1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 */ 34 typedef struct SortCtx SortCtx; 35 struct SortCtx { 36 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 37 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 38 int iECursor; /* Cursor number for the sorter */ 39 int regReturn; /* Register holding block-output return address */ 40 int labelBkOut; /* Start label for the block-output subroutine */ 41 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 42 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 43 }; 44 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 45 46 /* 47 ** Delete all the content of a Select structure but do not deallocate 48 ** the select structure itself. 49 */ 50 static void clearSelect(sqlite3 *db, Select *p){ 51 sqlite3ExprListDelete(db, p->pEList); 52 sqlite3SrcListDelete(db, p->pSrc); 53 sqlite3ExprDelete(db, p->pWhere); 54 sqlite3ExprListDelete(db, p->pGroupBy); 55 sqlite3ExprDelete(db, p->pHaving); 56 sqlite3ExprListDelete(db, p->pOrderBy); 57 sqlite3SelectDelete(db, p->pPrior); 58 sqlite3ExprDelete(db, p->pLimit); 59 sqlite3ExprDelete(db, p->pOffset); 60 sqlite3WithDelete(db, p->pWith); 61 } 62 63 /* 64 ** Initialize a SelectDest structure. 65 */ 66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 67 pDest->eDest = (u8)eDest; 68 pDest->iSDParm = iParm; 69 pDest->affSdst = 0; 70 pDest->iSdst = 0; 71 pDest->nSdst = 0; 72 } 73 74 75 /* 76 ** Allocate a new Select structure and return a pointer to that 77 ** structure. 78 */ 79 Select *sqlite3SelectNew( 80 Parse *pParse, /* Parsing context */ 81 ExprList *pEList, /* which columns to include in the result */ 82 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 83 Expr *pWhere, /* the WHERE clause */ 84 ExprList *pGroupBy, /* the GROUP BY clause */ 85 Expr *pHaving, /* the HAVING clause */ 86 ExprList *pOrderBy, /* the ORDER BY clause */ 87 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 88 Expr *pLimit, /* LIMIT value. NULL means not used */ 89 Expr *pOffset /* OFFSET value. NULL means no offset */ 90 ){ 91 Select *pNew; 92 Select standin; 93 sqlite3 *db = pParse->db; 94 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 95 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 96 if( pNew==0 ){ 97 assert( db->mallocFailed ); 98 pNew = &standin; 99 memset(pNew, 0, sizeof(*pNew)); 100 } 101 if( pEList==0 ){ 102 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 103 } 104 pNew->pEList = pEList; 105 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 106 pNew->pSrc = pSrc; 107 pNew->pWhere = pWhere; 108 pNew->pGroupBy = pGroupBy; 109 pNew->pHaving = pHaving; 110 pNew->pOrderBy = pOrderBy; 111 pNew->selFlags = selFlags; 112 pNew->op = TK_SELECT; 113 pNew->pLimit = pLimit; 114 pNew->pOffset = pOffset; 115 assert( pOffset==0 || pLimit!=0 ); 116 pNew->addrOpenEphm[0] = -1; 117 pNew->addrOpenEphm[1] = -1; 118 if( db->mallocFailed ) { 119 clearSelect(db, pNew); 120 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 121 pNew = 0; 122 }else{ 123 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 124 } 125 assert( pNew!=&standin ); 126 return pNew; 127 } 128 129 /* 130 ** Delete the given Select structure and all of its substructures. 131 */ 132 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 133 if( p ){ 134 clearSelect(db, p); 135 sqlite3DbFree(db, p); 136 } 137 } 138 139 /* 140 ** Return a pointer to the right-most SELECT statement in a compound. 141 */ 142 static Select *findRightmost(Select *p){ 143 while( p->pNext ) p = p->pNext; 144 return p; 145 } 146 147 /* 148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 149 ** type of join. Return an integer constant that expresses that type 150 ** in terms of the following bit values: 151 ** 152 ** JT_INNER 153 ** JT_CROSS 154 ** JT_OUTER 155 ** JT_NATURAL 156 ** JT_LEFT 157 ** JT_RIGHT 158 ** 159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 160 ** 161 ** If an illegal or unsupported join type is seen, then still return 162 ** a join type, but put an error in the pParse structure. 163 */ 164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 165 int jointype = 0; 166 Token *apAll[3]; 167 Token *p; 168 /* 0123456789 123456789 123456789 123 */ 169 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 170 static const struct { 171 u8 i; /* Beginning of keyword text in zKeyText[] */ 172 u8 nChar; /* Length of the keyword in characters */ 173 u8 code; /* Join type mask */ 174 } aKeyword[] = { 175 /* natural */ { 0, 7, JT_NATURAL }, 176 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 177 /* outer */ { 10, 5, JT_OUTER }, 178 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 179 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 180 /* inner */ { 23, 5, JT_INNER }, 181 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 182 }; 183 int i, j; 184 apAll[0] = pA; 185 apAll[1] = pB; 186 apAll[2] = pC; 187 for(i=0; i<3 && apAll[i]; i++){ 188 p = apAll[i]; 189 for(j=0; j<ArraySize(aKeyword); j++){ 190 if( p->n==aKeyword[j].nChar 191 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 192 jointype |= aKeyword[j].code; 193 break; 194 } 195 } 196 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 197 if( j>=ArraySize(aKeyword) ){ 198 jointype |= JT_ERROR; 199 break; 200 } 201 } 202 if( 203 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 204 (jointype & JT_ERROR)!=0 205 ){ 206 const char *zSp = " "; 207 assert( pB!=0 ); 208 if( pC==0 ){ zSp++; } 209 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 210 "%T %T%s%T", pA, pB, zSp, pC); 211 jointype = JT_INNER; 212 }else if( (jointype & JT_OUTER)!=0 213 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 214 sqlite3ErrorMsg(pParse, 215 "RIGHT and FULL OUTER JOINs are not currently supported"); 216 jointype = JT_INNER; 217 } 218 return jointype; 219 } 220 221 /* 222 ** Return the index of a column in a table. Return -1 if the column 223 ** is not contained in the table. 224 */ 225 static int columnIndex(Table *pTab, const char *zCol){ 226 int i; 227 for(i=0; i<pTab->nCol; i++){ 228 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 229 } 230 return -1; 231 } 232 233 /* 234 ** Search the first N tables in pSrc, from left to right, looking for a 235 ** table that has a column named zCol. 236 ** 237 ** When found, set *piTab and *piCol to the table index and column index 238 ** of the matching column and return TRUE. 239 ** 240 ** If not found, return FALSE. 241 */ 242 static int tableAndColumnIndex( 243 SrcList *pSrc, /* Array of tables to search */ 244 int N, /* Number of tables in pSrc->a[] to search */ 245 const char *zCol, /* Name of the column we are looking for */ 246 int *piTab, /* Write index of pSrc->a[] here */ 247 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 248 ){ 249 int i; /* For looping over tables in pSrc */ 250 int iCol; /* Index of column matching zCol */ 251 252 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 253 for(i=0; i<N; i++){ 254 iCol = columnIndex(pSrc->a[i].pTab, zCol); 255 if( iCol>=0 ){ 256 if( piTab ){ 257 *piTab = i; 258 *piCol = iCol; 259 } 260 return 1; 261 } 262 } 263 return 0; 264 } 265 266 /* 267 ** This function is used to add terms implied by JOIN syntax to the 268 ** WHERE clause expression of a SELECT statement. The new term, which 269 ** is ANDed with the existing WHERE clause, is of the form: 270 ** 271 ** (tab1.col1 = tab2.col2) 272 ** 273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 275 ** column iColRight of tab2. 276 */ 277 static void addWhereTerm( 278 Parse *pParse, /* Parsing context */ 279 SrcList *pSrc, /* List of tables in FROM clause */ 280 int iLeft, /* Index of first table to join in pSrc */ 281 int iColLeft, /* Index of column in first table */ 282 int iRight, /* Index of second table in pSrc */ 283 int iColRight, /* Index of column in second table */ 284 int isOuterJoin, /* True if this is an OUTER join */ 285 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 286 ){ 287 sqlite3 *db = pParse->db; 288 Expr *pE1; 289 Expr *pE2; 290 Expr *pEq; 291 292 assert( iLeft<iRight ); 293 assert( pSrc->nSrc>iRight ); 294 assert( pSrc->a[iLeft].pTab ); 295 assert( pSrc->a[iRight].pTab ); 296 297 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 298 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 299 300 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 301 if( pEq && isOuterJoin ){ 302 ExprSetProperty(pEq, EP_FromJoin); 303 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 304 ExprSetVVAProperty(pEq, EP_NoReduce); 305 pEq->iRightJoinTable = (i16)pE2->iTable; 306 } 307 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 308 } 309 310 /* 311 ** Set the EP_FromJoin property on all terms of the given expression. 312 ** And set the Expr.iRightJoinTable to iTable for every term in the 313 ** expression. 314 ** 315 ** The EP_FromJoin property is used on terms of an expression to tell 316 ** the LEFT OUTER JOIN processing logic that this term is part of the 317 ** join restriction specified in the ON or USING clause and not a part 318 ** of the more general WHERE clause. These terms are moved over to the 319 ** WHERE clause during join processing but we need to remember that they 320 ** originated in the ON or USING clause. 321 ** 322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 323 ** expression depends on table iRightJoinTable even if that table is not 324 ** explicitly mentioned in the expression. That information is needed 325 ** for cases like this: 326 ** 327 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 328 ** 329 ** The where clause needs to defer the handling of the t1.x=5 330 ** term until after the t2 loop of the join. In that way, a 331 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 332 ** defer the handling of t1.x=5, it will be processed immediately 333 ** after the t1 loop and rows with t1.x!=5 will never appear in 334 ** the output, which is incorrect. 335 */ 336 static void setJoinExpr(Expr *p, int iTable){ 337 while( p ){ 338 ExprSetProperty(p, EP_FromJoin); 339 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(p, EP_NoReduce); 341 p->iRightJoinTable = (i16)iTable; 342 setJoinExpr(p->pLeft, iTable); 343 p = p->pRight; 344 } 345 } 346 347 /* 348 ** This routine processes the join information for a SELECT statement. 349 ** ON and USING clauses are converted into extra terms of the WHERE clause. 350 ** NATURAL joins also create extra WHERE clause terms. 351 ** 352 ** The terms of a FROM clause are contained in the Select.pSrc structure. 353 ** The left most table is the first entry in Select.pSrc. The right-most 354 ** table is the last entry. The join operator is held in the entry to 355 ** the left. Thus entry 0 contains the join operator for the join between 356 ** entries 0 and 1. Any ON or USING clauses associated with the join are 357 ** also attached to the left entry. 358 ** 359 ** This routine returns the number of errors encountered. 360 */ 361 static int sqliteProcessJoin(Parse *pParse, Select *p){ 362 SrcList *pSrc; /* All tables in the FROM clause */ 363 int i, j; /* Loop counters */ 364 struct SrcList_item *pLeft; /* Left table being joined */ 365 struct SrcList_item *pRight; /* Right table being joined */ 366 367 pSrc = p->pSrc; 368 pLeft = &pSrc->a[0]; 369 pRight = &pLeft[1]; 370 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 371 Table *pLeftTab = pLeft->pTab; 372 Table *pRightTab = pRight->pTab; 373 int isOuter; 374 375 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 376 isOuter = (pRight->jointype & JT_OUTER)!=0; 377 378 /* When the NATURAL keyword is present, add WHERE clause terms for 379 ** every column that the two tables have in common. 380 */ 381 if( pRight->jointype & JT_NATURAL ){ 382 if( pRight->pOn || pRight->pUsing ){ 383 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 384 "an ON or USING clause", 0); 385 return 1; 386 } 387 for(j=0; j<pRightTab->nCol; j++){ 388 char *zName; /* Name of column in the right table */ 389 int iLeft; /* Matching left table */ 390 int iLeftCol; /* Matching column in the left table */ 391 392 zName = pRightTab->aCol[j].zName; 393 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 394 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 395 isOuter, &p->pWhere); 396 } 397 } 398 } 399 400 /* Disallow both ON and USING clauses in the same join 401 */ 402 if( pRight->pOn && pRight->pUsing ){ 403 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 404 "clauses in the same join"); 405 return 1; 406 } 407 408 /* Add the ON clause to the end of the WHERE clause, connected by 409 ** an AND operator. 410 */ 411 if( pRight->pOn ){ 412 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 413 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 414 pRight->pOn = 0; 415 } 416 417 /* Create extra terms on the WHERE clause for each column named 418 ** in the USING clause. Example: If the two tables to be joined are 419 ** A and B and the USING clause names X, Y, and Z, then add this 420 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 421 ** Report an error if any column mentioned in the USING clause is 422 ** not contained in both tables to be joined. 423 */ 424 if( pRight->pUsing ){ 425 IdList *pList = pRight->pUsing; 426 for(j=0; j<pList->nId; j++){ 427 char *zName; /* Name of the term in the USING clause */ 428 int iLeft; /* Table on the left with matching column name */ 429 int iLeftCol; /* Column number of matching column on the left */ 430 int iRightCol; /* Column number of matching column on the right */ 431 432 zName = pList->a[j].zName; 433 iRightCol = columnIndex(pRightTab, zName); 434 if( iRightCol<0 435 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 436 ){ 437 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 438 "not present in both tables", zName); 439 return 1; 440 } 441 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 442 isOuter, &p->pWhere); 443 } 444 } 445 } 446 return 0; 447 } 448 449 /* Forward reference */ 450 static KeyInfo *keyInfoFromExprList( 451 Parse *pParse, /* Parsing context */ 452 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 453 int iStart, /* Begin with this column of pList */ 454 int nExtra /* Add this many extra columns to the end */ 455 ); 456 457 /* 458 ** Insert code into "v" that will push the record in register regData 459 ** into the sorter. 460 */ 461 static void pushOntoSorter( 462 Parse *pParse, /* Parser context */ 463 SortCtx *pSort, /* Information about the ORDER BY clause */ 464 Select *pSelect, /* The whole SELECT statement */ 465 int regData /* Register holding data to be sorted */ 466 ){ 467 Vdbe *v = pParse->pVdbe; 468 int nExpr = pSort->pOrderBy->nExpr; 469 int regRecord = ++pParse->nMem; 470 int regBase = pParse->nMem+1; 471 int nOBSat = pSort->nOBSat; 472 int op; 473 474 pParse->nMem += nExpr+2; /* nExpr+2 registers allocated at regBase */ 475 sqlite3ExprCacheClear(pParse); 476 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0); 477 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 478 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 479 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat,regRecord); 480 if( nOBSat>0 ){ 481 int regPrevKey; /* The first nOBSat columns of the previous row */ 482 int addrFirst; /* Address of the OP_IfNot opcode */ 483 int addrJmp; /* Address of the OP_Jump opcode */ 484 VdbeOp *pOp; /* Opcode that opens the sorter */ 485 int nKey; /* Number of sorting key columns, including OP_Sequence */ 486 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 487 488 regPrevKey = pParse->nMem+1; 489 pParse->nMem += pSort->nOBSat; 490 nKey = nExpr - pSort->nOBSat + 1; 491 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v); 492 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 493 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 494 if( pParse->db->mallocFailed ) return; 495 pOp->p2 = nKey + 1; 496 pKI = pOp->p4.pKeyInfo; 497 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 498 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 499 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); 500 addrJmp = sqlite3VdbeCurrentAddr(v); 501 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 502 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 503 pSort->regReturn = ++pParse->nMem; 504 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 505 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 506 sqlite3VdbeJumpHere(v, addrFirst); 507 sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat); 508 sqlite3VdbeJumpHere(v, addrJmp); 509 } 510 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 511 op = OP_SorterInsert; 512 }else{ 513 op = OP_IdxInsert; 514 } 515 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 516 if( pSelect->iLimit ){ 517 int addr1, addr2; 518 int iLimit; 519 if( pSelect->iOffset ){ 520 iLimit = pSelect->iOffset+1; 521 }else{ 522 iLimit = pSelect->iLimit; 523 } 524 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); 525 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 526 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 527 sqlite3VdbeJumpHere(v, addr1); 528 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 529 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 530 sqlite3VdbeJumpHere(v, addr2); 531 } 532 } 533 534 /* 535 ** Add code to implement the OFFSET 536 */ 537 static void codeOffset( 538 Vdbe *v, /* Generate code into this VM */ 539 int iOffset, /* Register holding the offset counter */ 540 int iContinue /* Jump here to skip the current record */ 541 ){ 542 if( iOffset>0 ){ 543 int addr; 544 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); 545 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 546 VdbeComment((v, "skip OFFSET records")); 547 sqlite3VdbeJumpHere(v, addr); 548 } 549 } 550 551 /* 552 ** Add code that will check to make sure the N registers starting at iMem 553 ** form a distinct entry. iTab is a sorting index that holds previously 554 ** seen combinations of the N values. A new entry is made in iTab 555 ** if the current N values are new. 556 ** 557 ** A jump to addrRepeat is made and the N+1 values are popped from the 558 ** stack if the top N elements are not distinct. 559 */ 560 static void codeDistinct( 561 Parse *pParse, /* Parsing and code generating context */ 562 int iTab, /* A sorting index used to test for distinctness */ 563 int addrRepeat, /* Jump to here if not distinct */ 564 int N, /* Number of elements */ 565 int iMem /* First element */ 566 ){ 567 Vdbe *v; 568 int r1; 569 570 v = pParse->pVdbe; 571 r1 = sqlite3GetTempReg(pParse); 572 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 573 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 574 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 575 sqlite3ReleaseTempReg(pParse, r1); 576 } 577 578 #ifndef SQLITE_OMIT_SUBQUERY 579 /* 580 ** Generate an error message when a SELECT is used within a subexpression 581 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 582 ** column. We do this in a subroutine because the error used to occur 583 ** in multiple places. (The error only occurs in one place now, but we 584 ** retain the subroutine to minimize code disruption.) 585 */ 586 static int checkForMultiColumnSelectError( 587 Parse *pParse, /* Parse context. */ 588 SelectDest *pDest, /* Destination of SELECT results */ 589 int nExpr /* Number of result columns returned by SELECT */ 590 ){ 591 int eDest = pDest->eDest; 592 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 593 sqlite3ErrorMsg(pParse, "only a single result allowed for " 594 "a SELECT that is part of an expression"); 595 return 1; 596 }else{ 597 return 0; 598 } 599 } 600 #endif 601 602 /* 603 ** This routine generates the code for the inside of the inner loop 604 ** of a SELECT. 605 ** 606 ** If srcTab is negative, then the pEList expressions 607 ** are evaluated in order to get the data for this row. If srcTab is 608 ** zero or more, then data is pulled from srcTab and pEList is used only 609 ** to get number columns and the datatype for each column. 610 */ 611 static void selectInnerLoop( 612 Parse *pParse, /* The parser context */ 613 Select *p, /* The complete select statement being coded */ 614 ExprList *pEList, /* List of values being extracted */ 615 int srcTab, /* Pull data from this table */ 616 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 617 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 618 SelectDest *pDest, /* How to dispose of the results */ 619 int iContinue, /* Jump here to continue with next row */ 620 int iBreak /* Jump here to break out of the inner loop */ 621 ){ 622 Vdbe *v = pParse->pVdbe; 623 int i; 624 int hasDistinct; /* True if the DISTINCT keyword is present */ 625 int regResult; /* Start of memory holding result set */ 626 int eDest = pDest->eDest; /* How to dispose of results */ 627 int iParm = pDest->iSDParm; /* First argument to disposal method */ 628 int nResultCol; /* Number of result columns */ 629 630 assert( v ); 631 assert( pEList!=0 ); 632 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 633 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 634 if( pSort==0 && !hasDistinct ){ 635 assert( iContinue!=0 ); 636 codeOffset(v, p->iOffset, iContinue); 637 } 638 639 /* Pull the requested columns. 640 */ 641 nResultCol = pEList->nExpr; 642 643 if( pDest->iSdst==0 ){ 644 pDest->iSdst = pParse->nMem+1; 645 pParse->nMem += nResultCol; 646 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 647 /* This is an error condition that can result, for example, when a SELECT 648 ** on the right-hand side of an INSERT contains more result columns than 649 ** there are columns in the table on the left. The error will be caught 650 ** and reported later. But we need to make sure enough memory is allocated 651 ** to avoid other spurious errors in the meantime. */ 652 pParse->nMem += nResultCol; 653 } 654 pDest->nSdst = nResultCol; 655 regResult = pDest->iSdst; 656 if( srcTab>=0 ){ 657 for(i=0; i<nResultCol; i++){ 658 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 659 VdbeComment((v, "%s", pEList->a[i].zName)); 660 } 661 }else if( eDest!=SRT_Exists ){ 662 /* If the destination is an EXISTS(...) expression, the actual 663 ** values returned by the SELECT are not required. 664 */ 665 sqlite3ExprCodeExprList(pParse, pEList, regResult, 666 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 667 } 668 669 /* If the DISTINCT keyword was present on the SELECT statement 670 ** and this row has been seen before, then do not make this row 671 ** part of the result. 672 */ 673 if( hasDistinct ){ 674 switch( pDistinct->eTnctType ){ 675 case WHERE_DISTINCT_ORDERED: { 676 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 677 int iJump; /* Jump destination */ 678 int regPrev; /* Previous row content */ 679 680 /* Allocate space for the previous row */ 681 regPrev = pParse->nMem+1; 682 pParse->nMem += nResultCol; 683 684 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 685 ** sets the MEM_Cleared bit on the first register of the 686 ** previous value. This will cause the OP_Ne below to always 687 ** fail on the first iteration of the loop even if the first 688 ** row is all NULLs. 689 */ 690 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 691 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 692 pOp->opcode = OP_Null; 693 pOp->p1 = 1; 694 pOp->p2 = regPrev; 695 696 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 697 for(i=0; i<nResultCol; i++){ 698 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 699 if( i<nResultCol-1 ){ 700 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 701 VdbeCoverage(v); 702 }else{ 703 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 704 VdbeCoverage(v); 705 } 706 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 707 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 708 } 709 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 710 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 711 break; 712 } 713 714 case WHERE_DISTINCT_UNIQUE: { 715 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 716 break; 717 } 718 719 default: { 720 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 721 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 722 break; 723 } 724 } 725 if( pSort==0 ){ 726 codeOffset(v, p->iOffset, iContinue); 727 } 728 } 729 730 switch( eDest ){ 731 /* In this mode, write each query result to the key of the temporary 732 ** table iParm. 733 */ 734 #ifndef SQLITE_OMIT_COMPOUND_SELECT 735 case SRT_Union: { 736 int r1; 737 r1 = sqlite3GetTempReg(pParse); 738 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 739 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 740 sqlite3ReleaseTempReg(pParse, r1); 741 break; 742 } 743 744 /* Construct a record from the query result, but instead of 745 ** saving that record, use it as a key to delete elements from 746 ** the temporary table iParm. 747 */ 748 case SRT_Except: { 749 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 750 break; 751 } 752 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 753 754 /* Store the result as data using a unique key. 755 */ 756 case SRT_Fifo: 757 case SRT_DistFifo: 758 case SRT_Table: 759 case SRT_EphemTab: { 760 int r1 = sqlite3GetTempReg(pParse); 761 testcase( eDest==SRT_Table ); 762 testcase( eDest==SRT_EphemTab ); 763 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 764 #ifndef SQLITE_OMIT_CTE 765 if( eDest==SRT_DistFifo ){ 766 /* If the destination is DistFifo, then cursor (iParm+1) is open 767 ** on an ephemeral index. If the current row is already present 768 ** in the index, do not write it to the output. If not, add the 769 ** current row to the index and proceed with writing it to the 770 ** output table as well. */ 771 int addr = sqlite3VdbeCurrentAddr(v) + 4; 772 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 773 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 774 assert( pSort==0 ); 775 } 776 #endif 777 if( pSort ){ 778 pushOntoSorter(pParse, pSort, p, r1); 779 }else{ 780 int r2 = sqlite3GetTempReg(pParse); 781 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 782 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 783 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 784 sqlite3ReleaseTempReg(pParse, r2); 785 } 786 sqlite3ReleaseTempReg(pParse, r1); 787 break; 788 } 789 790 #ifndef SQLITE_OMIT_SUBQUERY 791 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 792 ** then there should be a single item on the stack. Write this 793 ** item into the set table with bogus data. 794 */ 795 case SRT_Set: { 796 assert( nResultCol==1 ); 797 pDest->affSdst = 798 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 799 if( pSort ){ 800 /* At first glance you would think we could optimize out the 801 ** ORDER BY in this case since the order of entries in the set 802 ** does not matter. But there might be a LIMIT clause, in which 803 ** case the order does matter */ 804 pushOntoSorter(pParse, pSort, p, regResult); 805 }else{ 806 int r1 = sqlite3GetTempReg(pParse); 807 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 808 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 809 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 810 sqlite3ReleaseTempReg(pParse, r1); 811 } 812 break; 813 } 814 815 /* If any row exist in the result set, record that fact and abort. 816 */ 817 case SRT_Exists: { 818 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 819 /* The LIMIT clause will terminate the loop for us */ 820 break; 821 } 822 823 /* If this is a scalar select that is part of an expression, then 824 ** store the results in the appropriate memory cell and break out 825 ** of the scan loop. 826 */ 827 case SRT_Mem: { 828 assert( nResultCol==1 ); 829 if( pSort ){ 830 pushOntoSorter(pParse, pSort, p, regResult); 831 }else{ 832 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 833 /* The LIMIT clause will jump out of the loop for us */ 834 } 835 break; 836 } 837 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 838 839 case SRT_Coroutine: /* Send data to a co-routine */ 840 case SRT_Output: { /* Return the results */ 841 testcase( eDest==SRT_Coroutine ); 842 testcase( eDest==SRT_Output ); 843 if( pSort ){ 844 int r1 = sqlite3GetTempReg(pParse); 845 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 846 pushOntoSorter(pParse, pSort, p, r1); 847 sqlite3ReleaseTempReg(pParse, r1); 848 }else if( eDest==SRT_Coroutine ){ 849 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 850 }else{ 851 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 852 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 853 } 854 break; 855 } 856 857 #ifndef SQLITE_OMIT_CTE 858 /* Write the results into a priority queue that is order according to 859 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 860 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 861 ** pSO->nExpr columns, then make sure all keys are unique by adding a 862 ** final OP_Sequence column. The last column is the record as a blob. 863 */ 864 case SRT_DistQueue: 865 case SRT_Queue: { 866 int nKey; 867 int r1, r2, r3; 868 int addrTest = 0; 869 ExprList *pSO; 870 pSO = pDest->pOrderBy; 871 assert( pSO ); 872 nKey = pSO->nExpr; 873 r1 = sqlite3GetTempReg(pParse); 874 r2 = sqlite3GetTempRange(pParse, nKey+2); 875 r3 = r2+nKey+1; 876 if( eDest==SRT_DistQueue ){ 877 /* If the destination is DistQueue, then cursor (iParm+1) is open 878 ** on a second ephemeral index that holds all values every previously 879 ** added to the queue. */ 880 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 881 regResult, nResultCol); 882 VdbeCoverage(v); 883 } 884 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 885 if( eDest==SRT_DistQueue ){ 886 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 887 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 888 } 889 for(i=0; i<nKey; i++){ 890 sqlite3VdbeAddOp2(v, OP_SCopy, 891 regResult + pSO->a[i].u.x.iOrderByCol - 1, 892 r2+i); 893 } 894 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 895 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 896 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 897 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 898 sqlite3ReleaseTempReg(pParse, r1); 899 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 900 break; 901 } 902 #endif /* SQLITE_OMIT_CTE */ 903 904 905 906 #if !defined(SQLITE_OMIT_TRIGGER) 907 /* Discard the results. This is used for SELECT statements inside 908 ** the body of a TRIGGER. The purpose of such selects is to call 909 ** user-defined functions that have side effects. We do not care 910 ** about the actual results of the select. 911 */ 912 default: { 913 assert( eDest==SRT_Discard ); 914 break; 915 } 916 #endif 917 } 918 919 /* Jump to the end of the loop if the LIMIT is reached. Except, if 920 ** there is a sorter, in which case the sorter has already limited 921 ** the output for us. 922 */ 923 if( pSort==0 && p->iLimit ){ 924 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 925 } 926 } 927 928 /* 929 ** Allocate a KeyInfo object sufficient for an index of N key columns and 930 ** X extra columns. 931 */ 932 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 933 KeyInfo *p = sqlite3DbMallocZero(0, 934 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 935 if( p ){ 936 p->aSortOrder = (u8*)&p->aColl[N+X]; 937 p->nField = (u16)N; 938 p->nXField = (u16)X; 939 p->enc = ENC(db); 940 p->db = db; 941 p->nRef = 1; 942 }else{ 943 db->mallocFailed = 1; 944 } 945 return p; 946 } 947 948 /* 949 ** Deallocate a KeyInfo object 950 */ 951 void sqlite3KeyInfoUnref(KeyInfo *p){ 952 if( p ){ 953 assert( p->nRef>0 ); 954 p->nRef--; 955 if( p->nRef==0 ) sqlite3DbFree(0, p); 956 } 957 } 958 959 /* 960 ** Make a new pointer to a KeyInfo object 961 */ 962 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 963 if( p ){ 964 assert( p->nRef>0 ); 965 p->nRef++; 966 } 967 return p; 968 } 969 970 #ifdef SQLITE_DEBUG 971 /* 972 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 973 ** can only be changed if this is just a single reference to the object. 974 ** 975 ** This routine is used only inside of assert() statements. 976 */ 977 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 978 #endif /* SQLITE_DEBUG */ 979 980 /* 981 ** Given an expression list, generate a KeyInfo structure that records 982 ** the collating sequence for each expression in that expression list. 983 ** 984 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 985 ** KeyInfo structure is appropriate for initializing a virtual index to 986 ** implement that clause. If the ExprList is the result set of a SELECT 987 ** then the KeyInfo structure is appropriate for initializing a virtual 988 ** index to implement a DISTINCT test. 989 ** 990 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 991 ** function is responsible for seeing that this structure is eventually 992 ** freed. 993 */ 994 static KeyInfo *keyInfoFromExprList( 995 Parse *pParse, /* Parsing context */ 996 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 997 int iStart, /* Begin with this column of pList */ 998 int nExtra /* Add this many extra columns to the end */ 999 ){ 1000 int nExpr; 1001 KeyInfo *pInfo; 1002 struct ExprList_item *pItem; 1003 sqlite3 *db = pParse->db; 1004 int i; 1005 1006 nExpr = pList->nExpr; 1007 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); 1008 if( pInfo ){ 1009 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1010 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1011 CollSeq *pColl; 1012 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1013 if( !pColl ) pColl = db->pDfltColl; 1014 pInfo->aColl[i-iStart] = pColl; 1015 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1016 } 1017 } 1018 return pInfo; 1019 } 1020 1021 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1022 /* 1023 ** Name of the connection operator, used for error messages. 1024 */ 1025 static const char *selectOpName(int id){ 1026 char *z; 1027 switch( id ){ 1028 case TK_ALL: z = "UNION ALL"; break; 1029 case TK_INTERSECT: z = "INTERSECT"; break; 1030 case TK_EXCEPT: z = "EXCEPT"; break; 1031 default: z = "UNION"; break; 1032 } 1033 return z; 1034 } 1035 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1036 1037 #ifndef SQLITE_OMIT_EXPLAIN 1038 /* 1039 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1040 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1041 ** where the caption is of the form: 1042 ** 1043 ** "USE TEMP B-TREE FOR xxx" 1044 ** 1045 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1046 ** is determined by the zUsage argument. 1047 */ 1048 static void explainTempTable(Parse *pParse, const char *zUsage){ 1049 if( pParse->explain==2 ){ 1050 Vdbe *v = pParse->pVdbe; 1051 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1052 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1053 } 1054 } 1055 1056 /* 1057 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1058 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1059 ** in sqlite3Select() to assign values to structure member variables that 1060 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1061 ** code with #ifndef directives. 1062 */ 1063 # define explainSetInteger(a, b) a = b 1064 1065 #else 1066 /* No-op versions of the explainXXX() functions and macros. */ 1067 # define explainTempTable(y,z) 1068 # define explainSetInteger(y,z) 1069 #endif 1070 1071 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1072 /* 1073 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1074 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1075 ** where the caption is of one of the two forms: 1076 ** 1077 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1078 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1079 ** 1080 ** where iSub1 and iSub2 are the integers passed as the corresponding 1081 ** function parameters, and op is the text representation of the parameter 1082 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1083 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1084 ** false, or the second form if it is true. 1085 */ 1086 static void explainComposite( 1087 Parse *pParse, /* Parse context */ 1088 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1089 int iSub1, /* Subquery id 1 */ 1090 int iSub2, /* Subquery id 2 */ 1091 int bUseTmp /* True if a temp table was used */ 1092 ){ 1093 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1094 if( pParse->explain==2 ){ 1095 Vdbe *v = pParse->pVdbe; 1096 char *zMsg = sqlite3MPrintf( 1097 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1098 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1099 ); 1100 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1101 } 1102 } 1103 #else 1104 /* No-op versions of the explainXXX() functions and macros. */ 1105 # define explainComposite(v,w,x,y,z) 1106 #endif 1107 1108 /* 1109 ** If the inner loop was generated using a non-null pOrderBy argument, 1110 ** then the results were placed in a sorter. After the loop is terminated 1111 ** we need to run the sorter and output the results. The following 1112 ** routine generates the code needed to do that. 1113 */ 1114 static void generateSortTail( 1115 Parse *pParse, /* Parsing context */ 1116 Select *p, /* The SELECT statement */ 1117 SortCtx *pSort, /* Information on the ORDER BY clause */ 1118 int nColumn, /* Number of columns of data */ 1119 SelectDest *pDest /* Write the sorted results here */ 1120 ){ 1121 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1122 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1123 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1124 int addr; 1125 int addrOnce = 0; 1126 int iTab; 1127 int pseudoTab = 0; 1128 ExprList *pOrderBy = pSort->pOrderBy; 1129 int eDest = pDest->eDest; 1130 int iParm = pDest->iSDParm; 1131 int regRow; 1132 int regRowid; 1133 int nKey; 1134 1135 if( pSort->labelBkOut ){ 1136 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1137 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1138 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1139 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1140 } 1141 iTab = pSort->iECursor; 1142 regRow = sqlite3GetTempReg(pParse); 1143 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1144 pseudoTab = pParse->nTab++; 1145 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 1146 regRowid = 0; 1147 }else{ 1148 regRowid = sqlite3GetTempReg(pParse); 1149 } 1150 nKey = pOrderBy->nExpr - pSort->nOBSat; 1151 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1152 int regSortOut = ++pParse->nMem; 1153 int ptab2 = pParse->nTab++; 1154 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2); 1155 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1156 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1157 VdbeCoverage(v); 1158 codeOffset(v, p->iOffset, addrContinue); 1159 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 1160 sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow); 1161 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1162 }else{ 1163 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1164 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1165 codeOffset(v, p->iOffset, addrContinue); 1166 sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow); 1167 } 1168 switch( eDest ){ 1169 case SRT_Table: 1170 case SRT_EphemTab: { 1171 testcase( eDest==SRT_Table ); 1172 testcase( eDest==SRT_EphemTab ); 1173 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1174 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1175 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1176 break; 1177 } 1178 #ifndef SQLITE_OMIT_SUBQUERY 1179 case SRT_Set: { 1180 assert( nColumn==1 ); 1181 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1182 &pDest->affSdst, 1); 1183 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1184 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1185 break; 1186 } 1187 case SRT_Mem: { 1188 assert( nColumn==1 ); 1189 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1190 /* The LIMIT clause will terminate the loop for us */ 1191 break; 1192 } 1193 #endif 1194 default: { 1195 int i; 1196 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1197 testcase( eDest==SRT_Output ); 1198 testcase( eDest==SRT_Coroutine ); 1199 for(i=0; i<nColumn; i++){ 1200 assert( regRow!=pDest->iSdst+i ); 1201 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); 1202 if( i==0 ){ 1203 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1204 } 1205 } 1206 if( eDest==SRT_Output ){ 1207 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1208 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1209 }else{ 1210 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1211 } 1212 break; 1213 } 1214 } 1215 sqlite3ReleaseTempReg(pParse, regRow); 1216 sqlite3ReleaseTempReg(pParse, regRowid); 1217 1218 /* The bottom of the loop 1219 */ 1220 sqlite3VdbeResolveLabel(v, addrContinue); 1221 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1222 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1223 }else{ 1224 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1225 } 1226 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1227 sqlite3VdbeResolveLabel(v, addrBreak); 1228 } 1229 1230 /* 1231 ** Return a pointer to a string containing the 'declaration type' of the 1232 ** expression pExpr. The string may be treated as static by the caller. 1233 ** 1234 ** Also try to estimate the size of the returned value and return that 1235 ** result in *pEstWidth. 1236 ** 1237 ** The declaration type is the exact datatype definition extracted from the 1238 ** original CREATE TABLE statement if the expression is a column. The 1239 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1240 ** is considered a column can be complex in the presence of subqueries. The 1241 ** result-set expression in all of the following SELECT statements is 1242 ** considered a column by this function. 1243 ** 1244 ** SELECT col FROM tbl; 1245 ** SELECT (SELECT col FROM tbl; 1246 ** SELECT (SELECT col FROM tbl); 1247 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1248 ** 1249 ** The declaration type for any expression other than a column is NULL. 1250 ** 1251 ** This routine has either 3 or 6 parameters depending on whether or not 1252 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1253 */ 1254 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1255 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1256 static const char *columnTypeImpl( 1257 NameContext *pNC, 1258 Expr *pExpr, 1259 const char **pzOrigDb, 1260 const char **pzOrigTab, 1261 const char **pzOrigCol, 1262 u8 *pEstWidth 1263 ){ 1264 char const *zOrigDb = 0; 1265 char const *zOrigTab = 0; 1266 char const *zOrigCol = 0; 1267 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1268 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1269 static const char *columnTypeImpl( 1270 NameContext *pNC, 1271 Expr *pExpr, 1272 u8 *pEstWidth 1273 ){ 1274 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1275 char const *zType = 0; 1276 int j; 1277 u8 estWidth = 1; 1278 1279 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1280 switch( pExpr->op ){ 1281 case TK_AGG_COLUMN: 1282 case TK_COLUMN: { 1283 /* The expression is a column. Locate the table the column is being 1284 ** extracted from in NameContext.pSrcList. This table may be real 1285 ** database table or a subquery. 1286 */ 1287 Table *pTab = 0; /* Table structure column is extracted from */ 1288 Select *pS = 0; /* Select the column is extracted from */ 1289 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1290 testcase( pExpr->op==TK_AGG_COLUMN ); 1291 testcase( pExpr->op==TK_COLUMN ); 1292 while( pNC && !pTab ){ 1293 SrcList *pTabList = pNC->pSrcList; 1294 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1295 if( j<pTabList->nSrc ){ 1296 pTab = pTabList->a[j].pTab; 1297 pS = pTabList->a[j].pSelect; 1298 }else{ 1299 pNC = pNC->pNext; 1300 } 1301 } 1302 1303 if( pTab==0 ){ 1304 /* At one time, code such as "SELECT new.x" within a trigger would 1305 ** cause this condition to run. Since then, we have restructured how 1306 ** trigger code is generated and so this condition is no longer 1307 ** possible. However, it can still be true for statements like 1308 ** the following: 1309 ** 1310 ** CREATE TABLE t1(col INTEGER); 1311 ** SELECT (SELECT t1.col) FROM FROM t1; 1312 ** 1313 ** when columnType() is called on the expression "t1.col" in the 1314 ** sub-select. In this case, set the column type to NULL, even 1315 ** though it should really be "INTEGER". 1316 ** 1317 ** This is not a problem, as the column type of "t1.col" is never 1318 ** used. When columnType() is called on the expression 1319 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1320 ** branch below. */ 1321 break; 1322 } 1323 1324 assert( pTab && pExpr->pTab==pTab ); 1325 if( pS ){ 1326 /* The "table" is actually a sub-select or a view in the FROM clause 1327 ** of the SELECT statement. Return the declaration type and origin 1328 ** data for the result-set column of the sub-select. 1329 */ 1330 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1331 /* If iCol is less than zero, then the expression requests the 1332 ** rowid of the sub-select or view. This expression is legal (see 1333 ** test case misc2.2.2) - it always evaluates to NULL. 1334 */ 1335 NameContext sNC; 1336 Expr *p = pS->pEList->a[iCol].pExpr; 1337 sNC.pSrcList = pS->pSrc; 1338 sNC.pNext = pNC; 1339 sNC.pParse = pNC->pParse; 1340 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1341 } 1342 }else if( pTab->pSchema ){ 1343 /* A real table */ 1344 assert( !pS ); 1345 if( iCol<0 ) iCol = pTab->iPKey; 1346 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1347 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1348 if( iCol<0 ){ 1349 zType = "INTEGER"; 1350 zOrigCol = "rowid"; 1351 }else{ 1352 zType = pTab->aCol[iCol].zType; 1353 zOrigCol = pTab->aCol[iCol].zName; 1354 estWidth = pTab->aCol[iCol].szEst; 1355 } 1356 zOrigTab = pTab->zName; 1357 if( pNC->pParse ){ 1358 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1359 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1360 } 1361 #else 1362 if( iCol<0 ){ 1363 zType = "INTEGER"; 1364 }else{ 1365 zType = pTab->aCol[iCol].zType; 1366 estWidth = pTab->aCol[iCol].szEst; 1367 } 1368 #endif 1369 } 1370 break; 1371 } 1372 #ifndef SQLITE_OMIT_SUBQUERY 1373 case TK_SELECT: { 1374 /* The expression is a sub-select. Return the declaration type and 1375 ** origin info for the single column in the result set of the SELECT 1376 ** statement. 1377 */ 1378 NameContext sNC; 1379 Select *pS = pExpr->x.pSelect; 1380 Expr *p = pS->pEList->a[0].pExpr; 1381 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1382 sNC.pSrcList = pS->pSrc; 1383 sNC.pNext = pNC; 1384 sNC.pParse = pNC->pParse; 1385 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1386 break; 1387 } 1388 #endif 1389 } 1390 1391 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1392 if( pzOrigDb ){ 1393 assert( pzOrigTab && pzOrigCol ); 1394 *pzOrigDb = zOrigDb; 1395 *pzOrigTab = zOrigTab; 1396 *pzOrigCol = zOrigCol; 1397 } 1398 #endif 1399 if( pEstWidth ) *pEstWidth = estWidth; 1400 return zType; 1401 } 1402 1403 /* 1404 ** Generate code that will tell the VDBE the declaration types of columns 1405 ** in the result set. 1406 */ 1407 static void generateColumnTypes( 1408 Parse *pParse, /* Parser context */ 1409 SrcList *pTabList, /* List of tables */ 1410 ExprList *pEList /* Expressions defining the result set */ 1411 ){ 1412 #ifndef SQLITE_OMIT_DECLTYPE 1413 Vdbe *v = pParse->pVdbe; 1414 int i; 1415 NameContext sNC; 1416 sNC.pSrcList = pTabList; 1417 sNC.pParse = pParse; 1418 for(i=0; i<pEList->nExpr; i++){ 1419 Expr *p = pEList->a[i].pExpr; 1420 const char *zType; 1421 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1422 const char *zOrigDb = 0; 1423 const char *zOrigTab = 0; 1424 const char *zOrigCol = 0; 1425 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1426 1427 /* The vdbe must make its own copy of the column-type and other 1428 ** column specific strings, in case the schema is reset before this 1429 ** virtual machine is deleted. 1430 */ 1431 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1432 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1433 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1434 #else 1435 zType = columnType(&sNC, p, 0, 0, 0, 0); 1436 #endif 1437 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1438 } 1439 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1440 } 1441 1442 /* 1443 ** Generate code that will tell the VDBE the names of columns 1444 ** in the result set. This information is used to provide the 1445 ** azCol[] values in the callback. 1446 */ 1447 static void generateColumnNames( 1448 Parse *pParse, /* Parser context */ 1449 SrcList *pTabList, /* List of tables */ 1450 ExprList *pEList /* Expressions defining the result set */ 1451 ){ 1452 Vdbe *v = pParse->pVdbe; 1453 int i, j; 1454 sqlite3 *db = pParse->db; 1455 int fullNames, shortNames; 1456 1457 #ifndef SQLITE_OMIT_EXPLAIN 1458 /* If this is an EXPLAIN, skip this step */ 1459 if( pParse->explain ){ 1460 return; 1461 } 1462 #endif 1463 1464 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1465 pParse->colNamesSet = 1; 1466 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1467 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1468 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1469 for(i=0; i<pEList->nExpr; i++){ 1470 Expr *p; 1471 p = pEList->a[i].pExpr; 1472 if( NEVER(p==0) ) continue; 1473 if( pEList->a[i].zName ){ 1474 char *zName = pEList->a[i].zName; 1475 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1476 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1477 Table *pTab; 1478 char *zCol; 1479 int iCol = p->iColumn; 1480 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1481 if( pTabList->a[j].iCursor==p->iTable ) break; 1482 } 1483 assert( j<pTabList->nSrc ); 1484 pTab = pTabList->a[j].pTab; 1485 if( iCol<0 ) iCol = pTab->iPKey; 1486 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1487 if( iCol<0 ){ 1488 zCol = "rowid"; 1489 }else{ 1490 zCol = pTab->aCol[iCol].zName; 1491 } 1492 if( !shortNames && !fullNames ){ 1493 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1494 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1495 }else if( fullNames ){ 1496 char *zName = 0; 1497 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1498 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1499 }else{ 1500 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1501 } 1502 }else{ 1503 const char *z = pEList->a[i].zSpan; 1504 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1505 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1506 } 1507 } 1508 generateColumnTypes(pParse, pTabList, pEList); 1509 } 1510 1511 /* 1512 ** Given a an expression list (which is really the list of expressions 1513 ** that form the result set of a SELECT statement) compute appropriate 1514 ** column names for a table that would hold the expression list. 1515 ** 1516 ** All column names will be unique. 1517 ** 1518 ** Only the column names are computed. Column.zType, Column.zColl, 1519 ** and other fields of Column are zeroed. 1520 ** 1521 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1522 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1523 */ 1524 static int selectColumnsFromExprList( 1525 Parse *pParse, /* Parsing context */ 1526 ExprList *pEList, /* Expr list from which to derive column names */ 1527 i16 *pnCol, /* Write the number of columns here */ 1528 Column **paCol /* Write the new column list here */ 1529 ){ 1530 sqlite3 *db = pParse->db; /* Database connection */ 1531 int i, j; /* Loop counters */ 1532 int cnt; /* Index added to make the name unique */ 1533 Column *aCol, *pCol; /* For looping over result columns */ 1534 int nCol; /* Number of columns in the result set */ 1535 Expr *p; /* Expression for a single result column */ 1536 char *zName; /* Column name */ 1537 int nName; /* Size of name in zName[] */ 1538 1539 if( pEList ){ 1540 nCol = pEList->nExpr; 1541 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1542 testcase( aCol==0 ); 1543 }else{ 1544 nCol = 0; 1545 aCol = 0; 1546 } 1547 *pnCol = nCol; 1548 *paCol = aCol; 1549 1550 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1551 /* Get an appropriate name for the column 1552 */ 1553 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1554 if( (zName = pEList->a[i].zName)!=0 ){ 1555 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1556 zName = sqlite3DbStrDup(db, zName); 1557 }else{ 1558 Expr *pColExpr = p; /* The expression that is the result column name */ 1559 Table *pTab; /* Table associated with this expression */ 1560 while( pColExpr->op==TK_DOT ){ 1561 pColExpr = pColExpr->pRight; 1562 assert( pColExpr!=0 ); 1563 } 1564 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1565 /* For columns use the column name name */ 1566 int iCol = pColExpr->iColumn; 1567 pTab = pColExpr->pTab; 1568 if( iCol<0 ) iCol = pTab->iPKey; 1569 zName = sqlite3MPrintf(db, "%s", 1570 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1571 }else if( pColExpr->op==TK_ID ){ 1572 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1573 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1574 }else{ 1575 /* Use the original text of the column expression as its name */ 1576 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1577 } 1578 } 1579 if( db->mallocFailed ){ 1580 sqlite3DbFree(db, zName); 1581 break; 1582 } 1583 1584 /* Make sure the column name is unique. If the name is not unique, 1585 ** append a integer to the name so that it becomes unique. 1586 */ 1587 nName = sqlite3Strlen30(zName); 1588 for(j=cnt=0; j<i; j++){ 1589 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1590 char *zNewName; 1591 int k; 1592 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1593 if( k>=0 && zName[k]==':' ) nName = k; 1594 zName[nName] = 0; 1595 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1596 sqlite3DbFree(db, zName); 1597 zName = zNewName; 1598 j = -1; 1599 if( zName==0 ) break; 1600 } 1601 } 1602 pCol->zName = zName; 1603 } 1604 if( db->mallocFailed ){ 1605 for(j=0; j<i; j++){ 1606 sqlite3DbFree(db, aCol[j].zName); 1607 } 1608 sqlite3DbFree(db, aCol); 1609 *paCol = 0; 1610 *pnCol = 0; 1611 return SQLITE_NOMEM; 1612 } 1613 return SQLITE_OK; 1614 } 1615 1616 /* 1617 ** Add type and collation information to a column list based on 1618 ** a SELECT statement. 1619 ** 1620 ** The column list presumably came from selectColumnNamesFromExprList(). 1621 ** The column list has only names, not types or collations. This 1622 ** routine goes through and adds the types and collations. 1623 ** 1624 ** This routine requires that all identifiers in the SELECT 1625 ** statement be resolved. 1626 */ 1627 static void selectAddColumnTypeAndCollation( 1628 Parse *pParse, /* Parsing contexts */ 1629 Table *pTab, /* Add column type information to this table */ 1630 Select *pSelect /* SELECT used to determine types and collations */ 1631 ){ 1632 sqlite3 *db = pParse->db; 1633 NameContext sNC; 1634 Column *pCol; 1635 CollSeq *pColl; 1636 int i; 1637 Expr *p; 1638 struct ExprList_item *a; 1639 u64 szAll = 0; 1640 1641 assert( pSelect!=0 ); 1642 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1643 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1644 if( db->mallocFailed ) return; 1645 memset(&sNC, 0, sizeof(sNC)); 1646 sNC.pSrcList = pSelect->pSrc; 1647 a = pSelect->pEList->a; 1648 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1649 p = a[i].pExpr; 1650 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1651 szAll += pCol->szEst; 1652 pCol->affinity = sqlite3ExprAffinity(p); 1653 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1654 pColl = sqlite3ExprCollSeq(pParse, p); 1655 if( pColl ){ 1656 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1657 } 1658 } 1659 pTab->szTabRow = sqlite3LogEst(szAll*4); 1660 } 1661 1662 /* 1663 ** Given a SELECT statement, generate a Table structure that describes 1664 ** the result set of that SELECT. 1665 */ 1666 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1667 Table *pTab; 1668 sqlite3 *db = pParse->db; 1669 int savedFlags; 1670 1671 savedFlags = db->flags; 1672 db->flags &= ~SQLITE_FullColNames; 1673 db->flags |= SQLITE_ShortColNames; 1674 sqlite3SelectPrep(pParse, pSelect, 0); 1675 if( pParse->nErr ) return 0; 1676 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1677 db->flags = savedFlags; 1678 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1679 if( pTab==0 ){ 1680 return 0; 1681 } 1682 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1683 ** is disabled */ 1684 assert( db->lookaside.bEnabled==0 ); 1685 pTab->nRef = 1; 1686 pTab->zName = 0; 1687 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1688 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1689 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1690 pTab->iPKey = -1; 1691 if( db->mallocFailed ){ 1692 sqlite3DeleteTable(db, pTab); 1693 return 0; 1694 } 1695 return pTab; 1696 } 1697 1698 /* 1699 ** Get a VDBE for the given parser context. Create a new one if necessary. 1700 ** If an error occurs, return NULL and leave a message in pParse. 1701 */ 1702 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1703 Vdbe *v = pParse->pVdbe; 1704 if( v==0 ){ 1705 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1706 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1707 if( pParse->pToplevel==0 1708 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1709 ){ 1710 pParse->okConstFactor = 1; 1711 } 1712 1713 } 1714 return v; 1715 } 1716 1717 1718 /* 1719 ** Compute the iLimit and iOffset fields of the SELECT based on the 1720 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1721 ** that appear in the original SQL statement after the LIMIT and OFFSET 1722 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1723 ** are the integer memory register numbers for counters used to compute 1724 ** the limit and offset. If there is no limit and/or offset, then 1725 ** iLimit and iOffset are negative. 1726 ** 1727 ** This routine changes the values of iLimit and iOffset only if 1728 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1729 ** iOffset should have been preset to appropriate default values (zero) 1730 ** prior to calling this routine. 1731 ** 1732 ** The iOffset register (if it exists) is initialized to the value 1733 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1734 ** iOffset+1 is initialized to LIMIT+OFFSET. 1735 ** 1736 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1737 ** redefined. The UNION ALL operator uses this property to force 1738 ** the reuse of the same limit and offset registers across multiple 1739 ** SELECT statements. 1740 */ 1741 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1742 Vdbe *v = 0; 1743 int iLimit = 0; 1744 int iOffset; 1745 int addr1, n; 1746 if( p->iLimit ) return; 1747 1748 /* 1749 ** "LIMIT -1" always shows all rows. There is some 1750 ** controversy about what the correct behavior should be. 1751 ** The current implementation interprets "LIMIT 0" to mean 1752 ** no rows. 1753 */ 1754 sqlite3ExprCacheClear(pParse); 1755 assert( p->pOffset==0 || p->pLimit!=0 ); 1756 if( p->pLimit ){ 1757 p->iLimit = iLimit = ++pParse->nMem; 1758 v = sqlite3GetVdbe(pParse); 1759 assert( v!=0 ); 1760 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1761 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1762 VdbeComment((v, "LIMIT counter")); 1763 if( n==0 ){ 1764 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1765 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1766 p->nSelectRow = n; 1767 } 1768 }else{ 1769 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1770 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1771 VdbeComment((v, "LIMIT counter")); 1772 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); 1773 } 1774 if( p->pOffset ){ 1775 p->iOffset = iOffset = ++pParse->nMem; 1776 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1777 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1778 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1779 VdbeComment((v, "OFFSET counter")); 1780 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1781 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1782 sqlite3VdbeJumpHere(v, addr1); 1783 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1784 VdbeComment((v, "LIMIT+OFFSET")); 1785 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1786 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1787 sqlite3VdbeJumpHere(v, addr1); 1788 } 1789 } 1790 } 1791 1792 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1793 /* 1794 ** Return the appropriate collating sequence for the iCol-th column of 1795 ** the result set for the compound-select statement "p". Return NULL if 1796 ** the column has no default collating sequence. 1797 ** 1798 ** The collating sequence for the compound select is taken from the 1799 ** left-most term of the select that has a collating sequence. 1800 */ 1801 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1802 CollSeq *pRet; 1803 if( p->pPrior ){ 1804 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1805 }else{ 1806 pRet = 0; 1807 } 1808 assert( iCol>=0 ); 1809 if( pRet==0 && iCol<p->pEList->nExpr ){ 1810 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1811 } 1812 return pRet; 1813 } 1814 1815 /* 1816 ** The select statement passed as the second parameter is a compound SELECT 1817 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1818 ** structure suitable for implementing the ORDER BY. 1819 ** 1820 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1821 ** function is responsible for ensuring that this structure is eventually 1822 ** freed. 1823 */ 1824 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1825 ExprList *pOrderBy = p->pOrderBy; 1826 int nOrderBy = p->pOrderBy->nExpr; 1827 sqlite3 *db = pParse->db; 1828 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1829 if( pRet ){ 1830 int i; 1831 for(i=0; i<nOrderBy; i++){ 1832 struct ExprList_item *pItem = &pOrderBy->a[i]; 1833 Expr *pTerm = pItem->pExpr; 1834 CollSeq *pColl; 1835 1836 if( pTerm->flags & EP_Collate ){ 1837 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1838 }else{ 1839 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1840 if( pColl==0 ) pColl = db->pDfltColl; 1841 pOrderBy->a[i].pExpr = 1842 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1843 } 1844 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1845 pRet->aColl[i] = pColl; 1846 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1847 } 1848 } 1849 1850 return pRet; 1851 } 1852 1853 #ifndef SQLITE_OMIT_CTE 1854 /* 1855 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1856 ** query of the form: 1857 ** 1858 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1859 ** \___________/ \_______________/ 1860 ** p->pPrior p 1861 ** 1862 ** 1863 ** There is exactly one reference to the recursive-table in the FROM clause 1864 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1865 ** 1866 ** The setup-query runs once to generate an initial set of rows that go 1867 ** into a Queue table. Rows are extracted from the Queue table one by 1868 ** one. Each row extracted from Queue is output to pDest. Then the single 1869 ** extracted row (now in the iCurrent table) becomes the content of the 1870 ** recursive-table for a recursive-query run. The output of the recursive-query 1871 ** is added back into the Queue table. Then another row is extracted from Queue 1872 ** and the iteration continues until the Queue table is empty. 1873 ** 1874 ** If the compound query operator is UNION then no duplicate rows are ever 1875 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1876 ** that have ever been inserted into Queue and causes duplicates to be 1877 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1878 ** 1879 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1880 ** ORDER BY order and the first entry is extracted for each cycle. Without 1881 ** an ORDER BY, the Queue table is just a FIFO. 1882 ** 1883 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1884 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1885 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1886 ** with a positive value, then the first OFFSET outputs are discarded rather 1887 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1888 ** rows have been skipped. 1889 */ 1890 static void generateWithRecursiveQuery( 1891 Parse *pParse, /* Parsing context */ 1892 Select *p, /* The recursive SELECT to be coded */ 1893 SelectDest *pDest /* What to do with query results */ 1894 ){ 1895 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1896 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1897 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1898 Select *pSetup = p->pPrior; /* The setup query */ 1899 int addrTop; /* Top of the loop */ 1900 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1901 int iCurrent = 0; /* The Current table */ 1902 int regCurrent; /* Register holding Current table */ 1903 int iQueue; /* The Queue table */ 1904 int iDistinct = 0; /* To ensure unique results if UNION */ 1905 int eDest = SRT_Fifo; /* How to write to Queue */ 1906 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1907 int i; /* Loop counter */ 1908 int rc; /* Result code */ 1909 ExprList *pOrderBy; /* The ORDER BY clause */ 1910 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1911 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1912 1913 /* Obtain authorization to do a recursive query */ 1914 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1915 1916 /* Process the LIMIT and OFFSET clauses, if they exist */ 1917 addrBreak = sqlite3VdbeMakeLabel(v); 1918 computeLimitRegisters(pParse, p, addrBreak); 1919 pLimit = p->pLimit; 1920 pOffset = p->pOffset; 1921 regLimit = p->iLimit; 1922 regOffset = p->iOffset; 1923 p->pLimit = p->pOffset = 0; 1924 p->iLimit = p->iOffset = 0; 1925 pOrderBy = p->pOrderBy; 1926 1927 /* Locate the cursor number of the Current table */ 1928 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1929 if( pSrc->a[i].isRecursive ){ 1930 iCurrent = pSrc->a[i].iCursor; 1931 break; 1932 } 1933 } 1934 1935 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1936 ** the Distinct table must be exactly one greater than Queue in order 1937 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1938 iQueue = pParse->nTab++; 1939 if( p->op==TK_UNION ){ 1940 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1941 iDistinct = pParse->nTab++; 1942 }else{ 1943 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1944 } 1945 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 1946 1947 /* Allocate cursors for Current, Queue, and Distinct. */ 1948 regCurrent = ++pParse->nMem; 1949 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 1950 if( pOrderBy ){ 1951 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 1952 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 1953 (char*)pKeyInfo, P4_KEYINFO); 1954 destQueue.pOrderBy = pOrderBy; 1955 }else{ 1956 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 1957 } 1958 VdbeComment((v, "Queue table")); 1959 if( iDistinct ){ 1960 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 1961 p->selFlags |= SF_UsesEphemeral; 1962 } 1963 1964 /* Detach the ORDER BY clause from the compound SELECT */ 1965 p->pOrderBy = 0; 1966 1967 /* Store the results of the setup-query in Queue. */ 1968 pSetup->pNext = 0; 1969 rc = sqlite3Select(pParse, pSetup, &destQueue); 1970 pSetup->pNext = p; 1971 if( rc ) goto end_of_recursive_query; 1972 1973 /* Find the next row in the Queue and output that row */ 1974 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 1975 1976 /* Transfer the next row in Queue over to Current */ 1977 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 1978 if( pOrderBy ){ 1979 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 1980 }else{ 1981 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 1982 } 1983 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 1984 1985 /* Output the single row in Current */ 1986 addrCont = sqlite3VdbeMakeLabel(v); 1987 codeOffset(v, regOffset, addrCont); 1988 selectInnerLoop(pParse, p, p->pEList, iCurrent, 1989 0, 0, pDest, addrCont, addrBreak); 1990 if( regLimit ){ 1991 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 1992 VdbeCoverage(v); 1993 } 1994 sqlite3VdbeResolveLabel(v, addrCont); 1995 1996 /* Execute the recursive SELECT taking the single row in Current as 1997 ** the value for the recursive-table. Store the results in the Queue. 1998 */ 1999 p->pPrior = 0; 2000 sqlite3Select(pParse, p, &destQueue); 2001 assert( p->pPrior==0 ); 2002 p->pPrior = pSetup; 2003 2004 /* Keep running the loop until the Queue is empty */ 2005 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2006 sqlite3VdbeResolveLabel(v, addrBreak); 2007 2008 end_of_recursive_query: 2009 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2010 p->pOrderBy = pOrderBy; 2011 p->pLimit = pLimit; 2012 p->pOffset = pOffset; 2013 return; 2014 } 2015 #endif /* SQLITE_OMIT_CTE */ 2016 2017 /* Forward references */ 2018 static int multiSelectOrderBy( 2019 Parse *pParse, /* Parsing context */ 2020 Select *p, /* The right-most of SELECTs to be coded */ 2021 SelectDest *pDest /* What to do with query results */ 2022 ); 2023 2024 2025 /* 2026 ** This routine is called to process a compound query form from 2027 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2028 ** INTERSECT 2029 ** 2030 ** "p" points to the right-most of the two queries. the query on the 2031 ** left is p->pPrior. The left query could also be a compound query 2032 ** in which case this routine will be called recursively. 2033 ** 2034 ** The results of the total query are to be written into a destination 2035 ** of type eDest with parameter iParm. 2036 ** 2037 ** Example 1: Consider a three-way compound SQL statement. 2038 ** 2039 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2040 ** 2041 ** This statement is parsed up as follows: 2042 ** 2043 ** SELECT c FROM t3 2044 ** | 2045 ** `-----> SELECT b FROM t2 2046 ** | 2047 ** `------> SELECT a FROM t1 2048 ** 2049 ** The arrows in the diagram above represent the Select.pPrior pointer. 2050 ** So if this routine is called with p equal to the t3 query, then 2051 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2052 ** 2053 ** Notice that because of the way SQLite parses compound SELECTs, the 2054 ** individual selects always group from left to right. 2055 */ 2056 static int multiSelect( 2057 Parse *pParse, /* Parsing context */ 2058 Select *p, /* The right-most of SELECTs to be coded */ 2059 SelectDest *pDest /* What to do with query results */ 2060 ){ 2061 int rc = SQLITE_OK; /* Success code from a subroutine */ 2062 Select *pPrior; /* Another SELECT immediately to our left */ 2063 Vdbe *v; /* Generate code to this VDBE */ 2064 SelectDest dest; /* Alternative data destination */ 2065 Select *pDelete = 0; /* Chain of simple selects to delete */ 2066 sqlite3 *db; /* Database connection */ 2067 #ifndef SQLITE_OMIT_EXPLAIN 2068 int iSub1 = 0; /* EQP id of left-hand query */ 2069 int iSub2 = 0; /* EQP id of right-hand query */ 2070 #endif 2071 2072 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2073 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2074 */ 2075 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2076 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2077 db = pParse->db; 2078 pPrior = p->pPrior; 2079 dest = *pDest; 2080 if( pPrior->pOrderBy ){ 2081 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2082 selectOpName(p->op)); 2083 rc = 1; 2084 goto multi_select_end; 2085 } 2086 if( pPrior->pLimit ){ 2087 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2088 selectOpName(p->op)); 2089 rc = 1; 2090 goto multi_select_end; 2091 } 2092 2093 v = sqlite3GetVdbe(pParse); 2094 assert( v!=0 ); /* The VDBE already created by calling function */ 2095 2096 /* Create the destination temporary table if necessary 2097 */ 2098 if( dest.eDest==SRT_EphemTab ){ 2099 assert( p->pEList ); 2100 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2101 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2102 dest.eDest = SRT_Table; 2103 } 2104 2105 /* Make sure all SELECTs in the statement have the same number of elements 2106 ** in their result sets. 2107 */ 2108 assert( p->pEList && pPrior->pEList ); 2109 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2110 if( p->selFlags & SF_Values ){ 2111 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2112 }else{ 2113 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2114 " do not have the same number of result columns", selectOpName(p->op)); 2115 } 2116 rc = 1; 2117 goto multi_select_end; 2118 } 2119 2120 #ifndef SQLITE_OMIT_CTE 2121 if( p->selFlags & SF_Recursive ){ 2122 generateWithRecursiveQuery(pParse, p, &dest); 2123 }else 2124 #endif 2125 2126 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2127 */ 2128 if( p->pOrderBy ){ 2129 return multiSelectOrderBy(pParse, p, pDest); 2130 }else 2131 2132 /* Generate code for the left and right SELECT statements. 2133 */ 2134 switch( p->op ){ 2135 case TK_ALL: { 2136 int addr = 0; 2137 int nLimit; 2138 assert( !pPrior->pLimit ); 2139 pPrior->iLimit = p->iLimit; 2140 pPrior->iOffset = p->iOffset; 2141 pPrior->pLimit = p->pLimit; 2142 pPrior->pOffset = p->pOffset; 2143 explainSetInteger(iSub1, pParse->iNextSelectId); 2144 rc = sqlite3Select(pParse, pPrior, &dest); 2145 p->pLimit = 0; 2146 p->pOffset = 0; 2147 if( rc ){ 2148 goto multi_select_end; 2149 } 2150 p->pPrior = 0; 2151 p->iLimit = pPrior->iLimit; 2152 p->iOffset = pPrior->iOffset; 2153 if( p->iLimit ){ 2154 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); 2155 VdbeComment((v, "Jump ahead if LIMIT reached")); 2156 } 2157 explainSetInteger(iSub2, pParse->iNextSelectId); 2158 rc = sqlite3Select(pParse, p, &dest); 2159 testcase( rc!=SQLITE_OK ); 2160 pDelete = p->pPrior; 2161 p->pPrior = pPrior; 2162 p->nSelectRow += pPrior->nSelectRow; 2163 if( pPrior->pLimit 2164 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2165 && nLimit>0 && p->nSelectRow > (u64)nLimit 2166 ){ 2167 p->nSelectRow = nLimit; 2168 } 2169 if( addr ){ 2170 sqlite3VdbeJumpHere(v, addr); 2171 } 2172 break; 2173 } 2174 case TK_EXCEPT: 2175 case TK_UNION: { 2176 int unionTab; /* Cursor number of the temporary table holding result */ 2177 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2178 int priorOp; /* The SRT_ operation to apply to prior selects */ 2179 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2180 int addr; 2181 SelectDest uniondest; 2182 2183 testcase( p->op==TK_EXCEPT ); 2184 testcase( p->op==TK_UNION ); 2185 priorOp = SRT_Union; 2186 if( dest.eDest==priorOp ){ 2187 /* We can reuse a temporary table generated by a SELECT to our 2188 ** right. 2189 */ 2190 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2191 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2192 unionTab = dest.iSDParm; 2193 }else{ 2194 /* We will need to create our own temporary table to hold the 2195 ** intermediate results. 2196 */ 2197 unionTab = pParse->nTab++; 2198 assert( p->pOrderBy==0 ); 2199 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2200 assert( p->addrOpenEphm[0] == -1 ); 2201 p->addrOpenEphm[0] = addr; 2202 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2203 assert( p->pEList ); 2204 } 2205 2206 /* Code the SELECT statements to our left 2207 */ 2208 assert( !pPrior->pOrderBy ); 2209 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2210 explainSetInteger(iSub1, pParse->iNextSelectId); 2211 rc = sqlite3Select(pParse, pPrior, &uniondest); 2212 if( rc ){ 2213 goto multi_select_end; 2214 } 2215 2216 /* Code the current SELECT statement 2217 */ 2218 if( p->op==TK_EXCEPT ){ 2219 op = SRT_Except; 2220 }else{ 2221 assert( p->op==TK_UNION ); 2222 op = SRT_Union; 2223 } 2224 p->pPrior = 0; 2225 pLimit = p->pLimit; 2226 p->pLimit = 0; 2227 pOffset = p->pOffset; 2228 p->pOffset = 0; 2229 uniondest.eDest = op; 2230 explainSetInteger(iSub2, pParse->iNextSelectId); 2231 rc = sqlite3Select(pParse, p, &uniondest); 2232 testcase( rc!=SQLITE_OK ); 2233 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2234 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2235 sqlite3ExprListDelete(db, p->pOrderBy); 2236 pDelete = p->pPrior; 2237 p->pPrior = pPrior; 2238 p->pOrderBy = 0; 2239 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2240 sqlite3ExprDelete(db, p->pLimit); 2241 p->pLimit = pLimit; 2242 p->pOffset = pOffset; 2243 p->iLimit = 0; 2244 p->iOffset = 0; 2245 2246 /* Convert the data in the temporary table into whatever form 2247 ** it is that we currently need. 2248 */ 2249 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2250 if( dest.eDest!=priorOp ){ 2251 int iCont, iBreak, iStart; 2252 assert( p->pEList ); 2253 if( dest.eDest==SRT_Output ){ 2254 Select *pFirst = p; 2255 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2256 generateColumnNames(pParse, 0, pFirst->pEList); 2257 } 2258 iBreak = sqlite3VdbeMakeLabel(v); 2259 iCont = sqlite3VdbeMakeLabel(v); 2260 computeLimitRegisters(pParse, p, iBreak); 2261 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2262 iStart = sqlite3VdbeCurrentAddr(v); 2263 selectInnerLoop(pParse, p, p->pEList, unionTab, 2264 0, 0, &dest, iCont, iBreak); 2265 sqlite3VdbeResolveLabel(v, iCont); 2266 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2267 sqlite3VdbeResolveLabel(v, iBreak); 2268 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2269 } 2270 break; 2271 } 2272 default: assert( p->op==TK_INTERSECT ); { 2273 int tab1, tab2; 2274 int iCont, iBreak, iStart; 2275 Expr *pLimit, *pOffset; 2276 int addr; 2277 SelectDest intersectdest; 2278 int r1; 2279 2280 /* INTERSECT is different from the others since it requires 2281 ** two temporary tables. Hence it has its own case. Begin 2282 ** by allocating the tables we will need. 2283 */ 2284 tab1 = pParse->nTab++; 2285 tab2 = pParse->nTab++; 2286 assert( p->pOrderBy==0 ); 2287 2288 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2289 assert( p->addrOpenEphm[0] == -1 ); 2290 p->addrOpenEphm[0] = addr; 2291 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2292 assert( p->pEList ); 2293 2294 /* Code the SELECTs to our left into temporary table "tab1". 2295 */ 2296 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2297 explainSetInteger(iSub1, pParse->iNextSelectId); 2298 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2299 if( rc ){ 2300 goto multi_select_end; 2301 } 2302 2303 /* Code the current SELECT into temporary table "tab2" 2304 */ 2305 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2306 assert( p->addrOpenEphm[1] == -1 ); 2307 p->addrOpenEphm[1] = addr; 2308 p->pPrior = 0; 2309 pLimit = p->pLimit; 2310 p->pLimit = 0; 2311 pOffset = p->pOffset; 2312 p->pOffset = 0; 2313 intersectdest.iSDParm = tab2; 2314 explainSetInteger(iSub2, pParse->iNextSelectId); 2315 rc = sqlite3Select(pParse, p, &intersectdest); 2316 testcase( rc!=SQLITE_OK ); 2317 pDelete = p->pPrior; 2318 p->pPrior = pPrior; 2319 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2320 sqlite3ExprDelete(db, p->pLimit); 2321 p->pLimit = pLimit; 2322 p->pOffset = pOffset; 2323 2324 /* Generate code to take the intersection of the two temporary 2325 ** tables. 2326 */ 2327 assert( p->pEList ); 2328 if( dest.eDest==SRT_Output ){ 2329 Select *pFirst = p; 2330 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2331 generateColumnNames(pParse, 0, pFirst->pEList); 2332 } 2333 iBreak = sqlite3VdbeMakeLabel(v); 2334 iCont = sqlite3VdbeMakeLabel(v); 2335 computeLimitRegisters(pParse, p, iBreak); 2336 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2337 r1 = sqlite3GetTempReg(pParse); 2338 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2339 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2340 sqlite3ReleaseTempReg(pParse, r1); 2341 selectInnerLoop(pParse, p, p->pEList, tab1, 2342 0, 0, &dest, iCont, iBreak); 2343 sqlite3VdbeResolveLabel(v, iCont); 2344 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2345 sqlite3VdbeResolveLabel(v, iBreak); 2346 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2347 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2348 break; 2349 } 2350 } 2351 2352 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2353 2354 /* Compute collating sequences used by 2355 ** temporary tables needed to implement the compound select. 2356 ** Attach the KeyInfo structure to all temporary tables. 2357 ** 2358 ** This section is run by the right-most SELECT statement only. 2359 ** SELECT statements to the left always skip this part. The right-most 2360 ** SELECT might also skip this part if it has no ORDER BY clause and 2361 ** no temp tables are required. 2362 */ 2363 if( p->selFlags & SF_UsesEphemeral ){ 2364 int i; /* Loop counter */ 2365 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2366 Select *pLoop; /* For looping through SELECT statements */ 2367 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2368 int nCol; /* Number of columns in result set */ 2369 2370 assert( p->pNext==0 ); 2371 nCol = p->pEList->nExpr; 2372 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2373 if( !pKeyInfo ){ 2374 rc = SQLITE_NOMEM; 2375 goto multi_select_end; 2376 } 2377 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2378 *apColl = multiSelectCollSeq(pParse, p, i); 2379 if( 0==*apColl ){ 2380 *apColl = db->pDfltColl; 2381 } 2382 } 2383 2384 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2385 for(i=0; i<2; i++){ 2386 int addr = pLoop->addrOpenEphm[i]; 2387 if( addr<0 ){ 2388 /* If [0] is unused then [1] is also unused. So we can 2389 ** always safely abort as soon as the first unused slot is found */ 2390 assert( pLoop->addrOpenEphm[1]<0 ); 2391 break; 2392 } 2393 sqlite3VdbeChangeP2(v, addr, nCol); 2394 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2395 P4_KEYINFO); 2396 pLoop->addrOpenEphm[i] = -1; 2397 } 2398 } 2399 sqlite3KeyInfoUnref(pKeyInfo); 2400 } 2401 2402 multi_select_end: 2403 pDest->iSdst = dest.iSdst; 2404 pDest->nSdst = dest.nSdst; 2405 sqlite3SelectDelete(db, pDelete); 2406 return rc; 2407 } 2408 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2409 2410 /* 2411 ** Code an output subroutine for a coroutine implementation of a 2412 ** SELECT statment. 2413 ** 2414 ** The data to be output is contained in pIn->iSdst. There are 2415 ** pIn->nSdst columns to be output. pDest is where the output should 2416 ** be sent. 2417 ** 2418 ** regReturn is the number of the register holding the subroutine 2419 ** return address. 2420 ** 2421 ** If regPrev>0 then it is the first register in a vector that 2422 ** records the previous output. mem[regPrev] is a flag that is false 2423 ** if there has been no previous output. If regPrev>0 then code is 2424 ** generated to suppress duplicates. pKeyInfo is used for comparing 2425 ** keys. 2426 ** 2427 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2428 ** iBreak. 2429 */ 2430 static int generateOutputSubroutine( 2431 Parse *pParse, /* Parsing context */ 2432 Select *p, /* The SELECT statement */ 2433 SelectDest *pIn, /* Coroutine supplying data */ 2434 SelectDest *pDest, /* Where to send the data */ 2435 int regReturn, /* The return address register */ 2436 int regPrev, /* Previous result register. No uniqueness if 0 */ 2437 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2438 int iBreak /* Jump here if we hit the LIMIT */ 2439 ){ 2440 Vdbe *v = pParse->pVdbe; 2441 int iContinue; 2442 int addr; 2443 2444 addr = sqlite3VdbeCurrentAddr(v); 2445 iContinue = sqlite3VdbeMakeLabel(v); 2446 2447 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2448 */ 2449 if( regPrev ){ 2450 int j1, j2; 2451 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2452 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2453 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2454 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2455 sqlite3VdbeJumpHere(v, j1); 2456 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2457 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2458 } 2459 if( pParse->db->mallocFailed ) return 0; 2460 2461 /* Suppress the first OFFSET entries if there is an OFFSET clause 2462 */ 2463 codeOffset(v, p->iOffset, iContinue); 2464 2465 switch( pDest->eDest ){ 2466 /* Store the result as data using a unique key. 2467 */ 2468 case SRT_Table: 2469 case SRT_EphemTab: { 2470 int r1 = sqlite3GetTempReg(pParse); 2471 int r2 = sqlite3GetTempReg(pParse); 2472 testcase( pDest->eDest==SRT_Table ); 2473 testcase( pDest->eDest==SRT_EphemTab ); 2474 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2475 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2476 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2477 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2478 sqlite3ReleaseTempReg(pParse, r2); 2479 sqlite3ReleaseTempReg(pParse, r1); 2480 break; 2481 } 2482 2483 #ifndef SQLITE_OMIT_SUBQUERY 2484 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2485 ** then there should be a single item on the stack. Write this 2486 ** item into the set table with bogus data. 2487 */ 2488 case SRT_Set: { 2489 int r1; 2490 assert( pIn->nSdst==1 ); 2491 pDest->affSdst = 2492 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2493 r1 = sqlite3GetTempReg(pParse); 2494 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2495 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2496 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2497 sqlite3ReleaseTempReg(pParse, r1); 2498 break; 2499 } 2500 2501 #if 0 /* Never occurs on an ORDER BY query */ 2502 /* If any row exist in the result set, record that fact and abort. 2503 */ 2504 case SRT_Exists: { 2505 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2506 /* The LIMIT clause will terminate the loop for us */ 2507 break; 2508 } 2509 #endif 2510 2511 /* If this is a scalar select that is part of an expression, then 2512 ** store the results in the appropriate memory cell and break out 2513 ** of the scan loop. 2514 */ 2515 case SRT_Mem: { 2516 assert( pIn->nSdst==1 ); 2517 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2518 /* The LIMIT clause will jump out of the loop for us */ 2519 break; 2520 } 2521 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2522 2523 /* The results are stored in a sequence of registers 2524 ** starting at pDest->iSdst. Then the co-routine yields. 2525 */ 2526 case SRT_Coroutine: { 2527 if( pDest->iSdst==0 ){ 2528 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2529 pDest->nSdst = pIn->nSdst; 2530 } 2531 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2532 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2533 break; 2534 } 2535 2536 /* If none of the above, then the result destination must be 2537 ** SRT_Output. This routine is never called with any other 2538 ** destination other than the ones handled above or SRT_Output. 2539 ** 2540 ** For SRT_Output, results are stored in a sequence of registers. 2541 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2542 ** return the next row of result. 2543 */ 2544 default: { 2545 assert( pDest->eDest==SRT_Output ); 2546 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2547 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2548 break; 2549 } 2550 } 2551 2552 /* Jump to the end of the loop if the LIMIT is reached. 2553 */ 2554 if( p->iLimit ){ 2555 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 2556 } 2557 2558 /* Generate the subroutine return 2559 */ 2560 sqlite3VdbeResolveLabel(v, iContinue); 2561 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2562 2563 return addr; 2564 } 2565 2566 /* 2567 ** Alternative compound select code generator for cases when there 2568 ** is an ORDER BY clause. 2569 ** 2570 ** We assume a query of the following form: 2571 ** 2572 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2573 ** 2574 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2575 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2576 ** co-routines. Then run the co-routines in parallel and merge the results 2577 ** into the output. In addition to the two coroutines (called selectA and 2578 ** selectB) there are 7 subroutines: 2579 ** 2580 ** outA: Move the output of the selectA coroutine into the output 2581 ** of the compound query. 2582 ** 2583 ** outB: Move the output of the selectB coroutine into the output 2584 ** of the compound query. (Only generated for UNION and 2585 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2586 ** appears only in B.) 2587 ** 2588 ** AltB: Called when there is data from both coroutines and A<B. 2589 ** 2590 ** AeqB: Called when there is data from both coroutines and A==B. 2591 ** 2592 ** AgtB: Called when there is data from both coroutines and A>B. 2593 ** 2594 ** EofA: Called when data is exhausted from selectA. 2595 ** 2596 ** EofB: Called when data is exhausted from selectB. 2597 ** 2598 ** The implementation of the latter five subroutines depend on which 2599 ** <operator> is used: 2600 ** 2601 ** 2602 ** UNION ALL UNION EXCEPT INTERSECT 2603 ** ------------- ----------------- -------------- ----------------- 2604 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2605 ** 2606 ** AeqB: outA, nextA nextA nextA outA, nextA 2607 ** 2608 ** AgtB: outB, nextB outB, nextB nextB nextB 2609 ** 2610 ** EofA: outB, nextB outB, nextB halt halt 2611 ** 2612 ** EofB: outA, nextA outA, nextA outA, nextA halt 2613 ** 2614 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2615 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2616 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2617 ** following nextX causes a jump to the end of the select processing. 2618 ** 2619 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2620 ** within the output subroutine. The regPrev register set holds the previously 2621 ** output value. A comparison is made against this value and the output 2622 ** is skipped if the next results would be the same as the previous. 2623 ** 2624 ** The implementation plan is to implement the two coroutines and seven 2625 ** subroutines first, then put the control logic at the bottom. Like this: 2626 ** 2627 ** goto Init 2628 ** coA: coroutine for left query (A) 2629 ** coB: coroutine for right query (B) 2630 ** outA: output one row of A 2631 ** outB: output one row of B (UNION and UNION ALL only) 2632 ** EofA: ... 2633 ** EofB: ... 2634 ** AltB: ... 2635 ** AeqB: ... 2636 ** AgtB: ... 2637 ** Init: initialize coroutine registers 2638 ** yield coA 2639 ** if eof(A) goto EofA 2640 ** yield coB 2641 ** if eof(B) goto EofB 2642 ** Cmpr: Compare A, B 2643 ** Jump AltB, AeqB, AgtB 2644 ** End: ... 2645 ** 2646 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2647 ** actually called using Gosub and they do not Return. EofA and EofB loop 2648 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2649 ** and AgtB jump to either L2 or to one of EofA or EofB. 2650 */ 2651 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2652 static int multiSelectOrderBy( 2653 Parse *pParse, /* Parsing context */ 2654 Select *p, /* The right-most of SELECTs to be coded */ 2655 SelectDest *pDest /* What to do with query results */ 2656 ){ 2657 int i, j; /* Loop counters */ 2658 Select *pPrior; /* Another SELECT immediately to our left */ 2659 Vdbe *v; /* Generate code to this VDBE */ 2660 SelectDest destA; /* Destination for coroutine A */ 2661 SelectDest destB; /* Destination for coroutine B */ 2662 int regAddrA; /* Address register for select-A coroutine */ 2663 int regAddrB; /* Address register for select-B coroutine */ 2664 int addrSelectA; /* Address of the select-A coroutine */ 2665 int addrSelectB; /* Address of the select-B coroutine */ 2666 int regOutA; /* Address register for the output-A subroutine */ 2667 int regOutB; /* Address register for the output-B subroutine */ 2668 int addrOutA; /* Address of the output-A subroutine */ 2669 int addrOutB = 0; /* Address of the output-B subroutine */ 2670 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2671 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2672 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2673 int addrAltB; /* Address of the A<B subroutine */ 2674 int addrAeqB; /* Address of the A==B subroutine */ 2675 int addrAgtB; /* Address of the A>B subroutine */ 2676 int regLimitA; /* Limit register for select-A */ 2677 int regLimitB; /* Limit register for select-A */ 2678 int regPrev; /* A range of registers to hold previous output */ 2679 int savedLimit; /* Saved value of p->iLimit */ 2680 int savedOffset; /* Saved value of p->iOffset */ 2681 int labelCmpr; /* Label for the start of the merge algorithm */ 2682 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2683 int j1; /* Jump instructions that get retargetted */ 2684 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2685 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2686 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2687 sqlite3 *db; /* Database connection */ 2688 ExprList *pOrderBy; /* The ORDER BY clause */ 2689 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2690 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2691 #ifndef SQLITE_OMIT_EXPLAIN 2692 int iSub1; /* EQP id of left-hand query */ 2693 int iSub2; /* EQP id of right-hand query */ 2694 #endif 2695 2696 assert( p->pOrderBy!=0 ); 2697 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2698 db = pParse->db; 2699 v = pParse->pVdbe; 2700 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2701 labelEnd = sqlite3VdbeMakeLabel(v); 2702 labelCmpr = sqlite3VdbeMakeLabel(v); 2703 2704 2705 /* Patch up the ORDER BY clause 2706 */ 2707 op = p->op; 2708 pPrior = p->pPrior; 2709 assert( pPrior->pOrderBy==0 ); 2710 pOrderBy = p->pOrderBy; 2711 assert( pOrderBy ); 2712 nOrderBy = pOrderBy->nExpr; 2713 2714 /* For operators other than UNION ALL we have to make sure that 2715 ** the ORDER BY clause covers every term of the result set. Add 2716 ** terms to the ORDER BY clause as necessary. 2717 */ 2718 if( op!=TK_ALL ){ 2719 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2720 struct ExprList_item *pItem; 2721 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2722 assert( pItem->u.x.iOrderByCol>0 ); 2723 if( pItem->u.x.iOrderByCol==i ) break; 2724 } 2725 if( j==nOrderBy ){ 2726 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2727 if( pNew==0 ) return SQLITE_NOMEM; 2728 pNew->flags |= EP_IntValue; 2729 pNew->u.iValue = i; 2730 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2731 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2732 } 2733 } 2734 } 2735 2736 /* Compute the comparison permutation and keyinfo that is used with 2737 ** the permutation used to determine if the next 2738 ** row of results comes from selectA or selectB. Also add explicit 2739 ** collations to the ORDER BY clause terms so that when the subqueries 2740 ** to the right and the left are evaluated, they use the correct 2741 ** collation. 2742 */ 2743 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2744 if( aPermute ){ 2745 struct ExprList_item *pItem; 2746 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2747 assert( pItem->u.x.iOrderByCol>0 2748 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2749 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2750 } 2751 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2752 }else{ 2753 pKeyMerge = 0; 2754 } 2755 2756 /* Reattach the ORDER BY clause to the query. 2757 */ 2758 p->pOrderBy = pOrderBy; 2759 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2760 2761 /* Allocate a range of temporary registers and the KeyInfo needed 2762 ** for the logic that removes duplicate result rows when the 2763 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2764 */ 2765 if( op==TK_ALL ){ 2766 regPrev = 0; 2767 }else{ 2768 int nExpr = p->pEList->nExpr; 2769 assert( nOrderBy>=nExpr || db->mallocFailed ); 2770 regPrev = pParse->nMem+1; 2771 pParse->nMem += nExpr+1; 2772 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2773 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2774 if( pKeyDup ){ 2775 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2776 for(i=0; i<nExpr; i++){ 2777 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2778 pKeyDup->aSortOrder[i] = 0; 2779 } 2780 } 2781 } 2782 2783 /* Separate the left and the right query from one another 2784 */ 2785 p->pPrior = 0; 2786 pPrior->pNext = 0; 2787 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2788 if( pPrior->pPrior==0 ){ 2789 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2790 } 2791 2792 /* Compute the limit registers */ 2793 computeLimitRegisters(pParse, p, labelEnd); 2794 if( p->iLimit && op==TK_ALL ){ 2795 regLimitA = ++pParse->nMem; 2796 regLimitB = ++pParse->nMem; 2797 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2798 regLimitA); 2799 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2800 }else{ 2801 regLimitA = regLimitB = 0; 2802 } 2803 sqlite3ExprDelete(db, p->pLimit); 2804 p->pLimit = 0; 2805 sqlite3ExprDelete(db, p->pOffset); 2806 p->pOffset = 0; 2807 2808 regAddrA = ++pParse->nMem; 2809 regAddrB = ++pParse->nMem; 2810 regOutA = ++pParse->nMem; 2811 regOutB = ++pParse->nMem; 2812 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2813 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2814 2815 /* Generate a coroutine to evaluate the SELECT statement to the 2816 ** left of the compound operator - the "A" select. 2817 */ 2818 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2819 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2820 VdbeComment((v, "left SELECT")); 2821 pPrior->iLimit = regLimitA; 2822 explainSetInteger(iSub1, pParse->iNextSelectId); 2823 sqlite3Select(pParse, pPrior, &destA); 2824 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2825 sqlite3VdbeJumpHere(v, j1); 2826 2827 /* Generate a coroutine to evaluate the SELECT statement on 2828 ** the right - the "B" select 2829 */ 2830 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2831 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2832 VdbeComment((v, "right SELECT")); 2833 savedLimit = p->iLimit; 2834 savedOffset = p->iOffset; 2835 p->iLimit = regLimitB; 2836 p->iOffset = 0; 2837 explainSetInteger(iSub2, pParse->iNextSelectId); 2838 sqlite3Select(pParse, p, &destB); 2839 p->iLimit = savedLimit; 2840 p->iOffset = savedOffset; 2841 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2842 2843 /* Generate a subroutine that outputs the current row of the A 2844 ** select as the next output row of the compound select. 2845 */ 2846 VdbeNoopComment((v, "Output routine for A")); 2847 addrOutA = generateOutputSubroutine(pParse, 2848 p, &destA, pDest, regOutA, 2849 regPrev, pKeyDup, labelEnd); 2850 2851 /* Generate a subroutine that outputs the current row of the B 2852 ** select as the next output row of the compound select. 2853 */ 2854 if( op==TK_ALL || op==TK_UNION ){ 2855 VdbeNoopComment((v, "Output routine for B")); 2856 addrOutB = generateOutputSubroutine(pParse, 2857 p, &destB, pDest, regOutB, 2858 regPrev, pKeyDup, labelEnd); 2859 } 2860 sqlite3KeyInfoUnref(pKeyDup); 2861 2862 /* Generate a subroutine to run when the results from select A 2863 ** are exhausted and only data in select B remains. 2864 */ 2865 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2866 addrEofA_noB = addrEofA = labelEnd; 2867 }else{ 2868 VdbeNoopComment((v, "eof-A subroutine")); 2869 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2870 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2871 VdbeCoverage(v); 2872 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2873 p->nSelectRow += pPrior->nSelectRow; 2874 } 2875 2876 /* Generate a subroutine to run when the results from select B 2877 ** are exhausted and only data in select A remains. 2878 */ 2879 if( op==TK_INTERSECT ){ 2880 addrEofB = addrEofA; 2881 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2882 }else{ 2883 VdbeNoopComment((v, "eof-B subroutine")); 2884 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2885 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 2886 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2887 } 2888 2889 /* Generate code to handle the case of A<B 2890 */ 2891 VdbeNoopComment((v, "A-lt-B subroutine")); 2892 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2893 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2894 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2895 2896 /* Generate code to handle the case of A==B 2897 */ 2898 if( op==TK_ALL ){ 2899 addrAeqB = addrAltB; 2900 }else if( op==TK_INTERSECT ){ 2901 addrAeqB = addrAltB; 2902 addrAltB++; 2903 }else{ 2904 VdbeNoopComment((v, "A-eq-B subroutine")); 2905 addrAeqB = 2906 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2907 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2908 } 2909 2910 /* Generate code to handle the case of A>B 2911 */ 2912 VdbeNoopComment((v, "A-gt-B subroutine")); 2913 addrAgtB = sqlite3VdbeCurrentAddr(v); 2914 if( op==TK_ALL || op==TK_UNION ){ 2915 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2916 } 2917 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2918 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2919 2920 /* This code runs once to initialize everything. 2921 */ 2922 sqlite3VdbeJumpHere(v, j1); 2923 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 2924 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2925 2926 /* Implement the main merge loop 2927 */ 2928 sqlite3VdbeResolveLabel(v, labelCmpr); 2929 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2930 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2931 (char*)pKeyMerge, P4_KEYINFO); 2932 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2933 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 2934 2935 /* Jump to the this point in order to terminate the query. 2936 */ 2937 sqlite3VdbeResolveLabel(v, labelEnd); 2938 2939 /* Set the number of output columns 2940 */ 2941 if( pDest->eDest==SRT_Output ){ 2942 Select *pFirst = pPrior; 2943 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2944 generateColumnNames(pParse, 0, pFirst->pEList); 2945 } 2946 2947 /* Reassembly the compound query so that it will be freed correctly 2948 ** by the calling function */ 2949 if( p->pPrior ){ 2950 sqlite3SelectDelete(db, p->pPrior); 2951 } 2952 p->pPrior = pPrior; 2953 pPrior->pNext = p; 2954 2955 /*** TBD: Insert subroutine calls to close cursors on incomplete 2956 **** subqueries ****/ 2957 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2958 return SQLITE_OK; 2959 } 2960 #endif 2961 2962 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2963 /* Forward Declarations */ 2964 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2965 static void substSelect(sqlite3*, Select *, int, ExprList *); 2966 2967 /* 2968 ** Scan through the expression pExpr. Replace every reference to 2969 ** a column in table number iTable with a copy of the iColumn-th 2970 ** entry in pEList. (But leave references to the ROWID column 2971 ** unchanged.) 2972 ** 2973 ** This routine is part of the flattening procedure. A subquery 2974 ** whose result set is defined by pEList appears as entry in the 2975 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2976 ** FORM clause entry is iTable. This routine make the necessary 2977 ** changes to pExpr so that it refers directly to the source table 2978 ** of the subquery rather the result set of the subquery. 2979 */ 2980 static Expr *substExpr( 2981 sqlite3 *db, /* Report malloc errors to this connection */ 2982 Expr *pExpr, /* Expr in which substitution occurs */ 2983 int iTable, /* Table to be substituted */ 2984 ExprList *pEList /* Substitute expressions */ 2985 ){ 2986 if( pExpr==0 ) return 0; 2987 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2988 if( pExpr->iColumn<0 ){ 2989 pExpr->op = TK_NULL; 2990 }else{ 2991 Expr *pNew; 2992 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2993 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2994 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2995 sqlite3ExprDelete(db, pExpr); 2996 pExpr = pNew; 2997 } 2998 }else{ 2999 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3000 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3001 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3002 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3003 }else{ 3004 substExprList(db, pExpr->x.pList, iTable, pEList); 3005 } 3006 } 3007 return pExpr; 3008 } 3009 static void substExprList( 3010 sqlite3 *db, /* Report malloc errors here */ 3011 ExprList *pList, /* List to scan and in which to make substitutes */ 3012 int iTable, /* Table to be substituted */ 3013 ExprList *pEList /* Substitute values */ 3014 ){ 3015 int i; 3016 if( pList==0 ) return; 3017 for(i=0; i<pList->nExpr; i++){ 3018 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3019 } 3020 } 3021 static void substSelect( 3022 sqlite3 *db, /* Report malloc errors here */ 3023 Select *p, /* SELECT statement in which to make substitutions */ 3024 int iTable, /* Table to be replaced */ 3025 ExprList *pEList /* Substitute values */ 3026 ){ 3027 SrcList *pSrc; 3028 struct SrcList_item *pItem; 3029 int i; 3030 if( !p ) return; 3031 substExprList(db, p->pEList, iTable, pEList); 3032 substExprList(db, p->pGroupBy, iTable, pEList); 3033 substExprList(db, p->pOrderBy, iTable, pEList); 3034 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3035 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3036 substSelect(db, p->pPrior, iTable, pEList); 3037 pSrc = p->pSrc; 3038 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3039 if( ALWAYS(pSrc) ){ 3040 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3041 substSelect(db, pItem->pSelect, iTable, pEList); 3042 } 3043 } 3044 } 3045 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3046 3047 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3048 /* 3049 ** This routine attempts to flatten subqueries as a performance optimization. 3050 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3051 ** 3052 ** To understand the concept of flattening, consider the following 3053 ** query: 3054 ** 3055 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3056 ** 3057 ** The default way of implementing this query is to execute the 3058 ** subquery first and store the results in a temporary table, then 3059 ** run the outer query on that temporary table. This requires two 3060 ** passes over the data. Furthermore, because the temporary table 3061 ** has no indices, the WHERE clause on the outer query cannot be 3062 ** optimized. 3063 ** 3064 ** This routine attempts to rewrite queries such as the above into 3065 ** a single flat select, like this: 3066 ** 3067 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3068 ** 3069 ** The code generated for this simpification gives the same result 3070 ** but only has to scan the data once. And because indices might 3071 ** exist on the table t1, a complete scan of the data might be 3072 ** avoided. 3073 ** 3074 ** Flattening is only attempted if all of the following are true: 3075 ** 3076 ** (1) The subquery and the outer query do not both use aggregates. 3077 ** 3078 ** (2) The subquery is not an aggregate or the outer query is not a join. 3079 ** 3080 ** (3) The subquery is not the right operand of a left outer join 3081 ** (Originally ticket #306. Strengthened by ticket #3300) 3082 ** 3083 ** (4) The subquery is not DISTINCT. 3084 ** 3085 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3086 ** sub-queries that were excluded from this optimization. Restriction 3087 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3088 ** 3089 ** (6) The subquery does not use aggregates or the outer query is not 3090 ** DISTINCT. 3091 ** 3092 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3093 ** A FROM clause, consider adding a FROM close with the special 3094 ** table sqlite_once that consists of a single row containing a 3095 ** single NULL. 3096 ** 3097 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3098 ** 3099 ** (9) The subquery does not use LIMIT or the outer query does not use 3100 ** aggregates. 3101 ** 3102 ** (10) The subquery does not use aggregates or the outer query does not 3103 ** use LIMIT. 3104 ** 3105 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3106 ** 3107 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3108 ** a separate restriction deriving from ticket #350. 3109 ** 3110 ** (13) The subquery and outer query do not both use LIMIT. 3111 ** 3112 ** (14) The subquery does not use OFFSET. 3113 ** 3114 ** (15) The outer query is not part of a compound select or the 3115 ** subquery does not have a LIMIT clause. 3116 ** (See ticket #2339 and ticket [02a8e81d44]). 3117 ** 3118 ** (16) The outer query is not an aggregate or the subquery does 3119 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3120 ** until we introduced the group_concat() function. 3121 ** 3122 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3123 ** compound clause made up entirely of non-aggregate queries, and 3124 ** the parent query: 3125 ** 3126 ** * is not itself part of a compound select, 3127 ** * is not an aggregate or DISTINCT query, and 3128 ** * is not a join 3129 ** 3130 ** The parent and sub-query may contain WHERE clauses. Subject to 3131 ** rules (11), (13) and (14), they may also contain ORDER BY, 3132 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3133 ** operator other than UNION ALL because all the other compound 3134 ** operators have an implied DISTINCT which is disallowed by 3135 ** restriction (4). 3136 ** 3137 ** Also, each component of the sub-query must return the same number 3138 ** of result columns. This is actually a requirement for any compound 3139 ** SELECT statement, but all the code here does is make sure that no 3140 ** such (illegal) sub-query is flattened. The caller will detect the 3141 ** syntax error and return a detailed message. 3142 ** 3143 ** (18) If the sub-query is a compound select, then all terms of the 3144 ** ORDER by clause of the parent must be simple references to 3145 ** columns of the sub-query. 3146 ** 3147 ** (19) The subquery does not use LIMIT or the outer query does not 3148 ** have a WHERE clause. 3149 ** 3150 ** (20) If the sub-query is a compound select, then it must not use 3151 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3152 ** somewhat by saying that the terms of the ORDER BY clause must 3153 ** appear as unmodified result columns in the outer query. But we 3154 ** have other optimizations in mind to deal with that case. 3155 ** 3156 ** (21) The subquery does not use LIMIT or the outer query is not 3157 ** DISTINCT. (See ticket [752e1646fc]). 3158 ** 3159 ** (22) The subquery is not a recursive CTE. 3160 ** 3161 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3162 ** compound query. This restriction is because transforming the 3163 ** parent to a compound query confuses the code that handles 3164 ** recursive queries in multiSelect(). 3165 ** 3166 ** 3167 ** In this routine, the "p" parameter is a pointer to the outer query. 3168 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3169 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3170 ** 3171 ** If flattening is not attempted, this routine is a no-op and returns 0. 3172 ** If flattening is attempted this routine returns 1. 3173 ** 3174 ** All of the expression analysis must occur on both the outer query and 3175 ** the subquery before this routine runs. 3176 */ 3177 static int flattenSubquery( 3178 Parse *pParse, /* Parsing context */ 3179 Select *p, /* The parent or outer SELECT statement */ 3180 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3181 int isAgg, /* True if outer SELECT uses aggregate functions */ 3182 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3183 ){ 3184 const char *zSavedAuthContext = pParse->zAuthContext; 3185 Select *pParent; 3186 Select *pSub; /* The inner query or "subquery" */ 3187 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3188 SrcList *pSrc; /* The FROM clause of the outer query */ 3189 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3190 ExprList *pList; /* The result set of the outer query */ 3191 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3192 int i; /* Loop counter */ 3193 Expr *pWhere; /* The WHERE clause */ 3194 struct SrcList_item *pSubitem; /* The subquery */ 3195 sqlite3 *db = pParse->db; 3196 3197 /* Check to see if flattening is permitted. Return 0 if not. 3198 */ 3199 assert( p!=0 ); 3200 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3201 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3202 pSrc = p->pSrc; 3203 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3204 pSubitem = &pSrc->a[iFrom]; 3205 iParent = pSubitem->iCursor; 3206 pSub = pSubitem->pSelect; 3207 assert( pSub!=0 ); 3208 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3209 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3210 pSubSrc = pSub->pSrc; 3211 assert( pSubSrc ); 3212 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3213 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3214 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3215 ** became arbitrary expressions, we were forced to add restrictions (13) 3216 ** and (14). */ 3217 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3218 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3219 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3220 return 0; /* Restriction (15) */ 3221 } 3222 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3223 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3224 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3225 return 0; /* Restrictions (8)(9) */ 3226 } 3227 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3228 return 0; /* Restriction (6) */ 3229 } 3230 if( p->pOrderBy && pSub->pOrderBy ){ 3231 return 0; /* Restriction (11) */ 3232 } 3233 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3234 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3235 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3236 return 0; /* Restriction (21) */ 3237 } 3238 if( pSub->selFlags & SF_Recursive ) return 0; /* Restriction (22) */ 3239 if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0; /* (23) */ 3240 3241 /* OBSOLETE COMMENT 1: 3242 ** Restriction 3: If the subquery is a join, make sure the subquery is 3243 ** not used as the right operand of an outer join. Examples of why this 3244 ** is not allowed: 3245 ** 3246 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3247 ** 3248 ** If we flatten the above, we would get 3249 ** 3250 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3251 ** 3252 ** which is not at all the same thing. 3253 ** 3254 ** OBSOLETE COMMENT 2: 3255 ** Restriction 12: If the subquery is the right operand of a left outer 3256 ** join, make sure the subquery has no WHERE clause. 3257 ** An examples of why this is not allowed: 3258 ** 3259 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3260 ** 3261 ** If we flatten the above, we would get 3262 ** 3263 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3264 ** 3265 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3266 ** effectively converts the OUTER JOIN into an INNER JOIN. 3267 ** 3268 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3269 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3270 ** is fraught with danger. Best to avoid the whole thing. If the 3271 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3272 */ 3273 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3274 return 0; 3275 } 3276 3277 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3278 ** use only the UNION ALL operator. And none of the simple select queries 3279 ** that make up the compound SELECT are allowed to be aggregate or distinct 3280 ** queries. 3281 */ 3282 if( pSub->pPrior ){ 3283 if( pSub->pOrderBy ){ 3284 return 0; /* Restriction 20 */ 3285 } 3286 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3287 return 0; 3288 } 3289 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3290 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3291 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3292 assert( pSub->pSrc!=0 ); 3293 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3294 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3295 || pSub1->pSrc->nSrc<1 3296 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3297 ){ 3298 return 0; 3299 } 3300 testcase( pSub1->pSrc->nSrc>1 ); 3301 } 3302 3303 /* Restriction 18. */ 3304 if( p->pOrderBy ){ 3305 int ii; 3306 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3307 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3308 } 3309 } 3310 } 3311 3312 /***** If we reach this point, flattening is permitted. *****/ 3313 3314 /* Authorize the subquery */ 3315 pParse->zAuthContext = pSubitem->zName; 3316 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3317 testcase( i==SQLITE_DENY ); 3318 pParse->zAuthContext = zSavedAuthContext; 3319 3320 /* If the sub-query is a compound SELECT statement, then (by restrictions 3321 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3322 ** be of the form: 3323 ** 3324 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3325 ** 3326 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3327 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3328 ** OFFSET clauses and joins them to the left-hand-side of the original 3329 ** using UNION ALL operators. In this case N is the number of simple 3330 ** select statements in the compound sub-query. 3331 ** 3332 ** Example: 3333 ** 3334 ** SELECT a+1 FROM ( 3335 ** SELECT x FROM tab 3336 ** UNION ALL 3337 ** SELECT y FROM tab 3338 ** UNION ALL 3339 ** SELECT abs(z*2) FROM tab2 3340 ** ) WHERE a!=5 ORDER BY 1 3341 ** 3342 ** Transformed into: 3343 ** 3344 ** SELECT x+1 FROM tab WHERE x+1!=5 3345 ** UNION ALL 3346 ** SELECT y+1 FROM tab WHERE y+1!=5 3347 ** UNION ALL 3348 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3349 ** ORDER BY 1 3350 ** 3351 ** We call this the "compound-subquery flattening". 3352 */ 3353 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3354 Select *pNew; 3355 ExprList *pOrderBy = p->pOrderBy; 3356 Expr *pLimit = p->pLimit; 3357 Expr *pOffset = p->pOffset; 3358 Select *pPrior = p->pPrior; 3359 p->pOrderBy = 0; 3360 p->pSrc = 0; 3361 p->pPrior = 0; 3362 p->pLimit = 0; 3363 p->pOffset = 0; 3364 pNew = sqlite3SelectDup(db, p, 0); 3365 p->pOffset = pOffset; 3366 p->pLimit = pLimit; 3367 p->pOrderBy = pOrderBy; 3368 p->pSrc = pSrc; 3369 p->op = TK_ALL; 3370 if( pNew==0 ){ 3371 p->pPrior = pPrior; 3372 }else{ 3373 pNew->pPrior = pPrior; 3374 if( pPrior ) pPrior->pNext = pNew; 3375 pNew->pNext = p; 3376 p->pPrior = pNew; 3377 } 3378 if( db->mallocFailed ) return 1; 3379 } 3380 3381 /* Begin flattening the iFrom-th entry of the FROM clause 3382 ** in the outer query. 3383 */ 3384 pSub = pSub1 = pSubitem->pSelect; 3385 3386 /* Delete the transient table structure associated with the 3387 ** subquery 3388 */ 3389 sqlite3DbFree(db, pSubitem->zDatabase); 3390 sqlite3DbFree(db, pSubitem->zName); 3391 sqlite3DbFree(db, pSubitem->zAlias); 3392 pSubitem->zDatabase = 0; 3393 pSubitem->zName = 0; 3394 pSubitem->zAlias = 0; 3395 pSubitem->pSelect = 0; 3396 3397 /* Defer deleting the Table object associated with the 3398 ** subquery until code generation is 3399 ** complete, since there may still exist Expr.pTab entries that 3400 ** refer to the subquery even after flattening. Ticket #3346. 3401 ** 3402 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3403 */ 3404 if( ALWAYS(pSubitem->pTab!=0) ){ 3405 Table *pTabToDel = pSubitem->pTab; 3406 if( pTabToDel->nRef==1 ){ 3407 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3408 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3409 pToplevel->pZombieTab = pTabToDel; 3410 }else{ 3411 pTabToDel->nRef--; 3412 } 3413 pSubitem->pTab = 0; 3414 } 3415 3416 /* The following loop runs once for each term in a compound-subquery 3417 ** flattening (as described above). If we are doing a different kind 3418 ** of flattening - a flattening other than a compound-subquery flattening - 3419 ** then this loop only runs once. 3420 ** 3421 ** This loop moves all of the FROM elements of the subquery into the 3422 ** the FROM clause of the outer query. Before doing this, remember 3423 ** the cursor number for the original outer query FROM element in 3424 ** iParent. The iParent cursor will never be used. Subsequent code 3425 ** will scan expressions looking for iParent references and replace 3426 ** those references with expressions that resolve to the subquery FROM 3427 ** elements we are now copying in. 3428 */ 3429 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3430 int nSubSrc; 3431 u8 jointype = 0; 3432 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3433 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3434 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3435 3436 if( pSrc ){ 3437 assert( pParent==p ); /* First time through the loop */ 3438 jointype = pSubitem->jointype; 3439 }else{ 3440 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3441 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3442 if( pSrc==0 ){ 3443 assert( db->mallocFailed ); 3444 break; 3445 } 3446 } 3447 3448 /* The subquery uses a single slot of the FROM clause of the outer 3449 ** query. If the subquery has more than one element in its FROM clause, 3450 ** then expand the outer query to make space for it to hold all elements 3451 ** of the subquery. 3452 ** 3453 ** Example: 3454 ** 3455 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3456 ** 3457 ** The outer query has 3 slots in its FROM clause. One slot of the 3458 ** outer query (the middle slot) is used by the subquery. The next 3459 ** block of code will expand the out query to 4 slots. The middle 3460 ** slot is expanded to two slots in order to make space for the 3461 ** two elements in the FROM clause of the subquery. 3462 */ 3463 if( nSubSrc>1 ){ 3464 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3465 if( db->mallocFailed ){ 3466 break; 3467 } 3468 } 3469 3470 /* Transfer the FROM clause terms from the subquery into the 3471 ** outer query. 3472 */ 3473 for(i=0; i<nSubSrc; i++){ 3474 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3475 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3476 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3477 } 3478 pSrc->a[iFrom].jointype = jointype; 3479 3480 /* Now begin substituting subquery result set expressions for 3481 ** references to the iParent in the outer query. 3482 ** 3483 ** Example: 3484 ** 3485 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3486 ** \ \_____________ subquery __________/ / 3487 ** \_____________________ outer query ______________________________/ 3488 ** 3489 ** We look at every expression in the outer query and every place we see 3490 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3491 */ 3492 pList = pParent->pEList; 3493 for(i=0; i<pList->nExpr; i++){ 3494 if( pList->a[i].zName==0 ){ 3495 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3496 sqlite3Dequote(zName); 3497 pList->a[i].zName = zName; 3498 } 3499 } 3500 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3501 if( isAgg ){ 3502 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3503 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3504 } 3505 if( pSub->pOrderBy ){ 3506 assert( pParent->pOrderBy==0 ); 3507 pParent->pOrderBy = pSub->pOrderBy; 3508 pSub->pOrderBy = 0; 3509 }else if( pParent->pOrderBy ){ 3510 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3511 } 3512 if( pSub->pWhere ){ 3513 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3514 }else{ 3515 pWhere = 0; 3516 } 3517 if( subqueryIsAgg ){ 3518 assert( pParent->pHaving==0 ); 3519 pParent->pHaving = pParent->pWhere; 3520 pParent->pWhere = pWhere; 3521 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3522 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3523 sqlite3ExprDup(db, pSub->pHaving, 0)); 3524 assert( pParent->pGroupBy==0 ); 3525 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3526 }else{ 3527 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3528 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3529 } 3530 3531 /* The flattened query is distinct if either the inner or the 3532 ** outer query is distinct. 3533 */ 3534 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3535 3536 /* 3537 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3538 ** 3539 ** One is tempted to try to add a and b to combine the limits. But this 3540 ** does not work if either limit is negative. 3541 */ 3542 if( pSub->pLimit ){ 3543 pParent->pLimit = pSub->pLimit; 3544 pSub->pLimit = 0; 3545 } 3546 } 3547 3548 /* Finially, delete what is left of the subquery and return 3549 ** success. 3550 */ 3551 sqlite3SelectDelete(db, pSub1); 3552 3553 return 1; 3554 } 3555 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3556 3557 /* 3558 ** Based on the contents of the AggInfo structure indicated by the first 3559 ** argument, this function checks if the following are true: 3560 ** 3561 ** * the query contains just a single aggregate function, 3562 ** * the aggregate function is either min() or max(), and 3563 ** * the argument to the aggregate function is a column value. 3564 ** 3565 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3566 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3567 ** list of arguments passed to the aggregate before returning. 3568 ** 3569 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3570 ** WHERE_ORDERBY_NORMAL is returned. 3571 */ 3572 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3573 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3574 3575 *ppMinMax = 0; 3576 if( pAggInfo->nFunc==1 ){ 3577 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3578 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3579 3580 assert( pExpr->op==TK_AGG_FUNCTION ); 3581 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3582 const char *zFunc = pExpr->u.zToken; 3583 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3584 eRet = WHERE_ORDERBY_MIN; 3585 *ppMinMax = pEList; 3586 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3587 eRet = WHERE_ORDERBY_MAX; 3588 *ppMinMax = pEList; 3589 } 3590 } 3591 } 3592 3593 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3594 return eRet; 3595 } 3596 3597 /* 3598 ** The select statement passed as the first argument is an aggregate query. 3599 ** The second argment is the associated aggregate-info object. This 3600 ** function tests if the SELECT is of the form: 3601 ** 3602 ** SELECT count(*) FROM <tbl> 3603 ** 3604 ** where table is a database table, not a sub-select or view. If the query 3605 ** does match this pattern, then a pointer to the Table object representing 3606 ** <tbl> is returned. Otherwise, 0 is returned. 3607 */ 3608 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3609 Table *pTab; 3610 Expr *pExpr; 3611 3612 assert( !p->pGroupBy ); 3613 3614 if( p->pWhere || p->pEList->nExpr!=1 3615 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3616 ){ 3617 return 0; 3618 } 3619 pTab = p->pSrc->a[0].pTab; 3620 pExpr = p->pEList->a[0].pExpr; 3621 assert( pTab && !pTab->pSelect && pExpr ); 3622 3623 if( IsVirtual(pTab) ) return 0; 3624 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3625 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3626 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3627 if( pExpr->flags&EP_Distinct ) return 0; 3628 3629 return pTab; 3630 } 3631 3632 /* 3633 ** If the source-list item passed as an argument was augmented with an 3634 ** INDEXED BY clause, then try to locate the specified index. If there 3635 ** was such a clause and the named index cannot be found, return 3636 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3637 ** pFrom->pIndex and return SQLITE_OK. 3638 */ 3639 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3640 if( pFrom->pTab && pFrom->zIndex ){ 3641 Table *pTab = pFrom->pTab; 3642 char *zIndex = pFrom->zIndex; 3643 Index *pIdx; 3644 for(pIdx=pTab->pIndex; 3645 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3646 pIdx=pIdx->pNext 3647 ); 3648 if( !pIdx ){ 3649 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3650 pParse->checkSchema = 1; 3651 return SQLITE_ERROR; 3652 } 3653 pFrom->pIndex = pIdx; 3654 } 3655 return SQLITE_OK; 3656 } 3657 /* 3658 ** Detect compound SELECT statements that use an ORDER BY clause with 3659 ** an alternative collating sequence. 3660 ** 3661 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3662 ** 3663 ** These are rewritten as a subquery: 3664 ** 3665 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3666 ** ORDER BY ... COLLATE ... 3667 ** 3668 ** This transformation is necessary because the multiSelectOrderBy() routine 3669 ** above that generates the code for a compound SELECT with an ORDER BY clause 3670 ** uses a merge algorithm that requires the same collating sequence on the 3671 ** result columns as on the ORDER BY clause. See ticket 3672 ** http://www.sqlite.org/src/info/6709574d2a 3673 ** 3674 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3675 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3676 ** there are COLLATE terms in the ORDER BY. 3677 */ 3678 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3679 int i; 3680 Select *pNew; 3681 Select *pX; 3682 sqlite3 *db; 3683 struct ExprList_item *a; 3684 SrcList *pNewSrc; 3685 Parse *pParse; 3686 Token dummy; 3687 3688 if( p->pPrior==0 ) return WRC_Continue; 3689 if( p->pOrderBy==0 ) return WRC_Continue; 3690 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3691 if( pX==0 ) return WRC_Continue; 3692 a = p->pOrderBy->a; 3693 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3694 if( a[i].pExpr->flags & EP_Collate ) break; 3695 } 3696 if( i<0 ) return WRC_Continue; 3697 3698 /* If we reach this point, that means the transformation is required. */ 3699 3700 pParse = pWalker->pParse; 3701 db = pParse->db; 3702 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3703 if( pNew==0 ) return WRC_Abort; 3704 memset(&dummy, 0, sizeof(dummy)); 3705 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3706 if( pNewSrc==0 ) return WRC_Abort; 3707 *pNew = *p; 3708 p->pSrc = pNewSrc; 3709 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3710 p->op = TK_SELECT; 3711 p->pWhere = 0; 3712 pNew->pGroupBy = 0; 3713 pNew->pHaving = 0; 3714 pNew->pOrderBy = 0; 3715 p->pPrior = 0; 3716 p->pNext = 0; 3717 p->selFlags &= ~SF_Compound; 3718 assert( pNew->pPrior!=0 ); 3719 pNew->pPrior->pNext = pNew; 3720 pNew->pLimit = 0; 3721 pNew->pOffset = 0; 3722 return WRC_Continue; 3723 } 3724 3725 #ifndef SQLITE_OMIT_CTE 3726 /* 3727 ** Argument pWith (which may be NULL) points to a linked list of nested 3728 ** WITH contexts, from inner to outermost. If the table identified by 3729 ** FROM clause element pItem is really a common-table-expression (CTE) 3730 ** then return a pointer to the CTE definition for that table. Otherwise 3731 ** return NULL. 3732 ** 3733 ** If a non-NULL value is returned, set *ppContext to point to the With 3734 ** object that the returned CTE belongs to. 3735 */ 3736 static struct Cte *searchWith( 3737 With *pWith, /* Current outermost WITH clause */ 3738 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3739 With **ppContext /* OUT: WITH clause return value belongs to */ 3740 ){ 3741 const char *zName; 3742 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3743 With *p; 3744 for(p=pWith; p; p=p->pOuter){ 3745 int i; 3746 for(i=0; i<p->nCte; i++){ 3747 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3748 *ppContext = p; 3749 return &p->a[i]; 3750 } 3751 } 3752 } 3753 } 3754 return 0; 3755 } 3756 3757 /* The code generator maintains a stack of active WITH clauses 3758 ** with the inner-most WITH clause being at the top of the stack. 3759 ** 3760 ** This routine pushes the WITH clause passed as the second argument 3761 ** onto the top of the stack. If argument bFree is true, then this 3762 ** WITH clause will never be popped from the stack. In this case it 3763 ** should be freed along with the Parse object. In other cases, when 3764 ** bFree==0, the With object will be freed along with the SELECT 3765 ** statement with which it is associated. 3766 */ 3767 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3768 assert( bFree==0 || pParse->pWith==0 ); 3769 if( pWith ){ 3770 pWith->pOuter = pParse->pWith; 3771 pParse->pWith = pWith; 3772 pParse->bFreeWith = bFree; 3773 } 3774 } 3775 3776 /* 3777 ** This function checks if argument pFrom refers to a CTE declared by 3778 ** a WITH clause on the stack currently maintained by the parser. And, 3779 ** if currently processing a CTE expression, if it is a recursive 3780 ** reference to the current CTE. 3781 ** 3782 ** If pFrom falls into either of the two categories above, pFrom->pTab 3783 ** and other fields are populated accordingly. The caller should check 3784 ** (pFrom->pTab!=0) to determine whether or not a successful match 3785 ** was found. 3786 ** 3787 ** Whether or not a match is found, SQLITE_OK is returned if no error 3788 ** occurs. If an error does occur, an error message is stored in the 3789 ** parser and some error code other than SQLITE_OK returned. 3790 */ 3791 static int withExpand( 3792 Walker *pWalker, 3793 struct SrcList_item *pFrom 3794 ){ 3795 Parse *pParse = pWalker->pParse; 3796 sqlite3 *db = pParse->db; 3797 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3798 With *pWith; /* WITH clause that pCte belongs to */ 3799 3800 assert( pFrom->pTab==0 ); 3801 3802 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3803 if( pCte ){ 3804 Table *pTab; 3805 ExprList *pEList; 3806 Select *pSel; 3807 Select *pLeft; /* Left-most SELECT statement */ 3808 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3809 With *pSavedWith; /* Initial value of pParse->pWith */ 3810 3811 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3812 ** recursive reference to CTE pCte. Leave an error in pParse and return 3813 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3814 ** In this case, proceed. */ 3815 if( pCte->zErr ){ 3816 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3817 return SQLITE_ERROR; 3818 } 3819 3820 assert( pFrom->pTab==0 ); 3821 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3822 if( pTab==0 ) return WRC_Abort; 3823 pTab->nRef = 1; 3824 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3825 pTab->iPKey = -1; 3826 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3827 pTab->tabFlags |= TF_Ephemeral; 3828 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3829 if( db->mallocFailed ) return SQLITE_NOMEM; 3830 assert( pFrom->pSelect ); 3831 3832 /* Check if this is a recursive CTE. */ 3833 pSel = pFrom->pSelect; 3834 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3835 if( bMayRecursive ){ 3836 int i; 3837 SrcList *pSrc = pFrom->pSelect->pSrc; 3838 for(i=0; i<pSrc->nSrc; i++){ 3839 struct SrcList_item *pItem = &pSrc->a[i]; 3840 if( pItem->zDatabase==0 3841 && pItem->zName!=0 3842 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 3843 ){ 3844 pItem->pTab = pTab; 3845 pItem->isRecursive = 1; 3846 pTab->nRef++; 3847 pSel->selFlags |= SF_Recursive; 3848 } 3849 } 3850 } 3851 3852 /* Only one recursive reference is permitted. */ 3853 if( pTab->nRef>2 ){ 3854 sqlite3ErrorMsg( 3855 pParse, "multiple references to recursive table: %s", pCte->zName 3856 ); 3857 return SQLITE_ERROR; 3858 } 3859 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 3860 3861 pCte->zErr = "circular reference: %s"; 3862 pSavedWith = pParse->pWith; 3863 pParse->pWith = pWith; 3864 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 3865 3866 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 3867 pEList = pLeft->pEList; 3868 if( pCte->pCols ){ 3869 if( pEList->nExpr!=pCte->pCols->nExpr ){ 3870 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 3871 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 3872 ); 3873 pParse->pWith = pSavedWith; 3874 return SQLITE_ERROR; 3875 } 3876 pEList = pCte->pCols; 3877 } 3878 3879 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 3880 if( bMayRecursive ){ 3881 if( pSel->selFlags & SF_Recursive ){ 3882 pCte->zErr = "multiple recursive references: %s"; 3883 }else{ 3884 pCte->zErr = "recursive reference in a subquery: %s"; 3885 } 3886 sqlite3WalkSelect(pWalker, pSel); 3887 } 3888 pCte->zErr = 0; 3889 pParse->pWith = pSavedWith; 3890 } 3891 3892 return SQLITE_OK; 3893 } 3894 #endif 3895 3896 #ifndef SQLITE_OMIT_CTE 3897 /* 3898 ** If the SELECT passed as the second argument has an associated WITH 3899 ** clause, pop it from the stack stored as part of the Parse object. 3900 ** 3901 ** This function is used as the xSelectCallback2() callback by 3902 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 3903 ** names and other FROM clause elements. 3904 */ 3905 static void selectPopWith(Walker *pWalker, Select *p){ 3906 Parse *pParse = pWalker->pParse; 3907 With *pWith = findRightmost(p)->pWith; 3908 if( pWith!=0 ){ 3909 assert( pParse->pWith==pWith ); 3910 pParse->pWith = pWith->pOuter; 3911 } 3912 } 3913 #else 3914 #define selectPopWith 0 3915 #endif 3916 3917 /* 3918 ** This routine is a Walker callback for "expanding" a SELECT statement. 3919 ** "Expanding" means to do the following: 3920 ** 3921 ** (1) Make sure VDBE cursor numbers have been assigned to every 3922 ** element of the FROM clause. 3923 ** 3924 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3925 ** defines FROM clause. When views appear in the FROM clause, 3926 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3927 ** that implements the view. A copy is made of the view's SELECT 3928 ** statement so that we can freely modify or delete that statement 3929 ** without worrying about messing up the presistent representation 3930 ** of the view. 3931 ** 3932 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3933 ** on joins and the ON and USING clause of joins. 3934 ** 3935 ** (4) Scan the list of columns in the result set (pEList) looking 3936 ** for instances of the "*" operator or the TABLE.* operator. 3937 ** If found, expand each "*" to be every column in every table 3938 ** and TABLE.* to be every column in TABLE. 3939 ** 3940 */ 3941 static int selectExpander(Walker *pWalker, Select *p){ 3942 Parse *pParse = pWalker->pParse; 3943 int i, j, k; 3944 SrcList *pTabList; 3945 ExprList *pEList; 3946 struct SrcList_item *pFrom; 3947 sqlite3 *db = pParse->db; 3948 Expr *pE, *pRight, *pExpr; 3949 u16 selFlags = p->selFlags; 3950 3951 p->selFlags |= SF_Expanded; 3952 if( db->mallocFailed ){ 3953 return WRC_Abort; 3954 } 3955 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 3956 return WRC_Prune; 3957 } 3958 pTabList = p->pSrc; 3959 pEList = p->pEList; 3960 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 3961 3962 /* Make sure cursor numbers have been assigned to all entries in 3963 ** the FROM clause of the SELECT statement. 3964 */ 3965 sqlite3SrcListAssignCursors(pParse, pTabList); 3966 3967 /* Look up every table named in the FROM clause of the select. If 3968 ** an entry of the FROM clause is a subquery instead of a table or view, 3969 ** then create a transient table structure to describe the subquery. 3970 */ 3971 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3972 Table *pTab; 3973 assert( pFrom->isRecursive==0 || pFrom->pTab ); 3974 if( pFrom->isRecursive ) continue; 3975 if( pFrom->pTab!=0 ){ 3976 /* This statement has already been prepared. There is no need 3977 ** to go further. */ 3978 assert( i==0 ); 3979 #ifndef SQLITE_OMIT_CTE 3980 selectPopWith(pWalker, p); 3981 #endif 3982 return WRC_Prune; 3983 } 3984 #ifndef SQLITE_OMIT_CTE 3985 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 3986 if( pFrom->pTab ) {} else 3987 #endif 3988 if( pFrom->zName==0 ){ 3989 #ifndef SQLITE_OMIT_SUBQUERY 3990 Select *pSel = pFrom->pSelect; 3991 /* A sub-query in the FROM clause of a SELECT */ 3992 assert( pSel!=0 ); 3993 assert( pFrom->pTab==0 ); 3994 sqlite3WalkSelect(pWalker, pSel); 3995 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3996 if( pTab==0 ) return WRC_Abort; 3997 pTab->nRef = 1; 3998 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 3999 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4000 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4001 pTab->iPKey = -1; 4002 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4003 pTab->tabFlags |= TF_Ephemeral; 4004 #endif 4005 }else{ 4006 /* An ordinary table or view name in the FROM clause */ 4007 assert( pFrom->pTab==0 ); 4008 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4009 if( pTab==0 ) return WRC_Abort; 4010 if( pTab->nRef==0xffff ){ 4011 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4012 pTab->zName); 4013 pFrom->pTab = 0; 4014 return WRC_Abort; 4015 } 4016 pTab->nRef++; 4017 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4018 if( pTab->pSelect || IsVirtual(pTab) ){ 4019 /* We reach here if the named table is a really a view */ 4020 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4021 assert( pFrom->pSelect==0 ); 4022 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4023 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4024 } 4025 #endif 4026 } 4027 4028 /* Locate the index named by the INDEXED BY clause, if any. */ 4029 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4030 return WRC_Abort; 4031 } 4032 } 4033 4034 /* Process NATURAL keywords, and ON and USING clauses of joins. 4035 */ 4036 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4037 return WRC_Abort; 4038 } 4039 4040 /* For every "*" that occurs in the column list, insert the names of 4041 ** all columns in all tables. And for every TABLE.* insert the names 4042 ** of all columns in TABLE. The parser inserted a special expression 4043 ** with the TK_ALL operator for each "*" that it found in the column list. 4044 ** The following code just has to locate the TK_ALL expressions and expand 4045 ** each one to the list of all columns in all tables. 4046 ** 4047 ** The first loop just checks to see if there are any "*" operators 4048 ** that need expanding. 4049 */ 4050 for(k=0; k<pEList->nExpr; k++){ 4051 pE = pEList->a[k].pExpr; 4052 if( pE->op==TK_ALL ) break; 4053 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4054 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4055 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4056 } 4057 if( k<pEList->nExpr ){ 4058 /* 4059 ** If we get here it means the result set contains one or more "*" 4060 ** operators that need to be expanded. Loop through each expression 4061 ** in the result set and expand them one by one. 4062 */ 4063 struct ExprList_item *a = pEList->a; 4064 ExprList *pNew = 0; 4065 int flags = pParse->db->flags; 4066 int longNames = (flags & SQLITE_FullColNames)!=0 4067 && (flags & SQLITE_ShortColNames)==0; 4068 4069 /* When processing FROM-clause subqueries, it is always the case 4070 ** that full_column_names=OFF and short_column_names=ON. The 4071 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4072 assert( (p->selFlags & SF_NestedFrom)==0 4073 || ((flags & SQLITE_FullColNames)==0 && 4074 (flags & SQLITE_ShortColNames)!=0) ); 4075 4076 for(k=0; k<pEList->nExpr; k++){ 4077 pE = a[k].pExpr; 4078 pRight = pE->pRight; 4079 assert( pE->op!=TK_DOT || pRight!=0 ); 4080 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4081 /* This particular expression does not need to be expanded. 4082 */ 4083 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4084 if( pNew ){ 4085 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4086 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4087 a[k].zName = 0; 4088 a[k].zSpan = 0; 4089 } 4090 a[k].pExpr = 0; 4091 }else{ 4092 /* This expression is a "*" or a "TABLE.*" and needs to be 4093 ** expanded. */ 4094 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4095 char *zTName = 0; /* text of name of TABLE */ 4096 if( pE->op==TK_DOT ){ 4097 assert( pE->pLeft!=0 ); 4098 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4099 zTName = pE->pLeft->u.zToken; 4100 } 4101 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4102 Table *pTab = pFrom->pTab; 4103 Select *pSub = pFrom->pSelect; 4104 char *zTabName = pFrom->zAlias; 4105 const char *zSchemaName = 0; 4106 int iDb; 4107 if( zTabName==0 ){ 4108 zTabName = pTab->zName; 4109 } 4110 if( db->mallocFailed ) break; 4111 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4112 pSub = 0; 4113 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4114 continue; 4115 } 4116 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4117 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4118 } 4119 for(j=0; j<pTab->nCol; j++){ 4120 char *zName = pTab->aCol[j].zName; 4121 char *zColname; /* The computed column name */ 4122 char *zToFree; /* Malloced string that needs to be freed */ 4123 Token sColname; /* Computed column name as a token */ 4124 4125 assert( zName ); 4126 if( zTName && pSub 4127 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4128 ){ 4129 continue; 4130 } 4131 4132 /* If a column is marked as 'hidden' (currently only possible 4133 ** for virtual tables), do not include it in the expanded 4134 ** result-set list. 4135 */ 4136 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4137 assert(IsVirtual(pTab)); 4138 continue; 4139 } 4140 tableSeen = 1; 4141 4142 if( i>0 && zTName==0 ){ 4143 if( (pFrom->jointype & JT_NATURAL)!=0 4144 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4145 ){ 4146 /* In a NATURAL join, omit the join columns from the 4147 ** table to the right of the join */ 4148 continue; 4149 } 4150 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4151 /* In a join with a USING clause, omit columns in the 4152 ** using clause from the table on the right. */ 4153 continue; 4154 } 4155 } 4156 pRight = sqlite3Expr(db, TK_ID, zName); 4157 zColname = zName; 4158 zToFree = 0; 4159 if( longNames || pTabList->nSrc>1 ){ 4160 Expr *pLeft; 4161 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4162 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4163 if( zSchemaName ){ 4164 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4165 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4166 } 4167 if( longNames ){ 4168 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4169 zToFree = zColname; 4170 } 4171 }else{ 4172 pExpr = pRight; 4173 } 4174 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4175 sColname.z = zColname; 4176 sColname.n = sqlite3Strlen30(zColname); 4177 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4178 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4179 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4180 if( pSub ){ 4181 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4182 testcase( pX->zSpan==0 ); 4183 }else{ 4184 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4185 zSchemaName, zTabName, zColname); 4186 testcase( pX->zSpan==0 ); 4187 } 4188 pX->bSpanIsTab = 1; 4189 } 4190 sqlite3DbFree(db, zToFree); 4191 } 4192 } 4193 if( !tableSeen ){ 4194 if( zTName ){ 4195 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4196 }else{ 4197 sqlite3ErrorMsg(pParse, "no tables specified"); 4198 } 4199 } 4200 } 4201 } 4202 sqlite3ExprListDelete(db, pEList); 4203 p->pEList = pNew; 4204 } 4205 #if SQLITE_MAX_COLUMN 4206 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4207 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4208 } 4209 #endif 4210 return WRC_Continue; 4211 } 4212 4213 /* 4214 ** No-op routine for the parse-tree walker. 4215 ** 4216 ** When this routine is the Walker.xExprCallback then expression trees 4217 ** are walked without any actions being taken at each node. Presumably, 4218 ** when this routine is used for Walker.xExprCallback then 4219 ** Walker.xSelectCallback is set to do something useful for every 4220 ** subquery in the parser tree. 4221 */ 4222 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4223 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4224 return WRC_Continue; 4225 } 4226 4227 /* 4228 ** This routine "expands" a SELECT statement and all of its subqueries. 4229 ** For additional information on what it means to "expand" a SELECT 4230 ** statement, see the comment on the selectExpand worker callback above. 4231 ** 4232 ** Expanding a SELECT statement is the first step in processing a 4233 ** SELECT statement. The SELECT statement must be expanded before 4234 ** name resolution is performed. 4235 ** 4236 ** If anything goes wrong, an error message is written into pParse. 4237 ** The calling function can detect the problem by looking at pParse->nErr 4238 ** and/or pParse->db->mallocFailed. 4239 */ 4240 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4241 Walker w; 4242 memset(&w, 0, sizeof(w)); 4243 w.xExprCallback = exprWalkNoop; 4244 w.pParse = pParse; 4245 if( pParse->hasCompound ){ 4246 w.xSelectCallback = convertCompoundSelectToSubquery; 4247 sqlite3WalkSelect(&w, pSelect); 4248 } 4249 w.xSelectCallback = selectExpander; 4250 w.xSelectCallback2 = selectPopWith; 4251 sqlite3WalkSelect(&w, pSelect); 4252 } 4253 4254 4255 #ifndef SQLITE_OMIT_SUBQUERY 4256 /* 4257 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4258 ** interface. 4259 ** 4260 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4261 ** information to the Table structure that represents the result set 4262 ** of that subquery. 4263 ** 4264 ** The Table structure that represents the result set was constructed 4265 ** by selectExpander() but the type and collation information was omitted 4266 ** at that point because identifiers had not yet been resolved. This 4267 ** routine is called after identifier resolution. 4268 */ 4269 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4270 Parse *pParse; 4271 int i; 4272 SrcList *pTabList; 4273 struct SrcList_item *pFrom; 4274 4275 assert( p->selFlags & SF_Resolved ); 4276 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4277 p->selFlags |= SF_HasTypeInfo; 4278 pParse = pWalker->pParse; 4279 pTabList = p->pSrc; 4280 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4281 Table *pTab = pFrom->pTab; 4282 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4283 /* A sub-query in the FROM clause of a SELECT */ 4284 Select *pSel = pFrom->pSelect; 4285 if( pSel ){ 4286 while( pSel->pPrior ) pSel = pSel->pPrior; 4287 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4288 } 4289 } 4290 } 4291 } 4292 } 4293 #endif 4294 4295 4296 /* 4297 ** This routine adds datatype and collating sequence information to 4298 ** the Table structures of all FROM-clause subqueries in a 4299 ** SELECT statement. 4300 ** 4301 ** Use this routine after name resolution. 4302 */ 4303 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4304 #ifndef SQLITE_OMIT_SUBQUERY 4305 Walker w; 4306 memset(&w, 0, sizeof(w)); 4307 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4308 w.xExprCallback = exprWalkNoop; 4309 w.pParse = pParse; 4310 sqlite3WalkSelect(&w, pSelect); 4311 #endif 4312 } 4313 4314 4315 /* 4316 ** This routine sets up a SELECT statement for processing. The 4317 ** following is accomplished: 4318 ** 4319 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4320 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4321 ** * ON and USING clauses are shifted into WHERE statements 4322 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4323 ** * Identifiers in expression are matched to tables. 4324 ** 4325 ** This routine acts recursively on all subqueries within the SELECT. 4326 */ 4327 void sqlite3SelectPrep( 4328 Parse *pParse, /* The parser context */ 4329 Select *p, /* The SELECT statement being coded. */ 4330 NameContext *pOuterNC /* Name context for container */ 4331 ){ 4332 sqlite3 *db; 4333 if( NEVER(p==0) ) return; 4334 db = pParse->db; 4335 if( db->mallocFailed ) return; 4336 if( p->selFlags & SF_HasTypeInfo ) return; 4337 sqlite3SelectExpand(pParse, p); 4338 if( pParse->nErr || db->mallocFailed ) return; 4339 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4340 if( pParse->nErr || db->mallocFailed ) return; 4341 sqlite3SelectAddTypeInfo(pParse, p); 4342 } 4343 4344 /* 4345 ** Reset the aggregate accumulator. 4346 ** 4347 ** The aggregate accumulator is a set of memory cells that hold 4348 ** intermediate results while calculating an aggregate. This 4349 ** routine generates code that stores NULLs in all of those memory 4350 ** cells. 4351 */ 4352 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4353 Vdbe *v = pParse->pVdbe; 4354 int i; 4355 struct AggInfo_func *pFunc; 4356 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4357 if( nReg==0 ) return; 4358 #ifdef SQLITE_DEBUG 4359 /* Verify that all AggInfo registers are within the range specified by 4360 ** AggInfo.mnReg..AggInfo.mxReg */ 4361 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4362 for(i=0; i<pAggInfo->nColumn; i++){ 4363 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4364 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4365 } 4366 for(i=0; i<pAggInfo->nFunc; i++){ 4367 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4368 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4369 } 4370 #endif 4371 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4372 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4373 if( pFunc->iDistinct>=0 ){ 4374 Expr *pE = pFunc->pExpr; 4375 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4376 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4377 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4378 "argument"); 4379 pFunc->iDistinct = -1; 4380 }else{ 4381 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4382 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4383 (char*)pKeyInfo, P4_KEYINFO); 4384 } 4385 } 4386 } 4387 } 4388 4389 /* 4390 ** Invoke the OP_AggFinalize opcode for every aggregate function 4391 ** in the AggInfo structure. 4392 */ 4393 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4394 Vdbe *v = pParse->pVdbe; 4395 int i; 4396 struct AggInfo_func *pF; 4397 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4398 ExprList *pList = pF->pExpr->x.pList; 4399 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4400 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4401 (void*)pF->pFunc, P4_FUNCDEF); 4402 } 4403 } 4404 4405 /* 4406 ** Update the accumulator memory cells for an aggregate based on 4407 ** the current cursor position. 4408 */ 4409 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4410 Vdbe *v = pParse->pVdbe; 4411 int i; 4412 int regHit = 0; 4413 int addrHitTest = 0; 4414 struct AggInfo_func *pF; 4415 struct AggInfo_col *pC; 4416 4417 pAggInfo->directMode = 1; 4418 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4419 int nArg; 4420 int addrNext = 0; 4421 int regAgg; 4422 ExprList *pList = pF->pExpr->x.pList; 4423 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4424 if( pList ){ 4425 nArg = pList->nExpr; 4426 regAgg = sqlite3GetTempRange(pParse, nArg); 4427 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4428 }else{ 4429 nArg = 0; 4430 regAgg = 0; 4431 } 4432 if( pF->iDistinct>=0 ){ 4433 addrNext = sqlite3VdbeMakeLabel(v); 4434 assert( nArg==1 ); 4435 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4436 } 4437 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4438 CollSeq *pColl = 0; 4439 struct ExprList_item *pItem; 4440 int j; 4441 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4442 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4443 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4444 } 4445 if( !pColl ){ 4446 pColl = pParse->db->pDfltColl; 4447 } 4448 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4449 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4450 } 4451 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4452 (void*)pF->pFunc, P4_FUNCDEF); 4453 sqlite3VdbeChangeP5(v, (u8)nArg); 4454 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4455 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4456 if( addrNext ){ 4457 sqlite3VdbeResolveLabel(v, addrNext); 4458 sqlite3ExprCacheClear(pParse); 4459 } 4460 } 4461 4462 /* Before populating the accumulator registers, clear the column cache. 4463 ** Otherwise, if any of the required column values are already present 4464 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4465 ** to pC->iMem. But by the time the value is used, the original register 4466 ** may have been used, invalidating the underlying buffer holding the 4467 ** text or blob value. See ticket [883034dcb5]. 4468 ** 4469 ** Another solution would be to change the OP_SCopy used to copy cached 4470 ** values to an OP_Copy. 4471 */ 4472 if( regHit ){ 4473 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4474 } 4475 sqlite3ExprCacheClear(pParse); 4476 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4477 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4478 } 4479 pAggInfo->directMode = 0; 4480 sqlite3ExprCacheClear(pParse); 4481 if( addrHitTest ){ 4482 sqlite3VdbeJumpHere(v, addrHitTest); 4483 } 4484 } 4485 4486 /* 4487 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4488 ** count(*) query ("SELECT count(*) FROM pTab"). 4489 */ 4490 #ifndef SQLITE_OMIT_EXPLAIN 4491 static void explainSimpleCount( 4492 Parse *pParse, /* Parse context */ 4493 Table *pTab, /* Table being queried */ 4494 Index *pIdx /* Index used to optimize scan, or NULL */ 4495 ){ 4496 if( pParse->explain==2 ){ 4497 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4498 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4499 pTab->zName, 4500 bCover ? " USING COVERING INDEX " : "", 4501 bCover ? pIdx->zName : "" 4502 ); 4503 sqlite3VdbeAddOp4( 4504 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4505 ); 4506 } 4507 } 4508 #else 4509 # define explainSimpleCount(a,b,c) 4510 #endif 4511 4512 /* 4513 ** Generate code for the SELECT statement given in the p argument. 4514 ** 4515 ** The results are returned according to the SelectDest structure. 4516 ** See comments in sqliteInt.h for further information. 4517 ** 4518 ** This routine returns the number of errors. If any errors are 4519 ** encountered, then an appropriate error message is left in 4520 ** pParse->zErrMsg. 4521 ** 4522 ** This routine does NOT free the Select structure passed in. The 4523 ** calling function needs to do that. 4524 */ 4525 int sqlite3Select( 4526 Parse *pParse, /* The parser context */ 4527 Select *p, /* The SELECT statement being coded. */ 4528 SelectDest *pDest /* What to do with the query results */ 4529 ){ 4530 int i, j; /* Loop counters */ 4531 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4532 Vdbe *v; /* The virtual machine under construction */ 4533 int isAgg; /* True for select lists like "count(*)" */ 4534 ExprList *pEList; /* List of columns to extract. */ 4535 SrcList *pTabList; /* List of tables to select from */ 4536 Expr *pWhere; /* The WHERE clause. May be NULL */ 4537 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4538 Expr *pHaving; /* The HAVING clause. May be NULL */ 4539 int rc = 1; /* Value to return from this function */ 4540 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4541 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4542 AggInfo sAggInfo; /* Information used by aggregate queries */ 4543 int iEnd; /* Address of the end of the query */ 4544 sqlite3 *db; /* The database connection */ 4545 4546 #ifndef SQLITE_OMIT_EXPLAIN 4547 int iRestoreSelectId = pParse->iSelectId; 4548 pParse->iSelectId = pParse->iNextSelectId++; 4549 #endif 4550 4551 db = pParse->db; 4552 if( p==0 || db->mallocFailed || pParse->nErr ){ 4553 return 1; 4554 } 4555 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4556 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4557 4558 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4559 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4560 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4561 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4562 if( IgnorableOrderby(pDest) ){ 4563 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4564 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4565 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4566 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4567 /* If ORDER BY makes no difference in the output then neither does 4568 ** DISTINCT so it can be removed too. */ 4569 sqlite3ExprListDelete(db, p->pOrderBy); 4570 p->pOrderBy = 0; 4571 p->selFlags &= ~SF_Distinct; 4572 } 4573 sqlite3SelectPrep(pParse, p, 0); 4574 memset(&sSort, 0, sizeof(sSort)); 4575 sSort.pOrderBy = p->pOrderBy; 4576 pTabList = p->pSrc; 4577 pEList = p->pEList; 4578 if( pParse->nErr || db->mallocFailed ){ 4579 goto select_end; 4580 } 4581 isAgg = (p->selFlags & SF_Aggregate)!=0; 4582 assert( pEList!=0 ); 4583 4584 /* Begin generating code. 4585 */ 4586 v = sqlite3GetVdbe(pParse); 4587 if( v==0 ) goto select_end; 4588 4589 /* If writing to memory or generating a set 4590 ** only a single column may be output. 4591 */ 4592 #ifndef SQLITE_OMIT_SUBQUERY 4593 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4594 goto select_end; 4595 } 4596 #endif 4597 4598 /* Generate code for all sub-queries in the FROM clause 4599 */ 4600 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4601 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4602 struct SrcList_item *pItem = &pTabList->a[i]; 4603 SelectDest dest; 4604 Select *pSub = pItem->pSelect; 4605 int isAggSub; 4606 4607 if( pSub==0 ) continue; 4608 4609 /* Sometimes the code for a subquery will be generated more than 4610 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4611 ** for example. In that case, do not regenerate the code to manifest 4612 ** a view or the co-routine to implement a view. The first instance 4613 ** is sufficient, though the subroutine to manifest the view does need 4614 ** to be invoked again. */ 4615 if( pItem->addrFillSub ){ 4616 if( pItem->viaCoroutine==0 ){ 4617 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4618 } 4619 continue; 4620 } 4621 4622 /* Increment Parse.nHeight by the height of the largest expression 4623 ** tree referred to by this, the parent select. The child select 4624 ** may contain expression trees of at most 4625 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4626 ** more conservative than necessary, but much easier than enforcing 4627 ** an exact limit. 4628 */ 4629 pParse->nHeight += sqlite3SelectExprHeight(p); 4630 4631 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4632 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4633 /* This subquery can be absorbed into its parent. */ 4634 if( isAggSub ){ 4635 isAgg = 1; 4636 p->selFlags |= SF_Aggregate; 4637 } 4638 i = -1; 4639 }else if( pTabList->nSrc==1 4640 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4641 ){ 4642 /* Implement a co-routine that will return a single row of the result 4643 ** set on each invocation. 4644 */ 4645 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4646 pItem->regReturn = ++pParse->nMem; 4647 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4648 VdbeComment((v, "%s", pItem->pTab->zName)); 4649 pItem->addrFillSub = addrTop; 4650 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4651 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4652 sqlite3Select(pParse, pSub, &dest); 4653 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4654 pItem->viaCoroutine = 1; 4655 pItem->regResult = dest.iSdst; 4656 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4657 sqlite3VdbeJumpHere(v, addrTop-1); 4658 sqlite3ClearTempRegCache(pParse); 4659 }else{ 4660 /* Generate a subroutine that will fill an ephemeral table with 4661 ** the content of this subquery. pItem->addrFillSub will point 4662 ** to the address of the generated subroutine. pItem->regReturn 4663 ** is a register allocated to hold the subroutine return address 4664 */ 4665 int topAddr; 4666 int onceAddr = 0; 4667 int retAddr; 4668 assert( pItem->addrFillSub==0 ); 4669 pItem->regReturn = ++pParse->nMem; 4670 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4671 pItem->addrFillSub = topAddr+1; 4672 if( pItem->isCorrelated==0 ){ 4673 /* If the subquery is not correlated and if we are not inside of 4674 ** a trigger, then we only need to compute the value of the subquery 4675 ** once. */ 4676 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4677 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4678 }else{ 4679 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4680 } 4681 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4682 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4683 sqlite3Select(pParse, pSub, &dest); 4684 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4685 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4686 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4687 VdbeComment((v, "end %s", pItem->pTab->zName)); 4688 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4689 sqlite3ClearTempRegCache(pParse); 4690 } 4691 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4692 goto select_end; 4693 } 4694 pParse->nHeight -= sqlite3SelectExprHeight(p); 4695 pTabList = p->pSrc; 4696 if( !IgnorableOrderby(pDest) ){ 4697 sSort.pOrderBy = p->pOrderBy; 4698 } 4699 } 4700 pEList = p->pEList; 4701 #endif 4702 pWhere = p->pWhere; 4703 pGroupBy = p->pGroupBy; 4704 pHaving = p->pHaving; 4705 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4706 4707 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4708 /* If there is are a sequence of queries, do the earlier ones first. 4709 */ 4710 if( p->pPrior ){ 4711 rc = multiSelect(pParse, p, pDest); 4712 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4713 return rc; 4714 } 4715 #endif 4716 4717 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4718 ** if the select-list is the same as the ORDER BY list, then this query 4719 ** can be rewritten as a GROUP BY. In other words, this: 4720 ** 4721 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4722 ** 4723 ** is transformed to: 4724 ** 4725 ** SELECT xyz FROM ... GROUP BY xyz 4726 ** 4727 ** The second form is preferred as a single index (or temp-table) may be 4728 ** used for both the ORDER BY and DISTINCT processing. As originally 4729 ** written the query must use a temp-table for at least one of the ORDER 4730 ** BY and DISTINCT, and an index or separate temp-table for the other. 4731 */ 4732 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4733 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4734 ){ 4735 p->selFlags &= ~SF_Distinct; 4736 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4737 pGroupBy = p->pGroupBy; 4738 sSort.pOrderBy = 0; 4739 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4740 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4741 ** original setting of the SF_Distinct flag, not the current setting */ 4742 assert( sDistinct.isTnct ); 4743 } 4744 4745 /* If there is an ORDER BY clause, then this sorting 4746 ** index might end up being unused if the data can be 4747 ** extracted in pre-sorted order. If that is the case, then the 4748 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4749 ** we figure out that the sorting index is not needed. The addrSortIndex 4750 ** variable is used to facilitate that change. 4751 */ 4752 if( sSort.pOrderBy ){ 4753 KeyInfo *pKeyInfo; 4754 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); 4755 sSort.iECursor = pParse->nTab++; 4756 sSort.addrSortIndex = 4757 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4758 sSort.iECursor, sSort.pOrderBy->nExpr+2, 0, 4759 (char*)pKeyInfo, P4_KEYINFO); 4760 }else{ 4761 sSort.addrSortIndex = -1; 4762 } 4763 4764 /* If the output is destined for a temporary table, open that table. 4765 */ 4766 if( pDest->eDest==SRT_EphemTab ){ 4767 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4768 } 4769 4770 /* Set the limiter. 4771 */ 4772 iEnd = sqlite3VdbeMakeLabel(v); 4773 p->nSelectRow = LARGEST_INT64; 4774 computeLimitRegisters(pParse, p, iEnd); 4775 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4776 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4777 sSort.sortFlags |= SORTFLAG_UseSorter; 4778 } 4779 4780 /* Open a virtual index to use for the distinct set. 4781 */ 4782 if( p->selFlags & SF_Distinct ){ 4783 sDistinct.tabTnct = pParse->nTab++; 4784 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4785 sDistinct.tabTnct, 0, 0, 4786 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4787 P4_KEYINFO); 4788 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4789 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4790 }else{ 4791 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4792 } 4793 4794 if( !isAgg && pGroupBy==0 ){ 4795 /* No aggregate functions and no GROUP BY clause */ 4796 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4797 4798 /* Begin the database scan. */ 4799 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4800 p->pEList, wctrlFlags, 0); 4801 if( pWInfo==0 ) goto select_end; 4802 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4803 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4804 } 4805 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4806 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4807 } 4808 if( sSort.pOrderBy ){ 4809 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 4810 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 4811 sSort.pOrderBy = 0; 4812 } 4813 } 4814 4815 /* If sorting index that was created by a prior OP_OpenEphemeral 4816 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4817 ** into an OP_Noop. 4818 */ 4819 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 4820 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 4821 } 4822 4823 /* Use the standard inner loop. */ 4824 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 4825 sqlite3WhereContinueLabel(pWInfo), 4826 sqlite3WhereBreakLabel(pWInfo)); 4827 4828 /* End the database scan loop. 4829 */ 4830 sqlite3WhereEnd(pWInfo); 4831 }else{ 4832 /* This case when there exist aggregate functions or a GROUP BY clause 4833 ** or both */ 4834 NameContext sNC; /* Name context for processing aggregate information */ 4835 int iAMem; /* First Mem address for storing current GROUP BY */ 4836 int iBMem; /* First Mem address for previous GROUP BY */ 4837 int iUseFlag; /* Mem address holding flag indicating that at least 4838 ** one row of the input to the aggregator has been 4839 ** processed */ 4840 int iAbortFlag; /* Mem address which causes query abort if positive */ 4841 int groupBySort; /* Rows come from source in GROUP BY order */ 4842 int addrEnd; /* End of processing for this SELECT */ 4843 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4844 int sortOut = 0; /* Output register from the sorter */ 4845 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 4846 4847 /* Remove any and all aliases between the result set and the 4848 ** GROUP BY clause. 4849 */ 4850 if( pGroupBy ){ 4851 int k; /* Loop counter */ 4852 struct ExprList_item *pItem; /* For looping over expression in a list */ 4853 4854 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4855 pItem->u.x.iAlias = 0; 4856 } 4857 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4858 pItem->u.x.iAlias = 0; 4859 } 4860 if( p->nSelectRow>100 ) p->nSelectRow = 100; 4861 }else{ 4862 p->nSelectRow = 1; 4863 } 4864 4865 4866 /* If there is both a GROUP BY and an ORDER BY clause and they are 4867 ** identical, then it may be possible to disable the ORDER BY clause 4868 ** on the grounds that the GROUP BY will cause elements to come out 4869 ** in the correct order. It also may not - the GROUP BY may use a 4870 ** database index that causes rows to be grouped together as required 4871 ** but not actually sorted. Either way, record the fact that the 4872 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 4873 ** variable. */ 4874 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 4875 orderByGrp = 1; 4876 } 4877 4878 /* Create a label to jump to when we want to abort the query */ 4879 addrEnd = sqlite3VdbeMakeLabel(v); 4880 4881 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4882 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4883 ** SELECT statement. 4884 */ 4885 memset(&sNC, 0, sizeof(sNC)); 4886 sNC.pParse = pParse; 4887 sNC.pSrcList = pTabList; 4888 sNC.pAggInfo = &sAggInfo; 4889 sAggInfo.mnReg = pParse->nMem+1; 4890 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4891 sAggInfo.pGroupBy = pGroupBy; 4892 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4893 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 4894 if( pHaving ){ 4895 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4896 } 4897 sAggInfo.nAccumulator = sAggInfo.nColumn; 4898 for(i=0; i<sAggInfo.nFunc; i++){ 4899 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4900 sNC.ncFlags |= NC_InAggFunc; 4901 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4902 sNC.ncFlags &= ~NC_InAggFunc; 4903 } 4904 sAggInfo.mxReg = pParse->nMem; 4905 if( db->mallocFailed ) goto select_end; 4906 4907 /* Processing for aggregates with GROUP BY is very different and 4908 ** much more complex than aggregates without a GROUP BY. 4909 */ 4910 if( pGroupBy ){ 4911 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4912 int j1; /* A-vs-B comparision jump */ 4913 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4914 int regOutputRow; /* Return address register for output subroutine */ 4915 int addrSetAbort; /* Set the abort flag and return */ 4916 int addrTopOfLoop; /* Top of the input loop */ 4917 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4918 int addrReset; /* Subroutine for resetting the accumulator */ 4919 int regReset; /* Return address register for reset subroutine */ 4920 4921 /* If there is a GROUP BY clause we might need a sorting index to 4922 ** implement it. Allocate that sorting index now. If it turns out 4923 ** that we do not need it after all, the OP_SorterOpen instruction 4924 ** will be converted into a Noop. 4925 */ 4926 sAggInfo.sortingIdx = pParse->nTab++; 4927 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); 4928 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4929 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4930 0, (char*)pKeyInfo, P4_KEYINFO); 4931 4932 /* Initialize memory locations used by GROUP BY aggregate processing 4933 */ 4934 iUseFlag = ++pParse->nMem; 4935 iAbortFlag = ++pParse->nMem; 4936 regOutputRow = ++pParse->nMem; 4937 addrOutputRow = sqlite3VdbeMakeLabel(v); 4938 regReset = ++pParse->nMem; 4939 addrReset = sqlite3VdbeMakeLabel(v); 4940 iAMem = pParse->nMem + 1; 4941 pParse->nMem += pGroupBy->nExpr; 4942 iBMem = pParse->nMem + 1; 4943 pParse->nMem += pGroupBy->nExpr; 4944 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4945 VdbeComment((v, "clear abort flag")); 4946 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4947 VdbeComment((v, "indicate accumulator empty")); 4948 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4949 4950 /* Begin a loop that will extract all source rows in GROUP BY order. 4951 ** This might involve two separate loops with an OP_Sort in between, or 4952 ** it might be a single loop that uses an index to extract information 4953 ** in the right order to begin with. 4954 */ 4955 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4956 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 4957 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 4958 ); 4959 if( pWInfo==0 ) goto select_end; 4960 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 4961 /* The optimizer is able to deliver rows in group by order so 4962 ** we do not have to sort. The OP_OpenEphemeral table will be 4963 ** cancelled later because we still need to use the pKeyInfo 4964 */ 4965 groupBySort = 0; 4966 }else{ 4967 /* Rows are coming out in undetermined order. We have to push 4968 ** each row into a sorting index, terminate the first loop, 4969 ** then loop over the sorting index in order to get the output 4970 ** in sorted order 4971 */ 4972 int regBase; 4973 int regRecord; 4974 int nCol; 4975 int nGroupBy; 4976 4977 explainTempTable(pParse, 4978 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 4979 "DISTINCT" : "GROUP BY"); 4980 4981 groupBySort = 1; 4982 nGroupBy = pGroupBy->nExpr; 4983 nCol = nGroupBy + 1; 4984 j = nGroupBy+1; 4985 for(i=0; i<sAggInfo.nColumn; i++){ 4986 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4987 nCol++; 4988 j++; 4989 } 4990 } 4991 regBase = sqlite3GetTempRange(pParse, nCol); 4992 sqlite3ExprCacheClear(pParse); 4993 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4994 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4995 j = nGroupBy+1; 4996 for(i=0; i<sAggInfo.nColumn; i++){ 4997 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4998 if( pCol->iSorterColumn>=j ){ 4999 int r1 = j + regBase; 5000 int r2; 5001 5002 r2 = sqlite3ExprCodeGetColumn(pParse, 5003 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5004 if( r1!=r2 ){ 5005 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5006 } 5007 j++; 5008 } 5009 } 5010 regRecord = sqlite3GetTempReg(pParse); 5011 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5012 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5013 sqlite3ReleaseTempReg(pParse, regRecord); 5014 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5015 sqlite3WhereEnd(pWInfo); 5016 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5017 sortOut = sqlite3GetTempReg(pParse); 5018 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5019 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5020 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5021 sAggInfo.useSortingIdx = 1; 5022 sqlite3ExprCacheClear(pParse); 5023 5024 } 5025 5026 /* If the index or temporary table used by the GROUP BY sort 5027 ** will naturally deliver rows in the order required by the ORDER BY 5028 ** clause, cancel the ephemeral table open coded earlier. 5029 ** 5030 ** This is an optimization - the correct answer should result regardless. 5031 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5032 ** disable this optimization for testing purposes. */ 5033 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5034 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5035 ){ 5036 sSort.pOrderBy = 0; 5037 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5038 } 5039 5040 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5041 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5042 ** Then compare the current GROUP BY terms against the GROUP BY terms 5043 ** from the previous row currently stored in a0, a1, a2... 5044 */ 5045 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5046 sqlite3ExprCacheClear(pParse); 5047 if( groupBySort ){ 5048 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 5049 } 5050 for(j=0; j<pGroupBy->nExpr; j++){ 5051 if( groupBySort ){ 5052 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5053 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 5054 }else{ 5055 sAggInfo.directMode = 1; 5056 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5057 } 5058 } 5059 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5060 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5061 j1 = sqlite3VdbeCurrentAddr(v); 5062 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5063 5064 /* Generate code that runs whenever the GROUP BY changes. 5065 ** Changes in the GROUP BY are detected by the previous code 5066 ** block. If there were no changes, this block is skipped. 5067 ** 5068 ** This code copies current group by terms in b0,b1,b2,... 5069 ** over to a0,a1,a2. It then calls the output subroutine 5070 ** and resets the aggregate accumulator registers in preparation 5071 ** for the next GROUP BY batch. 5072 */ 5073 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5074 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5075 VdbeComment((v, "output one row")); 5076 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5077 VdbeComment((v, "check abort flag")); 5078 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5079 VdbeComment((v, "reset accumulator")); 5080 5081 /* Update the aggregate accumulators based on the content of 5082 ** the current row 5083 */ 5084 sqlite3VdbeJumpHere(v, j1); 5085 updateAccumulator(pParse, &sAggInfo); 5086 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5087 VdbeComment((v, "indicate data in accumulator")); 5088 5089 /* End of the loop 5090 */ 5091 if( groupBySort ){ 5092 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5093 VdbeCoverage(v); 5094 }else{ 5095 sqlite3WhereEnd(pWInfo); 5096 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5097 } 5098 5099 /* Output the final row of result 5100 */ 5101 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5102 VdbeComment((v, "output final row")); 5103 5104 /* Jump over the subroutines 5105 */ 5106 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5107 5108 /* Generate a subroutine that outputs a single row of the result 5109 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5110 ** is less than or equal to zero, the subroutine is a no-op. If 5111 ** the processing calls for the query to abort, this subroutine 5112 ** increments the iAbortFlag memory location before returning in 5113 ** order to signal the caller to abort. 5114 */ 5115 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5116 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5117 VdbeComment((v, "set abort flag")); 5118 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5119 sqlite3VdbeResolveLabel(v, addrOutputRow); 5120 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5121 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5122 VdbeComment((v, "Groupby result generator entry point")); 5123 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5124 finalizeAggFunctions(pParse, &sAggInfo); 5125 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5126 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5127 &sDistinct, pDest, 5128 addrOutputRow+1, addrSetAbort); 5129 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5130 VdbeComment((v, "end groupby result generator")); 5131 5132 /* Generate a subroutine that will reset the group-by accumulator 5133 */ 5134 sqlite3VdbeResolveLabel(v, addrReset); 5135 resetAccumulator(pParse, &sAggInfo); 5136 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5137 5138 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5139 else { 5140 ExprList *pDel = 0; 5141 #ifndef SQLITE_OMIT_BTREECOUNT 5142 Table *pTab; 5143 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5144 /* If isSimpleCount() returns a pointer to a Table structure, then 5145 ** the SQL statement is of the form: 5146 ** 5147 ** SELECT count(*) FROM <tbl> 5148 ** 5149 ** where the Table structure returned represents table <tbl>. 5150 ** 5151 ** This statement is so common that it is optimized specially. The 5152 ** OP_Count instruction is executed either on the intkey table that 5153 ** contains the data for table <tbl> or on one of its indexes. It 5154 ** is better to execute the op on an index, as indexes are almost 5155 ** always spread across less pages than their corresponding tables. 5156 */ 5157 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5158 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5159 Index *pIdx; /* Iterator variable */ 5160 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5161 Index *pBest = 0; /* Best index found so far */ 5162 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5163 5164 sqlite3CodeVerifySchema(pParse, iDb); 5165 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5166 5167 /* Search for the index that has the lowest scan cost. 5168 ** 5169 ** (2011-04-15) Do not do a full scan of an unordered index. 5170 ** 5171 ** (2013-10-03) Do not count the entries in a partial index. 5172 ** 5173 ** In practice the KeyInfo structure will not be used. It is only 5174 ** passed to keep OP_OpenRead happy. 5175 */ 5176 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5177 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5178 if( pIdx->bUnordered==0 5179 && pIdx->szIdxRow<pTab->szTabRow 5180 && pIdx->pPartIdxWhere==0 5181 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5182 ){ 5183 pBest = pIdx; 5184 } 5185 } 5186 if( pBest ){ 5187 iRoot = pBest->tnum; 5188 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5189 } 5190 5191 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5192 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5193 if( pKeyInfo ){ 5194 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5195 } 5196 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5197 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5198 explainSimpleCount(pParse, pTab, pBest); 5199 }else 5200 #endif /* SQLITE_OMIT_BTREECOUNT */ 5201 { 5202 /* Check if the query is of one of the following forms: 5203 ** 5204 ** SELECT min(x) FROM ... 5205 ** SELECT max(x) FROM ... 5206 ** 5207 ** If it is, then ask the code in where.c to attempt to sort results 5208 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5209 ** If where.c is able to produce results sorted in this order, then 5210 ** add vdbe code to break out of the processing loop after the 5211 ** first iteration (since the first iteration of the loop is 5212 ** guaranteed to operate on the row with the minimum or maximum 5213 ** value of x, the only row required). 5214 ** 5215 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5216 ** modify behavior as follows: 5217 ** 5218 ** + If the query is a "SELECT min(x)", then the loop coded by 5219 ** where.c should not iterate over any values with a NULL value 5220 ** for x. 5221 ** 5222 ** + The optimizer code in where.c (the thing that decides which 5223 ** index or indices to use) should place a different priority on 5224 ** satisfying the 'ORDER BY' clause than it does in other cases. 5225 ** Refer to code and comments in where.c for details. 5226 */ 5227 ExprList *pMinMax = 0; 5228 u8 flag = WHERE_ORDERBY_NORMAL; 5229 5230 assert( p->pGroupBy==0 ); 5231 assert( flag==0 ); 5232 if( p->pHaving==0 ){ 5233 flag = minMaxQuery(&sAggInfo, &pMinMax); 5234 } 5235 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5236 5237 if( flag ){ 5238 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5239 pDel = pMinMax; 5240 if( pMinMax && !db->mallocFailed ){ 5241 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5242 pMinMax->a[0].pExpr->op = TK_COLUMN; 5243 } 5244 } 5245 5246 /* This case runs if the aggregate has no GROUP BY clause. The 5247 ** processing is much simpler since there is only a single row 5248 ** of output. 5249 */ 5250 resetAccumulator(pParse, &sAggInfo); 5251 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5252 if( pWInfo==0 ){ 5253 sqlite3ExprListDelete(db, pDel); 5254 goto select_end; 5255 } 5256 updateAccumulator(pParse, &sAggInfo); 5257 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5258 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5259 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5260 VdbeComment((v, "%s() by index", 5261 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5262 } 5263 sqlite3WhereEnd(pWInfo); 5264 finalizeAggFunctions(pParse, &sAggInfo); 5265 } 5266 5267 sSort.pOrderBy = 0; 5268 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5269 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5270 pDest, addrEnd, addrEnd); 5271 sqlite3ExprListDelete(db, pDel); 5272 } 5273 sqlite3VdbeResolveLabel(v, addrEnd); 5274 5275 } /* endif aggregate query */ 5276 5277 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5278 explainTempTable(pParse, "DISTINCT"); 5279 } 5280 5281 /* If there is an ORDER BY clause, then we need to sort the results 5282 ** and send them to the callback one by one. 5283 */ 5284 if( sSort.pOrderBy ){ 5285 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5286 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5287 } 5288 5289 /* Jump here to skip this query 5290 */ 5291 sqlite3VdbeResolveLabel(v, iEnd); 5292 5293 /* The SELECT was successfully coded. Set the return code to 0 5294 ** to indicate no errors. 5295 */ 5296 rc = 0; 5297 5298 /* Control jumps to here if an error is encountered above, or upon 5299 ** successful coding of the SELECT. 5300 */ 5301 select_end: 5302 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5303 5304 /* Identify column names if results of the SELECT are to be output. 5305 */ 5306 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5307 generateColumnNames(pParse, pTabList, pEList); 5308 } 5309 5310 sqlite3DbFree(db, sAggInfo.aCol); 5311 sqlite3DbFree(db, sAggInfo.aFunc); 5312 return rc; 5313 } 5314 5315 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 5316 /* 5317 ** Generate a human-readable description of a the Select object. 5318 */ 5319 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 5320 sqlite3ExplainPrintf(pVdbe, "SELECT "); 5321 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 5322 if( p->selFlags & SF_Distinct ){ 5323 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 5324 } 5325 if( p->selFlags & SF_Aggregate ){ 5326 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 5327 } 5328 sqlite3ExplainNL(pVdbe); 5329 sqlite3ExplainPrintf(pVdbe, " "); 5330 } 5331 sqlite3ExplainExprList(pVdbe, p->pEList); 5332 sqlite3ExplainNL(pVdbe); 5333 if( p->pSrc && p->pSrc->nSrc ){ 5334 int i; 5335 sqlite3ExplainPrintf(pVdbe, "FROM "); 5336 sqlite3ExplainPush(pVdbe); 5337 for(i=0; i<p->pSrc->nSrc; i++){ 5338 struct SrcList_item *pItem = &p->pSrc->a[i]; 5339 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 5340 if( pItem->pSelect ){ 5341 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 5342 if( pItem->pTab ){ 5343 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 5344 } 5345 }else if( pItem->zName ){ 5346 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 5347 } 5348 if( pItem->zAlias ){ 5349 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 5350 } 5351 if( pItem->jointype & JT_LEFT ){ 5352 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 5353 } 5354 sqlite3ExplainNL(pVdbe); 5355 } 5356 sqlite3ExplainPop(pVdbe); 5357 } 5358 if( p->pWhere ){ 5359 sqlite3ExplainPrintf(pVdbe, "WHERE "); 5360 sqlite3ExplainExpr(pVdbe, p->pWhere); 5361 sqlite3ExplainNL(pVdbe); 5362 } 5363 if( p->pGroupBy ){ 5364 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 5365 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 5366 sqlite3ExplainNL(pVdbe); 5367 } 5368 if( p->pHaving ){ 5369 sqlite3ExplainPrintf(pVdbe, "HAVING "); 5370 sqlite3ExplainExpr(pVdbe, p->pHaving); 5371 sqlite3ExplainNL(pVdbe); 5372 } 5373 if( p->pOrderBy ){ 5374 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 5375 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 5376 sqlite3ExplainNL(pVdbe); 5377 } 5378 if( p->pLimit ){ 5379 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 5380 sqlite3ExplainExpr(pVdbe, p->pLimit); 5381 sqlite3ExplainNL(pVdbe); 5382 } 5383 if( p->pOffset ){ 5384 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 5385 sqlite3ExplainExpr(pVdbe, p->pOffset); 5386 sqlite3ExplainNL(pVdbe); 5387 } 5388 } 5389 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 5390 if( p==0 ){ 5391 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 5392 return; 5393 } 5394 sqlite3ExplainPush(pVdbe); 5395 while( p ){ 5396 explainOneSelect(pVdbe, p); 5397 p = p->pNext; 5398 if( p==0 ) break; 5399 sqlite3ExplainNL(pVdbe); 5400 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 5401 } 5402 sqlite3ExplainPrintf(pVdbe, "END"); 5403 sqlite3ExplainPop(pVdbe); 5404 } 5405 5406 /* End of the structure debug printing code 5407 *****************************************************************************/ 5408 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 5409