5266 
5267       sSort.pOrderBy = 0;
5268       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5269       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5270                       pDest, addrEnd, addrEnd);
5271       sqlite3ExprListDelete(db, pDel);
5272     }
5273     sqlite3VdbeResolveLabel(v, addrEnd);
5274 
5275   } /* endif aggregate query */
5276 
5277   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5278     explainTempTable(pParse, "DISTINCT");
5279   }
5280 
5281   /* If there is an ORDER BY clause, then we need to sort the results
5282   ** and send them to the callback one by one.
5283   */
5284   if( sSort.pOrderBy ){
5285     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5286     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5287   }
5288 
5289   /* Jump here to skip this query
5290   */
5291   sqlite3VdbeResolveLabel(v, iEnd);
5292 
5293   /* The SELECT was successfully coded.   Set the return code to 0
5294   ** to indicate no errors.
5295   */
5296   rc = 0;
5297 
5298   /* Control jumps to here if an error is encountered above, or upon
5299   ** successful coding of the SELECT.
5300   */
5301 select_end:
5302   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5303 
5304   /* Identify column names if results of the SELECT are to be output.
5305   */
5306   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5307     generateColumnNames(pParse, pTabList, pEList);
5308   }
5309 
5310   sqlite3DbFree(db, sAggInfo.aCol);
5311   sqlite3DbFree(db, sAggInfo.aFunc);
5312   return rc;
5313 }
5314 
5315 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
5316 /*
5317 ** Generate a human-readable description of a the Select object.
5318 */
5319 static void explainOneSelect(Vdbe *pVdbe, Select *p){
5320   sqlite3ExplainPrintf(pVdbe, "SELECT ");
5321   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
5322     if( p->selFlags & SF_Distinct ){
5323       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
5324     }
5325     if( p->selFlags & SF_Aggregate ){
5326       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
5327     }
5328     sqlite3ExplainNL(pVdbe);
5329     sqlite3ExplainPrintf(pVdbe, "   ");
5330   }
5331   sqlite3ExplainExprList(pVdbe, p->pEList);
5332   sqlite3ExplainNL(pVdbe);
5333   if( p->pSrc && p->pSrc->nSrc ){
5334     int i;
5335     sqlite3ExplainPrintf(pVdbe, "FROM ");
5336     sqlite3ExplainPush(pVdbe);
5337     for(i=0; i<p->pSrc->nSrc; i++){
5338       struct SrcList_item *pItem = &p->pSrc->a[i];
5339       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
5340       if( pItem->pSelect ){
5341         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
5342         if( pItem->pTab ){
5343           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
5344         }
5345       }else if( pItem->zName ){
5346         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
5347       }
5348       if( pItem->zAlias ){
5349         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
5350       }
5351       if( pItem->jointype & JT_LEFT ){
5352         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
5353       }
5354       sqlite3ExplainNL(pVdbe);
5355     }
5356     sqlite3ExplainPop(pVdbe);
5357   }
5358   if( p->pWhere ){
5359     sqlite3ExplainPrintf(pVdbe, "WHERE ");
5360     sqlite3ExplainExpr(pVdbe, p->pWhere);
5361     sqlite3ExplainNL(pVdbe);
5362   }
5363   if( p->pGroupBy ){
5364     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
5365     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
5366     sqlite3ExplainNL(pVdbe);
5367   }
5368   if( p->pHaving ){
5369     sqlite3ExplainPrintf(pVdbe, "HAVING ");
5370     sqlite3ExplainExpr(pVdbe, p->pHaving);
5371     sqlite3ExplainNL(pVdbe);
5372   }
5373   if( p->pOrderBy ){
5374     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
5375     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
5376     sqlite3ExplainNL(pVdbe);
5377   }
5378   if( p->pLimit ){
5379     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
5380     sqlite3ExplainExpr(pVdbe, p->pLimit);
5381     sqlite3ExplainNL(pVdbe);
5382   }
5383   if( p->pOffset ){
5384     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
5385     sqlite3ExplainExpr(pVdbe, p->pOffset);
5386     sqlite3ExplainNL(pVdbe);
5387   }
5388 }
5389 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
5390   if( p==0 ){
5391     sqlite3ExplainPrintf(pVdbe, "(null-select)");
5392     return;
5393   }
5394   sqlite3ExplainPush(pVdbe);
5395   while( p ){
5396     explainOneSelect(pVdbe, p);
5397     p = p->pNext;
5398     if( p==0 ) break;
5399     sqlite3ExplainNL(pVdbe);
5400     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
5401   }
5402   sqlite3ExplainPrintf(pVdbe, "END");
5403   sqlite3ExplainPop(pVdbe);
5404 }
5405 
5406 /* End of the structure debug printing code
5407 *****************************************************************************/
5408 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
5409