1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFree(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->zAffSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 sqlite3 *db = pParse->db; 116 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 117 if( pNew==0 ){ 118 assert( db->mallocFailed ); 119 pNew = &standin; 120 } 121 if( pEList==0 ){ 122 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); 123 } 124 pNew->pEList = pEList; 125 pNew->op = TK_SELECT; 126 pNew->selFlags = selFlags; 127 pNew->iLimit = 0; 128 pNew->iOffset = 0; 129 #if SELECTTRACE_ENABLED 130 pNew->zSelName[0] = 0; 131 #endif 132 pNew->addrOpenEphm[0] = -1; 133 pNew->addrOpenEphm[1] = -1; 134 pNew->nSelectRow = 0; 135 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 136 pNew->pSrc = pSrc; 137 pNew->pWhere = pWhere; 138 pNew->pGroupBy = pGroupBy; 139 pNew->pHaving = pHaving; 140 pNew->pOrderBy = pOrderBy; 141 pNew->pPrior = 0; 142 pNew->pNext = 0; 143 pNew->pLimit = pLimit; 144 pNew->pOffset = pOffset; 145 pNew->pWith = 0; 146 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 147 if( db->mallocFailed ) { 148 clearSelect(db, pNew, pNew!=&standin); 149 pNew = 0; 150 }else{ 151 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 152 } 153 assert( pNew!=&standin ); 154 return pNew; 155 } 156 157 #if SELECTTRACE_ENABLED 158 /* 159 ** Set the name of a Select object 160 */ 161 void sqlite3SelectSetName(Select *p, const char *zName){ 162 if( p && zName ){ 163 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 164 } 165 } 166 #endif 167 168 169 /* 170 ** Delete the given Select structure and all of its substructures. 171 */ 172 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 173 if( p ) clearSelect(db, p, 1); 174 } 175 176 /* 177 ** Return a pointer to the right-most SELECT statement in a compound. 178 */ 179 static Select *findRightmost(Select *p){ 180 while( p->pNext ) p = p->pNext; 181 return p; 182 } 183 184 /* 185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 186 ** type of join. Return an integer constant that expresses that type 187 ** in terms of the following bit values: 188 ** 189 ** JT_INNER 190 ** JT_CROSS 191 ** JT_OUTER 192 ** JT_NATURAL 193 ** JT_LEFT 194 ** JT_RIGHT 195 ** 196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 197 ** 198 ** If an illegal or unsupported join type is seen, then still return 199 ** a join type, but put an error in the pParse structure. 200 */ 201 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 202 int jointype = 0; 203 Token *apAll[3]; 204 Token *p; 205 /* 0123456789 123456789 123456789 123 */ 206 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 207 static const struct { 208 u8 i; /* Beginning of keyword text in zKeyText[] */ 209 u8 nChar; /* Length of the keyword in characters */ 210 u8 code; /* Join type mask */ 211 } aKeyword[] = { 212 /* natural */ { 0, 7, JT_NATURAL }, 213 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 214 /* outer */ { 10, 5, JT_OUTER }, 215 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 216 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 217 /* inner */ { 23, 5, JT_INNER }, 218 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 219 }; 220 int i, j; 221 apAll[0] = pA; 222 apAll[1] = pB; 223 apAll[2] = pC; 224 for(i=0; i<3 && apAll[i]; i++){ 225 p = apAll[i]; 226 for(j=0; j<ArraySize(aKeyword); j++){ 227 if( p->n==aKeyword[j].nChar 228 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 229 jointype |= aKeyword[j].code; 230 break; 231 } 232 } 233 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 234 if( j>=ArraySize(aKeyword) ){ 235 jointype |= JT_ERROR; 236 break; 237 } 238 } 239 if( 240 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 241 (jointype & JT_ERROR)!=0 242 ){ 243 const char *zSp = " "; 244 assert( pB!=0 ); 245 if( pC==0 ){ zSp++; } 246 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 247 "%T %T%s%T", pA, pB, zSp, pC); 248 jointype = JT_INNER; 249 }else if( (jointype & JT_OUTER)!=0 250 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 251 sqlite3ErrorMsg(pParse, 252 "RIGHT and FULL OUTER JOINs are not currently supported"); 253 jointype = JT_INNER; 254 } 255 return jointype; 256 } 257 258 /* 259 ** Return the index of a column in a table. Return -1 if the column 260 ** is not contained in the table. 261 */ 262 static int columnIndex(Table *pTab, const char *zCol){ 263 int i; 264 for(i=0; i<pTab->nCol; i++){ 265 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 266 } 267 return -1; 268 } 269 270 /* 271 ** Search the first N tables in pSrc, from left to right, looking for a 272 ** table that has a column named zCol. 273 ** 274 ** When found, set *piTab and *piCol to the table index and column index 275 ** of the matching column and return TRUE. 276 ** 277 ** If not found, return FALSE. 278 */ 279 static int tableAndColumnIndex( 280 SrcList *pSrc, /* Array of tables to search */ 281 int N, /* Number of tables in pSrc->a[] to search */ 282 const char *zCol, /* Name of the column we are looking for */ 283 int *piTab, /* Write index of pSrc->a[] here */ 284 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 285 ){ 286 int i; /* For looping over tables in pSrc */ 287 int iCol; /* Index of column matching zCol */ 288 289 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 290 for(i=0; i<N; i++){ 291 iCol = columnIndex(pSrc->a[i].pTab, zCol); 292 if( iCol>=0 ){ 293 if( piTab ){ 294 *piTab = i; 295 *piCol = iCol; 296 } 297 return 1; 298 } 299 } 300 return 0; 301 } 302 303 /* 304 ** This function is used to add terms implied by JOIN syntax to the 305 ** WHERE clause expression of a SELECT statement. The new term, which 306 ** is ANDed with the existing WHERE clause, is of the form: 307 ** 308 ** (tab1.col1 = tab2.col2) 309 ** 310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 312 ** column iColRight of tab2. 313 */ 314 static void addWhereTerm( 315 Parse *pParse, /* Parsing context */ 316 SrcList *pSrc, /* List of tables in FROM clause */ 317 int iLeft, /* Index of first table to join in pSrc */ 318 int iColLeft, /* Index of column in first table */ 319 int iRight, /* Index of second table in pSrc */ 320 int iColRight, /* Index of column in second table */ 321 int isOuterJoin, /* True if this is an OUTER join */ 322 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 323 ){ 324 sqlite3 *db = pParse->db; 325 Expr *pE1; 326 Expr *pE2; 327 Expr *pEq; 328 329 assert( iLeft<iRight ); 330 assert( pSrc->nSrc>iRight ); 331 assert( pSrc->a[iLeft].pTab ); 332 assert( pSrc->a[iRight].pTab ); 333 334 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 335 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 336 337 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 338 if( pEq && isOuterJoin ){ 339 ExprSetProperty(pEq, EP_FromJoin); 340 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 341 ExprSetVVAProperty(pEq, EP_NoReduce); 342 pEq->iRightJoinTable = (i16)pE2->iTable; 343 } 344 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 345 } 346 347 /* 348 ** Set the EP_FromJoin property on all terms of the given expression. 349 ** And set the Expr.iRightJoinTable to iTable for every term in the 350 ** expression. 351 ** 352 ** The EP_FromJoin property is used on terms of an expression to tell 353 ** the LEFT OUTER JOIN processing logic that this term is part of the 354 ** join restriction specified in the ON or USING clause and not a part 355 ** of the more general WHERE clause. These terms are moved over to the 356 ** WHERE clause during join processing but we need to remember that they 357 ** originated in the ON or USING clause. 358 ** 359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 360 ** expression depends on table iRightJoinTable even if that table is not 361 ** explicitly mentioned in the expression. That information is needed 362 ** for cases like this: 363 ** 364 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 365 ** 366 ** The where clause needs to defer the handling of the t1.x=5 367 ** term until after the t2 loop of the join. In that way, a 368 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 369 ** defer the handling of t1.x=5, it will be processed immediately 370 ** after the t1 loop and rows with t1.x!=5 will never appear in 371 ** the output, which is incorrect. 372 */ 373 static void setJoinExpr(Expr *p, int iTable){ 374 while( p ){ 375 ExprSetProperty(p, EP_FromJoin); 376 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 377 ExprSetVVAProperty(p, EP_NoReduce); 378 p->iRightJoinTable = (i16)iTable; 379 if( p->op==TK_FUNCTION && p->x.pList ){ 380 int i; 381 for(i=0; i<p->x.pList->nExpr; i++){ 382 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 383 } 384 } 385 setJoinExpr(p->pLeft, iTable); 386 p = p->pRight; 387 } 388 } 389 390 /* 391 ** This routine processes the join information for a SELECT statement. 392 ** ON and USING clauses are converted into extra terms of the WHERE clause. 393 ** NATURAL joins also create extra WHERE clause terms. 394 ** 395 ** The terms of a FROM clause are contained in the Select.pSrc structure. 396 ** The left most table is the first entry in Select.pSrc. The right-most 397 ** table is the last entry. The join operator is held in the entry to 398 ** the left. Thus entry 0 contains the join operator for the join between 399 ** entries 0 and 1. Any ON or USING clauses associated with the join are 400 ** also attached to the left entry. 401 ** 402 ** This routine returns the number of errors encountered. 403 */ 404 static int sqliteProcessJoin(Parse *pParse, Select *p){ 405 SrcList *pSrc; /* All tables in the FROM clause */ 406 int i, j; /* Loop counters */ 407 struct SrcList_item *pLeft; /* Left table being joined */ 408 struct SrcList_item *pRight; /* Right table being joined */ 409 410 pSrc = p->pSrc; 411 pLeft = &pSrc->a[0]; 412 pRight = &pLeft[1]; 413 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 414 Table *pLeftTab = pLeft->pTab; 415 Table *pRightTab = pRight->pTab; 416 int isOuter; 417 418 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 419 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 420 421 /* When the NATURAL keyword is present, add WHERE clause terms for 422 ** every column that the two tables have in common. 423 */ 424 if( pRight->fg.jointype & JT_NATURAL ){ 425 if( pRight->pOn || pRight->pUsing ){ 426 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 427 "an ON or USING clause", 0); 428 return 1; 429 } 430 for(j=0; j<pRightTab->nCol; j++){ 431 char *zName; /* Name of column in the right table */ 432 int iLeft; /* Matching left table */ 433 int iLeftCol; /* Matching column in the left table */ 434 435 zName = pRightTab->aCol[j].zName; 436 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 437 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 438 isOuter, &p->pWhere); 439 } 440 } 441 } 442 443 /* Disallow both ON and USING clauses in the same join 444 */ 445 if( pRight->pOn && pRight->pUsing ){ 446 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 447 "clauses in the same join"); 448 return 1; 449 } 450 451 /* Add the ON clause to the end of the WHERE clause, connected by 452 ** an AND operator. 453 */ 454 if( pRight->pOn ){ 455 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 456 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 457 pRight->pOn = 0; 458 } 459 460 /* Create extra terms on the WHERE clause for each column named 461 ** in the USING clause. Example: If the two tables to be joined are 462 ** A and B and the USING clause names X, Y, and Z, then add this 463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 464 ** Report an error if any column mentioned in the USING clause is 465 ** not contained in both tables to be joined. 466 */ 467 if( pRight->pUsing ){ 468 IdList *pList = pRight->pUsing; 469 for(j=0; j<pList->nId; j++){ 470 char *zName; /* Name of the term in the USING clause */ 471 int iLeft; /* Table on the left with matching column name */ 472 int iLeftCol; /* Column number of matching column on the left */ 473 int iRightCol; /* Column number of matching column on the right */ 474 475 zName = pList->a[j].zName; 476 iRightCol = columnIndex(pRightTab, zName); 477 if( iRightCol<0 478 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 479 ){ 480 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 481 "not present in both tables", zName); 482 return 1; 483 } 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 return 0; 490 } 491 492 /* Forward reference */ 493 static KeyInfo *keyInfoFromExprList( 494 Parse *pParse, /* Parsing context */ 495 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 496 int iStart, /* Begin with this column of pList */ 497 int nExtra /* Add this many extra columns to the end */ 498 ); 499 500 /* 501 ** Generate code that will push the record in registers regData 502 ** through regData+nData-1 onto the sorter. 503 */ 504 static void pushOntoSorter( 505 Parse *pParse, /* Parser context */ 506 SortCtx *pSort, /* Information about the ORDER BY clause */ 507 Select *pSelect, /* The whole SELECT statement */ 508 int regData, /* First register holding data to be sorted */ 509 int regOrigData, /* First register holding data before packing */ 510 int nData, /* Number of elements in the data array */ 511 int nPrefixReg /* No. of reg prior to regData available for use */ 512 ){ 513 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 514 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 515 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 516 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 517 int regBase; /* Regs for sorter record */ 518 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 519 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 520 int op; /* Opcode to add sorter record to sorter */ 521 int iLimit; /* LIMIT counter */ 522 523 assert( bSeq==0 || bSeq==1 ); 524 assert( nData==1 || regData==regOrigData ); 525 if( nPrefixReg ){ 526 assert( nPrefixReg==nExpr+bSeq ); 527 regBase = regData - nExpr - bSeq; 528 }else{ 529 regBase = pParse->nMem + 1; 530 pParse->nMem += nBase; 531 } 532 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 533 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 534 pSort->labelDone = sqlite3VdbeMakeLabel(v); 535 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 536 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 537 if( bSeq ){ 538 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 539 } 540 if( nPrefixReg==0 ){ 541 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 542 } 543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 544 if( nOBSat>0 ){ 545 int regPrevKey; /* The first nOBSat columns of the previous row */ 546 int addrFirst; /* Address of the OP_IfNot opcode */ 547 int addrJmp; /* Address of the OP_Jump opcode */ 548 VdbeOp *pOp; /* Opcode that opens the sorter */ 549 int nKey; /* Number of sorting key columns, including OP_Sequence */ 550 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 551 552 regPrevKey = pParse->nMem+1; 553 pParse->nMem += pSort->nOBSat; 554 nKey = nExpr - pSort->nOBSat + bSeq; 555 if( bSeq ){ 556 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 557 }else{ 558 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 559 } 560 VdbeCoverage(v); 561 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 562 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 563 if( pParse->db->mallocFailed ) return; 564 pOp->p2 = nKey + nData; 565 pKI = pOp->p4.pKeyInfo; 566 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 567 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 568 testcase( pKI->nXField>2 ); 569 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 570 pKI->nXField-1); 571 addrJmp = sqlite3VdbeCurrentAddr(v); 572 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 573 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 574 pSort->regReturn = ++pParse->nMem; 575 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 576 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 577 if( iLimit ){ 578 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 579 VdbeCoverage(v); 580 } 581 sqlite3VdbeJumpHere(v, addrFirst); 582 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 583 sqlite3VdbeJumpHere(v, addrJmp); 584 } 585 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 586 op = OP_SorterInsert; 587 }else{ 588 op = OP_IdxInsert; 589 } 590 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 591 if( iLimit ){ 592 int addr; 593 int r1 = 0; 594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 596 ** fills up, delete the least entry in the sorter after each insert. 597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 598 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); 599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 600 if( pSort->bOrderedInnerLoop ){ 601 r1 = ++pParse->nMem; 602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 603 VdbeComment((v, "seq")); 604 } 605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 606 if( pSort->bOrderedInnerLoop ){ 607 /* If the inner loop is driven by an index such that values from 608 ** the same iteration of the inner loop are in sorted order, then 609 ** immediately jump to the next iteration of an inner loop if the 610 ** entry from the current iteration does not fit into the top 611 ** LIMIT+OFFSET entries of the sorter. */ 612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 615 VdbeCoverage(v); 616 } 617 sqlite3VdbeJumpHere(v, addr); 618 } 619 } 620 621 /* 622 ** Add code to implement the OFFSET 623 */ 624 static void codeOffset( 625 Vdbe *v, /* Generate code into this VM */ 626 int iOffset, /* Register holding the offset counter */ 627 int iContinue /* Jump here to skip the current record */ 628 ){ 629 if( iOffset>0 ){ 630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 631 VdbeComment((v, "OFFSET")); 632 } 633 } 634 635 /* 636 ** Add code that will check to make sure the N registers starting at iMem 637 ** form a distinct entry. iTab is a sorting index that holds previously 638 ** seen combinations of the N values. A new entry is made in iTab 639 ** if the current N values are new. 640 ** 641 ** A jump to addrRepeat is made and the N+1 values are popped from the 642 ** stack if the top N elements are not distinct. 643 */ 644 static void codeDistinct( 645 Parse *pParse, /* Parsing and code generating context */ 646 int iTab, /* A sorting index used to test for distinctness */ 647 int addrRepeat, /* Jump to here if not distinct */ 648 int N, /* Number of elements */ 649 int iMem /* First element */ 650 ){ 651 Vdbe *v; 652 int r1; 653 654 v = pParse->pVdbe; 655 r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 662 /* 663 ** This routine generates the code for the inside of the inner loop 664 ** of a SELECT. 665 ** 666 ** If srcTab is negative, then the pEList expressions 667 ** are evaluated in order to get the data for this row. If srcTab is 668 ** zero or more, then data is pulled from srcTab and pEList is used only 669 ** to get number columns and the datatype for each column. 670 */ 671 static void selectInnerLoop( 672 Parse *pParse, /* The parser context */ 673 Select *p, /* The complete select statement being coded */ 674 ExprList *pEList, /* List of values being extracted */ 675 int srcTab, /* Pull data from this table */ 676 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 677 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 678 SelectDest *pDest, /* How to dispose of the results */ 679 int iContinue, /* Jump here to continue with next row */ 680 int iBreak /* Jump here to break out of the inner loop */ 681 ){ 682 Vdbe *v = pParse->pVdbe; 683 int i; 684 int hasDistinct; /* True if the DISTINCT keyword is present */ 685 int regResult; /* Start of memory holding result set */ 686 int eDest = pDest->eDest; /* How to dispose of results */ 687 int iParm = pDest->iSDParm; /* First argument to disposal method */ 688 int nResultCol; /* Number of result columns */ 689 int nPrefixReg = 0; /* Number of extra registers before regResult */ 690 691 assert( v ); 692 assert( pEList!=0 ); 693 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 694 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 695 if( pSort==0 && !hasDistinct ){ 696 assert( iContinue!=0 ); 697 codeOffset(v, p->iOffset, iContinue); 698 } 699 700 /* Pull the requested columns. 701 */ 702 nResultCol = pEList->nExpr; 703 704 if( pDest->iSdst==0 ){ 705 if( pSort ){ 706 nPrefixReg = pSort->pOrderBy->nExpr; 707 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 708 pParse->nMem += nPrefixReg; 709 } 710 pDest->iSdst = pParse->nMem+1; 711 pParse->nMem += nResultCol; 712 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 713 /* This is an error condition that can result, for example, when a SELECT 714 ** on the right-hand side of an INSERT contains more result columns than 715 ** there are columns in the table on the left. The error will be caught 716 ** and reported later. But we need to make sure enough memory is allocated 717 ** to avoid other spurious errors in the meantime. */ 718 pParse->nMem += nResultCol; 719 } 720 pDest->nSdst = nResultCol; 721 regResult = pDest->iSdst; 722 if( srcTab>=0 ){ 723 for(i=0; i<nResultCol; i++){ 724 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 725 VdbeComment((v, "%s", pEList->a[i].zName)); 726 } 727 }else if( eDest!=SRT_Exists ){ 728 /* If the destination is an EXISTS(...) expression, the actual 729 ** values returned by the SELECT are not required. 730 */ 731 u8 ecelFlags; 732 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 733 ecelFlags = SQLITE_ECEL_DUP; 734 }else{ 735 ecelFlags = 0; 736 } 737 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 738 } 739 740 /* If the DISTINCT keyword was present on the SELECT statement 741 ** and this row has been seen before, then do not make this row 742 ** part of the result. 743 */ 744 if( hasDistinct ){ 745 switch( pDistinct->eTnctType ){ 746 case WHERE_DISTINCT_ORDERED: { 747 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 748 int iJump; /* Jump destination */ 749 int regPrev; /* Previous row content */ 750 751 /* Allocate space for the previous row */ 752 regPrev = pParse->nMem+1; 753 pParse->nMem += nResultCol; 754 755 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 756 ** sets the MEM_Cleared bit on the first register of the 757 ** previous value. This will cause the OP_Ne below to always 758 ** fail on the first iteration of the loop even if the first 759 ** row is all NULLs. 760 */ 761 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 762 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 763 pOp->opcode = OP_Null; 764 pOp->p1 = 1; 765 pOp->p2 = regPrev; 766 767 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 768 for(i=0; i<nResultCol; i++){ 769 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 770 if( i<nResultCol-1 ){ 771 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 772 VdbeCoverage(v); 773 }else{ 774 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 775 VdbeCoverage(v); 776 } 777 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 778 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 779 } 780 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 781 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 782 break; 783 } 784 785 case WHERE_DISTINCT_UNIQUE: { 786 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 787 break; 788 } 789 790 default: { 791 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 792 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 793 regResult); 794 break; 795 } 796 } 797 if( pSort==0 ){ 798 codeOffset(v, p->iOffset, iContinue); 799 } 800 } 801 802 switch( eDest ){ 803 /* In this mode, write each query result to the key of the temporary 804 ** table iParm. 805 */ 806 #ifndef SQLITE_OMIT_COMPOUND_SELECT 807 case SRT_Union: { 808 int r1; 809 r1 = sqlite3GetTempReg(pParse); 810 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 811 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 812 sqlite3ReleaseTempReg(pParse, r1); 813 break; 814 } 815 816 /* Construct a record from the query result, but instead of 817 ** saving that record, use it as a key to delete elements from 818 ** the temporary table iParm. 819 */ 820 case SRT_Except: { 821 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 822 break; 823 } 824 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 825 826 /* Store the result as data using a unique key. 827 */ 828 case SRT_Fifo: 829 case SRT_DistFifo: 830 case SRT_Table: 831 case SRT_EphemTab: { 832 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 833 testcase( eDest==SRT_Table ); 834 testcase( eDest==SRT_EphemTab ); 835 testcase( eDest==SRT_Fifo ); 836 testcase( eDest==SRT_DistFifo ); 837 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 838 #ifndef SQLITE_OMIT_CTE 839 if( eDest==SRT_DistFifo ){ 840 /* If the destination is DistFifo, then cursor (iParm+1) is open 841 ** on an ephemeral index. If the current row is already present 842 ** in the index, do not write it to the output. If not, add the 843 ** current row to the index and proceed with writing it to the 844 ** output table as well. */ 845 int addr = sqlite3VdbeCurrentAddr(v) + 4; 846 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 847 VdbeCoverage(v); 848 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 849 assert( pSort==0 ); 850 } 851 #endif 852 if( pSort ){ 853 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 854 }else{ 855 int r2 = sqlite3GetTempReg(pParse); 856 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 857 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 858 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 859 sqlite3ReleaseTempReg(pParse, r2); 860 } 861 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 862 break; 863 } 864 865 #ifndef SQLITE_OMIT_SUBQUERY 866 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 867 ** then there should be a single item on the stack. Write this 868 ** item into the set table with bogus data. 869 */ 870 case SRT_Set: { 871 if( pSort ){ 872 /* At first glance you would think we could optimize out the 873 ** ORDER BY in this case since the order of entries in the set 874 ** does not matter. But there might be a LIMIT clause, in which 875 ** case the order does matter */ 876 pushOntoSorter( 877 pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg); 878 }else{ 879 int r1 = sqlite3GetTempReg(pParse); 880 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 881 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 882 r1, pDest->zAffSdst, nResultCol); 883 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 884 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 885 sqlite3ReleaseTempReg(pParse, r1); 886 } 887 break; 888 } 889 890 /* If any row exist in the result set, record that fact and abort. 891 */ 892 case SRT_Exists: { 893 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 894 /* The LIMIT clause will terminate the loop for us */ 895 break; 896 } 897 898 /* If this is a scalar select that is part of an expression, then 899 ** store the results in the appropriate memory cell or array of 900 ** memory cells and break out of the scan loop. 901 */ 902 case SRT_Mem: { 903 assert( nResultCol==pDest->nSdst ); 904 if( pSort ){ 905 pushOntoSorter( 906 pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg); 907 }else{ 908 assert( regResult==iParm ); 909 /* The LIMIT clause will jump out of the loop for us */ 910 } 911 break; 912 } 913 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 914 915 case SRT_Coroutine: /* Send data to a co-routine */ 916 case SRT_Output: { /* Return the results */ 917 testcase( eDest==SRT_Coroutine ); 918 testcase( eDest==SRT_Output ); 919 if( pSort ){ 920 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 921 nPrefixReg); 922 }else if( eDest==SRT_Coroutine ){ 923 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 924 }else{ 925 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 926 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 927 } 928 break; 929 } 930 931 #ifndef SQLITE_OMIT_CTE 932 /* Write the results into a priority queue that is order according to 933 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 934 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 935 ** pSO->nExpr columns, then make sure all keys are unique by adding a 936 ** final OP_Sequence column. The last column is the record as a blob. 937 */ 938 case SRT_DistQueue: 939 case SRT_Queue: { 940 int nKey; 941 int r1, r2, r3; 942 int addrTest = 0; 943 ExprList *pSO; 944 pSO = pDest->pOrderBy; 945 assert( pSO ); 946 nKey = pSO->nExpr; 947 r1 = sqlite3GetTempReg(pParse); 948 r2 = sqlite3GetTempRange(pParse, nKey+2); 949 r3 = r2+nKey+1; 950 if( eDest==SRT_DistQueue ){ 951 /* If the destination is DistQueue, then cursor (iParm+1) is open 952 ** on a second ephemeral index that holds all values every previously 953 ** added to the queue. */ 954 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 955 regResult, nResultCol); 956 VdbeCoverage(v); 957 } 958 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 959 if( eDest==SRT_DistQueue ){ 960 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 961 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 962 } 963 for(i=0; i<nKey; i++){ 964 sqlite3VdbeAddOp2(v, OP_SCopy, 965 regResult + pSO->a[i].u.x.iOrderByCol - 1, 966 r2+i); 967 } 968 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 969 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 970 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 971 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 972 sqlite3ReleaseTempReg(pParse, r1); 973 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 974 break; 975 } 976 #endif /* SQLITE_OMIT_CTE */ 977 978 979 980 #if !defined(SQLITE_OMIT_TRIGGER) 981 /* Discard the results. This is used for SELECT statements inside 982 ** the body of a TRIGGER. The purpose of such selects is to call 983 ** user-defined functions that have side effects. We do not care 984 ** about the actual results of the select. 985 */ 986 default: { 987 assert( eDest==SRT_Discard ); 988 break; 989 } 990 #endif 991 } 992 993 /* Jump to the end of the loop if the LIMIT is reached. Except, if 994 ** there is a sorter, in which case the sorter has already limited 995 ** the output for us. 996 */ 997 if( pSort==0 && p->iLimit ){ 998 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 999 } 1000 } 1001 1002 /* 1003 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1004 ** X extra columns. 1005 */ 1006 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1007 int nExtra = (N+X)*(sizeof(CollSeq*)+1); 1008 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1009 if( p ){ 1010 p->aSortOrder = (u8*)&p->aColl[N+X]; 1011 p->nField = (u16)N; 1012 p->nXField = (u16)X; 1013 p->enc = ENC(db); 1014 p->db = db; 1015 p->nRef = 1; 1016 memset(&p[1], 0, nExtra); 1017 }else{ 1018 sqlite3OomFault(db); 1019 } 1020 return p; 1021 } 1022 1023 /* 1024 ** Deallocate a KeyInfo object 1025 */ 1026 void sqlite3KeyInfoUnref(KeyInfo *p){ 1027 if( p ){ 1028 assert( p->nRef>0 ); 1029 p->nRef--; 1030 if( p->nRef==0 ) sqlite3DbFree(p->db, p); 1031 } 1032 } 1033 1034 /* 1035 ** Make a new pointer to a KeyInfo object 1036 */ 1037 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1038 if( p ){ 1039 assert( p->nRef>0 ); 1040 p->nRef++; 1041 } 1042 return p; 1043 } 1044 1045 #ifdef SQLITE_DEBUG 1046 /* 1047 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1048 ** can only be changed if this is just a single reference to the object. 1049 ** 1050 ** This routine is used only inside of assert() statements. 1051 */ 1052 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1053 #endif /* SQLITE_DEBUG */ 1054 1055 /* 1056 ** Given an expression list, generate a KeyInfo structure that records 1057 ** the collating sequence for each expression in that expression list. 1058 ** 1059 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1060 ** KeyInfo structure is appropriate for initializing a virtual index to 1061 ** implement that clause. If the ExprList is the result set of a SELECT 1062 ** then the KeyInfo structure is appropriate for initializing a virtual 1063 ** index to implement a DISTINCT test. 1064 ** 1065 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1066 ** function is responsible for seeing that this structure is eventually 1067 ** freed. 1068 */ 1069 static KeyInfo *keyInfoFromExprList( 1070 Parse *pParse, /* Parsing context */ 1071 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1072 int iStart, /* Begin with this column of pList */ 1073 int nExtra /* Add this many extra columns to the end */ 1074 ){ 1075 int nExpr; 1076 KeyInfo *pInfo; 1077 struct ExprList_item *pItem; 1078 sqlite3 *db = pParse->db; 1079 int i; 1080 1081 nExpr = pList->nExpr; 1082 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1083 if( pInfo ){ 1084 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1085 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1086 CollSeq *pColl; 1087 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1088 if( !pColl ) pColl = db->pDfltColl; 1089 pInfo->aColl[i-iStart] = pColl; 1090 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1091 } 1092 } 1093 return pInfo; 1094 } 1095 1096 /* 1097 ** Name of the connection operator, used for error messages. 1098 */ 1099 static const char *selectOpName(int id){ 1100 char *z; 1101 switch( id ){ 1102 case TK_ALL: z = "UNION ALL"; break; 1103 case TK_INTERSECT: z = "INTERSECT"; break; 1104 case TK_EXCEPT: z = "EXCEPT"; break; 1105 default: z = "UNION"; break; 1106 } 1107 return z; 1108 } 1109 1110 #ifndef SQLITE_OMIT_EXPLAIN 1111 /* 1112 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1113 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1114 ** where the caption is of the form: 1115 ** 1116 ** "USE TEMP B-TREE FOR xxx" 1117 ** 1118 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1119 ** is determined by the zUsage argument. 1120 */ 1121 static void explainTempTable(Parse *pParse, const char *zUsage){ 1122 if( pParse->explain==2 ){ 1123 Vdbe *v = pParse->pVdbe; 1124 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1125 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1126 } 1127 } 1128 1129 /* 1130 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1131 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1132 ** in sqlite3Select() to assign values to structure member variables that 1133 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1134 ** code with #ifndef directives. 1135 */ 1136 # define explainSetInteger(a, b) a = b 1137 1138 #else 1139 /* No-op versions of the explainXXX() functions and macros. */ 1140 # define explainTempTable(y,z) 1141 # define explainSetInteger(y,z) 1142 #endif 1143 1144 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1145 /* 1146 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1147 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1148 ** where the caption is of one of the two forms: 1149 ** 1150 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1151 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1152 ** 1153 ** where iSub1 and iSub2 are the integers passed as the corresponding 1154 ** function parameters, and op is the text representation of the parameter 1155 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1156 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1157 ** false, or the second form if it is true. 1158 */ 1159 static void explainComposite( 1160 Parse *pParse, /* Parse context */ 1161 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1162 int iSub1, /* Subquery id 1 */ 1163 int iSub2, /* Subquery id 2 */ 1164 int bUseTmp /* True if a temp table was used */ 1165 ){ 1166 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1167 if( pParse->explain==2 ){ 1168 Vdbe *v = pParse->pVdbe; 1169 char *zMsg = sqlite3MPrintf( 1170 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1171 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1172 ); 1173 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1174 } 1175 } 1176 #else 1177 /* No-op versions of the explainXXX() functions and macros. */ 1178 # define explainComposite(v,w,x,y,z) 1179 #endif 1180 1181 /* 1182 ** If the inner loop was generated using a non-null pOrderBy argument, 1183 ** then the results were placed in a sorter. After the loop is terminated 1184 ** we need to run the sorter and output the results. The following 1185 ** routine generates the code needed to do that. 1186 */ 1187 static void generateSortTail( 1188 Parse *pParse, /* Parsing context */ 1189 Select *p, /* The SELECT statement */ 1190 SortCtx *pSort, /* Information on the ORDER BY clause */ 1191 int nColumn, /* Number of columns of data */ 1192 SelectDest *pDest /* Write the sorted results here */ 1193 ){ 1194 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1195 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1196 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1197 int addr; 1198 int addrOnce = 0; 1199 int iTab; 1200 ExprList *pOrderBy = pSort->pOrderBy; 1201 int eDest = pDest->eDest; 1202 int iParm = pDest->iSDParm; 1203 int regRow; 1204 int regRowid; 1205 int nKey; 1206 int iSortTab; /* Sorter cursor to read from */ 1207 int nSortData; /* Trailing values to read from sorter */ 1208 int i; 1209 int bSeq; /* True if sorter record includes seq. no. */ 1210 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1211 struct ExprList_item *aOutEx = p->pEList->a; 1212 #endif 1213 1214 assert( addrBreak<0 ); 1215 if( pSort->labelBkOut ){ 1216 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1217 sqlite3VdbeGoto(v, addrBreak); 1218 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1219 } 1220 iTab = pSort->iECursor; 1221 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1222 regRowid = 0; 1223 regRow = pDest->iSdst; 1224 nSortData = nColumn; 1225 }else{ 1226 regRowid = sqlite3GetTempReg(pParse); 1227 regRow = sqlite3GetTempRange(pParse, nColumn); 1228 nSortData = nColumn; 1229 } 1230 nKey = pOrderBy->nExpr - pSort->nOBSat; 1231 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1232 int regSortOut = ++pParse->nMem; 1233 iSortTab = pParse->nTab++; 1234 if( pSort->labelBkOut ){ 1235 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1236 } 1237 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1238 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1239 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1240 VdbeCoverage(v); 1241 codeOffset(v, p->iOffset, addrContinue); 1242 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1243 bSeq = 0; 1244 }else{ 1245 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1246 codeOffset(v, p->iOffset, addrContinue); 1247 iSortTab = iTab; 1248 bSeq = 1; 1249 } 1250 for(i=0; i<nSortData; i++){ 1251 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1252 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1253 } 1254 switch( eDest ){ 1255 case SRT_EphemTab: { 1256 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1257 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1258 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1259 break; 1260 } 1261 #ifndef SQLITE_OMIT_SUBQUERY 1262 case SRT_Set: { 1263 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1264 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1265 pDest->zAffSdst, nColumn); 1266 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1267 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1268 break; 1269 } 1270 case SRT_Mem: { 1271 /* The LIMIT clause will terminate the loop for us */ 1272 break; 1273 } 1274 #endif 1275 default: { 1276 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1277 testcase( eDest==SRT_Output ); 1278 testcase( eDest==SRT_Coroutine ); 1279 if( eDest==SRT_Output ){ 1280 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1281 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1282 }else{ 1283 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1284 } 1285 break; 1286 } 1287 } 1288 if( regRowid ){ 1289 if( eDest==SRT_Set ){ 1290 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1291 }else{ 1292 sqlite3ReleaseTempReg(pParse, regRow); 1293 } 1294 sqlite3ReleaseTempReg(pParse, regRowid); 1295 } 1296 /* The bottom of the loop 1297 */ 1298 sqlite3VdbeResolveLabel(v, addrContinue); 1299 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1300 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1301 }else{ 1302 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1303 } 1304 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1305 sqlite3VdbeResolveLabel(v, addrBreak); 1306 } 1307 1308 /* 1309 ** Return a pointer to a string containing the 'declaration type' of the 1310 ** expression pExpr. The string may be treated as static by the caller. 1311 ** 1312 ** Also try to estimate the size of the returned value and return that 1313 ** result in *pEstWidth. 1314 ** 1315 ** The declaration type is the exact datatype definition extracted from the 1316 ** original CREATE TABLE statement if the expression is a column. The 1317 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1318 ** is considered a column can be complex in the presence of subqueries. The 1319 ** result-set expression in all of the following SELECT statements is 1320 ** considered a column by this function. 1321 ** 1322 ** SELECT col FROM tbl; 1323 ** SELECT (SELECT col FROM tbl; 1324 ** SELECT (SELECT col FROM tbl); 1325 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1326 ** 1327 ** The declaration type for any expression other than a column is NULL. 1328 ** 1329 ** This routine has either 3 or 6 parameters depending on whether or not 1330 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1331 */ 1332 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1333 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1334 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1335 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1336 #endif 1337 static const char *columnTypeImpl( 1338 NameContext *pNC, 1339 Expr *pExpr, 1340 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1341 const char **pzOrigDb, 1342 const char **pzOrigTab, 1343 const char **pzOrigCol, 1344 #endif 1345 u8 *pEstWidth 1346 ){ 1347 char const *zType = 0; 1348 int j; 1349 u8 estWidth = 1; 1350 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1351 char const *zOrigDb = 0; 1352 char const *zOrigTab = 0; 1353 char const *zOrigCol = 0; 1354 #endif 1355 1356 assert( pExpr!=0 ); 1357 assert( pNC->pSrcList!=0 ); 1358 switch( pExpr->op ){ 1359 case TK_AGG_COLUMN: 1360 case TK_COLUMN: { 1361 /* The expression is a column. Locate the table the column is being 1362 ** extracted from in NameContext.pSrcList. This table may be real 1363 ** database table or a subquery. 1364 */ 1365 Table *pTab = 0; /* Table structure column is extracted from */ 1366 Select *pS = 0; /* Select the column is extracted from */ 1367 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1368 testcase( pExpr->op==TK_AGG_COLUMN ); 1369 testcase( pExpr->op==TK_COLUMN ); 1370 while( pNC && !pTab ){ 1371 SrcList *pTabList = pNC->pSrcList; 1372 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1373 if( j<pTabList->nSrc ){ 1374 pTab = pTabList->a[j].pTab; 1375 pS = pTabList->a[j].pSelect; 1376 }else{ 1377 pNC = pNC->pNext; 1378 } 1379 } 1380 1381 if( pTab==0 ){ 1382 /* At one time, code such as "SELECT new.x" within a trigger would 1383 ** cause this condition to run. Since then, we have restructured how 1384 ** trigger code is generated and so this condition is no longer 1385 ** possible. However, it can still be true for statements like 1386 ** the following: 1387 ** 1388 ** CREATE TABLE t1(col INTEGER); 1389 ** SELECT (SELECT t1.col) FROM FROM t1; 1390 ** 1391 ** when columnType() is called on the expression "t1.col" in the 1392 ** sub-select. In this case, set the column type to NULL, even 1393 ** though it should really be "INTEGER". 1394 ** 1395 ** This is not a problem, as the column type of "t1.col" is never 1396 ** used. When columnType() is called on the expression 1397 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1398 ** branch below. */ 1399 break; 1400 } 1401 1402 assert( pTab && pExpr->pTab==pTab ); 1403 if( pS ){ 1404 /* The "table" is actually a sub-select or a view in the FROM clause 1405 ** of the SELECT statement. Return the declaration type and origin 1406 ** data for the result-set column of the sub-select. 1407 */ 1408 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1409 /* If iCol is less than zero, then the expression requests the 1410 ** rowid of the sub-select or view. This expression is legal (see 1411 ** test case misc2.2.2) - it always evaluates to NULL. 1412 ** 1413 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1414 ** caught already by name resolution. 1415 */ 1416 NameContext sNC; 1417 Expr *p = pS->pEList->a[iCol].pExpr; 1418 sNC.pSrcList = pS->pSrc; 1419 sNC.pNext = pNC; 1420 sNC.pParse = pNC->pParse; 1421 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1422 } 1423 }else if( pTab->pSchema ){ 1424 /* A real table */ 1425 assert( !pS ); 1426 if( iCol<0 ) iCol = pTab->iPKey; 1427 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1428 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1429 if( iCol<0 ){ 1430 zType = "INTEGER"; 1431 zOrigCol = "rowid"; 1432 }else{ 1433 zOrigCol = pTab->aCol[iCol].zName; 1434 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1435 estWidth = pTab->aCol[iCol].szEst; 1436 } 1437 zOrigTab = pTab->zName; 1438 if( pNC->pParse ){ 1439 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1440 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1441 } 1442 #else 1443 if( iCol<0 ){ 1444 zType = "INTEGER"; 1445 }else{ 1446 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1447 estWidth = pTab->aCol[iCol].szEst; 1448 } 1449 #endif 1450 } 1451 break; 1452 } 1453 #ifndef SQLITE_OMIT_SUBQUERY 1454 case TK_SELECT: { 1455 /* The expression is a sub-select. Return the declaration type and 1456 ** origin info for the single column in the result set of the SELECT 1457 ** statement. 1458 */ 1459 NameContext sNC; 1460 Select *pS = pExpr->x.pSelect; 1461 Expr *p = pS->pEList->a[0].pExpr; 1462 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1463 sNC.pSrcList = pS->pSrc; 1464 sNC.pNext = pNC; 1465 sNC.pParse = pNC->pParse; 1466 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1467 break; 1468 } 1469 #endif 1470 } 1471 1472 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1473 if( pzOrigDb ){ 1474 assert( pzOrigTab && pzOrigCol ); 1475 *pzOrigDb = zOrigDb; 1476 *pzOrigTab = zOrigTab; 1477 *pzOrigCol = zOrigCol; 1478 } 1479 #endif 1480 if( pEstWidth ) *pEstWidth = estWidth; 1481 return zType; 1482 } 1483 1484 /* 1485 ** Generate code that will tell the VDBE the declaration types of columns 1486 ** in the result set. 1487 */ 1488 static void generateColumnTypes( 1489 Parse *pParse, /* Parser context */ 1490 SrcList *pTabList, /* List of tables */ 1491 ExprList *pEList /* Expressions defining the result set */ 1492 ){ 1493 #ifndef SQLITE_OMIT_DECLTYPE 1494 Vdbe *v = pParse->pVdbe; 1495 int i; 1496 NameContext sNC; 1497 sNC.pSrcList = pTabList; 1498 sNC.pParse = pParse; 1499 for(i=0; i<pEList->nExpr; i++){ 1500 Expr *p = pEList->a[i].pExpr; 1501 const char *zType; 1502 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1503 const char *zOrigDb = 0; 1504 const char *zOrigTab = 0; 1505 const char *zOrigCol = 0; 1506 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1507 1508 /* The vdbe must make its own copy of the column-type and other 1509 ** column specific strings, in case the schema is reset before this 1510 ** virtual machine is deleted. 1511 */ 1512 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1513 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1514 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1515 #else 1516 zType = columnType(&sNC, p, 0, 0, 0, 0); 1517 #endif 1518 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1519 } 1520 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1521 } 1522 1523 /* 1524 ** Generate code that will tell the VDBE the names of columns 1525 ** in the result set. This information is used to provide the 1526 ** azCol[] values in the callback. 1527 */ 1528 static void generateColumnNames( 1529 Parse *pParse, /* Parser context */ 1530 SrcList *pTabList, /* List of tables */ 1531 ExprList *pEList /* Expressions defining the result set */ 1532 ){ 1533 Vdbe *v = pParse->pVdbe; 1534 int i, j; 1535 sqlite3 *db = pParse->db; 1536 int fullNames, shortNames; 1537 1538 #ifndef SQLITE_OMIT_EXPLAIN 1539 /* If this is an EXPLAIN, skip this step */ 1540 if( pParse->explain ){ 1541 return; 1542 } 1543 #endif 1544 1545 if( pParse->colNamesSet || db->mallocFailed ) return; 1546 assert( v!=0 ); 1547 assert( pTabList!=0 ); 1548 pParse->colNamesSet = 1; 1549 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1550 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1551 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1552 for(i=0; i<pEList->nExpr; i++){ 1553 Expr *p; 1554 p = pEList->a[i].pExpr; 1555 if( NEVER(p==0) ) continue; 1556 if( pEList->a[i].zName ){ 1557 char *zName = pEList->a[i].zName; 1558 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1559 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ 1560 Table *pTab; 1561 char *zCol; 1562 int iCol = p->iColumn; 1563 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1564 if( pTabList->a[j].iCursor==p->iTable ) break; 1565 } 1566 assert( j<pTabList->nSrc ); 1567 pTab = pTabList->a[j].pTab; 1568 if( iCol<0 ) iCol = pTab->iPKey; 1569 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1570 if( iCol<0 ){ 1571 zCol = "rowid"; 1572 }else{ 1573 zCol = pTab->aCol[iCol].zName; 1574 } 1575 if( !shortNames && !fullNames ){ 1576 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1577 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1578 }else if( fullNames ){ 1579 char *zName = 0; 1580 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1581 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1582 }else{ 1583 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1584 } 1585 }else{ 1586 const char *z = pEList->a[i].zSpan; 1587 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1588 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1589 } 1590 } 1591 generateColumnTypes(pParse, pTabList, pEList); 1592 } 1593 1594 /* 1595 ** Given an expression list (which is really the list of expressions 1596 ** that form the result set of a SELECT statement) compute appropriate 1597 ** column names for a table that would hold the expression list. 1598 ** 1599 ** All column names will be unique. 1600 ** 1601 ** Only the column names are computed. Column.zType, Column.zColl, 1602 ** and other fields of Column are zeroed. 1603 ** 1604 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1605 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1606 */ 1607 int sqlite3ColumnsFromExprList( 1608 Parse *pParse, /* Parsing context */ 1609 ExprList *pEList, /* Expr list from which to derive column names */ 1610 i16 *pnCol, /* Write the number of columns here */ 1611 Column **paCol /* Write the new column list here */ 1612 ){ 1613 sqlite3 *db = pParse->db; /* Database connection */ 1614 int i, j; /* Loop counters */ 1615 u32 cnt; /* Index added to make the name unique */ 1616 Column *aCol, *pCol; /* For looping over result columns */ 1617 int nCol; /* Number of columns in the result set */ 1618 Expr *p; /* Expression for a single result column */ 1619 char *zName; /* Column name */ 1620 int nName; /* Size of name in zName[] */ 1621 Hash ht; /* Hash table of column names */ 1622 1623 sqlite3HashInit(&ht); 1624 if( pEList ){ 1625 nCol = pEList->nExpr; 1626 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1627 testcase( aCol==0 ); 1628 }else{ 1629 nCol = 0; 1630 aCol = 0; 1631 } 1632 assert( nCol==(i16)nCol ); 1633 *pnCol = nCol; 1634 *paCol = aCol; 1635 1636 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1637 /* Get an appropriate name for the column 1638 */ 1639 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1640 if( (zName = pEList->a[i].zName)!=0 ){ 1641 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1642 }else{ 1643 Expr *pColExpr = p; /* The expression that is the result column name */ 1644 Table *pTab; /* Table associated with this expression */ 1645 while( pColExpr->op==TK_DOT ){ 1646 pColExpr = pColExpr->pRight; 1647 assert( pColExpr!=0 ); 1648 } 1649 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1650 /* For columns use the column name name */ 1651 int iCol = pColExpr->iColumn; 1652 pTab = pColExpr->pTab; 1653 if( iCol<0 ) iCol = pTab->iPKey; 1654 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1655 }else if( pColExpr->op==TK_ID ){ 1656 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1657 zName = pColExpr->u.zToken; 1658 }else{ 1659 /* Use the original text of the column expression as its name */ 1660 zName = pEList->a[i].zSpan; 1661 } 1662 } 1663 zName = sqlite3MPrintf(db, "%s", zName); 1664 1665 /* Make sure the column name is unique. If the name is not unique, 1666 ** append an integer to the name so that it becomes unique. 1667 */ 1668 cnt = 0; 1669 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1670 nName = sqlite3Strlen30(zName); 1671 if( nName>0 ){ 1672 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1673 if( zName[j]==':' ) nName = j; 1674 } 1675 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1676 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1677 } 1678 pCol->zName = zName; 1679 sqlite3ColumnPropertiesFromName(0, pCol); 1680 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1681 sqlite3OomFault(db); 1682 } 1683 } 1684 sqlite3HashClear(&ht); 1685 if( db->mallocFailed ){ 1686 for(j=0; j<i; j++){ 1687 sqlite3DbFree(db, aCol[j].zName); 1688 } 1689 sqlite3DbFree(db, aCol); 1690 *paCol = 0; 1691 *pnCol = 0; 1692 return SQLITE_NOMEM_BKPT; 1693 } 1694 return SQLITE_OK; 1695 } 1696 1697 /* 1698 ** Add type and collation information to a column list based on 1699 ** a SELECT statement. 1700 ** 1701 ** The column list presumably came from selectColumnNamesFromExprList(). 1702 ** The column list has only names, not types or collations. This 1703 ** routine goes through and adds the types and collations. 1704 ** 1705 ** This routine requires that all identifiers in the SELECT 1706 ** statement be resolved. 1707 */ 1708 void sqlite3SelectAddColumnTypeAndCollation( 1709 Parse *pParse, /* Parsing contexts */ 1710 Table *pTab, /* Add column type information to this table */ 1711 Select *pSelect /* SELECT used to determine types and collations */ 1712 ){ 1713 sqlite3 *db = pParse->db; 1714 NameContext sNC; 1715 Column *pCol; 1716 CollSeq *pColl; 1717 int i; 1718 Expr *p; 1719 struct ExprList_item *a; 1720 u64 szAll = 0; 1721 1722 assert( pSelect!=0 ); 1723 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1724 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1725 if( db->mallocFailed ) return; 1726 memset(&sNC, 0, sizeof(sNC)); 1727 sNC.pSrcList = pSelect->pSrc; 1728 a = pSelect->pEList->a; 1729 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1730 const char *zType; 1731 int n, m; 1732 p = a[i].pExpr; 1733 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1734 szAll += pCol->szEst; 1735 pCol->affinity = sqlite3ExprAffinity(p); 1736 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1737 n = sqlite3Strlen30(pCol->zName); 1738 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1739 if( pCol->zName ){ 1740 memcpy(&pCol->zName[n+1], zType, m+1); 1741 pCol->colFlags |= COLFLAG_HASTYPE; 1742 } 1743 } 1744 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1745 pColl = sqlite3ExprCollSeq(pParse, p); 1746 if( pColl && pCol->zColl==0 ){ 1747 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1748 } 1749 } 1750 pTab->szTabRow = sqlite3LogEst(szAll*4); 1751 } 1752 1753 /* 1754 ** Given a SELECT statement, generate a Table structure that describes 1755 ** the result set of that SELECT. 1756 */ 1757 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1758 Table *pTab; 1759 sqlite3 *db = pParse->db; 1760 int savedFlags; 1761 1762 savedFlags = db->flags; 1763 db->flags &= ~SQLITE_FullColNames; 1764 db->flags |= SQLITE_ShortColNames; 1765 sqlite3SelectPrep(pParse, pSelect, 0); 1766 if( pParse->nErr ) return 0; 1767 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1768 db->flags = savedFlags; 1769 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1770 if( pTab==0 ){ 1771 return 0; 1772 } 1773 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1774 ** is disabled */ 1775 assert( db->lookaside.bDisable ); 1776 pTab->nRef = 1; 1777 pTab->zName = 0; 1778 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1779 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1780 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1781 pTab->iPKey = -1; 1782 if( db->mallocFailed ){ 1783 sqlite3DeleteTable(db, pTab); 1784 return 0; 1785 } 1786 return pTab; 1787 } 1788 1789 /* 1790 ** Get a VDBE for the given parser context. Create a new one if necessary. 1791 ** If an error occurs, return NULL and leave a message in pParse. 1792 */ 1793 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){ 1794 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1795 if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1); 1796 if( pParse->pToplevel==0 1797 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1798 ){ 1799 pParse->okConstFactor = 1; 1800 } 1801 return v; 1802 } 1803 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1804 Vdbe *v = pParse->pVdbe; 1805 return v ? v : allocVdbe(pParse); 1806 } 1807 1808 1809 /* 1810 ** Compute the iLimit and iOffset fields of the SELECT based on the 1811 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1812 ** that appear in the original SQL statement after the LIMIT and OFFSET 1813 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1814 ** are the integer memory register numbers for counters used to compute 1815 ** the limit and offset. If there is no limit and/or offset, then 1816 ** iLimit and iOffset are negative. 1817 ** 1818 ** This routine changes the values of iLimit and iOffset only if 1819 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1820 ** iOffset should have been preset to appropriate default values (zero) 1821 ** prior to calling this routine. 1822 ** 1823 ** The iOffset register (if it exists) is initialized to the value 1824 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1825 ** iOffset+1 is initialized to LIMIT+OFFSET. 1826 ** 1827 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1828 ** redefined. The UNION ALL operator uses this property to force 1829 ** the reuse of the same limit and offset registers across multiple 1830 ** SELECT statements. 1831 */ 1832 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1833 Vdbe *v = 0; 1834 int iLimit = 0; 1835 int iOffset; 1836 int n; 1837 if( p->iLimit ) return; 1838 1839 /* 1840 ** "LIMIT -1" always shows all rows. There is some 1841 ** controversy about what the correct behavior should be. 1842 ** The current implementation interprets "LIMIT 0" to mean 1843 ** no rows. 1844 */ 1845 sqlite3ExprCacheClear(pParse); 1846 assert( p->pOffset==0 || p->pLimit!=0 ); 1847 if( p->pLimit ){ 1848 p->iLimit = iLimit = ++pParse->nMem; 1849 v = sqlite3GetVdbe(pParse); 1850 assert( v!=0 ); 1851 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1852 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1853 VdbeComment((v, "LIMIT counter")); 1854 if( n==0 ){ 1855 sqlite3VdbeGoto(v, iBreak); 1856 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1857 p->nSelectRow = sqlite3LogEst((u64)n); 1858 p->selFlags |= SF_FixedLimit; 1859 } 1860 }else{ 1861 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1862 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1863 VdbeComment((v, "LIMIT counter")); 1864 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1865 } 1866 if( p->pOffset ){ 1867 p->iOffset = iOffset = ++pParse->nMem; 1868 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1869 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1870 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1871 VdbeComment((v, "OFFSET counter")); 1872 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1873 VdbeComment((v, "LIMIT+OFFSET")); 1874 } 1875 } 1876 } 1877 1878 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1879 /* 1880 ** Return the appropriate collating sequence for the iCol-th column of 1881 ** the result set for the compound-select statement "p". Return NULL if 1882 ** the column has no default collating sequence. 1883 ** 1884 ** The collating sequence for the compound select is taken from the 1885 ** left-most term of the select that has a collating sequence. 1886 */ 1887 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1888 CollSeq *pRet; 1889 if( p->pPrior ){ 1890 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1891 }else{ 1892 pRet = 0; 1893 } 1894 assert( iCol>=0 ); 1895 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1896 ** have been thrown during name resolution and we would not have gotten 1897 ** this far */ 1898 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1899 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1900 } 1901 return pRet; 1902 } 1903 1904 /* 1905 ** The select statement passed as the second parameter is a compound SELECT 1906 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1907 ** structure suitable for implementing the ORDER BY. 1908 ** 1909 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1910 ** function is responsible for ensuring that this structure is eventually 1911 ** freed. 1912 */ 1913 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1914 ExprList *pOrderBy = p->pOrderBy; 1915 int nOrderBy = p->pOrderBy->nExpr; 1916 sqlite3 *db = pParse->db; 1917 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1918 if( pRet ){ 1919 int i; 1920 for(i=0; i<nOrderBy; i++){ 1921 struct ExprList_item *pItem = &pOrderBy->a[i]; 1922 Expr *pTerm = pItem->pExpr; 1923 CollSeq *pColl; 1924 1925 if( pTerm->flags & EP_Collate ){ 1926 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1927 }else{ 1928 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1929 if( pColl==0 ) pColl = db->pDfltColl; 1930 pOrderBy->a[i].pExpr = 1931 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1932 } 1933 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1934 pRet->aColl[i] = pColl; 1935 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1936 } 1937 } 1938 1939 return pRet; 1940 } 1941 1942 #ifndef SQLITE_OMIT_CTE 1943 /* 1944 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1945 ** query of the form: 1946 ** 1947 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1948 ** \___________/ \_______________/ 1949 ** p->pPrior p 1950 ** 1951 ** 1952 ** There is exactly one reference to the recursive-table in the FROM clause 1953 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1954 ** 1955 ** The setup-query runs once to generate an initial set of rows that go 1956 ** into a Queue table. Rows are extracted from the Queue table one by 1957 ** one. Each row extracted from Queue is output to pDest. Then the single 1958 ** extracted row (now in the iCurrent table) becomes the content of the 1959 ** recursive-table for a recursive-query run. The output of the recursive-query 1960 ** is added back into the Queue table. Then another row is extracted from Queue 1961 ** and the iteration continues until the Queue table is empty. 1962 ** 1963 ** If the compound query operator is UNION then no duplicate rows are ever 1964 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1965 ** that have ever been inserted into Queue and causes duplicates to be 1966 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1967 ** 1968 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1969 ** ORDER BY order and the first entry is extracted for each cycle. Without 1970 ** an ORDER BY, the Queue table is just a FIFO. 1971 ** 1972 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1973 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1974 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1975 ** with a positive value, then the first OFFSET outputs are discarded rather 1976 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1977 ** rows have been skipped. 1978 */ 1979 static void generateWithRecursiveQuery( 1980 Parse *pParse, /* Parsing context */ 1981 Select *p, /* The recursive SELECT to be coded */ 1982 SelectDest *pDest /* What to do with query results */ 1983 ){ 1984 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1985 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1986 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1987 Select *pSetup = p->pPrior; /* The setup query */ 1988 int addrTop; /* Top of the loop */ 1989 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1990 int iCurrent = 0; /* The Current table */ 1991 int regCurrent; /* Register holding Current table */ 1992 int iQueue; /* The Queue table */ 1993 int iDistinct = 0; /* To ensure unique results if UNION */ 1994 int eDest = SRT_Fifo; /* How to write to Queue */ 1995 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1996 int i; /* Loop counter */ 1997 int rc; /* Result code */ 1998 ExprList *pOrderBy; /* The ORDER BY clause */ 1999 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2000 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2001 2002 /* Obtain authorization to do a recursive query */ 2003 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2004 2005 /* Process the LIMIT and OFFSET clauses, if they exist */ 2006 addrBreak = sqlite3VdbeMakeLabel(v); 2007 computeLimitRegisters(pParse, p, addrBreak); 2008 pLimit = p->pLimit; 2009 pOffset = p->pOffset; 2010 regLimit = p->iLimit; 2011 regOffset = p->iOffset; 2012 p->pLimit = p->pOffset = 0; 2013 p->iLimit = p->iOffset = 0; 2014 pOrderBy = p->pOrderBy; 2015 2016 /* Locate the cursor number of the Current table */ 2017 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2018 if( pSrc->a[i].fg.isRecursive ){ 2019 iCurrent = pSrc->a[i].iCursor; 2020 break; 2021 } 2022 } 2023 2024 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2025 ** the Distinct table must be exactly one greater than Queue in order 2026 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2027 iQueue = pParse->nTab++; 2028 if( p->op==TK_UNION ){ 2029 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2030 iDistinct = pParse->nTab++; 2031 }else{ 2032 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2033 } 2034 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2035 2036 /* Allocate cursors for Current, Queue, and Distinct. */ 2037 regCurrent = ++pParse->nMem; 2038 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2039 if( pOrderBy ){ 2040 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2041 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2042 (char*)pKeyInfo, P4_KEYINFO); 2043 destQueue.pOrderBy = pOrderBy; 2044 }else{ 2045 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2046 } 2047 VdbeComment((v, "Queue table")); 2048 if( iDistinct ){ 2049 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2050 p->selFlags |= SF_UsesEphemeral; 2051 } 2052 2053 /* Detach the ORDER BY clause from the compound SELECT */ 2054 p->pOrderBy = 0; 2055 2056 /* Store the results of the setup-query in Queue. */ 2057 pSetup->pNext = 0; 2058 rc = sqlite3Select(pParse, pSetup, &destQueue); 2059 pSetup->pNext = p; 2060 if( rc ) goto end_of_recursive_query; 2061 2062 /* Find the next row in the Queue and output that row */ 2063 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2064 2065 /* Transfer the next row in Queue over to Current */ 2066 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2067 if( pOrderBy ){ 2068 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2069 }else{ 2070 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2071 } 2072 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2073 2074 /* Output the single row in Current */ 2075 addrCont = sqlite3VdbeMakeLabel(v); 2076 codeOffset(v, regOffset, addrCont); 2077 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2078 0, 0, pDest, addrCont, addrBreak); 2079 if( regLimit ){ 2080 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2081 VdbeCoverage(v); 2082 } 2083 sqlite3VdbeResolveLabel(v, addrCont); 2084 2085 /* Execute the recursive SELECT taking the single row in Current as 2086 ** the value for the recursive-table. Store the results in the Queue. 2087 */ 2088 if( p->selFlags & SF_Aggregate ){ 2089 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2090 }else{ 2091 p->pPrior = 0; 2092 sqlite3Select(pParse, p, &destQueue); 2093 assert( p->pPrior==0 ); 2094 p->pPrior = pSetup; 2095 } 2096 2097 /* Keep running the loop until the Queue is empty */ 2098 sqlite3VdbeGoto(v, addrTop); 2099 sqlite3VdbeResolveLabel(v, addrBreak); 2100 2101 end_of_recursive_query: 2102 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2103 p->pOrderBy = pOrderBy; 2104 p->pLimit = pLimit; 2105 p->pOffset = pOffset; 2106 return; 2107 } 2108 #endif /* SQLITE_OMIT_CTE */ 2109 2110 /* Forward references */ 2111 static int multiSelectOrderBy( 2112 Parse *pParse, /* Parsing context */ 2113 Select *p, /* The right-most of SELECTs to be coded */ 2114 SelectDest *pDest /* What to do with query results */ 2115 ); 2116 2117 /* 2118 ** Handle the special case of a compound-select that originates from a 2119 ** VALUES clause. By handling this as a special case, we avoid deep 2120 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2121 ** on a VALUES clause. 2122 ** 2123 ** Because the Select object originates from a VALUES clause: 2124 ** (1) It has no LIMIT or OFFSET 2125 ** (2) All terms are UNION ALL 2126 ** (3) There is no ORDER BY clause 2127 */ 2128 static int multiSelectValues( 2129 Parse *pParse, /* Parsing context */ 2130 Select *p, /* The right-most of SELECTs to be coded */ 2131 SelectDest *pDest /* What to do with query results */ 2132 ){ 2133 Select *pPrior; 2134 int nRow = 1; 2135 int rc = 0; 2136 assert( p->selFlags & SF_MultiValue ); 2137 do{ 2138 assert( p->selFlags & SF_Values ); 2139 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2140 assert( p->pLimit==0 ); 2141 assert( p->pOffset==0 ); 2142 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2143 if( p->pPrior==0 ) break; 2144 assert( p->pPrior->pNext==p ); 2145 p = p->pPrior; 2146 nRow++; 2147 }while(1); 2148 while( p ){ 2149 pPrior = p->pPrior; 2150 p->pPrior = 0; 2151 rc = sqlite3Select(pParse, p, pDest); 2152 p->pPrior = pPrior; 2153 if( rc ) break; 2154 p->nSelectRow = nRow; 2155 p = p->pNext; 2156 } 2157 return rc; 2158 } 2159 2160 /* 2161 ** This routine is called to process a compound query form from 2162 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2163 ** INTERSECT 2164 ** 2165 ** "p" points to the right-most of the two queries. the query on the 2166 ** left is p->pPrior. The left query could also be a compound query 2167 ** in which case this routine will be called recursively. 2168 ** 2169 ** The results of the total query are to be written into a destination 2170 ** of type eDest with parameter iParm. 2171 ** 2172 ** Example 1: Consider a three-way compound SQL statement. 2173 ** 2174 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2175 ** 2176 ** This statement is parsed up as follows: 2177 ** 2178 ** SELECT c FROM t3 2179 ** | 2180 ** `-----> SELECT b FROM t2 2181 ** | 2182 ** `------> SELECT a FROM t1 2183 ** 2184 ** The arrows in the diagram above represent the Select.pPrior pointer. 2185 ** So if this routine is called with p equal to the t3 query, then 2186 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2187 ** 2188 ** Notice that because of the way SQLite parses compound SELECTs, the 2189 ** individual selects always group from left to right. 2190 */ 2191 static int multiSelect( 2192 Parse *pParse, /* Parsing context */ 2193 Select *p, /* The right-most of SELECTs to be coded */ 2194 SelectDest *pDest /* What to do with query results */ 2195 ){ 2196 int rc = SQLITE_OK; /* Success code from a subroutine */ 2197 Select *pPrior; /* Another SELECT immediately to our left */ 2198 Vdbe *v; /* Generate code to this VDBE */ 2199 SelectDest dest; /* Alternative data destination */ 2200 Select *pDelete = 0; /* Chain of simple selects to delete */ 2201 sqlite3 *db; /* Database connection */ 2202 #ifndef SQLITE_OMIT_EXPLAIN 2203 int iSub1 = 0; /* EQP id of left-hand query */ 2204 int iSub2 = 0; /* EQP id of right-hand query */ 2205 #endif 2206 2207 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2208 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2209 */ 2210 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2211 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2212 db = pParse->db; 2213 pPrior = p->pPrior; 2214 dest = *pDest; 2215 if( pPrior->pOrderBy ){ 2216 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2217 selectOpName(p->op)); 2218 rc = 1; 2219 goto multi_select_end; 2220 } 2221 if( pPrior->pLimit ){ 2222 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2223 selectOpName(p->op)); 2224 rc = 1; 2225 goto multi_select_end; 2226 } 2227 2228 v = sqlite3GetVdbe(pParse); 2229 assert( v!=0 ); /* The VDBE already created by calling function */ 2230 2231 /* Create the destination temporary table if necessary 2232 */ 2233 if( dest.eDest==SRT_EphemTab ){ 2234 assert( p->pEList ); 2235 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2236 dest.eDest = SRT_Table; 2237 } 2238 2239 /* Special handling for a compound-select that originates as a VALUES clause. 2240 */ 2241 if( p->selFlags & SF_MultiValue ){ 2242 rc = multiSelectValues(pParse, p, &dest); 2243 goto multi_select_end; 2244 } 2245 2246 /* Make sure all SELECTs in the statement have the same number of elements 2247 ** in their result sets. 2248 */ 2249 assert( p->pEList && pPrior->pEList ); 2250 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2251 2252 #ifndef SQLITE_OMIT_CTE 2253 if( p->selFlags & SF_Recursive ){ 2254 generateWithRecursiveQuery(pParse, p, &dest); 2255 }else 2256 #endif 2257 2258 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2259 */ 2260 if( p->pOrderBy ){ 2261 return multiSelectOrderBy(pParse, p, pDest); 2262 }else 2263 2264 /* Generate code for the left and right SELECT statements. 2265 */ 2266 switch( p->op ){ 2267 case TK_ALL: { 2268 int addr = 0; 2269 int nLimit; 2270 assert( !pPrior->pLimit ); 2271 pPrior->iLimit = p->iLimit; 2272 pPrior->iOffset = p->iOffset; 2273 pPrior->pLimit = p->pLimit; 2274 pPrior->pOffset = p->pOffset; 2275 explainSetInteger(iSub1, pParse->iNextSelectId); 2276 rc = sqlite3Select(pParse, pPrior, &dest); 2277 p->pLimit = 0; 2278 p->pOffset = 0; 2279 if( rc ){ 2280 goto multi_select_end; 2281 } 2282 p->pPrior = 0; 2283 p->iLimit = pPrior->iLimit; 2284 p->iOffset = pPrior->iOffset; 2285 if( p->iLimit ){ 2286 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2287 VdbeComment((v, "Jump ahead if LIMIT reached")); 2288 if( p->iOffset ){ 2289 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2290 p->iLimit, p->iOffset+1, p->iOffset); 2291 } 2292 } 2293 explainSetInteger(iSub2, pParse->iNextSelectId); 2294 rc = sqlite3Select(pParse, p, &dest); 2295 testcase( rc!=SQLITE_OK ); 2296 pDelete = p->pPrior; 2297 p->pPrior = pPrior; 2298 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2299 if( pPrior->pLimit 2300 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2301 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2302 ){ 2303 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2304 } 2305 if( addr ){ 2306 sqlite3VdbeJumpHere(v, addr); 2307 } 2308 break; 2309 } 2310 case TK_EXCEPT: 2311 case TK_UNION: { 2312 int unionTab; /* Cursor number of the temporary table holding result */ 2313 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2314 int priorOp; /* The SRT_ operation to apply to prior selects */ 2315 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2316 int addr; 2317 SelectDest uniondest; 2318 2319 testcase( p->op==TK_EXCEPT ); 2320 testcase( p->op==TK_UNION ); 2321 priorOp = SRT_Union; 2322 if( dest.eDest==priorOp ){ 2323 /* We can reuse a temporary table generated by a SELECT to our 2324 ** right. 2325 */ 2326 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2327 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2328 unionTab = dest.iSDParm; 2329 }else{ 2330 /* We will need to create our own temporary table to hold the 2331 ** intermediate results. 2332 */ 2333 unionTab = pParse->nTab++; 2334 assert( p->pOrderBy==0 ); 2335 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2336 assert( p->addrOpenEphm[0] == -1 ); 2337 p->addrOpenEphm[0] = addr; 2338 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2339 assert( p->pEList ); 2340 } 2341 2342 /* Code the SELECT statements to our left 2343 */ 2344 assert( !pPrior->pOrderBy ); 2345 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2346 explainSetInteger(iSub1, pParse->iNextSelectId); 2347 rc = sqlite3Select(pParse, pPrior, &uniondest); 2348 if( rc ){ 2349 goto multi_select_end; 2350 } 2351 2352 /* Code the current SELECT statement 2353 */ 2354 if( p->op==TK_EXCEPT ){ 2355 op = SRT_Except; 2356 }else{ 2357 assert( p->op==TK_UNION ); 2358 op = SRT_Union; 2359 } 2360 p->pPrior = 0; 2361 pLimit = p->pLimit; 2362 p->pLimit = 0; 2363 pOffset = p->pOffset; 2364 p->pOffset = 0; 2365 uniondest.eDest = op; 2366 explainSetInteger(iSub2, pParse->iNextSelectId); 2367 rc = sqlite3Select(pParse, p, &uniondest); 2368 testcase( rc!=SQLITE_OK ); 2369 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2370 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2371 sqlite3ExprListDelete(db, p->pOrderBy); 2372 pDelete = p->pPrior; 2373 p->pPrior = pPrior; 2374 p->pOrderBy = 0; 2375 if( p->op==TK_UNION ){ 2376 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2377 } 2378 sqlite3ExprDelete(db, p->pLimit); 2379 p->pLimit = pLimit; 2380 p->pOffset = pOffset; 2381 p->iLimit = 0; 2382 p->iOffset = 0; 2383 2384 /* Convert the data in the temporary table into whatever form 2385 ** it is that we currently need. 2386 */ 2387 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2388 if( dest.eDest!=priorOp ){ 2389 int iCont, iBreak, iStart; 2390 assert( p->pEList ); 2391 if( dest.eDest==SRT_Output ){ 2392 Select *pFirst = p; 2393 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2394 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2395 } 2396 iBreak = sqlite3VdbeMakeLabel(v); 2397 iCont = sqlite3VdbeMakeLabel(v); 2398 computeLimitRegisters(pParse, p, iBreak); 2399 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2400 iStart = sqlite3VdbeCurrentAddr(v); 2401 selectInnerLoop(pParse, p, p->pEList, unionTab, 2402 0, 0, &dest, iCont, iBreak); 2403 sqlite3VdbeResolveLabel(v, iCont); 2404 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2405 sqlite3VdbeResolveLabel(v, iBreak); 2406 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2407 } 2408 break; 2409 } 2410 default: assert( p->op==TK_INTERSECT ); { 2411 int tab1, tab2; 2412 int iCont, iBreak, iStart; 2413 Expr *pLimit, *pOffset; 2414 int addr; 2415 SelectDest intersectdest; 2416 int r1; 2417 2418 /* INTERSECT is different from the others since it requires 2419 ** two temporary tables. Hence it has its own case. Begin 2420 ** by allocating the tables we will need. 2421 */ 2422 tab1 = pParse->nTab++; 2423 tab2 = pParse->nTab++; 2424 assert( p->pOrderBy==0 ); 2425 2426 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2427 assert( p->addrOpenEphm[0] == -1 ); 2428 p->addrOpenEphm[0] = addr; 2429 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2430 assert( p->pEList ); 2431 2432 /* Code the SELECTs to our left into temporary table "tab1". 2433 */ 2434 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2435 explainSetInteger(iSub1, pParse->iNextSelectId); 2436 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2437 if( rc ){ 2438 goto multi_select_end; 2439 } 2440 2441 /* Code the current SELECT into temporary table "tab2" 2442 */ 2443 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2444 assert( p->addrOpenEphm[1] == -1 ); 2445 p->addrOpenEphm[1] = addr; 2446 p->pPrior = 0; 2447 pLimit = p->pLimit; 2448 p->pLimit = 0; 2449 pOffset = p->pOffset; 2450 p->pOffset = 0; 2451 intersectdest.iSDParm = tab2; 2452 explainSetInteger(iSub2, pParse->iNextSelectId); 2453 rc = sqlite3Select(pParse, p, &intersectdest); 2454 testcase( rc!=SQLITE_OK ); 2455 pDelete = p->pPrior; 2456 p->pPrior = pPrior; 2457 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2458 sqlite3ExprDelete(db, p->pLimit); 2459 p->pLimit = pLimit; 2460 p->pOffset = pOffset; 2461 2462 /* Generate code to take the intersection of the two temporary 2463 ** tables. 2464 */ 2465 assert( p->pEList ); 2466 if( dest.eDest==SRT_Output ){ 2467 Select *pFirst = p; 2468 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2469 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2470 } 2471 iBreak = sqlite3VdbeMakeLabel(v); 2472 iCont = sqlite3VdbeMakeLabel(v); 2473 computeLimitRegisters(pParse, p, iBreak); 2474 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2475 r1 = sqlite3GetTempReg(pParse); 2476 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2477 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2478 sqlite3ReleaseTempReg(pParse, r1); 2479 selectInnerLoop(pParse, p, p->pEList, tab1, 2480 0, 0, &dest, iCont, iBreak); 2481 sqlite3VdbeResolveLabel(v, iCont); 2482 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2483 sqlite3VdbeResolveLabel(v, iBreak); 2484 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2485 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2486 break; 2487 } 2488 } 2489 2490 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2491 2492 /* Compute collating sequences used by 2493 ** temporary tables needed to implement the compound select. 2494 ** Attach the KeyInfo structure to all temporary tables. 2495 ** 2496 ** This section is run by the right-most SELECT statement only. 2497 ** SELECT statements to the left always skip this part. The right-most 2498 ** SELECT might also skip this part if it has no ORDER BY clause and 2499 ** no temp tables are required. 2500 */ 2501 if( p->selFlags & SF_UsesEphemeral ){ 2502 int i; /* Loop counter */ 2503 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2504 Select *pLoop; /* For looping through SELECT statements */ 2505 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2506 int nCol; /* Number of columns in result set */ 2507 2508 assert( p->pNext==0 ); 2509 nCol = p->pEList->nExpr; 2510 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2511 if( !pKeyInfo ){ 2512 rc = SQLITE_NOMEM_BKPT; 2513 goto multi_select_end; 2514 } 2515 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2516 *apColl = multiSelectCollSeq(pParse, p, i); 2517 if( 0==*apColl ){ 2518 *apColl = db->pDfltColl; 2519 } 2520 } 2521 2522 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2523 for(i=0; i<2; i++){ 2524 int addr = pLoop->addrOpenEphm[i]; 2525 if( addr<0 ){ 2526 /* If [0] is unused then [1] is also unused. So we can 2527 ** always safely abort as soon as the first unused slot is found */ 2528 assert( pLoop->addrOpenEphm[1]<0 ); 2529 break; 2530 } 2531 sqlite3VdbeChangeP2(v, addr, nCol); 2532 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2533 P4_KEYINFO); 2534 pLoop->addrOpenEphm[i] = -1; 2535 } 2536 } 2537 sqlite3KeyInfoUnref(pKeyInfo); 2538 } 2539 2540 multi_select_end: 2541 pDest->iSdst = dest.iSdst; 2542 pDest->nSdst = dest.nSdst; 2543 sqlite3SelectDelete(db, pDelete); 2544 return rc; 2545 } 2546 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2547 2548 /* 2549 ** Error message for when two or more terms of a compound select have different 2550 ** size result sets. 2551 */ 2552 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2553 if( p->selFlags & SF_Values ){ 2554 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2555 }else{ 2556 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2557 " do not have the same number of result columns", selectOpName(p->op)); 2558 } 2559 } 2560 2561 /* 2562 ** Code an output subroutine for a coroutine implementation of a 2563 ** SELECT statment. 2564 ** 2565 ** The data to be output is contained in pIn->iSdst. There are 2566 ** pIn->nSdst columns to be output. pDest is where the output should 2567 ** be sent. 2568 ** 2569 ** regReturn is the number of the register holding the subroutine 2570 ** return address. 2571 ** 2572 ** If regPrev>0 then it is the first register in a vector that 2573 ** records the previous output. mem[regPrev] is a flag that is false 2574 ** if there has been no previous output. If regPrev>0 then code is 2575 ** generated to suppress duplicates. pKeyInfo is used for comparing 2576 ** keys. 2577 ** 2578 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2579 ** iBreak. 2580 */ 2581 static int generateOutputSubroutine( 2582 Parse *pParse, /* Parsing context */ 2583 Select *p, /* The SELECT statement */ 2584 SelectDest *pIn, /* Coroutine supplying data */ 2585 SelectDest *pDest, /* Where to send the data */ 2586 int regReturn, /* The return address register */ 2587 int regPrev, /* Previous result register. No uniqueness if 0 */ 2588 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2589 int iBreak /* Jump here if we hit the LIMIT */ 2590 ){ 2591 Vdbe *v = pParse->pVdbe; 2592 int iContinue; 2593 int addr; 2594 2595 addr = sqlite3VdbeCurrentAddr(v); 2596 iContinue = sqlite3VdbeMakeLabel(v); 2597 2598 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2599 */ 2600 if( regPrev ){ 2601 int addr1, addr2; 2602 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2603 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2604 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2605 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2606 sqlite3VdbeJumpHere(v, addr1); 2607 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2608 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2609 } 2610 if( pParse->db->mallocFailed ) return 0; 2611 2612 /* Suppress the first OFFSET entries if there is an OFFSET clause 2613 */ 2614 codeOffset(v, p->iOffset, iContinue); 2615 2616 assert( pDest->eDest!=SRT_Exists ); 2617 assert( pDest->eDest!=SRT_Table ); 2618 switch( pDest->eDest ){ 2619 /* Store the result as data using a unique key. 2620 */ 2621 case SRT_EphemTab: { 2622 int r1 = sqlite3GetTempReg(pParse); 2623 int r2 = sqlite3GetTempReg(pParse); 2624 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2625 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2626 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2627 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2628 sqlite3ReleaseTempReg(pParse, r2); 2629 sqlite3ReleaseTempReg(pParse, r1); 2630 break; 2631 } 2632 2633 #ifndef SQLITE_OMIT_SUBQUERY 2634 /* If we are creating a set for an "expr IN (SELECT ...)". 2635 */ 2636 case SRT_Set: { 2637 int r1; 2638 testcase( pIn->nSdst>1 ); 2639 r1 = sqlite3GetTempReg(pParse); 2640 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2641 r1, pDest->zAffSdst, pIn->nSdst); 2642 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2643 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2644 sqlite3ReleaseTempReg(pParse, r1); 2645 break; 2646 } 2647 2648 /* If this is a scalar select that is part of an expression, then 2649 ** store the results in the appropriate memory cell and break out 2650 ** of the scan loop. 2651 */ 2652 case SRT_Mem: { 2653 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2654 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2655 /* The LIMIT clause will jump out of the loop for us */ 2656 break; 2657 } 2658 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2659 2660 /* The results are stored in a sequence of registers 2661 ** starting at pDest->iSdst. Then the co-routine yields. 2662 */ 2663 case SRT_Coroutine: { 2664 if( pDest->iSdst==0 ){ 2665 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2666 pDest->nSdst = pIn->nSdst; 2667 } 2668 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2669 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2670 break; 2671 } 2672 2673 /* If none of the above, then the result destination must be 2674 ** SRT_Output. This routine is never called with any other 2675 ** destination other than the ones handled above or SRT_Output. 2676 ** 2677 ** For SRT_Output, results are stored in a sequence of registers. 2678 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2679 ** return the next row of result. 2680 */ 2681 default: { 2682 assert( pDest->eDest==SRT_Output ); 2683 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2684 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2685 break; 2686 } 2687 } 2688 2689 /* Jump to the end of the loop if the LIMIT is reached. 2690 */ 2691 if( p->iLimit ){ 2692 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2693 } 2694 2695 /* Generate the subroutine return 2696 */ 2697 sqlite3VdbeResolveLabel(v, iContinue); 2698 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2699 2700 return addr; 2701 } 2702 2703 /* 2704 ** Alternative compound select code generator for cases when there 2705 ** is an ORDER BY clause. 2706 ** 2707 ** We assume a query of the following form: 2708 ** 2709 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2710 ** 2711 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2712 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2713 ** co-routines. Then run the co-routines in parallel and merge the results 2714 ** into the output. In addition to the two coroutines (called selectA and 2715 ** selectB) there are 7 subroutines: 2716 ** 2717 ** outA: Move the output of the selectA coroutine into the output 2718 ** of the compound query. 2719 ** 2720 ** outB: Move the output of the selectB coroutine into the output 2721 ** of the compound query. (Only generated for UNION and 2722 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2723 ** appears only in B.) 2724 ** 2725 ** AltB: Called when there is data from both coroutines and A<B. 2726 ** 2727 ** AeqB: Called when there is data from both coroutines and A==B. 2728 ** 2729 ** AgtB: Called when there is data from both coroutines and A>B. 2730 ** 2731 ** EofA: Called when data is exhausted from selectA. 2732 ** 2733 ** EofB: Called when data is exhausted from selectB. 2734 ** 2735 ** The implementation of the latter five subroutines depend on which 2736 ** <operator> is used: 2737 ** 2738 ** 2739 ** UNION ALL UNION EXCEPT INTERSECT 2740 ** ------------- ----------------- -------------- ----------------- 2741 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2742 ** 2743 ** AeqB: outA, nextA nextA nextA outA, nextA 2744 ** 2745 ** AgtB: outB, nextB outB, nextB nextB nextB 2746 ** 2747 ** EofA: outB, nextB outB, nextB halt halt 2748 ** 2749 ** EofB: outA, nextA outA, nextA outA, nextA halt 2750 ** 2751 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2752 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2753 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2754 ** following nextX causes a jump to the end of the select processing. 2755 ** 2756 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2757 ** within the output subroutine. The regPrev register set holds the previously 2758 ** output value. A comparison is made against this value and the output 2759 ** is skipped if the next results would be the same as the previous. 2760 ** 2761 ** The implementation plan is to implement the two coroutines and seven 2762 ** subroutines first, then put the control logic at the bottom. Like this: 2763 ** 2764 ** goto Init 2765 ** coA: coroutine for left query (A) 2766 ** coB: coroutine for right query (B) 2767 ** outA: output one row of A 2768 ** outB: output one row of B (UNION and UNION ALL only) 2769 ** EofA: ... 2770 ** EofB: ... 2771 ** AltB: ... 2772 ** AeqB: ... 2773 ** AgtB: ... 2774 ** Init: initialize coroutine registers 2775 ** yield coA 2776 ** if eof(A) goto EofA 2777 ** yield coB 2778 ** if eof(B) goto EofB 2779 ** Cmpr: Compare A, B 2780 ** Jump AltB, AeqB, AgtB 2781 ** End: ... 2782 ** 2783 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2784 ** actually called using Gosub and they do not Return. EofA and EofB loop 2785 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2786 ** and AgtB jump to either L2 or to one of EofA or EofB. 2787 */ 2788 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2789 static int multiSelectOrderBy( 2790 Parse *pParse, /* Parsing context */ 2791 Select *p, /* The right-most of SELECTs to be coded */ 2792 SelectDest *pDest /* What to do with query results */ 2793 ){ 2794 int i, j; /* Loop counters */ 2795 Select *pPrior; /* Another SELECT immediately to our left */ 2796 Vdbe *v; /* Generate code to this VDBE */ 2797 SelectDest destA; /* Destination for coroutine A */ 2798 SelectDest destB; /* Destination for coroutine B */ 2799 int regAddrA; /* Address register for select-A coroutine */ 2800 int regAddrB; /* Address register for select-B coroutine */ 2801 int addrSelectA; /* Address of the select-A coroutine */ 2802 int addrSelectB; /* Address of the select-B coroutine */ 2803 int regOutA; /* Address register for the output-A subroutine */ 2804 int regOutB; /* Address register for the output-B subroutine */ 2805 int addrOutA; /* Address of the output-A subroutine */ 2806 int addrOutB = 0; /* Address of the output-B subroutine */ 2807 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2808 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2809 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2810 int addrAltB; /* Address of the A<B subroutine */ 2811 int addrAeqB; /* Address of the A==B subroutine */ 2812 int addrAgtB; /* Address of the A>B subroutine */ 2813 int regLimitA; /* Limit register for select-A */ 2814 int regLimitB; /* Limit register for select-A */ 2815 int regPrev; /* A range of registers to hold previous output */ 2816 int savedLimit; /* Saved value of p->iLimit */ 2817 int savedOffset; /* Saved value of p->iOffset */ 2818 int labelCmpr; /* Label for the start of the merge algorithm */ 2819 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2820 int addr1; /* Jump instructions that get retargetted */ 2821 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2822 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2823 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2824 sqlite3 *db; /* Database connection */ 2825 ExprList *pOrderBy; /* The ORDER BY clause */ 2826 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2827 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2828 #ifndef SQLITE_OMIT_EXPLAIN 2829 int iSub1; /* EQP id of left-hand query */ 2830 int iSub2; /* EQP id of right-hand query */ 2831 #endif 2832 2833 assert( p->pOrderBy!=0 ); 2834 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2835 db = pParse->db; 2836 v = pParse->pVdbe; 2837 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2838 labelEnd = sqlite3VdbeMakeLabel(v); 2839 labelCmpr = sqlite3VdbeMakeLabel(v); 2840 2841 2842 /* Patch up the ORDER BY clause 2843 */ 2844 op = p->op; 2845 pPrior = p->pPrior; 2846 assert( pPrior->pOrderBy==0 ); 2847 pOrderBy = p->pOrderBy; 2848 assert( pOrderBy ); 2849 nOrderBy = pOrderBy->nExpr; 2850 2851 /* For operators other than UNION ALL we have to make sure that 2852 ** the ORDER BY clause covers every term of the result set. Add 2853 ** terms to the ORDER BY clause as necessary. 2854 */ 2855 if( op!=TK_ALL ){ 2856 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2857 struct ExprList_item *pItem; 2858 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2859 assert( pItem->u.x.iOrderByCol>0 ); 2860 if( pItem->u.x.iOrderByCol==i ) break; 2861 } 2862 if( j==nOrderBy ){ 2863 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2864 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2865 pNew->flags |= EP_IntValue; 2866 pNew->u.iValue = i; 2867 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2868 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2869 } 2870 } 2871 } 2872 2873 /* Compute the comparison permutation and keyinfo that is used with 2874 ** the permutation used to determine if the next 2875 ** row of results comes from selectA or selectB. Also add explicit 2876 ** collations to the ORDER BY clause terms so that when the subqueries 2877 ** to the right and the left are evaluated, they use the correct 2878 ** collation. 2879 */ 2880 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2881 if( aPermute ){ 2882 struct ExprList_item *pItem; 2883 aPermute[0] = nOrderBy; 2884 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2885 assert( pItem->u.x.iOrderByCol>0 ); 2886 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2887 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2888 } 2889 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2890 }else{ 2891 pKeyMerge = 0; 2892 } 2893 2894 /* Reattach the ORDER BY clause to the query. 2895 */ 2896 p->pOrderBy = pOrderBy; 2897 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2898 2899 /* Allocate a range of temporary registers and the KeyInfo needed 2900 ** for the logic that removes duplicate result rows when the 2901 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2902 */ 2903 if( op==TK_ALL ){ 2904 regPrev = 0; 2905 }else{ 2906 int nExpr = p->pEList->nExpr; 2907 assert( nOrderBy>=nExpr || db->mallocFailed ); 2908 regPrev = pParse->nMem+1; 2909 pParse->nMem += nExpr+1; 2910 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2911 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2912 if( pKeyDup ){ 2913 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2914 for(i=0; i<nExpr; i++){ 2915 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2916 pKeyDup->aSortOrder[i] = 0; 2917 } 2918 } 2919 } 2920 2921 /* Separate the left and the right query from one another 2922 */ 2923 p->pPrior = 0; 2924 pPrior->pNext = 0; 2925 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2926 if( pPrior->pPrior==0 ){ 2927 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2928 } 2929 2930 /* Compute the limit registers */ 2931 computeLimitRegisters(pParse, p, labelEnd); 2932 if( p->iLimit && op==TK_ALL ){ 2933 regLimitA = ++pParse->nMem; 2934 regLimitB = ++pParse->nMem; 2935 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2936 regLimitA); 2937 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2938 }else{ 2939 regLimitA = regLimitB = 0; 2940 } 2941 sqlite3ExprDelete(db, p->pLimit); 2942 p->pLimit = 0; 2943 sqlite3ExprDelete(db, p->pOffset); 2944 p->pOffset = 0; 2945 2946 regAddrA = ++pParse->nMem; 2947 regAddrB = ++pParse->nMem; 2948 regOutA = ++pParse->nMem; 2949 regOutB = ++pParse->nMem; 2950 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2951 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2952 2953 /* Generate a coroutine to evaluate the SELECT statement to the 2954 ** left of the compound operator - the "A" select. 2955 */ 2956 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2957 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2958 VdbeComment((v, "left SELECT")); 2959 pPrior->iLimit = regLimitA; 2960 explainSetInteger(iSub1, pParse->iNextSelectId); 2961 sqlite3Select(pParse, pPrior, &destA); 2962 sqlite3VdbeEndCoroutine(v, regAddrA); 2963 sqlite3VdbeJumpHere(v, addr1); 2964 2965 /* Generate a coroutine to evaluate the SELECT statement on 2966 ** the right - the "B" select 2967 */ 2968 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2969 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2970 VdbeComment((v, "right SELECT")); 2971 savedLimit = p->iLimit; 2972 savedOffset = p->iOffset; 2973 p->iLimit = regLimitB; 2974 p->iOffset = 0; 2975 explainSetInteger(iSub2, pParse->iNextSelectId); 2976 sqlite3Select(pParse, p, &destB); 2977 p->iLimit = savedLimit; 2978 p->iOffset = savedOffset; 2979 sqlite3VdbeEndCoroutine(v, regAddrB); 2980 2981 /* Generate a subroutine that outputs the current row of the A 2982 ** select as the next output row of the compound select. 2983 */ 2984 VdbeNoopComment((v, "Output routine for A")); 2985 addrOutA = generateOutputSubroutine(pParse, 2986 p, &destA, pDest, regOutA, 2987 regPrev, pKeyDup, labelEnd); 2988 2989 /* Generate a subroutine that outputs the current row of the B 2990 ** select as the next output row of the compound select. 2991 */ 2992 if( op==TK_ALL || op==TK_UNION ){ 2993 VdbeNoopComment((v, "Output routine for B")); 2994 addrOutB = generateOutputSubroutine(pParse, 2995 p, &destB, pDest, regOutB, 2996 regPrev, pKeyDup, labelEnd); 2997 } 2998 sqlite3KeyInfoUnref(pKeyDup); 2999 3000 /* Generate a subroutine to run when the results from select A 3001 ** are exhausted and only data in select B remains. 3002 */ 3003 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3004 addrEofA_noB = addrEofA = labelEnd; 3005 }else{ 3006 VdbeNoopComment((v, "eof-A subroutine")); 3007 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3008 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3009 VdbeCoverage(v); 3010 sqlite3VdbeGoto(v, addrEofA); 3011 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3012 } 3013 3014 /* Generate a subroutine to run when the results from select B 3015 ** are exhausted and only data in select A remains. 3016 */ 3017 if( op==TK_INTERSECT ){ 3018 addrEofB = addrEofA; 3019 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3020 }else{ 3021 VdbeNoopComment((v, "eof-B subroutine")); 3022 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3023 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3024 sqlite3VdbeGoto(v, addrEofB); 3025 } 3026 3027 /* Generate code to handle the case of A<B 3028 */ 3029 VdbeNoopComment((v, "A-lt-B subroutine")); 3030 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3031 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3032 sqlite3VdbeGoto(v, labelCmpr); 3033 3034 /* Generate code to handle the case of A==B 3035 */ 3036 if( op==TK_ALL ){ 3037 addrAeqB = addrAltB; 3038 }else if( op==TK_INTERSECT ){ 3039 addrAeqB = addrAltB; 3040 addrAltB++; 3041 }else{ 3042 VdbeNoopComment((v, "A-eq-B subroutine")); 3043 addrAeqB = 3044 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3045 sqlite3VdbeGoto(v, labelCmpr); 3046 } 3047 3048 /* Generate code to handle the case of A>B 3049 */ 3050 VdbeNoopComment((v, "A-gt-B subroutine")); 3051 addrAgtB = sqlite3VdbeCurrentAddr(v); 3052 if( op==TK_ALL || op==TK_UNION ){ 3053 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3054 } 3055 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3056 sqlite3VdbeGoto(v, labelCmpr); 3057 3058 /* This code runs once to initialize everything. 3059 */ 3060 sqlite3VdbeJumpHere(v, addr1); 3061 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3062 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3063 3064 /* Implement the main merge loop 3065 */ 3066 sqlite3VdbeResolveLabel(v, labelCmpr); 3067 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3068 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3069 (char*)pKeyMerge, P4_KEYINFO); 3070 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3071 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3072 3073 /* Jump to the this point in order to terminate the query. 3074 */ 3075 sqlite3VdbeResolveLabel(v, labelEnd); 3076 3077 /* Set the number of output columns 3078 */ 3079 if( pDest->eDest==SRT_Output ){ 3080 Select *pFirst = pPrior; 3081 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3082 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3083 } 3084 3085 /* Reassembly the compound query so that it will be freed correctly 3086 ** by the calling function */ 3087 if( p->pPrior ){ 3088 sqlite3SelectDelete(db, p->pPrior); 3089 } 3090 p->pPrior = pPrior; 3091 pPrior->pNext = p; 3092 3093 /*** TBD: Insert subroutine calls to close cursors on incomplete 3094 **** subqueries ****/ 3095 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3096 return pParse->nErr!=0; 3097 } 3098 #endif 3099 3100 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3101 /* Forward Declarations */ 3102 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3103 static void substSelect(sqlite3*, Select *, int, ExprList*, int); 3104 3105 /* 3106 ** Scan through the expression pExpr. Replace every reference to 3107 ** a column in table number iTable with a copy of the iColumn-th 3108 ** entry in pEList. (But leave references to the ROWID column 3109 ** unchanged.) 3110 ** 3111 ** This routine is part of the flattening procedure. A subquery 3112 ** whose result set is defined by pEList appears as entry in the 3113 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3114 ** FORM clause entry is iTable. This routine make the necessary 3115 ** changes to pExpr so that it refers directly to the source table 3116 ** of the subquery rather the result set of the subquery. 3117 */ 3118 static Expr *substExpr( 3119 sqlite3 *db, /* Report malloc errors to this connection */ 3120 Expr *pExpr, /* Expr in which substitution occurs */ 3121 int iTable, /* Table to be substituted */ 3122 ExprList *pEList /* Substitute expressions */ 3123 ){ 3124 if( pExpr==0 ) return 0; 3125 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3126 if( pExpr->iColumn<0 ){ 3127 pExpr->op = TK_NULL; 3128 }else{ 3129 Expr *pNew; 3130 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3131 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3132 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3133 sqlite3ExprDelete(db, pExpr); 3134 pExpr = pNew; 3135 } 3136 }else{ 3137 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3138 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3139 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3140 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1); 3141 }else{ 3142 substExprList(db, pExpr->x.pList, iTable, pEList); 3143 } 3144 } 3145 return pExpr; 3146 } 3147 static void substExprList( 3148 sqlite3 *db, /* Report malloc errors here */ 3149 ExprList *pList, /* List to scan and in which to make substitutes */ 3150 int iTable, /* Table to be substituted */ 3151 ExprList *pEList /* Substitute values */ 3152 ){ 3153 int i; 3154 if( pList==0 ) return; 3155 for(i=0; i<pList->nExpr; i++){ 3156 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3157 } 3158 } 3159 static void substSelect( 3160 sqlite3 *db, /* Report malloc errors here */ 3161 Select *p, /* SELECT statement in which to make substitutions */ 3162 int iTable, /* Table to be replaced */ 3163 ExprList *pEList, /* Substitute values */ 3164 int doPrior /* Do substitutes on p->pPrior too */ 3165 ){ 3166 SrcList *pSrc; 3167 struct SrcList_item *pItem; 3168 int i; 3169 if( !p ) return; 3170 do{ 3171 substExprList(db, p->pEList, iTable, pEList); 3172 substExprList(db, p->pGroupBy, iTable, pEList); 3173 substExprList(db, p->pOrderBy, iTable, pEList); 3174 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3175 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3176 pSrc = p->pSrc; 3177 assert( pSrc!=0 ); 3178 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3179 substSelect(db, pItem->pSelect, iTable, pEList, 1); 3180 if( pItem->fg.isTabFunc ){ 3181 substExprList(db, pItem->u1.pFuncArg, iTable, pEList); 3182 } 3183 } 3184 }while( doPrior && (p = p->pPrior)!=0 ); 3185 } 3186 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3187 3188 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3189 /* 3190 ** This routine attempts to flatten subqueries as a performance optimization. 3191 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3192 ** 3193 ** To understand the concept of flattening, consider the following 3194 ** query: 3195 ** 3196 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3197 ** 3198 ** The default way of implementing this query is to execute the 3199 ** subquery first and store the results in a temporary table, then 3200 ** run the outer query on that temporary table. This requires two 3201 ** passes over the data. Furthermore, because the temporary table 3202 ** has no indices, the WHERE clause on the outer query cannot be 3203 ** optimized. 3204 ** 3205 ** This routine attempts to rewrite queries such as the above into 3206 ** a single flat select, like this: 3207 ** 3208 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3209 ** 3210 ** The code generated for this simplification gives the same result 3211 ** but only has to scan the data once. And because indices might 3212 ** exist on the table t1, a complete scan of the data might be 3213 ** avoided. 3214 ** 3215 ** Flattening is only attempted if all of the following are true: 3216 ** 3217 ** (1) The subquery and the outer query do not both use aggregates. 3218 ** 3219 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3220 ** and (2b) the outer query does not use subqueries other than the one 3221 ** FROM-clause subquery that is a candidate for flattening. (2b is 3222 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3223 ** 3224 ** (3) The subquery is not the right operand of a left outer join 3225 ** (Originally ticket #306. Strengthened by ticket #3300) 3226 ** 3227 ** (4) The subquery is not DISTINCT. 3228 ** 3229 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3230 ** sub-queries that were excluded from this optimization. Restriction 3231 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3232 ** 3233 ** (6) The subquery does not use aggregates or the outer query is not 3234 ** DISTINCT. 3235 ** 3236 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3237 ** A FROM clause, consider adding a FROM close with the special 3238 ** table sqlite_once that consists of a single row containing a 3239 ** single NULL. 3240 ** 3241 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3242 ** 3243 ** (9) The subquery does not use LIMIT or the outer query does not use 3244 ** aggregates. 3245 ** 3246 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3247 ** accidently carried the comment forward until 2014-09-15. Original 3248 ** text: "The subquery does not use aggregates or the outer query 3249 ** does not use LIMIT." 3250 ** 3251 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3252 ** 3253 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3254 ** a separate restriction deriving from ticket #350. 3255 ** 3256 ** (13) The subquery and outer query do not both use LIMIT. 3257 ** 3258 ** (14) The subquery does not use OFFSET. 3259 ** 3260 ** (15) The outer query is not part of a compound select or the 3261 ** subquery does not have a LIMIT clause. 3262 ** (See ticket #2339 and ticket [02a8e81d44]). 3263 ** 3264 ** (16) The outer query is not an aggregate or the subquery does 3265 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3266 ** until we introduced the group_concat() function. 3267 ** 3268 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3269 ** compound clause made up entirely of non-aggregate queries, and 3270 ** the parent query: 3271 ** 3272 ** * is not itself part of a compound select, 3273 ** * is not an aggregate or DISTINCT query, and 3274 ** * is not a join 3275 ** 3276 ** The parent and sub-query may contain WHERE clauses. Subject to 3277 ** rules (11), (13) and (14), they may also contain ORDER BY, 3278 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3279 ** operator other than UNION ALL because all the other compound 3280 ** operators have an implied DISTINCT which is disallowed by 3281 ** restriction (4). 3282 ** 3283 ** Also, each component of the sub-query must return the same number 3284 ** of result columns. This is actually a requirement for any compound 3285 ** SELECT statement, but all the code here does is make sure that no 3286 ** such (illegal) sub-query is flattened. The caller will detect the 3287 ** syntax error and return a detailed message. 3288 ** 3289 ** (18) If the sub-query is a compound select, then all terms of the 3290 ** ORDER by clause of the parent must be simple references to 3291 ** columns of the sub-query. 3292 ** 3293 ** (19) The subquery does not use LIMIT or the outer query does not 3294 ** have a WHERE clause. 3295 ** 3296 ** (20) If the sub-query is a compound select, then it must not use 3297 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3298 ** somewhat by saying that the terms of the ORDER BY clause must 3299 ** appear as unmodified result columns in the outer query. But we 3300 ** have other optimizations in mind to deal with that case. 3301 ** 3302 ** (21) The subquery does not use LIMIT or the outer query is not 3303 ** DISTINCT. (See ticket [752e1646fc]). 3304 ** 3305 ** (22) The subquery is not a recursive CTE. 3306 ** 3307 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3308 ** compound query. This restriction is because transforming the 3309 ** parent to a compound query confuses the code that handles 3310 ** recursive queries in multiSelect(). 3311 ** 3312 ** (24) The subquery is not an aggregate that uses the built-in min() or 3313 ** or max() functions. (Without this restriction, a query like: 3314 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3315 ** return the value X for which Y was maximal.) 3316 ** 3317 ** 3318 ** In this routine, the "p" parameter is a pointer to the outer query. 3319 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3320 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3321 ** 3322 ** If flattening is not attempted, this routine is a no-op and returns 0. 3323 ** If flattening is attempted this routine returns 1. 3324 ** 3325 ** All of the expression analysis must occur on both the outer query and 3326 ** the subquery before this routine runs. 3327 */ 3328 static int flattenSubquery( 3329 Parse *pParse, /* Parsing context */ 3330 Select *p, /* The parent or outer SELECT statement */ 3331 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3332 int isAgg, /* True if outer SELECT uses aggregate functions */ 3333 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3334 ){ 3335 const char *zSavedAuthContext = pParse->zAuthContext; 3336 Select *pParent; /* Current UNION ALL term of the other query */ 3337 Select *pSub; /* The inner query or "subquery" */ 3338 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3339 SrcList *pSrc; /* The FROM clause of the outer query */ 3340 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3341 ExprList *pList; /* The result set of the outer query */ 3342 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3343 int i; /* Loop counter */ 3344 Expr *pWhere; /* The WHERE clause */ 3345 struct SrcList_item *pSubitem; /* The subquery */ 3346 sqlite3 *db = pParse->db; 3347 3348 /* Check to see if flattening is permitted. Return 0 if not. 3349 */ 3350 assert( p!=0 ); 3351 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3352 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3353 pSrc = p->pSrc; 3354 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3355 pSubitem = &pSrc->a[iFrom]; 3356 iParent = pSubitem->iCursor; 3357 pSub = pSubitem->pSelect; 3358 assert( pSub!=0 ); 3359 if( subqueryIsAgg ){ 3360 if( isAgg ) return 0; /* Restriction (1) */ 3361 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3362 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3363 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3364 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3365 ){ 3366 return 0; /* Restriction (2b) */ 3367 } 3368 } 3369 3370 pSubSrc = pSub->pSrc; 3371 assert( pSubSrc ); 3372 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3373 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3374 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3375 ** became arbitrary expressions, we were forced to add restrictions (13) 3376 ** and (14). */ 3377 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3378 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3379 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3380 return 0; /* Restriction (15) */ 3381 } 3382 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3383 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3384 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3385 return 0; /* Restrictions (8)(9) */ 3386 } 3387 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3388 return 0; /* Restriction (6) */ 3389 } 3390 if( p->pOrderBy && pSub->pOrderBy ){ 3391 return 0; /* Restriction (11) */ 3392 } 3393 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3394 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3395 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3396 return 0; /* Restriction (21) */ 3397 } 3398 testcase( pSub->selFlags & SF_Recursive ); 3399 testcase( pSub->selFlags & SF_MinMaxAgg ); 3400 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3401 return 0; /* Restrictions (22) and (24) */ 3402 } 3403 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3404 return 0; /* Restriction (23) */ 3405 } 3406 3407 /* OBSOLETE COMMENT 1: 3408 ** Restriction 3: If the subquery is a join, make sure the subquery is 3409 ** not used as the right operand of an outer join. Examples of why this 3410 ** is not allowed: 3411 ** 3412 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3413 ** 3414 ** If we flatten the above, we would get 3415 ** 3416 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3417 ** 3418 ** which is not at all the same thing. 3419 ** 3420 ** OBSOLETE COMMENT 2: 3421 ** Restriction 12: If the subquery is the right operand of a left outer 3422 ** join, make sure the subquery has no WHERE clause. 3423 ** An examples of why this is not allowed: 3424 ** 3425 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3426 ** 3427 ** If we flatten the above, we would get 3428 ** 3429 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3430 ** 3431 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3432 ** effectively converts the OUTER JOIN into an INNER JOIN. 3433 ** 3434 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3435 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3436 ** is fraught with danger. Best to avoid the whole thing. If the 3437 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3438 */ 3439 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3440 return 0; 3441 } 3442 3443 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3444 ** use only the UNION ALL operator. And none of the simple select queries 3445 ** that make up the compound SELECT are allowed to be aggregate or distinct 3446 ** queries. 3447 */ 3448 if( pSub->pPrior ){ 3449 if( pSub->pOrderBy ){ 3450 return 0; /* Restriction 20 */ 3451 } 3452 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3453 return 0; 3454 } 3455 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3456 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3457 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3458 assert( pSub->pSrc!=0 ); 3459 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3460 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3461 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3462 || pSub1->pSrc->nSrc<1 3463 ){ 3464 return 0; 3465 } 3466 testcase( pSub1->pSrc->nSrc>1 ); 3467 } 3468 3469 /* Restriction 18. */ 3470 if( p->pOrderBy ){ 3471 int ii; 3472 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3473 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3474 } 3475 } 3476 } 3477 3478 /***** If we reach this point, flattening is permitted. *****/ 3479 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3480 pSub->zSelName, pSub, iFrom)); 3481 3482 /* Authorize the subquery */ 3483 pParse->zAuthContext = pSubitem->zName; 3484 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3485 testcase( i==SQLITE_DENY ); 3486 pParse->zAuthContext = zSavedAuthContext; 3487 3488 /* If the sub-query is a compound SELECT statement, then (by restrictions 3489 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3490 ** be of the form: 3491 ** 3492 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3493 ** 3494 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3495 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3496 ** OFFSET clauses and joins them to the left-hand-side of the original 3497 ** using UNION ALL operators. In this case N is the number of simple 3498 ** select statements in the compound sub-query. 3499 ** 3500 ** Example: 3501 ** 3502 ** SELECT a+1 FROM ( 3503 ** SELECT x FROM tab 3504 ** UNION ALL 3505 ** SELECT y FROM tab 3506 ** UNION ALL 3507 ** SELECT abs(z*2) FROM tab2 3508 ** ) WHERE a!=5 ORDER BY 1 3509 ** 3510 ** Transformed into: 3511 ** 3512 ** SELECT x+1 FROM tab WHERE x+1!=5 3513 ** UNION ALL 3514 ** SELECT y+1 FROM tab WHERE y+1!=5 3515 ** UNION ALL 3516 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3517 ** ORDER BY 1 3518 ** 3519 ** We call this the "compound-subquery flattening". 3520 */ 3521 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3522 Select *pNew; 3523 ExprList *pOrderBy = p->pOrderBy; 3524 Expr *pLimit = p->pLimit; 3525 Expr *pOffset = p->pOffset; 3526 Select *pPrior = p->pPrior; 3527 p->pOrderBy = 0; 3528 p->pSrc = 0; 3529 p->pPrior = 0; 3530 p->pLimit = 0; 3531 p->pOffset = 0; 3532 pNew = sqlite3SelectDup(db, p, 0); 3533 sqlite3SelectSetName(pNew, pSub->zSelName); 3534 p->pOffset = pOffset; 3535 p->pLimit = pLimit; 3536 p->pOrderBy = pOrderBy; 3537 p->pSrc = pSrc; 3538 p->op = TK_ALL; 3539 if( pNew==0 ){ 3540 p->pPrior = pPrior; 3541 }else{ 3542 pNew->pPrior = pPrior; 3543 if( pPrior ) pPrior->pNext = pNew; 3544 pNew->pNext = p; 3545 p->pPrior = pNew; 3546 SELECTTRACE(2,pParse,p, 3547 ("compound-subquery flattener creates %s.%p as peer\n", 3548 pNew->zSelName, pNew)); 3549 } 3550 if( db->mallocFailed ) return 1; 3551 } 3552 3553 /* Begin flattening the iFrom-th entry of the FROM clause 3554 ** in the outer query. 3555 */ 3556 pSub = pSub1 = pSubitem->pSelect; 3557 3558 /* Delete the transient table structure associated with the 3559 ** subquery 3560 */ 3561 sqlite3DbFree(db, pSubitem->zDatabase); 3562 sqlite3DbFree(db, pSubitem->zName); 3563 sqlite3DbFree(db, pSubitem->zAlias); 3564 pSubitem->zDatabase = 0; 3565 pSubitem->zName = 0; 3566 pSubitem->zAlias = 0; 3567 pSubitem->pSelect = 0; 3568 3569 /* Defer deleting the Table object associated with the 3570 ** subquery until code generation is 3571 ** complete, since there may still exist Expr.pTab entries that 3572 ** refer to the subquery even after flattening. Ticket #3346. 3573 ** 3574 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3575 */ 3576 if( ALWAYS(pSubitem->pTab!=0) ){ 3577 Table *pTabToDel = pSubitem->pTab; 3578 if( pTabToDel->nRef==1 ){ 3579 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3580 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3581 pToplevel->pZombieTab = pTabToDel; 3582 }else{ 3583 pTabToDel->nRef--; 3584 } 3585 pSubitem->pTab = 0; 3586 } 3587 3588 /* The following loop runs once for each term in a compound-subquery 3589 ** flattening (as described above). If we are doing a different kind 3590 ** of flattening - a flattening other than a compound-subquery flattening - 3591 ** then this loop only runs once. 3592 ** 3593 ** This loop moves all of the FROM elements of the subquery into the 3594 ** the FROM clause of the outer query. Before doing this, remember 3595 ** the cursor number for the original outer query FROM element in 3596 ** iParent. The iParent cursor will never be used. Subsequent code 3597 ** will scan expressions looking for iParent references and replace 3598 ** those references with expressions that resolve to the subquery FROM 3599 ** elements we are now copying in. 3600 */ 3601 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3602 int nSubSrc; 3603 u8 jointype = 0; 3604 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3605 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3606 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3607 3608 if( pSrc ){ 3609 assert( pParent==p ); /* First time through the loop */ 3610 jointype = pSubitem->fg.jointype; 3611 }else{ 3612 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3613 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3614 if( pSrc==0 ){ 3615 assert( db->mallocFailed ); 3616 break; 3617 } 3618 } 3619 3620 /* The subquery uses a single slot of the FROM clause of the outer 3621 ** query. If the subquery has more than one element in its FROM clause, 3622 ** then expand the outer query to make space for it to hold all elements 3623 ** of the subquery. 3624 ** 3625 ** Example: 3626 ** 3627 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3628 ** 3629 ** The outer query has 3 slots in its FROM clause. One slot of the 3630 ** outer query (the middle slot) is used by the subquery. The next 3631 ** block of code will expand the outer query FROM clause to 4 slots. 3632 ** The middle slot is expanded to two slots in order to make space 3633 ** for the two elements in the FROM clause of the subquery. 3634 */ 3635 if( nSubSrc>1 ){ 3636 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3637 if( db->mallocFailed ){ 3638 break; 3639 } 3640 } 3641 3642 /* Transfer the FROM clause terms from the subquery into the 3643 ** outer query. 3644 */ 3645 for(i=0; i<nSubSrc; i++){ 3646 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3647 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3648 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3649 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3650 } 3651 pSrc->a[iFrom].fg.jointype = jointype; 3652 3653 /* Now begin substituting subquery result set expressions for 3654 ** references to the iParent in the outer query. 3655 ** 3656 ** Example: 3657 ** 3658 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3659 ** \ \_____________ subquery __________/ / 3660 ** \_____________________ outer query ______________________________/ 3661 ** 3662 ** We look at every expression in the outer query and every place we see 3663 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3664 */ 3665 pList = pParent->pEList; 3666 for(i=0; i<pList->nExpr; i++){ 3667 if( pList->a[i].zName==0 ){ 3668 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3669 sqlite3Dequote(zName); 3670 pList->a[i].zName = zName; 3671 } 3672 } 3673 if( pSub->pOrderBy ){ 3674 /* At this point, any non-zero iOrderByCol values indicate that the 3675 ** ORDER BY column expression is identical to the iOrderByCol'th 3676 ** expression returned by SELECT statement pSub. Since these values 3677 ** do not necessarily correspond to columns in SELECT statement pParent, 3678 ** zero them before transfering the ORDER BY clause. 3679 ** 3680 ** Not doing this may cause an error if a subsequent call to this 3681 ** function attempts to flatten a compound sub-query into pParent 3682 ** (the only way this can happen is if the compound sub-query is 3683 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3684 ExprList *pOrderBy = pSub->pOrderBy; 3685 for(i=0; i<pOrderBy->nExpr; i++){ 3686 pOrderBy->a[i].u.x.iOrderByCol = 0; 3687 } 3688 assert( pParent->pOrderBy==0 ); 3689 assert( pSub->pPrior==0 ); 3690 pParent->pOrderBy = pOrderBy; 3691 pSub->pOrderBy = 0; 3692 } 3693 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3694 if( subqueryIsAgg ){ 3695 assert( pParent->pHaving==0 ); 3696 pParent->pHaving = pParent->pWhere; 3697 pParent->pWhere = pWhere; 3698 pParent->pHaving = sqlite3ExprAnd(db, 3699 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving 3700 ); 3701 assert( pParent->pGroupBy==0 ); 3702 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3703 }else{ 3704 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3705 } 3706 substSelect(db, pParent, iParent, pSub->pEList, 0); 3707 3708 /* The flattened query is distinct if either the inner or the 3709 ** outer query is distinct. 3710 */ 3711 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3712 3713 /* 3714 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3715 ** 3716 ** One is tempted to try to add a and b to combine the limits. But this 3717 ** does not work if either limit is negative. 3718 */ 3719 if( pSub->pLimit ){ 3720 pParent->pLimit = pSub->pLimit; 3721 pSub->pLimit = 0; 3722 } 3723 } 3724 3725 /* Finially, delete what is left of the subquery and return 3726 ** success. 3727 */ 3728 sqlite3SelectDelete(db, pSub1); 3729 3730 #if SELECTTRACE_ENABLED 3731 if( sqlite3SelectTrace & 0x100 ){ 3732 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3733 sqlite3TreeViewSelect(0, p, 0); 3734 } 3735 #endif 3736 3737 return 1; 3738 } 3739 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3740 3741 3742 3743 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3744 /* 3745 ** Make copies of relevant WHERE clause terms of the outer query into 3746 ** the WHERE clause of subquery. Example: 3747 ** 3748 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3749 ** 3750 ** Transformed into: 3751 ** 3752 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3753 ** WHERE x=5 AND y=10; 3754 ** 3755 ** The hope is that the terms added to the inner query will make it more 3756 ** efficient. 3757 ** 3758 ** Do not attempt this optimization if: 3759 ** 3760 ** (1) The inner query is an aggregate. (In that case, we'd really want 3761 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3762 ** inner query. But they probably won't help there so do not bother.) 3763 ** 3764 ** (2) The inner query is the recursive part of a common table expression. 3765 ** 3766 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3767 ** close would change the meaning of the LIMIT). 3768 ** 3769 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3770 ** enforces this restriction since this routine does not have enough 3771 ** information to know.) 3772 ** 3773 ** (5) The WHERE clause expression originates in the ON or USING clause 3774 ** of a LEFT JOIN. 3775 ** 3776 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3777 ** terms are duplicated into the subquery. 3778 */ 3779 static int pushDownWhereTerms( 3780 sqlite3 *db, /* The database connection (for malloc()) */ 3781 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3782 Expr *pWhere, /* The WHERE clause of the outer query */ 3783 int iCursor /* Cursor number of the subquery */ 3784 ){ 3785 Expr *pNew; 3786 int nChng = 0; 3787 Select *pX; /* For looping over compound SELECTs in pSubq */ 3788 if( pWhere==0 ) return 0; 3789 for(pX=pSubq; pX; pX=pX->pPrior){ 3790 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3791 testcase( pX->selFlags & SF_Aggregate ); 3792 testcase( pX->selFlags & SF_Recursive ); 3793 testcase( pX!=pSubq ); 3794 return 0; /* restrictions (1) and (2) */ 3795 } 3796 } 3797 if( pSubq->pLimit!=0 ){ 3798 return 0; /* restriction (3) */ 3799 } 3800 while( pWhere->op==TK_AND ){ 3801 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3802 pWhere = pWhere->pLeft; 3803 } 3804 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3805 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3806 nChng++; 3807 while( pSubq ){ 3808 pNew = sqlite3ExprDup(db, pWhere, 0); 3809 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3810 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3811 pSubq = pSubq->pPrior; 3812 } 3813 } 3814 return nChng; 3815 } 3816 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3817 3818 /* 3819 ** Based on the contents of the AggInfo structure indicated by the first 3820 ** argument, this function checks if the following are true: 3821 ** 3822 ** * the query contains just a single aggregate function, 3823 ** * the aggregate function is either min() or max(), and 3824 ** * the argument to the aggregate function is a column value. 3825 ** 3826 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3827 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3828 ** list of arguments passed to the aggregate before returning. 3829 ** 3830 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3831 ** WHERE_ORDERBY_NORMAL is returned. 3832 */ 3833 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3834 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3835 3836 *ppMinMax = 0; 3837 if( pAggInfo->nFunc==1 ){ 3838 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3839 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3840 3841 assert( pExpr->op==TK_AGG_FUNCTION ); 3842 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3843 const char *zFunc = pExpr->u.zToken; 3844 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3845 eRet = WHERE_ORDERBY_MIN; 3846 *ppMinMax = pEList; 3847 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3848 eRet = WHERE_ORDERBY_MAX; 3849 *ppMinMax = pEList; 3850 } 3851 } 3852 } 3853 3854 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3855 return eRet; 3856 } 3857 3858 /* 3859 ** The select statement passed as the first argument is an aggregate query. 3860 ** The second argument is the associated aggregate-info object. This 3861 ** function tests if the SELECT is of the form: 3862 ** 3863 ** SELECT count(*) FROM <tbl> 3864 ** 3865 ** where table is a database table, not a sub-select or view. If the query 3866 ** does match this pattern, then a pointer to the Table object representing 3867 ** <tbl> is returned. Otherwise, 0 is returned. 3868 */ 3869 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3870 Table *pTab; 3871 Expr *pExpr; 3872 3873 assert( !p->pGroupBy ); 3874 3875 if( p->pWhere || p->pEList->nExpr!=1 3876 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3877 ){ 3878 return 0; 3879 } 3880 pTab = p->pSrc->a[0].pTab; 3881 pExpr = p->pEList->a[0].pExpr; 3882 assert( pTab && !pTab->pSelect && pExpr ); 3883 3884 if( IsVirtual(pTab) ) return 0; 3885 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3886 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3887 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3888 if( pExpr->flags&EP_Distinct ) return 0; 3889 3890 return pTab; 3891 } 3892 3893 /* 3894 ** If the source-list item passed as an argument was augmented with an 3895 ** INDEXED BY clause, then try to locate the specified index. If there 3896 ** was such a clause and the named index cannot be found, return 3897 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3898 ** pFrom->pIndex and return SQLITE_OK. 3899 */ 3900 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3901 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3902 Table *pTab = pFrom->pTab; 3903 char *zIndexedBy = pFrom->u1.zIndexedBy; 3904 Index *pIdx; 3905 for(pIdx=pTab->pIndex; 3906 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3907 pIdx=pIdx->pNext 3908 ); 3909 if( !pIdx ){ 3910 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3911 pParse->checkSchema = 1; 3912 return SQLITE_ERROR; 3913 } 3914 pFrom->pIBIndex = pIdx; 3915 } 3916 return SQLITE_OK; 3917 } 3918 /* 3919 ** Detect compound SELECT statements that use an ORDER BY clause with 3920 ** an alternative collating sequence. 3921 ** 3922 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3923 ** 3924 ** These are rewritten as a subquery: 3925 ** 3926 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3927 ** ORDER BY ... COLLATE ... 3928 ** 3929 ** This transformation is necessary because the multiSelectOrderBy() routine 3930 ** above that generates the code for a compound SELECT with an ORDER BY clause 3931 ** uses a merge algorithm that requires the same collating sequence on the 3932 ** result columns as on the ORDER BY clause. See ticket 3933 ** http://www.sqlite.org/src/info/6709574d2a 3934 ** 3935 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3936 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3937 ** there are COLLATE terms in the ORDER BY. 3938 */ 3939 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3940 int i; 3941 Select *pNew; 3942 Select *pX; 3943 sqlite3 *db; 3944 struct ExprList_item *a; 3945 SrcList *pNewSrc; 3946 Parse *pParse; 3947 Token dummy; 3948 3949 if( p->pPrior==0 ) return WRC_Continue; 3950 if( p->pOrderBy==0 ) return WRC_Continue; 3951 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3952 if( pX==0 ) return WRC_Continue; 3953 a = p->pOrderBy->a; 3954 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3955 if( a[i].pExpr->flags & EP_Collate ) break; 3956 } 3957 if( i<0 ) return WRC_Continue; 3958 3959 /* If we reach this point, that means the transformation is required. */ 3960 3961 pParse = pWalker->pParse; 3962 db = pParse->db; 3963 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3964 if( pNew==0 ) return WRC_Abort; 3965 memset(&dummy, 0, sizeof(dummy)); 3966 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3967 if( pNewSrc==0 ) return WRC_Abort; 3968 *pNew = *p; 3969 p->pSrc = pNewSrc; 3970 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 3971 p->op = TK_SELECT; 3972 p->pWhere = 0; 3973 pNew->pGroupBy = 0; 3974 pNew->pHaving = 0; 3975 pNew->pOrderBy = 0; 3976 p->pPrior = 0; 3977 p->pNext = 0; 3978 p->pWith = 0; 3979 p->selFlags &= ~SF_Compound; 3980 assert( (p->selFlags & SF_Converted)==0 ); 3981 p->selFlags |= SF_Converted; 3982 assert( pNew->pPrior!=0 ); 3983 pNew->pPrior->pNext = pNew; 3984 pNew->pLimit = 0; 3985 pNew->pOffset = 0; 3986 return WRC_Continue; 3987 } 3988 3989 /* 3990 ** Check to see if the FROM clause term pFrom has table-valued function 3991 ** arguments. If it does, leave an error message in pParse and return 3992 ** non-zero, since pFrom is not allowed to be a table-valued function. 3993 */ 3994 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 3995 if( pFrom->fg.isTabFunc ){ 3996 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 3997 return 1; 3998 } 3999 return 0; 4000 } 4001 4002 #ifndef SQLITE_OMIT_CTE 4003 /* 4004 ** Argument pWith (which may be NULL) points to a linked list of nested 4005 ** WITH contexts, from inner to outermost. If the table identified by 4006 ** FROM clause element pItem is really a common-table-expression (CTE) 4007 ** then return a pointer to the CTE definition for that table. Otherwise 4008 ** return NULL. 4009 ** 4010 ** If a non-NULL value is returned, set *ppContext to point to the With 4011 ** object that the returned CTE belongs to. 4012 */ 4013 static struct Cte *searchWith( 4014 With *pWith, /* Current innermost WITH clause */ 4015 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4016 With **ppContext /* OUT: WITH clause return value belongs to */ 4017 ){ 4018 const char *zName; 4019 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4020 With *p; 4021 for(p=pWith; p; p=p->pOuter){ 4022 int i; 4023 for(i=0; i<p->nCte; i++){ 4024 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4025 *ppContext = p; 4026 return &p->a[i]; 4027 } 4028 } 4029 } 4030 } 4031 return 0; 4032 } 4033 4034 /* The code generator maintains a stack of active WITH clauses 4035 ** with the inner-most WITH clause being at the top of the stack. 4036 ** 4037 ** This routine pushes the WITH clause passed as the second argument 4038 ** onto the top of the stack. If argument bFree is true, then this 4039 ** WITH clause will never be popped from the stack. In this case it 4040 ** should be freed along with the Parse object. In other cases, when 4041 ** bFree==0, the With object will be freed along with the SELECT 4042 ** statement with which it is associated. 4043 */ 4044 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4045 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4046 if( pWith ){ 4047 assert( pParse->pWith!=pWith ); 4048 pWith->pOuter = pParse->pWith; 4049 pParse->pWith = pWith; 4050 if( bFree ) pParse->pWithToFree = pWith; 4051 } 4052 } 4053 4054 /* 4055 ** This function checks if argument pFrom refers to a CTE declared by 4056 ** a WITH clause on the stack currently maintained by the parser. And, 4057 ** if currently processing a CTE expression, if it is a recursive 4058 ** reference to the current CTE. 4059 ** 4060 ** If pFrom falls into either of the two categories above, pFrom->pTab 4061 ** and other fields are populated accordingly. The caller should check 4062 ** (pFrom->pTab!=0) to determine whether or not a successful match 4063 ** was found. 4064 ** 4065 ** Whether or not a match is found, SQLITE_OK is returned if no error 4066 ** occurs. If an error does occur, an error message is stored in the 4067 ** parser and some error code other than SQLITE_OK returned. 4068 */ 4069 static int withExpand( 4070 Walker *pWalker, 4071 struct SrcList_item *pFrom 4072 ){ 4073 Parse *pParse = pWalker->pParse; 4074 sqlite3 *db = pParse->db; 4075 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4076 With *pWith; /* WITH clause that pCte belongs to */ 4077 4078 assert( pFrom->pTab==0 ); 4079 4080 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4081 if( pCte ){ 4082 Table *pTab; 4083 ExprList *pEList; 4084 Select *pSel; 4085 Select *pLeft; /* Left-most SELECT statement */ 4086 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4087 With *pSavedWith; /* Initial value of pParse->pWith */ 4088 4089 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4090 ** recursive reference to CTE pCte. Leave an error in pParse and return 4091 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4092 ** In this case, proceed. */ 4093 if( pCte->zCteErr ){ 4094 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4095 return SQLITE_ERROR; 4096 } 4097 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4098 4099 assert( pFrom->pTab==0 ); 4100 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4101 if( pTab==0 ) return WRC_Abort; 4102 pTab->nRef = 1; 4103 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4104 pTab->iPKey = -1; 4105 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4106 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4107 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4108 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4109 assert( pFrom->pSelect ); 4110 4111 /* Check if this is a recursive CTE. */ 4112 pSel = pFrom->pSelect; 4113 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4114 if( bMayRecursive ){ 4115 int i; 4116 SrcList *pSrc = pFrom->pSelect->pSrc; 4117 for(i=0; i<pSrc->nSrc; i++){ 4118 struct SrcList_item *pItem = &pSrc->a[i]; 4119 if( pItem->zDatabase==0 4120 && pItem->zName!=0 4121 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4122 ){ 4123 pItem->pTab = pTab; 4124 pItem->fg.isRecursive = 1; 4125 pTab->nRef++; 4126 pSel->selFlags |= SF_Recursive; 4127 } 4128 } 4129 } 4130 4131 /* Only one recursive reference is permitted. */ 4132 if( pTab->nRef>2 ){ 4133 sqlite3ErrorMsg( 4134 pParse, "multiple references to recursive table: %s", pCte->zName 4135 ); 4136 return SQLITE_ERROR; 4137 } 4138 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4139 4140 pCte->zCteErr = "circular reference: %s"; 4141 pSavedWith = pParse->pWith; 4142 pParse->pWith = pWith; 4143 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4144 pParse->pWith = pWith; 4145 4146 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4147 pEList = pLeft->pEList; 4148 if( pCte->pCols ){ 4149 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4150 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4151 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4152 ); 4153 pParse->pWith = pSavedWith; 4154 return SQLITE_ERROR; 4155 } 4156 pEList = pCte->pCols; 4157 } 4158 4159 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4160 if( bMayRecursive ){ 4161 if( pSel->selFlags & SF_Recursive ){ 4162 pCte->zCteErr = "multiple recursive references: %s"; 4163 }else{ 4164 pCte->zCteErr = "recursive reference in a subquery: %s"; 4165 } 4166 sqlite3WalkSelect(pWalker, pSel); 4167 } 4168 pCte->zCteErr = 0; 4169 pParse->pWith = pSavedWith; 4170 } 4171 4172 return SQLITE_OK; 4173 } 4174 #endif 4175 4176 #ifndef SQLITE_OMIT_CTE 4177 /* 4178 ** If the SELECT passed as the second argument has an associated WITH 4179 ** clause, pop it from the stack stored as part of the Parse object. 4180 ** 4181 ** This function is used as the xSelectCallback2() callback by 4182 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4183 ** names and other FROM clause elements. 4184 */ 4185 static void selectPopWith(Walker *pWalker, Select *p){ 4186 Parse *pParse = pWalker->pParse; 4187 With *pWith = findRightmost(p)->pWith; 4188 if( pWith!=0 ){ 4189 assert( pParse->pWith==pWith ); 4190 pParse->pWith = pWith->pOuter; 4191 } 4192 } 4193 #else 4194 #define selectPopWith 0 4195 #endif 4196 4197 /* 4198 ** This routine is a Walker callback for "expanding" a SELECT statement. 4199 ** "Expanding" means to do the following: 4200 ** 4201 ** (1) Make sure VDBE cursor numbers have been assigned to every 4202 ** element of the FROM clause. 4203 ** 4204 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4205 ** defines FROM clause. When views appear in the FROM clause, 4206 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4207 ** that implements the view. A copy is made of the view's SELECT 4208 ** statement so that we can freely modify or delete that statement 4209 ** without worrying about messing up the persistent representation 4210 ** of the view. 4211 ** 4212 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4213 ** on joins and the ON and USING clause of joins. 4214 ** 4215 ** (4) Scan the list of columns in the result set (pEList) looking 4216 ** for instances of the "*" operator or the TABLE.* operator. 4217 ** If found, expand each "*" to be every column in every table 4218 ** and TABLE.* to be every column in TABLE. 4219 ** 4220 */ 4221 static int selectExpander(Walker *pWalker, Select *p){ 4222 Parse *pParse = pWalker->pParse; 4223 int i, j, k; 4224 SrcList *pTabList; 4225 ExprList *pEList; 4226 struct SrcList_item *pFrom; 4227 sqlite3 *db = pParse->db; 4228 Expr *pE, *pRight, *pExpr; 4229 u16 selFlags = p->selFlags; 4230 4231 p->selFlags |= SF_Expanded; 4232 if( db->mallocFailed ){ 4233 return WRC_Abort; 4234 } 4235 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4236 return WRC_Prune; 4237 } 4238 pTabList = p->pSrc; 4239 pEList = p->pEList; 4240 if( pWalker->xSelectCallback2==selectPopWith ){ 4241 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4242 } 4243 4244 /* Make sure cursor numbers have been assigned to all entries in 4245 ** the FROM clause of the SELECT statement. 4246 */ 4247 sqlite3SrcListAssignCursors(pParse, pTabList); 4248 4249 /* Look up every table named in the FROM clause of the select. If 4250 ** an entry of the FROM clause is a subquery instead of a table or view, 4251 ** then create a transient table structure to describe the subquery. 4252 */ 4253 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4254 Table *pTab; 4255 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4256 if( pFrom->fg.isRecursive ) continue; 4257 assert( pFrom->pTab==0 ); 4258 #ifndef SQLITE_OMIT_CTE 4259 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4260 if( pFrom->pTab ) {} else 4261 #endif 4262 if( pFrom->zName==0 ){ 4263 #ifndef SQLITE_OMIT_SUBQUERY 4264 Select *pSel = pFrom->pSelect; 4265 /* A sub-query in the FROM clause of a SELECT */ 4266 assert( pSel!=0 ); 4267 assert( pFrom->pTab==0 ); 4268 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4269 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4270 if( pTab==0 ) return WRC_Abort; 4271 pTab->nRef = 1; 4272 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4273 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4274 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4275 pTab->iPKey = -1; 4276 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4277 pTab->tabFlags |= TF_Ephemeral; 4278 #endif 4279 }else{ 4280 /* An ordinary table or view name in the FROM clause */ 4281 assert( pFrom->pTab==0 ); 4282 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4283 if( pTab==0 ) return WRC_Abort; 4284 if( pTab->nRef==0xffff ){ 4285 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4286 pTab->zName); 4287 pFrom->pTab = 0; 4288 return WRC_Abort; 4289 } 4290 pTab->nRef++; 4291 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4292 return WRC_Abort; 4293 } 4294 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4295 if( IsVirtual(pTab) || pTab->pSelect ){ 4296 i16 nCol; 4297 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4298 assert( pFrom->pSelect==0 ); 4299 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4300 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4301 nCol = pTab->nCol; 4302 pTab->nCol = -1; 4303 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4304 pTab->nCol = nCol; 4305 } 4306 #endif 4307 } 4308 4309 /* Locate the index named by the INDEXED BY clause, if any. */ 4310 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4311 return WRC_Abort; 4312 } 4313 } 4314 4315 /* Process NATURAL keywords, and ON and USING clauses of joins. 4316 */ 4317 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4318 return WRC_Abort; 4319 } 4320 4321 /* For every "*" that occurs in the column list, insert the names of 4322 ** all columns in all tables. And for every TABLE.* insert the names 4323 ** of all columns in TABLE. The parser inserted a special expression 4324 ** with the TK_ASTERISK operator for each "*" that it found in the column 4325 ** list. The following code just has to locate the TK_ASTERISK 4326 ** expressions and expand each one to the list of all columns in 4327 ** all tables. 4328 ** 4329 ** The first loop just checks to see if there are any "*" operators 4330 ** that need expanding. 4331 */ 4332 for(k=0; k<pEList->nExpr; k++){ 4333 pE = pEList->a[k].pExpr; 4334 if( pE->op==TK_ASTERISK ) break; 4335 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4336 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4337 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4338 } 4339 if( k<pEList->nExpr ){ 4340 /* 4341 ** If we get here it means the result set contains one or more "*" 4342 ** operators that need to be expanded. Loop through each expression 4343 ** in the result set and expand them one by one. 4344 */ 4345 struct ExprList_item *a = pEList->a; 4346 ExprList *pNew = 0; 4347 int flags = pParse->db->flags; 4348 int longNames = (flags & SQLITE_FullColNames)!=0 4349 && (flags & SQLITE_ShortColNames)==0; 4350 4351 for(k=0; k<pEList->nExpr; k++){ 4352 pE = a[k].pExpr; 4353 pRight = pE->pRight; 4354 assert( pE->op!=TK_DOT || pRight!=0 ); 4355 if( pE->op!=TK_ASTERISK 4356 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4357 ){ 4358 /* This particular expression does not need to be expanded. 4359 */ 4360 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4361 if( pNew ){ 4362 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4363 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4364 a[k].zName = 0; 4365 a[k].zSpan = 0; 4366 } 4367 a[k].pExpr = 0; 4368 }else{ 4369 /* This expression is a "*" or a "TABLE.*" and needs to be 4370 ** expanded. */ 4371 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4372 char *zTName = 0; /* text of name of TABLE */ 4373 if( pE->op==TK_DOT ){ 4374 assert( pE->pLeft!=0 ); 4375 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4376 zTName = pE->pLeft->u.zToken; 4377 } 4378 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4379 Table *pTab = pFrom->pTab; 4380 Select *pSub = pFrom->pSelect; 4381 char *zTabName = pFrom->zAlias; 4382 const char *zSchemaName = 0; 4383 int iDb; 4384 if( zTabName==0 ){ 4385 zTabName = pTab->zName; 4386 } 4387 if( db->mallocFailed ) break; 4388 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4389 pSub = 0; 4390 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4391 continue; 4392 } 4393 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4394 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4395 } 4396 for(j=0; j<pTab->nCol; j++){ 4397 char *zName = pTab->aCol[j].zName; 4398 char *zColname; /* The computed column name */ 4399 char *zToFree; /* Malloced string that needs to be freed */ 4400 Token sColname; /* Computed column name as a token */ 4401 4402 assert( zName ); 4403 if( zTName && pSub 4404 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4405 ){ 4406 continue; 4407 } 4408 4409 /* If a column is marked as 'hidden', omit it from the expanded 4410 ** result-set list unless the SELECT has the SF_IncludeHidden 4411 ** bit set. 4412 */ 4413 if( (p->selFlags & SF_IncludeHidden)==0 4414 && IsHiddenColumn(&pTab->aCol[j]) 4415 ){ 4416 continue; 4417 } 4418 tableSeen = 1; 4419 4420 if( i>0 && zTName==0 ){ 4421 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4422 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4423 ){ 4424 /* In a NATURAL join, omit the join columns from the 4425 ** table to the right of the join */ 4426 continue; 4427 } 4428 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4429 /* In a join with a USING clause, omit columns in the 4430 ** using clause from the table on the right. */ 4431 continue; 4432 } 4433 } 4434 pRight = sqlite3Expr(db, TK_ID, zName); 4435 zColname = zName; 4436 zToFree = 0; 4437 if( longNames || pTabList->nSrc>1 ){ 4438 Expr *pLeft; 4439 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4440 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4441 if( zSchemaName ){ 4442 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4443 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4444 } 4445 if( longNames ){ 4446 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4447 zToFree = zColname; 4448 } 4449 }else{ 4450 pExpr = pRight; 4451 } 4452 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4453 sqlite3TokenInit(&sColname, zColname); 4454 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4455 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4456 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4457 if( pSub ){ 4458 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4459 testcase( pX->zSpan==0 ); 4460 }else{ 4461 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4462 zSchemaName, zTabName, zColname); 4463 testcase( pX->zSpan==0 ); 4464 } 4465 pX->bSpanIsTab = 1; 4466 } 4467 sqlite3DbFree(db, zToFree); 4468 } 4469 } 4470 if( !tableSeen ){ 4471 if( zTName ){ 4472 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4473 }else{ 4474 sqlite3ErrorMsg(pParse, "no tables specified"); 4475 } 4476 } 4477 } 4478 } 4479 sqlite3ExprListDelete(db, pEList); 4480 p->pEList = pNew; 4481 } 4482 #if SQLITE_MAX_COLUMN 4483 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4484 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4485 return WRC_Abort; 4486 } 4487 #endif 4488 return WRC_Continue; 4489 } 4490 4491 /* 4492 ** No-op routine for the parse-tree walker. 4493 ** 4494 ** When this routine is the Walker.xExprCallback then expression trees 4495 ** are walked without any actions being taken at each node. Presumably, 4496 ** when this routine is used for Walker.xExprCallback then 4497 ** Walker.xSelectCallback is set to do something useful for every 4498 ** subquery in the parser tree. 4499 */ 4500 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4501 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4502 return WRC_Continue; 4503 } 4504 4505 /* 4506 ** This routine "expands" a SELECT statement and all of its subqueries. 4507 ** For additional information on what it means to "expand" a SELECT 4508 ** statement, see the comment on the selectExpand worker callback above. 4509 ** 4510 ** Expanding a SELECT statement is the first step in processing a 4511 ** SELECT statement. The SELECT statement must be expanded before 4512 ** name resolution is performed. 4513 ** 4514 ** If anything goes wrong, an error message is written into pParse. 4515 ** The calling function can detect the problem by looking at pParse->nErr 4516 ** and/or pParse->db->mallocFailed. 4517 */ 4518 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4519 Walker w; 4520 memset(&w, 0, sizeof(w)); 4521 w.xExprCallback = sqlite3ExprWalkNoop; 4522 w.pParse = pParse; 4523 if( pParse->hasCompound ){ 4524 w.xSelectCallback = convertCompoundSelectToSubquery; 4525 sqlite3WalkSelect(&w, pSelect); 4526 } 4527 w.xSelectCallback = selectExpander; 4528 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4529 w.xSelectCallback2 = selectPopWith; 4530 } 4531 sqlite3WalkSelect(&w, pSelect); 4532 } 4533 4534 4535 #ifndef SQLITE_OMIT_SUBQUERY 4536 /* 4537 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4538 ** interface. 4539 ** 4540 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4541 ** information to the Table structure that represents the result set 4542 ** of that subquery. 4543 ** 4544 ** The Table structure that represents the result set was constructed 4545 ** by selectExpander() but the type and collation information was omitted 4546 ** at that point because identifiers had not yet been resolved. This 4547 ** routine is called after identifier resolution. 4548 */ 4549 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4550 Parse *pParse; 4551 int i; 4552 SrcList *pTabList; 4553 struct SrcList_item *pFrom; 4554 4555 assert( p->selFlags & SF_Resolved ); 4556 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4557 p->selFlags |= SF_HasTypeInfo; 4558 pParse = pWalker->pParse; 4559 pTabList = p->pSrc; 4560 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4561 Table *pTab = pFrom->pTab; 4562 assert( pTab!=0 ); 4563 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4564 /* A sub-query in the FROM clause of a SELECT */ 4565 Select *pSel = pFrom->pSelect; 4566 if( pSel ){ 4567 while( pSel->pPrior ) pSel = pSel->pPrior; 4568 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4569 } 4570 } 4571 } 4572 } 4573 #endif 4574 4575 4576 /* 4577 ** This routine adds datatype and collating sequence information to 4578 ** the Table structures of all FROM-clause subqueries in a 4579 ** SELECT statement. 4580 ** 4581 ** Use this routine after name resolution. 4582 */ 4583 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4584 #ifndef SQLITE_OMIT_SUBQUERY 4585 Walker w; 4586 memset(&w, 0, sizeof(w)); 4587 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4588 w.xExprCallback = sqlite3ExprWalkNoop; 4589 w.pParse = pParse; 4590 sqlite3WalkSelect(&w, pSelect); 4591 #endif 4592 } 4593 4594 4595 /* 4596 ** This routine sets up a SELECT statement for processing. The 4597 ** following is accomplished: 4598 ** 4599 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4600 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4601 ** * ON and USING clauses are shifted into WHERE statements 4602 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4603 ** * Identifiers in expression are matched to tables. 4604 ** 4605 ** This routine acts recursively on all subqueries within the SELECT. 4606 */ 4607 void sqlite3SelectPrep( 4608 Parse *pParse, /* The parser context */ 4609 Select *p, /* The SELECT statement being coded. */ 4610 NameContext *pOuterNC /* Name context for container */ 4611 ){ 4612 sqlite3 *db; 4613 if( NEVER(p==0) ) return; 4614 db = pParse->db; 4615 if( db->mallocFailed ) return; 4616 if( p->selFlags & SF_HasTypeInfo ) return; 4617 sqlite3SelectExpand(pParse, p); 4618 if( pParse->nErr || db->mallocFailed ) return; 4619 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4620 if( pParse->nErr || db->mallocFailed ) return; 4621 sqlite3SelectAddTypeInfo(pParse, p); 4622 } 4623 4624 /* 4625 ** Reset the aggregate accumulator. 4626 ** 4627 ** The aggregate accumulator is a set of memory cells that hold 4628 ** intermediate results while calculating an aggregate. This 4629 ** routine generates code that stores NULLs in all of those memory 4630 ** cells. 4631 */ 4632 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4633 Vdbe *v = pParse->pVdbe; 4634 int i; 4635 struct AggInfo_func *pFunc; 4636 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4637 if( nReg==0 ) return; 4638 #ifdef SQLITE_DEBUG 4639 /* Verify that all AggInfo registers are within the range specified by 4640 ** AggInfo.mnReg..AggInfo.mxReg */ 4641 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4642 for(i=0; i<pAggInfo->nColumn; i++){ 4643 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4644 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4645 } 4646 for(i=0; i<pAggInfo->nFunc; i++){ 4647 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4648 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4649 } 4650 #endif 4651 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4652 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4653 if( pFunc->iDistinct>=0 ){ 4654 Expr *pE = pFunc->pExpr; 4655 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4656 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4657 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4658 "argument"); 4659 pFunc->iDistinct = -1; 4660 }else{ 4661 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4662 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4663 (char*)pKeyInfo, P4_KEYINFO); 4664 } 4665 } 4666 } 4667 } 4668 4669 /* 4670 ** Invoke the OP_AggFinalize opcode for every aggregate function 4671 ** in the AggInfo structure. 4672 */ 4673 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4674 Vdbe *v = pParse->pVdbe; 4675 int i; 4676 struct AggInfo_func *pF; 4677 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4678 ExprList *pList = pF->pExpr->x.pList; 4679 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4680 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4681 (void*)pF->pFunc, P4_FUNCDEF); 4682 } 4683 } 4684 4685 /* 4686 ** Update the accumulator memory cells for an aggregate based on 4687 ** the current cursor position. 4688 */ 4689 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4690 Vdbe *v = pParse->pVdbe; 4691 int i; 4692 int regHit = 0; 4693 int addrHitTest = 0; 4694 struct AggInfo_func *pF; 4695 struct AggInfo_col *pC; 4696 4697 pAggInfo->directMode = 1; 4698 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4699 int nArg; 4700 int addrNext = 0; 4701 int regAgg; 4702 ExprList *pList = pF->pExpr->x.pList; 4703 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4704 if( pList ){ 4705 nArg = pList->nExpr; 4706 regAgg = sqlite3GetTempRange(pParse, nArg); 4707 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4708 }else{ 4709 nArg = 0; 4710 regAgg = 0; 4711 } 4712 if( pF->iDistinct>=0 ){ 4713 addrNext = sqlite3VdbeMakeLabel(v); 4714 testcase( nArg==0 ); /* Error condition */ 4715 testcase( nArg>1 ); /* Also an error */ 4716 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4717 } 4718 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4719 CollSeq *pColl = 0; 4720 struct ExprList_item *pItem; 4721 int j; 4722 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4723 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4724 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4725 } 4726 if( !pColl ){ 4727 pColl = pParse->db->pDfltColl; 4728 } 4729 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4730 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4731 } 4732 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4733 (void*)pF->pFunc, P4_FUNCDEF); 4734 sqlite3VdbeChangeP5(v, (u8)nArg); 4735 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4736 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4737 if( addrNext ){ 4738 sqlite3VdbeResolveLabel(v, addrNext); 4739 sqlite3ExprCacheClear(pParse); 4740 } 4741 } 4742 4743 /* Before populating the accumulator registers, clear the column cache. 4744 ** Otherwise, if any of the required column values are already present 4745 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4746 ** to pC->iMem. But by the time the value is used, the original register 4747 ** may have been used, invalidating the underlying buffer holding the 4748 ** text or blob value. See ticket [883034dcb5]. 4749 ** 4750 ** Another solution would be to change the OP_SCopy used to copy cached 4751 ** values to an OP_Copy. 4752 */ 4753 if( regHit ){ 4754 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4755 } 4756 sqlite3ExprCacheClear(pParse); 4757 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4758 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4759 } 4760 pAggInfo->directMode = 0; 4761 sqlite3ExprCacheClear(pParse); 4762 if( addrHitTest ){ 4763 sqlite3VdbeJumpHere(v, addrHitTest); 4764 } 4765 } 4766 4767 /* 4768 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4769 ** count(*) query ("SELECT count(*) FROM pTab"). 4770 */ 4771 #ifndef SQLITE_OMIT_EXPLAIN 4772 static void explainSimpleCount( 4773 Parse *pParse, /* Parse context */ 4774 Table *pTab, /* Table being queried */ 4775 Index *pIdx /* Index used to optimize scan, or NULL */ 4776 ){ 4777 if( pParse->explain==2 ){ 4778 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4779 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4780 pTab->zName, 4781 bCover ? " USING COVERING INDEX " : "", 4782 bCover ? pIdx->zName : "" 4783 ); 4784 sqlite3VdbeAddOp4( 4785 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4786 ); 4787 } 4788 } 4789 #else 4790 # define explainSimpleCount(a,b,c) 4791 #endif 4792 4793 /* 4794 ** Generate code for the SELECT statement given in the p argument. 4795 ** 4796 ** The results are returned according to the SelectDest structure. 4797 ** See comments in sqliteInt.h for further information. 4798 ** 4799 ** This routine returns the number of errors. If any errors are 4800 ** encountered, then an appropriate error message is left in 4801 ** pParse->zErrMsg. 4802 ** 4803 ** This routine does NOT free the Select structure passed in. The 4804 ** calling function needs to do that. 4805 */ 4806 int sqlite3Select( 4807 Parse *pParse, /* The parser context */ 4808 Select *p, /* The SELECT statement being coded. */ 4809 SelectDest *pDest /* What to do with the query results */ 4810 ){ 4811 int i, j; /* Loop counters */ 4812 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4813 Vdbe *v; /* The virtual machine under construction */ 4814 int isAgg; /* True for select lists like "count(*)" */ 4815 ExprList *pEList = 0; /* List of columns to extract. */ 4816 SrcList *pTabList; /* List of tables to select from */ 4817 Expr *pWhere; /* The WHERE clause. May be NULL */ 4818 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4819 Expr *pHaving; /* The HAVING clause. May be NULL */ 4820 int rc = 1; /* Value to return from this function */ 4821 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4822 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4823 AggInfo sAggInfo; /* Information used by aggregate queries */ 4824 int iEnd; /* Address of the end of the query */ 4825 sqlite3 *db; /* The database connection */ 4826 4827 #ifndef SQLITE_OMIT_EXPLAIN 4828 int iRestoreSelectId = pParse->iSelectId; 4829 pParse->iSelectId = pParse->iNextSelectId++; 4830 #endif 4831 4832 db = pParse->db; 4833 if( p==0 || db->mallocFailed || pParse->nErr ){ 4834 return 1; 4835 } 4836 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4837 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4838 #if SELECTTRACE_ENABLED 4839 pParse->nSelectIndent++; 4840 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4841 if( sqlite3SelectTrace & 0x100 ){ 4842 sqlite3TreeViewSelect(0, p, 0); 4843 } 4844 #endif 4845 4846 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4847 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4848 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4849 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4850 if( IgnorableOrderby(pDest) ){ 4851 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4852 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4853 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4854 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4855 /* If ORDER BY makes no difference in the output then neither does 4856 ** DISTINCT so it can be removed too. */ 4857 sqlite3ExprListDelete(db, p->pOrderBy); 4858 p->pOrderBy = 0; 4859 p->selFlags &= ~SF_Distinct; 4860 } 4861 sqlite3SelectPrep(pParse, p, 0); 4862 memset(&sSort, 0, sizeof(sSort)); 4863 sSort.pOrderBy = p->pOrderBy; 4864 pTabList = p->pSrc; 4865 if( pParse->nErr || db->mallocFailed ){ 4866 goto select_end; 4867 } 4868 assert( p->pEList!=0 ); 4869 isAgg = (p->selFlags & SF_Aggregate)!=0; 4870 #if SELECTTRACE_ENABLED 4871 if( sqlite3SelectTrace & 0x100 ){ 4872 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4873 sqlite3TreeViewSelect(0, p, 0); 4874 } 4875 #endif 4876 4877 /* Try to flatten subqueries in the FROM clause up into the main query 4878 */ 4879 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4880 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4881 struct SrcList_item *pItem = &pTabList->a[i]; 4882 Select *pSub = pItem->pSelect; 4883 int isAggSub; 4884 Table *pTab = pItem->pTab; 4885 if( pSub==0 ) continue; 4886 4887 /* Catch mismatch in the declared columns of a view and the number of 4888 ** columns in the SELECT on the RHS */ 4889 if( pTab->nCol!=pSub->pEList->nExpr ){ 4890 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4891 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4892 goto select_end; 4893 } 4894 4895 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4896 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4897 /* This subquery can be absorbed into its parent. */ 4898 if( isAggSub ){ 4899 isAgg = 1; 4900 p->selFlags |= SF_Aggregate; 4901 } 4902 i = -1; 4903 } 4904 pTabList = p->pSrc; 4905 if( db->mallocFailed ) goto select_end; 4906 if( !IgnorableOrderby(pDest) ){ 4907 sSort.pOrderBy = p->pOrderBy; 4908 } 4909 } 4910 #endif 4911 4912 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4913 ** does not already exist */ 4914 v = sqlite3GetVdbe(pParse); 4915 if( v==0 ) goto select_end; 4916 4917 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4918 /* Handle compound SELECT statements using the separate multiSelect() 4919 ** procedure. 4920 */ 4921 if( p->pPrior ){ 4922 rc = multiSelect(pParse, p, pDest); 4923 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4924 #if SELECTTRACE_ENABLED 4925 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4926 pParse->nSelectIndent--; 4927 #endif 4928 return rc; 4929 } 4930 #endif 4931 4932 /* Generate code for all sub-queries in the FROM clause 4933 */ 4934 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4935 for(i=0; i<pTabList->nSrc; i++){ 4936 struct SrcList_item *pItem = &pTabList->a[i]; 4937 SelectDest dest; 4938 Select *pSub = pItem->pSelect; 4939 if( pSub==0 ) continue; 4940 4941 /* Sometimes the code for a subquery will be generated more than 4942 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4943 ** for example. In that case, do not regenerate the code to manifest 4944 ** a view or the co-routine to implement a view. The first instance 4945 ** is sufficient, though the subroutine to manifest the view does need 4946 ** to be invoked again. */ 4947 if( pItem->addrFillSub ){ 4948 if( pItem->fg.viaCoroutine==0 ){ 4949 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4950 } 4951 continue; 4952 } 4953 4954 /* Increment Parse.nHeight by the height of the largest expression 4955 ** tree referred to by this, the parent select. The child select 4956 ** may contain expression trees of at most 4957 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4958 ** more conservative than necessary, but much easier than enforcing 4959 ** an exact limit. 4960 */ 4961 pParse->nHeight += sqlite3SelectExprHeight(p); 4962 4963 /* Make copies of constant WHERE-clause terms in the outer query down 4964 ** inside the subquery. This can help the subquery to run more efficiently. 4965 */ 4966 if( (pItem->fg.jointype & JT_OUTER)==0 4967 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4968 ){ 4969 #if SELECTTRACE_ENABLED 4970 if( sqlite3SelectTrace & 0x100 ){ 4971 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4972 sqlite3TreeViewSelect(0, p, 0); 4973 } 4974 #endif 4975 } 4976 4977 /* Generate code to implement the subquery 4978 ** 4979 ** The subquery is implemented as a co-routine if all of these are true: 4980 ** (1) The subquery is guaranteed to be the outer loop (so that it 4981 ** does not need to be computed more than once) 4982 ** (2) The ALL keyword after SELECT is omitted. (Applications are 4983 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 4984 ** the use of co-routines.) 4985 ** (3) Co-routines are not disabled using sqlite3_test_control() 4986 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 4987 ** 4988 ** TODO: Are there other reasons beside (1) to use a co-routine 4989 ** implementation? 4990 */ 4991 if( i==0 4992 && (pTabList->nSrc==1 4993 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 4994 && (p->selFlags & SF_All)==0 /* (2) */ 4995 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 4996 ){ 4997 /* Implement a co-routine that will return a single row of the result 4998 ** set on each invocation. 4999 */ 5000 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5001 pItem->regReturn = ++pParse->nMem; 5002 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5003 VdbeComment((v, "%s", pItem->pTab->zName)); 5004 pItem->addrFillSub = addrTop; 5005 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5006 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5007 sqlite3Select(pParse, pSub, &dest); 5008 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5009 pItem->fg.viaCoroutine = 1; 5010 pItem->regResult = dest.iSdst; 5011 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5012 sqlite3VdbeJumpHere(v, addrTop-1); 5013 sqlite3ClearTempRegCache(pParse); 5014 }else{ 5015 /* Generate a subroutine that will fill an ephemeral table with 5016 ** the content of this subquery. pItem->addrFillSub will point 5017 ** to the address of the generated subroutine. pItem->regReturn 5018 ** is a register allocated to hold the subroutine return address 5019 */ 5020 int topAddr; 5021 int onceAddr = 0; 5022 int retAddr; 5023 assert( pItem->addrFillSub==0 ); 5024 pItem->regReturn = ++pParse->nMem; 5025 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5026 pItem->addrFillSub = topAddr+1; 5027 if( pItem->fg.isCorrelated==0 ){ 5028 /* If the subquery is not correlated and if we are not inside of 5029 ** a trigger, then we only need to compute the value of the subquery 5030 ** once. */ 5031 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5032 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5033 }else{ 5034 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5035 } 5036 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5037 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5038 sqlite3Select(pParse, pSub, &dest); 5039 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5040 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5041 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5042 VdbeComment((v, "end %s", pItem->pTab->zName)); 5043 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5044 sqlite3ClearTempRegCache(pParse); 5045 } 5046 if( db->mallocFailed ) goto select_end; 5047 pParse->nHeight -= sqlite3SelectExprHeight(p); 5048 } 5049 #endif 5050 5051 /* Various elements of the SELECT copied into local variables for 5052 ** convenience */ 5053 pEList = p->pEList; 5054 pWhere = p->pWhere; 5055 pGroupBy = p->pGroupBy; 5056 pHaving = p->pHaving; 5057 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5058 5059 #if SELECTTRACE_ENABLED 5060 if( sqlite3SelectTrace & 0x400 ){ 5061 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5062 sqlite3TreeViewSelect(0, p, 0); 5063 } 5064 #endif 5065 5066 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5067 ** if the select-list is the same as the ORDER BY list, then this query 5068 ** can be rewritten as a GROUP BY. In other words, this: 5069 ** 5070 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5071 ** 5072 ** is transformed to: 5073 ** 5074 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5075 ** 5076 ** The second form is preferred as a single index (or temp-table) may be 5077 ** used for both the ORDER BY and DISTINCT processing. As originally 5078 ** written the query must use a temp-table for at least one of the ORDER 5079 ** BY and DISTINCT, and an index or separate temp-table for the other. 5080 */ 5081 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5082 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5083 ){ 5084 p->selFlags &= ~SF_Distinct; 5085 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5086 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5087 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5088 ** original setting of the SF_Distinct flag, not the current setting */ 5089 assert( sDistinct.isTnct ); 5090 5091 #if SELECTTRACE_ENABLED 5092 if( sqlite3SelectTrace & 0x400 ){ 5093 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5094 sqlite3TreeViewSelect(0, p, 0); 5095 } 5096 #endif 5097 } 5098 5099 /* If there is an ORDER BY clause, then create an ephemeral index to 5100 ** do the sorting. But this sorting ephemeral index might end up 5101 ** being unused if the data can be extracted in pre-sorted order. 5102 ** If that is the case, then the OP_OpenEphemeral instruction will be 5103 ** changed to an OP_Noop once we figure out that the sorting index is 5104 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5105 ** that change. 5106 */ 5107 if( sSort.pOrderBy ){ 5108 KeyInfo *pKeyInfo; 5109 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5110 sSort.iECursor = pParse->nTab++; 5111 sSort.addrSortIndex = 5112 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5113 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5114 (char*)pKeyInfo, P4_KEYINFO 5115 ); 5116 }else{ 5117 sSort.addrSortIndex = -1; 5118 } 5119 5120 /* If the output is destined for a temporary table, open that table. 5121 */ 5122 if( pDest->eDest==SRT_EphemTab ){ 5123 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5124 } 5125 5126 /* Set the limiter. 5127 */ 5128 iEnd = sqlite3VdbeMakeLabel(v); 5129 p->nSelectRow = 320; /* 4 billion rows */ 5130 computeLimitRegisters(pParse, p, iEnd); 5131 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5132 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5133 sSort.sortFlags |= SORTFLAG_UseSorter; 5134 } 5135 5136 /* Open an ephemeral index to use for the distinct set. 5137 */ 5138 if( p->selFlags & SF_Distinct ){ 5139 sDistinct.tabTnct = pParse->nTab++; 5140 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5141 sDistinct.tabTnct, 0, 0, 5142 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5143 P4_KEYINFO); 5144 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5145 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5146 }else{ 5147 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5148 } 5149 5150 if( !isAgg && pGroupBy==0 ){ 5151 /* No aggregate functions and no GROUP BY clause */ 5152 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5153 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5154 wctrlFlags |= p->selFlags & SF_FixedLimit; 5155 5156 /* Begin the database scan. */ 5157 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5158 p->pEList, wctrlFlags, p->nSelectRow); 5159 if( pWInfo==0 ) goto select_end; 5160 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5161 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5162 } 5163 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5164 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5165 } 5166 if( sSort.pOrderBy ){ 5167 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5168 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5169 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5170 sSort.pOrderBy = 0; 5171 } 5172 } 5173 5174 /* If sorting index that was created by a prior OP_OpenEphemeral 5175 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5176 ** into an OP_Noop. 5177 */ 5178 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5179 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5180 } 5181 5182 /* Use the standard inner loop. */ 5183 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5184 sqlite3WhereContinueLabel(pWInfo), 5185 sqlite3WhereBreakLabel(pWInfo)); 5186 5187 /* End the database scan loop. 5188 */ 5189 sqlite3WhereEnd(pWInfo); 5190 }else{ 5191 /* This case when there exist aggregate functions or a GROUP BY clause 5192 ** or both */ 5193 NameContext sNC; /* Name context for processing aggregate information */ 5194 int iAMem; /* First Mem address for storing current GROUP BY */ 5195 int iBMem; /* First Mem address for previous GROUP BY */ 5196 int iUseFlag; /* Mem address holding flag indicating that at least 5197 ** one row of the input to the aggregator has been 5198 ** processed */ 5199 int iAbortFlag; /* Mem address which causes query abort if positive */ 5200 int groupBySort; /* Rows come from source in GROUP BY order */ 5201 int addrEnd; /* End of processing for this SELECT */ 5202 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5203 int sortOut = 0; /* Output register from the sorter */ 5204 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5205 5206 /* Remove any and all aliases between the result set and the 5207 ** GROUP BY clause. 5208 */ 5209 if( pGroupBy ){ 5210 int k; /* Loop counter */ 5211 struct ExprList_item *pItem; /* For looping over expression in a list */ 5212 5213 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5214 pItem->u.x.iAlias = 0; 5215 } 5216 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5217 pItem->u.x.iAlias = 0; 5218 } 5219 assert( 66==sqlite3LogEst(100) ); 5220 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5221 }else{ 5222 assert( 0==sqlite3LogEst(1) ); 5223 p->nSelectRow = 0; 5224 } 5225 5226 /* If there is both a GROUP BY and an ORDER BY clause and they are 5227 ** identical, then it may be possible to disable the ORDER BY clause 5228 ** on the grounds that the GROUP BY will cause elements to come out 5229 ** in the correct order. It also may not - the GROUP BY might use a 5230 ** database index that causes rows to be grouped together as required 5231 ** but not actually sorted. Either way, record the fact that the 5232 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5233 ** variable. */ 5234 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5235 orderByGrp = 1; 5236 } 5237 5238 /* Create a label to jump to when we want to abort the query */ 5239 addrEnd = sqlite3VdbeMakeLabel(v); 5240 5241 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5242 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5243 ** SELECT statement. 5244 */ 5245 memset(&sNC, 0, sizeof(sNC)); 5246 sNC.pParse = pParse; 5247 sNC.pSrcList = pTabList; 5248 sNC.pAggInfo = &sAggInfo; 5249 sAggInfo.mnReg = pParse->nMem+1; 5250 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5251 sAggInfo.pGroupBy = pGroupBy; 5252 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5253 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5254 if( pHaving ){ 5255 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5256 } 5257 sAggInfo.nAccumulator = sAggInfo.nColumn; 5258 for(i=0; i<sAggInfo.nFunc; i++){ 5259 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5260 sNC.ncFlags |= NC_InAggFunc; 5261 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5262 sNC.ncFlags &= ~NC_InAggFunc; 5263 } 5264 sAggInfo.mxReg = pParse->nMem; 5265 if( db->mallocFailed ) goto select_end; 5266 5267 /* Processing for aggregates with GROUP BY is very different and 5268 ** much more complex than aggregates without a GROUP BY. 5269 */ 5270 if( pGroupBy ){ 5271 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5272 int addr1; /* A-vs-B comparision jump */ 5273 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5274 int regOutputRow; /* Return address register for output subroutine */ 5275 int addrSetAbort; /* Set the abort flag and return */ 5276 int addrTopOfLoop; /* Top of the input loop */ 5277 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5278 int addrReset; /* Subroutine for resetting the accumulator */ 5279 int regReset; /* Return address register for reset subroutine */ 5280 5281 /* If there is a GROUP BY clause we might need a sorting index to 5282 ** implement it. Allocate that sorting index now. If it turns out 5283 ** that we do not need it after all, the OP_SorterOpen instruction 5284 ** will be converted into a Noop. 5285 */ 5286 sAggInfo.sortingIdx = pParse->nTab++; 5287 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5288 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5289 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5290 0, (char*)pKeyInfo, P4_KEYINFO); 5291 5292 /* Initialize memory locations used by GROUP BY aggregate processing 5293 */ 5294 iUseFlag = ++pParse->nMem; 5295 iAbortFlag = ++pParse->nMem; 5296 regOutputRow = ++pParse->nMem; 5297 addrOutputRow = sqlite3VdbeMakeLabel(v); 5298 regReset = ++pParse->nMem; 5299 addrReset = sqlite3VdbeMakeLabel(v); 5300 iAMem = pParse->nMem + 1; 5301 pParse->nMem += pGroupBy->nExpr; 5302 iBMem = pParse->nMem + 1; 5303 pParse->nMem += pGroupBy->nExpr; 5304 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5305 VdbeComment((v, "clear abort flag")); 5306 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5307 VdbeComment((v, "indicate accumulator empty")); 5308 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5309 5310 /* Begin a loop that will extract all source rows in GROUP BY order. 5311 ** This might involve two separate loops with an OP_Sort in between, or 5312 ** it might be a single loop that uses an index to extract information 5313 ** in the right order to begin with. 5314 */ 5315 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5316 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5317 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5318 ); 5319 if( pWInfo==0 ) goto select_end; 5320 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5321 /* The optimizer is able to deliver rows in group by order so 5322 ** we do not have to sort. The OP_OpenEphemeral table will be 5323 ** cancelled later because we still need to use the pKeyInfo 5324 */ 5325 groupBySort = 0; 5326 }else{ 5327 /* Rows are coming out in undetermined order. We have to push 5328 ** each row into a sorting index, terminate the first loop, 5329 ** then loop over the sorting index in order to get the output 5330 ** in sorted order 5331 */ 5332 int regBase; 5333 int regRecord; 5334 int nCol; 5335 int nGroupBy; 5336 5337 explainTempTable(pParse, 5338 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5339 "DISTINCT" : "GROUP BY"); 5340 5341 groupBySort = 1; 5342 nGroupBy = pGroupBy->nExpr; 5343 nCol = nGroupBy; 5344 j = nGroupBy; 5345 for(i=0; i<sAggInfo.nColumn; i++){ 5346 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5347 nCol++; 5348 j++; 5349 } 5350 } 5351 regBase = sqlite3GetTempRange(pParse, nCol); 5352 sqlite3ExprCacheClear(pParse); 5353 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5354 j = nGroupBy; 5355 for(i=0; i<sAggInfo.nColumn; i++){ 5356 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5357 if( pCol->iSorterColumn>=j ){ 5358 int r1 = j + regBase; 5359 sqlite3ExprCodeGetColumnToReg(pParse, 5360 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5361 j++; 5362 } 5363 } 5364 regRecord = sqlite3GetTempReg(pParse); 5365 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5366 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5367 sqlite3ReleaseTempReg(pParse, regRecord); 5368 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5369 sqlite3WhereEnd(pWInfo); 5370 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5371 sortOut = sqlite3GetTempReg(pParse); 5372 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5373 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5374 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5375 sAggInfo.useSortingIdx = 1; 5376 sqlite3ExprCacheClear(pParse); 5377 5378 } 5379 5380 /* If the index or temporary table used by the GROUP BY sort 5381 ** will naturally deliver rows in the order required by the ORDER BY 5382 ** clause, cancel the ephemeral table open coded earlier. 5383 ** 5384 ** This is an optimization - the correct answer should result regardless. 5385 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5386 ** disable this optimization for testing purposes. */ 5387 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5388 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5389 ){ 5390 sSort.pOrderBy = 0; 5391 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5392 } 5393 5394 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5395 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5396 ** Then compare the current GROUP BY terms against the GROUP BY terms 5397 ** from the previous row currently stored in a0, a1, a2... 5398 */ 5399 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5400 sqlite3ExprCacheClear(pParse); 5401 if( groupBySort ){ 5402 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5403 sortOut, sortPTab); 5404 } 5405 for(j=0; j<pGroupBy->nExpr; j++){ 5406 if( groupBySort ){ 5407 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5408 }else{ 5409 sAggInfo.directMode = 1; 5410 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5411 } 5412 } 5413 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5414 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5415 addr1 = sqlite3VdbeCurrentAddr(v); 5416 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5417 5418 /* Generate code that runs whenever the GROUP BY changes. 5419 ** Changes in the GROUP BY are detected by the previous code 5420 ** block. If there were no changes, this block is skipped. 5421 ** 5422 ** This code copies current group by terms in b0,b1,b2,... 5423 ** over to a0,a1,a2. It then calls the output subroutine 5424 ** and resets the aggregate accumulator registers in preparation 5425 ** for the next GROUP BY batch. 5426 */ 5427 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5428 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5429 VdbeComment((v, "output one row")); 5430 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5431 VdbeComment((v, "check abort flag")); 5432 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5433 VdbeComment((v, "reset accumulator")); 5434 5435 /* Update the aggregate accumulators based on the content of 5436 ** the current row 5437 */ 5438 sqlite3VdbeJumpHere(v, addr1); 5439 updateAccumulator(pParse, &sAggInfo); 5440 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5441 VdbeComment((v, "indicate data in accumulator")); 5442 5443 /* End of the loop 5444 */ 5445 if( groupBySort ){ 5446 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5447 VdbeCoverage(v); 5448 }else{ 5449 sqlite3WhereEnd(pWInfo); 5450 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5451 } 5452 5453 /* Output the final row of result 5454 */ 5455 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5456 VdbeComment((v, "output final row")); 5457 5458 /* Jump over the subroutines 5459 */ 5460 sqlite3VdbeGoto(v, addrEnd); 5461 5462 /* Generate a subroutine that outputs a single row of the result 5463 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5464 ** is less than or equal to zero, the subroutine is a no-op. If 5465 ** the processing calls for the query to abort, this subroutine 5466 ** increments the iAbortFlag memory location before returning in 5467 ** order to signal the caller to abort. 5468 */ 5469 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5470 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5471 VdbeComment((v, "set abort flag")); 5472 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5473 sqlite3VdbeResolveLabel(v, addrOutputRow); 5474 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5475 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5476 VdbeCoverage(v); 5477 VdbeComment((v, "Groupby result generator entry point")); 5478 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5479 finalizeAggFunctions(pParse, &sAggInfo); 5480 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5481 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5482 &sDistinct, pDest, 5483 addrOutputRow+1, addrSetAbort); 5484 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5485 VdbeComment((v, "end groupby result generator")); 5486 5487 /* Generate a subroutine that will reset the group-by accumulator 5488 */ 5489 sqlite3VdbeResolveLabel(v, addrReset); 5490 resetAccumulator(pParse, &sAggInfo); 5491 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5492 5493 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5494 else { 5495 ExprList *pDel = 0; 5496 #ifndef SQLITE_OMIT_BTREECOUNT 5497 Table *pTab; 5498 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5499 /* If isSimpleCount() returns a pointer to a Table structure, then 5500 ** the SQL statement is of the form: 5501 ** 5502 ** SELECT count(*) FROM <tbl> 5503 ** 5504 ** where the Table structure returned represents table <tbl>. 5505 ** 5506 ** This statement is so common that it is optimized specially. The 5507 ** OP_Count instruction is executed either on the intkey table that 5508 ** contains the data for table <tbl> or on one of its indexes. It 5509 ** is better to execute the op on an index, as indexes are almost 5510 ** always spread across less pages than their corresponding tables. 5511 */ 5512 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5513 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5514 Index *pIdx; /* Iterator variable */ 5515 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5516 Index *pBest = 0; /* Best index found so far */ 5517 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5518 5519 sqlite3CodeVerifySchema(pParse, iDb); 5520 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5521 5522 /* Search for the index that has the lowest scan cost. 5523 ** 5524 ** (2011-04-15) Do not do a full scan of an unordered index. 5525 ** 5526 ** (2013-10-03) Do not count the entries in a partial index. 5527 ** 5528 ** In practice the KeyInfo structure will not be used. It is only 5529 ** passed to keep OP_OpenRead happy. 5530 */ 5531 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5532 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5533 if( pIdx->bUnordered==0 5534 && pIdx->szIdxRow<pTab->szTabRow 5535 && pIdx->pPartIdxWhere==0 5536 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5537 ){ 5538 pBest = pIdx; 5539 } 5540 } 5541 if( pBest ){ 5542 iRoot = pBest->tnum; 5543 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5544 } 5545 5546 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5547 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5548 if( pKeyInfo ){ 5549 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5550 } 5551 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5552 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5553 explainSimpleCount(pParse, pTab, pBest); 5554 }else 5555 #endif /* SQLITE_OMIT_BTREECOUNT */ 5556 { 5557 /* Check if the query is of one of the following forms: 5558 ** 5559 ** SELECT min(x) FROM ... 5560 ** SELECT max(x) FROM ... 5561 ** 5562 ** If it is, then ask the code in where.c to attempt to sort results 5563 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5564 ** If where.c is able to produce results sorted in this order, then 5565 ** add vdbe code to break out of the processing loop after the 5566 ** first iteration (since the first iteration of the loop is 5567 ** guaranteed to operate on the row with the minimum or maximum 5568 ** value of x, the only row required). 5569 ** 5570 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5571 ** modify behavior as follows: 5572 ** 5573 ** + If the query is a "SELECT min(x)", then the loop coded by 5574 ** where.c should not iterate over any values with a NULL value 5575 ** for x. 5576 ** 5577 ** + The optimizer code in where.c (the thing that decides which 5578 ** index or indices to use) should place a different priority on 5579 ** satisfying the 'ORDER BY' clause than it does in other cases. 5580 ** Refer to code and comments in where.c for details. 5581 */ 5582 ExprList *pMinMax = 0; 5583 u8 flag = WHERE_ORDERBY_NORMAL; 5584 5585 assert( p->pGroupBy==0 ); 5586 assert( flag==0 ); 5587 if( p->pHaving==0 ){ 5588 flag = minMaxQuery(&sAggInfo, &pMinMax); 5589 } 5590 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5591 5592 if( flag ){ 5593 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5594 pDel = pMinMax; 5595 assert( db->mallocFailed || pMinMax!=0 ); 5596 if( !db->mallocFailed ){ 5597 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5598 pMinMax->a[0].pExpr->op = TK_COLUMN; 5599 } 5600 } 5601 5602 /* This case runs if the aggregate has no GROUP BY clause. The 5603 ** processing is much simpler since there is only a single row 5604 ** of output. 5605 */ 5606 resetAccumulator(pParse, &sAggInfo); 5607 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5608 if( pWInfo==0 ){ 5609 sqlite3ExprListDelete(db, pDel); 5610 goto select_end; 5611 } 5612 updateAccumulator(pParse, &sAggInfo); 5613 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5614 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5615 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5616 VdbeComment((v, "%s() by index", 5617 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5618 } 5619 sqlite3WhereEnd(pWInfo); 5620 finalizeAggFunctions(pParse, &sAggInfo); 5621 } 5622 5623 sSort.pOrderBy = 0; 5624 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5625 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5626 pDest, addrEnd, addrEnd); 5627 sqlite3ExprListDelete(db, pDel); 5628 } 5629 sqlite3VdbeResolveLabel(v, addrEnd); 5630 5631 } /* endif aggregate query */ 5632 5633 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5634 explainTempTable(pParse, "DISTINCT"); 5635 } 5636 5637 /* If there is an ORDER BY clause, then we need to sort the results 5638 ** and send them to the callback one by one. 5639 */ 5640 if( sSort.pOrderBy ){ 5641 explainTempTable(pParse, 5642 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5643 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5644 } 5645 5646 /* Jump here to skip this query 5647 */ 5648 sqlite3VdbeResolveLabel(v, iEnd); 5649 5650 /* The SELECT has been coded. If there is an error in the Parse structure, 5651 ** set the return code to 1. Otherwise 0. */ 5652 rc = (pParse->nErr>0); 5653 5654 /* Control jumps to here if an error is encountered above, or upon 5655 ** successful coding of the SELECT. 5656 */ 5657 select_end: 5658 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5659 5660 /* Identify column names if results of the SELECT are to be output. 5661 */ 5662 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5663 generateColumnNames(pParse, pTabList, pEList); 5664 } 5665 5666 sqlite3DbFree(db, sAggInfo.aCol); 5667 sqlite3DbFree(db, sAggInfo.aFunc); 5668 #if SELECTTRACE_ENABLED 5669 SELECTTRACE(1,pParse,p,("end processing\n")); 5670 pParse->nSelectIndent--; 5671 #endif 5672 return rc; 5673 } 5674