xref: /sqlite-3.40.0/src/select.c (revision dfe4e6bb)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     sqlite3ExprDelete(db, p->pOffset);
78     if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79     if( bFree ) sqlite3DbFree(db, p);
80     p = pPrior;
81     bFree = 1;
82   }
83 }
84 
85 /*
86 ** Initialize a SelectDest structure.
87 */
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89   pDest->eDest = (u8)eDest;
90   pDest->iSDParm = iParm;
91   pDest->zAffSdst = 0;
92   pDest->iSdst = 0;
93   pDest->nSdst = 0;
94 }
95 
96 
97 /*
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
100 */
101 Select *sqlite3SelectNew(
102   Parse *pParse,        /* Parsing context */
103   ExprList *pEList,     /* which columns to include in the result */
104   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
105   Expr *pWhere,         /* the WHERE clause */
106   ExprList *pGroupBy,   /* the GROUP BY clause */
107   Expr *pHaving,        /* the HAVING clause */
108   ExprList *pOrderBy,   /* the ORDER BY clause */
109   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
110   Expr *pLimit,         /* LIMIT value.  NULL means not used */
111   Expr *pOffset         /* OFFSET value.  NULL means no offset */
112 ){
113   Select *pNew;
114   Select standin;
115   sqlite3 *db = pParse->db;
116   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
117   if( pNew==0 ){
118     assert( db->mallocFailed );
119     pNew = &standin;
120   }
121   if( pEList==0 ){
122     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
123   }
124   pNew->pEList = pEList;
125   pNew->op = TK_SELECT;
126   pNew->selFlags = selFlags;
127   pNew->iLimit = 0;
128   pNew->iOffset = 0;
129 #if SELECTTRACE_ENABLED
130   pNew->zSelName[0] = 0;
131 #endif
132   pNew->addrOpenEphm[0] = -1;
133   pNew->addrOpenEphm[1] = -1;
134   pNew->nSelectRow = 0;
135   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
136   pNew->pSrc = pSrc;
137   pNew->pWhere = pWhere;
138   pNew->pGroupBy = pGroupBy;
139   pNew->pHaving = pHaving;
140   pNew->pOrderBy = pOrderBy;
141   pNew->pPrior = 0;
142   pNew->pNext = 0;
143   pNew->pLimit = pLimit;
144   pNew->pOffset = pOffset;
145   pNew->pWith = 0;
146   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
147   if( db->mallocFailed ) {
148     clearSelect(db, pNew, pNew!=&standin);
149     pNew = 0;
150   }else{
151     assert( pNew->pSrc!=0 || pParse->nErr>0 );
152   }
153   assert( pNew!=&standin );
154   return pNew;
155 }
156 
157 #if SELECTTRACE_ENABLED
158 /*
159 ** Set the name of a Select object
160 */
161 void sqlite3SelectSetName(Select *p, const char *zName){
162   if( p && zName ){
163     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
164   }
165 }
166 #endif
167 
168 
169 /*
170 ** Delete the given Select structure and all of its substructures.
171 */
172 void sqlite3SelectDelete(sqlite3 *db, Select *p){
173   if( p ) clearSelect(db, p, 1);
174 }
175 
176 /*
177 ** Return a pointer to the right-most SELECT statement in a compound.
178 */
179 static Select *findRightmost(Select *p){
180   while( p->pNext ) p = p->pNext;
181   return p;
182 }
183 
184 /*
185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
186 ** type of join.  Return an integer constant that expresses that type
187 ** in terms of the following bit values:
188 **
189 **     JT_INNER
190 **     JT_CROSS
191 **     JT_OUTER
192 **     JT_NATURAL
193 **     JT_LEFT
194 **     JT_RIGHT
195 **
196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
197 **
198 ** If an illegal or unsupported join type is seen, then still return
199 ** a join type, but put an error in the pParse structure.
200 */
201 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
202   int jointype = 0;
203   Token *apAll[3];
204   Token *p;
205                              /*   0123456789 123456789 123456789 123 */
206   static const char zKeyText[] = "naturaleftouterightfullinnercross";
207   static const struct {
208     u8 i;        /* Beginning of keyword text in zKeyText[] */
209     u8 nChar;    /* Length of the keyword in characters */
210     u8 code;     /* Join type mask */
211   } aKeyword[] = {
212     /* natural */ { 0,  7, JT_NATURAL                },
213     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
214     /* outer   */ { 10, 5, JT_OUTER                  },
215     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
216     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
217     /* inner   */ { 23, 5, JT_INNER                  },
218     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
219   };
220   int i, j;
221   apAll[0] = pA;
222   apAll[1] = pB;
223   apAll[2] = pC;
224   for(i=0; i<3 && apAll[i]; i++){
225     p = apAll[i];
226     for(j=0; j<ArraySize(aKeyword); j++){
227       if( p->n==aKeyword[j].nChar
228           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
229         jointype |= aKeyword[j].code;
230         break;
231       }
232     }
233     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
234     if( j>=ArraySize(aKeyword) ){
235       jointype |= JT_ERROR;
236       break;
237     }
238   }
239   if(
240      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
241      (jointype & JT_ERROR)!=0
242   ){
243     const char *zSp = " ";
244     assert( pB!=0 );
245     if( pC==0 ){ zSp++; }
246     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
247        "%T %T%s%T", pA, pB, zSp, pC);
248     jointype = JT_INNER;
249   }else if( (jointype & JT_OUTER)!=0
250          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
251     sqlite3ErrorMsg(pParse,
252       "RIGHT and FULL OUTER JOINs are not currently supported");
253     jointype = JT_INNER;
254   }
255   return jointype;
256 }
257 
258 /*
259 ** Return the index of a column in a table.  Return -1 if the column
260 ** is not contained in the table.
261 */
262 static int columnIndex(Table *pTab, const char *zCol){
263   int i;
264   for(i=0; i<pTab->nCol; i++){
265     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
266   }
267   return -1;
268 }
269 
270 /*
271 ** Search the first N tables in pSrc, from left to right, looking for a
272 ** table that has a column named zCol.
273 **
274 ** When found, set *piTab and *piCol to the table index and column index
275 ** of the matching column and return TRUE.
276 **
277 ** If not found, return FALSE.
278 */
279 static int tableAndColumnIndex(
280   SrcList *pSrc,       /* Array of tables to search */
281   int N,               /* Number of tables in pSrc->a[] to search */
282   const char *zCol,    /* Name of the column we are looking for */
283   int *piTab,          /* Write index of pSrc->a[] here */
284   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
285 ){
286   int i;               /* For looping over tables in pSrc */
287   int iCol;            /* Index of column matching zCol */
288 
289   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
290   for(i=0; i<N; i++){
291     iCol = columnIndex(pSrc->a[i].pTab, zCol);
292     if( iCol>=0 ){
293       if( piTab ){
294         *piTab = i;
295         *piCol = iCol;
296       }
297       return 1;
298     }
299   }
300   return 0;
301 }
302 
303 /*
304 ** This function is used to add terms implied by JOIN syntax to the
305 ** WHERE clause expression of a SELECT statement. The new term, which
306 ** is ANDed with the existing WHERE clause, is of the form:
307 **
308 **    (tab1.col1 = tab2.col2)
309 **
310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
312 ** column iColRight of tab2.
313 */
314 static void addWhereTerm(
315   Parse *pParse,                  /* Parsing context */
316   SrcList *pSrc,                  /* List of tables in FROM clause */
317   int iLeft,                      /* Index of first table to join in pSrc */
318   int iColLeft,                   /* Index of column in first table */
319   int iRight,                     /* Index of second table in pSrc */
320   int iColRight,                  /* Index of column in second table */
321   int isOuterJoin,                /* True if this is an OUTER join */
322   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
323 ){
324   sqlite3 *db = pParse->db;
325   Expr *pE1;
326   Expr *pE2;
327   Expr *pEq;
328 
329   assert( iLeft<iRight );
330   assert( pSrc->nSrc>iRight );
331   assert( pSrc->a[iLeft].pTab );
332   assert( pSrc->a[iRight].pTab );
333 
334   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
335   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
336 
337   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
338   if( pEq && isOuterJoin ){
339     ExprSetProperty(pEq, EP_FromJoin);
340     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
341     ExprSetVVAProperty(pEq, EP_NoReduce);
342     pEq->iRightJoinTable = (i16)pE2->iTable;
343   }
344   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
345 }
346 
347 /*
348 ** Set the EP_FromJoin property on all terms of the given expression.
349 ** And set the Expr.iRightJoinTable to iTable for every term in the
350 ** expression.
351 **
352 ** The EP_FromJoin property is used on terms of an expression to tell
353 ** the LEFT OUTER JOIN processing logic that this term is part of the
354 ** join restriction specified in the ON or USING clause and not a part
355 ** of the more general WHERE clause.  These terms are moved over to the
356 ** WHERE clause during join processing but we need to remember that they
357 ** originated in the ON or USING clause.
358 **
359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
360 ** expression depends on table iRightJoinTable even if that table is not
361 ** explicitly mentioned in the expression.  That information is needed
362 ** for cases like this:
363 **
364 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
365 **
366 ** The where clause needs to defer the handling of the t1.x=5
367 ** term until after the t2 loop of the join.  In that way, a
368 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
369 ** defer the handling of t1.x=5, it will be processed immediately
370 ** after the t1 loop and rows with t1.x!=5 will never appear in
371 ** the output, which is incorrect.
372 */
373 static void setJoinExpr(Expr *p, int iTable){
374   while( p ){
375     ExprSetProperty(p, EP_FromJoin);
376     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
377     ExprSetVVAProperty(p, EP_NoReduce);
378     p->iRightJoinTable = (i16)iTable;
379     if( p->op==TK_FUNCTION && p->x.pList ){
380       int i;
381       for(i=0; i<p->x.pList->nExpr; i++){
382         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
383       }
384     }
385     setJoinExpr(p->pLeft, iTable);
386     p = p->pRight;
387   }
388 }
389 
390 /*
391 ** This routine processes the join information for a SELECT statement.
392 ** ON and USING clauses are converted into extra terms of the WHERE clause.
393 ** NATURAL joins also create extra WHERE clause terms.
394 **
395 ** The terms of a FROM clause are contained in the Select.pSrc structure.
396 ** The left most table is the first entry in Select.pSrc.  The right-most
397 ** table is the last entry.  The join operator is held in the entry to
398 ** the left.  Thus entry 0 contains the join operator for the join between
399 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
400 ** also attached to the left entry.
401 **
402 ** This routine returns the number of errors encountered.
403 */
404 static int sqliteProcessJoin(Parse *pParse, Select *p){
405   SrcList *pSrc;                  /* All tables in the FROM clause */
406   int i, j;                       /* Loop counters */
407   struct SrcList_item *pLeft;     /* Left table being joined */
408   struct SrcList_item *pRight;    /* Right table being joined */
409 
410   pSrc = p->pSrc;
411   pLeft = &pSrc->a[0];
412   pRight = &pLeft[1];
413   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
414     Table *pLeftTab = pLeft->pTab;
415     Table *pRightTab = pRight->pTab;
416     int isOuter;
417 
418     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
419     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
420 
421     /* When the NATURAL keyword is present, add WHERE clause terms for
422     ** every column that the two tables have in common.
423     */
424     if( pRight->fg.jointype & JT_NATURAL ){
425       if( pRight->pOn || pRight->pUsing ){
426         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
427            "an ON or USING clause", 0);
428         return 1;
429       }
430       for(j=0; j<pRightTab->nCol; j++){
431         char *zName;   /* Name of column in the right table */
432         int iLeft;     /* Matching left table */
433         int iLeftCol;  /* Matching column in the left table */
434 
435         zName = pRightTab->aCol[j].zName;
436         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
437           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
438                        isOuter, &p->pWhere);
439         }
440       }
441     }
442 
443     /* Disallow both ON and USING clauses in the same join
444     */
445     if( pRight->pOn && pRight->pUsing ){
446       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
447         "clauses in the same join");
448       return 1;
449     }
450 
451     /* Add the ON clause to the end of the WHERE clause, connected by
452     ** an AND operator.
453     */
454     if( pRight->pOn ){
455       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
456       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
457       pRight->pOn = 0;
458     }
459 
460     /* Create extra terms on the WHERE clause for each column named
461     ** in the USING clause.  Example: If the two tables to be joined are
462     ** A and B and the USING clause names X, Y, and Z, then add this
463     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
464     ** Report an error if any column mentioned in the USING clause is
465     ** not contained in both tables to be joined.
466     */
467     if( pRight->pUsing ){
468       IdList *pList = pRight->pUsing;
469       for(j=0; j<pList->nId; j++){
470         char *zName;     /* Name of the term in the USING clause */
471         int iLeft;       /* Table on the left with matching column name */
472         int iLeftCol;    /* Column number of matching column on the left */
473         int iRightCol;   /* Column number of matching column on the right */
474 
475         zName = pList->a[j].zName;
476         iRightCol = columnIndex(pRightTab, zName);
477         if( iRightCol<0
478          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
479         ){
480           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
481             "not present in both tables", zName);
482           return 1;
483         }
484         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
485                      isOuter, &p->pWhere);
486       }
487     }
488   }
489   return 0;
490 }
491 
492 /* Forward reference */
493 static KeyInfo *keyInfoFromExprList(
494   Parse *pParse,       /* Parsing context */
495   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
496   int iStart,          /* Begin with this column of pList */
497   int nExtra           /* Add this many extra columns to the end */
498 );
499 
500 /*
501 ** Generate code that will push the record in registers regData
502 ** through regData+nData-1 onto the sorter.
503 */
504 static void pushOntoSorter(
505   Parse *pParse,         /* Parser context */
506   SortCtx *pSort,        /* Information about the ORDER BY clause */
507   Select *pSelect,       /* The whole SELECT statement */
508   int regData,           /* First register holding data to be sorted */
509   int regOrigData,       /* First register holding data before packing */
510   int nData,             /* Number of elements in the data array */
511   int nPrefixReg         /* No. of reg prior to regData available for use */
512 ){
513   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
514   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
515   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
516   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
517   int regBase;                                     /* Regs for sorter record */
518   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
519   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
520   int op;                            /* Opcode to add sorter record to sorter */
521   int iLimit;                        /* LIMIT counter */
522 
523   assert( bSeq==0 || bSeq==1 );
524   assert( nData==1 || regData==regOrigData );
525   if( nPrefixReg ){
526     assert( nPrefixReg==nExpr+bSeq );
527     regBase = regData - nExpr - bSeq;
528   }else{
529     regBase = pParse->nMem + 1;
530     pParse->nMem += nBase;
531   }
532   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
533   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
534   pSort->labelDone = sqlite3VdbeMakeLabel(v);
535   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
536                           SQLITE_ECEL_DUP|SQLITE_ECEL_REF);
537   if( bSeq ){
538     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
539   }
540   if( nPrefixReg==0 ){
541     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
542   }
543   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
544   if( nOBSat>0 ){
545     int regPrevKey;   /* The first nOBSat columns of the previous row */
546     int addrFirst;    /* Address of the OP_IfNot opcode */
547     int addrJmp;      /* Address of the OP_Jump opcode */
548     VdbeOp *pOp;      /* Opcode that opens the sorter */
549     int nKey;         /* Number of sorting key columns, including OP_Sequence */
550     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
551 
552     regPrevKey = pParse->nMem+1;
553     pParse->nMem += pSort->nOBSat;
554     nKey = nExpr - pSort->nOBSat + bSeq;
555     if( bSeq ){
556       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
557     }else{
558       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
559     }
560     VdbeCoverage(v);
561     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
562     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
563     if( pParse->db->mallocFailed ) return;
564     pOp->p2 = nKey + nData;
565     pKI = pOp->p4.pKeyInfo;
566     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
567     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
568     testcase( pKI->nXField>2 );
569     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
570                                            pKI->nXField-1);
571     addrJmp = sqlite3VdbeCurrentAddr(v);
572     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
573     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
574     pSort->regReturn = ++pParse->nMem;
575     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
576     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
577     if( iLimit ){
578       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
579       VdbeCoverage(v);
580     }
581     sqlite3VdbeJumpHere(v, addrFirst);
582     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
583     sqlite3VdbeJumpHere(v, addrJmp);
584   }
585   if( pSort->sortFlags & SORTFLAG_UseSorter ){
586     op = OP_SorterInsert;
587   }else{
588     op = OP_IdxInsert;
589   }
590   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
591   if( iLimit ){
592     int addr;
593     int r1 = 0;
594     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
595     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
596     ** fills up, delete the least entry in the sorter after each insert.
597     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v);
599     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600     if( pSort->bOrderedInnerLoop ){
601       r1 = ++pParse->nMem;
602       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603       VdbeComment((v, "seq"));
604     }
605     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606     if( pSort->bOrderedInnerLoop ){
607       /* If the inner loop is driven by an index such that values from
608       ** the same iteration of the inner loop are in sorted order, then
609       ** immediately jump to the next iteration of an inner loop if the
610       ** entry from the current iteration does not fit into the top
611       ** LIMIT+OFFSET entries of the sorter. */
612       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615       VdbeCoverage(v);
616     }
617     sqlite3VdbeJumpHere(v, addr);
618   }
619 }
620 
621 /*
622 ** Add code to implement the OFFSET
623 */
624 static void codeOffset(
625   Vdbe *v,          /* Generate code into this VM */
626   int iOffset,      /* Register holding the offset counter */
627   int iContinue     /* Jump here to skip the current record */
628 ){
629   if( iOffset>0 ){
630     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631     VdbeComment((v, "OFFSET"));
632   }
633 }
634 
635 /*
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry.  iTab is a sorting index that holds previously
638 ** seen combinations of the N values.  A new entry is made in iTab
639 ** if the current N values are new.
640 **
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
643 */
644 static void codeDistinct(
645   Parse *pParse,     /* Parsing and code generating context */
646   int iTab,          /* A sorting index used to test for distinctness */
647   int addrRepeat,    /* Jump to here if not distinct */
648   int N,             /* Number of elements */
649   int iMem           /* First element */
650 ){
651   Vdbe *v;
652   int r1;
653 
654   v = pParse->pVdbe;
655   r1 = sqlite3GetTempReg(pParse);
656   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
659   sqlite3ReleaseTempReg(pParse, r1);
660 }
661 
662 /*
663 ** This routine generates the code for the inside of the inner loop
664 ** of a SELECT.
665 **
666 ** If srcTab is negative, then the pEList expressions
667 ** are evaluated in order to get the data for this row.  If srcTab is
668 ** zero or more, then data is pulled from srcTab and pEList is used only
669 ** to get number columns and the datatype for each column.
670 */
671 static void selectInnerLoop(
672   Parse *pParse,          /* The parser context */
673   Select *p,              /* The complete select statement being coded */
674   ExprList *pEList,       /* List of values being extracted */
675   int srcTab,             /* Pull data from this table */
676   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
677   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
678   SelectDest *pDest,      /* How to dispose of the results */
679   int iContinue,          /* Jump here to continue with next row */
680   int iBreak              /* Jump here to break out of the inner loop */
681 ){
682   Vdbe *v = pParse->pVdbe;
683   int i;
684   int hasDistinct;        /* True if the DISTINCT keyword is present */
685   int regResult;              /* Start of memory holding result set */
686   int eDest = pDest->eDest;   /* How to dispose of results */
687   int iParm = pDest->iSDParm; /* First argument to disposal method */
688   int nResultCol;             /* Number of result columns */
689   int nPrefixReg = 0;         /* Number of extra registers before regResult */
690 
691   assert( v );
692   assert( pEList!=0 );
693   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
694   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
695   if( pSort==0 && !hasDistinct ){
696     assert( iContinue!=0 );
697     codeOffset(v, p->iOffset, iContinue);
698   }
699 
700   /* Pull the requested columns.
701   */
702   nResultCol = pEList->nExpr;
703 
704   if( pDest->iSdst==0 ){
705     if( pSort ){
706       nPrefixReg = pSort->pOrderBy->nExpr;
707       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
708       pParse->nMem += nPrefixReg;
709     }
710     pDest->iSdst = pParse->nMem+1;
711     pParse->nMem += nResultCol;
712   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
713     /* This is an error condition that can result, for example, when a SELECT
714     ** on the right-hand side of an INSERT contains more result columns than
715     ** there are columns in the table on the left.  The error will be caught
716     ** and reported later.  But we need to make sure enough memory is allocated
717     ** to avoid other spurious errors in the meantime. */
718     pParse->nMem += nResultCol;
719   }
720   pDest->nSdst = nResultCol;
721   regResult = pDest->iSdst;
722   if( srcTab>=0 ){
723     for(i=0; i<nResultCol; i++){
724       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
725       VdbeComment((v, "%s", pEList->a[i].zName));
726     }
727   }else if( eDest!=SRT_Exists ){
728     /* If the destination is an EXISTS(...) expression, the actual
729     ** values returned by the SELECT are not required.
730     */
731     u8 ecelFlags;
732     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
733       ecelFlags = SQLITE_ECEL_DUP;
734     }else{
735       ecelFlags = 0;
736     }
737     sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags);
738   }
739 
740   /* If the DISTINCT keyword was present on the SELECT statement
741   ** and this row has been seen before, then do not make this row
742   ** part of the result.
743   */
744   if( hasDistinct ){
745     switch( pDistinct->eTnctType ){
746       case WHERE_DISTINCT_ORDERED: {
747         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
748         int iJump;              /* Jump destination */
749         int regPrev;            /* Previous row content */
750 
751         /* Allocate space for the previous row */
752         regPrev = pParse->nMem+1;
753         pParse->nMem += nResultCol;
754 
755         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
756         ** sets the MEM_Cleared bit on the first register of the
757         ** previous value.  This will cause the OP_Ne below to always
758         ** fail on the first iteration of the loop even if the first
759         ** row is all NULLs.
760         */
761         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
762         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
763         pOp->opcode = OP_Null;
764         pOp->p1 = 1;
765         pOp->p2 = regPrev;
766 
767         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
768         for(i=0; i<nResultCol; i++){
769           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
770           if( i<nResultCol-1 ){
771             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
772             VdbeCoverage(v);
773           }else{
774             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
775             VdbeCoverage(v);
776            }
777           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
778           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
779         }
780         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
781         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
782         break;
783       }
784 
785       case WHERE_DISTINCT_UNIQUE: {
786         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
787         break;
788       }
789 
790       default: {
791         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
792         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
793                      regResult);
794         break;
795       }
796     }
797     if( pSort==0 ){
798       codeOffset(v, p->iOffset, iContinue);
799     }
800   }
801 
802   switch( eDest ){
803     /* In this mode, write each query result to the key of the temporary
804     ** table iParm.
805     */
806 #ifndef SQLITE_OMIT_COMPOUND_SELECT
807     case SRT_Union: {
808       int r1;
809       r1 = sqlite3GetTempReg(pParse);
810       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
811       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
812       sqlite3ReleaseTempReg(pParse, r1);
813       break;
814     }
815 
816     /* Construct a record from the query result, but instead of
817     ** saving that record, use it as a key to delete elements from
818     ** the temporary table iParm.
819     */
820     case SRT_Except: {
821       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
822       break;
823     }
824 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
825 
826     /* Store the result as data using a unique key.
827     */
828     case SRT_Fifo:
829     case SRT_DistFifo:
830     case SRT_Table:
831     case SRT_EphemTab: {
832       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
833       testcase( eDest==SRT_Table );
834       testcase( eDest==SRT_EphemTab );
835       testcase( eDest==SRT_Fifo );
836       testcase( eDest==SRT_DistFifo );
837       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
838 #ifndef SQLITE_OMIT_CTE
839       if( eDest==SRT_DistFifo ){
840         /* If the destination is DistFifo, then cursor (iParm+1) is open
841         ** on an ephemeral index. If the current row is already present
842         ** in the index, do not write it to the output. If not, add the
843         ** current row to the index and proceed with writing it to the
844         ** output table as well.  */
845         int addr = sqlite3VdbeCurrentAddr(v) + 4;
846         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
847         VdbeCoverage(v);
848         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
849         assert( pSort==0 );
850       }
851 #endif
852       if( pSort ){
853         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
854       }else{
855         int r2 = sqlite3GetTempReg(pParse);
856         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
857         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
858         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
859         sqlite3ReleaseTempReg(pParse, r2);
860       }
861       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
862       break;
863     }
864 
865 #ifndef SQLITE_OMIT_SUBQUERY
866     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
867     ** then there should be a single item on the stack.  Write this
868     ** item into the set table with bogus data.
869     */
870     case SRT_Set: {
871       if( pSort ){
872         /* At first glance you would think we could optimize out the
873         ** ORDER BY in this case since the order of entries in the set
874         ** does not matter.  But there might be a LIMIT clause, in which
875         ** case the order does matter */
876         pushOntoSorter(
877             pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg);
878       }else{
879         int r1 = sqlite3GetTempReg(pParse);
880         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
881         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
882             r1, pDest->zAffSdst, nResultCol);
883         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
884         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
885         sqlite3ReleaseTempReg(pParse, r1);
886       }
887       break;
888     }
889 
890     /* If any row exist in the result set, record that fact and abort.
891     */
892     case SRT_Exists: {
893       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
894       /* The LIMIT clause will terminate the loop for us */
895       break;
896     }
897 
898     /* If this is a scalar select that is part of an expression, then
899     ** store the results in the appropriate memory cell or array of
900     ** memory cells and break out of the scan loop.
901     */
902     case SRT_Mem: {
903       assert( nResultCol==pDest->nSdst );
904       if( pSort ){
905         pushOntoSorter(
906             pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg);
907       }else{
908         assert( regResult==iParm );
909         /* The LIMIT clause will jump out of the loop for us */
910       }
911       break;
912     }
913 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
914 
915     case SRT_Coroutine:       /* Send data to a co-routine */
916     case SRT_Output: {        /* Return the results */
917       testcase( eDest==SRT_Coroutine );
918       testcase( eDest==SRT_Output );
919       if( pSort ){
920         pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol,
921                        nPrefixReg);
922       }else if( eDest==SRT_Coroutine ){
923         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
924       }else{
925         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
926         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
927       }
928       break;
929     }
930 
931 #ifndef SQLITE_OMIT_CTE
932     /* Write the results into a priority queue that is order according to
933     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
934     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
935     ** pSO->nExpr columns, then make sure all keys are unique by adding a
936     ** final OP_Sequence column.  The last column is the record as a blob.
937     */
938     case SRT_DistQueue:
939     case SRT_Queue: {
940       int nKey;
941       int r1, r2, r3;
942       int addrTest = 0;
943       ExprList *pSO;
944       pSO = pDest->pOrderBy;
945       assert( pSO );
946       nKey = pSO->nExpr;
947       r1 = sqlite3GetTempReg(pParse);
948       r2 = sqlite3GetTempRange(pParse, nKey+2);
949       r3 = r2+nKey+1;
950       if( eDest==SRT_DistQueue ){
951         /* If the destination is DistQueue, then cursor (iParm+1) is open
952         ** on a second ephemeral index that holds all values every previously
953         ** added to the queue. */
954         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
955                                         regResult, nResultCol);
956         VdbeCoverage(v);
957       }
958       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
959       if( eDest==SRT_DistQueue ){
960         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
961         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
962       }
963       for(i=0; i<nKey; i++){
964         sqlite3VdbeAddOp2(v, OP_SCopy,
965                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
966                           r2+i);
967       }
968       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
969       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
970       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
971       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
972       sqlite3ReleaseTempReg(pParse, r1);
973       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
974       break;
975     }
976 #endif /* SQLITE_OMIT_CTE */
977 
978 
979 
980 #if !defined(SQLITE_OMIT_TRIGGER)
981     /* Discard the results.  This is used for SELECT statements inside
982     ** the body of a TRIGGER.  The purpose of such selects is to call
983     ** user-defined functions that have side effects.  We do not care
984     ** about the actual results of the select.
985     */
986     default: {
987       assert( eDest==SRT_Discard );
988       break;
989     }
990 #endif
991   }
992 
993   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
994   ** there is a sorter, in which case the sorter has already limited
995   ** the output for us.
996   */
997   if( pSort==0 && p->iLimit ){
998     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
999   }
1000 }
1001 
1002 /*
1003 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1004 ** X extra columns.
1005 */
1006 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1007   int nExtra = (N+X)*(sizeof(CollSeq*)+1);
1008   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1009   if( p ){
1010     p->aSortOrder = (u8*)&p->aColl[N+X];
1011     p->nField = (u16)N;
1012     p->nXField = (u16)X;
1013     p->enc = ENC(db);
1014     p->db = db;
1015     p->nRef = 1;
1016     memset(&p[1], 0, nExtra);
1017   }else{
1018     sqlite3OomFault(db);
1019   }
1020   return p;
1021 }
1022 
1023 /*
1024 ** Deallocate a KeyInfo object
1025 */
1026 void sqlite3KeyInfoUnref(KeyInfo *p){
1027   if( p ){
1028     assert( p->nRef>0 );
1029     p->nRef--;
1030     if( p->nRef==0 ) sqlite3DbFree(p->db, p);
1031   }
1032 }
1033 
1034 /*
1035 ** Make a new pointer to a KeyInfo object
1036 */
1037 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1038   if( p ){
1039     assert( p->nRef>0 );
1040     p->nRef++;
1041   }
1042   return p;
1043 }
1044 
1045 #ifdef SQLITE_DEBUG
1046 /*
1047 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1048 ** can only be changed if this is just a single reference to the object.
1049 **
1050 ** This routine is used only inside of assert() statements.
1051 */
1052 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1053 #endif /* SQLITE_DEBUG */
1054 
1055 /*
1056 ** Given an expression list, generate a KeyInfo structure that records
1057 ** the collating sequence for each expression in that expression list.
1058 **
1059 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1060 ** KeyInfo structure is appropriate for initializing a virtual index to
1061 ** implement that clause.  If the ExprList is the result set of a SELECT
1062 ** then the KeyInfo structure is appropriate for initializing a virtual
1063 ** index to implement a DISTINCT test.
1064 **
1065 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1066 ** function is responsible for seeing that this structure is eventually
1067 ** freed.
1068 */
1069 static KeyInfo *keyInfoFromExprList(
1070   Parse *pParse,       /* Parsing context */
1071   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1072   int iStart,          /* Begin with this column of pList */
1073   int nExtra           /* Add this many extra columns to the end */
1074 ){
1075   int nExpr;
1076   KeyInfo *pInfo;
1077   struct ExprList_item *pItem;
1078   sqlite3 *db = pParse->db;
1079   int i;
1080 
1081   nExpr = pList->nExpr;
1082   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1083   if( pInfo ){
1084     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1085     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1086       CollSeq *pColl;
1087       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1088       if( !pColl ) pColl = db->pDfltColl;
1089       pInfo->aColl[i-iStart] = pColl;
1090       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1091     }
1092   }
1093   return pInfo;
1094 }
1095 
1096 /*
1097 ** Name of the connection operator, used for error messages.
1098 */
1099 static const char *selectOpName(int id){
1100   char *z;
1101   switch( id ){
1102     case TK_ALL:       z = "UNION ALL";   break;
1103     case TK_INTERSECT: z = "INTERSECT";   break;
1104     case TK_EXCEPT:    z = "EXCEPT";      break;
1105     default:           z = "UNION";       break;
1106   }
1107   return z;
1108 }
1109 
1110 #ifndef SQLITE_OMIT_EXPLAIN
1111 /*
1112 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1113 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1114 ** where the caption is of the form:
1115 **
1116 **   "USE TEMP B-TREE FOR xxx"
1117 **
1118 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1119 ** is determined by the zUsage argument.
1120 */
1121 static void explainTempTable(Parse *pParse, const char *zUsage){
1122   if( pParse->explain==2 ){
1123     Vdbe *v = pParse->pVdbe;
1124     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1125     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1126   }
1127 }
1128 
1129 /*
1130 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1131 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1132 ** in sqlite3Select() to assign values to structure member variables that
1133 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1134 ** code with #ifndef directives.
1135 */
1136 # define explainSetInteger(a, b) a = b
1137 
1138 #else
1139 /* No-op versions of the explainXXX() functions and macros. */
1140 # define explainTempTable(y,z)
1141 # define explainSetInteger(y,z)
1142 #endif
1143 
1144 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1145 /*
1146 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1147 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1148 ** where the caption is of one of the two forms:
1149 **
1150 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1151 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1152 **
1153 ** where iSub1 and iSub2 are the integers passed as the corresponding
1154 ** function parameters, and op is the text representation of the parameter
1155 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1156 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1157 ** false, or the second form if it is true.
1158 */
1159 static void explainComposite(
1160   Parse *pParse,                  /* Parse context */
1161   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1162   int iSub1,                      /* Subquery id 1 */
1163   int iSub2,                      /* Subquery id 2 */
1164   int bUseTmp                     /* True if a temp table was used */
1165 ){
1166   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1167   if( pParse->explain==2 ){
1168     Vdbe *v = pParse->pVdbe;
1169     char *zMsg = sqlite3MPrintf(
1170         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1171         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1172     );
1173     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1174   }
1175 }
1176 #else
1177 /* No-op versions of the explainXXX() functions and macros. */
1178 # define explainComposite(v,w,x,y,z)
1179 #endif
1180 
1181 /*
1182 ** If the inner loop was generated using a non-null pOrderBy argument,
1183 ** then the results were placed in a sorter.  After the loop is terminated
1184 ** we need to run the sorter and output the results.  The following
1185 ** routine generates the code needed to do that.
1186 */
1187 static void generateSortTail(
1188   Parse *pParse,    /* Parsing context */
1189   Select *p,        /* The SELECT statement */
1190   SortCtx *pSort,   /* Information on the ORDER BY clause */
1191   int nColumn,      /* Number of columns of data */
1192   SelectDest *pDest /* Write the sorted results here */
1193 ){
1194   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1195   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1196   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1197   int addr;
1198   int addrOnce = 0;
1199   int iTab;
1200   ExprList *pOrderBy = pSort->pOrderBy;
1201   int eDest = pDest->eDest;
1202   int iParm = pDest->iSDParm;
1203   int regRow;
1204   int regRowid;
1205   int nKey;
1206   int iSortTab;                   /* Sorter cursor to read from */
1207   int nSortData;                  /* Trailing values to read from sorter */
1208   int i;
1209   int bSeq;                       /* True if sorter record includes seq. no. */
1210 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1211   struct ExprList_item *aOutEx = p->pEList->a;
1212 #endif
1213 
1214   assert( addrBreak<0 );
1215   if( pSort->labelBkOut ){
1216     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1217     sqlite3VdbeGoto(v, addrBreak);
1218     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1219   }
1220   iTab = pSort->iECursor;
1221   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1222     regRowid = 0;
1223     regRow = pDest->iSdst;
1224     nSortData = nColumn;
1225   }else{
1226     regRowid = sqlite3GetTempReg(pParse);
1227     regRow = sqlite3GetTempRange(pParse, nColumn);
1228     nSortData = nColumn;
1229   }
1230   nKey = pOrderBy->nExpr - pSort->nOBSat;
1231   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1232     int regSortOut = ++pParse->nMem;
1233     iSortTab = pParse->nTab++;
1234     if( pSort->labelBkOut ){
1235       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1236     }
1237     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1238     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1239     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1240     VdbeCoverage(v);
1241     codeOffset(v, p->iOffset, addrContinue);
1242     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1243     bSeq = 0;
1244   }else{
1245     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1246     codeOffset(v, p->iOffset, addrContinue);
1247     iSortTab = iTab;
1248     bSeq = 1;
1249   }
1250   for(i=0; i<nSortData; i++){
1251     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1252     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1253   }
1254   switch( eDest ){
1255     case SRT_EphemTab: {
1256       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1257       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1258       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1259       break;
1260     }
1261 #ifndef SQLITE_OMIT_SUBQUERY
1262     case SRT_Set: {
1263       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1264       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1265                         pDest->zAffSdst, nColumn);
1266       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1267       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1268       break;
1269     }
1270     case SRT_Mem: {
1271       /* The LIMIT clause will terminate the loop for us */
1272       break;
1273     }
1274 #endif
1275     default: {
1276       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1277       testcase( eDest==SRT_Output );
1278       testcase( eDest==SRT_Coroutine );
1279       if( eDest==SRT_Output ){
1280         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1281         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1282       }else{
1283         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1284       }
1285       break;
1286     }
1287   }
1288   if( regRowid ){
1289     if( eDest==SRT_Set ){
1290       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1291     }else{
1292       sqlite3ReleaseTempReg(pParse, regRow);
1293     }
1294     sqlite3ReleaseTempReg(pParse, regRowid);
1295   }
1296   /* The bottom of the loop
1297   */
1298   sqlite3VdbeResolveLabel(v, addrContinue);
1299   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1300     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1301   }else{
1302     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1303   }
1304   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1305   sqlite3VdbeResolveLabel(v, addrBreak);
1306 }
1307 
1308 /*
1309 ** Return a pointer to a string containing the 'declaration type' of the
1310 ** expression pExpr. The string may be treated as static by the caller.
1311 **
1312 ** Also try to estimate the size of the returned value and return that
1313 ** result in *pEstWidth.
1314 **
1315 ** The declaration type is the exact datatype definition extracted from the
1316 ** original CREATE TABLE statement if the expression is a column. The
1317 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1318 ** is considered a column can be complex in the presence of subqueries. The
1319 ** result-set expression in all of the following SELECT statements is
1320 ** considered a column by this function.
1321 **
1322 **   SELECT col FROM tbl;
1323 **   SELECT (SELECT col FROM tbl;
1324 **   SELECT (SELECT col FROM tbl);
1325 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1326 **
1327 ** The declaration type for any expression other than a column is NULL.
1328 **
1329 ** This routine has either 3 or 6 parameters depending on whether or not
1330 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1331 */
1332 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1333 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1334 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1335 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1336 #endif
1337 static const char *columnTypeImpl(
1338   NameContext *pNC,
1339   Expr *pExpr,
1340 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1341   const char **pzOrigDb,
1342   const char **pzOrigTab,
1343   const char **pzOrigCol,
1344 #endif
1345   u8 *pEstWidth
1346 ){
1347   char const *zType = 0;
1348   int j;
1349   u8 estWidth = 1;
1350 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1351   char const *zOrigDb = 0;
1352   char const *zOrigTab = 0;
1353   char const *zOrigCol = 0;
1354 #endif
1355 
1356   assert( pExpr!=0 );
1357   assert( pNC->pSrcList!=0 );
1358   switch( pExpr->op ){
1359     case TK_AGG_COLUMN:
1360     case TK_COLUMN: {
1361       /* The expression is a column. Locate the table the column is being
1362       ** extracted from in NameContext.pSrcList. This table may be real
1363       ** database table or a subquery.
1364       */
1365       Table *pTab = 0;            /* Table structure column is extracted from */
1366       Select *pS = 0;             /* Select the column is extracted from */
1367       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1368       testcase( pExpr->op==TK_AGG_COLUMN );
1369       testcase( pExpr->op==TK_COLUMN );
1370       while( pNC && !pTab ){
1371         SrcList *pTabList = pNC->pSrcList;
1372         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1373         if( j<pTabList->nSrc ){
1374           pTab = pTabList->a[j].pTab;
1375           pS = pTabList->a[j].pSelect;
1376         }else{
1377           pNC = pNC->pNext;
1378         }
1379       }
1380 
1381       if( pTab==0 ){
1382         /* At one time, code such as "SELECT new.x" within a trigger would
1383         ** cause this condition to run.  Since then, we have restructured how
1384         ** trigger code is generated and so this condition is no longer
1385         ** possible. However, it can still be true for statements like
1386         ** the following:
1387         **
1388         **   CREATE TABLE t1(col INTEGER);
1389         **   SELECT (SELECT t1.col) FROM FROM t1;
1390         **
1391         ** when columnType() is called on the expression "t1.col" in the
1392         ** sub-select. In this case, set the column type to NULL, even
1393         ** though it should really be "INTEGER".
1394         **
1395         ** This is not a problem, as the column type of "t1.col" is never
1396         ** used. When columnType() is called on the expression
1397         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1398         ** branch below.  */
1399         break;
1400       }
1401 
1402       assert( pTab && pExpr->pTab==pTab );
1403       if( pS ){
1404         /* The "table" is actually a sub-select or a view in the FROM clause
1405         ** of the SELECT statement. Return the declaration type and origin
1406         ** data for the result-set column of the sub-select.
1407         */
1408         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1409           /* If iCol is less than zero, then the expression requests the
1410           ** rowid of the sub-select or view. This expression is legal (see
1411           ** test case misc2.2.2) - it always evaluates to NULL.
1412           **
1413           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1414           ** caught already by name resolution.
1415           */
1416           NameContext sNC;
1417           Expr *p = pS->pEList->a[iCol].pExpr;
1418           sNC.pSrcList = pS->pSrc;
1419           sNC.pNext = pNC;
1420           sNC.pParse = pNC->pParse;
1421           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1422         }
1423       }else if( pTab->pSchema ){
1424         /* A real table */
1425         assert( !pS );
1426         if( iCol<0 ) iCol = pTab->iPKey;
1427         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1428 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1429         if( iCol<0 ){
1430           zType = "INTEGER";
1431           zOrigCol = "rowid";
1432         }else{
1433           zOrigCol = pTab->aCol[iCol].zName;
1434           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1435           estWidth = pTab->aCol[iCol].szEst;
1436         }
1437         zOrigTab = pTab->zName;
1438         if( pNC->pParse ){
1439           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1440           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1441         }
1442 #else
1443         if( iCol<0 ){
1444           zType = "INTEGER";
1445         }else{
1446           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1447           estWidth = pTab->aCol[iCol].szEst;
1448         }
1449 #endif
1450       }
1451       break;
1452     }
1453 #ifndef SQLITE_OMIT_SUBQUERY
1454     case TK_SELECT: {
1455       /* The expression is a sub-select. Return the declaration type and
1456       ** origin info for the single column in the result set of the SELECT
1457       ** statement.
1458       */
1459       NameContext sNC;
1460       Select *pS = pExpr->x.pSelect;
1461       Expr *p = pS->pEList->a[0].pExpr;
1462       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1463       sNC.pSrcList = pS->pSrc;
1464       sNC.pNext = pNC;
1465       sNC.pParse = pNC->pParse;
1466       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1467       break;
1468     }
1469 #endif
1470   }
1471 
1472 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1473   if( pzOrigDb ){
1474     assert( pzOrigTab && pzOrigCol );
1475     *pzOrigDb = zOrigDb;
1476     *pzOrigTab = zOrigTab;
1477     *pzOrigCol = zOrigCol;
1478   }
1479 #endif
1480   if( pEstWidth ) *pEstWidth = estWidth;
1481   return zType;
1482 }
1483 
1484 /*
1485 ** Generate code that will tell the VDBE the declaration types of columns
1486 ** in the result set.
1487 */
1488 static void generateColumnTypes(
1489   Parse *pParse,      /* Parser context */
1490   SrcList *pTabList,  /* List of tables */
1491   ExprList *pEList    /* Expressions defining the result set */
1492 ){
1493 #ifndef SQLITE_OMIT_DECLTYPE
1494   Vdbe *v = pParse->pVdbe;
1495   int i;
1496   NameContext sNC;
1497   sNC.pSrcList = pTabList;
1498   sNC.pParse = pParse;
1499   for(i=0; i<pEList->nExpr; i++){
1500     Expr *p = pEList->a[i].pExpr;
1501     const char *zType;
1502 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1503     const char *zOrigDb = 0;
1504     const char *zOrigTab = 0;
1505     const char *zOrigCol = 0;
1506     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1507 
1508     /* The vdbe must make its own copy of the column-type and other
1509     ** column specific strings, in case the schema is reset before this
1510     ** virtual machine is deleted.
1511     */
1512     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1513     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1514     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1515 #else
1516     zType = columnType(&sNC, p, 0, 0, 0, 0);
1517 #endif
1518     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1519   }
1520 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1521 }
1522 
1523 /*
1524 ** Generate code that will tell the VDBE the names of columns
1525 ** in the result set.  This information is used to provide the
1526 ** azCol[] values in the callback.
1527 */
1528 static void generateColumnNames(
1529   Parse *pParse,      /* Parser context */
1530   SrcList *pTabList,  /* List of tables */
1531   ExprList *pEList    /* Expressions defining the result set */
1532 ){
1533   Vdbe *v = pParse->pVdbe;
1534   int i, j;
1535   sqlite3 *db = pParse->db;
1536   int fullNames, shortNames;
1537 
1538 #ifndef SQLITE_OMIT_EXPLAIN
1539   /* If this is an EXPLAIN, skip this step */
1540   if( pParse->explain ){
1541     return;
1542   }
1543 #endif
1544 
1545   if( pParse->colNamesSet || db->mallocFailed ) return;
1546   assert( v!=0 );
1547   assert( pTabList!=0 );
1548   pParse->colNamesSet = 1;
1549   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1550   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1551   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1552   for(i=0; i<pEList->nExpr; i++){
1553     Expr *p;
1554     p = pEList->a[i].pExpr;
1555     if( NEVER(p==0) ) continue;
1556     if( pEList->a[i].zName ){
1557       char *zName = pEList->a[i].zName;
1558       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1559     }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
1560       Table *pTab;
1561       char *zCol;
1562       int iCol = p->iColumn;
1563       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1564         if( pTabList->a[j].iCursor==p->iTable ) break;
1565       }
1566       assert( j<pTabList->nSrc );
1567       pTab = pTabList->a[j].pTab;
1568       if( iCol<0 ) iCol = pTab->iPKey;
1569       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1570       if( iCol<0 ){
1571         zCol = "rowid";
1572       }else{
1573         zCol = pTab->aCol[iCol].zName;
1574       }
1575       if( !shortNames && !fullNames ){
1576         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1577             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1578       }else if( fullNames ){
1579         char *zName = 0;
1580         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1581         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1582       }else{
1583         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1584       }
1585     }else{
1586       const char *z = pEList->a[i].zSpan;
1587       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1588       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1589     }
1590   }
1591   generateColumnTypes(pParse, pTabList, pEList);
1592 }
1593 
1594 /*
1595 ** Given an expression list (which is really the list of expressions
1596 ** that form the result set of a SELECT statement) compute appropriate
1597 ** column names for a table that would hold the expression list.
1598 **
1599 ** All column names will be unique.
1600 **
1601 ** Only the column names are computed.  Column.zType, Column.zColl,
1602 ** and other fields of Column are zeroed.
1603 **
1604 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1605 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1606 */
1607 int sqlite3ColumnsFromExprList(
1608   Parse *pParse,          /* Parsing context */
1609   ExprList *pEList,       /* Expr list from which to derive column names */
1610   i16 *pnCol,             /* Write the number of columns here */
1611   Column **paCol          /* Write the new column list here */
1612 ){
1613   sqlite3 *db = pParse->db;   /* Database connection */
1614   int i, j;                   /* Loop counters */
1615   u32 cnt;                    /* Index added to make the name unique */
1616   Column *aCol, *pCol;        /* For looping over result columns */
1617   int nCol;                   /* Number of columns in the result set */
1618   Expr *p;                    /* Expression for a single result column */
1619   char *zName;                /* Column name */
1620   int nName;                  /* Size of name in zName[] */
1621   Hash ht;                    /* Hash table of column names */
1622 
1623   sqlite3HashInit(&ht);
1624   if( pEList ){
1625     nCol = pEList->nExpr;
1626     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1627     testcase( aCol==0 );
1628   }else{
1629     nCol = 0;
1630     aCol = 0;
1631   }
1632   assert( nCol==(i16)nCol );
1633   *pnCol = nCol;
1634   *paCol = aCol;
1635 
1636   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1637     /* Get an appropriate name for the column
1638     */
1639     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1640     if( (zName = pEList->a[i].zName)!=0 ){
1641       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1642     }else{
1643       Expr *pColExpr = p;  /* The expression that is the result column name */
1644       Table *pTab;         /* Table associated with this expression */
1645       while( pColExpr->op==TK_DOT ){
1646         pColExpr = pColExpr->pRight;
1647         assert( pColExpr!=0 );
1648       }
1649       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1650         /* For columns use the column name name */
1651         int iCol = pColExpr->iColumn;
1652         pTab = pColExpr->pTab;
1653         if( iCol<0 ) iCol = pTab->iPKey;
1654         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1655       }else if( pColExpr->op==TK_ID ){
1656         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1657         zName = pColExpr->u.zToken;
1658       }else{
1659         /* Use the original text of the column expression as its name */
1660         zName = pEList->a[i].zSpan;
1661       }
1662     }
1663     zName = sqlite3MPrintf(db, "%s", zName);
1664 
1665     /* Make sure the column name is unique.  If the name is not unique,
1666     ** append an integer to the name so that it becomes unique.
1667     */
1668     cnt = 0;
1669     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1670       nName = sqlite3Strlen30(zName);
1671       if( nName>0 ){
1672         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1673         if( zName[j]==':' ) nName = j;
1674       }
1675       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1676       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1677     }
1678     pCol->zName = zName;
1679     sqlite3ColumnPropertiesFromName(0, pCol);
1680     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1681       sqlite3OomFault(db);
1682     }
1683   }
1684   sqlite3HashClear(&ht);
1685   if( db->mallocFailed ){
1686     for(j=0; j<i; j++){
1687       sqlite3DbFree(db, aCol[j].zName);
1688     }
1689     sqlite3DbFree(db, aCol);
1690     *paCol = 0;
1691     *pnCol = 0;
1692     return SQLITE_NOMEM_BKPT;
1693   }
1694   return SQLITE_OK;
1695 }
1696 
1697 /*
1698 ** Add type and collation information to a column list based on
1699 ** a SELECT statement.
1700 **
1701 ** The column list presumably came from selectColumnNamesFromExprList().
1702 ** The column list has only names, not types or collations.  This
1703 ** routine goes through and adds the types and collations.
1704 **
1705 ** This routine requires that all identifiers in the SELECT
1706 ** statement be resolved.
1707 */
1708 void sqlite3SelectAddColumnTypeAndCollation(
1709   Parse *pParse,        /* Parsing contexts */
1710   Table *pTab,          /* Add column type information to this table */
1711   Select *pSelect       /* SELECT used to determine types and collations */
1712 ){
1713   sqlite3 *db = pParse->db;
1714   NameContext sNC;
1715   Column *pCol;
1716   CollSeq *pColl;
1717   int i;
1718   Expr *p;
1719   struct ExprList_item *a;
1720   u64 szAll = 0;
1721 
1722   assert( pSelect!=0 );
1723   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1724   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1725   if( db->mallocFailed ) return;
1726   memset(&sNC, 0, sizeof(sNC));
1727   sNC.pSrcList = pSelect->pSrc;
1728   a = pSelect->pEList->a;
1729   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1730     const char *zType;
1731     int n, m;
1732     p = a[i].pExpr;
1733     zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1734     szAll += pCol->szEst;
1735     pCol->affinity = sqlite3ExprAffinity(p);
1736     if( zType && (m = sqlite3Strlen30(zType))>0 ){
1737       n = sqlite3Strlen30(pCol->zName);
1738       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1739       if( pCol->zName ){
1740         memcpy(&pCol->zName[n+1], zType, m+1);
1741         pCol->colFlags |= COLFLAG_HASTYPE;
1742       }
1743     }
1744     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1745     pColl = sqlite3ExprCollSeq(pParse, p);
1746     if( pColl && pCol->zColl==0 ){
1747       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1748     }
1749   }
1750   pTab->szTabRow = sqlite3LogEst(szAll*4);
1751 }
1752 
1753 /*
1754 ** Given a SELECT statement, generate a Table structure that describes
1755 ** the result set of that SELECT.
1756 */
1757 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1758   Table *pTab;
1759   sqlite3 *db = pParse->db;
1760   int savedFlags;
1761 
1762   savedFlags = db->flags;
1763   db->flags &= ~SQLITE_FullColNames;
1764   db->flags |= SQLITE_ShortColNames;
1765   sqlite3SelectPrep(pParse, pSelect, 0);
1766   if( pParse->nErr ) return 0;
1767   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1768   db->flags = savedFlags;
1769   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1770   if( pTab==0 ){
1771     return 0;
1772   }
1773   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1774   ** is disabled */
1775   assert( db->lookaside.bDisable );
1776   pTab->nRef = 1;
1777   pTab->zName = 0;
1778   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1779   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1780   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1781   pTab->iPKey = -1;
1782   if( db->mallocFailed ){
1783     sqlite3DeleteTable(db, pTab);
1784     return 0;
1785   }
1786   return pTab;
1787 }
1788 
1789 /*
1790 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1791 ** If an error occurs, return NULL and leave a message in pParse.
1792 */
1793 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1794   Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1795   if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1);
1796   if( pParse->pToplevel==0
1797    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1798   ){
1799     pParse->okConstFactor = 1;
1800   }
1801   return v;
1802 }
1803 Vdbe *sqlite3GetVdbe(Parse *pParse){
1804   Vdbe *v = pParse->pVdbe;
1805   return v ? v : allocVdbe(pParse);
1806 }
1807 
1808 
1809 /*
1810 ** Compute the iLimit and iOffset fields of the SELECT based on the
1811 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1812 ** that appear in the original SQL statement after the LIMIT and OFFSET
1813 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1814 ** are the integer memory register numbers for counters used to compute
1815 ** the limit and offset.  If there is no limit and/or offset, then
1816 ** iLimit and iOffset are negative.
1817 **
1818 ** This routine changes the values of iLimit and iOffset only if
1819 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1820 ** iOffset should have been preset to appropriate default values (zero)
1821 ** prior to calling this routine.
1822 **
1823 ** The iOffset register (if it exists) is initialized to the value
1824 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1825 ** iOffset+1 is initialized to LIMIT+OFFSET.
1826 **
1827 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1828 ** redefined.  The UNION ALL operator uses this property to force
1829 ** the reuse of the same limit and offset registers across multiple
1830 ** SELECT statements.
1831 */
1832 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1833   Vdbe *v = 0;
1834   int iLimit = 0;
1835   int iOffset;
1836   int n;
1837   if( p->iLimit ) return;
1838 
1839   /*
1840   ** "LIMIT -1" always shows all rows.  There is some
1841   ** controversy about what the correct behavior should be.
1842   ** The current implementation interprets "LIMIT 0" to mean
1843   ** no rows.
1844   */
1845   sqlite3ExprCacheClear(pParse);
1846   assert( p->pOffset==0 || p->pLimit!=0 );
1847   if( p->pLimit ){
1848     p->iLimit = iLimit = ++pParse->nMem;
1849     v = sqlite3GetVdbe(pParse);
1850     assert( v!=0 );
1851     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1852       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1853       VdbeComment((v, "LIMIT counter"));
1854       if( n==0 ){
1855         sqlite3VdbeGoto(v, iBreak);
1856       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1857         p->nSelectRow = sqlite3LogEst((u64)n);
1858         p->selFlags |= SF_FixedLimit;
1859       }
1860     }else{
1861       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1862       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1863       VdbeComment((v, "LIMIT counter"));
1864       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1865     }
1866     if( p->pOffset ){
1867       p->iOffset = iOffset = ++pParse->nMem;
1868       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1869       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1870       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1871       VdbeComment((v, "OFFSET counter"));
1872       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1873       VdbeComment((v, "LIMIT+OFFSET"));
1874     }
1875   }
1876 }
1877 
1878 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1879 /*
1880 ** Return the appropriate collating sequence for the iCol-th column of
1881 ** the result set for the compound-select statement "p".  Return NULL if
1882 ** the column has no default collating sequence.
1883 **
1884 ** The collating sequence for the compound select is taken from the
1885 ** left-most term of the select that has a collating sequence.
1886 */
1887 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1888   CollSeq *pRet;
1889   if( p->pPrior ){
1890     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1891   }else{
1892     pRet = 0;
1893   }
1894   assert( iCol>=0 );
1895   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1896   ** have been thrown during name resolution and we would not have gotten
1897   ** this far */
1898   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1899     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1900   }
1901   return pRet;
1902 }
1903 
1904 /*
1905 ** The select statement passed as the second parameter is a compound SELECT
1906 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1907 ** structure suitable for implementing the ORDER BY.
1908 **
1909 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1910 ** function is responsible for ensuring that this structure is eventually
1911 ** freed.
1912 */
1913 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1914   ExprList *pOrderBy = p->pOrderBy;
1915   int nOrderBy = p->pOrderBy->nExpr;
1916   sqlite3 *db = pParse->db;
1917   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1918   if( pRet ){
1919     int i;
1920     for(i=0; i<nOrderBy; i++){
1921       struct ExprList_item *pItem = &pOrderBy->a[i];
1922       Expr *pTerm = pItem->pExpr;
1923       CollSeq *pColl;
1924 
1925       if( pTerm->flags & EP_Collate ){
1926         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1927       }else{
1928         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1929         if( pColl==0 ) pColl = db->pDfltColl;
1930         pOrderBy->a[i].pExpr =
1931           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1932       }
1933       assert( sqlite3KeyInfoIsWriteable(pRet) );
1934       pRet->aColl[i] = pColl;
1935       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1936     }
1937   }
1938 
1939   return pRet;
1940 }
1941 
1942 #ifndef SQLITE_OMIT_CTE
1943 /*
1944 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1945 ** query of the form:
1946 **
1947 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1948 **                         \___________/             \_______________/
1949 **                           p->pPrior                      p
1950 **
1951 **
1952 ** There is exactly one reference to the recursive-table in the FROM clause
1953 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1954 **
1955 ** The setup-query runs once to generate an initial set of rows that go
1956 ** into a Queue table.  Rows are extracted from the Queue table one by
1957 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1958 ** extracted row (now in the iCurrent table) becomes the content of the
1959 ** recursive-table for a recursive-query run.  The output of the recursive-query
1960 ** is added back into the Queue table.  Then another row is extracted from Queue
1961 ** and the iteration continues until the Queue table is empty.
1962 **
1963 ** If the compound query operator is UNION then no duplicate rows are ever
1964 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1965 ** that have ever been inserted into Queue and causes duplicates to be
1966 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1967 **
1968 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1969 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1970 ** an ORDER BY, the Queue table is just a FIFO.
1971 **
1972 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1973 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1974 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1975 ** with a positive value, then the first OFFSET outputs are discarded rather
1976 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1977 ** rows have been skipped.
1978 */
1979 static void generateWithRecursiveQuery(
1980   Parse *pParse,        /* Parsing context */
1981   Select *p,            /* The recursive SELECT to be coded */
1982   SelectDest *pDest     /* What to do with query results */
1983 ){
1984   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1985   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1986   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1987   Select *pSetup = p->pPrior;   /* The setup query */
1988   int addrTop;                  /* Top of the loop */
1989   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1990   int iCurrent = 0;             /* The Current table */
1991   int regCurrent;               /* Register holding Current table */
1992   int iQueue;                   /* The Queue table */
1993   int iDistinct = 0;            /* To ensure unique results if UNION */
1994   int eDest = SRT_Fifo;         /* How to write to Queue */
1995   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1996   int i;                        /* Loop counter */
1997   int rc;                       /* Result code */
1998   ExprList *pOrderBy;           /* The ORDER BY clause */
1999   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
2000   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2001 
2002   /* Obtain authorization to do a recursive query */
2003   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2004 
2005   /* Process the LIMIT and OFFSET clauses, if they exist */
2006   addrBreak = sqlite3VdbeMakeLabel(v);
2007   computeLimitRegisters(pParse, p, addrBreak);
2008   pLimit = p->pLimit;
2009   pOffset = p->pOffset;
2010   regLimit = p->iLimit;
2011   regOffset = p->iOffset;
2012   p->pLimit = p->pOffset = 0;
2013   p->iLimit = p->iOffset = 0;
2014   pOrderBy = p->pOrderBy;
2015 
2016   /* Locate the cursor number of the Current table */
2017   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2018     if( pSrc->a[i].fg.isRecursive ){
2019       iCurrent = pSrc->a[i].iCursor;
2020       break;
2021     }
2022   }
2023 
2024   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2025   ** the Distinct table must be exactly one greater than Queue in order
2026   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2027   iQueue = pParse->nTab++;
2028   if( p->op==TK_UNION ){
2029     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2030     iDistinct = pParse->nTab++;
2031   }else{
2032     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2033   }
2034   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2035 
2036   /* Allocate cursors for Current, Queue, and Distinct. */
2037   regCurrent = ++pParse->nMem;
2038   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2039   if( pOrderBy ){
2040     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2041     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2042                       (char*)pKeyInfo, P4_KEYINFO);
2043     destQueue.pOrderBy = pOrderBy;
2044   }else{
2045     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2046   }
2047   VdbeComment((v, "Queue table"));
2048   if( iDistinct ){
2049     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2050     p->selFlags |= SF_UsesEphemeral;
2051   }
2052 
2053   /* Detach the ORDER BY clause from the compound SELECT */
2054   p->pOrderBy = 0;
2055 
2056   /* Store the results of the setup-query in Queue. */
2057   pSetup->pNext = 0;
2058   rc = sqlite3Select(pParse, pSetup, &destQueue);
2059   pSetup->pNext = p;
2060   if( rc ) goto end_of_recursive_query;
2061 
2062   /* Find the next row in the Queue and output that row */
2063   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2064 
2065   /* Transfer the next row in Queue over to Current */
2066   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2067   if( pOrderBy ){
2068     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2069   }else{
2070     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2071   }
2072   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2073 
2074   /* Output the single row in Current */
2075   addrCont = sqlite3VdbeMakeLabel(v);
2076   codeOffset(v, regOffset, addrCont);
2077   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2078       0, 0, pDest, addrCont, addrBreak);
2079   if( regLimit ){
2080     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2081     VdbeCoverage(v);
2082   }
2083   sqlite3VdbeResolveLabel(v, addrCont);
2084 
2085   /* Execute the recursive SELECT taking the single row in Current as
2086   ** the value for the recursive-table. Store the results in the Queue.
2087   */
2088   if( p->selFlags & SF_Aggregate ){
2089     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2090   }else{
2091     p->pPrior = 0;
2092     sqlite3Select(pParse, p, &destQueue);
2093     assert( p->pPrior==0 );
2094     p->pPrior = pSetup;
2095   }
2096 
2097   /* Keep running the loop until the Queue is empty */
2098   sqlite3VdbeGoto(v, addrTop);
2099   sqlite3VdbeResolveLabel(v, addrBreak);
2100 
2101 end_of_recursive_query:
2102   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2103   p->pOrderBy = pOrderBy;
2104   p->pLimit = pLimit;
2105   p->pOffset = pOffset;
2106   return;
2107 }
2108 #endif /* SQLITE_OMIT_CTE */
2109 
2110 /* Forward references */
2111 static int multiSelectOrderBy(
2112   Parse *pParse,        /* Parsing context */
2113   Select *p,            /* The right-most of SELECTs to be coded */
2114   SelectDest *pDest     /* What to do with query results */
2115 );
2116 
2117 /*
2118 ** Handle the special case of a compound-select that originates from a
2119 ** VALUES clause.  By handling this as a special case, we avoid deep
2120 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2121 ** on a VALUES clause.
2122 **
2123 ** Because the Select object originates from a VALUES clause:
2124 **   (1) It has no LIMIT or OFFSET
2125 **   (2) All terms are UNION ALL
2126 **   (3) There is no ORDER BY clause
2127 */
2128 static int multiSelectValues(
2129   Parse *pParse,        /* Parsing context */
2130   Select *p,            /* The right-most of SELECTs to be coded */
2131   SelectDest *pDest     /* What to do with query results */
2132 ){
2133   Select *pPrior;
2134   int nRow = 1;
2135   int rc = 0;
2136   assert( p->selFlags & SF_MultiValue );
2137   do{
2138     assert( p->selFlags & SF_Values );
2139     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2140     assert( p->pLimit==0 );
2141     assert( p->pOffset==0 );
2142     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2143     if( p->pPrior==0 ) break;
2144     assert( p->pPrior->pNext==p );
2145     p = p->pPrior;
2146     nRow++;
2147   }while(1);
2148   while( p ){
2149     pPrior = p->pPrior;
2150     p->pPrior = 0;
2151     rc = sqlite3Select(pParse, p, pDest);
2152     p->pPrior = pPrior;
2153     if( rc ) break;
2154     p->nSelectRow = nRow;
2155     p = p->pNext;
2156   }
2157   return rc;
2158 }
2159 
2160 /*
2161 ** This routine is called to process a compound query form from
2162 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2163 ** INTERSECT
2164 **
2165 ** "p" points to the right-most of the two queries.  the query on the
2166 ** left is p->pPrior.  The left query could also be a compound query
2167 ** in which case this routine will be called recursively.
2168 **
2169 ** The results of the total query are to be written into a destination
2170 ** of type eDest with parameter iParm.
2171 **
2172 ** Example 1:  Consider a three-way compound SQL statement.
2173 **
2174 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2175 **
2176 ** This statement is parsed up as follows:
2177 **
2178 **     SELECT c FROM t3
2179 **      |
2180 **      `----->  SELECT b FROM t2
2181 **                |
2182 **                `------>  SELECT a FROM t1
2183 **
2184 ** The arrows in the diagram above represent the Select.pPrior pointer.
2185 ** So if this routine is called with p equal to the t3 query, then
2186 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2187 **
2188 ** Notice that because of the way SQLite parses compound SELECTs, the
2189 ** individual selects always group from left to right.
2190 */
2191 static int multiSelect(
2192   Parse *pParse,        /* Parsing context */
2193   Select *p,            /* The right-most of SELECTs to be coded */
2194   SelectDest *pDest     /* What to do with query results */
2195 ){
2196   int rc = SQLITE_OK;   /* Success code from a subroutine */
2197   Select *pPrior;       /* Another SELECT immediately to our left */
2198   Vdbe *v;              /* Generate code to this VDBE */
2199   SelectDest dest;      /* Alternative data destination */
2200   Select *pDelete = 0;  /* Chain of simple selects to delete */
2201   sqlite3 *db;          /* Database connection */
2202 #ifndef SQLITE_OMIT_EXPLAIN
2203   int iSub1 = 0;        /* EQP id of left-hand query */
2204   int iSub2 = 0;        /* EQP id of right-hand query */
2205 #endif
2206 
2207   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2208   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2209   */
2210   assert( p && p->pPrior );  /* Calling function guarantees this much */
2211   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2212   db = pParse->db;
2213   pPrior = p->pPrior;
2214   dest = *pDest;
2215   if( pPrior->pOrderBy ){
2216     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2217       selectOpName(p->op));
2218     rc = 1;
2219     goto multi_select_end;
2220   }
2221   if( pPrior->pLimit ){
2222     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2223       selectOpName(p->op));
2224     rc = 1;
2225     goto multi_select_end;
2226   }
2227 
2228   v = sqlite3GetVdbe(pParse);
2229   assert( v!=0 );  /* The VDBE already created by calling function */
2230 
2231   /* Create the destination temporary table if necessary
2232   */
2233   if( dest.eDest==SRT_EphemTab ){
2234     assert( p->pEList );
2235     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2236     dest.eDest = SRT_Table;
2237   }
2238 
2239   /* Special handling for a compound-select that originates as a VALUES clause.
2240   */
2241   if( p->selFlags & SF_MultiValue ){
2242     rc = multiSelectValues(pParse, p, &dest);
2243     goto multi_select_end;
2244   }
2245 
2246   /* Make sure all SELECTs in the statement have the same number of elements
2247   ** in their result sets.
2248   */
2249   assert( p->pEList && pPrior->pEList );
2250   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2251 
2252 #ifndef SQLITE_OMIT_CTE
2253   if( p->selFlags & SF_Recursive ){
2254     generateWithRecursiveQuery(pParse, p, &dest);
2255   }else
2256 #endif
2257 
2258   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2259   */
2260   if( p->pOrderBy ){
2261     return multiSelectOrderBy(pParse, p, pDest);
2262   }else
2263 
2264   /* Generate code for the left and right SELECT statements.
2265   */
2266   switch( p->op ){
2267     case TK_ALL: {
2268       int addr = 0;
2269       int nLimit;
2270       assert( !pPrior->pLimit );
2271       pPrior->iLimit = p->iLimit;
2272       pPrior->iOffset = p->iOffset;
2273       pPrior->pLimit = p->pLimit;
2274       pPrior->pOffset = p->pOffset;
2275       explainSetInteger(iSub1, pParse->iNextSelectId);
2276       rc = sqlite3Select(pParse, pPrior, &dest);
2277       p->pLimit = 0;
2278       p->pOffset = 0;
2279       if( rc ){
2280         goto multi_select_end;
2281       }
2282       p->pPrior = 0;
2283       p->iLimit = pPrior->iLimit;
2284       p->iOffset = pPrior->iOffset;
2285       if( p->iLimit ){
2286         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2287         VdbeComment((v, "Jump ahead if LIMIT reached"));
2288         if( p->iOffset ){
2289           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2290                             p->iLimit, p->iOffset+1, p->iOffset);
2291         }
2292       }
2293       explainSetInteger(iSub2, pParse->iNextSelectId);
2294       rc = sqlite3Select(pParse, p, &dest);
2295       testcase( rc!=SQLITE_OK );
2296       pDelete = p->pPrior;
2297       p->pPrior = pPrior;
2298       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2299       if( pPrior->pLimit
2300        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2301        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2302       ){
2303         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2304       }
2305       if( addr ){
2306         sqlite3VdbeJumpHere(v, addr);
2307       }
2308       break;
2309     }
2310     case TK_EXCEPT:
2311     case TK_UNION: {
2312       int unionTab;    /* Cursor number of the temporary table holding result */
2313       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2314       int priorOp;     /* The SRT_ operation to apply to prior selects */
2315       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2316       int addr;
2317       SelectDest uniondest;
2318 
2319       testcase( p->op==TK_EXCEPT );
2320       testcase( p->op==TK_UNION );
2321       priorOp = SRT_Union;
2322       if( dest.eDest==priorOp ){
2323         /* We can reuse a temporary table generated by a SELECT to our
2324         ** right.
2325         */
2326         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2327         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2328         unionTab = dest.iSDParm;
2329       }else{
2330         /* We will need to create our own temporary table to hold the
2331         ** intermediate results.
2332         */
2333         unionTab = pParse->nTab++;
2334         assert( p->pOrderBy==0 );
2335         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2336         assert( p->addrOpenEphm[0] == -1 );
2337         p->addrOpenEphm[0] = addr;
2338         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2339         assert( p->pEList );
2340       }
2341 
2342       /* Code the SELECT statements to our left
2343       */
2344       assert( !pPrior->pOrderBy );
2345       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2346       explainSetInteger(iSub1, pParse->iNextSelectId);
2347       rc = sqlite3Select(pParse, pPrior, &uniondest);
2348       if( rc ){
2349         goto multi_select_end;
2350       }
2351 
2352       /* Code the current SELECT statement
2353       */
2354       if( p->op==TK_EXCEPT ){
2355         op = SRT_Except;
2356       }else{
2357         assert( p->op==TK_UNION );
2358         op = SRT_Union;
2359       }
2360       p->pPrior = 0;
2361       pLimit = p->pLimit;
2362       p->pLimit = 0;
2363       pOffset = p->pOffset;
2364       p->pOffset = 0;
2365       uniondest.eDest = op;
2366       explainSetInteger(iSub2, pParse->iNextSelectId);
2367       rc = sqlite3Select(pParse, p, &uniondest);
2368       testcase( rc!=SQLITE_OK );
2369       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2370       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2371       sqlite3ExprListDelete(db, p->pOrderBy);
2372       pDelete = p->pPrior;
2373       p->pPrior = pPrior;
2374       p->pOrderBy = 0;
2375       if( p->op==TK_UNION ){
2376         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2377       }
2378       sqlite3ExprDelete(db, p->pLimit);
2379       p->pLimit = pLimit;
2380       p->pOffset = pOffset;
2381       p->iLimit = 0;
2382       p->iOffset = 0;
2383 
2384       /* Convert the data in the temporary table into whatever form
2385       ** it is that we currently need.
2386       */
2387       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2388       if( dest.eDest!=priorOp ){
2389         int iCont, iBreak, iStart;
2390         assert( p->pEList );
2391         if( dest.eDest==SRT_Output ){
2392           Select *pFirst = p;
2393           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2394           generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2395         }
2396         iBreak = sqlite3VdbeMakeLabel(v);
2397         iCont = sqlite3VdbeMakeLabel(v);
2398         computeLimitRegisters(pParse, p, iBreak);
2399         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2400         iStart = sqlite3VdbeCurrentAddr(v);
2401         selectInnerLoop(pParse, p, p->pEList, unionTab,
2402                         0, 0, &dest, iCont, iBreak);
2403         sqlite3VdbeResolveLabel(v, iCont);
2404         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2405         sqlite3VdbeResolveLabel(v, iBreak);
2406         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2407       }
2408       break;
2409     }
2410     default: assert( p->op==TK_INTERSECT ); {
2411       int tab1, tab2;
2412       int iCont, iBreak, iStart;
2413       Expr *pLimit, *pOffset;
2414       int addr;
2415       SelectDest intersectdest;
2416       int r1;
2417 
2418       /* INTERSECT is different from the others since it requires
2419       ** two temporary tables.  Hence it has its own case.  Begin
2420       ** by allocating the tables we will need.
2421       */
2422       tab1 = pParse->nTab++;
2423       tab2 = pParse->nTab++;
2424       assert( p->pOrderBy==0 );
2425 
2426       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2427       assert( p->addrOpenEphm[0] == -1 );
2428       p->addrOpenEphm[0] = addr;
2429       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2430       assert( p->pEList );
2431 
2432       /* Code the SELECTs to our left into temporary table "tab1".
2433       */
2434       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2435       explainSetInteger(iSub1, pParse->iNextSelectId);
2436       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2437       if( rc ){
2438         goto multi_select_end;
2439       }
2440 
2441       /* Code the current SELECT into temporary table "tab2"
2442       */
2443       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2444       assert( p->addrOpenEphm[1] == -1 );
2445       p->addrOpenEphm[1] = addr;
2446       p->pPrior = 0;
2447       pLimit = p->pLimit;
2448       p->pLimit = 0;
2449       pOffset = p->pOffset;
2450       p->pOffset = 0;
2451       intersectdest.iSDParm = tab2;
2452       explainSetInteger(iSub2, pParse->iNextSelectId);
2453       rc = sqlite3Select(pParse, p, &intersectdest);
2454       testcase( rc!=SQLITE_OK );
2455       pDelete = p->pPrior;
2456       p->pPrior = pPrior;
2457       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2458       sqlite3ExprDelete(db, p->pLimit);
2459       p->pLimit = pLimit;
2460       p->pOffset = pOffset;
2461 
2462       /* Generate code to take the intersection of the two temporary
2463       ** tables.
2464       */
2465       assert( p->pEList );
2466       if( dest.eDest==SRT_Output ){
2467         Select *pFirst = p;
2468         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2469         generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2470       }
2471       iBreak = sqlite3VdbeMakeLabel(v);
2472       iCont = sqlite3VdbeMakeLabel(v);
2473       computeLimitRegisters(pParse, p, iBreak);
2474       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2475       r1 = sqlite3GetTempReg(pParse);
2476       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2477       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2478       sqlite3ReleaseTempReg(pParse, r1);
2479       selectInnerLoop(pParse, p, p->pEList, tab1,
2480                       0, 0, &dest, iCont, iBreak);
2481       sqlite3VdbeResolveLabel(v, iCont);
2482       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2483       sqlite3VdbeResolveLabel(v, iBreak);
2484       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2485       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2486       break;
2487     }
2488   }
2489 
2490   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2491 
2492   /* Compute collating sequences used by
2493   ** temporary tables needed to implement the compound select.
2494   ** Attach the KeyInfo structure to all temporary tables.
2495   **
2496   ** This section is run by the right-most SELECT statement only.
2497   ** SELECT statements to the left always skip this part.  The right-most
2498   ** SELECT might also skip this part if it has no ORDER BY clause and
2499   ** no temp tables are required.
2500   */
2501   if( p->selFlags & SF_UsesEphemeral ){
2502     int i;                        /* Loop counter */
2503     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2504     Select *pLoop;                /* For looping through SELECT statements */
2505     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2506     int nCol;                     /* Number of columns in result set */
2507 
2508     assert( p->pNext==0 );
2509     nCol = p->pEList->nExpr;
2510     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2511     if( !pKeyInfo ){
2512       rc = SQLITE_NOMEM_BKPT;
2513       goto multi_select_end;
2514     }
2515     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2516       *apColl = multiSelectCollSeq(pParse, p, i);
2517       if( 0==*apColl ){
2518         *apColl = db->pDfltColl;
2519       }
2520     }
2521 
2522     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2523       for(i=0; i<2; i++){
2524         int addr = pLoop->addrOpenEphm[i];
2525         if( addr<0 ){
2526           /* If [0] is unused then [1] is also unused.  So we can
2527           ** always safely abort as soon as the first unused slot is found */
2528           assert( pLoop->addrOpenEphm[1]<0 );
2529           break;
2530         }
2531         sqlite3VdbeChangeP2(v, addr, nCol);
2532         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2533                             P4_KEYINFO);
2534         pLoop->addrOpenEphm[i] = -1;
2535       }
2536     }
2537     sqlite3KeyInfoUnref(pKeyInfo);
2538   }
2539 
2540 multi_select_end:
2541   pDest->iSdst = dest.iSdst;
2542   pDest->nSdst = dest.nSdst;
2543   sqlite3SelectDelete(db, pDelete);
2544   return rc;
2545 }
2546 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2547 
2548 /*
2549 ** Error message for when two or more terms of a compound select have different
2550 ** size result sets.
2551 */
2552 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2553   if( p->selFlags & SF_Values ){
2554     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2555   }else{
2556     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2557       " do not have the same number of result columns", selectOpName(p->op));
2558   }
2559 }
2560 
2561 /*
2562 ** Code an output subroutine for a coroutine implementation of a
2563 ** SELECT statment.
2564 **
2565 ** The data to be output is contained in pIn->iSdst.  There are
2566 ** pIn->nSdst columns to be output.  pDest is where the output should
2567 ** be sent.
2568 **
2569 ** regReturn is the number of the register holding the subroutine
2570 ** return address.
2571 **
2572 ** If regPrev>0 then it is the first register in a vector that
2573 ** records the previous output.  mem[regPrev] is a flag that is false
2574 ** if there has been no previous output.  If regPrev>0 then code is
2575 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2576 ** keys.
2577 **
2578 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2579 ** iBreak.
2580 */
2581 static int generateOutputSubroutine(
2582   Parse *pParse,          /* Parsing context */
2583   Select *p,              /* The SELECT statement */
2584   SelectDest *pIn,        /* Coroutine supplying data */
2585   SelectDest *pDest,      /* Where to send the data */
2586   int regReturn,          /* The return address register */
2587   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2588   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2589   int iBreak              /* Jump here if we hit the LIMIT */
2590 ){
2591   Vdbe *v = pParse->pVdbe;
2592   int iContinue;
2593   int addr;
2594 
2595   addr = sqlite3VdbeCurrentAddr(v);
2596   iContinue = sqlite3VdbeMakeLabel(v);
2597 
2598   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2599   */
2600   if( regPrev ){
2601     int addr1, addr2;
2602     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2603     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2604                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2605     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2606     sqlite3VdbeJumpHere(v, addr1);
2607     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2608     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2609   }
2610   if( pParse->db->mallocFailed ) return 0;
2611 
2612   /* Suppress the first OFFSET entries if there is an OFFSET clause
2613   */
2614   codeOffset(v, p->iOffset, iContinue);
2615 
2616   assert( pDest->eDest!=SRT_Exists );
2617   assert( pDest->eDest!=SRT_Table );
2618   switch( pDest->eDest ){
2619     /* Store the result as data using a unique key.
2620     */
2621     case SRT_EphemTab: {
2622       int r1 = sqlite3GetTempReg(pParse);
2623       int r2 = sqlite3GetTempReg(pParse);
2624       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2625       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2626       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2627       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2628       sqlite3ReleaseTempReg(pParse, r2);
2629       sqlite3ReleaseTempReg(pParse, r1);
2630       break;
2631     }
2632 
2633 #ifndef SQLITE_OMIT_SUBQUERY
2634     /* If we are creating a set for an "expr IN (SELECT ...)".
2635     */
2636     case SRT_Set: {
2637       int r1;
2638       testcase( pIn->nSdst>1 );
2639       r1 = sqlite3GetTempReg(pParse);
2640       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2641           r1, pDest->zAffSdst, pIn->nSdst);
2642       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2643       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2644       sqlite3ReleaseTempReg(pParse, r1);
2645       break;
2646     }
2647 
2648     /* If this is a scalar select that is part of an expression, then
2649     ** store the results in the appropriate memory cell and break out
2650     ** of the scan loop.
2651     */
2652     case SRT_Mem: {
2653       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2654       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2655       /* The LIMIT clause will jump out of the loop for us */
2656       break;
2657     }
2658 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2659 
2660     /* The results are stored in a sequence of registers
2661     ** starting at pDest->iSdst.  Then the co-routine yields.
2662     */
2663     case SRT_Coroutine: {
2664       if( pDest->iSdst==0 ){
2665         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2666         pDest->nSdst = pIn->nSdst;
2667       }
2668       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2669       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2670       break;
2671     }
2672 
2673     /* If none of the above, then the result destination must be
2674     ** SRT_Output.  This routine is never called with any other
2675     ** destination other than the ones handled above or SRT_Output.
2676     **
2677     ** For SRT_Output, results are stored in a sequence of registers.
2678     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2679     ** return the next row of result.
2680     */
2681     default: {
2682       assert( pDest->eDest==SRT_Output );
2683       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2684       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2685       break;
2686     }
2687   }
2688 
2689   /* Jump to the end of the loop if the LIMIT is reached.
2690   */
2691   if( p->iLimit ){
2692     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2693   }
2694 
2695   /* Generate the subroutine return
2696   */
2697   sqlite3VdbeResolveLabel(v, iContinue);
2698   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2699 
2700   return addr;
2701 }
2702 
2703 /*
2704 ** Alternative compound select code generator for cases when there
2705 ** is an ORDER BY clause.
2706 **
2707 ** We assume a query of the following form:
2708 **
2709 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2710 **
2711 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2712 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2713 ** co-routines.  Then run the co-routines in parallel and merge the results
2714 ** into the output.  In addition to the two coroutines (called selectA and
2715 ** selectB) there are 7 subroutines:
2716 **
2717 **    outA:    Move the output of the selectA coroutine into the output
2718 **             of the compound query.
2719 **
2720 **    outB:    Move the output of the selectB coroutine into the output
2721 **             of the compound query.  (Only generated for UNION and
2722 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2723 **             appears only in B.)
2724 **
2725 **    AltB:    Called when there is data from both coroutines and A<B.
2726 **
2727 **    AeqB:    Called when there is data from both coroutines and A==B.
2728 **
2729 **    AgtB:    Called when there is data from both coroutines and A>B.
2730 **
2731 **    EofA:    Called when data is exhausted from selectA.
2732 **
2733 **    EofB:    Called when data is exhausted from selectB.
2734 **
2735 ** The implementation of the latter five subroutines depend on which
2736 ** <operator> is used:
2737 **
2738 **
2739 **             UNION ALL         UNION            EXCEPT          INTERSECT
2740 **          -------------  -----------------  --------------  -----------------
2741 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2742 **
2743 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2744 **
2745 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2746 **
2747 **   EofA:   outB, nextB      outB, nextB          halt             halt
2748 **
2749 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2750 **
2751 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2752 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2753 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2754 ** following nextX causes a jump to the end of the select processing.
2755 **
2756 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2757 ** within the output subroutine.  The regPrev register set holds the previously
2758 ** output value.  A comparison is made against this value and the output
2759 ** is skipped if the next results would be the same as the previous.
2760 **
2761 ** The implementation plan is to implement the two coroutines and seven
2762 ** subroutines first, then put the control logic at the bottom.  Like this:
2763 **
2764 **          goto Init
2765 **     coA: coroutine for left query (A)
2766 **     coB: coroutine for right query (B)
2767 **    outA: output one row of A
2768 **    outB: output one row of B (UNION and UNION ALL only)
2769 **    EofA: ...
2770 **    EofB: ...
2771 **    AltB: ...
2772 **    AeqB: ...
2773 **    AgtB: ...
2774 **    Init: initialize coroutine registers
2775 **          yield coA
2776 **          if eof(A) goto EofA
2777 **          yield coB
2778 **          if eof(B) goto EofB
2779 **    Cmpr: Compare A, B
2780 **          Jump AltB, AeqB, AgtB
2781 **     End: ...
2782 **
2783 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2784 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2785 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2786 ** and AgtB jump to either L2 or to one of EofA or EofB.
2787 */
2788 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2789 static int multiSelectOrderBy(
2790   Parse *pParse,        /* Parsing context */
2791   Select *p,            /* The right-most of SELECTs to be coded */
2792   SelectDest *pDest     /* What to do with query results */
2793 ){
2794   int i, j;             /* Loop counters */
2795   Select *pPrior;       /* Another SELECT immediately to our left */
2796   Vdbe *v;              /* Generate code to this VDBE */
2797   SelectDest destA;     /* Destination for coroutine A */
2798   SelectDest destB;     /* Destination for coroutine B */
2799   int regAddrA;         /* Address register for select-A coroutine */
2800   int regAddrB;         /* Address register for select-B coroutine */
2801   int addrSelectA;      /* Address of the select-A coroutine */
2802   int addrSelectB;      /* Address of the select-B coroutine */
2803   int regOutA;          /* Address register for the output-A subroutine */
2804   int regOutB;          /* Address register for the output-B subroutine */
2805   int addrOutA;         /* Address of the output-A subroutine */
2806   int addrOutB = 0;     /* Address of the output-B subroutine */
2807   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2808   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2809   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2810   int addrAltB;         /* Address of the A<B subroutine */
2811   int addrAeqB;         /* Address of the A==B subroutine */
2812   int addrAgtB;         /* Address of the A>B subroutine */
2813   int regLimitA;        /* Limit register for select-A */
2814   int regLimitB;        /* Limit register for select-A */
2815   int regPrev;          /* A range of registers to hold previous output */
2816   int savedLimit;       /* Saved value of p->iLimit */
2817   int savedOffset;      /* Saved value of p->iOffset */
2818   int labelCmpr;        /* Label for the start of the merge algorithm */
2819   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2820   int addr1;            /* Jump instructions that get retargetted */
2821   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2822   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2823   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2824   sqlite3 *db;          /* Database connection */
2825   ExprList *pOrderBy;   /* The ORDER BY clause */
2826   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2827   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2828 #ifndef SQLITE_OMIT_EXPLAIN
2829   int iSub1;            /* EQP id of left-hand query */
2830   int iSub2;            /* EQP id of right-hand query */
2831 #endif
2832 
2833   assert( p->pOrderBy!=0 );
2834   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2835   db = pParse->db;
2836   v = pParse->pVdbe;
2837   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2838   labelEnd = sqlite3VdbeMakeLabel(v);
2839   labelCmpr = sqlite3VdbeMakeLabel(v);
2840 
2841 
2842   /* Patch up the ORDER BY clause
2843   */
2844   op = p->op;
2845   pPrior = p->pPrior;
2846   assert( pPrior->pOrderBy==0 );
2847   pOrderBy = p->pOrderBy;
2848   assert( pOrderBy );
2849   nOrderBy = pOrderBy->nExpr;
2850 
2851   /* For operators other than UNION ALL we have to make sure that
2852   ** the ORDER BY clause covers every term of the result set.  Add
2853   ** terms to the ORDER BY clause as necessary.
2854   */
2855   if( op!=TK_ALL ){
2856     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2857       struct ExprList_item *pItem;
2858       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2859         assert( pItem->u.x.iOrderByCol>0 );
2860         if( pItem->u.x.iOrderByCol==i ) break;
2861       }
2862       if( j==nOrderBy ){
2863         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2864         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2865         pNew->flags |= EP_IntValue;
2866         pNew->u.iValue = i;
2867         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2868         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2869       }
2870     }
2871   }
2872 
2873   /* Compute the comparison permutation and keyinfo that is used with
2874   ** the permutation used to determine if the next
2875   ** row of results comes from selectA or selectB.  Also add explicit
2876   ** collations to the ORDER BY clause terms so that when the subqueries
2877   ** to the right and the left are evaluated, they use the correct
2878   ** collation.
2879   */
2880   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2881   if( aPermute ){
2882     struct ExprList_item *pItem;
2883     aPermute[0] = nOrderBy;
2884     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2885       assert( pItem->u.x.iOrderByCol>0 );
2886       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2887       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2888     }
2889     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2890   }else{
2891     pKeyMerge = 0;
2892   }
2893 
2894   /* Reattach the ORDER BY clause to the query.
2895   */
2896   p->pOrderBy = pOrderBy;
2897   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2898 
2899   /* Allocate a range of temporary registers and the KeyInfo needed
2900   ** for the logic that removes duplicate result rows when the
2901   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2902   */
2903   if( op==TK_ALL ){
2904     regPrev = 0;
2905   }else{
2906     int nExpr = p->pEList->nExpr;
2907     assert( nOrderBy>=nExpr || db->mallocFailed );
2908     regPrev = pParse->nMem+1;
2909     pParse->nMem += nExpr+1;
2910     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2911     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2912     if( pKeyDup ){
2913       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2914       for(i=0; i<nExpr; i++){
2915         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2916         pKeyDup->aSortOrder[i] = 0;
2917       }
2918     }
2919   }
2920 
2921   /* Separate the left and the right query from one another
2922   */
2923   p->pPrior = 0;
2924   pPrior->pNext = 0;
2925   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2926   if( pPrior->pPrior==0 ){
2927     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2928   }
2929 
2930   /* Compute the limit registers */
2931   computeLimitRegisters(pParse, p, labelEnd);
2932   if( p->iLimit && op==TK_ALL ){
2933     regLimitA = ++pParse->nMem;
2934     regLimitB = ++pParse->nMem;
2935     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2936                                   regLimitA);
2937     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2938   }else{
2939     regLimitA = regLimitB = 0;
2940   }
2941   sqlite3ExprDelete(db, p->pLimit);
2942   p->pLimit = 0;
2943   sqlite3ExprDelete(db, p->pOffset);
2944   p->pOffset = 0;
2945 
2946   regAddrA = ++pParse->nMem;
2947   regAddrB = ++pParse->nMem;
2948   regOutA = ++pParse->nMem;
2949   regOutB = ++pParse->nMem;
2950   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2951   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2952 
2953   /* Generate a coroutine to evaluate the SELECT statement to the
2954   ** left of the compound operator - the "A" select.
2955   */
2956   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2957   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2958   VdbeComment((v, "left SELECT"));
2959   pPrior->iLimit = regLimitA;
2960   explainSetInteger(iSub1, pParse->iNextSelectId);
2961   sqlite3Select(pParse, pPrior, &destA);
2962   sqlite3VdbeEndCoroutine(v, regAddrA);
2963   sqlite3VdbeJumpHere(v, addr1);
2964 
2965   /* Generate a coroutine to evaluate the SELECT statement on
2966   ** the right - the "B" select
2967   */
2968   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2969   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2970   VdbeComment((v, "right SELECT"));
2971   savedLimit = p->iLimit;
2972   savedOffset = p->iOffset;
2973   p->iLimit = regLimitB;
2974   p->iOffset = 0;
2975   explainSetInteger(iSub2, pParse->iNextSelectId);
2976   sqlite3Select(pParse, p, &destB);
2977   p->iLimit = savedLimit;
2978   p->iOffset = savedOffset;
2979   sqlite3VdbeEndCoroutine(v, regAddrB);
2980 
2981   /* Generate a subroutine that outputs the current row of the A
2982   ** select as the next output row of the compound select.
2983   */
2984   VdbeNoopComment((v, "Output routine for A"));
2985   addrOutA = generateOutputSubroutine(pParse,
2986                  p, &destA, pDest, regOutA,
2987                  regPrev, pKeyDup, labelEnd);
2988 
2989   /* Generate a subroutine that outputs the current row of the B
2990   ** select as the next output row of the compound select.
2991   */
2992   if( op==TK_ALL || op==TK_UNION ){
2993     VdbeNoopComment((v, "Output routine for B"));
2994     addrOutB = generateOutputSubroutine(pParse,
2995                  p, &destB, pDest, regOutB,
2996                  regPrev, pKeyDup, labelEnd);
2997   }
2998   sqlite3KeyInfoUnref(pKeyDup);
2999 
3000   /* Generate a subroutine to run when the results from select A
3001   ** are exhausted and only data in select B remains.
3002   */
3003   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3004     addrEofA_noB = addrEofA = labelEnd;
3005   }else{
3006     VdbeNoopComment((v, "eof-A subroutine"));
3007     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3008     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3009                                      VdbeCoverage(v);
3010     sqlite3VdbeGoto(v, addrEofA);
3011     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3012   }
3013 
3014   /* Generate a subroutine to run when the results from select B
3015   ** are exhausted and only data in select A remains.
3016   */
3017   if( op==TK_INTERSECT ){
3018     addrEofB = addrEofA;
3019     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3020   }else{
3021     VdbeNoopComment((v, "eof-B subroutine"));
3022     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3023     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3024     sqlite3VdbeGoto(v, addrEofB);
3025   }
3026 
3027   /* Generate code to handle the case of A<B
3028   */
3029   VdbeNoopComment((v, "A-lt-B subroutine"));
3030   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3031   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3032   sqlite3VdbeGoto(v, labelCmpr);
3033 
3034   /* Generate code to handle the case of A==B
3035   */
3036   if( op==TK_ALL ){
3037     addrAeqB = addrAltB;
3038   }else if( op==TK_INTERSECT ){
3039     addrAeqB = addrAltB;
3040     addrAltB++;
3041   }else{
3042     VdbeNoopComment((v, "A-eq-B subroutine"));
3043     addrAeqB =
3044     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3045     sqlite3VdbeGoto(v, labelCmpr);
3046   }
3047 
3048   /* Generate code to handle the case of A>B
3049   */
3050   VdbeNoopComment((v, "A-gt-B subroutine"));
3051   addrAgtB = sqlite3VdbeCurrentAddr(v);
3052   if( op==TK_ALL || op==TK_UNION ){
3053     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3054   }
3055   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3056   sqlite3VdbeGoto(v, labelCmpr);
3057 
3058   /* This code runs once to initialize everything.
3059   */
3060   sqlite3VdbeJumpHere(v, addr1);
3061   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3062   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3063 
3064   /* Implement the main merge loop
3065   */
3066   sqlite3VdbeResolveLabel(v, labelCmpr);
3067   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3068   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3069                          (char*)pKeyMerge, P4_KEYINFO);
3070   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3071   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3072 
3073   /* Jump to the this point in order to terminate the query.
3074   */
3075   sqlite3VdbeResolveLabel(v, labelEnd);
3076 
3077   /* Set the number of output columns
3078   */
3079   if( pDest->eDest==SRT_Output ){
3080     Select *pFirst = pPrior;
3081     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3082     generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3083   }
3084 
3085   /* Reassembly the compound query so that it will be freed correctly
3086   ** by the calling function */
3087   if( p->pPrior ){
3088     sqlite3SelectDelete(db, p->pPrior);
3089   }
3090   p->pPrior = pPrior;
3091   pPrior->pNext = p;
3092 
3093   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3094   **** subqueries ****/
3095   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3096   return pParse->nErr!=0;
3097 }
3098 #endif
3099 
3100 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3101 /* Forward Declarations */
3102 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3103 static void substSelect(sqlite3*, Select *, int, ExprList*, int);
3104 
3105 /*
3106 ** Scan through the expression pExpr.  Replace every reference to
3107 ** a column in table number iTable with a copy of the iColumn-th
3108 ** entry in pEList.  (But leave references to the ROWID column
3109 ** unchanged.)
3110 **
3111 ** This routine is part of the flattening procedure.  A subquery
3112 ** whose result set is defined by pEList appears as entry in the
3113 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3114 ** FORM clause entry is iTable.  This routine make the necessary
3115 ** changes to pExpr so that it refers directly to the source table
3116 ** of the subquery rather the result set of the subquery.
3117 */
3118 static Expr *substExpr(
3119   sqlite3 *db,        /* Report malloc errors to this connection */
3120   Expr *pExpr,        /* Expr in which substitution occurs */
3121   int iTable,         /* Table to be substituted */
3122   ExprList *pEList    /* Substitute expressions */
3123 ){
3124   if( pExpr==0 ) return 0;
3125   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3126     if( pExpr->iColumn<0 ){
3127       pExpr->op = TK_NULL;
3128     }else{
3129       Expr *pNew;
3130       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3131       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3132       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3133       sqlite3ExprDelete(db, pExpr);
3134       pExpr = pNew;
3135     }
3136   }else{
3137     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3138     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3139     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3140       substSelect(db, pExpr->x.pSelect, iTable, pEList, 1);
3141     }else{
3142       substExprList(db, pExpr->x.pList, iTable, pEList);
3143     }
3144   }
3145   return pExpr;
3146 }
3147 static void substExprList(
3148   sqlite3 *db,         /* Report malloc errors here */
3149   ExprList *pList,     /* List to scan and in which to make substitutes */
3150   int iTable,          /* Table to be substituted */
3151   ExprList *pEList     /* Substitute values */
3152 ){
3153   int i;
3154   if( pList==0 ) return;
3155   for(i=0; i<pList->nExpr; i++){
3156     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3157   }
3158 }
3159 static void substSelect(
3160   sqlite3 *db,         /* Report malloc errors here */
3161   Select *p,           /* SELECT statement in which to make substitutions */
3162   int iTable,          /* Table to be replaced */
3163   ExprList *pEList,    /* Substitute values */
3164   int doPrior          /* Do substitutes on p->pPrior too */
3165 ){
3166   SrcList *pSrc;
3167   struct SrcList_item *pItem;
3168   int i;
3169   if( !p ) return;
3170   do{
3171     substExprList(db, p->pEList, iTable, pEList);
3172     substExprList(db, p->pGroupBy, iTable, pEList);
3173     substExprList(db, p->pOrderBy, iTable, pEList);
3174     p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3175     p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3176     pSrc = p->pSrc;
3177     assert( pSrc!=0 );
3178     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3179       substSelect(db, pItem->pSelect, iTable, pEList, 1);
3180       if( pItem->fg.isTabFunc ){
3181         substExprList(db, pItem->u1.pFuncArg, iTable, pEList);
3182       }
3183     }
3184   }while( doPrior && (p = p->pPrior)!=0 );
3185 }
3186 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3187 
3188 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3189 /*
3190 ** This routine attempts to flatten subqueries as a performance optimization.
3191 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3192 **
3193 ** To understand the concept of flattening, consider the following
3194 ** query:
3195 **
3196 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3197 **
3198 ** The default way of implementing this query is to execute the
3199 ** subquery first and store the results in a temporary table, then
3200 ** run the outer query on that temporary table.  This requires two
3201 ** passes over the data.  Furthermore, because the temporary table
3202 ** has no indices, the WHERE clause on the outer query cannot be
3203 ** optimized.
3204 **
3205 ** This routine attempts to rewrite queries such as the above into
3206 ** a single flat select, like this:
3207 **
3208 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3209 **
3210 ** The code generated for this simplification gives the same result
3211 ** but only has to scan the data once.  And because indices might
3212 ** exist on the table t1, a complete scan of the data might be
3213 ** avoided.
3214 **
3215 ** Flattening is only attempted if all of the following are true:
3216 **
3217 **   (1)  The subquery and the outer query do not both use aggregates.
3218 **
3219 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3220 **        and (2b) the outer query does not use subqueries other than the one
3221 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3222 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3223 **
3224 **   (3)  The subquery is not the right operand of a left outer join
3225 **        (Originally ticket #306.  Strengthened by ticket #3300)
3226 **
3227 **   (4)  The subquery is not DISTINCT.
3228 **
3229 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3230 **        sub-queries that were excluded from this optimization. Restriction
3231 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3232 **
3233 **   (6)  The subquery does not use aggregates or the outer query is not
3234 **        DISTINCT.
3235 **
3236 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3237 **        A FROM clause, consider adding a FROM close with the special
3238 **        table sqlite_once that consists of a single row containing a
3239 **        single NULL.
3240 **
3241 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3242 **
3243 **   (9)  The subquery does not use LIMIT or the outer query does not use
3244 **        aggregates.
3245 **
3246 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3247 **        accidently carried the comment forward until 2014-09-15.  Original
3248 **        text: "The subquery does not use aggregates or the outer query
3249 **        does not use LIMIT."
3250 **
3251 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3252 **
3253 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3254 **        a separate restriction deriving from ticket #350.
3255 **
3256 **  (13)  The subquery and outer query do not both use LIMIT.
3257 **
3258 **  (14)  The subquery does not use OFFSET.
3259 **
3260 **  (15)  The outer query is not part of a compound select or the
3261 **        subquery does not have a LIMIT clause.
3262 **        (See ticket #2339 and ticket [02a8e81d44]).
3263 **
3264 **  (16)  The outer query is not an aggregate or the subquery does
3265 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3266 **        until we introduced the group_concat() function.
3267 **
3268 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3269 **        compound clause made up entirely of non-aggregate queries, and
3270 **        the parent query:
3271 **
3272 **          * is not itself part of a compound select,
3273 **          * is not an aggregate or DISTINCT query, and
3274 **          * is not a join
3275 **
3276 **        The parent and sub-query may contain WHERE clauses. Subject to
3277 **        rules (11), (13) and (14), they may also contain ORDER BY,
3278 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3279 **        operator other than UNION ALL because all the other compound
3280 **        operators have an implied DISTINCT which is disallowed by
3281 **        restriction (4).
3282 **
3283 **        Also, each component of the sub-query must return the same number
3284 **        of result columns. This is actually a requirement for any compound
3285 **        SELECT statement, but all the code here does is make sure that no
3286 **        such (illegal) sub-query is flattened. The caller will detect the
3287 **        syntax error and return a detailed message.
3288 **
3289 **  (18)  If the sub-query is a compound select, then all terms of the
3290 **        ORDER by clause of the parent must be simple references to
3291 **        columns of the sub-query.
3292 **
3293 **  (19)  The subquery does not use LIMIT or the outer query does not
3294 **        have a WHERE clause.
3295 **
3296 **  (20)  If the sub-query is a compound select, then it must not use
3297 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3298 **        somewhat by saying that the terms of the ORDER BY clause must
3299 **        appear as unmodified result columns in the outer query.  But we
3300 **        have other optimizations in mind to deal with that case.
3301 **
3302 **  (21)  The subquery does not use LIMIT or the outer query is not
3303 **        DISTINCT.  (See ticket [752e1646fc]).
3304 **
3305 **  (22)  The subquery is not a recursive CTE.
3306 **
3307 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3308 **        compound query. This restriction is because transforming the
3309 **        parent to a compound query confuses the code that handles
3310 **        recursive queries in multiSelect().
3311 **
3312 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3313 **        or max() functions.  (Without this restriction, a query like:
3314 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3315 **        return the value X for which Y was maximal.)
3316 **
3317 **
3318 ** In this routine, the "p" parameter is a pointer to the outer query.
3319 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3320 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3321 **
3322 ** If flattening is not attempted, this routine is a no-op and returns 0.
3323 ** If flattening is attempted this routine returns 1.
3324 **
3325 ** All of the expression analysis must occur on both the outer query and
3326 ** the subquery before this routine runs.
3327 */
3328 static int flattenSubquery(
3329   Parse *pParse,       /* Parsing context */
3330   Select *p,           /* The parent or outer SELECT statement */
3331   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3332   int isAgg,           /* True if outer SELECT uses aggregate functions */
3333   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3334 ){
3335   const char *zSavedAuthContext = pParse->zAuthContext;
3336   Select *pParent;    /* Current UNION ALL term of the other query */
3337   Select *pSub;       /* The inner query or "subquery" */
3338   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3339   SrcList *pSrc;      /* The FROM clause of the outer query */
3340   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3341   ExprList *pList;    /* The result set of the outer query */
3342   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3343   int i;              /* Loop counter */
3344   Expr *pWhere;                    /* The WHERE clause */
3345   struct SrcList_item *pSubitem;   /* The subquery */
3346   sqlite3 *db = pParse->db;
3347 
3348   /* Check to see if flattening is permitted.  Return 0 if not.
3349   */
3350   assert( p!=0 );
3351   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3352   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3353   pSrc = p->pSrc;
3354   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3355   pSubitem = &pSrc->a[iFrom];
3356   iParent = pSubitem->iCursor;
3357   pSub = pSubitem->pSelect;
3358   assert( pSub!=0 );
3359   if( subqueryIsAgg ){
3360     if( isAgg ) return 0;                                /* Restriction (1)   */
3361     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3362     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3363      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3364      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3365     ){
3366       return 0;                                          /* Restriction (2b)  */
3367     }
3368   }
3369 
3370   pSubSrc = pSub->pSrc;
3371   assert( pSubSrc );
3372   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3373   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3374   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3375   ** became arbitrary expressions, we were forced to add restrictions (13)
3376   ** and (14). */
3377   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3378   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3379   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3380     return 0;                                            /* Restriction (15) */
3381   }
3382   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3383   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3384   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3385      return 0;         /* Restrictions (8)(9) */
3386   }
3387   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3388      return 0;         /* Restriction (6)  */
3389   }
3390   if( p->pOrderBy && pSub->pOrderBy ){
3391      return 0;                                           /* Restriction (11) */
3392   }
3393   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3394   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3395   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3396      return 0;         /* Restriction (21) */
3397   }
3398   testcase( pSub->selFlags & SF_Recursive );
3399   testcase( pSub->selFlags & SF_MinMaxAgg );
3400   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3401     return 0; /* Restrictions (22) and (24) */
3402   }
3403   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3404     return 0; /* Restriction (23) */
3405   }
3406 
3407   /* OBSOLETE COMMENT 1:
3408   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3409   ** not used as the right operand of an outer join.  Examples of why this
3410   ** is not allowed:
3411   **
3412   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3413   **
3414   ** If we flatten the above, we would get
3415   **
3416   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3417   **
3418   ** which is not at all the same thing.
3419   **
3420   ** OBSOLETE COMMENT 2:
3421   ** Restriction 12:  If the subquery is the right operand of a left outer
3422   ** join, make sure the subquery has no WHERE clause.
3423   ** An examples of why this is not allowed:
3424   **
3425   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3426   **
3427   ** If we flatten the above, we would get
3428   **
3429   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3430   **
3431   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3432   ** effectively converts the OUTER JOIN into an INNER JOIN.
3433   **
3434   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3435   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3436   ** is fraught with danger.  Best to avoid the whole thing.  If the
3437   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3438   */
3439   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3440     return 0;
3441   }
3442 
3443   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3444   ** use only the UNION ALL operator. And none of the simple select queries
3445   ** that make up the compound SELECT are allowed to be aggregate or distinct
3446   ** queries.
3447   */
3448   if( pSub->pPrior ){
3449     if( pSub->pOrderBy ){
3450       return 0;  /* Restriction 20 */
3451     }
3452     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3453       return 0;
3454     }
3455     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3456       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3457       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3458       assert( pSub->pSrc!=0 );
3459       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3460       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3461        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3462        || pSub1->pSrc->nSrc<1
3463       ){
3464         return 0;
3465       }
3466       testcase( pSub1->pSrc->nSrc>1 );
3467     }
3468 
3469     /* Restriction 18. */
3470     if( p->pOrderBy ){
3471       int ii;
3472       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3473         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3474       }
3475     }
3476   }
3477 
3478   /***** If we reach this point, flattening is permitted. *****/
3479   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3480                    pSub->zSelName, pSub, iFrom));
3481 
3482   /* Authorize the subquery */
3483   pParse->zAuthContext = pSubitem->zName;
3484   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3485   testcase( i==SQLITE_DENY );
3486   pParse->zAuthContext = zSavedAuthContext;
3487 
3488   /* If the sub-query is a compound SELECT statement, then (by restrictions
3489   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3490   ** be of the form:
3491   **
3492   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3493   **
3494   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3495   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3496   ** OFFSET clauses and joins them to the left-hand-side of the original
3497   ** using UNION ALL operators. In this case N is the number of simple
3498   ** select statements in the compound sub-query.
3499   **
3500   ** Example:
3501   **
3502   **     SELECT a+1 FROM (
3503   **        SELECT x FROM tab
3504   **        UNION ALL
3505   **        SELECT y FROM tab
3506   **        UNION ALL
3507   **        SELECT abs(z*2) FROM tab2
3508   **     ) WHERE a!=5 ORDER BY 1
3509   **
3510   ** Transformed into:
3511   **
3512   **     SELECT x+1 FROM tab WHERE x+1!=5
3513   **     UNION ALL
3514   **     SELECT y+1 FROM tab WHERE y+1!=5
3515   **     UNION ALL
3516   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3517   **     ORDER BY 1
3518   **
3519   ** We call this the "compound-subquery flattening".
3520   */
3521   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3522     Select *pNew;
3523     ExprList *pOrderBy = p->pOrderBy;
3524     Expr *pLimit = p->pLimit;
3525     Expr *pOffset = p->pOffset;
3526     Select *pPrior = p->pPrior;
3527     p->pOrderBy = 0;
3528     p->pSrc = 0;
3529     p->pPrior = 0;
3530     p->pLimit = 0;
3531     p->pOffset = 0;
3532     pNew = sqlite3SelectDup(db, p, 0);
3533     sqlite3SelectSetName(pNew, pSub->zSelName);
3534     p->pOffset = pOffset;
3535     p->pLimit = pLimit;
3536     p->pOrderBy = pOrderBy;
3537     p->pSrc = pSrc;
3538     p->op = TK_ALL;
3539     if( pNew==0 ){
3540       p->pPrior = pPrior;
3541     }else{
3542       pNew->pPrior = pPrior;
3543       if( pPrior ) pPrior->pNext = pNew;
3544       pNew->pNext = p;
3545       p->pPrior = pNew;
3546       SELECTTRACE(2,pParse,p,
3547          ("compound-subquery flattener creates %s.%p as peer\n",
3548          pNew->zSelName, pNew));
3549     }
3550     if( db->mallocFailed ) return 1;
3551   }
3552 
3553   /* Begin flattening the iFrom-th entry of the FROM clause
3554   ** in the outer query.
3555   */
3556   pSub = pSub1 = pSubitem->pSelect;
3557 
3558   /* Delete the transient table structure associated with the
3559   ** subquery
3560   */
3561   sqlite3DbFree(db, pSubitem->zDatabase);
3562   sqlite3DbFree(db, pSubitem->zName);
3563   sqlite3DbFree(db, pSubitem->zAlias);
3564   pSubitem->zDatabase = 0;
3565   pSubitem->zName = 0;
3566   pSubitem->zAlias = 0;
3567   pSubitem->pSelect = 0;
3568 
3569   /* Defer deleting the Table object associated with the
3570   ** subquery until code generation is
3571   ** complete, since there may still exist Expr.pTab entries that
3572   ** refer to the subquery even after flattening.  Ticket #3346.
3573   **
3574   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3575   */
3576   if( ALWAYS(pSubitem->pTab!=0) ){
3577     Table *pTabToDel = pSubitem->pTab;
3578     if( pTabToDel->nRef==1 ){
3579       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3580       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3581       pToplevel->pZombieTab = pTabToDel;
3582     }else{
3583       pTabToDel->nRef--;
3584     }
3585     pSubitem->pTab = 0;
3586   }
3587 
3588   /* The following loop runs once for each term in a compound-subquery
3589   ** flattening (as described above).  If we are doing a different kind
3590   ** of flattening - a flattening other than a compound-subquery flattening -
3591   ** then this loop only runs once.
3592   **
3593   ** This loop moves all of the FROM elements of the subquery into the
3594   ** the FROM clause of the outer query.  Before doing this, remember
3595   ** the cursor number for the original outer query FROM element in
3596   ** iParent.  The iParent cursor will never be used.  Subsequent code
3597   ** will scan expressions looking for iParent references and replace
3598   ** those references with expressions that resolve to the subquery FROM
3599   ** elements we are now copying in.
3600   */
3601   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3602     int nSubSrc;
3603     u8 jointype = 0;
3604     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3605     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3606     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3607 
3608     if( pSrc ){
3609       assert( pParent==p );  /* First time through the loop */
3610       jointype = pSubitem->fg.jointype;
3611     }else{
3612       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3613       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3614       if( pSrc==0 ){
3615         assert( db->mallocFailed );
3616         break;
3617       }
3618     }
3619 
3620     /* The subquery uses a single slot of the FROM clause of the outer
3621     ** query.  If the subquery has more than one element in its FROM clause,
3622     ** then expand the outer query to make space for it to hold all elements
3623     ** of the subquery.
3624     **
3625     ** Example:
3626     **
3627     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3628     **
3629     ** The outer query has 3 slots in its FROM clause.  One slot of the
3630     ** outer query (the middle slot) is used by the subquery.  The next
3631     ** block of code will expand the outer query FROM clause to 4 slots.
3632     ** The middle slot is expanded to two slots in order to make space
3633     ** for the two elements in the FROM clause of the subquery.
3634     */
3635     if( nSubSrc>1 ){
3636       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3637       if( db->mallocFailed ){
3638         break;
3639       }
3640     }
3641 
3642     /* Transfer the FROM clause terms from the subquery into the
3643     ** outer query.
3644     */
3645     for(i=0; i<nSubSrc; i++){
3646       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3647       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3648       pSrc->a[i+iFrom] = pSubSrc->a[i];
3649       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3650     }
3651     pSrc->a[iFrom].fg.jointype = jointype;
3652 
3653     /* Now begin substituting subquery result set expressions for
3654     ** references to the iParent in the outer query.
3655     **
3656     ** Example:
3657     **
3658     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3659     **   \                     \_____________ subquery __________/          /
3660     **    \_____________________ outer query ______________________________/
3661     **
3662     ** We look at every expression in the outer query and every place we see
3663     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3664     */
3665     pList = pParent->pEList;
3666     for(i=0; i<pList->nExpr; i++){
3667       if( pList->a[i].zName==0 ){
3668         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3669         sqlite3Dequote(zName);
3670         pList->a[i].zName = zName;
3671       }
3672     }
3673     if( pSub->pOrderBy ){
3674       /* At this point, any non-zero iOrderByCol values indicate that the
3675       ** ORDER BY column expression is identical to the iOrderByCol'th
3676       ** expression returned by SELECT statement pSub. Since these values
3677       ** do not necessarily correspond to columns in SELECT statement pParent,
3678       ** zero them before transfering the ORDER BY clause.
3679       **
3680       ** Not doing this may cause an error if a subsequent call to this
3681       ** function attempts to flatten a compound sub-query into pParent
3682       ** (the only way this can happen is if the compound sub-query is
3683       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3684       ExprList *pOrderBy = pSub->pOrderBy;
3685       for(i=0; i<pOrderBy->nExpr; i++){
3686         pOrderBy->a[i].u.x.iOrderByCol = 0;
3687       }
3688       assert( pParent->pOrderBy==0 );
3689       assert( pSub->pPrior==0 );
3690       pParent->pOrderBy = pOrderBy;
3691       pSub->pOrderBy = 0;
3692     }
3693     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3694     if( subqueryIsAgg ){
3695       assert( pParent->pHaving==0 );
3696       pParent->pHaving = pParent->pWhere;
3697       pParent->pWhere = pWhere;
3698       pParent->pHaving = sqlite3ExprAnd(db,
3699           sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
3700       );
3701       assert( pParent->pGroupBy==0 );
3702       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3703     }else{
3704       pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3705     }
3706     substSelect(db, pParent, iParent, pSub->pEList, 0);
3707 
3708     /* The flattened query is distinct if either the inner or the
3709     ** outer query is distinct.
3710     */
3711     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3712 
3713     /*
3714     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3715     **
3716     ** One is tempted to try to add a and b to combine the limits.  But this
3717     ** does not work if either limit is negative.
3718     */
3719     if( pSub->pLimit ){
3720       pParent->pLimit = pSub->pLimit;
3721       pSub->pLimit = 0;
3722     }
3723   }
3724 
3725   /* Finially, delete what is left of the subquery and return
3726   ** success.
3727   */
3728   sqlite3SelectDelete(db, pSub1);
3729 
3730 #if SELECTTRACE_ENABLED
3731   if( sqlite3SelectTrace & 0x100 ){
3732     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3733     sqlite3TreeViewSelect(0, p, 0);
3734   }
3735 #endif
3736 
3737   return 1;
3738 }
3739 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3740 
3741 
3742 
3743 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3744 /*
3745 ** Make copies of relevant WHERE clause terms of the outer query into
3746 ** the WHERE clause of subquery.  Example:
3747 **
3748 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3749 **
3750 ** Transformed into:
3751 **
3752 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3753 **     WHERE x=5 AND y=10;
3754 **
3755 ** The hope is that the terms added to the inner query will make it more
3756 ** efficient.
3757 **
3758 ** Do not attempt this optimization if:
3759 **
3760 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3761 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3762 **       inner query.  But they probably won't help there so do not bother.)
3763 **
3764 **   (2) The inner query is the recursive part of a common table expression.
3765 **
3766 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3767 **       close would change the meaning of the LIMIT).
3768 **
3769 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3770 **       enforces this restriction since this routine does not have enough
3771 **       information to know.)
3772 **
3773 **   (5) The WHERE clause expression originates in the ON or USING clause
3774 **       of a LEFT JOIN.
3775 **
3776 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3777 ** terms are duplicated into the subquery.
3778 */
3779 static int pushDownWhereTerms(
3780   sqlite3 *db,          /* The database connection (for malloc()) */
3781   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3782   Expr *pWhere,         /* The WHERE clause of the outer query */
3783   int iCursor           /* Cursor number of the subquery */
3784 ){
3785   Expr *pNew;
3786   int nChng = 0;
3787   Select *pX;           /* For looping over compound SELECTs in pSubq */
3788   if( pWhere==0 ) return 0;
3789   for(pX=pSubq; pX; pX=pX->pPrior){
3790     if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3791       testcase( pX->selFlags & SF_Aggregate );
3792       testcase( pX->selFlags & SF_Recursive );
3793       testcase( pX!=pSubq );
3794       return 0; /* restrictions (1) and (2) */
3795     }
3796   }
3797   if( pSubq->pLimit!=0 ){
3798     return 0; /* restriction (3) */
3799   }
3800   while( pWhere->op==TK_AND ){
3801     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3802     pWhere = pWhere->pLeft;
3803   }
3804   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3805   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3806     nChng++;
3807     while( pSubq ){
3808       pNew = sqlite3ExprDup(db, pWhere, 0);
3809       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3810       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3811       pSubq = pSubq->pPrior;
3812     }
3813   }
3814   return nChng;
3815 }
3816 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3817 
3818 /*
3819 ** Based on the contents of the AggInfo structure indicated by the first
3820 ** argument, this function checks if the following are true:
3821 **
3822 **    * the query contains just a single aggregate function,
3823 **    * the aggregate function is either min() or max(), and
3824 **    * the argument to the aggregate function is a column value.
3825 **
3826 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3827 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3828 ** list of arguments passed to the aggregate before returning.
3829 **
3830 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3831 ** WHERE_ORDERBY_NORMAL is returned.
3832 */
3833 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3834   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3835 
3836   *ppMinMax = 0;
3837   if( pAggInfo->nFunc==1 ){
3838     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3839     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3840 
3841     assert( pExpr->op==TK_AGG_FUNCTION );
3842     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3843       const char *zFunc = pExpr->u.zToken;
3844       if( sqlite3StrICmp(zFunc, "min")==0 ){
3845         eRet = WHERE_ORDERBY_MIN;
3846         *ppMinMax = pEList;
3847       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3848         eRet = WHERE_ORDERBY_MAX;
3849         *ppMinMax = pEList;
3850       }
3851     }
3852   }
3853 
3854   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3855   return eRet;
3856 }
3857 
3858 /*
3859 ** The select statement passed as the first argument is an aggregate query.
3860 ** The second argument is the associated aggregate-info object. This
3861 ** function tests if the SELECT is of the form:
3862 **
3863 **   SELECT count(*) FROM <tbl>
3864 **
3865 ** where table is a database table, not a sub-select or view. If the query
3866 ** does match this pattern, then a pointer to the Table object representing
3867 ** <tbl> is returned. Otherwise, 0 is returned.
3868 */
3869 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3870   Table *pTab;
3871   Expr *pExpr;
3872 
3873   assert( !p->pGroupBy );
3874 
3875   if( p->pWhere || p->pEList->nExpr!=1
3876    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3877   ){
3878     return 0;
3879   }
3880   pTab = p->pSrc->a[0].pTab;
3881   pExpr = p->pEList->a[0].pExpr;
3882   assert( pTab && !pTab->pSelect && pExpr );
3883 
3884   if( IsVirtual(pTab) ) return 0;
3885   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3886   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3887   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3888   if( pExpr->flags&EP_Distinct ) return 0;
3889 
3890   return pTab;
3891 }
3892 
3893 /*
3894 ** If the source-list item passed as an argument was augmented with an
3895 ** INDEXED BY clause, then try to locate the specified index. If there
3896 ** was such a clause and the named index cannot be found, return
3897 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3898 ** pFrom->pIndex and return SQLITE_OK.
3899 */
3900 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3901   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3902     Table *pTab = pFrom->pTab;
3903     char *zIndexedBy = pFrom->u1.zIndexedBy;
3904     Index *pIdx;
3905     for(pIdx=pTab->pIndex;
3906         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3907         pIdx=pIdx->pNext
3908     );
3909     if( !pIdx ){
3910       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3911       pParse->checkSchema = 1;
3912       return SQLITE_ERROR;
3913     }
3914     pFrom->pIBIndex = pIdx;
3915   }
3916   return SQLITE_OK;
3917 }
3918 /*
3919 ** Detect compound SELECT statements that use an ORDER BY clause with
3920 ** an alternative collating sequence.
3921 **
3922 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3923 **
3924 ** These are rewritten as a subquery:
3925 **
3926 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3927 **     ORDER BY ... COLLATE ...
3928 **
3929 ** This transformation is necessary because the multiSelectOrderBy() routine
3930 ** above that generates the code for a compound SELECT with an ORDER BY clause
3931 ** uses a merge algorithm that requires the same collating sequence on the
3932 ** result columns as on the ORDER BY clause.  See ticket
3933 ** http://www.sqlite.org/src/info/6709574d2a
3934 **
3935 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3936 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3937 ** there are COLLATE terms in the ORDER BY.
3938 */
3939 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3940   int i;
3941   Select *pNew;
3942   Select *pX;
3943   sqlite3 *db;
3944   struct ExprList_item *a;
3945   SrcList *pNewSrc;
3946   Parse *pParse;
3947   Token dummy;
3948 
3949   if( p->pPrior==0 ) return WRC_Continue;
3950   if( p->pOrderBy==0 ) return WRC_Continue;
3951   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3952   if( pX==0 ) return WRC_Continue;
3953   a = p->pOrderBy->a;
3954   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3955     if( a[i].pExpr->flags & EP_Collate ) break;
3956   }
3957   if( i<0 ) return WRC_Continue;
3958 
3959   /* If we reach this point, that means the transformation is required. */
3960 
3961   pParse = pWalker->pParse;
3962   db = pParse->db;
3963   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3964   if( pNew==0 ) return WRC_Abort;
3965   memset(&dummy, 0, sizeof(dummy));
3966   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3967   if( pNewSrc==0 ) return WRC_Abort;
3968   *pNew = *p;
3969   p->pSrc = pNewSrc;
3970   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
3971   p->op = TK_SELECT;
3972   p->pWhere = 0;
3973   pNew->pGroupBy = 0;
3974   pNew->pHaving = 0;
3975   pNew->pOrderBy = 0;
3976   p->pPrior = 0;
3977   p->pNext = 0;
3978   p->pWith = 0;
3979   p->selFlags &= ~SF_Compound;
3980   assert( (p->selFlags & SF_Converted)==0 );
3981   p->selFlags |= SF_Converted;
3982   assert( pNew->pPrior!=0 );
3983   pNew->pPrior->pNext = pNew;
3984   pNew->pLimit = 0;
3985   pNew->pOffset = 0;
3986   return WRC_Continue;
3987 }
3988 
3989 /*
3990 ** Check to see if the FROM clause term pFrom has table-valued function
3991 ** arguments.  If it does, leave an error message in pParse and return
3992 ** non-zero, since pFrom is not allowed to be a table-valued function.
3993 */
3994 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
3995   if( pFrom->fg.isTabFunc ){
3996     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
3997     return 1;
3998   }
3999   return 0;
4000 }
4001 
4002 #ifndef SQLITE_OMIT_CTE
4003 /*
4004 ** Argument pWith (which may be NULL) points to a linked list of nested
4005 ** WITH contexts, from inner to outermost. If the table identified by
4006 ** FROM clause element pItem is really a common-table-expression (CTE)
4007 ** then return a pointer to the CTE definition for that table. Otherwise
4008 ** return NULL.
4009 **
4010 ** If a non-NULL value is returned, set *ppContext to point to the With
4011 ** object that the returned CTE belongs to.
4012 */
4013 static struct Cte *searchWith(
4014   With *pWith,                    /* Current innermost WITH clause */
4015   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4016   With **ppContext                /* OUT: WITH clause return value belongs to */
4017 ){
4018   const char *zName;
4019   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4020     With *p;
4021     for(p=pWith; p; p=p->pOuter){
4022       int i;
4023       for(i=0; i<p->nCte; i++){
4024         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4025           *ppContext = p;
4026           return &p->a[i];
4027         }
4028       }
4029     }
4030   }
4031   return 0;
4032 }
4033 
4034 /* The code generator maintains a stack of active WITH clauses
4035 ** with the inner-most WITH clause being at the top of the stack.
4036 **
4037 ** This routine pushes the WITH clause passed as the second argument
4038 ** onto the top of the stack. If argument bFree is true, then this
4039 ** WITH clause will never be popped from the stack. In this case it
4040 ** should be freed along with the Parse object. In other cases, when
4041 ** bFree==0, the With object will be freed along with the SELECT
4042 ** statement with which it is associated.
4043 */
4044 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4045   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4046   if( pWith ){
4047     assert( pParse->pWith!=pWith );
4048     pWith->pOuter = pParse->pWith;
4049     pParse->pWith = pWith;
4050     if( bFree ) pParse->pWithToFree = pWith;
4051   }
4052 }
4053 
4054 /*
4055 ** This function checks if argument pFrom refers to a CTE declared by
4056 ** a WITH clause on the stack currently maintained by the parser. And,
4057 ** if currently processing a CTE expression, if it is a recursive
4058 ** reference to the current CTE.
4059 **
4060 ** If pFrom falls into either of the two categories above, pFrom->pTab
4061 ** and other fields are populated accordingly. The caller should check
4062 ** (pFrom->pTab!=0) to determine whether or not a successful match
4063 ** was found.
4064 **
4065 ** Whether or not a match is found, SQLITE_OK is returned if no error
4066 ** occurs. If an error does occur, an error message is stored in the
4067 ** parser and some error code other than SQLITE_OK returned.
4068 */
4069 static int withExpand(
4070   Walker *pWalker,
4071   struct SrcList_item *pFrom
4072 ){
4073   Parse *pParse = pWalker->pParse;
4074   sqlite3 *db = pParse->db;
4075   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4076   With *pWith;                    /* WITH clause that pCte belongs to */
4077 
4078   assert( pFrom->pTab==0 );
4079 
4080   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4081   if( pCte ){
4082     Table *pTab;
4083     ExprList *pEList;
4084     Select *pSel;
4085     Select *pLeft;                /* Left-most SELECT statement */
4086     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4087     With *pSavedWith;             /* Initial value of pParse->pWith */
4088 
4089     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4090     ** recursive reference to CTE pCte. Leave an error in pParse and return
4091     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4092     ** In this case, proceed.  */
4093     if( pCte->zCteErr ){
4094       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4095       return SQLITE_ERROR;
4096     }
4097     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4098 
4099     assert( pFrom->pTab==0 );
4100     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4101     if( pTab==0 ) return WRC_Abort;
4102     pTab->nRef = 1;
4103     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4104     pTab->iPKey = -1;
4105     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4106     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4107     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4108     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4109     assert( pFrom->pSelect );
4110 
4111     /* Check if this is a recursive CTE. */
4112     pSel = pFrom->pSelect;
4113     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4114     if( bMayRecursive ){
4115       int i;
4116       SrcList *pSrc = pFrom->pSelect->pSrc;
4117       for(i=0; i<pSrc->nSrc; i++){
4118         struct SrcList_item *pItem = &pSrc->a[i];
4119         if( pItem->zDatabase==0
4120          && pItem->zName!=0
4121          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4122           ){
4123           pItem->pTab = pTab;
4124           pItem->fg.isRecursive = 1;
4125           pTab->nRef++;
4126           pSel->selFlags |= SF_Recursive;
4127         }
4128       }
4129     }
4130 
4131     /* Only one recursive reference is permitted. */
4132     if( pTab->nRef>2 ){
4133       sqlite3ErrorMsg(
4134           pParse, "multiple references to recursive table: %s", pCte->zName
4135       );
4136       return SQLITE_ERROR;
4137     }
4138     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4139 
4140     pCte->zCteErr = "circular reference: %s";
4141     pSavedWith = pParse->pWith;
4142     pParse->pWith = pWith;
4143     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4144     pParse->pWith = pWith;
4145 
4146     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4147     pEList = pLeft->pEList;
4148     if( pCte->pCols ){
4149       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4150         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4151             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4152         );
4153         pParse->pWith = pSavedWith;
4154         return SQLITE_ERROR;
4155       }
4156       pEList = pCte->pCols;
4157     }
4158 
4159     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4160     if( bMayRecursive ){
4161       if( pSel->selFlags & SF_Recursive ){
4162         pCte->zCteErr = "multiple recursive references: %s";
4163       }else{
4164         pCte->zCteErr = "recursive reference in a subquery: %s";
4165       }
4166       sqlite3WalkSelect(pWalker, pSel);
4167     }
4168     pCte->zCteErr = 0;
4169     pParse->pWith = pSavedWith;
4170   }
4171 
4172   return SQLITE_OK;
4173 }
4174 #endif
4175 
4176 #ifndef SQLITE_OMIT_CTE
4177 /*
4178 ** If the SELECT passed as the second argument has an associated WITH
4179 ** clause, pop it from the stack stored as part of the Parse object.
4180 **
4181 ** This function is used as the xSelectCallback2() callback by
4182 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4183 ** names and other FROM clause elements.
4184 */
4185 static void selectPopWith(Walker *pWalker, Select *p){
4186   Parse *pParse = pWalker->pParse;
4187   With *pWith = findRightmost(p)->pWith;
4188   if( pWith!=0 ){
4189     assert( pParse->pWith==pWith );
4190     pParse->pWith = pWith->pOuter;
4191   }
4192 }
4193 #else
4194 #define selectPopWith 0
4195 #endif
4196 
4197 /*
4198 ** This routine is a Walker callback for "expanding" a SELECT statement.
4199 ** "Expanding" means to do the following:
4200 **
4201 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4202 **         element of the FROM clause.
4203 **
4204 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4205 **         defines FROM clause.  When views appear in the FROM clause,
4206 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4207 **         that implements the view.  A copy is made of the view's SELECT
4208 **         statement so that we can freely modify or delete that statement
4209 **         without worrying about messing up the persistent representation
4210 **         of the view.
4211 **
4212 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4213 **         on joins and the ON and USING clause of joins.
4214 **
4215 **    (4)  Scan the list of columns in the result set (pEList) looking
4216 **         for instances of the "*" operator or the TABLE.* operator.
4217 **         If found, expand each "*" to be every column in every table
4218 **         and TABLE.* to be every column in TABLE.
4219 **
4220 */
4221 static int selectExpander(Walker *pWalker, Select *p){
4222   Parse *pParse = pWalker->pParse;
4223   int i, j, k;
4224   SrcList *pTabList;
4225   ExprList *pEList;
4226   struct SrcList_item *pFrom;
4227   sqlite3 *db = pParse->db;
4228   Expr *pE, *pRight, *pExpr;
4229   u16 selFlags = p->selFlags;
4230 
4231   p->selFlags |= SF_Expanded;
4232   if( db->mallocFailed  ){
4233     return WRC_Abort;
4234   }
4235   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4236     return WRC_Prune;
4237   }
4238   pTabList = p->pSrc;
4239   pEList = p->pEList;
4240   if( pWalker->xSelectCallback2==selectPopWith ){
4241     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4242   }
4243 
4244   /* Make sure cursor numbers have been assigned to all entries in
4245   ** the FROM clause of the SELECT statement.
4246   */
4247   sqlite3SrcListAssignCursors(pParse, pTabList);
4248 
4249   /* Look up every table named in the FROM clause of the select.  If
4250   ** an entry of the FROM clause is a subquery instead of a table or view,
4251   ** then create a transient table structure to describe the subquery.
4252   */
4253   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4254     Table *pTab;
4255     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4256     if( pFrom->fg.isRecursive ) continue;
4257     assert( pFrom->pTab==0 );
4258 #ifndef SQLITE_OMIT_CTE
4259     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4260     if( pFrom->pTab ) {} else
4261 #endif
4262     if( pFrom->zName==0 ){
4263 #ifndef SQLITE_OMIT_SUBQUERY
4264       Select *pSel = pFrom->pSelect;
4265       /* A sub-query in the FROM clause of a SELECT */
4266       assert( pSel!=0 );
4267       assert( pFrom->pTab==0 );
4268       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4269       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4270       if( pTab==0 ) return WRC_Abort;
4271       pTab->nRef = 1;
4272       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4273       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4274       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4275       pTab->iPKey = -1;
4276       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4277       pTab->tabFlags |= TF_Ephemeral;
4278 #endif
4279     }else{
4280       /* An ordinary table or view name in the FROM clause */
4281       assert( pFrom->pTab==0 );
4282       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4283       if( pTab==0 ) return WRC_Abort;
4284       if( pTab->nRef==0xffff ){
4285         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4286            pTab->zName);
4287         pFrom->pTab = 0;
4288         return WRC_Abort;
4289       }
4290       pTab->nRef++;
4291       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4292         return WRC_Abort;
4293       }
4294 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4295       if( IsVirtual(pTab) || pTab->pSelect ){
4296         i16 nCol;
4297         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4298         assert( pFrom->pSelect==0 );
4299         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4300         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4301         nCol = pTab->nCol;
4302         pTab->nCol = -1;
4303         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4304         pTab->nCol = nCol;
4305       }
4306 #endif
4307     }
4308 
4309     /* Locate the index named by the INDEXED BY clause, if any. */
4310     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4311       return WRC_Abort;
4312     }
4313   }
4314 
4315   /* Process NATURAL keywords, and ON and USING clauses of joins.
4316   */
4317   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4318     return WRC_Abort;
4319   }
4320 
4321   /* For every "*" that occurs in the column list, insert the names of
4322   ** all columns in all tables.  And for every TABLE.* insert the names
4323   ** of all columns in TABLE.  The parser inserted a special expression
4324   ** with the TK_ASTERISK operator for each "*" that it found in the column
4325   ** list.  The following code just has to locate the TK_ASTERISK
4326   ** expressions and expand each one to the list of all columns in
4327   ** all tables.
4328   **
4329   ** The first loop just checks to see if there are any "*" operators
4330   ** that need expanding.
4331   */
4332   for(k=0; k<pEList->nExpr; k++){
4333     pE = pEList->a[k].pExpr;
4334     if( pE->op==TK_ASTERISK ) break;
4335     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4336     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4337     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4338   }
4339   if( k<pEList->nExpr ){
4340     /*
4341     ** If we get here it means the result set contains one or more "*"
4342     ** operators that need to be expanded.  Loop through each expression
4343     ** in the result set and expand them one by one.
4344     */
4345     struct ExprList_item *a = pEList->a;
4346     ExprList *pNew = 0;
4347     int flags = pParse->db->flags;
4348     int longNames = (flags & SQLITE_FullColNames)!=0
4349                       && (flags & SQLITE_ShortColNames)==0;
4350 
4351     for(k=0; k<pEList->nExpr; k++){
4352       pE = a[k].pExpr;
4353       pRight = pE->pRight;
4354       assert( pE->op!=TK_DOT || pRight!=0 );
4355       if( pE->op!=TK_ASTERISK
4356        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4357       ){
4358         /* This particular expression does not need to be expanded.
4359         */
4360         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4361         if( pNew ){
4362           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4363           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4364           a[k].zName = 0;
4365           a[k].zSpan = 0;
4366         }
4367         a[k].pExpr = 0;
4368       }else{
4369         /* This expression is a "*" or a "TABLE.*" and needs to be
4370         ** expanded. */
4371         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4372         char *zTName = 0;       /* text of name of TABLE */
4373         if( pE->op==TK_DOT ){
4374           assert( pE->pLeft!=0 );
4375           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4376           zTName = pE->pLeft->u.zToken;
4377         }
4378         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4379           Table *pTab = pFrom->pTab;
4380           Select *pSub = pFrom->pSelect;
4381           char *zTabName = pFrom->zAlias;
4382           const char *zSchemaName = 0;
4383           int iDb;
4384           if( zTabName==0 ){
4385             zTabName = pTab->zName;
4386           }
4387           if( db->mallocFailed ) break;
4388           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4389             pSub = 0;
4390             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4391               continue;
4392             }
4393             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4394             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4395           }
4396           for(j=0; j<pTab->nCol; j++){
4397             char *zName = pTab->aCol[j].zName;
4398             char *zColname;  /* The computed column name */
4399             char *zToFree;   /* Malloced string that needs to be freed */
4400             Token sColname;  /* Computed column name as a token */
4401 
4402             assert( zName );
4403             if( zTName && pSub
4404              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4405             ){
4406               continue;
4407             }
4408 
4409             /* If a column is marked as 'hidden', omit it from the expanded
4410             ** result-set list unless the SELECT has the SF_IncludeHidden
4411             ** bit set.
4412             */
4413             if( (p->selFlags & SF_IncludeHidden)==0
4414              && IsHiddenColumn(&pTab->aCol[j])
4415             ){
4416               continue;
4417             }
4418             tableSeen = 1;
4419 
4420             if( i>0 && zTName==0 ){
4421               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4422                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4423               ){
4424                 /* In a NATURAL join, omit the join columns from the
4425                 ** table to the right of the join */
4426                 continue;
4427               }
4428               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4429                 /* In a join with a USING clause, omit columns in the
4430                 ** using clause from the table on the right. */
4431                 continue;
4432               }
4433             }
4434             pRight = sqlite3Expr(db, TK_ID, zName);
4435             zColname = zName;
4436             zToFree = 0;
4437             if( longNames || pTabList->nSrc>1 ){
4438               Expr *pLeft;
4439               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4440               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4441               if( zSchemaName ){
4442                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4443                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4444               }
4445               if( longNames ){
4446                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4447                 zToFree = zColname;
4448               }
4449             }else{
4450               pExpr = pRight;
4451             }
4452             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4453             sqlite3TokenInit(&sColname, zColname);
4454             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4455             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4456               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4457               if( pSub ){
4458                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4459                 testcase( pX->zSpan==0 );
4460               }else{
4461                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4462                                            zSchemaName, zTabName, zColname);
4463                 testcase( pX->zSpan==0 );
4464               }
4465               pX->bSpanIsTab = 1;
4466             }
4467             sqlite3DbFree(db, zToFree);
4468           }
4469         }
4470         if( !tableSeen ){
4471           if( zTName ){
4472             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4473           }else{
4474             sqlite3ErrorMsg(pParse, "no tables specified");
4475           }
4476         }
4477       }
4478     }
4479     sqlite3ExprListDelete(db, pEList);
4480     p->pEList = pNew;
4481   }
4482 #if SQLITE_MAX_COLUMN
4483   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4484     sqlite3ErrorMsg(pParse, "too many columns in result set");
4485     return WRC_Abort;
4486   }
4487 #endif
4488   return WRC_Continue;
4489 }
4490 
4491 /*
4492 ** No-op routine for the parse-tree walker.
4493 **
4494 ** When this routine is the Walker.xExprCallback then expression trees
4495 ** are walked without any actions being taken at each node.  Presumably,
4496 ** when this routine is used for Walker.xExprCallback then
4497 ** Walker.xSelectCallback is set to do something useful for every
4498 ** subquery in the parser tree.
4499 */
4500 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4501   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4502   return WRC_Continue;
4503 }
4504 
4505 /*
4506 ** This routine "expands" a SELECT statement and all of its subqueries.
4507 ** For additional information on what it means to "expand" a SELECT
4508 ** statement, see the comment on the selectExpand worker callback above.
4509 **
4510 ** Expanding a SELECT statement is the first step in processing a
4511 ** SELECT statement.  The SELECT statement must be expanded before
4512 ** name resolution is performed.
4513 **
4514 ** If anything goes wrong, an error message is written into pParse.
4515 ** The calling function can detect the problem by looking at pParse->nErr
4516 ** and/or pParse->db->mallocFailed.
4517 */
4518 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4519   Walker w;
4520   memset(&w, 0, sizeof(w));
4521   w.xExprCallback = sqlite3ExprWalkNoop;
4522   w.pParse = pParse;
4523   if( pParse->hasCompound ){
4524     w.xSelectCallback = convertCompoundSelectToSubquery;
4525     sqlite3WalkSelect(&w, pSelect);
4526   }
4527   w.xSelectCallback = selectExpander;
4528   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4529     w.xSelectCallback2 = selectPopWith;
4530   }
4531   sqlite3WalkSelect(&w, pSelect);
4532 }
4533 
4534 
4535 #ifndef SQLITE_OMIT_SUBQUERY
4536 /*
4537 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4538 ** interface.
4539 **
4540 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4541 ** information to the Table structure that represents the result set
4542 ** of that subquery.
4543 **
4544 ** The Table structure that represents the result set was constructed
4545 ** by selectExpander() but the type and collation information was omitted
4546 ** at that point because identifiers had not yet been resolved.  This
4547 ** routine is called after identifier resolution.
4548 */
4549 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4550   Parse *pParse;
4551   int i;
4552   SrcList *pTabList;
4553   struct SrcList_item *pFrom;
4554 
4555   assert( p->selFlags & SF_Resolved );
4556   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4557   p->selFlags |= SF_HasTypeInfo;
4558   pParse = pWalker->pParse;
4559   pTabList = p->pSrc;
4560   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4561     Table *pTab = pFrom->pTab;
4562     assert( pTab!=0 );
4563     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4564       /* A sub-query in the FROM clause of a SELECT */
4565       Select *pSel = pFrom->pSelect;
4566       if( pSel ){
4567         while( pSel->pPrior ) pSel = pSel->pPrior;
4568         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4569       }
4570     }
4571   }
4572 }
4573 #endif
4574 
4575 
4576 /*
4577 ** This routine adds datatype and collating sequence information to
4578 ** the Table structures of all FROM-clause subqueries in a
4579 ** SELECT statement.
4580 **
4581 ** Use this routine after name resolution.
4582 */
4583 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4584 #ifndef SQLITE_OMIT_SUBQUERY
4585   Walker w;
4586   memset(&w, 0, sizeof(w));
4587   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4588   w.xExprCallback = sqlite3ExprWalkNoop;
4589   w.pParse = pParse;
4590   sqlite3WalkSelect(&w, pSelect);
4591 #endif
4592 }
4593 
4594 
4595 /*
4596 ** This routine sets up a SELECT statement for processing.  The
4597 ** following is accomplished:
4598 **
4599 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4600 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4601 **     *  ON and USING clauses are shifted into WHERE statements
4602 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4603 **     *  Identifiers in expression are matched to tables.
4604 **
4605 ** This routine acts recursively on all subqueries within the SELECT.
4606 */
4607 void sqlite3SelectPrep(
4608   Parse *pParse,         /* The parser context */
4609   Select *p,             /* The SELECT statement being coded. */
4610   NameContext *pOuterNC  /* Name context for container */
4611 ){
4612   sqlite3 *db;
4613   if( NEVER(p==0) ) return;
4614   db = pParse->db;
4615   if( db->mallocFailed ) return;
4616   if( p->selFlags & SF_HasTypeInfo ) return;
4617   sqlite3SelectExpand(pParse, p);
4618   if( pParse->nErr || db->mallocFailed ) return;
4619   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4620   if( pParse->nErr || db->mallocFailed ) return;
4621   sqlite3SelectAddTypeInfo(pParse, p);
4622 }
4623 
4624 /*
4625 ** Reset the aggregate accumulator.
4626 **
4627 ** The aggregate accumulator is a set of memory cells that hold
4628 ** intermediate results while calculating an aggregate.  This
4629 ** routine generates code that stores NULLs in all of those memory
4630 ** cells.
4631 */
4632 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4633   Vdbe *v = pParse->pVdbe;
4634   int i;
4635   struct AggInfo_func *pFunc;
4636   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4637   if( nReg==0 ) return;
4638 #ifdef SQLITE_DEBUG
4639   /* Verify that all AggInfo registers are within the range specified by
4640   ** AggInfo.mnReg..AggInfo.mxReg */
4641   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4642   for(i=0; i<pAggInfo->nColumn; i++){
4643     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4644          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4645   }
4646   for(i=0; i<pAggInfo->nFunc; i++){
4647     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4648          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4649   }
4650 #endif
4651   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4652   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4653     if( pFunc->iDistinct>=0 ){
4654       Expr *pE = pFunc->pExpr;
4655       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4656       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4657         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4658            "argument");
4659         pFunc->iDistinct = -1;
4660       }else{
4661         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4662         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4663                           (char*)pKeyInfo, P4_KEYINFO);
4664       }
4665     }
4666   }
4667 }
4668 
4669 /*
4670 ** Invoke the OP_AggFinalize opcode for every aggregate function
4671 ** in the AggInfo structure.
4672 */
4673 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4674   Vdbe *v = pParse->pVdbe;
4675   int i;
4676   struct AggInfo_func *pF;
4677   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4678     ExprList *pList = pF->pExpr->x.pList;
4679     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4680     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4681                       (void*)pF->pFunc, P4_FUNCDEF);
4682   }
4683 }
4684 
4685 /*
4686 ** Update the accumulator memory cells for an aggregate based on
4687 ** the current cursor position.
4688 */
4689 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4690   Vdbe *v = pParse->pVdbe;
4691   int i;
4692   int regHit = 0;
4693   int addrHitTest = 0;
4694   struct AggInfo_func *pF;
4695   struct AggInfo_col *pC;
4696 
4697   pAggInfo->directMode = 1;
4698   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4699     int nArg;
4700     int addrNext = 0;
4701     int regAgg;
4702     ExprList *pList = pF->pExpr->x.pList;
4703     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4704     if( pList ){
4705       nArg = pList->nExpr;
4706       regAgg = sqlite3GetTempRange(pParse, nArg);
4707       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4708     }else{
4709       nArg = 0;
4710       regAgg = 0;
4711     }
4712     if( pF->iDistinct>=0 ){
4713       addrNext = sqlite3VdbeMakeLabel(v);
4714       testcase( nArg==0 );  /* Error condition */
4715       testcase( nArg>1 );   /* Also an error */
4716       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4717     }
4718     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4719       CollSeq *pColl = 0;
4720       struct ExprList_item *pItem;
4721       int j;
4722       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4723       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4724         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4725       }
4726       if( !pColl ){
4727         pColl = pParse->db->pDfltColl;
4728       }
4729       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4730       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4731     }
4732     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4733                       (void*)pF->pFunc, P4_FUNCDEF);
4734     sqlite3VdbeChangeP5(v, (u8)nArg);
4735     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4736     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4737     if( addrNext ){
4738       sqlite3VdbeResolveLabel(v, addrNext);
4739       sqlite3ExprCacheClear(pParse);
4740     }
4741   }
4742 
4743   /* Before populating the accumulator registers, clear the column cache.
4744   ** Otherwise, if any of the required column values are already present
4745   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4746   ** to pC->iMem. But by the time the value is used, the original register
4747   ** may have been used, invalidating the underlying buffer holding the
4748   ** text or blob value. See ticket [883034dcb5].
4749   **
4750   ** Another solution would be to change the OP_SCopy used to copy cached
4751   ** values to an OP_Copy.
4752   */
4753   if( regHit ){
4754     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4755   }
4756   sqlite3ExprCacheClear(pParse);
4757   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4758     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4759   }
4760   pAggInfo->directMode = 0;
4761   sqlite3ExprCacheClear(pParse);
4762   if( addrHitTest ){
4763     sqlite3VdbeJumpHere(v, addrHitTest);
4764   }
4765 }
4766 
4767 /*
4768 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4769 ** count(*) query ("SELECT count(*) FROM pTab").
4770 */
4771 #ifndef SQLITE_OMIT_EXPLAIN
4772 static void explainSimpleCount(
4773   Parse *pParse,                  /* Parse context */
4774   Table *pTab,                    /* Table being queried */
4775   Index *pIdx                     /* Index used to optimize scan, or NULL */
4776 ){
4777   if( pParse->explain==2 ){
4778     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4779     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4780         pTab->zName,
4781         bCover ? " USING COVERING INDEX " : "",
4782         bCover ? pIdx->zName : ""
4783     );
4784     sqlite3VdbeAddOp4(
4785         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4786     );
4787   }
4788 }
4789 #else
4790 # define explainSimpleCount(a,b,c)
4791 #endif
4792 
4793 /*
4794 ** Generate code for the SELECT statement given in the p argument.
4795 **
4796 ** The results are returned according to the SelectDest structure.
4797 ** See comments in sqliteInt.h for further information.
4798 **
4799 ** This routine returns the number of errors.  If any errors are
4800 ** encountered, then an appropriate error message is left in
4801 ** pParse->zErrMsg.
4802 **
4803 ** This routine does NOT free the Select structure passed in.  The
4804 ** calling function needs to do that.
4805 */
4806 int sqlite3Select(
4807   Parse *pParse,         /* The parser context */
4808   Select *p,             /* The SELECT statement being coded. */
4809   SelectDest *pDest      /* What to do with the query results */
4810 ){
4811   int i, j;              /* Loop counters */
4812   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4813   Vdbe *v;               /* The virtual machine under construction */
4814   int isAgg;             /* True for select lists like "count(*)" */
4815   ExprList *pEList = 0;  /* List of columns to extract. */
4816   SrcList *pTabList;     /* List of tables to select from */
4817   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4818   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4819   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4820   int rc = 1;            /* Value to return from this function */
4821   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4822   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4823   AggInfo sAggInfo;      /* Information used by aggregate queries */
4824   int iEnd;              /* Address of the end of the query */
4825   sqlite3 *db;           /* The database connection */
4826 
4827 #ifndef SQLITE_OMIT_EXPLAIN
4828   int iRestoreSelectId = pParse->iSelectId;
4829   pParse->iSelectId = pParse->iNextSelectId++;
4830 #endif
4831 
4832   db = pParse->db;
4833   if( p==0 || db->mallocFailed || pParse->nErr ){
4834     return 1;
4835   }
4836   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4837   memset(&sAggInfo, 0, sizeof(sAggInfo));
4838 #if SELECTTRACE_ENABLED
4839   pParse->nSelectIndent++;
4840   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4841   if( sqlite3SelectTrace & 0x100 ){
4842     sqlite3TreeViewSelect(0, p, 0);
4843   }
4844 #endif
4845 
4846   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4847   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4848   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4849   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4850   if( IgnorableOrderby(pDest) ){
4851     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4852            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4853            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4854            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4855     /* If ORDER BY makes no difference in the output then neither does
4856     ** DISTINCT so it can be removed too. */
4857     sqlite3ExprListDelete(db, p->pOrderBy);
4858     p->pOrderBy = 0;
4859     p->selFlags &= ~SF_Distinct;
4860   }
4861   sqlite3SelectPrep(pParse, p, 0);
4862   memset(&sSort, 0, sizeof(sSort));
4863   sSort.pOrderBy = p->pOrderBy;
4864   pTabList = p->pSrc;
4865   if( pParse->nErr || db->mallocFailed ){
4866     goto select_end;
4867   }
4868   assert( p->pEList!=0 );
4869   isAgg = (p->selFlags & SF_Aggregate)!=0;
4870 #if SELECTTRACE_ENABLED
4871   if( sqlite3SelectTrace & 0x100 ){
4872     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4873     sqlite3TreeViewSelect(0, p, 0);
4874   }
4875 #endif
4876 
4877   /* Try to flatten subqueries in the FROM clause up into the main query
4878   */
4879 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4880   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4881     struct SrcList_item *pItem = &pTabList->a[i];
4882     Select *pSub = pItem->pSelect;
4883     int isAggSub;
4884     Table *pTab = pItem->pTab;
4885     if( pSub==0 ) continue;
4886 
4887     /* Catch mismatch in the declared columns of a view and the number of
4888     ** columns in the SELECT on the RHS */
4889     if( pTab->nCol!=pSub->pEList->nExpr ){
4890       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
4891                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
4892       goto select_end;
4893     }
4894 
4895     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4896     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4897       /* This subquery can be absorbed into its parent. */
4898       if( isAggSub ){
4899         isAgg = 1;
4900         p->selFlags |= SF_Aggregate;
4901       }
4902       i = -1;
4903     }
4904     pTabList = p->pSrc;
4905     if( db->mallocFailed ) goto select_end;
4906     if( !IgnorableOrderby(pDest) ){
4907       sSort.pOrderBy = p->pOrderBy;
4908     }
4909   }
4910 #endif
4911 
4912   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4913   ** does not already exist */
4914   v = sqlite3GetVdbe(pParse);
4915   if( v==0 ) goto select_end;
4916 
4917 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4918   /* Handle compound SELECT statements using the separate multiSelect()
4919   ** procedure.
4920   */
4921   if( p->pPrior ){
4922     rc = multiSelect(pParse, p, pDest);
4923     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4924 #if SELECTTRACE_ENABLED
4925     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4926     pParse->nSelectIndent--;
4927 #endif
4928     return rc;
4929   }
4930 #endif
4931 
4932   /* Generate code for all sub-queries in the FROM clause
4933   */
4934 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4935   for(i=0; i<pTabList->nSrc; i++){
4936     struct SrcList_item *pItem = &pTabList->a[i];
4937     SelectDest dest;
4938     Select *pSub = pItem->pSelect;
4939     if( pSub==0 ) continue;
4940 
4941     /* Sometimes the code for a subquery will be generated more than
4942     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4943     ** for example.  In that case, do not regenerate the code to manifest
4944     ** a view or the co-routine to implement a view.  The first instance
4945     ** is sufficient, though the subroutine to manifest the view does need
4946     ** to be invoked again. */
4947     if( pItem->addrFillSub ){
4948       if( pItem->fg.viaCoroutine==0 ){
4949         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4950       }
4951       continue;
4952     }
4953 
4954     /* Increment Parse.nHeight by the height of the largest expression
4955     ** tree referred to by this, the parent select. The child select
4956     ** may contain expression trees of at most
4957     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4958     ** more conservative than necessary, but much easier than enforcing
4959     ** an exact limit.
4960     */
4961     pParse->nHeight += sqlite3SelectExprHeight(p);
4962 
4963     /* Make copies of constant WHERE-clause terms in the outer query down
4964     ** inside the subquery.  This can help the subquery to run more efficiently.
4965     */
4966     if( (pItem->fg.jointype & JT_OUTER)==0
4967      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4968     ){
4969 #if SELECTTRACE_ENABLED
4970       if( sqlite3SelectTrace & 0x100 ){
4971         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4972         sqlite3TreeViewSelect(0, p, 0);
4973       }
4974 #endif
4975     }
4976 
4977     /* Generate code to implement the subquery
4978     **
4979     ** The subquery is implemented as a co-routine if all of these are true:
4980     **   (1)  The subquery is guaranteed to be the outer loop (so that it
4981     **        does not need to be computed more than once)
4982     **   (2)  The ALL keyword after SELECT is omitted.  (Applications are
4983     **        allowed to say "SELECT ALL" instead of just "SELECT" to disable
4984     **        the use of co-routines.)
4985     **   (3)  Co-routines are not disabled using sqlite3_test_control()
4986     **        with SQLITE_TESTCTRL_OPTIMIZATIONS.
4987     **
4988     ** TODO: Are there other reasons beside (1) to use a co-routine
4989     ** implementation?
4990     */
4991     if( i==0
4992      && (pTabList->nSrc==1
4993             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
4994      && (p->selFlags & SF_All)==0                                   /* (2) */
4995      && OptimizationEnabled(db, SQLITE_SubqCoroutine)               /* (3) */
4996     ){
4997       /* Implement a co-routine that will return a single row of the result
4998       ** set on each invocation.
4999       */
5000       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5001       pItem->regReturn = ++pParse->nMem;
5002       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5003       VdbeComment((v, "%s", pItem->pTab->zName));
5004       pItem->addrFillSub = addrTop;
5005       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5006       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5007       sqlite3Select(pParse, pSub, &dest);
5008       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5009       pItem->fg.viaCoroutine = 1;
5010       pItem->regResult = dest.iSdst;
5011       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5012       sqlite3VdbeJumpHere(v, addrTop-1);
5013       sqlite3ClearTempRegCache(pParse);
5014     }else{
5015       /* Generate a subroutine that will fill an ephemeral table with
5016       ** the content of this subquery.  pItem->addrFillSub will point
5017       ** to the address of the generated subroutine.  pItem->regReturn
5018       ** is a register allocated to hold the subroutine return address
5019       */
5020       int topAddr;
5021       int onceAddr = 0;
5022       int retAddr;
5023       assert( pItem->addrFillSub==0 );
5024       pItem->regReturn = ++pParse->nMem;
5025       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5026       pItem->addrFillSub = topAddr+1;
5027       if( pItem->fg.isCorrelated==0 ){
5028         /* If the subquery is not correlated and if we are not inside of
5029         ** a trigger, then we only need to compute the value of the subquery
5030         ** once. */
5031         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5032         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5033       }else{
5034         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5035       }
5036       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5037       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5038       sqlite3Select(pParse, pSub, &dest);
5039       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5040       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5041       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5042       VdbeComment((v, "end %s", pItem->pTab->zName));
5043       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5044       sqlite3ClearTempRegCache(pParse);
5045     }
5046     if( db->mallocFailed ) goto select_end;
5047     pParse->nHeight -= sqlite3SelectExprHeight(p);
5048   }
5049 #endif
5050 
5051   /* Various elements of the SELECT copied into local variables for
5052   ** convenience */
5053   pEList = p->pEList;
5054   pWhere = p->pWhere;
5055   pGroupBy = p->pGroupBy;
5056   pHaving = p->pHaving;
5057   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5058 
5059 #if SELECTTRACE_ENABLED
5060   if( sqlite3SelectTrace & 0x400 ){
5061     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5062     sqlite3TreeViewSelect(0, p, 0);
5063   }
5064 #endif
5065 
5066   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5067   ** if the select-list is the same as the ORDER BY list, then this query
5068   ** can be rewritten as a GROUP BY. In other words, this:
5069   **
5070   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5071   **
5072   ** is transformed to:
5073   **
5074   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5075   **
5076   ** The second form is preferred as a single index (or temp-table) may be
5077   ** used for both the ORDER BY and DISTINCT processing. As originally
5078   ** written the query must use a temp-table for at least one of the ORDER
5079   ** BY and DISTINCT, and an index or separate temp-table for the other.
5080   */
5081   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5082    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5083   ){
5084     p->selFlags &= ~SF_Distinct;
5085     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5086     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5087     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5088     ** original setting of the SF_Distinct flag, not the current setting */
5089     assert( sDistinct.isTnct );
5090 
5091 #if SELECTTRACE_ENABLED
5092     if( sqlite3SelectTrace & 0x400 ){
5093       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5094       sqlite3TreeViewSelect(0, p, 0);
5095     }
5096 #endif
5097   }
5098 
5099   /* If there is an ORDER BY clause, then create an ephemeral index to
5100   ** do the sorting.  But this sorting ephemeral index might end up
5101   ** being unused if the data can be extracted in pre-sorted order.
5102   ** If that is the case, then the OP_OpenEphemeral instruction will be
5103   ** changed to an OP_Noop once we figure out that the sorting index is
5104   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5105   ** that change.
5106   */
5107   if( sSort.pOrderBy ){
5108     KeyInfo *pKeyInfo;
5109     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5110     sSort.iECursor = pParse->nTab++;
5111     sSort.addrSortIndex =
5112       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5113           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5114           (char*)pKeyInfo, P4_KEYINFO
5115       );
5116   }else{
5117     sSort.addrSortIndex = -1;
5118   }
5119 
5120   /* If the output is destined for a temporary table, open that table.
5121   */
5122   if( pDest->eDest==SRT_EphemTab ){
5123     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5124   }
5125 
5126   /* Set the limiter.
5127   */
5128   iEnd = sqlite3VdbeMakeLabel(v);
5129   p->nSelectRow = 320;  /* 4 billion rows */
5130   computeLimitRegisters(pParse, p, iEnd);
5131   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5132     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5133     sSort.sortFlags |= SORTFLAG_UseSorter;
5134   }
5135 
5136   /* Open an ephemeral index to use for the distinct set.
5137   */
5138   if( p->selFlags & SF_Distinct ){
5139     sDistinct.tabTnct = pParse->nTab++;
5140     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5141                              sDistinct.tabTnct, 0, 0,
5142                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5143                              P4_KEYINFO);
5144     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5145     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5146   }else{
5147     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5148   }
5149 
5150   if( !isAgg && pGroupBy==0 ){
5151     /* No aggregate functions and no GROUP BY clause */
5152     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5153     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5154     wctrlFlags |= p->selFlags & SF_FixedLimit;
5155 
5156     /* Begin the database scan. */
5157     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5158                                p->pEList, wctrlFlags, p->nSelectRow);
5159     if( pWInfo==0 ) goto select_end;
5160     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5161       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5162     }
5163     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5164       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5165     }
5166     if( sSort.pOrderBy ){
5167       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5168       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5169       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5170         sSort.pOrderBy = 0;
5171       }
5172     }
5173 
5174     /* If sorting index that was created by a prior OP_OpenEphemeral
5175     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5176     ** into an OP_Noop.
5177     */
5178     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5179       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5180     }
5181 
5182     /* Use the standard inner loop. */
5183     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5184                     sqlite3WhereContinueLabel(pWInfo),
5185                     sqlite3WhereBreakLabel(pWInfo));
5186 
5187     /* End the database scan loop.
5188     */
5189     sqlite3WhereEnd(pWInfo);
5190   }else{
5191     /* This case when there exist aggregate functions or a GROUP BY clause
5192     ** or both */
5193     NameContext sNC;    /* Name context for processing aggregate information */
5194     int iAMem;          /* First Mem address for storing current GROUP BY */
5195     int iBMem;          /* First Mem address for previous GROUP BY */
5196     int iUseFlag;       /* Mem address holding flag indicating that at least
5197                         ** one row of the input to the aggregator has been
5198                         ** processed */
5199     int iAbortFlag;     /* Mem address which causes query abort if positive */
5200     int groupBySort;    /* Rows come from source in GROUP BY order */
5201     int addrEnd;        /* End of processing for this SELECT */
5202     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5203     int sortOut = 0;    /* Output register from the sorter */
5204     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5205 
5206     /* Remove any and all aliases between the result set and the
5207     ** GROUP BY clause.
5208     */
5209     if( pGroupBy ){
5210       int k;                        /* Loop counter */
5211       struct ExprList_item *pItem;  /* For looping over expression in a list */
5212 
5213       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5214         pItem->u.x.iAlias = 0;
5215       }
5216       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5217         pItem->u.x.iAlias = 0;
5218       }
5219       assert( 66==sqlite3LogEst(100) );
5220       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5221     }else{
5222       assert( 0==sqlite3LogEst(1) );
5223       p->nSelectRow = 0;
5224     }
5225 
5226     /* If there is both a GROUP BY and an ORDER BY clause and they are
5227     ** identical, then it may be possible to disable the ORDER BY clause
5228     ** on the grounds that the GROUP BY will cause elements to come out
5229     ** in the correct order. It also may not - the GROUP BY might use a
5230     ** database index that causes rows to be grouped together as required
5231     ** but not actually sorted. Either way, record the fact that the
5232     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5233     ** variable.  */
5234     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5235       orderByGrp = 1;
5236     }
5237 
5238     /* Create a label to jump to when we want to abort the query */
5239     addrEnd = sqlite3VdbeMakeLabel(v);
5240 
5241     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5242     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5243     ** SELECT statement.
5244     */
5245     memset(&sNC, 0, sizeof(sNC));
5246     sNC.pParse = pParse;
5247     sNC.pSrcList = pTabList;
5248     sNC.pAggInfo = &sAggInfo;
5249     sAggInfo.mnReg = pParse->nMem+1;
5250     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5251     sAggInfo.pGroupBy = pGroupBy;
5252     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5253     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5254     if( pHaving ){
5255       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5256     }
5257     sAggInfo.nAccumulator = sAggInfo.nColumn;
5258     for(i=0; i<sAggInfo.nFunc; i++){
5259       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5260       sNC.ncFlags |= NC_InAggFunc;
5261       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5262       sNC.ncFlags &= ~NC_InAggFunc;
5263     }
5264     sAggInfo.mxReg = pParse->nMem;
5265     if( db->mallocFailed ) goto select_end;
5266 
5267     /* Processing for aggregates with GROUP BY is very different and
5268     ** much more complex than aggregates without a GROUP BY.
5269     */
5270     if( pGroupBy ){
5271       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5272       int addr1;          /* A-vs-B comparision jump */
5273       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5274       int regOutputRow;   /* Return address register for output subroutine */
5275       int addrSetAbort;   /* Set the abort flag and return */
5276       int addrTopOfLoop;  /* Top of the input loop */
5277       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5278       int addrReset;      /* Subroutine for resetting the accumulator */
5279       int regReset;       /* Return address register for reset subroutine */
5280 
5281       /* If there is a GROUP BY clause we might need a sorting index to
5282       ** implement it.  Allocate that sorting index now.  If it turns out
5283       ** that we do not need it after all, the OP_SorterOpen instruction
5284       ** will be converted into a Noop.
5285       */
5286       sAggInfo.sortingIdx = pParse->nTab++;
5287       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5288       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5289           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5290           0, (char*)pKeyInfo, P4_KEYINFO);
5291 
5292       /* Initialize memory locations used by GROUP BY aggregate processing
5293       */
5294       iUseFlag = ++pParse->nMem;
5295       iAbortFlag = ++pParse->nMem;
5296       regOutputRow = ++pParse->nMem;
5297       addrOutputRow = sqlite3VdbeMakeLabel(v);
5298       regReset = ++pParse->nMem;
5299       addrReset = sqlite3VdbeMakeLabel(v);
5300       iAMem = pParse->nMem + 1;
5301       pParse->nMem += pGroupBy->nExpr;
5302       iBMem = pParse->nMem + 1;
5303       pParse->nMem += pGroupBy->nExpr;
5304       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5305       VdbeComment((v, "clear abort flag"));
5306       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5307       VdbeComment((v, "indicate accumulator empty"));
5308       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5309 
5310       /* Begin a loop that will extract all source rows in GROUP BY order.
5311       ** This might involve two separate loops with an OP_Sort in between, or
5312       ** it might be a single loop that uses an index to extract information
5313       ** in the right order to begin with.
5314       */
5315       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5316       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5317           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5318       );
5319       if( pWInfo==0 ) goto select_end;
5320       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5321         /* The optimizer is able to deliver rows in group by order so
5322         ** we do not have to sort.  The OP_OpenEphemeral table will be
5323         ** cancelled later because we still need to use the pKeyInfo
5324         */
5325         groupBySort = 0;
5326       }else{
5327         /* Rows are coming out in undetermined order.  We have to push
5328         ** each row into a sorting index, terminate the first loop,
5329         ** then loop over the sorting index in order to get the output
5330         ** in sorted order
5331         */
5332         int regBase;
5333         int regRecord;
5334         int nCol;
5335         int nGroupBy;
5336 
5337         explainTempTable(pParse,
5338             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5339                     "DISTINCT" : "GROUP BY");
5340 
5341         groupBySort = 1;
5342         nGroupBy = pGroupBy->nExpr;
5343         nCol = nGroupBy;
5344         j = nGroupBy;
5345         for(i=0; i<sAggInfo.nColumn; i++){
5346           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5347             nCol++;
5348             j++;
5349           }
5350         }
5351         regBase = sqlite3GetTempRange(pParse, nCol);
5352         sqlite3ExprCacheClear(pParse);
5353         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5354         j = nGroupBy;
5355         for(i=0; i<sAggInfo.nColumn; i++){
5356           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5357           if( pCol->iSorterColumn>=j ){
5358             int r1 = j + regBase;
5359             sqlite3ExprCodeGetColumnToReg(pParse,
5360                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5361             j++;
5362           }
5363         }
5364         regRecord = sqlite3GetTempReg(pParse);
5365         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5366         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5367         sqlite3ReleaseTempReg(pParse, regRecord);
5368         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5369         sqlite3WhereEnd(pWInfo);
5370         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5371         sortOut = sqlite3GetTempReg(pParse);
5372         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5373         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5374         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5375         sAggInfo.useSortingIdx = 1;
5376         sqlite3ExprCacheClear(pParse);
5377 
5378       }
5379 
5380       /* If the index or temporary table used by the GROUP BY sort
5381       ** will naturally deliver rows in the order required by the ORDER BY
5382       ** clause, cancel the ephemeral table open coded earlier.
5383       **
5384       ** This is an optimization - the correct answer should result regardless.
5385       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5386       ** disable this optimization for testing purposes.  */
5387       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5388        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5389       ){
5390         sSort.pOrderBy = 0;
5391         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5392       }
5393 
5394       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5395       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5396       ** Then compare the current GROUP BY terms against the GROUP BY terms
5397       ** from the previous row currently stored in a0, a1, a2...
5398       */
5399       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5400       sqlite3ExprCacheClear(pParse);
5401       if( groupBySort ){
5402         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5403                           sortOut, sortPTab);
5404       }
5405       for(j=0; j<pGroupBy->nExpr; j++){
5406         if( groupBySort ){
5407           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5408         }else{
5409           sAggInfo.directMode = 1;
5410           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5411         }
5412       }
5413       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5414                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5415       addr1 = sqlite3VdbeCurrentAddr(v);
5416       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5417 
5418       /* Generate code that runs whenever the GROUP BY changes.
5419       ** Changes in the GROUP BY are detected by the previous code
5420       ** block.  If there were no changes, this block is skipped.
5421       **
5422       ** This code copies current group by terms in b0,b1,b2,...
5423       ** over to a0,a1,a2.  It then calls the output subroutine
5424       ** and resets the aggregate accumulator registers in preparation
5425       ** for the next GROUP BY batch.
5426       */
5427       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5428       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5429       VdbeComment((v, "output one row"));
5430       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5431       VdbeComment((v, "check abort flag"));
5432       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5433       VdbeComment((v, "reset accumulator"));
5434 
5435       /* Update the aggregate accumulators based on the content of
5436       ** the current row
5437       */
5438       sqlite3VdbeJumpHere(v, addr1);
5439       updateAccumulator(pParse, &sAggInfo);
5440       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5441       VdbeComment((v, "indicate data in accumulator"));
5442 
5443       /* End of the loop
5444       */
5445       if( groupBySort ){
5446         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5447         VdbeCoverage(v);
5448       }else{
5449         sqlite3WhereEnd(pWInfo);
5450         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5451       }
5452 
5453       /* Output the final row of result
5454       */
5455       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5456       VdbeComment((v, "output final row"));
5457 
5458       /* Jump over the subroutines
5459       */
5460       sqlite3VdbeGoto(v, addrEnd);
5461 
5462       /* Generate a subroutine that outputs a single row of the result
5463       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5464       ** is less than or equal to zero, the subroutine is a no-op.  If
5465       ** the processing calls for the query to abort, this subroutine
5466       ** increments the iAbortFlag memory location before returning in
5467       ** order to signal the caller to abort.
5468       */
5469       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5470       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5471       VdbeComment((v, "set abort flag"));
5472       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5473       sqlite3VdbeResolveLabel(v, addrOutputRow);
5474       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5475       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5476       VdbeCoverage(v);
5477       VdbeComment((v, "Groupby result generator entry point"));
5478       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5479       finalizeAggFunctions(pParse, &sAggInfo);
5480       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5481       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5482                       &sDistinct, pDest,
5483                       addrOutputRow+1, addrSetAbort);
5484       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5485       VdbeComment((v, "end groupby result generator"));
5486 
5487       /* Generate a subroutine that will reset the group-by accumulator
5488       */
5489       sqlite3VdbeResolveLabel(v, addrReset);
5490       resetAccumulator(pParse, &sAggInfo);
5491       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5492 
5493     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5494     else {
5495       ExprList *pDel = 0;
5496 #ifndef SQLITE_OMIT_BTREECOUNT
5497       Table *pTab;
5498       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5499         /* If isSimpleCount() returns a pointer to a Table structure, then
5500         ** the SQL statement is of the form:
5501         **
5502         **   SELECT count(*) FROM <tbl>
5503         **
5504         ** where the Table structure returned represents table <tbl>.
5505         **
5506         ** This statement is so common that it is optimized specially. The
5507         ** OP_Count instruction is executed either on the intkey table that
5508         ** contains the data for table <tbl> or on one of its indexes. It
5509         ** is better to execute the op on an index, as indexes are almost
5510         ** always spread across less pages than their corresponding tables.
5511         */
5512         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5513         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5514         Index *pIdx;                         /* Iterator variable */
5515         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5516         Index *pBest = 0;                    /* Best index found so far */
5517         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5518 
5519         sqlite3CodeVerifySchema(pParse, iDb);
5520         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5521 
5522         /* Search for the index that has the lowest scan cost.
5523         **
5524         ** (2011-04-15) Do not do a full scan of an unordered index.
5525         **
5526         ** (2013-10-03) Do not count the entries in a partial index.
5527         **
5528         ** In practice the KeyInfo structure will not be used. It is only
5529         ** passed to keep OP_OpenRead happy.
5530         */
5531         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5532         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5533           if( pIdx->bUnordered==0
5534            && pIdx->szIdxRow<pTab->szTabRow
5535            && pIdx->pPartIdxWhere==0
5536            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5537           ){
5538             pBest = pIdx;
5539           }
5540         }
5541         if( pBest ){
5542           iRoot = pBest->tnum;
5543           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5544         }
5545 
5546         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5547         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5548         if( pKeyInfo ){
5549           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5550         }
5551         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5552         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5553         explainSimpleCount(pParse, pTab, pBest);
5554       }else
5555 #endif /* SQLITE_OMIT_BTREECOUNT */
5556       {
5557         /* Check if the query is of one of the following forms:
5558         **
5559         **   SELECT min(x) FROM ...
5560         **   SELECT max(x) FROM ...
5561         **
5562         ** If it is, then ask the code in where.c to attempt to sort results
5563         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5564         ** If where.c is able to produce results sorted in this order, then
5565         ** add vdbe code to break out of the processing loop after the
5566         ** first iteration (since the first iteration of the loop is
5567         ** guaranteed to operate on the row with the minimum or maximum
5568         ** value of x, the only row required).
5569         **
5570         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5571         ** modify behavior as follows:
5572         **
5573         **   + If the query is a "SELECT min(x)", then the loop coded by
5574         **     where.c should not iterate over any values with a NULL value
5575         **     for x.
5576         **
5577         **   + The optimizer code in where.c (the thing that decides which
5578         **     index or indices to use) should place a different priority on
5579         **     satisfying the 'ORDER BY' clause than it does in other cases.
5580         **     Refer to code and comments in where.c for details.
5581         */
5582         ExprList *pMinMax = 0;
5583         u8 flag = WHERE_ORDERBY_NORMAL;
5584 
5585         assert( p->pGroupBy==0 );
5586         assert( flag==0 );
5587         if( p->pHaving==0 ){
5588           flag = minMaxQuery(&sAggInfo, &pMinMax);
5589         }
5590         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5591 
5592         if( flag ){
5593           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5594           pDel = pMinMax;
5595           assert( db->mallocFailed || pMinMax!=0 );
5596           if( !db->mallocFailed ){
5597             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5598             pMinMax->a[0].pExpr->op = TK_COLUMN;
5599           }
5600         }
5601 
5602         /* This case runs if the aggregate has no GROUP BY clause.  The
5603         ** processing is much simpler since there is only a single row
5604         ** of output.
5605         */
5606         resetAccumulator(pParse, &sAggInfo);
5607         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5608         if( pWInfo==0 ){
5609           sqlite3ExprListDelete(db, pDel);
5610           goto select_end;
5611         }
5612         updateAccumulator(pParse, &sAggInfo);
5613         assert( pMinMax==0 || pMinMax->nExpr==1 );
5614         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5615           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5616           VdbeComment((v, "%s() by index",
5617                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5618         }
5619         sqlite3WhereEnd(pWInfo);
5620         finalizeAggFunctions(pParse, &sAggInfo);
5621       }
5622 
5623       sSort.pOrderBy = 0;
5624       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5625       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5626                       pDest, addrEnd, addrEnd);
5627       sqlite3ExprListDelete(db, pDel);
5628     }
5629     sqlite3VdbeResolveLabel(v, addrEnd);
5630 
5631   } /* endif aggregate query */
5632 
5633   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5634     explainTempTable(pParse, "DISTINCT");
5635   }
5636 
5637   /* If there is an ORDER BY clause, then we need to sort the results
5638   ** and send them to the callback one by one.
5639   */
5640   if( sSort.pOrderBy ){
5641     explainTempTable(pParse,
5642                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5643     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5644   }
5645 
5646   /* Jump here to skip this query
5647   */
5648   sqlite3VdbeResolveLabel(v, iEnd);
5649 
5650   /* The SELECT has been coded. If there is an error in the Parse structure,
5651   ** set the return code to 1. Otherwise 0. */
5652   rc = (pParse->nErr>0);
5653 
5654   /* Control jumps to here if an error is encountered above, or upon
5655   ** successful coding of the SELECT.
5656   */
5657 select_end:
5658   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5659 
5660   /* Identify column names if results of the SELECT are to be output.
5661   */
5662   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5663     generateColumnNames(pParse, pTabList, pEList);
5664   }
5665 
5666   sqlite3DbFree(db, sAggInfo.aCol);
5667   sqlite3DbFree(db, sAggInfo.aFunc);
5668 #if SELECTTRACE_ENABLED
5669   SELECTTRACE(1,pParse,p,("end processing\n"));
5670   pParse->nSelectIndent--;
5671 #endif
5672   return rc;
5673 }
5674