xref: /sqlite-3.40.0/src/select.c (revision e7952263)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
72   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103 #endif
104     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105     if( bFree ) sqlite3DbFreeNN(db, p);
106     p = pPrior;
107     bFree = 1;
108   }
109 }
110 
111 /*
112 ** Initialize a SelectDest structure.
113 */
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115   pDest->eDest = (u8)eDest;
116   pDest->iSDParm = iParm;
117   pDest->zAffSdst = 0;
118   pDest->iSdst = 0;
119   pDest->nSdst = 0;
120 }
121 
122 
123 /*
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
126 */
127 Select *sqlite3SelectNew(
128   Parse *pParse,        /* Parsing context */
129   ExprList *pEList,     /* which columns to include in the result */
130   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
131   Expr *pWhere,         /* the WHERE clause */
132   ExprList *pGroupBy,   /* the GROUP BY clause */
133   Expr *pHaving,        /* the HAVING clause */
134   ExprList *pOrderBy,   /* the ORDER BY clause */
135   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
136   Expr *pLimit          /* LIMIT value.  NULL means not used */
137 ){
138   Select *pNew;
139   Select standin;
140   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141   if( pNew==0 ){
142     assert( pParse->db->mallocFailed );
143     pNew = &standin;
144   }
145   if( pEList==0 ){
146     pEList = sqlite3ExprListAppend(pParse, 0,
147                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
148   }
149   pNew->pEList = pEList;
150   pNew->op = TK_SELECT;
151   pNew->selFlags = selFlags;
152   pNew->iLimit = 0;
153   pNew->iOffset = 0;
154   pNew->selId = ++pParse->nSelect;
155   pNew->addrOpenEphm[0] = -1;
156   pNew->addrOpenEphm[1] = -1;
157   pNew->nSelectRow = 0;
158   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
159   pNew->pSrc = pSrc;
160   pNew->pWhere = pWhere;
161   pNew->pGroupBy = pGroupBy;
162   pNew->pHaving = pHaving;
163   pNew->pOrderBy = pOrderBy;
164   pNew->pPrior = 0;
165   pNew->pNext = 0;
166   pNew->pLimit = pLimit;
167   pNew->pWith = 0;
168 #ifndef SQLITE_OMIT_WINDOWFUNC
169   pNew->pWin = 0;
170   pNew->pWinDefn = 0;
171 #endif
172   if( pParse->db->mallocFailed ) {
173     clearSelect(pParse->db, pNew, pNew!=&standin);
174     pNew = 0;
175   }else{
176     assert( pNew->pSrc!=0 || pParse->nErr>0 );
177   }
178   assert( pNew!=&standin );
179   return pNew;
180 }
181 
182 
183 /*
184 ** Delete the given Select structure and all of its substructures.
185 */
186 void sqlite3SelectDelete(sqlite3 *db, Select *p){
187   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
188 }
189 
190 /*
191 ** Return a pointer to the right-most SELECT statement in a compound.
192 */
193 static Select *findRightmost(Select *p){
194   while( p->pNext ) p = p->pNext;
195   return p;
196 }
197 
198 /*
199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
200 ** type of join.  Return an integer constant that expresses that type
201 ** in terms of the following bit values:
202 **
203 **     JT_INNER
204 **     JT_CROSS
205 **     JT_OUTER
206 **     JT_NATURAL
207 **     JT_LEFT
208 **     JT_RIGHT
209 **
210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
211 **
212 ** If an illegal or unsupported join type is seen, then still return
213 ** a join type, but put an error in the pParse structure.
214 */
215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
216   int jointype = 0;
217   Token *apAll[3];
218   Token *p;
219                              /*   0123456789 123456789 123456789 123 */
220   static const char zKeyText[] = "naturaleftouterightfullinnercross";
221   static const struct {
222     u8 i;        /* Beginning of keyword text in zKeyText[] */
223     u8 nChar;    /* Length of the keyword in characters */
224     u8 code;     /* Join type mask */
225   } aKeyword[] = {
226     /* natural */ { 0,  7, JT_NATURAL                },
227     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
228     /* outer   */ { 10, 5, JT_OUTER                  },
229     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
230     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
231     /* inner   */ { 23, 5, JT_INNER                  },
232     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
233   };
234   int i, j;
235   apAll[0] = pA;
236   apAll[1] = pB;
237   apAll[2] = pC;
238   for(i=0; i<3 && apAll[i]; i++){
239     p = apAll[i];
240     for(j=0; j<ArraySize(aKeyword); j++){
241       if( p->n==aKeyword[j].nChar
242           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
243         jointype |= aKeyword[j].code;
244         break;
245       }
246     }
247     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
248     if( j>=ArraySize(aKeyword) ){
249       jointype |= JT_ERROR;
250       break;
251     }
252   }
253   if(
254      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
255      (jointype & JT_ERROR)!=0
256   ){
257     const char *zSp = " ";
258     assert( pB!=0 );
259     if( pC==0 ){ zSp++; }
260     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
261        "%T %T%s%T", pA, pB, zSp, pC);
262     jointype = JT_INNER;
263   }else if( (jointype & JT_OUTER)!=0
264          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
265     sqlite3ErrorMsg(pParse,
266       "RIGHT and FULL OUTER JOINs are not currently supported");
267     jointype = JT_INNER;
268   }
269   return jointype;
270 }
271 
272 /*
273 ** Return the index of a column in a table.  Return -1 if the column
274 ** is not contained in the table.
275 */
276 static int columnIndex(Table *pTab, const char *zCol){
277   int i;
278   for(i=0; i<pTab->nCol; i++){
279     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
280   }
281   return -1;
282 }
283 
284 /*
285 ** Search the first N tables in pSrc, from left to right, looking for a
286 ** table that has a column named zCol.
287 **
288 ** When found, set *piTab and *piCol to the table index and column index
289 ** of the matching column and return TRUE.
290 **
291 ** If not found, return FALSE.
292 */
293 static int tableAndColumnIndex(
294   SrcList *pSrc,       /* Array of tables to search */
295   int N,               /* Number of tables in pSrc->a[] to search */
296   const char *zCol,    /* Name of the column we are looking for */
297   int *piTab,          /* Write index of pSrc->a[] here */
298   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
299 ){
300   int i;               /* For looping over tables in pSrc */
301   int iCol;            /* Index of column matching zCol */
302 
303   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
304   for(i=0; i<N; i++){
305     iCol = columnIndex(pSrc->a[i].pTab, zCol);
306     if( iCol>=0 ){
307       if( piTab ){
308         *piTab = i;
309         *piCol = iCol;
310       }
311       return 1;
312     }
313   }
314   return 0;
315 }
316 
317 /*
318 ** This function is used to add terms implied by JOIN syntax to the
319 ** WHERE clause expression of a SELECT statement. The new term, which
320 ** is ANDed with the existing WHERE clause, is of the form:
321 **
322 **    (tab1.col1 = tab2.col2)
323 **
324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
326 ** column iColRight of tab2.
327 */
328 static void addWhereTerm(
329   Parse *pParse,                  /* Parsing context */
330   SrcList *pSrc,                  /* List of tables in FROM clause */
331   int iLeft,                      /* Index of first table to join in pSrc */
332   int iColLeft,                   /* Index of column in first table */
333   int iRight,                     /* Index of second table in pSrc */
334   int iColRight,                  /* Index of column in second table */
335   int isOuterJoin,                /* True if this is an OUTER join */
336   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
337 ){
338   sqlite3 *db = pParse->db;
339   Expr *pE1;
340   Expr *pE2;
341   Expr *pEq;
342 
343   assert( iLeft<iRight );
344   assert( pSrc->nSrc>iRight );
345   assert( pSrc->a[iLeft].pTab );
346   assert( pSrc->a[iRight].pTab );
347 
348   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
349   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
350 
351   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
352   if( pEq && isOuterJoin ){
353     ExprSetProperty(pEq, EP_FromJoin);
354     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
355     ExprSetVVAProperty(pEq, EP_NoReduce);
356     pEq->iRightJoinTable = (i16)pE2->iTable;
357   }
358   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
359 }
360 
361 /*
362 ** Set the EP_FromJoin property on all terms of the given expression.
363 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** expression.
365 **
366 ** The EP_FromJoin property is used on terms of an expression to tell
367 ** the LEFT OUTER JOIN processing logic that this term is part of the
368 ** join restriction specified in the ON or USING clause and not a part
369 ** of the more general WHERE clause.  These terms are moved over to the
370 ** WHERE clause during join processing but we need to remember that they
371 ** originated in the ON or USING clause.
372 **
373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
374 ** expression depends on table iRightJoinTable even if that table is not
375 ** explicitly mentioned in the expression.  That information is needed
376 ** for cases like this:
377 **
378 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
379 **
380 ** The where clause needs to defer the handling of the t1.x=5
381 ** term until after the t2 loop of the join.  In that way, a
382 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
383 ** defer the handling of t1.x=5, it will be processed immediately
384 ** after the t1 loop and rows with t1.x!=5 will never appear in
385 ** the output, which is incorrect.
386 */
387 static void setJoinExpr(Expr *p, int iTable){
388   while( p ){
389     ExprSetProperty(p, EP_FromJoin);
390     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
391     ExprSetVVAProperty(p, EP_NoReduce);
392     p->iRightJoinTable = (i16)iTable;
393     if( p->op==TK_FUNCTION && p->x.pList ){
394       int i;
395       for(i=0; i<p->x.pList->nExpr; i++){
396         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
397       }
398     }
399     setJoinExpr(p->pLeft, iTable);
400     p = p->pRight;
401   }
402 }
403 
404 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
406 ** an ordinary term that omits the EP_FromJoin mark.
407 **
408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
409 */
410 static void unsetJoinExpr(Expr *p, int iTable){
411   while( p ){
412     if( ExprHasProperty(p, EP_FromJoin)
413      && (iTable<0 || p->iRightJoinTable==iTable) ){
414       ExprClearProperty(p, EP_FromJoin);
415     }
416     if( p->op==TK_FUNCTION && p->x.pList ){
417       int i;
418       for(i=0; i<p->x.pList->nExpr; i++){
419         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
420       }
421     }
422     unsetJoinExpr(p->pLeft, iTable);
423     p = p->pRight;
424   }
425 }
426 
427 /*
428 ** This routine processes the join information for a SELECT statement.
429 ** ON and USING clauses are converted into extra terms of the WHERE clause.
430 ** NATURAL joins also create extra WHERE clause terms.
431 **
432 ** The terms of a FROM clause are contained in the Select.pSrc structure.
433 ** The left most table is the first entry in Select.pSrc.  The right-most
434 ** table is the last entry.  The join operator is held in the entry to
435 ** the left.  Thus entry 0 contains the join operator for the join between
436 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
437 ** also attached to the left entry.
438 **
439 ** This routine returns the number of errors encountered.
440 */
441 static int sqliteProcessJoin(Parse *pParse, Select *p){
442   SrcList *pSrc;                  /* All tables in the FROM clause */
443   int i, j;                       /* Loop counters */
444   struct SrcList_item *pLeft;     /* Left table being joined */
445   struct SrcList_item *pRight;    /* Right table being joined */
446 
447   pSrc = p->pSrc;
448   pLeft = &pSrc->a[0];
449   pRight = &pLeft[1];
450   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
451     Table *pRightTab = pRight->pTab;
452     int isOuter;
453 
454     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
455     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
456 
457     /* When the NATURAL keyword is present, add WHERE clause terms for
458     ** every column that the two tables have in common.
459     */
460     if( pRight->fg.jointype & JT_NATURAL ){
461       if( pRight->pOn || pRight->pUsing ){
462         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
463            "an ON or USING clause", 0);
464         return 1;
465       }
466       for(j=0; j<pRightTab->nCol; j++){
467         char *zName;   /* Name of column in the right table */
468         int iLeft;     /* Matching left table */
469         int iLeftCol;  /* Matching column in the left table */
470 
471         zName = pRightTab->aCol[j].zName;
472         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
473           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
474                        isOuter, &p->pWhere);
475         }
476       }
477     }
478 
479     /* Disallow both ON and USING clauses in the same join
480     */
481     if( pRight->pOn && pRight->pUsing ){
482       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
483         "clauses in the same join");
484       return 1;
485     }
486 
487     /* Add the ON clause to the end of the WHERE clause, connected by
488     ** an AND operator.
489     */
490     if( pRight->pOn ){
491       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
492       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
493       pRight->pOn = 0;
494     }
495 
496     /* Create extra terms on the WHERE clause for each column named
497     ** in the USING clause.  Example: If the two tables to be joined are
498     ** A and B and the USING clause names X, Y, and Z, then add this
499     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
500     ** Report an error if any column mentioned in the USING clause is
501     ** not contained in both tables to be joined.
502     */
503     if( pRight->pUsing ){
504       IdList *pList = pRight->pUsing;
505       for(j=0; j<pList->nId; j++){
506         char *zName;     /* Name of the term in the USING clause */
507         int iLeft;       /* Table on the left with matching column name */
508         int iLeftCol;    /* Column number of matching column on the left */
509         int iRightCol;   /* Column number of matching column on the right */
510 
511         zName = pList->a[j].zName;
512         iRightCol = columnIndex(pRightTab, zName);
513         if( iRightCol<0
514          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
515         ){
516           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
517             "not present in both tables", zName);
518           return 1;
519         }
520         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
521                      isOuter, &p->pWhere);
522       }
523     }
524   }
525   return 0;
526 }
527 
528 /*
529 ** An instance of this object holds information (beyond pParse and pSelect)
530 ** needed to load the next result row that is to be added to the sorter.
531 */
532 typedef struct RowLoadInfo RowLoadInfo;
533 struct RowLoadInfo {
534   int regResult;               /* Store results in array of registers here */
535   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
537   ExprList *pExtra;            /* Extra columns needed by sorter refs */
538   int regExtraResult;          /* Where to load the extra columns */
539 #endif
540 };
541 
542 /*
543 ** This routine does the work of loading query data into an array of
544 ** registers so that it can be added to the sorter.
545 */
546 static void innerLoopLoadRow(
547   Parse *pParse,             /* Statement under construction */
548   Select *pSelect,           /* The query being coded */
549   RowLoadInfo *pInfo         /* Info needed to complete the row load */
550 ){
551   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
552                           0, pInfo->ecelFlags);
553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
554   if( pInfo->pExtra ){
555     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
556     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
557   }
558 #endif
559 }
560 
561 /*
562 ** Code the OP_MakeRecord instruction that generates the entry to be
563 ** added into the sorter.
564 **
565 ** Return the register in which the result is stored.
566 */
567 static int makeSorterRecord(
568   Parse *pParse,
569   SortCtx *pSort,
570   Select *pSelect,
571   int regBase,
572   int nBase
573 ){
574   int nOBSat = pSort->nOBSat;
575   Vdbe *v = pParse->pVdbe;
576   int regOut = ++pParse->nMem;
577   if( pSort->pDeferredRowLoad ){
578     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
579   }
580   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
581   return regOut;
582 }
583 
584 /*
585 ** Generate code that will push the record in registers regData
586 ** through regData+nData-1 onto the sorter.
587 */
588 static void pushOntoSorter(
589   Parse *pParse,         /* Parser context */
590   SortCtx *pSort,        /* Information about the ORDER BY clause */
591   Select *pSelect,       /* The whole SELECT statement */
592   int regData,           /* First register holding data to be sorted */
593   int regOrigData,       /* First register holding data before packing */
594   int nData,             /* Number of elements in the regData data array */
595   int nPrefixReg         /* No. of reg prior to regData available for use */
596 ){
597   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
598   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
599   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
600   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
601   int regBase;                                     /* Regs for sorter record */
602   int regRecord = 0;                               /* Assembled sorter record */
603   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
604   int op;                            /* Opcode to add sorter record to sorter */
605   int iLimit;                        /* LIMIT counter */
606   int iSkip = 0;                     /* End of the sorter insert loop */
607 
608   assert( bSeq==0 || bSeq==1 );
609 
610   /* Three cases:
611   **   (1) The data to be sorted has already been packed into a Record
612   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
613   **       will be completely unrelated to regOrigData.
614   **   (2) All output columns are included in the sort record.  In that
615   **       case regData==regOrigData.
616   **   (3) Some output columns are omitted from the sort record due to
617   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
618   **       SQLITE_ECEL_OMITREF optimization, or due to the
619   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
620   **       regOrigData is 0 to prevent this routine from trying to copy
621   **       values that might not yet exist.
622   */
623   assert( nData==1 || regData==regOrigData || regOrigData==0 );
624 
625   if( nPrefixReg ){
626     assert( nPrefixReg==nExpr+bSeq );
627     regBase = regData - nPrefixReg;
628   }else{
629     regBase = pParse->nMem + 1;
630     pParse->nMem += nBase;
631   }
632   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
633   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
634   pSort->labelDone = sqlite3VdbeMakeLabel(v);
635   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
636                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
637   if( bSeq ){
638     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
639   }
640   if( nPrefixReg==0 && nData>0 ){
641     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
642   }
643   if( nOBSat>0 ){
644     int regPrevKey;   /* The first nOBSat columns of the previous row */
645     int addrFirst;    /* Address of the OP_IfNot opcode */
646     int addrJmp;      /* Address of the OP_Jump opcode */
647     VdbeOp *pOp;      /* Opcode that opens the sorter */
648     int nKey;         /* Number of sorting key columns, including OP_Sequence */
649     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
650 
651     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
652     regPrevKey = pParse->nMem+1;
653     pParse->nMem += pSort->nOBSat;
654     nKey = nExpr - pSort->nOBSat + bSeq;
655     if( bSeq ){
656       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
657     }else{
658       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
659     }
660     VdbeCoverage(v);
661     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
662     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
663     if( pParse->db->mallocFailed ) return;
664     pOp->p2 = nKey + nData;
665     pKI = pOp->p4.pKeyInfo;
666     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
667     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
668     testcase( pKI->nAllField > pKI->nKeyField+2 );
669     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
670                                            pKI->nAllField-pKI->nKeyField-1);
671     addrJmp = sqlite3VdbeCurrentAddr(v);
672     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
673     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
674     pSort->regReturn = ++pParse->nMem;
675     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
676     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
677     if( iLimit ){
678       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
679       VdbeCoverage(v);
680     }
681     sqlite3VdbeJumpHere(v, addrFirst);
682     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
683     sqlite3VdbeJumpHere(v, addrJmp);
684   }
685   if( iLimit ){
686     /* At this point the values for the new sorter entry are stored
687     ** in an array of registers. They need to be composed into a record
688     ** and inserted into the sorter if either (a) there are currently
689     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
690     ** the largest record currently in the sorter. If (b) is true and there
691     ** are already LIMIT+OFFSET items in the sorter, delete the largest
692     ** entry before inserting the new one. This way there are never more
693     ** than LIMIT+OFFSET items in the sorter.
694     **
695     ** If the new record does not need to be inserted into the sorter,
696     ** jump to the next iteration of the loop. Or, if the
697     ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
698     ** loop delivers items in sorted order, jump to the next iteration
699     ** of the outer loop.
700     */
701     int iCsr = pSort->iECursor;
702     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
705     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
706                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
707     VdbeCoverage(v);
708     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
709   }
710   if( regRecord==0 ){
711     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
712   }
713   if( pSort->sortFlags & SORTFLAG_UseSorter ){
714     op = OP_SorterInsert;
715   }else{
716     op = OP_IdxInsert;
717   }
718   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
719                        regBase+nOBSat, nBase-nOBSat);
720   if( iSkip ){
721     assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
722     sqlite3VdbeChangeP2(v, iSkip,
723          sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
724   }
725 }
726 
727 /*
728 ** Add code to implement the OFFSET
729 */
730 static void codeOffset(
731   Vdbe *v,          /* Generate code into this VM */
732   int iOffset,      /* Register holding the offset counter */
733   int iContinue     /* Jump here to skip the current record */
734 ){
735   if( iOffset>0 ){
736     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
737     VdbeComment((v, "OFFSET"));
738   }
739 }
740 
741 /*
742 ** Add code that will check to make sure the N registers starting at iMem
743 ** form a distinct entry.  iTab is a sorting index that holds previously
744 ** seen combinations of the N values.  A new entry is made in iTab
745 ** if the current N values are new.
746 **
747 ** A jump to addrRepeat is made and the N+1 values are popped from the
748 ** stack if the top N elements are not distinct.
749 */
750 static void codeDistinct(
751   Parse *pParse,     /* Parsing and code generating context */
752   int iTab,          /* A sorting index used to test for distinctness */
753   int addrRepeat,    /* Jump to here if not distinct */
754   int N,             /* Number of elements */
755   int iMem           /* First element */
756 ){
757   Vdbe *v;
758   int r1;
759 
760   v = pParse->pVdbe;
761   r1 = sqlite3GetTempReg(pParse);
762   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
763   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
764   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
765   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
766   sqlite3ReleaseTempReg(pParse, r1);
767 }
768 
769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
770 /*
771 ** This function is called as part of inner-loop generation for a SELECT
772 ** statement with an ORDER BY that is not optimized by an index. It
773 ** determines the expressions, if any, that the sorter-reference
774 ** optimization should be used for. The sorter-reference optimization
775 ** is used for SELECT queries like:
776 **
777 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
778 **
779 ** If the optimization is used for expression "bigblob", then instead of
780 ** storing values read from that column in the sorter records, the PK of
781 ** the row from table t1 is stored instead. Then, as records are extracted from
782 ** the sorter to return to the user, the required value of bigblob is
783 ** retrieved directly from table t1. If the values are very large, this
784 ** can be more efficient than storing them directly in the sorter records.
785 **
786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
787 ** for which the sorter-reference optimization should be enabled.
788 ** Additionally, the pSort->aDefer[] array is populated with entries
789 ** for all cursors required to evaluate all selected expressions. Finally.
790 ** output variable (*ppExtra) is set to an expression list containing
791 ** expressions for all extra PK values that should be stored in the
792 ** sorter records.
793 */
794 static void selectExprDefer(
795   Parse *pParse,                  /* Leave any error here */
796   SortCtx *pSort,                 /* Sorter context */
797   ExprList *pEList,               /* Expressions destined for sorter */
798   ExprList **ppExtra              /* Expressions to append to sorter record */
799 ){
800   int i;
801   int nDefer = 0;
802   ExprList *pExtra = 0;
803   for(i=0; i<pEList->nExpr; i++){
804     struct ExprList_item *pItem = &pEList->a[i];
805     if( pItem->u.x.iOrderByCol==0 ){
806       Expr *pExpr = pItem->pExpr;
807       Table *pTab = pExpr->pTab;
808       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
809        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
810       ){
811         int j;
812         for(j=0; j<nDefer; j++){
813           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
814         }
815         if( j==nDefer ){
816           if( nDefer==ArraySize(pSort->aDefer) ){
817             continue;
818           }else{
819             int nKey = 1;
820             int k;
821             Index *pPk = 0;
822             if( !HasRowid(pTab) ){
823               pPk = sqlite3PrimaryKeyIndex(pTab);
824               nKey = pPk->nKeyCol;
825             }
826             for(k=0; k<nKey; k++){
827               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
828               if( pNew ){
829                 pNew->iTable = pExpr->iTable;
830                 pNew->pTab = pExpr->pTab;
831                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
832                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
833               }
834             }
835             pSort->aDefer[nDefer].pTab = pExpr->pTab;
836             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
837             pSort->aDefer[nDefer].nKey = nKey;
838             nDefer++;
839           }
840         }
841         pItem->bSorterRef = 1;
842       }
843     }
844   }
845   pSort->nDefer = (u8)nDefer;
846   *ppExtra = pExtra;
847 }
848 #endif
849 
850 /*
851 ** This routine generates the code for the inside of the inner loop
852 ** of a SELECT.
853 **
854 ** If srcTab is negative, then the p->pEList expressions
855 ** are evaluated in order to get the data for this row.  If srcTab is
856 ** zero or more, then data is pulled from srcTab and p->pEList is used only
857 ** to get the number of columns and the collation sequence for each column.
858 */
859 static void selectInnerLoop(
860   Parse *pParse,          /* The parser context */
861   Select *p,              /* The complete select statement being coded */
862   int srcTab,             /* Pull data from this table if non-negative */
863   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
864   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
865   SelectDest *pDest,      /* How to dispose of the results */
866   int iContinue,          /* Jump here to continue with next row */
867   int iBreak              /* Jump here to break out of the inner loop */
868 ){
869   Vdbe *v = pParse->pVdbe;
870   int i;
871   int hasDistinct;            /* True if the DISTINCT keyword is present */
872   int eDest = pDest->eDest;   /* How to dispose of results */
873   int iParm = pDest->iSDParm; /* First argument to disposal method */
874   int nResultCol;             /* Number of result columns */
875   int nPrefixReg = 0;         /* Number of extra registers before regResult */
876   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
877 
878   /* Usually, regResult is the first cell in an array of memory cells
879   ** containing the current result row. In this case regOrig is set to the
880   ** same value. However, if the results are being sent to the sorter, the
881   ** values for any expressions that are also part of the sort-key are omitted
882   ** from this array. In this case regOrig is set to zero.  */
883   int regResult;              /* Start of memory holding current results */
884   int regOrig;                /* Start of memory holding full result (or 0) */
885 
886   assert( v );
887   assert( p->pEList!=0 );
888   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
889   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
890   if( pSort==0 && !hasDistinct ){
891     assert( iContinue!=0 );
892     codeOffset(v, p->iOffset, iContinue);
893   }
894 
895   /* Pull the requested columns.
896   */
897   nResultCol = p->pEList->nExpr;
898 
899   if( pDest->iSdst==0 ){
900     if( pSort ){
901       nPrefixReg = pSort->pOrderBy->nExpr;
902       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
903       pParse->nMem += nPrefixReg;
904     }
905     pDest->iSdst = pParse->nMem+1;
906     pParse->nMem += nResultCol;
907   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
908     /* This is an error condition that can result, for example, when a SELECT
909     ** on the right-hand side of an INSERT contains more result columns than
910     ** there are columns in the table on the left.  The error will be caught
911     ** and reported later.  But we need to make sure enough memory is allocated
912     ** to avoid other spurious errors in the meantime. */
913     pParse->nMem += nResultCol;
914   }
915   pDest->nSdst = nResultCol;
916   regOrig = regResult = pDest->iSdst;
917   if( srcTab>=0 ){
918     for(i=0; i<nResultCol; i++){
919       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
920       VdbeComment((v, "%s", p->pEList->a[i].zName));
921     }
922   }else if( eDest!=SRT_Exists ){
923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
924     ExprList *pExtra = 0;
925 #endif
926     /* If the destination is an EXISTS(...) expression, the actual
927     ** values returned by the SELECT are not required.
928     */
929     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
930     ExprList *pEList;
931     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
932       ecelFlags = SQLITE_ECEL_DUP;
933     }else{
934       ecelFlags = 0;
935     }
936     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
937       /* For each expression in p->pEList that is a copy of an expression in
938       ** the ORDER BY clause (pSort->pOrderBy), set the associated
939       ** iOrderByCol value to one more than the index of the ORDER BY
940       ** expression within the sort-key that pushOntoSorter() will generate.
941       ** This allows the p->pEList field to be omitted from the sorted record,
942       ** saving space and CPU cycles.  */
943       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
944 
945       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
946         int j;
947         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
948           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
949         }
950       }
951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
952       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
953       if( pExtra && pParse->db->mallocFailed==0 ){
954         /* If there are any extra PK columns to add to the sorter records,
955         ** allocate extra memory cells and adjust the OpenEphemeral
956         ** instruction to account for the larger records. This is only
957         ** required if there are one or more WITHOUT ROWID tables with
958         ** composite primary keys in the SortCtx.aDefer[] array.  */
959         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
960         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
961         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
962         pParse->nMem += pExtra->nExpr;
963       }
964 #endif
965 
966       /* Adjust nResultCol to account for columns that are omitted
967       ** from the sorter by the optimizations in this branch */
968       pEList = p->pEList;
969       for(i=0; i<pEList->nExpr; i++){
970         if( pEList->a[i].u.x.iOrderByCol>0
971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
972          || pEList->a[i].bSorterRef
973 #endif
974         ){
975           nResultCol--;
976           regOrig = 0;
977         }
978       }
979 
980       testcase( regOrig );
981       testcase( eDest==SRT_Set );
982       testcase( eDest==SRT_Mem );
983       testcase( eDest==SRT_Coroutine );
984       testcase( eDest==SRT_Output );
985       assert( eDest==SRT_Set || eDest==SRT_Mem
986            || eDest==SRT_Coroutine || eDest==SRT_Output );
987     }
988     sRowLoadInfo.regResult = regResult;
989     sRowLoadInfo.ecelFlags = ecelFlags;
990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
991     sRowLoadInfo.pExtra = pExtra;
992     sRowLoadInfo.regExtraResult = regResult + nResultCol;
993     if( pExtra ) nResultCol += pExtra->nExpr;
994 #endif
995     if( p->iLimit
996      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
997      && nPrefixReg>0
998     ){
999       assert( pSort!=0 );
1000       assert( hasDistinct==0 );
1001       pSort->pDeferredRowLoad = &sRowLoadInfo;
1002       regOrig = 0;
1003     }else{
1004       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1005     }
1006   }
1007 
1008   /* If the DISTINCT keyword was present on the SELECT statement
1009   ** and this row has been seen before, then do not make this row
1010   ** part of the result.
1011   */
1012   if( hasDistinct ){
1013     switch( pDistinct->eTnctType ){
1014       case WHERE_DISTINCT_ORDERED: {
1015         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1016         int iJump;              /* Jump destination */
1017         int regPrev;            /* Previous row content */
1018 
1019         /* Allocate space for the previous row */
1020         regPrev = pParse->nMem+1;
1021         pParse->nMem += nResultCol;
1022 
1023         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1024         ** sets the MEM_Cleared bit on the first register of the
1025         ** previous value.  This will cause the OP_Ne below to always
1026         ** fail on the first iteration of the loop even if the first
1027         ** row is all NULLs.
1028         */
1029         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1030         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1031         pOp->opcode = OP_Null;
1032         pOp->p1 = 1;
1033         pOp->p2 = regPrev;
1034 
1035         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1036         for(i=0; i<nResultCol; i++){
1037           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1038           if( i<nResultCol-1 ){
1039             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1040             VdbeCoverage(v);
1041           }else{
1042             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1043             VdbeCoverage(v);
1044            }
1045           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1046           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1047         }
1048         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1049         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1050         break;
1051       }
1052 
1053       case WHERE_DISTINCT_UNIQUE: {
1054         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1055         break;
1056       }
1057 
1058       default: {
1059         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1060         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1061                      regResult);
1062         break;
1063       }
1064     }
1065     if( pSort==0 ){
1066       codeOffset(v, p->iOffset, iContinue);
1067     }
1068   }
1069 
1070   switch( eDest ){
1071     /* In this mode, write each query result to the key of the temporary
1072     ** table iParm.
1073     */
1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1075     case SRT_Union: {
1076       int r1;
1077       r1 = sqlite3GetTempReg(pParse);
1078       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1079       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1080       sqlite3ReleaseTempReg(pParse, r1);
1081       break;
1082     }
1083 
1084     /* Construct a record from the query result, but instead of
1085     ** saving that record, use it as a key to delete elements from
1086     ** the temporary table iParm.
1087     */
1088     case SRT_Except: {
1089       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1090       break;
1091     }
1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1093 
1094     /* Store the result as data using a unique key.
1095     */
1096     case SRT_Fifo:
1097     case SRT_DistFifo:
1098     case SRT_Table:
1099     case SRT_EphemTab: {
1100       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1101       testcase( eDest==SRT_Table );
1102       testcase( eDest==SRT_EphemTab );
1103       testcase( eDest==SRT_Fifo );
1104       testcase( eDest==SRT_DistFifo );
1105       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1106 #ifndef SQLITE_OMIT_CTE
1107       if( eDest==SRT_DistFifo ){
1108         /* If the destination is DistFifo, then cursor (iParm+1) is open
1109         ** on an ephemeral index. If the current row is already present
1110         ** in the index, do not write it to the output. If not, add the
1111         ** current row to the index and proceed with writing it to the
1112         ** output table as well.  */
1113         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1114         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1115         VdbeCoverage(v);
1116         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1117         assert( pSort==0 );
1118       }
1119 #endif
1120       if( pSort ){
1121         assert( regResult==regOrig );
1122         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1123       }else{
1124         int r2 = sqlite3GetTempReg(pParse);
1125         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1126         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1127         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1128         sqlite3ReleaseTempReg(pParse, r2);
1129       }
1130       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1131       break;
1132     }
1133 
1134 #ifndef SQLITE_OMIT_SUBQUERY
1135     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1136     ** then there should be a single item on the stack.  Write this
1137     ** item into the set table with bogus data.
1138     */
1139     case SRT_Set: {
1140       if( pSort ){
1141         /* At first glance you would think we could optimize out the
1142         ** ORDER BY in this case since the order of entries in the set
1143         ** does not matter.  But there might be a LIMIT clause, in which
1144         ** case the order does matter */
1145         pushOntoSorter(
1146             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1147       }else{
1148         int r1 = sqlite3GetTempReg(pParse);
1149         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1150         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1151             r1, pDest->zAffSdst, nResultCol);
1152         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1153         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1154         sqlite3ReleaseTempReg(pParse, r1);
1155       }
1156       break;
1157     }
1158 
1159     /* If any row exist in the result set, record that fact and abort.
1160     */
1161     case SRT_Exists: {
1162       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1163       /* The LIMIT clause will terminate the loop for us */
1164       break;
1165     }
1166 
1167     /* If this is a scalar select that is part of an expression, then
1168     ** store the results in the appropriate memory cell or array of
1169     ** memory cells and break out of the scan loop.
1170     */
1171     case SRT_Mem: {
1172       if( pSort ){
1173         assert( nResultCol<=pDest->nSdst );
1174         pushOntoSorter(
1175             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1176       }else{
1177         assert( nResultCol==pDest->nSdst );
1178         assert( regResult==iParm );
1179         /* The LIMIT clause will jump out of the loop for us */
1180       }
1181       break;
1182     }
1183 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1184 
1185     case SRT_Coroutine:       /* Send data to a co-routine */
1186     case SRT_Output: {        /* Return the results */
1187       testcase( eDest==SRT_Coroutine );
1188       testcase( eDest==SRT_Output );
1189       if( pSort ){
1190         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1191                        nPrefixReg);
1192       }else if( eDest==SRT_Coroutine ){
1193         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1194       }else{
1195         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1196         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1197       }
1198       break;
1199     }
1200 
1201 #ifndef SQLITE_OMIT_CTE
1202     /* Write the results into a priority queue that is order according to
1203     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1204     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1205     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1206     ** final OP_Sequence column.  The last column is the record as a blob.
1207     */
1208     case SRT_DistQueue:
1209     case SRT_Queue: {
1210       int nKey;
1211       int r1, r2, r3;
1212       int addrTest = 0;
1213       ExprList *pSO;
1214       pSO = pDest->pOrderBy;
1215       assert( pSO );
1216       nKey = pSO->nExpr;
1217       r1 = sqlite3GetTempReg(pParse);
1218       r2 = sqlite3GetTempRange(pParse, nKey+2);
1219       r3 = r2+nKey+1;
1220       if( eDest==SRT_DistQueue ){
1221         /* If the destination is DistQueue, then cursor (iParm+1) is open
1222         ** on a second ephemeral index that holds all values every previously
1223         ** added to the queue. */
1224         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1225                                         regResult, nResultCol);
1226         VdbeCoverage(v);
1227       }
1228       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1229       if( eDest==SRT_DistQueue ){
1230         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1231         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1232       }
1233       for(i=0; i<nKey; i++){
1234         sqlite3VdbeAddOp2(v, OP_SCopy,
1235                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1236                           r2+i);
1237       }
1238       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1239       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1240       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1241       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1242       sqlite3ReleaseTempReg(pParse, r1);
1243       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1244       break;
1245     }
1246 #endif /* SQLITE_OMIT_CTE */
1247 
1248 
1249 
1250 #if !defined(SQLITE_OMIT_TRIGGER)
1251     /* Discard the results.  This is used for SELECT statements inside
1252     ** the body of a TRIGGER.  The purpose of such selects is to call
1253     ** user-defined functions that have side effects.  We do not care
1254     ** about the actual results of the select.
1255     */
1256     default: {
1257       assert( eDest==SRT_Discard );
1258       break;
1259     }
1260 #endif
1261   }
1262 
1263   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1264   ** there is a sorter, in which case the sorter has already limited
1265   ** the output for us.
1266   */
1267   if( pSort==0 && p->iLimit ){
1268     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1269   }
1270 }
1271 
1272 /*
1273 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1274 ** X extra columns.
1275 */
1276 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1277   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1278   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1279   if( p ){
1280     p->aSortOrder = (u8*)&p->aColl[N+X];
1281     p->nKeyField = (u16)N;
1282     p->nAllField = (u16)(N+X);
1283     p->enc = ENC(db);
1284     p->db = db;
1285     p->nRef = 1;
1286     memset(&p[1], 0, nExtra);
1287   }else{
1288     sqlite3OomFault(db);
1289   }
1290   return p;
1291 }
1292 
1293 /*
1294 ** Deallocate a KeyInfo object
1295 */
1296 void sqlite3KeyInfoUnref(KeyInfo *p){
1297   if( p ){
1298     assert( p->nRef>0 );
1299     p->nRef--;
1300     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1301   }
1302 }
1303 
1304 /*
1305 ** Make a new pointer to a KeyInfo object
1306 */
1307 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1308   if( p ){
1309     assert( p->nRef>0 );
1310     p->nRef++;
1311   }
1312   return p;
1313 }
1314 
1315 #ifdef SQLITE_DEBUG
1316 /*
1317 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1318 ** can only be changed if this is just a single reference to the object.
1319 **
1320 ** This routine is used only inside of assert() statements.
1321 */
1322 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1323 #endif /* SQLITE_DEBUG */
1324 
1325 /*
1326 ** Given an expression list, generate a KeyInfo structure that records
1327 ** the collating sequence for each expression in that expression list.
1328 **
1329 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1330 ** KeyInfo structure is appropriate for initializing a virtual index to
1331 ** implement that clause.  If the ExprList is the result set of a SELECT
1332 ** then the KeyInfo structure is appropriate for initializing a virtual
1333 ** index to implement a DISTINCT test.
1334 **
1335 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1336 ** function is responsible for seeing that this structure is eventually
1337 ** freed.
1338 */
1339 KeyInfo *sqlite3KeyInfoFromExprList(
1340   Parse *pParse,       /* Parsing context */
1341   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1342   int iStart,          /* Begin with this column of pList */
1343   int nExtra           /* Add this many extra columns to the end */
1344 ){
1345   int nExpr;
1346   KeyInfo *pInfo;
1347   struct ExprList_item *pItem;
1348   sqlite3 *db = pParse->db;
1349   int i;
1350 
1351   nExpr = pList->nExpr;
1352   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1353   if( pInfo ){
1354     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1355     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1356       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1357       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1358     }
1359   }
1360   return pInfo;
1361 }
1362 
1363 /*
1364 ** Name of the connection operator, used for error messages.
1365 */
1366 static const char *selectOpName(int id){
1367   char *z;
1368   switch( id ){
1369     case TK_ALL:       z = "UNION ALL";   break;
1370     case TK_INTERSECT: z = "INTERSECT";   break;
1371     case TK_EXCEPT:    z = "EXCEPT";      break;
1372     default:           z = "UNION";       break;
1373   }
1374   return z;
1375 }
1376 
1377 #ifndef SQLITE_OMIT_EXPLAIN
1378 /*
1379 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1380 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1381 ** where the caption is of the form:
1382 **
1383 **   "USE TEMP B-TREE FOR xxx"
1384 **
1385 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1386 ** is determined by the zUsage argument.
1387 */
1388 static void explainTempTable(Parse *pParse, const char *zUsage){
1389   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1390 }
1391 
1392 /*
1393 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1394 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1395 ** in sqlite3Select() to assign values to structure member variables that
1396 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1397 ** code with #ifndef directives.
1398 */
1399 # define explainSetInteger(a, b) a = b
1400 
1401 #else
1402 /* No-op versions of the explainXXX() functions and macros. */
1403 # define explainTempTable(y,z)
1404 # define explainSetInteger(y,z)
1405 #endif
1406 
1407 
1408 /*
1409 ** If the inner loop was generated using a non-null pOrderBy argument,
1410 ** then the results were placed in a sorter.  After the loop is terminated
1411 ** we need to run the sorter and output the results.  The following
1412 ** routine generates the code needed to do that.
1413 */
1414 static void generateSortTail(
1415   Parse *pParse,    /* Parsing context */
1416   Select *p,        /* The SELECT statement */
1417   SortCtx *pSort,   /* Information on the ORDER BY clause */
1418   int nColumn,      /* Number of columns of data */
1419   SelectDest *pDest /* Write the sorted results here */
1420 ){
1421   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1422   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1423   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1424   int addr;                       /* Top of output loop. Jump for Next. */
1425   int addrOnce = 0;
1426   int iTab;
1427   ExprList *pOrderBy = pSort->pOrderBy;
1428   int eDest = pDest->eDest;
1429   int iParm = pDest->iSDParm;
1430   int regRow;
1431   int regRowid;
1432   int iCol;
1433   int nKey;                       /* Number of key columns in sorter record */
1434   int iSortTab;                   /* Sorter cursor to read from */
1435   int i;
1436   int bSeq;                       /* True if sorter record includes seq. no. */
1437   int nRefKey = 0;
1438   struct ExprList_item *aOutEx = p->pEList->a;
1439 
1440   assert( addrBreak<0 );
1441   if( pSort->labelBkOut ){
1442     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1443     sqlite3VdbeGoto(v, addrBreak);
1444     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1445   }
1446 
1447 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1448   /* Open any cursors needed for sorter-reference expressions */
1449   for(i=0; i<pSort->nDefer; i++){
1450     Table *pTab = pSort->aDefer[i].pTab;
1451     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1452     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1453     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1454   }
1455 #endif
1456 
1457   iTab = pSort->iECursor;
1458   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1459     regRowid = 0;
1460     regRow = pDest->iSdst;
1461   }else{
1462     regRowid = sqlite3GetTempReg(pParse);
1463     regRow = sqlite3GetTempRange(pParse, nColumn);
1464   }
1465   nKey = pOrderBy->nExpr - pSort->nOBSat;
1466   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1467     int regSortOut = ++pParse->nMem;
1468     iSortTab = pParse->nTab++;
1469     if( pSort->labelBkOut ){
1470       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1471     }
1472     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1473         nKey+1+nColumn+nRefKey);
1474     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1475     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1476     VdbeCoverage(v);
1477     codeOffset(v, p->iOffset, addrContinue);
1478     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1479     bSeq = 0;
1480   }else{
1481     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1482     codeOffset(v, p->iOffset, addrContinue);
1483     iSortTab = iTab;
1484     bSeq = 1;
1485   }
1486   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1487 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1488     if( aOutEx[i].bSorterRef ) continue;
1489 #endif
1490     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1491   }
1492 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1493   if( pSort->nDefer ){
1494     int iKey = iCol+1;
1495     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1496 
1497     for(i=0; i<pSort->nDefer; i++){
1498       int iCsr = pSort->aDefer[i].iCsr;
1499       Table *pTab = pSort->aDefer[i].pTab;
1500       int nKey = pSort->aDefer[i].nKey;
1501 
1502       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1503       if( HasRowid(pTab) ){
1504         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1505         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1506             sqlite3VdbeCurrentAddr(v)+1, regKey);
1507       }else{
1508         int k;
1509         int iJmp;
1510         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1511         for(k=0; k<nKey; k++){
1512           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1513         }
1514         iJmp = sqlite3VdbeCurrentAddr(v);
1515         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1516         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1517         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1518       }
1519     }
1520     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1521   }
1522 #endif
1523   for(i=nColumn-1; i>=0; i--){
1524 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1525     if( aOutEx[i].bSorterRef ){
1526       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1527     }else
1528 #endif
1529     {
1530       int iRead;
1531       if( aOutEx[i].u.x.iOrderByCol ){
1532         iRead = aOutEx[i].u.x.iOrderByCol-1;
1533       }else{
1534         iRead = iCol--;
1535       }
1536       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1537       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1538     }
1539   }
1540   switch( eDest ){
1541     case SRT_Table:
1542     case SRT_EphemTab: {
1543       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1544       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1545       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1546       break;
1547     }
1548 #ifndef SQLITE_OMIT_SUBQUERY
1549     case SRT_Set: {
1550       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1551       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1552                         pDest->zAffSdst, nColumn);
1553       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1554       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1555       break;
1556     }
1557     case SRT_Mem: {
1558       /* The LIMIT clause will terminate the loop for us */
1559       break;
1560     }
1561 #endif
1562     default: {
1563       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1564       testcase( eDest==SRT_Output );
1565       testcase( eDest==SRT_Coroutine );
1566       if( eDest==SRT_Output ){
1567         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1568         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1569       }else{
1570         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1571       }
1572       break;
1573     }
1574   }
1575   if( regRowid ){
1576     if( eDest==SRT_Set ){
1577       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1578     }else{
1579       sqlite3ReleaseTempReg(pParse, regRow);
1580     }
1581     sqlite3ReleaseTempReg(pParse, regRowid);
1582   }
1583   /* The bottom of the loop
1584   */
1585   sqlite3VdbeResolveLabel(v, addrContinue);
1586   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1587     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1588   }else{
1589     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1590   }
1591   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1592   sqlite3VdbeResolveLabel(v, addrBreak);
1593 }
1594 
1595 /*
1596 ** Return a pointer to a string containing the 'declaration type' of the
1597 ** expression pExpr. The string may be treated as static by the caller.
1598 **
1599 ** Also try to estimate the size of the returned value and return that
1600 ** result in *pEstWidth.
1601 **
1602 ** The declaration type is the exact datatype definition extracted from the
1603 ** original CREATE TABLE statement if the expression is a column. The
1604 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1605 ** is considered a column can be complex in the presence of subqueries. The
1606 ** result-set expression in all of the following SELECT statements is
1607 ** considered a column by this function.
1608 **
1609 **   SELECT col FROM tbl;
1610 **   SELECT (SELECT col FROM tbl;
1611 **   SELECT (SELECT col FROM tbl);
1612 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1613 **
1614 ** The declaration type for any expression other than a column is NULL.
1615 **
1616 ** This routine has either 3 or 6 parameters depending on whether or not
1617 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1618 */
1619 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1620 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1621 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1622 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1623 #endif
1624 static const char *columnTypeImpl(
1625   NameContext *pNC,
1626 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1627   Expr *pExpr
1628 #else
1629   Expr *pExpr,
1630   const char **pzOrigDb,
1631   const char **pzOrigTab,
1632   const char **pzOrigCol
1633 #endif
1634 ){
1635   char const *zType = 0;
1636   int j;
1637 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1638   char const *zOrigDb = 0;
1639   char const *zOrigTab = 0;
1640   char const *zOrigCol = 0;
1641 #endif
1642 
1643   assert( pExpr!=0 );
1644   assert( pNC->pSrcList!=0 );
1645   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1646                                        ** are processed */
1647   switch( pExpr->op ){
1648     case TK_COLUMN: {
1649       /* The expression is a column. Locate the table the column is being
1650       ** extracted from in NameContext.pSrcList. This table may be real
1651       ** database table or a subquery.
1652       */
1653       Table *pTab = 0;            /* Table structure column is extracted from */
1654       Select *pS = 0;             /* Select the column is extracted from */
1655       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1656       while( pNC && !pTab ){
1657         SrcList *pTabList = pNC->pSrcList;
1658         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1659         if( j<pTabList->nSrc ){
1660           pTab = pTabList->a[j].pTab;
1661           pS = pTabList->a[j].pSelect;
1662         }else{
1663           pNC = pNC->pNext;
1664         }
1665       }
1666 
1667       if( pTab==0 ){
1668         /* At one time, code such as "SELECT new.x" within a trigger would
1669         ** cause this condition to run.  Since then, we have restructured how
1670         ** trigger code is generated and so this condition is no longer
1671         ** possible. However, it can still be true for statements like
1672         ** the following:
1673         **
1674         **   CREATE TABLE t1(col INTEGER);
1675         **   SELECT (SELECT t1.col) FROM FROM t1;
1676         **
1677         ** when columnType() is called on the expression "t1.col" in the
1678         ** sub-select. In this case, set the column type to NULL, even
1679         ** though it should really be "INTEGER".
1680         **
1681         ** This is not a problem, as the column type of "t1.col" is never
1682         ** used. When columnType() is called on the expression
1683         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1684         ** branch below.  */
1685         break;
1686       }
1687 
1688       assert( pTab && pExpr->pTab==pTab );
1689       if( pS ){
1690         /* The "table" is actually a sub-select or a view in the FROM clause
1691         ** of the SELECT statement. Return the declaration type and origin
1692         ** data for the result-set column of the sub-select.
1693         */
1694         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1695           /* If iCol is less than zero, then the expression requests the
1696           ** rowid of the sub-select or view. This expression is legal (see
1697           ** test case misc2.2.2) - it always evaluates to NULL.
1698           */
1699           NameContext sNC;
1700           Expr *p = pS->pEList->a[iCol].pExpr;
1701           sNC.pSrcList = pS->pSrc;
1702           sNC.pNext = pNC;
1703           sNC.pParse = pNC->pParse;
1704           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1705         }
1706       }else{
1707         /* A real table or a CTE table */
1708         assert( !pS );
1709 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1710         if( iCol<0 ) iCol = pTab->iPKey;
1711         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1712         if( iCol<0 ){
1713           zType = "INTEGER";
1714           zOrigCol = "rowid";
1715         }else{
1716           zOrigCol = pTab->aCol[iCol].zName;
1717           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1718         }
1719         zOrigTab = pTab->zName;
1720         if( pNC->pParse && pTab->pSchema ){
1721           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1722           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1723         }
1724 #else
1725         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1726         if( iCol<0 ){
1727           zType = "INTEGER";
1728         }else{
1729           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1730         }
1731 #endif
1732       }
1733       break;
1734     }
1735 #ifndef SQLITE_OMIT_SUBQUERY
1736     case TK_SELECT: {
1737       /* The expression is a sub-select. Return the declaration type and
1738       ** origin info for the single column in the result set of the SELECT
1739       ** statement.
1740       */
1741       NameContext sNC;
1742       Select *pS = pExpr->x.pSelect;
1743       Expr *p = pS->pEList->a[0].pExpr;
1744       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1745       sNC.pSrcList = pS->pSrc;
1746       sNC.pNext = pNC;
1747       sNC.pParse = pNC->pParse;
1748       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1749       break;
1750     }
1751 #endif
1752   }
1753 
1754 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1755   if( pzOrigDb ){
1756     assert( pzOrigTab && pzOrigCol );
1757     *pzOrigDb = zOrigDb;
1758     *pzOrigTab = zOrigTab;
1759     *pzOrigCol = zOrigCol;
1760   }
1761 #endif
1762   return zType;
1763 }
1764 
1765 /*
1766 ** Generate code that will tell the VDBE the declaration types of columns
1767 ** in the result set.
1768 */
1769 static void generateColumnTypes(
1770   Parse *pParse,      /* Parser context */
1771   SrcList *pTabList,  /* List of tables */
1772   ExprList *pEList    /* Expressions defining the result set */
1773 ){
1774 #ifndef SQLITE_OMIT_DECLTYPE
1775   Vdbe *v = pParse->pVdbe;
1776   int i;
1777   NameContext sNC;
1778   sNC.pSrcList = pTabList;
1779   sNC.pParse = pParse;
1780   sNC.pNext = 0;
1781   for(i=0; i<pEList->nExpr; i++){
1782     Expr *p = pEList->a[i].pExpr;
1783     const char *zType;
1784 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1785     const char *zOrigDb = 0;
1786     const char *zOrigTab = 0;
1787     const char *zOrigCol = 0;
1788     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1789 
1790     /* The vdbe must make its own copy of the column-type and other
1791     ** column specific strings, in case the schema is reset before this
1792     ** virtual machine is deleted.
1793     */
1794     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1795     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1796     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1797 #else
1798     zType = columnType(&sNC, p, 0, 0, 0);
1799 #endif
1800     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1801   }
1802 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1803 }
1804 
1805 
1806 /*
1807 ** Compute the column names for a SELECT statement.
1808 **
1809 ** The only guarantee that SQLite makes about column names is that if the
1810 ** column has an AS clause assigning it a name, that will be the name used.
1811 ** That is the only documented guarantee.  However, countless applications
1812 ** developed over the years have made baseless assumptions about column names
1813 ** and will break if those assumptions changes.  Hence, use extreme caution
1814 ** when modifying this routine to avoid breaking legacy.
1815 **
1816 ** See Also: sqlite3ColumnsFromExprList()
1817 **
1818 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1819 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1820 ** applications should operate this way.  Nevertheless, we need to support the
1821 ** other modes for legacy:
1822 **
1823 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1824 **                              originally appears in the SELECT statement.  In
1825 **                              other words, the zSpan of the result expression.
1826 **
1827 **    short=ON, full=OFF:       (This is the default setting).  If the result
1828 **                              refers directly to a table column, then the
1829 **                              result column name is just the table column
1830 **                              name: COLUMN.  Otherwise use zSpan.
1831 **
1832 **    full=ON, short=ANY:       If the result refers directly to a table column,
1833 **                              then the result column name with the table name
1834 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1835 */
1836 static void generateColumnNames(
1837   Parse *pParse,      /* Parser context */
1838   Select *pSelect     /* Generate column names for this SELECT statement */
1839 ){
1840   Vdbe *v = pParse->pVdbe;
1841   int i;
1842   Table *pTab;
1843   SrcList *pTabList;
1844   ExprList *pEList;
1845   sqlite3 *db = pParse->db;
1846   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1847   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1848 
1849 #ifndef SQLITE_OMIT_EXPLAIN
1850   /* If this is an EXPLAIN, skip this step */
1851   if( pParse->explain ){
1852     return;
1853   }
1854 #endif
1855 
1856   if( pParse->colNamesSet ) return;
1857   /* Column names are determined by the left-most term of a compound select */
1858   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1859   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1860   pTabList = pSelect->pSrc;
1861   pEList = pSelect->pEList;
1862   assert( v!=0 );
1863   assert( pTabList!=0 );
1864   pParse->colNamesSet = 1;
1865   fullName = (db->flags & SQLITE_FullColNames)!=0;
1866   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1867   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1868   for(i=0; i<pEList->nExpr; i++){
1869     Expr *p = pEList->a[i].pExpr;
1870 
1871     assert( p!=0 );
1872     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1873     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1874     if( pEList->a[i].zName ){
1875       /* An AS clause always takes first priority */
1876       char *zName = pEList->a[i].zName;
1877       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1878     }else if( srcName && p->op==TK_COLUMN ){
1879       char *zCol;
1880       int iCol = p->iColumn;
1881       pTab = p->pTab;
1882       assert( pTab!=0 );
1883       if( iCol<0 ) iCol = pTab->iPKey;
1884       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1885       if( iCol<0 ){
1886         zCol = "rowid";
1887       }else{
1888         zCol = pTab->aCol[iCol].zName;
1889       }
1890       if( fullName ){
1891         char *zName = 0;
1892         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1893         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1894       }else{
1895         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1896       }
1897     }else{
1898       const char *z = pEList->a[i].zSpan;
1899       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1900       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1901     }
1902   }
1903   generateColumnTypes(pParse, pTabList, pEList);
1904 }
1905 
1906 /*
1907 ** Given an expression list (which is really the list of expressions
1908 ** that form the result set of a SELECT statement) compute appropriate
1909 ** column names for a table that would hold the expression list.
1910 **
1911 ** All column names will be unique.
1912 **
1913 ** Only the column names are computed.  Column.zType, Column.zColl,
1914 ** and other fields of Column are zeroed.
1915 **
1916 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1917 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1918 **
1919 ** The only guarantee that SQLite makes about column names is that if the
1920 ** column has an AS clause assigning it a name, that will be the name used.
1921 ** That is the only documented guarantee.  However, countless applications
1922 ** developed over the years have made baseless assumptions about column names
1923 ** and will break if those assumptions changes.  Hence, use extreme caution
1924 ** when modifying this routine to avoid breaking legacy.
1925 **
1926 ** See Also: generateColumnNames()
1927 */
1928 int sqlite3ColumnsFromExprList(
1929   Parse *pParse,          /* Parsing context */
1930   ExprList *pEList,       /* Expr list from which to derive column names */
1931   i16 *pnCol,             /* Write the number of columns here */
1932   Column **paCol          /* Write the new column list here */
1933 ){
1934   sqlite3 *db = pParse->db;   /* Database connection */
1935   int i, j;                   /* Loop counters */
1936   u32 cnt;                    /* Index added to make the name unique */
1937   Column *aCol, *pCol;        /* For looping over result columns */
1938   int nCol;                   /* Number of columns in the result set */
1939   char *zName;                /* Column name */
1940   int nName;                  /* Size of name in zName[] */
1941   Hash ht;                    /* Hash table of column names */
1942 
1943   sqlite3HashInit(&ht);
1944   if( pEList ){
1945     nCol = pEList->nExpr;
1946     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1947     testcase( aCol==0 );
1948     if( nCol>32767 ) nCol = 32767;
1949   }else{
1950     nCol = 0;
1951     aCol = 0;
1952   }
1953   assert( nCol==(i16)nCol );
1954   *pnCol = nCol;
1955   *paCol = aCol;
1956 
1957   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1958     /* Get an appropriate name for the column
1959     */
1960     if( (zName = pEList->a[i].zName)!=0 ){
1961       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1962     }else{
1963       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1964       while( pColExpr->op==TK_DOT ){
1965         pColExpr = pColExpr->pRight;
1966         assert( pColExpr!=0 );
1967       }
1968       assert( pColExpr->op!=TK_AGG_COLUMN );
1969       if( pColExpr->op==TK_COLUMN ){
1970         /* For columns use the column name name */
1971         int iCol = pColExpr->iColumn;
1972         Table *pTab = pColExpr->pTab;
1973         assert( pTab!=0 );
1974         if( iCol<0 ) iCol = pTab->iPKey;
1975         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1976       }else if( pColExpr->op==TK_ID ){
1977         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1978         zName = pColExpr->u.zToken;
1979       }else{
1980         /* Use the original text of the column expression as its name */
1981         zName = pEList->a[i].zSpan;
1982       }
1983     }
1984     if( zName ){
1985       zName = sqlite3DbStrDup(db, zName);
1986     }else{
1987       zName = sqlite3MPrintf(db,"column%d",i+1);
1988     }
1989 
1990     /* Make sure the column name is unique.  If the name is not unique,
1991     ** append an integer to the name so that it becomes unique.
1992     */
1993     cnt = 0;
1994     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1995       nName = sqlite3Strlen30(zName);
1996       if( nName>0 ){
1997         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1998         if( zName[j]==':' ) nName = j;
1999       }
2000       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2001       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2002     }
2003     pCol->zName = zName;
2004     sqlite3ColumnPropertiesFromName(0, pCol);
2005     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2006       sqlite3OomFault(db);
2007     }
2008   }
2009   sqlite3HashClear(&ht);
2010   if( db->mallocFailed ){
2011     for(j=0; j<i; j++){
2012       sqlite3DbFree(db, aCol[j].zName);
2013     }
2014     sqlite3DbFree(db, aCol);
2015     *paCol = 0;
2016     *pnCol = 0;
2017     return SQLITE_NOMEM_BKPT;
2018   }
2019   return SQLITE_OK;
2020 }
2021 
2022 /*
2023 ** Add type and collation information to a column list based on
2024 ** a SELECT statement.
2025 **
2026 ** The column list presumably came from selectColumnNamesFromExprList().
2027 ** The column list has only names, not types or collations.  This
2028 ** routine goes through and adds the types and collations.
2029 **
2030 ** This routine requires that all identifiers in the SELECT
2031 ** statement be resolved.
2032 */
2033 void sqlite3SelectAddColumnTypeAndCollation(
2034   Parse *pParse,        /* Parsing contexts */
2035   Table *pTab,          /* Add column type information to this table */
2036   Select *pSelect       /* SELECT used to determine types and collations */
2037 ){
2038   sqlite3 *db = pParse->db;
2039   NameContext sNC;
2040   Column *pCol;
2041   CollSeq *pColl;
2042   int i;
2043   Expr *p;
2044   struct ExprList_item *a;
2045 
2046   assert( pSelect!=0 );
2047   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2048   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2049   if( db->mallocFailed ) return;
2050   memset(&sNC, 0, sizeof(sNC));
2051   sNC.pSrcList = pSelect->pSrc;
2052   a = pSelect->pEList->a;
2053   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2054     const char *zType;
2055     int n, m;
2056     p = a[i].pExpr;
2057     zType = columnType(&sNC, p, 0, 0, 0);
2058     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2059     pCol->affinity = sqlite3ExprAffinity(p);
2060     if( zType ){
2061       m = sqlite3Strlen30(zType);
2062       n = sqlite3Strlen30(pCol->zName);
2063       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2064       if( pCol->zName ){
2065         memcpy(&pCol->zName[n+1], zType, m+1);
2066         pCol->colFlags |= COLFLAG_HASTYPE;
2067       }
2068     }
2069     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2070     pColl = sqlite3ExprCollSeq(pParse, p);
2071     if( pColl && pCol->zColl==0 ){
2072       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2073     }
2074   }
2075   pTab->szTabRow = 1; /* Any non-zero value works */
2076 }
2077 
2078 /*
2079 ** Given a SELECT statement, generate a Table structure that describes
2080 ** the result set of that SELECT.
2081 */
2082 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2083   Table *pTab;
2084   sqlite3 *db = pParse->db;
2085   int savedFlags;
2086 
2087   savedFlags = db->flags;
2088   db->flags &= ~SQLITE_FullColNames;
2089   db->flags |= SQLITE_ShortColNames;
2090   sqlite3SelectPrep(pParse, pSelect, 0);
2091   if( pParse->nErr ) return 0;
2092   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2093   db->flags = savedFlags;
2094   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2095   if( pTab==0 ){
2096     return 0;
2097   }
2098   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2099   ** is disabled */
2100   assert( db->lookaside.bDisable );
2101   pTab->nTabRef = 1;
2102   pTab->zName = 0;
2103   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2104   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2105   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2106   pTab->iPKey = -1;
2107   if( db->mallocFailed ){
2108     sqlite3DeleteTable(db, pTab);
2109     return 0;
2110   }
2111   return pTab;
2112 }
2113 
2114 /*
2115 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2116 ** If an error occurs, return NULL and leave a message in pParse.
2117 */
2118 Vdbe *sqlite3GetVdbe(Parse *pParse){
2119   if( pParse->pVdbe ){
2120     return pParse->pVdbe;
2121   }
2122   if( pParse->pToplevel==0
2123    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2124   ){
2125     pParse->okConstFactor = 1;
2126   }
2127   return sqlite3VdbeCreate(pParse);
2128 }
2129 
2130 
2131 /*
2132 ** Compute the iLimit and iOffset fields of the SELECT based on the
2133 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2134 ** that appear in the original SQL statement after the LIMIT and OFFSET
2135 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2136 ** are the integer memory register numbers for counters used to compute
2137 ** the limit and offset.  If there is no limit and/or offset, then
2138 ** iLimit and iOffset are negative.
2139 **
2140 ** This routine changes the values of iLimit and iOffset only if
2141 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2142 ** and iOffset should have been preset to appropriate default values (zero)
2143 ** prior to calling this routine.
2144 **
2145 ** The iOffset register (if it exists) is initialized to the value
2146 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2147 ** iOffset+1 is initialized to LIMIT+OFFSET.
2148 **
2149 ** Only if pLimit->pLeft!=0 do the limit registers get
2150 ** redefined.  The UNION ALL operator uses this property to force
2151 ** the reuse of the same limit and offset registers across multiple
2152 ** SELECT statements.
2153 */
2154 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2155   Vdbe *v = 0;
2156   int iLimit = 0;
2157   int iOffset;
2158   int n;
2159   Expr *pLimit = p->pLimit;
2160 
2161   if( p->iLimit ) return;
2162 
2163   /*
2164   ** "LIMIT -1" always shows all rows.  There is some
2165   ** controversy about what the correct behavior should be.
2166   ** The current implementation interprets "LIMIT 0" to mean
2167   ** no rows.
2168   */
2169   sqlite3ExprCacheClear(pParse);
2170   if( pLimit ){
2171     assert( pLimit->op==TK_LIMIT );
2172     assert( pLimit->pLeft!=0 );
2173     p->iLimit = iLimit = ++pParse->nMem;
2174     v = sqlite3GetVdbe(pParse);
2175     assert( v!=0 );
2176     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2177       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2178       VdbeComment((v, "LIMIT counter"));
2179       if( n==0 ){
2180         sqlite3VdbeGoto(v, iBreak);
2181       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2182         p->nSelectRow = sqlite3LogEst((u64)n);
2183         p->selFlags |= SF_FixedLimit;
2184       }
2185     }else{
2186       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2187       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2188       VdbeComment((v, "LIMIT counter"));
2189       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2190     }
2191     if( pLimit->pRight ){
2192       p->iOffset = iOffset = ++pParse->nMem;
2193       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2194       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2195       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2196       VdbeComment((v, "OFFSET counter"));
2197       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2198       VdbeComment((v, "LIMIT+OFFSET"));
2199     }
2200   }
2201 }
2202 
2203 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2204 /*
2205 ** Return the appropriate collating sequence for the iCol-th column of
2206 ** the result set for the compound-select statement "p".  Return NULL if
2207 ** the column has no default collating sequence.
2208 **
2209 ** The collating sequence for the compound select is taken from the
2210 ** left-most term of the select that has a collating sequence.
2211 */
2212 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2213   CollSeq *pRet;
2214   if( p->pPrior ){
2215     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2216   }else{
2217     pRet = 0;
2218   }
2219   assert( iCol>=0 );
2220   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2221   ** have been thrown during name resolution and we would not have gotten
2222   ** this far */
2223   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2224     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2225   }
2226   return pRet;
2227 }
2228 
2229 /*
2230 ** The select statement passed as the second parameter is a compound SELECT
2231 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2232 ** structure suitable for implementing the ORDER BY.
2233 **
2234 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2235 ** function is responsible for ensuring that this structure is eventually
2236 ** freed.
2237 */
2238 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2239   ExprList *pOrderBy = p->pOrderBy;
2240   int nOrderBy = p->pOrderBy->nExpr;
2241   sqlite3 *db = pParse->db;
2242   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2243   if( pRet ){
2244     int i;
2245     for(i=0; i<nOrderBy; i++){
2246       struct ExprList_item *pItem = &pOrderBy->a[i];
2247       Expr *pTerm = pItem->pExpr;
2248       CollSeq *pColl;
2249 
2250       if( pTerm->flags & EP_Collate ){
2251         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2252       }else{
2253         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2254         if( pColl==0 ) pColl = db->pDfltColl;
2255         pOrderBy->a[i].pExpr =
2256           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2257       }
2258       assert( sqlite3KeyInfoIsWriteable(pRet) );
2259       pRet->aColl[i] = pColl;
2260       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2261     }
2262   }
2263 
2264   return pRet;
2265 }
2266 
2267 #ifndef SQLITE_OMIT_CTE
2268 /*
2269 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2270 ** query of the form:
2271 **
2272 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2273 **                         \___________/             \_______________/
2274 **                           p->pPrior                      p
2275 **
2276 **
2277 ** There is exactly one reference to the recursive-table in the FROM clause
2278 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2279 **
2280 ** The setup-query runs once to generate an initial set of rows that go
2281 ** into a Queue table.  Rows are extracted from the Queue table one by
2282 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2283 ** extracted row (now in the iCurrent table) becomes the content of the
2284 ** recursive-table for a recursive-query run.  The output of the recursive-query
2285 ** is added back into the Queue table.  Then another row is extracted from Queue
2286 ** and the iteration continues until the Queue table is empty.
2287 **
2288 ** If the compound query operator is UNION then no duplicate rows are ever
2289 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2290 ** that have ever been inserted into Queue and causes duplicates to be
2291 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2292 **
2293 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2294 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2295 ** an ORDER BY, the Queue table is just a FIFO.
2296 **
2297 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2298 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2299 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2300 ** with a positive value, then the first OFFSET outputs are discarded rather
2301 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2302 ** rows have been skipped.
2303 */
2304 static void generateWithRecursiveQuery(
2305   Parse *pParse,        /* Parsing context */
2306   Select *p,            /* The recursive SELECT to be coded */
2307   SelectDest *pDest     /* What to do with query results */
2308 ){
2309   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2310   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2311   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2312   Select *pSetup = p->pPrior;   /* The setup query */
2313   int addrTop;                  /* Top of the loop */
2314   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2315   int iCurrent = 0;             /* The Current table */
2316   int regCurrent;               /* Register holding Current table */
2317   int iQueue;                   /* The Queue table */
2318   int iDistinct = 0;            /* To ensure unique results if UNION */
2319   int eDest = SRT_Fifo;         /* How to write to Queue */
2320   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2321   int i;                        /* Loop counter */
2322   int rc;                       /* Result code */
2323   ExprList *pOrderBy;           /* The ORDER BY clause */
2324   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2325   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2326 
2327   /* Obtain authorization to do a recursive query */
2328   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2329 
2330   /* Process the LIMIT and OFFSET clauses, if they exist */
2331   addrBreak = sqlite3VdbeMakeLabel(v);
2332   p->nSelectRow = 320;  /* 4 billion rows */
2333   computeLimitRegisters(pParse, p, addrBreak);
2334   pLimit = p->pLimit;
2335   regLimit = p->iLimit;
2336   regOffset = p->iOffset;
2337   p->pLimit = 0;
2338   p->iLimit = p->iOffset = 0;
2339   pOrderBy = p->pOrderBy;
2340 
2341   /* Locate the cursor number of the Current table */
2342   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2343     if( pSrc->a[i].fg.isRecursive ){
2344       iCurrent = pSrc->a[i].iCursor;
2345       break;
2346     }
2347   }
2348 
2349   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2350   ** the Distinct table must be exactly one greater than Queue in order
2351   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2352   iQueue = pParse->nTab++;
2353   if( p->op==TK_UNION ){
2354     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2355     iDistinct = pParse->nTab++;
2356   }else{
2357     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2358   }
2359   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2360 
2361   /* Allocate cursors for Current, Queue, and Distinct. */
2362   regCurrent = ++pParse->nMem;
2363   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2364   if( pOrderBy ){
2365     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2366     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2367                       (char*)pKeyInfo, P4_KEYINFO);
2368     destQueue.pOrderBy = pOrderBy;
2369   }else{
2370     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2371   }
2372   VdbeComment((v, "Queue table"));
2373   if( iDistinct ){
2374     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2375     p->selFlags |= SF_UsesEphemeral;
2376   }
2377 
2378   /* Detach the ORDER BY clause from the compound SELECT */
2379   p->pOrderBy = 0;
2380 
2381   /* Store the results of the setup-query in Queue. */
2382   pSetup->pNext = 0;
2383   ExplainQueryPlan((pParse, 1, "SETUP"));
2384   rc = sqlite3Select(pParse, pSetup, &destQueue);
2385   pSetup->pNext = p;
2386   if( rc ) goto end_of_recursive_query;
2387 
2388   /* Find the next row in the Queue and output that row */
2389   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2390 
2391   /* Transfer the next row in Queue over to Current */
2392   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2393   if( pOrderBy ){
2394     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2395   }else{
2396     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2397   }
2398   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2399 
2400   /* Output the single row in Current */
2401   addrCont = sqlite3VdbeMakeLabel(v);
2402   codeOffset(v, regOffset, addrCont);
2403   selectInnerLoop(pParse, p, iCurrent,
2404       0, 0, pDest, addrCont, addrBreak);
2405   if( regLimit ){
2406     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2407     VdbeCoverage(v);
2408   }
2409   sqlite3VdbeResolveLabel(v, addrCont);
2410 
2411   /* Execute the recursive SELECT taking the single row in Current as
2412   ** the value for the recursive-table. Store the results in the Queue.
2413   */
2414   if( p->selFlags & SF_Aggregate ){
2415     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2416   }else{
2417     p->pPrior = 0;
2418     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2419     sqlite3Select(pParse, p, &destQueue);
2420     assert( p->pPrior==0 );
2421     p->pPrior = pSetup;
2422   }
2423 
2424   /* Keep running the loop until the Queue is empty */
2425   sqlite3VdbeGoto(v, addrTop);
2426   sqlite3VdbeResolveLabel(v, addrBreak);
2427 
2428 end_of_recursive_query:
2429   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2430   p->pOrderBy = pOrderBy;
2431   p->pLimit = pLimit;
2432   return;
2433 }
2434 #endif /* SQLITE_OMIT_CTE */
2435 
2436 /* Forward references */
2437 static int multiSelectOrderBy(
2438   Parse *pParse,        /* Parsing context */
2439   Select *p,            /* The right-most of SELECTs to be coded */
2440   SelectDest *pDest     /* What to do with query results */
2441 );
2442 
2443 /*
2444 ** Handle the special case of a compound-select that originates from a
2445 ** VALUES clause.  By handling this as a special case, we avoid deep
2446 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2447 ** on a VALUES clause.
2448 **
2449 ** Because the Select object originates from a VALUES clause:
2450 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2451 **   (2) All terms are UNION ALL
2452 **   (3) There is no ORDER BY clause
2453 **
2454 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2455 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2456 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2457 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2458 */
2459 static int multiSelectValues(
2460   Parse *pParse,        /* Parsing context */
2461   Select *p,            /* The right-most of SELECTs to be coded */
2462   SelectDest *pDest     /* What to do with query results */
2463 ){
2464   int nRow = 1;
2465   int rc = 0;
2466   int bShowAll = p->pLimit==0;
2467   assert( p->selFlags & SF_MultiValue );
2468   do{
2469     assert( p->selFlags & SF_Values );
2470     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2471     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2472     if( p->pPrior==0 ) break;
2473     assert( p->pPrior->pNext==p );
2474     p = p->pPrior;
2475     nRow += bShowAll;
2476   }while(1);
2477   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2478                     nRow==1 ? "" : "S"));
2479   while( p ){
2480     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2481     if( !bShowAll ) break;
2482     p->nSelectRow = nRow;
2483     p = p->pNext;
2484   }
2485   return rc;
2486 }
2487 
2488 /*
2489 ** This routine is called to process a compound query form from
2490 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2491 ** INTERSECT
2492 **
2493 ** "p" points to the right-most of the two queries.  the query on the
2494 ** left is p->pPrior.  The left query could also be a compound query
2495 ** in which case this routine will be called recursively.
2496 **
2497 ** The results of the total query are to be written into a destination
2498 ** of type eDest with parameter iParm.
2499 **
2500 ** Example 1:  Consider a three-way compound SQL statement.
2501 **
2502 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2503 **
2504 ** This statement is parsed up as follows:
2505 **
2506 **     SELECT c FROM t3
2507 **      |
2508 **      `----->  SELECT b FROM t2
2509 **                |
2510 **                `------>  SELECT a FROM t1
2511 **
2512 ** The arrows in the diagram above represent the Select.pPrior pointer.
2513 ** So if this routine is called with p equal to the t3 query, then
2514 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2515 **
2516 ** Notice that because of the way SQLite parses compound SELECTs, the
2517 ** individual selects always group from left to right.
2518 */
2519 static int multiSelect(
2520   Parse *pParse,        /* Parsing context */
2521   Select *p,            /* The right-most of SELECTs to be coded */
2522   SelectDest *pDest     /* What to do with query results */
2523 ){
2524   int rc = SQLITE_OK;   /* Success code from a subroutine */
2525   Select *pPrior;       /* Another SELECT immediately to our left */
2526   Vdbe *v;              /* Generate code to this VDBE */
2527   SelectDest dest;      /* Alternative data destination */
2528   Select *pDelete = 0;  /* Chain of simple selects to delete */
2529   sqlite3 *db;          /* Database connection */
2530 
2531   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2532   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2533   */
2534   assert( p && p->pPrior );  /* Calling function guarantees this much */
2535   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2536   db = pParse->db;
2537   pPrior = p->pPrior;
2538   dest = *pDest;
2539   if( pPrior->pOrderBy || pPrior->pLimit ){
2540     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2541       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2542     rc = 1;
2543     goto multi_select_end;
2544   }
2545 
2546   v = sqlite3GetVdbe(pParse);
2547   assert( v!=0 );  /* The VDBE already created by calling function */
2548 
2549   /* Create the destination temporary table if necessary
2550   */
2551   if( dest.eDest==SRT_EphemTab ){
2552     assert( p->pEList );
2553     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2554     dest.eDest = SRT_Table;
2555   }
2556 
2557   /* Special handling for a compound-select that originates as a VALUES clause.
2558   */
2559   if( p->selFlags & SF_MultiValue ){
2560     rc = multiSelectValues(pParse, p, &dest);
2561     goto multi_select_end;
2562   }
2563 
2564   /* Make sure all SELECTs in the statement have the same number of elements
2565   ** in their result sets.
2566   */
2567   assert( p->pEList && pPrior->pEList );
2568   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2569 
2570 #ifndef SQLITE_OMIT_CTE
2571   if( p->selFlags & SF_Recursive ){
2572     generateWithRecursiveQuery(pParse, p, &dest);
2573   }else
2574 #endif
2575 
2576   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2577   */
2578   if( p->pOrderBy ){
2579     return multiSelectOrderBy(pParse, p, pDest);
2580   }else{
2581 
2582 #ifndef SQLITE_OMIT_EXPLAIN
2583     if( pPrior->pPrior==0 ){
2584       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2585       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2586     }
2587 #endif
2588 
2589     /* Generate code for the left and right SELECT statements.
2590     */
2591     switch( p->op ){
2592       case TK_ALL: {
2593         int addr = 0;
2594         int nLimit;
2595         assert( !pPrior->pLimit );
2596         pPrior->iLimit = p->iLimit;
2597         pPrior->iOffset = p->iOffset;
2598         pPrior->pLimit = p->pLimit;
2599         rc = sqlite3Select(pParse, pPrior, &dest);
2600         p->pLimit = 0;
2601         if( rc ){
2602           goto multi_select_end;
2603         }
2604         p->pPrior = 0;
2605         p->iLimit = pPrior->iLimit;
2606         p->iOffset = pPrior->iOffset;
2607         if( p->iLimit ){
2608           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2609           VdbeComment((v, "Jump ahead if LIMIT reached"));
2610           if( p->iOffset ){
2611             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2612                               p->iLimit, p->iOffset+1, p->iOffset);
2613           }
2614         }
2615         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2616         rc = sqlite3Select(pParse, p, &dest);
2617         testcase( rc!=SQLITE_OK );
2618         pDelete = p->pPrior;
2619         p->pPrior = pPrior;
2620         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2621         if( pPrior->pLimit
2622          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2623          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2624         ){
2625           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2626         }
2627         if( addr ){
2628           sqlite3VdbeJumpHere(v, addr);
2629         }
2630         break;
2631       }
2632       case TK_EXCEPT:
2633       case TK_UNION: {
2634         int unionTab;    /* Cursor number of the temp table holding result */
2635         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2636         int priorOp;     /* The SRT_ operation to apply to prior selects */
2637         Expr *pLimit;    /* Saved values of p->nLimit  */
2638         int addr;
2639         SelectDest uniondest;
2640 
2641         testcase( p->op==TK_EXCEPT );
2642         testcase( p->op==TK_UNION );
2643         priorOp = SRT_Union;
2644         if( dest.eDest==priorOp ){
2645           /* We can reuse a temporary table generated by a SELECT to our
2646           ** right.
2647           */
2648           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2649           unionTab = dest.iSDParm;
2650         }else{
2651           /* We will need to create our own temporary table to hold the
2652           ** intermediate results.
2653           */
2654           unionTab = pParse->nTab++;
2655           assert( p->pOrderBy==0 );
2656           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2657           assert( p->addrOpenEphm[0] == -1 );
2658           p->addrOpenEphm[0] = addr;
2659           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2660           assert( p->pEList );
2661         }
2662 
2663         /* Code the SELECT statements to our left
2664         */
2665         assert( !pPrior->pOrderBy );
2666         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2667         rc = sqlite3Select(pParse, pPrior, &uniondest);
2668         if( rc ){
2669           goto multi_select_end;
2670         }
2671 
2672         /* Code the current SELECT statement
2673         */
2674         if( p->op==TK_EXCEPT ){
2675           op = SRT_Except;
2676         }else{
2677           assert( p->op==TK_UNION );
2678           op = SRT_Union;
2679         }
2680         p->pPrior = 0;
2681         pLimit = p->pLimit;
2682         p->pLimit = 0;
2683         uniondest.eDest = op;
2684         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2685                           selectOpName(p->op)));
2686         rc = sqlite3Select(pParse, p, &uniondest);
2687         testcase( rc!=SQLITE_OK );
2688         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2689         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2690         sqlite3ExprListDelete(db, p->pOrderBy);
2691         pDelete = p->pPrior;
2692         p->pPrior = pPrior;
2693         p->pOrderBy = 0;
2694         if( p->op==TK_UNION ){
2695           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2696         }
2697         sqlite3ExprDelete(db, p->pLimit);
2698         p->pLimit = pLimit;
2699         p->iLimit = 0;
2700         p->iOffset = 0;
2701 
2702         /* Convert the data in the temporary table into whatever form
2703         ** it is that we currently need.
2704         */
2705         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2706         if( dest.eDest!=priorOp ){
2707           int iCont, iBreak, iStart;
2708           assert( p->pEList );
2709           iBreak = sqlite3VdbeMakeLabel(v);
2710           iCont = sqlite3VdbeMakeLabel(v);
2711           computeLimitRegisters(pParse, p, iBreak);
2712           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2713           iStart = sqlite3VdbeCurrentAddr(v);
2714           selectInnerLoop(pParse, p, unionTab,
2715                           0, 0, &dest, iCont, iBreak);
2716           sqlite3VdbeResolveLabel(v, iCont);
2717           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2718           sqlite3VdbeResolveLabel(v, iBreak);
2719           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2720         }
2721         break;
2722       }
2723       default: assert( p->op==TK_INTERSECT ); {
2724         int tab1, tab2;
2725         int iCont, iBreak, iStart;
2726         Expr *pLimit;
2727         int addr;
2728         SelectDest intersectdest;
2729         int r1;
2730 
2731         /* INTERSECT is different from the others since it requires
2732         ** two temporary tables.  Hence it has its own case.  Begin
2733         ** by allocating the tables we will need.
2734         */
2735         tab1 = pParse->nTab++;
2736         tab2 = pParse->nTab++;
2737         assert( p->pOrderBy==0 );
2738 
2739         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2740         assert( p->addrOpenEphm[0] == -1 );
2741         p->addrOpenEphm[0] = addr;
2742         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2743         assert( p->pEList );
2744 
2745         /* Code the SELECTs to our left into temporary table "tab1".
2746         */
2747         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2748         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2749         if( rc ){
2750           goto multi_select_end;
2751         }
2752 
2753         /* Code the current SELECT into temporary table "tab2"
2754         */
2755         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2756         assert( p->addrOpenEphm[1] == -1 );
2757         p->addrOpenEphm[1] = addr;
2758         p->pPrior = 0;
2759         pLimit = p->pLimit;
2760         p->pLimit = 0;
2761         intersectdest.iSDParm = tab2;
2762         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2763                           selectOpName(p->op)));
2764         rc = sqlite3Select(pParse, p, &intersectdest);
2765         testcase( rc!=SQLITE_OK );
2766         pDelete = p->pPrior;
2767         p->pPrior = pPrior;
2768         if( p->nSelectRow>pPrior->nSelectRow ){
2769           p->nSelectRow = pPrior->nSelectRow;
2770         }
2771         sqlite3ExprDelete(db, p->pLimit);
2772         p->pLimit = pLimit;
2773 
2774         /* Generate code to take the intersection of the two temporary
2775         ** tables.
2776         */
2777         assert( p->pEList );
2778         iBreak = sqlite3VdbeMakeLabel(v);
2779         iCont = sqlite3VdbeMakeLabel(v);
2780         computeLimitRegisters(pParse, p, iBreak);
2781         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2782         r1 = sqlite3GetTempReg(pParse);
2783         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2784         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2785         VdbeCoverage(v);
2786         sqlite3ReleaseTempReg(pParse, r1);
2787         selectInnerLoop(pParse, p, tab1,
2788                         0, 0, &dest, iCont, iBreak);
2789         sqlite3VdbeResolveLabel(v, iCont);
2790         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2791         sqlite3VdbeResolveLabel(v, iBreak);
2792         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2793         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2794         break;
2795       }
2796     }
2797 
2798   #ifndef SQLITE_OMIT_EXPLAIN
2799     if( p->pNext==0 ){
2800       ExplainQueryPlanPop(pParse);
2801     }
2802   #endif
2803   }
2804 
2805   /* Compute collating sequences used by
2806   ** temporary tables needed to implement the compound select.
2807   ** Attach the KeyInfo structure to all temporary tables.
2808   **
2809   ** This section is run by the right-most SELECT statement only.
2810   ** SELECT statements to the left always skip this part.  The right-most
2811   ** SELECT might also skip this part if it has no ORDER BY clause and
2812   ** no temp tables are required.
2813   */
2814   if( p->selFlags & SF_UsesEphemeral ){
2815     int i;                        /* Loop counter */
2816     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2817     Select *pLoop;                /* For looping through SELECT statements */
2818     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2819     int nCol;                     /* Number of columns in result set */
2820 
2821     assert( p->pNext==0 );
2822     nCol = p->pEList->nExpr;
2823     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2824     if( !pKeyInfo ){
2825       rc = SQLITE_NOMEM_BKPT;
2826       goto multi_select_end;
2827     }
2828     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2829       *apColl = multiSelectCollSeq(pParse, p, i);
2830       if( 0==*apColl ){
2831         *apColl = db->pDfltColl;
2832       }
2833     }
2834 
2835     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2836       for(i=0; i<2; i++){
2837         int addr = pLoop->addrOpenEphm[i];
2838         if( addr<0 ){
2839           /* If [0] is unused then [1] is also unused.  So we can
2840           ** always safely abort as soon as the first unused slot is found */
2841           assert( pLoop->addrOpenEphm[1]<0 );
2842           break;
2843         }
2844         sqlite3VdbeChangeP2(v, addr, nCol);
2845         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2846                             P4_KEYINFO);
2847         pLoop->addrOpenEphm[i] = -1;
2848       }
2849     }
2850     sqlite3KeyInfoUnref(pKeyInfo);
2851   }
2852 
2853 multi_select_end:
2854   pDest->iSdst = dest.iSdst;
2855   pDest->nSdst = dest.nSdst;
2856   sqlite3SelectDelete(db, pDelete);
2857   return rc;
2858 }
2859 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2860 
2861 /*
2862 ** Error message for when two or more terms of a compound select have different
2863 ** size result sets.
2864 */
2865 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2866   if( p->selFlags & SF_Values ){
2867     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2868   }else{
2869     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2870       " do not have the same number of result columns", selectOpName(p->op));
2871   }
2872 }
2873 
2874 /*
2875 ** Code an output subroutine for a coroutine implementation of a
2876 ** SELECT statment.
2877 **
2878 ** The data to be output is contained in pIn->iSdst.  There are
2879 ** pIn->nSdst columns to be output.  pDest is where the output should
2880 ** be sent.
2881 **
2882 ** regReturn is the number of the register holding the subroutine
2883 ** return address.
2884 **
2885 ** If regPrev>0 then it is the first register in a vector that
2886 ** records the previous output.  mem[regPrev] is a flag that is false
2887 ** if there has been no previous output.  If regPrev>0 then code is
2888 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2889 ** keys.
2890 **
2891 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2892 ** iBreak.
2893 */
2894 static int generateOutputSubroutine(
2895   Parse *pParse,          /* Parsing context */
2896   Select *p,              /* The SELECT statement */
2897   SelectDest *pIn,        /* Coroutine supplying data */
2898   SelectDest *pDest,      /* Where to send the data */
2899   int regReturn,          /* The return address register */
2900   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2901   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2902   int iBreak              /* Jump here if we hit the LIMIT */
2903 ){
2904   Vdbe *v = pParse->pVdbe;
2905   int iContinue;
2906   int addr;
2907 
2908   addr = sqlite3VdbeCurrentAddr(v);
2909   iContinue = sqlite3VdbeMakeLabel(v);
2910 
2911   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2912   */
2913   if( regPrev ){
2914     int addr1, addr2;
2915     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2916     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2917                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2918     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2919     sqlite3VdbeJumpHere(v, addr1);
2920     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2921     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2922   }
2923   if( pParse->db->mallocFailed ) return 0;
2924 
2925   /* Suppress the first OFFSET entries if there is an OFFSET clause
2926   */
2927   codeOffset(v, p->iOffset, iContinue);
2928 
2929   assert( pDest->eDest!=SRT_Exists );
2930   assert( pDest->eDest!=SRT_Table );
2931   switch( pDest->eDest ){
2932     /* Store the result as data using a unique key.
2933     */
2934     case SRT_EphemTab: {
2935       int r1 = sqlite3GetTempReg(pParse);
2936       int r2 = sqlite3GetTempReg(pParse);
2937       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2938       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2939       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2940       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2941       sqlite3ReleaseTempReg(pParse, r2);
2942       sqlite3ReleaseTempReg(pParse, r1);
2943       break;
2944     }
2945 
2946 #ifndef SQLITE_OMIT_SUBQUERY
2947     /* If we are creating a set for an "expr IN (SELECT ...)".
2948     */
2949     case SRT_Set: {
2950       int r1;
2951       testcase( pIn->nSdst>1 );
2952       r1 = sqlite3GetTempReg(pParse);
2953       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2954           r1, pDest->zAffSdst, pIn->nSdst);
2955       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2956       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2957                            pIn->iSdst, pIn->nSdst);
2958       sqlite3ReleaseTempReg(pParse, r1);
2959       break;
2960     }
2961 
2962     /* If this is a scalar select that is part of an expression, then
2963     ** store the results in the appropriate memory cell and break out
2964     ** of the scan loop.
2965     */
2966     case SRT_Mem: {
2967       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2968       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2969       /* The LIMIT clause will jump out of the loop for us */
2970       break;
2971     }
2972 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2973 
2974     /* The results are stored in a sequence of registers
2975     ** starting at pDest->iSdst.  Then the co-routine yields.
2976     */
2977     case SRT_Coroutine: {
2978       if( pDest->iSdst==0 ){
2979         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2980         pDest->nSdst = pIn->nSdst;
2981       }
2982       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2983       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2984       break;
2985     }
2986 
2987     /* If none of the above, then the result destination must be
2988     ** SRT_Output.  This routine is never called with any other
2989     ** destination other than the ones handled above or SRT_Output.
2990     **
2991     ** For SRT_Output, results are stored in a sequence of registers.
2992     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2993     ** return the next row of result.
2994     */
2995     default: {
2996       assert( pDest->eDest==SRT_Output );
2997       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2998       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2999       break;
3000     }
3001   }
3002 
3003   /* Jump to the end of the loop if the LIMIT is reached.
3004   */
3005   if( p->iLimit ){
3006     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3007   }
3008 
3009   /* Generate the subroutine return
3010   */
3011   sqlite3VdbeResolveLabel(v, iContinue);
3012   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3013 
3014   return addr;
3015 }
3016 
3017 /*
3018 ** Alternative compound select code generator for cases when there
3019 ** is an ORDER BY clause.
3020 **
3021 ** We assume a query of the following form:
3022 **
3023 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3024 **
3025 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3026 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3027 ** co-routines.  Then run the co-routines in parallel and merge the results
3028 ** into the output.  In addition to the two coroutines (called selectA and
3029 ** selectB) there are 7 subroutines:
3030 **
3031 **    outA:    Move the output of the selectA coroutine into the output
3032 **             of the compound query.
3033 **
3034 **    outB:    Move the output of the selectB coroutine into the output
3035 **             of the compound query.  (Only generated for UNION and
3036 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3037 **             appears only in B.)
3038 **
3039 **    AltB:    Called when there is data from both coroutines and A<B.
3040 **
3041 **    AeqB:    Called when there is data from both coroutines and A==B.
3042 **
3043 **    AgtB:    Called when there is data from both coroutines and A>B.
3044 **
3045 **    EofA:    Called when data is exhausted from selectA.
3046 **
3047 **    EofB:    Called when data is exhausted from selectB.
3048 **
3049 ** The implementation of the latter five subroutines depend on which
3050 ** <operator> is used:
3051 **
3052 **
3053 **             UNION ALL         UNION            EXCEPT          INTERSECT
3054 **          -------------  -----------------  --------------  -----------------
3055 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3056 **
3057 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3058 **
3059 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3060 **
3061 **   EofA:   outB, nextB      outB, nextB          halt             halt
3062 **
3063 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3064 **
3065 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3066 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3067 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3068 ** following nextX causes a jump to the end of the select processing.
3069 **
3070 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3071 ** within the output subroutine.  The regPrev register set holds the previously
3072 ** output value.  A comparison is made against this value and the output
3073 ** is skipped if the next results would be the same as the previous.
3074 **
3075 ** The implementation plan is to implement the two coroutines and seven
3076 ** subroutines first, then put the control logic at the bottom.  Like this:
3077 **
3078 **          goto Init
3079 **     coA: coroutine for left query (A)
3080 **     coB: coroutine for right query (B)
3081 **    outA: output one row of A
3082 **    outB: output one row of B (UNION and UNION ALL only)
3083 **    EofA: ...
3084 **    EofB: ...
3085 **    AltB: ...
3086 **    AeqB: ...
3087 **    AgtB: ...
3088 **    Init: initialize coroutine registers
3089 **          yield coA
3090 **          if eof(A) goto EofA
3091 **          yield coB
3092 **          if eof(B) goto EofB
3093 **    Cmpr: Compare A, B
3094 **          Jump AltB, AeqB, AgtB
3095 **     End: ...
3096 **
3097 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3098 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3099 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3100 ** and AgtB jump to either L2 or to one of EofA or EofB.
3101 */
3102 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3103 static int multiSelectOrderBy(
3104   Parse *pParse,        /* Parsing context */
3105   Select *p,            /* The right-most of SELECTs to be coded */
3106   SelectDest *pDest     /* What to do with query results */
3107 ){
3108   int i, j;             /* Loop counters */
3109   Select *pPrior;       /* Another SELECT immediately to our left */
3110   Vdbe *v;              /* Generate code to this VDBE */
3111   SelectDest destA;     /* Destination for coroutine A */
3112   SelectDest destB;     /* Destination for coroutine B */
3113   int regAddrA;         /* Address register for select-A coroutine */
3114   int regAddrB;         /* Address register for select-B coroutine */
3115   int addrSelectA;      /* Address of the select-A coroutine */
3116   int addrSelectB;      /* Address of the select-B coroutine */
3117   int regOutA;          /* Address register for the output-A subroutine */
3118   int regOutB;          /* Address register for the output-B subroutine */
3119   int addrOutA;         /* Address of the output-A subroutine */
3120   int addrOutB = 0;     /* Address of the output-B subroutine */
3121   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3122   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3123   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3124   int addrAltB;         /* Address of the A<B subroutine */
3125   int addrAeqB;         /* Address of the A==B subroutine */
3126   int addrAgtB;         /* Address of the A>B subroutine */
3127   int regLimitA;        /* Limit register for select-A */
3128   int regLimitB;        /* Limit register for select-A */
3129   int regPrev;          /* A range of registers to hold previous output */
3130   int savedLimit;       /* Saved value of p->iLimit */
3131   int savedOffset;      /* Saved value of p->iOffset */
3132   int labelCmpr;        /* Label for the start of the merge algorithm */
3133   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3134   int addr1;            /* Jump instructions that get retargetted */
3135   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3136   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3137   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3138   sqlite3 *db;          /* Database connection */
3139   ExprList *pOrderBy;   /* The ORDER BY clause */
3140   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3141   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3142 
3143   assert( p->pOrderBy!=0 );
3144   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3145   db = pParse->db;
3146   v = pParse->pVdbe;
3147   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3148   labelEnd = sqlite3VdbeMakeLabel(v);
3149   labelCmpr = sqlite3VdbeMakeLabel(v);
3150 
3151 
3152   /* Patch up the ORDER BY clause
3153   */
3154   op = p->op;
3155   pPrior = p->pPrior;
3156   assert( pPrior->pOrderBy==0 );
3157   pOrderBy = p->pOrderBy;
3158   assert( pOrderBy );
3159   nOrderBy = pOrderBy->nExpr;
3160 
3161   /* For operators other than UNION ALL we have to make sure that
3162   ** the ORDER BY clause covers every term of the result set.  Add
3163   ** terms to the ORDER BY clause as necessary.
3164   */
3165   if( op!=TK_ALL ){
3166     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3167       struct ExprList_item *pItem;
3168       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3169         assert( pItem->u.x.iOrderByCol>0 );
3170         if( pItem->u.x.iOrderByCol==i ) break;
3171       }
3172       if( j==nOrderBy ){
3173         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3174         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3175         pNew->flags |= EP_IntValue;
3176         pNew->u.iValue = i;
3177         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3178         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3179       }
3180     }
3181   }
3182 
3183   /* Compute the comparison permutation and keyinfo that is used with
3184   ** the permutation used to determine if the next
3185   ** row of results comes from selectA or selectB.  Also add explicit
3186   ** collations to the ORDER BY clause terms so that when the subqueries
3187   ** to the right and the left are evaluated, they use the correct
3188   ** collation.
3189   */
3190   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3191   if( aPermute ){
3192     struct ExprList_item *pItem;
3193     aPermute[0] = nOrderBy;
3194     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3195       assert( pItem->u.x.iOrderByCol>0 );
3196       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3197       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3198     }
3199     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3200   }else{
3201     pKeyMerge = 0;
3202   }
3203 
3204   /* Reattach the ORDER BY clause to the query.
3205   */
3206   p->pOrderBy = pOrderBy;
3207   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3208 
3209   /* Allocate a range of temporary registers and the KeyInfo needed
3210   ** for the logic that removes duplicate result rows when the
3211   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3212   */
3213   if( op==TK_ALL ){
3214     regPrev = 0;
3215   }else{
3216     int nExpr = p->pEList->nExpr;
3217     assert( nOrderBy>=nExpr || db->mallocFailed );
3218     regPrev = pParse->nMem+1;
3219     pParse->nMem += nExpr+1;
3220     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3221     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3222     if( pKeyDup ){
3223       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3224       for(i=0; i<nExpr; i++){
3225         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3226         pKeyDup->aSortOrder[i] = 0;
3227       }
3228     }
3229   }
3230 
3231   /* Separate the left and the right query from one another
3232   */
3233   p->pPrior = 0;
3234   pPrior->pNext = 0;
3235   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3236   if( pPrior->pPrior==0 ){
3237     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3238   }
3239 
3240   /* Compute the limit registers */
3241   computeLimitRegisters(pParse, p, labelEnd);
3242   if( p->iLimit && op==TK_ALL ){
3243     regLimitA = ++pParse->nMem;
3244     regLimitB = ++pParse->nMem;
3245     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3246                                   regLimitA);
3247     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3248   }else{
3249     regLimitA = regLimitB = 0;
3250   }
3251   sqlite3ExprDelete(db, p->pLimit);
3252   p->pLimit = 0;
3253 
3254   regAddrA = ++pParse->nMem;
3255   regAddrB = ++pParse->nMem;
3256   regOutA = ++pParse->nMem;
3257   regOutB = ++pParse->nMem;
3258   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3259   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3260 
3261   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3262 
3263   /* Generate a coroutine to evaluate the SELECT statement to the
3264   ** left of the compound operator - the "A" select.
3265   */
3266   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3267   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3268   VdbeComment((v, "left SELECT"));
3269   pPrior->iLimit = regLimitA;
3270   ExplainQueryPlan((pParse, 1, "LEFT"));
3271   sqlite3Select(pParse, pPrior, &destA);
3272   sqlite3VdbeEndCoroutine(v, regAddrA);
3273   sqlite3VdbeJumpHere(v, addr1);
3274 
3275   /* Generate a coroutine to evaluate the SELECT statement on
3276   ** the right - the "B" select
3277   */
3278   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3279   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3280   VdbeComment((v, "right SELECT"));
3281   savedLimit = p->iLimit;
3282   savedOffset = p->iOffset;
3283   p->iLimit = regLimitB;
3284   p->iOffset = 0;
3285   ExplainQueryPlan((pParse, 1, "RIGHT"));
3286   sqlite3Select(pParse, p, &destB);
3287   p->iLimit = savedLimit;
3288   p->iOffset = savedOffset;
3289   sqlite3VdbeEndCoroutine(v, regAddrB);
3290 
3291   /* Generate a subroutine that outputs the current row of the A
3292   ** select as the next output row of the compound select.
3293   */
3294   VdbeNoopComment((v, "Output routine for A"));
3295   addrOutA = generateOutputSubroutine(pParse,
3296                  p, &destA, pDest, regOutA,
3297                  regPrev, pKeyDup, labelEnd);
3298 
3299   /* Generate a subroutine that outputs the current row of the B
3300   ** select as the next output row of the compound select.
3301   */
3302   if( op==TK_ALL || op==TK_UNION ){
3303     VdbeNoopComment((v, "Output routine for B"));
3304     addrOutB = generateOutputSubroutine(pParse,
3305                  p, &destB, pDest, regOutB,
3306                  regPrev, pKeyDup, labelEnd);
3307   }
3308   sqlite3KeyInfoUnref(pKeyDup);
3309 
3310   /* Generate a subroutine to run when the results from select A
3311   ** are exhausted and only data in select B remains.
3312   */
3313   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3314     addrEofA_noB = addrEofA = labelEnd;
3315   }else{
3316     VdbeNoopComment((v, "eof-A subroutine"));
3317     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3318     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3319                                      VdbeCoverage(v);
3320     sqlite3VdbeGoto(v, addrEofA);
3321     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3322   }
3323 
3324   /* Generate a subroutine to run when the results from select B
3325   ** are exhausted and only data in select A remains.
3326   */
3327   if( op==TK_INTERSECT ){
3328     addrEofB = addrEofA;
3329     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3330   }else{
3331     VdbeNoopComment((v, "eof-B subroutine"));
3332     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3333     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3334     sqlite3VdbeGoto(v, addrEofB);
3335   }
3336 
3337   /* Generate code to handle the case of A<B
3338   */
3339   VdbeNoopComment((v, "A-lt-B subroutine"));
3340   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3341   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3342   sqlite3VdbeGoto(v, labelCmpr);
3343 
3344   /* Generate code to handle the case of A==B
3345   */
3346   if( op==TK_ALL ){
3347     addrAeqB = addrAltB;
3348   }else if( op==TK_INTERSECT ){
3349     addrAeqB = addrAltB;
3350     addrAltB++;
3351   }else{
3352     VdbeNoopComment((v, "A-eq-B subroutine"));
3353     addrAeqB =
3354     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3355     sqlite3VdbeGoto(v, labelCmpr);
3356   }
3357 
3358   /* Generate code to handle the case of A>B
3359   */
3360   VdbeNoopComment((v, "A-gt-B subroutine"));
3361   addrAgtB = sqlite3VdbeCurrentAddr(v);
3362   if( op==TK_ALL || op==TK_UNION ){
3363     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3364   }
3365   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3366   sqlite3VdbeGoto(v, labelCmpr);
3367 
3368   /* This code runs once to initialize everything.
3369   */
3370   sqlite3VdbeJumpHere(v, addr1);
3371   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3372   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3373 
3374   /* Implement the main merge loop
3375   */
3376   sqlite3VdbeResolveLabel(v, labelCmpr);
3377   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3378   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3379                          (char*)pKeyMerge, P4_KEYINFO);
3380   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3381   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3382 
3383   /* Jump to the this point in order to terminate the query.
3384   */
3385   sqlite3VdbeResolveLabel(v, labelEnd);
3386 
3387   /* Reassembly the compound query so that it will be freed correctly
3388   ** by the calling function */
3389   if( p->pPrior ){
3390     sqlite3SelectDelete(db, p->pPrior);
3391   }
3392   p->pPrior = pPrior;
3393   pPrior->pNext = p;
3394 
3395   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3396   **** subqueries ****/
3397   ExplainQueryPlanPop(pParse);
3398   return pParse->nErr!=0;
3399 }
3400 #endif
3401 
3402 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3403 
3404 /* An instance of the SubstContext object describes an substitution edit
3405 ** to be performed on a parse tree.
3406 **
3407 ** All references to columns in table iTable are to be replaced by corresponding
3408 ** expressions in pEList.
3409 */
3410 typedef struct SubstContext {
3411   Parse *pParse;            /* The parsing context */
3412   int iTable;               /* Replace references to this table */
3413   int iNewTable;            /* New table number */
3414   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3415   ExprList *pEList;         /* Replacement expressions */
3416 } SubstContext;
3417 
3418 /* Forward Declarations */
3419 static void substExprList(SubstContext*, ExprList*);
3420 static void substSelect(SubstContext*, Select*, int);
3421 
3422 /*
3423 ** Scan through the expression pExpr.  Replace every reference to
3424 ** a column in table number iTable with a copy of the iColumn-th
3425 ** entry in pEList.  (But leave references to the ROWID column
3426 ** unchanged.)
3427 **
3428 ** This routine is part of the flattening procedure.  A subquery
3429 ** whose result set is defined by pEList appears as entry in the
3430 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3431 ** FORM clause entry is iTable.  This routine makes the necessary
3432 ** changes to pExpr so that it refers directly to the source table
3433 ** of the subquery rather the result set of the subquery.
3434 */
3435 static Expr *substExpr(
3436   SubstContext *pSubst,  /* Description of the substitution */
3437   Expr *pExpr            /* Expr in which substitution occurs */
3438 ){
3439   if( pExpr==0 ) return 0;
3440   if( ExprHasProperty(pExpr, EP_FromJoin)
3441    && pExpr->iRightJoinTable==pSubst->iTable
3442   ){
3443     pExpr->iRightJoinTable = pSubst->iNewTable;
3444   }
3445   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3446     if( pExpr->iColumn<0 ){
3447       pExpr->op = TK_NULL;
3448     }else{
3449       Expr *pNew;
3450       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3451       Expr ifNullRow;
3452       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3453       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3454       if( sqlite3ExprIsVector(pCopy) ){
3455         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3456       }else{
3457         sqlite3 *db = pSubst->pParse->db;
3458         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3459           memset(&ifNullRow, 0, sizeof(ifNullRow));
3460           ifNullRow.op = TK_IF_NULL_ROW;
3461           ifNullRow.pLeft = pCopy;
3462           ifNullRow.iTable = pSubst->iNewTable;
3463           pCopy = &ifNullRow;
3464         }
3465         pNew = sqlite3ExprDup(db, pCopy, 0);
3466         if( pNew && pSubst->isLeftJoin ){
3467           ExprSetProperty(pNew, EP_CanBeNull);
3468         }
3469         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3470           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3471           ExprSetProperty(pNew, EP_FromJoin);
3472         }
3473         sqlite3ExprDelete(db, pExpr);
3474         pExpr = pNew;
3475       }
3476     }
3477   }else{
3478     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3479       pExpr->iTable = pSubst->iNewTable;
3480     }
3481     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3482     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3483     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3484       substSelect(pSubst, pExpr->x.pSelect, 1);
3485     }else{
3486       substExprList(pSubst, pExpr->x.pList);
3487     }
3488   }
3489   return pExpr;
3490 }
3491 static void substExprList(
3492   SubstContext *pSubst, /* Description of the substitution */
3493   ExprList *pList       /* List to scan and in which to make substitutes */
3494 ){
3495   int i;
3496   if( pList==0 ) return;
3497   for(i=0; i<pList->nExpr; i++){
3498     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3499   }
3500 }
3501 static void substSelect(
3502   SubstContext *pSubst, /* Description of the substitution */
3503   Select *p,            /* SELECT statement in which to make substitutions */
3504   int doPrior           /* Do substitutes on p->pPrior too */
3505 ){
3506   SrcList *pSrc;
3507   struct SrcList_item *pItem;
3508   int i;
3509   if( !p ) return;
3510   do{
3511     substExprList(pSubst, p->pEList);
3512     substExprList(pSubst, p->pGroupBy);
3513     substExprList(pSubst, p->pOrderBy);
3514     p->pHaving = substExpr(pSubst, p->pHaving);
3515     p->pWhere = substExpr(pSubst, p->pWhere);
3516     pSrc = p->pSrc;
3517     assert( pSrc!=0 );
3518     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3519       substSelect(pSubst, pItem->pSelect, 1);
3520       if( pItem->fg.isTabFunc ){
3521         substExprList(pSubst, pItem->u1.pFuncArg);
3522       }
3523     }
3524   }while( doPrior && (p = p->pPrior)!=0 );
3525 }
3526 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3527 
3528 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3529 /*
3530 ** This routine attempts to flatten subqueries as a performance optimization.
3531 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3532 **
3533 ** To understand the concept of flattening, consider the following
3534 ** query:
3535 **
3536 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3537 **
3538 ** The default way of implementing this query is to execute the
3539 ** subquery first and store the results in a temporary table, then
3540 ** run the outer query on that temporary table.  This requires two
3541 ** passes over the data.  Furthermore, because the temporary table
3542 ** has no indices, the WHERE clause on the outer query cannot be
3543 ** optimized.
3544 **
3545 ** This routine attempts to rewrite queries such as the above into
3546 ** a single flat select, like this:
3547 **
3548 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3549 **
3550 ** The code generated for this simplification gives the same result
3551 ** but only has to scan the data once.  And because indices might
3552 ** exist on the table t1, a complete scan of the data might be
3553 ** avoided.
3554 **
3555 ** Flattening is subject to the following constraints:
3556 **
3557 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3558 **        The subquery and the outer query cannot both be aggregates.
3559 **
3560 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3561 **        (2) If the subquery is an aggregate then
3562 **        (2a) the outer query must not be a join and
3563 **        (2b) the outer query must not use subqueries
3564 **             other than the one FROM-clause subquery that is a candidate
3565 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3566 **             from 2015-02-09.)
3567 **
3568 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3569 **        (3a) the subquery may not be a join and
3570 **        (3b) the FROM clause of the subquery may not contain a virtual
3571 **             table and
3572 **        (3c) the outer query may not be an aggregate.
3573 **
3574 **   (4)  The subquery can not be DISTINCT.
3575 **
3576 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3577 **        sub-queries that were excluded from this optimization. Restriction
3578 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3579 **
3580 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3581 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3582 **
3583 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3584 **        A FROM clause, consider adding a FROM clause with the special
3585 **        table sqlite_once that consists of a single row containing a
3586 **        single NULL.
3587 **
3588 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3589 **
3590 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3591 **
3592 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3593 **        accidently carried the comment forward until 2014-09-15.  Original
3594 **        constraint: "If the subquery is aggregate then the outer query
3595 **        may not use LIMIT."
3596 **
3597 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3598 **
3599 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3600 **        a separate restriction deriving from ticket #350.
3601 **
3602 **  (13)  The subquery and outer query may not both use LIMIT.
3603 **
3604 **  (14)  The subquery may not use OFFSET.
3605 **
3606 **  (15)  If the outer query is part of a compound select, then the
3607 **        subquery may not use LIMIT.
3608 **        (See ticket #2339 and ticket [02a8e81d44]).
3609 **
3610 **  (16)  If the outer query is aggregate, then the subquery may not
3611 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3612 **        until we introduced the group_concat() function.
3613 **
3614 **  (17)  If the subquery is a compound select, then
3615 **        (17a) all compound operators must be a UNION ALL, and
3616 **        (17b) no terms within the subquery compound may be aggregate
3617 **              or DISTINCT, and
3618 **        (17c) every term within the subquery compound must have a FROM clause
3619 **        (17d) the outer query may not be
3620 **              (17d1) aggregate, or
3621 **              (17d2) DISTINCT, or
3622 **              (17d3) a join.
3623 **
3624 **        The parent and sub-query may contain WHERE clauses. Subject to
3625 **        rules (11), (13) and (14), they may also contain ORDER BY,
3626 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3627 **        operator other than UNION ALL because all the other compound
3628 **        operators have an implied DISTINCT which is disallowed by
3629 **        restriction (4).
3630 **
3631 **        Also, each component of the sub-query must return the same number
3632 **        of result columns. This is actually a requirement for any compound
3633 **        SELECT statement, but all the code here does is make sure that no
3634 **        such (illegal) sub-query is flattened. The caller will detect the
3635 **        syntax error and return a detailed message.
3636 **
3637 **  (18)  If the sub-query is a compound select, then all terms of the
3638 **        ORDER BY clause of the parent must be simple references to
3639 **        columns of the sub-query.
3640 **
3641 **  (19)  If the subquery uses LIMIT then the outer query may not
3642 **        have a WHERE clause.
3643 **
3644 **  (20)  If the sub-query is a compound select, then it must not use
3645 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3646 **        somewhat by saying that the terms of the ORDER BY clause must
3647 **        appear as unmodified result columns in the outer query.  But we
3648 **        have other optimizations in mind to deal with that case.
3649 **
3650 **  (21)  If the subquery uses LIMIT then the outer query may not be
3651 **        DISTINCT.  (See ticket [752e1646fc]).
3652 **
3653 **  (22)  The subquery may not be a recursive CTE.
3654 **
3655 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3656 **        a recursive CTE, then the sub-query may not be a compound query.
3657 **        This restriction is because transforming the
3658 **        parent to a compound query confuses the code that handles
3659 **        recursive queries in multiSelect().
3660 **
3661 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3662 **        The subquery may not be an aggregate that uses the built-in min() or
3663 **        or max() functions.  (Without this restriction, a query like:
3664 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3665 **        return the value X for which Y was maximal.)
3666 **
3667 **  (25)  If either the subquery or the parent query contains a window
3668 **        function in the select list or ORDER BY clause, flattening
3669 **        is not attempted.
3670 **
3671 **
3672 ** In this routine, the "p" parameter is a pointer to the outer query.
3673 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3674 ** uses aggregates.
3675 **
3676 ** If flattening is not attempted, this routine is a no-op and returns 0.
3677 ** If flattening is attempted this routine returns 1.
3678 **
3679 ** All of the expression analysis must occur on both the outer query and
3680 ** the subquery before this routine runs.
3681 */
3682 static int flattenSubquery(
3683   Parse *pParse,       /* Parsing context */
3684   Select *p,           /* The parent or outer SELECT statement */
3685   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3686   int isAgg            /* True if outer SELECT uses aggregate functions */
3687 ){
3688   const char *zSavedAuthContext = pParse->zAuthContext;
3689   Select *pParent;    /* Current UNION ALL term of the other query */
3690   Select *pSub;       /* The inner query or "subquery" */
3691   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3692   SrcList *pSrc;      /* The FROM clause of the outer query */
3693   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3694   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3695   int iNewParent = -1;/* Replacement table for iParent */
3696   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3697   int i;              /* Loop counter */
3698   Expr *pWhere;                    /* The WHERE clause */
3699   struct SrcList_item *pSubitem;   /* The subquery */
3700   sqlite3 *db = pParse->db;
3701 
3702   /* Check to see if flattening is permitted.  Return 0 if not.
3703   */
3704   assert( p!=0 );
3705   assert( p->pPrior==0 );
3706   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3707   pSrc = p->pSrc;
3708   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3709   pSubitem = &pSrc->a[iFrom];
3710   iParent = pSubitem->iCursor;
3711   pSub = pSubitem->pSelect;
3712   assert( pSub!=0 );
3713 
3714 #ifndef SQLITE_OMIT_WINDOWFUNC
3715   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3716 #endif
3717 
3718   pSubSrc = pSub->pSrc;
3719   assert( pSubSrc );
3720   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3721   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3722   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3723   ** became arbitrary expressions, we were forced to add restrictions (13)
3724   ** and (14). */
3725   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3726   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3727   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3728     return 0;                                            /* Restriction (15) */
3729   }
3730   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3731   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3732   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3733      return 0;         /* Restrictions (8)(9) */
3734   }
3735   if( p->pOrderBy && pSub->pOrderBy ){
3736      return 0;                                           /* Restriction (11) */
3737   }
3738   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3739   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3740   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3741      return 0;         /* Restriction (21) */
3742   }
3743   if( pSub->selFlags & (SF_Recursive) ){
3744     return 0; /* Restrictions (22) */
3745   }
3746 
3747   /*
3748   ** If the subquery is the right operand of a LEFT JOIN, then the
3749   ** subquery may not be a join itself (3a). Example of why this is not
3750   ** allowed:
3751   **
3752   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3753   **
3754   ** If we flatten the above, we would get
3755   **
3756   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3757   **
3758   ** which is not at all the same thing.
3759   **
3760   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3761   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3762   ** aggregates are processed - there is no mechanism to determine if
3763   ** the LEFT JOIN table should be all-NULL.
3764   **
3765   ** See also tickets #306, #350, and #3300.
3766   */
3767   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3768     isLeftJoin = 1;
3769     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3770       /*  (3a)             (3c)     (3b) */
3771       return 0;
3772     }
3773   }
3774 #ifdef SQLITE_EXTRA_IFNULLROW
3775   else if( iFrom>0 && !isAgg ){
3776     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3777     ** every reference to any result column from subquery in a join, even
3778     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3779     ** opcode. */
3780     isLeftJoin = -1;
3781   }
3782 #endif
3783 
3784   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3785   ** use only the UNION ALL operator. And none of the simple select queries
3786   ** that make up the compound SELECT are allowed to be aggregate or distinct
3787   ** queries.
3788   */
3789   if( pSub->pPrior ){
3790     if( pSub->pOrderBy ){
3791       return 0;  /* Restriction (20) */
3792     }
3793     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3794       return 0; /* (17d1), (17d2), or (17d3) */
3795     }
3796     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3797       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3798       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3799       assert( pSub->pSrc!=0 );
3800       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3801       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3802        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3803        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3804       ){
3805         return 0;
3806       }
3807       testcase( pSub1->pSrc->nSrc>1 );
3808     }
3809 
3810     /* Restriction (18). */
3811     if( p->pOrderBy ){
3812       int ii;
3813       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3814         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3815       }
3816     }
3817   }
3818 
3819   /* Ex-restriction (23):
3820   ** The only way that the recursive part of a CTE can contain a compound
3821   ** subquery is for the subquery to be one term of a join.  But if the
3822   ** subquery is a join, then the flattening has already been stopped by
3823   ** restriction (17d3)
3824   */
3825   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3826 
3827   /***** If we reach this point, flattening is permitted. *****/
3828   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3829                    pSub->selId, pSub, iFrom));
3830 
3831   /* Authorize the subquery */
3832   pParse->zAuthContext = pSubitem->zName;
3833   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3834   testcase( i==SQLITE_DENY );
3835   pParse->zAuthContext = zSavedAuthContext;
3836 
3837   /* If the sub-query is a compound SELECT statement, then (by restrictions
3838   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3839   ** be of the form:
3840   **
3841   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3842   **
3843   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3844   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3845   ** OFFSET clauses and joins them to the left-hand-side of the original
3846   ** using UNION ALL operators. In this case N is the number of simple
3847   ** select statements in the compound sub-query.
3848   **
3849   ** Example:
3850   **
3851   **     SELECT a+1 FROM (
3852   **        SELECT x FROM tab
3853   **        UNION ALL
3854   **        SELECT y FROM tab
3855   **        UNION ALL
3856   **        SELECT abs(z*2) FROM tab2
3857   **     ) WHERE a!=5 ORDER BY 1
3858   **
3859   ** Transformed into:
3860   **
3861   **     SELECT x+1 FROM tab WHERE x+1!=5
3862   **     UNION ALL
3863   **     SELECT y+1 FROM tab WHERE y+1!=5
3864   **     UNION ALL
3865   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3866   **     ORDER BY 1
3867   **
3868   ** We call this the "compound-subquery flattening".
3869   */
3870   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3871     Select *pNew;
3872     ExprList *pOrderBy = p->pOrderBy;
3873     Expr *pLimit = p->pLimit;
3874     Select *pPrior = p->pPrior;
3875     p->pOrderBy = 0;
3876     p->pSrc = 0;
3877     p->pPrior = 0;
3878     p->pLimit = 0;
3879     pNew = sqlite3SelectDup(db, p, 0);
3880     p->pLimit = pLimit;
3881     p->pOrderBy = pOrderBy;
3882     p->pSrc = pSrc;
3883     p->op = TK_ALL;
3884     if( pNew==0 ){
3885       p->pPrior = pPrior;
3886     }else{
3887       pNew->pPrior = pPrior;
3888       if( pPrior ) pPrior->pNext = pNew;
3889       pNew->pNext = p;
3890       p->pPrior = pNew;
3891       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3892                               " creates %u as peer\n",pNew->selId));
3893     }
3894     if( db->mallocFailed ) return 1;
3895   }
3896 
3897   /* Begin flattening the iFrom-th entry of the FROM clause
3898   ** in the outer query.
3899   */
3900   pSub = pSub1 = pSubitem->pSelect;
3901 
3902   /* Delete the transient table structure associated with the
3903   ** subquery
3904   */
3905   sqlite3DbFree(db, pSubitem->zDatabase);
3906   sqlite3DbFree(db, pSubitem->zName);
3907   sqlite3DbFree(db, pSubitem->zAlias);
3908   pSubitem->zDatabase = 0;
3909   pSubitem->zName = 0;
3910   pSubitem->zAlias = 0;
3911   pSubitem->pSelect = 0;
3912 
3913   /* Defer deleting the Table object associated with the
3914   ** subquery until code generation is
3915   ** complete, since there may still exist Expr.pTab entries that
3916   ** refer to the subquery even after flattening.  Ticket #3346.
3917   **
3918   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3919   */
3920   if( ALWAYS(pSubitem->pTab!=0) ){
3921     Table *pTabToDel = pSubitem->pTab;
3922     if( pTabToDel->nTabRef==1 ){
3923       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3924       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3925       pToplevel->pZombieTab = pTabToDel;
3926     }else{
3927       pTabToDel->nTabRef--;
3928     }
3929     pSubitem->pTab = 0;
3930   }
3931 
3932   /* The following loop runs once for each term in a compound-subquery
3933   ** flattening (as described above).  If we are doing a different kind
3934   ** of flattening - a flattening other than a compound-subquery flattening -
3935   ** then this loop only runs once.
3936   **
3937   ** This loop moves all of the FROM elements of the subquery into the
3938   ** the FROM clause of the outer query.  Before doing this, remember
3939   ** the cursor number for the original outer query FROM element in
3940   ** iParent.  The iParent cursor will never be used.  Subsequent code
3941   ** will scan expressions looking for iParent references and replace
3942   ** those references with expressions that resolve to the subquery FROM
3943   ** elements we are now copying in.
3944   */
3945   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3946     int nSubSrc;
3947     u8 jointype = 0;
3948     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3949     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3950     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3951 
3952     if( pSrc ){
3953       assert( pParent==p );  /* First time through the loop */
3954       jointype = pSubitem->fg.jointype;
3955     }else{
3956       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3957       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3958       if( pSrc==0 ){
3959         assert( db->mallocFailed );
3960         break;
3961       }
3962     }
3963 
3964     /* The subquery uses a single slot of the FROM clause of the outer
3965     ** query.  If the subquery has more than one element in its FROM clause,
3966     ** then expand the outer query to make space for it to hold all elements
3967     ** of the subquery.
3968     **
3969     ** Example:
3970     **
3971     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3972     **
3973     ** The outer query has 3 slots in its FROM clause.  One slot of the
3974     ** outer query (the middle slot) is used by the subquery.  The next
3975     ** block of code will expand the outer query FROM clause to 4 slots.
3976     ** The middle slot is expanded to two slots in order to make space
3977     ** for the two elements in the FROM clause of the subquery.
3978     */
3979     if( nSubSrc>1 ){
3980       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3981       if( db->mallocFailed ){
3982         break;
3983       }
3984     }
3985 
3986     /* Transfer the FROM clause terms from the subquery into the
3987     ** outer query.
3988     */
3989     for(i=0; i<nSubSrc; i++){
3990       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3991       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3992       pSrc->a[i+iFrom] = pSubSrc->a[i];
3993       iNewParent = pSubSrc->a[i].iCursor;
3994       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3995     }
3996     pSrc->a[iFrom].fg.jointype = jointype;
3997 
3998     /* Now begin substituting subquery result set expressions for
3999     ** references to the iParent in the outer query.
4000     **
4001     ** Example:
4002     **
4003     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4004     **   \                     \_____________ subquery __________/          /
4005     **    \_____________________ outer query ______________________________/
4006     **
4007     ** We look at every expression in the outer query and every place we see
4008     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4009     */
4010     if( pSub->pOrderBy ){
4011       /* At this point, any non-zero iOrderByCol values indicate that the
4012       ** ORDER BY column expression is identical to the iOrderByCol'th
4013       ** expression returned by SELECT statement pSub. Since these values
4014       ** do not necessarily correspond to columns in SELECT statement pParent,
4015       ** zero them before transfering the ORDER BY clause.
4016       **
4017       ** Not doing this may cause an error if a subsequent call to this
4018       ** function attempts to flatten a compound sub-query into pParent
4019       ** (the only way this can happen is if the compound sub-query is
4020       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4021       ExprList *pOrderBy = pSub->pOrderBy;
4022       for(i=0; i<pOrderBy->nExpr; i++){
4023         pOrderBy->a[i].u.x.iOrderByCol = 0;
4024       }
4025       assert( pParent->pOrderBy==0 );
4026       pParent->pOrderBy = pOrderBy;
4027       pSub->pOrderBy = 0;
4028     }
4029     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4030     if( isLeftJoin>0 ){
4031       setJoinExpr(pWhere, iNewParent);
4032     }
4033     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4034     if( db->mallocFailed==0 ){
4035       SubstContext x;
4036       x.pParse = pParse;
4037       x.iTable = iParent;
4038       x.iNewTable = iNewParent;
4039       x.isLeftJoin = isLeftJoin;
4040       x.pEList = pSub->pEList;
4041       substSelect(&x, pParent, 0);
4042     }
4043 
4044     /* The flattened query is distinct if either the inner or the
4045     ** outer query is distinct.
4046     */
4047     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4048 
4049     /*
4050     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4051     **
4052     ** One is tempted to try to add a and b to combine the limits.  But this
4053     ** does not work if either limit is negative.
4054     */
4055     if( pSub->pLimit ){
4056       pParent->pLimit = pSub->pLimit;
4057       pSub->pLimit = 0;
4058     }
4059   }
4060 
4061   /* Finially, delete what is left of the subquery and return
4062   ** success.
4063   */
4064   sqlite3SelectDelete(db, pSub1);
4065 
4066 #if SELECTTRACE_ENABLED
4067   if( sqlite3SelectTrace & 0x100 ){
4068     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4069     sqlite3TreeViewSelect(0, p, 0);
4070   }
4071 #endif
4072 
4073   return 1;
4074 }
4075 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4076 
4077 
4078 
4079 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4080 /*
4081 ** Make copies of relevant WHERE clause terms of the outer query into
4082 ** the WHERE clause of subquery.  Example:
4083 **
4084 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4085 **
4086 ** Transformed into:
4087 **
4088 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4089 **     WHERE x=5 AND y=10;
4090 **
4091 ** The hope is that the terms added to the inner query will make it more
4092 ** efficient.
4093 **
4094 ** Do not attempt this optimization if:
4095 **
4096 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4097 **           disallow this optimization for aggregate subqueries, but now
4098 **           it is allowed by putting the extra terms on the HAVING clause.
4099 **           The added HAVING clause is pointless if the subquery lacks
4100 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4101 **           so there does not appear to be any reason to add extra logic
4102 **           to suppress it. **)
4103 **
4104 **   (2) The inner query is the recursive part of a common table expression.
4105 **
4106 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4107 **       clause would change the meaning of the LIMIT).
4108 **
4109 **   (4) The inner query is the right operand of a LEFT JOIN and the
4110 **       expression to be pushed down does not come from the ON clause
4111 **       on that LEFT JOIN.
4112 **
4113 **   (5) The WHERE clause expression originates in the ON or USING clause
4114 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4115 **       left join.  An example:
4116 **
4117 **           SELECT *
4118 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4119 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4120 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4121 **
4122 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4123 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4124 **       then the (1,1,NULL) row would be suppressed.
4125 **
4126 **   (6) The inner query features one or more window-functions (since
4127 **       changes to the WHERE clause of the inner query could change the
4128 **       window over which window functions are calculated).
4129 **
4130 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4131 ** terms are duplicated into the subquery.
4132 */
4133 static int pushDownWhereTerms(
4134   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4135   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4136   Expr *pWhere,         /* The WHERE clause of the outer query */
4137   int iCursor,          /* Cursor number of the subquery */
4138   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4139 ){
4140   Expr *pNew;
4141   int nChng = 0;
4142   if( pWhere==0 ) return 0;
4143   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4144 
4145 #ifndef SQLITE_OMIT_WINDOWFUNC
4146   if( pSubq->pWin ) return 0;    /* restriction (6) */
4147 #endif
4148 
4149 #ifdef SQLITE_DEBUG
4150   /* Only the first term of a compound can have a WITH clause.  But make
4151   ** sure no other terms are marked SF_Recursive in case something changes
4152   ** in the future.
4153   */
4154   {
4155     Select *pX;
4156     for(pX=pSubq; pX; pX=pX->pPrior){
4157       assert( (pX->selFlags & (SF_Recursive))==0 );
4158     }
4159   }
4160 #endif
4161 
4162   if( pSubq->pLimit!=0 ){
4163     return 0; /* restriction (3) */
4164   }
4165   while( pWhere->op==TK_AND ){
4166     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4167                                 iCursor, isLeftJoin);
4168     pWhere = pWhere->pLeft;
4169   }
4170   if( isLeftJoin
4171    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4172          || pWhere->iRightJoinTable!=iCursor)
4173   ){
4174     return 0; /* restriction (4) */
4175   }
4176   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4177     return 0; /* restriction (5) */
4178   }
4179   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4180     nChng++;
4181     while( pSubq ){
4182       SubstContext x;
4183       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4184       unsetJoinExpr(pNew, -1);
4185       x.pParse = pParse;
4186       x.iTable = iCursor;
4187       x.iNewTable = iCursor;
4188       x.isLeftJoin = 0;
4189       x.pEList = pSubq->pEList;
4190       pNew = substExpr(&x, pNew);
4191       if( pSubq->selFlags & SF_Aggregate ){
4192         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4193       }else{
4194         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4195       }
4196       pSubq = pSubq->pPrior;
4197     }
4198   }
4199   return nChng;
4200 }
4201 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4202 
4203 /*
4204 ** The pFunc is the only aggregate function in the query.  Check to see
4205 ** if the query is a candidate for the min/max optimization.
4206 **
4207 ** If the query is a candidate for the min/max optimization, then set
4208 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4209 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4210 ** whether pFunc is a min() or max() function.
4211 **
4212 ** If the query is not a candidate for the min/max optimization, return
4213 ** WHERE_ORDERBY_NORMAL (which must be zero).
4214 **
4215 ** This routine must be called after aggregate functions have been
4216 ** located but before their arguments have been subjected to aggregate
4217 ** analysis.
4218 */
4219 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4220   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4221   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4222   const char *zFunc;                    /* Name of aggregate function pFunc */
4223   ExprList *pOrderBy;
4224   u8 sortOrder;
4225 
4226   assert( *ppMinMax==0 );
4227   assert( pFunc->op==TK_AGG_FUNCTION );
4228   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4229   zFunc = pFunc->u.zToken;
4230   if( sqlite3StrICmp(zFunc, "min")==0 ){
4231     eRet = WHERE_ORDERBY_MIN;
4232     sortOrder = SQLITE_SO_ASC;
4233   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4234     eRet = WHERE_ORDERBY_MAX;
4235     sortOrder = SQLITE_SO_DESC;
4236   }else{
4237     return eRet;
4238   }
4239   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4240   assert( pOrderBy!=0 || db->mallocFailed );
4241   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4242   return eRet;
4243 }
4244 
4245 /*
4246 ** The select statement passed as the first argument is an aggregate query.
4247 ** The second argument is the associated aggregate-info object. This
4248 ** function tests if the SELECT is of the form:
4249 **
4250 **   SELECT count(*) FROM <tbl>
4251 **
4252 ** where table is a database table, not a sub-select or view. If the query
4253 ** does match this pattern, then a pointer to the Table object representing
4254 ** <tbl> is returned. Otherwise, 0 is returned.
4255 */
4256 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4257   Table *pTab;
4258   Expr *pExpr;
4259 
4260   assert( !p->pGroupBy );
4261 
4262   if( p->pWhere || p->pEList->nExpr!=1
4263    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4264   ){
4265     return 0;
4266   }
4267   pTab = p->pSrc->a[0].pTab;
4268   pExpr = p->pEList->a[0].pExpr;
4269   assert( pTab && !pTab->pSelect && pExpr );
4270 
4271   if( IsVirtual(pTab) ) return 0;
4272   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4273   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4274   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4275   if( pExpr->flags&EP_Distinct ) return 0;
4276 
4277   return pTab;
4278 }
4279 
4280 /*
4281 ** If the source-list item passed as an argument was augmented with an
4282 ** INDEXED BY clause, then try to locate the specified index. If there
4283 ** was such a clause and the named index cannot be found, return
4284 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4285 ** pFrom->pIndex and return SQLITE_OK.
4286 */
4287 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4288   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4289     Table *pTab = pFrom->pTab;
4290     char *zIndexedBy = pFrom->u1.zIndexedBy;
4291     Index *pIdx;
4292     for(pIdx=pTab->pIndex;
4293         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4294         pIdx=pIdx->pNext
4295     );
4296     if( !pIdx ){
4297       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4298       pParse->checkSchema = 1;
4299       return SQLITE_ERROR;
4300     }
4301     pFrom->pIBIndex = pIdx;
4302   }
4303   return SQLITE_OK;
4304 }
4305 /*
4306 ** Detect compound SELECT statements that use an ORDER BY clause with
4307 ** an alternative collating sequence.
4308 **
4309 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4310 **
4311 ** These are rewritten as a subquery:
4312 **
4313 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4314 **     ORDER BY ... COLLATE ...
4315 **
4316 ** This transformation is necessary because the multiSelectOrderBy() routine
4317 ** above that generates the code for a compound SELECT with an ORDER BY clause
4318 ** uses a merge algorithm that requires the same collating sequence on the
4319 ** result columns as on the ORDER BY clause.  See ticket
4320 ** http://www.sqlite.org/src/info/6709574d2a
4321 **
4322 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4323 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4324 ** there are COLLATE terms in the ORDER BY.
4325 */
4326 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4327   int i;
4328   Select *pNew;
4329   Select *pX;
4330   sqlite3 *db;
4331   struct ExprList_item *a;
4332   SrcList *pNewSrc;
4333   Parse *pParse;
4334   Token dummy;
4335 
4336   if( p->pPrior==0 ) return WRC_Continue;
4337   if( p->pOrderBy==0 ) return WRC_Continue;
4338   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4339   if( pX==0 ) return WRC_Continue;
4340   a = p->pOrderBy->a;
4341   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4342     if( a[i].pExpr->flags & EP_Collate ) break;
4343   }
4344   if( i<0 ) return WRC_Continue;
4345 
4346   /* If we reach this point, that means the transformation is required. */
4347 
4348   pParse = pWalker->pParse;
4349   db = pParse->db;
4350   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4351   if( pNew==0 ) return WRC_Abort;
4352   memset(&dummy, 0, sizeof(dummy));
4353   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4354   if( pNewSrc==0 ) return WRC_Abort;
4355   *pNew = *p;
4356   p->pSrc = pNewSrc;
4357   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4358   p->op = TK_SELECT;
4359   p->pWhere = 0;
4360   pNew->pGroupBy = 0;
4361   pNew->pHaving = 0;
4362   pNew->pOrderBy = 0;
4363   p->pPrior = 0;
4364   p->pNext = 0;
4365   p->pWith = 0;
4366   p->selFlags &= ~SF_Compound;
4367   assert( (p->selFlags & SF_Converted)==0 );
4368   p->selFlags |= SF_Converted;
4369   assert( pNew->pPrior!=0 );
4370   pNew->pPrior->pNext = pNew;
4371   pNew->pLimit = 0;
4372   return WRC_Continue;
4373 }
4374 
4375 /*
4376 ** Check to see if the FROM clause term pFrom has table-valued function
4377 ** arguments.  If it does, leave an error message in pParse and return
4378 ** non-zero, since pFrom is not allowed to be a table-valued function.
4379 */
4380 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4381   if( pFrom->fg.isTabFunc ){
4382     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4383     return 1;
4384   }
4385   return 0;
4386 }
4387 
4388 #ifndef SQLITE_OMIT_CTE
4389 /*
4390 ** Argument pWith (which may be NULL) points to a linked list of nested
4391 ** WITH contexts, from inner to outermost. If the table identified by
4392 ** FROM clause element pItem is really a common-table-expression (CTE)
4393 ** then return a pointer to the CTE definition for that table. Otherwise
4394 ** return NULL.
4395 **
4396 ** If a non-NULL value is returned, set *ppContext to point to the With
4397 ** object that the returned CTE belongs to.
4398 */
4399 static struct Cte *searchWith(
4400   With *pWith,                    /* Current innermost WITH clause */
4401   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4402   With **ppContext                /* OUT: WITH clause return value belongs to */
4403 ){
4404   const char *zName;
4405   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4406     With *p;
4407     for(p=pWith; p; p=p->pOuter){
4408       int i;
4409       for(i=0; i<p->nCte; i++){
4410         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4411           *ppContext = p;
4412           return &p->a[i];
4413         }
4414       }
4415     }
4416   }
4417   return 0;
4418 }
4419 
4420 /* The code generator maintains a stack of active WITH clauses
4421 ** with the inner-most WITH clause being at the top of the stack.
4422 **
4423 ** This routine pushes the WITH clause passed as the second argument
4424 ** onto the top of the stack. If argument bFree is true, then this
4425 ** WITH clause will never be popped from the stack. In this case it
4426 ** should be freed along with the Parse object. In other cases, when
4427 ** bFree==0, the With object will be freed along with the SELECT
4428 ** statement with which it is associated.
4429 */
4430 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4431   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4432   if( pWith ){
4433     assert( pParse->pWith!=pWith );
4434     pWith->pOuter = pParse->pWith;
4435     pParse->pWith = pWith;
4436     if( bFree ) pParse->pWithToFree = pWith;
4437   }
4438 }
4439 
4440 /*
4441 ** This function checks if argument pFrom refers to a CTE declared by
4442 ** a WITH clause on the stack currently maintained by the parser. And,
4443 ** if currently processing a CTE expression, if it is a recursive
4444 ** reference to the current CTE.
4445 **
4446 ** If pFrom falls into either of the two categories above, pFrom->pTab
4447 ** and other fields are populated accordingly. The caller should check
4448 ** (pFrom->pTab!=0) to determine whether or not a successful match
4449 ** was found.
4450 **
4451 ** Whether or not a match is found, SQLITE_OK is returned if no error
4452 ** occurs. If an error does occur, an error message is stored in the
4453 ** parser and some error code other than SQLITE_OK returned.
4454 */
4455 static int withExpand(
4456   Walker *pWalker,
4457   struct SrcList_item *pFrom
4458 ){
4459   Parse *pParse = pWalker->pParse;
4460   sqlite3 *db = pParse->db;
4461   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4462   With *pWith;                    /* WITH clause that pCte belongs to */
4463 
4464   assert( pFrom->pTab==0 );
4465 
4466   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4467   if( pCte ){
4468     Table *pTab;
4469     ExprList *pEList;
4470     Select *pSel;
4471     Select *pLeft;                /* Left-most SELECT statement */
4472     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4473     With *pSavedWith;             /* Initial value of pParse->pWith */
4474 
4475     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4476     ** recursive reference to CTE pCte. Leave an error in pParse and return
4477     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4478     ** In this case, proceed.  */
4479     if( pCte->zCteErr ){
4480       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4481       return SQLITE_ERROR;
4482     }
4483     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4484 
4485     assert( pFrom->pTab==0 );
4486     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4487     if( pTab==0 ) return WRC_Abort;
4488     pTab->nTabRef = 1;
4489     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4490     pTab->iPKey = -1;
4491     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4492     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4493     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4494     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4495     assert( pFrom->pSelect );
4496 
4497     /* Check if this is a recursive CTE. */
4498     pSel = pFrom->pSelect;
4499     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4500     if( bMayRecursive ){
4501       int i;
4502       SrcList *pSrc = pFrom->pSelect->pSrc;
4503       for(i=0; i<pSrc->nSrc; i++){
4504         struct SrcList_item *pItem = &pSrc->a[i];
4505         if( pItem->zDatabase==0
4506          && pItem->zName!=0
4507          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4508           ){
4509           pItem->pTab = pTab;
4510           pItem->fg.isRecursive = 1;
4511           pTab->nTabRef++;
4512           pSel->selFlags |= SF_Recursive;
4513         }
4514       }
4515     }
4516 
4517     /* Only one recursive reference is permitted. */
4518     if( pTab->nTabRef>2 ){
4519       sqlite3ErrorMsg(
4520           pParse, "multiple references to recursive table: %s", pCte->zName
4521       );
4522       return SQLITE_ERROR;
4523     }
4524     assert( pTab->nTabRef==1 ||
4525             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4526 
4527     pCte->zCteErr = "circular reference: %s";
4528     pSavedWith = pParse->pWith;
4529     pParse->pWith = pWith;
4530     if( bMayRecursive ){
4531       Select *pPrior = pSel->pPrior;
4532       assert( pPrior->pWith==0 );
4533       pPrior->pWith = pSel->pWith;
4534       sqlite3WalkSelect(pWalker, pPrior);
4535       pPrior->pWith = 0;
4536     }else{
4537       sqlite3WalkSelect(pWalker, pSel);
4538     }
4539     pParse->pWith = pWith;
4540 
4541     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4542     pEList = pLeft->pEList;
4543     if( pCte->pCols ){
4544       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4545         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4546             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4547         );
4548         pParse->pWith = pSavedWith;
4549         return SQLITE_ERROR;
4550       }
4551       pEList = pCte->pCols;
4552     }
4553 
4554     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4555     if( bMayRecursive ){
4556       if( pSel->selFlags & SF_Recursive ){
4557         pCte->zCteErr = "multiple recursive references: %s";
4558       }else{
4559         pCte->zCteErr = "recursive reference in a subquery: %s";
4560       }
4561       sqlite3WalkSelect(pWalker, pSel);
4562     }
4563     pCte->zCteErr = 0;
4564     pParse->pWith = pSavedWith;
4565   }
4566 
4567   return SQLITE_OK;
4568 }
4569 #endif
4570 
4571 #ifndef SQLITE_OMIT_CTE
4572 /*
4573 ** If the SELECT passed as the second argument has an associated WITH
4574 ** clause, pop it from the stack stored as part of the Parse object.
4575 **
4576 ** This function is used as the xSelectCallback2() callback by
4577 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4578 ** names and other FROM clause elements.
4579 */
4580 static void selectPopWith(Walker *pWalker, Select *p){
4581   Parse *pParse = pWalker->pParse;
4582   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4583     With *pWith = findRightmost(p)->pWith;
4584     if( pWith!=0 ){
4585       assert( pParse->pWith==pWith );
4586       pParse->pWith = pWith->pOuter;
4587     }
4588   }
4589 }
4590 #else
4591 #define selectPopWith 0
4592 #endif
4593 
4594 /*
4595 ** The SrcList_item structure passed as the second argument represents a
4596 ** sub-query in the FROM clause of a SELECT statement. This function
4597 ** allocates and populates the SrcList_item.pTab object. If successful,
4598 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4599 ** SQLITE_NOMEM.
4600 */
4601 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4602   Select *pSel = pFrom->pSelect;
4603   Table *pTab;
4604 
4605   assert( pSel );
4606   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4607   if( pTab==0 ) return SQLITE_NOMEM;
4608   pTab->nTabRef = 1;
4609   if( pFrom->zAlias ){
4610     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4611   }else{
4612     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4613   }
4614   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4615   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4616   pTab->iPKey = -1;
4617   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4618   pTab->tabFlags |= TF_Ephemeral;
4619 
4620   return SQLITE_OK;
4621 }
4622 
4623 /*
4624 ** This routine is a Walker callback for "expanding" a SELECT statement.
4625 ** "Expanding" means to do the following:
4626 **
4627 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4628 **         element of the FROM clause.
4629 **
4630 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4631 **         defines FROM clause.  When views appear in the FROM clause,
4632 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4633 **         that implements the view.  A copy is made of the view's SELECT
4634 **         statement so that we can freely modify or delete that statement
4635 **         without worrying about messing up the persistent representation
4636 **         of the view.
4637 **
4638 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4639 **         on joins and the ON and USING clause of joins.
4640 **
4641 **    (4)  Scan the list of columns in the result set (pEList) looking
4642 **         for instances of the "*" operator or the TABLE.* operator.
4643 **         If found, expand each "*" to be every column in every table
4644 **         and TABLE.* to be every column in TABLE.
4645 **
4646 */
4647 static int selectExpander(Walker *pWalker, Select *p){
4648   Parse *pParse = pWalker->pParse;
4649   int i, j, k;
4650   SrcList *pTabList;
4651   ExprList *pEList;
4652   struct SrcList_item *pFrom;
4653   sqlite3 *db = pParse->db;
4654   Expr *pE, *pRight, *pExpr;
4655   u16 selFlags = p->selFlags;
4656   u32 elistFlags = 0;
4657 
4658   p->selFlags |= SF_Expanded;
4659   if( db->mallocFailed  ){
4660     return WRC_Abort;
4661   }
4662   assert( p->pSrc!=0 );
4663   if( (selFlags & SF_Expanded)!=0 ){
4664     return WRC_Prune;
4665   }
4666   pTabList = p->pSrc;
4667   pEList = p->pEList;
4668   sqlite3WithPush(pParse, p->pWith, 0);
4669 
4670   /* Make sure cursor numbers have been assigned to all entries in
4671   ** the FROM clause of the SELECT statement.
4672   */
4673   sqlite3SrcListAssignCursors(pParse, pTabList);
4674 
4675   /* Look up every table named in the FROM clause of the select.  If
4676   ** an entry of the FROM clause is a subquery instead of a table or view,
4677   ** then create a transient table structure to describe the subquery.
4678   */
4679   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4680     Table *pTab;
4681     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4682     if( pFrom->fg.isRecursive ) continue;
4683     assert( pFrom->pTab==0 );
4684 #ifndef SQLITE_OMIT_CTE
4685     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4686     if( pFrom->pTab ) {} else
4687 #endif
4688     if( pFrom->zName==0 ){
4689 #ifndef SQLITE_OMIT_SUBQUERY
4690       Select *pSel = pFrom->pSelect;
4691       /* A sub-query in the FROM clause of a SELECT */
4692       assert( pSel!=0 );
4693       assert( pFrom->pTab==0 );
4694       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4695       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4696 #endif
4697     }else{
4698       /* An ordinary table or view name in the FROM clause */
4699       assert( pFrom->pTab==0 );
4700       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4701       if( pTab==0 ) return WRC_Abort;
4702       if( pTab->nTabRef>=0xffff ){
4703         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4704            pTab->zName);
4705         pFrom->pTab = 0;
4706         return WRC_Abort;
4707       }
4708       pTab->nTabRef++;
4709       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4710         return WRC_Abort;
4711       }
4712 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4713       if( IsVirtual(pTab) || pTab->pSelect ){
4714         i16 nCol;
4715         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4716         assert( pFrom->pSelect==0 );
4717         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4718         nCol = pTab->nCol;
4719         pTab->nCol = -1;
4720         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4721         pTab->nCol = nCol;
4722       }
4723 #endif
4724     }
4725 
4726     /* Locate the index named by the INDEXED BY clause, if any. */
4727     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4728       return WRC_Abort;
4729     }
4730   }
4731 
4732   /* Process NATURAL keywords, and ON and USING clauses of joins.
4733   */
4734   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4735     return WRC_Abort;
4736   }
4737 
4738   /* For every "*" that occurs in the column list, insert the names of
4739   ** all columns in all tables.  And for every TABLE.* insert the names
4740   ** of all columns in TABLE.  The parser inserted a special expression
4741   ** with the TK_ASTERISK operator for each "*" that it found in the column
4742   ** list.  The following code just has to locate the TK_ASTERISK
4743   ** expressions and expand each one to the list of all columns in
4744   ** all tables.
4745   **
4746   ** The first loop just checks to see if there are any "*" operators
4747   ** that need expanding.
4748   */
4749   for(k=0; k<pEList->nExpr; k++){
4750     pE = pEList->a[k].pExpr;
4751     if( pE->op==TK_ASTERISK ) break;
4752     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4753     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4754     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4755     elistFlags |= pE->flags;
4756   }
4757   if( k<pEList->nExpr ){
4758     /*
4759     ** If we get here it means the result set contains one or more "*"
4760     ** operators that need to be expanded.  Loop through each expression
4761     ** in the result set and expand them one by one.
4762     */
4763     struct ExprList_item *a = pEList->a;
4764     ExprList *pNew = 0;
4765     int flags = pParse->db->flags;
4766     int longNames = (flags & SQLITE_FullColNames)!=0
4767                       && (flags & SQLITE_ShortColNames)==0;
4768 
4769     for(k=0; k<pEList->nExpr; k++){
4770       pE = a[k].pExpr;
4771       elistFlags |= pE->flags;
4772       pRight = pE->pRight;
4773       assert( pE->op!=TK_DOT || pRight!=0 );
4774       if( pE->op!=TK_ASTERISK
4775        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4776       ){
4777         /* This particular expression does not need to be expanded.
4778         */
4779         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4780         if( pNew ){
4781           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4782           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4783           a[k].zName = 0;
4784           a[k].zSpan = 0;
4785         }
4786         a[k].pExpr = 0;
4787       }else{
4788         /* This expression is a "*" or a "TABLE.*" and needs to be
4789         ** expanded. */
4790         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4791         char *zTName = 0;       /* text of name of TABLE */
4792         if( pE->op==TK_DOT ){
4793           assert( pE->pLeft!=0 );
4794           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4795           zTName = pE->pLeft->u.zToken;
4796         }
4797         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4798           Table *pTab = pFrom->pTab;
4799           Select *pSub = pFrom->pSelect;
4800           char *zTabName = pFrom->zAlias;
4801           const char *zSchemaName = 0;
4802           int iDb;
4803           if( zTabName==0 ){
4804             zTabName = pTab->zName;
4805           }
4806           if( db->mallocFailed ) break;
4807           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4808             pSub = 0;
4809             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4810               continue;
4811             }
4812             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4813             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4814           }
4815           for(j=0; j<pTab->nCol; j++){
4816             char *zName = pTab->aCol[j].zName;
4817             char *zColname;  /* The computed column name */
4818             char *zToFree;   /* Malloced string that needs to be freed */
4819             Token sColname;  /* Computed column name as a token */
4820 
4821             assert( zName );
4822             if( zTName && pSub
4823              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4824             ){
4825               continue;
4826             }
4827 
4828             /* If a column is marked as 'hidden', omit it from the expanded
4829             ** result-set list unless the SELECT has the SF_IncludeHidden
4830             ** bit set.
4831             */
4832             if( (p->selFlags & SF_IncludeHidden)==0
4833              && IsHiddenColumn(&pTab->aCol[j])
4834             ){
4835               continue;
4836             }
4837             tableSeen = 1;
4838 
4839             if( i>0 && zTName==0 ){
4840               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4841                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4842               ){
4843                 /* In a NATURAL join, omit the join columns from the
4844                 ** table to the right of the join */
4845                 continue;
4846               }
4847               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4848                 /* In a join with a USING clause, omit columns in the
4849                 ** using clause from the table on the right. */
4850                 continue;
4851               }
4852             }
4853             pRight = sqlite3Expr(db, TK_ID, zName);
4854             zColname = zName;
4855             zToFree = 0;
4856             if( longNames || pTabList->nSrc>1 ){
4857               Expr *pLeft;
4858               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4859               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4860               if( zSchemaName ){
4861                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4862                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4863               }
4864               if( longNames ){
4865                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4866                 zToFree = zColname;
4867               }
4868             }else{
4869               pExpr = pRight;
4870             }
4871             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4872             sqlite3TokenInit(&sColname, zColname);
4873             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4874             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4875               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4876               if( pSub ){
4877                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4878                 testcase( pX->zSpan==0 );
4879               }else{
4880                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4881                                            zSchemaName, zTabName, zColname);
4882                 testcase( pX->zSpan==0 );
4883               }
4884               pX->bSpanIsTab = 1;
4885             }
4886             sqlite3DbFree(db, zToFree);
4887           }
4888         }
4889         if( !tableSeen ){
4890           if( zTName ){
4891             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4892           }else{
4893             sqlite3ErrorMsg(pParse, "no tables specified");
4894           }
4895         }
4896       }
4897     }
4898     sqlite3ExprListDelete(db, pEList);
4899     p->pEList = pNew;
4900   }
4901   if( p->pEList ){
4902     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4903       sqlite3ErrorMsg(pParse, "too many columns in result set");
4904       return WRC_Abort;
4905     }
4906     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4907       p->selFlags |= SF_ComplexResult;
4908     }
4909   }
4910   return WRC_Continue;
4911 }
4912 
4913 /*
4914 ** No-op routine for the parse-tree walker.
4915 **
4916 ** When this routine is the Walker.xExprCallback then expression trees
4917 ** are walked without any actions being taken at each node.  Presumably,
4918 ** when this routine is used for Walker.xExprCallback then
4919 ** Walker.xSelectCallback is set to do something useful for every
4920 ** subquery in the parser tree.
4921 */
4922 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4923   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4924   return WRC_Continue;
4925 }
4926 
4927 /*
4928 ** No-op routine for the parse-tree walker for SELECT statements.
4929 ** subquery in the parser tree.
4930 */
4931 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4932   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4933   return WRC_Continue;
4934 }
4935 
4936 #if SQLITE_DEBUG
4937 /*
4938 ** Always assert.  This xSelectCallback2 implementation proves that the
4939 ** xSelectCallback2 is never invoked.
4940 */
4941 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4942   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4943   assert( 0 );
4944 }
4945 #endif
4946 /*
4947 ** This routine "expands" a SELECT statement and all of its subqueries.
4948 ** For additional information on what it means to "expand" a SELECT
4949 ** statement, see the comment on the selectExpand worker callback above.
4950 **
4951 ** Expanding a SELECT statement is the first step in processing a
4952 ** SELECT statement.  The SELECT statement must be expanded before
4953 ** name resolution is performed.
4954 **
4955 ** If anything goes wrong, an error message is written into pParse.
4956 ** The calling function can detect the problem by looking at pParse->nErr
4957 ** and/or pParse->db->mallocFailed.
4958 */
4959 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4960   Walker w;
4961   w.xExprCallback = sqlite3ExprWalkNoop;
4962   w.pParse = pParse;
4963   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4964     w.xSelectCallback = convertCompoundSelectToSubquery;
4965     w.xSelectCallback2 = 0;
4966     sqlite3WalkSelect(&w, pSelect);
4967   }
4968   w.xSelectCallback = selectExpander;
4969   w.xSelectCallback2 = selectPopWith;
4970   sqlite3WalkSelect(&w, pSelect);
4971 }
4972 
4973 
4974 #ifndef SQLITE_OMIT_SUBQUERY
4975 /*
4976 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4977 ** interface.
4978 **
4979 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4980 ** information to the Table structure that represents the result set
4981 ** of that subquery.
4982 **
4983 ** The Table structure that represents the result set was constructed
4984 ** by selectExpander() but the type and collation information was omitted
4985 ** at that point because identifiers had not yet been resolved.  This
4986 ** routine is called after identifier resolution.
4987 */
4988 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4989   Parse *pParse;
4990   int i;
4991   SrcList *pTabList;
4992   struct SrcList_item *pFrom;
4993 
4994   assert( p->selFlags & SF_Resolved );
4995   if( p->selFlags & SF_HasTypeInfo ) return;
4996   p->selFlags |= SF_HasTypeInfo;
4997   pParse = pWalker->pParse;
4998   pTabList = p->pSrc;
4999   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5000     Table *pTab = pFrom->pTab;
5001     assert( pTab!=0 );
5002     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5003       /* A sub-query in the FROM clause of a SELECT */
5004       Select *pSel = pFrom->pSelect;
5005       if( pSel ){
5006         while( pSel->pPrior ) pSel = pSel->pPrior;
5007         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5008       }
5009     }
5010   }
5011 }
5012 #endif
5013 
5014 
5015 /*
5016 ** This routine adds datatype and collating sequence information to
5017 ** the Table structures of all FROM-clause subqueries in a
5018 ** SELECT statement.
5019 **
5020 ** Use this routine after name resolution.
5021 */
5022 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5023 #ifndef SQLITE_OMIT_SUBQUERY
5024   Walker w;
5025   w.xSelectCallback = sqlite3SelectWalkNoop;
5026   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5027   w.xExprCallback = sqlite3ExprWalkNoop;
5028   w.pParse = pParse;
5029   sqlite3WalkSelect(&w, pSelect);
5030 #endif
5031 }
5032 
5033 
5034 /*
5035 ** This routine sets up a SELECT statement for processing.  The
5036 ** following is accomplished:
5037 **
5038 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5039 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5040 **     *  ON and USING clauses are shifted into WHERE statements
5041 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5042 **     *  Identifiers in expression are matched to tables.
5043 **
5044 ** This routine acts recursively on all subqueries within the SELECT.
5045 */
5046 void sqlite3SelectPrep(
5047   Parse *pParse,         /* The parser context */
5048   Select *p,             /* The SELECT statement being coded. */
5049   NameContext *pOuterNC  /* Name context for container */
5050 ){
5051   assert( p!=0 || pParse->db->mallocFailed );
5052   if( pParse->db->mallocFailed ) return;
5053   if( p->selFlags & SF_HasTypeInfo ) return;
5054   sqlite3SelectExpand(pParse, p);
5055   if( pParse->nErr || pParse->db->mallocFailed ) return;
5056   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5057   if( pParse->nErr || pParse->db->mallocFailed ) return;
5058   sqlite3SelectAddTypeInfo(pParse, p);
5059 }
5060 
5061 /*
5062 ** Reset the aggregate accumulator.
5063 **
5064 ** The aggregate accumulator is a set of memory cells that hold
5065 ** intermediate results while calculating an aggregate.  This
5066 ** routine generates code that stores NULLs in all of those memory
5067 ** cells.
5068 */
5069 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5070   Vdbe *v = pParse->pVdbe;
5071   int i;
5072   struct AggInfo_func *pFunc;
5073   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5074   if( nReg==0 ) return;
5075 #ifdef SQLITE_DEBUG
5076   /* Verify that all AggInfo registers are within the range specified by
5077   ** AggInfo.mnReg..AggInfo.mxReg */
5078   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5079   for(i=0; i<pAggInfo->nColumn; i++){
5080     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5081          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5082   }
5083   for(i=0; i<pAggInfo->nFunc; i++){
5084     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5085          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5086   }
5087 #endif
5088   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5089   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5090     if( pFunc->iDistinct>=0 ){
5091       Expr *pE = pFunc->pExpr;
5092       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5093       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5094         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5095            "argument");
5096         pFunc->iDistinct = -1;
5097       }else{
5098         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5099         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5100                           (char*)pKeyInfo, P4_KEYINFO);
5101       }
5102     }
5103   }
5104 }
5105 
5106 /*
5107 ** Invoke the OP_AggFinalize opcode for every aggregate function
5108 ** in the AggInfo structure.
5109 */
5110 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5111   Vdbe *v = pParse->pVdbe;
5112   int i;
5113   struct AggInfo_func *pF;
5114   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5115     ExprList *pList = pF->pExpr->x.pList;
5116     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5117     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5118     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5119   }
5120 }
5121 
5122 
5123 /*
5124 ** Update the accumulator memory cells for an aggregate based on
5125 ** the current cursor position.
5126 **
5127 ** If regAcc is non-zero and there are no min() or max() aggregates
5128 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5129 ** registers i register regAcc contains 0. The caller will take care
5130 ** of setting and clearing regAcc.
5131 */
5132 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5133   Vdbe *v = pParse->pVdbe;
5134   int i;
5135   int regHit = 0;
5136   int addrHitTest = 0;
5137   struct AggInfo_func *pF;
5138   struct AggInfo_col *pC;
5139 
5140   pAggInfo->directMode = 1;
5141   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5142     int nArg;
5143     int addrNext = 0;
5144     int regAgg;
5145     ExprList *pList = pF->pExpr->x.pList;
5146     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5147     if( pList ){
5148       nArg = pList->nExpr;
5149       regAgg = sqlite3GetTempRange(pParse, nArg);
5150       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5151     }else{
5152       nArg = 0;
5153       regAgg = 0;
5154     }
5155     if( pF->iDistinct>=0 ){
5156       addrNext = sqlite3VdbeMakeLabel(v);
5157       testcase( nArg==0 );  /* Error condition */
5158       testcase( nArg>1 );   /* Also an error */
5159       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5160     }
5161     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5162       CollSeq *pColl = 0;
5163       struct ExprList_item *pItem;
5164       int j;
5165       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5166       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5167         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5168       }
5169       if( !pColl ){
5170         pColl = pParse->db->pDfltColl;
5171       }
5172       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5173       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5174     }
5175     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5176     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5177     sqlite3VdbeChangeP5(v, (u8)nArg);
5178     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5179     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5180     if( addrNext ){
5181       sqlite3VdbeResolveLabel(v, addrNext);
5182       sqlite3ExprCacheClear(pParse);
5183     }
5184   }
5185 
5186   /* Before populating the accumulator registers, clear the column cache.
5187   ** Otherwise, if any of the required column values are already present
5188   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5189   ** to pC->iMem. But by the time the value is used, the original register
5190   ** may have been used, invalidating the underlying buffer holding the
5191   ** text or blob value. See ticket [883034dcb5].
5192   **
5193   ** Another solution would be to change the OP_SCopy used to copy cached
5194   ** values to an OP_Copy.
5195   */
5196   if( regHit==0 && pAggInfo->nAccumulator ){
5197     regHit = regAcc;
5198   }
5199   if( regHit ){
5200     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5201   }
5202   sqlite3ExprCacheClear(pParse);
5203   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5204     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5205   }
5206   pAggInfo->directMode = 0;
5207   sqlite3ExprCacheClear(pParse);
5208   if( addrHitTest ){
5209     sqlite3VdbeJumpHere(v, addrHitTest);
5210   }
5211 }
5212 
5213 /*
5214 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5215 ** count(*) query ("SELECT count(*) FROM pTab").
5216 */
5217 #ifndef SQLITE_OMIT_EXPLAIN
5218 static void explainSimpleCount(
5219   Parse *pParse,                  /* Parse context */
5220   Table *pTab,                    /* Table being queried */
5221   Index *pIdx                     /* Index used to optimize scan, or NULL */
5222 ){
5223   if( pParse->explain==2 ){
5224     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5225     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5226         pTab->zName,
5227         bCover ? " USING COVERING INDEX " : "",
5228         bCover ? pIdx->zName : ""
5229     );
5230   }
5231 }
5232 #else
5233 # define explainSimpleCount(a,b,c)
5234 #endif
5235 
5236 /*
5237 ** sqlite3WalkExpr() callback used by havingToWhere().
5238 **
5239 ** If the node passed to the callback is a TK_AND node, return
5240 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5241 **
5242 ** Otherwise, return WRC_Prune. In this case, also check if the
5243 ** sub-expression matches the criteria for being moved to the WHERE
5244 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5245 ** within the HAVING expression with a constant "1".
5246 */
5247 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5248   if( pExpr->op!=TK_AND ){
5249     Select *pS = pWalker->u.pSelect;
5250     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5251       sqlite3 *db = pWalker->pParse->db;
5252       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5253       if( pNew ){
5254         Expr *pWhere = pS->pWhere;
5255         SWAP(Expr, *pNew, *pExpr);
5256         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5257         pS->pWhere = pNew;
5258         pWalker->eCode = 1;
5259       }
5260     }
5261     return WRC_Prune;
5262   }
5263   return WRC_Continue;
5264 }
5265 
5266 /*
5267 ** Transfer eligible terms from the HAVING clause of a query, which is
5268 ** processed after grouping, to the WHERE clause, which is processed before
5269 ** grouping. For example, the query:
5270 **
5271 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5272 **
5273 ** can be rewritten as:
5274 **
5275 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5276 **
5277 ** A term of the HAVING expression is eligible for transfer if it consists
5278 ** entirely of constants and expressions that are also GROUP BY terms that
5279 ** use the "BINARY" collation sequence.
5280 */
5281 static void havingToWhere(Parse *pParse, Select *p){
5282   Walker sWalker;
5283   memset(&sWalker, 0, sizeof(sWalker));
5284   sWalker.pParse = pParse;
5285   sWalker.xExprCallback = havingToWhereExprCb;
5286   sWalker.u.pSelect = p;
5287   sqlite3WalkExpr(&sWalker, p->pHaving);
5288 #if SELECTTRACE_ENABLED
5289   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5290     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5291     sqlite3TreeViewSelect(0, p, 0);
5292   }
5293 #endif
5294 }
5295 
5296 /*
5297 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5298 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5299 ** then return 0.
5300 */
5301 static struct SrcList_item *isSelfJoinView(
5302   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5303   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5304 ){
5305   struct SrcList_item *pItem;
5306   for(pItem = pTabList->a; pItem<pThis; pItem++){
5307     if( pItem->pSelect==0 ) continue;
5308     if( pItem->fg.viaCoroutine ) continue;
5309     if( pItem->zName==0 ) continue;
5310     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5311     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5312     if( sqlite3ExprCompare(0,
5313           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5314     ){
5315       /* The view was modified by some other optimization such as
5316       ** pushDownWhereTerms() */
5317       continue;
5318     }
5319     return pItem;
5320   }
5321   return 0;
5322 }
5323 
5324 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5325 /*
5326 ** Attempt to transform a query of the form
5327 **
5328 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5329 **
5330 ** Into this:
5331 **
5332 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5333 **
5334 ** The transformation only works if all of the following are true:
5335 **
5336 **   *  The subquery is a UNION ALL of two or more terms
5337 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5338 **   *  The outer query is a simple count(*)
5339 **
5340 ** Return TRUE if the optimization is undertaken.
5341 */
5342 static int countOfViewOptimization(Parse *pParse, Select *p){
5343   Select *pSub, *pPrior;
5344   Expr *pExpr;
5345   Expr *pCount;
5346   sqlite3 *db;
5347   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5348   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5349   pExpr = p->pEList->a[0].pExpr;
5350   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5351   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5352   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5353   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5354   pSub = p->pSrc->a[0].pSelect;
5355   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5356   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5357   do{
5358     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5359     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5360     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5361     pSub = pSub->pPrior;                              /* Repeat over compound */
5362   }while( pSub );
5363 
5364   /* If we reach this point then it is OK to perform the transformation */
5365 
5366   db = pParse->db;
5367   pCount = pExpr;
5368   pExpr = 0;
5369   pSub = p->pSrc->a[0].pSelect;
5370   p->pSrc->a[0].pSelect = 0;
5371   sqlite3SrcListDelete(db, p->pSrc);
5372   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5373   while( pSub ){
5374     Expr *pTerm;
5375     pPrior = pSub->pPrior;
5376     pSub->pPrior = 0;
5377     pSub->pNext = 0;
5378     pSub->selFlags |= SF_Aggregate;
5379     pSub->selFlags &= ~SF_Compound;
5380     pSub->nSelectRow = 0;
5381     sqlite3ExprListDelete(db, pSub->pEList);
5382     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5383     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5384     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5385     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5386     if( pExpr==0 ){
5387       pExpr = pTerm;
5388     }else{
5389       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5390     }
5391     pSub = pPrior;
5392   }
5393   p->pEList->a[0].pExpr = pExpr;
5394   p->selFlags &= ~SF_Aggregate;
5395 
5396 #if SELECTTRACE_ENABLED
5397   if( sqlite3SelectTrace & 0x400 ){
5398     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5399     sqlite3TreeViewSelect(0, p, 0);
5400   }
5401 #endif
5402   return 1;
5403 }
5404 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5405 
5406 /*
5407 ** Generate code for the SELECT statement given in the p argument.
5408 **
5409 ** The results are returned according to the SelectDest structure.
5410 ** See comments in sqliteInt.h for further information.
5411 **
5412 ** This routine returns the number of errors.  If any errors are
5413 ** encountered, then an appropriate error message is left in
5414 ** pParse->zErrMsg.
5415 **
5416 ** This routine does NOT free the Select structure passed in.  The
5417 ** calling function needs to do that.
5418 */
5419 int sqlite3Select(
5420   Parse *pParse,         /* The parser context */
5421   Select *p,             /* The SELECT statement being coded. */
5422   SelectDest *pDest      /* What to do with the query results */
5423 ){
5424   int i, j;              /* Loop counters */
5425   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5426   Vdbe *v;               /* The virtual machine under construction */
5427   int isAgg;             /* True for select lists like "count(*)" */
5428   ExprList *pEList = 0;  /* List of columns to extract. */
5429   SrcList *pTabList;     /* List of tables to select from */
5430   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5431   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5432   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5433   int rc = 1;            /* Value to return from this function */
5434   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5435   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5436   AggInfo sAggInfo;      /* Information used by aggregate queries */
5437   int iEnd;              /* Address of the end of the query */
5438   sqlite3 *db;           /* The database connection */
5439   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5440   u8 minMaxFlag;                 /* Flag for min/max queries */
5441 
5442   db = pParse->db;
5443   v = sqlite3GetVdbe(pParse);
5444   if( p==0 || db->mallocFailed || pParse->nErr ){
5445     return 1;
5446   }
5447   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5448   memset(&sAggInfo, 0, sizeof(sAggInfo));
5449 #if SELECTTRACE_ENABLED
5450   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5451   if( sqlite3SelectTrace & 0x100 ){
5452     sqlite3TreeViewSelect(0, p, 0);
5453   }
5454 #endif
5455 
5456   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5457   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5458   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5459   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5460   if( IgnorableOrderby(pDest) ){
5461     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5462            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5463            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5464            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5465     /* If ORDER BY makes no difference in the output then neither does
5466     ** DISTINCT so it can be removed too. */
5467     sqlite3ExprListDelete(db, p->pOrderBy);
5468     p->pOrderBy = 0;
5469     p->selFlags &= ~SF_Distinct;
5470   }
5471   sqlite3SelectPrep(pParse, p, 0);
5472   if( pParse->nErr || db->mallocFailed ){
5473     goto select_end;
5474   }
5475   assert( p->pEList!=0 );
5476 #if SELECTTRACE_ENABLED
5477   if( sqlite3SelectTrace & 0x104 ){
5478     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5479     sqlite3TreeViewSelect(0, p, 0);
5480   }
5481 #endif
5482 
5483   if( pDest->eDest==SRT_Output ){
5484     generateColumnNames(pParse, p);
5485   }
5486 
5487 #ifndef SQLITE_OMIT_WINDOWFUNC
5488   if( sqlite3WindowRewrite(pParse, p) ){
5489     goto select_end;
5490   }
5491 #if SELECTTRACE_ENABLED
5492   if( sqlite3SelectTrace & 0x108 ){
5493     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5494     sqlite3TreeViewSelect(0, p, 0);
5495   }
5496 #endif
5497 #endif /* SQLITE_OMIT_WINDOWFUNC */
5498   pTabList = p->pSrc;
5499   isAgg = (p->selFlags & SF_Aggregate)!=0;
5500   memset(&sSort, 0, sizeof(sSort));
5501   sSort.pOrderBy = p->pOrderBy;
5502 
5503   /* Try to various optimizations (flattening subqueries, and strength
5504   ** reduction of join operators) in the FROM clause up into the main query
5505   */
5506 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5507   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5508     struct SrcList_item *pItem = &pTabList->a[i];
5509     Select *pSub = pItem->pSelect;
5510     Table *pTab = pItem->pTab;
5511 
5512     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5513     ** of the LEFT JOIN used in the WHERE clause.
5514     */
5515     if( (pItem->fg.jointype & JT_LEFT)!=0
5516      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5517      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5518     ){
5519       SELECTTRACE(0x100,pParse,p,
5520                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5521       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5522       unsetJoinExpr(p->pWhere, pItem->iCursor);
5523     }
5524 
5525     /* No futher action if this term of the FROM clause is no a subquery */
5526     if( pSub==0 ) continue;
5527 
5528     /* Catch mismatch in the declared columns of a view and the number of
5529     ** columns in the SELECT on the RHS */
5530     if( pTab->nCol!=pSub->pEList->nExpr ){
5531       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5532                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5533       goto select_end;
5534     }
5535 
5536     /* Do not try to flatten an aggregate subquery.
5537     **
5538     ** Flattening an aggregate subquery is only possible if the outer query
5539     ** is not a join.  But if the outer query is not a join, then the subquery
5540     ** will be implemented as a co-routine and there is no advantage to
5541     ** flattening in that case.
5542     */
5543     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5544     assert( pSub->pGroupBy==0 );
5545 
5546     /* If the outer query contains a "complex" result set (that is,
5547     ** if the result set of the outer query uses functions or subqueries)
5548     ** and if the subquery contains an ORDER BY clause and if
5549     ** it will be implemented as a co-routine, then do not flatten.  This
5550     ** restriction allows SQL constructs like this:
5551     **
5552     **  SELECT expensive_function(x)
5553     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5554     **
5555     ** The expensive_function() is only computed on the 10 rows that
5556     ** are output, rather than every row of the table.
5557     **
5558     ** The requirement that the outer query have a complex result set
5559     ** means that flattening does occur on simpler SQL constraints without
5560     ** the expensive_function() like:
5561     **
5562     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5563     */
5564     if( pSub->pOrderBy!=0
5565      && i==0
5566      && (p->selFlags & SF_ComplexResult)!=0
5567      && (pTabList->nSrc==1
5568          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5569     ){
5570       continue;
5571     }
5572 
5573     if( flattenSubquery(pParse, p, i, isAgg) ){
5574       /* This subquery can be absorbed into its parent. */
5575       i = -1;
5576     }
5577     pTabList = p->pSrc;
5578     if( db->mallocFailed ) goto select_end;
5579     if( !IgnorableOrderby(pDest) ){
5580       sSort.pOrderBy = p->pOrderBy;
5581     }
5582   }
5583 #endif
5584 
5585 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5586   /* Handle compound SELECT statements using the separate multiSelect()
5587   ** procedure.
5588   */
5589   if( p->pPrior ){
5590     rc = multiSelect(pParse, p, pDest);
5591 #if SELECTTRACE_ENABLED
5592     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5593     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5594       sqlite3TreeViewSelect(0, p, 0);
5595     }
5596 #endif
5597     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5598     return rc;
5599   }
5600 #endif
5601 
5602   /* For each term in the FROM clause, do two things:
5603   ** (1) Authorized unreferenced tables
5604   ** (2) Generate code for all sub-queries
5605   */
5606   for(i=0; i<pTabList->nSrc; i++){
5607     struct SrcList_item *pItem = &pTabList->a[i];
5608     SelectDest dest;
5609     Select *pSub;
5610 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5611     const char *zSavedAuthContext;
5612 #endif
5613 
5614     /* Issue SQLITE_READ authorizations with a fake column name for any
5615     ** tables that are referenced but from which no values are extracted.
5616     ** Examples of where these kinds of null SQLITE_READ authorizations
5617     ** would occur:
5618     **
5619     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5620     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5621     **
5622     ** The fake column name is an empty string.  It is possible for a table to
5623     ** have a column named by the empty string, in which case there is no way to
5624     ** distinguish between an unreferenced table and an actual reference to the
5625     ** "" column. The original design was for the fake column name to be a NULL,
5626     ** which would be unambiguous.  But legacy authorization callbacks might
5627     ** assume the column name is non-NULL and segfault.  The use of an empty
5628     ** string for the fake column name seems safer.
5629     */
5630     if( pItem->colUsed==0 ){
5631       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5632     }
5633 
5634 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5635     /* Generate code for all sub-queries in the FROM clause
5636     */
5637     pSub = pItem->pSelect;
5638     if( pSub==0 ) continue;
5639 
5640     /* Sometimes the code for a subquery will be generated more than
5641     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5642     ** for example.  In that case, do not regenerate the code to manifest
5643     ** a view or the co-routine to implement a view.  The first instance
5644     ** is sufficient, though the subroutine to manifest the view does need
5645     ** to be invoked again. */
5646     if( pItem->addrFillSub ){
5647       if( pItem->fg.viaCoroutine==0 ){
5648         /* The subroutine that manifests the view might be a one-time routine,
5649         ** or it might need to be rerun on each iteration because it
5650         ** encodes a correlated subquery. */
5651         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5652         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5653       }
5654       continue;
5655     }
5656 
5657     /* Increment Parse.nHeight by the height of the largest expression
5658     ** tree referred to by this, the parent select. The child select
5659     ** may contain expression trees of at most
5660     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5661     ** more conservative than necessary, but much easier than enforcing
5662     ** an exact limit.
5663     */
5664     pParse->nHeight += sqlite3SelectExprHeight(p);
5665 
5666     /* Make copies of constant WHERE-clause terms in the outer query down
5667     ** inside the subquery.  This can help the subquery to run more efficiently.
5668     */
5669     if( OptimizationEnabled(db, SQLITE_PushDown)
5670      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5671                            (pItem->fg.jointype & JT_OUTER)!=0)
5672     ){
5673 #if SELECTTRACE_ENABLED
5674       if( sqlite3SelectTrace & 0x100 ){
5675         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5676         sqlite3TreeViewSelect(0, p, 0);
5677       }
5678 #endif
5679     }else{
5680       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5681     }
5682 
5683     zSavedAuthContext = pParse->zAuthContext;
5684     pParse->zAuthContext = pItem->zName;
5685 
5686     /* Generate code to implement the subquery
5687     **
5688     ** The subquery is implemented as a co-routine if the subquery is
5689     ** guaranteed to be the outer loop (so that it does not need to be
5690     ** computed more than once)
5691     **
5692     ** TODO: Are there other reasons beside (1) to use a co-routine
5693     ** implementation?
5694     */
5695     if( i==0
5696      && (pTabList->nSrc==1
5697             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5698     ){
5699       /* Implement a co-routine that will return a single row of the result
5700       ** set on each invocation.
5701       */
5702       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5703 
5704       pItem->regReturn = ++pParse->nMem;
5705       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5706       VdbeComment((v, "%s", pItem->pTab->zName));
5707       pItem->addrFillSub = addrTop;
5708       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5709       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5710       sqlite3Select(pParse, pSub, &dest);
5711       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5712       pItem->fg.viaCoroutine = 1;
5713       pItem->regResult = dest.iSdst;
5714       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5715       sqlite3VdbeJumpHere(v, addrTop-1);
5716       sqlite3ClearTempRegCache(pParse);
5717     }else{
5718       /* Generate a subroutine that will fill an ephemeral table with
5719       ** the content of this subquery.  pItem->addrFillSub will point
5720       ** to the address of the generated subroutine.  pItem->regReturn
5721       ** is a register allocated to hold the subroutine return address
5722       */
5723       int topAddr;
5724       int onceAddr = 0;
5725       int retAddr;
5726       struct SrcList_item *pPrior;
5727 
5728       assert( pItem->addrFillSub==0 );
5729       pItem->regReturn = ++pParse->nMem;
5730       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5731       pItem->addrFillSub = topAddr+1;
5732       if( pItem->fg.isCorrelated==0 ){
5733         /* If the subquery is not correlated and if we are not inside of
5734         ** a trigger, then we only need to compute the value of the subquery
5735         ** once. */
5736         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5737         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5738       }else{
5739         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5740       }
5741       pPrior = isSelfJoinView(pTabList, pItem);
5742       if( pPrior ){
5743         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5744         assert( pPrior->pSelect!=0 );
5745         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5746       }else{
5747         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5748         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5749         sqlite3Select(pParse, pSub, &dest);
5750       }
5751       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5752       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5753       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5754       VdbeComment((v, "end %s", pItem->pTab->zName));
5755       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5756       sqlite3ClearTempRegCache(pParse);
5757     }
5758     if( db->mallocFailed ) goto select_end;
5759     pParse->nHeight -= sqlite3SelectExprHeight(p);
5760     pParse->zAuthContext = zSavedAuthContext;
5761 #endif
5762   }
5763 
5764   /* Various elements of the SELECT copied into local variables for
5765   ** convenience */
5766   pEList = p->pEList;
5767   pWhere = p->pWhere;
5768   pGroupBy = p->pGroupBy;
5769   pHaving = p->pHaving;
5770   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5771 
5772 #if SELECTTRACE_ENABLED
5773   if( sqlite3SelectTrace & 0x400 ){
5774     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5775     sqlite3TreeViewSelect(0, p, 0);
5776   }
5777 #endif
5778 
5779 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5780   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5781    && countOfViewOptimization(pParse, p)
5782   ){
5783     if( db->mallocFailed ) goto select_end;
5784     pEList = p->pEList;
5785     pTabList = p->pSrc;
5786   }
5787 #endif
5788 
5789   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5790   ** if the select-list is the same as the ORDER BY list, then this query
5791   ** can be rewritten as a GROUP BY. In other words, this:
5792   **
5793   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5794   **
5795   ** is transformed to:
5796   **
5797   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5798   **
5799   ** The second form is preferred as a single index (or temp-table) may be
5800   ** used for both the ORDER BY and DISTINCT processing. As originally
5801   ** written the query must use a temp-table for at least one of the ORDER
5802   ** BY and DISTINCT, and an index or separate temp-table for the other.
5803   */
5804   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5805    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5806   ){
5807     p->selFlags &= ~SF_Distinct;
5808     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5809     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5810     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5811     ** original setting of the SF_Distinct flag, not the current setting */
5812     assert( sDistinct.isTnct );
5813 
5814 #if SELECTTRACE_ENABLED
5815     if( sqlite3SelectTrace & 0x400 ){
5816       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5817       sqlite3TreeViewSelect(0, p, 0);
5818     }
5819 #endif
5820   }
5821 
5822   /* If there is an ORDER BY clause, then create an ephemeral index to
5823   ** do the sorting.  But this sorting ephemeral index might end up
5824   ** being unused if the data can be extracted in pre-sorted order.
5825   ** If that is the case, then the OP_OpenEphemeral instruction will be
5826   ** changed to an OP_Noop once we figure out that the sorting index is
5827   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5828   ** that change.
5829   */
5830   if( sSort.pOrderBy ){
5831     KeyInfo *pKeyInfo;
5832     pKeyInfo = sqlite3KeyInfoFromExprList(
5833         pParse, sSort.pOrderBy, 0, pEList->nExpr);
5834     sSort.iECursor = pParse->nTab++;
5835     sSort.addrSortIndex =
5836       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5837           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5838           (char*)pKeyInfo, P4_KEYINFO
5839       );
5840   }else{
5841     sSort.addrSortIndex = -1;
5842   }
5843 
5844   /* If the output is destined for a temporary table, open that table.
5845   */
5846   if( pDest->eDest==SRT_EphemTab ){
5847     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5848   }
5849 
5850   /* Set the limiter.
5851   */
5852   iEnd = sqlite3VdbeMakeLabel(v);
5853   if( (p->selFlags & SF_FixedLimit)==0 ){
5854     p->nSelectRow = 320;  /* 4 billion rows */
5855   }
5856   computeLimitRegisters(pParse, p, iEnd);
5857   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5858     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5859     sSort.sortFlags |= SORTFLAG_UseSorter;
5860   }
5861 
5862   /* Open an ephemeral index to use for the distinct set.
5863   */
5864   if( p->selFlags & SF_Distinct ){
5865     sDistinct.tabTnct = pParse->nTab++;
5866     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5867                        sDistinct.tabTnct, 0, 0,
5868                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
5869                        P4_KEYINFO);
5870     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5871     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5872   }else{
5873     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5874   }
5875 
5876   if( !isAgg && pGroupBy==0 ){
5877     /* No aggregate functions and no GROUP BY clause */
5878     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
5879                    | (p->selFlags & SF_FixedLimit);
5880 #ifndef SQLITE_OMIT_WINDOWFUNC
5881     Window *pWin = p->pWin;      /* Master window object (or NULL) */
5882     if( pWin ){
5883       sqlite3WindowCodeInit(pParse, pWin);
5884     }
5885 #endif
5886     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5887 
5888 
5889     /* Begin the database scan. */
5890     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5891     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5892                                p->pEList, wctrlFlags, p->nSelectRow);
5893     if( pWInfo==0 ) goto select_end;
5894     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5895       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5896     }
5897     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5898       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5899     }
5900     if( sSort.pOrderBy ){
5901       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5902       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5903       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5904         sSort.pOrderBy = 0;
5905       }
5906     }
5907 
5908     /* If sorting index that was created by a prior OP_OpenEphemeral
5909     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5910     ** into an OP_Noop.
5911     */
5912     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5913       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5914     }
5915 
5916     assert( p->pEList==pEList );
5917 #ifndef SQLITE_OMIT_WINDOWFUNC
5918     if( pWin ){
5919       int addrGosub = sqlite3VdbeMakeLabel(v);
5920       int iCont = sqlite3VdbeMakeLabel(v);
5921       int iBreak = sqlite3VdbeMakeLabel(v);
5922       int regGosub = ++pParse->nMem;
5923 
5924       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
5925 
5926       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
5927       sqlite3VdbeResolveLabel(v, addrGosub);
5928       VdbeNoopComment((v, "inner-loop subroutine"));
5929       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
5930       sqlite3VdbeResolveLabel(v, iCont);
5931       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
5932       VdbeComment((v, "end inner-loop subroutine"));
5933       sqlite3VdbeResolveLabel(v, iBreak);
5934     }else
5935 #endif /* SQLITE_OMIT_WINDOWFUNC */
5936     {
5937       /* Use the standard inner loop. */
5938       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5939           sqlite3WhereContinueLabel(pWInfo),
5940           sqlite3WhereBreakLabel(pWInfo));
5941 
5942       /* End the database scan loop.
5943       */
5944       sqlite3WhereEnd(pWInfo);
5945     }
5946   }else{
5947     /* This case when there exist aggregate functions or a GROUP BY clause
5948     ** or both */
5949     NameContext sNC;    /* Name context for processing aggregate information */
5950     int iAMem;          /* First Mem address for storing current GROUP BY */
5951     int iBMem;          /* First Mem address for previous GROUP BY */
5952     int iUseFlag;       /* Mem address holding flag indicating that at least
5953                         ** one row of the input to the aggregator has been
5954                         ** processed */
5955     int iAbortFlag;     /* Mem address which causes query abort if positive */
5956     int groupBySort;    /* Rows come from source in GROUP BY order */
5957     int addrEnd;        /* End of processing for this SELECT */
5958     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5959     int sortOut = 0;    /* Output register from the sorter */
5960     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5961 
5962     /* Remove any and all aliases between the result set and the
5963     ** GROUP BY clause.
5964     */
5965     if( pGroupBy ){
5966       int k;                        /* Loop counter */
5967       struct ExprList_item *pItem;  /* For looping over expression in a list */
5968 
5969       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5970         pItem->u.x.iAlias = 0;
5971       }
5972       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5973         pItem->u.x.iAlias = 0;
5974       }
5975       assert( 66==sqlite3LogEst(100) );
5976       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5977     }else{
5978       assert( 0==sqlite3LogEst(1) );
5979       p->nSelectRow = 0;
5980     }
5981 
5982     /* If there is both a GROUP BY and an ORDER BY clause and they are
5983     ** identical, then it may be possible to disable the ORDER BY clause
5984     ** on the grounds that the GROUP BY will cause elements to come out
5985     ** in the correct order. It also may not - the GROUP BY might use a
5986     ** database index that causes rows to be grouped together as required
5987     ** but not actually sorted. Either way, record the fact that the
5988     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5989     ** variable.  */
5990     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5991       orderByGrp = 1;
5992     }
5993 
5994     /* Create a label to jump to when we want to abort the query */
5995     addrEnd = sqlite3VdbeMakeLabel(v);
5996 
5997     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5998     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5999     ** SELECT statement.
6000     */
6001     memset(&sNC, 0, sizeof(sNC));
6002     sNC.pParse = pParse;
6003     sNC.pSrcList = pTabList;
6004     sNC.uNC.pAggInfo = &sAggInfo;
6005     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6006     sAggInfo.mnReg = pParse->nMem+1;
6007     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6008     sAggInfo.pGroupBy = pGroupBy;
6009     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6010     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6011     if( pHaving ){
6012       if( pGroupBy ){
6013         assert( pWhere==p->pWhere );
6014         assert( pHaving==p->pHaving );
6015         assert( pGroupBy==p->pGroupBy );
6016         havingToWhere(pParse, p);
6017         pWhere = p->pWhere;
6018       }
6019       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6020     }
6021     sAggInfo.nAccumulator = sAggInfo.nColumn;
6022     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6023       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6024     }else{
6025       minMaxFlag = WHERE_ORDERBY_NORMAL;
6026     }
6027     for(i=0; i<sAggInfo.nFunc; i++){
6028       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6029       sNC.ncFlags |= NC_InAggFunc;
6030       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6031       sNC.ncFlags &= ~NC_InAggFunc;
6032     }
6033     sAggInfo.mxReg = pParse->nMem;
6034     if( db->mallocFailed ) goto select_end;
6035 #if SELECTTRACE_ENABLED
6036     if( sqlite3SelectTrace & 0x400 ){
6037       int ii;
6038       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6039       sqlite3TreeViewSelect(0, p, 0);
6040       for(ii=0; ii<sAggInfo.nColumn; ii++){
6041         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6042             ii, sAggInfo.aCol[ii].iMem);
6043         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6044       }
6045       for(ii=0; ii<sAggInfo.nFunc; ii++){
6046         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6047             ii, sAggInfo.aFunc[ii].iMem);
6048         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6049       }
6050     }
6051 #endif
6052 
6053 
6054     /* Processing for aggregates with GROUP BY is very different and
6055     ** much more complex than aggregates without a GROUP BY.
6056     */
6057     if( pGroupBy ){
6058       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6059       int addr1;          /* A-vs-B comparision jump */
6060       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6061       int regOutputRow;   /* Return address register for output subroutine */
6062       int addrSetAbort;   /* Set the abort flag and return */
6063       int addrTopOfLoop;  /* Top of the input loop */
6064       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6065       int addrReset;      /* Subroutine for resetting the accumulator */
6066       int regReset;       /* Return address register for reset subroutine */
6067 
6068       /* If there is a GROUP BY clause we might need a sorting index to
6069       ** implement it.  Allocate that sorting index now.  If it turns out
6070       ** that we do not need it after all, the OP_SorterOpen instruction
6071       ** will be converted into a Noop.
6072       */
6073       sAggInfo.sortingIdx = pParse->nTab++;
6074       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6075       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6076           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6077           0, (char*)pKeyInfo, P4_KEYINFO);
6078 
6079       /* Initialize memory locations used by GROUP BY aggregate processing
6080       */
6081       iUseFlag = ++pParse->nMem;
6082       iAbortFlag = ++pParse->nMem;
6083       regOutputRow = ++pParse->nMem;
6084       addrOutputRow = sqlite3VdbeMakeLabel(v);
6085       regReset = ++pParse->nMem;
6086       addrReset = sqlite3VdbeMakeLabel(v);
6087       iAMem = pParse->nMem + 1;
6088       pParse->nMem += pGroupBy->nExpr;
6089       iBMem = pParse->nMem + 1;
6090       pParse->nMem += pGroupBy->nExpr;
6091       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6092       VdbeComment((v, "clear abort flag"));
6093       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6094 
6095       /* Begin a loop that will extract all source rows in GROUP BY order.
6096       ** This might involve two separate loops with an OP_Sort in between, or
6097       ** it might be a single loop that uses an index to extract information
6098       ** in the right order to begin with.
6099       */
6100       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6101       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6102       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6103           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6104       );
6105       if( pWInfo==0 ) goto select_end;
6106       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6107         /* The optimizer is able to deliver rows in group by order so
6108         ** we do not have to sort.  The OP_OpenEphemeral table will be
6109         ** cancelled later because we still need to use the pKeyInfo
6110         */
6111         groupBySort = 0;
6112       }else{
6113         /* Rows are coming out in undetermined order.  We have to push
6114         ** each row into a sorting index, terminate the first loop,
6115         ** then loop over the sorting index in order to get the output
6116         ** in sorted order
6117         */
6118         int regBase;
6119         int regRecord;
6120         int nCol;
6121         int nGroupBy;
6122 
6123         explainTempTable(pParse,
6124             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6125                     "DISTINCT" : "GROUP BY");
6126 
6127         groupBySort = 1;
6128         nGroupBy = pGroupBy->nExpr;
6129         nCol = nGroupBy;
6130         j = nGroupBy;
6131         for(i=0; i<sAggInfo.nColumn; i++){
6132           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6133             nCol++;
6134             j++;
6135           }
6136         }
6137         regBase = sqlite3GetTempRange(pParse, nCol);
6138         sqlite3ExprCacheClear(pParse);
6139         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6140         j = nGroupBy;
6141         for(i=0; i<sAggInfo.nColumn; i++){
6142           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6143           if( pCol->iSorterColumn>=j ){
6144             int r1 = j + regBase;
6145             sqlite3ExprCodeGetColumnToReg(pParse,
6146                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6147             j++;
6148           }
6149         }
6150         regRecord = sqlite3GetTempReg(pParse);
6151         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6152         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6153         sqlite3ReleaseTempReg(pParse, regRecord);
6154         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6155         sqlite3WhereEnd(pWInfo);
6156         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6157         sortOut = sqlite3GetTempReg(pParse);
6158         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6159         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6160         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6161         sAggInfo.useSortingIdx = 1;
6162         sqlite3ExprCacheClear(pParse);
6163 
6164       }
6165 
6166       /* If the index or temporary table used by the GROUP BY sort
6167       ** will naturally deliver rows in the order required by the ORDER BY
6168       ** clause, cancel the ephemeral table open coded earlier.
6169       **
6170       ** This is an optimization - the correct answer should result regardless.
6171       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6172       ** disable this optimization for testing purposes.  */
6173       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6174        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6175       ){
6176         sSort.pOrderBy = 0;
6177         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6178       }
6179 
6180       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6181       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6182       ** Then compare the current GROUP BY terms against the GROUP BY terms
6183       ** from the previous row currently stored in a0, a1, a2...
6184       */
6185       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6186       sqlite3ExprCacheClear(pParse);
6187       if( groupBySort ){
6188         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6189                           sortOut, sortPTab);
6190       }
6191       for(j=0; j<pGroupBy->nExpr; j++){
6192         if( groupBySort ){
6193           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6194         }else{
6195           sAggInfo.directMode = 1;
6196           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6197         }
6198       }
6199       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6200                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6201       addr1 = sqlite3VdbeCurrentAddr(v);
6202       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6203 
6204       /* Generate code that runs whenever the GROUP BY changes.
6205       ** Changes in the GROUP BY are detected by the previous code
6206       ** block.  If there were no changes, this block is skipped.
6207       **
6208       ** This code copies current group by terms in b0,b1,b2,...
6209       ** over to a0,a1,a2.  It then calls the output subroutine
6210       ** and resets the aggregate accumulator registers in preparation
6211       ** for the next GROUP BY batch.
6212       */
6213       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6214       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6215       VdbeComment((v, "output one row"));
6216       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6217       VdbeComment((v, "check abort flag"));
6218       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6219       VdbeComment((v, "reset accumulator"));
6220 
6221       /* Update the aggregate accumulators based on the content of
6222       ** the current row
6223       */
6224       sqlite3VdbeJumpHere(v, addr1);
6225       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6226       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6227       VdbeComment((v, "indicate data in accumulator"));
6228 
6229       /* End of the loop
6230       */
6231       if( groupBySort ){
6232         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6233         VdbeCoverage(v);
6234       }else{
6235         sqlite3WhereEnd(pWInfo);
6236         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6237       }
6238 
6239       /* Output the final row of result
6240       */
6241       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6242       VdbeComment((v, "output final row"));
6243 
6244       /* Jump over the subroutines
6245       */
6246       sqlite3VdbeGoto(v, addrEnd);
6247 
6248       /* Generate a subroutine that outputs a single row of the result
6249       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6250       ** is less than or equal to zero, the subroutine is a no-op.  If
6251       ** the processing calls for the query to abort, this subroutine
6252       ** increments the iAbortFlag memory location before returning in
6253       ** order to signal the caller to abort.
6254       */
6255       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6256       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6257       VdbeComment((v, "set abort flag"));
6258       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6259       sqlite3VdbeResolveLabel(v, addrOutputRow);
6260       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6261       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6262       VdbeCoverage(v);
6263       VdbeComment((v, "Groupby result generator entry point"));
6264       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6265       finalizeAggFunctions(pParse, &sAggInfo);
6266       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6267       selectInnerLoop(pParse, p, -1, &sSort,
6268                       &sDistinct, pDest,
6269                       addrOutputRow+1, addrSetAbort);
6270       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6271       VdbeComment((v, "end groupby result generator"));
6272 
6273       /* Generate a subroutine that will reset the group-by accumulator
6274       */
6275       sqlite3VdbeResolveLabel(v, addrReset);
6276       resetAccumulator(pParse, &sAggInfo);
6277       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6278       VdbeComment((v, "indicate accumulator empty"));
6279       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6280 
6281     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6282     else {
6283 #ifndef SQLITE_OMIT_BTREECOUNT
6284       Table *pTab;
6285       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6286         /* If isSimpleCount() returns a pointer to a Table structure, then
6287         ** the SQL statement is of the form:
6288         **
6289         **   SELECT count(*) FROM <tbl>
6290         **
6291         ** where the Table structure returned represents table <tbl>.
6292         **
6293         ** This statement is so common that it is optimized specially. The
6294         ** OP_Count instruction is executed either on the intkey table that
6295         ** contains the data for table <tbl> or on one of its indexes. It
6296         ** is better to execute the op on an index, as indexes are almost
6297         ** always spread across less pages than their corresponding tables.
6298         */
6299         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6300         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6301         Index *pIdx;                         /* Iterator variable */
6302         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6303         Index *pBest = 0;                    /* Best index found so far */
6304         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6305 
6306         sqlite3CodeVerifySchema(pParse, iDb);
6307         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6308 
6309         /* Search for the index that has the lowest scan cost.
6310         **
6311         ** (2011-04-15) Do not do a full scan of an unordered index.
6312         **
6313         ** (2013-10-03) Do not count the entries in a partial index.
6314         **
6315         ** In practice the KeyInfo structure will not be used. It is only
6316         ** passed to keep OP_OpenRead happy.
6317         */
6318         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6319         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6320           if( pIdx->bUnordered==0
6321            && pIdx->szIdxRow<pTab->szTabRow
6322            && pIdx->pPartIdxWhere==0
6323            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6324           ){
6325             pBest = pIdx;
6326           }
6327         }
6328         if( pBest ){
6329           iRoot = pBest->tnum;
6330           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6331         }
6332 
6333         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6334         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6335         if( pKeyInfo ){
6336           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6337         }
6338         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6339         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6340         explainSimpleCount(pParse, pTab, pBest);
6341       }else
6342 #endif /* SQLITE_OMIT_BTREECOUNT */
6343       {
6344         int regAcc = 0;           /* "populate accumulators" flag */
6345 
6346         /* If there are accumulator registers but no min() or max() functions,
6347         ** allocate register regAcc. Register regAcc will contain 0 the first
6348         ** time the inner loop runs, and 1 thereafter. The code generated
6349         ** by updateAccumulator() only updates the accumulator registers if
6350         ** regAcc contains 0.  */
6351         if( sAggInfo.nAccumulator ){
6352           for(i=0; i<sAggInfo.nFunc; i++){
6353             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6354           }
6355           if( i==sAggInfo.nFunc ){
6356             regAcc = ++pParse->nMem;
6357             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6358           }
6359         }
6360 
6361         /* This case runs if the aggregate has no GROUP BY clause.  The
6362         ** processing is much simpler since there is only a single row
6363         ** of output.
6364         */
6365         assert( p->pGroupBy==0 );
6366         resetAccumulator(pParse, &sAggInfo);
6367 
6368         /* If this query is a candidate for the min/max optimization, then
6369         ** minMaxFlag will have been previously set to either
6370         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6371         ** be an appropriate ORDER BY expression for the optimization.
6372         */
6373         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6374         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6375 
6376         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6377         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6378                                    0, minMaxFlag, 0);
6379         if( pWInfo==0 ){
6380           goto select_end;
6381         }
6382         updateAccumulator(pParse, regAcc, &sAggInfo);
6383         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6384         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6385           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6386           VdbeComment((v, "%s() by index",
6387                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6388         }
6389         sqlite3WhereEnd(pWInfo);
6390         finalizeAggFunctions(pParse, &sAggInfo);
6391       }
6392 
6393       sSort.pOrderBy = 0;
6394       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6395       selectInnerLoop(pParse, p, -1, 0, 0,
6396                       pDest, addrEnd, addrEnd);
6397     }
6398     sqlite3VdbeResolveLabel(v, addrEnd);
6399 
6400   } /* endif aggregate query */
6401 
6402   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6403     explainTempTable(pParse, "DISTINCT");
6404   }
6405 
6406   /* If there is an ORDER BY clause, then we need to sort the results
6407   ** and send them to the callback one by one.
6408   */
6409   if( sSort.pOrderBy ){
6410     explainTempTable(pParse,
6411                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6412     assert( p->pEList==pEList );
6413     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6414   }
6415 
6416   /* Jump here to skip this query
6417   */
6418   sqlite3VdbeResolveLabel(v, iEnd);
6419 
6420   /* The SELECT has been coded. If there is an error in the Parse structure,
6421   ** set the return code to 1. Otherwise 0. */
6422   rc = (pParse->nErr>0);
6423 
6424   /* Control jumps to here if an error is encountered above, or upon
6425   ** successful coding of the SELECT.
6426   */
6427 select_end:
6428   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6429   sqlite3DbFree(db, sAggInfo.aCol);
6430   sqlite3DbFree(db, sAggInfo.aFunc);
6431 #if SELECTTRACE_ENABLED
6432   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6433   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6434     sqlite3TreeViewSelect(0, p, 0);
6435   }
6436 #endif
6437   ExplainQueryPlanPop(pParse);
6438   return rc;
6439 }
6440