1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 #endif 104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 105 if( bFree ) sqlite3DbFreeNN(db, p); 106 p = pPrior; 107 bFree = 1; 108 } 109 } 110 111 /* 112 ** Initialize a SelectDest structure. 113 */ 114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 115 pDest->eDest = (u8)eDest; 116 pDest->iSDParm = iParm; 117 pDest->zAffSdst = 0; 118 pDest->iSdst = 0; 119 pDest->nSdst = 0; 120 } 121 122 123 /* 124 ** Allocate a new Select structure and return a pointer to that 125 ** structure. 126 */ 127 Select *sqlite3SelectNew( 128 Parse *pParse, /* Parsing context */ 129 ExprList *pEList, /* which columns to include in the result */ 130 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 131 Expr *pWhere, /* the WHERE clause */ 132 ExprList *pGroupBy, /* the GROUP BY clause */ 133 Expr *pHaving, /* the HAVING clause */ 134 ExprList *pOrderBy, /* the ORDER BY clause */ 135 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 136 Expr *pLimit /* LIMIT value. NULL means not used */ 137 ){ 138 Select *pNew; 139 Select standin; 140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 141 if( pNew==0 ){ 142 assert( pParse->db->mallocFailed ); 143 pNew = &standin; 144 } 145 if( pEList==0 ){ 146 pEList = sqlite3ExprListAppend(pParse, 0, 147 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 148 } 149 pNew->pEList = pEList; 150 pNew->op = TK_SELECT; 151 pNew->selFlags = selFlags; 152 pNew->iLimit = 0; 153 pNew->iOffset = 0; 154 pNew->selId = ++pParse->nSelect; 155 pNew->addrOpenEphm[0] = -1; 156 pNew->addrOpenEphm[1] = -1; 157 pNew->nSelectRow = 0; 158 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 159 pNew->pSrc = pSrc; 160 pNew->pWhere = pWhere; 161 pNew->pGroupBy = pGroupBy; 162 pNew->pHaving = pHaving; 163 pNew->pOrderBy = pOrderBy; 164 pNew->pPrior = 0; 165 pNew->pNext = 0; 166 pNew->pLimit = pLimit; 167 pNew->pWith = 0; 168 #ifndef SQLITE_OMIT_WINDOWFUNC 169 pNew->pWin = 0; 170 pNew->pWinDefn = 0; 171 #endif 172 if( pParse->db->mallocFailed ) { 173 clearSelect(pParse->db, pNew, pNew!=&standin); 174 pNew = 0; 175 }else{ 176 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 177 } 178 assert( pNew!=&standin ); 179 return pNew; 180 } 181 182 183 /* 184 ** Delete the given Select structure and all of its substructures. 185 */ 186 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 187 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 188 } 189 190 /* 191 ** Return a pointer to the right-most SELECT statement in a compound. 192 */ 193 static Select *findRightmost(Select *p){ 194 while( p->pNext ) p = p->pNext; 195 return p; 196 } 197 198 /* 199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 200 ** type of join. Return an integer constant that expresses that type 201 ** in terms of the following bit values: 202 ** 203 ** JT_INNER 204 ** JT_CROSS 205 ** JT_OUTER 206 ** JT_NATURAL 207 ** JT_LEFT 208 ** JT_RIGHT 209 ** 210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 211 ** 212 ** If an illegal or unsupported join type is seen, then still return 213 ** a join type, but put an error in the pParse structure. 214 */ 215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 216 int jointype = 0; 217 Token *apAll[3]; 218 Token *p; 219 /* 0123456789 123456789 123456789 123 */ 220 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 221 static const struct { 222 u8 i; /* Beginning of keyword text in zKeyText[] */ 223 u8 nChar; /* Length of the keyword in characters */ 224 u8 code; /* Join type mask */ 225 } aKeyword[] = { 226 /* natural */ { 0, 7, JT_NATURAL }, 227 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 228 /* outer */ { 10, 5, JT_OUTER }, 229 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 230 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 231 /* inner */ { 23, 5, JT_INNER }, 232 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 233 }; 234 int i, j; 235 apAll[0] = pA; 236 apAll[1] = pB; 237 apAll[2] = pC; 238 for(i=0; i<3 && apAll[i]; i++){ 239 p = apAll[i]; 240 for(j=0; j<ArraySize(aKeyword); j++){ 241 if( p->n==aKeyword[j].nChar 242 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 243 jointype |= aKeyword[j].code; 244 break; 245 } 246 } 247 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 248 if( j>=ArraySize(aKeyword) ){ 249 jointype |= JT_ERROR; 250 break; 251 } 252 } 253 if( 254 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 255 (jointype & JT_ERROR)!=0 256 ){ 257 const char *zSp = " "; 258 assert( pB!=0 ); 259 if( pC==0 ){ zSp++; } 260 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 261 "%T %T%s%T", pA, pB, zSp, pC); 262 jointype = JT_INNER; 263 }else if( (jointype & JT_OUTER)!=0 264 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 265 sqlite3ErrorMsg(pParse, 266 "RIGHT and FULL OUTER JOINs are not currently supported"); 267 jointype = JT_INNER; 268 } 269 return jointype; 270 } 271 272 /* 273 ** Return the index of a column in a table. Return -1 if the column 274 ** is not contained in the table. 275 */ 276 static int columnIndex(Table *pTab, const char *zCol){ 277 int i; 278 for(i=0; i<pTab->nCol; i++){ 279 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 280 } 281 return -1; 282 } 283 284 /* 285 ** Search the first N tables in pSrc, from left to right, looking for a 286 ** table that has a column named zCol. 287 ** 288 ** When found, set *piTab and *piCol to the table index and column index 289 ** of the matching column and return TRUE. 290 ** 291 ** If not found, return FALSE. 292 */ 293 static int tableAndColumnIndex( 294 SrcList *pSrc, /* Array of tables to search */ 295 int N, /* Number of tables in pSrc->a[] to search */ 296 const char *zCol, /* Name of the column we are looking for */ 297 int *piTab, /* Write index of pSrc->a[] here */ 298 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 299 ){ 300 int i; /* For looping over tables in pSrc */ 301 int iCol; /* Index of column matching zCol */ 302 303 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 304 for(i=0; i<N; i++){ 305 iCol = columnIndex(pSrc->a[i].pTab, zCol); 306 if( iCol>=0 ){ 307 if( piTab ){ 308 *piTab = i; 309 *piCol = iCol; 310 } 311 return 1; 312 } 313 } 314 return 0; 315 } 316 317 /* 318 ** This function is used to add terms implied by JOIN syntax to the 319 ** WHERE clause expression of a SELECT statement. The new term, which 320 ** is ANDed with the existing WHERE clause, is of the form: 321 ** 322 ** (tab1.col1 = tab2.col2) 323 ** 324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 326 ** column iColRight of tab2. 327 */ 328 static void addWhereTerm( 329 Parse *pParse, /* Parsing context */ 330 SrcList *pSrc, /* List of tables in FROM clause */ 331 int iLeft, /* Index of first table to join in pSrc */ 332 int iColLeft, /* Index of column in first table */ 333 int iRight, /* Index of second table in pSrc */ 334 int iColRight, /* Index of column in second table */ 335 int isOuterJoin, /* True if this is an OUTER join */ 336 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 337 ){ 338 sqlite3 *db = pParse->db; 339 Expr *pE1; 340 Expr *pE2; 341 Expr *pEq; 342 343 assert( iLeft<iRight ); 344 assert( pSrc->nSrc>iRight ); 345 assert( pSrc->a[iLeft].pTab ); 346 assert( pSrc->a[iRight].pTab ); 347 348 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 349 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 350 351 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 352 if( pEq && isOuterJoin ){ 353 ExprSetProperty(pEq, EP_FromJoin); 354 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 355 ExprSetVVAProperty(pEq, EP_NoReduce); 356 pEq->iRightJoinTable = (i16)pE2->iTable; 357 } 358 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 359 } 360 361 /* 362 ** Set the EP_FromJoin property on all terms of the given expression. 363 ** And set the Expr.iRightJoinTable to iTable for every term in the 364 ** expression. 365 ** 366 ** The EP_FromJoin property is used on terms of an expression to tell 367 ** the LEFT OUTER JOIN processing logic that this term is part of the 368 ** join restriction specified in the ON or USING clause and not a part 369 ** of the more general WHERE clause. These terms are moved over to the 370 ** WHERE clause during join processing but we need to remember that they 371 ** originated in the ON or USING clause. 372 ** 373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 374 ** expression depends on table iRightJoinTable even if that table is not 375 ** explicitly mentioned in the expression. That information is needed 376 ** for cases like this: 377 ** 378 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 379 ** 380 ** The where clause needs to defer the handling of the t1.x=5 381 ** term until after the t2 loop of the join. In that way, a 382 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 383 ** defer the handling of t1.x=5, it will be processed immediately 384 ** after the t1 loop and rows with t1.x!=5 will never appear in 385 ** the output, which is incorrect. 386 */ 387 static void setJoinExpr(Expr *p, int iTable){ 388 while( p ){ 389 ExprSetProperty(p, EP_FromJoin); 390 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 391 ExprSetVVAProperty(p, EP_NoReduce); 392 p->iRightJoinTable = (i16)iTable; 393 if( p->op==TK_FUNCTION && p->x.pList ){ 394 int i; 395 for(i=0; i<p->x.pList->nExpr; i++){ 396 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 397 } 398 } 399 setJoinExpr(p->pLeft, iTable); 400 p = p->pRight; 401 } 402 } 403 404 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 406 ** an ordinary term that omits the EP_FromJoin mark. 407 ** 408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 409 */ 410 static void unsetJoinExpr(Expr *p, int iTable){ 411 while( p ){ 412 if( ExprHasProperty(p, EP_FromJoin) 413 && (iTable<0 || p->iRightJoinTable==iTable) ){ 414 ExprClearProperty(p, EP_FromJoin); 415 } 416 if( p->op==TK_FUNCTION && p->x.pList ){ 417 int i; 418 for(i=0; i<p->x.pList->nExpr; i++){ 419 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 420 } 421 } 422 unsetJoinExpr(p->pLeft, iTable); 423 p = p->pRight; 424 } 425 } 426 427 /* 428 ** This routine processes the join information for a SELECT statement. 429 ** ON and USING clauses are converted into extra terms of the WHERE clause. 430 ** NATURAL joins also create extra WHERE clause terms. 431 ** 432 ** The terms of a FROM clause are contained in the Select.pSrc structure. 433 ** The left most table is the first entry in Select.pSrc. The right-most 434 ** table is the last entry. The join operator is held in the entry to 435 ** the left. Thus entry 0 contains the join operator for the join between 436 ** entries 0 and 1. Any ON or USING clauses associated with the join are 437 ** also attached to the left entry. 438 ** 439 ** This routine returns the number of errors encountered. 440 */ 441 static int sqliteProcessJoin(Parse *pParse, Select *p){ 442 SrcList *pSrc; /* All tables in the FROM clause */ 443 int i, j; /* Loop counters */ 444 struct SrcList_item *pLeft; /* Left table being joined */ 445 struct SrcList_item *pRight; /* Right table being joined */ 446 447 pSrc = p->pSrc; 448 pLeft = &pSrc->a[0]; 449 pRight = &pLeft[1]; 450 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 451 Table *pRightTab = pRight->pTab; 452 int isOuter; 453 454 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 455 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 456 457 /* When the NATURAL keyword is present, add WHERE clause terms for 458 ** every column that the two tables have in common. 459 */ 460 if( pRight->fg.jointype & JT_NATURAL ){ 461 if( pRight->pOn || pRight->pUsing ){ 462 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 463 "an ON or USING clause", 0); 464 return 1; 465 } 466 for(j=0; j<pRightTab->nCol; j++){ 467 char *zName; /* Name of column in the right table */ 468 int iLeft; /* Matching left table */ 469 int iLeftCol; /* Matching column in the left table */ 470 471 zName = pRightTab->aCol[j].zName; 472 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 473 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 474 isOuter, &p->pWhere); 475 } 476 } 477 } 478 479 /* Disallow both ON and USING clauses in the same join 480 */ 481 if( pRight->pOn && pRight->pUsing ){ 482 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 483 "clauses in the same join"); 484 return 1; 485 } 486 487 /* Add the ON clause to the end of the WHERE clause, connected by 488 ** an AND operator. 489 */ 490 if( pRight->pOn ){ 491 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 492 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 493 pRight->pOn = 0; 494 } 495 496 /* Create extra terms on the WHERE clause for each column named 497 ** in the USING clause. Example: If the two tables to be joined are 498 ** A and B and the USING clause names X, Y, and Z, then add this 499 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 500 ** Report an error if any column mentioned in the USING clause is 501 ** not contained in both tables to be joined. 502 */ 503 if( pRight->pUsing ){ 504 IdList *pList = pRight->pUsing; 505 for(j=0; j<pList->nId; j++){ 506 char *zName; /* Name of the term in the USING clause */ 507 int iLeft; /* Table on the left with matching column name */ 508 int iLeftCol; /* Column number of matching column on the left */ 509 int iRightCol; /* Column number of matching column on the right */ 510 511 zName = pList->a[j].zName; 512 iRightCol = columnIndex(pRightTab, zName); 513 if( iRightCol<0 514 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 515 ){ 516 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 517 "not present in both tables", zName); 518 return 1; 519 } 520 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 521 isOuter, &p->pWhere); 522 } 523 } 524 } 525 return 0; 526 } 527 528 /* 529 ** An instance of this object holds information (beyond pParse and pSelect) 530 ** needed to load the next result row that is to be added to the sorter. 531 */ 532 typedef struct RowLoadInfo RowLoadInfo; 533 struct RowLoadInfo { 534 int regResult; /* Store results in array of registers here */ 535 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 537 ExprList *pExtra; /* Extra columns needed by sorter refs */ 538 int regExtraResult; /* Where to load the extra columns */ 539 #endif 540 }; 541 542 /* 543 ** This routine does the work of loading query data into an array of 544 ** registers so that it can be added to the sorter. 545 */ 546 static void innerLoopLoadRow( 547 Parse *pParse, /* Statement under construction */ 548 Select *pSelect, /* The query being coded */ 549 RowLoadInfo *pInfo /* Info needed to complete the row load */ 550 ){ 551 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 552 0, pInfo->ecelFlags); 553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 554 if( pInfo->pExtra ){ 555 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 556 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 557 } 558 #endif 559 } 560 561 /* 562 ** Code the OP_MakeRecord instruction that generates the entry to be 563 ** added into the sorter. 564 ** 565 ** Return the register in which the result is stored. 566 */ 567 static int makeSorterRecord( 568 Parse *pParse, 569 SortCtx *pSort, 570 Select *pSelect, 571 int regBase, 572 int nBase 573 ){ 574 int nOBSat = pSort->nOBSat; 575 Vdbe *v = pParse->pVdbe; 576 int regOut = ++pParse->nMem; 577 if( pSort->pDeferredRowLoad ){ 578 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 579 } 580 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 581 return regOut; 582 } 583 584 /* 585 ** Generate code that will push the record in registers regData 586 ** through regData+nData-1 onto the sorter. 587 */ 588 static void pushOntoSorter( 589 Parse *pParse, /* Parser context */ 590 SortCtx *pSort, /* Information about the ORDER BY clause */ 591 Select *pSelect, /* The whole SELECT statement */ 592 int regData, /* First register holding data to be sorted */ 593 int regOrigData, /* First register holding data before packing */ 594 int nData, /* Number of elements in the regData data array */ 595 int nPrefixReg /* No. of reg prior to regData available for use */ 596 ){ 597 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 598 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 599 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 600 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 601 int regBase; /* Regs for sorter record */ 602 int regRecord = 0; /* Assembled sorter record */ 603 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 604 int op; /* Opcode to add sorter record to sorter */ 605 int iLimit; /* LIMIT counter */ 606 int iSkip = 0; /* End of the sorter insert loop */ 607 608 assert( bSeq==0 || bSeq==1 ); 609 610 /* Three cases: 611 ** (1) The data to be sorted has already been packed into a Record 612 ** by a prior OP_MakeRecord. In this case nData==1 and regData 613 ** will be completely unrelated to regOrigData. 614 ** (2) All output columns are included in the sort record. In that 615 ** case regData==regOrigData. 616 ** (3) Some output columns are omitted from the sort record due to 617 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 618 ** SQLITE_ECEL_OMITREF optimization, or due to the 619 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 620 ** regOrigData is 0 to prevent this routine from trying to copy 621 ** values that might not yet exist. 622 */ 623 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 624 625 if( nPrefixReg ){ 626 assert( nPrefixReg==nExpr+bSeq ); 627 regBase = regData - nPrefixReg; 628 }else{ 629 regBase = pParse->nMem + 1; 630 pParse->nMem += nBase; 631 } 632 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 633 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 634 pSort->labelDone = sqlite3VdbeMakeLabel(v); 635 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 636 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 637 if( bSeq ){ 638 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 639 } 640 if( nPrefixReg==0 && nData>0 ){ 641 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 642 } 643 if( nOBSat>0 ){ 644 int regPrevKey; /* The first nOBSat columns of the previous row */ 645 int addrFirst; /* Address of the OP_IfNot opcode */ 646 int addrJmp; /* Address of the OP_Jump opcode */ 647 VdbeOp *pOp; /* Opcode that opens the sorter */ 648 int nKey; /* Number of sorting key columns, including OP_Sequence */ 649 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 650 651 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 652 regPrevKey = pParse->nMem+1; 653 pParse->nMem += pSort->nOBSat; 654 nKey = nExpr - pSort->nOBSat + bSeq; 655 if( bSeq ){ 656 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 657 }else{ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 659 } 660 VdbeCoverage(v); 661 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 662 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 663 if( pParse->db->mallocFailed ) return; 664 pOp->p2 = nKey + nData; 665 pKI = pOp->p4.pKeyInfo; 666 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 667 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 668 testcase( pKI->nAllField > pKI->nKeyField+2 ); 669 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 670 pKI->nAllField-pKI->nKeyField-1); 671 addrJmp = sqlite3VdbeCurrentAddr(v); 672 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 673 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 674 pSort->regReturn = ++pParse->nMem; 675 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 676 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 677 if( iLimit ){ 678 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 679 VdbeCoverage(v); 680 } 681 sqlite3VdbeJumpHere(v, addrFirst); 682 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 683 sqlite3VdbeJumpHere(v, addrJmp); 684 } 685 if( iLimit ){ 686 /* At this point the values for the new sorter entry are stored 687 ** in an array of registers. They need to be composed into a record 688 ** and inserted into the sorter if either (a) there are currently 689 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 690 ** the largest record currently in the sorter. If (b) is true and there 691 ** are already LIMIT+OFFSET items in the sorter, delete the largest 692 ** entry before inserting the new one. This way there are never more 693 ** than LIMIT+OFFSET items in the sorter. 694 ** 695 ** If the new record does not need to be inserted into the sorter, 696 ** jump to the next iteration of the loop. Or, if the 697 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner 698 ** loop delivers items in sorted order, jump to the next iteration 699 ** of the outer loop. 700 */ 701 int iCsr = pSort->iECursor; 702 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 703 VdbeCoverage(v); 704 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 705 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 706 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 707 VdbeCoverage(v); 708 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 709 } 710 if( regRecord==0 ){ 711 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 712 } 713 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 714 op = OP_SorterInsert; 715 }else{ 716 op = OP_IdxInsert; 717 } 718 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 719 regBase+nOBSat, nBase-nOBSat); 720 if( iSkip ){ 721 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 ); 722 sqlite3VdbeChangeP2(v, iSkip, 723 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop); 724 } 725 } 726 727 /* 728 ** Add code to implement the OFFSET 729 */ 730 static void codeOffset( 731 Vdbe *v, /* Generate code into this VM */ 732 int iOffset, /* Register holding the offset counter */ 733 int iContinue /* Jump here to skip the current record */ 734 ){ 735 if( iOffset>0 ){ 736 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 737 VdbeComment((v, "OFFSET")); 738 } 739 } 740 741 /* 742 ** Add code that will check to make sure the N registers starting at iMem 743 ** form a distinct entry. iTab is a sorting index that holds previously 744 ** seen combinations of the N values. A new entry is made in iTab 745 ** if the current N values are new. 746 ** 747 ** A jump to addrRepeat is made and the N+1 values are popped from the 748 ** stack if the top N elements are not distinct. 749 */ 750 static void codeDistinct( 751 Parse *pParse, /* Parsing and code generating context */ 752 int iTab, /* A sorting index used to test for distinctness */ 753 int addrRepeat, /* Jump to here if not distinct */ 754 int N, /* Number of elements */ 755 int iMem /* First element */ 756 ){ 757 Vdbe *v; 758 int r1; 759 760 v = pParse->pVdbe; 761 r1 = sqlite3GetTempReg(pParse); 762 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 763 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 764 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 765 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 766 sqlite3ReleaseTempReg(pParse, r1); 767 } 768 769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 770 /* 771 ** This function is called as part of inner-loop generation for a SELECT 772 ** statement with an ORDER BY that is not optimized by an index. It 773 ** determines the expressions, if any, that the sorter-reference 774 ** optimization should be used for. The sorter-reference optimization 775 ** is used for SELECT queries like: 776 ** 777 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 778 ** 779 ** If the optimization is used for expression "bigblob", then instead of 780 ** storing values read from that column in the sorter records, the PK of 781 ** the row from table t1 is stored instead. Then, as records are extracted from 782 ** the sorter to return to the user, the required value of bigblob is 783 ** retrieved directly from table t1. If the values are very large, this 784 ** can be more efficient than storing them directly in the sorter records. 785 ** 786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 787 ** for which the sorter-reference optimization should be enabled. 788 ** Additionally, the pSort->aDefer[] array is populated with entries 789 ** for all cursors required to evaluate all selected expressions. Finally. 790 ** output variable (*ppExtra) is set to an expression list containing 791 ** expressions for all extra PK values that should be stored in the 792 ** sorter records. 793 */ 794 static void selectExprDefer( 795 Parse *pParse, /* Leave any error here */ 796 SortCtx *pSort, /* Sorter context */ 797 ExprList *pEList, /* Expressions destined for sorter */ 798 ExprList **ppExtra /* Expressions to append to sorter record */ 799 ){ 800 int i; 801 int nDefer = 0; 802 ExprList *pExtra = 0; 803 for(i=0; i<pEList->nExpr; i++){ 804 struct ExprList_item *pItem = &pEList->a[i]; 805 if( pItem->u.x.iOrderByCol==0 ){ 806 Expr *pExpr = pItem->pExpr; 807 Table *pTab = pExpr->pTab; 808 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 809 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 810 ){ 811 int j; 812 for(j=0; j<nDefer; j++){ 813 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 814 } 815 if( j==nDefer ){ 816 if( nDefer==ArraySize(pSort->aDefer) ){ 817 continue; 818 }else{ 819 int nKey = 1; 820 int k; 821 Index *pPk = 0; 822 if( !HasRowid(pTab) ){ 823 pPk = sqlite3PrimaryKeyIndex(pTab); 824 nKey = pPk->nKeyCol; 825 } 826 for(k=0; k<nKey; k++){ 827 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 828 if( pNew ){ 829 pNew->iTable = pExpr->iTable; 830 pNew->pTab = pExpr->pTab; 831 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 832 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 833 } 834 } 835 pSort->aDefer[nDefer].pTab = pExpr->pTab; 836 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 837 pSort->aDefer[nDefer].nKey = nKey; 838 nDefer++; 839 } 840 } 841 pItem->bSorterRef = 1; 842 } 843 } 844 } 845 pSort->nDefer = (u8)nDefer; 846 *ppExtra = pExtra; 847 } 848 #endif 849 850 /* 851 ** This routine generates the code for the inside of the inner loop 852 ** of a SELECT. 853 ** 854 ** If srcTab is negative, then the p->pEList expressions 855 ** are evaluated in order to get the data for this row. If srcTab is 856 ** zero or more, then data is pulled from srcTab and p->pEList is used only 857 ** to get the number of columns and the collation sequence for each column. 858 */ 859 static void selectInnerLoop( 860 Parse *pParse, /* The parser context */ 861 Select *p, /* The complete select statement being coded */ 862 int srcTab, /* Pull data from this table if non-negative */ 863 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 864 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 865 SelectDest *pDest, /* How to dispose of the results */ 866 int iContinue, /* Jump here to continue with next row */ 867 int iBreak /* Jump here to break out of the inner loop */ 868 ){ 869 Vdbe *v = pParse->pVdbe; 870 int i; 871 int hasDistinct; /* True if the DISTINCT keyword is present */ 872 int eDest = pDest->eDest; /* How to dispose of results */ 873 int iParm = pDest->iSDParm; /* First argument to disposal method */ 874 int nResultCol; /* Number of result columns */ 875 int nPrefixReg = 0; /* Number of extra registers before regResult */ 876 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 877 878 /* Usually, regResult is the first cell in an array of memory cells 879 ** containing the current result row. In this case regOrig is set to the 880 ** same value. However, if the results are being sent to the sorter, the 881 ** values for any expressions that are also part of the sort-key are omitted 882 ** from this array. In this case regOrig is set to zero. */ 883 int regResult; /* Start of memory holding current results */ 884 int regOrig; /* Start of memory holding full result (or 0) */ 885 886 assert( v ); 887 assert( p->pEList!=0 ); 888 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 889 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 890 if( pSort==0 && !hasDistinct ){ 891 assert( iContinue!=0 ); 892 codeOffset(v, p->iOffset, iContinue); 893 } 894 895 /* Pull the requested columns. 896 */ 897 nResultCol = p->pEList->nExpr; 898 899 if( pDest->iSdst==0 ){ 900 if( pSort ){ 901 nPrefixReg = pSort->pOrderBy->nExpr; 902 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 903 pParse->nMem += nPrefixReg; 904 } 905 pDest->iSdst = pParse->nMem+1; 906 pParse->nMem += nResultCol; 907 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 908 /* This is an error condition that can result, for example, when a SELECT 909 ** on the right-hand side of an INSERT contains more result columns than 910 ** there are columns in the table on the left. The error will be caught 911 ** and reported later. But we need to make sure enough memory is allocated 912 ** to avoid other spurious errors in the meantime. */ 913 pParse->nMem += nResultCol; 914 } 915 pDest->nSdst = nResultCol; 916 regOrig = regResult = pDest->iSdst; 917 if( srcTab>=0 ){ 918 for(i=0; i<nResultCol; i++){ 919 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 920 VdbeComment((v, "%s", p->pEList->a[i].zName)); 921 } 922 }else if( eDest!=SRT_Exists ){ 923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 924 ExprList *pExtra = 0; 925 #endif 926 /* If the destination is an EXISTS(...) expression, the actual 927 ** values returned by the SELECT are not required. 928 */ 929 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 930 ExprList *pEList; 931 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 932 ecelFlags = SQLITE_ECEL_DUP; 933 }else{ 934 ecelFlags = 0; 935 } 936 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 937 /* For each expression in p->pEList that is a copy of an expression in 938 ** the ORDER BY clause (pSort->pOrderBy), set the associated 939 ** iOrderByCol value to one more than the index of the ORDER BY 940 ** expression within the sort-key that pushOntoSorter() will generate. 941 ** This allows the p->pEList field to be omitted from the sorted record, 942 ** saving space and CPU cycles. */ 943 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 944 945 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 946 int j; 947 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 948 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 949 } 950 } 951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 952 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 953 if( pExtra && pParse->db->mallocFailed==0 ){ 954 /* If there are any extra PK columns to add to the sorter records, 955 ** allocate extra memory cells and adjust the OpenEphemeral 956 ** instruction to account for the larger records. This is only 957 ** required if there are one or more WITHOUT ROWID tables with 958 ** composite primary keys in the SortCtx.aDefer[] array. */ 959 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 960 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 961 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 962 pParse->nMem += pExtra->nExpr; 963 } 964 #endif 965 966 /* Adjust nResultCol to account for columns that are omitted 967 ** from the sorter by the optimizations in this branch */ 968 pEList = p->pEList; 969 for(i=0; i<pEList->nExpr; i++){ 970 if( pEList->a[i].u.x.iOrderByCol>0 971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 972 || pEList->a[i].bSorterRef 973 #endif 974 ){ 975 nResultCol--; 976 regOrig = 0; 977 } 978 } 979 980 testcase( regOrig ); 981 testcase( eDest==SRT_Set ); 982 testcase( eDest==SRT_Mem ); 983 testcase( eDest==SRT_Coroutine ); 984 testcase( eDest==SRT_Output ); 985 assert( eDest==SRT_Set || eDest==SRT_Mem 986 || eDest==SRT_Coroutine || eDest==SRT_Output ); 987 } 988 sRowLoadInfo.regResult = regResult; 989 sRowLoadInfo.ecelFlags = ecelFlags; 990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 991 sRowLoadInfo.pExtra = pExtra; 992 sRowLoadInfo.regExtraResult = regResult + nResultCol; 993 if( pExtra ) nResultCol += pExtra->nExpr; 994 #endif 995 if( p->iLimit 996 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 997 && nPrefixReg>0 998 ){ 999 assert( pSort!=0 ); 1000 assert( hasDistinct==0 ); 1001 pSort->pDeferredRowLoad = &sRowLoadInfo; 1002 regOrig = 0; 1003 }else{ 1004 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1005 } 1006 } 1007 1008 /* If the DISTINCT keyword was present on the SELECT statement 1009 ** and this row has been seen before, then do not make this row 1010 ** part of the result. 1011 */ 1012 if( hasDistinct ){ 1013 switch( pDistinct->eTnctType ){ 1014 case WHERE_DISTINCT_ORDERED: { 1015 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1016 int iJump; /* Jump destination */ 1017 int regPrev; /* Previous row content */ 1018 1019 /* Allocate space for the previous row */ 1020 regPrev = pParse->nMem+1; 1021 pParse->nMem += nResultCol; 1022 1023 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1024 ** sets the MEM_Cleared bit on the first register of the 1025 ** previous value. This will cause the OP_Ne below to always 1026 ** fail on the first iteration of the loop even if the first 1027 ** row is all NULLs. 1028 */ 1029 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1030 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1031 pOp->opcode = OP_Null; 1032 pOp->p1 = 1; 1033 pOp->p2 = regPrev; 1034 1035 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1036 for(i=0; i<nResultCol; i++){ 1037 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1038 if( i<nResultCol-1 ){ 1039 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1040 VdbeCoverage(v); 1041 }else{ 1042 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1043 VdbeCoverage(v); 1044 } 1045 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1046 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1047 } 1048 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1049 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1050 break; 1051 } 1052 1053 case WHERE_DISTINCT_UNIQUE: { 1054 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1055 break; 1056 } 1057 1058 default: { 1059 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1060 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1061 regResult); 1062 break; 1063 } 1064 } 1065 if( pSort==0 ){ 1066 codeOffset(v, p->iOffset, iContinue); 1067 } 1068 } 1069 1070 switch( eDest ){ 1071 /* In this mode, write each query result to the key of the temporary 1072 ** table iParm. 1073 */ 1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1075 case SRT_Union: { 1076 int r1; 1077 r1 = sqlite3GetTempReg(pParse); 1078 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1079 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1080 sqlite3ReleaseTempReg(pParse, r1); 1081 break; 1082 } 1083 1084 /* Construct a record from the query result, but instead of 1085 ** saving that record, use it as a key to delete elements from 1086 ** the temporary table iParm. 1087 */ 1088 case SRT_Except: { 1089 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1090 break; 1091 } 1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1093 1094 /* Store the result as data using a unique key. 1095 */ 1096 case SRT_Fifo: 1097 case SRT_DistFifo: 1098 case SRT_Table: 1099 case SRT_EphemTab: { 1100 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1101 testcase( eDest==SRT_Table ); 1102 testcase( eDest==SRT_EphemTab ); 1103 testcase( eDest==SRT_Fifo ); 1104 testcase( eDest==SRT_DistFifo ); 1105 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1106 #ifndef SQLITE_OMIT_CTE 1107 if( eDest==SRT_DistFifo ){ 1108 /* If the destination is DistFifo, then cursor (iParm+1) is open 1109 ** on an ephemeral index. If the current row is already present 1110 ** in the index, do not write it to the output. If not, add the 1111 ** current row to the index and proceed with writing it to the 1112 ** output table as well. */ 1113 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1114 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1115 VdbeCoverage(v); 1116 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1117 assert( pSort==0 ); 1118 } 1119 #endif 1120 if( pSort ){ 1121 assert( regResult==regOrig ); 1122 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1123 }else{ 1124 int r2 = sqlite3GetTempReg(pParse); 1125 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1126 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1127 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1128 sqlite3ReleaseTempReg(pParse, r2); 1129 } 1130 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1131 break; 1132 } 1133 1134 #ifndef SQLITE_OMIT_SUBQUERY 1135 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1136 ** then there should be a single item on the stack. Write this 1137 ** item into the set table with bogus data. 1138 */ 1139 case SRT_Set: { 1140 if( pSort ){ 1141 /* At first glance you would think we could optimize out the 1142 ** ORDER BY in this case since the order of entries in the set 1143 ** does not matter. But there might be a LIMIT clause, in which 1144 ** case the order does matter */ 1145 pushOntoSorter( 1146 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1147 }else{ 1148 int r1 = sqlite3GetTempReg(pParse); 1149 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1150 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1151 r1, pDest->zAffSdst, nResultCol); 1152 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1153 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1154 sqlite3ReleaseTempReg(pParse, r1); 1155 } 1156 break; 1157 } 1158 1159 /* If any row exist in the result set, record that fact and abort. 1160 */ 1161 case SRT_Exists: { 1162 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1163 /* The LIMIT clause will terminate the loop for us */ 1164 break; 1165 } 1166 1167 /* If this is a scalar select that is part of an expression, then 1168 ** store the results in the appropriate memory cell or array of 1169 ** memory cells and break out of the scan loop. 1170 */ 1171 case SRT_Mem: { 1172 if( pSort ){ 1173 assert( nResultCol<=pDest->nSdst ); 1174 pushOntoSorter( 1175 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1176 }else{ 1177 assert( nResultCol==pDest->nSdst ); 1178 assert( regResult==iParm ); 1179 /* The LIMIT clause will jump out of the loop for us */ 1180 } 1181 break; 1182 } 1183 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1184 1185 case SRT_Coroutine: /* Send data to a co-routine */ 1186 case SRT_Output: { /* Return the results */ 1187 testcase( eDest==SRT_Coroutine ); 1188 testcase( eDest==SRT_Output ); 1189 if( pSort ){ 1190 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1191 nPrefixReg); 1192 }else if( eDest==SRT_Coroutine ){ 1193 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1194 }else{ 1195 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1196 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1197 } 1198 break; 1199 } 1200 1201 #ifndef SQLITE_OMIT_CTE 1202 /* Write the results into a priority queue that is order according to 1203 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1204 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1205 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1206 ** final OP_Sequence column. The last column is the record as a blob. 1207 */ 1208 case SRT_DistQueue: 1209 case SRT_Queue: { 1210 int nKey; 1211 int r1, r2, r3; 1212 int addrTest = 0; 1213 ExprList *pSO; 1214 pSO = pDest->pOrderBy; 1215 assert( pSO ); 1216 nKey = pSO->nExpr; 1217 r1 = sqlite3GetTempReg(pParse); 1218 r2 = sqlite3GetTempRange(pParse, nKey+2); 1219 r3 = r2+nKey+1; 1220 if( eDest==SRT_DistQueue ){ 1221 /* If the destination is DistQueue, then cursor (iParm+1) is open 1222 ** on a second ephemeral index that holds all values every previously 1223 ** added to the queue. */ 1224 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1225 regResult, nResultCol); 1226 VdbeCoverage(v); 1227 } 1228 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1229 if( eDest==SRT_DistQueue ){ 1230 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1231 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1232 } 1233 for(i=0; i<nKey; i++){ 1234 sqlite3VdbeAddOp2(v, OP_SCopy, 1235 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1236 r2+i); 1237 } 1238 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1239 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1240 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1241 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1242 sqlite3ReleaseTempReg(pParse, r1); 1243 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1244 break; 1245 } 1246 #endif /* SQLITE_OMIT_CTE */ 1247 1248 1249 1250 #if !defined(SQLITE_OMIT_TRIGGER) 1251 /* Discard the results. This is used for SELECT statements inside 1252 ** the body of a TRIGGER. The purpose of such selects is to call 1253 ** user-defined functions that have side effects. We do not care 1254 ** about the actual results of the select. 1255 */ 1256 default: { 1257 assert( eDest==SRT_Discard ); 1258 break; 1259 } 1260 #endif 1261 } 1262 1263 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1264 ** there is a sorter, in which case the sorter has already limited 1265 ** the output for us. 1266 */ 1267 if( pSort==0 && p->iLimit ){ 1268 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1269 } 1270 } 1271 1272 /* 1273 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1274 ** X extra columns. 1275 */ 1276 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1277 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1278 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1279 if( p ){ 1280 p->aSortOrder = (u8*)&p->aColl[N+X]; 1281 p->nKeyField = (u16)N; 1282 p->nAllField = (u16)(N+X); 1283 p->enc = ENC(db); 1284 p->db = db; 1285 p->nRef = 1; 1286 memset(&p[1], 0, nExtra); 1287 }else{ 1288 sqlite3OomFault(db); 1289 } 1290 return p; 1291 } 1292 1293 /* 1294 ** Deallocate a KeyInfo object 1295 */ 1296 void sqlite3KeyInfoUnref(KeyInfo *p){ 1297 if( p ){ 1298 assert( p->nRef>0 ); 1299 p->nRef--; 1300 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1301 } 1302 } 1303 1304 /* 1305 ** Make a new pointer to a KeyInfo object 1306 */ 1307 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1308 if( p ){ 1309 assert( p->nRef>0 ); 1310 p->nRef++; 1311 } 1312 return p; 1313 } 1314 1315 #ifdef SQLITE_DEBUG 1316 /* 1317 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1318 ** can only be changed if this is just a single reference to the object. 1319 ** 1320 ** This routine is used only inside of assert() statements. 1321 */ 1322 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1323 #endif /* SQLITE_DEBUG */ 1324 1325 /* 1326 ** Given an expression list, generate a KeyInfo structure that records 1327 ** the collating sequence for each expression in that expression list. 1328 ** 1329 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1330 ** KeyInfo structure is appropriate for initializing a virtual index to 1331 ** implement that clause. If the ExprList is the result set of a SELECT 1332 ** then the KeyInfo structure is appropriate for initializing a virtual 1333 ** index to implement a DISTINCT test. 1334 ** 1335 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1336 ** function is responsible for seeing that this structure is eventually 1337 ** freed. 1338 */ 1339 KeyInfo *sqlite3KeyInfoFromExprList( 1340 Parse *pParse, /* Parsing context */ 1341 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1342 int iStart, /* Begin with this column of pList */ 1343 int nExtra /* Add this many extra columns to the end */ 1344 ){ 1345 int nExpr; 1346 KeyInfo *pInfo; 1347 struct ExprList_item *pItem; 1348 sqlite3 *db = pParse->db; 1349 int i; 1350 1351 nExpr = pList->nExpr; 1352 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1353 if( pInfo ){ 1354 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1355 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1356 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1357 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1358 } 1359 } 1360 return pInfo; 1361 } 1362 1363 /* 1364 ** Name of the connection operator, used for error messages. 1365 */ 1366 static const char *selectOpName(int id){ 1367 char *z; 1368 switch( id ){ 1369 case TK_ALL: z = "UNION ALL"; break; 1370 case TK_INTERSECT: z = "INTERSECT"; break; 1371 case TK_EXCEPT: z = "EXCEPT"; break; 1372 default: z = "UNION"; break; 1373 } 1374 return z; 1375 } 1376 1377 #ifndef SQLITE_OMIT_EXPLAIN 1378 /* 1379 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1380 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1381 ** where the caption is of the form: 1382 ** 1383 ** "USE TEMP B-TREE FOR xxx" 1384 ** 1385 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1386 ** is determined by the zUsage argument. 1387 */ 1388 static void explainTempTable(Parse *pParse, const char *zUsage){ 1389 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1390 } 1391 1392 /* 1393 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1394 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1395 ** in sqlite3Select() to assign values to structure member variables that 1396 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1397 ** code with #ifndef directives. 1398 */ 1399 # define explainSetInteger(a, b) a = b 1400 1401 #else 1402 /* No-op versions of the explainXXX() functions and macros. */ 1403 # define explainTempTable(y,z) 1404 # define explainSetInteger(y,z) 1405 #endif 1406 1407 1408 /* 1409 ** If the inner loop was generated using a non-null pOrderBy argument, 1410 ** then the results were placed in a sorter. After the loop is terminated 1411 ** we need to run the sorter and output the results. The following 1412 ** routine generates the code needed to do that. 1413 */ 1414 static void generateSortTail( 1415 Parse *pParse, /* Parsing context */ 1416 Select *p, /* The SELECT statement */ 1417 SortCtx *pSort, /* Information on the ORDER BY clause */ 1418 int nColumn, /* Number of columns of data */ 1419 SelectDest *pDest /* Write the sorted results here */ 1420 ){ 1421 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1422 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1423 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1424 int addr; /* Top of output loop. Jump for Next. */ 1425 int addrOnce = 0; 1426 int iTab; 1427 ExprList *pOrderBy = pSort->pOrderBy; 1428 int eDest = pDest->eDest; 1429 int iParm = pDest->iSDParm; 1430 int regRow; 1431 int regRowid; 1432 int iCol; 1433 int nKey; /* Number of key columns in sorter record */ 1434 int iSortTab; /* Sorter cursor to read from */ 1435 int i; 1436 int bSeq; /* True if sorter record includes seq. no. */ 1437 int nRefKey = 0; 1438 struct ExprList_item *aOutEx = p->pEList->a; 1439 1440 assert( addrBreak<0 ); 1441 if( pSort->labelBkOut ){ 1442 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1443 sqlite3VdbeGoto(v, addrBreak); 1444 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1445 } 1446 1447 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1448 /* Open any cursors needed for sorter-reference expressions */ 1449 for(i=0; i<pSort->nDefer; i++){ 1450 Table *pTab = pSort->aDefer[i].pTab; 1451 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1452 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1453 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1454 } 1455 #endif 1456 1457 iTab = pSort->iECursor; 1458 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1459 regRowid = 0; 1460 regRow = pDest->iSdst; 1461 }else{ 1462 regRowid = sqlite3GetTempReg(pParse); 1463 regRow = sqlite3GetTempRange(pParse, nColumn); 1464 } 1465 nKey = pOrderBy->nExpr - pSort->nOBSat; 1466 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1467 int regSortOut = ++pParse->nMem; 1468 iSortTab = pParse->nTab++; 1469 if( pSort->labelBkOut ){ 1470 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1471 } 1472 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1473 nKey+1+nColumn+nRefKey); 1474 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1475 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1476 VdbeCoverage(v); 1477 codeOffset(v, p->iOffset, addrContinue); 1478 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1479 bSeq = 0; 1480 }else{ 1481 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1482 codeOffset(v, p->iOffset, addrContinue); 1483 iSortTab = iTab; 1484 bSeq = 1; 1485 } 1486 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1487 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1488 if( aOutEx[i].bSorterRef ) continue; 1489 #endif 1490 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1491 } 1492 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1493 if( pSort->nDefer ){ 1494 int iKey = iCol+1; 1495 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1496 1497 for(i=0; i<pSort->nDefer; i++){ 1498 int iCsr = pSort->aDefer[i].iCsr; 1499 Table *pTab = pSort->aDefer[i].pTab; 1500 int nKey = pSort->aDefer[i].nKey; 1501 1502 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1503 if( HasRowid(pTab) ){ 1504 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1505 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1506 sqlite3VdbeCurrentAddr(v)+1, regKey); 1507 }else{ 1508 int k; 1509 int iJmp; 1510 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1511 for(k=0; k<nKey; k++){ 1512 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1513 } 1514 iJmp = sqlite3VdbeCurrentAddr(v); 1515 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1516 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1517 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1518 } 1519 } 1520 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1521 } 1522 #endif 1523 for(i=nColumn-1; i>=0; i--){ 1524 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1525 if( aOutEx[i].bSorterRef ){ 1526 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1527 }else 1528 #endif 1529 { 1530 int iRead; 1531 if( aOutEx[i].u.x.iOrderByCol ){ 1532 iRead = aOutEx[i].u.x.iOrderByCol-1; 1533 }else{ 1534 iRead = iCol--; 1535 } 1536 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1537 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1538 } 1539 } 1540 switch( eDest ){ 1541 case SRT_Table: 1542 case SRT_EphemTab: { 1543 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1544 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1545 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1546 break; 1547 } 1548 #ifndef SQLITE_OMIT_SUBQUERY 1549 case SRT_Set: { 1550 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1551 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1552 pDest->zAffSdst, nColumn); 1553 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1554 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1555 break; 1556 } 1557 case SRT_Mem: { 1558 /* The LIMIT clause will terminate the loop for us */ 1559 break; 1560 } 1561 #endif 1562 default: { 1563 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1564 testcase( eDest==SRT_Output ); 1565 testcase( eDest==SRT_Coroutine ); 1566 if( eDest==SRT_Output ){ 1567 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1568 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1569 }else{ 1570 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1571 } 1572 break; 1573 } 1574 } 1575 if( regRowid ){ 1576 if( eDest==SRT_Set ){ 1577 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1578 }else{ 1579 sqlite3ReleaseTempReg(pParse, regRow); 1580 } 1581 sqlite3ReleaseTempReg(pParse, regRowid); 1582 } 1583 /* The bottom of the loop 1584 */ 1585 sqlite3VdbeResolveLabel(v, addrContinue); 1586 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1587 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1588 }else{ 1589 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1590 } 1591 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1592 sqlite3VdbeResolveLabel(v, addrBreak); 1593 } 1594 1595 /* 1596 ** Return a pointer to a string containing the 'declaration type' of the 1597 ** expression pExpr. The string may be treated as static by the caller. 1598 ** 1599 ** Also try to estimate the size of the returned value and return that 1600 ** result in *pEstWidth. 1601 ** 1602 ** The declaration type is the exact datatype definition extracted from the 1603 ** original CREATE TABLE statement if the expression is a column. The 1604 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1605 ** is considered a column can be complex in the presence of subqueries. The 1606 ** result-set expression in all of the following SELECT statements is 1607 ** considered a column by this function. 1608 ** 1609 ** SELECT col FROM tbl; 1610 ** SELECT (SELECT col FROM tbl; 1611 ** SELECT (SELECT col FROM tbl); 1612 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1613 ** 1614 ** The declaration type for any expression other than a column is NULL. 1615 ** 1616 ** This routine has either 3 or 6 parameters depending on whether or not 1617 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1618 */ 1619 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1620 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1621 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1622 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1623 #endif 1624 static const char *columnTypeImpl( 1625 NameContext *pNC, 1626 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1627 Expr *pExpr 1628 #else 1629 Expr *pExpr, 1630 const char **pzOrigDb, 1631 const char **pzOrigTab, 1632 const char **pzOrigCol 1633 #endif 1634 ){ 1635 char const *zType = 0; 1636 int j; 1637 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1638 char const *zOrigDb = 0; 1639 char const *zOrigTab = 0; 1640 char const *zOrigCol = 0; 1641 #endif 1642 1643 assert( pExpr!=0 ); 1644 assert( pNC->pSrcList!=0 ); 1645 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1646 ** are processed */ 1647 switch( pExpr->op ){ 1648 case TK_COLUMN: { 1649 /* The expression is a column. Locate the table the column is being 1650 ** extracted from in NameContext.pSrcList. This table may be real 1651 ** database table or a subquery. 1652 */ 1653 Table *pTab = 0; /* Table structure column is extracted from */ 1654 Select *pS = 0; /* Select the column is extracted from */ 1655 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1656 while( pNC && !pTab ){ 1657 SrcList *pTabList = pNC->pSrcList; 1658 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1659 if( j<pTabList->nSrc ){ 1660 pTab = pTabList->a[j].pTab; 1661 pS = pTabList->a[j].pSelect; 1662 }else{ 1663 pNC = pNC->pNext; 1664 } 1665 } 1666 1667 if( pTab==0 ){ 1668 /* At one time, code such as "SELECT new.x" within a trigger would 1669 ** cause this condition to run. Since then, we have restructured how 1670 ** trigger code is generated and so this condition is no longer 1671 ** possible. However, it can still be true for statements like 1672 ** the following: 1673 ** 1674 ** CREATE TABLE t1(col INTEGER); 1675 ** SELECT (SELECT t1.col) FROM FROM t1; 1676 ** 1677 ** when columnType() is called on the expression "t1.col" in the 1678 ** sub-select. In this case, set the column type to NULL, even 1679 ** though it should really be "INTEGER". 1680 ** 1681 ** This is not a problem, as the column type of "t1.col" is never 1682 ** used. When columnType() is called on the expression 1683 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1684 ** branch below. */ 1685 break; 1686 } 1687 1688 assert( pTab && pExpr->pTab==pTab ); 1689 if( pS ){ 1690 /* The "table" is actually a sub-select or a view in the FROM clause 1691 ** of the SELECT statement. Return the declaration type and origin 1692 ** data for the result-set column of the sub-select. 1693 */ 1694 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1695 /* If iCol is less than zero, then the expression requests the 1696 ** rowid of the sub-select or view. This expression is legal (see 1697 ** test case misc2.2.2) - it always evaluates to NULL. 1698 */ 1699 NameContext sNC; 1700 Expr *p = pS->pEList->a[iCol].pExpr; 1701 sNC.pSrcList = pS->pSrc; 1702 sNC.pNext = pNC; 1703 sNC.pParse = pNC->pParse; 1704 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1705 } 1706 }else{ 1707 /* A real table or a CTE table */ 1708 assert( !pS ); 1709 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1710 if( iCol<0 ) iCol = pTab->iPKey; 1711 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1712 if( iCol<0 ){ 1713 zType = "INTEGER"; 1714 zOrigCol = "rowid"; 1715 }else{ 1716 zOrigCol = pTab->aCol[iCol].zName; 1717 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1718 } 1719 zOrigTab = pTab->zName; 1720 if( pNC->pParse && pTab->pSchema ){ 1721 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1722 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1723 } 1724 #else 1725 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1726 if( iCol<0 ){ 1727 zType = "INTEGER"; 1728 }else{ 1729 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1730 } 1731 #endif 1732 } 1733 break; 1734 } 1735 #ifndef SQLITE_OMIT_SUBQUERY 1736 case TK_SELECT: { 1737 /* The expression is a sub-select. Return the declaration type and 1738 ** origin info for the single column in the result set of the SELECT 1739 ** statement. 1740 */ 1741 NameContext sNC; 1742 Select *pS = pExpr->x.pSelect; 1743 Expr *p = pS->pEList->a[0].pExpr; 1744 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1745 sNC.pSrcList = pS->pSrc; 1746 sNC.pNext = pNC; 1747 sNC.pParse = pNC->pParse; 1748 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1749 break; 1750 } 1751 #endif 1752 } 1753 1754 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1755 if( pzOrigDb ){ 1756 assert( pzOrigTab && pzOrigCol ); 1757 *pzOrigDb = zOrigDb; 1758 *pzOrigTab = zOrigTab; 1759 *pzOrigCol = zOrigCol; 1760 } 1761 #endif 1762 return zType; 1763 } 1764 1765 /* 1766 ** Generate code that will tell the VDBE the declaration types of columns 1767 ** in the result set. 1768 */ 1769 static void generateColumnTypes( 1770 Parse *pParse, /* Parser context */ 1771 SrcList *pTabList, /* List of tables */ 1772 ExprList *pEList /* Expressions defining the result set */ 1773 ){ 1774 #ifndef SQLITE_OMIT_DECLTYPE 1775 Vdbe *v = pParse->pVdbe; 1776 int i; 1777 NameContext sNC; 1778 sNC.pSrcList = pTabList; 1779 sNC.pParse = pParse; 1780 sNC.pNext = 0; 1781 for(i=0; i<pEList->nExpr; i++){ 1782 Expr *p = pEList->a[i].pExpr; 1783 const char *zType; 1784 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1785 const char *zOrigDb = 0; 1786 const char *zOrigTab = 0; 1787 const char *zOrigCol = 0; 1788 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1789 1790 /* The vdbe must make its own copy of the column-type and other 1791 ** column specific strings, in case the schema is reset before this 1792 ** virtual machine is deleted. 1793 */ 1794 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1795 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1796 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1797 #else 1798 zType = columnType(&sNC, p, 0, 0, 0); 1799 #endif 1800 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1801 } 1802 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1803 } 1804 1805 1806 /* 1807 ** Compute the column names for a SELECT statement. 1808 ** 1809 ** The only guarantee that SQLite makes about column names is that if the 1810 ** column has an AS clause assigning it a name, that will be the name used. 1811 ** That is the only documented guarantee. However, countless applications 1812 ** developed over the years have made baseless assumptions about column names 1813 ** and will break if those assumptions changes. Hence, use extreme caution 1814 ** when modifying this routine to avoid breaking legacy. 1815 ** 1816 ** See Also: sqlite3ColumnsFromExprList() 1817 ** 1818 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1819 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1820 ** applications should operate this way. Nevertheless, we need to support the 1821 ** other modes for legacy: 1822 ** 1823 ** short=OFF, full=OFF: Column name is the text of the expression has it 1824 ** originally appears in the SELECT statement. In 1825 ** other words, the zSpan of the result expression. 1826 ** 1827 ** short=ON, full=OFF: (This is the default setting). If the result 1828 ** refers directly to a table column, then the 1829 ** result column name is just the table column 1830 ** name: COLUMN. Otherwise use zSpan. 1831 ** 1832 ** full=ON, short=ANY: If the result refers directly to a table column, 1833 ** then the result column name with the table name 1834 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1835 */ 1836 static void generateColumnNames( 1837 Parse *pParse, /* Parser context */ 1838 Select *pSelect /* Generate column names for this SELECT statement */ 1839 ){ 1840 Vdbe *v = pParse->pVdbe; 1841 int i; 1842 Table *pTab; 1843 SrcList *pTabList; 1844 ExprList *pEList; 1845 sqlite3 *db = pParse->db; 1846 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1847 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1848 1849 #ifndef SQLITE_OMIT_EXPLAIN 1850 /* If this is an EXPLAIN, skip this step */ 1851 if( pParse->explain ){ 1852 return; 1853 } 1854 #endif 1855 1856 if( pParse->colNamesSet ) return; 1857 /* Column names are determined by the left-most term of a compound select */ 1858 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1859 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1860 pTabList = pSelect->pSrc; 1861 pEList = pSelect->pEList; 1862 assert( v!=0 ); 1863 assert( pTabList!=0 ); 1864 pParse->colNamesSet = 1; 1865 fullName = (db->flags & SQLITE_FullColNames)!=0; 1866 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1867 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1868 for(i=0; i<pEList->nExpr; i++){ 1869 Expr *p = pEList->a[i].pExpr; 1870 1871 assert( p!=0 ); 1872 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1873 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1874 if( pEList->a[i].zName ){ 1875 /* An AS clause always takes first priority */ 1876 char *zName = pEList->a[i].zName; 1877 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1878 }else if( srcName && p->op==TK_COLUMN ){ 1879 char *zCol; 1880 int iCol = p->iColumn; 1881 pTab = p->pTab; 1882 assert( pTab!=0 ); 1883 if( iCol<0 ) iCol = pTab->iPKey; 1884 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1885 if( iCol<0 ){ 1886 zCol = "rowid"; 1887 }else{ 1888 zCol = pTab->aCol[iCol].zName; 1889 } 1890 if( fullName ){ 1891 char *zName = 0; 1892 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1893 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1894 }else{ 1895 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1896 } 1897 }else{ 1898 const char *z = pEList->a[i].zSpan; 1899 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1900 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1901 } 1902 } 1903 generateColumnTypes(pParse, pTabList, pEList); 1904 } 1905 1906 /* 1907 ** Given an expression list (which is really the list of expressions 1908 ** that form the result set of a SELECT statement) compute appropriate 1909 ** column names for a table that would hold the expression list. 1910 ** 1911 ** All column names will be unique. 1912 ** 1913 ** Only the column names are computed. Column.zType, Column.zColl, 1914 ** and other fields of Column are zeroed. 1915 ** 1916 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1917 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1918 ** 1919 ** The only guarantee that SQLite makes about column names is that if the 1920 ** column has an AS clause assigning it a name, that will be the name used. 1921 ** That is the only documented guarantee. However, countless applications 1922 ** developed over the years have made baseless assumptions about column names 1923 ** and will break if those assumptions changes. Hence, use extreme caution 1924 ** when modifying this routine to avoid breaking legacy. 1925 ** 1926 ** See Also: generateColumnNames() 1927 */ 1928 int sqlite3ColumnsFromExprList( 1929 Parse *pParse, /* Parsing context */ 1930 ExprList *pEList, /* Expr list from which to derive column names */ 1931 i16 *pnCol, /* Write the number of columns here */ 1932 Column **paCol /* Write the new column list here */ 1933 ){ 1934 sqlite3 *db = pParse->db; /* Database connection */ 1935 int i, j; /* Loop counters */ 1936 u32 cnt; /* Index added to make the name unique */ 1937 Column *aCol, *pCol; /* For looping over result columns */ 1938 int nCol; /* Number of columns in the result set */ 1939 char *zName; /* Column name */ 1940 int nName; /* Size of name in zName[] */ 1941 Hash ht; /* Hash table of column names */ 1942 1943 sqlite3HashInit(&ht); 1944 if( pEList ){ 1945 nCol = pEList->nExpr; 1946 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1947 testcase( aCol==0 ); 1948 if( nCol>32767 ) nCol = 32767; 1949 }else{ 1950 nCol = 0; 1951 aCol = 0; 1952 } 1953 assert( nCol==(i16)nCol ); 1954 *pnCol = nCol; 1955 *paCol = aCol; 1956 1957 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1958 /* Get an appropriate name for the column 1959 */ 1960 if( (zName = pEList->a[i].zName)!=0 ){ 1961 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1962 }else{ 1963 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1964 while( pColExpr->op==TK_DOT ){ 1965 pColExpr = pColExpr->pRight; 1966 assert( pColExpr!=0 ); 1967 } 1968 assert( pColExpr->op!=TK_AGG_COLUMN ); 1969 if( pColExpr->op==TK_COLUMN ){ 1970 /* For columns use the column name name */ 1971 int iCol = pColExpr->iColumn; 1972 Table *pTab = pColExpr->pTab; 1973 assert( pTab!=0 ); 1974 if( iCol<0 ) iCol = pTab->iPKey; 1975 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1976 }else if( pColExpr->op==TK_ID ){ 1977 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1978 zName = pColExpr->u.zToken; 1979 }else{ 1980 /* Use the original text of the column expression as its name */ 1981 zName = pEList->a[i].zSpan; 1982 } 1983 } 1984 if( zName ){ 1985 zName = sqlite3DbStrDup(db, zName); 1986 }else{ 1987 zName = sqlite3MPrintf(db,"column%d",i+1); 1988 } 1989 1990 /* Make sure the column name is unique. If the name is not unique, 1991 ** append an integer to the name so that it becomes unique. 1992 */ 1993 cnt = 0; 1994 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1995 nName = sqlite3Strlen30(zName); 1996 if( nName>0 ){ 1997 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1998 if( zName[j]==':' ) nName = j; 1999 } 2000 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2001 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2002 } 2003 pCol->zName = zName; 2004 sqlite3ColumnPropertiesFromName(0, pCol); 2005 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2006 sqlite3OomFault(db); 2007 } 2008 } 2009 sqlite3HashClear(&ht); 2010 if( db->mallocFailed ){ 2011 for(j=0; j<i; j++){ 2012 sqlite3DbFree(db, aCol[j].zName); 2013 } 2014 sqlite3DbFree(db, aCol); 2015 *paCol = 0; 2016 *pnCol = 0; 2017 return SQLITE_NOMEM_BKPT; 2018 } 2019 return SQLITE_OK; 2020 } 2021 2022 /* 2023 ** Add type and collation information to a column list based on 2024 ** a SELECT statement. 2025 ** 2026 ** The column list presumably came from selectColumnNamesFromExprList(). 2027 ** The column list has only names, not types or collations. This 2028 ** routine goes through and adds the types and collations. 2029 ** 2030 ** This routine requires that all identifiers in the SELECT 2031 ** statement be resolved. 2032 */ 2033 void sqlite3SelectAddColumnTypeAndCollation( 2034 Parse *pParse, /* Parsing contexts */ 2035 Table *pTab, /* Add column type information to this table */ 2036 Select *pSelect /* SELECT used to determine types and collations */ 2037 ){ 2038 sqlite3 *db = pParse->db; 2039 NameContext sNC; 2040 Column *pCol; 2041 CollSeq *pColl; 2042 int i; 2043 Expr *p; 2044 struct ExprList_item *a; 2045 2046 assert( pSelect!=0 ); 2047 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2048 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2049 if( db->mallocFailed ) return; 2050 memset(&sNC, 0, sizeof(sNC)); 2051 sNC.pSrcList = pSelect->pSrc; 2052 a = pSelect->pEList->a; 2053 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2054 const char *zType; 2055 int n, m; 2056 p = a[i].pExpr; 2057 zType = columnType(&sNC, p, 0, 0, 0); 2058 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2059 pCol->affinity = sqlite3ExprAffinity(p); 2060 if( zType ){ 2061 m = sqlite3Strlen30(zType); 2062 n = sqlite3Strlen30(pCol->zName); 2063 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2064 if( pCol->zName ){ 2065 memcpy(&pCol->zName[n+1], zType, m+1); 2066 pCol->colFlags |= COLFLAG_HASTYPE; 2067 } 2068 } 2069 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2070 pColl = sqlite3ExprCollSeq(pParse, p); 2071 if( pColl && pCol->zColl==0 ){ 2072 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2073 } 2074 } 2075 pTab->szTabRow = 1; /* Any non-zero value works */ 2076 } 2077 2078 /* 2079 ** Given a SELECT statement, generate a Table structure that describes 2080 ** the result set of that SELECT. 2081 */ 2082 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2083 Table *pTab; 2084 sqlite3 *db = pParse->db; 2085 int savedFlags; 2086 2087 savedFlags = db->flags; 2088 db->flags &= ~SQLITE_FullColNames; 2089 db->flags |= SQLITE_ShortColNames; 2090 sqlite3SelectPrep(pParse, pSelect, 0); 2091 if( pParse->nErr ) return 0; 2092 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2093 db->flags = savedFlags; 2094 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2095 if( pTab==0 ){ 2096 return 0; 2097 } 2098 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2099 ** is disabled */ 2100 assert( db->lookaside.bDisable ); 2101 pTab->nTabRef = 1; 2102 pTab->zName = 0; 2103 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2104 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2105 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2106 pTab->iPKey = -1; 2107 if( db->mallocFailed ){ 2108 sqlite3DeleteTable(db, pTab); 2109 return 0; 2110 } 2111 return pTab; 2112 } 2113 2114 /* 2115 ** Get a VDBE for the given parser context. Create a new one if necessary. 2116 ** If an error occurs, return NULL and leave a message in pParse. 2117 */ 2118 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2119 if( pParse->pVdbe ){ 2120 return pParse->pVdbe; 2121 } 2122 if( pParse->pToplevel==0 2123 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2124 ){ 2125 pParse->okConstFactor = 1; 2126 } 2127 return sqlite3VdbeCreate(pParse); 2128 } 2129 2130 2131 /* 2132 ** Compute the iLimit and iOffset fields of the SELECT based on the 2133 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2134 ** that appear in the original SQL statement after the LIMIT and OFFSET 2135 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2136 ** are the integer memory register numbers for counters used to compute 2137 ** the limit and offset. If there is no limit and/or offset, then 2138 ** iLimit and iOffset are negative. 2139 ** 2140 ** This routine changes the values of iLimit and iOffset only if 2141 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2142 ** and iOffset should have been preset to appropriate default values (zero) 2143 ** prior to calling this routine. 2144 ** 2145 ** The iOffset register (if it exists) is initialized to the value 2146 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2147 ** iOffset+1 is initialized to LIMIT+OFFSET. 2148 ** 2149 ** Only if pLimit->pLeft!=0 do the limit registers get 2150 ** redefined. The UNION ALL operator uses this property to force 2151 ** the reuse of the same limit and offset registers across multiple 2152 ** SELECT statements. 2153 */ 2154 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2155 Vdbe *v = 0; 2156 int iLimit = 0; 2157 int iOffset; 2158 int n; 2159 Expr *pLimit = p->pLimit; 2160 2161 if( p->iLimit ) return; 2162 2163 /* 2164 ** "LIMIT -1" always shows all rows. There is some 2165 ** controversy about what the correct behavior should be. 2166 ** The current implementation interprets "LIMIT 0" to mean 2167 ** no rows. 2168 */ 2169 sqlite3ExprCacheClear(pParse); 2170 if( pLimit ){ 2171 assert( pLimit->op==TK_LIMIT ); 2172 assert( pLimit->pLeft!=0 ); 2173 p->iLimit = iLimit = ++pParse->nMem; 2174 v = sqlite3GetVdbe(pParse); 2175 assert( v!=0 ); 2176 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2177 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2178 VdbeComment((v, "LIMIT counter")); 2179 if( n==0 ){ 2180 sqlite3VdbeGoto(v, iBreak); 2181 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2182 p->nSelectRow = sqlite3LogEst((u64)n); 2183 p->selFlags |= SF_FixedLimit; 2184 } 2185 }else{ 2186 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2187 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2188 VdbeComment((v, "LIMIT counter")); 2189 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2190 } 2191 if( pLimit->pRight ){ 2192 p->iOffset = iOffset = ++pParse->nMem; 2193 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2194 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2195 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2196 VdbeComment((v, "OFFSET counter")); 2197 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2198 VdbeComment((v, "LIMIT+OFFSET")); 2199 } 2200 } 2201 } 2202 2203 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2204 /* 2205 ** Return the appropriate collating sequence for the iCol-th column of 2206 ** the result set for the compound-select statement "p". Return NULL if 2207 ** the column has no default collating sequence. 2208 ** 2209 ** The collating sequence for the compound select is taken from the 2210 ** left-most term of the select that has a collating sequence. 2211 */ 2212 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2213 CollSeq *pRet; 2214 if( p->pPrior ){ 2215 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2216 }else{ 2217 pRet = 0; 2218 } 2219 assert( iCol>=0 ); 2220 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2221 ** have been thrown during name resolution and we would not have gotten 2222 ** this far */ 2223 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2224 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2225 } 2226 return pRet; 2227 } 2228 2229 /* 2230 ** The select statement passed as the second parameter is a compound SELECT 2231 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2232 ** structure suitable for implementing the ORDER BY. 2233 ** 2234 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2235 ** function is responsible for ensuring that this structure is eventually 2236 ** freed. 2237 */ 2238 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2239 ExprList *pOrderBy = p->pOrderBy; 2240 int nOrderBy = p->pOrderBy->nExpr; 2241 sqlite3 *db = pParse->db; 2242 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2243 if( pRet ){ 2244 int i; 2245 for(i=0; i<nOrderBy; i++){ 2246 struct ExprList_item *pItem = &pOrderBy->a[i]; 2247 Expr *pTerm = pItem->pExpr; 2248 CollSeq *pColl; 2249 2250 if( pTerm->flags & EP_Collate ){ 2251 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2252 }else{ 2253 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2254 if( pColl==0 ) pColl = db->pDfltColl; 2255 pOrderBy->a[i].pExpr = 2256 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2257 } 2258 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2259 pRet->aColl[i] = pColl; 2260 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2261 } 2262 } 2263 2264 return pRet; 2265 } 2266 2267 #ifndef SQLITE_OMIT_CTE 2268 /* 2269 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2270 ** query of the form: 2271 ** 2272 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2273 ** \___________/ \_______________/ 2274 ** p->pPrior p 2275 ** 2276 ** 2277 ** There is exactly one reference to the recursive-table in the FROM clause 2278 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2279 ** 2280 ** The setup-query runs once to generate an initial set of rows that go 2281 ** into a Queue table. Rows are extracted from the Queue table one by 2282 ** one. Each row extracted from Queue is output to pDest. Then the single 2283 ** extracted row (now in the iCurrent table) becomes the content of the 2284 ** recursive-table for a recursive-query run. The output of the recursive-query 2285 ** is added back into the Queue table. Then another row is extracted from Queue 2286 ** and the iteration continues until the Queue table is empty. 2287 ** 2288 ** If the compound query operator is UNION then no duplicate rows are ever 2289 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2290 ** that have ever been inserted into Queue and causes duplicates to be 2291 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2292 ** 2293 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2294 ** ORDER BY order and the first entry is extracted for each cycle. Without 2295 ** an ORDER BY, the Queue table is just a FIFO. 2296 ** 2297 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2298 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2299 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2300 ** with a positive value, then the first OFFSET outputs are discarded rather 2301 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2302 ** rows have been skipped. 2303 */ 2304 static void generateWithRecursiveQuery( 2305 Parse *pParse, /* Parsing context */ 2306 Select *p, /* The recursive SELECT to be coded */ 2307 SelectDest *pDest /* What to do with query results */ 2308 ){ 2309 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2310 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2311 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2312 Select *pSetup = p->pPrior; /* The setup query */ 2313 int addrTop; /* Top of the loop */ 2314 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2315 int iCurrent = 0; /* The Current table */ 2316 int regCurrent; /* Register holding Current table */ 2317 int iQueue; /* The Queue table */ 2318 int iDistinct = 0; /* To ensure unique results if UNION */ 2319 int eDest = SRT_Fifo; /* How to write to Queue */ 2320 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2321 int i; /* Loop counter */ 2322 int rc; /* Result code */ 2323 ExprList *pOrderBy; /* The ORDER BY clause */ 2324 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2325 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2326 2327 /* Obtain authorization to do a recursive query */ 2328 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2329 2330 /* Process the LIMIT and OFFSET clauses, if they exist */ 2331 addrBreak = sqlite3VdbeMakeLabel(v); 2332 p->nSelectRow = 320; /* 4 billion rows */ 2333 computeLimitRegisters(pParse, p, addrBreak); 2334 pLimit = p->pLimit; 2335 regLimit = p->iLimit; 2336 regOffset = p->iOffset; 2337 p->pLimit = 0; 2338 p->iLimit = p->iOffset = 0; 2339 pOrderBy = p->pOrderBy; 2340 2341 /* Locate the cursor number of the Current table */ 2342 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2343 if( pSrc->a[i].fg.isRecursive ){ 2344 iCurrent = pSrc->a[i].iCursor; 2345 break; 2346 } 2347 } 2348 2349 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2350 ** the Distinct table must be exactly one greater than Queue in order 2351 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2352 iQueue = pParse->nTab++; 2353 if( p->op==TK_UNION ){ 2354 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2355 iDistinct = pParse->nTab++; 2356 }else{ 2357 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2358 } 2359 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2360 2361 /* Allocate cursors for Current, Queue, and Distinct. */ 2362 regCurrent = ++pParse->nMem; 2363 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2364 if( pOrderBy ){ 2365 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2366 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2367 (char*)pKeyInfo, P4_KEYINFO); 2368 destQueue.pOrderBy = pOrderBy; 2369 }else{ 2370 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2371 } 2372 VdbeComment((v, "Queue table")); 2373 if( iDistinct ){ 2374 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2375 p->selFlags |= SF_UsesEphemeral; 2376 } 2377 2378 /* Detach the ORDER BY clause from the compound SELECT */ 2379 p->pOrderBy = 0; 2380 2381 /* Store the results of the setup-query in Queue. */ 2382 pSetup->pNext = 0; 2383 ExplainQueryPlan((pParse, 1, "SETUP")); 2384 rc = sqlite3Select(pParse, pSetup, &destQueue); 2385 pSetup->pNext = p; 2386 if( rc ) goto end_of_recursive_query; 2387 2388 /* Find the next row in the Queue and output that row */ 2389 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2390 2391 /* Transfer the next row in Queue over to Current */ 2392 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2393 if( pOrderBy ){ 2394 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2395 }else{ 2396 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2397 } 2398 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2399 2400 /* Output the single row in Current */ 2401 addrCont = sqlite3VdbeMakeLabel(v); 2402 codeOffset(v, regOffset, addrCont); 2403 selectInnerLoop(pParse, p, iCurrent, 2404 0, 0, pDest, addrCont, addrBreak); 2405 if( regLimit ){ 2406 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2407 VdbeCoverage(v); 2408 } 2409 sqlite3VdbeResolveLabel(v, addrCont); 2410 2411 /* Execute the recursive SELECT taking the single row in Current as 2412 ** the value for the recursive-table. Store the results in the Queue. 2413 */ 2414 if( p->selFlags & SF_Aggregate ){ 2415 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2416 }else{ 2417 p->pPrior = 0; 2418 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2419 sqlite3Select(pParse, p, &destQueue); 2420 assert( p->pPrior==0 ); 2421 p->pPrior = pSetup; 2422 } 2423 2424 /* Keep running the loop until the Queue is empty */ 2425 sqlite3VdbeGoto(v, addrTop); 2426 sqlite3VdbeResolveLabel(v, addrBreak); 2427 2428 end_of_recursive_query: 2429 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2430 p->pOrderBy = pOrderBy; 2431 p->pLimit = pLimit; 2432 return; 2433 } 2434 #endif /* SQLITE_OMIT_CTE */ 2435 2436 /* Forward references */ 2437 static int multiSelectOrderBy( 2438 Parse *pParse, /* Parsing context */ 2439 Select *p, /* The right-most of SELECTs to be coded */ 2440 SelectDest *pDest /* What to do with query results */ 2441 ); 2442 2443 /* 2444 ** Handle the special case of a compound-select that originates from a 2445 ** VALUES clause. By handling this as a special case, we avoid deep 2446 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2447 ** on a VALUES clause. 2448 ** 2449 ** Because the Select object originates from a VALUES clause: 2450 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2451 ** (2) All terms are UNION ALL 2452 ** (3) There is no ORDER BY clause 2453 ** 2454 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2455 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2456 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2457 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2458 */ 2459 static int multiSelectValues( 2460 Parse *pParse, /* Parsing context */ 2461 Select *p, /* The right-most of SELECTs to be coded */ 2462 SelectDest *pDest /* What to do with query results */ 2463 ){ 2464 int nRow = 1; 2465 int rc = 0; 2466 int bShowAll = p->pLimit==0; 2467 assert( p->selFlags & SF_MultiValue ); 2468 do{ 2469 assert( p->selFlags & SF_Values ); 2470 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2471 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2472 if( p->pPrior==0 ) break; 2473 assert( p->pPrior->pNext==p ); 2474 p = p->pPrior; 2475 nRow += bShowAll; 2476 }while(1); 2477 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2478 nRow==1 ? "" : "S")); 2479 while( p ){ 2480 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2481 if( !bShowAll ) break; 2482 p->nSelectRow = nRow; 2483 p = p->pNext; 2484 } 2485 return rc; 2486 } 2487 2488 /* 2489 ** This routine is called to process a compound query form from 2490 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2491 ** INTERSECT 2492 ** 2493 ** "p" points to the right-most of the two queries. the query on the 2494 ** left is p->pPrior. The left query could also be a compound query 2495 ** in which case this routine will be called recursively. 2496 ** 2497 ** The results of the total query are to be written into a destination 2498 ** of type eDest with parameter iParm. 2499 ** 2500 ** Example 1: Consider a three-way compound SQL statement. 2501 ** 2502 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2503 ** 2504 ** This statement is parsed up as follows: 2505 ** 2506 ** SELECT c FROM t3 2507 ** | 2508 ** `-----> SELECT b FROM t2 2509 ** | 2510 ** `------> SELECT a FROM t1 2511 ** 2512 ** The arrows in the diagram above represent the Select.pPrior pointer. 2513 ** So if this routine is called with p equal to the t3 query, then 2514 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2515 ** 2516 ** Notice that because of the way SQLite parses compound SELECTs, the 2517 ** individual selects always group from left to right. 2518 */ 2519 static int multiSelect( 2520 Parse *pParse, /* Parsing context */ 2521 Select *p, /* The right-most of SELECTs to be coded */ 2522 SelectDest *pDest /* What to do with query results */ 2523 ){ 2524 int rc = SQLITE_OK; /* Success code from a subroutine */ 2525 Select *pPrior; /* Another SELECT immediately to our left */ 2526 Vdbe *v; /* Generate code to this VDBE */ 2527 SelectDest dest; /* Alternative data destination */ 2528 Select *pDelete = 0; /* Chain of simple selects to delete */ 2529 sqlite3 *db; /* Database connection */ 2530 2531 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2532 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2533 */ 2534 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2535 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2536 db = pParse->db; 2537 pPrior = p->pPrior; 2538 dest = *pDest; 2539 if( pPrior->pOrderBy || pPrior->pLimit ){ 2540 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2541 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2542 rc = 1; 2543 goto multi_select_end; 2544 } 2545 2546 v = sqlite3GetVdbe(pParse); 2547 assert( v!=0 ); /* The VDBE already created by calling function */ 2548 2549 /* Create the destination temporary table if necessary 2550 */ 2551 if( dest.eDest==SRT_EphemTab ){ 2552 assert( p->pEList ); 2553 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2554 dest.eDest = SRT_Table; 2555 } 2556 2557 /* Special handling for a compound-select that originates as a VALUES clause. 2558 */ 2559 if( p->selFlags & SF_MultiValue ){ 2560 rc = multiSelectValues(pParse, p, &dest); 2561 goto multi_select_end; 2562 } 2563 2564 /* Make sure all SELECTs in the statement have the same number of elements 2565 ** in their result sets. 2566 */ 2567 assert( p->pEList && pPrior->pEList ); 2568 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2569 2570 #ifndef SQLITE_OMIT_CTE 2571 if( p->selFlags & SF_Recursive ){ 2572 generateWithRecursiveQuery(pParse, p, &dest); 2573 }else 2574 #endif 2575 2576 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2577 */ 2578 if( p->pOrderBy ){ 2579 return multiSelectOrderBy(pParse, p, pDest); 2580 }else{ 2581 2582 #ifndef SQLITE_OMIT_EXPLAIN 2583 if( pPrior->pPrior==0 ){ 2584 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2585 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2586 } 2587 #endif 2588 2589 /* Generate code for the left and right SELECT statements. 2590 */ 2591 switch( p->op ){ 2592 case TK_ALL: { 2593 int addr = 0; 2594 int nLimit; 2595 assert( !pPrior->pLimit ); 2596 pPrior->iLimit = p->iLimit; 2597 pPrior->iOffset = p->iOffset; 2598 pPrior->pLimit = p->pLimit; 2599 rc = sqlite3Select(pParse, pPrior, &dest); 2600 p->pLimit = 0; 2601 if( rc ){ 2602 goto multi_select_end; 2603 } 2604 p->pPrior = 0; 2605 p->iLimit = pPrior->iLimit; 2606 p->iOffset = pPrior->iOffset; 2607 if( p->iLimit ){ 2608 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2609 VdbeComment((v, "Jump ahead if LIMIT reached")); 2610 if( p->iOffset ){ 2611 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2612 p->iLimit, p->iOffset+1, p->iOffset); 2613 } 2614 } 2615 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2616 rc = sqlite3Select(pParse, p, &dest); 2617 testcase( rc!=SQLITE_OK ); 2618 pDelete = p->pPrior; 2619 p->pPrior = pPrior; 2620 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2621 if( pPrior->pLimit 2622 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2623 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2624 ){ 2625 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2626 } 2627 if( addr ){ 2628 sqlite3VdbeJumpHere(v, addr); 2629 } 2630 break; 2631 } 2632 case TK_EXCEPT: 2633 case TK_UNION: { 2634 int unionTab; /* Cursor number of the temp table holding result */ 2635 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2636 int priorOp; /* The SRT_ operation to apply to prior selects */ 2637 Expr *pLimit; /* Saved values of p->nLimit */ 2638 int addr; 2639 SelectDest uniondest; 2640 2641 testcase( p->op==TK_EXCEPT ); 2642 testcase( p->op==TK_UNION ); 2643 priorOp = SRT_Union; 2644 if( dest.eDest==priorOp ){ 2645 /* We can reuse a temporary table generated by a SELECT to our 2646 ** right. 2647 */ 2648 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2649 unionTab = dest.iSDParm; 2650 }else{ 2651 /* We will need to create our own temporary table to hold the 2652 ** intermediate results. 2653 */ 2654 unionTab = pParse->nTab++; 2655 assert( p->pOrderBy==0 ); 2656 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2657 assert( p->addrOpenEphm[0] == -1 ); 2658 p->addrOpenEphm[0] = addr; 2659 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2660 assert( p->pEList ); 2661 } 2662 2663 /* Code the SELECT statements to our left 2664 */ 2665 assert( !pPrior->pOrderBy ); 2666 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2667 rc = sqlite3Select(pParse, pPrior, &uniondest); 2668 if( rc ){ 2669 goto multi_select_end; 2670 } 2671 2672 /* Code the current SELECT statement 2673 */ 2674 if( p->op==TK_EXCEPT ){ 2675 op = SRT_Except; 2676 }else{ 2677 assert( p->op==TK_UNION ); 2678 op = SRT_Union; 2679 } 2680 p->pPrior = 0; 2681 pLimit = p->pLimit; 2682 p->pLimit = 0; 2683 uniondest.eDest = op; 2684 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2685 selectOpName(p->op))); 2686 rc = sqlite3Select(pParse, p, &uniondest); 2687 testcase( rc!=SQLITE_OK ); 2688 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2689 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2690 sqlite3ExprListDelete(db, p->pOrderBy); 2691 pDelete = p->pPrior; 2692 p->pPrior = pPrior; 2693 p->pOrderBy = 0; 2694 if( p->op==TK_UNION ){ 2695 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2696 } 2697 sqlite3ExprDelete(db, p->pLimit); 2698 p->pLimit = pLimit; 2699 p->iLimit = 0; 2700 p->iOffset = 0; 2701 2702 /* Convert the data in the temporary table into whatever form 2703 ** it is that we currently need. 2704 */ 2705 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2706 if( dest.eDest!=priorOp ){ 2707 int iCont, iBreak, iStart; 2708 assert( p->pEList ); 2709 iBreak = sqlite3VdbeMakeLabel(v); 2710 iCont = sqlite3VdbeMakeLabel(v); 2711 computeLimitRegisters(pParse, p, iBreak); 2712 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2713 iStart = sqlite3VdbeCurrentAddr(v); 2714 selectInnerLoop(pParse, p, unionTab, 2715 0, 0, &dest, iCont, iBreak); 2716 sqlite3VdbeResolveLabel(v, iCont); 2717 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2718 sqlite3VdbeResolveLabel(v, iBreak); 2719 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2720 } 2721 break; 2722 } 2723 default: assert( p->op==TK_INTERSECT ); { 2724 int tab1, tab2; 2725 int iCont, iBreak, iStart; 2726 Expr *pLimit; 2727 int addr; 2728 SelectDest intersectdest; 2729 int r1; 2730 2731 /* INTERSECT is different from the others since it requires 2732 ** two temporary tables. Hence it has its own case. Begin 2733 ** by allocating the tables we will need. 2734 */ 2735 tab1 = pParse->nTab++; 2736 tab2 = pParse->nTab++; 2737 assert( p->pOrderBy==0 ); 2738 2739 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2740 assert( p->addrOpenEphm[0] == -1 ); 2741 p->addrOpenEphm[0] = addr; 2742 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2743 assert( p->pEList ); 2744 2745 /* Code the SELECTs to our left into temporary table "tab1". 2746 */ 2747 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2748 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2749 if( rc ){ 2750 goto multi_select_end; 2751 } 2752 2753 /* Code the current SELECT into temporary table "tab2" 2754 */ 2755 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2756 assert( p->addrOpenEphm[1] == -1 ); 2757 p->addrOpenEphm[1] = addr; 2758 p->pPrior = 0; 2759 pLimit = p->pLimit; 2760 p->pLimit = 0; 2761 intersectdest.iSDParm = tab2; 2762 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2763 selectOpName(p->op))); 2764 rc = sqlite3Select(pParse, p, &intersectdest); 2765 testcase( rc!=SQLITE_OK ); 2766 pDelete = p->pPrior; 2767 p->pPrior = pPrior; 2768 if( p->nSelectRow>pPrior->nSelectRow ){ 2769 p->nSelectRow = pPrior->nSelectRow; 2770 } 2771 sqlite3ExprDelete(db, p->pLimit); 2772 p->pLimit = pLimit; 2773 2774 /* Generate code to take the intersection of the two temporary 2775 ** tables. 2776 */ 2777 assert( p->pEList ); 2778 iBreak = sqlite3VdbeMakeLabel(v); 2779 iCont = sqlite3VdbeMakeLabel(v); 2780 computeLimitRegisters(pParse, p, iBreak); 2781 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2782 r1 = sqlite3GetTempReg(pParse); 2783 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2784 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2785 VdbeCoverage(v); 2786 sqlite3ReleaseTempReg(pParse, r1); 2787 selectInnerLoop(pParse, p, tab1, 2788 0, 0, &dest, iCont, iBreak); 2789 sqlite3VdbeResolveLabel(v, iCont); 2790 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2791 sqlite3VdbeResolveLabel(v, iBreak); 2792 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2793 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2794 break; 2795 } 2796 } 2797 2798 #ifndef SQLITE_OMIT_EXPLAIN 2799 if( p->pNext==0 ){ 2800 ExplainQueryPlanPop(pParse); 2801 } 2802 #endif 2803 } 2804 2805 /* Compute collating sequences used by 2806 ** temporary tables needed to implement the compound select. 2807 ** Attach the KeyInfo structure to all temporary tables. 2808 ** 2809 ** This section is run by the right-most SELECT statement only. 2810 ** SELECT statements to the left always skip this part. The right-most 2811 ** SELECT might also skip this part if it has no ORDER BY clause and 2812 ** no temp tables are required. 2813 */ 2814 if( p->selFlags & SF_UsesEphemeral ){ 2815 int i; /* Loop counter */ 2816 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2817 Select *pLoop; /* For looping through SELECT statements */ 2818 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2819 int nCol; /* Number of columns in result set */ 2820 2821 assert( p->pNext==0 ); 2822 nCol = p->pEList->nExpr; 2823 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2824 if( !pKeyInfo ){ 2825 rc = SQLITE_NOMEM_BKPT; 2826 goto multi_select_end; 2827 } 2828 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2829 *apColl = multiSelectCollSeq(pParse, p, i); 2830 if( 0==*apColl ){ 2831 *apColl = db->pDfltColl; 2832 } 2833 } 2834 2835 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2836 for(i=0; i<2; i++){ 2837 int addr = pLoop->addrOpenEphm[i]; 2838 if( addr<0 ){ 2839 /* If [0] is unused then [1] is also unused. So we can 2840 ** always safely abort as soon as the first unused slot is found */ 2841 assert( pLoop->addrOpenEphm[1]<0 ); 2842 break; 2843 } 2844 sqlite3VdbeChangeP2(v, addr, nCol); 2845 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2846 P4_KEYINFO); 2847 pLoop->addrOpenEphm[i] = -1; 2848 } 2849 } 2850 sqlite3KeyInfoUnref(pKeyInfo); 2851 } 2852 2853 multi_select_end: 2854 pDest->iSdst = dest.iSdst; 2855 pDest->nSdst = dest.nSdst; 2856 sqlite3SelectDelete(db, pDelete); 2857 return rc; 2858 } 2859 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2860 2861 /* 2862 ** Error message for when two or more terms of a compound select have different 2863 ** size result sets. 2864 */ 2865 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2866 if( p->selFlags & SF_Values ){ 2867 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2868 }else{ 2869 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2870 " do not have the same number of result columns", selectOpName(p->op)); 2871 } 2872 } 2873 2874 /* 2875 ** Code an output subroutine for a coroutine implementation of a 2876 ** SELECT statment. 2877 ** 2878 ** The data to be output is contained in pIn->iSdst. There are 2879 ** pIn->nSdst columns to be output. pDest is where the output should 2880 ** be sent. 2881 ** 2882 ** regReturn is the number of the register holding the subroutine 2883 ** return address. 2884 ** 2885 ** If regPrev>0 then it is the first register in a vector that 2886 ** records the previous output. mem[regPrev] is a flag that is false 2887 ** if there has been no previous output. If regPrev>0 then code is 2888 ** generated to suppress duplicates. pKeyInfo is used for comparing 2889 ** keys. 2890 ** 2891 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2892 ** iBreak. 2893 */ 2894 static int generateOutputSubroutine( 2895 Parse *pParse, /* Parsing context */ 2896 Select *p, /* The SELECT statement */ 2897 SelectDest *pIn, /* Coroutine supplying data */ 2898 SelectDest *pDest, /* Where to send the data */ 2899 int regReturn, /* The return address register */ 2900 int regPrev, /* Previous result register. No uniqueness if 0 */ 2901 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2902 int iBreak /* Jump here if we hit the LIMIT */ 2903 ){ 2904 Vdbe *v = pParse->pVdbe; 2905 int iContinue; 2906 int addr; 2907 2908 addr = sqlite3VdbeCurrentAddr(v); 2909 iContinue = sqlite3VdbeMakeLabel(v); 2910 2911 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2912 */ 2913 if( regPrev ){ 2914 int addr1, addr2; 2915 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2916 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2917 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2918 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2919 sqlite3VdbeJumpHere(v, addr1); 2920 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2921 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2922 } 2923 if( pParse->db->mallocFailed ) return 0; 2924 2925 /* Suppress the first OFFSET entries if there is an OFFSET clause 2926 */ 2927 codeOffset(v, p->iOffset, iContinue); 2928 2929 assert( pDest->eDest!=SRT_Exists ); 2930 assert( pDest->eDest!=SRT_Table ); 2931 switch( pDest->eDest ){ 2932 /* Store the result as data using a unique key. 2933 */ 2934 case SRT_EphemTab: { 2935 int r1 = sqlite3GetTempReg(pParse); 2936 int r2 = sqlite3GetTempReg(pParse); 2937 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2938 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2939 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2940 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2941 sqlite3ReleaseTempReg(pParse, r2); 2942 sqlite3ReleaseTempReg(pParse, r1); 2943 break; 2944 } 2945 2946 #ifndef SQLITE_OMIT_SUBQUERY 2947 /* If we are creating a set for an "expr IN (SELECT ...)". 2948 */ 2949 case SRT_Set: { 2950 int r1; 2951 testcase( pIn->nSdst>1 ); 2952 r1 = sqlite3GetTempReg(pParse); 2953 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2954 r1, pDest->zAffSdst, pIn->nSdst); 2955 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2956 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2957 pIn->iSdst, pIn->nSdst); 2958 sqlite3ReleaseTempReg(pParse, r1); 2959 break; 2960 } 2961 2962 /* If this is a scalar select that is part of an expression, then 2963 ** store the results in the appropriate memory cell and break out 2964 ** of the scan loop. 2965 */ 2966 case SRT_Mem: { 2967 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2968 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2969 /* The LIMIT clause will jump out of the loop for us */ 2970 break; 2971 } 2972 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2973 2974 /* The results are stored in a sequence of registers 2975 ** starting at pDest->iSdst. Then the co-routine yields. 2976 */ 2977 case SRT_Coroutine: { 2978 if( pDest->iSdst==0 ){ 2979 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2980 pDest->nSdst = pIn->nSdst; 2981 } 2982 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2983 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2984 break; 2985 } 2986 2987 /* If none of the above, then the result destination must be 2988 ** SRT_Output. This routine is never called with any other 2989 ** destination other than the ones handled above or SRT_Output. 2990 ** 2991 ** For SRT_Output, results are stored in a sequence of registers. 2992 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2993 ** return the next row of result. 2994 */ 2995 default: { 2996 assert( pDest->eDest==SRT_Output ); 2997 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2998 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2999 break; 3000 } 3001 } 3002 3003 /* Jump to the end of the loop if the LIMIT is reached. 3004 */ 3005 if( p->iLimit ){ 3006 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3007 } 3008 3009 /* Generate the subroutine return 3010 */ 3011 sqlite3VdbeResolveLabel(v, iContinue); 3012 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3013 3014 return addr; 3015 } 3016 3017 /* 3018 ** Alternative compound select code generator for cases when there 3019 ** is an ORDER BY clause. 3020 ** 3021 ** We assume a query of the following form: 3022 ** 3023 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3024 ** 3025 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3026 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3027 ** co-routines. Then run the co-routines in parallel and merge the results 3028 ** into the output. In addition to the two coroutines (called selectA and 3029 ** selectB) there are 7 subroutines: 3030 ** 3031 ** outA: Move the output of the selectA coroutine into the output 3032 ** of the compound query. 3033 ** 3034 ** outB: Move the output of the selectB coroutine into the output 3035 ** of the compound query. (Only generated for UNION and 3036 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3037 ** appears only in B.) 3038 ** 3039 ** AltB: Called when there is data from both coroutines and A<B. 3040 ** 3041 ** AeqB: Called when there is data from both coroutines and A==B. 3042 ** 3043 ** AgtB: Called when there is data from both coroutines and A>B. 3044 ** 3045 ** EofA: Called when data is exhausted from selectA. 3046 ** 3047 ** EofB: Called when data is exhausted from selectB. 3048 ** 3049 ** The implementation of the latter five subroutines depend on which 3050 ** <operator> is used: 3051 ** 3052 ** 3053 ** UNION ALL UNION EXCEPT INTERSECT 3054 ** ------------- ----------------- -------------- ----------------- 3055 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3056 ** 3057 ** AeqB: outA, nextA nextA nextA outA, nextA 3058 ** 3059 ** AgtB: outB, nextB outB, nextB nextB nextB 3060 ** 3061 ** EofA: outB, nextB outB, nextB halt halt 3062 ** 3063 ** EofB: outA, nextA outA, nextA outA, nextA halt 3064 ** 3065 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3066 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3067 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3068 ** following nextX causes a jump to the end of the select processing. 3069 ** 3070 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3071 ** within the output subroutine. The regPrev register set holds the previously 3072 ** output value. A comparison is made against this value and the output 3073 ** is skipped if the next results would be the same as the previous. 3074 ** 3075 ** The implementation plan is to implement the two coroutines and seven 3076 ** subroutines first, then put the control logic at the bottom. Like this: 3077 ** 3078 ** goto Init 3079 ** coA: coroutine for left query (A) 3080 ** coB: coroutine for right query (B) 3081 ** outA: output one row of A 3082 ** outB: output one row of B (UNION and UNION ALL only) 3083 ** EofA: ... 3084 ** EofB: ... 3085 ** AltB: ... 3086 ** AeqB: ... 3087 ** AgtB: ... 3088 ** Init: initialize coroutine registers 3089 ** yield coA 3090 ** if eof(A) goto EofA 3091 ** yield coB 3092 ** if eof(B) goto EofB 3093 ** Cmpr: Compare A, B 3094 ** Jump AltB, AeqB, AgtB 3095 ** End: ... 3096 ** 3097 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3098 ** actually called using Gosub and they do not Return. EofA and EofB loop 3099 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3100 ** and AgtB jump to either L2 or to one of EofA or EofB. 3101 */ 3102 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3103 static int multiSelectOrderBy( 3104 Parse *pParse, /* Parsing context */ 3105 Select *p, /* The right-most of SELECTs to be coded */ 3106 SelectDest *pDest /* What to do with query results */ 3107 ){ 3108 int i, j; /* Loop counters */ 3109 Select *pPrior; /* Another SELECT immediately to our left */ 3110 Vdbe *v; /* Generate code to this VDBE */ 3111 SelectDest destA; /* Destination for coroutine A */ 3112 SelectDest destB; /* Destination for coroutine B */ 3113 int regAddrA; /* Address register for select-A coroutine */ 3114 int regAddrB; /* Address register for select-B coroutine */ 3115 int addrSelectA; /* Address of the select-A coroutine */ 3116 int addrSelectB; /* Address of the select-B coroutine */ 3117 int regOutA; /* Address register for the output-A subroutine */ 3118 int regOutB; /* Address register for the output-B subroutine */ 3119 int addrOutA; /* Address of the output-A subroutine */ 3120 int addrOutB = 0; /* Address of the output-B subroutine */ 3121 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3122 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3123 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3124 int addrAltB; /* Address of the A<B subroutine */ 3125 int addrAeqB; /* Address of the A==B subroutine */ 3126 int addrAgtB; /* Address of the A>B subroutine */ 3127 int regLimitA; /* Limit register for select-A */ 3128 int regLimitB; /* Limit register for select-A */ 3129 int regPrev; /* A range of registers to hold previous output */ 3130 int savedLimit; /* Saved value of p->iLimit */ 3131 int savedOffset; /* Saved value of p->iOffset */ 3132 int labelCmpr; /* Label for the start of the merge algorithm */ 3133 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3134 int addr1; /* Jump instructions that get retargetted */ 3135 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3136 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3137 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3138 sqlite3 *db; /* Database connection */ 3139 ExprList *pOrderBy; /* The ORDER BY clause */ 3140 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3141 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3142 3143 assert( p->pOrderBy!=0 ); 3144 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3145 db = pParse->db; 3146 v = pParse->pVdbe; 3147 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3148 labelEnd = sqlite3VdbeMakeLabel(v); 3149 labelCmpr = sqlite3VdbeMakeLabel(v); 3150 3151 3152 /* Patch up the ORDER BY clause 3153 */ 3154 op = p->op; 3155 pPrior = p->pPrior; 3156 assert( pPrior->pOrderBy==0 ); 3157 pOrderBy = p->pOrderBy; 3158 assert( pOrderBy ); 3159 nOrderBy = pOrderBy->nExpr; 3160 3161 /* For operators other than UNION ALL we have to make sure that 3162 ** the ORDER BY clause covers every term of the result set. Add 3163 ** terms to the ORDER BY clause as necessary. 3164 */ 3165 if( op!=TK_ALL ){ 3166 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3167 struct ExprList_item *pItem; 3168 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3169 assert( pItem->u.x.iOrderByCol>0 ); 3170 if( pItem->u.x.iOrderByCol==i ) break; 3171 } 3172 if( j==nOrderBy ){ 3173 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3174 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3175 pNew->flags |= EP_IntValue; 3176 pNew->u.iValue = i; 3177 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3178 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3179 } 3180 } 3181 } 3182 3183 /* Compute the comparison permutation and keyinfo that is used with 3184 ** the permutation used to determine if the next 3185 ** row of results comes from selectA or selectB. Also add explicit 3186 ** collations to the ORDER BY clause terms so that when the subqueries 3187 ** to the right and the left are evaluated, they use the correct 3188 ** collation. 3189 */ 3190 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3191 if( aPermute ){ 3192 struct ExprList_item *pItem; 3193 aPermute[0] = nOrderBy; 3194 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3195 assert( pItem->u.x.iOrderByCol>0 ); 3196 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3197 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3198 } 3199 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3200 }else{ 3201 pKeyMerge = 0; 3202 } 3203 3204 /* Reattach the ORDER BY clause to the query. 3205 */ 3206 p->pOrderBy = pOrderBy; 3207 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3208 3209 /* Allocate a range of temporary registers and the KeyInfo needed 3210 ** for the logic that removes duplicate result rows when the 3211 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3212 */ 3213 if( op==TK_ALL ){ 3214 regPrev = 0; 3215 }else{ 3216 int nExpr = p->pEList->nExpr; 3217 assert( nOrderBy>=nExpr || db->mallocFailed ); 3218 regPrev = pParse->nMem+1; 3219 pParse->nMem += nExpr+1; 3220 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3221 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3222 if( pKeyDup ){ 3223 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3224 for(i=0; i<nExpr; i++){ 3225 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3226 pKeyDup->aSortOrder[i] = 0; 3227 } 3228 } 3229 } 3230 3231 /* Separate the left and the right query from one another 3232 */ 3233 p->pPrior = 0; 3234 pPrior->pNext = 0; 3235 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3236 if( pPrior->pPrior==0 ){ 3237 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3238 } 3239 3240 /* Compute the limit registers */ 3241 computeLimitRegisters(pParse, p, labelEnd); 3242 if( p->iLimit && op==TK_ALL ){ 3243 regLimitA = ++pParse->nMem; 3244 regLimitB = ++pParse->nMem; 3245 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3246 regLimitA); 3247 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3248 }else{ 3249 regLimitA = regLimitB = 0; 3250 } 3251 sqlite3ExprDelete(db, p->pLimit); 3252 p->pLimit = 0; 3253 3254 regAddrA = ++pParse->nMem; 3255 regAddrB = ++pParse->nMem; 3256 regOutA = ++pParse->nMem; 3257 regOutB = ++pParse->nMem; 3258 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3259 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3260 3261 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3262 3263 /* Generate a coroutine to evaluate the SELECT statement to the 3264 ** left of the compound operator - the "A" select. 3265 */ 3266 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3267 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3268 VdbeComment((v, "left SELECT")); 3269 pPrior->iLimit = regLimitA; 3270 ExplainQueryPlan((pParse, 1, "LEFT")); 3271 sqlite3Select(pParse, pPrior, &destA); 3272 sqlite3VdbeEndCoroutine(v, regAddrA); 3273 sqlite3VdbeJumpHere(v, addr1); 3274 3275 /* Generate a coroutine to evaluate the SELECT statement on 3276 ** the right - the "B" select 3277 */ 3278 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3279 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3280 VdbeComment((v, "right SELECT")); 3281 savedLimit = p->iLimit; 3282 savedOffset = p->iOffset; 3283 p->iLimit = regLimitB; 3284 p->iOffset = 0; 3285 ExplainQueryPlan((pParse, 1, "RIGHT")); 3286 sqlite3Select(pParse, p, &destB); 3287 p->iLimit = savedLimit; 3288 p->iOffset = savedOffset; 3289 sqlite3VdbeEndCoroutine(v, regAddrB); 3290 3291 /* Generate a subroutine that outputs the current row of the A 3292 ** select as the next output row of the compound select. 3293 */ 3294 VdbeNoopComment((v, "Output routine for A")); 3295 addrOutA = generateOutputSubroutine(pParse, 3296 p, &destA, pDest, regOutA, 3297 regPrev, pKeyDup, labelEnd); 3298 3299 /* Generate a subroutine that outputs the current row of the B 3300 ** select as the next output row of the compound select. 3301 */ 3302 if( op==TK_ALL || op==TK_UNION ){ 3303 VdbeNoopComment((v, "Output routine for B")); 3304 addrOutB = generateOutputSubroutine(pParse, 3305 p, &destB, pDest, regOutB, 3306 regPrev, pKeyDup, labelEnd); 3307 } 3308 sqlite3KeyInfoUnref(pKeyDup); 3309 3310 /* Generate a subroutine to run when the results from select A 3311 ** are exhausted and only data in select B remains. 3312 */ 3313 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3314 addrEofA_noB = addrEofA = labelEnd; 3315 }else{ 3316 VdbeNoopComment((v, "eof-A subroutine")); 3317 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3318 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3319 VdbeCoverage(v); 3320 sqlite3VdbeGoto(v, addrEofA); 3321 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3322 } 3323 3324 /* Generate a subroutine to run when the results from select B 3325 ** are exhausted and only data in select A remains. 3326 */ 3327 if( op==TK_INTERSECT ){ 3328 addrEofB = addrEofA; 3329 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3330 }else{ 3331 VdbeNoopComment((v, "eof-B subroutine")); 3332 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3333 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3334 sqlite3VdbeGoto(v, addrEofB); 3335 } 3336 3337 /* Generate code to handle the case of A<B 3338 */ 3339 VdbeNoopComment((v, "A-lt-B subroutine")); 3340 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3341 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3342 sqlite3VdbeGoto(v, labelCmpr); 3343 3344 /* Generate code to handle the case of A==B 3345 */ 3346 if( op==TK_ALL ){ 3347 addrAeqB = addrAltB; 3348 }else if( op==TK_INTERSECT ){ 3349 addrAeqB = addrAltB; 3350 addrAltB++; 3351 }else{ 3352 VdbeNoopComment((v, "A-eq-B subroutine")); 3353 addrAeqB = 3354 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3355 sqlite3VdbeGoto(v, labelCmpr); 3356 } 3357 3358 /* Generate code to handle the case of A>B 3359 */ 3360 VdbeNoopComment((v, "A-gt-B subroutine")); 3361 addrAgtB = sqlite3VdbeCurrentAddr(v); 3362 if( op==TK_ALL || op==TK_UNION ){ 3363 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3364 } 3365 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3366 sqlite3VdbeGoto(v, labelCmpr); 3367 3368 /* This code runs once to initialize everything. 3369 */ 3370 sqlite3VdbeJumpHere(v, addr1); 3371 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3372 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3373 3374 /* Implement the main merge loop 3375 */ 3376 sqlite3VdbeResolveLabel(v, labelCmpr); 3377 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3378 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3379 (char*)pKeyMerge, P4_KEYINFO); 3380 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3381 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3382 3383 /* Jump to the this point in order to terminate the query. 3384 */ 3385 sqlite3VdbeResolveLabel(v, labelEnd); 3386 3387 /* Reassembly the compound query so that it will be freed correctly 3388 ** by the calling function */ 3389 if( p->pPrior ){ 3390 sqlite3SelectDelete(db, p->pPrior); 3391 } 3392 p->pPrior = pPrior; 3393 pPrior->pNext = p; 3394 3395 /*** TBD: Insert subroutine calls to close cursors on incomplete 3396 **** subqueries ****/ 3397 ExplainQueryPlanPop(pParse); 3398 return pParse->nErr!=0; 3399 } 3400 #endif 3401 3402 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3403 3404 /* An instance of the SubstContext object describes an substitution edit 3405 ** to be performed on a parse tree. 3406 ** 3407 ** All references to columns in table iTable are to be replaced by corresponding 3408 ** expressions in pEList. 3409 */ 3410 typedef struct SubstContext { 3411 Parse *pParse; /* The parsing context */ 3412 int iTable; /* Replace references to this table */ 3413 int iNewTable; /* New table number */ 3414 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3415 ExprList *pEList; /* Replacement expressions */ 3416 } SubstContext; 3417 3418 /* Forward Declarations */ 3419 static void substExprList(SubstContext*, ExprList*); 3420 static void substSelect(SubstContext*, Select*, int); 3421 3422 /* 3423 ** Scan through the expression pExpr. Replace every reference to 3424 ** a column in table number iTable with a copy of the iColumn-th 3425 ** entry in pEList. (But leave references to the ROWID column 3426 ** unchanged.) 3427 ** 3428 ** This routine is part of the flattening procedure. A subquery 3429 ** whose result set is defined by pEList appears as entry in the 3430 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3431 ** FORM clause entry is iTable. This routine makes the necessary 3432 ** changes to pExpr so that it refers directly to the source table 3433 ** of the subquery rather the result set of the subquery. 3434 */ 3435 static Expr *substExpr( 3436 SubstContext *pSubst, /* Description of the substitution */ 3437 Expr *pExpr /* Expr in which substitution occurs */ 3438 ){ 3439 if( pExpr==0 ) return 0; 3440 if( ExprHasProperty(pExpr, EP_FromJoin) 3441 && pExpr->iRightJoinTable==pSubst->iTable 3442 ){ 3443 pExpr->iRightJoinTable = pSubst->iNewTable; 3444 } 3445 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3446 if( pExpr->iColumn<0 ){ 3447 pExpr->op = TK_NULL; 3448 }else{ 3449 Expr *pNew; 3450 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3451 Expr ifNullRow; 3452 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3453 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3454 if( sqlite3ExprIsVector(pCopy) ){ 3455 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3456 }else{ 3457 sqlite3 *db = pSubst->pParse->db; 3458 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3459 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3460 ifNullRow.op = TK_IF_NULL_ROW; 3461 ifNullRow.pLeft = pCopy; 3462 ifNullRow.iTable = pSubst->iNewTable; 3463 pCopy = &ifNullRow; 3464 } 3465 pNew = sqlite3ExprDup(db, pCopy, 0); 3466 if( pNew && pSubst->isLeftJoin ){ 3467 ExprSetProperty(pNew, EP_CanBeNull); 3468 } 3469 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3470 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3471 ExprSetProperty(pNew, EP_FromJoin); 3472 } 3473 sqlite3ExprDelete(db, pExpr); 3474 pExpr = pNew; 3475 } 3476 } 3477 }else{ 3478 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3479 pExpr->iTable = pSubst->iNewTable; 3480 } 3481 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3482 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3483 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3484 substSelect(pSubst, pExpr->x.pSelect, 1); 3485 }else{ 3486 substExprList(pSubst, pExpr->x.pList); 3487 } 3488 } 3489 return pExpr; 3490 } 3491 static void substExprList( 3492 SubstContext *pSubst, /* Description of the substitution */ 3493 ExprList *pList /* List to scan and in which to make substitutes */ 3494 ){ 3495 int i; 3496 if( pList==0 ) return; 3497 for(i=0; i<pList->nExpr; i++){ 3498 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3499 } 3500 } 3501 static void substSelect( 3502 SubstContext *pSubst, /* Description of the substitution */ 3503 Select *p, /* SELECT statement in which to make substitutions */ 3504 int doPrior /* Do substitutes on p->pPrior too */ 3505 ){ 3506 SrcList *pSrc; 3507 struct SrcList_item *pItem; 3508 int i; 3509 if( !p ) return; 3510 do{ 3511 substExprList(pSubst, p->pEList); 3512 substExprList(pSubst, p->pGroupBy); 3513 substExprList(pSubst, p->pOrderBy); 3514 p->pHaving = substExpr(pSubst, p->pHaving); 3515 p->pWhere = substExpr(pSubst, p->pWhere); 3516 pSrc = p->pSrc; 3517 assert( pSrc!=0 ); 3518 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3519 substSelect(pSubst, pItem->pSelect, 1); 3520 if( pItem->fg.isTabFunc ){ 3521 substExprList(pSubst, pItem->u1.pFuncArg); 3522 } 3523 } 3524 }while( doPrior && (p = p->pPrior)!=0 ); 3525 } 3526 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3527 3528 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3529 /* 3530 ** This routine attempts to flatten subqueries as a performance optimization. 3531 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3532 ** 3533 ** To understand the concept of flattening, consider the following 3534 ** query: 3535 ** 3536 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3537 ** 3538 ** The default way of implementing this query is to execute the 3539 ** subquery first and store the results in a temporary table, then 3540 ** run the outer query on that temporary table. This requires two 3541 ** passes over the data. Furthermore, because the temporary table 3542 ** has no indices, the WHERE clause on the outer query cannot be 3543 ** optimized. 3544 ** 3545 ** This routine attempts to rewrite queries such as the above into 3546 ** a single flat select, like this: 3547 ** 3548 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3549 ** 3550 ** The code generated for this simplification gives the same result 3551 ** but only has to scan the data once. And because indices might 3552 ** exist on the table t1, a complete scan of the data might be 3553 ** avoided. 3554 ** 3555 ** Flattening is subject to the following constraints: 3556 ** 3557 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3558 ** The subquery and the outer query cannot both be aggregates. 3559 ** 3560 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3561 ** (2) If the subquery is an aggregate then 3562 ** (2a) the outer query must not be a join and 3563 ** (2b) the outer query must not use subqueries 3564 ** other than the one FROM-clause subquery that is a candidate 3565 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3566 ** from 2015-02-09.) 3567 ** 3568 ** (3) If the subquery is the right operand of a LEFT JOIN then 3569 ** (3a) the subquery may not be a join and 3570 ** (3b) the FROM clause of the subquery may not contain a virtual 3571 ** table and 3572 ** (3c) the outer query may not be an aggregate. 3573 ** 3574 ** (4) The subquery can not be DISTINCT. 3575 ** 3576 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3577 ** sub-queries that were excluded from this optimization. Restriction 3578 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3579 ** 3580 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3581 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3582 ** 3583 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3584 ** A FROM clause, consider adding a FROM clause with the special 3585 ** table sqlite_once that consists of a single row containing a 3586 ** single NULL. 3587 ** 3588 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3589 ** 3590 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3591 ** 3592 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3593 ** accidently carried the comment forward until 2014-09-15. Original 3594 ** constraint: "If the subquery is aggregate then the outer query 3595 ** may not use LIMIT." 3596 ** 3597 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3598 ** 3599 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3600 ** a separate restriction deriving from ticket #350. 3601 ** 3602 ** (13) The subquery and outer query may not both use LIMIT. 3603 ** 3604 ** (14) The subquery may not use OFFSET. 3605 ** 3606 ** (15) If the outer query is part of a compound select, then the 3607 ** subquery may not use LIMIT. 3608 ** (See ticket #2339 and ticket [02a8e81d44]). 3609 ** 3610 ** (16) If the outer query is aggregate, then the subquery may not 3611 ** use ORDER BY. (Ticket #2942) This used to not matter 3612 ** until we introduced the group_concat() function. 3613 ** 3614 ** (17) If the subquery is a compound select, then 3615 ** (17a) all compound operators must be a UNION ALL, and 3616 ** (17b) no terms within the subquery compound may be aggregate 3617 ** or DISTINCT, and 3618 ** (17c) every term within the subquery compound must have a FROM clause 3619 ** (17d) the outer query may not be 3620 ** (17d1) aggregate, or 3621 ** (17d2) DISTINCT, or 3622 ** (17d3) a join. 3623 ** 3624 ** The parent and sub-query may contain WHERE clauses. Subject to 3625 ** rules (11), (13) and (14), they may also contain ORDER BY, 3626 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3627 ** operator other than UNION ALL because all the other compound 3628 ** operators have an implied DISTINCT which is disallowed by 3629 ** restriction (4). 3630 ** 3631 ** Also, each component of the sub-query must return the same number 3632 ** of result columns. This is actually a requirement for any compound 3633 ** SELECT statement, but all the code here does is make sure that no 3634 ** such (illegal) sub-query is flattened. The caller will detect the 3635 ** syntax error and return a detailed message. 3636 ** 3637 ** (18) If the sub-query is a compound select, then all terms of the 3638 ** ORDER BY clause of the parent must be simple references to 3639 ** columns of the sub-query. 3640 ** 3641 ** (19) If the subquery uses LIMIT then the outer query may not 3642 ** have a WHERE clause. 3643 ** 3644 ** (20) If the sub-query is a compound select, then it must not use 3645 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3646 ** somewhat by saying that the terms of the ORDER BY clause must 3647 ** appear as unmodified result columns in the outer query. But we 3648 ** have other optimizations in mind to deal with that case. 3649 ** 3650 ** (21) If the subquery uses LIMIT then the outer query may not be 3651 ** DISTINCT. (See ticket [752e1646fc]). 3652 ** 3653 ** (22) The subquery may not be a recursive CTE. 3654 ** 3655 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3656 ** a recursive CTE, then the sub-query may not be a compound query. 3657 ** This restriction is because transforming the 3658 ** parent to a compound query confuses the code that handles 3659 ** recursive queries in multiSelect(). 3660 ** 3661 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3662 ** The subquery may not be an aggregate that uses the built-in min() or 3663 ** or max() functions. (Without this restriction, a query like: 3664 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3665 ** return the value X for which Y was maximal.) 3666 ** 3667 ** (25) If either the subquery or the parent query contains a window 3668 ** function in the select list or ORDER BY clause, flattening 3669 ** is not attempted. 3670 ** 3671 ** 3672 ** In this routine, the "p" parameter is a pointer to the outer query. 3673 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3674 ** uses aggregates. 3675 ** 3676 ** If flattening is not attempted, this routine is a no-op and returns 0. 3677 ** If flattening is attempted this routine returns 1. 3678 ** 3679 ** All of the expression analysis must occur on both the outer query and 3680 ** the subquery before this routine runs. 3681 */ 3682 static int flattenSubquery( 3683 Parse *pParse, /* Parsing context */ 3684 Select *p, /* The parent or outer SELECT statement */ 3685 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3686 int isAgg /* True if outer SELECT uses aggregate functions */ 3687 ){ 3688 const char *zSavedAuthContext = pParse->zAuthContext; 3689 Select *pParent; /* Current UNION ALL term of the other query */ 3690 Select *pSub; /* The inner query or "subquery" */ 3691 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3692 SrcList *pSrc; /* The FROM clause of the outer query */ 3693 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3694 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3695 int iNewParent = -1;/* Replacement table for iParent */ 3696 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3697 int i; /* Loop counter */ 3698 Expr *pWhere; /* The WHERE clause */ 3699 struct SrcList_item *pSubitem; /* The subquery */ 3700 sqlite3 *db = pParse->db; 3701 3702 /* Check to see if flattening is permitted. Return 0 if not. 3703 */ 3704 assert( p!=0 ); 3705 assert( p->pPrior==0 ); 3706 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3707 pSrc = p->pSrc; 3708 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3709 pSubitem = &pSrc->a[iFrom]; 3710 iParent = pSubitem->iCursor; 3711 pSub = pSubitem->pSelect; 3712 assert( pSub!=0 ); 3713 3714 #ifndef SQLITE_OMIT_WINDOWFUNC 3715 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3716 #endif 3717 3718 pSubSrc = pSub->pSrc; 3719 assert( pSubSrc ); 3720 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3721 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3722 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3723 ** became arbitrary expressions, we were forced to add restrictions (13) 3724 ** and (14). */ 3725 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3726 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3727 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3728 return 0; /* Restriction (15) */ 3729 } 3730 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3731 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3732 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3733 return 0; /* Restrictions (8)(9) */ 3734 } 3735 if( p->pOrderBy && pSub->pOrderBy ){ 3736 return 0; /* Restriction (11) */ 3737 } 3738 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3739 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3740 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3741 return 0; /* Restriction (21) */ 3742 } 3743 if( pSub->selFlags & (SF_Recursive) ){ 3744 return 0; /* Restrictions (22) */ 3745 } 3746 3747 /* 3748 ** If the subquery is the right operand of a LEFT JOIN, then the 3749 ** subquery may not be a join itself (3a). Example of why this is not 3750 ** allowed: 3751 ** 3752 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3753 ** 3754 ** If we flatten the above, we would get 3755 ** 3756 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3757 ** 3758 ** which is not at all the same thing. 3759 ** 3760 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3761 ** query cannot be an aggregate. (3c) This is an artifact of the way 3762 ** aggregates are processed - there is no mechanism to determine if 3763 ** the LEFT JOIN table should be all-NULL. 3764 ** 3765 ** See also tickets #306, #350, and #3300. 3766 */ 3767 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3768 isLeftJoin = 1; 3769 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3770 /* (3a) (3c) (3b) */ 3771 return 0; 3772 } 3773 } 3774 #ifdef SQLITE_EXTRA_IFNULLROW 3775 else if( iFrom>0 && !isAgg ){ 3776 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3777 ** every reference to any result column from subquery in a join, even 3778 ** though they are not necessary. This will stress-test the OP_IfNullRow 3779 ** opcode. */ 3780 isLeftJoin = -1; 3781 } 3782 #endif 3783 3784 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3785 ** use only the UNION ALL operator. And none of the simple select queries 3786 ** that make up the compound SELECT are allowed to be aggregate or distinct 3787 ** queries. 3788 */ 3789 if( pSub->pPrior ){ 3790 if( pSub->pOrderBy ){ 3791 return 0; /* Restriction (20) */ 3792 } 3793 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3794 return 0; /* (17d1), (17d2), or (17d3) */ 3795 } 3796 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3797 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3798 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3799 assert( pSub->pSrc!=0 ); 3800 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3801 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3802 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3803 || pSub1->pSrc->nSrc<1 /* (17c) */ 3804 ){ 3805 return 0; 3806 } 3807 testcase( pSub1->pSrc->nSrc>1 ); 3808 } 3809 3810 /* Restriction (18). */ 3811 if( p->pOrderBy ){ 3812 int ii; 3813 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3814 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3815 } 3816 } 3817 } 3818 3819 /* Ex-restriction (23): 3820 ** The only way that the recursive part of a CTE can contain a compound 3821 ** subquery is for the subquery to be one term of a join. But if the 3822 ** subquery is a join, then the flattening has already been stopped by 3823 ** restriction (17d3) 3824 */ 3825 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3826 3827 /***** If we reach this point, flattening is permitted. *****/ 3828 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3829 pSub->selId, pSub, iFrom)); 3830 3831 /* Authorize the subquery */ 3832 pParse->zAuthContext = pSubitem->zName; 3833 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3834 testcase( i==SQLITE_DENY ); 3835 pParse->zAuthContext = zSavedAuthContext; 3836 3837 /* If the sub-query is a compound SELECT statement, then (by restrictions 3838 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3839 ** be of the form: 3840 ** 3841 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3842 ** 3843 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3844 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3845 ** OFFSET clauses and joins them to the left-hand-side of the original 3846 ** using UNION ALL operators. In this case N is the number of simple 3847 ** select statements in the compound sub-query. 3848 ** 3849 ** Example: 3850 ** 3851 ** SELECT a+1 FROM ( 3852 ** SELECT x FROM tab 3853 ** UNION ALL 3854 ** SELECT y FROM tab 3855 ** UNION ALL 3856 ** SELECT abs(z*2) FROM tab2 3857 ** ) WHERE a!=5 ORDER BY 1 3858 ** 3859 ** Transformed into: 3860 ** 3861 ** SELECT x+1 FROM tab WHERE x+1!=5 3862 ** UNION ALL 3863 ** SELECT y+1 FROM tab WHERE y+1!=5 3864 ** UNION ALL 3865 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3866 ** ORDER BY 1 3867 ** 3868 ** We call this the "compound-subquery flattening". 3869 */ 3870 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3871 Select *pNew; 3872 ExprList *pOrderBy = p->pOrderBy; 3873 Expr *pLimit = p->pLimit; 3874 Select *pPrior = p->pPrior; 3875 p->pOrderBy = 0; 3876 p->pSrc = 0; 3877 p->pPrior = 0; 3878 p->pLimit = 0; 3879 pNew = sqlite3SelectDup(db, p, 0); 3880 p->pLimit = pLimit; 3881 p->pOrderBy = pOrderBy; 3882 p->pSrc = pSrc; 3883 p->op = TK_ALL; 3884 if( pNew==0 ){ 3885 p->pPrior = pPrior; 3886 }else{ 3887 pNew->pPrior = pPrior; 3888 if( pPrior ) pPrior->pNext = pNew; 3889 pNew->pNext = p; 3890 p->pPrior = pNew; 3891 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3892 " creates %u as peer\n",pNew->selId)); 3893 } 3894 if( db->mallocFailed ) return 1; 3895 } 3896 3897 /* Begin flattening the iFrom-th entry of the FROM clause 3898 ** in the outer query. 3899 */ 3900 pSub = pSub1 = pSubitem->pSelect; 3901 3902 /* Delete the transient table structure associated with the 3903 ** subquery 3904 */ 3905 sqlite3DbFree(db, pSubitem->zDatabase); 3906 sqlite3DbFree(db, pSubitem->zName); 3907 sqlite3DbFree(db, pSubitem->zAlias); 3908 pSubitem->zDatabase = 0; 3909 pSubitem->zName = 0; 3910 pSubitem->zAlias = 0; 3911 pSubitem->pSelect = 0; 3912 3913 /* Defer deleting the Table object associated with the 3914 ** subquery until code generation is 3915 ** complete, since there may still exist Expr.pTab entries that 3916 ** refer to the subquery even after flattening. Ticket #3346. 3917 ** 3918 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3919 */ 3920 if( ALWAYS(pSubitem->pTab!=0) ){ 3921 Table *pTabToDel = pSubitem->pTab; 3922 if( pTabToDel->nTabRef==1 ){ 3923 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3924 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3925 pToplevel->pZombieTab = pTabToDel; 3926 }else{ 3927 pTabToDel->nTabRef--; 3928 } 3929 pSubitem->pTab = 0; 3930 } 3931 3932 /* The following loop runs once for each term in a compound-subquery 3933 ** flattening (as described above). If we are doing a different kind 3934 ** of flattening - a flattening other than a compound-subquery flattening - 3935 ** then this loop only runs once. 3936 ** 3937 ** This loop moves all of the FROM elements of the subquery into the 3938 ** the FROM clause of the outer query. Before doing this, remember 3939 ** the cursor number for the original outer query FROM element in 3940 ** iParent. The iParent cursor will never be used. Subsequent code 3941 ** will scan expressions looking for iParent references and replace 3942 ** those references with expressions that resolve to the subquery FROM 3943 ** elements we are now copying in. 3944 */ 3945 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3946 int nSubSrc; 3947 u8 jointype = 0; 3948 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3949 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3950 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3951 3952 if( pSrc ){ 3953 assert( pParent==p ); /* First time through the loop */ 3954 jointype = pSubitem->fg.jointype; 3955 }else{ 3956 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3957 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3958 if( pSrc==0 ){ 3959 assert( db->mallocFailed ); 3960 break; 3961 } 3962 } 3963 3964 /* The subquery uses a single slot of the FROM clause of the outer 3965 ** query. If the subquery has more than one element in its FROM clause, 3966 ** then expand the outer query to make space for it to hold all elements 3967 ** of the subquery. 3968 ** 3969 ** Example: 3970 ** 3971 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3972 ** 3973 ** The outer query has 3 slots in its FROM clause. One slot of the 3974 ** outer query (the middle slot) is used by the subquery. The next 3975 ** block of code will expand the outer query FROM clause to 4 slots. 3976 ** The middle slot is expanded to two slots in order to make space 3977 ** for the two elements in the FROM clause of the subquery. 3978 */ 3979 if( nSubSrc>1 ){ 3980 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3981 if( db->mallocFailed ){ 3982 break; 3983 } 3984 } 3985 3986 /* Transfer the FROM clause terms from the subquery into the 3987 ** outer query. 3988 */ 3989 for(i=0; i<nSubSrc; i++){ 3990 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3991 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3992 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3993 iNewParent = pSubSrc->a[i].iCursor; 3994 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3995 } 3996 pSrc->a[iFrom].fg.jointype = jointype; 3997 3998 /* Now begin substituting subquery result set expressions for 3999 ** references to the iParent in the outer query. 4000 ** 4001 ** Example: 4002 ** 4003 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4004 ** \ \_____________ subquery __________/ / 4005 ** \_____________________ outer query ______________________________/ 4006 ** 4007 ** We look at every expression in the outer query and every place we see 4008 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4009 */ 4010 if( pSub->pOrderBy ){ 4011 /* At this point, any non-zero iOrderByCol values indicate that the 4012 ** ORDER BY column expression is identical to the iOrderByCol'th 4013 ** expression returned by SELECT statement pSub. Since these values 4014 ** do not necessarily correspond to columns in SELECT statement pParent, 4015 ** zero them before transfering the ORDER BY clause. 4016 ** 4017 ** Not doing this may cause an error if a subsequent call to this 4018 ** function attempts to flatten a compound sub-query into pParent 4019 ** (the only way this can happen is if the compound sub-query is 4020 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4021 ExprList *pOrderBy = pSub->pOrderBy; 4022 for(i=0; i<pOrderBy->nExpr; i++){ 4023 pOrderBy->a[i].u.x.iOrderByCol = 0; 4024 } 4025 assert( pParent->pOrderBy==0 ); 4026 pParent->pOrderBy = pOrderBy; 4027 pSub->pOrderBy = 0; 4028 } 4029 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 4030 if( isLeftJoin>0 ){ 4031 setJoinExpr(pWhere, iNewParent); 4032 } 4033 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4034 if( db->mallocFailed==0 ){ 4035 SubstContext x; 4036 x.pParse = pParse; 4037 x.iTable = iParent; 4038 x.iNewTable = iNewParent; 4039 x.isLeftJoin = isLeftJoin; 4040 x.pEList = pSub->pEList; 4041 substSelect(&x, pParent, 0); 4042 } 4043 4044 /* The flattened query is distinct if either the inner or the 4045 ** outer query is distinct. 4046 */ 4047 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4048 4049 /* 4050 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4051 ** 4052 ** One is tempted to try to add a and b to combine the limits. But this 4053 ** does not work if either limit is negative. 4054 */ 4055 if( pSub->pLimit ){ 4056 pParent->pLimit = pSub->pLimit; 4057 pSub->pLimit = 0; 4058 } 4059 } 4060 4061 /* Finially, delete what is left of the subquery and return 4062 ** success. 4063 */ 4064 sqlite3SelectDelete(db, pSub1); 4065 4066 #if SELECTTRACE_ENABLED 4067 if( sqlite3SelectTrace & 0x100 ){ 4068 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4069 sqlite3TreeViewSelect(0, p, 0); 4070 } 4071 #endif 4072 4073 return 1; 4074 } 4075 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4076 4077 4078 4079 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4080 /* 4081 ** Make copies of relevant WHERE clause terms of the outer query into 4082 ** the WHERE clause of subquery. Example: 4083 ** 4084 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4085 ** 4086 ** Transformed into: 4087 ** 4088 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4089 ** WHERE x=5 AND y=10; 4090 ** 4091 ** The hope is that the terms added to the inner query will make it more 4092 ** efficient. 4093 ** 4094 ** Do not attempt this optimization if: 4095 ** 4096 ** (1) (** This restriction was removed on 2017-09-29. We used to 4097 ** disallow this optimization for aggregate subqueries, but now 4098 ** it is allowed by putting the extra terms on the HAVING clause. 4099 ** The added HAVING clause is pointless if the subquery lacks 4100 ** a GROUP BY clause. But such a HAVING clause is also harmless 4101 ** so there does not appear to be any reason to add extra logic 4102 ** to suppress it. **) 4103 ** 4104 ** (2) The inner query is the recursive part of a common table expression. 4105 ** 4106 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4107 ** clause would change the meaning of the LIMIT). 4108 ** 4109 ** (4) The inner query is the right operand of a LEFT JOIN and the 4110 ** expression to be pushed down does not come from the ON clause 4111 ** on that LEFT JOIN. 4112 ** 4113 ** (5) The WHERE clause expression originates in the ON or USING clause 4114 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4115 ** left join. An example: 4116 ** 4117 ** SELECT * 4118 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4119 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4120 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4121 ** 4122 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4123 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4124 ** then the (1,1,NULL) row would be suppressed. 4125 ** 4126 ** (6) The inner query features one or more window-functions (since 4127 ** changes to the WHERE clause of the inner query could change the 4128 ** window over which window functions are calculated). 4129 ** 4130 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4131 ** terms are duplicated into the subquery. 4132 */ 4133 static int pushDownWhereTerms( 4134 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4135 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4136 Expr *pWhere, /* The WHERE clause of the outer query */ 4137 int iCursor, /* Cursor number of the subquery */ 4138 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4139 ){ 4140 Expr *pNew; 4141 int nChng = 0; 4142 if( pWhere==0 ) return 0; 4143 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4144 4145 #ifndef SQLITE_OMIT_WINDOWFUNC 4146 if( pSubq->pWin ) return 0; /* restriction (6) */ 4147 #endif 4148 4149 #ifdef SQLITE_DEBUG 4150 /* Only the first term of a compound can have a WITH clause. But make 4151 ** sure no other terms are marked SF_Recursive in case something changes 4152 ** in the future. 4153 */ 4154 { 4155 Select *pX; 4156 for(pX=pSubq; pX; pX=pX->pPrior){ 4157 assert( (pX->selFlags & (SF_Recursive))==0 ); 4158 } 4159 } 4160 #endif 4161 4162 if( pSubq->pLimit!=0 ){ 4163 return 0; /* restriction (3) */ 4164 } 4165 while( pWhere->op==TK_AND ){ 4166 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4167 iCursor, isLeftJoin); 4168 pWhere = pWhere->pLeft; 4169 } 4170 if( isLeftJoin 4171 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4172 || pWhere->iRightJoinTable!=iCursor) 4173 ){ 4174 return 0; /* restriction (4) */ 4175 } 4176 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4177 return 0; /* restriction (5) */ 4178 } 4179 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4180 nChng++; 4181 while( pSubq ){ 4182 SubstContext x; 4183 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4184 unsetJoinExpr(pNew, -1); 4185 x.pParse = pParse; 4186 x.iTable = iCursor; 4187 x.iNewTable = iCursor; 4188 x.isLeftJoin = 0; 4189 x.pEList = pSubq->pEList; 4190 pNew = substExpr(&x, pNew); 4191 if( pSubq->selFlags & SF_Aggregate ){ 4192 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4193 }else{ 4194 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4195 } 4196 pSubq = pSubq->pPrior; 4197 } 4198 } 4199 return nChng; 4200 } 4201 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4202 4203 /* 4204 ** The pFunc is the only aggregate function in the query. Check to see 4205 ** if the query is a candidate for the min/max optimization. 4206 ** 4207 ** If the query is a candidate for the min/max optimization, then set 4208 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4209 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4210 ** whether pFunc is a min() or max() function. 4211 ** 4212 ** If the query is not a candidate for the min/max optimization, return 4213 ** WHERE_ORDERBY_NORMAL (which must be zero). 4214 ** 4215 ** This routine must be called after aggregate functions have been 4216 ** located but before their arguments have been subjected to aggregate 4217 ** analysis. 4218 */ 4219 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4220 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4221 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4222 const char *zFunc; /* Name of aggregate function pFunc */ 4223 ExprList *pOrderBy; 4224 u8 sortOrder; 4225 4226 assert( *ppMinMax==0 ); 4227 assert( pFunc->op==TK_AGG_FUNCTION ); 4228 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4229 zFunc = pFunc->u.zToken; 4230 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4231 eRet = WHERE_ORDERBY_MIN; 4232 sortOrder = SQLITE_SO_ASC; 4233 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4234 eRet = WHERE_ORDERBY_MAX; 4235 sortOrder = SQLITE_SO_DESC; 4236 }else{ 4237 return eRet; 4238 } 4239 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4240 assert( pOrderBy!=0 || db->mallocFailed ); 4241 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4242 return eRet; 4243 } 4244 4245 /* 4246 ** The select statement passed as the first argument is an aggregate query. 4247 ** The second argument is the associated aggregate-info object. This 4248 ** function tests if the SELECT is of the form: 4249 ** 4250 ** SELECT count(*) FROM <tbl> 4251 ** 4252 ** where table is a database table, not a sub-select or view. If the query 4253 ** does match this pattern, then a pointer to the Table object representing 4254 ** <tbl> is returned. Otherwise, 0 is returned. 4255 */ 4256 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4257 Table *pTab; 4258 Expr *pExpr; 4259 4260 assert( !p->pGroupBy ); 4261 4262 if( p->pWhere || p->pEList->nExpr!=1 4263 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4264 ){ 4265 return 0; 4266 } 4267 pTab = p->pSrc->a[0].pTab; 4268 pExpr = p->pEList->a[0].pExpr; 4269 assert( pTab && !pTab->pSelect && pExpr ); 4270 4271 if( IsVirtual(pTab) ) return 0; 4272 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4273 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4274 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4275 if( pExpr->flags&EP_Distinct ) return 0; 4276 4277 return pTab; 4278 } 4279 4280 /* 4281 ** If the source-list item passed as an argument was augmented with an 4282 ** INDEXED BY clause, then try to locate the specified index. If there 4283 ** was such a clause and the named index cannot be found, return 4284 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4285 ** pFrom->pIndex and return SQLITE_OK. 4286 */ 4287 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4288 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4289 Table *pTab = pFrom->pTab; 4290 char *zIndexedBy = pFrom->u1.zIndexedBy; 4291 Index *pIdx; 4292 for(pIdx=pTab->pIndex; 4293 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4294 pIdx=pIdx->pNext 4295 ); 4296 if( !pIdx ){ 4297 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4298 pParse->checkSchema = 1; 4299 return SQLITE_ERROR; 4300 } 4301 pFrom->pIBIndex = pIdx; 4302 } 4303 return SQLITE_OK; 4304 } 4305 /* 4306 ** Detect compound SELECT statements that use an ORDER BY clause with 4307 ** an alternative collating sequence. 4308 ** 4309 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4310 ** 4311 ** These are rewritten as a subquery: 4312 ** 4313 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4314 ** ORDER BY ... COLLATE ... 4315 ** 4316 ** This transformation is necessary because the multiSelectOrderBy() routine 4317 ** above that generates the code for a compound SELECT with an ORDER BY clause 4318 ** uses a merge algorithm that requires the same collating sequence on the 4319 ** result columns as on the ORDER BY clause. See ticket 4320 ** http://www.sqlite.org/src/info/6709574d2a 4321 ** 4322 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4323 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4324 ** there are COLLATE terms in the ORDER BY. 4325 */ 4326 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4327 int i; 4328 Select *pNew; 4329 Select *pX; 4330 sqlite3 *db; 4331 struct ExprList_item *a; 4332 SrcList *pNewSrc; 4333 Parse *pParse; 4334 Token dummy; 4335 4336 if( p->pPrior==0 ) return WRC_Continue; 4337 if( p->pOrderBy==0 ) return WRC_Continue; 4338 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4339 if( pX==0 ) return WRC_Continue; 4340 a = p->pOrderBy->a; 4341 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4342 if( a[i].pExpr->flags & EP_Collate ) break; 4343 } 4344 if( i<0 ) return WRC_Continue; 4345 4346 /* If we reach this point, that means the transformation is required. */ 4347 4348 pParse = pWalker->pParse; 4349 db = pParse->db; 4350 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4351 if( pNew==0 ) return WRC_Abort; 4352 memset(&dummy, 0, sizeof(dummy)); 4353 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4354 if( pNewSrc==0 ) return WRC_Abort; 4355 *pNew = *p; 4356 p->pSrc = pNewSrc; 4357 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4358 p->op = TK_SELECT; 4359 p->pWhere = 0; 4360 pNew->pGroupBy = 0; 4361 pNew->pHaving = 0; 4362 pNew->pOrderBy = 0; 4363 p->pPrior = 0; 4364 p->pNext = 0; 4365 p->pWith = 0; 4366 p->selFlags &= ~SF_Compound; 4367 assert( (p->selFlags & SF_Converted)==0 ); 4368 p->selFlags |= SF_Converted; 4369 assert( pNew->pPrior!=0 ); 4370 pNew->pPrior->pNext = pNew; 4371 pNew->pLimit = 0; 4372 return WRC_Continue; 4373 } 4374 4375 /* 4376 ** Check to see if the FROM clause term pFrom has table-valued function 4377 ** arguments. If it does, leave an error message in pParse and return 4378 ** non-zero, since pFrom is not allowed to be a table-valued function. 4379 */ 4380 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4381 if( pFrom->fg.isTabFunc ){ 4382 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4383 return 1; 4384 } 4385 return 0; 4386 } 4387 4388 #ifndef SQLITE_OMIT_CTE 4389 /* 4390 ** Argument pWith (which may be NULL) points to a linked list of nested 4391 ** WITH contexts, from inner to outermost. If the table identified by 4392 ** FROM clause element pItem is really a common-table-expression (CTE) 4393 ** then return a pointer to the CTE definition for that table. Otherwise 4394 ** return NULL. 4395 ** 4396 ** If a non-NULL value is returned, set *ppContext to point to the With 4397 ** object that the returned CTE belongs to. 4398 */ 4399 static struct Cte *searchWith( 4400 With *pWith, /* Current innermost WITH clause */ 4401 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4402 With **ppContext /* OUT: WITH clause return value belongs to */ 4403 ){ 4404 const char *zName; 4405 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4406 With *p; 4407 for(p=pWith; p; p=p->pOuter){ 4408 int i; 4409 for(i=0; i<p->nCte; i++){ 4410 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4411 *ppContext = p; 4412 return &p->a[i]; 4413 } 4414 } 4415 } 4416 } 4417 return 0; 4418 } 4419 4420 /* The code generator maintains a stack of active WITH clauses 4421 ** with the inner-most WITH clause being at the top of the stack. 4422 ** 4423 ** This routine pushes the WITH clause passed as the second argument 4424 ** onto the top of the stack. If argument bFree is true, then this 4425 ** WITH clause will never be popped from the stack. In this case it 4426 ** should be freed along with the Parse object. In other cases, when 4427 ** bFree==0, the With object will be freed along with the SELECT 4428 ** statement with which it is associated. 4429 */ 4430 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4431 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4432 if( pWith ){ 4433 assert( pParse->pWith!=pWith ); 4434 pWith->pOuter = pParse->pWith; 4435 pParse->pWith = pWith; 4436 if( bFree ) pParse->pWithToFree = pWith; 4437 } 4438 } 4439 4440 /* 4441 ** This function checks if argument pFrom refers to a CTE declared by 4442 ** a WITH clause on the stack currently maintained by the parser. And, 4443 ** if currently processing a CTE expression, if it is a recursive 4444 ** reference to the current CTE. 4445 ** 4446 ** If pFrom falls into either of the two categories above, pFrom->pTab 4447 ** and other fields are populated accordingly. The caller should check 4448 ** (pFrom->pTab!=0) to determine whether or not a successful match 4449 ** was found. 4450 ** 4451 ** Whether or not a match is found, SQLITE_OK is returned if no error 4452 ** occurs. If an error does occur, an error message is stored in the 4453 ** parser and some error code other than SQLITE_OK returned. 4454 */ 4455 static int withExpand( 4456 Walker *pWalker, 4457 struct SrcList_item *pFrom 4458 ){ 4459 Parse *pParse = pWalker->pParse; 4460 sqlite3 *db = pParse->db; 4461 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4462 With *pWith; /* WITH clause that pCte belongs to */ 4463 4464 assert( pFrom->pTab==0 ); 4465 4466 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4467 if( pCte ){ 4468 Table *pTab; 4469 ExprList *pEList; 4470 Select *pSel; 4471 Select *pLeft; /* Left-most SELECT statement */ 4472 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4473 With *pSavedWith; /* Initial value of pParse->pWith */ 4474 4475 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4476 ** recursive reference to CTE pCte. Leave an error in pParse and return 4477 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4478 ** In this case, proceed. */ 4479 if( pCte->zCteErr ){ 4480 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4481 return SQLITE_ERROR; 4482 } 4483 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4484 4485 assert( pFrom->pTab==0 ); 4486 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4487 if( pTab==0 ) return WRC_Abort; 4488 pTab->nTabRef = 1; 4489 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4490 pTab->iPKey = -1; 4491 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4492 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4493 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4494 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4495 assert( pFrom->pSelect ); 4496 4497 /* Check if this is a recursive CTE. */ 4498 pSel = pFrom->pSelect; 4499 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4500 if( bMayRecursive ){ 4501 int i; 4502 SrcList *pSrc = pFrom->pSelect->pSrc; 4503 for(i=0; i<pSrc->nSrc; i++){ 4504 struct SrcList_item *pItem = &pSrc->a[i]; 4505 if( pItem->zDatabase==0 4506 && pItem->zName!=0 4507 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4508 ){ 4509 pItem->pTab = pTab; 4510 pItem->fg.isRecursive = 1; 4511 pTab->nTabRef++; 4512 pSel->selFlags |= SF_Recursive; 4513 } 4514 } 4515 } 4516 4517 /* Only one recursive reference is permitted. */ 4518 if( pTab->nTabRef>2 ){ 4519 sqlite3ErrorMsg( 4520 pParse, "multiple references to recursive table: %s", pCte->zName 4521 ); 4522 return SQLITE_ERROR; 4523 } 4524 assert( pTab->nTabRef==1 || 4525 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4526 4527 pCte->zCteErr = "circular reference: %s"; 4528 pSavedWith = pParse->pWith; 4529 pParse->pWith = pWith; 4530 if( bMayRecursive ){ 4531 Select *pPrior = pSel->pPrior; 4532 assert( pPrior->pWith==0 ); 4533 pPrior->pWith = pSel->pWith; 4534 sqlite3WalkSelect(pWalker, pPrior); 4535 pPrior->pWith = 0; 4536 }else{ 4537 sqlite3WalkSelect(pWalker, pSel); 4538 } 4539 pParse->pWith = pWith; 4540 4541 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4542 pEList = pLeft->pEList; 4543 if( pCte->pCols ){ 4544 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4545 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4546 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4547 ); 4548 pParse->pWith = pSavedWith; 4549 return SQLITE_ERROR; 4550 } 4551 pEList = pCte->pCols; 4552 } 4553 4554 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4555 if( bMayRecursive ){ 4556 if( pSel->selFlags & SF_Recursive ){ 4557 pCte->zCteErr = "multiple recursive references: %s"; 4558 }else{ 4559 pCte->zCteErr = "recursive reference in a subquery: %s"; 4560 } 4561 sqlite3WalkSelect(pWalker, pSel); 4562 } 4563 pCte->zCteErr = 0; 4564 pParse->pWith = pSavedWith; 4565 } 4566 4567 return SQLITE_OK; 4568 } 4569 #endif 4570 4571 #ifndef SQLITE_OMIT_CTE 4572 /* 4573 ** If the SELECT passed as the second argument has an associated WITH 4574 ** clause, pop it from the stack stored as part of the Parse object. 4575 ** 4576 ** This function is used as the xSelectCallback2() callback by 4577 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4578 ** names and other FROM clause elements. 4579 */ 4580 static void selectPopWith(Walker *pWalker, Select *p){ 4581 Parse *pParse = pWalker->pParse; 4582 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4583 With *pWith = findRightmost(p)->pWith; 4584 if( pWith!=0 ){ 4585 assert( pParse->pWith==pWith ); 4586 pParse->pWith = pWith->pOuter; 4587 } 4588 } 4589 } 4590 #else 4591 #define selectPopWith 0 4592 #endif 4593 4594 /* 4595 ** The SrcList_item structure passed as the second argument represents a 4596 ** sub-query in the FROM clause of a SELECT statement. This function 4597 ** allocates and populates the SrcList_item.pTab object. If successful, 4598 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4599 ** SQLITE_NOMEM. 4600 */ 4601 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4602 Select *pSel = pFrom->pSelect; 4603 Table *pTab; 4604 4605 assert( pSel ); 4606 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4607 if( pTab==0 ) return SQLITE_NOMEM; 4608 pTab->nTabRef = 1; 4609 if( pFrom->zAlias ){ 4610 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4611 }else{ 4612 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4613 } 4614 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4615 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4616 pTab->iPKey = -1; 4617 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4618 pTab->tabFlags |= TF_Ephemeral; 4619 4620 return SQLITE_OK; 4621 } 4622 4623 /* 4624 ** This routine is a Walker callback for "expanding" a SELECT statement. 4625 ** "Expanding" means to do the following: 4626 ** 4627 ** (1) Make sure VDBE cursor numbers have been assigned to every 4628 ** element of the FROM clause. 4629 ** 4630 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4631 ** defines FROM clause. When views appear in the FROM clause, 4632 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4633 ** that implements the view. A copy is made of the view's SELECT 4634 ** statement so that we can freely modify or delete that statement 4635 ** without worrying about messing up the persistent representation 4636 ** of the view. 4637 ** 4638 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4639 ** on joins and the ON and USING clause of joins. 4640 ** 4641 ** (4) Scan the list of columns in the result set (pEList) looking 4642 ** for instances of the "*" operator or the TABLE.* operator. 4643 ** If found, expand each "*" to be every column in every table 4644 ** and TABLE.* to be every column in TABLE. 4645 ** 4646 */ 4647 static int selectExpander(Walker *pWalker, Select *p){ 4648 Parse *pParse = pWalker->pParse; 4649 int i, j, k; 4650 SrcList *pTabList; 4651 ExprList *pEList; 4652 struct SrcList_item *pFrom; 4653 sqlite3 *db = pParse->db; 4654 Expr *pE, *pRight, *pExpr; 4655 u16 selFlags = p->selFlags; 4656 u32 elistFlags = 0; 4657 4658 p->selFlags |= SF_Expanded; 4659 if( db->mallocFailed ){ 4660 return WRC_Abort; 4661 } 4662 assert( p->pSrc!=0 ); 4663 if( (selFlags & SF_Expanded)!=0 ){ 4664 return WRC_Prune; 4665 } 4666 pTabList = p->pSrc; 4667 pEList = p->pEList; 4668 sqlite3WithPush(pParse, p->pWith, 0); 4669 4670 /* Make sure cursor numbers have been assigned to all entries in 4671 ** the FROM clause of the SELECT statement. 4672 */ 4673 sqlite3SrcListAssignCursors(pParse, pTabList); 4674 4675 /* Look up every table named in the FROM clause of the select. If 4676 ** an entry of the FROM clause is a subquery instead of a table or view, 4677 ** then create a transient table structure to describe the subquery. 4678 */ 4679 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4680 Table *pTab; 4681 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4682 if( pFrom->fg.isRecursive ) continue; 4683 assert( pFrom->pTab==0 ); 4684 #ifndef SQLITE_OMIT_CTE 4685 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4686 if( pFrom->pTab ) {} else 4687 #endif 4688 if( pFrom->zName==0 ){ 4689 #ifndef SQLITE_OMIT_SUBQUERY 4690 Select *pSel = pFrom->pSelect; 4691 /* A sub-query in the FROM clause of a SELECT */ 4692 assert( pSel!=0 ); 4693 assert( pFrom->pTab==0 ); 4694 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4695 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4696 #endif 4697 }else{ 4698 /* An ordinary table or view name in the FROM clause */ 4699 assert( pFrom->pTab==0 ); 4700 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4701 if( pTab==0 ) return WRC_Abort; 4702 if( pTab->nTabRef>=0xffff ){ 4703 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4704 pTab->zName); 4705 pFrom->pTab = 0; 4706 return WRC_Abort; 4707 } 4708 pTab->nTabRef++; 4709 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4710 return WRC_Abort; 4711 } 4712 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4713 if( IsVirtual(pTab) || pTab->pSelect ){ 4714 i16 nCol; 4715 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4716 assert( pFrom->pSelect==0 ); 4717 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4718 nCol = pTab->nCol; 4719 pTab->nCol = -1; 4720 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4721 pTab->nCol = nCol; 4722 } 4723 #endif 4724 } 4725 4726 /* Locate the index named by the INDEXED BY clause, if any. */ 4727 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4728 return WRC_Abort; 4729 } 4730 } 4731 4732 /* Process NATURAL keywords, and ON and USING clauses of joins. 4733 */ 4734 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4735 return WRC_Abort; 4736 } 4737 4738 /* For every "*" that occurs in the column list, insert the names of 4739 ** all columns in all tables. And for every TABLE.* insert the names 4740 ** of all columns in TABLE. The parser inserted a special expression 4741 ** with the TK_ASTERISK operator for each "*" that it found in the column 4742 ** list. The following code just has to locate the TK_ASTERISK 4743 ** expressions and expand each one to the list of all columns in 4744 ** all tables. 4745 ** 4746 ** The first loop just checks to see if there are any "*" operators 4747 ** that need expanding. 4748 */ 4749 for(k=0; k<pEList->nExpr; k++){ 4750 pE = pEList->a[k].pExpr; 4751 if( pE->op==TK_ASTERISK ) break; 4752 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4753 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4754 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4755 elistFlags |= pE->flags; 4756 } 4757 if( k<pEList->nExpr ){ 4758 /* 4759 ** If we get here it means the result set contains one or more "*" 4760 ** operators that need to be expanded. Loop through each expression 4761 ** in the result set and expand them one by one. 4762 */ 4763 struct ExprList_item *a = pEList->a; 4764 ExprList *pNew = 0; 4765 int flags = pParse->db->flags; 4766 int longNames = (flags & SQLITE_FullColNames)!=0 4767 && (flags & SQLITE_ShortColNames)==0; 4768 4769 for(k=0; k<pEList->nExpr; k++){ 4770 pE = a[k].pExpr; 4771 elistFlags |= pE->flags; 4772 pRight = pE->pRight; 4773 assert( pE->op!=TK_DOT || pRight!=0 ); 4774 if( pE->op!=TK_ASTERISK 4775 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4776 ){ 4777 /* This particular expression does not need to be expanded. 4778 */ 4779 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4780 if( pNew ){ 4781 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4782 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4783 a[k].zName = 0; 4784 a[k].zSpan = 0; 4785 } 4786 a[k].pExpr = 0; 4787 }else{ 4788 /* This expression is a "*" or a "TABLE.*" and needs to be 4789 ** expanded. */ 4790 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4791 char *zTName = 0; /* text of name of TABLE */ 4792 if( pE->op==TK_DOT ){ 4793 assert( pE->pLeft!=0 ); 4794 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4795 zTName = pE->pLeft->u.zToken; 4796 } 4797 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4798 Table *pTab = pFrom->pTab; 4799 Select *pSub = pFrom->pSelect; 4800 char *zTabName = pFrom->zAlias; 4801 const char *zSchemaName = 0; 4802 int iDb; 4803 if( zTabName==0 ){ 4804 zTabName = pTab->zName; 4805 } 4806 if( db->mallocFailed ) break; 4807 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4808 pSub = 0; 4809 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4810 continue; 4811 } 4812 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4813 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4814 } 4815 for(j=0; j<pTab->nCol; j++){ 4816 char *zName = pTab->aCol[j].zName; 4817 char *zColname; /* The computed column name */ 4818 char *zToFree; /* Malloced string that needs to be freed */ 4819 Token sColname; /* Computed column name as a token */ 4820 4821 assert( zName ); 4822 if( zTName && pSub 4823 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4824 ){ 4825 continue; 4826 } 4827 4828 /* If a column is marked as 'hidden', omit it from the expanded 4829 ** result-set list unless the SELECT has the SF_IncludeHidden 4830 ** bit set. 4831 */ 4832 if( (p->selFlags & SF_IncludeHidden)==0 4833 && IsHiddenColumn(&pTab->aCol[j]) 4834 ){ 4835 continue; 4836 } 4837 tableSeen = 1; 4838 4839 if( i>0 && zTName==0 ){ 4840 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4841 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4842 ){ 4843 /* In a NATURAL join, omit the join columns from the 4844 ** table to the right of the join */ 4845 continue; 4846 } 4847 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4848 /* In a join with a USING clause, omit columns in the 4849 ** using clause from the table on the right. */ 4850 continue; 4851 } 4852 } 4853 pRight = sqlite3Expr(db, TK_ID, zName); 4854 zColname = zName; 4855 zToFree = 0; 4856 if( longNames || pTabList->nSrc>1 ){ 4857 Expr *pLeft; 4858 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4859 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4860 if( zSchemaName ){ 4861 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4862 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4863 } 4864 if( longNames ){ 4865 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4866 zToFree = zColname; 4867 } 4868 }else{ 4869 pExpr = pRight; 4870 } 4871 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4872 sqlite3TokenInit(&sColname, zColname); 4873 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4874 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4875 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4876 if( pSub ){ 4877 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4878 testcase( pX->zSpan==0 ); 4879 }else{ 4880 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4881 zSchemaName, zTabName, zColname); 4882 testcase( pX->zSpan==0 ); 4883 } 4884 pX->bSpanIsTab = 1; 4885 } 4886 sqlite3DbFree(db, zToFree); 4887 } 4888 } 4889 if( !tableSeen ){ 4890 if( zTName ){ 4891 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4892 }else{ 4893 sqlite3ErrorMsg(pParse, "no tables specified"); 4894 } 4895 } 4896 } 4897 } 4898 sqlite3ExprListDelete(db, pEList); 4899 p->pEList = pNew; 4900 } 4901 if( p->pEList ){ 4902 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4903 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4904 return WRC_Abort; 4905 } 4906 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4907 p->selFlags |= SF_ComplexResult; 4908 } 4909 } 4910 return WRC_Continue; 4911 } 4912 4913 /* 4914 ** No-op routine for the parse-tree walker. 4915 ** 4916 ** When this routine is the Walker.xExprCallback then expression trees 4917 ** are walked without any actions being taken at each node. Presumably, 4918 ** when this routine is used for Walker.xExprCallback then 4919 ** Walker.xSelectCallback is set to do something useful for every 4920 ** subquery in the parser tree. 4921 */ 4922 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4923 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4924 return WRC_Continue; 4925 } 4926 4927 /* 4928 ** No-op routine for the parse-tree walker for SELECT statements. 4929 ** subquery in the parser tree. 4930 */ 4931 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4932 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4933 return WRC_Continue; 4934 } 4935 4936 #if SQLITE_DEBUG 4937 /* 4938 ** Always assert. This xSelectCallback2 implementation proves that the 4939 ** xSelectCallback2 is never invoked. 4940 */ 4941 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4942 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4943 assert( 0 ); 4944 } 4945 #endif 4946 /* 4947 ** This routine "expands" a SELECT statement and all of its subqueries. 4948 ** For additional information on what it means to "expand" a SELECT 4949 ** statement, see the comment on the selectExpand worker callback above. 4950 ** 4951 ** Expanding a SELECT statement is the first step in processing a 4952 ** SELECT statement. The SELECT statement must be expanded before 4953 ** name resolution is performed. 4954 ** 4955 ** If anything goes wrong, an error message is written into pParse. 4956 ** The calling function can detect the problem by looking at pParse->nErr 4957 ** and/or pParse->db->mallocFailed. 4958 */ 4959 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4960 Walker w; 4961 w.xExprCallback = sqlite3ExprWalkNoop; 4962 w.pParse = pParse; 4963 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4964 w.xSelectCallback = convertCompoundSelectToSubquery; 4965 w.xSelectCallback2 = 0; 4966 sqlite3WalkSelect(&w, pSelect); 4967 } 4968 w.xSelectCallback = selectExpander; 4969 w.xSelectCallback2 = selectPopWith; 4970 sqlite3WalkSelect(&w, pSelect); 4971 } 4972 4973 4974 #ifndef SQLITE_OMIT_SUBQUERY 4975 /* 4976 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4977 ** interface. 4978 ** 4979 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4980 ** information to the Table structure that represents the result set 4981 ** of that subquery. 4982 ** 4983 ** The Table structure that represents the result set was constructed 4984 ** by selectExpander() but the type and collation information was omitted 4985 ** at that point because identifiers had not yet been resolved. This 4986 ** routine is called after identifier resolution. 4987 */ 4988 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4989 Parse *pParse; 4990 int i; 4991 SrcList *pTabList; 4992 struct SrcList_item *pFrom; 4993 4994 assert( p->selFlags & SF_Resolved ); 4995 if( p->selFlags & SF_HasTypeInfo ) return; 4996 p->selFlags |= SF_HasTypeInfo; 4997 pParse = pWalker->pParse; 4998 pTabList = p->pSrc; 4999 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5000 Table *pTab = pFrom->pTab; 5001 assert( pTab!=0 ); 5002 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5003 /* A sub-query in the FROM clause of a SELECT */ 5004 Select *pSel = pFrom->pSelect; 5005 if( pSel ){ 5006 while( pSel->pPrior ) pSel = pSel->pPrior; 5007 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 5008 } 5009 } 5010 } 5011 } 5012 #endif 5013 5014 5015 /* 5016 ** This routine adds datatype and collating sequence information to 5017 ** the Table structures of all FROM-clause subqueries in a 5018 ** SELECT statement. 5019 ** 5020 ** Use this routine after name resolution. 5021 */ 5022 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5023 #ifndef SQLITE_OMIT_SUBQUERY 5024 Walker w; 5025 w.xSelectCallback = sqlite3SelectWalkNoop; 5026 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5027 w.xExprCallback = sqlite3ExprWalkNoop; 5028 w.pParse = pParse; 5029 sqlite3WalkSelect(&w, pSelect); 5030 #endif 5031 } 5032 5033 5034 /* 5035 ** This routine sets up a SELECT statement for processing. The 5036 ** following is accomplished: 5037 ** 5038 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5039 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5040 ** * ON and USING clauses are shifted into WHERE statements 5041 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5042 ** * Identifiers in expression are matched to tables. 5043 ** 5044 ** This routine acts recursively on all subqueries within the SELECT. 5045 */ 5046 void sqlite3SelectPrep( 5047 Parse *pParse, /* The parser context */ 5048 Select *p, /* The SELECT statement being coded. */ 5049 NameContext *pOuterNC /* Name context for container */ 5050 ){ 5051 assert( p!=0 || pParse->db->mallocFailed ); 5052 if( pParse->db->mallocFailed ) return; 5053 if( p->selFlags & SF_HasTypeInfo ) return; 5054 sqlite3SelectExpand(pParse, p); 5055 if( pParse->nErr || pParse->db->mallocFailed ) return; 5056 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5057 if( pParse->nErr || pParse->db->mallocFailed ) return; 5058 sqlite3SelectAddTypeInfo(pParse, p); 5059 } 5060 5061 /* 5062 ** Reset the aggregate accumulator. 5063 ** 5064 ** The aggregate accumulator is a set of memory cells that hold 5065 ** intermediate results while calculating an aggregate. This 5066 ** routine generates code that stores NULLs in all of those memory 5067 ** cells. 5068 */ 5069 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5070 Vdbe *v = pParse->pVdbe; 5071 int i; 5072 struct AggInfo_func *pFunc; 5073 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5074 if( nReg==0 ) return; 5075 #ifdef SQLITE_DEBUG 5076 /* Verify that all AggInfo registers are within the range specified by 5077 ** AggInfo.mnReg..AggInfo.mxReg */ 5078 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5079 for(i=0; i<pAggInfo->nColumn; i++){ 5080 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5081 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5082 } 5083 for(i=0; i<pAggInfo->nFunc; i++){ 5084 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5085 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5086 } 5087 #endif 5088 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5089 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5090 if( pFunc->iDistinct>=0 ){ 5091 Expr *pE = pFunc->pExpr; 5092 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5093 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5094 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5095 "argument"); 5096 pFunc->iDistinct = -1; 5097 }else{ 5098 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5099 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5100 (char*)pKeyInfo, P4_KEYINFO); 5101 } 5102 } 5103 } 5104 } 5105 5106 /* 5107 ** Invoke the OP_AggFinalize opcode for every aggregate function 5108 ** in the AggInfo structure. 5109 */ 5110 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5111 Vdbe *v = pParse->pVdbe; 5112 int i; 5113 struct AggInfo_func *pF; 5114 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5115 ExprList *pList = pF->pExpr->x.pList; 5116 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5117 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5118 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5119 } 5120 } 5121 5122 5123 /* 5124 ** Update the accumulator memory cells for an aggregate based on 5125 ** the current cursor position. 5126 ** 5127 ** If regAcc is non-zero and there are no min() or max() aggregates 5128 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5129 ** registers i register regAcc contains 0. The caller will take care 5130 ** of setting and clearing regAcc. 5131 */ 5132 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5133 Vdbe *v = pParse->pVdbe; 5134 int i; 5135 int regHit = 0; 5136 int addrHitTest = 0; 5137 struct AggInfo_func *pF; 5138 struct AggInfo_col *pC; 5139 5140 pAggInfo->directMode = 1; 5141 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5142 int nArg; 5143 int addrNext = 0; 5144 int regAgg; 5145 ExprList *pList = pF->pExpr->x.pList; 5146 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5147 if( pList ){ 5148 nArg = pList->nExpr; 5149 regAgg = sqlite3GetTempRange(pParse, nArg); 5150 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5151 }else{ 5152 nArg = 0; 5153 regAgg = 0; 5154 } 5155 if( pF->iDistinct>=0 ){ 5156 addrNext = sqlite3VdbeMakeLabel(v); 5157 testcase( nArg==0 ); /* Error condition */ 5158 testcase( nArg>1 ); /* Also an error */ 5159 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5160 } 5161 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5162 CollSeq *pColl = 0; 5163 struct ExprList_item *pItem; 5164 int j; 5165 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5166 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5167 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5168 } 5169 if( !pColl ){ 5170 pColl = pParse->db->pDfltColl; 5171 } 5172 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5173 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5174 } 5175 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5176 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5177 sqlite3VdbeChangeP5(v, (u8)nArg); 5178 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 5179 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5180 if( addrNext ){ 5181 sqlite3VdbeResolveLabel(v, addrNext); 5182 sqlite3ExprCacheClear(pParse); 5183 } 5184 } 5185 5186 /* Before populating the accumulator registers, clear the column cache. 5187 ** Otherwise, if any of the required column values are already present 5188 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 5189 ** to pC->iMem. But by the time the value is used, the original register 5190 ** may have been used, invalidating the underlying buffer holding the 5191 ** text or blob value. See ticket [883034dcb5]. 5192 ** 5193 ** Another solution would be to change the OP_SCopy used to copy cached 5194 ** values to an OP_Copy. 5195 */ 5196 if( regHit==0 && pAggInfo->nAccumulator ){ 5197 regHit = regAcc; 5198 } 5199 if( regHit ){ 5200 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5201 } 5202 sqlite3ExprCacheClear(pParse); 5203 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5204 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5205 } 5206 pAggInfo->directMode = 0; 5207 sqlite3ExprCacheClear(pParse); 5208 if( addrHitTest ){ 5209 sqlite3VdbeJumpHere(v, addrHitTest); 5210 } 5211 } 5212 5213 /* 5214 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5215 ** count(*) query ("SELECT count(*) FROM pTab"). 5216 */ 5217 #ifndef SQLITE_OMIT_EXPLAIN 5218 static void explainSimpleCount( 5219 Parse *pParse, /* Parse context */ 5220 Table *pTab, /* Table being queried */ 5221 Index *pIdx /* Index used to optimize scan, or NULL */ 5222 ){ 5223 if( pParse->explain==2 ){ 5224 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5225 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5226 pTab->zName, 5227 bCover ? " USING COVERING INDEX " : "", 5228 bCover ? pIdx->zName : "" 5229 ); 5230 } 5231 } 5232 #else 5233 # define explainSimpleCount(a,b,c) 5234 #endif 5235 5236 /* 5237 ** sqlite3WalkExpr() callback used by havingToWhere(). 5238 ** 5239 ** If the node passed to the callback is a TK_AND node, return 5240 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5241 ** 5242 ** Otherwise, return WRC_Prune. In this case, also check if the 5243 ** sub-expression matches the criteria for being moved to the WHERE 5244 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5245 ** within the HAVING expression with a constant "1". 5246 */ 5247 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5248 if( pExpr->op!=TK_AND ){ 5249 Select *pS = pWalker->u.pSelect; 5250 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5251 sqlite3 *db = pWalker->pParse->db; 5252 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5253 if( pNew ){ 5254 Expr *pWhere = pS->pWhere; 5255 SWAP(Expr, *pNew, *pExpr); 5256 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5257 pS->pWhere = pNew; 5258 pWalker->eCode = 1; 5259 } 5260 } 5261 return WRC_Prune; 5262 } 5263 return WRC_Continue; 5264 } 5265 5266 /* 5267 ** Transfer eligible terms from the HAVING clause of a query, which is 5268 ** processed after grouping, to the WHERE clause, which is processed before 5269 ** grouping. For example, the query: 5270 ** 5271 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5272 ** 5273 ** can be rewritten as: 5274 ** 5275 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5276 ** 5277 ** A term of the HAVING expression is eligible for transfer if it consists 5278 ** entirely of constants and expressions that are also GROUP BY terms that 5279 ** use the "BINARY" collation sequence. 5280 */ 5281 static void havingToWhere(Parse *pParse, Select *p){ 5282 Walker sWalker; 5283 memset(&sWalker, 0, sizeof(sWalker)); 5284 sWalker.pParse = pParse; 5285 sWalker.xExprCallback = havingToWhereExprCb; 5286 sWalker.u.pSelect = p; 5287 sqlite3WalkExpr(&sWalker, p->pHaving); 5288 #if SELECTTRACE_ENABLED 5289 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5290 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5291 sqlite3TreeViewSelect(0, p, 0); 5292 } 5293 #endif 5294 } 5295 5296 /* 5297 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5298 ** If it is, then return the SrcList_item for the prior view. If it is not, 5299 ** then return 0. 5300 */ 5301 static struct SrcList_item *isSelfJoinView( 5302 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5303 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5304 ){ 5305 struct SrcList_item *pItem; 5306 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5307 if( pItem->pSelect==0 ) continue; 5308 if( pItem->fg.viaCoroutine ) continue; 5309 if( pItem->zName==0 ) continue; 5310 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5311 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5312 if( sqlite3ExprCompare(0, 5313 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5314 ){ 5315 /* The view was modified by some other optimization such as 5316 ** pushDownWhereTerms() */ 5317 continue; 5318 } 5319 return pItem; 5320 } 5321 return 0; 5322 } 5323 5324 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5325 /* 5326 ** Attempt to transform a query of the form 5327 ** 5328 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5329 ** 5330 ** Into this: 5331 ** 5332 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5333 ** 5334 ** The transformation only works if all of the following are true: 5335 ** 5336 ** * The subquery is a UNION ALL of two or more terms 5337 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5338 ** * The outer query is a simple count(*) 5339 ** 5340 ** Return TRUE if the optimization is undertaken. 5341 */ 5342 static int countOfViewOptimization(Parse *pParse, Select *p){ 5343 Select *pSub, *pPrior; 5344 Expr *pExpr; 5345 Expr *pCount; 5346 sqlite3 *db; 5347 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5348 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5349 pExpr = p->pEList->a[0].pExpr; 5350 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5351 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5352 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5353 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5354 pSub = p->pSrc->a[0].pSelect; 5355 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5356 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5357 do{ 5358 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5359 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5360 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5361 pSub = pSub->pPrior; /* Repeat over compound */ 5362 }while( pSub ); 5363 5364 /* If we reach this point then it is OK to perform the transformation */ 5365 5366 db = pParse->db; 5367 pCount = pExpr; 5368 pExpr = 0; 5369 pSub = p->pSrc->a[0].pSelect; 5370 p->pSrc->a[0].pSelect = 0; 5371 sqlite3SrcListDelete(db, p->pSrc); 5372 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5373 while( pSub ){ 5374 Expr *pTerm; 5375 pPrior = pSub->pPrior; 5376 pSub->pPrior = 0; 5377 pSub->pNext = 0; 5378 pSub->selFlags |= SF_Aggregate; 5379 pSub->selFlags &= ~SF_Compound; 5380 pSub->nSelectRow = 0; 5381 sqlite3ExprListDelete(db, pSub->pEList); 5382 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5383 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5384 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5385 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5386 if( pExpr==0 ){ 5387 pExpr = pTerm; 5388 }else{ 5389 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5390 } 5391 pSub = pPrior; 5392 } 5393 p->pEList->a[0].pExpr = pExpr; 5394 p->selFlags &= ~SF_Aggregate; 5395 5396 #if SELECTTRACE_ENABLED 5397 if( sqlite3SelectTrace & 0x400 ){ 5398 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5399 sqlite3TreeViewSelect(0, p, 0); 5400 } 5401 #endif 5402 return 1; 5403 } 5404 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5405 5406 /* 5407 ** Generate code for the SELECT statement given in the p argument. 5408 ** 5409 ** The results are returned according to the SelectDest structure. 5410 ** See comments in sqliteInt.h for further information. 5411 ** 5412 ** This routine returns the number of errors. If any errors are 5413 ** encountered, then an appropriate error message is left in 5414 ** pParse->zErrMsg. 5415 ** 5416 ** This routine does NOT free the Select structure passed in. The 5417 ** calling function needs to do that. 5418 */ 5419 int sqlite3Select( 5420 Parse *pParse, /* The parser context */ 5421 Select *p, /* The SELECT statement being coded. */ 5422 SelectDest *pDest /* What to do with the query results */ 5423 ){ 5424 int i, j; /* Loop counters */ 5425 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5426 Vdbe *v; /* The virtual machine under construction */ 5427 int isAgg; /* True for select lists like "count(*)" */ 5428 ExprList *pEList = 0; /* List of columns to extract. */ 5429 SrcList *pTabList; /* List of tables to select from */ 5430 Expr *pWhere; /* The WHERE clause. May be NULL */ 5431 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5432 Expr *pHaving; /* The HAVING clause. May be NULL */ 5433 int rc = 1; /* Value to return from this function */ 5434 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5435 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5436 AggInfo sAggInfo; /* Information used by aggregate queries */ 5437 int iEnd; /* Address of the end of the query */ 5438 sqlite3 *db; /* The database connection */ 5439 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5440 u8 minMaxFlag; /* Flag for min/max queries */ 5441 5442 db = pParse->db; 5443 v = sqlite3GetVdbe(pParse); 5444 if( p==0 || db->mallocFailed || pParse->nErr ){ 5445 return 1; 5446 } 5447 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5448 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5449 #if SELECTTRACE_ENABLED 5450 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5451 if( sqlite3SelectTrace & 0x100 ){ 5452 sqlite3TreeViewSelect(0, p, 0); 5453 } 5454 #endif 5455 5456 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5457 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5458 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5459 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5460 if( IgnorableOrderby(pDest) ){ 5461 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5462 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5463 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5464 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5465 /* If ORDER BY makes no difference in the output then neither does 5466 ** DISTINCT so it can be removed too. */ 5467 sqlite3ExprListDelete(db, p->pOrderBy); 5468 p->pOrderBy = 0; 5469 p->selFlags &= ~SF_Distinct; 5470 } 5471 sqlite3SelectPrep(pParse, p, 0); 5472 if( pParse->nErr || db->mallocFailed ){ 5473 goto select_end; 5474 } 5475 assert( p->pEList!=0 ); 5476 #if SELECTTRACE_ENABLED 5477 if( sqlite3SelectTrace & 0x104 ){ 5478 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5479 sqlite3TreeViewSelect(0, p, 0); 5480 } 5481 #endif 5482 5483 if( pDest->eDest==SRT_Output ){ 5484 generateColumnNames(pParse, p); 5485 } 5486 5487 #ifndef SQLITE_OMIT_WINDOWFUNC 5488 if( sqlite3WindowRewrite(pParse, p) ){ 5489 goto select_end; 5490 } 5491 #if SELECTTRACE_ENABLED 5492 if( sqlite3SelectTrace & 0x108 ){ 5493 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5494 sqlite3TreeViewSelect(0, p, 0); 5495 } 5496 #endif 5497 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5498 pTabList = p->pSrc; 5499 isAgg = (p->selFlags & SF_Aggregate)!=0; 5500 memset(&sSort, 0, sizeof(sSort)); 5501 sSort.pOrderBy = p->pOrderBy; 5502 5503 /* Try to various optimizations (flattening subqueries, and strength 5504 ** reduction of join operators) in the FROM clause up into the main query 5505 */ 5506 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5507 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5508 struct SrcList_item *pItem = &pTabList->a[i]; 5509 Select *pSub = pItem->pSelect; 5510 Table *pTab = pItem->pTab; 5511 5512 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5513 ** of the LEFT JOIN used in the WHERE clause. 5514 */ 5515 if( (pItem->fg.jointype & JT_LEFT)!=0 5516 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5517 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5518 ){ 5519 SELECTTRACE(0x100,pParse,p, 5520 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5521 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5522 unsetJoinExpr(p->pWhere, pItem->iCursor); 5523 } 5524 5525 /* No futher action if this term of the FROM clause is no a subquery */ 5526 if( pSub==0 ) continue; 5527 5528 /* Catch mismatch in the declared columns of a view and the number of 5529 ** columns in the SELECT on the RHS */ 5530 if( pTab->nCol!=pSub->pEList->nExpr ){ 5531 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5532 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5533 goto select_end; 5534 } 5535 5536 /* Do not try to flatten an aggregate subquery. 5537 ** 5538 ** Flattening an aggregate subquery is only possible if the outer query 5539 ** is not a join. But if the outer query is not a join, then the subquery 5540 ** will be implemented as a co-routine and there is no advantage to 5541 ** flattening in that case. 5542 */ 5543 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5544 assert( pSub->pGroupBy==0 ); 5545 5546 /* If the outer query contains a "complex" result set (that is, 5547 ** if the result set of the outer query uses functions or subqueries) 5548 ** and if the subquery contains an ORDER BY clause and if 5549 ** it will be implemented as a co-routine, then do not flatten. This 5550 ** restriction allows SQL constructs like this: 5551 ** 5552 ** SELECT expensive_function(x) 5553 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5554 ** 5555 ** The expensive_function() is only computed on the 10 rows that 5556 ** are output, rather than every row of the table. 5557 ** 5558 ** The requirement that the outer query have a complex result set 5559 ** means that flattening does occur on simpler SQL constraints without 5560 ** the expensive_function() like: 5561 ** 5562 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5563 */ 5564 if( pSub->pOrderBy!=0 5565 && i==0 5566 && (p->selFlags & SF_ComplexResult)!=0 5567 && (pTabList->nSrc==1 5568 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5569 ){ 5570 continue; 5571 } 5572 5573 if( flattenSubquery(pParse, p, i, isAgg) ){ 5574 /* This subquery can be absorbed into its parent. */ 5575 i = -1; 5576 } 5577 pTabList = p->pSrc; 5578 if( db->mallocFailed ) goto select_end; 5579 if( !IgnorableOrderby(pDest) ){ 5580 sSort.pOrderBy = p->pOrderBy; 5581 } 5582 } 5583 #endif 5584 5585 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5586 /* Handle compound SELECT statements using the separate multiSelect() 5587 ** procedure. 5588 */ 5589 if( p->pPrior ){ 5590 rc = multiSelect(pParse, p, pDest); 5591 #if SELECTTRACE_ENABLED 5592 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5593 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5594 sqlite3TreeViewSelect(0, p, 0); 5595 } 5596 #endif 5597 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5598 return rc; 5599 } 5600 #endif 5601 5602 /* For each term in the FROM clause, do two things: 5603 ** (1) Authorized unreferenced tables 5604 ** (2) Generate code for all sub-queries 5605 */ 5606 for(i=0; i<pTabList->nSrc; i++){ 5607 struct SrcList_item *pItem = &pTabList->a[i]; 5608 SelectDest dest; 5609 Select *pSub; 5610 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5611 const char *zSavedAuthContext; 5612 #endif 5613 5614 /* Issue SQLITE_READ authorizations with a fake column name for any 5615 ** tables that are referenced but from which no values are extracted. 5616 ** Examples of where these kinds of null SQLITE_READ authorizations 5617 ** would occur: 5618 ** 5619 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5620 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5621 ** 5622 ** The fake column name is an empty string. It is possible for a table to 5623 ** have a column named by the empty string, in which case there is no way to 5624 ** distinguish between an unreferenced table and an actual reference to the 5625 ** "" column. The original design was for the fake column name to be a NULL, 5626 ** which would be unambiguous. But legacy authorization callbacks might 5627 ** assume the column name is non-NULL and segfault. The use of an empty 5628 ** string for the fake column name seems safer. 5629 */ 5630 if( pItem->colUsed==0 ){ 5631 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5632 } 5633 5634 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5635 /* Generate code for all sub-queries in the FROM clause 5636 */ 5637 pSub = pItem->pSelect; 5638 if( pSub==0 ) continue; 5639 5640 /* Sometimes the code for a subquery will be generated more than 5641 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5642 ** for example. In that case, do not regenerate the code to manifest 5643 ** a view or the co-routine to implement a view. The first instance 5644 ** is sufficient, though the subroutine to manifest the view does need 5645 ** to be invoked again. */ 5646 if( pItem->addrFillSub ){ 5647 if( pItem->fg.viaCoroutine==0 ){ 5648 /* The subroutine that manifests the view might be a one-time routine, 5649 ** or it might need to be rerun on each iteration because it 5650 ** encodes a correlated subquery. */ 5651 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5652 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5653 } 5654 continue; 5655 } 5656 5657 /* Increment Parse.nHeight by the height of the largest expression 5658 ** tree referred to by this, the parent select. The child select 5659 ** may contain expression trees of at most 5660 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5661 ** more conservative than necessary, but much easier than enforcing 5662 ** an exact limit. 5663 */ 5664 pParse->nHeight += sqlite3SelectExprHeight(p); 5665 5666 /* Make copies of constant WHERE-clause terms in the outer query down 5667 ** inside the subquery. This can help the subquery to run more efficiently. 5668 */ 5669 if( OptimizationEnabled(db, SQLITE_PushDown) 5670 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5671 (pItem->fg.jointype & JT_OUTER)!=0) 5672 ){ 5673 #if SELECTTRACE_ENABLED 5674 if( sqlite3SelectTrace & 0x100 ){ 5675 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5676 sqlite3TreeViewSelect(0, p, 0); 5677 } 5678 #endif 5679 }else{ 5680 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5681 } 5682 5683 zSavedAuthContext = pParse->zAuthContext; 5684 pParse->zAuthContext = pItem->zName; 5685 5686 /* Generate code to implement the subquery 5687 ** 5688 ** The subquery is implemented as a co-routine if the subquery is 5689 ** guaranteed to be the outer loop (so that it does not need to be 5690 ** computed more than once) 5691 ** 5692 ** TODO: Are there other reasons beside (1) to use a co-routine 5693 ** implementation? 5694 */ 5695 if( i==0 5696 && (pTabList->nSrc==1 5697 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5698 ){ 5699 /* Implement a co-routine that will return a single row of the result 5700 ** set on each invocation. 5701 */ 5702 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5703 5704 pItem->regReturn = ++pParse->nMem; 5705 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5706 VdbeComment((v, "%s", pItem->pTab->zName)); 5707 pItem->addrFillSub = addrTop; 5708 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5709 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 5710 sqlite3Select(pParse, pSub, &dest); 5711 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5712 pItem->fg.viaCoroutine = 1; 5713 pItem->regResult = dest.iSdst; 5714 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5715 sqlite3VdbeJumpHere(v, addrTop-1); 5716 sqlite3ClearTempRegCache(pParse); 5717 }else{ 5718 /* Generate a subroutine that will fill an ephemeral table with 5719 ** the content of this subquery. pItem->addrFillSub will point 5720 ** to the address of the generated subroutine. pItem->regReturn 5721 ** is a register allocated to hold the subroutine return address 5722 */ 5723 int topAddr; 5724 int onceAddr = 0; 5725 int retAddr; 5726 struct SrcList_item *pPrior; 5727 5728 assert( pItem->addrFillSub==0 ); 5729 pItem->regReturn = ++pParse->nMem; 5730 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5731 pItem->addrFillSub = topAddr+1; 5732 if( pItem->fg.isCorrelated==0 ){ 5733 /* If the subquery is not correlated and if we are not inside of 5734 ** a trigger, then we only need to compute the value of the subquery 5735 ** once. */ 5736 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5737 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5738 }else{ 5739 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5740 } 5741 pPrior = isSelfJoinView(pTabList, pItem); 5742 if( pPrior ){ 5743 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5744 assert( pPrior->pSelect!=0 ); 5745 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5746 }else{ 5747 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5748 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 5749 sqlite3Select(pParse, pSub, &dest); 5750 } 5751 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5752 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5753 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5754 VdbeComment((v, "end %s", pItem->pTab->zName)); 5755 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5756 sqlite3ClearTempRegCache(pParse); 5757 } 5758 if( db->mallocFailed ) goto select_end; 5759 pParse->nHeight -= sqlite3SelectExprHeight(p); 5760 pParse->zAuthContext = zSavedAuthContext; 5761 #endif 5762 } 5763 5764 /* Various elements of the SELECT copied into local variables for 5765 ** convenience */ 5766 pEList = p->pEList; 5767 pWhere = p->pWhere; 5768 pGroupBy = p->pGroupBy; 5769 pHaving = p->pHaving; 5770 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5771 5772 #if SELECTTRACE_ENABLED 5773 if( sqlite3SelectTrace & 0x400 ){ 5774 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5775 sqlite3TreeViewSelect(0, p, 0); 5776 } 5777 #endif 5778 5779 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5780 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5781 && countOfViewOptimization(pParse, p) 5782 ){ 5783 if( db->mallocFailed ) goto select_end; 5784 pEList = p->pEList; 5785 pTabList = p->pSrc; 5786 } 5787 #endif 5788 5789 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5790 ** if the select-list is the same as the ORDER BY list, then this query 5791 ** can be rewritten as a GROUP BY. In other words, this: 5792 ** 5793 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5794 ** 5795 ** is transformed to: 5796 ** 5797 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5798 ** 5799 ** The second form is preferred as a single index (or temp-table) may be 5800 ** used for both the ORDER BY and DISTINCT processing. As originally 5801 ** written the query must use a temp-table for at least one of the ORDER 5802 ** BY and DISTINCT, and an index or separate temp-table for the other. 5803 */ 5804 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5805 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5806 ){ 5807 p->selFlags &= ~SF_Distinct; 5808 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5809 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5810 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5811 ** original setting of the SF_Distinct flag, not the current setting */ 5812 assert( sDistinct.isTnct ); 5813 5814 #if SELECTTRACE_ENABLED 5815 if( sqlite3SelectTrace & 0x400 ){ 5816 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5817 sqlite3TreeViewSelect(0, p, 0); 5818 } 5819 #endif 5820 } 5821 5822 /* If there is an ORDER BY clause, then create an ephemeral index to 5823 ** do the sorting. But this sorting ephemeral index might end up 5824 ** being unused if the data can be extracted in pre-sorted order. 5825 ** If that is the case, then the OP_OpenEphemeral instruction will be 5826 ** changed to an OP_Noop once we figure out that the sorting index is 5827 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5828 ** that change. 5829 */ 5830 if( sSort.pOrderBy ){ 5831 KeyInfo *pKeyInfo; 5832 pKeyInfo = sqlite3KeyInfoFromExprList( 5833 pParse, sSort.pOrderBy, 0, pEList->nExpr); 5834 sSort.iECursor = pParse->nTab++; 5835 sSort.addrSortIndex = 5836 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5837 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5838 (char*)pKeyInfo, P4_KEYINFO 5839 ); 5840 }else{ 5841 sSort.addrSortIndex = -1; 5842 } 5843 5844 /* If the output is destined for a temporary table, open that table. 5845 */ 5846 if( pDest->eDest==SRT_EphemTab ){ 5847 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5848 } 5849 5850 /* Set the limiter. 5851 */ 5852 iEnd = sqlite3VdbeMakeLabel(v); 5853 if( (p->selFlags & SF_FixedLimit)==0 ){ 5854 p->nSelectRow = 320; /* 4 billion rows */ 5855 } 5856 computeLimitRegisters(pParse, p, iEnd); 5857 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5858 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5859 sSort.sortFlags |= SORTFLAG_UseSorter; 5860 } 5861 5862 /* Open an ephemeral index to use for the distinct set. 5863 */ 5864 if( p->selFlags & SF_Distinct ){ 5865 sDistinct.tabTnct = pParse->nTab++; 5866 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5867 sDistinct.tabTnct, 0, 0, 5868 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 5869 P4_KEYINFO); 5870 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5871 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5872 }else{ 5873 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5874 } 5875 5876 if( !isAgg && pGroupBy==0 ){ 5877 /* No aggregate functions and no GROUP BY clause */ 5878 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 5879 | (p->selFlags & SF_FixedLimit); 5880 #ifndef SQLITE_OMIT_WINDOWFUNC 5881 Window *pWin = p->pWin; /* Master window object (or NULL) */ 5882 if( pWin ){ 5883 sqlite3WindowCodeInit(pParse, pWin); 5884 } 5885 #endif 5886 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5887 5888 5889 /* Begin the database scan. */ 5890 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5891 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5892 p->pEList, wctrlFlags, p->nSelectRow); 5893 if( pWInfo==0 ) goto select_end; 5894 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5895 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5896 } 5897 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5898 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5899 } 5900 if( sSort.pOrderBy ){ 5901 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5902 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5903 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5904 sSort.pOrderBy = 0; 5905 } 5906 } 5907 5908 /* If sorting index that was created by a prior OP_OpenEphemeral 5909 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5910 ** into an OP_Noop. 5911 */ 5912 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5913 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5914 } 5915 5916 assert( p->pEList==pEList ); 5917 #ifndef SQLITE_OMIT_WINDOWFUNC 5918 if( pWin ){ 5919 int addrGosub = sqlite3VdbeMakeLabel(v); 5920 int iCont = sqlite3VdbeMakeLabel(v); 5921 int iBreak = sqlite3VdbeMakeLabel(v); 5922 int regGosub = ++pParse->nMem; 5923 5924 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 5925 5926 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 5927 sqlite3VdbeResolveLabel(v, addrGosub); 5928 VdbeNoopComment((v, "inner-loop subroutine")); 5929 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 5930 sqlite3VdbeResolveLabel(v, iCont); 5931 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 5932 VdbeComment((v, "end inner-loop subroutine")); 5933 sqlite3VdbeResolveLabel(v, iBreak); 5934 }else 5935 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5936 { 5937 /* Use the standard inner loop. */ 5938 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5939 sqlite3WhereContinueLabel(pWInfo), 5940 sqlite3WhereBreakLabel(pWInfo)); 5941 5942 /* End the database scan loop. 5943 */ 5944 sqlite3WhereEnd(pWInfo); 5945 } 5946 }else{ 5947 /* This case when there exist aggregate functions or a GROUP BY clause 5948 ** or both */ 5949 NameContext sNC; /* Name context for processing aggregate information */ 5950 int iAMem; /* First Mem address for storing current GROUP BY */ 5951 int iBMem; /* First Mem address for previous GROUP BY */ 5952 int iUseFlag; /* Mem address holding flag indicating that at least 5953 ** one row of the input to the aggregator has been 5954 ** processed */ 5955 int iAbortFlag; /* Mem address which causes query abort if positive */ 5956 int groupBySort; /* Rows come from source in GROUP BY order */ 5957 int addrEnd; /* End of processing for this SELECT */ 5958 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5959 int sortOut = 0; /* Output register from the sorter */ 5960 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5961 5962 /* Remove any and all aliases between the result set and the 5963 ** GROUP BY clause. 5964 */ 5965 if( pGroupBy ){ 5966 int k; /* Loop counter */ 5967 struct ExprList_item *pItem; /* For looping over expression in a list */ 5968 5969 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5970 pItem->u.x.iAlias = 0; 5971 } 5972 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5973 pItem->u.x.iAlias = 0; 5974 } 5975 assert( 66==sqlite3LogEst(100) ); 5976 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5977 }else{ 5978 assert( 0==sqlite3LogEst(1) ); 5979 p->nSelectRow = 0; 5980 } 5981 5982 /* If there is both a GROUP BY and an ORDER BY clause and they are 5983 ** identical, then it may be possible to disable the ORDER BY clause 5984 ** on the grounds that the GROUP BY will cause elements to come out 5985 ** in the correct order. It also may not - the GROUP BY might use a 5986 ** database index that causes rows to be grouped together as required 5987 ** but not actually sorted. Either way, record the fact that the 5988 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5989 ** variable. */ 5990 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5991 orderByGrp = 1; 5992 } 5993 5994 /* Create a label to jump to when we want to abort the query */ 5995 addrEnd = sqlite3VdbeMakeLabel(v); 5996 5997 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5998 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5999 ** SELECT statement. 6000 */ 6001 memset(&sNC, 0, sizeof(sNC)); 6002 sNC.pParse = pParse; 6003 sNC.pSrcList = pTabList; 6004 sNC.uNC.pAggInfo = &sAggInfo; 6005 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6006 sAggInfo.mnReg = pParse->nMem+1; 6007 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6008 sAggInfo.pGroupBy = pGroupBy; 6009 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6010 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6011 if( pHaving ){ 6012 if( pGroupBy ){ 6013 assert( pWhere==p->pWhere ); 6014 assert( pHaving==p->pHaving ); 6015 assert( pGroupBy==p->pGroupBy ); 6016 havingToWhere(pParse, p); 6017 pWhere = p->pWhere; 6018 } 6019 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6020 } 6021 sAggInfo.nAccumulator = sAggInfo.nColumn; 6022 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6023 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6024 }else{ 6025 minMaxFlag = WHERE_ORDERBY_NORMAL; 6026 } 6027 for(i=0; i<sAggInfo.nFunc; i++){ 6028 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 6029 sNC.ncFlags |= NC_InAggFunc; 6030 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 6031 sNC.ncFlags &= ~NC_InAggFunc; 6032 } 6033 sAggInfo.mxReg = pParse->nMem; 6034 if( db->mallocFailed ) goto select_end; 6035 #if SELECTTRACE_ENABLED 6036 if( sqlite3SelectTrace & 0x400 ){ 6037 int ii; 6038 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6039 sqlite3TreeViewSelect(0, p, 0); 6040 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6041 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6042 ii, sAggInfo.aCol[ii].iMem); 6043 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6044 } 6045 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6046 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6047 ii, sAggInfo.aFunc[ii].iMem); 6048 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6049 } 6050 } 6051 #endif 6052 6053 6054 /* Processing for aggregates with GROUP BY is very different and 6055 ** much more complex than aggregates without a GROUP BY. 6056 */ 6057 if( pGroupBy ){ 6058 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6059 int addr1; /* A-vs-B comparision jump */ 6060 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6061 int regOutputRow; /* Return address register for output subroutine */ 6062 int addrSetAbort; /* Set the abort flag and return */ 6063 int addrTopOfLoop; /* Top of the input loop */ 6064 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6065 int addrReset; /* Subroutine for resetting the accumulator */ 6066 int regReset; /* Return address register for reset subroutine */ 6067 6068 /* If there is a GROUP BY clause we might need a sorting index to 6069 ** implement it. Allocate that sorting index now. If it turns out 6070 ** that we do not need it after all, the OP_SorterOpen instruction 6071 ** will be converted into a Noop. 6072 */ 6073 sAggInfo.sortingIdx = pParse->nTab++; 6074 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6075 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6076 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6077 0, (char*)pKeyInfo, P4_KEYINFO); 6078 6079 /* Initialize memory locations used by GROUP BY aggregate processing 6080 */ 6081 iUseFlag = ++pParse->nMem; 6082 iAbortFlag = ++pParse->nMem; 6083 regOutputRow = ++pParse->nMem; 6084 addrOutputRow = sqlite3VdbeMakeLabel(v); 6085 regReset = ++pParse->nMem; 6086 addrReset = sqlite3VdbeMakeLabel(v); 6087 iAMem = pParse->nMem + 1; 6088 pParse->nMem += pGroupBy->nExpr; 6089 iBMem = pParse->nMem + 1; 6090 pParse->nMem += pGroupBy->nExpr; 6091 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6092 VdbeComment((v, "clear abort flag")); 6093 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6094 6095 /* Begin a loop that will extract all source rows in GROUP BY order. 6096 ** This might involve two separate loops with an OP_Sort in between, or 6097 ** it might be a single loop that uses an index to extract information 6098 ** in the right order to begin with. 6099 */ 6100 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6101 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6102 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6103 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6104 ); 6105 if( pWInfo==0 ) goto select_end; 6106 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6107 /* The optimizer is able to deliver rows in group by order so 6108 ** we do not have to sort. The OP_OpenEphemeral table will be 6109 ** cancelled later because we still need to use the pKeyInfo 6110 */ 6111 groupBySort = 0; 6112 }else{ 6113 /* Rows are coming out in undetermined order. We have to push 6114 ** each row into a sorting index, terminate the first loop, 6115 ** then loop over the sorting index in order to get the output 6116 ** in sorted order 6117 */ 6118 int regBase; 6119 int regRecord; 6120 int nCol; 6121 int nGroupBy; 6122 6123 explainTempTable(pParse, 6124 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6125 "DISTINCT" : "GROUP BY"); 6126 6127 groupBySort = 1; 6128 nGroupBy = pGroupBy->nExpr; 6129 nCol = nGroupBy; 6130 j = nGroupBy; 6131 for(i=0; i<sAggInfo.nColumn; i++){ 6132 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6133 nCol++; 6134 j++; 6135 } 6136 } 6137 regBase = sqlite3GetTempRange(pParse, nCol); 6138 sqlite3ExprCacheClear(pParse); 6139 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6140 j = nGroupBy; 6141 for(i=0; i<sAggInfo.nColumn; i++){ 6142 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6143 if( pCol->iSorterColumn>=j ){ 6144 int r1 = j + regBase; 6145 sqlite3ExprCodeGetColumnToReg(pParse, 6146 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 6147 j++; 6148 } 6149 } 6150 regRecord = sqlite3GetTempReg(pParse); 6151 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6152 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6153 sqlite3ReleaseTempReg(pParse, regRecord); 6154 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6155 sqlite3WhereEnd(pWInfo); 6156 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6157 sortOut = sqlite3GetTempReg(pParse); 6158 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6159 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6160 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6161 sAggInfo.useSortingIdx = 1; 6162 sqlite3ExprCacheClear(pParse); 6163 6164 } 6165 6166 /* If the index or temporary table used by the GROUP BY sort 6167 ** will naturally deliver rows in the order required by the ORDER BY 6168 ** clause, cancel the ephemeral table open coded earlier. 6169 ** 6170 ** This is an optimization - the correct answer should result regardless. 6171 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6172 ** disable this optimization for testing purposes. */ 6173 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6174 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6175 ){ 6176 sSort.pOrderBy = 0; 6177 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6178 } 6179 6180 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6181 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6182 ** Then compare the current GROUP BY terms against the GROUP BY terms 6183 ** from the previous row currently stored in a0, a1, a2... 6184 */ 6185 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6186 sqlite3ExprCacheClear(pParse); 6187 if( groupBySort ){ 6188 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6189 sortOut, sortPTab); 6190 } 6191 for(j=0; j<pGroupBy->nExpr; j++){ 6192 if( groupBySort ){ 6193 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6194 }else{ 6195 sAggInfo.directMode = 1; 6196 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6197 } 6198 } 6199 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6200 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6201 addr1 = sqlite3VdbeCurrentAddr(v); 6202 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6203 6204 /* Generate code that runs whenever the GROUP BY changes. 6205 ** Changes in the GROUP BY are detected by the previous code 6206 ** block. If there were no changes, this block is skipped. 6207 ** 6208 ** This code copies current group by terms in b0,b1,b2,... 6209 ** over to a0,a1,a2. It then calls the output subroutine 6210 ** and resets the aggregate accumulator registers in preparation 6211 ** for the next GROUP BY batch. 6212 */ 6213 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6214 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6215 VdbeComment((v, "output one row")); 6216 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6217 VdbeComment((v, "check abort flag")); 6218 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6219 VdbeComment((v, "reset accumulator")); 6220 6221 /* Update the aggregate accumulators based on the content of 6222 ** the current row 6223 */ 6224 sqlite3VdbeJumpHere(v, addr1); 6225 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6226 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6227 VdbeComment((v, "indicate data in accumulator")); 6228 6229 /* End of the loop 6230 */ 6231 if( groupBySort ){ 6232 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6233 VdbeCoverage(v); 6234 }else{ 6235 sqlite3WhereEnd(pWInfo); 6236 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6237 } 6238 6239 /* Output the final row of result 6240 */ 6241 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6242 VdbeComment((v, "output final row")); 6243 6244 /* Jump over the subroutines 6245 */ 6246 sqlite3VdbeGoto(v, addrEnd); 6247 6248 /* Generate a subroutine that outputs a single row of the result 6249 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6250 ** is less than or equal to zero, the subroutine is a no-op. If 6251 ** the processing calls for the query to abort, this subroutine 6252 ** increments the iAbortFlag memory location before returning in 6253 ** order to signal the caller to abort. 6254 */ 6255 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6256 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6257 VdbeComment((v, "set abort flag")); 6258 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6259 sqlite3VdbeResolveLabel(v, addrOutputRow); 6260 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6261 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6262 VdbeCoverage(v); 6263 VdbeComment((v, "Groupby result generator entry point")); 6264 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6265 finalizeAggFunctions(pParse, &sAggInfo); 6266 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6267 selectInnerLoop(pParse, p, -1, &sSort, 6268 &sDistinct, pDest, 6269 addrOutputRow+1, addrSetAbort); 6270 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6271 VdbeComment((v, "end groupby result generator")); 6272 6273 /* Generate a subroutine that will reset the group-by accumulator 6274 */ 6275 sqlite3VdbeResolveLabel(v, addrReset); 6276 resetAccumulator(pParse, &sAggInfo); 6277 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6278 VdbeComment((v, "indicate accumulator empty")); 6279 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6280 6281 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6282 else { 6283 #ifndef SQLITE_OMIT_BTREECOUNT 6284 Table *pTab; 6285 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6286 /* If isSimpleCount() returns a pointer to a Table structure, then 6287 ** the SQL statement is of the form: 6288 ** 6289 ** SELECT count(*) FROM <tbl> 6290 ** 6291 ** where the Table structure returned represents table <tbl>. 6292 ** 6293 ** This statement is so common that it is optimized specially. The 6294 ** OP_Count instruction is executed either on the intkey table that 6295 ** contains the data for table <tbl> or on one of its indexes. It 6296 ** is better to execute the op on an index, as indexes are almost 6297 ** always spread across less pages than their corresponding tables. 6298 */ 6299 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6300 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6301 Index *pIdx; /* Iterator variable */ 6302 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6303 Index *pBest = 0; /* Best index found so far */ 6304 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6305 6306 sqlite3CodeVerifySchema(pParse, iDb); 6307 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6308 6309 /* Search for the index that has the lowest scan cost. 6310 ** 6311 ** (2011-04-15) Do not do a full scan of an unordered index. 6312 ** 6313 ** (2013-10-03) Do not count the entries in a partial index. 6314 ** 6315 ** In practice the KeyInfo structure will not be used. It is only 6316 ** passed to keep OP_OpenRead happy. 6317 */ 6318 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6319 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6320 if( pIdx->bUnordered==0 6321 && pIdx->szIdxRow<pTab->szTabRow 6322 && pIdx->pPartIdxWhere==0 6323 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6324 ){ 6325 pBest = pIdx; 6326 } 6327 } 6328 if( pBest ){ 6329 iRoot = pBest->tnum; 6330 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6331 } 6332 6333 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6334 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6335 if( pKeyInfo ){ 6336 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6337 } 6338 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6339 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6340 explainSimpleCount(pParse, pTab, pBest); 6341 }else 6342 #endif /* SQLITE_OMIT_BTREECOUNT */ 6343 { 6344 int regAcc = 0; /* "populate accumulators" flag */ 6345 6346 /* If there are accumulator registers but no min() or max() functions, 6347 ** allocate register regAcc. Register regAcc will contain 0 the first 6348 ** time the inner loop runs, and 1 thereafter. The code generated 6349 ** by updateAccumulator() only updates the accumulator registers if 6350 ** regAcc contains 0. */ 6351 if( sAggInfo.nAccumulator ){ 6352 for(i=0; i<sAggInfo.nFunc; i++){ 6353 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6354 } 6355 if( i==sAggInfo.nFunc ){ 6356 regAcc = ++pParse->nMem; 6357 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6358 } 6359 } 6360 6361 /* This case runs if the aggregate has no GROUP BY clause. The 6362 ** processing is much simpler since there is only a single row 6363 ** of output. 6364 */ 6365 assert( p->pGroupBy==0 ); 6366 resetAccumulator(pParse, &sAggInfo); 6367 6368 /* If this query is a candidate for the min/max optimization, then 6369 ** minMaxFlag will have been previously set to either 6370 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6371 ** be an appropriate ORDER BY expression for the optimization. 6372 */ 6373 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6374 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6375 6376 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6377 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6378 0, minMaxFlag, 0); 6379 if( pWInfo==0 ){ 6380 goto select_end; 6381 } 6382 updateAccumulator(pParse, regAcc, &sAggInfo); 6383 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6384 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6385 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6386 VdbeComment((v, "%s() by index", 6387 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6388 } 6389 sqlite3WhereEnd(pWInfo); 6390 finalizeAggFunctions(pParse, &sAggInfo); 6391 } 6392 6393 sSort.pOrderBy = 0; 6394 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6395 selectInnerLoop(pParse, p, -1, 0, 0, 6396 pDest, addrEnd, addrEnd); 6397 } 6398 sqlite3VdbeResolveLabel(v, addrEnd); 6399 6400 } /* endif aggregate query */ 6401 6402 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6403 explainTempTable(pParse, "DISTINCT"); 6404 } 6405 6406 /* If there is an ORDER BY clause, then we need to sort the results 6407 ** and send them to the callback one by one. 6408 */ 6409 if( sSort.pOrderBy ){ 6410 explainTempTable(pParse, 6411 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6412 assert( p->pEList==pEList ); 6413 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6414 } 6415 6416 /* Jump here to skip this query 6417 */ 6418 sqlite3VdbeResolveLabel(v, iEnd); 6419 6420 /* The SELECT has been coded. If there is an error in the Parse structure, 6421 ** set the return code to 1. Otherwise 0. */ 6422 rc = (pParse->nErr>0); 6423 6424 /* Control jumps to here if an error is encountered above, or upon 6425 ** successful coding of the SELECT. 6426 */ 6427 select_end: 6428 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6429 sqlite3DbFree(db, sAggInfo.aCol); 6430 sqlite3DbFree(db, sAggInfo.aFunc); 6431 #if SELECTTRACE_ENABLED 6432 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6433 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6434 sqlite3TreeViewSelect(0, p, 0); 6435 } 6436 #endif 6437 ExplainQueryPlanPop(pParse); 6438 return rc; 6439 } 6440